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Abstract

In this HDR manuscript I summarize some of my work concerning nonnegative ma-
trix/tensor factorization (NMF/NTF) modeling of audio spectrograms to solve various
ill-posed inverse problems in audio signal processing domain. Those inverse problems
include audio source separation, audio inpainting (i.e., missing audio samples recovery)
and audio compression. This summary is built based on four contributions published
in four journal papers. As for the state of the art prior to this work, NMF/NTF de-
compositions were already used for a while to model audio and have successfully found
applications in, e.g., audio source separation and music transcription. However, in those
applications NMF/NTF models were applied to approximate some observed spectro-
grams of audio signals. In my opinion, the main qualitative change I have proposed
that uni�es all this work is as follows : instead of applying NMF/NTF to the spectro-
grams of observed signals, I proposed applying it to the spectrograms of latent signals
whatever the observations. This became possible thanks to probabilistic Gaussian for-
mulation of NMF/NTF with Itakura-Saito divergence. As a result, this allowed not
only signi�cantly improving audio source separation in the multichannel setting, but
also applying NMF/NTF modeling to audio inpainting and compression, which lead
to new approaches that are better than or on par with the state of the art.
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Introduction

This document describes a part of my research work I have done since my PhD
defense in 2006. I was interested in and working on various ill-posed inverse problems
involving audio signals. Though the main focus of my research is on audio source
separation, I was also interested in other inverse problems such as audio inpainting
(or interpolation) and audio compression that may be sometimes seen as an inverse
problem. As such, I start by �rst introducing audio source separation and its various
scenarios.

Most audio signals are mixtures of several sources. For example a music recording
may be a mixture of several instruments. The goal of audio source separation consists
in estimating the sources from their mixtures. This may be useful for various applica-
tions. First, breaking audio into its elementary parts may facilitate its analysis (e.g.,
speech recognition or audio events detection). Second, extracting individual sources is
useful for upmixing/re-mixing applications and other audio editing tasks. Audio source
separation being in general a very ill-posed inverse problem, it still remains a very chal-
lenging and it is extensively studied. Moreover, the success of audio source separation
depends strongly on the amount of available prior information about the sources. As
such, various source separation scenarios might be considered :

� Blind (or non-supervised) source separation - One cannot assume anything about
the sources, except that they are audio signals.

� Supervised and semi-supervised source separation - One can describe all or a part
of sources, e.g., by providing examples of similar sources.

� Informed source separation - Some complementary information about the sources
is available, i.e., this may be music score in case of music source separation or
some information provided by a user via a dedicated interface.

� Audio objects compression - It is assumed that at a so-called encoding stage the
original sources and the mixture are available, and the goal is to extract some
compact information that will allow reconstructing the sources at a so-called
decoding stage, where only the mixture is given.

Since my PhD defended in 2006 I was working on various cases from all these scenarios,
as well as on some other problems including audio inpainting (reconstruction of missing
parts of audio signals).

Most of my post-PhD research being conducted in the pre-deep learning era, I was
mostly concentrated on non-negative matrix factorization (NMF) and non-negative
tensor factorization (NTF) which were and still remain very popular and successful
approaches for audio source separation. In my opinion my main methodological contri-
bution consists in introducing a new probabilistic structured Gaussian modeling of
multichannel and multisource audio. This modeling is based on the assumption that
the short-time Fourier transform (STFT) coe�cients of latent sources are zero-mean
Gaussians with variances structured via an NMF or an NTF decompositions. As such,
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this modeling has been baptized as multichannel NMF or multichannel NTF. I have
used it within several audio source separation scenarios described above, as well as for
audio inpainting. Multichannel NMF/NTF modeling in my research gave rise to a series
of four journal papers [1, 2, 3, 4] and to several conference papers. The modeling was
initially proposed in [1] and then extended to or used for di�erent applications/contexts
in [2, 3, 4]. In summary :

� Paper 1, [1] : Multichannel NMF modeling is introduced and applied to blind
source separation. It is then extended to multichannel NTF in [7].

� Paper 2, [2] : Multichannel NMF modeling is extended to a much more general
framework generalizing several other state-of-the-art source separation methods
and allowing implementing new ones.

� Paper 3, [3] : Multichannel NTF modeling is applied to audio objects compres-
sion.

� Paper 4, [4] : Multichannel NTF modeling is revisited within a framework allo-
wing reconstructing missing audio samples in time domain. This allows various
applications including audio declipping, audio objects compression and compres-
sive sampling recovery.

I have decided to speak in this document mostly about the work presented in these four
publications. This is because there is a very common and consistent story regrouping
them, and because multichannel NMF/NTF modeling had a quite signi�cant scienti�c
impact in the community.

This document is structured as follows. Chapter 1 introduces NMF/NTF modeling
and its applications in audio with a strong emphasis on audio source separation. In
Chapter 2 I give a very general and high level presentation of multichannel NMF/NTF
modeling. Chapters 3 to 6 are devoted to the presentation of the four journal papers
mentioned above. In Chapter 7 I speak brie�y about other work I've done. The conclu-
sions are drawn in Chapter 8. The four papers [1, 2, 3, 4] together with a long version
of my Curriculum Vitae are annexed at the end of this document.

I must acknowledge that I have not done this work alone, but with many collabo-
rators including colleagues and students I have supervised. I am very grateful to all
these people and without them this work would not be possible. As such, from now on
in this document, except if I am expressing my personal opinion, I am switching from
saying �I� and �my� to saying �we� and �our�, while speaking about the work.

3



Chapitre 1

NMF/NTF modeling for audio source
separation

1.1 Nonnegative matrix factorization

1.1.1 Problem statement

Nonnegative matrix factorization (NMF) [LS99, FBD09] is a dimensionality reduc-
tion technique that approximates an F × N data matrix B with nonnegative entries
as a product of two matrices with nonnegative entries (see Fig. 1.1) such as

B ≈WH, (1.1)

where B ∈ RF×N
+ , W ∈ RF×K

+ and H ∈ RK×N
+ . It is also usually assumed that K is

much smaller than F and N , e.g., K << min(F,N), so as to achieve dimensionality
reduction. Matrix product in approximation (1.1) can also be rewritten as a sum of
matrices of rank 1 as follows :

B ≈
K∑

k=1

wkhk, (1.2)

where wk denote the columns of matrix W and hk denote the rows of matrix H. This
decomposition is represented on Figure 1.1.

=

=

B

W

H

h1

w1

h2

w2
+

≈

+

h3

w3

Figure 1.1 � NMF with K = 3 as a matrix product and a sum of rank-1 matrices.

Approximation (1.1) being mathematically poorly de�ned, one usually looks for a
pair (W, H), while optimizing some measure of �t between B and its approximation

4



CHAPITRE 1. NMF/NTF MODELING FOR AUDIO SOURCE SEPARATION

WH. More precisely W and H are usually found by optimizing

(W,H) = arg min
W′≥0,H′≥0

C(W′,H′), (1.3)

where C(W,H) is de�ned as

C(W,H) = D(B‖WH), (1.4)

and D(B‖A) is some divergence between nonnegative matrices B = [bfn]F,Nf,n=1 ∈ RF×N
+

and A = [afn]F,Nf,n=1 ∈ RF×N
+ speci�ed as

D(B‖A) =
F∑

f=1

N∑

n=1

d(bfn|afn), (1.5)

with d(bfn|afn) being a scalar divergence. Many di�erent scalar divergences were pro-
posed [LS01, FBD09, CZPA09], but among the most popular and mostly used in audio
processing there are the following three :

� Euclidean (EUC) distance :

dEUC(b|a) =
1

2
(b− a)2.

� Kullback-Leibler (KL) divergence :

dKL(b|a) = b log
b

a
− b+ a.

� Itakura-Saito (IS) divergence :

dIS(b|a) =
b

a
− log

b

a
− 1.

Note that the uniqueness of solution of (1.3) is in general not assured [LCP+08].
First of all, there are obvious scaling and permutation ambiguities, i.e., any column of
W and the corresponding row of H may be multiplied by z > 0 and 1/z, respectively,
without changing the value of WH, and those columns and rows might be altogether
arbitrary permuted. However, besides those obvious ambiguities there are ambiguities
that are less evident (see [LCP+08] for details).

1.1.2 Algorithms

To optimize criterion (1.3) various algorithms exist [CZPA09]. However, the so-
called multiplicative update (MU) rules [LS01, FBD09, FI11] are among the most popu-
lar and the most widely used. As such, we describe these rules below. Let ∇WC(W,H)
and ∇HC(W,H) partial derivatives of the cost function C(W,H) with respect to W
and H, respectively, the MU rules consist in alternating between the following two
steps [FI11]

W ← W �
(

[∇WC(W,H)]−
[∇WC(W,H)]+

).η
, (1.6)

H ← H�
(

[∇HC(W,H)]−
[∇HC(W,H)]+

).η
, (1.7)

5



CHAPITRE 1. NMF/NTF MODELING FOR AUDIO SOURCE SEPARATION

where η > 0, ��� denotes element-wise matrix product, �.p� denotes element-wise ma-
trix power, matrix division is element-wise as well, and [∇WC(W,H)]− and [∇WC(W,H)]+
are both nonnegative and such that

∇WC(W,H) = [∇WC(W,H)]+ − [∇WC(W,H)]− , (1.8)

and similarly for [∇HC(W,H)]− and [∇HC(W,H)]+. Note that decomposition (1.8)
is arbitrary, since it still holds with any positive constant matrix of suitable size added
to both [∇WC(W,H)]+ and [∇WC(W,H)]−. As such, decomposition (1.8) is usually
chosen so as [∇WC(W,H)]+ and [∇WC(W,H)]− are both entry-wise minimal, while
keeping closed-form expressions. In order to avoid numerical issues (e.g., over or under-
�ow) a suitable re-scaling should be applied after each iteration or from time to time
[FBD09]. Note also that with this approach the nonnegativity constraints are respected
by construction.

For example, in case of NMF with IS divergence the MU rules become [FBD09]

W ← W �
(
HT ((WH).−2 �B)

HT (WH).−1

).η
, (1.9)

H ← H�
(
WT ((WH).−2 �B)

WT (WH).−1

).η
. (1.10)

The MU rules were initially discovered based on some heuristics [LS01]. They can
be also interpreted as a diagonally rescaled gradient descent [LS01]. However, such
a property does not directly bring any light on the algorithm's properties such as for
example monotonicity, i.e., whether the updates guarantee the cost function to be non-
increasing after each iteration ? In some cases the monotonicity was investigated and
proven a-posteriori [LS01, FI11] by interpreting each particular variant of MU rules as a
majorisation-minimization (MM) procedure [HL04]. In particular, it was proven [FI11]
that the monotonicity is guaranteed for the EUC and KL divergences when 0 < η ≤ 1,
and for the IS divergence when 0 < η ≤ 1/2. However, as for the IS divergence, the
monotonicity is usually observed in practice for 0 < η ≤ 1. As such, hereafter we will
use MU rules for NMF with IS divergence without exponent η, i.e., we assume η = 1.

While the MU rules are far from being the most e�cient algorithm in terms of
convergence speed [CZPA09], it is probably one of the most popular for the following
reasons. The nonnegativity constraints are respected by construction, the formulation
is very compact, and, by consequence, the implementation is usually easy (e.g., just
two lines of code in a loop in Matlab).

1.1.3 Application in audio

Let X = [xfn]F,Nf,n=1 complex-valued short-time Fourier transform (STFT) of an
audio signal. In case of application of NMF to audio signals one usually considers the
magnitude spectrogram |X| as nonnegative data matrix B (B = |X|), e.g., in case of
EUC distance or KL divergence ; or the power spectrogram (B = |X|.2), e.g., in case
of IS divergence. Since in this work we are mostly using the IS divergence, we assume
hereafter B = |X|.2.

Let us �rst look what happens when applying NMF to a power spectrogram of a
music audio sample. We took a piano expert, where four di�erent notes are played in
di�erent combinations, and we applied to it an IS-NMF decomposition with K = 5
components. The result is shown on Figure 1.2. One can see that the columns of matrix

6



CHAPITRE 1. NMF/NTF MODELING FOR AUDIO SOURCE SEPARATION

WH

≈

×

W H

|X|.2

=

=

Figure 1.2 � An example of IS-NMF decomposition with K = 5 components of a piano
expert available at https://www.irit.fr/~Cedric.Fevotte/extras/neco09/Piano.wav.

W represent characteristic spectral patterns of individual audio objects, notably here
the four notes and the sound of piano hummers (5th component). Moreover, the rows
of matrix H represent the activations of these objects in time. It is clear that such an
object-based decomposition opens a door for various applications. For example, one
can transcribe the music (i.e., estimate the music score from audio) [SB03, BBR07]
by simply thresholding the rows of H to identify the individual notes. One can also
perform source separation [Vir07, FBD09] by separating individual notes and then
regrouping them.

To summarize, the NMF modeling is very attractive for audio thanks to the follo-
wing properties :

� it is an object-based decomposition, thus allowing various applications in audio
manipulation and analysis,

� it is quite general and, thus, suitable for various types of sounds such as music,
speech and environmental sounds (though, it is a little bit less e�cient for speech
than for music, since speech is usually exhibits stronger pitch variation and thus
one needs much more characteristic spectral patterns to describe it well),

� in contrast to other models such as, e.g., Gaussian mixture models (GMMs), it
allows handling polyphony [8].

Let us now turn back to the NMF with IS divergence (IS-NMF). A very attractive
property of IS-NMF, which we use extensively in this work, is that it allows the following
probabilistic interpretation. Let us assume the complex-valued STFT coe�cients xfn
mutually independent and each coe�cient distributed as

xfn ∼ Nc(0, [WH]fn), (1.11)

7
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CHAPITRE 1. NMF/NTF MODELING FOR AUDIO SOURCE SEPARATION

where in a more general vector case Nc(µ,Σ) is the proper complex Gaussian distri-
bution [NM93] with probability density function (pdf)

Nc(x;µ,Σ) =
1

|πΣ| exp
[
−(x− µ)HΣH(x− µ)

]
, (1.12)

µ being complex-valued mean vector, and Σ being complex-valued Hermitian cova-
riance matrix. It was proven in this case [FBD09] that the NMF optimization criterion
(1.3) with IS divergence is strictly equivalent to the maximum likelihood (ML) estima-
tion of W and H.

This probabilistic reformulation, though equivalent, is more attractive since it mo-
dels directly the STFT coe�cients xfn (thus the signal itself), and not the power
spectrogram |xfn|2, where the phase information is lost.

Another attractive property of IS divergence, in light of application to audio, is that
it is scale-invariant [FBD09], i.e.,

dIS(λb, λa) = λdIS(b, a) (1.13)

for any λ > 0. This makes it equally sensitive to sounds with low and high power.

1.1.4 Application to single channel source separation

The single channel source separation problem is usually formulated as follows. It is
assumed that J signals, called sources, are added to form a so-called mixture

x̃(t) =
J∑

j=1

s̃j(t), (1.14)

where t stands for sample index in time domain, x̃(t) denote mixture samples, and
s̃j(t) denote jth source samples. The problem is to estimate unknown sources under
the mixing assumption (1.14), given the observed mixture.

Thanks to the linearity of the STFT transform the mixing equation (1.14) rewrites
in the STFT domain as

xfn =
J∑

j=1

sjfn, (1.15)

where xfn and sjfn denote the STFT coe�cients of the mixture and the sources, res-
pectively.

Now we assume that the power spectrogram of each source |Sj|2 is modeled by an
IS-NMF as [FBD09]

|Sj|.2 ≈ Vj = WjHj, (1.16)

withWj ∈ RF×Kj

+ andHj ∈ RKj×N
+ . Equivalently, as mentioned in the previous section,

this can be re-formulated in a probabilistic manner as

sjfn ∼ Nc(0, [WjHj]fn). (1.17)

We then stuck together the IS-NMF source models as W = [W1,W2, . . . ,WJ ] and
H = [HT

1 ,H
T
2 , . . . ,H

T
J ]T , and one can easily show, thanks to mixing equation (1.15)

and assumption (1.17), that expression (1.11) holds, and thus the mixture power spec-
trogram is as well modeled with IS-NMF as

|X|.2 ≈WH. (1.18)
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Assuming all models well estimated, the sources can then be recovered by Wiener
�ltering as

Ŝj =
WjHj

WH
�X, (1.19)

which corresponds to the minimum mean squared error (MMSE) estimator in the STFT
domain under assumptions (1.17) and (1.15).

The main problem here is that the source models (Wj,Hj) cannot be directly
estimated since the sources are unknown. However, the mixture model (W,H) may be
estimated from the observed X. Even though we assume that by chance each rank-1
component wkhk of decomposition (W,H) corresponds to just one source, they still
need to be correctly regrouped to form (Wj,Hj)

J
j=1, and usually this is unfeasible

without additional prior information.
Various strategies exist to estimate source models with di�erent levels of supervi-

sion. Let us mention just some of them :

� Non-supervised (or blind) : NMF components may be clustered a posteriori based
on some criterion [SG09].

� Semi-supervised : Examples of some of J sources, but not of all sources, are
available (say J∗ examples, 0 < J∗ < J). Then, the spectral dictionaries Wj

(j = 1, . . . , J∗) may be pre-trained on these source examples, concatenated to
form W with some additional columns to describe the remaining sources (j =
J∗+1, . . . , J), and then (W,H) might be learned from the mixture while keeping
pre-trained Wj (j = 1, . . . , J∗) �xed [SRS07].

� Weakly-supervised : There are no examples of clean sources, but there are examples
of source mixtures with less than J sources. For example, to separate �piano +
bass + drums� mix, one would have �piano + bass�, �piano + drums� and �bass +
drums� example mixtures. It is possible to learn NMF source models from such
weak annotations (see [LSCJ08] or [7] for details).

� Supervised : There are examples of all J sources. Then, as in semi-supervised case,
Wj (j = 1, . . . , J) may be pre-trained on these source examples, concatenated to
form W, and then the H may be estimated from the mixture, while keeping W
�xed [SRS07].

There are many other ways to regularize NMF model estimation, including audio object
compression, where some information to guide model estimation may be extracted
from the clean sources [PGB10, LPB+12], or informed source separation, where the
estimation is guided by some available complementary information (e.g., music score
[EPMP14] or text [9]) or by a user [10].

1.2 Nonnegative tensor factorization

1.2.1 Problem statement

By tensors we mean L-way arrays or simply datasets indexed by L indices. For
example, in case of L = 2 we are back to matrices and in case of L = 3 we have
sort of �boxes�. Since in this work we are dealing only with 3-way tensor, we limit our
presentation here to the particular case of L = 3.

Let our data represented by a 3-way tensor B = [bjfn]J,F,Nj,f,n=1 of size J × F × N
with nonnegative entries. There are many kinds of nonnegative tensor factorization
(NTF) models such as TUCKER3 [Kie00] and many others [CZPA09]. Among the
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Figure 1.3 � NTF (CANDECOMP / PARAFAC) with K = 6 as a sum of rank-1 tensors.

most popular ones there is a so-called CANDECOMP or PARAFAC model [Bro97].
Since this is the only NTF model we are using in this work, we will describe only this
model and will refer to it as NTF throughout this document.

The data tensor B is approximated as a sum of K rank-1 3-way nonnegative tensors
as

B ≈ V =
K∑

k=1

qk ◦wk ◦ hTk , (1.20)

with Q being a J ×K nonnegative matrix, qk being its k-th column, W and H being
de�ned as before for NMF, and ◦ denoting tensor outer product. This decomposition
is represented on Figure 1.3.

Similarly to NMF, NTF parameters are found by optimizing

(Q,W,H) = arg min
Q′≥0,W′≥0,H′≥0

C(Q′,W′,H′) (1.21)

= arg min
Q′≥0,W′≥0,H′≥0

D(B‖V), (1.22)

with D(B‖V) being some divergence, and we consider here only the IS divergence, and
V being speci�ed as in (1.20).

It is interesting to note that, in contrast to NMF, for NTF (with L > 2) the
conditions for uniqueness of solution of (1.22) are much milder [Kru77, LC10].

1.2.2 Algorithms

Similarly to NMF, various optimization strategies are possible to optimize (1.22).
We here summarize the MU rules for the case of IS divergence. In case of NTF these
rules are easier to be formulated in scalar form and consist in alternating between the

10
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following updates :

qjk ← qjk

∑F,N
f,n=1wfkhknbjfnv

−2
jfn∑F,N

f,n=1wfkhknv
−1
jfn

, (1.23)

wfk ← wfk

∑J,N
j,n=1 qjkhknbjfnv

−2
jfn∑J,N

j,n=1 qjkhknv
−1
jfn

, (1.24)

hkn ← hkn

∑J,F
j,f=1 qjkwfkbjfnv

−2
jfn∑J,F

j,f=1 qjkwfkv
−1
jfn

, (1.25)

where V = [vjfn]J,F,Nj,f,n=1, and it is recomputed as in (1.20) after each update.

1.2.3 Application to multichannel source separation

In the multichannel scenarios it is assumed that the sources are recorded by several
I > 1 microphones. In this case each source goes in general through a di�erent acoustic
path to attend each of microphones. This so-called spatial diversity is usually exploited
by a source separation algorithm on top of source characteristics (as in the single chan-
nel case) to achieve better separation quality. In multichannel scenarios a distinction
is often made between the (over-)determined case (I ≥ J : at least as much mixtures
as sources) and the under-determined case (I < J : less mixtures than sources), which
is more di�cult.

Previous works utilizing NTF for multichannel source separation [FCC05, PE06]
were applying it directly to the spectrograms of channels (or mixtures) stuck into a
3-valence tensor. Indeed, this is quite intuitive as idea, since this is almost the only
observed nonnegative 3-valence tensor available in this case. Without going here into
the details of how the sources and the mixtures are related, let us assume that {Xi}Ii=1

are the STFTs of I mixtures. They are then stuck to form a 3-valence tensor X =
[xifn]I,F,Ni,f,n=1, which is modeled as

|X |.2 ≈ V =
K∑

k=1

qk ◦wk ◦ hTk , (1.26)

with Q ∈ RI×K
+ . Each entry qik of matrix Q represents the contribution of the k-th

component of the decomposition into the i-th channel. Similarly to NMF, optimization
of this model with IS divergence is equivalent to the ML criterion optimization assuming
that

xifn ∼ Nc
(

0,
[∑K

k=1
qk ◦wk ◦ hTk

]
ifn

)
, (1.27)

and all xifn are mutually independent.
The main drawbacks of the multichannel NTF modeling (1.26) are :

1. This fully nonnegative decomposition of the mixture (power) spectrogram ignores
completely the STFT phase, while the phase modeling is very important for audio
source separation, especially under far-�eld assumptions (i.e., when the distances
between sources and microphones are considerably greater than the distances
between microphones) [11].

2. Since the coe�cients qik are not varying over frequency, this decomposition is
limited to model instantaneous mixtures (not convolutive ones), where the sources

11
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are simply added after multiplication by some scalar gains (not �ltering). This
makes its applicability to real world scenarios very limited.

3. Finally, within IS-NTF probabilistic formulation (1.27) it is assumed that all
STFT coe�cients xifn are mutually independent, i.e., over time, frequency and
channels. While independence over time and frequency might be a good approxi-
mation of the reality, the independence over channels is certainly a too coarse
approximation. Indeed, since the same sources are mixed up in di�erent channels,
the channels are not independent.

These drawbacks will be addressed within multichannel multisource NMF/NTF
modeling we will present in the next chapter.

1.3 Conclusion

In this chapter we have presented some basics on NMF and NTF modeling with a
strong focus on IS divergence that has a very attractive Gaussian interpretation. We
have discussed the applicability of this modeling to audio processing and especially
to single-channel and multichannel audio source separation. We have revealed and
discussed the limits of existing approaches in the multichannel case.

12



Chapitre 2

Proposed multichannel multisource
NMF/NTF modeling

In this chapter I introduce a general formulation of multichannel multisource NMF/NTF
modeling that uni�es to some extend all the models we introduced in papers [1, 2, 3, 4].

2.1 Main idea

Recall that previous state-of-the-art attempts to use NTF for multichannel source
source separation are relying on NTF modeling of tensor of multichannel mixture spec-
trograms. As already mentioned, such a modeling is only a very coarse approximation
of multichannel mixing and it is often not reliable at all (e.g., for convolutive mix-
tures). However, as discussed in Section 1.1.3, NMF remains a very good model for
source spectrograms.

Our main idea relies on a sort of semi-nonnegative modeling and consists in

� either modeling power spectraogram of each source with IS-NMF (multichannel
NMF) as in (1.16),

� or modeling power spectraograms of all sources stuck in a 3-valence tensor S =
[sjfn]J,F,Nj,f,n=1 with IS-NTF (multichannel NTF) as

|S|.2 ≈ V =
K∑

k=1

qk ◦wk ◦ hTk , (2.1)

while modeling the mixing process directly in the signal domain instead of the domain of
nonnegative spectrograms. This becomes possible thanks to the Gaussian interpretation
of IS-NMF, as in (1.17), or of IS-NTF as

sjfn ∼ Nc
(

0,
[∑K

k=1
qk ◦wk ◦ hTk

]
jfn

)
, (2.2)

which speci�es a Gaussian distribution of the sources S (not their power spectrograms
|S|.2), thus allowing modeling mixing process in the signal domain. Moreover, as we
will see, such a modeling allows handling other distortions such as missing samples or
quantization, which seems to be almost impossible within a fully nonnegative frame-
work.

To summarize in two words, instead of modeling the observed mixture spectro-
gram tensor with NTF as in (1.26) we propose NTF modeling of the latent source
spectrogram tensor as in (2.1).

13
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2.2 Assumptions and modeling

Let us now present our general formulation unifying models in [1, 2, 3, 4]. We assume
that there are J audio sources going altogether through a combination of various linear
transforms such as for example :

� �ltering (appears, e.g., in convolutive audio source separation [1, 2]),

� summation (appears, e.g., in audio source separation [1, 2, 3]),

� STFT and inverse STFT (useful for switching between STFT and time domains,
as needed in [3]),

� subsampling (appears, e.g., within problems with missing samples like audio de-
clipping or more generally audio inpainting [3]).

As a �nal step, a quantization might be applied, which is necessary in audio compression
or simply to store the result. At the end we get an Mx-length vector x of observations,
which is a concatenation of all resulting samples. The result may be in any domain :
time, time-frequency or other. For the sake of generality x is assumed complex-valued,
i.e., x ∈ CMx . Let again S a 3-valence tensor of source STFT coe�cients, which is
unknown in general. Since the sources may be computed from S via the inverse STFT
transform, which is linear, and all other transforms applied to sources are linear (except
the quantization), source STFTs S and the resulting observations x are related (up to
the quantization step) by a linear transform. This can be written as

x = A vec(S) + z, (2.3)

where vec(·) is an operator vectorizing a tensor of size J × F ×N into a vector of size
Ms = J · F · N , A ∈ CMs×Mx is a matrix representing the resulting linear transform,
and z ∈ CMx is a quantization noise or any other noise.

It is further assumed that the noise components zm (m = 1, . . . ,Mx) are mutually
independent and each component follows a zero-mean Gaussian distribution

zm ∼ Nc(0, σ2
z,m), (2.4)

with a �xed variance σ2
z,m assumed to be known. The variance σ2

z,m depends on the
component's index m, e.g., to be able handling non-uniform quantization. Gaussian as-
sumption is not completely true for quantization, and mutual independence assumption
is only true for scalar quantization (not for vector one). However these approximations
are reasonable.

It is also assumed that all the entries of vec(S) are mutually independent and
each entry follows a zero-mean Gaussian distribution as in (2.2). As such, this is a
multichannel NTF modeling (2.1) which is in fact a generalization of multichannel
NMF modeling (1.16). Indeed, if each column of matrix Q in (2.1) is supposed to be
normalized such as it sums to 1, each qjk represents the contribution of the k-th rank-1
component into the modeling of the j-th source. Now, assuming each column of matrix
Q has all entries but one equal to zero, i.e. each rank-1 component contributes into
the modeling of just one source, one can easily show that (2.1) reduces to (1.16) (up to
some trivial permutation issues). In light of the above explanation, multichannel NTF
has the following potential advantages over multichannel NMF :

� one rank-1 component may contribute into modeling of several sources, and

� in contrast to multichannel NMF, where one needs to specify the number of
componentsKj for each source, for multichannel NTF one only needs to de�ne the
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H
Q

W

≈| · |.2
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+z

S |S|.2

A · vec(S)

Figure 2.1 � General multichannel multisource NTF modeling together with an example of
linear transform A, where 3 sources are convolutively mixed into 2 channels in time domain
and then subsampled.

total budget of components K, which is then automatically distributed between
sources via learning of matrix Q.

As such, we here use multichannel NTF rather than multichannel NMF.

The above-described general modeling is schematized on Figure 2.1 together with
an example of linear transform A, where 3 sources are convolutively mixed into 2
channels in time domain and then subsampled. However, this is just one example and
there are many other possibilities, e.g., one may not going back to time domain with
inverse STFT and do �ltering directly in the STFT domain, as in [1, 2, 3]. In the latter
case the observations x are in the STFT domain as well.

Given the model speci�ed above and the observations x, the goal is to estimate
both the parameters of NTF decomposition (Q,W,H) and the tensor of latent source
STFTs S. The sources may be then reconstructed in time domain via the inverse STFT.

It should be noted right away that this formulation is not practical at all since, even
though everything is Gaussian, thus leading to tractable computations, the dimensions
Ms = J × F ×N and Mx of matrix A are huge in practice making the computations
unfeasible. However, as we will see later on, this will be taken care about by introducing
some approximations/simpli�cations. For the moment we keep the formulation as it is
for the sake of generality.

On the other hand, this formulation only partially generalizes the models from
[1, 2, 3, 4]. More precisely :
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� As for convolutive multichannel source separation [1, 2], the transform A is not
completely known, since it is based on the parameters of mixing �lters (see
Fig. 2.1) that are not known in general and must be estimated as well.

� Several other nonnegative structures, not only NMF or NTF, are considered in
[2] to approximate the latent source power spectrograms |S|.2.

� A so-called full-rank spatial model [DVG10a] [2] is not covered by this formu-
lation, since it models so-called non-point sources, i.e., sources that are slightly
decorrelated over channels.

However, since generalizing everything is di�cult (though not impossible), we keep our
current formulation as it is, and all those di�erences will be discussed case by case.

2.3 Estimation criteria and algorithms

2.3.1 Estimation criteria

Let θ = {Q,W,H} denote the whole set of parameters of the NTF model. The
estimation is usually performed in two steps :

� The model θ is estimated in the ML sense, i.e., maximazing the likelihood of the
observations given the model, as :

θ = arg max
θ′

p(x|θ′). (2.5)

In case some prior distribution on parameters θ is given, maximum a posteriori
(MAP) estimation may be used instead [2].

� Given the estimated model θ, the sources S are estimated with the MMSE esti-
mator as :

Ŝ = E[S|x;θ]. (2.6)

2.3.2 Algorithms

Note that since everything is Gaussian and the transform A is linear, the posterior
distribution of vec(S), given the observations and the model, is Gaussian as well, and
it can be shown [1] to be expressed as

p(vec(S)|x;θ) = Nc(vec(S); vec(Ŝ),Σpost
S ), (2.7)

with Nc(·; ·, ·) de�ned in (1.12), and posterior mean vec(Ŝ) ∈ CMs and posterior cova-
riance Σpost

S ∈ CMs×Ms computed as

vec(Ŝ) = Gx, (2.8)

Σpost
S = ΣS −GAΣS , (2.9)

G = ΣSA
H(AΣSA

H + Σz)
−1, (2.10)

where 1

ΣS = diag(vec(V)), (2.11)

1. Within this document the operation diag(·) when applied to a square matrix means a column
vector consisting of the elements of the diagonal of this matrix, while when applied to a vector means
a diagonal matrix with this vector on the diagonal.
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with V as in (2.1),
Σz = diag([σ2

z,1, . . . , σ
2
z,Mx

]), (2.12)

and matrixG is a so-called Wiener �lter gain. As such, this already gives us the solution
for the source estimation in (2.6), which is obtained via Wiener �ltering [Kay93] as in
(2.8). We will now present a way for optimizing the ML criterion (2.5) to �nd model
parameters.

The likelihood in (2.5) writes

p(x|θ) = Nc(x; 0,AΣSA
H + Σz), (2.13)

withΣS andΣz speci�ed in (2.11) and (2.12), respectively ; and there is no closed-form
solution maximizing it over θ. As such, optimization strategies such as the expectation
maximization (EM) algorithm [DLR77] or more generally the MM algorithm [HL04]
are usually used. An MM approach is proposed in [SKAU13] and many variants of
EM are possible depending, e.g., on the choice of the latent data [12, 13]. We here
detailed just one EM algorithm variant that is suitable in most cases and has quite
simple formulation and interpretation. Note that this EM algorithm does not always
coincide with algorithms described in [1, 2, 3, 4] for the corresponding models, but it
is applicable for all those models.

This algorithm is referred to as GEM-MU [2, 4], since it is rather a generalized
EM (GEM) algorithm [DLR77] (i.e., the maximization step does not maximize the
corresponding auxiliary function, but only insures it is non-decreasing under parameters
update), and it is based on the MU rules to update NTF model parameters within the
maximization step. The algorithm consists simply in iterating between computing the
conditional expectation of latent source powers spectrogram tensor P = |S|.2 (E-step),
and updating the NTF model parameters θ with MU rules (1.23), (1.24), (1.25) while
approximating the estimated tensor (M-step). More precisely :

� E-step : Compute conditional expectation of source power spectrograms :

vec(P̂) = E[vec(|S|.2)|x;θ] = vec(|Ŝ|.2) + diag(Σpost
S ), (2.14)

with Ŝ and Σpost
S computed as in (2.8) and (2.9), respectively.

� M-step : Apply one or several iterations of MU rules (1.23), (1.24), (1.25), while

substituting data tensor B by P̂ .

Let us note again that this algorithm is not practical at all since requires inversion
and multiplication of matrices of very high dimensions Ms and Mx (see, e.g., (2.8),
(2.9) and (2.10)). However, this is avoided in each particular case by employing some
approximations that make matrix A block-diagonal either over time frames [4] or over
both time frames and frequency bins [1, 2, 3].

2.3.3 Summary of applications

We have shown the advantage of the proposed multichannel multisource NMF/NTF
modeling over the state of the art for a range of applications, including :

� blind source separation [1],

� supervised and semi-supervised source separation [2], where this models may be
combined with other models in a �exible and systematic manner,

� informed source separation or, saying di�erently, audio objects compression [3, 4],
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� audio inpainting including audio declipping and compressive sampling recovery
[4].

These applications will be discussed below in details.

2.4 Conclusion

We have presented a quite general formulation of a multichannel multisource NTF
modeling unifying to some extend the models developed in [1, 2, 3, 4] that will be
discussed in the following chapters. Though this very general formulation is computa-
tionally intractable, approximations will be introduced to overcome this.
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Chapitre 3

Paper 1 : Multichannel nonnegative
matrix factorization in convolutive
mixtures for audio source separation

This work was done in collaboration with Cédric Févotte. In [1] we have introduced
multichannel NMF model and applied it with success to blind source separation of
convolutive and instantaneous mixtures, as well as to blind separation of professionally
produced stereo music recordings. The model was then extended to multichannel NTF
in [7]. In my opinion this is a key contribution in the domain, and it can be brie�y
resumed as an extension of NMF modeling applicability from single-channel source
separation to multichannel source separation. This statement might be supported by
the fact that the paper [1] has been extensively cited (538 citations according to Google
Scholar on November 19, 2019) and has received the IEEE Signal Processing Society
Best Paper Award in 2014.

3.1 Audio source separation of multichannel mixtures

Convolutive mixing is one of the most realistic mixing models for static (i.e., non-
moving) sources. As such, this kind of mixing is very often considered in audio source
separation. In contrast to single-channel mixing (1.14), where the sources are just
added, it is assumed that I mixture signals x̃i(t) (i = 1, . . . , I) are obtained from J
sources s̃j(t) (j = 1, . . . , J) through a convolutive mixing as :

x̃i(t) =
J∑

j=1

L−1∑

τ=0

ãij(τ)s̃j(t− τ) + z̃i(t), (3.1)

where ãij(t) is the �nite-impulse response of some (causal) �lter and z̃i(t) is some
additive noise (e.g., quantization noise). The goal is again to estimate sources s̃j(t)
from the known mixtures x̃(t). In general, the convolutive �lters coe�cients ãij(t) are
not known either.

Instantaneous mixing is also often considered for research purposes, and it is a
simpli�ed version of convolutive mixing, where each �lter is replaced by multiplication
by just one gain as

x̃i(t) =
J∑

j=1

ãij s̃j(t) + z̃i(t). (3.2)
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This mixing is much less realistic and occurs in practice quite rarely. One exception are
arti�cially-mixed professionally produced music recordings, where a so-called �pan pot�
mixing corresponds to instantaneous mixing. However, this is rather valid for some old
recordings, in modern recordings a lot of reverberation and other e�ects are added.

There is also a distinction between (over-)determined (I ≥ J) and under-determined
(I < J) cases. The under-determined case is obviously more challenging and we were
mostly targeting this case, while developing multichannel NMF. However, it is also
applicable without restriction in the (over-)determined case.

Convolutive mixing equation (3.1) may be rewritten in the STFT domain as

xifn =
J∑

j=1

aijfsjfn + zifn, (3.3)

with xifn, sjfn and zifn being, respectively, STFT coe�cients of mixtures, sources
and noise ; and aijf being coe�cients of discrete Fourier transform (DFT) of �lters
ãij(t). Equation (3.3) is veri�ed only approximately, and it is referred to as narrowband
approximation. It holds when the �lter length L is �signi�cantly� shorter than the STFT
window size [PS00]. Equation (3.3) can be also rewritten in matrix form as

xfn = Afsfn + zfn, (3.4)

with vectors xfn = [x1fn, . . . , xIfn]T , sfn = [s1fn, . . . , sJfn]T and zfn = [z1fn, . . . , zIfn]T ;

and matrix Af = [aijf ]
I,J
i,j=1.

One can note that convolutive mixing (3.1) reduces to instantaneous mixing (like
(3.2)) for each frequency bin f in the STFT domain (3.3). However, even if one manages
to separate instantaneous mixtures in each frequency bin, one still needs correctly grou-
ping individual bin-wise source estimates to reconstruct sources globally. This problem
is usually referred to as permutation alignment problem [SAM10].

Prior to our work, several methods were proposed to solve convolutive mixing source
separation formulated in the STFT domain under narrowband approximation (3.3).
However, non of those approaches were addressing this problem globally in a principle
way. For example, one of the best approaches proposed by Sawada et al. [SAM10]
consists in solving instantaneous mixing (3.4) by an independent component analysis
(ICA)-like method [OP04] for each frequency bin, and then in solving permutation
alignment by grouping sources according to their temporal correlation. As we have
already mentioned at the end of Section 1.2.3, state-of-the-art NTF-based methods are
as well su�ering from numerous drawbacks.

Multichannel NMF allows overcoming all above-mentioned shortcomings. In parti-
cular, in contrast to [SAM10], permutation alignment and frequency-wise source esti-
mation are addressed jointly within a global probabilistic Gaussian modeling.

3.2 Multichannel NMF model

Assuming convolutive mixing narrowband approximation (3.4) and sources distri-
buted as in (1.17) we obtain multichannel NMF modeling as proposed in [1]. Similarly,
according to our extension in [7], multichannel NTF is obtained by assuming the sources
distributed as in (2.2).

