
HAL Id: tel-02367621
https://hal.science/tel-02367621

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification and Validation of Convex
Optimization Algorithms For model Predictive Control

Raphaël Cohen

To cite this version:
Raphaël Cohen. Formal Verification and Validation of Convex Optimization Algorithms For model
Predictive Control. Engineering Sciences [physics]. UNIVERSITE DE TOULOUSE, 2018. English.
�NNT : �. �tel-02367621�

https://hal.science/tel-02367621
https://hal.archives-ouvertes.fr

 et discipline ou spécialité

 Jury :

le

Institut Supérieur de l’Aéronautique et de l’Espace

Co-tutelle avec Georgia Institute of Technology (United States)

Raphaël P. Cohen

lundi 3 décembre 2018

Formal Verification and Validation of Convex Optimization Algorithms For
model Predictive Control

Vérification formelle et validation des algorithmes d'optimisation convexe
appliqués à la commande prédictive

ED MITT : Sureté de logiciel et calcul de haute performance

Équipe d'accueil ISAE-ONERA MOIS

M. Panagiotis TSIOTRAS Professeur Georgia Tech - Président
M. Pierre-Loïc GAROCHE Ingénieur de recherche ONERA - Directeur de thèse

M. Eric FERON Professeur Georgia Tech - Directeur de thèse
M. Marcus HOLZINGER Professeur Georgia Tech

M. Tim WANG Ingénieur de Recherche UTRC
MI. Cesar MUNOZ Chercheur NASA - Rapporteur

Mme Hasnaa ZIDANI Professeure ENST ParisTech - Rapportrice

M. Eric FERON (directeur de thèse)
M. Pierre-Loïc GAROCHE (directeur de thèse)

FORMAL VERIFICATION AND VALIDATION OF
CONVEX OPTIMIZATION ALGORITHMS FOR MODEL

PREDICTIVE CONTROL

A Thesis
Presented to

The Academic Faculty

by

Raphael P. Cohen

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
May 2019

Copyright c© 2019 by Raphael Cohen

FORMAL VERIFICATION AND VALIDATION OF
CONVEX OPTIMIZATION ALGORITHMS FOR MODEL

PREDICTIVE CONTROL

Approved by:

Professor Eric Feron, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Professor Panagiotis Tsiotras
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Pierre-Löıc Garoche, Co-Advisor
DTIS
Onera – The French Aerospace Lab

Dr. Tim Wang
Systems Department
United Technology Research Center

Professor Marcus Holzinger
School of Aerospace Engineering
Georgia Institute of Technology

Dr. César A. Muñoz
Safety Critical Avionics Systems
Branch
NASA Langley Research Center

Date Approved: December 3, 2018

To my beloved grandmother, Daisy ז′′ל

iii

ACKNOWLEDGEMENTS

I would like to thank everyone who made this thesis possible and an unforgettable

adventure for me. First, I would like to thank my committee members, Professor

Holzinger, Professor Tsiotras, Dr. Hasnaa Zidani, Dr. Cesar Munoz and Dr. Tim

Wang for accepting to be part of this PhD committee. The work presented in this

thesis is at the border of multiple different areas, including optimal control, optimiza-

tion theory and formal methods. Therefore having such experts on Control Systems,

Optimal Control, Space Systems and Computer Science on my committee is a honor

and I fully realize the chance I have.

My advisor, Dr. Eric Feron, thank you for believing in me and for offering me to

work with you as your PhD student. Working next to you brought me a lot, both

on a professional and a personal point of view. Your extremely sharp knowledge and

your experience in research gave me, I believe, a certain maturity that I would not

have acquired elsewhere and I feel privileged for this. Thank you also for all the

opportunities you bring me everyday, none of this could have been possible without

you. Because a complete and sound PhD cannot be performed without a little taste

of teaching, I would like to thank you as well for having me as your teaching assistant.

As you already know, I really enjoyed this part of the job and I look forward to do it

again.

To my co-advisor Dr. Pierre-Löıc Garoche, I seem redundant but I would like to

thank you as well, for believing in me and offering me to work with you at Onera in

Toulouse. From the minute Professor Feron told me about this co-thesis opportunity

with you, I got extremely excited. Your guidance brought me a lot and I wanted to

express to you all my gratitude for this. Working with you as your PhD student was

iv

an exciting and very resourceful journey.

This PhD thesis being performed in the frame of a cotutelle between Georgia In-

stitute of Technology and Institut Supérieur de l’Aéronautique et de l’Espace (ISAE)

in Toulouse, France, I would like to express my gratitude to all the employees from

both institutions who made this Cotutelle possible.

I apologize in advance for everyone that I am going to forget but I wanted to thank

all my friends at Georgia Tech, Tom , Helene, Gabriel, Elaud, Louis, Phillipe, Trey,

Thunde, Corbin, Mark, Kevin, Harold, Jose, David, Giuseppe, Ayush,

As well, I wanted to sincerely thank everyone at Onera who welcomed me when I

arrived in Toulouse and more particularly Guillaume, Hugo, Matthieu, Emanuele,

Kevin, Jeanne, Oscar and many more...

Guillaume, thank you again for welcoming me in Toulouse when I arrived and for

your help throughout this thesis, specially with the use of formal methods. As well,

having you next to me suffering as much as me and fighting against Frama-C gave

me some comfort and made me avoid a serious breakdown. I would also like to thank

Pierre Roux and Arnaud Dieumegard for their help and for being always available for

me.

As usual, none of this would have been possible without funding, therefore I want to

thank the sponsor, the National Science Foundation (NSF) and the French Aerospace

Laboratory (ONERA).

Mom, dad, Rebecca, Eva, and my dear brother in law, nephews and niece, Stéphane,

Aaron, Noam and Tahel. Thank you all for the love and support you gave me. Do-

ing this PhD thesis far away from you was hard and painful and I was missing you

v

everyday.

Mamy Daisy, I will always remember you as this wonderful woman and loving grand-

mother that you were. I am sad you had to go so brutally and that you could not see

any of this.

Tamara, my fiancé, my last grateful words will be for you. Your love means the

world to me. Thank you for all the support you give me everyday.

