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Chapter 1

General introduction
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You can find a shorter version of this introduction here: [1].

1.1 Generalities

1.1.1 What is nanofluidics?

Nanofluidics is the study of fluids confined in structures of nanometric
dimensions (typically 1− 100 nm) [2, 3]. Fluids confined in these structures
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Chapter 1. Introduction 2

exhibit behaviours that are not observed in larger structures, due to a high
surface to bulk ratio. Strictly speaking, nanofluidics is not a new research
field and has been implicit in many disciplines [4–8], but has received a name
of its own only recently. This evolution results from recent technological
progress which made it possible to control what occurs at these scales.
Moreover, advances have been made in observation/measurement techniques,
allowing for measurement of the small physical quantities inherent to nano-
sized systems.

Even though nanofluidics is born in the footstep of microfluidics, it would
be incorrect to consider it an extension of microfluidics. Indeed, while
in microfluidics the only scale which matters is the size of the system,
nanofluidics has to deal with a large spectrum of characteristic lengths
which induce coupled phenomena and give rise to complex fluid behaviours
[9]. Moreover, since nanofluidics is at the intersection between physics,
chemistry and biology, it concerns a wide range of domains such as physiology,
membrane science, thermodynamics or colloidal science. Consequently, a
multidisciplinary approach is often needed for nanofluidics’ research.

Some striking phenomena taking place at the nanoscale have been high-
lighted during the past few years. For example, super-fast flow in carbon
nanotubes [10–12], nonlinear eletrokinetic transport [13, 14] or slippage
over smooth surfaces [15] have been measured. Those effects are indicators
of the richness of nanofluidics. Accordingly, this field creates great hopes,
and the discovery of a large variety of new interesting effects in the next
decades is a reasonable expectation. Moreover, one can notice that most of
the biological processes involving fluids operate at the nano-scale, which is
certainly not by chance [9]. For example, the protein that regulates water
flow in human body, called aquaporin, has got sub-nanometric dimensions
[16, 17]. Aquaporins are known to combine high water permeability and
good salt rejection, participating for example to the high efficiency of human
kidney. Biological processes involving fluid and taking place at the nanoscale
attest of the potential applications of nanofluidics, and constitute a source
of inspiration for future technological developments.

Hereafter, an overview of the current state of nanofluidics is presented. First,
a brief state-of-the-art, mainly focused on nano-fabrication and measurement
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techniques is given. Then some current applications linked to nanofluidics
are described.

1.1.2 State-of-the-art

Nanofluidics has emerged from the recent progresses of nanoscience and
nanotechnology, such as progresses made in developing nano-fabrication
technologies. Fabricating well-controlled channels is a major challenge for
nanofluidics, and is a necessary condition for a systematic exploration of
nanofluidic phenomena. This requires a good control of device dimensions
and surface properties (charge, roughness, etc). For example, the improve-
ment of lithography techniques (electron, x-beam, ion-beam, soft...) allows
the fabrication of slit nanochannels [18]. Focus Ion Beam (FIB) allows
to drill nanopores in solid membranes [19, 20]. There are also coatings
and deposition/etching techniques that can be used to tune the surface
properties [21, 22]. Siria et al. were able to manipulate a single boron nitride
(BN) nanotube in order to insert it in a membrane separating electrolyte
reservoirs and perform electric measurements [23]. Great developments of
Scanning Tunneling Microscope (STM) or Atomic Force Microscopy (AFM)
allow to characterize the fabricated devices.

In parallel, the efforts invested in nanofabrication have been combined to
an improvement of measurement techniques. Most of them are based on the
measurement of electric currents, and have been developed since the early
days of physiology. But for a full understanding of nanofluidic properties,
other quantities have to be made accessible. For example, local values
of a velocity field can be obtained using nano-Particle Image Velocimetry
(nano-PIV). Surface Force Apparatus (SFA) have been used to explore
the hydrodynamic boundary condition and measure forces that play an
important role in nanofluidics, such as van der Waals or electric forces.

In addition, a current challenge concerns water flow measurements. The
main difficulty is due to the magnitude of typical flows through nanochannels:
∼ 10−18 m3/s (it would take several years to grow a drop of 1 nl with such
a flow). In order to detect a water flow through a nanochannel, some
potential candidates have emerged during the last decade. One can cite, for
example, Fluorescence Recovery After Photobleaching (FRAP), confocal
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measurements or coulter counting measurements that have been reported to
detect respectively 7 · 10−18 m3/s [24], 10−18 m3/s [25] and 10−18 m3/s [26].
However, the inconvenient of most of the existing measurement techniques
is that they are indirect and require the use of dyes or probes.

Meanwhile, numerical progresses combined with calculation capacity im-
provement allow for the theoretical exploration of a large variety of nanoflu-
idic properties. For example, the friction of water on solid surfaces can
be investigated using ab initio methods [27], while molecular dynamics
simulations are good candidates for fluid transport investigations [28, 29].

1.1.3 Applications

Some important applications of nanofluidics are listed hereafter.

Biology – First of all, most of the biological processes that involve fluids
take place at the nanoscale [16, 30–32]. For example, the transport of
water through biological membranes in cells is ensured by aquaporins, a
protein with subnanometric dimensions. Aquaporins appear to have an
extremely high water permeability, while ensuring an excellent salt rejection
1. Another example of proteins with nanometric dimensions are ion pumps
and ion channels, that ensure the flow of ions across cell membranes [33, 34].
Combined, those proteins allow the (human) kidney, which is an example
of natural desalination and separation tool, to purify water with an energy
cost far below current artificial desalination plants [9].

Desalination – At the same time, some of the most used (man-made)
desalination techniques, consisting in the separation of salt and water in
order to produce fresh water, are using nanofluidic properties [35, 36]. This is
the case of membrane-based techniques, such as Reverse Osmosis (RO) [37],
Forward Osmosis (FO) [38] or ElectroDialysis (ED) [39]. The improvement
of the membrane technology has made it possible to desalinate with an
energy consumption close to the minimum energy set by thermodynamics.

Extraction of mixing energy – Another interesting application of nanoflu-
idics concerns the extraction of the energy of mixing from natural water

1Note that the shape of aquaporins is the basis of the chapter 2.
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resources. This so-called blue energy is the energy available from the differ-
ence in salt concentration between, for example, seawater and river water.
Pressure-Retarded Osmosis (PRO) converts the huge pressure difference
originating in the difference in salt concentration (∼ bars) between reservoirs
separated by a semipermeable membrane into a mechanical force by the
use of a semipermeable membrane with nanosized pores [40]. Siria et al.
proposed another way to convert blue energy based on the generation of an
osmotic electric current using a membrane pierced with charged nanotubes
[23].

Nanofluidic circuitry – The recent emergence of nanofluidic components
benefiting of the surface effects of nanofluidics leads naturally to an analogy
with micro-electronics. Indeed, some nanofluidic components imitate the
behaviour of over-used micro-electronic components such as the diode or
the transistor [13] 2. Even if a complete analogy between both fields fails
due to the physical differences between ions and electrons, controlling/ma-
nipulating nano-flows the same way we control electric currents would allow
for regulating, sensing, concentrating and separating ions and molecules in
electrolyte solutions [41] with many potential applications in medicine, such
as drug delivery or lab-on-a-chip analyses.

An overview of the full complexity of nanofluidics is highlighted in the
following by the description of some theoretical bases. The first part
provides the definitions of the characteristic lengths that separate the
different transport regimes and lead to a large variety of behaviours. The
second part describes the numerous forces that play a role in nanofluidics
and that are at the origin of the various phenomena. Finally, the third part
focuses on transport response of a membrane pierced with a slit nanochannel
and submitted to external forcing.

2Note that nanofluidic diodes are discussed in chapter 4.
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1.2 Definitions

1.2.1 Characteristic lengths

The richness of nanofluidics comes from the existence of a large number of
characteristic lengths related to the finite size of the fluid’s molecules, to
electrostatics or to the fluid dynamics. Indeed, when one or more dimensions
of a nanofluidic system compares with those characteristic lengths, new
phenomena may appear. An overview of length scales at play in nanofluidics
can be seen in figure 1.1. In what follows, a description of each length is
given.

0.1 nm 1 nm 10 nm 100 nm 1000 nm

Molecular 
scale

Debye length

Duhkin length

Slip length 
(simple surface)

Slip length (micro-nano- 
structured surfaces)

Continuum description

Figure 1.1: Overview of length scales at play in nanofluidics, freely inspired
from reference [2].

The molecular length scale is associated with the finite size of the fluid’s
molecules and its components (molecules, ions...). More precisely, it is linked
to their diameter σ, typically in the angstroms scale (1Å= 1 × 10−10 m).
For example, σ ∼ 3Å for the water molecule, σ ∼ 4 − 5 Å for common
ionic species (Na, K, Cl) [42]. This length defines a priori the ultimate
limit of the study of nanofluidic transport [2]. In the vicinity of a confining
wall, fluids can experience some structuring and ordering at the molecular
length scale. An example of water molecules near a solid surface is shown in
figure 1.2. This effect is exacerbated in confining pores, when there is only
room for a limited number of molecules. In that case, strong deviations
from continuum predictions can be expected. Another important effect
related to the size of molecules, and thus to the molecular length is osmosis;
which is the phenomenon by which a solvent moves across a semipermeable
membrane (permeable to the solvent, but not to the solute) separating
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two solutions of different concentrations. Note that the question of the
robustness of hydrodynamics for confinement below one nanometer and the
phenomenon of osmosis will both be discussed in this thesis.

Figure 1.2: Water molecules (oxygen in red, hydrogen in white) next to a
graphene sheet (in gray).

The Bjerrum length is defined considering two charged species in a
solution. It corresponds to the distance at which the thermal energy kBT ,
with kB the Boltzmann constant and T the absolute temperature, is equal
to the energy of electrostatic interaction. The Bjerrum length `B can be
written as

`B =
Z2e2

4πεkBT
, (1.1)

with e the elementary charge, Z the valency, ε the dielectric permittivity of
the medium. For two monovalent species in water at ambient temperature,
`B is approximately equal to 0.7 nm. Depending on the considered solution
(monovalent ionic species, organic solvent with low dielectric constant, etc.),
`B can be either large enough to be clearly dissociated from the molecular
length, or be of the same order as the molecular length. The physics has
to be differentiated in each case. There are physical effects with important
implications on nanofluidic transport that are linked to the Bjerrum length.
For example, for confinements below `B, one expects a large free-energy
cost to undress an ion from its hydration layer and make it enter the pore,
with consequences on filtering processes of charged species.

The Gouy-Chapman length is constructed in the spirit of the Bjerrum
length. It is defined as the distance from a charged wall where the electro-
static interaction of a single ion with the wall becomes of the order of the
thermal energy. For a surface charge Σ, it writes

`GC =
e

2πΣ`B
. (1.2)
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For monovalent species in water and a typical surface charge Σ ∼ 50 mC/m2,
`GC is approximately equal to 0.7 nm.

The Debye length is the characteristic length of the layer that builds up
near a charged surface in an ionic solution. This layer counter balances the
influence of the electric charge, and is of main importance in the study of
transport at the nanoscale, as will be discussed later. The Debye length can
be written as

λD =
1√

8πlBc0

, (1.3)

with c0 the concentration in ionic species. Indeed, when a solid surface
is immersed in an aqueous solution, it usually acquires a surface charge
Σ due to chemical reactions (dissociation of surface groups and specific
adsorption of ions in solution to the surface [43, 44]). In response to this
surface charge, the ionic species in the liquid rearrange themselves and form
a layer that screens the influence of the surface charge. This layer of ionic
species is called the Electrical Double Layer (EDL). Note that the Debye
length is independent of the surface charge Σ, and inversely proportional to
the square root of the salt concentration c0. Typically λD is equal to 30 nm
for c0 = 10−4 M, 3 nm for c0 = 10−2 M and 0.3 nm for c0 = 1M.

The Dukhin length is based on the comparison between the bulk to
the surface electric conductance, which links the electric current to an
applied electric field. It characterizes the channel scale below which surface
conductance dominates over bulk conductance [2]. In a channel of width
h and surface charge density Σ, the excess in counterion concentration is
ce = 2Σ/he with e the elementary charge and where the factor 2 accounts
for the two surfaces. One may define a Dukhin number Du = |Σ| /hc0e. A
Dukhin length `Du can then be defined as

`Du =
|Σ|
c0e

. (1.4)

For a surface with a surface charge density Σ = 50 mC/m2, `Du is typically
0.5 nm for c0 = 1M, while `Du = 5 µm for c0 = 10−4 M.

The slip length is defined as the depth inside the solid where the linear
extrapolation of the velocity profile vanishes. Unlike previous lengths, that
are all related to electrostatics, the slip length comes from the dynamic of
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the fluid near a solid surface. It characterizes the hydrodynamic boundary
condition of fluids at interfaces. Its expression can be derived as follows:
first, assume that the tangential force per unit area exerted by the liquid
on the solid surface is proportional to the fluid velocity at the wall vw:
σxz = λvw, with λ the friction coefficient, z the normal to the surface, x the
direction of the flow. Then, combining this equation with the constitutive
equation for a bulk Newtonian fluid, σxz = η∂zvx, one obtains the Navier
boundary condition [15]:

vw =
η

λ
∂zvx

∣∣∣
w

= b∂zvx

∣∣∣
w
, (1.5)

where the slip length b = η/λ is defined as the ratio between the bulk liquid
viscosity and the interfacial friction coefficient. Accordingly, several kinds
of hydrodynamic boundary conditions can apply:

• the no-slip boundary condition supposes that the fluid has zero velocity
relative to the boundary, vw = 0 at the wall, and corresponds to a
vanishing slip length b = 0;

• the perfect-slip boundary condition corresponds to the limit of an
infinite slip length (b → ∞), or equivalently a vanishing friction
coefficient (λ→ 0). It corresponds to a shear free boundary condition.
Traditionally, the perfect-slip boundary condition is used when the
slip length b is much larger than the characteristic length(s) of the
system;

• the partial-slip boundary condition concerns intermediate slip length.

For simple liquids on smooth surfaces, slip lengths up to a few tens of
nanometers have been experimentally measured [15].

1.2.2 Mathematical description of the EDL

The Electrical Double Layer (EDL) plays a fundamental role in nanofluidics
due to a large surface area to volume ratio. It corresponds to the layer
of ionic species that counter-balances the influence of a surface charge.
Numerous phenomena, that will be discussed later, take their origin within
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the EDL, so a mathematical description of this layer is of main importance
here. The conventional description is given hereafter.

The Gouy-Chapman theory is at the basis of EDL’s description. It is
based on the following hypothesis [45]:

• ions are considered as (punctual) spots,

• the dielectric permittivity of the medium is supposed constant in the
medium,

• the charge density and the electrical potential are seen as continuum
variables,

• the correlations between ions as well as the ion-solvent interactions
are not taken into account (mean field theory),

• only electrostatic interactions are considered.

Poisson-Boltzmann equation – Under the previous hypotheses, let us
write the equation that underlies the distribution of ions near a flat surface.
Consider monovalent ions near a flat surface S, located at z = 0, with
homogeneous surface charge density Σ and surface potential Vs, as shown
in figure 1.3. The link between the electrical potential V (z) and the charge

0 ĸz
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-
--
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--

-
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Figure 1.3: Left: scheme of the studied configuration. Right: Debye-Hückel
solution (1.11) for the electrical potential V in blue and linearized Boltzmann
equation (1.12) for the concentration profile c± in red.

density ρe(z) at a z distance of the surface inside the ionic solution is given
by a Poisson equation:

∆V =
d2V

dz2
= −ρe

ε
, (1.6)
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where ε = ε0εr is the solvent permittivity (for water at ambient temperature,
εr ≈ 80). The idea is to ignore the thermal fluctuations of V and ρe and to
consider their respective averaged values only. At the thermal equilibrium,
the densities of positive c+(z) and negative c−(z) ions are governed by the
Boltzmann equation:

c±(z) = c0e
∓βeV (z), (1.7)

with β = 1/kBT and c0 the concentration in ion of charge ± e far from
the wall. The charge density reads ρe = e(c+ − c−) = −2ec0 sinh(βeV ).
Coupling this equation with (1.6), we get the Poisson-Boltzmann equation
for the electrical potential V (z):

d2V

dz2
=

2ec0

ε
sinh(βeV ). (1.8)

Introducing the previously described Bjerrum length `B, defined as the
length at which the thermal energy balances the electrostatic one, we can
rewrite the equation 1.8:

βe
d2V

dz2
= 8π`Bc0 sinh(βeV ) = κ2 sinh(βeV ), (1.9)

where κ = (8π`Bc0)1/2 corresponds to the inverse of the previously described
Debye length λD. This equation describes the evolution of the electrical
potential next to a charged surface.

Linearized Poisson-Boltzmann equation – In the general case, the
Poisson-Boltzmann equation can not be solved analytically. For small
potentials (eV � kBT ), an approximate form of the Poisson-Boltzmann,
the Debye-Hückel equation, can be written as:

d2V

dz2
= κ2V. (1.10)

Assuming that the electrical potential vanishes far from the surface, the
solution of the Debye-Hückel equation reads

V (z) = Vse
−κz, (1.11)

where Vs is the surface electrical potential. Equation (1.11) is plotted in
figure 1.3. The electrical potential is screened over a distance κ−1 = λD,
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the Debye length, which then gives the width of the EDL. The linearization
of the equation (1.7) gives

c± = ρs exp(∓βeV (z)) ≈ c0(1∓ βeV (z)) = c0(1∓ βeVs exp(−κz)). (1.12)

Equation (1.12) is plotted in figure 1.3 for both ± species.

Non-linear Poisson-Boltzmann equation – In some situations, a solu-
tion for the non-linear Poisson-Boltzmann equation exists. Let us consider
here the case of a single flat wall, the electrolyte is located in z > 0 and the
solid wall in z < 0. A surface charge density Σ < 0 is located at z = 0. The
electric field is taken to be equal to 0 inside the wall as well as far from the
wall inside the electrolyte. At the wall, the electrostatic boundary condition
links the electric field and the surface charge:

∂V

∂z

∣∣∣∣
z=0

= −4π

ε
Σ. (1.13)

Solving the PB equation (1.8) with this boundary condition (1.13) leads to
[46]

V (z) = − 2

eβ
ln

(
1 + γe−z/λD

1− γe−z/λD

)
, (1.14)

where γ is the positive root γ0 of the equation:

γ2 +
2`GC
λD

γ − 1 = 0. (1.15)

For a positive surface charge Σ, the solution for V is identical, though
with γ = −γ0(< 0). The surface potential Vs can be written as Vs =

4 arctan(−z/λD)/βe.

In this thesis, the Poisson-Boltzmann solutions (linear and non-linear) will
be frequently used.

1.2.3 Nanoscale forces

Now that the general ideas of the Gouy-Chapman description of the EDL
have been given, let us describe some of the most important forces that play
a role in nanofluidics. These forces are at the origin of the large range of
phenomena observed in nanofluidics, and they give rise to both equilibrium
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or kinetic phenomena [3]. Note that the distinction we will make between
forces is artificial since they all are electrical in nature [47], but it still
makes sense because of the many different ways in which the electrical force
presents itself.

As a side note, each system depends fundamentally on individual forces
that are applied between individual atoms. However, in practice, large
systems (∼ 10 nm) can usually be described with continuum theory, which
statistically averages the single interactions. This is why we may speak
of forces exerted by walls on particles or molecules, or between walls, or
between particle or molecules.

Electrostatic forces are long range interactions acting between charged
atoms or ions [47]. Two particles of respective charges Q1 and Q2 at a
distance r act on each other as follows:

F (r) =
Q1Q2

4πε0εrr2
, (1.16)

where εr is the dielectric permittivity of the medium. F (r) is directed along
the axis defined by the position of the two particles. Equation (1.16) is
known as the Coulomb law. Electrostatic forces can be either attractive
or repulsive, depending on the sign of the product Q1Q2. They are, for
example, at the origin of the building of the Electrical Double Layer (EDL).

Van der Waals forces are residual forces of electrostatic origin which
are always present, even between neutral atoms. They are relatively weak
in comparison to chemical bonding for example (see below), but they
nevertheless play a role in a large range of phenomena such as adhesion,
surface tension or wetting. Van der Waals forces even manifest themselves
at macroscopic scales since they are at the origin of the adhesion of gecko,
a decimetric reptilia, on solid surfaces. Van der Waals forces include
attractions and repulsions between atoms, molecules and surfaces. They
have three possible origins such as:

• the force between two permanent dipoles,

• the force between a permanent dipole and an induced dipole,

• the force between two induced dipoles (London dispersion force).
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Van der Waals forces are long-range, can bring molecules together or mu-
tually align/orient them, and are not additive. They have to be described
with the quantum mechanical formalism, which is beyond the scope of the
present work.

The DLVO (Derjaguin, Verwey, Landau, Overbeek) theory gives a large
picture of nanoscale forces which includes van der Waals forces and coulombic
forces. However, some effects that appear at very short range can not be
described in the framework of the DLVO theory. Non-DLVO forces are
discussed in what follows.

Chemical or bonding forces link two or more atoms together to form
a molecule [47]. Bonds are characterized by the redistribution of electrons
between the two or more atoms. The number of covalent bonds that an
atom can form with other atoms depends on its position in the periodic
table. This number is called the valency. For example, it is equal to one for
hydrogen and two for oxygen, which leads to water molecule H2O (H-O-H).
Notice that covalent bonds are of short range (0.1− 0.2 nm) and directed at
well-defined angles relative to each other. For example, they determine the
way carbon atoms arrange themselves to form diamond structure. Notice
that covalent bonding comes from complex quantum interactions which are
beyond the scope of the present work.

Repulsive steric forces appear when atoms are brought too close together.
It is associated with the cost in energy due to overlapping electron clouds
(Pauli/Born repulsion). A consequence is the size exclusion, widely used in
membranes from angström to micrometer [3]. It plays a role for example in
aquaporins (water channels), that offer a low resistance for water molecules,
but do not allow ions to pass through. To pass through this channel, the ion
needs to lose its water shell, which is energetically unfavorable. Notice that,
combining electrostatic forces and steric forces, it is possible to develop K+

channels with a high selectivity for K+ over Na+ while both have water
shells [48].

Solvation forces (or structural forces) are related to the mutual force
exerted by one plate on another when they are separated by a structured
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liquid 3. Next to a solid surface, density oscillations are expected. If two
solid surfaces immersed in a fluid are separated by a short distance, liquid
molecules must accommodate the geometric constraint, leading to solvation
forces between the two surfaces, even in the absence of attractive walls.
Depending on both surface properties (well ordered, rough, fluid-like) and
fluid properties (asymmetrically shaped molecules, with anisotropic or non
pair-wise additive interaction potential), the resulting solvation forces can
be either monotonic or non-monotonic, repulsive or attractive. See reference
[47] for more details. Notice that, in the case of water molecules, solvation
forces are called hydration forces.

Hydrophobic forces come from interactions between water and low water-
soluble objects (molecules, clusters of molecules...). These substances usually
have long carbon chains that do not interact with water molecules, resulting
in a segregation and an apparent repulsion between water and nonpolar
substances. The hydrophobic effect, which results from the presence of
hydrophobic forces, is actually an entropic effect: each water molecule can
form four hydrogen bonds in pure water, but can not form as much if
surrounded by hydrophobic (apolar) species. Hence, apolar molecules (or
clusters of molecules) will rearrange themselves in order to minimize the
contact surface with water. An example is the mixing of fat and water,
where fat molecules tend to agglomerate and minimize the contact with
water.

Non-conservative forces, such as friction or viscous forces, are referred as
non-conservative forces because they involve energy transfer from one body
to another. Contrary to other forces, which act on a body and generate
a motion according to the second law of Newton, non-conservation forces
have no force law and arise as a reaction to motion. Inside a liquid, friction
is linked to a fluid property: the viscosity, which is a property of a fluid to
resist to a shear. It comes from collisions between neighbouring particles
that are moving at different velocities. For example, when a fluid flows
through a pipe, the particles generally move quickly near the pipe’s axis and
slowly near its walls, leading to stress. The friction between water molecules

3Liquid structuring has been mentioned in the subsection 1.2.1, and will be central in
chapter 3
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leads to a dissipation that has to be overcome, for example by a pressure
difference between the two ends of the pipe, to keep the fluid moving.

Other forces, such as gravitational or inertial forces, are of lesser impor-
tance in nanofluidics and are not discussed here.

1.2.4 Some consequences

The previously described forces give rise to a large variety of phenomena.
As an illustration, some of them are presented here.

Cohesion is related to attractive forces between molecules of the same
substance. It is due to intermolecular attractive forces. They can be van der
Waals forces or hydrogen bonding. Cohesion is at the origin, for example,
of the tendency of liquids to resist separation.

Adhesion corresponds to attractive forces between unlike molecules. They
are caused by forces acting between two substances, which can have various
origins, such as electrostatic forces (attraction due to opposite charges),
bonding forces (sharing of electron), dispersive (van der Waals forces) etc.
For example, water tends to spread on a clean glass, forming a thin and
uniform film over the surface. This is because the adhesive forces between
water and glass are strong enough to pull the water molecules out of their
spherical formation and hold them against the surface of the glass.

Surface tension is related to the elastic tendency of liquids which makes
them acquire the least surface area possible. This results from the fact that
when exposed to the surface, a molecule is in an energetically unfavorable
state. Indeed, the molecules at the surface of the liquid lack about half of
their cohesive forces, compared to the inner molecules of the bulk liquid
[49]. Hence a molecule at the surface has lost about half its cohesion energy.
Surface tension is a measure of this lost of energy per surface unit. In
the thermodynamic point of view, it is defined as the excess of free energy
due to the presence of an interface between two bulk phases [50]. The
surface tension γ is of the order of magnitude of the bond energy ε between
molecules of the fluid divided by the cross section area of a molecule σ2:

γ ∼ ε

σ2
.
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Finally one may notice that surface tension is also present at liquid-liquid,
liquid-solid and solid-air interfaces.

Wetting is the study of the spreading of a liquid deposited on a solid (or
liquid) substrate. When a small amount of liquid is put in contact with
a flat solid surface, there are two different equilibrium situations: partial
wetting, when the liquid shows a finite contact angle θ, and total wetting,
in which the liquid spreads completely over the surface and where θ is not
defined. The property of the fluid to spread on the surface is characterized
by the spreading parameter S which measures the difference between the
energy per unit area of the dry surface of the solid substrate and the wetted
surface:

S = γSV − (γSL + γLV ) (1.17)

where γSV , γSL and γLV denote the free energies per unit area of respectively
the solid-vapour interface, the solid-liquid interface and the liquid-vapour
interface equal to the surface tension γ. In the case of a positive S, the
surface energy of the dry surface is larger than the energy of the wetted
surface, so the liquid tends to extend completely to decrease the total surface
energy, hence θ is equal to zero. A negative S corresponds to a partial
wetting situation, where the liquid does not completely spread on the surface
and forms a spherical cap, adopting an angle θ > 0. From the equilibrium
of the capillary forces at the contact line or from the work cost for moving
the contact line, one gets the Young-Dupré relation:

cos θ =
γSV − γSL

γ
. (1.18)

Capillary forces originate in the adhesion between the liquid and the solid
surface molecules. It is strongly linked to the existence of a surface tension,
as well as to the concept of wetting and contact angle. In certain situations,
those forces pull the liquid in order to force it to spread the solid surface.
Depending on the configuration, it can make the liquid fill a solid channel
for example. Capillary force will be discussed in greater details in chapter 3.
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1.2.5 Transport in nanochannels

In this section, we consider various transport phenomena that can occur
in a nanochannel separating two reservoirs containing an electrolyte. The
purpose is to give a simple expression of each flux as a function of various
driving forces (mechanical pressure, solute concentration and electrical
potential gradients). For the sake of simplicity, the nanochannel is chosen
to be a slit (∼ 2D) and entrance effects are not taken into account 4. The
walls are perpendicular to z, respectively located in z = ±h/2 and driving
forces are applied along x, see figure 1.4. The channel has a length L along
x and a width w along y. The Reynolds number Re = ρvL/µ (where ρ
and µ are respectively the fluid density and the dynamic viscosity and v
and L are respectively the characteristic velocity and length of the flow) is
assumed to be lower than one and the problem to be stationary. Hence, the
governing equation for the flow is the Stokes equation:

η4 ~u = ~∇p+ ~F (1.19)

where η is the fluid viscosity, ~u is the velocity field, p is the hydrodynamic
pressure and ~F a volume force. The surface charge density is Σ, and will
be different from 0 if specified only. Unless otherwise stated, the height of
the channel h will be considered large in comparison to the typical range of
the potential (i.e. the Debye length). Unless otherwise stated, the no-slip
boundary condition will be used for the solvent along walls. The system is
shown on figure 1.4.

Σ

h

L

p-Δp/2
V-ΔV/2
c-Δc/2

p+Δp/2
V+ΔV/2
c+Δc/2

Q, I, J

x

z

Figure 1.4: Sheme of the 2D channel used for the calculations.

A flow through the membrane can occur as a consequence of a force near the
membrane [51]. Here we consider this force to be a mechanic pressure drop

4Notice that hydrodynamic entrance effects are discussed in this thesis, see chapter 2.
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∆p, difference in solute concentration ∆c or difference in electrical potential
∆V . We suppose that the considered forcing are weak, so equilibrium
profiles remain unmodified along z, and flows are linear functions of the
forces operating. Hereafter we will study the volume flow Q, the ionic
flow Ji and the electrical current Ie resulting from ∆p, ∆c and ∆V . The
phenomenological equations linking the three flows to the three forces write:

Q = L11∆P + L12∆c+ L13∆V,

Ji = L21∆P + L22∆c+ L23∆V, (1.20)

Ie = L31∆P + L32∆c+ L33∆V,

where LIJ are coefficients. According to Onsager’s law, the matrix of
coefficients LIJ is symmetrical, i.e. LIJ = LJI . Finally, one assumes that
in the middle of the channel (z=0), concentration, electrical potential and
pressure evolve linearly with x.

Direct terms

The direct terms of the matrix of transport (1.20) correspond to the diagonal
terms LII . They link each flux with their natural force, respectively the
solvent flow with the pressure gradient, the ionic flow with the salt gradient
and the ionic current with the electrical gradient. Each of them is calculated
hereafter in the previously described configuration (slit nanochannel).

L11 – the hydrodynamic permeability characterizes the flow transport
across a given structure under a pressure gradient. Using both symmetry and
impermeability of the walls, one gets for the velocity field: ~u = ux(z)~ux. So
the Stokes equation 1.19 can be written as η∂2

zux = ∂xp. A first integration
of the Stokes equation between 0 and z gives η∂zux = z∂xp, where we
used that ∂zux|z=0 = 0 by symmetry, and that ∂xp does not depends on z.
Another integration between −h/2 and z using that ∂xp = ∆p/L gives

u(z) = uw +
1

η

(
z2

2
− h2

8

)
∆p

L
, (1.21)

where uw is the wall velocity, which depends on the hydrodynamic boundary
condition (see the definition of the slip length, subsection 1.2.1). Finally,
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L11 in case of the no-slip boundary condition (uw = 0) can be written as:

L11 =
Q

∆p
= − 1

12η
× wh3

L
. (1.22)

Hence the hydrodynamic permeability of a membrane in the low Reynolds
number regime is limited by the viscosity of the fluid, and depends strongly
on the dimensions of the channel.