A schematic representation of multichannel NMF is given on Figure 3.1. On can
see that this representation is a partial case of our general formulation on Figure 2.1,
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+

+

Sources S NMF: W H Mixing system A

Mixture X

Multichannel NMF problem:    Estimate W, H and A from X

noise 1

noise 2

Figure 3.1 � Representation of convolutive mixing system and formulation of Multichannel
NMF problem (�gure from [1]).

except that there is no subsampling and everything (i.e., modeling and observations) is
formulated in the STFT domain. Mixing equation (3.4) corresponds to equation (2.3)
in the general formulation, where, thanks to narrowband approximation, the linear
transform A becomes block-diagonal over time and frequency so as the computations
in (2.8), (2.9) and (2.10) simplify to multiplication and inversion of matrices/vectors
of size I or J . This allows developing very e�cient parameter optimization strategies.

While the original GEM algorithm described in [1] is di�erent from the GEM-MU
algorithm described in Section 2.3.2, the latter is applicable as well with only di�erence
that the E-step and the M-step should be completed to allow updating the mixing
parameters Af . The corresponding detailed implementation can be found in [7], where
it is also shown that the GEM-MU algorithm converges faster than the original GEM
from [1] (see Fig. 1. in [7]).

3.3 Results

We have evaluated the proposed approach on both instantaneous and convolutive
mixtures. Though, as we have already mentioned, multichannel NMF solves permuta-
tion alignment and frequency-wise source estimation jointly, it is still quite sensible to
the initialization of model parameters. As such, we used state-of-the-art reference algo-
rithms to obtain good initializations. For instantaneous mixtures we used the algorithm
by Vincent [Vin07], and for convolutive ones the algorithm by Sawada et al. [SAM10].
We have shown that multichannel NMF improves the source separation results over
the reference algorithms in both instantaneous and convolutive cases (see Table II in
[1]).

Moreover, the proposed approach has been evaluated on the corresponding tasks
of the international Signal Separation Evaluation Campaign (SiSEC 2008) [VAB09].
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Figure 3.2 � Results for �Under-determined speech and music mixtures - instantaneous mix-
tures� SiSEC 2008 [VAB09] task. The results are plotted in terms of source to distortion ratio
(SDR) [VGF06] (higher is better).

In particular, the approach has shown the best results for �Under-determined speech
and music mixtures - instantaneous mixtures� SiSEC 2008 task among 10 competing
algorithms, see Figure 3.2 and/or Table 2 in [VAB09]. It is also interesting to note from
Figure 3.2 that the multichannel NTF outperforms considerably the so-called oracle
binary masking, where the sources are estimated using an �ideal� binary mask derived
based on the knowledge of true sources (�oracles�). This showcase (when a non-oracle
estimation outperforms an oracle one) demonstrates the great potential of multichannel
Wiener �ltering (2.8) over a simple (but limited) binary masking.

3.4 Impact and followings

This work had a quite important impact in our scienti�c community, since, as it was
already mentioned, it has been extensively cited and the paper [1] has received the IEEE
Signal Processing Society Best Paper Award in 2014. Moreover, the multichannel NMF
modeling was followed, extended or applied to other problems by myself (with other
co-authors, as we will see below) or other researchers. Let us just list few examples :

� We have extended multichannel NMF to a more general audio source separation
framework [2] allowing it to be combined with other models and to be applied in
other source separation scenarios (e.g., supervised or semi-supervised).

� We have applied it to other problems [3, 4] such as audio objects compression or
audio inpainting (e.g., declipping).

� Sawada et al. [SKAU13] proposed di�erent (MM-based) algorithms for multi-
channel NMF, and have also extended it to a case of a generalized multichannal
EUC distance.

� Kitamura et al. [KOS+16] have proposed more e�cient algorithms for multichan-
nel NMF in case of (over-)determined mixtures.

� Several researchers [LGH19, KLIM19] have pushed multichannel NMF into deep
learning world by replacing the latent NMF models with pre-trained variational
autoencoders (VAEs) [KW13].
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� Several book chapters [12, 13] [KSH18] have been written on this topic.

3.5 Conclusion

We have presented multichannel NMF modeling as developed for and applied to
blind audio source separation in convolutive and instantaneous mixtures. We have
shown and discussed some results and improvements over the corresponding sate-of-
the-art methods. This work had a quite signi�cant impact in our scienti�c community,
and, in particular, it was well remarked and followed.
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Chapitre 4

Paper 2 : A general �exible framework
for the handling of prior information
in audio source separation

This work was done in collaboration with Emmanuel Vincent and Frédéric Bimbot.
We have remarked that many audio source separation approaches within various sce-
narios (single-channel or multichannel ; blind, semi-supervised or supervised ; etc ...)
fall within a so-called local Gaussian modeling (LGM) framework that includes and
generalizes the multichannel NMF [1]. Though those approaches are not all based on
NMF spectral source modeling. For example, some of them are based on Gaussian
mixture models (GMMs) or hidden Markov models (HMMs) as spectral source mo-
dels and on various spatial models. Motivated by this observation we have developed
a �exible framework [2] allowing combining various spectral and spatial source models
in a systematic manner. Moreover, the parameters of those models may be fully or
partly �xed or learned from the observed mixture, while optionally given some prior
distribution. Those choices should be based on the available prior knowledge about the
source separation problem, including availability of training data from which some pa-
rameters might be pre-trained. We have developed a suitable GEM algorithm allowing
estimating model parameters whatever the model speci�cation. A corresponding soft-
ware implementation called Flexible Audio Source Separation Toolbox (FASST) has
been developed in Matlab and is available at [14]. It was later re-implemented in C++
and Python. FASST toolbox is used by researchers and engineers from the commu-
nity, and the corresponding paper [2] has been well remarked (298 citations according
to Google Scholar on November 19, 2019). In particular this work shows the ability
of multichannel NMF, due to its probabilistic Gaussian nature, to be combined with
other Gaussian models and to be enforced by probabilistic priors.

4.1 Local Gaussian modeling

Let us �rst explain local Gaussian modeling (LGM) framework that is a more
general concept than multichannel NMF/NTF. Convolutive mixing equation (3.4) may
be rewritten as

xfn =
J∑

j=1

yjfn + zfn, yjfn = ajfsjfn, (4.1)
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where ajf is the j-th column of matrix Af , and vector yjfn ∈ CI is a so-called spatial
image of j-th source consisting in contributions of this source to each mixture. Very
often in audio source separation we are interested in estimating those spatial images
rather than the sources sjfn themselves, since anyway there is a great scale ambiguity
between the sources and the mixing coe�cients aijf . Now we assume that the source
coe�cients sjfn are mutually independent and each coe�cient follows a zero-mean
Gaussian distribution

sjfn ∼ Nc(0, vjfn), (4.2)

where variances vjfn may be structured as before via NMF as in (1.16) or NTF as in
(2.1), but more generally can be structured di�erently.

Using (4.1) and (4.2) one can easily show that the spatial source image vector yjfn
is distributed as

yjfn ∼ Nc(0,Rjfvjfn), (4.3)

where Rjf = ajfa
H
jf is a matrix of rank 1. After we have published multichannel NMF

paper [1], the Duong et al. [DVG10a] have baptized this model (i.e., Rjf = ajfa
H
jf )

rank-1 spatial model and they have proposed to consider a so-called full-rank spatial
model, where matrix Rjf is not restricted to be expressed as ajfa

H
jf , can be of any

rank, and can be left free during estimation or constrained di�erently (see [DVG10a]
for details). The full-rank modeling allowed to model non-point sources (as opposed
to point sources that a located in single points), e.g., like a piano playing in a room.
Moreover, even in case of point sources, it was shown to improve source separation
performance in case of long reverberations (greater than STFT window size) when the
narrowband approximation (3.3) becomes less exact, and in case of slightly moving
(non-static) sources [DVG10a].

To summarize, the modeling (4.3), where parameters consisting of

� spatial covariances Rjf , and

� spectral variances vjfn

may be structures somehow or given some prior distribution, is called local Gaussian
modeling (LGM) [VAG09]. Many existing approaches fall within this quite general
framework.

Note that, as it was already mentioned at the end of Section 2.2, our general multi-
channel NTF formulation in Chapter 2 does not generalize the LGM for the following
reasons :

� First, in case of LGM with full-rank spatial covariances Rjf there is no more no-
tion of point source coe�cients sjfn and they cannot be even estimated properly.
Indeed, since Rjf is not of rank 1, the entries of spatial image vector yjfn in (4.3)
are decorrelated over channels.

� Second, within LGM modeling spectral variances vjfn are not necessarily struc-
tured by NMF of NTF.

4.2 Motivation

First, let us give an intuition why in 2010, when we have started working on this
project, it was a right time to propose such a general framework. The point is that
before (say before 2009) di�erent audio source separation problems were treated by
qualitatively di�erent methods. For example, single-channel separation was often trea-
ted by methods based on NMF, while multichannel separation ((over-)determined or
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under-determined) by methods based on ICA [Com94]. It was not clear at all how to
use ICA in the single-channel case or how to use NMF in the multichannel case. As
such, a potential uni�cation of approaches was di�cult. Though it is still not clear how
to use ICA in the single-channel case, since introduction of multichannel NMF [1] it
became clear that all those scenarios may be tackled at least by NMF modeling, which
opened us a door and gave us an inspiration for a possible generalization.

Moreover, we have remarked that many state-of-the-art approaches (at least 16
approaches, see Table I of [2]), including multichannel NMF [1], fall into the LGM fra-
mework (4.3) and may be classi�ed according to possible combinations of the following
characteristics :

� Problem dimensionality : single-channel, under-determined, or (over-)determined.

� Level of supervision : non-supervised (or blind), semi-supervised, or supervised.

� Mixing type : instantaneous or convolutive.

� Spatial covariance model : rank-1 [1] or full-rank [DVG10a].

� Spectral variance model : NMF [1], harmonic NMF [VBB09], GMM [15], HMM
[Att03] or source-�lter model [DRDF10].

� Signal representation : linear (e.g., STFT) or quadratic [HBB92] (e.g., equivalent
rectangular bandwidth (ERB) [DVG10b]).

We see that all possible combinations of these characteristics generates already a lot
of possibilities, and the number of possibilities is yet greater since each source can be
modeled with a particular model (e.g., in terms of spatial covariance model and spectral
variance model).

Our main motivation was to propose a general framework allowing incorporating
easily any combination of those characteristics in a principle way within a generic and
�exible implementation. In other words, while current approach was often consisting in
specifying a necessary combination of characteristics from the above list (model design),
designing a suitable algorithm and then implementing it (see Fig. 4.1, top), our intent
was to replace all these steps performed by a user/researcher by a speci�cation of
constraints from a library of constraints (see Fig. 4.1, bottom). The rest of the job
should be done by the generic algorithm we developed. Note that we do not claim
generalizing any possible solution for audio source separation, but many of those that
follow the LGM framework (4.3).
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Source 
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Source 
separation

Current approach

Proposed flexible framework

Figure 4.1 � Current way of addressing a new source separation problem (top) and the way
of addressing it using the proposed �exible framework (bottom) (�gure from [2]).

4.3 Formulation

In few words, our general framework is implemented as follows. The characteristics
listed in the previous section can be speci�ed for a source separation problem at whole,
and individual characteristics may be speci�ed for each source. The latter mostly in-
clude spatial covariance models and spectral variance models. In particular, the most
of di�erent possibilities are for spectral variance models, since they include the models
mentioned in the previous section (NMF, harmonic NMF, GMM, etc ...), but also their
combinations in an hierarchical fashion. One example of such an hierarchical decompo-
sition, as applied to a recording of several xylophone notes, is represented on Figure 4.2.
Finally, each parameter subset may be

� either left free,

� or �xed (e.g., if pre-trained or speci�ed based on some prior knowledge),

� or given some probabilistic prior

during the estimation process.
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Figure 4.2 � A particular hierarchical spectral decomposition as applied to the spectral power
of several xylophone notes (�gure from [2]).

4.4 Algorithm

The generic algorithm we designed is also a variant of MU-GEM approach described
in Section 2.3.2, though implemented for MAP estimation, since some parameters may
be given probabilistic priors. It is schematized on Figure 4.3, and during the M-step
it applies a speci�c (pre-de�ned) constraint to each parameter subset θj,k. This allows
achieving desired generality of the optimization strategy.
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M-step

E-step
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Compute conditional expectation
of natural statistics
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Estimated
sources

Constraints specified by user Model parameters

Figure 4.3 � Overview of the proposed general MU-GEM algorithm for parameter estimation
and source separation (�gure from [2]).

4.5 Implementation

The framework was implemented in Matlab, baptized Flexible Audio Source Sepa-
ration Toolbox (FASST) and released for public use [14] under a general public license
(GPL). It was later re-implemented in Python by Jean-Louis Durrieu. Finally, a C++
implementation [SVB+14] was developed and released by members of PANAMA team
from INRIA - Rennes, where this work was done.

4.6 Conclusion

We have presented a general �exible framework for audio source separation [2]. Ba-
sed on prior knowledge on a particular audio source separation problem, the framework
allows specifying various constraints that are then taken into account for model esti-
mation within the corresponding generic algorithm. This work was well remarked and
the corresponding software implementation (FASST toolbox [14]) we released is used
by researchers and engineers.
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Paper 3 : Coding-based informed
source separation : Nonnegative
tensor factorization approach

This work was done in collaboration with Antoine Liutkus, Roland Badeau and
Gaël Richard. Note that, though a great research e�ort in audio source separation
was done, in general none of approaches allows attending any desired quality of the
estimated sources. Indeed, there are even works reporting theoretical quality bounds
(obtained by so-called oracle estimators) [VGP07] that cannot be overcome by wide
classes of conventional source separation approaches. As such, researchers considered
a di�erent new setting lying sort of in between audio source separation and audio
compression. It is assumed that the clean sources and the mixture are available at a so-
called encoding stage, where any kind of information may be extracted in order to guide
source separation at a so-called decoding stage, where clean sources are not available
any more. The extracted information should be compact enough to be e�ciently stored
or transmitted. Interestingly, this problem has appeared in more or less the same time
in both audio coding research community, where it was called spatial audio object coding
(SAOC) [ERF+08], and in audio source separation research community, where it was
called informed source separation (ISS) [PGB10, LPB+12].

Note that at the time we started working on this topic I was well-placed to work on
such a problem related to both audio source separation and audio compression. Indeed,
as we have already seen, I did a lot of work on audio source separation. Moreover, in
2007 I have done a one year postdoctoral stay in Sweden in Royal Institute of Tech-
nology (KTH), where I was working with Prof. Bastiaan Kleijn on audio compression
[16, 17, 18]. More speci�cally, I was designing practical audio compression schemes
based on probabilistic model-based quantization and encoding under high-rate theory
assumptions [ZSN08]. As we will see, such kind of probabilistic compression can be
elegantly married with probabilistic model-based (e.g., multichannel NTF) source se-
paration.

5.1 Motivation

As it was already mentioned, the ISS problem has started to be studied indepen-
dently and more or less at the same time by researchers from audio sources separation
community, where it was called ISS [PGB10, LPB+12], and by researchers from audio
compression community, where it was called SAOC [ERF+08]. However, no links were
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established between those studies, and I am even not sure that one community was
really aware about the research carried by another community. Moreover :

� As for ISS, the methods proposed by researchers from audio sources separation
community [PGB10, LPB+12] were too source separation-inspired. For example,
Liutkus et al [LPB+12] proposed to estimate NTF model from clean sources at
the encoder, quantize and transmit its parameters, and then to use this quan-
tized model at the decoder to estimate sources by Wiener �ltering. A major
drawback of this approach is that, even assuming quite high transmission rate,
it cannot achieve any desired quality, since the achievable quality is bounded
by that of oracle estimators [VGP07]. There was even a �believe� that ISS me-
thods are in principle unable overcoming quality bounds of oracle estimators
[PGB10, LPB+12]. It is however quite obvious from compression perspective that,
in case when the rate is high enough, one can simply compresses the sources so
as to achieve any desired quality.

� As for SAOC, most of proposed methods [ERF+08] were relying on estimating
and transmitting cues such as channel correlation, spatial coherence, source lo-
calization parameter, etc ... This is however a very poor modeling, as compa-
red to NTF for example. In SAOC [ERF+08] it is also proposed to transmit
perceptually-encoded residual signals to achieve high quality result.

Our motivation for this work was to mix-up the two worlds (source separation and
compression), while keeping the best of each of them.

5.2 Coding-based ISS at glance

We have introduced a so called Coding-based ISS (CISS), �rst in a preliminary
conference publication [19], as a concept, and then in the journal publication [3], where
the multisource NTF model was used. To introduce it brie�y, the CISS consists in :

� CISS encoder :

� Estimate a Gaussian model (whatever Gaussian model) from clean sources.

� Quantize, encode and transmit the model parameters.

� Quantize, encode and transmit the sources based on the posterior distribu-
tion of the sources, given the mixture and quantized model.

� CISS decoder :

� Decode quantized model parameters.

� Decode the sources based on the posterior distribution of the sources, given
the mixture and quantized model.

Figure 5.1 provides a very high-level illustration to understand global advantages of
CISS over conventional ISS and source coding. Let us comment through the subplots :

� (A) : In conventional ISS methods (e.g., [LPB+12]) the sources themselves are not
transmitted, and thus the performance is bounded by that of oracle estimators
[VGP07].

� (B) : If we apply conventional source coding to the sources without using the
mixture, we may achieve any quality, given a su�cient bit-rate. However, the
rate that is inversely proportional to the data log-likelihood would be quite high.
Indeed, the distribution is quite broad (see blue Gaussian on on Fig. 5.1 (B)).
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Figure 5.1 � Simpli�ed visualization of the following probabilistic model-based methods
applied in one TF point : (A) conventional ISS [LPB+12], (B) source coding and (C) the
proposed coding-based ISS (CISS). Notations : x : mixture, s = [s1, s2]

T : sources, p(s|θ) :
a priori source distribution, p(s|x, θ) : a posteriori source distribution, s∗ : true sources, ŝ :
estimated sources.

� (C) : Within CISS

� on one hand, as in source coding, we quantize and encode the sources, thus
we may achieve any quality,

� on the other hand, as in source separation or in conventional ISS, we quantize
and encode using the posterior source distribution, given the mixture. Since
the posterior distribution is much narrower than the prior distribution (see
Fig. 5.1 (C)), we need much smaller rate, as compared to source coding
without using the mixture.

5.3 CISS based on multisource NTF

We now present the CISS scheme based on multisource NTF (NTF-CISS) as publi-
shed in [3]. Note that for simplicity we considered in [3] the single channel ISS scenario.
However, extension to multichannel scenario is straightforward, and we have done it
later and published in a conference paper [20].

We assume single-channel mixing (1.15) directly in the STFT domain. Sources,
represented as before by tensor S in the STFT domain, are assumed to follow multi-
source NTF model (2.1), (2.2). This formulation falls again within our general modeling
represented on Figure 2.1.

Note that the posterior distribution-based CISS, as sketched in the previous section,
may be equivalently seen as : �rst computing a rough estimation of sources Ŝ by
standard Wiener �ltering and then encoding the residual S− Ŝ based on the posterior
distribution covariances. We see again a relation with SAOC [ERF+08], where residual
signals may be optionally encoded.

We now present in broad lines the NTF-CISS [3] encoding/decoding :

� NTF-CISS encoder :

� Estimate NTF θ = {Q,W,H} from clean sources S by applying MU rules
(1.23), (1.24), (1.25) with B = |S|.2.
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� Quantize model parameters (leading to θ̄), entropy-encode them (in [3] we
used uniform scalar quantization of parameters in log-domain (i.e., log(Q),
log(W), log(H)) and GMM-based arithmetic coding [ZSN08]) and transmit.

� Compute rough source estimates Ŝ = E[S|X; θ̄] by standard Wiener �lte-
ring (2.8).

� Residuals R = S − Ŝ being a posteriori zero-mean,

� decorrelate them with Karhunen-Loeve Transform (KLT) based on pos-
terior covariances (2.9),

� apply uniform scalar quantization (leading to R̄) in KLT domain [ZSN08]
and entropy-encode based on statistics of posterior covariances (2.9).

� NTF-CISS dencoder :

� Decode NTF model parameters θ̄.

� Compute posterior means Ŝ as in (2.8) and posterior covariances as in (2.9).

� Decode residuals R̄ in the KLT domain and transform them back to the
STFT domain by applying the inverse KLT computed from posterior cova-
riances.

� Reconstruct sources as S̄ = Ŝ + R̄.

Note that even though the above NTF-CISS scheme overview rely on general equa-
tions (2.8) and (2.9) for posterior mean and covariance computation, since everything
is formulated in the STFT domain, these expressions can be factorized over both time
and frequency. As such, similarly to [1] (see also Chap. 3) and [2] (see also Chap. 4),
there is no computational burden related to (2.8) and (2.9).

Let us mention few other attractive features of the proposed NTF-CISS approach :

� As it was already mentioned, it is easily extendable to multichannel case within,
e.g., general formulation presented in Chapter 2. We have indeed proposed and
published such extension in [20].

� In addition, perceptual modeling is possible within NTF-CISS framework. We
have later published a study on perceptual modeling in [21].

� In contrast to SAOC [ERF+08], where two di�erent models are used to encode
the rough source estimates and the residuals (thus both models need to be trans-
mitted), in our case NTF is used for both rough source estimates (posterior
means) and for arithmetic coding of residuals (posterior covariances), and NTF
parameters are the only parameters transmitted.

� In contrast to some other NMF/NTF-based audio compression methods [NV10,
NVV11] (though not addressing directly the ISS problem), where the STFT ma-
gnitudes and phases are encoded independently, in NTF-CISS framework they are
encoded jointly (by directly coding STFT coe�cients), which is possible thanks
to the probabilistic Gaussian NTF formulation.

Another important �ndings we did in [3] are as follows :

� Based on a previous study [17], we concluded that at least in the high-rate regime
the optimal rate for model transmission is constant and independent on the total
rate. In other words, in the high-rate regime any extra rate should be spent for
signal (here sources) transmission.

� We have shown theoretically, under some approximations, that NTF parameters
should be quantized in log-domain.

� We have also derived optimal rate distribution between di�erent NTF parameter
sets (i.e., matrices Q, W and H).
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Figure 5.2 � CISS-NTF with di�erent ways of optimizing parameters (solid lines), compared
to state of the art [LPB+12] (dotted lines). δPSM and δSDR denote the improvements over the
corresponding measures computed for the oracle Wiener �ltering [VGP07] source estimates
in the STFT domain (�gure from [3]).

5.4 Results

Various ISS approaches were evaluated and compared in terms of rate vs. source
separation performance curves. As for source separation performance metrics, we used
both

� perceptual similarity measure (PSM) of PEMO-Q [HK06], and

� source to distortion ratio (SDR) [VGF06].

Instead of plotting absolute values of these metrics, we used δPSM and δSDR that are
improvements of the corresponding measures computed for the oracle Wiener �ltering
[VGP07] results.

The results are plotted on Figure 5.2. One can see that all evaluated state-of-the-
art ISS methods cannot go beyond zero, since by construction they cannot outperform
oracle Wiener �ltering. On the contrary, thanks to the source residuals encoding, NTF-
CISS outperforms oracle Wiener �ltering for high rates, and outperforms classical ISS
methods for all rates.

5.5 Conclusion

In this chapter we have �rst described the ISS problem. We have then introduced
the CISS and NTF-CISS frameworks that rely on both source separation and compres-
sion principals to solve ISS problem e�ciently. We have shown experimental results
demonstrating considerable superiority of NTF-CISS over prior art ISS methods.
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Paper 4 : Solving time-domain audio
inverse problems using nonnegative
tensor factorization

This work was done in collaboration with Ça§da³ Bilen and Patrick Pérez in Tech-
nicolor, within a collaborative ANR JCJC project MAD (Missing Audio Data). At
the beginning of this project we were wandering whether NMF/NTF modeling, being
a representation of nonnegative audio (power-)spectrograms, is suitable for recons-
tructing missing audio sample in time domain, e.g., problems like audio declipping
[AEJ+12, KJM+13, KBG15, SKD14] or more generally audio inpainting [AEJ+12]. In
fact, it became possible with IS-NMF/NTF thanks to its Gaussian interpretation ; and
the fact that subsampling in time (loosing samples in time domain) and STFT (inverse
STFT) are linear transforms. Moreover, this setting and the modeling we proposed �t
into the general scheme described in Chapter 2 (see also Fig. 2.1).

Historically this work was conducted as follows. We �rst were thinking how to apply
NMF just for audio declipping, but then we have realized that the approach we had in
mind may be generalized making possible several other potential applications, existing
or new. As such, to promote the use of NMF/NTF modeling for those applications,
we have �rst decided publishing a series of conference papers [22, 23, 24, 25, 26], each
paper focusing on just one application. We have then formulated the framework in a
general way and published it in the journal paper [4] together with the applications
including

� audio declipping [22, 26, 4],

� joint audio inpainting and source separation [23, 4],

� compressive sampling recovery [4],

� compressive sampling-based ISS (CS-ISS) [24, 4].

6.1 General framework formulation

We here give a high level presentation of the proposed framework without going
too deep into technical details (see [4] for more details). It is assumed that J sources
are mixed forming a single-channel mixture (1.14). Moreover, it is assumed that all
the signals, including sources and mixtures, are possibly quantized and subsampled.
The observations are the remaining quantized samples of the sources and the mixture,
and the goal is to reconstruct the original (non-quantized) sources and the mixture
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Figure 6.1 � General formulation of time-domain inverse problems.

(the latter can be obtained by simply summing up the reconstructed sources). The
above problem formulation is schematized on Figure 6.1, and one can note that this
formulation is a partial case of our more general formulation presented in Chapter 2
(see also Fig. 2.1). Indeed, our formulation here is limited to the case of single-channel
mixtures for the sake of simplicity, though extending it to multichannel case is quite
straightforward. In fact, we have done such an extension for a punctual study of mul-
tichannel audio declipping [26]. Moreover, though the mixture is single-channel, our
overall formulation might be considered as multichannel, since both the sources and
the mixture are partially observed, and the source observations may be considered as
additional channels.

6.2 Modeling and algorithms

The modeling we used is exactly the multichannel NTF modeling as described in
Chapter 2. As for the algorithms for model parameters estimation and signals recons-
truction, the GEM-MU algorithm described in Section 2.3.2 and Wiener �ltering (2.8)
are applied with some approximations detailed just below.

As mentioned in Section 2.3.2, the GEM-MU algorithm in its general formulation
requires multiplication and inversion of matrices of very high dimensions. Recall that
in Chapters 3, 4 and 5 (papers [1], [2] and [3]) this computational burden was avoided
thanks to the reformulation of the corresponding problems in the STFT domain and
thanks to the narrowband approximation (3.3), which allowed factorizing all those
matrix operations both in time and in frequency. Unfortunately, in contrast to [1, 2,
3], in this study we have not managed factorizing in both time and frequency, but
only in time. Indeed, missing observations in time domain introduces very strong and
important posterior dependencies in frequency domain. The factorization in time was
achieved using the following relaxation.

We distinguish between the following three domains :

� the time domain,

� the framed time domain, which is the time domain signal chunked into overlapping
frames and windowed (just up to DFT computation to obtain the STFT), and

� the STFT domain itself.

The framed time domain and the STFT domain are both redundant and related by
a unitary transform, which is the DFT. We relax the problem by assuming that the
samples are missing in the framed time domain and that the frames are independent.
This is indeed an approximation, since we drop all the dependencies between over-
lapping frames in time. This relaxation allows drastically reducing the computational
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load to the order of F (F being the number of frequency bins). Also, since the ob-
servations are in framed time domain and the NTF model is in the STFT domain,
we need constantly switching within the algorithm between those two domains, and,
for better e�ciency, this is implemented using the fast Fourier transform (FFT). This
allowed us implementing and testing the proposed framework for various applications.
However, it should be noted that the computational load remains quite high, since F
may be of order of 1000. As such, alternative solutions allowing further reducing the
computational load are welcome.

6.3 Applications and results

In this section we present how the above-described general framework may be ap-
plied to di�erent existing and new problems. We also show some experimental evalua-
tion results and comparisons with the relevant state of the art methods. For the sake
of conciseness we do not give much details on the experimental data and setup (an
interested reader may �nd this information in the paper [4]).

6.3.1 Audio declipping

There are many audio processing problems, where the goal is to estimate audio
samples that are for some reason missing in time or time-frequency domain. Those pro-
blems include audio declipping and declicking, compressive sampling recovery, packet
loss concealment, bandwidth extension, etc ... Recently, inspired by image inpainting
[BSCB00] where the goal is to reconstruct missing parts in images, all these problems
were baptized as audio inpainting problems by Alder et al. [AEJ+12]. However, in my
opinion the main contribution of Alder et al. in this work [AEJ+12] consists in changing
the insight on these problems by proposing considering them as inverse problems, e.g.,
like source separation. We were working on those problems within the MAD (Missing
Audio Data) ANR project 1 coordinated by Valentin Emiya, one of the co-authors of
[AEJ+12].

The goal of audio declipping (a particular audio inpainting problem) consists in
recovering time samples missed due to clipping (saturation). Since the publication of
audio inpainting paper [AEJ+12], several machine learning-based methods were propo-
sed and investigated to solve audio declipping problem. Those include sparsity-based
methods [AEJ+12, KJM+13], cosparsity-based methods [KBG14, KBG15] and struc-
tural (so-called social) sparsity-based methods [SKD14].

At the time we started working on this project, to our best knowledge, there were
no work trying to apply NMF or NTF for audio declipping. Indeed, it seems tricky
at �rst glance, since the missing data and the modeling are in two di�erent domains :
time and STFT, respectively. Very likely this is a reason why most of the existing
NMF-based audio inpainting methods were designed for reconstructing missing data
in the STFT domain [LRKO+11, SRS11, �YC12].

Within our general formulation the audio declipping problem is addressed by as-
suming that there is just one non-observed source (J = 1) and the clipped mixture
samples are missing (in fact, the source and the mixture are the same signal here).
It is easy to understand that in this case the NTF modeling degenerates to the NMF
modeling, since one of the dimensions of the latent source tensor S is one (J = 1).

1. http://mad.lif.univ-mrs.fr/
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Note that in case of clipping the clipped samples are indeed missing, but some addi-
tional information about them is available. Notably, it is known that the original value
of a clipped sample is above (below) the clipping threshold. Taking into account those
so-called clipping constraints is very important for better signal estimation. However,
the clipping constraints are linear inequalities that make the posterior distribution of
the unknown samples no longer Gaussian. This makes it di�cult to manage those
constraints within the proposed framework. However, we have proposed few rather ad
hoc tricks allowing managing them (see [22, 4] for details).

We compared the proposed approach with the following state of the art methods :

� orthogonal matching pursuit (OMP) [AEJ+12],

� iterative hard-thresholding (HT) [KJM+13],

� cosparsity (Cosp) [KBG15],

� social sparsity with empirical Wiener operator (SS-EW) [SKD14], and

� social sparsity with posterior empirical Wiener operator (SS-PEW) [SKD14].

The comparison was done on 10 music and 10 speech signals clipped at 8 di�erent
levels. The performance was measured in terms of signal to distortion ratio (SNRm)
improvement over the clipped signal, where the �m� subscript means that the SNR
is computed only over the time support of clipped samples (see [4] for details). The
results are plotted on Figure 6.2, where NMF-U denotes the proposed method without
clipping constraints, and NMF-IP, NMF-SP and NMF-CP the proposed method with
various strategies of managing clipping constraints. One can see that the proposed
NMF-CP method gives results that are comparable to social sparsity-based method
SS-PEW [SKD14]. These results show that using structural signal models (here social
sparsity and NMF) leads to better declipping performance than the models based on
local sparsity only [AEJ+12, KJM+13, KBG15]. One can also note that managing
clipping constraint is indeed very important, especially for music signals (see NMF-U
vs. NMF-CP on Fig. 6.2).

It shall be noted that to achieve these results it was very important to chose a
suitable NMF model order K depending on the signal type. We have empirically found
that K = 20 and K = 28 are the most suitable values for music and speech signals,
respectively. Choosing smaller or higher K was leading to the performance drop. As
for performance drop with smaller K, it is quite easy to understand. Indeed, with
smaller K the model is not able approximating anymore the signal spectrogram with
enough details. For example, NMF with K = 2 would not be precise enough to well
approximate the spectrogram on Figure 1.2. As for performance drop with higher K,
it is a bit more di�cult to understand why over-estimating model order would lead
to the performance degradation. Let us explain it on one example. Assume we have
a periodic signal that is clipped, then the missing data support will be periodic as
well. Overestimating model order would lead to appearance of sort of �phantom� (non-
existing) periodic (so with low-rank spectrograms) signals that would freely oscillate in
the missing support, thus leading to performance degradation. We have indeed observed
such a behavior experimentally, while declipping a snar drum waveform. We will come
back to this point in Section 6.3.3 below, where (surprisingly) we will see an opposite
behaviour of over-estimated model, when the missing support is random.

We have also extended the proposed declipping algorithm to the case of multichan-
nel mixtures and published as a separate conference publication [26]. The proposed
approach is not anymore an instance of the general framework from [4], since in [4] we
have formulated it for single-channel mixtures only, but it is an instance of the general
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(a) Average SNRm improvement computed
over 10 music signals.
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(b) Average SNRm improvement computed
over 10 speech signals.

Figure 6.2 � The average performance of all the audio declipping algorithms as a function of
the clipping threshold. Lower threshold corresponds to more severe clipping (�gure from [4]).

formulation presented in Chapter 2 (see also Fig. 2.1). Moreover, in contrast to single-
channel NMF-based declipping algorithm [22, 4] we have discussed just above, where
the multi-source nature is not important (recall that J = 1 in [22, 4]), in the multi-
channel case it is very important to model latent sources with multi-source (J > 1)
NTF model. Indeed, this allows the resulting approach exploiting the fact that di�erent
audio sources contribute di�erently in di�erent channels, and thus remain highly corre-
lated. To our best knowledge there were no previous works exploiting such correlations
to declip multichannel signals. A naive approach would be obviously to declip each
channel independently using any single-channel declipping algorithm. We have proven
experimentally that the proposed approach outperforms the naive approach relying on
single-channel NMF-based algorithm [22] (see [26] for details).

6.3.2 Joint audio inpainting and source separation

Real world audio mixtures are often degraded, for example they may be clipped,
as we have seen in the previous section. However, in most of research on audio source
separation it is assumed that the mixture is not degraded, which might be limiting
for some real-world scenarios. A dummy solution in this case is a so-called sequential
approach consisting in �rst declipping the mixture by any declipping algorithm and
then applying a source separation algorithm to the decipped mixture. However, such
an approach is sort of suboptimal, since it may su�er from errors propagation : es-
timation errors produced at the declipping stage cannot be corrected at the source
separation stage. As such, we have proposed addressing this problem in a systema-
tic and joint manner, where the sources are estimated directly from the mixture with
missing samples without any prior missing samples imputation (declipping). We have
introduced the concept of �joint audio inpainting (here declipping) and source separa-
tion� [23, 4]. To our best knowledge this was the �rst time that the problem of audio
source separation from clipped mixtures was addressed �properly�, i.e., in a systematic
fashion, as opposed to the above-described sequential approach.

Within our general formulation this problem is addressed by assuming that there
are J > 1 non-observed sources and the clipped mixture samples are missing. In other
words, it is exactly as on Figure 6.1, except that none of the source samples are obser-
ved.

We have tested the proposed approach on 5 mixtures of 3 music sources and compa-
red it to the source separation only (i.e., without any declipping) and to the sequential
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Figure 6.3 � The declipping and source separation performance of joint optimization com-
pared to sequential (�gure from [4]).

(dummy) approach we have mentioned above. In order to have descent source sepa-
ration performance, we have injected some segmental information into all approaches
under comparison (for more details see [4] and Fig. 3 therein). The approaches were
accessed both in terms of declipping performance (SNRm) and source separation perfor-
mance (SDR). The results are shown on Figure 6.3 for a quite severe clipping (mixtures
rescaled between −1 and 1 are clipped in between −0.2 and 0.2) (see Fig. 4 in [4] for
more results). One can remark that while joint approach, as compared to sequantial
approach, does not bring any improvement in terms of declipping (see Fig. 6.3a), it
outperforms in average both separation only and sequantial approaches in terms of
source separation quality (see Fig. 6.3b).

6.3.3 Compressive sampling recovery

Compressive sampling [CW08] consists in randomly sampling a signal in some do-
main for the sake of compression. Compressive sampling recovery is an inverse problem
consisting in reconstruction of the original signal from those random samples. For the
sake of more e�cient compression it is better to sample in a domain that is incoherent
to another domain, where the signal has some structure, e.g., sparsity or low-rankness.
As such, we are here considering random sampling in time domain which is incoherent
to the STFT domain, where audio signals are sparse and their spectrograms are usually
of low rank.

The implementation of compressive sampling recovery within our general framework
(Fig. 6.1) is exactly the same as that of audio declipping (Sec. 6.3.1), except that there
is no clipping constraint to be taken into account, i.e., a missing sample may be of any
value.

The results of recovering a 4s long music signal from di�erent percentages of random
samples kept and for varying model order K are shown on Figure 6.4 in terms of SNRm,
together with results of a shape preserving piecewise cubic interpolation. 2 One can note
that the proposed method greatly outperforms the linear interpolation.

Another interesting observation is that the results do not degrade with increasing
model order, which is totally opposite to what we have observed for audio declipping
problem (Sec. 6.3.1). In other words, a random missing support prevents the model from
over�tting the data even if its order K is high. This should be related somehow to the

2. For the interpolation, theinterp1() function of Matlab 2016a is used with phcip method, which
gave the best results among the available interpolation methods.
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Figure 6.4 � The reconstruction performance measured in terms of SNRm of a 4s long music
signal from its random samples. The reconstruction results with our proposed algorithm (solid
lines) are shown for di�erent percentage of samples and di�erent number of components, K,
used in our approach. The results with shape preserving piecewise cubic interpolation are also
shown for comparison (dashed lines), with the colors indicating corresponding percentage of
samples (�gure from [4]).

missing data theory [Gra09], where di�erent natures of data missingness are considered :
data missing completely at random (MCAR) and data missing not at random (MNAR).
In compressive sampling recovery the data are MCAR, since the missed samples support
is random and independent on the signal itself. In audio declipping the data are MNAR,
since the missed samples support depends on the values of the signal itself.

6.3.4 Compressive sampling-based ISS

Here we go back to the ISS problem (see Chapter 5). Note that all prior ISS schemes,
including [LPB+12] and [3], have encoders that are computationally demanding. Moreo-
ver, they have a higher computational load at the encoding stage than at the decoding
stage. For example, in [LPB+12] and [3] at the encoder the STFT is computed and the
NTF model is estimated with an iterative algorithm, while at the decoder the inverse
STFT is computed, while there is no need in NTF model estimation (its parameters
are transmitted). However, for some applications there might be a need of a very fast
encoder, possibly at the expense of a more computationally demanding decoder. For
example, for archiving purposes one needs compressing and storing everything, while
de-compression may be necessary only from time to time, on demand. In this case
having a very fast encoder would lead to overall time and energy consumption savings.