vi

Contents

DEDICATION . iii

LIST OF TABLES . x

LIST OF FIGURES . xi

List of Symbols . xiv

SUMMARY . xvii

I INTRODUCTION . 2

1.1 Credible Autocoding Framework . 3

1.2 Formal Verification . 5

1.2.1 Semantics of Software . 5

1.2.2 Hoare Logic . 6

1.2.3 Weakest Precondition . 9

1.3 State of the Art and Scope of the Thesis 10

1.3.1 Real-time Optimization Based Control 10

1.3.2 Formal Verification of Control Systems Software 11

1.3.3 Formal Verification And Software Certification 13

II OPTIMIZATION BASED CONTROL OF LTI SYSTEMS 18

2.1 Linear Time Invariant (LTI) Systems 18

2.1.1 LTI Theory and State Space Realization 18

2.1.2 Stability of LTI Systems . 19

2.2 Convex Optimization Problems . 22

2.3 Real-time Convex Optimization Based Control and MPC 23

2.3.1 Difference between MPC and Path Planning 26

III THE ELLIPSOID METHOD AND ITS SEMANTICS 30

3.1 A Brief Recent History of Optimization Theory 30

3.2 The Ellipsoid Method . 31

vii

3.3 Building ACSL Theory Related to the Ellipsoid Method 38

3.3.1 Linear Algebra Axiomatization 38

3.3.2 Optimization Theory Axiomatization 41

3.4 Annotating a C code implementation of the Ellipsoid Method 43

IV FLOATING POINTS ANALYSIS 48

4.1 Past System Failures and Motivation 48

4.1.1 US Patriot Missile . 48

4.1.2 Ariane 5 Rocket . 49

4.1.3 Motivations . 50

4.2 Controlling the Condition Number 50

4.2.1 Bounding the Singular Values 51

4.2.2 Corresponding Condition Number 55

4.2.3 Corresponding norm on c . 55

4.2.4 Consequences on Code . 55

4.3 Propagating the rounding errors through the algorithm 57

4.3.1 Preliminaries . 58

4.3.2 Norms and Bounds . 58

4.3.3 Floating-Point Rounding of Elementary Transformations . . 59

4.4 Necessary conditions for numerical stability 61

4.4.1 Problem Formulation . 61

4.4.2 Equivalent and Sufficient Conditions for Covering 61

4.4.3 Analytical Sufficient Conditions for Covering 64

V AUTOCODER AND CLOSED LOOP MANAGEMENT 68

5.1 Closed Loop Management – Sequential Optimization Problems . . . 68

5.1.1 Parameterized Linear Constraints 69

5.1.2 Second-Order Conic Constraints 74

5.2 Running Time Evaluation . 76

5.3 GENEMO Programming Language Syntax 77

viii

5.3.1 Using Genemo and Autocode Credible Implementation of Op-
timization Algorithms . 77

5.3.2 Internal Aspect of The Autocoder 79

5.4 Real-Time Simulations and Examples 80

5.4.1 Spring-Mass System . 80

5.4.2 The 3 DOF Helicopter . 82

5.4.3 Quadcopter Drones . 86

VI CONCLUSION . 90

Appendix A — ACSL LINEAR ALGEBRA THEORY 92

Appendix B — ACSL OPTIMIZATION AND ELLIPSOID THE-
ORY . 100

Appendix C — INPUT FILE USED TO GENERATE C CODE . 106

REFERENCES . 109

VITA . 113

ix

List of Tables

1 Performances For Different Problem Sizes 82

2 Floating Point Consideration . 82

3 Performances For different Horizon – Drone 87

x

List of Figures

1 V & V Cycle for Credible Autocoding 4

2 MPC Integration of Credible Autocoded Algorithms 5

3 Hoare Triple . 6

4 Hoare Triple Expressed in ACSL Example 1 7

5 Hoare Triple Expressed in ACSL Example 2 7

6 Memory Assignment Issue Example in ACSL 8

7 Corrected Function Contract For Memory Assignment Checking . . . 8

8 ACSL Function Contract Example 9

9 Weakest Precondition Illustration . 9

10 Closed-Loop System . 20

11 Classification of Some Convex Optimization Problems 23

12 MPC Closed-Loop System . 25

13 MPC Technique Illustration . 25

14 Spring-Mass System . 25

15 Closed-Loop Position Versus Time 27

16 Closed-Loop Velocity Versus Time 27

17 Input Force Versus Time . 28

18 Ellispoid Method Trade off . 33

19 Ellipsoid Cut . 34

20 Ellipsoid Cut In an LP Settings . 35

21 Included and Including Balls . 37

22 ACSL Linear Algebra Theory . 39

23 Ellipsoid Type Definition . 40

24 Existence vector ACSL Lemma . 41

25 Ellipsoid Method ACSL Lemma . 41

26 ACSL Optim Type Definition . 42

27 ACSL Feasible Predicate Definition 43

xi

28 getNorm 2 Header C Code File . 44

29 getNorm 2 Body C Code File . 45

30 getp.c Body C Code File . 45

31 getp.h Header File . 46

32 US Patriot Missile . 49

33 European Ariane 5 Rocket . 50

34 Corrected Ellipsoid . 54

35 getFrobeniusNorm Annotated C Function 57

36 Ellipsoid Widening . 62

37 Pu and Pl Polyhedral Sets . 71

38 Unit balls of R2 . 76

39 Linear Relaxation of a Second Order Cone 76

40 Constants Section For The Spring-Mass System 77

41 Objective Section For The Spring-Mass System 78

42 Constraint Section For The Spring-Mass System 78

43 Information Section For The Spring-Mass System 78

44 Input/Output Sections For The Spring-Mass System 79

45 Internal Aspect of The Autocoder . 80

46 3 DOF Helicopter . 82

47 3 DOF Helicopter Axis and Dimensions 83

48 Simulink File Used for the Quanser Simulation 85

49 Simulation of State Vector versus time 85

50 Simulation of Lowest Altitude versus time 86

51 Cone constraint on drone . 87

52 MPC Simulation for a Quadcopter 89

53 Linear Algebra ACSL Theory . 92

54 Linear Algebra ACSL Theory (Part 2) 93

55 Linear Algebra ACSL Theory (Part 3) 94

56 Linear Algebra ACSL Theory (Part 4) 95

xii

57 Linear Algebra ACSL Theory (Part 5) 96

58 Linear Algebra ACSL Theory (Part 6) 97

59 Linear Algebra ACSL Theory (Part 7) 98

60 Optimization ACSL Theory . 100

61 Optimization ACSL Theory (part 2) 101

62 Optimization ACSL Theory (part 3) 102

63 Optimization ACSL Theory (part 4) 103

64 Optimization ACSL Theory (part 5) 104

65 Optimization ACSL Theory (part 6) 105

66 Single Point Optimization Text File 106

67 Spring Mass Autocoder Input File 107

68 3 DOF Helicopter Landing Problem: Autocoder Input File 108

xiii

LIST OF SYMBOLS

Symbol Description

R The set of all real numbers.

R+ The set of all positive real numbers.

R∗+ The set of all stricly positive real numbers.

Rn The set of real vectors of length n.

Rm×n The set of real matrices of size m× n.

‖A‖F Frobenius norm of a matrix A.

‖A‖ Two norm of a matrix A.

‖x‖ Two norm of a vector x.

Bn n-dimensionnal unit Eucliean ball. Bn = {z ∈ Rn : ‖z‖ ≤ 1}.

Br(x) Ball of radius r centered on x. Br(x) = {z ∈ Rn : ‖z − x‖ ≤ r}.

Ell(B, c) Ellipsoid set defined by: Ell(B, c) = {Bu+ c : u ∈ Bn}.

Vol() Volume of a given set.

fl() Floating-point rounding to nearest of a given real number.

σmax(A) Largest singular value of a matrix A.

σmin(A) Smallest singular value of a matrix A.

k(A) Condition number of a matrix A.

x Plant State Vector.

N Model Predictive Control Horizon.

x Collection of state vectors to horizon: x = [x1 . . . xN].

u Plant Input.

u Collection of input vectors to horizon: u = [u1 . . . uN−1].

xiv

X Original Decision Vector for an Optimization problem.

Z Projected Decision Vector for an Optimization problem.

Xf Feasible set of an optimization problem.

Xε Epsilon optimal set of an optimization problem.

ACSL

requires Introduces a precondition in a local contract or a function contract.

ensures Introduces a postcondition in a local contract or a function contract.

assigns Listing the memory being assigned in a function contract.

\result Referring to the output of a C function.

loop invariant Introduces a loop invariant, a property true at each iteration of the

loop.

loop variant Introduces a strictly positive and decreasing quantity in a denumer-

able set, usual N. Needed to prove termination.

loop assigns Listing the memory being assigned in a loop.

axiomatic Defining a new ACSL Theory. Containings new types, functions,

axioms, lemmas, theorems.

lemma Defining a new lemma. Need to be proven.

theorem Defining a new theorem. Need to be proven.

axiom Defining a new axiom. Assumed to be true.

logic Defining a new ACSL function.

predicate Defining and naming a given ACSL property.

xv

genemo Files

Constants Introduces the section where constants can be defined.

Variables Defines the decision variable for the optimization problem.

Input Optional Section defining the MPC input.

Output Optional Section defining the MPC output.

Minimize Introduces the cost to be minimized.

SubjectTo Introduces the constraints of the optimization problem.

Information Introduces the scalars needed for the verification.

Acronyms

ACSL ANSI/C Specification Language.

AST Abstract Syntax Tree.

CPS Cyber Physical System.

DOF Degrees of Freedom.

HLR High-Level Requirements

LP Linear Programming.

LTI Linear Time Invariant.

LLR Low-Level Requirements.

MPC Model Predictive Control.

QCQP Quadratically Constrained Quadratic Program.

QP Quadratic Programming.

RHC Receding Horizon Control.

SDP Semi-Definite Programming.

SMT Satisfiability Modulo Theories.

SOCP Second-Order Cone Programming.

xvi

SUMMARY

The efficiency of modern optimization methods, coupled with increasing com-

putational resources, has led to the possibility of real-time optimization algorithms

acting in safety critical roles. However, this cannot happen without addressing proper

attention to the soundness of these algorithms.

This PhD thesis discusses the formal verification of convex optimization algorithms

with a particular emphasis on receding-horizon controllers. Additionally, we demon-

strate how theoretical proofs of real-time optimization algorithms can be used to

describe functional properties at the code level, thereby making it accessible for the

formal methods community. In seeking zero-bug software, we use the Credible Au-

tocoding scheme. In this framework, with the use of a “Credible Autocoder”, we

are able to automatically generate C code implementation of Receding Horizon con-

trollers along with its proof of soundness at code level.

We focused our attention on the Ellipsoid Method solving Second-Order Cone Pro-

grams (SOCP). Also, we present a modified version of the original Ellipsoid Method,

in order to take into account and control its numerical error. Following this, a floating-

point analysis of the algorithm and a framework is presented to numerically validate

the method.

xvii

1

Chapter I

INTRODUCTION

Cyber-physical systems (CPS) regroup all the mechanical systems that interact with

computer-based algorithms. A cyber-physical system can be controlled by a human

being or completely autonomous. Among those systems, we call safety-critical the

ones for which a failure could cause human death. Such systems include planes, trains,

nuclear power plants, human spaceflight vehicles, robotic surgery machines and many

more.

Designing the embedded software carried by a safety-critical cyber-physical systems

is a meticulous task and should be performed with caution. In most applications,

safety-critical CPS are required to follow a given certification and requirements. In

the case of Airborne Systems, the DO-178C, Software Considerations in Airborne

Systems and Equipment Certification, give technical guidelines and requirements for

developing avionics software systems. We discuss in more detail how formal methods

fit into DO-178C and the scope of this PhD thesis in section 1.3.3.

The efficiency of modern optimization methods, coupled with increasing computa-

tional resources, has led to the possibility of real-time optimization algorithms acting

in safety-critical roles. However, this cannot happen without addressing proper at-

tention to the soundness of these algorithms. This PhD thesis discusses the formal

verification of convex optimization algorithms with a particular emphasis on receding-

horizon controllers. We demonstrate how theoretical proofs of real-time optimization

algorithms can be used to describe functional properties at the code level, thereby

2

making it accessible for the formal methods community.

The need for enhanced safety and better performance is currently pushing for the

introduction of advanced numerical methods into next generations of cyber-physical

systems. While most of the algorithms described in this paper have been established

for a long time, their online use within embedded systems is relatively new and opens

issues that have to be addressed. Among these methods, we are concerned with nu-

merical optimization algorithms.

In this chapter, we recall preliminaries about formal verification, semantics of pro-

grams, and the Credible Autocoding framework. Finally, we develop the state of the

art and explain how this thesis fits into the previous work. In Chapter 2, we give

background about convex optimization, dynamical systems and model predictive con-

trol (MPC). Chapter 3 focuses on the axiomatization of a second-order cone program

and the formal verification of the ellipsoid algorithm. A floating-point analysis of a

modified version of the ellipsoid method is presented in Chapter 4, while Chapter 5

gives details about closed-loop management. This chapter presents how this frame-

work can be automated and applied to a system as well. Chapter 6 concludes this

thesis.

1.1 Credible Autocoding Framework

Credible autocoding, is a process by which an implementation of a certain input

model in a given programming language is being generated along with formally ver-

ifiable evidence that the output source code correctly implements the input model.