L22 – the ionic permeability characterizes the ionic flow through a
membrane under a salt concentration gradient. From the Fick’s law of
diffusion:

~j± = −D±~∇c±, (1.23)

where D± are diffusion coefficients of the ± species respectively, one can
write the total flow Ji assuming that D+ = D− = D:

Ji =

∫
S

(~j+ +~j−). ~dS = −wD
∫ h/2

−h/2
∂x(c+(x) + c−(x))dz. (1.24)

In a neutral channel, and assuming that c±(x) = x∆c/L+ c0, it gives

L22 =
Ji
∆c

= −D × S

L
, (1.25)

where S = hw is the surface of the channel. Notice that equation (1.25)
describes ionic flow through a membrane under salt gradient in absence
of surface charge. In case of the presence of a surface charge density Σ,
the nanochannel exhibits a selective permeability for ion diffusive transport
[2]. Consequently, the concentration of counterions inside the channel is
higher that the bulk concentration, while the concentration in co-ions is
lower. Therefore, ions of the same charge as the nanochannel exhibit a
lower permeability, while ions of the opposite charge have a higher per-
meability through the nanochannel. Following Plesis et al., an effective
nanochannel section can be defined for each species S±eff = β±S where β is
an exclusion/enrichment coefficient [52]:

β± =
1

h

∫ h/2

−h/2
e∓φ(z)dz; (1.26)

where φ(z) = βeV (z) with V (z) the electrical potential. One can use the



Chapter 1. Introduction 21

1e-05 0.0001 0.001 0.01 0.1 1

c
0
 (mol/L)

0

1

2

3

4

5

6

β

Figure 1.5: Equation (1.26) for β+ (continuous) and β− (dashed) as a function
of the bulk concentration for a negatively charged surface.

linearised Poisson-Boltzmann equation to calculate the ion concentration
profile in the slit. An example is shown in figure 1.5.

L33 – the ionic conductance characterizes the ionic current through a
membrane under an applied electrical potential difference: G = Ie/∆V .
First, let us define the (bulk) conductivity of the solution κb:

κb = e(µ+c+ + µ−c−) (1.27)

with µ± and c± respectively the mobility and the volume density of ± ions
[43]. At high ionic strength, or for a neutral channel (Σ = 0), equation
(1.27) can be used directly to calculate the conductance of the channel
Gbulk = κbwh/L. However, for a non-neutral channel (Σ 6= 0), if one looks
at the ionic conductance versus the salt concentration on a log-log scale, a
conductance plateau is observed at low ionic strength. This is due to the
contribution to the total current of ions of the EDL. This excess counterions
concentration can be written as [53]:

ce =
2Σ

he
(1.28)

where the 2 accounts for the two surfaces. From this excess counterions
concentration, one can define a surface conductance Gsurf = eµcewh/L.
Then the total conductance is the sum of a bulk conductance and a surface
conductance:

G = Gbulk +Gsurf = µcse
wh

L
+ 2Σµ

w

L
(1.29)
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where we assumed that µ+ = µ− and defined cs = 2c0 with c0 the salt
concentration. Finally, the ionic current Ie and the voltage drop ∆V are
linked as follows:

L33 =
Ie

∆V
= µ (cseh+ 2Σ)× w

L
. (1.30)

Cross terms

Additionally to the direct terms, there are cross phenomena coming from
couplings between hydrodynamics, ion diffusion and electrostatics. Using
statistical mechanics, Onsager has shown the necessity of equality between
the term LIJ and LJI . So in what follows, only three terms among the six
cross coefficients are explicitly calculated, the last three being deduced from
Onsager’s relation.

L13 / L31 – The phenomenon by which a difference of electrical potential
∆V induces a water flow is called electro-osmosis (L13). Its conjugate effect
is called streaming current (L31) and corresponds to the generation of an
electric current by a pressure driven liquid-flow [54]. Hereafter, we will do
explicit calculations for the case of electro-osmosis (L13).

Electro-osmosis takes its origin in the ion dynamics within the Electrostatic
Double Layer (EDL), in which the charge density ρe = e(ρ+ − ρ−) is non-
vanishing. The dynamics of the fluid is described by the stationary Stokes
equation with a driving force for the fluid Fe = ρeEe, where the electric
tangential field Ee is defined as Ee = −∂xV = −∆V/L, and is directed
along x [55]:

η∂2
zux + ρeEe = 0. (1.31)

Using that the charge density is linked to the electrostatic potential of the
EDL as follows:

ρe = −ε∂
2V

∂z2
, (1.32)

one finds, after a double integration of the equation (1.31):

ux(z) =
ε

η
(V (z)− ζ)Ee (1.33)
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where we used the no slip boundary condition and where ζ is the zeta
potential, which is the value of the electrostatic potential at the shear plane,
i.e. the position close to the wall where the velocity vanishes 5. In the no-slip
case, the zeta potential is equal to the surface potential Vs. As a remark,
one can notice that in the case of a finite slip at the wall, characterized by
a slip length b, the potential ζ takes the expression:

ζ = Vs × (1 + bκeff) (1.34)

where Vs is the electrostatic potential at the wall and κeff the surface
screening parameter (κeff = −V ′(z = 0)/Vs). In the case of a weak potential,
the screening parameter is approximately equal to the inverse of the Debye
length λD. Note that the velocity in the fluid results from a balance between
the driving electric force and the viscous friction force at the surface.

An integration of equation (1.33) gives the following expression for the total
water flow:

Q = whUEO − surface correction terms, (1.35)

where UEO is the eletro-osmotic velocity UEO = −εζEe/η. Figure 1.6 shows

λD

UEO

Figure 1.6: Schematic representation of the velocity profile, equation (1.33)
without and with surface correction terms, respectively on the left and on the
right.

a scheme of the velocity profile, with and without the surface correction
terms. Finally, neglecting the surface correction terms (that are of the order
of λD/h� 1), one can write:

L13 =
Q

∆V
≈ ζε

η
× wh

L
. (1.36)

5Notice that sometimes the zeta potential is defined as Vs and one has to consider an
amplified electro-osmotic mobility to take into account the effect of slippage.
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Hence electro-osmosis is caused by coulomb force and limited by viscous
dissipation.

Accordingly, the streaming current (L31), which is the electric current
generated by a pressure driven liquid-flow can be written as:

L31 =
Ie

∆P
=
ζε

η
× wh

L
. (1.37)

L12 / L21 – The generation of a flow under a solute gradient is called
chemi-osmosis (L12) [56]. Its conjugate effect is the generation of an excess
flux of salt under a pressure drop ∆p (L21). Here the expression of the L12

coefficient is obtained in the case of a flow generated by a solute gradient.

So, let us assume the existence of a salt concentration difference ∆c. The
salt concentration in the middle of the channel, cmid(x), is assumed to
vary linearly along the axis x: cmid(x) = c0 + ∆c × x/L, where c0 is the
concentration in the left reservoir (the concentration in the right reservoir
being c0 + ∆c). From the mechanical equilibrium in z together with the
Stokes equation along z, one can deduce the hydrostatic pressure profile:

p(x, z) = 2kBTcmid(x) [coshφ(x, z)− 1] + p0, (1.38)

where φ(x, z) = eβV (x, z). Injecting this expression in the Stokes equation
along x, η∂2

zux(z)− ∂xp(x, z) = 0, one finds:

η∂2
zux(z) = 2kBT

∆c

L
(coshφ− 1) . (1.39)

Using Poisson-Boltzmann and assuming that λD � h, one can find that the
flow is:

Q = whUCO − surface correction terms, (1.40)

with UCO the chemi-osmotic velocity:

UCO = −kBT
η

ln(1− γ2)

2π`B

∆c

c0L
, (1.41)
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where γ = tanh(φs/4). Neglecting surface correction terms (on the order of
λD/h� 1), the coefficient L12 can be written:

L12 =
Q

∆c
≈ −kBT

ηc0

ln(1− γ2)

2π`B
× wh

L
. (1.42)

Chemi-osmosis causes flow towards lower electrolyte concentration. As a
complement we will discuss two interesting cases: the case of non-equal
diffusion coefficient between + and − species, and the limit of large Debye
length λD compared to the channel height h (this regime is called osmosis).

Supplement 1 – In the case of a difference in anion and cation diffusivities,
an electric field is induced, and a supplementary electro-osmotic contribution
has to be taken into account [57]. Assuming a vanishing local current in
the outer region and a symmetric electrolyte, this diffusion-induced electric
field is proportional to β0 = (D+ −D−)/(D+ +D−) :

ED =
kBT

e
β0

d ln c

dx
. (1.43)

So the contribution of this mechanism combined with the previously calcu-
lated velocity (equation (1.41)) gives the following diffusio-osmotic velocity:

UDO = −kBT
η

[
β0ζ

ε

e
+

ln(1− γ2)

2π`B

]
∆c

c0L
, (1.44)

where we used equation (1.33). The first term corresponds to the electro-
osmotic effect, the direction of the generated flow depending on the sign
of the product β0ζ, while the second term, called the chemi-osmotic effect,
causes a flow towards the lower electrolyte concentration. Neglecting surface
correction terms, one can write:

L12 =
Q

∆c
≈ −kBT

ηc0

[
β0ζ

ε

e
+

ln(1− γ2)

2π`B

]
× wh

L
. (1.45)

Supplement 2 – An interesting case is the limit where the Debye length
λD is much larger than the channel height h. In this particular case, a
constant potential (independent of z) called Donnan potential VD builds up
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in the entire channel. From the electro-chemical equilibrium one gets:

c+

c−
= e−2φD , (1.46)

c+c− = c2
0, (1.47)

c+ − c− = −2Σ

eh
, (1.48)

where φD = eβVD. One can introduce the Dukhin number Du = Σ/(ec0h).
Then from equation (1.48), and using that cosh2(x)− sinh2(x) = 1, one gets

cosh(φD) =
√

1 + Du2. (1.49)

Injecting this expression in equation 1.39, which has been obtained from
mechanical equilibrium in z together with the Stokes equation, one gets

Q = − 1

12η

wh3

L
×∆Π, (1.50)

where the osmotic pressure ∆Π can be written as

∆Π = 2kBT∆c
(

1 +
√

1 + Du2
)
. (1.51)

Hence, when λD � h, one may write

L12 =
Q

∆c
= −kBT

6η

(
1 +

√
1 + Du2

)
× wh3

L
. (1.52)

L23 / L32 – The current generated under a salt concentration gradient is
called osmotic current and the reciprocal effect is the generation of a salt
flux under an electrical potential gradient. The expression of L23 is here
obtained in the first case, i.e. in the case of the generation of current under
a salt concentration gradient.

The electrical current Ie can be written as

Ie = w

∫ h/2

−h/2
e (j+(z)− j−(z)) dz. (1.53)

Two contributions to the current can be expected, a contribution from the
diffusive flux of salt and a contribution from the convective flux of salt. The
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first one can be written as

ID = w

∫ h/2

−h/2
e (jD,+(z)− jD,−(z)) dz, (1.54)

with jD,± = −D±∇c± the diffusive flux of each ion. Assuming that D =

D+ = D− and rewriting the current as

ID = −ew∂x
∫ h/2

−h/2
(c+(z)− c−(z)) dz, (1.55)

ID appears to be equal to zero from the global charge electroneutrality

Σ + e

∫ h/2

−h/2
(c+(z)− c−(z)) dz = 0. (1.56)

Accordingly, considering the convective part in equation (1.53) only, the
current can be written as

Ie = w

∫ h/2

−h/2
e (c+(z)− c−(z))ux(z)dz, (1.57)

where both species ± move at the same velocity ux(z) (i.e. there is no
electric field along z). Using that λD � h (thin electric debye layers as
compared to the channel width), one writes:

Ie = 2w

∫ ∞
0

e (c+(z)− c−(z))ux(z)dz. (1.58)

In this assumption, one expects that the entire contribution to the current
Ie comes from the convection of ions inside the electric double layers. From
the Poisson equation (1.6), one gets that

c+(z)− c−(z) = −∂
2φ

∂z2

1

4π`B
. (1.59)

Moreover, we know from previous section (see equation (1.39)) that the
velocity field ux(z) under a solute gradient is solution of

η
∂2ux
∂z2

= 2kBT
∆c

L
(coshφ− 1) . (1.60)
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Injecting equation (1.59) in equation (1.58), performing an integration by
part (twice) in the spirit of [58], one gets

Ie =
we

2π`B

[
φ
∂ux
∂z

]∞
0

− we

2π`B

∫ ∞
0

φ
∂2ux
∂z2

dz. (1.61)

From equation (1.60), one get

∂ux
∂z

∣∣∣∣
z=0

= −2kBT

η

∆c

L

∫ ∞
0

(coshφ− 1) dz. (1.62)

Hence, using that φ(z =∞) = 0, one gets

Ie = − we

π`B

kBT∆c

ηL

∫ ∞
0

(φs − φ)× (coshφ− 1)dz. (1.63)

with φs the normalized surface potential. Using PB equation ∇2φ =

κ2 sinhφ, we make the following change of variable:

dz = − dφ

κ
√

2(coshφ− 1)
, (1.64)

which allows to solve the integral in equation (1.63). One finds [58]:

Ie = 2w
e

πη`B

kBT

κ

(
2 sinh

φs
2
− φs

)
∆c

L
, (1.65)

that can be rewriten in terms of surface charge (using 2 sinhφs/2 =

eΣ/εkBTκ):

Ie = 2wΣ
kBT

2πη`B

(
1− κ`GC argsinh

1

κ`GC

)
∆c

Lc0

, (1.66)

where we have introduce the Gouy-Chapmann length `GC = e/(2πΣ`B).
Neglecting the surface correction terms one finds:

L23 =
Ie
∆c
≈ 2wΣ

kBT

2πη`B

1

Lc0

(1.67)

Reciprocally, the flux of salt under electrical gradient can be written as:

L32 =
Ji

∆V
≈ 2wΣ

kBT

2πη`B

1

Lc0

(1.68)



Chapter 1. Introduction 29

Various comments

We did not give an exhaustive list of phenomena that can occur at the
nanoscale. For example thermic effects induced by temperature difference
have not been discussed.

Notice that in practice, it is not easy to study each case alone. For example,
a charged channel submitted to a difference of electrical potential will
be subjected to various flux, leading to a charge accumulation at each
entrances, i.e. the apparition of an induced salt difference. This is part of
the complexity of nanofluidics.
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1.3 Announcement of the plan

We just showed an overview of the complexity and richness of nanofluidics
which is, in part, due to the large number of forces that apply as well
as the numerous characteristic lengths that over-cross each other at this
scale. In this context, and considering that nanofluidics is a quite recent
field, a large range of issues remained unexplored at the beginning of this
thesis, and most of them still are. Here we list the questions we address in
this manuscript. All of them are closely related to nanofluidics and most
of them have been assessed using the finite element method or molecular
dynamics simulations. For the purpose of this thesis, we have chosen to
regroup them into five chapters (the first one being the introduction) that
can be read independently. The second chapter describes our work
concerning hydrodynamic transport through a nanopore that focuses on
the viscous dissipation arising at each entrance. Inspired by the aquaporin,
an hourglass-shaped nanopore, we explored the role of the geometry on the
overall hydrodynamic permeability of a nanopore, using both continuum
hydrodynamics and molecular dynamics simulations. The third chapter

is a study of subcontinuum capillary filling. We tested the validity of
continuum predictions in subnanometric nanopores in which the granularity
of the fluid is expected to play a role. The fourth chapter presents our
work on nanofluidic diodes, an asymmetrically charged nanopore which
presents rectified force-flux response. We explored the possibility of using
a nanofluidic diode to control the solvent flow. Moreover, the possibility
of rectifications in the absence of a full electrical double layer overlap was
considered. Finally, the fifth chapter is a study of the fluctuations inside
a nanopore. The goal was to explain the origin of the mysterious low
frequency pink noise commonly observed in the power spectral density of
ionic current. We found, using both molecular dynamics simulations and an
analytical model, that the combination of reversible adsorptions of particles
in surface and diffusion can lead to pink noise, and constitutes a serious
candidate to explain its origin.

Note: the choice has been made not to include the experimental work on
the permeability of solid state nanopore using FCS, see Ref. [59] for details.
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Abstract and main results – Optimizing the per-
meability of nanoporous membranes is of main impor-
tance in various domains, such as desalination, water
filtration or energy conversion. At the nano-scale,
the limitation of fast transport is usually governed by
viscous dissipation, which has two possible origins:
friction at the walls of the pore and entrance effects
coming from the connection between the pore and the
reservoirs. Materials that present a low solid/liquid
friction, such as graphene, have been widely studied
for the last decade. But entrance dissipation also
needs to be studied, in order to reduce it as much as
possible.
Our research was inspired by a natural hourglass-
shaped nanopore called aquaporin, schematized in
figure A. This protein is known to present a high water
permeability and ensures water exchanges between
the biological compartments inside mammalians, mi-
croorganisms or plants. Aquaporin is expected to
face large entrance dissipation due to its dimensions.
Because of its very peculiar shape of hourglass, we
explored the possible connection between geometry
and entrance effects (see a typical shape on figure
B). We used classical hydrodynamics and molecu-
lar dynamics simulations to study the water flow in
a biconical channel and explored the impact of the
conical entrances on the flow permeability.
We found that hourglass nanochannels reduce sig-
nificantly the entrance effects, with comparison to
cylindrical channels. We also observed that, for a
given pore dimension, there is one specific cone’s
angle that optimizes the water flow (see figure C),
and that this angle is close to the angle observed
in natural aquaporins. Our results show that aqua-
porins, due to their geometry, are well built to face
entrance dissipation, and accordingly, to optimize the
water flow. It is remarkable that hydrodynamics may
contribute to ruling molecular channel characteristics.
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2.1 Introduction

2.1.1 State of the art

End effects in pipe flow have been discussed a century ago by Sampson
who calculated the flow resistance across a circular pore in an infinitely
thin membrane, within the framework of continuum hydrodynamics [63].
It has then been generalized to circular cylinder by Weissberg [64] in 1962,
and Dagan et al. [65] in 1982. Then, during the next 30 years, entrance
effects seem to have been forgotten by the nanochannel flow literature. For
example, during the 2000s, Majumder et al. [10, 66], Holt et al. [11] or
Du et al. [67] reported flow rate through carbon nanotubes 100-100,000
times greater that what have been measured for any other material. They
choose to accommodate their results with theory by using small value for
the friction parameter along the channel length, while their systems, due
to their dimensions, clearly require significant end corrections. It was not
until 2011 that Sisan and Lichter published The end of nanochannels [68],
in which the authors remind us the existence of end effects, corresponding
to viscous losses within the liquid near the channel’s entrances. Notice
that the same year (and apparently independently), Nicholls et al. [29]
reported simulations of flow through CNTs and highlighted the importance
of entrance effects.

In some cases, depending on both pore dimension and hydrodynamic bound-
ary conditions, entrance effects may be significant, and sometimes may even
govern the flow. For example, entrance effects are of main importance for
long low-friction channels such as carbon nanotubes for which numerical
simulations predict vanishing friction along walls for smallest radius [69].
Furthermore, entrance effects also govern the transport across thin mem-
brane, such as pierced graphene [70]. Entrance effects provide a lower limit
to the dissipation, and therefore to the speed at which liquid is transported.
Consequently, flow rates measured by Majumder and Holt are larger that
what is theoretically allowed, as noticed by Sisan and Lichter [68].

Since entrance effects have only been re-discovered recently, no study has
been performed on the coupling with partial boundary condition for example.
Also, as far as we know, no study has been performed to explore the role of
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the geometry on entrance dissipation. This is the purpose of the present
chapter.

2.1.2 Definition

In the framework of weakly out-of-equilibrium systems, the hydrodynamic
resistance R characterizes flow transport across a given structure, and is
defined as the ratio between the pressure drop ∆P and the corresponding
flow rate Q between two reservoirs connected by the structure:

R =
∆P

Q
. (2.1)

Notice that R is linked to the hydrodynamic permeability K, defined
in chapter 1 (K=L11), as R = K−1. A nanopore can be considered as
two “hydrodynamic resistances” put in series. While the flow rate Q is
conserved through the circuit, the pressure drop accumulates throughout
the two hydrodynamic resistors: ∆p = ∆pin + ∆pout, where ∆pin = RinQ

is the pressure drop inside the pore, and ∆pout = RoutQ the total access
pressure drop (sum of inlet and outlet pressure drops). Rin and Rout are
the corresponding hydrodynamic resistances. In the absence of liquid/solid
slip, the intrinsic resistance of a pore is given by the Poiseuille law [71]:

Rno-slip
in =

∆pin
Q

=
8ηL

πa4
, (2.2)

a is the radius of the pore, L is its length and η the fluid’s viscosity.
Liquid/solid slip inside the pore reduces friction. In the case of a partial
slip boundary condition, characterized by a slip length b (see chapter 1), the
velocity field at the surface obeying b ∂nvt|surf = vt|surf , with vt the tangential
component of the velocity and n the normal component to the surface. As
a consequence, the hydrodynamic resistance is reduced as follows [72]:

Rslip
in =

Rno-slip
in

1 + 4b/a
. (2.3)

In the case of a large slip length (corresponding to high-permeability pores),
i.e. b � a, the velocity profile will be almost flat (plug flow), and the
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resistance simplifies to:

Rb�a
in =

8ηL

πa4
× a

4b
=

2λL

πa3
. (2.4)

where λ = η/b is the friction coefficient. In this “plug-flow” regime, viscosity
does not play a role, and Rin is only controlled by λ. Finally, one can note
that Rin vanishes in the limit of a perfect slip BC (λ = 0). On the other
hand, the access resistance is given by a simple scaling law. The pressure
drop ∆p and the flow rate Q are linked by ∆p ∼ ηQ/a3 (from a dimensional
analysis), with a the aperture radius, η the liquid dynamic viscosity. Using
the notations first introduced by Sampson in 1891, we write [63]:

∆p =
Cη

a3
×Q, (2.5)

with C a dimensionless coefficient, called the Sampson coefficient. Sampson
calculated the exact solution for the Stokes flow through a circular aperture
in an infinitely thin membrane and found that the coefficient C is equal to 3
in this particular case. An exact calculation in the case of a converging flow
into a cylindrical pore have shown that equation (2.5) with C = 3 provides
a very good estimate of the access pressure drop [64, 65]. The total pressure
drop ∆p is therefore related to the flow rate Q by:

∆p = (Rb�a
in +Rout)Q =

(
2λL

πa3
+
Cη

a3

)
Q. (2.6)

In the large slip limit, Rin and Rout share the same scaling with the pore
radius. Therefore, independently of the pore radius (providing that a� b),
the access resistance will become the limiting factor for a tube length below
the critical pore length L0 defined as:

L0 =
πCη

2λ
=
πC

2
b. (2.7)

If L� L0, Rin � Rout: the pressure will drop linearly along the tube, with
a negligible contribution from the entrances. On the contrary, if L� L0,
Rin � Rout: the pressure drop will be concentrated at the inlet and outlet,
and the pressure will be almost constant along the pore. This was observed
in previous MD works [70], and can be explained in the framework of
continuum hydrodynamics. This could be used as a new definition of pore
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Figure 2.1: Left: molecular structure of human aquaporin 4 (hAQP4) obtained
from the Protein Data Bank [73] and plotted with VMD [74]. Middle: profiles of
two aquaporins collected from reference [75]. The pore dimensions were estimated
using the HOLE program [76]. Right: scheme of an aquaporin included in a
lipidique membrane, separating two reservoirs and crossed by water molecules.

and channel.

2.1.3 Aquaporins and motivations

One major motivation of our work on entrance effects come from the obser-
vation of the shape of some highly efficient, ubiquitous and natural water
filter named aquaporin, see figure 2.1. This protein plays a fundamental
role in osmotic water regulation, which is essential for all life forms [16,
17]. While dissipation in the inner part of aquaporin has not been fully
characterized, a simple estimate nevertheless shows that entrance effects
contribute for a large part to the global hydrodynamic resistance. Indeed,
formula (2.5) gives a predicted hydrodynamic entrance resistance Rth ∼ 0.5-
3 ×1027 Pa.s/m3 while the measured hydrodynamic resistance of aquaporin
can be extracted from physiology literature Rexp ∼ 1-3 ×1027 Pa.s/m3 1.
This indicate that entrance effects are most probably a major contribution
on the overall hydrodynamic transport inside aquaporins.

For this study, two major pieces of information are extracted from X-ray
profiles. First, as seen in figure 2.1, X-ray profiles highlight the quasi-
hourglass shape of aquaporins, that can be approximated as one central

1The permeabilities of Aqp reported in the literature vary typically in the range
pf = 0.5 to 1.5 × 10−19 m3/s [77]. The permeability pf is defined in the physiology
literature from the flux of water Φw (in moles per unit time) resulting from an osmotic
pressure difference ∆Π across the pore, as pf = ΦwRT/∆Π, with R the gas constant
[78]. It is related to the hydrodynamic permeability K defined as the ratio of the flow
rate and pressure drop, as pf = K ×RT/Vw, with Vw the molar volume of water.
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channel connected to two truncated cones. This motivates the exploration
of the impact of conical entrances on hydrodynamic dissipation, which is
the main goal of the present study. Furthermore, X-ray profiles also indicate
that aquaporins present dimensions down to 1− 2Å. For such dimensions,
continuum hydrodynamics is expected to fail [2], and a complete study of
transport through aquaporin-inspired channels requires a molecular study,
which will be performed hereafter.

2.1.4 Outline

In this chapter we present a study of hydrodynamic entrance effects. The
impacts of both hydrodynamic boundary condition and pore’s geometry
on the hydrodynamic permeability of a nanopore are considered. In the
first part, we study a flow through a cylindrical geometry, inspired by car-
bon nanotube (CNT), and explore the impact of both the hydrodynamic
boundary condition and entrances smoothness on the hydrodynamic per-
meability. In the second part, we study a flow through a hourglass shaped
nanochannel, inspired by aquaporins, and discuss the role of the conical
entrances. In both cases (CNT-like and AQP-like channels), our approach
is the following: we first study hydrodynamics at the continuum level using
the finite element method. Then, we test the robustnesss of continuum
results at the molecular scale, using molecular dynamics simulations, since
a breakdown of continuum hydrodynamic is expected for subnanometric
system.

2.2 Cylindrical nanopore: mimiking a CNT

As a first step, we studied hydrodynamics through a cylindrical nanopore.
The entrance resistance of a cylindrical nanopore with the no-slip boundary
condition is well described by the Sampson formula 2.5 with C = 3. But
real cylindrical nanotubes such as CNTs are known to be very slippery, and
one may expect some changes for the entrance resistance. Moreover, the
hydrodynamic boundary condition is expected to apply at approximately
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one molecular size within the fluid, which leads to effective smooth en-
trances for smaller tubes. An influence of this smoothness on hydrodynamic
permeability is expected, and is discussed hereafter as well.

2.2.1 Finite element calculations

As a first approach, we used finite element calculations to study water flowing
through a solid nanopore 2. We solved the Stokes equation η∆~v = ~∇p
with the proper hydrodynamic boundary condition in a 2D-axisymmetric
geometry. The nanopore was connected to two reservoirs of characteristic
size Lr

3. Far from the pore, we imposed a difference of pressure ∆p between
the two reservoirs and then measured the water flow Q across the tube. The
hydrodynamic resistance of the pore was then deduced from R = ∆p/Q. A
typical system is presented in figure 2.2.

Figure 2.2: Left: example of a meshed system made with Comsol and used for
the resolution of the Stokes equation. Right: velocity profile of the flow through
a cylinder (red: high velocity, blue: low velocity).

2.2.2 Role of hydrodynamic boundary conditions

Before considering the impact of geometry on entrance effects, we studied
the role of hydrodynamic boundary conditions. It is well known that the
inner resistance (Poiseuille) strongly depends on the slip length b, but as
far as we know, the impact of slippage on the entrance dissipation had
not been studied at the beginning of this thesis. With a no-slip boundary
condition, it has been shown that the entrance resistance in a cylinder is well
described by Sampson formula: R = Cη/a3, with C equal to 3 regardless of
the length of the cylinder [64]. To go further, we considered here the case of

2calculations made with the commercial software COMSOL
3We checked that a characteristic size of reservoir Lr ∼ 10a, with a the pore radius,

ensures an error of ca. 0.25 %.
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a perfect slip boundary condition. We used the system presented in figure
2.3 with a slip length b =∞ (perfect slip boundary condition). The ratio

LL

a
r

b

Figure 2.3: System used for finite element calculations. The slip b was taken to
be infinite of null.

of length L over radius a was varied, while measuring the hydrodynamic
resistance of the system. Then, the value of the C coefficient was deduced,
see figure 2.4. For very short tubes, the boundary condition at the inner wall
becomes irrelevant, and Sampson’s result for the infinitely thin membrane
is recovered with C = 3. As the tube gets longer, however, the C coefficient
increases up to a plateau value of C∞ ≈ 3.75, implying that switching
from no-slip to perfect slip inside the tube yields a 25% increase in the
access resistance. Though counter-intuitive at first sight, this behaviour can
be qualitatively understood by examining the flow profile at the channel
end. In the no-slip case (figure 2.4), this "entry" flow profile is, to a very
good approximation, halfway between the parabolic profile of Poiseuille
flow and the elliptic profile found in Sampson’s solution [65]. As a result,
the transition to a plain parabolic profile inside the channel involves only
a small dissipation. Because the velocity must vanish at the corner, the

0.01 0.1 1 10
L / a

3

3.2

3.4

3.6

3.8

C

perfect slip, long pore limit

Sampson’s limit

Figure 2.4: Left: C = Ra3/η (see text) as a function of the pore length L for
a perfectly slipping cylindrical channel, obtained with FE calculations (points).
The red line is a guide for the eyes. Right: schematic profiles of axial velocity in
a channel with no slip (NS) and perfect slip (PS) boundary condition. From left
to right: outside far field, entry profile and inside far field.

entry profile in the perfectly slipping tube is quite similar to the no-slip
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case, suggesting a comparable amount of viscous losses outside the tube.
Now, inside a tube with the perfect slip at the boundaries, the transition to
a plug profile requires a significant reorganization of the streamlines (figure
2.4), resulting in a higher dissipation, hence a higher coefficient C. As a side
remark, we find that the BC on the external wall has a negligible impact
on the access resistance, presumably because any slip that could happen
there is strongly hampered by the vanishing velocity at the corner.