As such, our motivation in this work was to build an ISS scheme with a very fast
encoder, while moving the computational load from the encoder to the decoder. Our
idea is based on both the concepts of

� the compressive sampling [CW08] (see also Sec. 6.3.3), and

� the distributed source/video coding [XLC04, GARRM05], where the encoder (se-
veral encoders) is (are) very simple, and most of redundency of the encoded data
is exploited at the decoder.
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Figure 6.5 � The rate-distortion performance of CS-ISS using di�erent quantization levels of
the encoded samples. The performance of the ISS algorithm from [LPB+12] and the coding-
based ISS algorithm from [3] are also shown for comparison (�gure from [4]).

More precisely we propose the following ISS scheme called compressive sampling-based
ISS (CS-ISS). At the encoder the sources are simply randomly samples, the samples
are uniformly quantized, (optionally) entropy-encoded and transmitted to the decoder.
It is indeed quite di�cult to imagine an encoder with yet lighter computations, there
is even no need to compute any transform. Note that only the quantized source sample
values need to be transmitted to the decoder, since exactly the same random samples
support can be regenerated at the decoder by the same random generator initialized
with the same seed. At the decoder the sources are reconstructed from the transmitted
source samples and the mixture (recall, in ISS the mixture is assumed to be known at
both the encoder and the decoder, see Chapter 5).

The last (decoding) step may be implemented within our general formulation as
follows. It is assumed that there are J > 1 sources and their quantized samples are
partly observed (on the random sampling support). It is also assumed that the mixture
is fully observed. In other words, the setup is exactly as on Figure 6.1, except that the
mixture is not clipped.

We have compared the proposed CS-ISS with a classical ISS approach [LPB+12]
and with the CISS [3] presented in Chapter 5. The results in terms of SDR vs. rate
curves are shown on Figure 6.5. Plain curves correspond to CS-ISS results with di�erent
levels of quantization (bits per source sample). We see that the optimal quantization
level of CS-ISS varies depending on the overall rate : for low rates 6 bits leads to better
performance, while for high rates it is 11 bits. Overall, we see that, as compared to
the state of the art ISS schemes, CS-ISS gives the same performance for low rates and
slightly worth performance for high rates. This loss in performance is a price to pay
for an encoder that is extremely fast.

6.4 Conclusion

We have described a general framework based on NTF modeling in the STFT
domain for solving audio inverse problems with data missing in time domain. We
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have applied this framework for a wide range of new and existing applications. NTF
modeling, being a powerful model of audio spectrograms, has demonstrated for most of
applications the performances that are on par with or superior to the state-of-the-art.
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Other work

Here I brie�y mention some other projects/topics I was working on since I have
defended my PhD in 2006. Those projects/topics are listed in separate sections below
without any particular structure, though more or less in a chronological order.

Also, I would like to highlight that while working in Technicolor (about 8 years)
I learned a lot on image processing and computer vision, and was involved in some
projects in these areas. Though I have not published a lot in these domains [27, 5],
this was a great and very interesting experience for me. Moreover, this allowed me
proposing and developing some new approaches in audio processing [28, 6] inspired by
paradigms proposed in image processing and computer vision. This will be mentioned
below.

7.1 Flexible speech and audio coding

In 2007 I have done a one year postdoctoral stay in Sweden in Royal Institute of
Technology (KTH). I was working with Prof. Bastiaan Kleijn on a European union
funded project FlexCode. 1 We were designing and developing new �exible speech and
audio compression schemes ; �exible in the sense that they can be instantly recast to
operate on any available/desired bit rate from a continuum of bit rates. This �exibility
was achieved thanks to probabilistic model-based quantization and encoding under
high-rate theory assumptions [ZSN08]. We have published several papers on the topic
[16, 17, 18].

7.2 Learning from uncertain data

Another attractive feature of the probabilistic multichannel NTFmodeling (Chap. 2)
and LGM in general (Sec. 4.1) is that it allows not only estimating the sources via Wie-
ner �ltering (2.8), but also their posterior covariances (2.9). The latter may be used as
a measure of goodness of the estimated values or uncertainty about those estimates.
This uncertainty may be e�ciently taken into account while learning from the estima-
ted sources.

In collaboration with Mathieu Lagrange and Emmanuel Vincent we have developed
such GMM learning schemes as applied to speaker recognition task [29, 30] and singer
identi�cation task [31]. In both cases some LGM-based source separation algorithm was
used to enhance either speech or singing voice, and then the uncertainty was propagated

1. http://www.flexcode.rwth-aachen.de/
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through feature computation (we used Mel-frequency cepstral coe�cients (MFCCs))
up to learning GMMs.

In collaboration with Simon Arberet, Rémi Gribonval and Frédéric Bimbot we
investigated another use case of exploiting such uncertainty. More speci�cally, we were
�rst using one LGM-based source separation algorithm to separate sources, and then we
were using another source separation algorithm (e.g., based on di�erent models) with
models learned from the uncertain output of the �rst algorithm [32, 33]. This approach
allowed for a sort of �sequential� fusion of the two source separation algorithms.

7.3 Source localization

I was also working with Charles Blandin (an intern in INRIA) and Emmanuel
Vincent on source localization, where the goal is to estimate the directions of arrival
(DoAs) of di�erent sources in stereo (I = 2) or multichannel (I > 2) mixtures. In par-
ticular, source localization may be very useful for sources separation, since estimated
DoAs can be used to initialize source separation algorithm or inject some prior infor-
mation in it. We have proposed some new source localization approaches and provided
a thorough experimental evaluation of existing and proposed approaches [34, 35]. All
the approaches were released for public use within a so-called BSS Locate toolbox 2 in
case of stereo mixture. A multichannel version of the toolbox was developped and re-
leased later by researchers from INRIA. Our journal paper [35] was well remarked (187
citations according to Google Scholar on November 19, 2019).

7.4 Source separation evaluation

I was participating in the organization of the second community-based Signal Sepa-
ration Evaluation Campaign (SiSEC 2010) [36, 37]. I have also co-authored a journal
paper [38] resuming the results, �ndings and conclusions that can be drawn from several
signal separation evaluation campaigns over 4 years.

7.5 Informed source separation

I was also working on other variants of informed source separation that are not really
related to compression. More precisely, in those approaches the source separation pro-
cess is informed by either some auxiliary information (e.g., music score [EPMP14] in
case of music audio separation) or by some information provided by a user via a dedi-
cated interface [BMW14]. Note that both the latter approaches and the compression-
related approaches (presented in Chapter 5 and Section 6.3.4) are often referred to as
�informed source separation�, which might be misleading sometimes.

Inspired by score-informed music source separation [EPMP14], we have proposed
text-informed speech separation [39, 9]. We have also extended the same kind of idea
to propose a solution for text-informed speech inpainting [40] in the case when long
portions of speech signal are lost. We have also proposed several user-guided source
separation approaches [7, 10, 25] including one interactive method [10], where user may
continuously re�ning the guidance in order to improve the separation result. We have
also introduced a so-called on-the-�y audio source separation paradigm [41, 42, 28]

2. http://bass-db.gforge.inria.fr/bss_locate/

45

http://bass-db.gforge.inria.fr/bss_locate/


CHAPITRE 7. OTHER WORK

that greatly facilitates the user interaction, thus allowing source separation guidance
by non-professional users. The principle is very simple : a user types in a dedicated in-
terface some keywords describing the sources (e.g., �dog barking� and �wind�), and then
the system retrieves from the internet corresponding source examples that are imme-
diately used to guide source separation process (a demo video can be found at 3). This
was inspired by on-the-�y object category retrieval approach [CZ12] proposed in com-
puter vision community. Finally, within the PhD of Sanjeel Parekh co-advised between
Technicolor and Télécom ParisTech, we have proposed source separation frameworks
guided by motion [43] and by video information [44].

7.6 Audio-visual scenes understanding

Another part of Sanjeel Parekh's PhD work consisted in mining audio-visual objects
in large video collections with �weak� labels. The labels are weak in the sense that
all videos are annotated with some global labels, but there is no spatial or temporal
information about the location of the corresponding audio-visual objects, e.g., a video
may be labeled as �train�, but there is no annotation neither about train appearance in
video stream nor about where one can hear a train in audio stream. Based on a speci�c
deep neural network (DNN) architecture and a non-supervised NMF decomposition
of audio, we have developed an approach allowing at the same time (i) identifying a
video by a label, (ii) locating the corresponding object in the video stream, and (iii)
separating the corresponding sound from the audio stream [45, 46].

7.7 A bit of image/video processing : Faces

I was also publishing a little on topics in computer vision related to facial analysis.
Within one project we have proposed a new facial landmarks localization estimation
algorithm [27]. Another project consisted in analysis/identi�cation of people in complex
videos like movies. First, we have created a so-called Hannah dataset. The dataset
consists in complete annotations of �Hannah and Her Sisters� movie by Woody Allen
in terms of people/characters in both video and audio streams. More precisely, faces in
all frames were annotated with bounding boxes and labeled with character names/ids
(see Fig. 7.1), and audio speech segments were annotated in time and labeled with the
same character names/ids. The dataset was released for public use, 4 and it is described
in [5], where we have also proposed a new approach for face tracking in videos that we
have evaluated on the dataset.

3. http://youtu.be/mBmJW7cy710/
4. https://www.interdigital.com/data_sets/hannah-dataset
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Figure 7.1 � Example of spatio-temporal face annotation in Hannah dataset [5].

7.8 Audio style transfer

In this project we tried again adopting an approach proposed in the area of image
processing to audio processing.

A so-called image style transfer consists in transferring a style from one image (style
image) to another image (content image), and it usually works quite well when the style
image is a painting and the content image is a photo. As can be seen from an example
on Figure 7.2, this kind of methods allow keeping the global structure of the content
image while transferring the color palette and the local textures (painter's brush style)
from the style image. The work by Gatys et al [GEB16] published in 2016 became
very popular and gave rise to many new scienti�c publications, software and online
applications allowing image style transfer.

Inspired by work of Gatys et al [GEB16], we have proposed an audio style transfer
approach [6] which allows transferring sound texture and characteristic spectral pat-
terns from one audio signal to another one (a demo can be found at 5). However, in
contrast to image style transfer, most of audio style transfer methods (including ours
[6]) do not provide such spectacular and satisfactory results as in image processing.
This is possibly because, on one hand, in audio style transfer it is not very clear what
should be transferred exactly and, on the other hand, manipulating audio seems to be
more delicate than manipulating images.

5. https://egrinstein.github.io/2017/10/25/ast.html
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Figure 7.2 � Example of image style transfer (from [6]).

7.9 Tutorials, review paper and book chapters

In 2014, together with other collaborators, I have given two 3-hour long tutorials on
informed source separation and on nonnegative matrix factorization at IEEE ICASSP
2014 and IEEE ICME 2014 conferences, respectively. In 2017 I have co-authored a
review paper [11] on consolidated perspective on multimicrophone speech enhancement
and source separation, published in IEEE/ACM Transactions on Audio, Speech and
Language Processing (TASLP) journal. In 2018 I have co-authored 4 book chapters :
3 on audio source separation [12, 13, 47], and one on audio event detection and scene
analysis [48].

48



Chapitre 8

Conclusion

I have presented my work on solving various inverse problems in audio using pro-
babilistic multichannel NMF/NTF modeling of latent source spectrograms. A uni�ed
view of multichannel multisource NMF/NTF modeling was �rst presented in Chap-
ter 2, and then specialized through Chapters 3 to 6, while following corresponding
papers [1, 2, 3, 4] and covering various applications. These approaches have proven
their e�ectiveness for various source separation scenarios, for informed source separa-
tion (audio objects compression), and for audio inpainting.

The main short take home message that should be retained from all that is :

�When trying to use NTF model on multichannel and/or degraded audio (e.g., clipped
or subsampled), do not try to �nd an observed tensor to apply NTF to, but rather

apply it to the latent tensor of source power spectrograms.�

We are now at the beginning of deep learning era and many deep learning-based
solutions for the same or similar problems have been proposed. However, NMF/NTF-
based methods have not lost their popularity so far. For example in the EDICS of
IEEE/ACM Transactions on Audio, Speech, and Language Processing journal 1 there
are the following topics for AUD-SEP (Audio and Speech Source Separation) : Single-
channel and multichannel source separation ; computational acoustic scene analysis ;
NMF-based source separation ; deep learning methods for source separation. Indeed,
while often very e�cient, deep learning is not a universal solution in any situation. Pro-
vided that there is a su�cient amount of training data, deep learning-based solutions
are usually more powerful than the NMF-based ones, since DNNs allow approaching
a greater variety of non-linear complex functions. However, in contrast to NMF, deep
learning-based solutions are more di�cult to set up (many parameters to tune), are not
applicable when there is few or no training data available, are usually not so �exible
(i.e., once some conditions have been changed, a deep network usually needs to be
retrained), are di�cult to be interpreted, and, as a consequence, it is usually di�cult
to inject some available prior information into the system. As such, instead of choosing
between deep learning and NMF, many recent works, e.g. [NLV16], are rather trying
combining these two approaches.

In my future research I would like exploring deep learning-based approaches. Ho-
wever, inline with what was just said in the previous paragraph, I am not going com-
pletely abandoning NMF or NMF-related ideas, but I will rather try developing hybrid

1. https://signalprocessingsociety.org/publications-resources/
ieeeacm-transactions-audio-speech-and-language-processing/edics
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approaches. As for applications, I was inspired by impressive results the deep learning-
based approaches allowed obtaining in the area of image processing. Notably, they
allowed transferring a style from one image to another [GEB16], changing face at-
tributes (e.g., age or mustached) in an image [UGP+17], generating high-resolution
images of faces of non-existing celebrities [KALL17], etc ... As such, I would like tur-
ning towards similar audio manipulation and audio generation applications. As it was
already mentioned in Section 7.8, I have already started working on audio style transfer
[6]. However, direct application of methods proposed in image processing (e.g., Gatys
et al [GEB16] method for style transfer) to audio often does not lead to a desirable
result. This is possibly because manipulating audio is more delicate than manipulating
images and in audio the features to be manipulated are di�erent. Nevertheless, quite
impressive results were obtained for speech synthesis [VDODZ+16] and music transla-
tion (across musical instruments, genres, and styles) [MWPT18]. Finally, in line with
the PhD thesis of Sanjeel Parekh and in line with my work on informed source sepa-
ration (Sec. 7.5), I would like developing deep learning-based multimodal approaches
to couple audio with other modalities such as images, video and symbolic information
(e.g., text or music scores). I hope this will facilitate manipulating, generating and
inpainting one modality from another.
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Multichannel Nonnegative Matrix Factorization in
Convolutive Mixtures for Audio Source Separation

Alexey Ozerov, Member, IEEE, and Cédric Févotte, Member, IEEE

Abstract—We consider inference in a general data-driven ob-
ject-based model of multichannel audio data, assumed generated
as a possibly underdetermined convolutive mixture of source
signals. We work in the short-time Fourier transform (STFT)
domain, where convolution is routinely approximated as linear
instantaneous mixing in each frequency band. Each source STFT
is given a model inspired from nonnegative matrix factorization
(NMF) with the Itakura–Saito divergence, which underlies a
statistical model of superimposed Gaussian components. We
address estimation of the mixing and source parameters using two
methods. The first one consists of maximizing the exact joint likeli-
hood of the multichannel data using an expectation-maximization
(EM) algorithm. The second method consists of maximizing the
sum of individual likelihoods of all channels using a multiplicative
update algorithm inspired from NMF methodology. Our decom-
position algorithms are applied to stereo audio source separation
in various settings, covering blind and supervised separation,
music and speech sources, synthetic instantaneous and convolutive
mixtures, as well as professionally produced music recordings.
Our EM method produces competitive results with respect to
state-of-the-art as illustrated on two tasks from the international
Signal Separation Evaluation Campaign (SiSEC 2008).

Index Terms—Expectation-maximization (EM) algorithm,
multichannel audio, nonnegative matrix factorization (NMF),
nonnegative tensor factorization (NTF), underdetermined convo-
lutive blind source separation (BSS).

I. INTRODUCTION

N ONNEGATIVE matrix factorization (NMF) is an unsu-
pervised data decomposition technique with effervescent

popularity in the fields of machine learning and signal/image
processing [1]. Much research about this topic has been driven
by applications in audio, where the data matrix is taken as the
magnitude or power spectrogram of a sound signal. NMF was
for example applied with success to automatic music transcrip-
tion [2], [3] and audio source separation [4], [5]. The factoriza-
tion amounts to decomposing the spectrogram data into a sum of
rank-1 spectrograms, each of which being the expression of an
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elementary spectral pattern amplitude-modulated in time. How-
ever, while most music recordings are available in multichannel
format (typically, stereo), NMF in its standard setting is only
suited to single-channel data. Extensions to multichannel data
have been considered, either by stacking up the spectrograms of
each channel into a single matrix [6] or by considering nonneg-
ative tensor factorization (NTF) under a parallel factor analysis
(PARAFAC) structure, where the channel spectrograms form
the slices of a 3-valence tensor [7]. These approaches inher-
ently assume that the original sources have been mixed instan-
taneously, which in modern music mixing is not realistic, and
they require a posterior binding step so as to group the elemen-
tary components into instrumental sources. Furthermore they do
not exploit the redundancy between the channels in an optimal
way, as will be shown later.

The aim of this work is to remedy these drawbacks. We for-
mulate a multichannel NMF model that accounts for convolutive
mixing. The source spectrograms are modeled through NMF
and the mixing filters serve to identify the elementary compo-
nents pertaining to each source. We consider more precisely
sampled signals ( , ) generated
as convolutive noisy mixtures of point source signals

such that

(1)

where is the finite-impulse response of some (causal)
filter and is some additive noise. The time-domain mixing
given by (1) can be approximated in the short-time Fourier trans-
form (STFT) domain as

(2)

where , and are the complex-valued STFTs of
the corresponding time signals, is the complex-valued dis-
crete Fourier transform of filter , is a fre-
quency bin index, and is a time frame index.
Equation (2) holds when the filter length is assumed “signifi-
cantly” shorter than the STFT window size [8]. Equa-
tion (2) can be rewritten in matrix form, such that

(3)

where , ,
, and .

1558-7916/$26.00 © 2010 IEEE
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Fig. 1. Representation of convolutive mixing system and formulation of Multichannel NMF problem.

A key ingredient of this work is to model the power
spectrogram of source as a product of
two nonnegative matrices and , such that

(4)

Given the observed mixture STFTs , we
are interested in joint estimating the source spectrogram fac-
tors and the mixing system , as illustrated
in Fig. 1. Our problem splits into two subtasks: 1) defining suit-
able estimation criteria, and 2) designing algorithms optimizing
these criteria.

We adopt a statistical setting in which each source STFT
is modeled as a sum of latent Gaussian components, a model
introduced by Benaroya et al. [9] in a supervised single-channel
audio source separation context. A connection between full
maximum-likelihood (ML) estimation of the variance param-
eters in this model and NMF using the Itakura–Saito (IS)
divergence was pointed out in [10]. Given this source model,
hereafter referred to as NMF model, we introduce two estima-
tion criteria together with corresponding inference methods.

• The first method consists of maximizing the exact joint
log-likelihood of the multichannel data using an expecta-
tion-maximization (EM) algorithm [11]. This method fully
exploits the redundancy between the channels, in a statis-
tically optimal way. It draws parallels with several model-
based multichannel source separation methods [12]–[18],
as described throughout the paper.

• The second method consists of maximizing the sum of in-
dividual log-likelihoods of all channels using a multiplica-
tive update (MU) algorithm inspired from NMF method-
ology. This approach relates to the above-mentioned NTF
techniques [6], [7]. However, in contrast to standard NTF
which inherently assumes instantaneous mixing, our ap-
proach addresses a more general convolutive structure and

does not require the posterior binding of the elementary
components into sources.

The general multichannel NMF framework we describe
yields a data-driven object-based representation of multi-
channel data that may benefit many tasks in audio, such as
transcription or object-based coding. In this article we will
more specifically focus on the convolutive blind source sepa-
ration (BSS) problem, and as such we also address means of
reconstructing source signal estimates from the set of estimated
parameters. Our decompositions are conservative in the sense
that the spatial source estimates sum up to the original mix.
The mixing parameters may also be changed without degrading
audio quality, so that music remastering is one potential ap-
plication of our work. Remixes of well-known songs retrieved
from commercial CD recordings are proposed in the results
section.

Many convolutive BSS methods have been designed under
model (3). Typically, an instantaneous independent component
analysis (ICA) algorithm is applied to data in
each frequency subband , yielding a set of source subband
estimates per frequency bin. This approach is usually referred
to as frequency-domain ICA (FD-ICA) [19]. The source labels
remain however unknown because of the ICA standard permuta-
tion indeterminacy, leading to the well-known FD-ICA permu-
tation alignment problem, which cannot be solved without using
additional a priori knowledge about the sources and/or about the
mixing filters. For example in [20] the sources in different fre-
quency bins are grouped a posteriori relying on their temporal
correlation, thus using prior knowledge about the sources, and
in [21], [22] the sources and the filters are estimated assuming a
particular structure of convolutive filters, i.e., using prior knowl-
edge about the filters. The permutation ambiguity arises from
the individual processing of each subband, which implicitly as-
sumes mutual independence of one source’s subbands. This is
not the case in our work where our source model implies a cou-
pling of the frequency bands, and joint estimation of the source
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parameters and mixing coefficients frees us from the permuta-
tion alignment problem.

Our EM-based method is related to some multichannel
source separation techniques employing Gaussian mixture
models (GMMs) as source models. Univariate independent
and identically distributed (i.i.d.) GMMs have been used to
model source samples in the time domain for separation of
instantaneous [12], [13] and convolutive [12] mixtures. How-
ever, such time-domain GMMs are not of the most relevance
for audio as they do not model temporal correlations in the
signal. In [14], Attias proposes to model the sources in the
STFT domain using multivariate GMMs, hence taking into
account temporal correlations in the audio signal, assumed
stationary in each window frame. The author develops a source
separation method for convolutive mixtures, supervised in the
sense that the source models are pre-trained in advance. A
similar approach with log-spectral domain GMMs is developed
by Weiss et al. in [15]. Arberet et al. [16] propose a multivariate
GMM-based separation method for instantaneous mixing that
involves a computationally efficient strategy for learning the
source GMMs separately, using intermediate source estimates
obtained by some BSS method. As compared to these works,
we use a different source model (the NMF model), which
might be considered more suitable than the GMM for musical
signals. Indeed, the NMF is well suited to polyphony as it ba-
sically takes the source to be a sum of elementary components
with characteristic spectral signatures. In contrast, the GMM
takes the source as a single component with many states, each
representative of a characteristic spectral signature, but not
mixed per se. To put it in an other way, in the NMF model
a summation occurs in the STFT domain (or equivalently, in
the time domain), while in the GMM the summation occurs
on the distribution of the frames. Moreover, as discussed later,
the computational complexity of inference in our model grows
linearly with the number of components while the complexity
of standard inference in GMMs grows combinatorially.

The remaining of this paper is organized as follows. NMF
source model and noise model are introduced in Section II.
Section III is devoted to the definition of our two estimation cri-
teria, with corresponding optimization algorithms. Section IV
presents results of our methods to stereo source separation in
various settings, including blind and supervised separation of
music and speech sources in synthetic instantaneous and con-
volutive mixtures, as well as in professionally produced music
recordings. Conclusions are drawn in Section V. Preliminary as-
pects of this work are presented in [23]. We here considerably
extend on the simulations part as well as on the theoretical de-
velopments related to our algorithms.

II. MODELS

A. Sources

Let and be a nontrivial partition of
. Following [9], [10], we assume the complex

random variable to be a sum of latent components,
such that

with (5)

where and is the proper complex
Gaussian distribution [24] with probability density function
(pdf)

(6)

In the rest of the paper, the quantities and are, re-
spectively, referred to as “source” and “component”. The com-
ponents are assumed mutually independent and individually in-
dependent across frequency and frame . It follows that

(7)

Denoting the STFT matrix of source
and introducing the matrices and

, respectively, of dimensions and
, it is easily shown [10] that the minus log-likelihood of the

parameters describing source writes

where “ ” denotes equality up to a constant and

(8)

is the IS divergence. In other words, ML estimation of and
given source STFT is equivalent to NMF of the power

spectrogram into , where the IS divergence is used.
MU and EM algorithms for IS-NMF are, respectively, described
in [25], [26] and in [10]; in essence, this paper describes a gener-
alization of these algorithms to a multichannel multisource sce-
nario. In the following, we will use the notation ,
i.e., .

Our source model is related to the GMM used for example in
[14], [16] in the same source separation context, with the dif-
ference that one source frame is here modeled as a sum of
elementary components while in the GMM one source frame is
modeled as a process which can take one of many states, each
characterized by a covariance matrix. The computational com-
plexity of inference in our model with our algorithms described
next grows linearly with the total number of components while
the derivation of the equivalent EM algorithm for GMM leads to
an algorithm that has combinatorial complexity with the number
of states [12], [13], [15]. It is possible to achieve linear com-
plexity in the GMM case also, but at the price of approximate
inference [14], [16]. Note that all considered algorithms, either
for the NMF model or GMM, only ensure convergence to a sta-
tionary point of the objective function, and, as a consequence,
the final result depends strongly on the parameters initialization.
We wish to emphasize that we here take a fully data-driven ap-
proach in the sense that no parameter is pre-trained.

B. Noise

In the most general case, we may assume noisy data and
the following algorithms can easily accommodate estimation
of noise statistics under Gaussian independent assumptions and
given covariance structures such as or . In
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this paper, we consider for simplicity stationary and spatially
uncorrelated noise such that

(9)

and . The musical data we consider in
Section IV-A is not noisy in the usual sense, but the noise com-
ponent can account for model discrepancy and/or quantization
noise. Moreover, this noise component is required in the EM
algorithm to prevent from potential numerical instabilities (see
Section III-A1 below) and slow convergence (see Section III-A6
below). In Section IV-D, we will consider several scenarios:
when the variances are equal and fixed to a small value ,
when the variances are estimated from data, and most impor-
tantly when annealing is performed via the noise variance, so as
to speed up convergence as well as favor global solutions.

C. Convolutive Mixing Model Revisited

With (5), the mixing model (3) can be recast as

(10)

where and is the so
called “augmented mixing matrix” of dimension , with
elements defined by if and only if . Thus,
for every frequency bin , our model is basically a linear mixing
model with channels and elementary Gaussian sources

, with structured mixing coefficients (i.e., subsets of ele-
mentary sources are mixed identically). Subsequently, we will
note the covariance of .

III. METHODS

A. Maximization of Exact Likelihood With EM

1) Criterion: Let be the set of all pa-
rameters, where is the tensor with entries ,
is the matrix with entries , is the matrix
with entries , and are the noise covariance parameters.
Under previous assumptions, data vector has a zero-mean
proper Gaussian distribution with covariance

(11)

where is the covariance of . ML
estimation is consequently shown to amount to minimization of

(12)

The noise covariance term appears necessary so as to pre-
vent from ill-conditioned inverses that occur if 1)

, and in particular if , i.e., in the overdetermined case,
or if 2) has more than null diagonal coefficients
in the underdetermined case . Case 2) might happen in
regions of the time–frequency plane where sources are inactive.

For fixed and , the BSS problem described by (3) and (12),
and the following EM algorithm, is reminiscent of works by Car-
doso et al., see, e.g., [27] for the square noise-free case, [17] for
other cases and [18] for use in an audio setting. In these papers, a
grid of the representation domain is chosen, in each cell of which
the source statistics are assumed constant. This is not required in

our case where we instead solve parallel linear instantaneous
mixtures tied across frequency by the source model.1

2) Indeterminacies: Criterion (12) suffers from obvious
scale, phase and permutation indeterminacies.2 Regarding scale
and phase, let be a minimizer of
(12) and let and be sets of respectively complex
and nonnegative diagonal matrices. Then, the set

leads to , hence same likelihood value.
Similarly, permuted diagonal matrices would also leave the
criterion unchanged. In practice, we remove the scale and phase
ambiguity by imposing and (and
scaling the rows of accordingly) and then by imposing

(and scaling the rows of accordingly). With
these conventions, the columns of convey normalized
mixing proportions between the channels, the columns of
convey normalized frequency shapes and all time-dependent
amplitude information is relegated into .

3) Algorithm: We derive an EM algorithm based on complete
data , where is the STFT tensor with
coefficients . The complete data pdfs form
an exponential family (see, e.g., [11] or [29, Appendix]) and the
set defined by

(13)

(14)

is shown to be a natural (sufficient) statistics [29] for this family.
Thus, one iteration of EM consists of computing the expecta-
tion of the natural statistics conditionally on the current param-
eter estimates (E step) and of reestimating the parameters using
the updated natural statistics, which amounts to maximizing
the conditional expectation of the complete data log-likelihood

(M step). The re-
sulting updates are given in Algorithm 1, with more details given
in Appendix A.

Algorithm 1 EM algorithm (one iteration)

• E step. Conditional expectations of natural statistics:

(15)

(16)

(17)

(18)

1In [17] and [27], the ML criterion can be recast as a measure of fit between
observed and parameterized covariances, where the measure of deviation writes
����� ���� � � ����	���� ��� �� 
�� 
	���� ��� � � and ��� and ��� are posi-
tive definite matrices of size ��� (note that the IS divergence is obtained in the
special case � � �). The measure is simply the KL divergence between the pdfs
of two zero-mean Gaussians with covariances ��� and ��� . Such a formulation
cannot be used in our case because ��� � � � is not invertible for � � �.

2There might also be other less obvious indeterminacies, such as those in-
herent to NMF (see, e.g., [28]), but this study is here left aside.

Authorized licensed use limited to: Telecom ParisTech. Downloaded on February 9, 2010 at 08:34 from IEEE Xplore.  Restrictions apply. 



554 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 3, MARCH 2010

where (19)

(20)

(21)

(22)

(23)

and is defined in Section II-C.
• M step. Update the parameters:

(24)

(25)

(26)

• Normalize , and according to Section III-A2.

4) Implementation Issues: The computation of the source
Wiener gain given by (19) requires the inversion of the

matrix at every time–frequency (TF) point. When
(overdetermined case) it may be preferable for sake of

computational efficiency to use the following alternative formu-
lation of , obtained using Woodbury matrix identity [30]

(27)

with

(28)

This second formulation requires the inversion of the ma-
trix instead of the inversion of the matrix . The
same idea applies to the computation of , (20), if .
Thus, this second formulation may become interesting in prac-
tice only if and , i.e., if (recall that

). As we only consider undetermined mixtures in the
experimental part of this article , we turn to the original
formulation given by (19). As we more precisely consider stereo
mixtures, we only need inverting 2 2 matrices per TF point
and our MATLAB code was efficiently vectorized so as to ma-
nipulate time–frequency matrices directly, thanks to Cramer’s
explicit matrix inversion formula. Note also that we only need
to compute the diagonal elements of the matrix in (18).
Hence, the computational complexity of one EM algorithm it-
eration grows linearly (and not quadratically) with the number
of components.

5) Linear Instantaneous Case: Linear instantaneous mixing
is a special case of interest, that concerns for example “pan pot”
mixing. Here, the mixing matrix is real-valued and shared be-
tween all the frequency subbands, i.e., . In
that case, (24) needs only be replaced by

(29)

6) Simulated Annealing: If one computes through (24),
(16), (17), (19), and (21), assuming , one has

as result. Thus, by continuity, when the covariance matrix
tends to zero, the resulting update rule for tends to

. Hence, the convergence of becomes very slow
for small values of . To overcome this difficulty and also
favor global convergence, we have tested in the experimental
section several simulated annealing strategies. In our frame-
work, simulated annealing consists in setting the noise variances

to a common iteration-dependent value , initial-
ized with an arbitrary large value and gradually decreased
through iterations to a small value . Besides improving con-
vergence speed, this scheme should also favor convergence to
global solutions, as typical of annealing algorithms: the cost
function is rendered flatter in the first iterations due to the (as-
sumed) presence of high noise, smoothing out local minima, and
is gradually brought back to its exact shape in the subsequent it-
erations.

7) Reconstruction of the Sources: Minimum mean square
error (MMSE) estimates of the source
STFTs are directly retrieved using Wiener filter of (19). Time-
domain sources may then be obtained through inverse STFT
using an adequate overlap-add procedure with dual synthesis
window (see e.g., [31]).

By conservativity of Wiener reconstruction the spatial images
of the estimated sources and of the estimated noise sum up to
the original mix in STFT domain, i.e., , , and

satisfy (3). Thanks to linearity of the inverse-
STFT, the reconstruction is conservative in the time domain as
well.

B. Maximization of Individual Likelihoods With MU Rules

1) Criterion: We now consider a different approach con-
sisting of maximizing the sum of individual channel log-like-
lihoods , hence discarding mutual information
between the channels. This is equivalent to setting the off-di-
agonal terms of and to zero in criterion (12),
leading to minimization of cost

(30)

where is the structure defined by

(31)

and . For a fixed channel , is basically the
sum of the source variances modulated by the mixing weights.
A noise variance term might be considered, either fixed
or to be estimated, but we will simply set it to zero as we will
not here encounter the issues described in Section III-A6 about
convergence of EM in noise-free observations.

Criterion (30) may also be read as the ML criterion cor-
responding to the model where the contributions of each
component (and thus, of each source) to each channel would
be different and independent realizations of the same Gaussian
process, as opposed to the same realization. In other words, this
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assumption amounts to changing our observation and source
models given by (2) and (5) to

(32)

with (33)

and thus changing (7) to

(34)

where (resp. ) denotes the contribution of component
(resp. source ) to channel , and these contributions are as-

sumed independent over channels (i.e., over ).
Our approach differs from the NTF approach of [6], [7] where

the following PARAFAC structure [32] is considered

(35)

It is only a sum of rank-1 tensors and amounts to
assuming that is a linear combination of

time–frequency patterns , where is column of
and is row of . It intrinsically implies a linear instan-

taneous mixture and requires a postprocessing binding step in
order to group the elementary patterns into sources, based
on clustering of the ratios (in the stereo case).
To ease comparison, our model can be rewritten as

(36)

subject to the constraint if and only if
(with the notation introduced in Section II-C, we have also

). Hence, our model has the following merits
with respect to (w.r.t.) the PARAFAC-NTF model: 1) it
accounts for convolutive mixing by considering frequency-de-

pendent mixing proportions ( instead of ) and 2) the

constraint that the mixing proportions can only take
possible values implies that the clustering of the components

is taken care of within the decomposition as opposed to after
the decomposition.

We have here chosen to use the IS divergence as a measure of
fit in (30) because it connects with the optimal inference setting
of Section III-A and because it was shown a relevant cost for
factorization of audio power spectrograms [10], but other costs
could be considered, such as the standard Euclidean distance
and the generalized Kullback–Leibler (KL) divergence, which
are the costs considered in [6] and [7].

2) Indeterminacies: Criterion (30) suffers from same scale,
phase and permutations ambiguities as criterion (12), with the
exception that ambiguity on the phase of is now total as
this parameter only appears through its squared-modulus. In the
following, the scales are fixed as in Section III-A2.

3) Algorithm: We describe for the minimization of an
iterative MU algorithm inspired from NMF methodology [1],
[33], [34]. Continual descent of the criterion under this algo-
rithm was observed in practice. The algorithm simply consists

of updating each scalar parameter by multiplying its value at
previous iteration by the ratio of the negative and positive parts
of the derivative of the criterion w.r.t. this parameter, namely

(37)

where and the sum-
mands are both nonnegative [10]. Not any cost function gradient
may be separated in two such summands, but this is the case for
the Euclidean, KL and IS costs, and more generally the -diver-
gence of which they are specific cases [10], [26]. This scheme
automatically ensures the non-negativity of the parameter up-
dates, provided initialization with a nonnegative value.

The resulting parameter updates are described in Algorithm
2, where “.” indicates element-wise matrix operations,
is a -vector of ones, is the vector and

(resp. ) is the matrix (resp. ).
Some details about the derivation of the algorithm are given in
Appendix B.

Algorithm 2 MU rules (one iteration)

• Update

(38)

• Update
(39)

• Update
(40)

• Normalize , and according to Section III-B2.

4) Linear Instantaneous Case: In the linear instantaneous
case, when , we obtain the following update rule for
the mixing matrix coefficients:

(41)

where is the sum of all coefficients in . Then,
needs only be replaced by in (39) and (40). The

overall algorithm yields a specific case of PARAFAC-NTF
which directly assigns the elementary components to direc-
tions of arrival (DOA). This scheme however requires to fix in
advance the partition of , i.e., assign
a given number of components per DOA. In the specific linear
instantaneous case, multiplicative updates for the whole ma-
trices , , can be exhibited (instead of individual updates
for , , ), but are not given here for conciseness. They
are similar in form to [33], [34] and lead to a faster MATLAB
implementation.

5) Reconstruction of the Source Images: Criterion (30) being
equivalent to the ML criterion under the model defined by (32)
and (33), the MMSE estimate of the

Authorized licensed use limited to: Telecom ParisTech. Downloaded on February 9, 2010 at 08:34 from IEEE Xplore.  Restrictions apply. 



556 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 3, MARCH 2010

image of source in channel is computed
through

(42)

i.e., by Wiener filtering of each channel. A noise com-
ponent (if any) can similarly be reconstructed as

. Overall the decomposition is conservative,

i.e., .

IV. EXPERIMENTS

In this section, we first describe the test data and evalua-
tion criteria, and then proceed with experiments. All the audio
datasets and separation results are available from our demo web
page [35]. MATLAB implementations of the proposed algo-
rithms are also available from the authors’ web pages.

A. Datasets

Four audio datasets have been considered and are described
below.

• Dataset A consists of two synthetic stereo mixtures, one
instantaneous the other convolutive, of musical
sources (drums, lead vocals and piano) created using 17-s
excerpts of original separated tracks from the song “Sun-
rise” by S. Hurley, available under a Creative Commons Li-
cense at [36] and downsampled to 16 kHz. The mixing pa-
rameters (instantaneous mixing matrix and the convolutive
filters) were taken from the 2008 Signal Separation Evalua-
tion Campaign (SiSEC’08) “under-determined speech and
music mixtures” task development datasets [37], and are
described below.

• Dataset B consists of synthetic (instantaneous and convo-
lutive) and live-recorded (convolutive) stereo mixtures of
speech and music sources, corresponding to the test data
for the 2007 Stereo Audio Source Separation Evaluation
Campaign (SASSEC’07) [38]. It also coincides with de-
velopment dataset dev2 of SiSEC’08 “under-determined
speech and music mixtures” task. All the mixtures are 10
s long and sampled at 16 kHz. The instantaneous mixing
is characterized by static positive gains. The synthetic con-
volutive filters were generated with the Roomsim toolbox
[39]. They simulate a pair of omnidirectional microphones
placed 1 m apart in a room of dimensions

m with reverberation time 130 ms, which correspond
to the setting employed for the live-recorded mixtures. The
distances between the sources and the center of the micro-
phone pair vary between 80 cm and 1.20 m. For all mix-
tures the source directions of arrival vary between 60
and 60 with a minimal spacing of 15 (for more details
see [37]).

• Dataset C consists of SiSEC’08 test and development
datasets for task “professionally produced music record-
ings”. The test dataset consists of two excerpts (of about
22 s long) from two different professionally produced
stereo songs, namely “Que pena tanto faz” by Tamy and
“Roads” by Bearlin. The development dataset consists of
two other excerpts (of about 12 s long) from the same

TABLE I
STFT WINDOW LENGTHS USED IN DIFFERENT EXPERIMENTS

songs, with all original stereo tracks provided separately.
All recordings are sampled at 44 kHz (CD quality).