Given that the mathematical proofs of high-level functional properties of convex op-

timization algorithms do exist, we want to translate, generate and carry them at code

level. This is done by adding comments, which does not perturb the code compilation

3

and execution. Furthermore, those comments are expressed in a formal specification

language in order to be read and analyzed by other software. An illustration of this

framework is given in Figure 1. In this thesis, we focus on automatically generating

Figure 1: V & V Cycle for Credible Autocoding

certifiable convex optimization algorithms to implement receding horizon controllers

(see Sections 2.2 and 2.3). In other word, we instantiate a given algorithm on a model

predictive control (MPC) problem. This framework is similar to [32].

For that, we build an Autocoder (see Chapter 5) that will automatically generate C

code implementation of Receding Horizon Controllers from a text file containing the

high-level MPC formulation. Along with generating the C code, this autocoder, that

we call Credible Autocoder, also generates the semantics of the corresponding algo-

rithms and its proof of soundness at code level. From a MPC formulation specified

using a given programming language (detailed in Section 5.3) written by the user,

the Credible Autocoder will generate C code algorithms implementing the original

MPC formulation. As it was said before, along with generating those algorithms, it

also generates the proof of soundness of those algorithms at code level. Once the

semantics annotated C code generated, it is checked using a software analyzer and

if it is proven correct, compiled then embedded at the heart of a system’s feedback.

4

Figure 2 gives an illustration of the corresponding toolchain.

Figure 2: MPC Integration of Credible Autocoded Algorithms

1.2 Formal Verification

1.2.1 Semantics of Software

Semantics of programs express their behavior. It gives a rigorous mathematical de-

scription of the meaning of a given program. For the same program, different means

can be used to specify its semantics:

• a denotational semantics, expressing the program as a mathematical function,

• an operational semantics, expressing it as a sequence of basic computations, or

• an axiomatic semantics, as a set of observations.

In the latter case, the semantics can be defined in an incomplete way, as a set of pro-

jective statements, ie. observations. This idea was formalized by [20] and then [25] as

a way to specify the expected behavior of a program through pre- and post-condition,

or assume-guarantee contracts.

5

1.2.2 Hoare Logic

A piece of code C is axiomatically described by a pair of formulas (P,Q) (see Fig-

ures 3) that if P holds before executing C, then Q should be valid after its execution.

This pair acts as a contract for the function and (P,C,Q) is called a Hoare triple.

In most uses P and Q are expressed as first order formulas over the variables of the

program. Depending on the level of precision of these annotations, the behavior can

be fully or partially specified. In our case we are interested in specifying, at code level,

algorithm specific properties such as the convergence of the analysis or preservation of

feasibility for intermediate iterates. Software frameworks, such as the Frama-C plat-

Figure 3: Hoare Triple

form [16], provide means to annotate a source code with these contracts, and tools

to reason about these formal specifications. For the C language, ACSL [4], (ANSI C

Specification language) can be used as source comments to specify function contracts,

or local annotations such as loop invariants. Local statements annotations act as cuts

in proofs and are typically required when analyzing loops. Figure 4 shows an example

of a Hoare triple. In this example, if the triple is indeed valid, we can conclude that

assuming 0 ≤ x ≤ N is true, then after executing the command x := x + 1 we know

that the property 1 ≤ x ≤ N + 1 will be true. Figure 5 displays another example of a

Hoare triple. The two examples presented show correct Hoare triples and have been

proven using Frama-C. ACSL also give means to introduce function contract. Those

contracts consist in listing all the properties that we assume to be true before the

execution of the function and all the properties that will be true after its execution.

For this, we use the keywords requires and ensures. For every function contract,

we will then try to prove that, after the execution of a function, all the properties

6

ACSL + C

1 //@ assert 0 <= x <= N;
2 x = x + 1;
3 //@ assert 1 <= x <= N + 1;

Figure 4: Hoare Triple Expressed in ACSL Example 1

ACSL + C

1 //@ assert -2 <= x <= 2;
2 y = x * x;
3 //@ assert 0 <= y <= 4;

Figure 5: Hoare Triple Expressed in ACSL Example 2

listed following a ensures keyword will be true assuming that all the properties listed

within a requires were true before its execution. The part of the memory assigned

by a function can also be specified using the keyword assigns. Checking the memory

assignment is very important and could lead to checking errors if it is omitted.

Let us take a look at a simple and specific example. In Figure 6, we show an im-

plementation of a function, “addInt”, that takes two integers as inputs and store the

addition of those two integers at a given memory address, referenced as an input

pointer. Also, this function returns the corresponding addition. Let us assume the

user only specifies that the output corresponds to the sum of the input integers. Then,

while proving the second property at line 16, the SMT solvers would assume the value

of a did not change and is correct. Therefore, missing an assigns clause could lead to

logic issues and checking errors. Although Frama-C rises a flag reminding the user

that a assign clause is missing, it still lacks the level of confidence we would like to

achieve. In order to get around this, we make sure we write an assigns clause for

every function contract.

Let us say that the user did write an assigns clause but a non correct one. Could this

lead to logical issues? The answer is no. Indeed, the solvers might proved correctness

for properties that are not correct but they will not be able to prove correctness for

7

ACSL + C

1 #include <stdio.h>
2

3 /*@
4 @ ensures \result == a + b;
5 */
6 int addInt(int *x, int a, int b){
7 int add = a + b;
8 *x = add;
9 return add;

10 }
11

12 int main (){
13 int a = 0;
14 /*@ assert a == 0 ; */
15 addInt (&a, 5, 5);
16 /*@ assert a == 0 ; */
17 return 0;
18 }

Figure 6: Memory Assignment Issue Example in ACSL

the original assigns statement. Because of this, the user will therefore understand

that there is something wrong in the implementation or ACSL annotations. The cor-

rected contract is presented in Figure 7. In this case, the property at line 18 cannot

be proved correct as expected. A second example is shown in Figure 8 where we

ACSL + C

1 #include <stdio.h>
2

3 /*@
4 @ ensures \result == a + b;
5 @ ensures *x == a + b;
6 @ assigns *x;
7 */
8 int addInt(int *x, int a, int b){
9 int add = a + b;

10 *x = add;
11 return add;
12 }
13

14 int main (){
15 int a = 0;
16 /*@ assert a == 0 ; */
17 addInt (&a, 5, 5);
18 /*@ assert a == 0 ; */
19 return 0;
20 }

Figure 7: Corrected Function Contract For Memory Assignment Checking

present a function contract expressed in ACSL for a C code function implementing

the square function. In this case, the corresponding function does not modify any

global variable stored in memory.

8

ACSL + C

1 /*@
2 @ requires -2 <= x <= 2;
3 @ ensures \result == x*x;
4 @ ensures 0 <= \result <= 4;
5 @ assigns \nothing ;
6 */
7 double square (double x){
8 return x*x;
9 }

Figure 8: ACSL Function Contract Example

1.2.3 Weakest Precondition

In this section we give details about how this process can be automated at code level.

Meaning that, how can the correctness of a Hoare triple be checked automatically.

For this, we present how to prove a Hoare triple by weakest precondition. Let Q

be a assertion and C a command. We define the weakest precondition of the couple

(C,Q) as the weakest assertion P such that the triple {P} C {Q} is valid. For two

assertions P1 and P2, P1 is weaker than P2 means that P2 =⇒ P1. The advantage

of proving Hoare triple by weakest precondition lies in the fact that this latter step is

easily automated. Indeed, the weakest precondition of a couple (C,Q), depending of

the nature of the command C, follows a simple rule. Once this weakest precondition

Figure 9: Weakest Precondition Illustration

wp(C,Q) has been computed, we then check if the property, P =⇒ wp(C,Q),

is true. If the last property is indeed true, using Theorem 1 we conclude that the

triple {P} C {Q} is valid. Theorem 1 expresses the fact that wp(C,Q) represents the

9

weakest acceptable precondition, such that {wp(C,Q)} C {Q} is valid. An illustration

of this theorem is shown in Figure 9.

Theorem 1 If the assertion below is true:

P =⇒ wp(C,Q),

then, we can conclude that the triple {P} C {Q} is valid.

1.3 State of the Art and Scope of the Thesis

1.3.1 Real-time Optimization Based Control

Formal verification of convex optimization algorithms used online within control sys-

tems is the sole focus of this research. Recently, such algorithms have been used

online with great success for the guidance of systems within safety-critical applica-

tions, including, autonomous cars [18, 41, 28] and reusable rockets [3, 6]. The latter

case has resulted in spectacular experiments, including landings of SpaceX’s Falcon

9 and BlueOrigin’s New Shepard. In order to perform the landing of the Falcon 9,

the spaceX’s teams used convex optimization technique [5]. The landing problem was

formulated as a Quadratic Programming (see Section 2) and ran during the descent

phase of the Falcon 9 rocket. In addition, automatic code generation has been used

for numerical optimization, with the use of the code generator for convex optimization

CVXGEN [32].

Thus, powerful algorithms solving optimization problems are already used online,

have been embedded on board, and yet still lack the level of qualification required by

civil aircraft or manned rocket flight. Automatic code generation for solving convex

optimization problems has already been done [32, 33]. In these articles, the authors

present a new code generator for embedded convex optimization. The generated code

is said to be library-free, auto sufficient and without failure. Those algorithms are

10

very complex and arguing that they do not contains any bug could be delicate, espe-

cially for safety-critical conditions. Also, this work does not include the use of formal

methods.

Likewise, work within the field of model predictive control already exists where nu-

merical properties of algorithms are being evaluated [39]. This paper, [39], proposes

a dual gradient projection (DGP) algorithm implemented on fixed-point hardware.