2.2.3 Smooth entrances: what consequence?

After having considered the impact of the hydrodynamic boundary condition
on the entrance dissipation, one may wonder what is the influence of the
channel geometry. Indeed, when studying water flow in a large tube (radius
> 1 nm) one may consider that the hydrodynamic radius aeff (i.e. the radius
effectively seen by the fluid) and the radius defined by the position of
atoms wall ac are the same. In this case, the tube can be considered as a
cylinder with sharp entrances and with a well defined radius a = aeff = ac.
But, when considering extremely small tubes, for example a CNT with a
radius close to the molecular diameter (below 1 nm), the position where the
hydrodynamic boundary condition applies has to be questioned. Typically,
one expects the hydrodynamic boundary condition to applies within the
fluid at a distance of ∼ σOC , i.e. one molecular size from the wall [79]. This
has two consequences: first, the effective radius of the tube is smaller than
the radius defined by the position of atom’s wall: aeff ≈ ac − σOC . Second,
the entrances of the tube are smooth (∼ chamfered with a chamfer of radius
σOC). At the level of a continuum description, this is expected to modify
the Sampson coefficient C in the equation: ∆p/Q = Cη/a3.

Figure 2.5 shows the system used for finite element calculations. Along
membrane and tube walls we used perfect the slip boundary conditions. This
choice has been motivated by simulation showing a vanishing friction along
CNT’s wall for small radius [69]. We explored a large range of radius aeff for
fixed ac− aeff . Figure 2.6 shows the effect of the aspect ratio on the value of
the C coefficient, for 2 different membrane thicknesses. As we can see, for a
ratio aeff/(ac − aeff) ≈ 1, which corresponds to a (5,5) armchair tube, C is
around 1.5 instead of 3.75, corresponding to a 60 % improvement of the pore
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Figure 2.5: Cylindrical geometry used for FE calculations. Two reservoirs of size
Lr are separated by a membrane pierced by a channel of radius aeff and length
L . The black dashed line correspond to an axisymmetric boundary condition.
The full line represent the liquid/solid interface. The pressure was imposed on
the dotted lines.
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Figure 2.6: Measured Sampson coefficient as a function of the ratio between the
effective radius aeff and the chamfer radius ac − aeff . Nanotube limit L/aeff = 5
(long dashed line), atomically thin membrane nanopore limit L = 0 (solid line).

permeability. Continuum hydrodynamics indicates that pore geometry may
impact the entrance resistance. Those predictions are expected to be quite
robust for a system with characteristic dimensions above one nanometer, but
deviations are expected for a system with dimensions below one nanometer
[2]. Molecular dynamics simulations are required to test the robustness of
the present result, and are presented hereafter.

2.2.4 Molecular dynamics simulations

The goal of the present section is to test the validity of the previous results
obtained with continuum hydrodynamics, and accordingly to test the validity
of Sampson’s formula R = Cη/a3, where the value of C is presented in
figure 2.6. To do so, we performed molecular dynamics simulations of water
flow inside a cylindrical nanotube. Molecular dynamics simulations were
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Figure 2.7: Snapshots of considered system: tube armchair (6,6). Oxygen atoms
are colored in red, hydrogen atoms in white, and carbon atoms in grey.

performed in the geometry depicted in figure 2.7: two water reservoirs are
separated by a membrane consisting of two parallel graphene sheets, and
pierced with a carbon nanotube (CNT). The radius ac of the CNT is defined
by the center of carbon atoms, and the length L of the CNT was L = 10×ac.
Nanotubes were made by rolling a graphene sheet with respect to unit-cell.
Tube radius ac were varied from 25Å down to 3.5Å. Both armchair and
zigzag nanotubes were considered.

Simulations details– The Amber96 force field [80] was used, with TIP3P
[81] water and water-carbon interaction modeled by a Lennard-Jones poten-
tial between oxygen and carbon atoms, with parameters εOC = 0.114 kcal/mol
and σOC = 3.28Å. There were no need to define a potential between carbon
atoms since they were fixed. Simulations were performed using LAMMPS
[82]. Long-range Coulombic interactions were computed using the particle-
particle particle-mesh (PPPM) method [83, 84], and water molecules were
held rigid using the SHAKE algorithm [85]. The equations of motion were
solved using the velocity Verlet algorithm with a timestep of 2 fs. Water
molecules were kept at a temperature of 300K using a dissipative particle
dynamics (DPD) thermostat [86]. This amounts to adding pairwise inter-
actions between atoms, with a dissipative force depending on the relative
velocity between each pair and a random force with a Gaussian statistics.
This method has the advantage of preserving hydrodynamics, even for com-
plex 3-dimensional flows as the ones considered here. The amplitude of the
dissipative term was carefully tuned to ensure that the liquid viscosity is
negligibly affected by the thermostat (this thermostating method was ex-
tensively tested and compared to other approaches in a previous work [72]).
The positions of the carbon atoms of the membrane were fixed (simulations
with flexible and fixed walls were shown to give similar results for the statics
and friction of confined liquids [87–89]). Two pistons made of graphene
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Figure 2.8: Number of crossing water molecules toward the right reservoir ∆NR

as a function of time, for different tube radii ac (ac = 3.51Å in orange, 4.31Å in
cyan, and 4.69Å in purple). Full lines represent the MD results and dashed lines
are linear fits.

sheets were used in order to maintain each reservoir at the desired pressure.
The periodic boundary conditions were imposed in all directions. In order to
avoid hydrodynamic interactions between the tube and its periodic images
in the plane of the membrane, a box with lateral dimensions (x,y) equal
to 10 times ac was used. We also made sure that reservoirs were bigger
than 10 times ac along z. Finite element calculations indicate that, in that
configuration, the error due to finite size effects should be lower than 0.25 %.
There were 3.2 k water molecules and 2.7 k carbon atoms for the smallest
system (ac = 3.5Å), and 800 k water molecules and 78 k carbon atoms for
the biggest system (ac = 25Å).

Water molecules were initially disposed on a simple cubic lattice with
equilibrium density. Pressure differences were imposed using the reservoir
pistons, and a steady-state flow quickly appears, within less than 200 ps
(see figure 2.8). Note that this timescale matches the expected time for
momentum diffusion in reservoirs, in agreement with the dominant role of
the entrance resistance. We then measured the steady-state flow rate by
counting the number of water molecules crossing the tube. This is shown in
figure 2.8 for several tube radii under a given pressure drop.

Independently from the above calculation, we also calculated the slip length
of water on a graphene sheet. To this end, we performed simulations of
Couette and Poiseuille flows of water confined between two graphene planes,



Chapter 2. Optimizing water permeability through the hourglass shape of
aquaporins. 45

0 5 10 15 20 25
a

c
 (Å)

0.1

1

10

100

1000

R
/η

 (
nm

-3
)

Figure 2.9: Resistance of a single nanotube R = ∆P/Q, normalized by the bulk
liquid viscosity η, as a function of the radius ac of the tube. Circles represent
MD results with armchair tubes, squares represent MD results with zigzag tubes.
Lines are hydrodynamic predictions using FE calculations, for ac − aeff = 3.2Å
(dashed dotted line) and ac − aeff = 1.7Å (dashed line).

in line with previous work [90, 91]. We measured a quite large slip length
b = 123± 21Å. This means that tubes with nanometer range diameters can
be considered as perfectly slipping. We also measured the water viscosity,
and found it to be equal to 0.31± 0.02mPa.s, in good agreement with the
expected value of 0.31mPa.s for the TIP3P model at 300K [92].

Data acquisition – The flux Q was deduced from the linear fit of the time
dependent variation of the number of crossing water molecules ∆NR(t):
Q = M/(ρNA)d∆NR/dt, with M and ρ the molar mass and density of
water, and NA the Avogadro constant. Finally, the hydrodynamic resistance
was computed as R = ∆P/Q. For each geometry we ran a number (up to
10) of independent simulations from different initial conditions, in order to
estimate and reduce statistical uncertainties. The production times ranged
from ∼ 1 ns for the largest pores, to ∼ 6 ns for the smallest ones. Although
the results presented in this article were obtained for a pressure drop of
1000 atm − 1 atm, we emphasize that linearity between flux and pressure
drop has been checked systematically in all our simulations.

Results – We plotted in figure 2.9 the resistance normalized by the bulk
viscosity of the TIP3P model, R/η, as a function of the tube radius ac.
These data were compared with continuum predictions obtained using FE
calculations in the same geometry. We used two different values for the
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hydrodynamic pore radius: one where the perfect slip hydrodynamic BC is
located right at the surface of carbon atoms, i.e. ac − aeff = σc/2 ≈ 1.7Å;
and the other where the perfect slip hydrodynamic BC is located at the first
layer of water along the wall ac−aeff ≈ σOC ≈ 3.2Å, in line with results from
reference [79, 90]. As shown by Figure 2.9, we obtain a very good agreement
between the MD results and the continuum hydrodynamic predictions. In
line with previously quoted expectations, we found that a reasonable choice
for the value of the hydrodynamic radius is aeff ' ac − 2.5Å. Note that
nanotube’s chirality has no significant influence on entrance effects. It is
particularly interesting to observe that the hydrodynamic prediction is valid
for nanotubes with effective radii well below one nanometer, even when
single file transport occurs. In such case, we expect a full breakdown of
hydrodynamics inside the tube. However, entrance effects originate mainly
from the bending of the streamlines outside the tube, which occurs in the
bulk on length scales larger than the tube radius. This certainly explains
the robustness of hydrodynamics to predict entrance effects.

2.3 Nanopore with conical entrances: mimik-

ing an AQP

The study of a cylindrical nanochannel indicates that both the hydrodynamic
boundary condition and the geometry impact the entrance dissipation. The
entrance dissipation will ultimately limit the performance of an ideal channel,
and one may wonder if it is possible to reduce it. Inspired by the aquaporin
(AQP) shape (figure 2.1), we investigated hydrodynamic entrance effects in
hourglass shaped nanopores. The first part presents a continuum study of
the role of conical entrances on the hydrodynamic permeability. Then, we
present a simple analytical model with the aim of describing the entrance
resistance of a hourglass shaped nanopore. Then we compare our continuum
prediction with real aquaporins. Finally, since continuum hydrodynamic
is expected to fail to describe systems below one nanometer, we test the
robustness of our results at the molecular level using molecular dynamics
simulations.
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2.3.1 Finite element calculations: impact of conical en-

trances

Method – The impact of conical entrances on the hydrodynamic perme-
ability was first explored using finite element calculations. A pore made
of a central cylinder with radius a and length L, connected to two conical
vestibules, with length Lc and opening angle α was considered, see figure
2.10. In a real aquaporin, the fluid transport inside the central part belongs

a

LLr Lc

α

Figure 2.10: Hourglass geometry used for finite element calculations.Two reser-
voirs of size Lr are separated by a membrane pierced by a channel of central radius
a and total length L+ 2Lc, with L the length of the cylindrical part and Lc the
length of cones. Cones have got an angle α. The black dashed line corresponds
to an axisymmetric boundary condition. The full line represents the liquid/solid
interface. The pressure was imposed on the dotted lines.

to the single-file regime and the physics at play here cannot be captured by
a continuum description. However, we are not interested here in the specific
selectivity of the AQP – which would indeed require a detailed atomic
modeling [16, 75, 93, 94]. In order to isolate the entrance contribution,
we consider a simplified view in which all dissipation in the AQP central
channel is neglected. This is done by assuming a perfect-slip boundary
condition on the pore surface, so that surface friction is vanishing in this
central part. The hydrodynamic boundary condition in the conical regions
have also to be prescribed. As shown to be relevant for nano-scale flows
[15], we assumed a partial slip BC on the cones’ walls, characterized by
a slip length b. Interestingly, the molecular structure of the AQP in con-
tact with water is mostly hydrophobic [95–97] (with hydrophilic patches
to ensure that water penetrates through the pore), and in line with recent
work on hydrodynamic slippage [2, 15], a slip length in the range of tens of
nanometers may typically be expected. This value is large as compared to
the other typical length scales of the nanopore, b� a. Consequently, we
will start our discussion by assuming perfect slip BC (b = ∞), and then
relax this condition in a second step.
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Results – Our main result is illustrated in figure 2.11, which shows the
hydrodynamic permeability K of the a hourglass channel as a function
of the opening angle α for various cone’s length Lc. The permeability
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Figure 2.11: Hydrodynamic permeability K = Q/∆p of the hourglass nanochan-
nel as a function of the opening angle α, obtained from finite element calculations.
K is normalized by K0 = K(α = 0). Perfect slip (b =∞) is assumed on the cones
inner walls. Each curve corresponds to a cone length Lc.

K = Q/∆p provides the flow rate Q for a given pressure drop ∆p. As
highlighted in this figure, for any cone length Lc, the permeability is a
non-monotonic function of the opening angle of the pore: starting from the
cylinder geometry (α = 0), the permeability starts by increasing very quickly
with α, before decreasing slowly for larger angles. There is accordingly an
optimal angle αopt which maximizes the channel permeability, i.e. yields
a maximal flow rate under a given pressure forcing. Compared to the
cylindrical case (α = 0), the optimal geometry (α = αopt) yields a very
significant increase in permeability, especially for long cones. At Lc/a = 20

for instance, the optimal permeability is 6 times larger than the one of a
cylinder. Although it increases for shorter cones, the optimal angle remains
small, below 10◦ for Lc/a > 5. Surprisingly, a tiny departure from the
straight cylinder makes for a large effect on entrance dissipation. This is
an unexpected result and in order to gain insight into its origins, we now
develop a simplified model to rationalize viscous dissipation in the hourglass
channel.
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2.3.2 An analytical model for the hourglass nanopore

The present goal is to obtain an analytical expression that describes viscous
dissipation in hourglass channel. We assume in a first step a negligible
friction on the cone’s surface (perfect slip). In this situation, the dissipation
is expected to occur mostly within the two transition regions: from the
reservoir to the cone (first entrance), and from the cone to the cylinder
(second entrance). This is confirmed by the numerical results, as highlighted
in figure 2.12, where we have plotted the local viscous dissipation rate
D = 2η∆:∆, with ∆ =

[
∇v + ∇vT

]
/2 the strain rate tensor. The spatial

Figure 2.12: Local viscous dissipation rate D (see text) inside the nanochannel
for different values of the angle α. The color scale, from blue to red, indicates
increasing values of local viscous dissipation. Perfect slip boundary condition is
imposed on the cone walls. From a) to d), α = 0, 5, 10 and 25◦.

extent of both regions is given by the local radius, with a prefactor close
to unity. This figure shows that increasing the opening angle shifts the
dissipation from the first entrance to the second. This is to be expected if
one realizes that the streamlines have basically to follow the surface of the
pore, and that the second angle between the cone and the cylinder increases
as the first angle between the wall and the cone decreases (the sum of the
two angles being constant due to geometry).

This picture suggests to describe the total hydrodynamic resistance of the
pore, R = K−1 = ∆p/Q (the inverse permeability), as the sum of the various
contributions (channel entrance, cone region, and cylinder entrance 4) in
series, as for a resistive circuit:

R = Rent +Rcone +Rent,cyl. (2.8)
4Note that the three resistances do not identify with dissipation inside the volume of

reservoir, cone and cylinder respectively. For example, the entrance resistance includes
dissipation taking place both in the reservoir and in the cone.
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For such a decomposition to hold, both the cylinder radius a and the
entrance radius a′ = a + Lc tanα should remain small compared to Lc,
which is valid for large Lc/a ratio and small opening angle α.

In a cone of infinite extent with arbitrary opening angle and perfect slip
at the wall, the Stokes flow is purely radial with a velocity that decreases
as 1/r2, where r is the distance from the apex. One may then verify that
the pressure drop, evaluated from ∇p = η∆v, vanishes in this situation.
Accordingly, for the case b = ∞ that we consider so far, Rcone is thus
negligible, in agreement with numerical results, see figure 2.12.

Now, to proceed further and estimate the remaining contributions in equa-
tion (2.8), we need to estimate entrance hydrodynamic resistances for two
configurations: (i) a conical aperture with a finite angle and perfect slip;
(ii) a cone-to-cylinder entrance. These are generalized Sampson geometries,
which we consider now.

Conical aperture with a finite angle – The hydrodynamic resistance
of the connection between the reservoir and the cone is written

Rent =
C∞ η

a′3
, a′ = a+ Lc tanα, (2.9)

with C∞ = 3.75 and a′ the largest radius of the channel. In this expression,
a possible impact of the angle α on the C∞ value is neglected, which is
expected to be valid for small angle α.

Cone-to-cylinder entrance – Finally, an expression of the last term,
Rent,cyl, which concerns the connection between the cone and the central
part of the channel was needed. Rent,cyl is expected to writes Rent,cyl =

f(α)C∞ η/a
3, with f(α) a function that ensures that if α = π/2, Rent,cyl =

C∞ η/a
3, and if α = 0, Rent,cyl = 0. Numerical calculations indicate that

f(α) ≈ sinα. In order to extract the contribution of the cone-cylinder
junction to the total resistance of the channel, we performed the following
numerical calculations. Reservoir parts are removed to eliminate the outer
entrance contribution Rent, leaving only a system composed of a central
channel and two truncated cones (figure 2.13). We imposed perfect slip BC
along both the cone and cylinder’s walls, and the incoming flow fields is
imposed using the far-field exact expression for frictionless cones. We varied
the angle α and observed that the hydrodynamic resistance of such a junction
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Figure 2.13: a) Schematic of the system used to compute the cone-to-cylinder
hydrodynamic resistance. b) Cone-to-cylinder resistance Rent,cyl versus cone angle
α: finite element calculations (red circles) and analytical approximation by a sine
function (dotted line).

is to a good approximation proportional to the sine of the angle of the cone
α (figure 2.13). This can be rationalized on the basis of the following “back-
of-the-envelope” argument. Far from the junction, streamlines are parallel
in the cylinder and radially divergent in the cone. The dissipation occurs
only in the vicinity of the junction, where the streamlines change direction
by an angle α, so that ∇v ∼ v0 sinα/a. The pressure drop ∆p is then
given roughly as ∆p ∼ η∇v ≈ ηv0 sinα/a. Altogether, the hydrodynamic
resistance at a cone-to-cylinder transition can be well approximated by

Rent,cyl = C∞ sinα
η

a3
, (2.10)

with again C∞ = 3.75.

Comparison between model an numerical calculations – Collecting
equations (2.8), (2.9) and (2.10), and remembering that Rcone ≈ 0, yields
the total resistance of the hourglass channel in our simplified model:

R =
C∞η

a3

[(
1 +

Lc
a

tanα

)−3

+ sinα

]
. (2.11)

This relation exhibits a non-monotonous behaviour with the angle α, as
shown in figure 2.14: the first term in the right-hand-side decreases rapidly
with α, while the second term steadily increases. Physically, these two
terms account for dissipation at the first and second entrance respectively,
and their variations confirm the qualitative picture illustrated in figure
2.12. A minimum for the resistance – thus a maximum for the permeability
K = R−1 – is then found. In particular, for long cones and small angles,
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R ∼ (αLc/a)−3 +α, and the optimal angle decreases with the cone length as
αopt ∼ (Lc/a)−3/4. More quantitatively, figure 2.14 compares finite element
calculations and the predictions of our simplified model. While a quantitative
agreement is not expected in view of the simplifying assumptions underlying
our model, the latter is found to capture the optimization phenomenon. In
particular, the variation of the optimal angle αopt versus length Lc/a is well
reproduced, see inset of figure 2.14.
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Figure 2.14: Pore resistance R versus cone angle α for perfect slip in the cones:
comparison between finite element calculations (circles) and equation (2.11) (lines).
Results are presented for two pore lengths: Lc/a = 20 (red) and Lc/a = 5 (blue).
Inset: optimal angle αopt, for which the resistance is minimized, as a function of
cone length.
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Figure 2.15: Pore resistance R versus opening angle α, for various slip lengths
b in the conical regions: comparison between finite element calculations (symbols)
and analytical expression (lines), see text for detail. The cone length is fixed to
Lc/a = 20.
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Finite slip on cone’s wall – Up to now, we assumed a perfect slip BC at
the cones’ surfaces, corresponding to the limit of large slip lengths compared
to transverse dimensions b/a → ∞. We now relax this assumption and
consider finite b/a. Figure 2.15 reports the results of numerical calculations
for the hydrodynamic resistance versus opening angle, for various slip lengths
b at the cone surface and a fixed cone length, Lc = 20 a. As shown in this
figure, an optimal angle minimizing the hydrodynamic resistance is still
found for finite slip, and its value increases with decreasing slip length, see
also figure 2.17.

Again a simplified model can be built. While we do not expect entrance
effects to be radically modified, a supplementary dissipation will now occur
due to finite slippage at the cone surface. This contribution, Rcone in
equation (2.8), can be calculated within lubrication theory, valid for small
angles α, as

Rcone = 2

∫ Lc

0

dz
8η

πa(z)4

(
1 +

4b

a(z)

)−1

, (2.12)

with a(z) = a+z tanα the local radius of the cone. Accordingly, an analytical
expression for Rcone can be obtained, but its cumbersome expression is not
particularly illuminating and we do not report it here. Gathering all
contributions in equation (2.8) leads to an analytical expression for the
hydrodynamic resistance of the hourglass pore with finite slip length b on the
cones. This expression is compared to the numerical calculations in figures
2.15 and 2.17. A good agreement is found and the approximate expression
is able to capture both the dependency of Rcone with α and b, as well as
the order of magnitude of the optimal angle and its variation with b and
Lc/a. Altogether, our results show that the hourglass geometry, associated
with small surface friction, does optimize the permeability by reducing
considerably the magnitude of entrance effects. A small opening angle in the
range 5− 20◦, depending on the precise geometry and boundary conditions,
can increase the permeability by a large factor, reaching hundreds of percent
for typical parameters.
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Figure 2.16: Profile of an aquaporin (hAQP4 [98], circles) and linear curve
fitting (solid lines).

2.3.3 Comparing our model with actual aquaporins

To conclude, we discuss the relevance of these effects for the shape and the
hydrodynamic permeability of aquaporins. As explained in the introduction,
AQPs have hourglass shapes resembling the model geometry considered here.
Furthermore, due to their mostly hydrophobic inner surface, a small friction,
and large slip length, is expected at the cone walls. Overall, they exhibit
the main ingredients associated with permeability optimization discussed
above. In order to push further the comparison, we have extracted some
generic shape parameters of a large variety of AQPs. We used molecular
structures obtained from high-precision X-ray crystallography – which are
available for several aquaporins – and obtained the radius profile of the
channel, as estimated by the HOLE program [76]. We have chosen to divide
the aquaporin in three parts; two conical entrances and one central part (see
figure 2.16). Each part of the aquaporin was linearly fitted to extract the
relevant parameters. The central part of the aquaporin gives us the value of
the central radius a. From conical entrances, we extracted both the length
L and the angle α. Due to the asymmetry of the aquaporin, we obtained
two values of cone length and angle for each aquaporin. The results for
the opening angle α of the AQPs conical section are displayed in figure
2.17. Two conclusions can be drawn from this figure: (i) the opening angle
keeps rather low values, within the range 10− 25◦; (ii) the optimal angle
decreases as the cone gets longer. It is therefore striking that the adopted
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Figure 2.17: a) Optimal angle as a function of cone length L for various slip
lengths (from top to bottom, b/a = 1, 2, 5, 10, 20): finite element results (circles)
and model (lines). b) Angle α evaluated in six aquaporins. The gray shaded area
corresponds to model predictions for b/a = 1 to 5 (as shown in left panel). Data
are extracted from Refs. [75, 98–103].

global geometry follows the expectations for the hydrodynamic optimization
process discussed above to minimize the entrance permeability.

Obviously, some more detailed features of the AQP geometry can not be
discussed within the previous results. In particular, the structure and shape
selection of AQPs follows from a number of constraints and requirements,
many of them from the molecular level and the subtle balances to achieve
selectivity and efficient transport in the inner single-file constriction. For
instance, aquaporins channels are not symmetric with respect to the mem-
brane half-plane, as the cone towards the cell exterior is apparently longer
and more divergent than the interior cone. Within our model, this could be
explained only if the inner and outer cylinders radii were different. While
this is often the case, we have considered only the average radius of the
central portion, so as to keep a small number of parameters.

2.3.4 Molecular dynamics simulations: validity of con-

tinuum results

Continuum hydrodynamic calculations indicate that an hourglass shape
leads to a large increase of the overall channel permeability as compared to
the cylindrical geometry. The robustness of this result has to be questioned,
particularly when the middle part of the considered channel is subjected
to the single-file transport, as occurs e.g. in aquaporin channels. To do so,
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Figure 2.18: Snapshots of considered systems. Biconical system [armchair (5,5)
tube, Lc/aeff = 20 and ac = 3.38Å; see text for definition of the parameters].
Oxygen atoms are colored in red, hydrogen atoms in white, and carbon atoms in
gray.

we performed molecular dynamics simulations of water flowing through an
hourglass nanochannel.

The considered system was a biconical nanochannel, with a central cylindrical
nanotube and two conical entrances, made of graphene-like sheets. Conical
entrances were made alike by rolling graphene sheet, thus leaving now
a structural defect line. Note that the overall pore’s permeability was
not affected by this defect line as tested using alternative cone generating
methods. Each cone exhibited an angle α, which was varied between 0

and 20 ◦. Inspired by aquaporins, we used a configuration in which there
is single-file flow inside the cylindrical central part: ac = 3.38Å. Moreover,
still inspired by aquaporins, we used cones’ lengths Lc ≈ 20× aeff = 17Å.
We used reservoirs with a size at least ten times the opening radius, a′

(with a′ = aeff + Lc tanα), which is sufficient to reduce finite size effects
down to a negligible level, as estimated by FE calculations. MD results
are shown in figure 2.19. We found that the hydrodynamic resistance is
again minimized in the hourglass geometry for a cone angle α ∼ 5 ◦, even
if the transport in the center part of channel is single-file. The minimal
resistance is approximately 5 times smaller than the one of a tube with a
straight entrance (α = 0). Furthermore, as demonstrated in figure 2.19, the
continuum hydrodynamic predictions exhibit a good agreement with the
results of the MD simulations for the hydrodynamic resistance. In particular,
we highlight the critical importance of the position of the hydrodynamic BC
by showing two different cases of hydrodynamic radius for the inner part of
the pore. We finally compare the results with our theoretical prediction for
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Figure 2.19: MD results for the hydrodynamic resistance R = ∆P/Q of an
hourglass channel (normalized by the bulk viscosity η) as a function of the angle of
the biconical vestibules. Circles represent MD results. The dotted line represents
the prediction of equation (equation (2.13)), with aeff = 1Å. The lines show the
FE calculations with two different hydrodynamic radii: aeff = 1.08Å (dashed
line), aeff = 0.68Å (dashed-dotted line).

the hourglass resistance obtained previously, which can be written as

R

η
=

C

a3
eff

[
sinα +

(
1 +

Lc
aeff

tanα

)−3
]
. (2.13)

We used the values Lc/aeff = 20, and the parameter C = 1.15 obtained
from previous FE calculations in the case of an aspect ratio aeff/(ac − aeff)

= 0.33. The effective radius was fixed to aeff = 1Å= ac − 2.4Å in order to
obtained the best agreement. With this value, equation (2.13) reproduces
quite well the MD results (see figure 2.19). Note that MD results are best
fitted with FE calculations for the same value of aeff (not shown for clarity).
Therefore, the “hydrodynamic size” of the wall atoms obtained with the
biconical geometry, ac − aeff = 2.4Å, is quite close to the one obtained with
a cylindrical pore in previous section (ac − aeff = 2.5Å). Additionally, one
may notice that a number of MD results are slightly outlying the main
tendency, beyond the error bar. We conjecture that these may be attributed
to discrete geometric effects which may occur preferably for specific values
of the cone angles.
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Figure 2.20: Comparison of hydrodynamic resistance of hourglass, biconical
systems (purple triangles) and graphene sheets pierced with a single hole (orange
circles). Dashed lines are continuum hydrodynamics predictions (see text). The
cyan dashed line is the Sampson formula for a hole in an infinitely thin membrane.

2.3.5 Biconical nanochannel versus pierced graphene

As a final illustration of the biconical nanochannel efficiency, let us make
a comparison with the system that could be seen as the ultimate tools for
water filtration: pierced graphene. Indeed, pierced graphene was discussed
lately to represent a very efficient geometry for desalination purpose [28,
104, 105], in particular due to its large permeability combined with an
excellent rejection ability. The large permeability of pierced graphene is due
to the molecular thickness of the graphene sheet: in this case, the transport
is fully controlled by the entrance effect, and belongs to the Sampson’s
class of problem. It is therefore interesting to compare the performance
of this geometry to the hourglass one which was precisely found to reduce
entrance effects. To this end we have performed MD simulations of transport
across nanopores drilled in a graphene sheet with various pore sizes, and
measured the corresponding hydrodynamic resistance. This is compared to
the hydrodynamic resistance of an hourglass shape nanopore with an inner
channel having the same radius. We used hourglass systems with three
different inner pore radii, respectively ac = 3.38, 4.06 and 4.73Å. We kept
the cone lengths ratio Lc/ac equal to 20 and the angle α equal to 5 ◦. The
radius of the hole ac in the graphene sheet was equal to 3.38, 4.06 and 4.73Å.
Results are shown in figure 2.20. As can be seen in this figure, the hourglass
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nanopore has a hydrodynamic resistance which is systematically smaller
than the graphene for the same inner pore diameter. As a comparison, we
plotted the result of the classic Sampson formula, equation (2.5), with a
hydrodynamic radius equal to aeff = ac − 2.5Å (see above) and a coefficient
C = 3. As seen in figure 2.20, this overestimates the MD results for the
hydrodynamic resistance of porous graphene. In an attempt to improve
this result, we took into account at the continuum level the finite thickness
of the graphene membrane, as compared to the pore radius. This leads to
a reduction of the coefficient C in the Sampson formula. The value of C
depends on the ratio aeff/(ac − aeff), and in the present conditions it varies
between 1.15 and 1.6 for the considered radii. We took C ' 1.3 in equation
(2.5) as a compromise, showing a good agreement with the MD results. For
the hourglass geometry, we compare the MD results with the prediction
of equation (2.13), using the same coefficient C = 1.3. This shows again a
good agreement with the MD results. Altogether these results show that
tuning the geometry of nanopores allow to strongly optimize water transport
through membranes. The hourglass shape outperforms both nanotubes and
pierced, molecular thick, graphene.

2.4 Conclusion

The aim of this work was to determine the effect of the geometry and
the hydrodynamic boundary condition on hydrodynamic entrance effects
in a nanochannel. Inspired by carbon nanotubes and aquaporins, we ex-
plored transport through both chamfered cylindrical and hourglass shaped
nanopores. Using finite element calculations and molecular dynamics sim-
ulations, we have shown that compared with a plain cylindrical pipe, a
biconical channel of optimal angle can provide a spectacular increase in
hydrodynamic permeability. This hourglass shape proves to substantially
enhance the water transportation efficiency down to the single-file regime,
with an optimum for shallow opening angles ∼ 5◦, all in line with continuum
hydrodynamics predictions.

A simplified model based on entrance effects and lubrication approximation
rationalizes the observed behaviour. Compared with the promising system
made of a circular nanopore drilled in graphene sheets, or straight carbon
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nanotubes, the hourglass shape pore appears far more efficient, illustrating
the dominant role of entrance dissipation in all these systems. We also
investigated the fate of hydrodynamic entrance effects in the limit of molec-
ular scale nanopores, down to the single-file regime. Strikingly, we found an
extremely good agreement between MD simulations and continuum hydro-
dynamics predictions of entrance resistance obtained from FE calculations.
For straight nanopores, comparison between MD and FE approaches incor-
porate the position of the solid-liquid interface as an important parameter,
which therefore could be located using such an approach.