• Dataset D consists of three excerpts of length between
25 and 50 s taken from three professionally produced
stereo recordings of well-known pop and reggae songs,
and downsampled to 22 kHz.

B. Source Separation Evaluation Criteria

In order to evaluate our multichannel NMF algorithms in
terms of audio source separation we use the signal-to-distortion
ratio (SDR) numerical criterion defined in [38], which essen-
tially compares the reconstructed source images with the orig-
inal ones. The quality of the mixing system estimates was as-
sessed with the mixing error ratio (MER) described at [37],
which is an SNR-like criterion expressed in decibels. MATLAB
routines for computing these criteria were obtained from the
SiSEC’08 web page [37]. These evaluation criteria can only be
computed when the original source spatial images (and mixing
systems) are available. When not (i.e., for datasets C and D),
separation performance is assessed perceptually and informally
by listening to the separated source images, available online at
[35].

C. Algorithm Parameters

1) STFT Parameters: In all the experiments below we used
STFTs with half-overlapping sine windows, using the STFT
computation tools for MATLAB available from [37]. The choice
of the STFT window size is rather important, and is a matter of
compromise between 1) good frequency resolution and validity
of the convolutive mixing approximation of (2) and 2) validity
of the assumption of source local stationarity. We have tried var-
ious window sizes (powers of 2) for every experiment, and the
most satisfactory window sizes are reported in Table I.

2) Model Order: In our case the model order parameters
consist of the total number of components and the alloca-
tion of the components among the sources, i.e., the partition

. The value of may be set by hand to the number
of instrumental sources in the recording, although, as we shall
discussed later, the existence of non-point sources or the exis-
tence of sources mixed similarly might render the choice of
trickier. The choice of the number of components per source
may raise more questions. As a first guess one may choose a high
value, so that the model can account for all of the diversity of
the source; basically, one may think of one component per note
or elementary sound object. This leads to increased flexibility
in the model, but, at the same time, can lead to data overfitting
(in case of few data), and favors the existence of local minima,
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thus rendering optimization more difficult, as well as more in-
tensive. Interestingly, it has been noted in [10] that, given a lim-
ited number of components, IS-NMF is also able to learn higher
level structures in the musical signal. One or a few components
can capture a large part of one source or a subset of sources, so
that a coherent sound decomposition can be achieved to some
extent. A similar behavior was logically observed in our mul-
tichannel scenario, with even more success as the spatial infor-
mation helps to discriminate between the sources. Hence, sat-
isfying source separation results could be obtained with small
values of .

In the experiments of Sections IV-D and IV-E we set
; however, this has minor importance there as the aim of these

experiments is merely to investigate the algorithms behavior,
and not to obtain optimal source separation performance. In the
experiments of Sections IV-F and IV-G, is chosen by hand
through trials so as to obtain most satisfying results. In the ex-
periment of Section IV-H the total number of components is ar-
bitrary set to either or , depending on the recording,
and the numbers of components per source are chosen au-
tomatically by the initialization procedure, see below.

D. Dealing With the Noise Part in the EM Algorithm

In this section, we experiment strategies for updating the
noise parameters in the EM algorithm. We here arbitrarily use
the convolutive mixture of dataset A and set the total number
of components to , equally distributed between
sources. Our EM algorithm being sensitive to parameters
initialization, we used the following perturbed oracle initial-
izations so as to ensure “good” initialization: factors and
as computed from the original sources using IS-NMF [10] and
original mixing system , all perturbed with high level additive
noise. We have tested the following noise update schemes.

• (A): , with fixed set to 16-bit PCM quan-
tization noise variance.

• (B): , with fixed set to the average channel
empirical variance in every frequency band divided by 100,
i.e., .

• (C): with standard deviation decreasing
linearly through iterations from to . This is what we
refer to as simulated annealing.

• (D): Same strategy as (C), but with adding a random noise
with covariance to at every EM iteration. We refer
to this as annealing with noise injection.

• (E): is reestimated with update (25).
• (F): Noise covariance is reestimated like in scheme E,

but under the more constrained structure
(isotropic noise in each subband). In that case, operator

in (25) needs to be replaced with .
The algorithm was run for 1000 iterations in each case and

the results are presented in Fig. 2, which displays the average
SDR and MER along iterations, as well as the noise standard
deviations , averaged over all channels and frequencies .
As explained in Section III-A6, we observe that with a small
fixed noise variance (scheme A), the mixing parameters stag-
nate. With a fixed larger noise variance (scheme B) convergence
starts well but then performance drops due to artificially high
noise variance. Simulated annealing (scheme C) overcomes

Fig. 2. EM algorithm results on convolutive mixture of dataset A, using various
noise variance update schemes. (Left) Average source separation SDR. (Middle)
average mixing system identification MER. (Right) average noise standard de-
viation. (A) Triangles: small fixed noise variance. (B) Circles: larger fixed noise
variance. (C) Dashed line: annealing. (D)Solid line: annealing with noise injec-
tion. (E) Dotted line: diagonal noise covariance reestimation. (F) Dash-dotted
line: isotropic noise variance reestimation.

this problem, and artificial noise injection (scheme D) even
improves the results (both in terms of source separation and
mixing system estimation). Noise variance reestimation allows
to obtain performances almost similar to annealing, but only
in the case when the variance is constrained to be the same in
both channels (scheme F). However, we observed that faster
convergence is obtained in general using annealing with noise
injection (scheme D) for similar results.

Finally, it should be noted that for the schemes with annealing
(C and D) both the average SDR and MER start decreasing from
about 400 iterations (for SDR) and 200 iterations (for MER).
We believe this is because the final noise variance (set to
16-bit PCM quantization noise variance) might be too small
to account for discrepancy in the convolutive mixing equation
STFT-approximation (2). Indeed, with scheme F (constrained
reestimated variance) the average noise standard deviation seem
to be converging to a value in the range of 0.002 (see right plot of
Fig. 2), which is much larger than . Thus, if computation time
is not an issue, scheme F can be considered the most advanta-
geous because this is the only scheme to systematically increase
both the average SDR and MER at every iteration and it allows
to adjust a suitable noise level adaptively. However, as we want
to keep the number of iterations low (e.g., 300–500) for sake of
short computation time, we will resort to scheme D in the fol-
lowing experiments.

E. Convergence and Separation Performance

In this experiment we wish to check consistency of optimiza-
tion of the proposed criteria with respect to source separation
performance improvement, in the least as measured by the SDR.
We used both mixtures of dataset A (instantaneous and convo-
lutive) and ran 1000 iterations of both algorithms (EM and MU)
from ten different perturbed oracle initializations, obtained as in
previous section. Again we used components, equally
split into sources. Figs. 3 and 4 report results for the
instantaneous and convolutive mixtures, respectively. Plots on
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Fig. 3. Ten runs of EM and MU from ten perturbed oracle initializations using
instantaneous mixture of dataset A. (Top) cost functions. (Bottom) average
SDRs.

Fig. 4. Ten runs of EM and MU from ten perturbed oracle initializations using
convolutive mixture of dataset A. (Top) cost functions. (Bottom) average SDRs.

top row display in log-scale the cost functions and
w.r.t. iterations for all ten runs. Note that cost is not posi-
tive in general, see (12), so that we have added a common large
constant value to all curves so as to ensure positivity, and to be
able plotting cost value in the logarithmic scale. Plots on bottom
row display the average SDRs.

The results show that maximization of the joint likelihood
with the EM algorithm leads to consistent improvement of
source separation performance in term of SDR, in the sense
that final average SDR values are higher than values at initial-
ization. This is not the case with MU, which results in nearly
every case in worsening the SDR values obtained from oracle
initialization. This is undoubtedly a consequence of discarding
mutual information between the channels.

As for computational loads, our MATLAB implementation of
EM (resp. MU) algorithm takes about 80 min (resp. 20 min) per

1000 iterations, for this particular experiment with 17-s stereo
mixture (sampled at 16 kHz), sources, and
components.

F. Blind Separation of Under-Determined Speech and Music
Mixtures

In this section, we compare our algorithms with the methods
that achieved competitive results at the SASSEC’07 evaluation
campaign for the tasks of underdetermined mixtures of respec-
tively speech and music signals, in both instantaneous and con-
volutive cases. We used the same data and evaluation criteria as
in the campaign. More precisely, our algorithms are compared
in the instantaneous case to the method of Vincent [40], based
on source STFT reconstruction using a minimum norm con-
straint given a mixing matrix estimate obtained with the method
of Arberet et al. [41]. In the convolutive case, our algorithms
are compared to the method of Sawada, based on frequency-de-
pendent complex-valued mixing matrices estimation [42], and
a posteriori grouping relying on temporal correlations between
sources in different frequency bins [20]. We used the outputs of
these methods to initialize our own algorithms. In the linear in-
stantaneous case, we were given MATLAB implementations of
[40] and [41]. In the convolutive case, we simply downloaded
the source image estimates from the SASSEC’07 web page [43].
In both cases we built initializations of and based on NMF
of the source spectrogram estimates.3

We have found satisfactory separation results through trials
using components for musical sources and
components for speech sources. More components seem to be
needed for speech so as to account for its higher variability (e.g.,
vibrato). The EM and MU algorithms were run for 500 itera-
tions, final source separation SDR results together with refer-
ence methods results are displayed in Table II.4 The EM method
yields a significant separation improvement for all linear instan-
taneous mixtures. Improvement is also obtained in the convo-
lutive case for most source estimates, but is less significant in
terms of SDRs. However, and maybe most importantly, we be-
lieve our source estimates to be generally more pleasant to listen
to. Indeed, one drawback of sparsity-based, nonlinear source re-
construction is musical noise, originating from unnatural, iso-
lated time-frequency atoms scattered over the time–frequency
plane. In contrast, our Wiener source estimates, obtained as a
linear combination of data in each TF cell, appear to be less
prone to such artifacts as can be listened to at demo web page
[35]. We have entered our EM algorithm to the “under-deter-
mined speech and music mixtures” task of SiSEC’08 for in-
stantaneous mixtures, and our results can be compared to other

3However, in that case we used KL-NMF instead of IS-NMF, not to fit the
lower-energy residual artifacts and interferences, to which IS-NMF might be
overly sensitive as a consequence of its scale-invariance. This seemed to lead to
better initializations indeed.

4The reference algorithms performances in Table II do not always coincide
with those given on the SASSEC’07 web page [43]. In the instantaneous case,
this is because we have not used the exact same implementation of the � min-
imization algorithm [40] that was used for SASSEC. In the convolutive case,
this is because we have removed the dc component from all speech signals (in-
cluding reference, source image estimates, and mixtures) using high-pass fil-
tering, in order to avoid numerical instabilities.
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TABLE II
SOURCE SEPARATION RESULTS FOR SASSEC DATA IN TERMS OF SDR (dB)

methods in [44], and online at [45]. Note that among the ten al-
gorithms participating in this task our algorithm outperformed
all the other competiting methods by at least 1 dB for all sepa-
ration measures (SDR, ISR, SIR, and SAR), see [44, Table 2].

G. Supervised Separation of Professionally Produced Music
Recordings

We here apply our algorithms to the separation of the pro-
fessionally produced music recordings of dataset B. This is a
supervised setting in the sense that training data is available to
learn the source spectral patterns and filters. The following
procedure is used.

• Learn mixing parameters , spectral patterns

, and activation coefficients from available
training signal images of source (using 200 iterations of
EM/MU); discard .

• Clamp and to their trained values and
and reestimate activation coefficients from test data
(using 200 iterations of EM/MU).

• Reconstruct source image estimates from , and
.

Except for the training of mixing coefficient, the procedure is
similar in spirit to supervised single-channel separation schemes
proposed, e.g., in [9] and [46].

One important issue with professionally produced modern
music mixtures is that they do not always comply with the
mixing assumptions of (3). This might be due to nonlinear
sound effects (e.g., dynamic range compression), to reverbera-
tion times longer than the analysis window length, and maybe
most importantly to when the point source assumption does not
hold anymore, i.e., when the channels of a stereo instrumental
track cannot be represented as a convolution of the same source
signal. The latter situation might happen when a sufficiently
voluminous musical instrument (e.g., piano, drums, acoustic
guitar) is recorded with several microphones placed close to
the instrument. As such, the guitar track of the “Que pena tanto
faz” song from dataset C is a non-point source image. Such
tracks may be modeled as a sum of several point sources, with
different mixing filters.

For the “Que pena tanto faz” song, the vocal part is modeled
as an instantaneously mixed point source image with
components while the guitar part is modeled as a sum of three
convolutively mixed point source images, each modeled with

components. For the “Roads”
song, the bass and vocals parts are each modeled as instanta-
neously mixed point source images with six components, the
piano part is modeled as a convolutive point source image with
six components and finally, the residual background music (sum
of remaining tracks) is modeled as a sum of three convolutive
point source images with four components. The audio results,
available at [35], tend to show better performance of the EM
approach, especially on the “Roads” song. Our results can be
compared to those of the other methods that entered the “profes-
sionally produced music recordings” task of SiSEC’08 in [44],
and online at [47].

H. Blind Separation of Professionally Produced Music
Recordings

In the last experiment, we have tested the EM and MU al-
gorithms for the separation of professionally produced music
recordings (commercial CD excerpts) in a fully unsupervised
(blind) setting. We used the following parameter initialization
procedure, inspired from [48], which yielded satisfactory re-
sults.

• Stack left and right mixture STFTs so as to create a
complex-valued matrix .

• Produce a -components IS-NMF decomposition of
.

• Initialize as the average of and , where
. Initialize .

• Reconstruct components
from , , and , using single-channel
Wiener filtering (see, e.g., [10]). Produce ad-hoc
left and right component-dependent mixing filters esti-
mates by averaging and over frames,
with , and normalizing according to
Section III-A2. Cluster the resulting filter estimates with
the K-means algorithm, whose output can be used to
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define the partition (using cluster indices) and a
mixing system estimate (using cluster centroids).

Depending on the recording we set the number of sources
to 3 or 4 and used a total of to 20 components. The EM
and MU algorithms were run for 300 iterations in every case. On
these specific examples the superiority of the EM method w.r.t.
the MU method is not as clear as with previous datasets. A likely
reason is the existence of nonpoint sources breaking the validity
of mixing assumptions (2). In such precise cases, choosing not
to exploit inter-channel dependencies might be better, because
our model of these dependencies is now wrong. Looking for
suitable probabilistic models of nonpoint sources is a new and
interesting research direction.

In some cases the source image estimates contain several mu-
sical instruments and some musical instruments are spread over
several source images. Besides poor initialization, this can be
explained by 1) sources mixed similarly (e.g, same directions
of arrival), and thus impossible to separate in our fully blind
setting, 2) nonpoint sources, not well represented by our model
and thus split into different source image estimates.

One way to possibly refine separation results is to reconstruct
individual stereo component images (i.e., obtained via Wiener
filtering (20) in case of EM method, or via (42) by replacing

with in case of MU method), and manually group
them through listening, either to separate sources mixed simi-
larly, or to reconstruct multidirectional sound sources that better
match our understanding/perception of a single source.

Finally, to show the potential of our source separation ap-
proach for music remixing, we have created some remixes using
the blindly separated source images and/or the manually re-
grouped ones. The remixes were created in Audacity [49] by
simply re-panning the source image estimates between left and
right channels and by changing their gains. The audio results
can be listened to at [35].

V. CONCLUSION

We have presented a general probabilistic framework for the
representation of multichannel audio, under possibly underde-
termined and noisy convolutive mixing assumptions. We have
introduced two inference methods: an EM algorithm for the
maximization of the channels joint log-likelihood and a MU al-
gorithm for the maximization of the sum of individual channel
log-likelihoods. The complexity of these algorithms grows lin-
early with the number of model components, and make them
thus suitable to real-world audio mixtures with any number of
sources. The corresponding CPU computational loads are in the
order of a few hours for a song, which may be considered rea-
sonable for applications such as remixing, where real-time is not
an issue.

We have applied our decomposition algorithms to stereo
source separation in various settings, covering blind and
supervised separation, music and speech sources, synthetic in-
stantaneous and convolutive mixtures, as well as professionally
produced music recordings.

The EM algorithm was shown to outperform state-of-the-art
methods, given appropriate initializations. Both our methods

have indeed been found sensitive to parameter initialization, but
we have come up with two satisfying initialization schemes.
The first one, described in Section IV-F, consists in using the
output of a different separation algorithm. We show that our EM
algorithm improves the separation results in almost all cases.
The second scheme, described in Section IV-H, consists in a
single-channel NMF decomposition followed by K-means fil-
ters clustering. Our experiments tend to show that the NMF
model is more suitable to music than speech: music sources can
be represented by a small number of components to attain good
separation performance, and informal listening indicates better
separation of music signals.

Given that the mixed signals follow the mixing and point
source assumptions inherent to (2), the EM method gives
better separation results than the MU method, because be-
tween-channel dependencies are optimally exploited. However,
the performance of the EM method may significantly drop
when these assumptions are not verified. In contrast, we have
observed that the MU method, which relies on a weaker model
of between-channel dependencies, yields more even results
overall and higher robustness to model discrepancies (that may
for example occur in professionally produced recordings).

Let us now mention some further research directions. Al-
gorithms faster than EM (both in terms of convergence rate
and CPU time per iteration) would be desirable for optimiza-
tion of the joint likelihood (12). As such, we envisage turning
to Newton gradient optimization, as inspired from [50]. Mixed
strategies could also be considered, consisting of employing EM
in the first few iterations to get a sharp decrease of the likelihood
before switching to faster gradient search once in the neighbor-
hood of a solution.

Bayesian extensions of our algorithm are readily available,
using for example priors favoring sparse activation coefficients

, or even sparse filters like in [51]. Minor changes are re-
quired in the MU rules so as to yield algorithms for maximum a
posteriori (MAP) estimation. More complex priors structure can
also be envisaged within the EM method, such as Markov chains
favoring smoothness of the activation coefficients [10].

An important perspective is automatic order selection. In
our case, that concerns the total number of components , the
number of sources and the partition . Regarding the
total number of components , ideas from automatic relevance
determination can be explored, see [52] in a NMF setting.
Then the problem of partitioning can be viewed as a clustering
problem with unknown number of clusters , which is a typical
machine learning problem.

While we have assessed the validity of our model in terms of
source separation, our decompositions more generally provide
a data-driven object-based representation of multichannel audio
that could be relevant to other problems such as audio transcrip-
tion, indexing and object-based coding. As such, it will be inter-
esting to investigate the semantics revealed by the learnt spectral
patterns and activation coefficients .

Finally, as discussed in Section IV-H, new models should
be considered for professionally produced music recordings,
dealing with nonpoint sources, nonlinear sound effects, such as
dynamic range compression, and long reverberation times.
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APPENDIX A

APPENDIX A
EM ALGORITHM DERIVATION OUTLINE

The complete data minus log-likelihood can be written as

(43)

with , , , and defined by (13) and (14).
Thus, we have shown that the complete data log-likelihood can
be represented in the following form:

(44)

where is a vector of all scalar elements of

, and
and are some vector and scalar functions of parameters.
That means that the complete data pdfs form
an exponential family (see, e.g., [11], [29]) and complete data
statistics is a natural (sufficient) statistics [11], [29] for
this family. To derive an EM algorithm in this special case one
needs to 1) solve complete data ML criterion (thanks to (44)
this solution can be always expressed as a function of natural
statistics ), and 2) replace in this solution by its

conditional expectation
using model estimated at the previous step of EM.

To solve the complete data ML criterion, we first compute
the derivatives of (43) w.r.t. model parameters
(see [53] for issues regarding derivation w.r.t. complex-valued
parameters), set them to zero and solve the corresponding equa-
tions (subject to the constraint that is diagonal), and we
have:5

(45)

(46)

(47)

5Bayesian MAP estimation can be carried out instead of ML by simply adding
a prior term � ��� ������ to the right part of (43) and solving the corresponding
complete data MAP criterion.

Our EM algorithm is strictly speaking only a Gen-
eralized EM algorithm [54] because it only ensures

. Indeed, in (47) is still a
function of , and reversely, is a function of .

To finish derivation of our EM algorithm we need to com-
pute conditional expectation of the natural statistics . It
can be shown that given the source vector is a proper
Gaussian random vector, i.e.,

(48)

with mean vector and covariance matrix as follows:

Computing conditional expectations of and using
(48) leads to (16) and (17) of EM Algorithm 1. Very similar
derivations can be done to compute the conditional expectations
of . To that matter, one only needs to compute the posterior
distribution of instead of , using mixing equation (10)
instead of mixing equation (3).

APPENDIX B
MU ALGORITHM DERIVATION OUTLINE

Let be a scalar parameter of the set . The deriva-
tive of cost , given by (30), w.r.t. simply writes

(49)

where is the derivative of w.r.t. given by

(50)

Using (49), we obtain the following derivatives:

which can be written in the following matrix forms:

Hence, the update rules given in Algorithm 2, following the mul-
tiplicative update strategy described in Section III-B3.
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A General Flexible Framework for the Handling of
Prior Information in Audio Source Separation
Alexey Ozerov,Member, IEEE,Emmanuel Vincent,Senior Member, IEEE,and Frédéric Bimbot

Abstract—Most of audio source separation methods are de-
veloped for a particular scenario characterized by the number
of sources and channels and the characteristics of the sources
and the mixing process. In this paper we introduce a general
audio source separation framework based on a library of
structured source models that enable the incorporation of prior
knowledge about each source via user-specifiable constraints.
While this framework generalizes several existing audio source
separation methods, it also allows to imagine and implement
new efficient methods that were not yet reported in the lit-
erature. We first introduce the framework by describing the
model structure and constraints, explaining its generality, and
summarizing its algorithmic implementation using a generalized
expectation-maximization algorithm. Finally, we illustrate the
above-mentioned capabilities of the framework by applyingit
in several new and existing configurations to different source
separation problems. We have released a software tool named
Flexible Audio Source Separation Toolbox (FASST)implementing a
baseline version of the framework in Matlab.

Index Terms—Audio source separation, local Gaussian model,
nonnegative matrix factorization, expectation-maximization

I. I NTRODUCTION

Separating audio sources from multichannel mixtures is still
challenging in most situations. The main difficulty is that
audio source separation problems are usually mathematically
ill-posed and to succeed one needs to incorporate additional
knowledge about the mixing process and/or the source signals.
Thus, efficient source separation methods are usually devel-
oped for a particular source separation problem characterized
by a certainproblem dimensionality, e.g., determined or under-
determined, certainmixing process characteristics, e.g., instan-
taneous or convolutive, and certainsource characteristics, e.g.,
speech, singing voice, drums, bass or noise [1]. For example,
a source separation problem may be formulated as follows:

“Separate bass, drums, melody and the remaining
instruments from a stereo professionally produced
music recording.”

Given a source separation problem, one typically must intro-
duce as much knowledge about this problem as possible into
the corresponding separation method so as to achieve good
separation performance. However, there is often no common
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formulation describing methods applied for different problems,
and this makes it difficult to reuse a method for a problem it
was not originally conceived for. Thus, given a new source
separation problem, the common approach consists in(i)
model design, taking into account problem formulation,(ii)
algorithm design and(iii) implementation (see Fig. 1, top).

Model 
design

Algorithm
design

Algorithm
implementation

Source 
separation
problem

Source 
separation

Specification of constraints
from a library

Source 
separation
problem

Source 
separation

Current approach

Proposed flexible framework

Fig. 1. Current way of addressing a new source separation problem (top)
and the way of addressing it using the proposed flexible framework (bottom).

The motivation of this work is to improve over this time-
consuming process by designing a general audio source sep-
aration framework that can be applied to virtually any source
separation problem by simply selecting from a library of
constraints suitable constraints accounting for the available
information about that source (see Fig. 1, bottom). More
precisely, we wish such a framework to be

• general, i.e., generalizing existing methods and making
it possible to combine them,

• flexible, allowing easy incorporation of thea priori
knowledge about a particular problem considered.

To achieve the property of generality, we need to find
some common formulation for methods we would like to
generalize. Many recently proposed methods for audio source
separation and/or characterization [2]–[19] (see also [1]and
references therein) are based on the same so-calledlocal
Gaussian modeldescribing both the properties of the sources
and of the mixing process. Thus, we chose this model as
the core of our framework. To achieve flexibility, we fix
the global structure of Gaussian covariances, and by means
of a parametric model allow the introduction of knowledge
about each individual source and its mixing characteristics
via constraints on individual parameter subsets. The global
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structure we consider corresponds to a generative model of the
data that is motivated by the physics of the modeled processes,
e.g., the source-filter model to represent a sound source andan
approximation of the convolutive filter to represent its mixing
characteristics. In summary, our framework generalizes the
methods from [2]–[19], and, thanks to its flexibility, it becomes
applicable in many other scenarios one can imagine.

We implement our framework using a generalized
expectation-maximization (GEM) algorithm [20], where the
M-step is solved by alternating optimization of different
parameter subsets, taking the corresponding constraints into
account and using multiplicative update (MU) rules inspired
from the nonnegative matrix factorization (NMF) methodology
(see, e.g., [9]) to update the nonnegative spectral parameters.
Such an implementation is in fact possible thanks to the Gaus-
sianity assumption leading to closed form update equations.
The idea of mixing GEM algorithm with MU rules was already
reported in [21] in the case of plain NMF spectral models and
rank-1 spatial models, and we extend it here to the newly
proposed structures. Our algorithmic contribution consists of
(i) identifying theGEM-MUapproach as suitable thanks to the
implementability of the configurable framework, the simplicity
of the update rules, the implicit verification of nonnegative
constraints and its good convergence speed; and(ii) deriving
of the update rules for the new model structures.

Our approach is in line with thelibrary of componentsby
Cardosoet al [22] developed for the separation of compo-
nents in astrophysical images. However, we consider advanced
audio-specific structures inspired by [1], [23] for source spec-
tral power, as opposed to the unique block structure in [22]
based on the assumption that source power is constant in some
pre-defined region of time and space. In that sense, our frame-
work is more flexible than [22]. Besides the framework itself,
we propose a new structure for NMF-like decompositions
of source power spectrograms, where the temporal envelope
associated with each spectral pattern is represented as a
nonnegative linear combination of time-localized temporal pat-
terns. This structure can be used to ensure temporal continuity,
but also to model more complex temporal characteristics, such
as the attack or decay parts of a note. In line with time-
localized patterns we include in our framework the so-called
narrowband spectral patterns that allow constraining spectral
patterns to be harmonic, inharmonic or noise-like. These
structures were already reported in [14], [15], but only in case
of harmonic constraints. Moreover, they were not applied for
source separation so far. As compared to [24], where some
preliminary aspects of this work were presented, we here
present the framework in details, describe its implementation,
and extend the experimental part illustrating the framework.
Moreover, we propose an original mixing model formulation
that allows the representation and the estimation of rank-1[5]
and full-rank [19] (actually any rank) spatial mixing models
in a homogeneous way, thus enabling the combination of
both models within a given mixture. Finally, we provide a
proper probabilistic formulation of local Gaussian modeling
for quadratic time-frequency representations [18] that supports
and justifies the formulation given in [18].

We have also implemented and released a baseline version
of the framework in Matlab. The corresponding software tool
namedFlexible Audio Source Separation Toolbox (FASST)is
available at [25] together with a user guide, examples of usage
(where the constraints are specified) and the corresponding
audio examples. Given a source separation problem, one can
choose one or few suitable constraint combinations based on
his/her expertise and on the a priori knowledge, and then test
all of them using FASST so as to select the best one.

In summary, the main contributions of this work include

• a general modeling structure,
• a general estimation algorithm,
• new spectral an temporal structures (time-localized pat-

terns, narrowband spectral patterns),
• the implementation and distribution of a baseline version

of the framework (the FASST toolbox [25]).

The rest of this paper is organized as follows. In Section II,
existing approaches generalized by the proposed framework
are discussed and an overview of the framework is given.
Sections III and IV provide a detailed description of the frame-
work and its algorithmic implementation. Thus, Section II
is devoted to a reader interested in understanding the main
principles of the framework and the physical meaning of the
objects, and Sections III and IV to one willing to go deeper
into the technical details. The results of a few source separation
experiments are given in Section V to illustrate the flexibility
of our framework and its potential performance improvement
compared to individual approaches. Conclusions are drawn in
Section VI.

II. RELATED EXISTING APPROACHES AND FRAMEWORK

OVERVIEW

Source separation methods based on the local Gaussian
model can be characterized by the following assumptions [1],
[2], [5], [13], [19]:

1) Gaussianity:in some time-frequency (TF) representation
the sources are modeled in each TF bin by zero-mean
Gaussian random variables.

2) Independence:conditionally to their covariance matri-
ces, these random variables are independent over time,
frequency and between sources.

3) Factorization of spectral and spatial characteristics:
for each TF bin, the covariance matrix of each source
is expressed as the product of aspatial covariance
matrix representing its spatial characteristics and a scalar
spectral powerrepresenting its spectral characteristics.

4) Linearity of mixing: the mixing process translates into
addition in the covariance domain.

A. State-of-the-art approaches based on the local Gaussian
model

The state-of-the-art approaches [2]–[19] cover a wide range
of source separation problems and models expressed via
particular structures of local Gaussian covariances, including:

1) Problem dimensionality:Denoting by I and J , re-
spectively, the number of channels of the observed
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mixture and the number of sources to separate, the
single-channel(I = 1) case is addressed in [6], and
underdetermined(1 < I < J) and (over-)determined
(I ≥ J) cases are addressed in [5] and [2], respectively.

2) Spatial covariance model: Instantaneousand convolu-
tive mixtures of point sources are modeled byrank-1
spatial covariance matrices in [5] and [3], respectively.
In [19] reverberant convolutive mixtures of point sources
are modeled byfull-rank spatial covariance matrices
that, in contrast to rank-1 covariance matrices, can
account for the spatial spread of each source induced
by the reverberation.

3) Spectral power model:Several models were proposed
for the spectral power, e.g.,unconstrainedmodels [10],
block constantmodels [5], Gaussian mixture models
(GMM) or hidden Markov models (HMM) [2], Gaus-
sian scaled mixture models (GSMM) or scaled HMMs
(S-HMM) [13], NMF [4] together with its variants,
harmonic NMF [14] or temporal activation constrained
NMF [9], and source-filter models [16]. These models
are suitable for the representation of different types
of sources, for example GSMM is rather suitable for
a monophonic source, e.g., speech, and NMF for a
polyphonic one, e.g., polyphonic musical instrument,
[13].

4) Input representation:While the most of the considered
methods use the short time Fourier transform (STFT) as
the input TF representation, some of them, e.g., [14],
[15], [18], use the auditory-motivated equivalent rectan-
gular bandwidth (ERB) quadratic representation. More
generally, we consider here bothlinear representations,
where the signal is represented by a vector of complex-
valued coefficients in each TF bin, as well asquadratic
representations, where the signal is represented via its
local covariance matrix in each TF bin [26].

Table I provides an overview of some of the local Gaussian
model-based approaches considered here, where the speci-
ficities of each method are marked by crosses×××. We see
from Table I that a few of these methods have already
been combined together, for example GSMM and NMF were
combined in [8], and NMF [9] was combined with rank-1
and full-rank mixing models in [13] and [17], respectively.
However, many combinations have not yet been investigated.
Indeed, assuming that each source follows one of the3 spatial
covariance models and one of the8 spectral variance models
from Table I, the total number of configurations equals to
2 × 24J for J sources (in fact much more since each source
can follow several spectral variance models at the same time),
while Table I reports only16 existing configurations.

B. Other related state-of-the-art approaches

While the local Gaussian model-based framework offers
maximum of flexibility, there exist some methods that do not
satisfy (fully or partially) the aforementioned assumptions and
are thus not strictly covered by the framework. Nevertheless,
our framework allows the implementation of similar structures.
Let us give some examples. Binary masking-based source

estimation [27], [28] does not satisfy the source independence
assumption. However, it is known to perform poorly compared
to local Gaussian model-based separation, as it was shown
in [13], [18] for convolutive mixtures1 and demonstrated
through the signal separation evaluation campaigns SiSEC
2008 [30] and SiSEC 2010 [29], where for instantaneous
mixtures local Gaussian model-based approaches gave better
results than theoracle (using the ground truth) binary masks.
The methods proposed in [31], [32] are also based on Gaussian
models albeit in the time domain. Notably, time sample-based
GMMs and time-varying autoregressive models are considered
as source models in [31] and [32], respectively. However, the
number of existing time-domain structures is fairly reduced.
Our TF domain models make it possible to account for
these structures by means of suitable constraints over spectral
power, while allowing their combination with more advanced
structures. There are also many works on NMF and its exten-
sions [33]–[38] and on GMMs / HMMs [39], [40] based on
nongaussian models of the complex-valued STFT coefficients.
These models are essentially covered by our framework in
the sense that we can implement similar or equivalent model
structures, albeit under Gaussian assumptions. The benefitof
local Gaussian modeling is that it naturally leads to closed-
form expressions in the multichannel case and allows the
modeling of diffuse sources [19], contrary to the models in
[33]–[40]. Finally, according to Cardoso [41], nongaussianity
and nonstationarity are alternative routes to source separation,
such that nonstationary nongaussian models would offer little
benefit compared to nonstationary Gaussian models in terms
of separation performance despite considerably greater com-
putation cost.

C. Framework overview

We now present an overview of the proposed framework
focusing on the most important concepts. An exhaustive de-
scription is given in Sections III and IV.

The framework is based on a flexible model described by
parametersθ = {θj}Jj=1, whereθj are the parameters of the
j-th source (j = 1, . . . , J). Eachθj is split in turn into nine
parameter subsets according to a fixed structure, as described
below and summarized in Table II.

1) Model structure:The parameters ofj-th source include
a complex-valued tensorAj modeling its spatial covariance,
and eight nonnegative matrices (θj,2, . . . , θj,9) modeling its
spectral power over all TF bins.

The spectral power, denoted asVj , is assumed to be the
product of anexcitation spectral powerVex

j , representing, e.g.,
the excitation of the glottal source for voice or the plucking
of the string of a guitar, and afilter spectral powerVft

j ,
representing, e.g., the vocal tract or the impedance of the guitar
body [23], [35]. While such a model is usually called source-
filter model, we call it hereexcitation-filter modelin order to
avoid possible confusions with the “sources” to be separated.

1Binary masking-based approaches can still be quite powerful for convo-
lutive mixtures, as demonstrated in [29]. Thus, a good way toproceed is
probably to use them to initialize local Gaussian model-based approaches, as
it is done in [13], and as we do in the experimental part.
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Reference [7] [6] [8] [16] [4] [14] [15] [9] [5] [11] [13] [19] [18] [17] [ 3] [2]

single-channel ××× ××× ××× ××× ××× ××× ×××
Problem

underdetermined ××× ××× ××× ××× ××× ×××
dimensionality

(over-)determined ××× ×××
Spatial rank-1 instantaneous ××× ×××
covariance rank-1 convolutive ××× ××× ×××
model full-rank ××× ××× ×××

unconstrained ××× ×××
block constant ××× ×××
GMM / HMM ××× ××× ×××

Spectral
GSMM / S-HMM ××× ××× ×××

variance
NMF ××× ××× ××× ××× ×××

model
harmonic NMF ××× ×××
temp. constr. NMF ××× ×××
source-filter ××× ×××

Input linear ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× ×××
representation quadratic ××× ××× ×××

TABLE I
SOME STATE-OF-THE-ART LOCAL GAUSSIAN MODEL-BASED APPROACHES FOR AUDIO SOURCE SEPARATION.

The excitation spectral powerVex
j is further decomposed as

the sum ofcharacteristic spectral patternsEex
j modulated by

time activation coefficientsPex
j [4], [9]. Each characteristic

spectral pattern may be associated for instance with one
specific pitch, so that the time activation coefficients denote
which pitches are active on each time frame. In order to further
constrain the fine structure of the spectral patterns, they are
represented as linear combinations ofnarrowband spectral
patterns Wex

j [14] with weights Uex
j . These narrowband

patterns may be for instance harmonic, inharmonic or noise-
like and the weights determine the overall spectral envelope.
Following the same idea, we propose here to represent the
series of time activation coefficientsPex

j as sums oftime-
localized patternsHex

j with weightsGex
j . The time-localized

patterns may represent the typical temporal shape of the notes
while the weights encode their onset times. Different temporal
fine structures such as continuity or specific rhythm patterns
may also be accounted for in this way. Note that temporal
models of the activation coefficients have been proposed in
the state-of-the-art, using probabilistic priors [9], [34], note-
specific Gaussian-shaped time-localized patterns [42], orun-
structured TF patterns [33]. Our proposition is complementary
to [9], [34] in that it accounts for temporal behaviour in the
model structure itself in addition to possible priors on the
model parameters. Moreover, it is more flexible than [9], [34],
[42], since it allows the modeling of other characteristicsthan
continuity or sparsity. Finally, while it can model similarTF
patterns to [33], it involves much fewer parameters, which
typically leads to more robust parameter estimation.

The filter spectral powerVft
j is similarly expressed in

terms of characteristic spectral patternsEft
j modulated by time

activation coefficients [16], which are in turn decomposed
into narrowband spectral patternsWft

j with weightsUft
j and

time-localized patternsHft
j with weights Gft

j , respectively.
In the case of speech or singing voice, each characteristic
spectral pattern may represent the spectral formants of a
given phoneme, while the plosiveness and the sequence of
pronounced phonemes may be encoded by the time-localized
patterns and the associated weights.

In summary, as it will be explained in details in Sec-
tion III-E, the spectral power of each source obeys a three-
level hierarchical nonnegative matrix decomposition structure
(see equations (9), (10), (12), (13) and Figures 3 and 4 below)
including at the bottom level the eight parameter subsetsWex

j ,
Uex

j , Gex
j , Hex

j , Wft
j , Uft

j , Gft
j andHft

j (see Eq. (13)).

Parameter subsets Size Range

θj,1 = Aj mixing parameters I × Rj × F × N ∈ C
θj,2 = Wex

j ex. narrowband spectral patterns F × Lex
j ∈ R+

θj,3 = Uex
j ex. spectral pattern weights Lex

j × Kex
j ∈ R+

θj,4 = Gex
j ex. time pattern weights Kex

j × Mex
j ∈ R+

θj,5 = Hex
j ex. time-localized patterns Mex

j × N ∈ R+

θj,6 = Wft
j ft. narrowband spectral patterns F × Lft

j ∈ R+

θj,7 = Uft
j ft. spectral pattern weights Lft

j × Kft
j ∈ R+

θj,8 = Gft
j ft. time pattern weights Kft

j × M ft
j ∈ R+

θj,9 = Hft
j ft. time-localized patterns M ft

j × N ∈ R+

TABLE II
PARAMETER SUBSETSθj,k (j = 1, . . . , J , k = 1, . . . , 9) ENCODING THE

STRUCTURE OF EACH SOURCE.