A convergence analysis with taking into account round-off errors due to fixed-point

arithmetic is presented. Following this, the minimum number of integer bits that

guarantee convergence to a solution can be computed, minimizing the computational

power. Nevertheless, this work is only valid for Quadratic Programming and using

fixed-point numbers. Additionally, no formal verification was performed.

Similarly, as it is presented at [27], MPC controllers have been successively imple-

mented on FPGAs, letting the possibility to ran some problems at megahertz rate.

In this article, the authors focus on the alternating direction method of multipliers

(ADMM) and perform a numerical analysis in fixed-pint arithmetic.

1.3.2 Formal Verification of Control Systems Software

Since the 60s, computer scientists were studying ways of analyzing programs. For this,

different techniques were proposed based on mathematical supports. Those methods,

developed for analyzing software, were based on mathematical descriptions of the pro-

grams behaviors (i.e. its semantics): a formal description. formal methods represents

an advantage over testing because they guarantee the correction of properties and

soundness of programs for a wide range of inputs and under certain known hypothe-

sis. When testing programs, only certain test cases are executed, giving satisfactions

when no run-time errors are detected. Unfortunately, the absence of run-time errors

does not imply the correction of the program for other test cases, as close as they can

11

be.

We shortly present in the following paragraphs, the different formal methods devel-

oped and successfully used to analyze embedded safety-critical software.

Abstract interpretation is one the most successful method developed towards the

static analysis of programs. It was first proposed in the 70s. In practice, it is mainly

used in order to compute numerical invariants over programs. For this, abstract

interpretation uses results from set theory to compute over approximations of pro-

gram behaviors. Abstract domains are used and depending on the programs nature,

different shapes and geometries are considered, representing trade offs between ac-

curacy and performance. Definitions and the use of the main abstract domains are

detailed in [14, 15, 34, 35]. In 2010, a remarkable advanced was made towards formal

verification of safety-critical control system using abstract interpretation by success-

fully proving the absence of runtime error of the flight control system of the Airbus

A380 [29].

On the other hand, another technique, called Satisfiability Modulo Theories (SMT),

is growing in the area of formal verification for control system. SMT solvers are

decision problems for logical formulas with respect to combinations of background

theories expressed in first-order logic such as linear real/integer arithmetic. Roughly

speaking, those SMT solvers are deciding procedures for the satisfiability of conjunc-

tions of items, where an item is an atomic formula. SMT solvers handle sub-formulas

by performing case analysis, which is the technique used in most automated deduc-

tion tools. SMT-solvers are used as back-end reasoning engines in a wide range of

formal verification applications, such as model checking, test case generation, static

analysis, etc. In this PhD thesis, we focus on the SMT solver Alt-Ergo connected to

the software analyzer back-end Frama-C.

12

Contributions for higher-level properties have been made concerning formal verifi-

cation of control systems [19, 13, 24, 44]. Those articles mainly focus on formal ver-

ification and code generation for linear control system and typical feedback control

techniques. The authors show how theoretical system level properties (closed-loop

Lyapunov stability) can be carried out from a high level programming language like

Simulink all the way to code through automatic code generation. Following this,

research has also been made toward the verification of numerical optimization algo-

rithms [48], yet it remains purely theoretical and no proof was actually performed

with the use of formal methods.

1.3.3 Formal Verification And Software Certification

In this section, we explain the differences between formal verification, testing and

certification. The same way it is for Cyber-Physical System, we qualify a software

of safety-critical if its failure can lead to catastrophic consequences. Therefore the

correctness is a crucial issue in the design process of safety-critical software. For those

systems, a higher authority is usually present and act as a supervisor checking soft-

ware quality. For airborne systems many authority exists such as the FAA or EASA.

Certification is the legal recognition by a certification authority that a product fulfills

specific requirements.

Software verification regroups all the computer science techniques that aim to show

that a piece of software complies with predefined properties and that does not per-

form unexpected behavior. Until recently, the high majority of software verification

performed by companies while developing software consisted of reviewing and testing.

As it is recalled in [21], 30% to 50% of the software costs are dedicated to testing.

Unfortunately, detecting bugs by reviewing and testing is very limited, especially for

13

safety-critical applications. Testing can only cover certain scenarios, and bugs can

still be present even when a software passes all the test cases. Also, reviewing does

not represent the perfect option because the reviewers might embrace the same logic

as the programmer while reading the code and fall into the same mistakes. The

reviewer’s mind gets corrupted by adopting the programmer’s point of view. For air-

borne software, the the legal authorities such as the FAA, EASA, follow the guidelines

detailed in the document “DO-178C, Software Considerations in Airborne Systems

and Equipment Certification” [37].

DO-178C Software Requirements: In the DO178C, it is explained that each

part of the software is assigned a specific software level related to the criticality of

the software. Software levels are assigned from levels A to E, A corresponding to the

most critical piece of software. Thus, a level A software failure can lead to tremendous

catastrophes. One on the requirement listed in the DO-178C requires that each line of

code must be directly traced to a requirement. Also it specifies that this requirement

needs to be traced to a corresponding test case.

Roughly speaking, the DO-178C decomposes the software design phase into three

processes:

• the software planning,

• the software development,

• and the integral.

The software planning defines and manages all the software development-related ac-

tivities. During the software development process, High-Level Requirements (HLR),

software architecture and Low-Level Requirements (LLR) are defined. The software

design, coding and integration are being performed during this process as well. The

14

integral process addresses the verification. It aims to guarantee the correctness, con-

trol, and confidence in the safety and reliability of all previous lifecycle processes.

More details on DO-178B and DO178C can be found at [21, 1, 37]

For each processes DO-178C gives requirements and guidelines on how formal meth-

ods can be incorporated. Also it specifies that formal methods cannot be used as a

replacement for any existing requirements. The use of formal methods for verifica-

tion purposes should be explained and fixed during the software planning process. All

the assumption made during the formal modeling and verification should be speci-

fied.The properties aiming to be verified, the formal verification work plan and objec-

tives should be detailed and listed beforehand. DO-178C specifies the repeatability

characteristic that the formal verification should fulfill.

Contribution: This PhD thesis discusses the formal verification of convex opti-

mization algorithms with a particular emphasis on receding-horizon controllers. We

demonstrate how theoretical proofs of real-time optimization algorithms can be used

to describe functional properties at the code level, thereby making it accessible for

the formal methods community.

This PhD thesis only dedicated work towards the generation of C code and checking

its correctness. Indeed, the compiling process and its verification are not part of this

PhD thesis scope. Work has previously been done towards those issues [31]. In this

PhD dissertation, we will present the following scientific contributions:

• the axiomatization of optimization problems using the specification language

ACSL (mathematical properties of linear algebra, set theory and optimization

theory were defined),

• the formalization of the algorithm’s proof using this same language at code

level, where ACSL annotations and Lemmas were formalized and proved,

15

• a modification of the original Ellipsoid Algorithm in order to account for nu-

merical errors along with its complete numerical analysis.

• the development of a high-level optimization parser using a specific and prede-

fined language (detailed in section 5).

• the development of an Autocoder (detailed in section 5) generating C code im-

plementation of Convex Optimization Algorithms along with ACSL annotations

16

17

Chapter II

OPTIMIZATION BASED CONTROL OF LTI SYSTEMS

Optimization based control deals with the problem of finding the control law for a

given system such that a certain optimality criterion is achieved. In order to achieve

this goal, two methods can be used: direct and indirect. In the latter case, we

seek an analytical and closed form solution for the control input with the use of

mathematical principles such as the Pontryagin maximum principle (PMP). The most

famous result of this theory being the Riccatti equation, giving a closed form solution

to a controller minimizing a quadratic cost on the inputs and states for a linear plant.

Further information about indirect methods can be found at [8, 47]. In this thesis,

we focus on direct methods, where we usually work with discretized systems and

express the optimal behavior of a system by formulating an optimization problem.

This optimization problem is then solved using numerical solvers and the optimal

input sequence is found. In this chapter we recall first the setting of LTI theory and

some stability results of LTI systems. Then, more details about convex programming

and receding horizon controllers are given.

2.1 Linear Time Invariant (LTI) Systems

2.1.1 LTI Theory and State Space Realization

Given a system, a state-space representation is a mathematical model of a physical

system as a set of inputs, outputs and state variables related by first-order differential

equations.

18

In a general setting, a dynamical system can be represented by the system of

equations 1. We write the state vector x, the input vector u and the output vector y.
ẋ = f(x, u, t)

y = h(x, u, t)

(1)

Among dynamical systems, autonomous time-invariant systems are very important

and represent a good trade-off between being simple enough to analyze but compli-

cated enough to capture a wide variety of systems. For those systems, many stability

results exist. In a general setting, an autonomous time-invariant system can be rep-

resented by the system of equations 2.
ẋ = f(x)

y = g(x)

(2)

For LTI systems, the functions f and h are required to be linear in the input and

state and to be independent of the time. Thus, LTI systems can be represented by

the system of equations 3. 
ẋ = Ax+Bu

y = Cx+Du

(3)

Consequently, a LTI system that is additionally autonomous can be represented by

equation 4.

ẋ = Ax (4)

2.1.2 Stability of LTI Systems

When analyzing dynamical systems or designing controllers, studying stability is a

crucial characteristic. In most cases, we study the stability of a closed-loop system.

Meaning that the controller has already been designed and the loop closed (see Fig-

ure 10). That way, the system in consideration is now autonomous and do not depend

on any input. Let us recall the definition of an equilibrium point. A point xe is an

19

System

C

u y

Figure 10: Closed-Loop System

equilibrium for the autonomous system 2 if ẋe = f(xe) = 0. For autonomous LTI sys-

tems, the point xe = 0 is always an equilibrium. In term of stability, each equilibrium

can be characterized as stable, asymptotically stable or unstable.