Although speculative, this could indicate that the hourglass geometry of
AQPs results from a shape optimization, to reduce end effects and maximize
water permeability. We found that biconical entrances can increase the
water permeability of a nanopore, leading to better performance than simple
cylindrical pore or graphene sheet. Overall, this stresses the necessity
for finely tune the geometry of nanopores for strongly optimizing water
transport across membranes, a task for which simple continuum approaches
can be astonishingly reliable.
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Abstract and main results – This chapter fo-
cuses on the capillary filling of subnanometric
carbon nanopores by a fluid. While capillary fill-
ing in macroscopic channels has been thoroughly
explored, it is worthwhile to reconsider it for sub-
nanometric channels. In subnanometric channels,
the importance of the molecular aspect of fluids is
enhanced, the role of the surface becomes more im-
portant, and a deviation from the classical no-slip
boundary condition may occurs. These phenom-
ena are expected to lead to a failure of the contin-
uum predictions, and possibly an appareance of
new interesting regimes.
To explore capillary filling inside subnanometric
CNTs, we used Molecular Dynamics (MD) simula-
tions (see figure A). Results show that, for tube
radii below one nanometer, the filling velocity is
a non-monotonic function of the tube radius, as
shown in figure B which shows the capillary filling
velocity of water as a function of the CNT radius.
This is in contradiction with continuum assump-
tions (brown line). Beyond this non-monotonic
dependancy, an even more striking phenomenon
is the possibility to switch pore from hydrophilic
to hydrophobic behaviour just on specific radius
values (gray area on figure B).
To reconcile continuum predictions and MD re-
sults, one has to take into account the excess
pressure which is due to the structuring of the
fluid, represented in figure C. The so-called dis-
jonction pressure, whose sign depends on the pore
dimensions, has been found to strongly impacts
the dynamics for the smallest CNT radii. MD
measurements in slit nanochannels, for which the
expression of the disjoining pressure is known, con-
firm the link between the observed non-linearities
and the disjoining pressure.
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3.1 Introduction

3.1.1 State of the art

Scientists have been interested in capillarity-induced phenomena for at least
500 years. The first studied configuration of capillary filling was capillary
rise, which has been proposed as the phenomenon at the origin of mountain
streams by Leonardo da Vinci (1452-1519). He suggested that water rises
thanks to capillarity through a network of cracks. Later, Geovanni Borelli
(1620-1675), Francis Hauksbee (1666-1713) and James Jurin (1684-1750)
demonstrated independently the so-called Jurin’s law which states that the
height of the raised liquid h is inversely proportional to the size of the pore
r: h ∝ 1/r. One may also notice that capillary rise has been invoked as
the phenomenon at the origin of the circulation in plants by Geminiano
Montanari (1633-1687), who compared the rise of a liquid in a tube to that
of the sap in a plant [49].

Later, in the early 19th century, Young and Laplace have developed the
concept of capillarity, which is traditionally defined as the tendency of
wetting liquids to be drawn into the confined space of a narrow tube [107,
108]. But capillarity is also associated with the phenomenon of enhanced
pressure inside a droplet due to the constrictive surface tension force, or the
collapse of smaller drops in favor of bigger ones inside an emulsion. So a
wider definition of the concept of capillarity would involve all situations in
which two phases are separated by a curved interface [109, 110]. Behind
this concept of capillarity stands a central relation, the Young–Laplace
equation, which describes the capillary pressure difference sustained across
the interface (assumed to be infinitely thin) between two static fluids, such
as a liquid and a gas, due to surface tension. It relates the pressure difference
∆p between the two fluids to the shape of the surface and can be written as

∆p = γ

(
1

R1

+
1

R2

)
(3.1)

where γ is the surface tension and R1,2 the principal radii of curvature.
Equation (3.1) indicates that there is a jump of pressure when a curved
surface is crossed.
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Today it is known that capillarity is involved in a large number of geophysical
and biological effects and is used in numerous industrial applications. For
example, soil contains an infinity of cracks in which excess water runs to
the surface when it is hot and dry and allows trees to survive. Capillary rise
has also been reported as a drinking strategy of insects, birds and bats [111].
Moreover, capillarity is used by some animals (flies, bugs, grasshoppers, tree
frogs and beetles) to stay and walk on steep or downward-facing surfaces
[112]. On the other hand, capillarity is present in numerous industrial
disciplines such as pharmacology, cosmetic, glass industry, textile, painting
or insecticides. Some other applications that deal with capillarity are
electrospray or nano-fountain pen writing.

This non-exhaustive overview shows that capillarity is present in a large
number of everyday phenomena, and consequently, is a widely studied
effect. Nevertheless, some of the recently arisen aspects or complications
occurring at the nanoscale remained largely unexplored at the beginning
of this PhD work. Understanding capillarity at this scale is important to
fully describe the porous medium imbibition dynamics. The concerned
media are for example organic inclusions (kerogen) with sub-nanometer
pore space, or nanoporous systems used for example in water desalination
such as zeolites. The present study focuses on some aspects of capillary
filling at the nanoscale, and its objectives (expectations) are described in
the following section. Then some important notions are detailed as well as
the theoretical equations describing capillary filling of tubes.

3.1.2 Expectations/motivations

As mentioned above, capillary filling is an old and widely studied problem.
However, it has to be revisited since nanometric pores introduce two new
features [43, 113]. The first one is a breakdown of continuum hydrodynamics
expected for systems with characteristic dimensions below one nanometer
[2]. The second one is an important impact of the hydrodynamic boundary
condition on the filling dynamics, expected due to the increasing role of
surfaces. For example, deviations from the classical hypothesis of a no-slip
boundary condition (BC) at the liquid/solid interface have been predicted
theoretically and observed experimentally [15]. The impact of liquid/solid
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slip on capillary dynamics has been highlighted by Joly [72]. He found that,
in the short-time limit, the filling velocity of water in a carbon nanotube
(CNT) is limited by viscous dissipation at the tube entrance. We will push
this study further by considering the capillary filling inside CNTs with
subnanometric diameters. The important point is that effective radii of
subnanometric tubes are close to the fluid molecules’ diameter, and strong
deviations from the continuum predictions are expected. For example, the
structuring of the fluid is not taken into account by classical hydrodynamics,
and an important impact on the capillary dynamics can be anticipated.

In what follows, the equations of motion for several classical regimes are
described. Note that the basic notions concerning capillarity are described
in chapter 1.

3.1.3 From Lucas-Washburn law to the specific case of

CNTs

Capillary filling is a consequence of the existence of surface tension and
wetting, that are described in chapter 1. The equations that govern this
process inside pipes are described below, and some transport regimes are
highlighted. We start by a description of the classical case that considers
friction along the tubes’ wall and negligible entrance dissipation. Then,
we extend this description to the specific case of CNTs, for which most of
the dissipation comes from the entrances, due to the large slip length in
comparison to the tube radius, as discussed in chapter 2.

The Lucas-Washburn law

Let us consider a cylindrical pore of radius a and length H in contact with
a reservoir of liquid (density ρ, viscosity η), see figure 3.1. The liquid/vapor
surface tension is written γ, and the contact angle of the liquid on the solid
surface is noted θ. We call L the length of the liquid column inside the
tube. The velocity of the meniscus is related to L through: vc = dL/dt.
The equation of motion for the liquid inside the pore can be written

d(Mvc)

dt
= Fc + Fv, (3.2)
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Figure 3.1: Schematic of the system.

where M = ρπa2L is the mass of liquid inside the pore, Fc the capillary
force and Fv the friction force. The capillary force can be written as

Fc = 2πa∆γ, (3.3)

where ∆γ = γSG − γSL = γ cos θ is the capillary force per unit length at
the contact line. Note that this force results from the integration of the
pressure force on the meniscus. One can show that it is equivalent to a force
per unit length acting at the contact line. γSG and γSL are respectively the
solid-gas and the solid-liquid surface tensions. The friction force is given by
the Poiseuille law, modified to take into account liquid/solid slip:

Fv = − 8πηLvc
1 + 4b/a

, (3.4)

which leads to the following equation of motion

d(ρπa2Lvc)

dt
= 2πa∆γ − 8πηLvc

1 + 4b/a
. (3.5)

The solution of this nonlinear equation can be written as [72, 114]:

L(t) = Lc

(
t

τc
+
e−2t/τc − 1

2

)1/2

, (3.6)

with
τc =

ρa2

4η

(
1 +

4b

a

)
, (3.7)

and
Lc =

(2γρa3)1/2

4η

(
1 +

4b

a

)
. (3.8)

In the long time limit, where the liquid inertia can be neglected compared
to the viscous friction inside the tube, the equation (3.6) simplifies to the
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Lucas-Washburn law:

L2(t) =
∆γa

2η

(
1 +

4b

a

)
t. (3.9)

In this regime L ∝
√
t, so vc ∝ dL/dt ∝ 1/

√
t: the filling slows down with

time, which is logical since there is friction between the increasingly long
water column and the tube. In the short time limit, the viscous friction can
be neglected in comparison to the inertia, and one gets an equation that
does not depend on the liquid friction nor the slip length b :

L(t) =

(
2∆γ

ρa

)1/2

t. (3.10)

Note that a pre-inertial regime appears for L < a/2 as highlighted by
reference [115], but we will always ignore it here due to the dimension
of the considered system (i.e. a < 3 nm). The Lucas-Washburn law is
a standard equation in capillary filling study, but it is not suitable for
describing the dynamics of the present work. Indeed, due to the extremely
low friction at the CNT wall, one has to consider the viscous dissipation
at the entrance, just like in chapter 2. When the entrance dissipation
dominates the overall dissipation, the length of the column does not matter
and the filling velocity is constant over the time. The equations of motion
of this particular situation are described now.

The special case of subnanometric CNTs

Viscous dissipation – As seen in chapter 2, when studying transport
inside a subnanometric nanochannel, one has to take into account a viscous
entrance dissipation. The pressure drop at the entrance of the tube ∆p is
linked to the total flow Q as

∆p

Q
= Rout =

1

2
× Cη

a3
, (3.11)

where the factor 1/2 comes from the fact that there is only one entrance
in the situation of capillary filling, and C ∼ 3. As seen in chapter 2, the
competition between entrance and inner dissipations leads to the appearance
of a critical pore length L0 = πCb/2 which separates a regime dominated
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by entrance dissipation and a regime dominated by inner dissipation. Since
b is in the range of several tens of nanometers in our case, and since the
considered tube length L is equal to 10 nm, we made the assumption that
CNTs filled by water are in the regime L� L0.

Neglecting the inertia – Hereafter, inertial effects will always be ne-
glected. An argument based on the dissipated power confirms the limited
importance of inertial effects, in comparison to viscous ones. Indeed, since
most of the dissipation is expected to come from entrances, the power
dissipated by viscosity Pv can be roughly estimated as :

Pv =
η

2

∫
V

(∂ivj + ∂jvi)
2dV ∼ ηav2, (3.12)

where V is the volume of the system and where we used that the only length
scale is the tube radius a. On the other hand, the kinetic power of the
liquid can be written as

Pk ∼ ρa2v3. (3.13)

In the present study, we consider nanotubes with radii below 3nm, and
typical fluid velocities are around 10m/s. One finds Pk/Pv ∼ 0.03 (using
a = 3nm, v = 10m/s, ρ = 1000 kg/m3 and η = 1mPa.s), which indicates
that inertial effects can be neglected in comparison to viscous ones.

Capillary filling velocity – After neglecting both inner viscous dissipa-
tion and inertial effects, two contributions to the equation of motion are
remaining. The first one is the capillary force Fc = 2πa∆γ, which leads to
the following pressure jump through the meniscus:

∆pmen =
2∆γ

a
. (3.14)

The second one is the viscous entrance dissipation, which leads to the
following pressure jump at the entrance of the nanochannel:

∆pent =
Q

2
× Cη

a3
. (3.15)

Using that Q = πa2v and writing ∆pmen = ∆pent, one finds the expression
(3.16) for the capillary velocity vc:

vc =
4∆γ

πCη
. (3.16)
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Hence in this particular regime, the filling velocity is the result of a com-
petition between surface tension and entrance dissipation, and is constant
along time.

3.1.4 Outline of the present work

Classical expressions of capillary filling dynamics have been presented here.
The goal of the present work is to check the validity of these expressions for
subnanometric nanopores. In a first part, molecular dynamics simulations
are used to measure capillary filling dynamics inside CNTs of various radii
(from 3.9Å to 24Å). Both capillary velocity and Laplace pressure are
evaluated. Results show strong deviations from continuum predictions,
particularly for subnanometric channels. In a second part, in order to
model this effect, a theory involving a disjunction pressure originating
in the fluid structuring is proposed. To support this model, capillary
filling measurements inside slit nanochannels, for which the expression of
disjunction pressure is well known, have been performed using molecular
dynamics simulations. Results show a good agreement between molecular
dynamics simulations and continuum theory corrected by a disjunction
pressure term.

3.2 Method and results

3.2.1 Molecular dynamics simulations

The system consists in a water reservoir in contact with an initially empty
carbon nanotube (CNT) enclosed between pierced graphene sheets, see
figure 3.2. Empty rigth reservoir is not shown here. Water molecules were
initially disposed on a simple cubic lattice with equilibrium density. The
CNT length was 10 nm, with radii ac varying between 3.9Å and 24Å. Note
that ac refers to the position of the center of carbon atoms. We showed in
the previous chapter that the effective radius a seen by water molecules is
smaller: ac − a ≈ 2.5Å, see Chapter 2. The axis of the CNT defines the
axis z. Periodic boundary conditions were imposed in all directions and
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Figure 3.2: Snapshot of a system used for the molecular dynamics simulations.
The radius of the tube is equal to 3.9Å. The snapshot has been made using VMD
[74].

a third graphene sheet was used as a piston. The role of this piston was
first to prevent the evaporation, and to stop the fluid if needed (to measure
the capillary pressure in static conditions, see below). Molecular dynamics
simulations were performed using LAMMPS [82]. Long-range Coulombic
interactions were computed using the particle-particle particle-mesh (PPPM)
method. Water molecules were held rigid using the SHAKE algorithm. The
equations of motion were solved using the velocity Verlet algorithm with a
timestep of 2 fs. The positions of the carbon atoms (wall+CNT) were fixed.
Simulations with flexible and fixed walls were shown to give similar results for
the statics and friction of confined liquids in previous works [87–89]. Water
molecules located at more than 5Å from the membrane enclosing the tube
entrance were kept at a temperature of 300K using a Berendsen thermostat,
which rescales the molecule velocities every timestep [116]. We used the
TIP4P/2005 water model [Abascal2005b] and used the AMBER96 force
field for the carbon-oxygen interactions, i.e. a Lennard-Jones potential with
the following parameters: εCO = 0.114 kcal/mol and σCO = 0.328 nm [117].
The cut-off value rc for the Lennard-Jones potential was taken to be equal
to 12Å, which is slightly larger than conventional values that are around
8.5 − 10Å [Abascal2005b, 117]. Indeed, the filling velocity have been
found to be strongly dependent of the value of rc, converging only for
rc > 12AA. Moreover, the box size along the x and y directions is taken
sufficiently large to ensure that interactions between images CNTs do not
affect the velocity measurements, typically twice the tube diameter [118].
Finally we make sure that the reservoir is bigger than 10 times ac along z.
Finite element calculations indicate that, in that configuration, the error
due to finite size effects should be lower than 0.25 % [61].
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Figure 3.3: Up: number of particles inside the tube N as a function of the time.
Down: measured Laplace pressure pL = ∆p. MD results are in blue, linear fits in
orange and equilibrium steps are gray areas.

3.2.2 Data acquisition

The protocol of data aquisition has been divided in four stages in order to
extract the two quantities of interest which are the filling velocity (dynamic
phase) and the Laplace pressure (static phase). Before each phase, equi-
librium stages were performed. Let us describe those stages as well as the
corresponding measured quantities. First the system was equilibrated during
0.4 ns, with a plug at the tube entrance to prevent water from entering.
Then the plug was removed and the evolution of the number of molecule
inside the tube N was recorded as a function of time. This constituted
the dynamic stage. Note that, for a given tube radius, the filling velocity
appeared to be constant during the simulation (not taking into account
thermal fluctuations). So the filling velocity vc can be defined as

vc =
dN

dt

1

λ
(3.17)

where dN/dt is the temporal derivative of the number of molecules inside
the tube N fitted during the dynamic stage and λ is the linear density of
fluid inside the tube, measured once the tube is filled. The dynamic stage
lasted until the tube was partially filled (typically 1 or 2 ns, depending of the
tube radius). Then the piston was frozen, which prevented water molecules
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to fill the tube despite the presence of the capillary force. After another
equilibrium step of 0.4 ns, the pressure exerted by the fluid on the piston
(measured by recording the total force on the piston, divided by its surface)
was recorded during 2.5 ns. In the absence of flow, this pressure corresponds
to the Laplace pressure. An example for a tube radius ac = 5.1Å is plotted
on figure 3.3. For each case, the simulation was performed 5 times with
different initial conditions; the resulting velocity and pressure values were
averaged and standard deviation were calculated.

Note that the described acquisition process applies for hydrophilic tube only.
For hydrophobic tubes, the water is forced to enter the channel thanks to a
pressure applied with the piston (until the tube is half-filled) in a first time.
In the second time, the piston is frozen and the pressure is recorded before
the piston is freed and the velocity recorded while the water leaves the tube.

3.2.3 Results

The measured filling velocities vc for various tube radii ac are shown in
figure 3.4. For ac < 15Å, the filling velocity deviates from the continuum
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Figure 3.4: Filling velocity vc as a function of the tube radius ac measured from
molecular dynamics simulation (green symbols). The brown line corresponds to
formula vc = 4∆γ/πηC, with C being estimated from finite element calculations,
and ∆γ=14 nN/m.

prediction, calculated with macroscopic surface tension and viscosity, vc =
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4∆γ/πCη, which predicts only a continuous variation of vc with ac through
the Sampson coefficient C. For radii between 5.1 and 15Å, vc decreases by
a factor up to 2 compared to continuum predictions. Note that the decrease
is not monotonous on this range of radii, and that a small increase of vc is
measured for ac around 5.1Å. For radii ac = 4.3 and 4.7Å, vc is found to be
negative, which means that for a tube initially filled with water, the liquid
is ejected (reverse capillary flow). For radii ac = 3.9Å, vc is positive again.

Hence velocity measurements show deviations from the continuum prediction.
Referring to the continuum equation vc = 4∆γ/πηC, it appears that those
deviations may have several origins. First, the fluid viscosity η may differ
from the bulk value inside the pore. Second, the entrance dissipation
coefficient C may differ from the finite element prediction. Finally, the
capillary force per unit length ∆γ = γ cos θ may deviate from the continuum
prediction, since γ and θ both are macroscopic values. In order to identify
the origin of the deviations of the velocity from the continuum prediction, let
us perform an independent measurement of the last term, i.e. the capillary
force per unit length. Note that the results of the chapter 2, where we
performed measurements of the product C × η, indicates that entrance
effects is not a good candidate to explain the behaviour presented in figure
3.4. To measure ∆γ independently of C and η, static simulations using
a fixed piston to block the flow were performed, as described previously.
The measured quantity was the Laplace pressure, which is linked to ∆γ as
pL = 2∆γ/a, with a the effective radius of the tube. The measured Laplace
pressure pL is shown on figure 3.5. pL is found to strongly vary with the
tube radius, particularly for ac below 12Å. The Laplace pressure is negative
for ac =4.3 and 4.7Å only, but positive otherwise, in very good qualitative
agreement with velocity measurements. Moreover, for large tube radius, a
good agreement between pressure measurements and formula pL = 2∆γ/a is
found for ∆γ = 12.8mN/m, in good agreement with velocity measurements
from which a value of ∆γ = 14mN/m has been extracted.

One may wonder whether or not the pressure is the only reason of the
difference between molecular dynamics results and continuum predictions.
In other words, is there an other phenomena that contribute to the non
monotonic behaviour of the velocity? In that purpose, MD results for
velocity and pressure normalized respectively by 4∆γ/πηC and 2∆γ/a are
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Figure 3.5: Laplace pressure pL estimated from static measurements of the
pressure drop ∆p. Molecular dynamics simulations: blue dots. Continuum
prediction ∆p = 2∆γ/a with ∆γ = 12.8 mN/m: continuous brown line.

plotted in figure 3.6. One can see a quite good qualitative agreement between
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Figure 3.6: Ratio between Molecular Dynamics (MD) results and continuum
prediction for the velocity (green squares) and for the pressure (violet circles).

normalized pressure and velocity, which indicates that pressure variations
are the main cause of velocity gap between molecular dynamics results and
continuum predictions. However, while essentially agreeing for the most
striking part of the deviations from continuum predictions (non monotonous
behaviour and hydrophilicity reversal), some deviations can be seen for tube
radii between 5.5 and 7Å. Hence they might be another phenomenon that
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increases the gap between dynamic and static measurements. For example
entrance effects, which have been considered as a bad candidate to explain
the oscillations of the filling velocity (based on the results of chapter 2)
could still be at the origin of the deviations (∼ factor 2) observed in figure
3.6. Indeed, some deviations at small radius in the product C × η may
impact the filling velocity (dynamic situation) but not the Laplace pressure
(static situation).

In summary, we found that the filling velocity of water inside a CNT
differs from continuum predictions, particularly for tube radii below 1.5
nm. We also found that the force per unit length at the origin of capillary
filling explains most of the deviations observed in the capillary velocity. To
understand the origin of the gap between molecular dynamics results and
continuum hydrodynamic, an important question must be addressed: are
those results water specific? Or are they general and observable regardless
of the liquid? To answer this question, capillary filling of CNTs with a
simple liquid were performed.

3.2.4 Are those results water specific?

As a final step, numerical simulations of capillary filling inside CNTs using a
liquid metal instead of water were performed. Again, the filling velocity and
the Laplace pressure were recorded for various tube radii (from ac = 3.5Å to
23Å). Liquid water is known to present anomalous properties, and has the
particularity of directional interactions (hydrogen bonds), that impact the
relative orientation of neighbouring molecules [119]. Then, one may wonder
if our main observations on the subcontinuum capillary filling behaviour of
water also apply on simple liquids. “Simple” refers here to the absence of
directional interactions between fluid molecules. To answer this question,
molecular dynamics simulations of capillary filling of CNT with a liquid
metal were performed. The advantage of liquid metals, in comparison with
the even simpler Lennard-Jones liquids for example, is their high cohesion
which allows the liquid to resist to the high negative pressures at play in
(sub)nanometric capillary filling.

Method – Liquid metals are commonly described by the embedded atom
method (EAM) [120]. Therefore, we based our model liquid metal on the
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Figure 3.7: Left: filling velocity of the model liquid metal vc measured in a single
CNT as a function of the radius ac. Right: Laplace pressure pL estimated from
static measurements of the pressure drop ∆p. Molecular dynamics simulation
results are green symbols, the brown line corresponds to continuum prediction
(see text).

liquid gold (Au) model developed by Grochola and al [121]. The fluid
temperature was 1200 K. The distance space parameter was chosen to be
dr = 0.6410−3 Å to reproduce water density, which makes the comparison
easier. We measured both the liquid metal viscosity and surface tension, and
found a viscosity ηm = 30±4mPa.s and a surface tension γm = 777±2mN/m.
Finally we chose an interaction parameter εMC = 0.052 kcal/mol while
keeping σMC = σOC = 3.28Å and εMC = 0.052 kcal/mol, where M refers to
metal, C to carbon and O to oxygen.

Results – The filling velocity vc and the Laplace pressure pL were measured
for various radii and plotted on figure 3.7, and compared with continuum
predictions, respectively 4∆γ/πηC for the velocity and 2∆γ/a for the pres-
sure. Similarly to what we observed for liquid water, both the filling velocity
vc and Laplace pressure pL show deviations from continuum prediction for
radius below 1 nm. For example, for both liquids, negative velocities have
been found for tube with radii ac ∼ 4.3− 4.7Å, as well as positive velocities
for ac = 3.9Å and ac ≥ 5.1Å. Note that the quantitative behaviour of
the filling dynamics in case of metal differs from the case of water. We do
not discuss this difference here. Altogether, our results indicate that the
hydrophilicity reversal and non monotonous evolution are not water-specific,
and are obtained with simple liquids too.
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3.3 Discussion

Strong deviations from continuum theory of capillary filling dynamics have
been observed in sub-nanometric CNTs. Strikingly, for some specific radii
(ac = 4.3− 4.7Å), reverse capillary filling has been observed in this study.
Note that deviations from continuum prediction have been observed with
both water liquid and liquid metal. One may link this result with the
work of Song and Corry [122, 123]. They measured, via umbrella sampling
method, the potential of mean force for water passing through CNTs. They
found that the pore with radius ac = 4.6Å shows the highest energy barrier
to water molecules in comparison with smaller (ac = 3.4Å) or larger pores
(ac = 5 to 10Å). These results highlight the existence of some singular radii,
and are in quite good agreement with the present study. Pascal et al., who
found that water inside CNTs is more stable than in the bulk, also highlight
the presence of some singular radii [124]. They found that the nature of the
favourable confinement of water changes dramatically with CNT diameter.
Both relative entropy and relative enthalpy for water inside CNTs has been
found by Pascal et al. to be non monotonic functions of the radius. Indeed,
while water in the smallest tube (single-file) is stable thanks to an high
relative entropy in comparison with bulk water, the stability of slightly
larger tubes is ensure by a favourable enthalpy. This is another hint of the
presence of singular radii.

Altogether, these observations confirm the existence of singular radii. Hence,
one has to find the origin of the non monotonic behaviour of filling dynamics
of water inside CNT. The fact that both water and metal liquids have shown
non-monotonic filling dynamics with tube radius indicates that hydrogen
bonds are not the key ingredient to describe the observed behaviour. By
contrast, water and liquid metal, as all liquids, both structure themselves
near solid surfaces. Hence one may wonder if the structuring of the fluid has
an impact on the capillary filling dynamics. To illustrate the structuring
of the fluid inside CNT, snapshots of fluid structure are given in figure
3.8. From single-file (ac=3.9Å) to quasi-continuum state (ac = 8.2Å), the
geometrical patterns shown by water molecules can be correlated to the
velocity measurements presented in figure 3.4. The smallest tubes (ac = 3.5,
4.3 and 4.7Å) are single-file, i.e. molecules are standing/moving one behind
the other. It appears from figure 3.4 that ac=3.9Å is filled by water, while
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Figure 3.8: Snapshot of water molecules inside CNTs of various radii, ac = 3.9,
4.3, 4.7, 5.1, 5.5, 5.9, 6.2, 7.0, 8.2Å.

ac = 4.3 and 4.7Å are not. This may be understood by the fact that there is
too much vacuum in the biggest single-file tubes, and it is not very profitable
for water to fill it, since there is a large water-gas contact surface. This is
obviously not the case for the smallest tube, in which water molecules are
closely surrounded by carbon atoms, which should correspond to a large
liquid-solid contact surface. In other words, there is a loss of water-carbon
interactions from ac = 3.5Å to ac = 4.7Å. For the larger radii ac = 5.1 and
5.5Å, side-by-side molecules are allowed, and those tubes show an increase
in capillary filling velocity. This is probably related to the very small amount
of vacuum that is present in those tubes. For tube radii ac = 5.9 and 6.2Å,
ring structure is observed, and the curve vc versus ac shows a local minimum.
This minimum could be related to the cost of having vacuum in the centre
of the tube and therefore, loosing water-water interaction energy rather
than water-carbon as for smaller tubes. Finally, for the larger presented
radii (ac = 7.0 and 8.2Å), the fluid loses its structure, corresponding to a
velocity that tends toward the continuum value (∼ 7m/s).

Velocity and pressure measurements combined with water structure ob-
servations show that the structuring of the fluid is at the origin of the
strong deviations observed from continuum predictions. Let us now give an
analytical description of the observed behaviour.
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3.3.1 Mathematical description

Continuum theory predicts that the filling dynamics is generated by a
pressure drop ∆p = 2∆γ/a and limited by an entrance dissipation ∆p =

CηQ/2a3. But this continuum expression does not include the effects coming
from the discrete nature of the liquid. For example, for the smallest tubes
(ac = 3.9, 4.3 and 4.7Å), the flow is single-file. However, for a slightly
larger tube (ac = 5.5Å), four water molecules can fill the tube side-by-side,
and so on. These strong structuring effects are good candidates to explain
variations of the filling dynamics. They generate a disjoining pressure Πd

that can be added to the total pressure [125]. Πd is a function of the ratio
between the fluid molecules diameter σ and the tube radius a. The total
pressure drop, previously defined as ∆p = pL − p0 = pL, can be written as

pL = 2
∆γ

a
+ Πd. (3.18)

One may then define an effective force per unit length ∆γ∗ = ∆γ + aΠd/2,
to recover the classical expression for the Laplace pressure pL = 2∆γ∗/a.
While the expression of ∆γ∗ as a function of the radius a is not trivial for a
cylinder, the expression for the slit case (2D) can be found in the literature:

Π2D
d (h) = −ρ∞kBT cos (2πh/σ) e−h/σ, (3.19)

with σ the fluid particle diameter, ρ∞ the bulk fluid density and h the
distance between walls [47]. In equation (3.19), fluid particles are expected
to be hard spheres and channel walls are expected to be smooth.

To test the validity of equation (3.18) together with (3.19), molecular
dynamics simulations of water filling slit nanochannels were performed.

3.3.2 Capillary filling inside slits

To highlight that the disjunction pressure is at the origin of the non mono-
tonic variations of the filling velocity as a function of the channel dimensions,
MD simulations of water filling slit nanochannels were performed. The sys-
tem was similar to the previous one, at the exception that the channel was
made up with two planar graphene sheets, separated by a distance hc. The



Chapter 3. Subcontinuum capillary filling 80

width w of the system was taken to be bigger than 10 nm to avoid finite size
effects in the lateral direction. The distance hc was varied from 7.2 to 18Å.

From static measurements, the total capillary pressure pL was evaluated in
the spirit of CNTs measurements, see figure 3.9. In 2D, the total capillary
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Figure 3.9: Left: Laplace pressure measured in static simulations. Symbols
are molecular dynamics results. The brown line is the continuum prediction
pL = ∆γ/h, i.e. without structuring effects, with ∆γ = 25mN/m and with h an
effective slit size defined as h = hc − 5Å. The violet line corresponds to equation
(3.20). Right: capillary velocity in slit v2D

c as a function of the inter-plate distance
hc. Symbols are molecular dynamics results. The brown line is the continuum
prediction v2D

c = ∆γ/C2Dη with ∆γ = 25mN/m. The violet line corresponds to
equation (3.22).

pressure can be written as

pL =
∆γ

h
+ Π2D

d , (3.20)

where Π2D
d is given by formula (3.19), and h is the effective inter-slit distance

taken to be h ≈ hc − 5Å. Equation (3.20) has been added to figure 3.9, as
a comparison with molecular dynamics results. The agreement between
theoretical predictions and molecular dynamics simulations is quite good,
even if one has to add the following small corrections in the expression of
the disjoining pressure:

Π2D, *
d (h) = −ρ∗∞kBT cos (2πh/σ) e−αh/σ (3.21)

where ρ∗∞ is a modified water bulk density, taken to be ∼ 3.5 × ρ∞ that
the measured density, and α was taken to be ∼ 1.5 and acts as a screening
parameter. These adjustments have to be made since equation (3.19) applies
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to a system of hard spheres, while the considered liquid is water. It highlights
that the effect of the disjoining pressure is stronger for water than for a
hard sphere system (at short inter-plate distance), but decreases faster with
the inter-plate distance. A difference between water and hard sphere was
expected since water molecules interact with each other with an orientation
dependent potential [47].