2) Constraints: Given the above fixed model structure,
prior information about each source can now be exploited by
specifying deterministic or probabilistic constraints over each
parameter subset of Table II. Examples of such constraints
are given in Table III. Each parameter subset can be fixed2

(i.e., unchanged during estimation), adaptive (i.e., fully fitted
to the mixture) or partially adaptive (only some parameters
within the subset are adaptive). In the latter two cases, a
probabilistic prior, such as a continuity prior [9] or a sparsity-
inducing prior [4], can be specified over the parameters. The
mixing parametersAj can be time-varying or time-invariant
(in Table III the latter case is only considered), frequency-
dependent for convolutive mixtures or frequency-independent
for instantaneous mixtures. Mixing parametersAj can be
given a probabilistic prior as well. E.g., it can be a Gaussian
prior with the mean corresponding to the parameters of a pre-
sumed direction and with the covariance matrix representing

2The fixed parameters can be either set manually or learned beforehand
from some training data. Learning is equivalent to model parameter estimation
over the training data and can thus be achieved using our framework.
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a degree of uncertainty about this direction. The rankRj

(1 ≤ Rj ≤ I) of the spatial covariance is specifiable via
the size of tensorAj (see Table II). Each parameter subset
may also be constrained to have a limited number of nonzero
entries. For instance, every column ofGex

j and / orGft
j may

be constrained to have a single nonzero entry accounting for
a GSMM / S-HMM structure or a single nonzero entry equal
to 1 accounting for a GMM / HMM structure.

Parameter subsets Constraint Value

’fixed’
Aj , Wex

j ,Uex
j ,Gex

j ,Hex
j ,

degree of adaptability ’part_adapt’
Wft

j ,Uft
j ,Gft

j ,Hft
j ’adapt’

mixing stationarity ’time_inv’
Aj ’conv’

mixing type
’inst’

’null’

Gex
j ,Gft

j temporal constraint ’GMM’, ’HMM’
’GSMM’, ’SHMM’

TABLE III
EXAMPLES OF USER-SPECIFIABLE CONSTRAINTS OVER THE PARAMETER

SUBSETS.

3) Estimation algorithm:Given the above model structure
and constraints, source separation can be achieved in two
steps as shown in Fig. 2. First, given initial parameter values,
the model parametersθ are estimated from the mixtureX
using an iterative GEM algorithm, where the E-step consists
in computing some quantitŷT called conditional expectation
of the natural statistics, and the M-step consists in updating the
parametersθ givenT̂ by alternating optimization of each of the
J × 9 parameter subsets. This allows taking any combination
of constraints specified by user into account. Second, given
the mixtureX and the estimated model parametersθ, source
estimatesŶ are computed using Wiener filtering.

Update Update Update...

M-step

E-step

Wiener filtering

Model estimation

Parameter initialization
specified by user

Mixture

Compute conditional expectation
of natural statistics

Source estimation

Estimated
sources

Constraints specified by user Model parameters

Fig. 2. Overview of the proposed general algorithm for parameter estimation
and source separation.

D. FASST toolbox: Current baseline implementation

The FASST toolbox (released and available at [25]) imple-
ments so far a baseline version of the framework in Matlab

that covers only the library of constraints summarized in
Table III for mono or stereo recordings (I = 1 or I = 2).
This restriction to up toI = 2 channels enables the use of a
2× 2 matrix inversion trick described in [13] that leads to an
efficient implementation in Matlab. However, the framework
itself is neither restricted to the constraints in Table IIInor to
mono / stereo mixtures.

III. D ETAILED STRUCTURE AND EXAMPLE CONSTRAINTS

In this section we describe in details the nine parameter
subsets modeling each source and some example constraints.
We also introduce the detailed notations to be used in the rest
of the paper.

A. Formulation of the audio source separation problem

We assume that the observedI-channel time-domain signal,
called mixture, x̃(t) ∈ RI , t = 1, . . . , T , is the sum ofJ
multichannel signals̃yj(t) ∈ RI , calledspatial source images
[1], [22]:

x̃(t) =
∑J

j=1
ỹj(t). (1)

The goal of source separation is to estimate the spatial source
images ỹj(t) given the mixturex̃(t). This now common
formulation is more general than the convolutive formulation
in [13], which is restricted to point sources [1], [22].

B. Input representation

Audio signals are usually processed in the TF domain,
due to their sparsity in this domain. Two families of input
representations are considered in the literature, namelylinear
[13] andquadratic [18] representations.

1) Linear representations:After applying a linear complex-
valued TF transform, the mixture (1) becomes:

xfn =
∑J

j=1
yj,fn, (2)

wherexfn ∈ CI andyj,fn ∈ CI areI-dimensional complex-
valued vectors of TF coefficients of the corresponding time-
domain signals; andf = 1, . . . , F and n = 1, . . . , N
denote respectively frequency bin and time-frame index. This
formulation covers the STFT, that is the most popular TF
representation used for audio source separation.

2) Quadratic representations:A few studies have relied on
quadratic representations instead, where the signal is described
in each TF bin by its empiricalI × I covariance matrix [5],
[10], [18]

R̂x,fn = Ê[xfnx
H
fn], (3)

where Ê[·] denotesempirical expectationcomputed, e.g., by
local averaging of the STFT [5], [10] or of the input of an ERB
filterbank [18]. Note that linear representations are special
cases of quadratic representations withR̂x,fn = xfnx

H
fn.

Quadratic representations include additional information about
the local correlation between channels which often increases
the accuracy of parameters estimation [10]. In the following,
we use the linear notationsxfn andyj,fn for simplicity and
include the empirical expectation when appropriate. A more
rigorous derivation of the local Gaussian model for quadratic
representations is given in Appendix A.
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C. Local Gaussian model

We assume that in each TF bin, each sourceyj,fn ∈ CI is
a proper complex-valued Gaussian random vector with zero
mean and covariance matrixΣy,j,fn = vj,fnRj,fn

yj,fn ∼ Nc (0̄, vj,fnRj,fn) , (4)

where the matrixRj,fn ∈ CI×I called spatial covariance
matrix represents the spatial characteristics of the source and
of the mixing setup, and the non-negative scalarvj,fn ∈ R+

called spectral powerrepresents the spectral characteristics
of the source [1]. Moreover, the random vectorsyj,fn are
assumed to be mutually independent givenΣy,j,fn.

D. Spatial covariance structure and example constraints

1) Structure: In the case of audio, it is mostly interesting
to consider either rank-1 spatial covariances representing in-
stantaneously or convolutively mixed point sources with low
reverberation [13] or full-rank spatial covariances modeling
diffuse or reverberated sources [19]. More generally, we as-
sume covariances of any positive rank. Let0 < Rj ≤ I be
the rank of covarianceRj,fn. This matrix can then be non-
uniquely represented as3

Rj,fn = Aj,fnA
H
j,fn, (5)

whereAj,fn is anI ×Rj complex-valued matrix of rankRj .
Moreover, for every sourcej and for every TF bin(f, n) we
introduceRj independent Gaussian random variablessjr,fn
(r = 1, . . . , Rj) distributed as

sjr,fn ∼ Nc (0, vj,fn) . (6)

With these notations the model defined by (2) and (4) is
equivalent to the following mixture ofR =

∑J
j=1 Rj point

sub-sourcessjr,fn:

xfn = Afnsfn, (7)

wheresfn = [sT1,fn, . . . , s
T
J,fn]

T is anR × 1 vector of sub-
source coefficients withsj,fn = [sj1,fn, . . . , sjRj ,fn]

T , and
Afn = [A1,fn, . . . ,AJ,fn] is anI ×R mixing matrix. Thus,
for a given TF bin(f, n) our model is equivalent to a complex-
valued linear mixture ofR sub-sources (7), where the sub-
sourcessjr,fn (r = 1, . . . , Rj) associated with the same
sourcej share the same spectral power (6). We suppose that
the rankRj is specified for every sourcej.

2) Example constraints:In our baseline implementation we
assume that the spatial covariances are time-invariant, i.e.,
Aj,fn = Aj,f . Moreover, we assume that for every source
j the spatial parametersAj can be either instantaneous (i.e.,
constant over frequency and real-valued:Aj,fn = Aj,n ∈
RI×Rj ) or convolutive (i.e., frequency-dependent), and either
fixed, adaptive or partially adaptive. Some examples of con-
straints are given in Table III.

3Such anRj -rank covariance matrix parametrization was inspired by [22],
whereRj,fn, intended to model correlated or multi-dimensional components,
is parametrized asRj,fn = Aj,fnPj,fnA

H
j,fn, wherePj,fn is a full-

rank Rj × Rj positive matrix. However, our parametrization (5) is less
redundant and it is applied for audio source separation, andnot for separation
of components in astrophysical images, as in [22].

E. Spectral power structure and example constraints

To model spectral power we use nonnegative hierarchical
audio-specific decompositions [23], thus all variables intro-
duced in this section are assumed to be non-negative.

1) Excitation-filter model: We first model the spectral
power vj,fn as the product of an excitation spectral power
vexj,fn and a filter spectral powervftj,fn [23], [35]:

vj,fn = vexj,fn × vftj,fn, (8)

that can be rewritten as

Vj = Vex
j ⊙Vft

j , (9)

where ⊙ denotes element-wise matrix multiplication and
Vj , [vj,fn]f,n, Vex

j , [vexj,fn]f,n, Vft
j , [vftj,fn]f,n.

Figure 3 gives an example of the excitation-filter decompo-
sition (9) as applied to the spectral power of several guitar
notes. In this example the filterVft

j is time-invariant with
lowpass characteristics, and the excitationVex

j is a time-
varying combination of few characteristic spectral patterns.
However, in the most of realistic situations both the excitation
and the filter are time-varying. Thus, the excitation-filter
model with time-varying excitation and filter is a physically-
motivated generative model that is suitable for many audio
sources. While time-invariant filters were considered, e.g., in
[7], [35], some approaches consider time-varying filters [16],
[43]. We believe that our framework opens a door for further
investigation of time-varying filters.

2) Excitation power structure: The excitation spectral
power [vexj,fn]f is modeled as the sum ofKex

j characteristic
spectral patterns[eexj,fk]f modulated in time bypexj,kn, i.e.,

vexj,fn =
∑Kex

j

k=1 p
ex
j,kne

ex
j,fk [9]. Introducing the matricesPj ,

[pexj,kn]k,n andEex
j , [eexj,fk]f,k it can be rewritten as

Vex
j = Eex

j Pex
j . (10)

In order to further constrain the spectral fine structure of
the spectral patterns, they are represented as linear combi-
nations of Lex

j narrowband spectral patterns[wex
j,fl]f [14],

i.e., eexj,fk =
∑Lex

j

l=1 u
ex
j,lkw

ex
j,fl, whereuex

j,lk are non-negative
weights. The series of time activation coefficientspexj,kn are
also represented as sums ofM ex

j time-localized patterns, i.e.,

pexj,kn =
∑Mex

j

m=1 h
ex
j,mng

ex
j,km. Altogether we have:

vexj,fn =
∑Kex

j

k=1

∑Mex
j

m=1
hex
j,mng

ex
j,km

∑Lex
j

l=1
uex
j,lkw

ex
j,fl, (11)

and, introducing matricesHex
j , [hex

j,mn]m,n, Gex
j ,

[gexj,km]k,m, Uex
j , [uex

j,lk]l,k and Wex
j , [wex

j,fl]f,l, this
equation can be rewritten in matrix form as

Vex
j = Wex

j Uex
j Gex

j Hex
j . (12)

Figure 4 shows an example of the excitation structure
Vex

j = Wex
j Uex

j Gex
j Hex

j , as applied to six notes played on a
xylophone. In this example, the narrowband spectral patterns
Wex

j include66 harmonic patterns modeling the harmonic part
of 11 notes and9 smooth patterns modeling the attacks, and
the matrix of weightsUex

j is very sparse so as to eliminate
invalid combinations of narrowband spectral patterns (e.g., a
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characteristic spectral pattern should not be a combination
of narrowband spectral patterns with different pitches). The
time-localized patternsHex

j include decreasing exponentials to
model the decay part of the notes and discrete Dirac functions
to model note attacks, and the matrix of weightsGex

j is sparse
so as not to allow the attacks (smooth spectral patterns) to
be modulated by exponential temporal patterns and not to
allow harmonic note parts (harmonic spectral patterns) to be
modulated by Dirac temporal patterns. Such a structure is a
simplified version of the conventional attack-decay-sustain-
release model (see, e.g., [44]). More sophisticated structures,
where, e.g., the sustain and release parts are modeled by
exponentials with different decrease rates can be implemented
as well within our framework.

3) Filter power structure:The filter spectral power[vftj,fn]f
is represented using exactly the same structure as in (11).

4) Total power structure:Altogether the spectral power
structure can be represented by the following nonnegative
matrix decomposition (see also Table II)

Vj =
(
Wex

j Uex
j Gex

j Hex
j

)
⊙
(
Wft

j Uft
j Gft

j Hft
j

)
. (13)

Each matrix in this decomposition is subject to specific con-
straints presented below.

5) Example constraints:Each matrixθj,k (k = 2, . . . , 9) in
(13) can be fixed, adaptive or partially fixed (see Tab. III). In
the latter two cases, a probabilistic priorp(θj,k|ηj,k), such as
a time continuity prior [9] or a sparsity-inducing prior [4]can
be set. We denote byηj,k the hyperparametersof the prior
that can be fixed or adaptive as well.

To coverdiscrete state-based modelssuch as GMM, HMM,
and their scaled versions GSMM, S-HMM, every column
gex
j,m = [gexj,km]k of matrix Gex

j (and similarly for matrixGft
j )

may further be constrained to have either a single nonzero
entry (for GSMM, S-HMM) or a single nonzero entry equal to
1 (for GMM, HMM). Let qexj,m ∈ {1, . . . ,Kex

j } be the index
of the corresponding nonzero entry andqex

j = [qexj,m]m the
resultingstate sequence4. The prior distribution ofθj,4 = Gex

j

with hyperparametersηj,4 = Λex
j is defined as

p(θj,4|ηj,4) = p(qex
j |Λex

j ) =
∏Mex

j

m=2
λex
j,qexj,m−1q

ex
j,m

, (14)

whereΛex
j = [λex

j,kk′ ]k,k′ (λex
j,kk′ = P(qexj,m = k′|qexj,m−1 = k))

denotes theKex
j ×Kex

j state transition probability matrix with
λex
j,kk′ being independent onk (i.e.,λex

j,kk′ = λex
j,k′ ) in the case

of GMM or GSMM. As discussed in [12], the discrete state-
based models are rather suitable for monophonic sources (e.g.,
singing voice or wind instruments), while the unconstrained
NMF decompositions are more appropriate for polyphonic
sources (e.g., piano or guitar).

F. Generality

It can be easily shown that the model structures considered
in [2]–[19] are particular instances of the proposed general
formulation. Let us give some examples.

4Note that we consider here the state sequenceqex
j as a parameter to be

estimated, and not as a latent variable one integrates over,as it is usually
done for GMM / HMM parameter estimation. This is indeed to achieve the
goal of generality by making the E-step of the GEM algorithm independent
of the specified constraints.

Pham et al [3] assume rank-1 spatial covariances and
constant spectral power over time-frequency regions of size 1
frequency bin× L frames. This structure can be implemented
in our framework by choosing rank-1 adaptive spatial time-
invariant covariances, i.e.,Aj is an adaptive tensor of size
2× 1 × F ×N subject to the time-invariance constraint, and
constraining the spectral power toVj = Wex

j Gex
j Hex

j
5 with

Wex
j being theF × F identity matrix,Gex a F × ⌈N/L⌉

adaptive matrix, andHex
j the ⌈N/L⌉ × N fixed matrix with

entrieshex
j,mn = 1 for n ∈ Lm andhex

j,mn = 0 for n /∈ Lm,
whereLm is the set of time frames belonging to them-th
block.

Multichannel NMF structures with point source (rank-1)
[13] or diffuse source (full-rank) [17] models can be rep-
resented within our framework asVj = Wex

j Gex
j

5 with
Wex

j andGex
j being adaptive matrices of sizeF ×Kex

j and
Kex

j × N , respectively, andAj being an adaptive tensor of
size 2 × 1 × F ×N or 2 × 2 × F × N , respectively, subject
to the time-invariance constraint.

Excitation-filter model-based separation of the main melody
vs. the background music from single-channel recordings by
Durrieu et al. [16] can be represented within our framework
as follows. Mixing parametersAj (j = 1, 2) are assumed to
form a tensor of size1× 1×F ×N with all the entries fixed
to 1. The background music spectral powerV1 is modeled
exactly as in the case of the multichannel NMF described in
the previous paragraph. The main melody spectral power is
constrained toV2 = (Wex

2 Gex
2 ) ⊙ (Wft

2 Gft
2 )

5 with Wex
2

being fixed andGex
2 , Wft

2 andGft
2 being adaptive. Without

any supplementary constraints this model is equivalent to the
model referred asinstantaneous mixture modelin [16], and
applying GSMM constraints to both the matricesGex

2 and
Gft

2 this model is equivalent to the model referred asGSMM
in [16].

IV. ESTIMATION ALGORITHM

In this section we describe in details the proposed algorithm
for the estimation of the model parameters and subsequent
source separation.

A. Model estimation criterion

To estimate the model parameters, we use the stan-
dard maximuma posteriori (MAP) where the log-likelihood
log p(xfn|θ) in every TF point is replaced by its empirical
expectation̂E[log p(xfn|θ)] according to the empirical expec-
tation operator̂E[·] introduced in Section III-B2 [10], [18].
Mathematically rigorous derivation of this criterion is given
in Appendix A. This criterion consists in maximizing the
modified log-posteriorL̂(θ, η|X) , Ê[log p(θ, η|X)], where
X = {xfn}f,n, over the model parametersθ and the hyper-
parametersη = {ηj,k}J,9j,k=1. This quantity can be rewritten,

5Note that any set of matrices can be virtually removed from the
spectral power decomposition (13). For example, one can obtain Vj =
Wex

j Gex
j Hex

j by assuming that the matricesWft
j , Uft

j , Gft
j andHft

j are
of sizesF × 1, 1× 1, 1× 1, and1×N , and that all their entries are fixed
to 1, and thatUex

j = IKex
j

is theKex
j ×Kex

j identity matrix.
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Fig. 3. Excitation-filter decomposition as applied to the spectral power of several guitar notes.(A): source spectral power,(B): model spectral power
Vj = Vex

j ⊙Vft
j , (C): excitation spectral powerVex

j , (D): filter spectral powerVft
j .

Fig. 4. Excitation power decompositionVex
j = Wex

j Uex
j Gex

j Hex
j as applied to the spectral power of several xylophone notes.(A): source spectral power,

(B): excitation spectral powerVex
j = Eex

j Pex
j , (C): characteristic spectral patternsEex

j = Wex
j Uex

j , (D): spectral pattern activationsPex
j = Gex

j Hex
j , (E):

narrowband spectral patternsWex
j , (F): spectral pattern weightsUex

j , (G): temporal pattern weightsGex
j , (H): time-localized patternsHex

j .
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using (2) and (4), as:

L̂(θ, η|X)
c
= L̂(X|θ) + log p(θ|η) =∑
f,n

Ê[logNc(xfn|0,Σx,fn)] + log p(θ|η), (15)

whereΣx,fn ,
∑J

j=1 vj,fnRj,fn, L̂(X|θ) , Ê[log p(X|θ)]
is themodified log-likelihoodand “

c
=” denotes equality up to

a constant. Using (3), the resulting criterion can be expressed
as [13], [18]:

θ∗, η∗ = argmin
θ,η

∑
f,n

[
tr
(
Σ−1

x,fnR̂x,fn

)
+ log |Σx,fn|

]

−
∑J,9

j,k=1
log p(θj,k|ηj,k). (16)

We see that this criterion does not rely any more on the linear
mixture representationX, but only on the resulting empirical
mixture covariances{R̂x,fn}f,n.

B. Model estimation via a GEM algorithm

Given the model parametersθ = {θj,k}J,9j,k=1 specified in

Table II and the hyperparametersη = {ηj,k}J,9j,k=1 together
with user-defined constraints and initial values, we minimize
the criterion (16) using a GEM algorithm [20] that consists in
iterating the following expectation (E) and maximization (M)
steps (see Fig. 2):

• E-step: Compute the conditional expectation of the so-
callednatural (sufficient) statistics, given the observations
X and the current parametersθ, η.

• M-step:Given the expectation of the natural statistics, up-
date the parametersθ, η so as to increase the conditional
expectation of the modified log-posterior of the so-called
complete data[20]. This step is implemented via a loop
over allJ×9 parameter subsetsθj,k specified in Table II.
Each subset, depending whether it is adaptive (partially
adaptive) or fixed, is updated (partially updated) or not
in turn using suitable update rules inspired by [9], [13],
[14].

1) Preliminaries:
a) Additive noise and simulated annealing:As explained

in [13], where a similar GEM algorithm is used, the mixing
parametersAfn (see Eq. (7)) updated via this GEM algorithm
can become stuck into a suboptimal value. To overcome this
issue, we use a form ofsimulated annealingproposed in [13],
which consists in adding to (7) a noise term whose variance is
decreased by a fixed amount at each iteration. Thus, we assume
that there is aJ + 1-th source with full-rank time-invariant
spatial covarianceΣb,fn = σ2

f II = RJ+1,fn and trivial
spectral power (vJ+1,fn = 1) that represents a controllable
additive isotropic noisebfn = yJ+1,fn. Introducing this noise
component leads to considering the noise covarianceΣb,fn as
part of the model parametersθ and to adding it to the mixing
equation (7):

xfn = Afnsfn + bfn. (17)

b) Complete data log-posterior and natural statistics:
We choseZ = {X,S} as the complete data, whereS =
{sfn}f,n, and the modified log-posterior of the complete data
can be written as:

L̂(θ, η|X,S)
c
= L̂(X|S; θ) + L̂(S|θ) + log p(θ|η)

c
= −

∑

f,n

tr
[
Σ−1

b,fn

(
Rx,fn −AfnR

H
xs,fn

−Rxs,fnA
H
fn +AfnRs,fnA

H
fn

)]
−
∑

f,n

log |Σb,fn|

−
∑

j

Rj

∑

f,n

dIS(ξj,fn|vj,fn) +
J,9∑

j,k=1

log p(θj,k|ηj,k), (18)

where dIS(x|y) = x
y − log x

y − 1 is the Itakura-Saito (IS)
divergence [9],vj,fn are the entries of matrixVj specified by
(13), andRx,fn, Rxs,fn, Rs,fn andξj,fn are defined as:

Rx,fn , R̂x,fn = Ê[xfnx
H
fn], Rxs,fn , Ê[xfns

H
fn], (19)

Rs,fn , Ê[sfnsHfn], ξj,fn , 1

Rj

∑Rj

r=1
Ê[|sjr,fn|2]. (20)

It can be easily shown from (18) that the family of functions
{exp L̂(X,S|θ)}θ forms anexponential family[7], [20], and
the setT(X,S) = {Rx,fn,Rxs,fn,Rs,fn}f,n is a natural
(sufficient) statistics[7] for this family. Given this result, we
derive a GEM algorithm that is summarized below.

2) Conditional expectation of the natural statistics (E-step):
The conditional expectations of the natural statisticsT(X,S)
are computed as follows:

R̂xs,fn = R̂x,fnΩ
H
s,fn, (21)

R̂s,fn = Ωs,fnR̂x,fnΩ
H
s,fn + (IR −Ωs,fnAfn)Σs,fn,(22)

where

Ωs,fn = Σs,fnA
H
fnΣ

−1
x,fn, (23)

Σx,fn = AfnΣs,fnA
H
fn +Σb,fn, (24)

Σs,fn = diag
(
[φr,fn]

R
r=1

)
, (25)

andφr,fn = vj,fn if and only if r ∈ Rj , whereRj denotes
the set of sub-source indices associated with sourcej in the
vectorsfn (see section III-D).

3) Update of the spatial covariances (M-step):
a) Unconstrained time-invariant mixing parameters:

We first consider the case where there are no probabilistic
priors specified for the mixing parameters{Aj}j and these
parameters are time-invariant. LetA,A′ ⊂ {1, . . . , R} be
subsets of indices of sizesD = #(A) and D′ = #(A′),
respectively. Below we denote byAA

fn, R̂A
xs,fn and R̂AA′

s,fn

the matrices of respective sizesI × D, I × D andD × D′,
that consist of the corresponding entries of the matricesAfn,
R̂xs,fn andR̂s,fn, i.e.,AA

fn = [Afn(i, r)]
I
i=1,r∈A, R̂A

xs,fn =

[R̂xs,fn(i, r)]
I
i=1,r∈A, and R̂AA′

s,fn = [R̂s,fn(r, r
′)]r∈A,r′∈A′ .

We also denote byA = {1, . . . , R}\A the complementary
set. Let C ⊂ {1, . . . , R} (resp. I ⊂ {1, . . . , R}) be the
indices of convolutively (resp. instantaneously) mixed sources
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with adaptive mixing parameters. With these conventions the
mixing parameters are updated as follows6:

AC
fn =

[∑

ñ

{
R̂C

xs,fñ −AC
fñR̂

CC
s,fñ

}][∑

ñ

R̂CC
s,fñ

]−1

,

(26)

AI
fn = ℜ


∑

f̃ ,ñ

{
R̂I

xs,f̃ñ
−AI

f̃ ñ
R̂II

s,f̃ñ

}



ℜ




∑

f̃ ,ñ

R̂II
s,f̃ñ







−1

.

(27)

b) Other constraints: Estimating time-varying mixing
parameters without any priors does not make much sense in
practice due to highly unconstrained nature of such the estima-
tion. If the mixing parameters are given some Gaussian priors,
closed-form updates similar to (26), (27) can be still derived,
since the modified log-posterior (18) will be a quadratic form
with respect to the mixing parameters. In case of nongaussian
priors some Newton-like updates [22] can be derived.

4) Update of the spectral power parameters (M-step):
a) Unconstrained nonnegative matrices:Let Cj = θj,k

(k = 2, . . . , 9) an adaptive or partially adaptive nonnegative
matrix (see Tab II) with a uniform priorp(θj,k|ηj,k) = 1.
Whatever the matrixCj , it can be shown that the decomposi-
tion (13) can be rewritten asVj = (BjCjDj)⊙Ej, whereBj ,
Dj andEj are some nonnegative matrices that are assumed
to be fixed whileCj is updated. For example, ifCj = Hft

j

in (13), one can chooseBj = Wft
j Uft

j Gft
j , Dj = IN and

Ej = Wex
j Uex

j Gex
j Hex

j . With these notations it can be
shown that the conditional expectation of the modified log-
posterior (18) of the complete data is non-decreasing when the
corresponding update forCj does not increase the following
cost function:

DIS(Cj) =
∑

f,n
dIS([Ξ̂j ]f,n|[Vj ]f,n), (28)

whereVj = (BjCjDj)⊙Ej andΞ̂j = [ξ̂j,fn]f,n with ξ̂j,fn
computed as follows:

ξ̂j,fn =
1

Rj

∑
r∈Rj

R̂s,fn(r, r), (29)

whereR̂s,fn is computed in (22) andRj is defined at the end
of Section IV-B2. Applying some standard derivations (see,
e.g., [9]), one can obtain the following nonnegative MU rule7

Cj = Cj⊙
BT

j [Ξ̂j ⊙Ej ⊙ {(BjCjDj)⊙Ej}.−2]DT
j

BT
j [Ej ⊙ {(BjCjDj)⊙Ej}.−1]DT

j

(30)

that guarantees non-increase of the cost function (28), andthus
non-decrease of the conditional expectation of the modified
log-posterior (18) of the complete data. These update rules, as
applied to multichannel audio, are in fact a generalizationof

6We see that the mixing parameters for different sources are updated jointly
by Eqs. (26), (27), while we have claimed in the beginning of Section IV that
they will be updated in an alternated manner. However, sincewe can here
update parameters jointly without loss of flexibility, we doso, since joint
optimization, as compared to the alternated one, leads in general to a faster
convergence.

7In the case of partially adaptive matrixCj , only the adaptive matrix entries
are updated with rule (30).

the GEM-MU algorithm proposed in [21], that has been shown
to converge much more quickly than the GEM algorithm in
[13].

b) Discrete state-based constraints:Let us now assume
that θj,4 = Gex

j is subject to a discrete state-based constraint
(similarly for θj,8 = Gft

j ). Note that when time-localized
patternsHex

j (or Hft
j ) have non-zero overlaps in time of

maximum lengthL (see, e.g., Fig. 4) the model becomes
equivalent to an HMM of the orderL (in case of GMMs) or
of the orderL + 1 (in case of HMMs). In order to avoid the
complications of requiring consistency of overlapping patterns
(which would introduce temporal constraints somewhat rem-
iniscent of an HMM), in our baseline implementation and in
the updates described below we only consider non-overlapping
time-localized patternsHex

j = IN in case of discrete state-
based constraints. The updates are performed as follows:

1) SetG̃ex
j = Gex

j , and fill each entry of each column of
G̃ex

j with the nonzero entry of the respective column of
Gex

j .
2) If Gex

j is adaptive, do for everyk = 1, . . . ,Kex
j :

• SetCj = G̃ex
j , and set all the elements ofCj to

zero, except thek-th row.
• UpdateCj using several iterations of (30)8.
• Set thek-th row of G̃ex

j equal to that ofCj .

3) For every k = 1, . . . ,Kex
j and m = 1, . . . ,M ex

j

set Cj = G̃ex
j , set all the elements ofCj to zero,

except the(k,m)-th one, and compute the IS divergence
DIS(k,m) betweenVj = (BjCjDj)⊙Ej and Ξ̂j , as
in (28).

4) Update the state sequenceqex
j using the Viterbi algo-

rithm [45] to minimize the following criterion:

qex
j = argmin

qex
j

Mex
j∑

m=2

DIS(q
ex
j,m,m)− log p(qex

j |Λex
j ),

wherep(qex
j |Λex

j ) is computed as in (14).
5) SetGex

j = G̃ex
j and set to zero all the entries ofGex

j ,
except those corresponding toqex

j .
6) If Λex

j is adaptive, update the transition probabilities as

λex
j,kk′ =

∑Mex
j

m=2 1(qexj,m−1=k,qexj,m=k′)

(Mex
j −1)

∑Mex
j

m=2 1(qexj,m−1=k)
in case of HMM or

S-HMM or asλex
j,kk′ = 1

Mex
j −1

∑Mex
j

m=2 1(q
ex
j,m = k′) in

case of GMM or GSMM.
c) Other constraints:We here discuss the updates that

are not yet included in our current baseline implementation
(see Sec. II-D).

An EM algorithm update rules for time pattern weightsGex
j

or Gft
j with time continuity priors, such as inverse-Gamma or

Gamma Markov chain priors, can be found in [9]. However,
one cannot use these rules within our GEM algorithm, since
we use a different, reduced, complete data set, as compared

8Several iterations of update rule (30) are needed because all entries of
G̃ex

j are initialized in step 1 from a particular sequence of gainscarried by
Gex

j and optimized for the current state sequenceqex
j . Performing only one

update of (30) would unfavor state sequence evaluation. However, to avoid
all these issues, in our implementation we just keep matrixG̃ex

j in memory,
skip step 1, and do only one iteration of (30).



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 11

to the one used in [9]. Nevertheless, one can always use some
Newton-like updates [22] for these priors.

If a matrixθj,k (k = 2, . . . , 9) is constrained with a sparsity-
inducing prior [4], such as a Laplacian prior (corresponding to
an l1 norm penalty), it can be updated using the multiplicative
updates described in [46], [47]. However, in such a case the
renormalization described in the subsection below could not
be applied, since it would change the value of the optimized
criterion (16). At the same time, without any renormalization,
the sparsity-inducing prior would loose its influence. To avoid
that, all the other parameter subsetsθj,l (l 6= k) should be
constrained, e.g., to have a unitary (sayl1) norm, which can
be handled using the gradient descent updates from [46] or
the modified multiplicative updates from [47].

5) Renormalization:At the end of each GEM iteration,
in order to avoid numerical (under/over-flow) problems, a
renormalization of some parameters is done if needed, i.e.,
if these parameters are not already constrained by some priors
that are not scale-invariant. This procedure is similar to the
one described in [13], and it does not change the value of
the optimized criterion (16). For example, the columns of
matrix Uex

j can be divided by their energies, and the rows
of Gex

j scaled accordingly (see (13)). Similar renormalization
is applied in turn to each patameter subsets pairsθj,k, θj,k+1

(k = 1, . . . , 8), and at the end of this operation the total energy
is relegated intoθj,9.

C. Source estimation

Given the estimated model parametersθ, the sources can be
estimated in the minimum mean square error (MMSE) sense
via the Wiener filtering:

ŷj,fn = vj,fnRj,fnΣ
−1
x,fnxfn, (31)

where Σx,fn =
∑J

j=1 vj,fnRj,fn. The counterpart of this
equation for quadratic TF representations is given in Ap-
pendix A.

V. EXPERIMENTAL ILLUSTRATIONS

The goals of this experimental part are to illustrate on
some examples how to specify the prior information in the
framework, given a particular source separation problem, and
to demonstrate that we can implement the existing and new
methods within the framework. For that we first give an
example of application of the framework to a music recording
in a non-blind setting, i.e., when different sources are given
different models according to the prior information. Second,
we consider a few blind framework instances, corresponding
to existing and new methods, and apply them for separation
of underdetermined speech and music mixtures. Third, we
describe how to apply the framework to solve the source
separation problem mentioned in the beginning of the intro-
duction, i.e., the separation of bass, drums and melody in
music recordings. Finally, we briefly mention our application
of the framework for speech separation in the context of noise
robust speech recognition.

A. Non-blind separation of one music recording

1) Data: As an example stereo music recording to separate
we took the 23-second snip of the song “Que pena tanto
faz” by Tamy from the test dataset of the SiSEC 2008 [30]
“Professionally produced music recordings” task. We know
about this recording that there are two sources, a female
singing voice and a guitar, that the voice is instantaneously
mixed (panned) in the middle9 and the guitar is possibly a
non-point convolutive source.

2) Constraint specification and parameter initialization:To
account for this information within our framework, we have
chosen the following constraints. The singing voice mixing
parametersA1 form a fixed tensor of size2 × 1 × F × N
with all entries equal to1. The guitar mixing parameters
A2 form an adaptive tensor of size2 × 2 × F × N subject
to the time-invariance constraint. The spectral powersVj

(j = 1, 2) are constrained toVj = Wex
j Uex

j Gex
j Hex

j
5

with Wex
j and Hex

j being fixed, andUex
j and Gex

j being
adaptive. The narrowband spectral patternsWex

j include6×L
harmonic patterns modeling the harmonic part ofL pitches and
9 smooth patterns (see Fig. 4 (E) and [14]). TheL pitches
are chosen to cover the range of 77 - 1397 Hz (39 - 89 on
the MIDI scale), which is enough for both the guitar and
this particular singing. The time-localized patternsHex

1 and
Hex

2 are different. The singing voice time-localized patterns
Hex

1 include half-Gaussians truncated at the left, i.e., only
the right half is kept. The guitar time-localized patternsHex

2

include decreasing exponentials to model the decay part of the
notes and discrete Dirac functions to model note attacks (see
Fig. 4 (H)). All adaptive parameters are initialized with random
values. Finally, we used the ERB quadratic representation
described in [18] as signal representation.

3) Results: After 500 iterations of the proposed GEM
algorithm the separation results, measured in terms of the
source to distortion ratio (SDR) [48], were 7.2 and 8.9 dB for
voice and guitar, respectively. We have also separated the same
mixture using all the blind settings described in the following
section. The best results of 5.5 and 7.1 dB SDR were obtained
by the unconstrained NMF spectral power model with the
instantaneous rank-1 mixing, i.e., by the multichannel NMF
for instantaneous mixtures [13].

4) Discussion: We see that our informed setting outper-
forms any blind setting by at least 1.7 dB SDR. This im-
provement is essentially due to the combination of rank-1
instantaneous and full-rank convolutive mixing models andthe
information about the position of one source. Moreover, while
it is common in professionally produced music recordings that
some sources are mixed instantaneously (panned) and others
convolutively (e.g., live-recorded tracks or some artificial
reverberation is added), in our best knowledge such hybrid
models were not yet proposed for audio source separation,
and it now becomes possible to implement them within our
framework.

9This information can be for example obtained by subtractingthe left
channel from the right one and checking that the voice is cancelled.
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B. Blind separation of underdetermined speech and music
mixtures

1) Data: Here we evaluate several settings of our frame-
work on the development dataset of the SiSEC 2010 [29]
“Underdetermined-speech and music mixtures” task. This
dataset include 10-seconds length instantaneous, convolutive
and live-recorded stereo mixtures of three or four music and
speech sources (see [29] for more details).

2) Constraint specification and parameter initialization:
We consider eight blind settings of the framework that are
specified by the following constraints. For all settings andfor
all sourcesAj forms an adaptive tensor of size2 × Rj ×
F ×N subject to the time-invariance constraint and subject to
the frequency invariance constraint for instantaneous mixtures
only. The spectral power of each source is structured asVj =
Eex

j Pex
j

5. The eight settings are generated by all possible
combinations of the following possibilities (see also Table IV):

• Rank:The rankRj is either1 or 2 (full-rank).
• Spectral structure:The characteristic spectral patterns

Eex
j are eitherunconstrained, i.e., Eex

j = Wex
j with

adaptiveWex
j , or constrained, i.e., Eex

j = Wex
j Uex

j

with fixed Wex
j being composed of harmonic and noise-

like and smooth narrowband spectral patterns (see Fig. 4
(E) and [14]), and adaptiveUex

j (see Fig. 4 (F)) that
is very sparse so as to eliminate invalid combinations of
narrowband spectral patterns (e.g., patterns corresponding
to different pitches should not be combined together).

• Temporal structure:The time activation coefficientsPex
j

are eitherunconstrained, i.e., Eex
j = Gex

j with adaptive
Gex

j , or constrained, i.e.,Eex
j = Gex

j Hex
j with fixedHex

j

being composed of decreasing exponentials, as those on
Fig. 4 (H), and adaptiveGex

j .

The two settings withRj = 1 and2, and unconstrainedEex
j

andPex
j correspond to the state-of-the-art methods [13] and

[17], respectively (see Section III-F), while the remaining six
settings are new.

In line with [13], parameter estimation via GEM is sensitive
to initialization for all the settings we consider. To provide our
GEM algorithm with a “good initialization” we used for the
instantaneous mixtures the DEMIX mixing matrix estimation
algorithm [49] to initialize mixing parametersAj , followed by
l0 norm minimization (see e.g., [1]) and Kullback-Leibler (KL)
divergence minimization (see [13]) to initialize the source
power spectraVj . For synthetic convolutive and live recorded
mixtures we first estimated the time differences of arrival
(TDOAs) using the MVDRW estimation algorithm proposed
in [50], that is based on a variance distortionless response
(MVDR) beamformer. The estimated TDOAs were then used
to initialize anechoic mixing parametersAj , followed by
binary masking and KL divergence minimization (see [13]) to
initialize the source power spectraVj . As signal representation
we used the STFT.

3) Results: Source separation results in terms of average
SDR after 200 iterations of the proposed GEM algorithm are
summarized in Table IV together with results of thebaseline
used for initialization.

4) Discussion: As expected, in most cases rank-1 spatial
covariances perform the best for instantaneous mixtures and
full-rank spatial covariances perform the best for synthetic
convolutive and live recorded mixtures. Moreover, in all the
cases there is at least one of the six new methods that
outperforms the state-of-the-art methods [13] and [17]. One
can note that for music sources constraining the spectral
structure does not improve the separation performance10,
however, constraining the temporal structure does improve
it. For speech sources constraining both the spectral and the
temporal structures improves the separation performance in
most cases. This is probably because the unconstrained NMF
is a poor model for speech. Indeed, as compared to simple
music, speech includes much more different spectral patterns,
notably due to a more pronounced vibrato effect (varying
pitch). As a consequence, the unconstrained NMF model needs
much more components to describe this variability, thus it
cannot be estimated in a robust way from these quite short
10-second length mixtures. Introducing spectral and temporal
constraints makes model estimation more robust.