Definition 1 (Equilibrium Stability) The equilibrium point xe of the system 2 is:

• stable if,

∀ε > 0, ∃ δ > 0 such that: ‖x(0)− xe‖ ≤ δ =⇒ ‖x(t)− xe‖ ≤ ε ∀t ≥ 0,

• unstable, if it is not stable,

• asymptotically stable if,

∀ε > 0, ∃ δ > 0 such that: ‖x(0)− xe‖ ≤ δ =⇒ ‖x(t)− xe‖ ≤ ε ∀t ≥ 0,

and lim
t→∞

x(t) = xe.

We state now the Lyapunov Stability theorem which gives means to conclude on

system stability under existence of a continuously differentiable function that we call

a “Lyapunov function”.

Theorem 2 (Lyapunov Stability) Let xe be an equilibrium point for the system

2 and D ∈ Rn be a domain containing xe. Let V : D → R be a continuously

differentiable function such that:

V (xe) = 0 , V (x) > 0 ∀x ∈ D\{xe},

20

and V̇ (x) ≤ 0 ∀x ∈ D

Then xe is stable. Moreover, if

V̇ (x) < 0 ∀x ∈ D\{xe},

Then xe is asymptotically stable.

For autonomous LTI systems, the results we have are even stronger than this last

theorem. We know that we only have to look for quadratic Lyapunov functions.

Furthermore, we know that the solution of a LMI could give us a proof of stability.

Theorem 3 Suppose there exists a symmetric matrix P = P T ∈ Rn×n such that

P > 0

ATP + PA < 0

Then the system 4 is asymptotically stable.

In this section, we recalled definitions and results known about a subclass of dynamical

systems. As it was said earlier, when designing a controller and closing the loop,

studying the stability of the resulting system, is the first and most crucial job of the

controls engineer. Further details and proof about control feedback system can be

found at [38, 12]. In our case, because we focus on model predictive control (MPC),

the controller carries an optimization algorithm and is therefore a complicated entity.

Nevertheless, having closed-loop stability guarantees cannot be avoided and details

regarding this manner are discussed in Section 2.3.1. Additionally, we clarify the

technical differences between MPC and Path-planning and explain why confusing

those two techniques could be an issue for our application.

21

2.2 Convex Optimization Problems

Optimization algorithms solve a constrained optimization problem, defined by an

objective function, the cost function, and a set of constraints to be satisfied:

min fo(x)

s.t. fi(x) ≤ bi for i ∈ [1,m]

(5)

This problem searches for x ∈ Rn, the optimization variable, minimizing fo ∈ Rn →

R, the objective function, while satisfying constraints fi ∈ Rn → R, with associated

bound bi. An element of Rn is feasible when it satisfies all the constraints fi. An

optimal point is defined by the element having the smallest cost value among all fea-

sible points. An optimization algorithm computes an exact or approximated estimate

of the optimal cost value, together with one or more feasible points achieving this

value. A subclass of these problems can be efficiently solved: convex problems. In

these cases, the functions fo and fi are required to be convex [10]. When optimization

algorithms are used offline, the soundness of their implementation and the feasibility

of the computed optimizers is not as critical and solutions could be validated a pos-

teriori [43].

Here, we only present a specific subset of convex optimization problems: Second-

Order Cone Programs. For x ∈ Rn, a SOCP in standard form can be written as:

min fTx

s.t. ‖Aix+ bi‖2 ≤ cTi x+ di for i ∈ [1 , m]

With: f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R.

(6)

The focus of this PhD thesis is the online use of Convex Optimization algorithms.

Model predictive control or real-time based control is more general and the convex

aspect is not necessary in general. When optimization problems that are not convex

are being solved, in the general case, there is no guarantee that the global minimizer

22

Figure 11: Classification of Some Convex Optimization Problems

is indeed being computed. For this reason, and the fact that we are targeting safety-

critical applications, we chose to focus on the online use of convex optimization prob-

lems. A classification of the most famous convex optimization problems is presented

in Figure 11. A Linear Program (LP) is a convex optimization problem for which both

the cost and the constraints functions are linear functions. A convex optimization

problem that has linear constraints but a quadratic cost is called a Quadratic Prob-

lem (QP). When both the cost and constraints functions are quadratic, we call the

corresponding optimization problem a quadratically constrained quadratic program

(QCQP). Second order cone program SOCP can be defined as the minimization of a

linear objective function over the second-order cone and Semidefinite programming

(SDP) is concerned with the minimization of a linear objective function over the cone

of positive semidefinite matrices. Frequently, optimization problems that are used

online for control systems can be formulated as a SOCP. Therefore, only dealing with

SOCP is legitimately not constraining for the application we are targeting. In control

systems, SDP’s are mostly used off-line, a priory checking system’s stability [9].

2.3 Real-time Convex Optimization Based Control and MPC

Model Predictive Control (also known as receding horizon control) is an optimal

control strategy based on numerical optimization. In this technique, a dynamical

model of the plant is being used to predict potential future trajectories. Also, a

23

cost function J , that depends on the potential future control input and state, is

being considered over the receding prediction horizon N and the objective here is

to minimize this cost J . At each time t, a convex optimization problem where J

has to be minimized, is being solved. From the solution of this problem, an optimal

trajectory starting at x(t) is being calculated and the control input sent to the plant

corresponds to the first input of this optimal trajectory. A time step later, at t+ ∆t,

the exact same process occurs and is repeated until final time. As an example, we

present in problem 7 an example of a MPC formulation and an illustration of this

process in Figure 13.

minimize
x,u

N∑
k=1

J(xk, uk)

subject to xk+1 = Axk +Buk, ∀k ∈ [1, N]

xk ∈ X , uk ∈ U , ∀k ∈ [1, N]

x1 = x(t)

(7)

At each iteration, we aim to solve problem 7. For a given step k, we write[
ˆu1,k ˆu2,k . . . ˆuN−1,k

]
the optimal input sequence found by the algorithm. The resulting input sent to the

plant is therefore ûk = û1 (Figure 12).

When using online convex optimization techniques for the guidance of system, we

usually account for the plants dynamics by constraining the trajectories. It is done

with the help of equality constraints and therefore, only linear dynamics can be cap-

tured. For this reason, throughout this PhD thesis, we consider only linear dynamics.

Spring-Mass System As an example, we develop a MPC controller to control a

spring-mass system, shown in Figure 14. The state vector x regroups the position z

24

xk+1 = Axk +Buk

C

ûk xk

Figure 12: MPC Closed-Loop System

Figure 13: MPC Technique Illustration

and the velocity ż of the system. The input u corresponds to a force applied on the

system. A state space realization of this system is presented in equations 8.

Figure 14: Spring-Mass System

25


ẋ =

 0 1

−1 0

x+

0

1

u
y =

[
1 0

]
x

(8)

We want to apply the MPC controller detailed in problem 9. The initial point of the

trajectory being the point xo =

[
2 −1

]T
.

minimize
x,u

N∑
k=1

‖Q · xk‖

subject to xk+1 = Axk +Buk, ∀k ∈ [1, N − 1]

‖uk‖ ≤ 5 ∀k ∈ [1, N − 1]

x1 = x(t)

(9)

After discretizing the system at T = 0.01 sec (10 Hz) and for a MPC horizon of

N = 10 we performed a simulation of the closed-loop system. Figures 15, 16 and 17

show the resulting position, velocity and input force. We used the constants below:

Q =

5 0

0 1

 ; A =

 1 0.01

−0.01 1

 ; B =

 0

0.01

 .
The matrix Q represents the weight associated with each components of the state

vector. The main inconvenient of using indirect methods is the fact that a closed-loop

solution is mathematically complex to found, particularly when having constraints

on the control and the state. When using Receding Horizon Control one can use

arbitrary cost function and constraints in the MPC formulation. When the cost and

the constraints are convex, convex optimization solvers are available and a solution

(when there is one) can be found rapidly, letting the possibility of using this technique

online.

2.3.1 Difference between MPC and Path Planning

Model predictive control is a feedback technique used to control systems based on

numerical optimization algorithms. Therefore, those controllers are meant to be used

26

Figure 15: Closed-Loop Position Versus Time

Figure 16: Closed-Loop Velocity Versus Time

online, the same way we used typical linear controllers.

Similar to this technique, one can use convex optimization technique to generate

upfront nominal trajectories. Following this, with the help of online lower level con-

trollers, we make the system follow this trajectory. This last technique being called

“path-planning”. Although, those two techniques might look very similar, one should

27

Figure 17: Input Force Versus Time

be very careful and understand that they imply different guarantees.

When implementing a path-planning scheme, the stability of the closed-loop system

lies in the stability of the lower-level controllers and the correctness of the nominal

trajectory generated beforehand. For receding horizon controllers, system stability is

not that obvious. Using optimization techniques online, the closed-loop trajectory is

not necessary close to the future potential trajectories computed at each iterations.

Because of this, we need more powerful mathematical tools in order to prove stability.

As it was explained in [26], Lyapunov functions could be used to prove stability of

MPC controllers. In that paper, the authors show how end-point penalty can be used

as Lyapunov functions and therefore prove closed-loop stability.

28

29

Chapter III

THE ELLIPSOID METHOD AND ITS SEMANTICS

In this chapter, we recall the last advances and steps in optimization theory and

show its consequences in science and engineering. After this, we give details about

the algorithm of interest in this thesis.

3.1 A Brief Recent History of Optimization Theory

Optimization has been a on going research area of mathematics for centuries. Many

famous mathematicians were interested in it including Lagrange, Euler, Newton and

many others. More recently, a revolutionary discovery was made in 1947 by George

Dantzig with the elaboration of the Simplex Method solving Linear Programs. This

method was a huge step forward in the area of linear optimization and represented at

the time, an extremely efficient method although having poor theoretical complexity

(exponential).