On the other hand, the filling velocity is expected to write

v2Dc =
[
∆γ − h× Π2D,∗

d

] 1

ηC2D (3.22)

where C2D is the Sampson coefficient, here for the slit geometry, such
as ∆p = C2DηQ/wh2 = C2Dηv2Dc /h. C2D, which is a function of h, was
estimated from finite element calculations, in the spirit of chapter 2. A
comparison between equation 3.22 and molecular dynamics simulations
is shown in figure 3.9. As expected, the capillary filling velocity shows
oscillations when varying the inter-plate distance hc, and the qualitative
agreement between theory and molecular dynamics simulations is good.
Note a quantitative difference for hc ∼ 9 − 10Å, for which the measured
velocity values are lower than predicted ones. This can be linked to the
deviations observed in the case of the cylindrical geometry, see figure 3.6.
Again, this could be due to entrance effects.

To synthesize, note that for growing inter-plate distance hc, the number of
water molecules in the direction normal to the slit vary from one to five for
the considered situations. As previously observed with the tubes, this leads
to changes in the fluid structure. It is clear, in the case of the slit, that
each local maximum of velocity corresponds to h/σ = 3/2, 5/2 etc, while
local minima correspond to h/σ = 1, 2 etc. This confirms the major role
played by structuring effects, and indicates that the disjoining pressure is
at the origin of non-linearities in the filling dynamics inside subnanometric
channels.

3.3.3 Illustration

As a final illustration, a Jurin-like experiment was performed. A gravity
field g equal to 4 · 10−4 kcal/Å-g, i.e. twelve orders of magnitude larger than
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the typical gravity magnitude on Earth, was applied along the tube axis,
and the rise L of the fluid column inside the tube was recorded. A snapshot
of the simulation is shown in figure 3.10. From the classical Jurin law, L is

Figure 3.10: Ascension under a gravity field g (Jurin-like experiment) inside
subnanometric nanotubes. Tube radius from left to right: 3.9Å, 4.7Å, 5.1,Å and
6.25Å.

expected to be:
L =

2∆γ

ρga
. (3.23)

So L should increase when the effective radius decreases. As expected from
the current study, this is not the case for subnanometric channels, as seen
in figure 3.10. To re-conciliate equation (3.23) with our results, one has to
substitute ∆γ by ∆γ + aΠd(a), with a the effective radius of the pore.

This illustrates an important consequence of the phenomenon discussed in
this chapter. The imbibition of porous media with subnanometric pores
is strongly affected by the discrete nature of the fluid and the resulting
disjoining pressure. A striking phenomena being the possibility to switch
pore from hydrophilic to hydrophobic just on specific radii values.

3.4 Conclusion

This chapter focused on the capillary filling of subnanometric carbon
nanopores by a fluid. Molecular dynamics simulations indicated that the
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capillary velocity strongly depends on the channel dimensions, particularly
for tube radii below one nanometer. This is in contradiction with continuum
hydrodynamics which predicts a filling velocity quasi-independent of the
tube radius. During this study we observed that the fluid structuring inside
the pore creates a disjoining pressure which adds to the classical Laplace
pressure. The combination of continuum hydrodynamics and disjoining
pressure allows to theoretically predict a capillary velocity which varies
significantly with the channel size, especially for the very small channels.
This has been discussed in the case of capillary filling inside a 2D geometry
(slit), for which the expression of the filling velocity is known. Note that
our predictions are not water-specific and concern most liquid types, as
confirmed by results obtained with both water and a simpler liquid than
water: a liquid metal. Finally, one has to notice that we only considered the
complications linked to the appearance of a disjoining pressure. However,
at the nanoscale, one could also have questioned the value of the surface
tension at the meniscus. Indeed, some deviations from the macroscopic
value are expected, and can be quantified by the Tolman length. Even if the
present study shows that this effect is not dominant, it may still play a role.

A striking consequence of these results is the possibility to switch the pore
behaviour from hydrophilic to hydrophobic for some specific radius values.
For example, in the case of water filling CNTs, radii ac = 4.3 − 4.7Å
have been found to show reverse capillary filling, contrary to continuum
prediction. Moreover, tubes of radius ac = 3.9Å or ac ∈ [5.1− 16]Å have
been found to present lower filling properties in comparison with continuum
expectations.

The present result may be of main importance in the study of the filling of
nanoporous media. Indeed the hydrodynamic permeability of the medium
is expected to vary non-monotonically with the pore size distribution and
the effect can be quite brutal, particularly in the case of water filling porous
medium whose nanopores radii are distributed around 3.9 − 5.1Å. The
Darcy law should be adapted to take into account disjoining pressure effects,
for example by introducing a modified permeability K∗. Moreover, the
present result could result in some consequences for the selectivity, with
potential consequences for example in the understanding (and fabrication)
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of selective ion channels [34], or in the study of confined ionic liquids in
supercapacitors made of porous medium [126, 127].

In the end, this study allowed us to reach a very complex aspect of selectivity
by giving a simple molecular (finite size) vision mostly based on geometrical
arguments.
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Abstract and main results – Analogous to
diodes in solid state electronics, a nanofluidic diode
is a system presenting an ionic current rectification
when submitted to an external electrical potential
drop. This property can be used to turn the ionic
flow on and off depending on the polarity of the
applied voltage. A nanofluidic diode usually con-
sists of an asymmetric and charged nanochannel,
as schematized in figure A.
The ionic response to an applied electrical field of
a nanofluidic diode has already been theoretically
studied and experimentally observed, a typical cur-
rent versus voltage response of a nanofluidic diode
is presented in figure B. By contrast, this thesis is
the very first work considering the behaviour of the
solvent within a nanofluidic diode, even though
controlling water flow using nanofluidic diodes
opens up new prospects for desalination and wa-
ter purification. In this chapter, we focus on the
behaviour of the solvent inside a nanofluidic diode,
and particularly on the osmosis phenomenon, i.e.
the response to an applied salinity gradient.
We show that a surface charge asymmetry built
on a nanochannel surface leads to non-linear cou-
plings between the water flow and the ion dy-
namics, which results in a water flow rectification.
A typical water flow versus an applied voltage
drop curve is presented in figure C. Then, we ex-
plore the possibility of having rectification of flow
under external forcing without electrical double
layers (EDL) overlap. This possibility is of great
interest since an EDL overlap requests channel di-
mensions close to the molecular size (or extremely
low salt concentration) which constitutes an im-
portant technological constraint. Ionic and water
rectifications without EDL overlap could be the
first step toward an efficient desalination device.
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4.1 Introduction

This chapter focuses on nanofluidic diodes, an appealing application of
nanofluidics. It consists of a nanochannel which allows to conduct ionic
current preferentially in one single direction (and inhibits the current flow in
the opposite direction). Accordingly, a nanofluidic diode rectifies the ionic
current depending on the polarity of the applied electric-field, analogous to a
diode in solid-state electronics [129]. This section starts with a brief state-of-
the-art relating to nanofluidic diodes. Then it provides a short description
of the qualitative behaviour of this component. Finally it presents the
road-map of the present chapter.

4.1.1 State of the art

Investigations on nanofluidic diodes have started only recently, with a
theoretical study of nanochannels bearing an asymmetric surface charge
(for an illustration see figure 4.1). In 2005, Daiguji et al. theoretically
predicted the rectified ionic current across nanofluidic channels with a
tuned surface charge density [13]. Based on Poisson-Nernst-Plank (PNP)
and Navier-Stokes equations, they found that tuning the surface charge
in an asymmetrically charged nanochannel allows to modulate ion current.
Two years latter, Karnik et al. experimentally measured the rectified ionic
current in a nanofluidic diode fabricated by introducing a surface-charge
discontinuity [22]. They studied the current-voltage response of the diode
and found a large rectification, which depends on the salt concentration.
Nanofluidic diodes have also been obtained by tuning the channel’s geometry,
i.e. by using an asymmetric shape rather than an asymmetric charge. Indeed,
asymmetric nanochannels have been found to lead to similar electrical
current rectifications, as reported by Siwy et al. [130–133]. Note that
nanopores pierced in solid membranes are often asymmetric, since they are
conically shaped due to the shape of the beam used to drill them. Usually,
a nanofluidic diode’s response to an external forcing is well described by
1D-PNP equations [13, 134, 135], which will be used in this study.

Until now, most groups have focused on the ionic response of a nanofluidic
diode to an external electric potential. To extend these studies, its osmotic
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response will be considered in the first part of this chapter. In particular,
we show that a nanofluidic diode can be used to rectify water flow. Also,
nanofluidic diodes have mostly been studied in the case of an electrical
double layer overlap. It corresponds to the case where the Debye length λD
(see section 1.2.1) is comparable or larger than the channel height h. The
possibility of rectifying flux without Debye overlapping is evidenced in the
second part of this chapter.

4.1.2 A brief description of nanofluidic diodes

A nanofluidic diode generally consists of a charged nanochannel pierced
in a membrane, and presenting an asymmetry. A drawing of a typical
nanodiode is shown in figure 4.1. The nanochannel of length L and height
h separates two reservoirs of bulk salt concentration c0. The channel is
asymmetrically charged, with a surface charge Σ on the left, and a surface
charge −αΣ on the right, with α a constant, typically taken to be positive.
To ensure electroneutrality, EDLs build up at the charged surfaces, and they
may overlap depending on the height of the channel and salt concentration.
Depending on the applied voltage ∆V , counterions may be either depleted
(figure 4.1 middle) or accumulated (figure 4.1 bottom) in the transition
zone, i.e. in the middle of the channel. This leads respectively to a blocked
state with a weak ionic current crossing the diode, or an open state, with a
high ionic current. The typical ionic current Ie crossing the nanodiode as a
function of the applied voltage drop ∆V can be written as

Ie = Isat
(
e∆V eβ − 1

)
, (4.1)

where Isat is a saturation current and β = 1/kBT . Formula (4.1) is plotted
in figure 4.1, with a comparison with the expected (linear) response of a
uniformly charged nanochannel. Note that for a large voltage drop difference
formula (4.1) do not applies any more, and a linear response Ie versus ∆V

has to be recovered. The important consequence of formula (4.1) is that,
depending on the applied potential drop ∆V , one can turn on and off the
ionic current by simply changing the electric field polarity.
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Figure 4.1: Left: a nanofluidic diode with counterions. Up: no external forcing
(∆V = 0). Middle: negative external potential drop (∆V < 0), the diode is
blocked. Down: positive external potential drop (∆V > 0), the diode is open.
Right: typical current ie versus applied voltage drop ∆V signal, in a nanofluidic
diode (continuum blue line) and in a simple nanochannel (dashed orange line).

4.1.3 Outline

This chapter is based on the study of the solvent inside a nanofluidic
diode, and particularly on its coupling with an external forcing such as an
electric field or a salt concentration gradient. In a first part, we study the
possibility of using a nanofluidic diode to control the water flow in a regime
of electrical double layer overlap. Then, we extend the study in a regime of
no-overlapping electric double layer and show that a diode-like behaviour is
expected in this case as well.

4.2 Controlling water flow with a nanofluidic

osmotic diode

The ability of a nanofluidic diode to rectify ionic current has been widely
studied theoretically and measured experimentally. By contrast, the coupling
between the diode and the solvent had not been explored at the beginning of
this thesis, and is at the basis of the present chapter. Theoretical equations
are derived, and supported by molecular dynamics results.
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4.2.1 Theoretical model

Osmotic pressure – Let us consider the classical osmosis, which appears
in the configuration where a semipermeable membrane separates two reser-
voirs containing a solvent and a solute (water and salt here). If a solute
concentration difference ∆c exists between reservoirs, an osmotic pressure
drop ∆Π builds up and induces a water flow toward the reservoir with the
largest salt concentration. The expression of the osmotic pressure difference
is given by the van’t Hoff formula [136]

∆Π = kBT∆c. (4.2)

Note that equation (4.2) applies to ideal solutions with infinitesimal con-
centration difference.

Apparent osmotic pressure – However, in full generality the nanochannel
is usually only partially semipermeable, meaning that ions may still permeate
through it, although this process is strongly affected by the surface charge
[52]. This gives raise to an apparent osmotic pressure, which is defined
hereafter. As seen in subsection 1.2.5, inside a charged nanochannel, the
force balance on the fluid takes the form of the Stokes equation for the
velocity field ~v and the hydrodynamic pressure p, with a supplementary
electric force ρe (−~∇V ) due to the local charge imbalance inside the EDLs

η∇2~v = ~∇p− ρe (−~∇V ), (4.3)

where ρe = e(ρ+ − ρ−) is the local charge density (ρ± the density of cations
and anions, assumed to be monovalent), e the elementary charge, η the fluid
viscosity, and V the local electric potential. Integrating equation (4.3) over
the nanochannel allows to express the total water flux Q as

Q = −K [∆p−∆Πapp] , (4.4)

with K the hydrodynamic permeability of the channel, and ∆Πapp the total
electric driving force per channel cross section A, defined as

∆Πapp =
1

A

∫
dA

∫ L

0

dx ρe (−~∇V ), (4.5)
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where L is the length of the channel. Combined with equation (4.4), this
allows to interpret the electric force acting along the channel, ∆Πapp, as an
apparent osmotic pressure. Considering an absence of steric exclusion of the
ions in the permeable pore, only this contribution to the osmotic pressure
exists, so that ∆Πapp identifies with the full osmotic pressure.

Connecting the osmotic pressure and the ionic flux – To connect
∆Πapp to the ion fluxes J± through the nanochannel, we assume that the
ion dynamics obeys the Poisson-Nernst-Planck (PNP) transport equations
[2]. By doing this, we assume a 1D geometry with the various quantities
averaged over the cross area, depending only on the x-coordinate along the
channel [137]. The detailed equations are presented in appendix A. The
PNP framework introduces the ion fluxes as a key quantity, defined as

J± = −D∇c± ∓ µc±∇V, (4.6)

withD the ion diffusion coefficient and µ = eD/kBT the (electrical) mobility,
taken to be the same for both species. In the stationary state, the ion fluxes
are homogeneous in space and time, leading to a spatially constant electric
current Ie = e(J+ − J−) and a solute flux Ji = J+ + J− = −D∇c− µρ∇V ,
with c = c+ + c− the total ion concentration and ρ = c+ − c− the difference
in salt concentration between + and - species. Using this relation to express
the electric force ρe (−∇V ) as a function of the solute flux Js, equation (4.5)
can thus be rewritten as

∆Πapp = kBT

(
∆c+ Ji ×

L

D

)
, (4.7)

where ∆c = 2(cR − cL) is the salt concentration difference (the factor two
coming from the two ion species), and where cR and cL are salt concentrations
in the right and left part of the channel, respectively. Note that an equivalent
relation was obtained by Manning [138], using a generic potential-energy
profile to represent the membrane. In the absence of solute flux, Ji =

0, the previous equation reduces to ∆Πapp = kBT ∆c, i.e. matches the
van’t Hoff expression for the osmotic pressure drop across a perfectly semi-
permeable membrane (equation (4.2)). For a fully permeable neutral channel,
Ji = −D∆c/L and ∆Πapp = 0, which is also expected. In general the
nanochannel is only partly permselective and ∆Πapp takes a non-vanishing



Chapter 4. Nanofluidic osmotic diodes 93

value depending on the solute flux. Thus the driving force acting on the
water takes the value ∆ptot = ∆p − ∆Πapp, and ∆Πapp is the apparent
osmotic pressure that one needs to overcome in order to counteract osmosis.

Towards the osmotic diode –We can now obtain an analytical expression
for the apparent osmotic pressure based on equation (4.7). In the following
we will discuss more specifically a geometry with an asymmetric surface
charge, as sketched in figure 4.2: the left side has a positive surface charge
density Σ while the right side has a negative surface charge −αΣ, with
α > 0 a numerical coefficient. In a similar geometry, for the ionic diode,

Σ -αΣ

L

h

c cRL

Figure 4.2: Scheme of the system showing the asymmetry of the surface charge
in the nanochannel, and the different salt concentrations in the left and right
reservoirs.

it has been shown that the corresponding 1D PNP equations obeyed by
the ion concentrations can be solved for an applied voltage drop ∆V across
the nanochannel [22, 139, 140]. In contrast, no solution exists yet for the
response under an osmotic gradient ∆c. Deriving such a solution was the
initial purpose of this work. Our derivation follows the general strategy of
previous works [22, 139, 140].

Transition zones – Now, one should treat specifically the discontinuities
associated with the step change of surface charge between the two reservoirs
and the inner nanochannel ends, as well as at the junction between the two
sides of the nanochannel with different surface charges. Following previous
descriptions [22, 139, 140], which made use of the analogy with p-n junctions
in semiconductors, one may treat these discontinuities by neglecting the
extension of the space charge zone and writing accordingly the continuity
of the electro-chemical potential. Neglecting the subtle effects at junctions
and channel ends constitutes obviously a simplifying assumption, which
allows to obtain an analytical prediction for the transport properties and
osmotic pressure. However such assumptions were shown to provide in fine
a good description of transport, comparing favourably with experiments
and numerical calculations [22, 140].
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First, one may notice that the surface charge carried by the walls leads to a
local ion charge imbalance inside the nanochannel,

c+ − c− = −2
Σ

he
(on the left), (4.8)

c+ − c− = 2
αΣ

he
(on the right). (4.9)

Moreover, at equilibrium (i.e. cR = cL = c0), a Donnan potential VD
builds up in the nanochannel in order to ensure a spatially homogeneous
electrochemical potential over the system [2]

µ± = kBT log(n±)± eVD ≡ µ0 = kBT log(n0), (4.10)

where µ± is the electrochemical potential of ± species, and n± = c±/c0 the
dimensionless concentration normalized by the average concentration c0.
Along with the charge electroneutrality condition, equation (4.10) allows to
link the local ion concentrations and the electrical potential in the different
parts of the system. Details are given in the appendix A.

Out-of-equilibrium – Now, under the combined action of a voltage drop
∆V and an osmotic forcing ∆n, non-equilibrium ion fluxes J± build up in the
system. Using the spatial homogeneity of the fluxes along the nanochannel in
the stationary state, one can deduce the spatial dependence of ion densities
and potential. One gets a system of 6 equations and 6 unknowns (Ie, Ji, the
concentration values near the central junction (x2) and the potential values
near the central junction (x2)), that can be solved numerically (appendix
A). However, an analytical expression for Ie and Ji can be obtained in the
regime of high surface charge also called large Dukhin number limit.

Large Dukhin number limit – Altogether, in the regime Du� 1, with
Du the Dukhin number defined as the ratio between the Dukhin length
and the channel size Du = `Du/h, one obtains analytical expressions for
the concentration profiles and electrostatic potential, as well as for the
corresponding solute and electric fluxes:

Ji =
D

L

(
2

(nR − nL)

Du
− α− 1

αDu
nR
n0

[
nLe

∆φ − nR
])

(4.11)
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Figure 4.3: Apparent osmotic pressure ∆Πapp versus the salinity gradient
∆n = nR − nL (left) and applied voltage ∆V = VR − VL (right) obtained from
equation 4.13. All the quantities are depicted in reduced units of kBT , kBT/e,
and c0 (average salt concentration); Du = 3, α = 5.

and
Ie =

e

α− 1

[
(α + 1) Ji − 4D

(nR − nL)

DuL

]
. (4.12)

Using equation (4.7), one deduces an analytical expression for the apparent
osmotic pressure in the large Dukhin number limit:

∆Πapp

kBT
= 2

(
1− 1

Du

)
(nR − nL)− α− 1

αDu
nR
n0

[
nLe

∆φ − nR
]
. (4.13)

The apparent osmotic pressure thus exhibits a rectified salinity gradient
contribution, coupled to a strong non-linear dependence on the imposed
voltage, with an exponential form that resembles the characteristic equation
of a semiconductor diode, see figure 4.3. Note that the apparent divergence of
the second term as α→ 0 is due to the assumption of a high Dukhin number.
Finally, we emphasize here that the predicted exponential dependency of
the fluxes with the applied voltage ∆V results from the increasingly large
potential gradients inside each part and at junctions inside the channel, and
not from an increased salt concentration inside the channel (see appendix A
for details). The previous expression applies for moderate applied voltage,
while for very large voltage e∆V/kBT � 1, the system goes back into a
linear regime with a linear dependence of the fluxes on ∆V , associated with
surface conduction (see appendix A).

Recalling that in the absence of applied pressure drop ∆p = 0, the flow
rate Q is proportional to ∆Πapp, see equation (4.4), this rectified osmotic
pressure directly translates into a rectified water flow. It thus behaves as an
osmotic diode. To highlight the analogy to Shockley diodes, one may gather
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formally the various terms in equation (4.13) to write the water flux as

Q = Kξ kBT∆c+QS

[
e∆φ − 1

]
, (4.14)

where the expression for the reflection coefficient ξ(δ, α, nL, nR) follows
immediately from equation (4.13), and QS plays the role of a “limiting water
flux” with

QS = K × kBT cRcL
1− α
αDuc0

. (4.15)

This phenomenon opens the way towards an elaborate control of fluid flows
at the nanoscale, by coupling salinity and electric gradients.

In order to assess these counter-intuitive behaviours, we present the results
of molecular dynamics simulations of ion and water transport inside a
nanochannel, using the LAMMPS package [82]. In view of the computational
cost required, we have conducted these simulations at two different levels. In
a first set of simulations, we focused on the ion dynamics, using an implicit
solvent. The full ion dynamics was explicitly computed, and the solute flux
and electric current were measured. In a second set of simulations, both
water molecules and ions were included, and the water flow was measured.

4.2.2 Implicit solvent simulations

Method – Using the LAMMPS software [82] we performed molecular
dynamics simulations in a setup like figure 4.2. A FCC lattice of fixed
atoms is used to build the channel walls. Water is modelled only in an
implicit way, as a medium that has the dielectric permittivity of water
εr = 80. The interaction between the solute and the water molecules is
mimicked by applying a Langevin thermostat on the ions [141]. The same
damping time τ = 23 fs – controlling the amplitude of the viscous drag in
the Langevin model – is imposed for both species, to ensure that they have
the same diffusion coefficient, with a value D ≈ 2× 10−9 m2/s, close to the
experimental ones for typical microions. The atomic mass of the species is
chosen to be mn+ = mn− = 39.1 g/mol, and we consider monovalent ions. A
Weeks–Chandler–Andersen potential, keeping only the repulsive part of the
Lennard-Jones potential, was applied. All particles (ions and solid atoms)
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share the same size σ = 3.74Å. Long-range Coulombic interactions were
calculated by means of a particle-particle particle-mesh (PPPM) solver.

At each side of the junction, charges were homogeneously distributed between
the wall atoms at the surface, and the required amount of counterions to
ensure electroneutrality was placed in the vicinity of the walls. For the
∆n = 0 case we used a single diode in contact with left and right reservoirs
with the same concentration and periodic boundary conditions (PBC) in
all space directions. A channel width equal to the Debye length λD = 15Å
was imposed to ensure Debye overlap. Each side of the diode in the x and
y directions, as well as the reservoirs, had a length equal to 5λD to ensure
that the concentration and voltage profiles reached a plateau value. To
induce a voltage drop across the channel while keeping PBC, we imposed
an electric field Ex to the system (in practice, by applying an electric force
Fx = qEx on charged particles, with q the particle charge) [142].

To avoid PBC problems in the ∆n 6= 0 case, we constructed a double diode
system containing two diodes in series along the x direction in such a way
that the right reservoir of the first diode was also the left reservoir of the
second one, and vice versa. We inverted the orientation of the second diode
in a way that allows to impose PBC in all space directions, and from the
same simulation we obtain the results for (∆n, −∆V ) from the first channel
and for (∆n,+∆V ) from the second channel.

Results – The osmotic pressure is defined in terms of the solute flux Ji
according to equation (4.7). Figure 4.4 (left) presents MD results for the
dependence of osmotic pressure with the salinity gradient, under several
imposed voltage drops. Despite fluctuations due to thermal noise, a very
good agreement with the theoretical predictions of equation (4.13) (solid
lines) is found. In particular, the asymmetric behaviour can clearly be
observed. In figure 4.4 (right), the molecular dynamics simulations reveal
a clear diode-like behaviour for the osmotic pressure versus voltage drop,
in agreement with the theoretical prediction (solid line). The voltage
values reported here were taken from the direct measurement of the electric
potential profiles measured in the system. These are computed using the
Coulomb law, taking into account the contributions of all charges in the
system and of the external applied field.
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Figure 4.4: Comparison of the theoretical (TH) and molecular dynamics (MD)
simulations results for the apparent osmotic pressure versus the osmotic gradient
(left) and the applied voltage (right). The water flux is expected to be proportional
to ∆Πapp. Surface charges are chosen such that the surface-to-bulk-charge ratios
are DuL = 5 and DuR = −αDuL, with α = 10. All the quantities are depicted in
reduced units of kBT , kBT/e, and n0 (average salt concentration).

In a second, more detailed level involving full complexity, we performed
a restricted number of simulations with full ion and water dynamics to
highlight the rectified water flux we analytically predicted.

4.2.3 Explicit solvent simulations and reverse water

flow

We present results of molecular dynamics simulations using water as an
explicit solvent. The aim here was to build a realistic system in which water
is explicitly described.

Method – Molecular dynamics simulations were performed in a setup
similar to the one in figure 4.2, used for the implicit solvent simulations.
The diode walls consist of an array of graphene sheets with homogeneously
distributed charges. Each side of the horizontal slabs is positively or nega-
tively charged, with a surface charge Σ and −αΣ respectively. As shown in
figure 4.5 a system of parallel horizontal graphene slabs creates an array of
diodes working in parallel. The simulated systems contained ∼ 5000 water
molecules, and five potassium and chloride atoms were typically present in
each reservoir. In the spirit of [143], air-water interfaces are created at the
two ends of the water reservoirs (not shown in figure 4.5). This ensures that
the left and right reservoirs are independent and at the same (liquid/vapor



Chapter 4. Nanofluidic osmotic diodes 99

Figure 4.5: Snapshot of the simulation made with VMD [74], with counterions
and water molecules.

coexistence) pressure, although periodic boundary conditions are imposed
in all directions.

The AMBER96 force field [117] was used, with TIP3P water, and water-
carbon interaction modeled by a Lennard-Jones potential between oxygen
and carbon atoms, with parameters εOC = 0.114 kcal/mol and σOC = 3.28Å.
The values of the Lennard-Jones parameters for ions were taken as in
reference [144] to avoid the formation of unrealistic clusters of ions in a
very confined geometry. Long-range Coulomb forces were computed using
the particle-particle particle-mesh (PPPM) method. Water molecules were
held rigid with the SHAKE algorithm. A time step of 2 fs was used. The
positions of the carbon atoms were fixed. Water molecules and ions were
kept at a constant temperature of 300K using a Nosé-Hoover thermostat,
applied only to the degrees of freedom perpendicular to the flow direction,
with a damping time of 100 fs.

A channel width h = 12Å was used, which provides a good Debye overlap,
since the Debye length λD is equal to λD = 8Å. Each side of the diode
measured 3λD in the x and y directions, which gives almost flat concentration
and voltage profiles on each side. The reservoirs and vacuum layers measured
∼ 10λD. Besides the air-water interfaces, a vertical graphene wall is also
included in the vacuum part of one side (not shown in figure 4.5) to assure
that no evaporation occurs from one side to the other and hence water
transfer can only occur through the channels.

Results – This system is obviously much heavier computationally speaking
than the previous one (subsection 4.2.2) and hence we cannot perform
exhaustive measurements with it. However, these simulations allow to
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Figure 4.6: Left: Evolution of the amount of water molecules after 20 nanosec-
onds for one positive and one negative value of ∆V , with salt concentration
nR = nL = 0.15M; the surface to bulk charge ratios are δL = 3, δR = 12.
All curves are the average over five realizations of the simulations with a du-
ration of 20 nanoseconds. Right: flux Q = ∆NH2O/∆t versus the normalized
applied voltage drop ∆V . The dashed line is an adjustment using the expression
Q = Qs (exp[∆V ]−1) with Qs = 9 ·10−4 ns−1. The voltage is depicted in reduced
units of kBT/e..

observe the same behaviour as previously, which confirms the validity of
the implicit solvent simulations. Indeed, the resulting diode-like water flow
is illustrated in figure 4.6 for ∆n = 0. We evidence here an asymmetric
flow response as a function of the applied voltage: for sufficiently high and
positive ∆φ = ∆V × e/kBT a non-vanishing water flow builds up in the
system, while for ∆φ < 0 the flow can hardly be distinguished from the
thermal fluctuations (and from the equilibrium situation ∆φ = 0). This
rectifying behaviour of the water flow under voltage drop is in agreement
with the theoretical prediction in equation (4.14).

4.2.4 Summary

Here we demonstrated the possibility of using a nanofluidic diode to rectify
the solvent flow. Using a PNP-based theory, a water flow rectification,
depending on the applied salt gradient and electrical potential has been
predicted. Molecular dynamics simulations confirmed these predictions.

In particular, due to the diode-like dependence of water flux on voltage drop,
an oscillating voltage drop is expected to induce a net water flow, which (as
quoted above) can be interpreted in terms of rectified electro-osmosis. This



Chapter 4. Nanofluidic osmotic diodes 101

is reminiscent of the nanoscale pumping of water by an AC electric field or
oscillating charge, recently evidenced by molecular dynamics simulations
[145, 146].

Until now, we studied the nanofluidic diode in the configuration of electrical
double layer overlap. Hereafter, we present an extension of this study to the
case where the channel height h is large in comparison to the Debye length
λD. We will start by exposing the motivations of such a study. Then we
will present molecular dynamics simulations results and a theoretical model
which will be compared with results from finite element calculations.

4.3 A nanofluidic diode without EDLs overlap

4.3.1 Motivations

The overlap of the Electrical Double Layers (EDLs) induces strong elec-
trostatic interactions in the nanochannel, which markedly modify the ion
dynamics, as seen previously. Nevertheless, the characteristic width of EDL
layers is given by the so called Debye length λD, which scales with the bulk
salt concentration c0 as λD ∼ 1/

√
c0. For example, with sea water for which

the salt concentration is approximately c0 ≈ 0.6M, the Debye length is
λD ≈ 0.4 nm. Therefore, it is a major technological challenge to fabricate
channels for which an overlap of the EDLs exists.

However, the importance of surface charge effects in comparison with bulk
effects is given by the Dukhin length `Du defined as the ratio between the
surface charge Σ and the salt bulk concentration c0 (see subsection 1.2.1):

`Du =
|Σ|
c0e

.