C. Separation of bass, drums and melody in music recordings

Here we describe how to apply our framework to the
separation of the bass, the drums, the melody and the remain-
ing instruments from a stereo professionally produced music
recording. This source separation problem is of great practical
interest for music information retrieval and remastering (e.g.,
karaoke) applications.

1) State-of-the-art:The state-of-the-art approaches target-
ing this problem suffer from the following limitations. First,
existing drum [52] and melody [16] separation algorithms have
been designed for single-channel (mono) recordings and may
fail to segregate the melody from the other harmonic sources
despite the fact that they have different spatial directions.
Second, blind source separation methods relying on joint use
of spatial and spectral diversity, such as, e.g., the multichannel
NMF [13], need some user input to label separated signals
[21] and cannot separate sources mixed in the same direction,
which is a very common situation, e.g., for singing melody
and drums. Finally, no state-of-the-art approach treats this
problem in a joint fashion and cascading the methods (e.g.,
separating the drums, then separating the melody, etc.) is
clearly suboptimal. Thus, it is clear that an efficient solution
to this problem should rely on:

• some prior knowledge about the source spectral charac-
teristics (to label the sources automatically),

• the spatial diversity of different sources,
• some model describing harmonicity, and
• joint modeling of all sources.

2) Constraint specification, parameter initialization and
reconstruction: Our framework satisfies these requirements,
and in order to account for this information we have chosen
the following constraints. The two-channel mixture is modeled
as a sum of 12 sources: 4 sources (j = 1, . . . , 4) representing

10The results for synthetic convolutive mixtures of music sources are not
very informative because of the poor overall performance.
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Mixing instantaneous synthetic convolutive live recorded
Sources speech music speech music speech music
Microphone spacing - - 5 cm 1 m 5 cm 1 m 5 cm 1 m 5 cm 1 m
Number of 10 second-length mixtures 6 4 10 10 4 4 10 10 4 4

baseline (l0 minimization [51] or binary masking) 8.6 12.4 1.0 1.4 -0.9 -0.7 1.1 1.4 2.5 0.3

Method rankRj spectral struct. temporal struct.

[13] 1 unconstrained unconstrained 8.8 17.2 1.6 2.1 -1.1 -1.2 2.2 2.5 3.2 0.4
[17] 2 unconstrained unconstrained 8.9 17.0 1.8 2.7 -0.5 -0.2 2.0 3.0 3.5 0.8

new 1 constrained unconstrained 10.5 13.6 1.9 2.5 -0.5 -0.5 2.2 2.8 3.0 0.5
new 2 constrained unconstrained 10.4 13.0 2.1 3.1 -0.7 -0.4 2.3 3.2 3.2 0.8
new 1 unconstrained constrained 8.9 18.6 1.5 2.2 -0.8 -0.5 2.4 2.6 3.4 0.9
new 2 unconstrained constrained 8.7 15.4 1.8 2.6 -0.4 0.0 2.1 2.9 4.5 1.8
new 1 constrained constrained 10.5 15.7 2.1 2.9 -1.2 0.3 2.5 3.9 3.2 0.4
new 2 constrained constrained 10.2 13.8 2.1 4.5 0.0 -0.3 2.3 5.0 3.7 1.0

TABLE IV
AVERAGE SDRS ON SUBSETS OFSISEC 2010 “UNDERDETERMINED SPEECH AND MUSIC MIXTURES” TASK DEVELOPMENT DATASET.

the bass, 4 sources (j = 5, . . . , 8) representing the drums11,
and the remaining 4 sources (j = 9, . . . , 12) representing
the melody and the other instruments. Each set of mixing
parametersAj (j = 1, . . . , 12) form an adaptive tensor of size
2× 2× F ×N subject to the time-invariance constraint. The
spectral powersVj of the bass and the drums (j = 1, . . . , 8)
are constrained toVj = Wex

j Gex
j

5 with Gex
j being adaptive

andWex
j being fixed and pre-trained (using our framework)

from isolated bass and drum samples from the RWC music
database [53]. The spectral powersVj of the melody and
the remaining instruments (j = 9, . . . , 12) are constrained to
Vj = Wex

j Uex
j Gex

j
5 with Wex

j being fixed, andUex
j and

Gex
j being adaptive. The narrowband spectral patternsWex

j

(j = 9, . . . , 12) include 3 × L harmonic patterns modeling
the harmonic part ofL pitches (see [14]). TheL pitches are
chosen to cover the range of 27 - 4186 Hz (21 - 108 on
the MIDI scale), which is enough to cover the pitch range of
most instruments. All adaptive parameters are initializedwith
random values, except the mixing parametersAj (2×2×F×N
tensors) that are initialized with the same (random)2× 2×N
tensor for all frequency bins. We used the ERB quadratic
representation in [18] as signal representation due to its higher
low-frequency resolution than the STFT, which is desirable
for the modeling of bass sounds. Once the GEM algorithm
has run, the12 sources are estimated via Wiener filtering.
The bass and the drums are reconstructed by summing the
corresponding source estimates, the melody is reconstructed by
choosing the most energetic source among the corresponding
four (j = 9, . . . , 12) sources, and the remaining instruments
by summing the other three sources.

3) Results:The corresponding source separation script to-
gether with one separation example are available from the
FASST web page [25]. Note that this example is a difficult,
real-world mixture, which involves several sources mixed in
the center (bass, singing voice, certain drums) and several
harmonic sources with comparable pitch range (singing voice,

11The bass is modeled as a sum of 4 sources to facilitate initialization,
since we do not know a priori its spatial direction. The drumsare modeled
as a sum of 4 sources for the same reason, but also because the drum track is
often composed of several sources (e.g., snare, hi-hat, cymbals, etc) that can
be mixed in different directions.

piano).

D. Separation of speech in multi-source environment for noise
robust speech recognition

We have also applied the framework for the problem of
speech separation in reverberant noisy multi-source environ-
ment. This was done for our submission to the 2011 CHiME
Speech Separation and Recognition Challenge12. The corre-
sponding description can be found in [54] and some separation
examples are available from a demo web page at13.

VI. CONCLUSION

We have introduced a general flexible audio source sep-
aration framework that generalizes several existing source
separation methods, brings them into a common framework,
and allows to imagine and implement new efficient methods,
given the prior information about a particular source separa-
tion problem. Besides the framework itself, we proposed a
new temporal structure for NMF-like decompositions and an
original mixing model formulation combining rank-1 and full-
rank spatial mixing models in a homogeneous way. Finally, we
provided a proper probabilistic formulation of local Gaussian
modeling for quadratic time-frequency representations.

In the experimental part we have illustrated how to specify
the prior information about a particular source separation
problem within the framework, and we have shown that the
framework allows implementing existing and new efficient
source separation methods. We have also demonstrated that in
some situations our new propositions can improve the source
separation performance, as compared to the state-of-the-art. As
such combining instantaneous rank-1 and and convolutive full-
rank can be useful for separation of professionally produced
music recordings, and the newly proposed temporal structure
for NMF-like decompositions brings some improvement for
blind separation of underdetermined mixtures of speech and
music sources.

As for further research, the following extensions could
be introduced to the framework. In a similar fashion as for

12http://spandh.dcs.shef.ac.uk/projects/chime/challenge.html
13http://www.irisa.fr/metiss/ozerov/chimessepdemo.html
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spectral power, a flexible structure can be specified for the
mixing parameters. E.g., the time-varying mixing parameters
could be represented in terms of time-localized and locally
time-invariant mixing parameter patterns, thus allowing the
modeling of moving sources. Another interesting extension
would be to introduce possible coupling between param-
eter subsets, thus allowing, e.g., the representation of the
characteristic spectral patterns of different sources as linear
combinations of eigenvoices [55] or eigeninstruments [56].
In fact, some parameter subsets corresponding to different
sources can share common properties, and introducing such
a coupling would make the estimation of these parameters
more robust.

APPENDIX A
PROBABILISTIC FORMULATION OF THE LOCAL GAUSSIAN

MODEL FOR QUADRATIC REPRESENTATIONS

Here we give a proper probabilistic formulation of the local
Gaussian model (4) for quadratic representations, explaining
the exact meaning of the empirical covariance (3) and a
justification of the criterion (16).

A. Input representation

Following [10], [18], we assume that the considered
quadratic TF representation is computed by local averaging
of a linear TF representation such as a STFT or an ERB
filterbank. We assume that the indexing of the considered
linear TF complex-valued representation, hereafter notedas
m = 1, . . . ,M , can be in general different from the indexing
f, n of the quadratic representation (3). Such a formulation
allows considering linear and quadratic representations with
different TF resolutions, but also using linear TF representa-
tions that do not allow any uniform TF indexing, e.g., an ERB
representation with different sampling frequencies in different
frequency bands or a signal-adapted multiple-window STFT
[57]. The mixing equation (1) now writes as

xm =
∑J

j=1
yj,m, (32)

and we re-define the empirical covariance (3) as

R̂x,fn =
∑

m
(ωana

fn,m)2xmxH
m, (33)

whereωana
fn,m ≥ 0, satisfying

∑
f,n(ω

ana
fn,m)2 = 1, are the coef-

ficients of a local bi-dimensionalanalysiswindow specifying
a neighbourhood of the TF point(f, n) [10], [18].

B. Local Gaussian model

In this setting the local Gaussian model (4) is re-defined as
follows. Each vectoryj,m is assumed to be distributed as

yj,m ∼ Nc (0̄, vj,fnRj,fn) (34)

with probability(ωana
fn,m)2. In other words,yj,m is a realization

of a GMM. Moreover, the vectors{yj,m}j are assumed to be
independent only conditionally on the same GMM state. More

precisely, the joint probability density function of{yj,m}j is
defined as

p(y1,m, . . . ,yJ,m) ,∑
fn

(ωana
fn,m)2

∏
j
Nc (yj,m; 0̄, vj,fnRj,fn) . (35)

C. Model estimation criterion

Under the above-presented assumptions (see (32) and (35)),
the log-posteriorlog p(θ, η|X), maximized by the MAP crite-
rion, writes

log p(θ, η|X)
c
= log p(X|θ) + log p(θ|η) =∑

f,n

log
∑

m

(ωana
fn,m)2Nc(xm; 0̄,Σx,fn) + log p(θ|η), (36)

where Σx,fn =
∑J

j=1 vj,fnRj,fn. Log-posterior (36) is
difficult to optimize, due to summations in log-domain. Thus,
following the EM methodology [20], we replacelog p(θ, η|X)
by its lower bound

∑

f,n

∑

m

(ωana
fn,m)2 logNc(xm; 0̄,Σx,fn) + log p(θ|η), (37)

using Jensen’s inequality [20], and we get the criterion (16)
with empirical covarianceŝRx,fn computed as in (33). Thus,
the criterion (16) maximizes a lower bound of the log-posterior
(36).

Note, that with this formulation we could obtain exactly the
same updates as those presented in Section IV-B by deriving
a GEM algorithm for the MAP criterion (36). This is because
the computing of the lower bound (37) is based on the EM
methodology. However, we prefer to keep the criterion (16),
since it makes the formulation more compact and links it to
quadratic representations and to the existing works [10], [18].

D. Source estimation

The sources can be estimated as follows [10], [18]:

ŷj,m =
∑

f,n
ωsyn
fn,mωana

fn,mvj,fnRj,fnΣ
−1
x,fnxm, (38)

whereωsyn
fn,m ≥ 0 is a so-calledsynthesiswindow satisfying∑

f,n ω
syn
fn,mωana

fn,m = 1. This estimator becomes the MMSE
estimator whenωsyn

fn,m = ωana
fn,m.
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Abstract—Informed source separation (ISS) aims at reliably
recovering sources from a mixture. To this purpose, it relies on
the assumption that the original sources are available during
an encoding stage. Given both sources and mixture, a side-
information may be computed and transmitted along with the
mixture, whereas the original sources are not available any longer.
During a decoding stage, both mixture and side-information are
processed to recover the sources. ISS is motivated by a number
of specific applications including active listening and remixing of
music, karaoke, audio gaming, etc. Most ISS techniques proposed
so far rely on a source separation strategy and cannot achieve
better results than oracle estimators. In this study, we introduce
Coding-based ISS (CISS) and draw the connection between ISS
and source coding. CISS amounts to encode the sources using not
only a model as in source coding but also the observation of the
mixture. This strategy has several advantages over conventional
ISS methods. First, it can reach any quality, provided sufficient
bandwidth is available as in source coding. Second, it makes
use of the mixture in order to reduce the bitrate required
to transmit the sources, as in classical ISS. Furthermore, we
introduce Nonnegative Tensor Factorization as a very efficient
model for CISS and report rate-distortion results that strongly
outperform the state of the art.

Index Terms—Informed source separation, spatial audio object
coding, source coding, constrained entropy quantization, proba-
bilistic model, nonnegative tensor factorization.

I. INTRODUCTION

AUDIO compression has been a very active field of re-
search for several decades due to the tremendous demand

for transmitting, or storing, digital audio signals at reduced
rates. Audio compression can either be lossless (the original
signal can be exactly recovered) or lossy (the original signal
can only be approximately recovered). The latter scheme
which reaches much higher compression ratios usually exploits
psychoacoustic principles to minimize the perceptual loss. A
large variety of methods were developed amongst which some
have been standardized. MPEG1-Layer 3 (e.g. mp3) [1] or
Advanced Audio Coding (AAC) [2] are probably amongst the
most widely popular standardized lossy audio compression
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schemes. It is generally admitted that most coding schemes
either rely on a parameterized signal model (e.g. as in para-
metric coding approaches), or on a direct quantization of the
signal (as in waveform or transform coding), but also in some
cases on a combination of both [3].

Concurrently, the domain of source separation (and audio
source separation in particular) has also seen a great interest
from the community but with little or no interaction with the
audio compression sphere [4]. The general problem of source
separation can be described as follows: assume J signals (the
sources) S have been mixed through I channels to produce I
signals (the mixtures) X. The goal of source separation is to
estimate the sources S given their mixtures X. Many advances
were recently made in the area of audio source separation
[5], [6]. However, the problem remains challenging in the
undetermined setting (I < J), including the single-channel
case (I = 1), and for convolutive mixtures [7].

It is now quite clear that audio source separation perfor-
mances strongly depend on the amount of available prior
information about the sources and the mixing process one can
introduce in the source separation algorithm. In unsupervised
source separation, this information can be under the form of a
specific source model (as for example the source/filter model
used in [8] for singing voice separation or more generally a
composite model from a library of models [6]). However, this
information can also be provided by a user [9], [10] or by
a partial transcription in the case of music signals (see for
example [11]). In the extreme case, this information can be
the sources themselves. In these cases, we refer to informed
source separation (ISS).

Such so-called ISS schemes were recently developed for
the case where both the sources and the mixtures are assumed
known during an encoding stage [12]–[15]. This knowledge
enables the computation of any kind of side-information that
should be small and should help the source separation at the
decoding stage, where the sources are no longer assumed to be
known. The side-information can be either embedded into the
mixtures using watermarking methods [14] or just kept aside.
ISS is motivated by a number of specific applications including
active listening and remixing of music, karaoke, audio gaming,
etc.

Note that the performances of source separation and the
above-mentioned conventional ISS methods, depending on the
underlying models and assumptions, are bounded by those
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of oracle estimators [16] 1. Indeed, since the majority of
conventional ISS methods [13], [14] are source separation-
inspired and thus fall into the category of parametric coding
approaches, they cannot achieve distortions that are better
(below) the oracle distortions provided by the corresponding
oracle estimators whatever the chosen bitrate 2. In order to out-
perform the oracle estimators, some hybrid approaches have
been developed, which involve waveform source coding. In
[15], some sources are encoded using a source coding method
and the remaining sources are recovered by a conventional ISS
method. However, such a straightforward hybridization does
not allow overcoming the above-mentioned drawbacks that are
still valid for individual sources.

With regard to the above description, it is quite clear that
ISS shares many similarities with the recently introduced
Spatial Audio Object Coding (SAOC) (see [17]–[19] and
[20] for the ISO/MPEG SAOC standard version). Developed
as a multichannel audio compression scheme, SAOC also
aims at recovering so called sound objects at the decoding
side from a transmitted downmix signal and side information
about the audio objects. In the literature, different kinds of
side information were also considered in the framework of
Spatial Audio Coding (SAC), such as the inter and intra-
channel correlation [21], spatial coherence cues [22], source
localization parameters [23], or a sinusoids plus noise model
of the sources [24]. In SAOC [20], high quality remixing is
guaranteed by also transmitting perceptually-encoded residual
signals resulting from an imperfect object extraction at the
encoding side (therefore jointly exploiting waveform coding
and parametric coding principles). However, this scheme has
a major drawback which limits its potential. Indeed, in SAOC
the "separation step" (sound object extraction) is independent
of the "residual compression step" while this could be done
jointly.

The purpose of this paper is then:
1) to further develop and to present in an even more general

manner the novel concept of Coding-based ISS (CISS)
recently introduced in [25], [26] and to highlight its main
theoretic advantage against the approaches followed in
both conventional ISS [13], [14] and SAOC [20];

2) to extend the previous “proof of concept” model used
in [25] by integrating a more elaborate model based
on Non-Negative Tensor Factorization (NTF). 3 We also
discuss how the proposed approach relates to other rele-
vant state of the art methods such as non-negative matrix
factorization (NMF) or NTF-based coding methods [27],
[28], but to the best of our knowledge this is the first

1Given a measure of source separation performance (i.e., a distortion)
and a class of source separation approaches (e.g., binary time-frequency
masking approaches [16]) specified by some separation parameters, the oracle
estimator of the separation parameters is the one leading to the best possible
performance (see [16] for more details).

2This remark does not concern [12], where the distortion can be always
decreased by increasing the size of the corresponding molecular dictionary,
which would lead, however, to an excessive rate needed to transmit such a
dictionary.

3While an NTF model for CISS was already considered in a short study
[26] in the multichannel case, here we consider the single-channel case and
conduct a more thorough evaluation. Moreover, we provide some theoretical
support to the results that were used in [25], [26].

attempt of using NTF models with waveform coding
principles.

3) and to show that the proposed scheme allows for a
smooth transition between low rate object-based para-
metric coding and high-rate waveform coding relying
on the same object-based model (here the NTF model),
thus exploiting long-term redundancy.

It is also important to underline that although our model
is presented in the ISS framework, it is directly applicable to
traditional audio coding or multichannel audio coding (that
is without assuming the mixture to be known at the decoder
side).

The paper is organized as follows: Section II introduces the
general concept of CISS and thoroughly discusses its relation
to the state of the art. Then, its particular variant based on NTF
(CISS-NTF) is described in details and analyzed in section III
in the case of single-channel mixtures with the Mean Squared
Error (MSE) criterion for optimisation.

Experimental results are presented in section IV and the
conclusions and perspectives are drawn in the final section.

II. CODING-BASED INFORMED SOURCE SEPARATION

The general probabilistic framework introduced herein for
ISS is called coding-based ISS (CISS). This approach consists
in quantizing the sources, as in waveform source coding, while
using the a posteriori source distribution, given the mixture
and some generative probabilistic source model, as in source
separation. The quantization can be performed by optimizing
the MSE or some perceptually-motivated distortion driven by
a perceptual model. In this section the framework is presented
in a very general manner, i.e., it is not limited to a particular
problem dimensionality (e.g., multichannel or single-channel
mixtures), mixing type (e.g., linear instantaneous or convolu-
tive mixture), source model or perceptual model. A particular
instance of the framework will be described in the following
section III and evaluated in section IV.

Fig. 1 and 2 give very high-level presentations of the
state of the art approaches, notably the conventional ISS
approaches [13], [14] and the SAOC [17]–[20], where all audio
objects are enhanced.4 In the conventional ISS approaches
(Fig. 1), at the encoding stage, a source model parameterized
by θ̂ is estimated, given the sources S and the mixtures
X. It is then encoded and transmitted as a side-information
yielding its quantized version θ̄. At the decoding stage, the
model parameter θ̄ is reconstructed, and the sources Ŝ are
reconstructed in turn, given θ̄ and the mixture X (e.g., by
Wiener filtering, as in [13]). However, as mentioned in the
introduction, the best achievable distortion of such parametric
coding approaches is inherently limited.

At a very high level view, the parametric coding part of
SAOC approaches (Fig. 2) follows exactly the same scheme
as the conventional ISS (Fig. 1), except that the parametric
model, called SAOC parameters, is different. To achieve a
higher quality at the expense of a higher transmission rate,
the residuals Sr of the parametric SAOC reconstruction Ŝp

4Within this paper, if the contrary is not stated, we always consider SAOC
with enhanced audio objects as in [19], [20].
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Fig. 1. High level presentation of the conventional ISS [13], [14].

can be encoded using a perceptual waveform coder yielding
Ŝr. However, as we see in Fig. 2, the parametric and waveform
coding steps are performed independently and using different
models. This is suboptimal since there is no evidence that
the residual encoding should be independent of the parametric
source encoding.

Fig. 3 gives a high-level representation of the proposed
CISS approach. At the encoding stage, the model param-
eter θ̂ specifying the posterior distribution p(S|X, θ̂) from
a particular family of distributions is estimated, given the
sources S and the mixtures X. A perceptual model Ω can
be optionally computed as well. θ̂ and Ω are then jointly
encoded and transmitted 5 as a side-information yielding their
quantized versions θ̄ and Ω̄. This encoding can optionally
use the knowledge of the mixtures X. Finally, using the
posterior p(S|X, θ̄) and a perceptual distortion measure driven
by Ω̄ the sources S are waveform encoded and transmitted
as a side-information. This is achieved using a probabilistic
model-based quantization and encoding under high-rate theory
assumptions, as in [30], [31]. At the decoding stage, the
quantized parameters θ̄ and Ω̄, and then the quantized sources
Ŝ are reconstructed.

Thus, in contrast to the conventional ISS methods, the CISS
framework allows the distortion being unbounded below as in
waveform source coding (see Fig. 3 vs. Fig. 1). In other words,
CISS can achieve any desirable distortion, given a sufficient
bitrate, and in that sense the notion of oracle estimators [16]
cannot be extended to CISS. Moreover, in contrast to SAOC,
CISS permits, as we will see below, to use more advanced
source models that better exploit the redundancy of audio
signals, and to use the knowledge of the mixture and model
parameters to encode the residuals (see Fig. 3 vs. Fig. 2).

In this work we propose a particular instance of the general
CISS framework, referred herein as CISS-NTF, that is based on

5For example, inspired by what is done in the AMR-WB speech coder [29],
one way of reconstructing the perceptual model Ω at the decoder would be
to estimate it, given the source model and the mixture. This approach does
not require any extra rate for perceptual model transmission. However, other
approaches exist, thus we are more generally speaking about joint encoding
and transmission of perceptual and source models.

Fig. 2. High level presentation of SAOC (all objects are enhanced) [17]–[20].

Fig. 3. High level presentation of CISS (proposed).

an (object-based) probabilistic NTF source model. Moreover,
CISS-NTF is designed for the single-channel case and for the
MSE distortion criterion. Investigation of distortions driven
by more advanced perceptual models (e.g., those considered
in [32]–[34]) is left for a further study.

The major differences of the proposed CISS-NTF approach
compared to the state of the art can then be highlighted as
follows:

• In contrast to conventional ISS methods [12]–[14], it is
based on waveform coding, thus potentially leading to
much superior quality for moderate and high rates, as it
was already mentioned for CISS in general.

• In contrast to SAOC [20], based on some local parameters
(e.g., intra-channel correlation [21] or spatial coherence
cues [22]), it exploits advanced source models, i.e., NTF.
First, this allows using long-term redundancy of audio
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signals for coding. Second, the parameters used for
parametric coding (as in the earlier version of SAOC
[18]) and those used for waveform coding (as in [20])
are all computed from the NTF source model and the
mixture. Thus, these parameters are coupled (or jointly
encoded), while in SAOC [20] they are encoded sepa-
rately. Moreover, the proposed method exploits posterior
correlations between sources (given the mixture), while
in SAOC the residuals of the enhanced audio objects are
encoded independently.

• In the NMF / NTF-based methods [27], [28] the signal
short-time Fourier transform (STFT) (a redundant signal
representation) amplitudes are encoded by approximat-
ing them with an NMF / NTF decomposition. In [27]
the STFT phase is then entropy encoded and the rate
(between phase and amplitude encoding) is allocated
empirically. Also, the rate between different NMF / NTF
model parameters is empirically allocated.
Besides the fact that we consider a different coding
problem, the proposed approach has the following pos-
sible advantages over [27], [28]. First, we consider a
probabilistic NTF applied to the modified discrete cosine
transform (MDCT) or STFT of the sources. As such, we
do not split amplitude and phase, but encode them jointly
via waveform coding within the corresponding time-
frequency representation, while minimizing a target dis-
tortion under the constrained entropy. Thus, we consider
our approach as a waveform coding-based within the NTF
framework. Second, our probabilistic NTF formulation
and quantization under high-rate theory assumptions, al-
lows us deriving (under some approximations) analytical
expressions for rate allocation between different NTF
model parameters which allows avoiding time-consuming
empirical parameter optimization. Third, MDCT being a
critically sampled signal representation, we show its great
advantage over redundant STFT within this application.
To our best knowledge NMF / NTF models were not so
far applied to MDCT signal representations for compres-
sion purposes.

III. SINGLE-CHANNEL CISS-NTF WITH MSE

In this section, we investigate the proposed approach in the
case of single-channel mixtures (I = 1) using the NTF source
model and MSE distortion criterion.

All signals are represented in a real-valued or complex-
valued (here, respectively, MDCT or STFT) time-frequency
domain. In the time-frequency domain the mixing equation
writes

xfn =
∑J

j=1
sjfn + bfn, (1)

where j = 1, . . . , J , f = 1, . . . , F and n = 1, . . . , N
denote, respectively, the source index, the frequency index
and the time-frame index; and xfn, sjfn and bfn denote,
respectively, the time-frequency coefficients of the mixture,
of the sources and of an additive noise. Depending on the
particular configuration this additive noise can represent any
combination of the following distortions:

Sources Mixture

NTF

GMMs

Fig. 4. High-level graphical representation of CISS-NTF probabilistic
hierarchical modeling. Shadings of nodes: variables observed at both coder
and decoder sides (black), variables observed at the coder side, quantized and
transmitted (gray), and parameters estimated at the coder side, quantized and
transmitted (white).

1) a background or recording noise, if X = {xfn}f,n is an
unquantized mixture of sources Sj = {sjfn}f,n (j =
1, . . . , J),

2) a quantization noise if X is a quantized version of its
clean version Xclean, i.e., bfn = xfn − xclean

fn (e.g., as
in SAOC [18], [19]),

3) additional sources {Sj}J
∗
j=J+1 if one is only interested

to encode J sources among J∗ (J < J∗) sources in the
mixture.

Fig. 4 gives a high-level graphical representation of CISS-
NTF probabilistic hierarchical modeling described in de-
tails below. It includes mixture, sources, NTF parameters
(Sec. III-A) and Gaussian mixture models (GMM) used to
encode these parameters (Sec. III-D2c).

A. NTF source model
As a source model we use the NTF model previously used

for source separation in [10] and for ISS in [14]. Its main
idea is to assume that the spectrograms of the sources can
be considered as the activation over time of some spectral
templates. To avoid a pre-defined choice for the number of
spectral templates for each source, a refinement of the model
is to consider a common pool of spectral templates jointly
approximating all spectrograms of the sources. Such a strategy
permits to reduce the number of parameters of the model and
to share the same templates for several sources, which may
be of interest when there is some kind of redundancy among
sources.

Formally, the NTF model can be described as follows. First,
the source and noise time-frequency coefficients sjfn and bfn
are assumed mutually independent, i.e., over j, f and n, and
distributed as follows:

sjfn ∼ Nr/c(0, vjfn), bfn ∼ Nr/c(0, σ2
b,fn), (2)

where the distribution Nr/c(·, ·) is the standard Gaussian
distribution if sjfn is real-valued, or the circular complex
Gaussian distribution if it is complex-valued. The source
variances vjfn are structured as

vjfn =
∑K

k=1
qjkwfkhnk, (3)
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with qjk, wfk, hnk ≥ 0 and the noise variances σ2
b,fn are

assumed to be known. The noise variances can be either
constant and fixed (σ2

b,fn = σ2
b ) to represent a background

noise or have a structure similar to that of the source variances
to represent a nonstationary noise.

We here assume the noise variances to be constant and fixed.
This model can be parameterized as follows

θ =
{
Q,W,H, σ2

b

}
, (4)

with Q = {qjk}j,k, W = {wfk}f,k and H = {hnk}n,k being,
respectively, J ×K, F ×K and N ×K nonnegative matrices
(see Fig. 4).

This model is in fact an object-based approximation of the
3-valence tensor of source power spectra

P , {pjfn}j,f,n (pjfn , |sjfn|2) (5)

consisting of K objects (rank-1 tensors) that represent indi-
vidual sounds. Whereas each column of W stands for one
spectral template, its activation over time is given by the
corresponding column of H. Finally, the columns of Q model
the possible couplings between both the spectral templates
(columns of W) and their temporal activations (columns
of H), i.e., different sources can share the same templates
together with the corresponding activations. One can see from
the example on Fig. 5 (detailed just below) that several
of the 9 components are involved in the modeling of the
spectral templates and temporal activations of all the 3 sources.
Exploiting redundancies over time and over sources appears
to be an important feature of the NTF model.

An illustrative example of this NTF modeling is given in
Fig. 5, where the first row shows MDCT power spectrograms
pjfn (Eq. (5)) of three sources (drums, guitar and singing
voice), the second raw shows their structured approximations
vjfn (Eq. (3)), and the third raw includes NTF matrices
Q, W and H. First, by investigating matrix Q one can
note that among the K = 9 components (in average 3
components per source) 7 components were automatically
assigned (dark brown color) to each source, while sharing the
6-th component between drums and voice and sharing the 9-th
component between all three sources. This last component can
be interpreted as the background noise floor that is common
to all three sources. Second, one can note that while this is
a good approximation (MDCT power spectrograms and their
structured approximations look very similar), it drastically
reduces the dimensionality (i.e., the number of parameters to
be transmitted). Indeed, for this example, instead of J×F×N
= 3× 1024× 421 = 1293312 coefficients pjfn, one have only
(J + F + N) ×K = (3 + 1024 + 421) × 9 = 13032 entries
of NTF matrices, which divides the number of parameters by
100.

B. Prior and posterior distributions

We give here the expressions for prior and posterior (i.e.,
given the mixture) source distributions assuming the NTF
source model presented above. The posterior distribution is
then used for source encoding and the prior one is needed for
some derivations presented in section III-D below.

Since the source time-frequency coefficients are modeled as
distributed with respect to independent Gaussian distributions,
the additive noise is as well assumed Gaussian, and the mixing
(1) is linear, the posterior distribution of the sources given the
observed mixture is Gaussian, and analytical expression of this
distribution is readily obtained. Let sfn = [s1fn, . . . , sJfn]T

be the vector containing the time-frequency coefficients of all
sources at bin (f, n). Provided all parameters (4) are available,
the prior and posterior distributions of sfn write, respectively,
as [6]

p(sfn|θ) = Nr/c

(
sfn;µpr

fn,Σ
pr
s,fn

)
, (6)

p(sfn|xfn; θ) = Nr/c

(
sfn;µpst

fn ,Σ
pst
s,fn

)
, (7)

where Nr/c(·;µ,Σ) denotes the probability density function
(pdf) of a Gaussian random vector with mean µ and covariance
matrix Σ for either real-valued or complex-valued cases; and
prior and posterior covariance matrices (Σpr

s,fn and Σpst
s,fn)

and means (µpr
fn and µpst

fn ) from (6) and (7) are computed
as follows:

Σpr
s,fn = diag

[
{vjfn}j

]
, µpr

fn = 0, (8)

Σpst
s,fn = (IJ − gfn1J) Σpr

s,fn, (9)

µpst
fn = gfnxfn, (10)

gfn = Σpr
s,fn1TJ

(
1JΣpr

s,fn1TJ + σ2
b

)−1

, (11)

with gfn being the Wiener filter gain, vjfn being NTF source
model variances defined by (3), and IJ and 1J denoting,
respectively, the J × J identity matrix and the J-length row
vector of ones.

C. Source encoding and reconstruction

In this section we explain how the posterior source distri-
bution presented in the previous section is used to encode the
sources within the proposed CISS framework.

Given the Gaussian NTF source model outlined above,
source coding would amount to encode each source vector
sfn according to its prior distribution (6). The main idea of
CISS is to employ exactly the same techniques as in source
coding, but to use instead its posterior distribution (7).

In the Gaussian case, such an encoding is readily performed
through constrained entropy quantization relying on scalar
quantization in the mean-removed Karhunen-Loeve transform
(KLT) domain, as described in [31]. We summarize below its
main steps.

Let Σpst
s,fn = UfnΛfnUH

fn be the eigenvalue decomposition
of the covariance matrix, where Ufn is an orthogonal matrix
(UH

fnUfn = IJ ) and Λfn = diag{λ1fn, . . . , λJfn} is a
diagonal matrix of eigenvalues. The linear transform UH

fn

decorrelating sfn is the KLT. Assuming the MSE distortion,
uniform quantization is asymptotically optimal for the con-
strained entropy case [35]. Thus, we consider here scalar
uniform quantization with a fixed step size ∆ in the mean-
removed KLT domain, which can be summarized as follows:

1) Remove the mean and apply the KLT

yfn = UH
fn(sfn − µpst

fn ). (12)
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Fig. 5. Source MDCT power spectrograms pjfn (5) (first row), their structured approximations vjfn (3) (second row), NTF matrices (third row), histograms
of NTF log-coefficients (bars) and two-state GMMs (solid line) modeling them (fourth row). In this example J = 3, F = 1024, N = 421 and K = 9.

2) In the real-valued case, quantize each dimension of
yfn = [y1fn, . . . , yJfn]T with a uniform scalar quan-
tizer Q∆ : yjfn → ŷjfn having a constant step size
∆. In the complex-valued case, the same quantization
is applied independently to real and imaginary parts of
yjfn. Using an arithmetic coder as an entropy coder
[31], the effective codeword length (in bits) is given by

L(sfn|xfn; θ) =

−
J∑

j=1

log2

∫

y−ŷjfn∈A(∆)

Nr/c(y; 0, λjfn)dy. (13)

where in the real valued case A(∆) , [−∆/2,∆/2],
and in the complex-valued case A(∆) ,
{z ∈ C|max(|<z|, |=z|) ≤ ∆/2}.

3) Reconstruct the quantized source vector ŝfn

ŝfn = Ufnŷfn + µpst
fn . (14)

D. Model estimation and encoding

In this section we first detail the strategy for the estimation
and quantization of the NTF parameters θ (see Fig. 3). Our
derivations mostly follow those from [30]. However, they are
applied here to the NTF model instead of the autoregressive
model considered in [30]. As highlighted above, the optimal
approach would consider posterior distribution (7) for the
model estimation and encoding. However, the derivation of
the corresponding estimation strategy is overly complex and
did not permit us to obtain a simple solution. To simplify this
analysis we then assume that the sources were quantized using
the prior distribution (6) instead of the posterior one (7). This
choice leads us to an optimization strategy based upon some
standard algorithms, and we leave the more optimal case of the
posterior optimization for further study. Note however that if
the posterior distributions are not used in the analysis of model
estimation and encoding they are indeed used below for the
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residual sources encoding.
1) Model estimation: Under high-rate theory assumptions

and given the model parameter θ, the total rate (in bits)
required to encode the sources S = {sjfn}j,f,n is [30]

R(S|θ) = − log2 p(S|θ)−
M(J, F,N)

2
log2

D

Cs
, (15)

where D = Cs∆
2 is the mean distortion (per real-valued

dimension), defined as D , E[|ŝjfn − sjfn|2] in the real-
valued case and as D , (1/2)E[|ŝjfn − sjfn|2] in the
complex-valued case; Cs = 1/12 is the coefficient of scalar
quantization, and M(J, F,N) denotes the total number of
real-valued coefficients in S, i.e., M(J, F,N) , JFN in the
real-valued case and M(J, F,N) , 2JFN in the complex-
valued case. Thus, the model parameter θ should be estimated
in the maximum likelihood (ML) sense, as follows

θ̂ = arg max
θ
p(S|θ) (16)

that, in the case of the NTF model, can be shown equivalent
to [14], [36]

Q̂,Ŵ, Ĥ = arg min
Q,W,H

∑

jfn

dIS

(
pjfn

∣∣∣∣∣
K∑

k=1

qjkwfkhnk

)
,

(17)
where pjfn is defined by (5) and dIS(x|y) = x/y−log(x/y)−
1 is the Itakura-Saito (IS) divergence. The optimization of
criterion (17) can be achieved by iterating the following
multiplicative updates [10], [14], [37]:

qjk ← qjk

(∑
f,n wfkhnkpjfnv

−2
jfn∑

f,n wfkhnkv
−1
jfn

)
, (18)

wfk ← wfk

(∑
j,n hnkqjkpjfnv

−2
jfn∑

j,n hnkqjkv
−1
jfn

)
, (19)

hnk ← hnk

(∑
j,f wfkqjkpjfnv

−2
jfn∑

j,f wfkqjkv
−1
jfn

)
. (20)

2) Model quantization and encoding:
a) Criterion for quantization: Assuming the model pa-

rameter quantized and transmitted (Fig. 3), the total rate
required to encode the sources becomes [30]

R(S) = ψ(θ̄, θ̂,S) +R(S|θ̂), (21)

where

ψ(θ̄, θ̂,S) , R(θ̄) + log2

(
p(S|θ̂)/p(S|θ̄)

)
(22)

is the index of resolvability [30] involving the rate required
to encode the model R(θ̄) and a term representing the loss in
the rate for source encoding due to the usage of the quantized
θ̄ model instead of the ideal ML model θ̂. Relying on some
realistic approximations (see below) this term can be shown
independent of S, and, denoted by Ψ(θ̄, θ̂) , log

(
p(S|θ̂)
p(S|θ̄)

)
,

while omitting a constant multiplicative term 1/ log(2), it can

be expressed as

Ψ(θ̂, θ̄) =
1

2

∑

j,f,n

(
pjfn
v̄jfn

− pjfn
v̂jfn

− log
v̂jfn
v̄jfn

)
(23)

=
1

2

∑

j,f,n

(
v̂jfn
v̄jfn

− log
v̂jfn
v̄jfn

− 1

)
+

1

2

∑

j,f,n

(
pjfn − v̂jfn

v̂jfn

v̂jfn − v̄jfn
v̄jfn

)
(24)

≈ 1

2

∑

j,f,n

(
v̂jfn
v̄jfn

− log
v̂jfn
v̄jfn

− 1

)
(25)

≈ 1

4

∑

j,f,n

(log v̂jfn − log v̄jfn)
2
, (26)

where approximation (25) follows from a reasonable assump-
tion that the relative error of modeling (pjfn − v̂jfn)/v̂jfn
and that of quantization (v̂jfn − v̄jfn)/v̄jfn are uncorrelated
[30] and at least one of these errors is zero-mean.

The last approximation (26) is obtained using the following
second order Taylor expansion u ≈ 1 + log(u) + 1

2 log(u)2

in the neighborhood of u = 1 (with u = v̂jfn/v̄jfn), as in
[30], [38]. Note that we find again the IS divergence in the
expression (25), and the last approximation (26) indicates that
the NTF model variances v̂jfn, structured as in (3), should be
quantized by minimizing the MSE of their logarithms.