In 1970 the mathematicians Shor, Judin, and Nemirovski published a highly impor-

tant result, the discovery of an algorithm, the Ellipsoid Method, solving in polyno-

mial time any convex programs. Couple of years latter, in 1979 soviet mathematician

Leonid Khachiyan applied this last method to the more specific setting of Linear Pro-

grams, showing for the first time the polynomial solvability of Linear Programs. At

this point, although polynomial time algorithm for LP was found using the Ellipsoid

Method, the Simplex Method was still widely used because of better running time.

Indeed, theoretically very slow, the Simplex Method remains in practice extremely

fast.

30

Following this, in 1984, Indian mathematician Narendra Karmarkar published the

first interior-point method solving linear programs in polynomial time. This dras-

tically increased the interest for interior-point methods to solve linear optimization

problems, which was until there only applied for non-linear optimization. This dis-

covery was quite a revolution, unifying linear and nonlinear optimization techniques.

Up until 1984, linear programs and non-linear programs where seen as two different

problems that should be treated with different types of methods. With Karmarkar’s

first interior-point method solving LP in linear time, the community realized that lin-

ear and non-linear optimization could be treated the same way and shared interesting

properties. This last algorithm being also efficient on both complexity and practice

point of view.

Following the increasing interest for interior-point methods, mathematician Nemirowski,

in the 90s came up with a marvelous result, the extension of interior-point methods to

solve semi-definite programs (SDP). Indeed, Arkadi Nemirovski showed and explained

how interior-point methods could be expanded to solve semi-definite optimization

problems. This result is quite remarkable, allowing the community to expand the

known results of Linear Programs to semi-definite optimization problems.

3.2 The Ellipsoid Method

As it was recalled in the introduction on this chapter, the Ellipsoid Method was first

published by the mathematicians Shor, Judin, and Nemirovski in 1970. This algo-

rithm was said to solve convex problems in polynomial time. One of the most famous

consequence of this discovery is the elaboration of the Khachiyan method, which is

named after its author Leonid Khachiyan and consist of an application of this method

to linear programs.

31

Despite its relative efficiency with respect to interior point methods, the Ellipsoid

Method benefits from concrete proof elements and could be considered a viable op-

tion for critical embedded systems where safety is more important than performance.

For the Ellipsoid Method, several algorithms that are mathematically equivalent exist.

All algorithms implement the same successive ellipsoids and present a mathematically

equivalent update. Because there are several ways of encoding and defining an Ellip-

soid, several algorithms exist. The point here being the fact that those algorithms

are not numerically equivalent and we need to focus on the most accurate one. An

Ellipsoid can be defined by a positive-definite matrix P > 0. Equivalently, because

for all positive-definite matrix P > 0, there exists a square-root matrix B such that

B2 = P , one can choose to implement the same algorithm but propagating the succes-

sive square root matrices B. The algorithm presented in [11] show a implementation

of the Ellipsoid Method propagating the positive-definite matrices P and the one

developed in [36] (The first one published) show an implementation propagating the

matrices B. The same way it is for the Kalman Filter, we experienced that the algo-

rithm implementing the square-root matrices is more numerically accurate. For that

reason, we chose to focus ourselves on this implementation. This chapter presents

a way to annotate a C code implementation of the Ellipsoid Method to ensure that

the code implements the method and therefore shares its properties (convergence,

soundness). Before recalling the main steps of the algorithm, the needed elements

will be presented.

Ellipsoids in Rn. An ellipsoid can be characterized as an affine transformation of

an Euclidean Ball. Before defining an Ellipsoid set, we first recall the definition for

an Euclidean ball.

Definition 2 (Euclidean balls) Let n ∈ N we denote Bn the unit Euclidean ball in

32

Figure 18: Ellispoid Method Trade off

Rn. For n ∈ Rn, we define the Euclidean ball by:

Bn = {z ∈ Rn : ‖z‖ ≤ 1}

Also, Vol(Bn) denotes its volume. Also, we define Br(x) as the ball of radius r centered

on x
(

i.e {z ∈ Rn : ‖z − x‖ ≤ r}
)

.

Definition 3 (Ellipsoid Sets) Let c ∈ Rn and B ∈ Rn×n a non-singular matrix

(det(B) 6= 0). The Ellipsoid Ell(B, c) is the set :

Ell(B, c) = {Bu+ c : uTu ≤ 1} (10)

Also, because the convergence of the method is a consequence of a volume decreasing

property, we define below the volume of an Ellipsoid.

Definition 4 (Volume of Ellipsoids) Let Ell(B, c) be an ellipsoid set in Rn. We

denote by V ol(Ell(B, c)) its volume defined as :

Vol(Ell(B, c)) = |det(B)| · Vol(Vn) (11)

Algorithm. Let us now recall the main steps of the algorithm detailed in [7, 36, 11].

In the following, we denote Ek = Ell(Bk, ck), the ellipsoid computed by the algorithm

at the k − th iteration.

33

Ellipsoid cut. We start the algorithm with an ellipsoid containing the feasible

set X, and therefore the optimal point x∗. We iterate by transforming the current

ellipsoid Ek into a smaller volume ellipsoid Ek+1 that also contains x∗. Given an

ellipsoid Ek of center ck, we find a hyperplane containing ck that cuts Ek in half,

such that one half is known not to contain x∗. Finding such a hyperplane is called

the oracle separation step, cf. [36]. In our SOCP setting, this cutting hyperplane is

obtained by taking the gradient of either a violated constraint or the cost function.

Then, we define the ellipsoid Ek+1 by the minimal volume ellipsoid containing the

half ellipsoid Êk that is known to contain x∗. The Figures 19 and 20 illustrate such

ellipsoids cuts.

Figure 19: Ellipsoid Cut

Ellipsoid transformation. From the oracle separation step, a separating hyper-

plane, e, that cuts Ek in half with the guarantee that x∗ is localized in Êk has been

computed. The following step is the Ellipsoid transformation. Using this hyperplane

e, one can update the ellipsoid Ek to its next iterate Ek+1 according to equations (12)

and (13). In addition to that, we know an upper bound, γ, of the ratio of Vol(Ek+1)

to Vol(Ek) (see Property 1).

ck+1 = ck −
1

(n+ 1)
·Bkp , (12)

34

Figure 20: Ellipsoid Cut In an LP Settings

Bk+1 =
n√

n2 − 1
Bk +

(
n

n+ 1
− n√

n2 − 1

)
(Bkp)p

T (13)

with:

p =
BT
k e√

eTBkBT
k e
. (14)

Termination. The search points are the successive centers of the ellipsoids. Through-

out the execution of the algorithm, we keep track of the best point so far, x̂. A point

x is better than a point y if it is feasible and have a smaller cost. When the program

reaches the number of iterations needed, the best point so far, x̂, which is known to

be feasible and ε-optimal, is returned by the algorithm. We state a volume related

property, at the origin of the algorithm convergence, then state the main theorem of

the method.

Property 1 [Reduction ratio.] Let k ≥ 0, by construction:

Vol(Ek+1) ≤ exp

(
−1

2 · (n+ 1)

)
· Vol(Ek) (15)

35

Proof We give a proof to show that the successive ellipsoids computed by the method

are actually decreasing by a ratio γ. First, let us put the update formula 13 into the

form:

Bk+1 = αBk + β(Bkp)p
T

with:

α =
n√

n2 − 1
and β =

n

n+ 1
− n√

n2 − 1
.

Let us now take the determinant of both sides.

det(Bk+1) = det
(
αBk + β(Bkp)p

T
)

= det
(
Bk ·

(
αIn + βppT

))
= det

(
Bk

)
det
(
αIn + βppT

)
= det

(
Bk

)
αn det

(
In +

β

α
ppT
)

Using Sylvester’s determinant identity:

det(In + AB) = det(Im +BA) ∀A ∈ Rn×m, B ∈ Rm×n

the determinant on the right side of the equality can be express as:

det(Bk+1) = αn det
(
Bk

)
·
(

1 +
β

α
‖p‖

)
But, From equation 14, we can see that ‖p‖ = 1. Therefore,

det(Bk+1)

det(Bk)
= αn ·

(
1 +

β

α

)
≤ exp

(
−1

2(n+ 1)

)
�

Hypotheses. In order to characterize the number of steps required for the algorithm

to return an ε-optimal solution, three scalars and a point xc ∈ Rn are needed:

• a radius R such that:

X ⊂ BR(xc) (16)

36

Figure 21: Included and Including Balls

• a scalar r such that:

Br(xc) ⊂ X (17)

• and another scalar V such that:

max
x∈X

fo −min
x∈X

fo ≤ V. (18)

Those hypotheses are illustrated in Figure 21. This example corresponds to a Linear

Program setting where the feasible set is a bounded and not flat polyhedral set. The

different balls are shown in shades of gray. More generally, the existence of those

assumptions implies that the feasible set needs to be both bounded and not flat.

Unfortunately, when implementing MPC controllers, equality constraints are present,

implying that the feasible set is flat on some dimensions. Therefore, we performed

an initial equality constraint elimination (see Chapter 5.1.1).

37

The main result can be stated as:

Theorem 4 Let us assume that X is bounded, not empty and such that R, r and V

are known. Then, for all ε ∈ R∗+, the algorithm, using N iterations, will return x̂,

satisfying:

fo(x̂) ≤ fo(x
∗) + ε and x̂ ∈ X (ε-solution)

Furthermore, if we write n the dimension of the optimization problem, the number of

steps, N , is polynomial in n and is of the form:

N = 2n · (n+ 1) log

(
RV

rε

)
.

This result, when applied to LP, is historically at the origin of the proof of the

polynomial solvability of linear programs. Its proof can be found at [30, 36]. In order

to produce formally verifiable code, we want to generate annotated code with Hoare

triples, including function contracts expressing pre and post conditions. To do so, we

present the development of ACSL theories related to optimization problems.