If the Dukhin length is at least comparable to the channel size, one may
expect surface effects to play a major role in transport phenomena, regardless
of the size of the EDLs. Hence, it should be possible to get a diode-like
behaviour (an asymmetric force-flux response) using a channel with no EDL
overlap. The aim of the present section is, first, to highlight numerically
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Figure 4.7: Sheme of the diode with counter ions (blue and orange discs) and
surface charge (blue and orange lines).

this possibility, and then to propose an analytical model for nanofluidic
diodes with no EDL overlap.

As a first step, we used molecular dynamics simulations to confirm the
existence of rectification effects without overlap of EDLs, but in a surface-
dominated regime, where h is the channel width (i.e. `Du > h > λD). Note
that Laohakunakorn et al. experimentally observed water flow rectifications
in a conical nanopore without EDLs overlap [147]. Then we present an
analytical model based on PNP equations. The model is based on the
hypothesis that a 1-D model, in which variables are averaged over the
other dimensions, captures most of the physics governing flux responses to
external forcing, in the footstep of Dydek et al. [137]. Finally, we compare
our model with finite element calculations and show a quite good agreement.

4.3.2 Numerical evidence of rectification without De-

bye overlap

To confirm the existence of a diode-like behaviour without electrical double
layer overlap, we performed molecular dynamics simulations. The goal is
to measure the ionic current Ie in a asymmetrically charged nanochannel
as a function of the external forcing ∆V , and show the asymmetry of the
current-force response.

Simulation details – In view of the computational cost required, we have
conducted these simulations using an implicit solvent only. The full ion
dynamics is explicitly computed, and the solute flux and electric current
are measured. The geometry of the system is represented of figure 4.8. The
tube radius was equal to a = 3nm, the length L = 12nm and the surface
charge was Σ = 140mC/m2 on the left side and −αΣ with α = 2 on the
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Figure 4.8: Sectional view of the diode with counter ions used for molecular dy-
namics simulations. Image made using VMD [74]. The two colours are associated
respectively to the two charges.

right side. The averaged bulk salt concentration was c0 = 1M, then the
Debye length was equal to λD ∼ 3Å ∼ a/10 and the Dukhin length was
equal to `Du ∼ 150nm on the left and 300nm on the right.

Method – The details of the simulation are mostly the same as in part
4.2.2, hence we will only specifies the differences here. Charged fixed atoms
combined with solid flat walls are used to build up the channel. Solid flat
walls interact with the liquid by generating a force on the atom in a direction
perpendicular to the wall. A channel radius equal to ten times the Debye
length λD = 3Å is chosen to ensure a clear non overlap of EDLs. Each
side of the reservoir had a length equal to 50λD in the x, y directions, and
100λD in the z direction. This ensures that the concentration and voltage
profiles reached a plateau value. We use a diode in contact with the left
and right reservoirs, with the same concentration and periodic boundary
conditions in all space directions.

Note that the chosen geometry here is cylindrical (i.e. fully 3D), while the
simulations in the Debye overlap configuration (previous section) have been
performed in a slit geometry (2D). This is a recent choice we made because
a potential W solution of 4W = 0 decreases faster in a 3D geometry
than in a 2D geometry (respectively W ∼ 1/r and W ∼ ln(r)), with r

the characteristic distance from the source of the potential. Hence, for a
given reservoir size, finite size effects are expected to be minimized in a 3D
geometry.

Results – The electric potential drop ∆V was varied in absence of salt
concentration difference between the right and left reservoirs (∆n = 0).
Figure 4.9 shows the measured ionic current Ie as a function of the applied
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Figure 4.9: Ionic current Ie versus voltage drop ∆V obtained from molecular
dynamics simulations. The dashed line is an adjustment using the expression
Ie ∼ Is(exp(e∆V/kBT )− 1) with Is = 5nA.

voltage drop. The molecular dynamics simulations reveal a clear diode-like
behaviour in the absence of electric double layer overlap. Hence, in the next
part, we propose a model based on PNP equations to describe the transport
in this regime.

4.3.3 Theoretical model

System – Let us consider a channel separating two sub volumes, containing
an electrolyte as depicted in figure 4.10. Driving forces are applied along
x, and the length of the channel L is assumed to be way larger than its
height h: L� h. A contrast in the surface charge exists between the two
half-sides of the channel: Σ on −L/2 < x < 0 and −αΣ on 0 < x < L/2

with α a positive numerical constant. The corresponding Dukhin num-
bers, defined as the Dukhin length `Du divided by h, are Du and −αDu.
The bulk salt concentration c0 is chosen to ensure that the Debye length,
λD ≈ 0.3(nm)/

√
c0(mol/L), is smaller than h (typically λD = h/10), while

the Dukhin length `Du = |Σ|/c0e is taken to be larger than h, ensuring a
surface governed transport. An invariance is assumed along the y axis. The
values of ∆n and ∆φ are imposed, the unknowns are the values of the salt
concentration and the electrical potential at both entrances of the channel
(n0

L, n0
R, φ0

L, φ0
R), and at each side of the central discontinuity of the diode
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Figure 4.10: System and notations used in the analytical model. n = c/c0,
φ = V × e/kBT and X = x/L.

(nL, nR, φL, φR), see figure 4.10.

Governing equations – Following Dydek et al. [137], we have chosen to
average the Nernst-Planck equations for the ion densities over the cross-
section of the channel. This approximation is expected to be valid for
h� L. Hence a 1D geometry is assumed for the resolution of the transport
equation. One defines accordingly area averaged quantities, such as the
mean ion concentrations and the mean electrical potential

〈n±〉 =
2

H

∫ H/2

0

n±(x, z) dz, (4.16)

〈φ〉 =
2

H

∫ H/2

0

φ(x, z) dz. (4.17)

In the following we will write n± ≡ 〈n±〉 and φ ≡ 〈φ〉 to simplify the
notations. We then write a PNP equation for the averaged quantities

j± = −∇n± ∓ n±∇φ, (4.18)

where j± are respectively the positive and negative normalized ions fluxes
j± = J±L/Dc0. Note that the averaged fluxes are independent of y, which

means that ∇ ≡ d

dx
. Hence, one can define the total ions fluxes j = j+ + j−

and the ionic current i = j+ − j−, and one gets from equation (4.18) the
following transport equation

j = −∇n− (n+ − n−)∇φ,

i = −n∇φ.
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Note that we assumed here the validity of the decoupling 〈n±∇φ〉 '
〈n±〉 〈∇φ〉. These equations are completed with the charge neutrality, which
takes the form:

n+ − n− = −2Du for − 1/2 < X < 0,

n+ − n− = 2αDu for 0 < X < 1/2,

where we used normalized dimension X = x/L.

Boundary conditions – Let us first compute the average charge in the
context of the PB (non-linear) model. For a semi-infinite geometry with
surface charge −Σ < 0, the solution of the PB equation for the potential
can be written as [46]:

φ(z) = φ0 − 2 log

[
1 + γe−z/λD

1− γe−z/λD

]
(4.19)

with φ0 the potential far from the wall, γ = +γ0 the positive root of the
equation γ2 + 2 `GC

λD
− 1 = 0, with `GC = 1/(2π|Σ|`B) the Gouy-Chapmann

length: γ0 ≡ − `GC

λD
+
√

1 + ( `GC

λD
)2. For a positive surface charge +Σ, the

solution for V is identical, though with γ = −γ0 (< 0). Altogether, one may
write γ∓ = ±γ0 with γ0 given above (> 0). The ions profiles are accordingly
n± = n0 exp[∓(φ− φ0)] and the averaged density is calculated as

〈n±〉 = n0 + 2
n0

h

∫ ∞
0

[(
1 + γe−z/λD

1− γe−z/λD

)2

− 1

]
dz, (4.20)

which leads after straightforward calculations to

〈n±〉 = n0 ± (1± γ0)
|Σ|
h

(4.21)

for a negatively charged surface and

〈n±〉 = n0 ∓ (1∓ γ0)
|Σ|
h

(4.22)

for a positively charged surface. Note that γ0 → 0 for a weakly charged
surface Σ → 0 and γ0 → 1 for a strongly charged surface. The relation
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between nL = nL,+ + nL,− and nR = nR,+ + nR,− can be written as

nL − nR = −2Du(γL + αγR) (4.23)

with γL = −γ0(Σ) and γR = γ0(αΣ). The conditions for the concentration
at each entrance can be written as

n0
L = 2− 2DuγL −∆n (4.24)

n0
R = 2 + 2DuαγR + ∆n (4.25)

Following the same steps as previously (see appendix A), we found four
supplementary equations:

nL − nL0 = 2Du
i

j
log

(
nL + 2Du× i/j
n0
L + 2Du× i/j

)
− j

2
, (4.26)

nR − nR0 = 2αDu
i

j
log

(
n0
R − 2αDu× i/j
nR − 2αDu× i/j

)
+
j

2
, (4.27)

φL − φL0 =
i

j
log

(
nL + 2Du× i/j
n0
L + 2Du× i/j

)
, (4.28)

φR − φR0 =
i

j
log

(
nR − 2αDu× i/j
n0
R − 2αDu× i/j

)
. (4.29)

Those last four equations and equation (4.23) form a set of 5 equations
for 6 unknowns; i, j, nL, nR, φL and φR. A last equation is obtained by
extrapolating the definition of the Donan potential, classically used in a
full EDLs overlap configuration. This is a common assumption in colloidal
science where the expression of a Donnan potential is used even in case of
non overlap of electrical double layer. This extrapolation can be written as

φ =
1

2
log

(
n−
n+

)
+ φaxis, (4.30)

with φaxis the local potential along the axis of the diode. φaxis is expected
to decrease linearly from ∆φ/2 to −∆φ/2, as a first approximation. Doing
that, we suppose that we can use the Donnan potential in a situation
without EDLs overlap. This will be confirmed hereafter using finite element
calculations. Altogether, this leads to the following expression for the
potential gap at the centre of the diode:

φL − φR =
1

2
log

(
nL + 2Du

nL − 2Du

)
− 1

2
log

(
nR − 2αDu

nR + 2αDu

)
. (4.31)
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Summary – Equations (4.23), (4.29), (4.29), (4.28) ,(4.27) and (4.31)
constitute a set of 6 equations with 6 unknowns and can be solved numerically.
The first strong hypothesis we made was to assume the validity of a 1-D
model while the system is clearly multidimensional, with potential and
concentration profiles varying in two or more dimensions. The second
strong hypothesis was to assume the validity of a Donnan like equation
φ ∼ log(n−/n+)/2 for averaged quantities in the absence of electrical double
layer overlap. To check the validity of the present model, we performed
finite element calculations, whose results are presented hereafter.

4.3.4 Comparison between model and finite element

calculations

We used the software Comsol multiphysics to perform finite element cal-
culations. A complete set of equations (Stokes, diffusion-convection and
Maxwell) in a 2D axi-symmetric geometry is solved with the proper boundary
conditions. Details are presented hereafter.

System – We used a system similar to the representation in figure 4.11. A
membrane pierced with a nanochannel separates two reservoirs of respective
salt concentrations c−∆c/2 and c+ ∆c/2. The nanochannel is taken to
be cylindrical with a radius a = 50 nm and a length L = 1 µm. Half of the
channel is charged with a surface charge Σ, and the other half with a surface
charge −αΣ, with α = 2 and Σ = 4mC/m2. c0 is taken to be 1 mmol/L,
which gives a Debye length λD ≈ 10 nm ≈ a/5 and a Dukhin length `Du ≈
40/80 nm ≈ a, ensuring strong enough surface effects. We make sure the
characteristic size of both reservoirs Rres is always bigger than lDu, λD and
a in order to avoid finite size effects.

A

B C

D E F

G H

I

Figure 4.11: System used for finite element calculations, see text for the
description.



Chapter 4. Nanofluidic osmotic diodes 109

Hydrodynamics – We solve the Stokes equation

η~∇2u = ~∇p− ~Felec, (4.32)

where ~u is the water velocity field, p the pressure field, ~Felec an electric
volume force equal to

~Felec = −F (c+ − c−)× ~∇V, (4.33)

with F the Faraday constant, c± the concentration in ± species and V

the electrical potential. The flow is taken to be incompressible ~∇.~u = 0.
Atmospheric pressure patm is imposed along A-B-C and G-H-I (see figure
4.11). The no slip boundary condition is imposed along walls C-D-E-F-G.
An axial symmetry is imposed along A-I.

Electrostatics – We solve the Maxwell-Gauss equation

~∇. ~D = ρ, (4.34)

together with a constitutive relation relating the electric displacement ~D
with the electric field ~E:

~D = ε0εr ~E. (4.35)

εr is the dimensionless relative permittivity, and ε0 the vacuum permittivity
and ρ the space charge density: ρ = F (c+ − c−). The relationship between
electric potential V and the electric field ~E is

~E = −~∇V. (4.36)

A surface charge Σ is applied along D-E, as well as a surface charge −αΣ

along E-F (see figure 4.11). The no charge boundary condition is set on
C-D and F-G. The electrical potential −∆V/2 is applied along A-B-C, and
∆V/2 along G-H-I. Axial symmetry was imposed along A-G.

Transport of diluted species – We solve the Nernst-Planck equations

~∇.
(
−D~∇c± − µc±~∇V

)
= 0 (4.37)
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and
~N± = −D~∇c± − µc±~∇V. (4.38)

The no flux boundary condition was imposed along C-D-E-F-G (see figure
4.11). The concentration c − ∆c/2 was imposed for both species along
A-B-C, while c + ∆c/2 was imposed along G-H-I. Axial symmetry was
imposed along A-I.

Results – First, let us test an important hypothesis of the theoretical
model, the validity of a Donnan-like equation in the absence of EDL overlap
which can be written as

φ = ln

(
n−
n+

)
+ φaxis, (4.39)

with φ = V ×e/kBT and n± = c±/c0 the values of the (normalized) potential
and concentrations averaged over the channel section. To test the validity of
equation 4.39, we extract the four quantities φ, n−, n+ and φaxis from finite
element calculations. Then, we compare “φ” and “ log(n−/n+)/2 + φaxis” for
different values of the external voltage drop ∆φ = ∆V × e/kBT (-4, 0, and
4). As seen in figure 4.12, the two quantities are found to be in a quite good
agreement. This confirms that, despite the absence of electric double layer
overlap, a Donnan-like equation gives meaningful results. Hence averaged
potential and concentration are linked by a quite simple expression (see
equation (4.39)) even in absence of an electrical double layer overlap.

Then, using the very same parameters in both FE calculations and PNP
model, we make a comparison of their respective results for ie, ji and Q
in several configurations, defined by the imposed values of ∆n and ∆φ

(∆n = 0, ∆φ 6= 0), (∆n 6= 0, ∆φ = 0). The surface charge was taken to be
Σ = 4mC/m2 and α = 2, the bulk concentration was c0 = 1mmol/L and
the channel had a radius a = 50nm and a length L = 1 µm. We plotted
in figure 4.13 and 4.14 the (normalized) ionic flux ji = Ji × L/Dc0 and
ionic current ie = Ie×L/Dc0e as a function of ∆φ and ∆n. The agreement
between the PNP model and FE calculations is very good. From the model,
one can also deduce the osmotic pressure ∆Π using the formula

∆Π = c0kBT (2∆n− j) , (4.40)
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Figure 4.12: Comparison between the averaged potential over the cross section
φ = V × e/kBT (symbols) and formula ln(n−/n+) + φaxis with n± = c±/c0 along
the axis X = x/L of the diode. ∆n = ∆P = 0 and ∆φ = -4 (blue), 0 (red) and 4
(green).
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Figure 4.13: Main: normalized total flux ji = j+ + j− = Ji × L/Dc0 as a
function of the voltage drop ∆φ = ∆V × e/kBT . Model: dashed lines, finite
element calculations: symbols. Blue circles: ∆n = ∆c/c0 = 0.1, green squares:
∆n = 0 and red triangles: ∆n = -0.1. Inset: ji as a function of the normalized
concentration difference ∆n for ∆φ = 0.
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Figure 4.14: Main: normalized ionic current ie = j+ − j− = Ie × L/Dce as a
function of the normalized voltage drop ∆φ = ∆V × e/kBT for ∆n = 0. Model:
dashed line, finite element calculations: symbols. Inset: normalized ionic current
i = j+ − j− as a function of the normalized concentration difference ∆n = ∆c/c0

for ∆φ = 0.

where the factor 2 accounts for the two species. The water flux Q is expected
to be proportional to ∆P −∆Π:

Q = −K(∆P −∆Π) (4.41)

with K the hydrodynamic permeability of the channel, and ∆P the hydro-
dynamic pressure difference, taken to be 0 in this study. We plotted in figure
4.15 a comparison between the measured water flow Q from finite element
calculations and the predicted water flow estimated from equation (4.41).
The water flow deduced from the theoretical model has been adjusted to fit
the finite element results through the permeability K. We used an effective
permeability Keff = 0.4×Kth where

Kth =

[
3η

a3
+

8ηL

πa4

]−1

(4.42)

with L=1 µm and a=50nm, η = 1mPa.s, C = 3 (cylinder without smooth
entrances and with the no slip boundary condition, see chapter 2), which
gives Kth ≈ 2.3 · 10−21 m3/Pa.s. The fact that the effective permeability of
the nanodiode is lower than the predicted one can be explained by the strong
internal pressure gradients present at the transition between the left and
right parts of the diode. Those internal pressure gradients, which ensure a
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Figure 4.15: Water flow Q as a function of the normalized voltage drop ∆φ =
∆V × e/kBT for ∆n = 0. Symbols: finite element calculations. Dashed line:
theoretical model with an hydrodynamic permeability Keff.

homogeneous water flow along the axis of the diode x, lead to supplementary
velocity gradients, hence to a supplementary viscous dissipation. However,
the agreement between finite element calculation and the present theoretical
model is excellent, using the permeability as an adjustable parameter.

Summary – The PNP model was found to give a quite good agreement
with finite element results for the prediction of flux values, such as the ionic
current Ie, the total ionic flux Ji or even the water flow Q. This confirms
the validity of the various assumptions we made in the building of the model.
It justifies the use of a PNP equation with averaged values of n and φ over
the channel cross-section. It justifies also the use of a Donnan like equation
V ∼ log(n−/n+)/2 + Vaxis despite the absence of an electric double layer
overlap.

4.3.5 Discussion

Summary – We showed that it is possible to induce a rectification of
the ionic current or the water flow in nanofluidic diodes in the absence of
electric double layer overlap. First, molecular dynamics simulations of ionic
species in an implicit solvent unveiled the existence of diode-like effects in a
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channel whose radius was equal to ten times the Debye length. This effect
is governed by surface effects. Then, a theoretical model based on PNP
equations was found to compare well with numerical calculations. Despite
the multi-dimensionality of the problem, an unidimensional model was found
to give very accurate predictions for the flow values through the nanodiode.

Consequences – According to the present work, the condition for diode-
like effects to occur, is a surface conduction dominating over the bulk one,
which can be achieved with a large surface charge density (or a small salt
concentration). This constraint is less restrictive than the electrical double
layer overlap, and can be obtained for both realistic salt concentrations
and realistic nanochannel dimensions. For example, in the case of sea
water (c0 ∼ 0.6M), the Dukhin number is equal to one (and the current
rectification is expected) in channel of diameter 1 nm and a surface charge
|Σ| ∼ 50mC/m2. In the case of a salt concentration of c0 ∼ 1nM and a
surface charge of 50mC/m2, a Dukhin number equal to one is obtained for
a channel diameter equal to 1 µm. Then, it should be possible to exploit
the nanofluidic diode properties with sub-microfluidic devices, or high salt
concentration.

Applications – Controlling flow using nanofluidic diodes in the limit of
non-overlapping double layers could be of great interest when dealing with
sea water with high salt concentration. Indeed, in this case, the Debye
length is around 3Å, and working in a, electrical double layer overlap
regime represents a real technological challenge. Our results suggest that
nanofluidic diode properties could be used despite the absence of an overlap
between double layers. Then, the ability of nanofluidic diodes to rectify
and control the flux could be used as a first filtration step in a desalination
process.

4.4 General conclusion

In this chapter, it has been shown both theoretically and numerically that
a nanofluidic diode can be used to rectify water flow. This effect is based
on the nonlinear coupling between the water flow and the ion dynamics.
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Moreover, it has been shown that a rectification exists even without any
electrical double layer overlap, in the so called Dukhin regime.

These results still need to be confirmed experimentally (at the laboratory
scale first). The major difficulty lies in the water flow detection, which
remains a technological challenge since the magnitude of the flow through
a single nanochannel is by nature extremely small (Q ∼ 10−18 m3/s), as
evoked in the chapter 1.

If experimentally confirmed, the effect discussed in this chapter may lead to
some interesting industrial applications, particularly in water purification
and desalination. Indeed, here we propose to manipulate the solvent flow by
imposing the electrical potential rather than the pressure, which is the case
for the classical Reverse Osmosis (RO). This allows to use electrodes rather
than pumps for flow manipulation, and may present some technological
advantages. Moreover, the possibility of controlling flow using a nanodiode
with no electrical double layer overlap would be an interesting first step
toward the improvement of desalination technique. Indeed, the treatment
of high salt concentration (∼ 0.6 M) solutions would not require the use of
subnanometric nanochannels, whose fabrication is still a huge challenge.
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Abstract and main results – Ionic current mea-
surement through a single nanopore or an array of
nanopores is a widely used method for membrane
characterization (see figure A). It was first devel-
oped by physiologists for characterizing the ion
transport through biological membranes, before
it was used with pierced solid state membranes
as well. Despite the apparent differences between
all the considered systems/membranes, extracted
data seem to share one common point: at low
frequencies the Power Spectral Density (PSD) of
the ionic current decreases with the frequency f
as 1/fα, with α ∼ 1 (see figure B). This 1/fα

signature is called pink noise and has been widely
observed, in both natural and man-made processes.
Its origin and its apparent universality are still an
important mystery of modern physics.
In this study, we focus on the presence of pink noise
in ionic current measurement through nanopores,
whose origin remained unexplained. We presumed
that reversible adsorptions of ions on the pore sur-
face is at the origin of the measured pink noise.
To test this hypothesis, we performed molecular
dynamics simulations in a system made of a solid
membrane in contact with diffusing particles that
can reversibly adsorb on the pore’s walls (see fig-
ure C). We found that this simple system leads
to the generation of pink noise in the number of
free carrier inside the pore. This hypothesis is
corroborated by an analytical model based on first
return trajectories calculation between reversible
adsorption of ionic species on a solid surface. Al-
together, our results propose a serious candidate
to explain the origin of the widely observed 1/f
fluctuations in ionic current measurements.
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5.1 Introduction

The present chapter is inspired by experimental studies reporting the pres-
ence of pink noise in the power spectral density of the ionic current measured
through nanoporous membranes. Understanding the origin of this ubiqui-
tous phenomena is the main motivation of this study. In order to introduce
this subject, we will start with some generalities about coloured noises,
with a brief overview of their current understanding. Then, a description of
the typical experiment of ionic current measurement through nanoporous
membranes is given, as well as a description of how 1/f noise is observed
and what the basic features are. Then a brief overview of the experiments
that have reported 1/f noise from ionic current is presented, with some
words about the current state of the theory. To end up the introduction,
the main idea behind the present study is detailed.

5.1.1 Coloured noises

In this study we will distinguish between three types of noise: white noise,
pink noise and Brown (red) noise. The presence of a coloured noise in a
signal can be detected by calculating its Power Spectral Density (PSD). The
PSD describes how the power of a signal is distributed over the different
frequencies f . It is defined as the square modulus of the Fourier transform
of the considered signal, divided by the integration time (the duration
of the signal). Coloured noises correspond to power-law noises, i.e. to
a signal for which the PSD is proportional to 1/fα. Notice that power
law, and therefore PSD are usually plotted in log-log coordinates because
log(PSD(f)) = − log(cst/fα) = −α log(f) + log(cst), so the PSD appears
as a straight line with a slope α, which eases the identification of the power
law as well as the measurement of α.

The case α=0 corresponds to white noise, a signal with a constant PSD
over frequencies. It is the signature of an uncorrelated process with time.
The case α = 2 corresponds to random walk noise or Brown noise (after
Robert Brown), and is generated for example by Brownian motion. The
PSD of such a signal is inversely proportional to the square of the frequency:
PSD ∝ f−2. It is the signature of a random walk, i.e. of a process with no
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correlation between increments [149]. The intermediate case between white
noise and Brown noise is called pink noise, and refers to any noise with a
PSD of the form:

PSD(f) ∝
1

fα
,with 0 < α < 2. (5.1)

While the origins of both white and Brown noises are considered to be well
understood, pink noise remains an important mystery of modern physic.
Sometimes referred to as originating from a long-memory process with
long-term correlations, pink noise is widely found in nature, in both natural
and man-made processes. From its first observation by Johnson in 1925
[150] in data from an experiment designed to test Schottky’s theory of shot
noise in vacuum tubes, it has been reported in a wide range of domains such
as condensed matter, electronics, biology, astrophysics, geophysics, economy,
psychology, language and even music [149, 151, 152].

The diversity of systems which contain 1/f fluctuations, from traffic flow
to electrical resistors, indicates that the physical origin of the noise is
certainly not universal [153]. Still, the ubiquity of pink noise suggests that a
generic mathematical explanation may exist, but there is no simple equation
generating signals with 1/f noise. Furthermore, in most cases the observed
1/f noises have been explained by ad hoc models [151]. Accordingly, in
the present study, we did not try to adapt an existing model of pink noise
to the specific case of ionic current through nanopores, but rather tried to
identify the source of 1/f fluctuations in this particular situation.

Note that a PSD cannot be a true power law. Indeed, a signal with a PSD
in 1/fα presents a total power equal to∫ ∞

0

f−αdf =∞, ∀α, (5.2)

which is obviously physically irrelevant. So when thinking about a coloured
noise, one has to keep in mind that it can only appear on a limited range of
frequencies. Therefore, rolloffs should exist, with α ≤ 0 at low frequencies,
and α > 0 at high frequencies, ensuring a finite value for the total power of
the signal. In practice, there will also be cut-offs so the measured coloured
noises will always be limited to a certain range of frequencies.
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5.1.2 Basic experiment and state-of-the-art

The basic idea behind each experiment at the origin of the present study is
the following. A membrane pierced with a nanopore separates two reservoirs
containing an electrolyte. A voltage drop ∆V is applied far from the
membrane using electrodes, and the ionic current Ie that passes through
the nanopore is recorded as a function of the time (see figure 5.1). Note
that, for the sake of simplicity, one considers only membranes pierced with
a single pore, but a priori our study can be expanded to membranes pierced
with an array of pores or even to a porous medium. The theoretical ionic
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Figure 5.1: Left: schematic of an experimental system. Right: typical power
spectral density (S) of the ionic current through a single solid state nanopore.
Courtnesy of E. Tamborini.

current can be written as Ie(t) = G(t)∆V , where G(t) is the conductance of
the pore. For some reasons, that will be discussed below, the measured ionic
current fluctuates around its average value. The Power Spectral Density
(PSD), which contains information about how a signal fluctuates, can be
calculated for the ionic current. For illustration, a typical PSD obtained
from ionic current measurement across a solid state nanopore is shown in
figure 5.1 1. At low frequencies, the PSD decreases with the frequency as
∼ 1/f .

A power spectral density that scales as 1/f at low frequency is a very
common result when measuring ionic current through nanopore. Indeed,
during the last decades, 1/f signatures in ionic current have been reported
for a large variety of fabricated nanopores [21, 154–160]. This pink noise
appears to be very robust, and has been observed with various nanopore

1data shared by E. Tamborini
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geometries, such as conical, hourglass or cylindrical. Moreover, various
materials have been used for the membrane fabrication, such as silicon
nitrid, glass, polymer or nanopores with atomic layer deposition of Al2O3

or covered by SiO2. Finally, while most measurements have been performed
with a solution of water containing K-Cl salt, Tasserit et al. also used
ionic liquid and found, again, a robust 1/f signal [155]. As a side remark,
note that ionic current measurements have also been performed in order to
characterize organic membranes. For example, the study of alpha Hemolysin
[154], open bacterial porin channel [161] or open maltoporin channel [162]
have led to the presence of pink noise in the power spectral density, similarly
to observations made with fabricated membranes.

Various reasons have been invoked by authors to explain the presence
of pink noise, such as cooperative motion of ions or fluctuations of ions
concentration related to surface charge of the pore. However, no one has
converged toward a convincing model. Notice that the case of biological
membranes is maybe more complex that artificial one, and the presence
of pink noise is sometimes attributed to channel conductance fluctuations
due to opened-closed transitions, or channel breathing. For these reasons
and for the sake of simplicity, we do not focus on biological membrane in
this study. But even if one considers fabricated membranes only, the wide
range of systems with various geometries or surface chemistries concerned
by this so-called pink noise suggests the ubiquity and the robustness of the
phenomenon.

Most of the time, authors modelled the low frequency noise with the Hooge’s
phenomenological relation for low-frequency pink noise [163]:

S(f) = γ
I2+β
e

Ncfα
(5.3)

where SI is the power spectral density of the ionic current Ie, f the frequency,
γ the Hooge parameter which quantifies the amount of low-frequency noise
and Nc the number of charge carriers. Notice that γ is dimensionless if α = 1

and β = 0 only. Based on the dependence of γ with the pH, authors usually
suggest that the noise originates from surface charge fluctuations. But the
Hooge’s relation is only phenomenological, and brings no clear explanation
on the origin of the reported pink noise. Some theoretical studies report



Chapter 5. 1/f noise in ionic transport 123

a possible link between the diffusion of ions in nanopores and the 1/fα

spectrum, but these studies did not converge towards an elegant and general
solution [164–166].

5.1.3 General idea

As stated above, pink noise is a widely observed phenomenon in physics.
Since no general equation satisfactorily describes its origin, specific models
have been built in each situation. Thus, the objective of the present chapter
is to understand and describe the origin of pink noise in the particular
case of ionic current measurement through a nanopore. Inspired by some
experimental measurements [155], in which a strong dependency of the
power spectral density with the pH of the solution have been reported,
we explored a possible link between ion adsorption on the membrane’s
surface and pink noise. The main idea behind the present study is presented
hereafter.

Consider a solid membrane pierced with a nanopore, in contact with an ionic
solution. Due to protonation/deprotonation reactions of ions occuring on
the nanopore’s surface, the nanopore exhibits a fluctuating surface charge
Σ(t) = Σ0 + δΣ(t), with Σ0 = 〈Σ〉t the temporal average of Σ(t). For
example, a protonation reaction

SH + H2O↔ S− + H3O+, (5.4)

where S stands for surface, leads to a change of the surface charge Σ(t).
Accordingly, this fluctuating surface charge leads to fluctuations in the pore
conductance G(t). We made the hypothesis that fluctuations that are due to
reversible adsorptions are low-frequency, and contain long-term correlations.
This hypothesis will be discussed in the next paragraph, and justified all over
this chapter. Hence the ionic current can be written as the (independent)
sum of a low frequency varying term G(t), and a high-frequency noise
term δI(t) which is a classical white noise such as a thermal noise [167]
I(t) = G(t)∆V + δI(t).