This result is quite similar to what was done in [14], where
the log-spectrograms were compressed using the JPEG image
coder. However, while [14] does not justify this particular
choice, we provide here a theoretical explanation of its ap-
propriateness.

b) NTF parameters quantization: Although the criterion
(26) is quite simple, it does not give yet any precise idea
of how to quantize individual NTF model parameters, i.e.,
matrices Q, W and H. Using (3), the criterion (26) can be
rewritten as

Ψ(θ̂, θ̄) ≈ 1

4

∑

j,f,n

(
log

K∑

k=1

q̂jkŵfkĥnk − log
K∑

k=1

q̄jkw̄fkh̄nk

)2

.

(27)
We see that there are quite complicated dependencies be-

tween elements of Q, W and H in this criterion. To simplify
this expression we consider the following criterion

Φ(θ̂, θ̄) =
1

4

∑

j,f,n

∑

k

(
log q̂jkŵfkĥnk − log q̄jkw̄fkh̄nk

)2

(28)
that is in fact an upper bound of (27), i.e.,

Ψ(θ̂, θ̄) ≤ Φ(θ̂, θ̄), (29)

which can be shown by applying Lemma A.1 from Ap-
pendix A with c = 1 and f(u) = log(u)2. Note however
that this upper bound is not very tight, as it can be seen from
the proof of Lemma A.1.

Now, assuming that the entries of Q, W and H are quan-
tized independently the cross-terms in (28) will be canceled
in average (if K × min(J, F,N) is big enough), due to the
fact that the quantization noise of say Q will be independent
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of (thus decorrelated with) that of say W. Thus, (28) can be
rewritten

Φ(θ̂, θ̄) =
1

4

∑

j,f,n

∑

k

[
(log q̂jk − log q̄jk)

2
+

(log ŵfk − log w̄fk)
2

+
(

log ĥnk − log h̄nk

)2
]

=
JFN

4

∑

k


 1

J

∑

j

(log q̂jk − log q̄jk)
2

+

1

F

∑

f

(log ŵfk − log w̄fk)
2

+
1

N

∑

n

(
log ĥnk − log h̄nk

)2


 .

(30)

Under all approximations above, we conclude that, if we
choose to independently quantize NTF coefficients under an
entropy constraint, we should use scalar quantizers of their
logarithms. Thus, we opt for a logarithmic compressor, fol-
lowed by a scalar quantizer and an exponential expander. It
is interesting to note that Nikunen et al. [27], [28] use µ-law
compressor and expander to quantize NTF / NMF coefficients,
and the µ-law compressor also acts as logarithmic for high
values. Note finally that our NTF model has a different goal
than the one presented in [27], [28]. The NTF considered in
[27], [28] models both the source and the perception, while
our goal is to model source distribution only, and we propose
addressing perceptual aspects separately (see Fig. 3). Thus,
given different modeling goals the ways the NTF parameters
are quantized may be different as well.

We see that squared log-differences of different NTF pa-
rameters appear with different weights in the summation of
(30). Thus, in order to have the MSE over all parameters, the
parameters, up to the same uniform quantization, should be
divided by the square roots of these weights, or, equivalently,
they should be quantized with different step-sizes ∆Q, ∆W

and ∆H (respectively, to quantize logarithms of Q, W and
H) computed as follows

∆Q =
√
J/(J + F +N) ·∆θ, (31)

∆W =
√
F/(J + F +N) ·∆θ, (32)

∆H =
√
N/(J + F +N) ·∆θ, (33)

where ∆θ is some global model quantization step-size gov-
erning the rate-distortion trade-off. We see that within our
framework (that is based on high-rate theory) we are able
to find an analytical solution for the allocation of the rate
between different NTF parameters, while in [27], [28] such an
allocation was established experimentally. Thus, our approach
has the following advantages over [27], [28]. First, it permits to
considerably reduce the number of parameters to be optimized
experimentally. Second, we show that the rate allocation be-
tween NTF parameters depends on the NTF dimensions J , F
and N , and, as a consequence it depends, e.g., on the length of
the signal to be encoded and on the number of sources. Thus,
we show that even if an experimental optimization of this rate
allocation is followed, it should be performed again every time
one of these parameters (e.g., signal length) changes.

c) NTF parameters encoding by GMMs: In order to
quantize each of the three NTF matrices we model the
distribution of its log-coefficients by a two-state Gaussian
mixture model (GMM) (see the fourth row of Fig. 5). GMMs
are denoted ξQ, ξW and ξH (see Fig. 4) and optimized in
the ML sense for each matrix, thus their parameters must
be transmitted resulting in a very small extra rate (there are
only 15 parameters, i.e., 5 parameters per matrix: two means,
two variances and one weight). As an alternative the Huffman
coding can be used as well, as it is done in [27], [28]. There are
pros and cons for using Huffman coding. From the one hand,
it is optimal. From the other hand, it requires transmitting
a codebook to the decoder, which can be more costly, as
compared to transmitting just the five parameters of a GMM.

E. Operational rate-distortion function and parameter opti-
mization

Now we write a so-called operational rate-distortion func-
tion (RDF) [39] that is accurate for high rates and gives a
practical relation between rate and distortion for our CISS
coding scheme. Considering (15), but now with posterior
p(S|X, θ) instead of prior p(S|θ), and adding to it the rate
required to encode the model parameter R(θ̄), one can show
that the total rate (in bits) Rtot relates to the mean distortion
(per dimension) as

Rtot = −M(J, F,N)

2
log2

D

Cs
+ η(S,X, θ̄), (34)

with
η(S,X, θ̄) , R(θ̄)− log2 p(S|X, θ̄), (35)

that is independent 6 of the rate Rtot and distortion D. Thus,
in order to optimize operational RDF (34) for any high rate,
one needs to minimize (35).

The only free parameters we need to optimize experimen-
tally are the model quantization step-size ∆θ (determining the
model rate R(θ̄)) and the number of NTF components K. We
optimize these parameters so as to minimize η(S,X, θ̄) from
(35). These parameters can be either optimized globally for a
set of signals, or they can be re-optimized for each signal to
be encoded. In the last case the parameters must be quantized
and transmitted to the decoder.

IV. EXPERIMENTS

In this section we evaluate the proposed single-channel
CISS-NTF method for both STFT and MDCT representations.
This evaluation includes the optimization of different parame-
ters and the comparison with relevant state of the art methods.

A. State of the art methods

As for conventional ISS, we consider two state of the
art methods proposed in [14], [40]. Both methods are based
on a parametric reconstruction of the sources via Wiener
filtering in the STFT domain, while the source spectrograms
(the variances used to compute Wiener filter) are encoded

6We know from [30] that, under high-rate theory assumptions, the optimal
model rate R(θ̄) is constant, thus independent on the total rate Rtot.
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differently. In the first method, referred to as Wiener-JPEG, the
images of source log-spectrograms are encoded by the JPEG
lossy coder. In the second method, referred to as Wiener-NTF,
source spectrograms are approximated by exactly the same
NTF model as the one considered here. Parvaix et al. [12]
introduced another conventional ISS method that is suitable
for single channel mixtures. This method is based on binary
masking of sources in the MDCT domain, while it is known
[16] that oracle bounds of binary masking-based methods are
lower than those of Wiener filter-based methods [14], [40].
Another conventional ISS method that is suitable for single
channel mixtures is the ISS using iterative reconstruction
(ISSIR) by Sturmel and Daudet [41] (see also [42]). ISSIR
permits to benefit from phase consistency constraints in the
case of STFT representations to reach better performance than
Wiener filtering in the case of mono mixtures. However, in
the case of MDCT, there is no such constraint that can be
exploited to improve performance of filtering techniques and
we have thus chosen not to include ISSIR in our evaluation.
Thus, we here consider only Wiener filter-based methods for
comparison.

B. Testing methodology

1) Data: We considered seven single-channel mixtures of
several musical sources such as singing voice, bass, guitar,
piano, distorted guitars, etc ... The number of sources J varies
from 3 to 6, and the duration of each mixture is about 20
seconds. All signals are sampled at either 48kHz or 44.1kHz.
For each mixture the sources were obtained by summing up
stereo source images from the QUASI database 7 and by
restricting them to a desired time duration. Sources from the
same artist were never included into different mixtures.

2) Parameters: MDCT and STFT were computed with
frames of 2048 samples and 50 % overlap for STFT. Note
however that due to STFT redundancy, as compared to MDCT,
this representation includes twice as many real-valued coeffi-
cients M(J, F,N) to be encoded.

3) Evaluation metrics: Since ISS is an emerging research
area lying in between source separation and lossy audio
coding, we used evaluation metrics coming from these two
fields. Notably, we used signal-to-distortion ratio (SDR) [43]
usually used to evaluate source separation algorithms and
perceptual similarity measure (PSM) of PEMO-Q [44] usually
used to evaluate perceptual quality of lossy audio coding
schemes. We used the implementation provided by [45] for
this purpose.

In most experiments presented below we do not consider
directly SDR and PSM but rather the improvements of these
measures, denoted as δSDR and δPSM, over the correspond-
ing measures computed for the oracle Wiener filtering source
estimates 8 in the STFT domain. These oracle performances
are shown in Fig. 8 for each mixture from test dataset.

7http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/
8The oracle Wiener filtering source estimates are computed by equa-

tion (10), where the structured prior source variances vjfn in (8) are replaced
by the true source power spectrograms pjfn = |sjfn|2.

C. Simulations

1) High-rate optimal parameters: As it is explained in
section III-E, for high rates, the optimal model quantization
step size ∆θ and the optimal number of NTF components
K must be constant, i.e., independent of the total rate. To
find these optimal parameters in the case of the STFT rep-
resentation we have computed η(S,X, θ̄) from (35) for each
mixture for different combinations of model quantization step
sizes ∆θ = [1.8, 0.5, 0.13, 0.04, 0.01] and numbers of NTF
components per source K/J = [2, 3, 4, 5, 10, 15, 20, 30], and
we averaged the result over all mixtures. We observed that the
average η(S,X, θ̄) reaches its minimum for ∆θ = 0.13 and
K/J = 4, which are thus in average the optimal parameters
for high rates. These results, i.e. in average 4 NTF components
per source, are in fact consistent with what was found in [46],
where a similar modeling was considered for conventional
source separation.

2) CISS-NTF with STFT and different ways of optimizing
the parameters: The parameters ∆θ and K/J = 4, that have
been found optimal in the previous section, are only optimal
for high rates and in average. Thus, first, it could be that for
some low rates (that can be attractive in practice) the optimal
parameters are different. Second, it could be that the optimal
parameters, especially the optimal number of NTF components
per source K/J , varies from one mixture to another. Indeed,
intuitively it seems that a mixture composed of “simple”
sources (e.g., triangle) should require less NTF components
than a mixture composed of “complex” sources (e.g., organ).
The goal of the following experiments is to clarify these
points by first evaluating the proposed CISS-NTF for different
parameters and over a range of rates, and then by investigating
and comparing the optimal parameters for low/high rates and
for different mixtures.

We first consider CISS-NTF in the STFT domain, and
address the MDCT domain later. This is because the state
of the art approaches were designed for STFT domain, and
we would like to investigate the possible advantage of CISS-
NTF over the state of the art besides the change of the signal
representation considered. We have evaluated the CISS-NTF
over the same different parameters ∆θ and K/J as in the
previous section, and over a wide range of rates by using 10
logarithmically-spaced values for the source quantization step
size as ∆ = logspace (−0.15, 2.5, 10). The source quantiza-
tion step size ∆ = +∞ has also been tested and corresponds
to simply omitting the “waveform source encoding” block in
CISS (Fig. 3), so that it essentially becomes a conventional ISS
approach (Fig. 1). However, this scheme is still different from
Wiener-NTF approach of [14], [40], since in our approach
NTF parameters are quantized in log-domain with any step
size ∆θ, while in [14], [40] it was proposed to quantize NTF
parameters in the linear domain with a fixed small step size.

The simulations described above gave us many (rate, δSDR)
pairs, for which we have also computed δPSM. Then, for
each small range of rates we have chosen (under certain
constraints, as described below) the pairs corresponding to
the highest δSDR. The resulting points in (rate, δSDR) and
(rate, δPSM) planes were then smoothed using the locally
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weighted scatterplot smoothing (LOESS) method to produce
the rate/performance curves. We have computed the following
curves:
• [Opt-HR-avg] the same parameters (i.e., ∆θ and K/J)

for all rates and all mixtures optimized for high-rates (i.e.,
exactly as in section IV-C1),

• [Opt-LR-avg] the same parameters for all rates and all
mixtures optimized for low-rates (0.5-2 kbps per source),

• [Opt-HR-mix] parameters constant over rates, but opti-
mized for each particular mixture for high-rates,

• [Opt-LR-mix] parameters constant over rates, but opti-
mized for each particular mixture for low-rates,

• [Opt-System] parameters systematically optimized to a
particular rate and a particular mixture,

and we have plotted them in Fig. 6. This figure includes as well
the results of Wiener-NTF [14], [40] state of the art method
and the results of the so called Wiener-NTF-log-quant method
that is similar to Wiener-NTF, but using newly-proposed log-
domain NTF parameters quantization, i.e., with ∆ = +∞.

One can note from Fig. 6 that Wiener-NTF-log-quant out-
performs Wiener-NTF for the SDR metric for all rates. That
shows the advantage of the proposed log-quantization of NTF
parameters over the state of the art [14], [40]. Moreover,
waveform source quantization of CISS brings further a great
advantage over Wiener-NTF, outperforming it by a large
margin for all rates. Also, it outperforms the oracle Wiener
results (zero levels of δSDR and δPSM measures) starting
from 1-2 kbps per source for SDR, and starting from 7-10
kbps per source for PSM. Note also that the performances
of CISS-NTF obtained with parameters optimized for each
mixture and/or each particular rate are not much better than
the performances with fixed parameters (optimized in average
for low or high rates). This is a very good news for a practical
coder implementation. Indeed, that means that one does not
need to adjust ∆θ and K/J to each particular mixture, and
can just keep them fixed. Finally, it should be noted that for
PSM, high-rate optimized parameters (in terms of SDR) are
better for low-rates than low-rate optimized parameters (in
terms of SDR). This observation indicates a possible use of
the distribution preserving quantization (DPQ) [47] to better
model perceptual quality.

3) CISS-NTF with MDCT and STFT vs. the state-of-the-art:
We have performed for CISS-NTF with MDCT exactly the
same simulations as for CISS-NTF with STFT. The qualitative
behavior of the results with different ways of optimizing the
parameters was exactly the same as for CISS-NTF with STFT,
as reported in the previous section. Thus, for these results
we can draw exactly the same conclusions as in the previous
section for STFT, and we here show in Fig. 7 the results with
average parameters optimized for high/low-rates ([Opt-HR-
avg] and [Opt-LR-avg]) for both STFT and MDCT. We have
also added the results of the two state of the art methods:
Wiener-NTF and JPEG-NTF [14], [40]. We see that CISS-
NTF with MDCT outperforms CISS-NTF with STFT for very
low rates. This improvement is mostly due to the fact that the
MDCT representation is critically sampled, i.e., includes as
many coefficients as the time-domain signal, while the STFT is
redundant. However, for higher bitrates CISS-NTF with STFT

becomes superior, and we explain that as follows. If the signal
is a real stationary Gaussian process, then both the MDCT and
STFT spectral coefficients are asymptotically independent and
distributed with respect to a centered Gaussian distribution.
Since MDCT is critically sampled, its performance should be
superior to that of STFT. Still, this was not observed during
our experiments, since STFT seems to be more efficient at high
bitrates. One interpretation of this phenomenon is that MDCT
is not shift invariant and may hence be more sensible to the
use of short frames than STFT when computing an estimate
of the power spectral density. Still, this is only a hypothesis
for now and we are currently investigating on this issue.

In any case, using CISS-NTF with STFT is attractive in
the multichannel case, and this is what we have done in [26].
Indeed, most of probabilistic multichannel models in source
separation involving convolutive mixing [5], [6] are specified
in the STFT domain.

4) Summary of results: Fig. 8 gives a summary of the re-
sults for each mixture obtained by the oracle Wiener filtering,
two state of the art methods (Wiener-NTF and JPEG-NTF), the
proposed CISS-NTF with MDCT, and a version of the AAC
standard coder [2] available at 9 that was applied independently
to each source. The results are now presented in terms of SDR
and PSM absolute values (not their increments δ as before) and
for an average bitrate of 6 kbps per source, which is attractive
for practical applications. We observe on this figure that the
proposed method largely outperforms state of the art, while
it uses a smaller bitrate. Note also that the proposed method
outperforms for all experts the AAC coder, which does not rely
on the mixture information, while using a more than twice as
small bitrate (3.7 kbps/source instead of 8.3 kbps/source for
AAC).

V. CONCLUSION

We have introduced CISS, a general probabilistic framework
for ISS and SAOC. We have further detailed and evaluated in
the single-channel mixture case its particular instance called
CISS-NTF based on a probabilistic NTF source representation.
This approach relates at the same time to different state of
the art areas, notably ISS [13], [14], SAOC [17]–[19] and
NTF / NMF model-based audio compression [27], [28]. We
have discussed possible advantages of CISS in general and of
its particular instance, CISS-NTF, over all these state of the art
approaches. In summary, without going into details, the main
advantages of CISS and CISS-NTF are:

1) waveform quantization based on a structural probabilis-
tic source model (NTF) allowing modeling long-term
redundancy in audio signals;

2) in contrast to the conventional ISS and SAOC methods,
the parameters used for parametric and waveform coding
are jointly encoded within this probabilistic model;

3) the proposed probabilistic formulation allows using
NTF / NMF models specified over critically sampled
signal representations such as the MDCT, which are
known more efficient for compression;

9http://www.nero.com/enu/technologies-aac-codec.html
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Fig. 6. CISS-NTF with STFT and different ways of optimizing parameters, compared to state of the art. δSDR and δPSM denote the improvements over
the corresponding measures computed for the oracle Wiener filtering source estimates in the STFT domain.
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Fig. 7. CISS-NTF with MDCT and STFT vs. the state-of-the-art. Evaluation was performed using both STFT and MDCT transforms. δSDR and δPSM
denote the improvements over the corresponding measures computed for the oracle Wiener filtering source estimates in the STFT domain.

4) in contrast to the conventional ISS methods, even if it
was not yet implemented, the proposed CISS allows us-
ing advanced perceptual models for enhanced perceived
quality.

Our extensive experimental evaluation has shown a great
advantage of the proposed CISS-NTF approach over the state
of the art conventional ISS methods.

This work opens the doors for various further investigations.
First, given that most music recordings nowadays are at least
stereo, CISS-NTF should be extended to the multichannel case
[48] in order to improve its efficiency due to the spatial source
diversity. Recent work covering punctual and low-reverberant
sources and using STFT signal representation being already
done in this direction [26], some questions remain still open.
Notably, how to model non-punctual and highly reverberant
sources and how to cope with STFT redundancy that is un-

desirable within compression applications either by reducing
STFT overlap or by resorting to critically sampled transforms
such as MDCT (see discussion in Sec IV-C3). Second, per-
ceptual modeling should be integrated within CISS-NTF and
it should be compared with SAOC through both objective
measures and listening tests, when an optimized encoder for
this emerging standard is available. The sensitivity matrix
approach [34] combined with the newly introduced distribution
preserving quantization (DPQ) [47] (see also discussion in
Sec IV-C2) seem to be good candidates for modeling per-
ception within this Gaussian model-based approach. Third,
remember that in order to simplify the optimization we have
chosen here a generative model estimation approach optimiz-
ing the prior distribution (6) instead of a discriminative model
estimation optimizing the posterior (7), which is optimal (see
Sec. III-D). Thus, new model estimation algorithms should be
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Fig. 8. Summary of results for all 7 excerpts of the database. For each excerpt, the SDR and PSM scores of Oracle source separation is compared to those
of state of the art and of the proposed method. CISS-NTF largely outperforms all other techniques, for a smaller bitrate.

proposed to implement the discriminative approach. Moreover,
the NTF source model can be replaced by possibly better
structured probabilistic models to improve coding efficiency.
In fact, any model from those implementable by a general
source separation framework presented in [6] can be used in
principle. Finally, while SAOC is able to encode and decode
sources online, the proposed CISS-NTF requires the whole
audio sequence to be analysed for encoding and only decoding
can be performed online. This drawback could be overcome by
using incremental NMF approaches [49] or other approaches
suitable for online audio source separation [50].

More generally, besides ISS and SAOC applications, and
in line with [27], [28], the proposed NTF-based approach
(with some modifications) could be applied for regular and
multichannel audio coding. Moreover, our approach is related
to the context-based adaptive entropy coding schemes used
for audio and video compression [51], [52]. However, our ap-
proach seems to be “more locally adaptive”, since each frame
is encoded by its own arithmetic coder having a distribution
derived from local signal statistics. In other words, each frame
has its own context. Thus, it would be interesting to extend
such kind of advanced statistical model-based approaches for
image or video compression.

APPENDIX A
ONE LEMMA

Lemma A.1. Let K ∈ N and c ∈ R∗+. Let f : R∗+ → R a
continuous function, that is strictly decreasing on ]0, c[ and
strictly increasing on ]c,+∞[.

Then ∀ x̂1 . . . x̂K , x̄1 . . . x̄K ∈ R∗+,

f

(∑K
k=1 x̂k∑K
k=1 x̄k

)
≤

K∑

k=1

f

(
x̂k
x̄k

)
. (36)

Proof: We assume that ∀k ∈ {1 . . .K}, uk = x̂k

x̄k
,

λk = x̄k∑K
k′=1

x̄k′
and u =

∑K
k=1 λkuk =

∑K
k=1 x̂k∑K
k=1 x̄k

. With these

notations we need to prove that f(u) ≤∑K
k=1 f(uk).

Since f is continuous, strictly decreasing on ]0, c[ and
strictly increasing on ]c,+∞[, it is clear that it reaches its
maximum on any interval of the form [a, b] (with 0 < a <
b < +∞), and this maximum is reached either in a or in b.

We then define a = min(u1 . . . uK) and b =
max(u1 . . . uK). Since ∀k,

∑K
k=1 λk = 1, it is clear that

u ∈ [a, b]. Thus, we conclude that f(u) ≤ max(f(a), f(b)) ≤∑K
k=1 f(uk).
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Solving Time Domain Audio Inverse Problems
using Nonnegative Tensor Factorization

Çağdaş Bilen, Alexey Ozerov, and Patrick Pérez

Abstract—Nonnegative matrix and tensor factorizations (NMF
and NTF) are important tools for modeling nonnegative data,
which gained increasing popularity in various fields, a significant
one of which is audio processing. However there are still many
problems in audio processing, for which the NMF (or NTF)
model has not been successfully utilized. In this work we propose
a new algorithm based on NMF (and NTF) in the short-time
Fourier domain for solving a large class of audio inverse problems
with missing or corrupted time domain samples. The proposed
approach overcomes the difficulty of employing a model in the
frequency domain to recover time domain samples with the
help of probabilistic modeling. Its performance is demonstrated
for the following applications: Audio declipping and declicking
(never solved with NMF/NTF modeling prior to this work);
Joint audio declipping/declicking and source separation (never
solved with NMF/NTF modeling or any other method prior
to this work); Compressive sampling recovery and compressive
sampling-based informed source separation (an extremely low
complexity encoding scheme that is possible with the proposed
approach and has never been proposed prior to this work).

I. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] and nonneg-
ative tensor factorization (NTF) [2] decompositions have re-
cently found great success in applications to audio modeling,
notably for source separation [3]–[5], compression [6], [7],
music transcription [8], [9] and audio inpainting [10]–[12]. It
is now well-established in the audio signal processing commu-
nity that spectrograms of natural audio signals exhibit a low-
rank NMF (or NTF in case of multi-source signals) structure.
They are indeed composed of relatively few characteristic
spectral patterns modulated in time (e.g., harmonic combs) that
are well approximated by rank-1 nonnegative matrices/tensors.
Within all these applications the power-spectrograms of single-
channel or multichannel audio signals (usually powers of their
short-time Fourier transforms (STFT)) are decomposed using
NMF or NTF models.

However, these methods address quite poorly the situations
when some chunks or samples of audio signals are missing
in time domain, as for example in the situations of audio
declipping or declicking, as described in a general audio
inpainting paper [13]. Indeed, the NMF/NTF-based audio
inpainting methods [10]–[12] assume that the audio data is
missing directly in the corresponding time-frequency domain,
usually the STFT domain. This is in fact the most convenient
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situation since the modeling itself is formulated in the STFT
domain, and thus it becomes quite easy to take properly
into account the missing values. In the case of audio with
missing samples in the time domain, one can convert the
missing information into an STFT domain formulation by
simply assuming that all the STFT frames corresponding to
missing time samples are missing in entirety. However, this
will often lead to the loss of a huge amount of available
information. In the case of a clipped audio for example, every
STFT frame may be clipped, thus this naive solution would
lead to considering the whole signal to be missing, even though
there is perhaps only 20 % of the signal that is clipped
in the time domain. Another problem of NMF/NTF-based
audio inpainting methods [10]–[12] which consider fully-
missing STFT coefficients is that NMF/NTF models are phase-
invariant and thus they only allow estimating the magnitudes
of the missing coefficients. As a result, the phase information,
which is very important for audio perceptual quality, still needs
to be reconstructed somehow. A popular approach by Griffin
and Lim [14] is usually used for the phase reconstruction, but
it performs quite poorly in many situations. As an alternative,
a so-called high resolution NMF (HR-NMF) approach was
proposed [15], [16]. This approach extends the NMF to model
temporal dependencies between time-frequency bins, which
yields better phase estimates. However, for the moment this
approach is quite computationally expensive and it is limited
to harmonic sounds. At the same time, when some samples
are missing in the time domain and one manages to estimate
properly the phase-invariant NMF model and the missing
samples from these observations, the resulting phase estimates
should be better than those obtained via Griffin and Lim’s
approach [14], since missing samples in time domain does
not mean completely discarding the phase information in the
STFT domain.

In this work, we propose a new approach allowing the
estimation of lost time domain audio samples of audio sources
and/or their mixture via applying a low-rank NMF/NTF model
to latent power-spectrograms of the signals in the time fre-
quency domain. The proposed method uses Itakura Saito (IS)
divergence [4] for measuring how well the given NMF/NTF
model parameters estimate the signal variances while using all
the information available from all of the known time domain
samples from the sources and/or the mixture. The model
parameters are estimated using a generalized expectation-
maximization (GEM) algorithm [17] and Wiener filtering
[18] is used to recover the unknown signals. Unlike some
other approaches that directly apply NMF/NTF model on
the STFT coefficient magnitudes or powers, the proposed
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Fig. 1: The general framework of the proposed algorithm illustrating recovery of a mixture signal and its sources from a subset
of the quantized samples of the sources and/or the mixture. The top section displays the time domain signals and an illustration
of the generalized time domain audio inverse problem (recovering the sources from the measurements). The middle section
illustrates the framed time domain variables, and the setup of the framed-time domain audio inverse problem (recovering the
framed sources from the framed measurements). The middle section also illustrates a summary of the proposed algorithm steps.
The bottom section illustrates the final output of the algorithm in time domain.

approach is formulated as a probabilistic Gaussian model
on the complex-valued STFT coefficients. This enables us
to estimate the NMF/NTF model in a maximum likelihood
(ML) sense directly from the time domain observations, thus
avoiding sub-optimally converting this missing information
into the STFT domain. Furthermore, thanks to the flexibility
of the NMF/NTF representations, the proposed framework can
take into account mixtures of several sources, where both the
sources and the mixtures can be partially or fully-missing in
time domain. Last but not least, when the observed signals are

not only partially lost but also corrupted, such as by noise or
quantization, these corruptions can also be taken into account
in the proposed approach. Within this general formulation the
proposed framework is not limited to audio inpainting, but also
becomes useful for different new applications related to audio
compression, enhancement and source separation. This work
builds on several previous conference/workshop publications
[19]–[24] by the authors. Particular instances of the proposed
approach for some specific applications have been presented in
[19]–[21] and summarized in [22]. In this paper, we provide a
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generalized formulation that is highly flexible to be adapted to
various applications. We also present more comprehensive and
extended experimental results, notably new experiments on
compressive sampling recovery. The audio source separation
approach presented in [23] falls within this general formulation
as well, but it is not considered here for conciseness. Finally,
while we here formulate the framework in the case of single-
channel audio mixtures, its extension to the multichannel case
is straightforward, which has been demonstrated in [24] for
the declipping application.

More specifically, our general framework allowing recov-
ering audio sources from partially observed and possibly
quantized time domain audio samples of the sources and/or
their mixture is applied here to the following existing or new
applications:
• Time domain audio inpainting and audio declipping [13],

[19], [25]–[28], where the mixture consisting of just one
source is partially observed due to, e.g., clipping. This is
an existing application and we propose a new method to
solve it.

• Joint audio inpainting and source separation [20], where
the mixture consisting of several latent sources is partially
observed due to, e.g., clipping. The problem itself exists,
but to the best of our knowledge, it was never addressed
in a direct and systematic manner.

• Compressive sampling recovery [29], where the mixture
consisting of just one source is partially observed due to
a random sub-sampling. This is an existing application
and we propose a new method to solve it.

• Compressive sampling-based informed source separation
[21], where the mixture is observed and it consists of
several latent sources that are partially observed after a
random sub-sampling and quantization. This is a new
informed source separation [7], [30] scheme resulting in
an extremely fast encoder and a slow decoder.

The rest of this paper is organized as follows. The problem
is formally defined in Section II and the proposed algorithm
to solve it is described in Section III. Experiment results for
various applications are given in Section IV and lastly final
remarks and conclusions are presented in Section V. Readers
willing to understand better and in detail the applications,
before diving into the theoretical framework in Sections II
and III, are invited to go through Section IV first.

II. PROBLEM DEFINITION

Let us consider a single-channel1 mixture that is composed
of J sources, among which each of the sources and/or the mix-
ture might be fully, or partially observed and/or corrupted with
noise (e.g., quantization noise). For a mixture of length T , the
mixture samples, x′′t ,2 are measured at a subset Ξ′′ ⊂ J1, T K of
the entire time domain. Hence, the measured mixture samples

1For sake of simplicity, we only consider the single-channel case here. The
proposed algorithm in this paper can be readily extended to multichannel case
in a similar way as it is done in [24] for the declipping application.

2Throughout this paper the time domain signals will be denoted by letters
with two primes, e.g., x′′, the framed-time domain signals by letters with
one prime, e.g., x′, and complex-valued STFT coefficients by letters with no
prime, e.g., x.

can be represented in terms of unknown source samples,
s′′jt, j ∈ J1, JK, as

x′′t =
J∑

j=1

s′′jt + a′′t , ∀t ∈ Ξ′′, (1)

where a′′t represents the noise on the measurement sample
due to various effects such as quantization. Furthermore, the
individual sources may also be sampled at known subsets of
the support Ω′′j ⊂ J1, T K, j ∈ J1, JK to obtain measured source
samples, y′′jt, such that

y′′jt = s′′jt + b′′jt, ∀t ∈ Ω′′j ,∀j ∈ J1, JK (2)

where b′′jt represents the noise for samples of each source.
Lastly, for some problems such as declipping, we may also be
given a set of C constraints, Γ′′c (s′′), c ∈ J1, CK, where each
constraint, Γ′′c (s′′), is in one of the following forms:

s′′jctc ≥ γ′′c , s′′jctc ≤ γ′′c ,
J∑

j=1

s′′jtc ≥ γ′′c ,
J∑

j=1

s′′jtc ≤ γ′′c (3)

in all of which γ′′c is a known constant and tc and jc are known
time and source indices respectively.

Generalized Time Domain Audio Inverse Problem: Given
all of the above definitions, we define the generalized audio
inverse problem in time domain as that of recovering the
sources,

{
s′′jt
}
∀t,j (and hence their mixture), given the noisy

and incomplete measurements,
{
y′′jt
}
∀t∈Ω′′

j ,∀j
and {x′′t }∀t∈Ξ′′ ,

such that the constraints, {Γ′′c (s′′)}∀c, are satisfied.

III. PROPOSED APPROACH

A simple illustration of the known and unknown signals in
the generalized time domain audio inverse problem is shown
in the top section of the Figure 1, whereas the proposed
algorithm in this work to solve this problem is illustrated in
the middle section in the same figure. The individual steps
of the proposed approach are explained in detail through the
following subsections.

A. Redefining the Problem for a Frequency Domain Solution

The problem defined in Section II deals with constraints
and unknowns in time domain, and as a result solving it with
an approach that utilizes STFT domain constraints (such as
the NTF model that will be introduced in Section III-B) can
be computationally heavy and even intractable. To rectify this
issue, we will introduce the framed-time domain and STFT
domain notations, using which, we will define a modified
problem that is much easier to handle.

The framed-time domain (or sometimes called windowed-
time domain) is the representation of the time domain sig-
nal after it is split into (often overlapping) frames of fixed
length, F , and multiplied by a fixed windowing function.
Assuming that the total number of frames is N , the notations
x′fn, y

′
jfn, s

′
jfn, a

′
fn, b

′
jfn,Ξ

′
n ⊂ J1, F K,Ω′jn ⊂ J1, F K repre-

sent the framed-time domain counterparts of the time domain
notations defined in Section II for the source j ∈ J1, JK, the
intra-frame index f ∈ J1, F K within the frame n ∈ J1, NK.
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The relationships between the framed-time domain variables
are similar to that of the time domain counterparts such that3

x′fn =
J∑

j=1

s′jfn + a′fn, ∀f ∈ Ξ′n,∀n (4)

y′jfn = s′jfn + b′jfn, ∀f ∈ Ω′jn, ∀j, n (5)

We represent the STFT coefficients of the source signals
simply by {sjfn}∀j,f,n. Note that, the STFT coefficients are
simply the Fourier transforms of the framed-time domain
signals, such that sjn = [sjfn]∀f = Us′jn ∀j, n, where
s′jn , [s′jfn]∀f and U is the normalized Fourier transform
matrix satisfying UUH = UHU = I.4

We now define a modified version of the initial problem
using the framed-time domain variables and constraints, all
of which can easily be computed from the time domain
counterparts. This new definition of the problem has more
relaxed conditions from the original problem in the sense that
the problem is moved to a larger over-complete domain, and
the correlation between the information within different frames
is no longer defined. In the rest of this paper, we shall focus
on solving this relaxed problem rather than the initial one.

Framed-Time Domain Audio Inverse Problem: We define
our problem as that of recovering the sources in framed-
time domain, {s′jfn}∀j,f,n (or equivalently in STFT domain
{sjfn}∀j,f,n since they are related with a unitary transform)
given the noisy and incomplete framed-time measurements,
{y′jfn}∀f∈Ω′

jn,∀j,n and {x′fn}∀f∈Ξ′
n,∀n, such that the con-

straints, {Γ′c(s′)}∀c, are satisfied.

B. Applying NTF Model estimated via a GEM Algorithm

In order to make the problem described in Section III-A
easier to solve, we make a number of assumptions:

Assumption 1. The noise is independently Gaussian dis-
tributed with known variance: The noise time samples for the
observations, {a′jfn}∀j,f,n and {b′fn}∀f,n, are independently
distributed with zero mean Gaussian with known variances,
{σ2

a,jfn}∀j,f,n and {σ2
b,fn}∀f,n respectively, i.e.

a′jfn ∼ Nc(0, σ
2
a,jfn), b′fn ∼ Nc(0, σ

2
b,fn), ∀j, f, n. (6)

Assumption 2. The sources are independently Gaussian
distributed: Similarly, the unknown STFT coefficients of
the sources, {sjfn}∀j,f,n, are also independently distributed
with zero mean complex valued Gaussian with variance
{vjfn}∀j,f,n, i.e.

sjfn ∼ Nc(0, vjfn), ∀j, f, n. (7)

Even though it is known that the noise in practice (such as
quantization noise) is not always Gaussian, modeling the noise
as Gaussian is still known to be a good enough approximation
that provides significant computational advantage. Similarly

3From this point on, we shall use simply ∀n to denote ∀n ∈ J1, NK, ∀f to
denote ∀f ∈ J1, F K and ∀j to denote ∀j ∈ J1, JK, unless a subset of these
sets is specified, e.g. Ξ′

n.
4xT and xH represent the non-conjugate transpose and the conjugate

transpose of the vector (or matrix) x respectively.

the assumption of Gaussian distribution for the sources is also
very common in audio community and accepted as a good
approximation. It is noted when dealing with non-stationary
signals that the assumption of gaussianity in the sources often
results in very little loss in the source separation performance
with the added benefit of much lower computational require-
ments [31]. Without further assumptions the variances vjfn
in (7) would be difficult to estimate, since there are as many
parameters (variances) as the observations. Hence in this work
we will also assume that the variances vjfn are structured via
a low-rank nonnegative tensor.

Assumption 3. Variances of the sources form a low rank
NTF structure: The tensor of source variances, [vjfn]j,f,n, is
represented as the sum of few rank-1 nonnegative tensors, i.e.

vjfn =
K∑

k=1

qjkwfkhnk, ∀j, f, n (8)

with number of components, K, sufficiently small. This so-
called PARAFAC/CANDECOMP [32] NTF model can be
parametrized by θ = {Q,W,H}, such that Q = [qjk]j,k ∈
RJ×K

+ , W = [wfk]f,k ∈ RF×K
+ and H = [hnk]n,k ∈ RN×K

+ .

The assumption of a low rank NTF structure on the joint
variances of audio sources is well known in the audio source
separation community and it is shown to be an accurate model
for audio signals in practice [7], [30], [33]. Please note that
when the signal is treated as a single source (i.e. without source
separation and J = 1), the tensor of source variances reduces
to a matrix and the decomposition is simply a low-rank NMF
representation.

We can define the observed mixture vector at frame n, x′n,
and the observed source vector at frame n for source j, y′jn,
as

x′n ,
[
x′fn

]
∀f∈Ξ′

n

∈ R|Ξ
′
n|×1, (9)

y′jn ,
[
y′jfn

]
∀f∈Ω′

jn

∈ R|Ω
′
jn|×1. (10)

Hence for each frame we can define the observed data vector,
o′n, and each unknown source vector, s′jn, as

o′n ,
[
y′1n

T
, · · · ,y′Jn

T
,x′n

T
]T
. (11)

Given the three assumptions above, we propose estimating the
NTF model θ in the ML sense as

θ = arg max
θ′

p({o′n}∀n |θ′). (12)

To achieve that we employ a GEM algorithm [17], while
considering as latent data the totality of in general missing
source STFT coefficients S = [sjfn]∀j,f,n. The algorithm
iteratively alternates between an expectation step (E-step)
for estimating the posterior power spectra of the signal and
a maximization step (M-step) for updating the NTF model
parameters. These two main steps can be summarized as
follows:

• E-step: Estimate conditional expectations of source
power spectra |sjfn|2, given the current model θ and the
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observations:

p̂jfn = E
[
|sjfn|2

∣∣o′n;θ
]
, ∀j, f, n. (13)

• M-step: Re-estimate NTF model parameters such that
the 3-valence tensor of the NTF model approximation,
V = [vjfn]∀j,f,n, is as close to the 3-valence tensor
of estimated source power spectra, P̂ = [p̂jfn]∀j,f,n, as
possible with respect to the IS divergence [4]

DIS(P̂‖V) =
∑

∀j,f,n
dIS(p̂jfn‖vjfn), (14)

where dIS(x‖y) = x/y − log(x/y) − 1, and p̂jfn and
vjfn are as specified respectively by (13) and (8).