3.3 Building ACSL Theory Related to the Ellipsoid Method

3.3.1 Linear Algebra Axiomatization

In this section we give details about the ACSL theories we had to build in order to

prove mathematical properties at code level. Indeed, the software analyzer takes as an

input the annotated C code augmented with ACSL theories that define new abstract

types, functions but also axioms, lemmas and theorems. The lemmas and theorems

need to be proven but the axioms are always assumed to be true. For the SMT

solver, properties at code level are usually harder to prove than lemmas within ACSL

theories. Thus, our approach here was to develop the needed ACSL theories enough

to be able to express and prove the main results used by the algorithm within the

38

ACSL

1 /*@ axiomatic LinAlg {
2 type vector;
3 type matrix;
4 logic vector vec_of_16_scalar(double * x) reads x[0..15];
5 logic vector vec_of_36_scalar(double * x) reads x[0..35];
6 ...
7 logic vector vector_add(vector A, vector B);
8 axiom vector_add_length:
9 \forall vector x, y;

10 vector_length(x) == vector_length(y) ==>
11 vector_length(vector_add(x,y)) == vector_length(x);
12 axiom vector_add_select:
13 \forall vector x, y, integer i;
14 vector_length(x) == vector_length(y) ==>
15 0 <= i < vector_length(x) ==>
16 vector_select(vector_add(x,y),i)== vector_select(x,i)+ vector_select(y,i);
17 ...
18 }
19 */

Figure 22: ACSL Linear Algebra Theory

ACSL theories. That way, the Hoare triples at code level will only be an instantiation

of those lemmas and be relatively simple to prove for the SMT solvers.

Linear Algebra Based ACSL Theory. In this ACSL theory, we defined new

abstract types for vectors and matrices. We also defined functions that allow us to

create a vector and a matrix from a C code pointer. Additionally, all the very well

known operations have also been axiomatized (give a mathematical description to

it) such as matrix multiplication, matrix addition, vector-scalar multiplication, scalar

product, norm.

This ACSL theory is automatically generated during the autocoding process of the

project, thus, all the sizes of the vectors and matrices are known. Within this theory,

we only defined functions that will create, from a C code pointer, objects of appropri-

ate sizes (as illustrated in figure 22). ACSL code is printed in green and its keywords

in red. The C code keywords are printed in blue and the actual C code is printed in

black. Figure 22 presents the definition of two abstract types matrix and vector, the

ACSL constructors for those types and the axiomatization of vectors addition. Fig-

ure 22 represents an extract from the autocoded ACSL linear algebra theory (which

39

can be found in appendix A).

Ellipsoid Method Based ACSL Theory. In addition to defining new types for

optimization problem, we also axiomatize the calculation of the vector constraint,

feasibility, epsilon optimality, etc, Also, Ellipsoids and related properties are ax-

iomatized, as presented in Figure 23. Within this theory, all the axioms and lemmas

ACSL

1 #include "axiom_linalg.h"
2 /*@ axiomatic Ellipsoid {
3 ...
4 type ellipsoid;
5 logic ellipsoid Ell(matrix P, vector x);
6 logic boolean inEllipsoid(ellipsoid E, vector z);
7 ...
8 }
9 */

Figure 23: Ellipsoid Type Definition

required for the main proof will be autocoded and proved. Before stating the main

result, some preliminary results needs to be obtained. For instance, volume related

properties are defined and proved (Figure 24). The proof of the main lemma for

the method is stated in Figure 25. The first assumption listed on this lemma is the

fact that the reals r, ε, V are strictly positive. It also assumes that the variable V

satisfies the property (18). The lines 13 and 14 express the fact that we are assuming

the ellipsoid Ell(P, x) to be a minimum localizer (meaning that any point outside of

this ellipsoid cannot be better than x best, in term of cost or feasibility. Lines 15 to

17 specify the assumption for the scalar r to fulfill, corresponding to equation (17).

Finally, at line 18, we express the fact the the ellipsoid Ell(P, x) has a volume less

than (ε ∗ r/V)n . The conclusion of the lemma being the fact that xbest represents an

ε-solution to the optimization problem. In Figure 24, we show a axiomatization of a

set. We wrote two axioms. One specifying that every set have a positive volume, and

another one specifying that if a set B contains all the elements of a set A then the

volume of B is at least equal to the volume of A. Then, we state a lemma expressing

40

ACSL

1 #include "axiom_linalg.h"
2 /*@ axiomatic Optim {
3 ...
4 type myset;
5 logic boolean in(myset A, vector x);
6 logic real volume(myset A);
7 axiom PositiveVolume:
8 \forall myset A; volume(A) >= 0;
9 axiom greatherVolume:

10 \forall myset A, B;
11 (\forall vector x; in(A,x) ==> in(B,x)) ==>volume(B) >= volume(A);
12 lemma lemmaExitsElement:
13 \forall myset A, B;
14 (volume(A) < volume(B)) ==> \exists vector x; in(B,x) && !in(A,x);
15 }
16 */

Figure 24: Existence vector ACSL Lemma

that for two sets A and B, if the volume of A is strictly less than the volume of B

then there exists a element x that belong to the set B but does not belong to the set A.

Both lemmas have been successfully proved using the software analyzer Frama-C

and the SMT solver Alt-Ergo.

ACSL Lemma

1 /*@
2 lemma epsilon_solution_lemma_BIS:
3 \forall optim OPT , real r,V,epsilon , matrix P, vector x, x_best;
4 (0 < epsilon/V < 1) ==>
5 0 < r ==>
6 0 < V ==>
7 0 < epsilon ==>
8 size_n(OPT) > 0 ==>
9 (\forall vector x1, x2;

10 isFeasible(OPT , x1) ==>
11 isFeasible(OPT , x2) ==>
12 cost(OPT ,x1) - cost(OPT ,x2) <= V) ==>
13 (\forall vector z;
14 !inEllipsoid(Ell(P,x), z) ==> isBetter(OPT , z, x_best)) ==>
15 (\exists vector x;
16 include(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x)) ,
17 feasible_set(OPT))) ==>
18 volume(tomyset(Ell(P,x))) < pow(epsilon/V*r, size_n(OPT)) ==>
19 isEpsilonSolution(OPT , x_best , epsilon); */

Figure 25: Ellipsoid Method ACSL Lemma

3.3.2 Optimization Theory Axiomatization

To axiomatize an optimization problem, we intend to see it, independently of the

method used to solve it, as a pure mathematical object. Our goal is to axiomatize it

41

with enough properties, allowing us to state all the needed optimization-level prop-

erties at code level for the proof. Let us consider the second-order cone program,

described in Eq. 6.

Encoding an SOCP. In order to fully describe an SOCP, we use the variables:

f ∈ Rn, A =

A1
...

Am

 , b =

 b1...
bm

 , C =

c
T
1
...

cTm

 , d =

d1...
dm


And also the vector m =

[
n1 . . . nm

]
collecting the sizes of the vectors Ai · x+ bi.

Furthermore, if na =
∑m

i=1 ni = 0, then, the SOCP we are considering is actually

an LP. Using ACSL, we define a new type and a high level function, providing the

possibility to create objects of the type “optim” (Figure 26).

When applying a method to solve an optimization problem, many concepts are im-

portant. The work here is to highlight those concepts and write a library translating

those concepts into a formal specification language. That way, formally verifiable

code could be produced, independently of the method and implementation used.

ACSL

1 /*@
2 axiomatic OptimSOCP {
3 type optim;
4 logic optim socp_of_size_2_6_0(
5 matrix A,vector b,matrix C,
6 vector d, vector f, int* m)
7 reads m[0..5];
8 logic real constraint(optim OPT ,
9 vector x,integer i);

10 logic vector constraints(optim OPT ,
11 vector x);
12 */

Figure 26: ACSL Optim Type Definition

The concepts of feasibility and optimal-

ity are being axiomatized. For this, given

a second-order cone program, we gave an

axiomatic definition for the vector con-

straint, the gradient of a constraint, the

cost, optimal point (making the assump-

tion that it exists and is unique), etc. For

instance, Figure 27 illustrates the axiom-

atization of a constraint calculation and

the feasibility predicate definition. When instantiating a object of type vector or ma-

42

ACSL

1 /*@
2 axiom constraint_linear_axiom:
3 \forall optim OPT , vector x, integer i;
4 getm(OPT)[i] == 0 ==>
5 constraint(OPT , x, i) ==
6 -scalarProduct(getci(OPT ,i),x,size_n(OPT))-getdi(OPT ,i);
7 axiom constraint_socp_axiom:
8 \forall optim OPT , vector x, integer i;
9 getm(OPT)[i] != 0 ==>

10 constraint(OPT , x, i) ==
11 twoNorm(vector_affine(getAi(OPT ,i),x,getbi(OPT ,i))) -
12 scalarProduct(getci(OPT ,i),x,size_n(OPT))-getdi(OPT ,i);
13 ...
14 predicate
15 isFeasible(optim OPT ,vector x) = isNegative(constraints(OPT ,x));
16 */

Figure 27: ACSL Feasible Predicate Definition

trix, the size of the considered object needs to be know since it is hard-coded in the

ACSL axiomatization. This does not represent an issue at this time since we already

know all the sizes of the variable used (from the autocoder, see Section 5). Also,

working with predefined and hard-coded size objects will help the analyzers proving

the goals. The work presented here is generic and the code can be generated for any

size of matrices and vectors.

3.4 Annotating a C code implementation of the Ellipsoid
Method

We now give details about how we annotated the C code and the type of Hoare triples

present in the code. For this, we adopted a specific technique. Every C code function

will be implemented in a separated file. That way for every function, a corresponding

C code body (.c) file and header file (.h) will be automatically generated. The body

file contains the implementation of the function along with annotations and loop

invariants. The header file contains the declaration of the function with its ACSL

contract.