If one admits that reversible adsorption of ions on the surface leads to pink
noise, which will be shown below, one may wonder why such a simple process
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generates this pink noise. In other words, since pink noise is associated with
a long-term memory process, what physical variable or process contains
this memory? An element of answer is that, to generate pink noise, the
considered event must be distributed in time as a power law 1/tγ. It
happens to be the case of the probability distributions of times associated
with diffusion, that are usually proportional to 1/tγ, where γ is related to
the physical dimension of the problem. This is a key point of the present
work, which is going to be illustrated all along this study. Accordingly, the
trajectories of ions between two adsorptions, called first return processes
and controlled by diffusion, will be at the centre of our attention.

5.1.4 Outline of the study

The goal of the present study is to understand and describe the pink noise
commonly observed when measuring ionic current through nanopores. To
do so, we first focused on the case of an infinite cylinder with an adsorbing
surface. Using molecular dynamics simulations, we found that fluctuations
of the number of particles inside the pore presents pink noise in a limited
range of frequencies. This result confirms our primary hypothesis that
diffusion combined to reversible adsorption can generate pink noise, and is
the first important result of the present study. Then a theoretical model
describing the trajectories of the particles in the same geometry is presented,
and appears to be in really good agreement with simulations.

Our results show that this phenomenon is limited to large frequencies only.
This is due to the geometrical confinement imposed to the particles inside an
infinite cylinder, which does not allow very long trajectories. To overcome
this limitation, the study was extended to a more realistic case: a finite-sized
cylindrical nanopore with an adsorbing surface connected to large reservoirs
containing diffusing particles. Molecular dynamics simulations shows the
existence of pink noise in a larger range of frequencies in this case. The
lower frequency at which pink noise appears is limited by the time spent
by a particle inside the nanopore. Hence in the case of long nanochannels
or realistic surface energy adsorption, the pink noise is expected to be
observable down to the Hertz, which is in good agreement with experiments.
This indicates that diffusion combined to adsorption is a serious candidate
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explaining the presence of pink noise at low frequencies measured in ionic
currents. Finally, a theory describing particles diffusing in a large reservoir
and adsorbing on the surface of a structure (taking to be a sphere by
simplicity) is presented and confirms our main message.

5.2 Noise in an infinite nanotube

The first considered system was an infinite cylinder of radius a with an
adsorbing surface, as shown in figure 5.2. Inside the cylinder, a number N
of particles alternate diffusion and adsorption. We focused on the temporal
fluctuations of the number of free particles δNf (t) = Nf (t)− 〈Nf (t)〉t, with
Nf(t) the number of free particles at a time and 〈.〉t a temporal average.
Note that the number of free particles is closely related to the number of
bonded (adsorbed) particles: Nf (t) = N −Nb(t).

2aL

Figure 5.2: Scheme of the system of interest, a cylinder of radius a and length
L contain diffusing particles. Particles can be reversibly trapped on the surface of
the cylinder.

To begin our study, we used molecular dynamics simulations in order to
highlight the existence of pink noise in the power spectral density of the
number of free particle inside the cylinder. Moreover, these simulations
allowed to easily explore the impact of various parameters, such as the
tube radius or the surface trap density on the PSD. Then, an analytical
calculation of power spectral density of diffusing species inside an infinite
tube was made to confirm the link between diffusion, adsorption and pink
noise.
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5.2.1 Molecular dynamics simulations

Method –Molecular dynamics simulations where performed with LAMMPS
[82]. The system was made of a solid cylinder with radius a (∼ 20 to 100
Å) in contact with a liquid, as shown in figure 5.2. The length of the
cylinder was chosen L ∼ 2a, with no impact on the results due to the
periodic boundary condition along the axis of the tube. The solid surface
was made of a combination of fixed atoms (acting as traps) and a solid flat
wall that interacts with the liquid by generating a force on the atom in a
direction perpendicular to the wall. The liquid was made of a number N
of particles diffusing in an implicit solvent. The time-step was taken to
be 2 fs. A Langevin thermostat (temperature 300 K) was applied on the
moving particles and represents the interactions with a background implicit
solvent. From mean square displacement measurements, the value of the
diffusion coefficient of ions was found to be: D = 1.8 × 10−8 m2/s. The
diffusion coefficient depends, among other, on the “damping” parameter of
the Langevin thermostat, taken to be equal to τdamp = 330 fs. Notice that
particles have ballistic trajectories for t < τdamp, and diffusing trajectories
for t > τdamp. This high value of D, i.e. one order of magnitude larger
than typical diffusion coefficient for microions, was chosen on purpose, with
the aim of exploring a larger range of configurations in a given simulation
time. We made sure that the physics remains unchanged when using a
realistic diffusion coefficient. The equations of motion were integrated using
the velocity Verlet algorithm [168]. Particles interact with each other as
well as with wall’s atoms via a Lennard-Jones potential with depth ε = 0.3
Kcal/mole and equilibrium distance σ = 3 Å. The cut-off for the Lennard-
Jones is taken to be rc = σ × 21/6 and corresponds to the minimum of the
Lennard-Jones potential. This potential, which keeps only the repulsive
part of the Lennard-Jones potential, is called WCA [169]. The process of
reversible adsorption of particles was introduced by the presence of fixed
traps located on pore surface. A particle forms a bond with a trap when the
distance of their respective centres is lower than a certain distance, taken
to be 1.5σ. A trapped particle is blocked by a harmonic potential and may
escape thanks to thermal fluctuations; a bond breaks when the distance
between the particle and the trap’s centres is higher than 1.5σ. The depth
of the harmonic potential (similar to the adsorption energy) can be tuned,
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and its value directly impacts the characteristic time spent by a particle
inside the trap. Note that the adsorption energy is chosen to be several
orders of magnitude lower than the realistic one. This way, desorption
events of particles appears in a reasonable time ( < 100 ps), which eases
the acquisition of a high statistics during the simulation time (∼ µs).

Data analysis – The total number of free particles Nf (t) inside the tube
was evaluated every 0.1 ps. A partial signal is presented in figure 5.3.
The Fourier transform Ñf of the fluctuations of Nf(t) around its average
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Figure 5.3: Evolution of the number of free ions Nf inside an infinite cylinder
as the function of the time.

value δNf(t) = Nf(t)− 〈Nf〉 was calculated thanks to the FFT algorithm
[170, 171]. The square modulus of Ñf gives the Power Spectral Density
(PSD) of δNf (t): SN (f) = |Ñ(f)|2/T, where T refers to the duration of the
simulation.

5.2.2 Discussion and results’ analysis

Typical PSD – Let us consider a cylinder of radius a=20 Å and a trap
density of ρt ∼ 3 part/nm2. The chosen density of traps is close to the
maximum density with no overlap between traps, the trap radius being 4.5
Å. This way, a particle cannot form a bond with more than one trap at a
time. From the recorded number of free particles Nf (t), the power spectral
density, noted S, was calculated and plotted in figure 5.4. As one can see,
the PSD contains three distinct parts, with three different slopes. It appears
to be flat for low frequencies, to decrease as 1/f 2 for high frequencies, and to
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Figure 5.4: Power spectral density (S) of the number of free particles inside
an infinite cylinder calculated with molecular dynamics simulations. Dashed and
dotted lines are guides for the eyes.

be ∝ 1/fα with α ∼ 1 for intermediate frequencies. One can already notice
the appearance of pink noise in an intermediate range of frequency. The
existence of pink noise in simulated systems constitutes a first important
result of this study. Each regime (each PSD slope) will be discussed below.

The characteristic frequencies separating the regimes are also of main interest
in this study. Efforts will be made to link them to geometric, energetic or
diffusion parameters of the simulation, with the purpose of extrapolating
our results to more realistic systems. In figure 5.4, one may distinguish
two characteristic frequencies. The first one separates the flat and the
1/f parts of the PSD, and is approximately equal to 5 GHz. We call it
cut-off frequency fc, because it is the frequency below which no pink noise
(i.e. no interesting phenomena/no correlation) is observed. The second
characteristic frequency separates the 1/f and 1/f 2 parts of the PSD and
is approximately equal to 300 GHz. Let us call it fh for high frequency
cut-off. The parameters that impact the respective values of fc and fh will
be discussed below.

Duration distributions – As a first step, before exploring the impact
of each simulation’s parameter on the PSD, it is interesting to see what
happens to a diffusing particle along the time. As seen in figure 5.5, each
particle alternates between adsorbed and free states, which in term of the
variable Nf (t) translates in a series of 0 (the particle is trapped) and 1 (the
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Figure 5.5: Left: evolution of the variable Nf (t) for one single particle. Right:
probability distributions of duration time for desorption events (pink circles) and
adsorption events (orange squares) for particles inside an infinite cylinder. Black
continuous line is ∼ exp(−λT ) and black dashed line is ∼ exp(−fcT )/T 3/2.

particle is free). What matters is how each state is distributed along time.
The two considered events (adsorption and desorption) are controlled by
very different processes. The time spent by a particle in a trap is governed
by thermal fluctuations that have to make the particle pass over an energy
barrier for the particle to get free. On the other hand, the time a particle
spends free is governed by diffusion. To highlight the difference between
these two processes in term of duration, one can extract from simulations
their respective distributions of time. If normalized, it gives the probability
P (T ) that the considered event lasts a duration T . Probability distributions
of each process are plotted in figure 5.5. The distribution of the time spent
by a particle in the bonded state, which will be called desorption distribution
(since it corresponds to the distribution of time necessary for a desorption to
occur), is exponential-like P (T ) ∼ exp−λT . The characteristic frequency
of desorption (escape rate) λ is related to the energy of the trap which is
an input of the simulation. By contrast, the adsorption distribution, i.e.
the distribution of time spent by a particle in a free state between two
adsorptions, is a power law [172] with a cut-off: P (T ) ∼ T−3/2 exp(−T/τc).
The cut-off, with characteristic time τc = 0.5 ns, indicates that long time
events do not exist. Note that this long-time cut-off is in good agreement
with the low frequency cut-off observed in the PSD of figure 5.4, τc ∼ 1/fc.

Link between duration distributions and PSD – As we have just
seen, the minimum frequency fc at which pink noise is observed corresponds
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to the longest diffusion events τc ∼ 1/fc. If no event lasts more than τc, this
is due to both geometrical confinement which prevents long trajectories,
and to the low trapping energy, which prevents long adsorption event from
occurring. In other words, the system is entirely decorrelated if one waits
more than τc, when any memory concerning previous states of the system
is lost. This is in good agreement with the flat PSD observed at frequencies
lower than fc and coherent with the temporal distributions that do not
show any event that lasts more than τc. For intermediate frequencies (5
GHz< f <300 GHz), the PSD is in 1/fα with α ∼ 1. One can see in figure
5.5 that there is a range of time for which only diffusion exists. This indicates
that the pink noise is caused by the diffusion (re-adsorption event), which
appears to be distributed as a power law. This is in good agreement with the
prediction made in the introduction, supposing that only events distributed
in time as a power law could lead to pink noise in the PSD. Finally, for high
frequencies, the power spectrum is ∼ 1/f 2, which is a well-known signature
of an exponentially distributed event. In other words, for high frequencies,
the power spectrum appears to be dominated by desorption events.

Cut-off frequencies – An important issue is to determine what fixes the
two frequency limits, fc and fh. Following the previous discussion about
the loss of memory at large times, one can deduce that fc is fixed by the
geometrical confinement. The longest possible trajectory for a diffusing
particle in a confinement is governed by its diffusion coefficient D and the
characteristic length of the system, here the radius a, so fc ≈ D/a2. For
a fixed diffusion coefficient, fc is expected to decrease for increasing tube
radius a. This was confirmed by a set of simulations made for various tube
radii a, from 20 to 60 Å, whose results are represented in figure 5.6. The
frequency fc corresponds quite well to the prediction fc ≈ D/a2. Note
that fc also varies with trap concentration (roughly fc ∝ ρt), which is
related to the fact that at lower trap density, the probability of adsorption
is lower, allowing for longer trajectories between two adsorptions. This
can be interpreted in terms of an effective radius of the cylinder, which
increases when decreasing the surface trap density. The second boundary,
fh, is identified as the limit above which desorption events dominate over
adsorption. Accordingly, fh is expected to decrease (which is equivalent to
an increase of the characteristic adsorption times) with increasing adsorption
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Figure 5.6: Left: low frequency cut-off fc as a function of the tube radius a
(symbols), and fc = D/a2 with D the diffusion coefficient of the particles (dashed
line). Right: high frequency cut-off fh as a function of the adsorption energy εt.

energy εt. This is confirmed by figure 5.6, in which fh is plotted as a function
of εt.

Slope α – The last issue we can tackle using molecular dynamics simulations
concerns the slope of the pink noise α, that is measured in the frequency
range between fc and fh (S ∝ 1/fα). The first observation is that α is
quasi-invariant with the tube radius a and particles concentration. However,
α strongly varies with the surface trap density ρt, as shown in figure 5.7.
In the studied range of surface densities, α was found to vary from ∼ 0.5
to ∼ 1.5. This strong variation highlights a link between the adsorption
probability (which must depend on the trap density) and the slope α of
the pink noise. α was also found to vary with the trapping energy εt, as
shown in figure 5.7 where α is plotted as a function of the trapping energy
εt for various trap densities ρt. The value of α saturates when εt → 0. The
increase of α for increasing value of εt is probably due to a competition
between the two distributions of duration time shown in figure 5.5. Indeed,
increasing εt leads to an increase of the typical adsorption time, while the
diffusion time stays unchanged. As seen previously, desorption events lead
to S ∼ 1/f 2, and for an increasing value of ε, one may expect α → 2. In
conclusion, the observed pink noise is not a robust 1/f signal, but rather a
1/fα signal with α strongly dependent on the density of traps and on the
energy of trapping.
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Summary – To summarize, simulations lead to one major result: a com-
bination of diffusion and adsorption can generate pink noise, i.e. power
spectral density that decreases in 1/fα with 0 < α < 2 at intermediate fre-
quencies. To go further and confirm the previous observations, a theoretical
model of adsorption-desorption and diffusion inside an infinite cylinder is
now presented. Note that the present model has been developed by Roland
Netz and Lydéric Bocquet in parallel to simulations. See appendix B for
details.

5.2.3 Theoretical model

Presentation of the model – The aim of the present model is to calculate
the power spectral density of a system of N particles that reversibly adsorb
on the surface of an infinite cylinder (see the appendix B for details). The
system consists of a cylindrical tube containing N freely diffusing species,
which is exactly the situation simulated previously. No electrostatic effect is
included in this model, particles being considered as neutral. Let us define
a state variable niA(t) equal to 1 when a particle is adsorbed on a surface, 0
otherwise. We are interested in the auto-correlation function of the total
number of adsorbed particles NA(t): 〈NA(0)NA(t)〉. Using that ions are
uncorrelated among each other, the auto-correlation function can be written
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Figure 5.7: Left: slope α of the PSD for intermediate frequencies (fc < f < fh)
for varying surface trap concentration ρt. Right: slope α for varying energy of
trapping εt for two values of the trap density, dashed lines are guide for the eyes
α ∝ εt.
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as
〈NA(0)NA(t)〉 = N2p2

A +NpACAA(t)−Np2
A (5.5)

where pA is the probability for a particle to be adsorbed and CAA(t) the
single-ion correlation function, i.e. the probability for an ion to be adsorbed
at t given that it is adsorbed at t = 0. This probability can be written in
terms of the adsorption–desorption process combined with diffusive path in
the bulk of the system:

CAA(t) =
∞∑
n=0

[∫ ∞
0

dteQ(te)
n∏

m=1

[∫ ∞
0

dtmP (tm)

∫ ∞
0

dt′mJ(t′m)

]

×δ

(
te +

n∑
k=1

(tk + t′k)− t

)]
(5.6)

where the outer sum counts the number of desorption and re-adsorption
events. P (t) is the desorption distribution, which we assume to be of
exponential form: P (t) = λe−tλ with λ the characteristic frequency of the
desorption. Its Laplace transform can be written as P̃ (f) = λ/(λ+ 2πf).
Q(t) is called the survival distribution, it corresponds to the probability
for an ion to be adsorbed over the time span from t = 0 to t and is given
by Q(t) =

∫∞
t

dt′P (t′). Its Laplace transform Q̃(f) can be written as
1/(λ+ 2πf). Finally, the first-return distribution J(t) is the probability for
an ion desorbed at time zero to return to the cylinder surface at t. The
Laplace transform of CAA(t), defined as C̃AA(f) =

∫∞
0

e−2πftCAA(t)dt, can
be written:

C̃AA(f) =
Q̃(f)

1− P̃ (f)J̃(f)
. (5.7)

Note that C̃AA(f = 0) is the probability that a particle is adsorbed. Similarly,
one can construct CAD(t), the conditional probability that an ion that was
desorbed at time t = 0 is desorbed at time t. Then C̃AD(f = 0) is the
probability for a particle to be desorbed. Finally, we define the first-return
distribution J(t) as the probability for an ion desorbed at time zero to
return to the cylinder surface at t.

The first-return distribution, in the case of an infinite tube of radius a can
be written as

J(f)−1 = 1 +

√
2πfD

k

I1(a
√

2πf/D)

I0(a
√

2πf/D)
(5.8)
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where I0(x) is a modified Bessel functions and ∂xI0(x) = I1(x) [173]. D is
the diffusion coefficient and k is a phenomenological rate constant equal
to the ionic outgoing flux across the tube boundary divided by the ionic
density along this boundary.

Comparison with molecular dynamics simulations – According to
the analytical calculations, the power spectral density of the adsorption
signal can be estimated as the the real of equation (5.7) with J(f) from
equation (5.8): S(f) = CAA(if) + CAA(−if). The result, for different trap
densities is represented with plain lines in figure 5.8. On the same figure,
power spectral densities resulting from MD simulations for the same system
parameters are represented with symbols. The agreement between theory
and MD simulations is excellent. One finds that the k coefficient of the
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Figure 5.8: Symbols: power spectral density S extracted from molecular dy-
namics simulations for a cylinder of radius a = 10 nm, an adsorption energy of
εt = 0.1Kcal/mol, a diffusion coefficient D = 1.8 · 108 m2/s and a trap density
ρt = 1.8 part/nm3 (green circles), 3 part/nm3 (orange squares) and 4.2 part/nm3

(violet triangles). Full lines are real part of equation (5.7) with respectively k = 80,
400 and 800m/s, a = 28, 20 and 15 nm, λ = 300GHz and D = 1.8 · 108 m2/s.

model impacts the slope of the pink part of the PSD, as highlighted in figure
5.8. An increase of k in the model corresponds to an increase of the surface
trap density ρt in the simulations. This indicates that the phenomenological
rate k is related to the probability of adsorption in surface, which depends
on the trap density. Moreover the ratio D/a2 fixes the low frequency cut-off
in both simulation and model, with an effective radius a taken to be slightly
larger than the real radius, and depending on the trap concentration.
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5.2.4 The need to go further

Summary – The study of the number of diffusing particles inside an infinite
cylinder with adsorbing surfaces has revealed the existence of pink noise
when considering the number of freely diffusing particles. The presence
of pink noise has been confirmed both numerically and theoretically, and
constitutes the first important result of the present study. It has been
identified that the key ingredient for the appearance of pink noise lies in
the way the “first-return” trajectories of particles between two adsorption
are distributed in time, i.e. ∼ T−3/2. This power law distribution is the
signature of diffusion, which is therefore at the base of the presence of pink
noise.

Remark – It is good to keep is mind that the motivation of the present
study comes from some experiments that have reported pink noise when
studying fluctuations of the ionic current through a charged nanopore.
Even if the system considered here is neutral for numerical simplifications,
fluctuations in the number of free particles δNt(t) can be associated with
the fluctuations in the number of free carriers in the case of a charged
system. Similarly, fluctuations in the number of trapped particles can be
associated with surface charge fluctuations δΣ(t), again in the case of a
charged system. Neutral and charged systems will be proved to have similar
behaviors hereafter.

Major limitation – One major problem remains: the pink noise only
appears in a restricted range of frequencies, whose lower limit can be
roughly approximated by fc ≈ D/a2. Obviously, this limitation does not
exist in experimental systems since some experiments report pink noise
spanning to frequencies as low as 1Hz. Indeed, a quick estimation shows
that an expected cut-off in such system is D/a2 ∼ 10MHz, with D a
typical diffusion coefficient for ions taken to be D = 1 · 10−9 m2/s and a a
typical nanopore radius taken to be a = 10 nm. Hence the expected cut-off
frequency (from our results) is much higher that the sub-Hz measured
experimentally. To solve this problem, we clearly need to push further the
present study, and consider a system much closer to experimental ones:
a finite cylinder (nanopore) connected to large reservoirs. Such a system
is not as confining as an infinite cylinder due to the connection to large
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reservoirs. So it is expected that the cut-off frequency will be decreased to
frequencies lower than D/a2.

5.3 Noise in a nanopore

In the previous section, it has been shown that pink noise in the power
spectral density exists when considering the number of adsorbed particles
on the surface of a cylindrical infinite tube. The geometrical constraints
of the tube induced a low frequency cutoff which is inconsistent with
experimental measurements. We now extend the present study to the case
of a cylindrical pore connected to reservoirs. The idea is that, in this
configuration, trajectories between two adsorption-desorption events are
not limited by the pore size anymore, but are limited by the reservoir size
instead, which is supposed to be large in comparison with pore’s dimensions.
This configuration was explored using molecular dynamics simulations, as
presented below. We found that, as expected, the cut-off frequency, i.e.
the frequency below which the noise is white, is pushed towards lower
frequencies. Moreover, this cut-off is governed by the time spent by particles
inside the pore. This is the second major result of this study. Due to the
poor level of symmetry, and contrary to the case of an infinite cylinder, no
theoretical model have been built yet in this particular configuration.

5.3.1 Description of the studied system

The system consists of a cylindrical nanopore of radius a, pierced in a
membrane of width L and connected to large reservoirs of size Rres � a. It
is filled with particles that can adsorb on the surface of the nanopore (see
figure 5.9). Just like in the case of the infinite cylinder, we are interested in
the number of particles freely diffusing inside the pore Nf (t). It is defined as
the total number of particles inside the pore Nt(t) minus the total number
of bonded particles Nb: Nf(t) = Nt(t)−Nb(t). This is a pertinent quantity
to evaluate if one keeps in mind that the initial goal was to understand
the presence of pink noise in the ionic current. Extrapolating our results
to the complete case of a charged system, one expects the ionic current to
behave as Nf, the number of free carriers inside the pore, in the first order



Chapter 5. 1/f noise in ionic transport 137

Figure 5.9: Drawing of the system of interest. A cylindrical nanopore of radius
a and length L connects two reservoirs of characteristic size Rres. Particles fill
both reservoirs and the inside tube, and can bond with the tube surface.

of approximation. In this case, and by opposition to the previously studied
infinite nanotube, two kinds of events are expected to impact Nf(t); the
reversible adsorption of particles at the surface of the pore and the particles
exchange with reservoirs. Change in power spectral density is therefore
expected, as we will see below.

The technical details of the simulation are the same as in the case of the
infinite cylinder. The only difference, besides the geometry, is that two
quantities are recorded: the number of bonded particles Nb(t) and the total
number of particles inside the tube Nt(t).

5.3.2 Results

Typical PSD – The case of a nanopore of radius a = 20 Å and length L =
30 Å connected to large reservoirs of size Rres = 100 Å is considered here.
A surface trap density ρT = 3 part/nm2 with energy εt = 0.1 Kcal/mol is
located on the surface of the nanopore. The PSD of the number of free
particles inside the pore Nf(t) is plotted in figure 5.10. As a comparison,
the PSD obtained in the previously studied case of an infinite tube of same
radius, same density of trap and same trapping energy is plotted. In both
cases, one can define the cut-off frequency fc as the limit between the low
frequency white noise (S ∼ 1) and the pink noise ∼ 1/f . One can see that
the cut-off frequency is lower in the case of the nanopore. Indeed, while
fc is around 6 Ghz in the case of the infinite tube, it is around 0.2 Ghz
in the case of the nanopore. So the pink noise exists on a larger range of
frequencies in the case of the nanopore compared to the infinite tube case.
This result is important since to explain experimental results, one has to
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Figure 5.10: Symbols: PSD of the number of free particles inside a nanopore
connected to reservoirs (violet circle) and inside an infinite nanotube (brown
squares). The cut-off frequency fc is defined in both cases as the intersection
between the flat part S ∼ 1 at low frequency and the pink part S ∼ 1/fα with
α ∼ 1. Black dashed and dotted lines are guides for the eyes.

justify the possibility of pink noise at very low frequencies (down to the
hertz). In the following, we determine what impacts the value of fc in the
case of a nanopore connected to large reservoirs.

Low frequency cut-off – Let us explore the dependence of fc as a function
of the simulation parameters in order to determine what fixes the lower
limit at which pink noise can be observed. It appears that fc is strongly
dependent in both pore’s lengths L and trap’s energies εt, as shown in figure
5.11, where τc = 1/fc is plotted for various pore length L and trapping
energy εt. The cut-off time appears to be proportional to the length of the
tube L. Moreover, it varies exponentially with the energy of trapping εt.
Altogether, these results indicate that fc depends mainly on the time spent
by particles inside the pore, which is indeed expected to increase with the
pore size and with the energy of trapping. The duration spent by particles
inside the pore comes from the alternate of adsorption and diffusion.

Slope α – Finally, one may wonder if the slope α of the pink noise is
robust or depends on the parameters of the simulation. α is plotted in
figure 5.12 as a function of both the trapping energy εt and the pore length
L. α is found to decrease with increasing εt and increase with increasing L.
Understanding the meaning of these variations is beyond the scope of the
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Figure 5.11: Evaluated cut-off time τc = 1/fc corresponding to low frequency
cut-off. Left: τc as a function of the pore length L for two values of trapping
energy εt = 0.1 and 0.2 Kcal/mol, respectively in green and blue. Dashed lines
are guides for the eyes τc ∝ L. Right: τc as a function of the trapping energy εt
for a pore length L=60 Å. Dashed lines are guides for the eyes τc ∝ exp(εt).

present study, one will simply notice that the slope α of the pink part of the
PSD is not a robust 1/f , but rather depends on the simulation parameters.
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Figure 5.12: Left: slope α of the PSD for intermediate frequencies (fc < f < fh)
for varying energy of trapping εt. Right: slope α for varying ratio pore length L
over pore radius a. Dashed lines are guides for the eyes.

Summary – Some very interesting conclusions can be drawn from the
present molecular dynamics results. First, as already seen in the infinite
cylinder case, diffusion combined to reversible adsorption of particles on
a solid surface leads to pink noise in the power spectral density. Second,
in the geometry of a nanopore in contact with large reservoirs, pink-noise
can be obtained at very low frequencies, which was an important limitation
of the infinite cylinder geometry. It has been found that the limiting
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frequency until which the noise behaves as ∼ 1/fα with α ∼ 0.5 − 1.5

is controlled by the characteristic time spent by the particles inside the
pore. This characteristic time depends mostly on both pore dimensions and
surface adsorption energy. This is a crucial observation since our primary
objective was to find the existence of pink noise at very low frequencies
(down to 1Hz) in the PSD of ionic current through nanopores. Considering
a realistic adsorption energy, for example 0.4 eV [44], an extrapolation
from our molecular dynamics results (figure 5.11 in particular) using a
realistic diffusion coefficient (10−9 m2/s) allows us to reasonably assume
that reversible adsorption combined to diffusion of carriers may lead to
pink noise at frequencies down to 1− 10Hz. This is a major result of the
present study. Particles alternating adsorption and diffusion inside the pore
potentially spend very long time inside the pore. This translates in pink
noise at very low frequencies when considering the PSD of the number of
particles inside the pore. This result confirms our primary intuition that
fluctuations of the surface charge due to reversible adsorptions of carriers is
a serious candidate for explaining the origin of the mysterious pink noise
observed in ionic current measurements. The trajectories followed by the
particles between consecutive adsorptions have durations distributed as
power laws, which is a key ingredient to the generation of pink noise.

However, most of our results have been obtained with a neutral system,
assuming that the existence of charge (carrier by both particles and pore
surface) does not dramatically change the behaviour of particles nor the
measured power spectral density. To prove this point, which is important
considering the analogy with real systems, we now show a comparison
between both the charged and the neutral case.

5.3.3 Comparison with the charged case

We performed a simulation very similar to the one made with a neutral sys-
tem. A nanopore of same length and radius (L = a = 2 nm) is connected to
large reservoirs (Rres � a). The pore has a surface charge Σ = −60mC/m2,
and diffusing particles are charged (respectively charge +e for counterion
and −e for co-ion). Long-range Coulombic interactions were computed
using the particle-particle particle-mesh (PPPM) method [83, 84]. The
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number of ions was chosen in order to ensure the electroneutrality of the
system. The bulk salt concentration was chosen to be 0.2 mol/L, leading
to a Debye length λD slightly smaller than the radius a. Counterions can
reversibly adsorb on surface with an energy εt = 0.1Kcal/mol. The number
of free carriers inside the pore N+

f + N−f was evaluated, and its power
spectral density is plotted in figure 5.13. Charged and neutral systems show
similar PSD. In both cases there are three parts, separated by similar cut-off
frequencies, and presenting similar slopes (∼ 1 at low frequencies, ∼ 1/fα

with α ∼ 0.5 at intermediate frequencies) and ∼ 1/f 2 at high frequencies.
Hence the previous discussion and results most probably applies to charged
systems. One may expect slight differences, due to additional electrostatic
interaction that may modify the trajectories. This description is beyond
the scope of the present study.

0.01 0.1 1 10 100
f (GHz)

1

10

100

1000

10000

S
p

 (
H

z-1
)

Figure 5.13: PSD of the number of free particles inside respectively a charged
(full circles) and neutral (empty squares) nanopores for εt = 0.1 Kcal/mol (blue)
and εt = 0.4 Kcal/mol (violet).

5.4 The need for an analytical model for noise

in nanopore

In the spirit of what has been done for the diffusing-adsorbing dynamics
of particle inside an infinite cylinder, the present study with a nanopore
geometry lacks an analytical confirmation.
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This analytical confirmation must describe the probability for a particle
to be free inside a nanopore. In analogy with equation (5.6), one has to
sum over all different paths that start and end at a time t inside the pore.
It implies calculating a survival probability (for the particle inside the
pore, which may both adsorb on the pore surfaces and leave the pore for
the reservoir), a desorption probability distribution (same as previously,
P (t) = λ exp(−λt)) and a first return rate (for particles coming back inside
the pore after visiting a reservoir).

The building of this model is, today, still in progress.

5.5 Conclusion

In this study, we first showed, using molecular dynamics simulations, the
presence of pink noise (in a limited range of frequencies) when considering
particles alternating between diffusion and reversible adsorption on the
surface of an infinite cylinder. The importance of the result lies in the fact
that we linked such a simple system to the 1/fα power spectral density,
which was the main motivation of the present study. Results show that the
key point for the generation of pink noise is the time distribution of the
first return (to the surface) trajectories, which follow a power law. This was
confirmed by an analytical model, which compares well with simulations
results.