The details of the E-step and the M-step are given in Sec-
tions III-C and III-D. In certain problems additional steps
might also be required to satisfy certain constraints for the
time domain signal or the NTF model parameters. It is
described in Section III-E how these additional constraints
can be handled by the proposed algorithm. A summary of
the overall algorithm is given in Algorithm 1.

C. E-Step: Estimating Posterior Statistics
Following our assumptions of independently Gaussian dis-

tributed signals, we can write the posterior distribution of each
source frame sjn given the corresponding observed data o′n
and the NTF model θ (or equivalently V = [vjfn]∀j,f,n with
vjfn defined in (8)) as sjn|o′n;θ ∼ Nc(ŝjn, Σ̂sjnsjn) with ŝjn
and Σ̂sjnsjn being, respectively, posterior mean and posterior
covariance matrix of the STFT coefficients, sjn. These terms
can be computed respectively by Wiener filtering as [18]

ŝjn = ΣH
o′
nsjnΣ−1o′

no′
n
o′n, (15)

Σ̂sjnsjn = Σsjnsjn −ΣH
o′
nsjnΣ−1o′

no′
n
Σo′

nsjn , (16)

given the definitions of the covariance matrices

Σo′
no′

n
=




Σy′
1ny′

1n
. . . 0 ΣH

x′
ny′

1n

...
. . .

...
...

0 . . . Σy′
Jny′

Jn
ΣH

x′
ny′

Jn

Σx′
ny′

1n
. . . Σx′

ny′
Jn

Σx′
nx′

n


 , (17)

Σo′
nsjn =

[
0T
L1,jn×F ,Σ

T
y′
jnsjn ,0

T
L2,jn×F ,Σ

T
x′
nsjn

]T
, (18)

Σy′
jny′

jn
= U(Ω′jn)Hdiag

(
[vjfn]∀f

)
U(Ω′jn)

+ diag
([
σ2
b,jfn

]
∀f∈Ω′

jn

)
, (19)

Σx′
nx′

n
= U(Ξ′n)Hdiag

([∑
∀j
vjfn

]
∀f

)
U(Ξ′n)

+ diag
([
σ2
a,fn

]
∀f∈Ξ′

n

)
, (20)

Σx′
ny′

jn
= U(Ξ′n)Hdiag

(
[vjfn]∀f

)
U(Ω′jn), (21)

Σy′
jnsjn = U(Ω′jn)Hdiag

(
[vjfn]∀f

)
, (22)

Σx′
nsjn = U(Ξ′n)Hdiag

(
[vjfn]∀f

)
, (23)

Σsjnsjn = diag
(

[vjfn]∀f

)
, (24)

where U(Ω′jn) is the F × |Ω′jn| matrix of columns from
U with index in Ω′jn and L1,jn ,

∑j−1
l=1 |Ω′ln|, L2,jn ,∑J

l=j+1 |Ω′ln|. The term diag(x) represents a diagonal matrix
with the vector x along the diagonal.

Finally, the posterior power spectra, P̂ = [p̂jfn]∀j,f,n can
be computed as

p̂jfn = E
[
|sjfn|2

∣∣o′n;θ
]

= |ŝjfn|2 + Σ̂sjnsjn(f, f). (25)

D. M-step: Updating NTF Model Parameters

Estimating NTF model θ in the ML sense is proven [4]
equivalent to minimizing the IS divergence DIS(P̂‖V) as
defined in (14) between the tensor of variances, V, and the
given posterior power spectra tensor, P̂.

A common optimization approach to estimate the model
parameters, θ, that minimizes (14) is using multiplicative up-
dates (MU) as described in [4]. In our case, starting from some
initial nonnegative model parameters, the model parameters
that minimize (14) can be found by applying several iterations
of the following updates

qjk ← qjk

(∑
f,n wfkhnkp̂jfnv

−2
jfn∑

f,n wfkhnkv
−1
jfn

)
, (26)

wfk ← wfk

(∑
n,j qjkhnkp̂jfnv

−2
jfn∑

n,j hnkqjkv
−1
jfn

)
, (27)

hnk ← hnk

(∑
f,j qjkwfkp̂jfnv

−2
jfn∑

f,j wfkqjkv
−1
jfn

)
. (28)

In the beginning of the proposed GEM algorithm, the model
parameters can be initialized randomly with nonnegative val-
ues. In the following iterations however, the update of the
model parameters can be always applied starting from the
current model parameters (instead of randomly initializing
them before MU iterations each time P̂ is updated).

E. Applying Additional Constraints

In many practical audio inverse problems, there may be
additional knowledge on the signal to be estimated apart
from the observed samples. We shall consider mainly two
complementary types of knowledge on the signal to be treated,
which provide:

i Constraints on NTF model parameters, such as some char-
acteristic spectral patterns being active, some frequency or
time bins being silent, or simply the frequency response
being symmetric (time domain signal being real valued);

ii Constraints on framed-time domain samples, such as the
constraints, {Γ′c(s′)}∀c, that were defined earlier.

The additional constraints on the model parameters, θ, are
often easy to incorporate during the MU iterations or simply
initializing them in a specific way. For instance, the symmetry
in frequency (hence being real valued in time) can be enforced
if the matrix W is updated to be always symmetrical along the
frequency axis. Similarly if some of the characteristic spectral
patterns are known a priori to be present in the sources, W
can be initialized with a specific dictionary and then may
never be updated to enforce using only these patterns. Another
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example is, when certain entries of the matrices W,H and Q
are known to be zero, they can be simply initialized to be
zero and these zero values will be automatically enforced in
the following MU iterations. Lastly, in certain applications,
it is even possible to change the model to enforce additional
structures on the matrices W,H and Q, such as sparsity by
small modifications on the MU equations [34].

Dealing with constraints on framed-time domain samples,
unlike the constrains on the model parameters, is not straight-
forward. When a framed-time domain sample is known to
be clipped or quantized, the original value of this sample
is known to be above (below) a certain threshold or to lay
within a certain interval, and the resulting posterior probability
distribution of the sample is no longer Gaussian. As a result,
estimating the posterior power spectrum with this modified
probability distribution is not as simple as described in Sec-
tion III-C. To overcome this problem, we propose to estimate
the posterior power spectrum by computing the posterior
mean, ŝjn and the posterior covariance, Σ̂sjnsjn , as described
in Section III-C, but then projecting them so as to satisfy the
time domain constraints to obtain modified statistics, s̃jn and
Σ̃sjnsjn respectively. As a result, the modified posterior power
spectrum (to be used as the input for the NTF model update
in M-step) is obtained as

p̃jfn = |s̃jfn|2 + Σ̃sjnsjn(f, f). (29)

We define several approaches to compute the aforementioned
modified statistics to satisfy the constraints in framed-time
domain samples:

1) Unconstrained: The simplest way to perform the esti-
mation is to ignore completely the constraints, treating
the problem as a more generic audio inpainting in time
domain. Hence during the iterations, the “constrained”
signal is taken simply as the estimated signal, i.e.
s̃jn = ŝjn,∀n, j, as is the posterior covariance matrix,
Σ̃sjnsjn = Σ̂sjnsjn ,∀n, j.

2) Ignored projection: Another simple way to proceed is
to ignore the constraint during the iterative estimation
process and to enforce it at the end as a post-processing
of the estimated signal. In this case, the signal is treated
the same way as in the unconstrained case during the
iterations.

3) Signal projection: A more advanced approach is to
update the estimated signal at each iteration so that the
magnitude obeys the constraints. As an example, let us
suppose we have a constraint in the form s′jcfcnc

≥ γ′c
and it is not satisfied by the estimated posterior mean,
i.e. ŝ′jcfcnc

< γ′c. We can simply set s̃′jcfcnc
= γ′c and

s̃′jfn = ŝ′jfn for the rest of the support (and s̃jn = Us̃′jn).
Formally we can define,

{s̃′jfn}∀j,f,n = argmin
{z′

jfn}∀j,f,n

∑

∀j,f,n
|z′jfn − ŝ′jfn|2

s.t. {Γ′c(z′)}∀c (30)

Note that this approach does not update the posterior
covariance matrix, i.e. Σ̃sjnsjn = Σ̂sjnsjn ,∀n, j.

4) Covariance projection: In order to update the posterior

Algorithm 1 GEM algorithm for solving Time Domain Audio
Inverse Problems with NTF model

1: procedure RESTORE-AUDIO-WNTF
2: Initialize nonnegative θ = {W,H,Q} randomly
3: repeat
4: E-step : Estimate ŝjn, Σ̂sjnsjn ,∀n, j, given θ, o′jn

∀n, j . see § III-C
5: Time domain constraints : Estimate s̃jn, Σ̃sjnsjn ,

∀n, j and P̃ given {Γ′c}∀c . see § III-E
6: M-step : Update θ given P̃ . see § III-D, § III-E
7: until convergence criteria met
8: end procedure

mean and the posterior covariance matrix in a consistent
manner, we can re-compute the posterior mean and the
posterior covariance by (15) and (16) respectively, by
treating the projected signal samples in (30) at the support
Ω′m,jn , {f |s̃′jfn 6= ŝ′jfn} as observed values for the
current iteration. If the resulting estimation of the sources
violates the time domain constraints on additional indices,
those samples are also projected to obey the constraints
and treated as observed. This process is repeated until a
posterior mean, s̃jn, and a posterior covariance, Σ̃sjnsjn ,
that are consistent with all the time domain constraints,
are obtained. Note that in addition to updating the pos-
terior covariance matrix, this approach also updates the
entire posterior mean (or estimated signal) and not just
the posterior mean at the indices of violated constraints.

IV. IMPORTANT APPLICATIONS AND EXPERIMENTAL
RESULTS

The proposed algorithm is adapted to solve a number of
audio inverse problems, some of which are explored for the
first time in this work. For each of these problems, we
performed a set of experiments on various audio examples
and compared the performance to that of known state of the
art algorithms when applicable.

In the experiments below, all the audio signals are sampled
at 16 kHz, and the STFT within the various instances of the
proposed algorithm is computed using a half-overlapping sine
window of 1024 samples (64 ms).

A. Time Domain Audio Inpainting and Audio Declipping

The problem of recovering audio samples that are lost or
corrupted is often called audio inpainting [13]. We use the term
“time domain audio inpainting” to refer to the problems with
missing or corrupted time domain audio samples as opposed
to the audio inpainting problems with missing samples in the
STFT domain, for which NMF/NTF models are already being
used prominently [10]–[12]. We still prefer to differentiate
these problems from “audio interpolation” since the missing
samples might sometimes arrive in large gaps instead of being
distributed over time, and sometimes we might even encounter
time domain samples missing in conjunction with missing
STFT coefficients as can be encountered with audio editing
applications. Two specific instances of the time domain audio
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inpainting problem are called audio declipping and audio
declicking [13], in which one recovers the time domain audio
samples that are lost due to clipping and clicking effects
caused by audio recording and compression processes. The
declipping problem in particular provides additional challenges
with respect to the general time domain audio inpainting
problem, because it often includes additional constraints for
the time domain signal to be estimated. In the recent years,
the models based on sparse, cosparse or group-sparse represen-
tations in certain dictionaries are shown to be performing best
to solve these problems [13], [25]–[28]. Clipping and inter-
polation from a Bayesian perspective has been also addressed
earlier [35]–[38], mostly relying on autoregressive modeling.
Though recent approaches [13], [25]–[28] have been shown
performing better than (or on par with) them (see, e.g., [13],
[25]). Despite the success of modeling audio signals with low
rank NMF representations, the time domain audio inpainting
problem, especially with the additional constraints as in audio
declipping, is not trivial to solve with an NMF/NTF model in
the time-frequency domain. This is possibly the main reason
why these models have not been utilized in time domain audio
inpainting problems successfully. The proposed approach can
overcome this limitation and provides a new perspective on
time domain audio signal recovery with equivalent or better
performance than the state of the art.

In our experiments with the audio declipping problem, we
consider an audio signal with no known source information
(as such it is modeled as a single source, J = 1) that is
clipped to a known threshold of magnitude τ > 0. Thus the
signal is accurately known for a subset of the support, Ξ′′,
where signal magnitude is smaller than τ . For the remaining
support, Ξ̄

′′
= J1, T K \ Ξ′′, the signal is unknown but obeys

the time domain constraints of the form,

s′′tc ≥ τ, for x′′c,tc > 0
s′′tc ≤ −τ, for x′′c,tc < 0

, ∀tc ∈ Ξ̄
′′
. (31)

where x′′c,tc is the clipped signal. We also assume that there
is no observation noise, i.e., σ2

a,fn = σ2
b,jfn = 0, ∀j, f, n, in

(6).
In [28], various state of the art audio declipping algorithms

are compared based on the experiments performed on music
and speech examples. We have repeated these experiments
using our approach with the same methodology and the
datasets as reported in [28] and provided an overall comparison
of our algorithm to the other approaches. The experiment
procedure can be summarized as follows; 10 music and 10
speech signals, each of length of 4 seconds, are scaled to have
maximum magnitude of 1 in time domain, and then artificially
clipped at eight different clipping thresholds (uniformly spaced
from 0.2 to 0.9). The proposed algorithm is tested with
four different methods to handle the clipping constraints as
described in Section III-E, namely Unconstrained (NMF-U),
Ignored Projection (NMF-IP), Signal Projection (NMF-SP)
and Covariance Projection (NMF-CP). The music signals are
declipped with 20 NMF components (K = 20), while 28 com-
ponents are used for speech signals (K = 28). The proposed
GEM algorithm is run for 50 iterations. The performance
of the proposed algorithm is compared to five state of the

art methods: iterative hard-thresholding (HT) [25], cosparsity
(Cosp) [27], orthogonal matching pursuit (OMP) [13], social
sparsity with empirical Wiener operator (SS-EW) and social
sparsity with posterior empirical Wiener operator (SS-PEW)
[28].

The performance metric that is used to compare the al-
gorithms is the improvement of the signal to noise ratio
(computed only on the clipped regions) with respect to the
clipped signal, SNRm, that is computed as [28]:

SNRm = 10 log10

∑
∀t∈Ξ̄′′ |x′′o,t|2∑

∀t∈Ξ̄′′ |x′′o,t − x′′e,t|2
, (32)

where x′′o,t is the original time domain signal sample and
x′′e,t is the estimated signal sample. Finally, the performance
is measured in terms of the SNRm improvement, which is
the difference between the SNRm computed on the estimated
signal and the SNRm computed on the clipped signal.

The average performance of all the algorithms for declip-
ping of music and speech signals is represented on Figure 2.
It can be seen from the overall results that the proposed al-
gorithm with the covariance projection (NMF-CP) has almost
identical performance with the social sparsity based methods
(SS-EW and SS-PEW) proposed in [28] while outperforming
others. It can be also seen in the results that the model based
algorithms (social sparsity and the NMF model) significantly
outperform the methods relying on just sparsity (OMP and
HT) or on just cosparsity (Cosp).

Regarding the effect of clipping constraints, the first thing
to notice is that the performance of NMF-U with respect
to NMF-IP (and NMF-SP) shows that simple constraints on
the signal magnitude can noticeably improve the performance
especially for music signals, hence they should not be ignored
when possible. NMF-IP and NMF-SP are shown to have
almost identical performance, even though the latter applies
the constraints on the posterior mean of the signal at every
iteration and the former simply applies a post processing to
the final result. This observation combined with the superior
performance of NMF-CP compared to the other methods
demonstrates the importance of updating the posterior power
spectrum more accurately for the success of the NMF-based
methods.

Even though the performance is not better than the social
sparsity approaches at first glance, the proposed algorithm has
room for improvements in various aspects:

• NMF model can be easily extended to other, more
structured NMF-like models such as source-excitation
model or harmonic NMF [31]. As shown in [31] in
case of source separation, having a specific model with
structure that is well adapted to the considered class of
signals (e.g., speech, music, etc.) may improve the overall
performance.

• It is shown in the results that the performance of our
method depends significantly one the way the clipping
constraint is handled. Therefore an alternative, more
accurate computation of the posterior power spectrum
might also improve the results further, whereas in dic-
tionary based methods there is no approximation for the
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(a) Average SNRm improvement computed over 10 music signals.
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(b) Average SNRm improvement computed over 10 speech signals.

Fig. 2: The average performance of all the audio declipping algorithms as a function of the clipping threshold (lower threshold
corresponds to more severe clipping).

clipping constraints, hence performance improvement in
this regard is not possible.

It should be noted that dealing with time domain constraints
while enforcing a model on the STFT domain comes at a com-
putational cost in the Wiener filtering stage of the proposed
algorithm. Luckily, this step is independent for each frame
of the signal and hence can be easily parallelized, e.g., using
graphical processing units (GPUs), to get a significant speed-
up. On the other hand, estimating the signal independently
within each window comes with the disadvantage that the
estimation is not possible when there are no observed samples
within a window. In practice, however, the loss of an entire
window due to clipping is not probable for natural audio
signals when the window size is chosen properly and the
clipping threshold is not extremely low.

B. Joint Audio Inpainting and Source Separation

The audio source separation is a well known problem for
which the NMF/NTF modeling in the time-frequency domain
is shown to be quite successful [3]–[5]. However in all source
separation problems, the audio mixture is assumed to be
known perfectly whereas in practice the mixture can also have
missing or corrupted (due to noise or quantization) samples in
time domain. This joint problem naturally arises when one
would like to perform source separation on a mixture that is
degraded due to clipping effects or other degradations. This
problem can also often arise in audio editing applications
where some part of the audio is intentionally removed to
suppress unwanted artefacts. Additionally one can also con-
sider the case when source separation is not really needed,
but a multi-source model is still employed to improve the
performance of audio inpainting when dealing with mixtures
of different sources.

A source separation problem with an incomplete and/or
corrupted mixture is in fact a new problem that we introduce
and address in this work, which, to our best knowledge,
has not been properly solved by any of the existing source
separation approaches in the literature, except a naive way:
sequentially performing audio inpainting followed by source

separation on the reconstructed mixture. The latter sequential
approach can be quite suboptimal since neither of these two
tasks use all of the information efficiently. The problem of
jointly performing the two tasks is for the first time addressed
by our proposed approach, which can recover the signal in a
way that is more consistent with the multiple source nature
of the corrupted mixture while simultaneously estimating the
individual sources.

The global setup of our modeling to handle joint audio
declipping and source separation is the same as the one
for declipping in Section IV-A, except that J > 1 sources
are considered instead of just one. In order to assess the
performance of declipping and source separation using the
proposed algorithm, 5 different music mixtures5, each com-
posed of 3 sources (bass, drums and vocals), are considered
under 3 different clipping conditions. For each mixture with a
maximum magnitude of 1 in time domain, 3 clipping levels at
the thresholds of 0.2 (heavy clipping), 0.5 (moderate clipping)
and 0.8 (light clipping) are considered, resulting in a total
of 15 mixtures with different clipping levels. Each mixture
is reconstructed by joint declipping and source separation,
sequential declipping and source separation and only source
separation ignoring the clipping artefacts. The proposed GEM
algorithm (run for 100 iterations) has been used for all the
reconstructions6 with K = 15 components. Inline with [33]
and so as to inject some information about the sources to be
separated, the sources in the mixtures are artificially silenced
during a percentage of the total time, and the corresponding
indices in H are set to zero so as to inject this information
into the modeling. An example of the activation periods of
the sources and corresponding indices set to zero in H during
NTF model estimation are shown in Figure 3. Similarly Q is
simply chosen as a J × K matrix with a single 1 on each
column and zeros everywhere else, to describe the assignment

5The mixtures are taken from the “professionally produced music record-
ings” task dataset of SiSEC 2015 source separation evaluation campaign
(https://sisec.inria.fr/sisec-2015/).

6For declipping only, the algorithm is used with a single source (as in
Sec. IV-A), and for source separation only, the algorithm is used with the
observed support set being the entire time axis.
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Fig. 3: Depiction of the experiment set-up for the injection
of information on different source characteristics. The infor-
mation on the known silent time durations of each source
(represented in different colors) is directly utilized by setting
the corresponding coefficients in H to 0. Note that the matrices
H and W are formed by concatenating the Hs for each source
and W s for each source (depicted above) along the component
dimension respectively.

of the components to the sources.
It should be noted that, the sequential reconstruction as well

as performing only the source separation in this experiment
could also have been performed with other existing methods
from the literature. However, we have opted for using the
same algorithm for each recovery scenario so as to clearly
observe the difference due to jointly treating the two problems,
rather than other differences in the reconstruction algorithms.
Furthermore, as it is demonstrated that the performance of
our algorithm for declipping is on par with the state of the art
algorithms in Section IV-A, we find this comparison still very
relevant.

The results of the simulations can be seen in Figure 4. Signal
to noise ratio on the clipped support (SNRm) computed as
in (32) for the declipped mixture is shown to demonstrate
the declipping performance while signal to distortion ratio
(SDR) as described in [39] is shown to demonstrate the source
separation performance.

The results in Figure 4 show that when the clipping is
severe, joint approach is almost always preferable since it
provides improvement on both the quality of the mixture
and the quality of the separated sources with respect to
source separation without declipping. This is as opposed to
the sequential approach which provides comparable quality
improvement in the mixture at the expense of the performance
in source separation. In fact, for heavy clipping the declipping
in sequential approach often reduced the performance of
source separation noticeably with respect to separation without
declipping. As the clipping gets lighter, the performance of
sequential method approaches to that of joint method, and
finally performs slightly better for light clipping. The joint
optimization, however, still has few drawbacks which could be
improved upon. The declipping in the sequential approach is
performed with K = 15 components without any restrictions
whereas the joint optimization is performed with the additional

limitation that each source uses 5 components independently.
Hence it is not possible that two sources share a common
component in the joint optimization. This can be overcome
by devising better methods to inject the prior information
regarding the sources, see, e.g., [23]. It should be also noted
that the sequential optimization is approximately twice as fast
as joint optimization due to handling much less complicated
problems in either steps of the sequential processing. The
fact that the Wiener filtering stage is independent for each
window and can be parallelized to provide significant speed
improvements, can be helpful to overcome this problem in the
future.

C. Compressive Sampling Recovery

Compressive sampling [29] is the theory and application of
(often) randomly subsampling a signal that is known to be
compressible (e.g., with sparse or low rank representations)
in an incoherent domain and making sense of the random
samples by using the prior information of compressibility. As
our algorithm is well fitted for time domain audio inverse
problems, the reconstruction of the randomly sampled audio
signals is another field of application for which it can be
useful. Even though all the model-based signal estimations
rely on compressibility of signals, the differentiating factor of
compressive sampling comes from the fact that the compact
representation of the signal is in an incoherent (in layman
terms, very different or opposite) domain to the sampling
domain. As an example, frequency domain and time domain
are two domains which are maximally incoherent, i.e., an
impulse (maximally compact) signal in one is a uniform
energy (maximally distributed) signal in the other.

Looking from the compressive sampling perspective, the
compressible characteristics of the audio signals exploited
by our algorithm are two fold: i) the significant reduction
of the probability space of the possible solutions given the
known samples, through the maximum likelihood estimate ii)
the further reduction of the possible solutions through the
low rank modeling of the NMF/NTF representation in the
STFT domain. This application can in fact be seen as another
instance of audio inpainting, however we have investigated it
separately as the random subsampling changes the characteris-
tic of the problem with respect to the other more typical audio
inpainting problems such as audio declipping. It must be also
noted that, this application is more than mere interpolation
from irregular samples, as the reconstruction model enforces
dimensionality reduction in an incoherent domain, fitting well
into the compressive sensing paradigm.

In order to demonstrate the ability of the proposed ap-
proach to reconstruct randomly subsampled signals, we have
randomly subsampled a typical music signal of 4 seconds
at different average rates (percentage of retained samples at
2, 4, 8, 16, 32), and then reconstructed with our algorithm in a
similar fashion to the experiments in Section IV-A, but without
any clipping constraints (hence J = 1 and σ2

a,fn = σ2
b,jfn =

0, ∀j, f, n). The reconstruction is performed with different
number of components (K = 2, 8, 24, 32, 48, 72) in order to
observe the sensitivity of the results to the parameter K. In
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(a) Declipping performance for clipping level 0.2.
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(b) Source separation performance for clipping level 0.2.
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(c) Declipping performance for clipping level 0.5.
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(d) Source separation performance for clipping level 0.5.
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(e) Declipping performance for clipping level 0.8.
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(f) Source separation performance for clipping level 0.8.

Fig. 4: The declipping and source separation performance of joint optimization compared to sequential.

order to provide a reference for the reconstruction capability
of our algorithm, the results with shape preserving piecewise
cubic interpolation are also provided7.

The reconstruction results can be observed in Figure 5. The
first thing to notice is that the reconstruction results with the
proposed algorithm (solid lines) are significantly better than
the results with simple interpolation (dashed lines) as expected.
Another noticeable behaviour in the results is that once the
number of components, K, is sufficiently large, the recon-
struction performance does not seem to suffer. This behaviour
is unlike what we have observed for other problems such as
declipping, for which the choice of number of components is
an important factor for obtaining best performance. Looking
more closely to the estimated NMF components, we have seen
that the maximum likelihood estimate combined with random
sampling already provided a strong prior for signal estimation
and the benefit from low rank model was minimal in this

7For the interpolation, the interp1() function of Matlab 2016a is used with
phcip method, which gave the best results among the available interpolation
methods.

case. Hence, as long as the number of components are chosen
sufficiently large, the accuracy of estimated variances, V, are
effectively independent of K.

D. Compressive sampling-based informed source separation

Informed source separation (ISS) [7], [30] is a variant
of source separation that is in fact a source compression
problem assuming that the mixture is known. The ISS problem
can be defined as the problem of encoding multiple audio
sources to create a bitstream (also called a side-information)
so that the audio from the sources can be recovered given the
bitstream and the mixture of the sources. The main difference
of ISS from joint compression of multiple audio signals is the
assumption that the mixture is available at both encoding and
decoding stages. Several ISS methods were proposed [7], [30],
[40] including those based on the NTF modeling [7], [30].
In all these approaches the encoding stage is usually more
complex and computationally expensive than the decoding
stage. The framework proposed in this work can be used
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Fig. 5: The reconstruction performance measured in terms of
SNRm of a 4s long music signal from its random samples.
The reconstruction results with our proposed algorithm (solid
lines) are shown for different percentage of samples and
different number of components, K, used in our approach. The
results with shape preserving piecewise cubic interpolation are
also shown for comparison (dashed lines), with the colors
indicating corresponding percentage of samples.

to realize a new variant of ISS, where the computational
complexity is moved from the encoder to the decoder side. To
our best knowledge, this is another application that is realized
for the first time with our proposed algorithm. This feat is
accomplished by reducing the encoder to simply subsampling
the sources in a random and independent fashion and quan-
tizing the samples. The proposed algorithm can then be used
to recover the sources at the decoder side given the encoded
samples and the mixture, similar to the case of compressive
sampling recovery (in fact this can be seen as more practical
use of compressive sampling recovery in audio). This new
approach, which we call compressive sampling-based ISS
(CS-ISS), is inline with both the compressive sampling [29]
paradigm, since the sampling is random and in a sufficiently
incoherent domain, and with the distributed source/video cod-
ing [41], [42], since the posterior source dependencies (the
sources are highly correlated a posteriori given the mixture)
and the source structure are exploited only at the decoding
stage, thus allowing the complexity shift. The CS-ISS also
allows independent structures between the encoder and the
decoder, i.e., the decoder algorithm can be modified without
the need to change the encoder and the encoded bitstream.
More precisely, by that we mean that given a bitstream a
totally different source recovery algorithm (e.g., based on
social sparsity) may be developed and applied for decoding.

A summary of our CS-ISS scheme is shown in Figure 6. In
order to assess the performance of our approach, three (J = 3)
11-second long sources of a music recording are encoded and
then decoded using the proposed CS-ISS with different levels
of quantization (16 bits, 11 bits, 6 bits and 1 bit) and different
raw sampling bitrates8 per source (0.64, 1.28, 2.56, 5.12 and
10.24 kbps/source). Since uniform quantization is used, the
noise variance in time domain is σ2 = ∆2/12 where ∆ is the
quantization step size. Hence σ2

b,jfn = ω2
f∆2/12, where ω2

f

8The raw sampling bitrate is defined as the bitrate before the entropy
encoding step.
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Fig. 6: The encoding and decoding processes for the compres-
sive sensing-based informed source separation.

are the framing (or STFT) window coefficients. The mixture
is available in entirety at the decoder, therefore the noise
variance of the mixture is zero (σ2

a,fn = 0). It is assumed
that the random sampling pattern is pre-defined and known
during both encoding and decoding. The quantized samples
are truncated and compressed using an arithmetic encoder with
a zero mean Gaussian distribution assumption. At the decoder
side, following the arithmetic decoder, the sources are decoded
from the quantized samples using 50 iterations of the GEM
algorithm with the number of components fixed at K = 18,
i.e. in average 6 components per source. The quality of the
reconstructed samples is measured with SDR as described
in [39]. The resulting encoded bitrates and SDR of decoded
signals are presented in Table I along with the percentage of
the encoded samples in parentheses. Note that the compressed
rates in Table I differ from the corresponding raw bitrates due
to the variable performance of the entropy coding stage, which
is expected.

The performance of CS-ISS is compared to a classical ISS
approach with a more complicated encoder and a simpler
decoder presented in [30], as well as much better performing
coding-based approach proposed in [7]. Both the classical ISS
and coding-based ISS algorithms are used with NTF model
quantization and encoding in a similar fashion as in the exper-
iments described by [7], i.e., NTF coefficients are uniformly
quantized in logarithmic domain, quantization step sizes of
different NTF matrices are computed using equations (31)-(33)
from [7] and the indices are encoded using an arithmetic coder
based on a two-state Gaussian mixture model (GMM) (see Fig.
5 of [7]). The approach is evaluated for different quantization
step sizes and different numbers of NTF components, i.e.,
∆ = 2−2, 2−1.5, 2−1, . . . , 24 and K = 4, 6, . . . , 30. The
results are generated with 250 iterations of model update. The
performance of CS-ISS and the earlier approaches are shown
in Figure 7 in which CS-ISS clearly outperforms the classical
ISS approach and is on par with coding-based ISS approach,
even though both of these approaches can use an optimized
number of components as opposed to our decoder which uses a
fixed number of components (the encoder is very simple and
does not compute or transmit this value). The performance
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Bits per Raw rate (kbps / source)
Sample 0.64 1.28 2.56 5.12 10.24

Compressed Rate / SDR (% of Samples Kept)
16 bits 0.50 / -1.64 dB (0.25%) 1.00 / 4.28 dB (0.50%) 2.00 / 9.54 dB (1.00%) 4.01 / 16.17 dB (2.00%) 8.00 / 21.87 dB (4.00%)
11 bits 0.43 / 1.30 dB (0.36%) 0.87 / 6.54 dB (0.73%) 1.75 / 13.30 dB (1.45%) 3.50 / 19.47 dB (2.91%) 7.00 / 24.66 dB (5.82%)

6 bits 0.27 / 4.17 dB (0.67%) 0.54 / 7.62 dB (1.33%) 1.08 / 12.09 dB (2.67%) 2.18 / 14.55 dB (5.33%) 4.37 / 16.55 dB (10.67%)
1 bit 0.64 / -5.06 dB (4.00%) 1.28 / -2.57 dB (8.00%) 2.56 / 1.08 dB (16.00%) 5.12 / 1.59 dB (32.00%) 10.24 / 1.56 dB (64.00%)

TABLE I: The final bitrates (in kbps per source) after the entropy coding stage of CS-ISS with corresponding SDR (in dBs)
for different (uniform) quantization levels and different raw bitrates before entropy coding. The percentage of the samples kept
is also provided for each case in parentheses. Results corresponding to the best rate-distortion compromise are in bold.
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Fig. 7: The rate-distortion performance of CS-ISS using
different quantization levels of the encoded samples. The
performance of the ISS algorithm from [30] and the coding-
based ISS algorithm from [7] are also shown for comparison.

difference with classical ISS is due to the high efficiency
achieved by the CS-ISS decoder thanks to the incoherency
of random sampled time domain and of maximum likelihood
estimation along with low rank NTF model. Also, the classical
ISS approach [30] is unable to perform beyond an SDR of 10
dBs due to the lack of additional information about STFT
phase as explained in [7]. The results indicate that the rate
distortion performance exhibits a similar behaviour as to the
coding-based ISS algorithm. It should be reminded that the
proposed approach distinguishes itself by its low complexity
encoder and hence can still be advantageous against other ISS
approaches with better or seemingly equivalent rate distortion
performance.

The performance of CS-ISS in Table I and Figure 7 indicates
that different levels of quantization may be preferable in dif-
ferent rates. Even though neither 16 bits nor 1 bit quantization
seem well performing, the performance indicates that 16 bits
quantization may be superior to other schemes when a much
higher bitrate is available. Coarser quantization such as 1
bit, on the other hand, had very poor performance in the
experiments. The choice of quantization can be performed in
the encoder with a simple look up table as a reference. One
must also note that even though the encoder in CS-ISS is very
simple, the proposed decoder is significantly high complexity,
typically higher than the encoders of traditional ISS methods.
However, this can also be overcome by exploiting the indepen-
dence of Wiener filtering among the frames in the proposed
decoder with parallel processing, e.g., using GPUs.

V. CONCLUSIONS

In this paper, we have presented a novel approach for time
domain signal estimation in the maximum likelihood manner.
It relies on the low rank NTF modeling of the power spectrum
of the signal and can be applied to many types of problems
that were not previously solved using the NMF/NTF model.
The proposed algorithm is demonstrated to be very effective
for several audio inverse problems while providing multiple
advantages compared to other existing methods. For the audio
declipping problem, clipped sections of music and speech sig-
nals are restored using the proposed approach as well as state
of the art methods, and the proposed algorithm is shown to be
highly competitive while providing complementary advantages
such as naturally handling noise and quantization artefacts
and easily incorporating various types of constraints. For
audio source separation and mixture declipping, the proposed
algorithm is shown to be capable of jointly solving these two
separate problems which was not possible with any other
method in the literature. Joint handling of these problems
is also demonstrated to be more effective than sequentially
approaching each problem in case of severe distortions. The
proposed algorithm is also shown to be highly effective for the
reconstruction of randomly subsampled signals such as in the
case of compressive sampling approaches. This advantage of
our algorithm is further utilised for the problem of informed
source separation, to create a compression scheme which uses
the principles of compressive sampling and distributed coding.
For this application, the proposed algorithm is not only shown
to achieve compression performance equivalent to that of the
state of the art, but also shown to have unique advantages,
specifically having a very simple encoder as well as the
decoding stage being independent of the encoding stage.

The NMF and NTF representations are gaining a lot of
popularity in signal modelling community and we see the
algorithm presented in this paper to be a step towards the
application of these models to a wider class of signal esti-
mation problems. Even though the provided examples in this
paper are all audio inverse problems, the proposed algorithm
is by no means limited to audio applications. It could be used
in any application for which a low rank NMF/NTF model is
an accurate representation for the power spectrum.

We consider several improvements and extensions to the
proposed algorithm as future work. An extension to multi-
channel audio is an interesting step for dealing with real world
audio problems. Furthermore, adapting the proposed algorithm
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for imaging problems with multiple additive components, such
as imaging through transparent and reflective surfaces, is
another intriguing direction.
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[26] S. Kitić, N. Bertin, and R. Gribonval, “Audio declipping by cosparse
hard thresholding,” in iTwist - 2nd international - Traveling Workshop on
Interactions betweenSparse models and Technology, Namur, Belgium,
August 2014.

[27] ——, “Sparsity and cosparsity for audio declipping: a flexible non-
convex approach,” in The 12th International Conference on Latent
Variable Analysis and Signal Separation (LVA/ICA 2015), August, 2015.

[28] K. Siedenburg, M. Kowalski, and M. Dörfler, “Audio declipping with
social sparsity,” in Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, May 2014, pp. 1577–1581.

[29] E. Candès and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Processing Magazine, vol. 25, pp. 21–30, 2008.

[30] A. Liutkus, J. Pinel, R. Badeau, L. Girin, and G. Richard, “Informed
source separation through spectrogram coding and data embedding,”
Signal Processing, vol. 92, no. 8, pp. 1937–1949, 2012.

[31] A. Ozerov, E. Vincent, and F. Bimbot, “A general flexible framework
for the handling of prior information in audio source separation,” IEEE
Trans. Audio, Speech, Language Process., vol. 20, no. 4, pp. 1118–1133,
2012.

[32] R. Bro, “Parafac. tutorial and applications,” Chemometrics and intelli-
gent laboratory systems, vol. 38, no. 2, pp. 149–171, 1997.

[33] A. Ozerov, C. Févotte, R. Blouet, and J.-L. Durrieu, “Multichannel
nonnegative tensor factorization with structured constraints for user-
guided audio source separation,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’11), Prague, May
2011, pp. 257–260.

[34] J. Le Roux, F. Weninger, and J. R. Hershey, “Sparse NMF? half-baked
or well done?” Mitsubishi Electric Research Laboratories, Tech. Rep.,
2015.

[35] A. Janssen, R. Veldhuis, and L. Vries, “Adaptive interpolation of
discrete-time signals that can be modeled as autoregressive processes,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 34,
no. 2, pp. 317–330, 1986.

[36] S. J. Godsill and P. J. Rayner, “A Bayesian approach to the restoration
of degraded audio signals,” IEEE Transactions on Speech and Audio
Processing, vol. 3, no. 4, pp. 267–278, 1995.

[37] W. Etter, “Restoration of a discrete-time signal segment by interpolation
based on the left-sided and right-sided autoregressive parameters,” IEEE
Transactions on Signal Processing, vol. 44, no. 5, pp. 1124–1135, 1996.

[38] A. Dahimene, M. Noureddine, and A. Azrar, “A simple algorithm for
the restoration of clipped speech signal,” Informatica, vol. 32, no. 2,
2008.

[39] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in
blind audio source separation,” IEEE Trans. Audio, Speech, Language
Process., vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[40] M. Parvaix and L. Girin, “Informed source separation of linear instan-
taneous under-determined audio mixtures by source index embedding,”
IEEE Trans. Audio, Speech, Language Process., vol. 19, no. 6, pp. 1721
– 1733, 2011.

[41] Z. Xiong, A. Liveris, and S. Cheng, “Distributed source coding for
sensor networks,” IEEE Signal Processing Magazine, vol. 21, no. 5,
pp. 80–94, September 2004.

[42] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed
video coding,” Proceedings of the IEEE, vol. 93, no. 1, pp. 71 – 83,
January 2005.



Curriculum Vitae



ALEXEY OZEROV

Senior Scientist in InterDigital - PhD in Signal Processing

InterDigital,
975, avenue des Champs Blancs, 35576 Cesson Sévigné, France
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1. S. Parekh, A. Ozerov, S. Essid, N. Duong, P. Pérez and G. Richard, “Identify, locate and separate:
Audio-visual object extraction in large video collections using weak supervision” IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA’19), Mohonk, NY, Oct. 2019.

2. S. Parekh, S. Essid, A. Ozerov, N. Duong, P. Pérez and G. Richard, “Weakly Supervised Representa-
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Conference on Acoustics, Speech, and Signal Processing (ICASSP’18), Calgary, Canada, Apr. 2018.
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