The previous study showed that the geometric confinement of the particles
results in a restriction of the frequency span of the pink-noise regime.
Therefore we conducted a similar study, where particles are diffusing inside
a cylindrical nanopore connected to large reservoirs. In this case, even if
the observed pink noise is still limited to a certain range of frequencies,
this range can be extended to extremely low frequencies by tuning for
example the energy of trapping, which impacts the time spent by particles
inside the pore. An extrapolation from our results indicates that the pink
noise associated with first return trajectories between adsorption/desorption
events could be found at very low frequencies (1-10 Hz). Therefore, it
represents a serious candidate for explaining the presence of pink noise in
ionic current measurement through nanopores.
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Note that, in this study, we considered systems at equilibrium only. However,
it would be interesting to consider the effect of a flow on the measured
power spectral density. Hence, a complete model would include the effect of
the convection on the effective diffusion coefficient of (adsorbing-desorbing)
ions [174]. According to experimental measurements of current flow through
solid nanopores, one may expect an increase of the level of noise with the
flow [159]. Ultimately, a full understanding between the system properties
and the signature of the noise may allow to extract some information about
the system from the power spectral density.



Chapter 6

General conclusion

This thesis discusses various situations linked to transport at the nanoscale.
While the first chapter is an introduction to nanofluidics, containing a review
of characteristic lengths, forces or phenomena existing at the nanoscale, the
other four chapters describe each a study that can be read independently
from the other.

The second chapter focuses on the hydrodynamic entrance effects in a
nanopore. Using both finite element calculations and molecular dynamics
results, we explored the impact of both the hydrodynamic boundary condi-
tion and the geometry on the hydrodynamic permeability of a nanopore.
Our main result is that, compared to a cylindrical nanopore, a hourglass

nanopore presents an enhanced hydrodynamic permeability, and
that there is one specific opening angle that optimizes the water

flow. Strikingly, this angle appears to be close to the angle mea-

sured in the aquaporin, a natural water channel.

The third chapter is a study of capillary filing inside subnanometric channels.
Using molecular dynamics simulations, we measured both the velocity filling
and the Laplace pressure inside nanochannels whose diameter was close
to the size of fluid molecules. Our main result is that both velocity

and pressure show strong non-linearity with the channel radius,
contrary to classical capillarity predictions. These deviations between
measurement and prediction have been found to be mostly due to the
discrete nature of the fluid structuring that generates a disjoining pressure.
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The fourth chapter is a study of nanofluidic diodes. Using molecular dy-
namics simulations, finite element calculations and an analytical model,
we showed that the coupling between water flow and ion dynamics

leads to a water flow rectification. Moreover, we extended the conven-
tional study of nanofluidic diodes to the case of non-overlapping electric
double layers, and showed the possibility of current and flow rectification in
this configuration as well.

The fifth and last chapter is a study of the presence of pink noise in ionic
current measurements through nanopores. Using both molecular dynamics
simulations and an analytical model, we studied the fluctuations in the
number of particles reversibly adsorbing on the surface of both an infinite
cylinder and a cylindrical nanopore connected to large reservoirs. Both
numerically and theoretically, we show the existence of pink noise on

a limited range of frequencies in the considered systems. We found
that pink noise originates from the first return trajectories, and in particular
their durations, which are controlled by the diffusion process occurring
between two adsorptions of the particle on the pore’s surface.

Perspectives – Some perspectives for future studies can be drawn from
the present work. For example, the study of the shape of nanopores inspired
by aquaporins indicates that the use of a hourglass shaped pore may lead
to a significant improvement of water permeability, in comparison with
pierced graphene which is commonly seen as the ultimate tool for water
filtration. Hence this is of main interest for the fabrication of highly efficient
membranes for water desalination. This study could be pushed further in
order to determine the optimal shape for a nanopore, which is probably
slightly different from the hourglass. Concerning the desalination and
water filtration, our results indicate that nanofluidic diodes can be used
to rectify the water flow using an external applied electric field. This is a
very interesting way to control the flow from a technological point of view.
Indeed, in comparison with the classic reverse osmosis method, pressure
pomps are replaced by electrodes, which is certainly more convenient, in
particular for small desalination plants.

In another work, we made the observation that the capillary filling of
subnanometric channels is strongly impacted by the discrete nature of the
fluid, with the possibility to switch the pore behaviour from hydrophilic
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to hydrophobic for some specific radius values. This may have a strong
impact on the imbibition of nanoporous media, and it would be worthwhile
to perform experiments in order to observe this phenomena. Moreover,
our results indicate that a small change in the pore radius can have a
dramatic impact on its affinity for a fluid, depending on both the fluid
particle diameter and the pore dimensions. Hence it could be an important
criterion for the selectivity of nanoporous membranes, and may already be
involved in the selectivity of natural nanochannels.

Finally, our results concerning fluctuations of particles inside nanopores
indicate that some information about the pore geometry or adsorption
energy of particles on surface could be extracted from the observation of a
cut-off at low frequency in the power spectral density. Our current results
could be pushed further with a calculation for the geometry of the nanopore
connected to reservoirs, and then by the introduction of convection. If
confirmed theoretically, a link between the fluctuations (and accordingly
the power spectral density) of a ionic current measured through a nanopore
and the transport properties could be established, which would constitute a
new method for extracting information about flow at the nanoscale.



Appendix A

Nanofluidic osmotic diode,

analytical calculation

This appendix is based on the following supplementray material: [175].

We consider here an asymmetrically charged nanochannel of length L and
height h, as depicted in figure A.1. The left side of the channel has a positive

σ -ασ

σ -ασ

x = 0x = - L/2 x = + L/2

h

1 l r 2

Figure A.1: Sketch of the system showing the asymmetry of surface charge
in the nanochannel, and the different salt concentrations in the left and right
reservoirs.

surface charge density σ while the right side has a negative surface charge
−ασ, with α > 1 a numerical coefficient. Each end of the channel is in
contact with a reservoir of concentration nL = n0−∆n/2 and nR = n0+∆n/2

in the left and right ends, respectively. A voltage drop ∆V = VR − VL is
also applied between the two reservoirs. Three space charge zones (SCZs),
denoted by 1, lr, and 2 in figure A.1 appear due to the discontinuities of the
surface charge: between the reservoirs and the left and right inner ends of
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the nanochannel, and in the junction between the positively and negatively
charged sides of the channel.

For the sake of simplicity, we will use reduced units x̃ = x/L, ñ = n/n0,
Ṽ = eV/kBT , j± = J±L/Dn0 in terms of the length of the system L and
the average concentration of the reservoirs n0. Since we will exclusively use
reduced units in the rest of the text, we remove the tildes of the reduced units
keeping in mind that in the following, all the variables are dimensionless.

In reduced units, the Nernst-Planck transport equations in the low Peclet
number regime read

j± = −∇n± ∓ n±∇V (A.1)

and give us the fluxes of the negative j− and the positive j+ species. The
solute js and electric je fluxes are defined as

js ≡ j+ + j− = −∇nsol − (n+ − n−)∇V (A.2)

je ≡ j+ − j− = −∇(n+ − n−)− nsol∇V

in terms of the total ion concentration nsol = n+ + n−.

We will also apply a local electroneutrality ansatz. This means that every-
where in the system (out of the SCZs), the positive and negative charges
should compensate to give a total zero charge. This gives the following
relationship between surface and bulk charges in reduced units,

n− − n+ = 2δ, −1/2 < x < 0 (A.3)

n+ − n− = 2αδ, 0 < x < 1/2

where δ is the surface-to-bulk charge ratio δ = |Σ|/hn0, corresponging to a
Duhkin number.

Making use of the electroneutrality condition (A.3), the expression for the
electric flux je in equations (A.2) can be further simplified to

js ≡ j+ + j− = −∇nsol − (n+ − n−)∇V (A.4)

je ≡ j+ − j− = −nsol∇V



Appendix B. Nanofluidic osmotic diode, a theoretical model based on PNP
equations 149

We will focus on the minority species on each side of the junction, i.e. n+

on the left side and n− on the right side. This means that we will express
nsol as

nsol = 2(n+ + δ), −1/2 < x < 0 (A.5)

nsol = 2(n− + αδ), 0 < x < 1/2 (A.6)

making use of equations (A.3). Furthermore, we will focus on the fluxes
j+ = (js + je)/2 on the left side and j− = (js − je)/2 on the right side,
according to the minority species on each side.

A.0.1 General case

Left side −1/2 < x < 0: Regarding the concentration of the minority
species we have

j+ =
1

2
(js + je) = −∇n+ − n+∇V

Multiplying both sides of the equation by nsol, recalling that −nsol∇V = je,
substituting nsol by equation (A.5) and reorganizing terms, we arrive to the
equation

js(n+ + δ(1 + je/js)) + 2(n+ + δ(1 + je/js)− δje/js)∇n+ = 0, (A.7)

that can be easily integrated as

2n+ − 2δ
je
js

log(n+ + δ(1 +
je
js

)) + jsx = Cn+ (A.8)

where Cn+ is a constant of integration.

In order to integrate the voltage we make use of the expression for the
electric flux,

je = −nsol∇V = −2(n+ + δ)∇V = −2(n+ + δ)∇n+V∇n+

which, making use of equation (A.7) turns,

je = js

(
n+ + δ

(
1 +

je
js

))
∇n+V (A.9)
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that can be easily integrated to

V =
je
js

log

(
n+ + δ

(
1 +

je
js

))
+ CV+ (A.10)

with CV+ a constant of integration.

Right side 0 < x < 1/2: Following the same procedure as for the left
side for the minority species, n− in this case, we arrive to the equation

js(n− + αδ(1− je/js)) + 2(n−+αδ(1− je/js)+

αδje/js)∇n− = 0
(A.11)

that is integrated to

2n− + 2αδ je
js

log(n− + αδ(1− je
js

)) + jsx = Cn− (A.12)

where Cn− is a constant of integration.

Regarding the voltage,

je = −nsol∇V = −2(n− + αδ)∇V = −2(n− + αδ)∇n−V∇n−

which, making use of equation (A.11) turns,

je = js

(
n− + αδ

(
1− je

js

))
∇n−V

that integrates to

V =
je
js

log

(
n− + αδ

(
1− je

js

))
+ CV− (A.13)

with CV− a constant of integration.

Boundary conditions at the SCZs:
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SCZ 1: The electroneutrality condition as well as the continuity of the
electrochemical potential must hold

n1
− − n1

+ = 2δ (A.14)

log(1−∆n/2) + ∆V = log(n1
−)− V1

log(1−∆n/2)−∆V = log(n1
+) + V1

Adding and subtracting the two last equations we obtain respectively,

(1−∆n/2)2 = n1
+n

1
− (A.15)

V1 = −∆V +
1

2
log

(
n1
−

n1
+

)
(A.16)

SCZ lr: We call l the left side of the junction and r the right side of the
junction.We then have,

nl− − nl+ = 2δ

nr+ − nr− = 2αδ

log(nl−)− Vl = log(nr−)− Vr
log(nl+) + Vl = log(nr+) + Vr

Adding and subtracting the two last equations we obtain respectively,

nl−
nr−

=
nr+
nl+

(A.17)

Vl − Vr = log

(
nr+
nl+

)
= log

(
nl−
nr−

)
(A.18)

SZC 2: Following the same reasoning as for the SCZ 1,

n2
+ − n2

− = 2αδ (A.19)

log(1 + ∆n/2) = log(n2
+) + V2

log(1 + ∆n/2) = log(n2
−)− V2
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Adding and subtracting the two last equations we obtain respectively,

(1 + ∆n/2)2 = n2
+n

2
− (A.20)

V2 =
1

2
log

(
n2
−

n2
+

)
(A.21)

A.0.2 Large δ case

If the surface charge dominates over the charge coming from the salt solution,
i.e., δ � 1, appropriate approximations can be made that allow us to obtain
analytical solutions of the equations. We begin by the electroneutrality
conditions (A.3) which if δ � 1 can be simplified as follows,

n− ' 2δ, −1/2 < x < 0 (A.22)

n+ ' 2αδ, 0 < x < 1/2

where, on each side of the junction, only the minority species has a role. This
approximation is widespread in the semiconductors literature. Furthermore,
if δ � 1 we can also approximate equations (A.5), (A.6) by

nsol ' 2δ, −1/2 < x < 0 (A.23)

nsol ' 2αδ, 0 < x < 1/2 (A.24)

Left side −1/2 < x < 0: Under the condition δ � 1, equation (A.7)
becomes

js + je ' −2∇n+, (A.25)

that is easily integrated to

n+ + 1
2
(js + je)x ' Cn+δ (A.26)

with Cn+δ a constant of integration. While the voltage equation

je = −nsol∇V ' −2δ∇V (A.27)
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can be integrated as

V ' −je
2δ

x+ CVl (A.28)

with CVl a constant of integration.

Right side 0 < x < 1/2: Under the condition δ � 1, equation (A.11)
becomes

js − je = −2∇n− (A.29)

that can be integrated as

n− + 1
2
(js − je)x = Cn−δ (A.30)

with Cn−δ a constant of integration. While the voltage, as before, can be
integrated as

je = −nsol∇V ' −2αδ∇V (A.31)

V ' −je
2αδ

x+ CVr (A.32)

with CVr a constant of integration.

Boundary conditions at the SCZs: In the δ � 1 case, the boundary
conditions are much simpler for the three SCZs.

SCZ 1:

n1
− ' 2δ (A.33)

n1
+ '

1

2δ

(
1− ∆n

2

)2

(A.34)

V1 ' −∆V + log

(
2δ

1−∆n/2

)
(A.35)
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SCZ lr:

nl− ' 2δ (A.36)

nr+ ' 2αδ (A.37)

V l − V r ' log

(
2αδ

nl+

)
' log

(
2δ

nr−

)
(A.38)

SCZ 2:

n2
+ ' 2αδ (A.39)

n2
− '

1

2αδ
(1 +

∆n

2
)2 (A.40)

V2 ' log

(
1 + ∆n/2

2αδ

)
(A.41)

Analytical solution

This approximation reduces the number of unknowns and with the simple
equations and boundary conditions that we have obtained, we can pro-
ceed straightforward to the full integration of the equations to obtain the
remaining unknowns, nl+, nr−, V l and V r.

nl+ =
(1−∆n/2)2

2δ
− js + je

4
(A.42)

nr− =
js − je

4
+

(1 + ∆n/2)2

2αδ
(A.43)

V l = −∆V − je
4δ

+ log

(
2δ

1−∆n/2

)
(A.44)

V r =
je

4αδ
− log

(
2αδ

1 + ∆n/2

)
(A.45)

Subtracting the last two equations (A.44) and (A.45) and making use of
boundary condition equations (A.38) with the expressions for nl+ (A.42)
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and nr− (A.43) we have the following set of equalities,

V l − V r =

−∆V − je
4δ

(
1 +

1

α

)
+ log

(
α (2δ)2

(1−∆n/2) (1 + ∆n/2)

)
=

log (2αδ)− log

(
−js + je

4
+

(1−∆n/2)2

2δ

)
=

log (2δ)− log

(
js − je

4
+

(1 + ∆n/2)2

2αδ

)
(A.46)

The last two equations allows us to arrive to a relation between the electric
and solute fluxes

je =
1

α− 1

(
(α + 1)js +

4∆n

δ

)
(A.47)

Or in a more general way, letting the concentrations of the reservoirs take
any value nL,nR,

je =
1

α− 1

(
(α + 1)js −

4

δ
(nL − nR)

)
. (A.48)

Moreover, in the limit δ � 1, the term je
4δ

(
1 + 1

α

)
in equation (A.46) can

be neglected to obtain an explicit approximate expression for the solute flux
in terms of the concentration imbalance of the reservoirs and the electric
potential:

js =
−2∆n

δ
− α− 1

αδ

(
1−

(
∆n

2

)2
)(

e+∆V − 2 + ∆n

2−∆n

)
(A.49)

js =
−2∆n

δ
− α− 1

αδ

(
1−

(
∆n

2

)2
)(

e+∆V − 2 + ∆n− nRnL
4nLnR

)
(A.50)

js =
−2∆n

δ
− α− 1

αδ

(
1−

(
∆n

2

)2
)(

e+∆V − nR
nL

)
(A.51)

or
js = 2

nL − nR
δ

− α− 1

αδ
nR
(
nLe

+∆V − nR
)

(A.52)

It is worth noting that in the regime ∆V � 1, i.e. eV/kBT � 1 in real units,
the logarithms in equation (A.46) become negligible compared to the ∆V

contribution and we recover a linear regime je = −4δ∆V/ (1 + 1/α) where
surface conduction dominates. This means that the exponential regime
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Figure A.2: Theoretical solute flux versus the concentration difference and the
external voltage imposed between the two reservoirs, obtained from Eq. (A.52).

(A.51) is only valid for low values of ∆V .

Comparison with the numerical solution of the full PNP equations

To check the validity of our simple analytical theory, we can make use of a
finite elements (FE) method to solve the Nernst-Planck transport equations
(A.1) along with the electroneutrality condition. Instead of using the much
more restrictive local electroneutrality ansatz that we used in the theory,
here we can numerically solve the full Poisson equation instead.

∇2V =



−(1/λD)2 (n+ − n−) /2, x < −1/2

−(1/λD)2 (n+ − n− + δ) /2, −1/2 < x < 0

−(1/λD)2 (n+ − n− − αδ) /2, 0 < x < 1/2

−(1/λD)2 (n+ − n−) /2, 1/2 < x

This allows us to compare our theoretical predictions for large δ with the
numerical solution of the full equations and also with the molecular dynamics
simulations results. Since we are working in a regime of Debye length overlap
we assume that the ion concentration will be approximately constant in the
cross section of the channel and hence we will use 1D equations as we did in
the analytical approach. As it can be observed in figure A.3, the numerical
solution of the complete equations validates the theory since for large δ the
two are in excellent agreement.
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Figure A.3: Solute flux js versus salt concentration difference ∆n: comparison
of the FE solution of the full equations and the analytical approximation for large
δ.

Analytical solution for a symmetric channel

It is interesting to note that the complex osmotic phenomena that appear
are advantageous due to the charge discontinuity in the channel. The
performance of this device to produce asymmetric controllable flow can be
compared to the one obtained by simple charged nanochannels. To visualize
this, we can compare it against the behavior of a simple symmetric pore of
Dukhin number δ. Following the same procedure as before, we obtain the
expressions of the solute and electric flux for this simpler setup:

js = 2δ

[
+∆V + log

(
nL
nR

)
+
n2
L − n2

R

2δ2

]
(A.53)

je = 2δ

[
−∆V − log

(
nL
nR

)]
(A.54)

In figure A.4 we compare the analytical solutions for the flux through a
simple pore. In fact in the symmetric case we can get flux against the
expected solute gradient. However, in this setup, a continuous current
would be necessary to rectify the solute flux, which is not usually achievable
in experiments, since it usually causes problems of polarization in the
electrodes.
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Figure A.4: Solute flux in terms of the osmotic gradient (left) and applied voltage
(right) for a symmetric positively charged channel, obtained from Eq. (A.53).
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Detailed theory: fluctuations in

infinite nanotube

Theory: general case – Let us consider N charge carriers (ions or protons)
in a cylindrical pore of length L and radius a. Each ion undergoes consecutive
surface adsorption and desorption events, we introduce a binary adsorption
state variable niA(t) for each ion i = 1...N that is niA(t)=1 when the ion is
adsorbed and niA(t)=0 when the ion is desorbed. The number of adsorbed
ions at any time t follows as

NA(t) =
N∑
i=1

niA(t). (B.1)

The auto-correlation function of NA(t) writes

RNA
(0, t) = 〈NA(0)NA(t)〉 =

N∑
i,j=1

〈
niA(0)njA(t)

〉
. (B.2)

If the ions are uncorrelated among each other, one can write:

RNA
(0, t) =

N∑
i 6=j

〈
niA(0)

〉 〈
njA(t)

〉
+

N∑
i=1

〈
niA(0)niA(t)

〉
. (B.3)

Defining the probability for an ion to be adsorbed as

pA =
〈
niA(0)

〉
=
〈
njA(t)

〉
(B.4)
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we can rewrite the auto-correlation function as

RNA
(0, t) = N2p2

A +NpACAA(t)−Np2
A (B.5)

where the single-ion correlation function

CAA(t) = 〈nA(0)nA(t)〉 / 〈nA(0)〉 (B.6)

denotes the conditional probability that an ion is adsorbed at time t given
that it was adsorbed at time t=0. Similarly, the autocorrelation function of
the number of desorbed ions ND(t) = N −NA(t) can be written as

RND
(0, t) = 〈ND(0)ND(t)〉 (B.7)

= 〈[N −NA(t)][N −NA(t)]〉 (B.8)

= N2(1− pA)2 +NpACAA(t)−Np2
A

So the only non-trivial quantity to calculate is the single-ion correlation
function CAA(t). The probability for an ion to be adsorbed at time t given
that it is adsorbed at time t=0 can be written as

CAA(t) =
∞∑
n=0

[∫ ∞
0

dteQ(te)
n∏

m=1

[∫ ∞
0

dtmP (tm)

∫ ∞
0

dt′mJ(t′m)

]
(B.9)

×δ

(
te +

n∑
k=1

(tk + t′k)− t

)]

where the outer sum counts the number of desorption and re-adsorption
events. The distribution P (t) is the probability for an adsorbed ion to
desorb from the surface at time t. We assume an exponential desorption
distribution

P (t) = λe−λt (B.10)

with λ in inverse time unit. Then it’s Laplace transform P (ω) =
∫∞

0
exp(−ωt)P (t)

writes
P̃ (ω) =

λ

λ+ ω
. (B.11)

The probability for an ion to be absorbed at t, called the survival distribution
Q(t) is the probability for an ion to be adsorbed over the time span from
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t =0 to t and is given by

Q(t) =

∫ ∞
t

dt′P (t′). (B.12)

In our case, it writes:
Q(t) = e−λt (B.13)

and it’s Laplace transform is

Q̃(ω) =
1

λ+ ω
. (B.14)

Finally, the first-return distribution J(t) is the probability for an ion that
has been desorbed at time zero to return to the cylinder surface for the first
time at t. Note the different physical units of the distributions, P (t) and
J(t) have units of inverse time, Q(t) by virtue of equation (B.12) is unit-less,
and the probability CAA(t) is unit-less because of the delta function. By
means of Laplace transformation the correlation function factorizes into a
geometric sum as

C̃AA(ω) =
∞∑
n=0

(
Q̃(ω)

[
P̃ (ω)J̃(ω)

]n)
=

Q̃(ω)

1− P̃ (ω)J̃(ω)
(B.15)

Determination of J(ω) for an infinite tube – An expression for J(ω)

is needed. Since J(ω) is the Laplace transform of the probability for a
desorbed ion to return to the cylinder surface, it strongly depends on the
geometry. Inside an infinite cylindrical tube, the diffusion equation in
cylindrical coordinates as to be solved. The radially symmetric Green’s
function for an ion to be at time t at a radius r when starting at a radius
r0 obeys the radial diffusion equation in cylindrical coordinates

∂tG(r, t|r0) = D4r G(r, t|r0) = D
1

r
∂rr∂rG(r, t|r0) (B.16)

where D denotes the diffusion constant. The Laplace transformed equation
reads

ωG̃(r, ω|r0)− δ(r − r0)

2πr
= D

1

r
∂rr∂rG̃(r, ω|r0) (B.17)
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where we used the initial condition

G̃(r, t = 0|r0) =
δ(r − r0)

2πr
. (B.18)

Using the rescaled radial coordinate

r̃ = r
√
ω/D (B.19)

the equation can be brought into the canonical form of a Bessel differential
equation

r̃

2πD
δ(r̃ − r̃0) = r̃2G̃(r, ω|r0)− r̃∂rG̃(r, ω|r0)− r̃2∂2

r G̃(r, ω|r0). (B.20)

The general solution is
G̃(r̃, ω|r̃0) = aI0(r̃) (B.21)

for r̃ < r̃0 and
G̃(r̃, ω|r̃0) = bI0(r̃) + cK0(r̃) (B.22)

for r̃ > r̃0 where I0(x) and K0(x) are modified Bessel functions. The
coefficients a, b, c are determined by the following three boundary conditions:

(BC1) continuity at r̃ = r̃0:

aI0(r̃0) = bI0(r̃0) + cK0(r̃0), (B.23)

(BC2) initial condition of equation (B.20), obtained by the integration of
equation (B.17) between r−0 and r+

0 :

1

2πDr̃0

= aI1(r̃0)− bI1(r̃0) + cK1(r̃0) (B.24)

where ∂xI0(x) = I1(x) and ∂xK0(x) = −K1(x),

(BC3) a surface reaction boundary condition at r = R which in unrescaled
units reads

j(R,ω|r0) = −D∂RG̃(R,ω|r̃0) = kG̃(R,ω|r̃0) (B.25)

and reflects that the ion boundary flux j(R,ω|r0) is proportional to the ion
boundary density times a phenomenological rate constant k. In rescaled
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radial units and using k = k̃
√
ωD this condition reads

∂RG̃(R,ω|r̃0) = −k̃G̃(R,ω|r̃0) (B.26)

which explicitly yields

bI1(R̃)− cK1(R̃) = −k [bI0(r̃0) + cK0(r̃0)] (B.27)

Introducing rescaled coefficients ã = 2πDr̃0a (and similarly for b and c) we
arrive at the final boundary conditions

ãI0(r̃0) = b̃I0(r̃0) + c̃K0(r̃0) (B.28)

1 = ãI1(r̃0)− b̃I1(r̃0) + c̃K1(r̃0) (B.29)

b̃I1(R̃)− c̃K1(R̃) = −k̃
[
b̃I0(R̃) + c̃K0(R̃)

]
(B.30)

The solutions for b̃ and c̃ read

c̃ =
I0(r̃0)

K0(r̃0)I1(r̃0) +K1(r̃0)I0(r̃0)
(B.31)

and

b̃ = c̃

(
K1(R̃)− k̃K0(R̃)

I1(R̃) + k̃I0(R̃)

)
(B.32)

For the total flux at the cylinder surface we obtain combining Eqs. (B.22)
and (B.23)

2πRj(R,ω|r0) = 2πRk
[
bI0(R̃) + cK0(R̃)

]
(B.33)

=
k̃R̃

r̃0

[
b̃I0(R̃) + c̃K0(R̃)

]
The first-return distribution follows as

J(ω) = 2πRj(R,ω|R)

= k̃
[
b̃(r̃0 = R̃)I0(R̃) + c̃(r̃0 = R̃)K0(R̃)

]
=

k̃I0(R̃)

I1(R̃) + k̃I0(R̃)
(B.34)

Connection to the law of mass action – In order to calculate the
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probability for an ion to be absorbed, we need to construct the conditional
probability that an ion that was absorbed at time t = 0 is desorbed at time
t

CAD(t) = 〈nA(0)(1− nA(t))〉 / 〈nA(0)〉 . (B.35)

Similarly to our previous construction, we obtain

CAD(t) =
∞∑
n=0

[∫ ∞
0

dteP (te)

∫ ∞
0

dt′eJD(t′e)
n∏

m=1

[∫ ∞
0

dtmP (tm)

∫ ∞
0

dt′mJ(t′m)

]

×δ

(
te + t′e +

n∑
k=1

(tk + t′k)− t

)]
.(B.36)

We have indroduced the probability distribution JD(t) for an ion to be
desorbed over the entire time span from t = 0 to t, which follows from the
first-return probability J(t) via

JD(t) =

∫ ∞
t

dt′J(t′). (B.37)

After Laplace transformation the correlation function follows as

C̃AD(ω) =
∞∑
n=0

(
P̃ (ω)J̃D(ω)

[
P̃ (ω)J̃(ω)

]n)
=

P̃ (ω)J̃D(ω)

1− P̃ (ω)J̃(ω)
(B.38)

The probabilities for an ion being absorbed versus being desorbed can be
obtained from the Laplace transformed correlation functions C̃AA(ω) and
C̃AD(ω) in the limit ω → 0. From

J̃D(ω) =
J̃(ω = 0)− J̃(ω)

ω
(B.39)

and using that, for small frequencies:

J̃−1(ω) ≈ 1 +
ωa

2k
(B.40)

we obtain
J̃D(ω → 0) =

a

2k
. (B.41)
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With Eq. B.38 we obtain

C̃AA(ω = 0)

C̃AD(ω = 0)
=

Q̃(ω = 0)

P̃ (ω = 0)J̃D(ω = 0)
=

τ

a/2k
=

2k

λa
. (B.42)

For the ratio of ion surface concentration and bulk concentration we obtain
the law of mass action

C̃AA(ω = 0)/(2πa)

C̃AD(ω = 0)/(πa2)
= k/λ. (B.43)

The equilibrium reaction constant is thus shown to be proportional to the
product of the surface reaction rate k and the mean adsorption time τ and
agrees with the planar case (to be published).
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Resume : This thesis discusses various situations linked to transport at the
nanoscale. The first chapter is an introduction to nanofluidics, containing
a review of characteristic lengths, forces, or phenomena existing at the
nanoscale. The second chapter is a study of the impact of geometry on
the hydrodynamic permeability of a nanopore. This study, inspired by the
shape of aquaporins, suggests a possible optimisation of permeability for
bi-conical channels. The third chapter is a study of capillary filing inside
subnanometric carbon channels which highlights the importance of the
disjoining pressure induced by the fluid structuring inside the nanochannel.
The fourth chapter is a study of nanofluidic diode, a component known
to mimic the behaviour of semiconductor diode. The study highlights a
strong coupling between water and ion dynamics which leads to a water flow
rectification inside the diode. The fifth and last chapter is a study of the
origin of commonly observed pink noise (1/f) in ionic current measurements
through nanopores.

Key-words : nanofluidics, transport, aquaporin, capillary filling, nanofluidic
diode, pink noise, molecular dynamics, finite elements.

Résumé : Cette thèse décrit diverses situations liées au transport fluidique
aux nano-échelles. Le premier chapitre est une introduction à la nanoflu-
idique qui contient une revue des longueurs caractéristiques, des forces et
des phénomènes présents aux nano-échelles. Le deuxième chapitre est une
étude de l’impacte de la géométrie sur la perméabilité hydrodynamique d’un
nanopore. Inspirée par la forme des aquaporines, cette étude suggère une
optimisation possible pour des canaux biconiques. Le troisième chapitre
est une étude du remplissage capillaire dans des canaux sub-nanométriques
en carbone. Cette étude montre l’importance de la pression de disjonction
induite par la structure du fluide sur le remplissage. Le quatrième chapitre
est une étude d’une diode nanofluidique, un composant connu pour imiter
le comportement d’une diode à semi-conducteur. On montre qu’un fort
couplage entre l’eau et la dynamique des ions entraîne une rectification du
flux d’eau à l’intérieur de la diode. Le cinquième et dernier chapitre est
une étude de l’origine du bruit rose (1/f) communément observé lors des
mesures de courant ionique dans les nanopores.

Mots-clés: nanofluidique, transport, aquaporine, remplissage capillaire,
diode nanofluidique, bruit rose, dynamique moléculaire, éléments finis.
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