The first kind of Hoare triples and function contract we added to the code was to

check the basic mathematical operations. For instance, Figures 29 and 28 present the

43

C code body and header files of the function computing the two norm of a vector of

size two. Thanks to this contract, we can prove that the value returned by the func-

tion is indeed the two norm of the vector of size two associated with the input pointer.

Furthermore, we proved that the result is always positive or null, and that, assuming

the corresponding vector is not equal to zero, the output is necessary strictly greater

than zero. This last property being interesting when proving there are no division

by zero (normalizing vectors). Then, once all the functions implementing elementary

mathematical operations have been annotated and proven, we annotate the higher-

level C functions such as constraint calculations, gradient calculations, matrix and

vector update, The Figures 30 and 31 show the annotated C function and con-

tract for the function “getp” that computes the vector p as described in equation (14),

needed to perform the ellipsoid update.

C Code + ACSL

1 #ifndef getNorm_2_lib
2 #define getNorm_2_lib
3 #include "axiom_linalg.h"
4 #include "my_sqrt.h"
5 #include "scalarProduct_2.h"
6 /*@
7 @ requires \valid(Ain +(0..1));
8 @ ensures \result == twoNorm(vec_of_2_scalar(Ain));
9 @ ensures \result >= 0;

10 @ assigns \nothing;
11 @ behavior Ain_non_null:
12 @ assumes nonnull(vec_of_2_scalar(Ain));
13 @ ensures \result > 0;
14 @ behavior Ain_null:
15 @ assumes !nonnull(vec_of_2_scalar(Ain));
16 @ ensures \result == 0;
17 @ complete behaviors Ain_non_null , Ain_null;
18 @ disjoint behaviors Ain_non_null , Ain_null;
19 */
20 double getNorm_2(double *Ain);
21 #endif

Figure 28: getNorm 2 Header C Code File

The function contract shown on figure 31, extracts the fact that no variable cor-

responding to the optimization problem (A,b,C,d,f and m) are getting assigned and

that their values after the execution of the function are the same as before. This con-

tract specifies also the same property for the variables grad, P minus and x minus.

44

C Code + ACSL

1 #include "getNorm_2.h"
2 double getNorm_2(double *Ain) {
3 double sum;
4 sum = scalarProduct_2(Ain , Ain);
5 return my_sqrt(sum);
6 }

Figure 29: getNorm 2 Body C Code File

C Code + ACSL

1 #include "getp.h"
2 void getp() {
3 double norm;
4 double norm_inv;
5 getTranspose ();
6 /*@ assert mat_of_2x2_scalar (& temp_matrix [0]) ==
7 transpose(mat_of_2x2_scalar (& P_minus [0]));
8 */
9 changeAxis ();

10 /*@ assert vec_of_2_scalar (&temp2 [0]) ==
11 mat_mult_vector(mat_of_2x2_scalar (& temp_matrix [0]),
12 vec_of_2_scalar (&grad [0])) ;
13 */
14 /*@ assert vec_of_2_scalar (&temp2 [0]) ==
15 mat_mult_vector(transpose(mat_of_2x2_scalar (& P_minus [0])),
16 vec_of_2_scalar (&grad [0])) ;
17 */
18 norm = getNorm_2(temp2);
19 /*@ assert 1/norm ==
20 1/ twoNorm(mat_mult_vector(transpose(mat_of_2x2_scalar (& P_minus [0])),
21 vec_of_2_scalar (&grad [0]))) ;
22 */
23 /*@ assert vec_of_2_scalar (&temp2 [0]) ==
24 mat_mult_vector(transpose(mat_of_2x2_scalar (& P_minus [0])),
25 vec_of_2_scalar (&grad [0])) ;
26 */
27 norm_inv = 1.0 / (norm);
28 scaleAxis(norm_inv);
29 /*@ assert 1/norm ==
30 1/ twoNorm(mat_mult_vector(transpose(mat_of_2x2_scalar (& P_minus [0])),
31 vec_of_2_scalar (&grad [0]))) ;
32 */
33 /*@ assert vec_of_2_scalar (&temp2 [0]) ==
34 mat_mult_vector(transpose(mat_of_2x2_scalar (& P_minus [0])),
35 vec_of_2_scalar (&grad [0])) ;
36 */
37 /*@ assert vec_of_2_scalar (&p[0]) ==
38 vec_mult_scalar(vec_of_2_scalar (&temp2 [0]), 1/norm);
39 */
40 }

Figure 30: getp.c Body C Code File

The requires clause at line 17, expresses the fact that we are assuming the matrix

of size (2, 2) defined by the pointer P minus to be invertible. Thanks to the as-

signs clause, we point out that this function only affects the variables p, temp2 and

temp matrix. Finally, this triple lists three post execution properties that are sup-

posed to be true. One expresses that the two norm of the vector of size two defined by

45

C Code + ACSL

1 #ifndef getp_lib
2 #define getp_lib
3
4 #include "axiom_def_lin_alg.h"
5 #include "socp/sizes.h"
6 #include "getNorm_2.h"
7 #include "changeAxis.h"
8 #include "scaleAxis.h"
9 #include "getTranspose.h"

10

11 extern double grad[N];
12 extern double P_minus[N*N];
13 extern double p[N];
14 extern double temp2[N];
15

16 /*@
17 @ requires invertible(mat_of_2x2_scalar (& P_minus [0])) == 1;
18 @ ensures A_unchanged: mat_of_0x2_scalar ((double *) A) ==
19 mat_of_0x2_scalar ((double *) A);
20 @ ensures b_unchanged: vec_of_0_scalar ((double *) b) ==
21 vec_of_0_scalar ((double *) b);
22 @ ensures C_unchanged: mat_of_6x2_scalar{Here }((double *) C) ==
23 mat_of_6x2_scalar{Pre }((double *) C);
24 @ ensures d_unchanged: vec_of_6_scalar{Here }((double *) d) ==
25 vec_of_6_scalar{Pre}((double *) d);
26 @ ensures f_unchanged: vec_of_2_scalar{Here }((double *) f) ==
27 vec_of_2_scalar{Pre}((double *) f);
28 @ ensures m_unchanged: \forall integer l; 0 <= l < 6 ==>
29 \at(m[l], Here) == \at(m[l], Pre);
30 @ ensures grad_unchanged: vec_of_2_scalar{Here }((double *) grad) ==
31 vec_of_2_scalar{Old}((double *) grad);
32 @ ensures P_minus_unchanged: mat_of_2x2_scalar{Here }((double *) P_minus) ==
33 mat_of_2x2_scalar{Old }((double *) P_minus);
34 @ ensures x_minus_unchanged: vec_of_2_scalar{Here }((double *) x_minus) ==
35 vec_of_2_scalar{Old}((double *) x_minus);
36 @ ensures vec_of_2_scalar (&p[0]) ==
37 vec_mult_scalar(mat_mult_vector(transpose(mat_of_2x2_scalar (& P_minus [0])),
38 vec_of_2_scalar (&grad [0])) ,
39 1/ twoNorm(mat_mult_vector(transpose(mat_of_2x2_scalar (& P_minus [0])),
40 vec_of_2_scalar (&grad [0]))));
41 @ ensures twoNorm(vec_of_2_scalar (&p[0])) == 1;
42 @ ensures invertible(mat_of_2x2_scalar (& P_minus [0])) == 1;
43 @ assigns p[0..1] , temp2 [0..1] , temp_matrix [0..3];
44 */
45 void getp ();
46 #endif

Figure 31: getp.h Header File

the pointer p is equal to one. Another specifies that the matrix of size (2, 2) defined

by the pointer P minus is invertible. The last expresses that the vector of size two

defined by the pointer p is equal to the normalized multiplication of the transpose

of the matrix of size (2, 2) defined by the pointer P minus times the vector of size

two defined by the pointer grad. This latter property expresses equation (14). In

Figure 30, we show the implementation of the corresponding C code function and all

the annotations required for the proof. For this, we decomposed the function into

elementary mathematical operations performed via function called. That way, the

46

code is traceable and easier to prove for the SMT solvers. Both function contracts

have been successfully proved. One can wonder why we have the specification for

the matrix P minus to be invertible after the execution of the function. Indeed, we

assumed this same property to be true beforehand and specify that the variable it

applies for would not change. These two properties making it trivial. In order to

accelerate the verification process, SMT solvers need to be guided. Therefore, every

needed property that is required somewhere else in the project should be listed, even

if, logically speaking, it does not give any additional information. Thus, in order

to guide the SMT solvers and to accelerate the verification, we added the ensures

property at line 42.

47

Chapter IV

FLOATING POINTS ANALYSIS

So far we presented how one can formalize existing results about the Ellipsoid Method

and prove them at code level. We show now how the original algorithm can be modi-

fied in order to manage numerical errors. In this chapter we present a way of analyzing

and controlling the numerical errors of a modified version of the Ellipsoid Algorithm.

Numerical errors of embedded systems can lead to tremendous catastrophes, therefore

analyzing the numerical property of an algorithm that is meant to be embedded on

a safety-critical CPS is an inevitable task. After recalling some past system failures

we present in this chapter the work that has been done towards those issues.

4.1 Past System Failures and Motivation

4.1.1 US Patriot Missile

During the Gulf war in Saudi Arabia, 1991, a US patriot missile failed to intercept an

incoming Iraqi Scud missile. It ended up killing 28 US soldiers and injuring around

100 other people.

It turned out the issue was coming from internal variable used by the system to

compute the current time in sec. The time from the internal clock of the system was

stored in a variable tclock, encoded on a 24 bit fixed-point number and represented

the time since system boot in decasecond. When current time in sec was needed, the

program was performing equation (19), multiply as expected the internal variable by

0.1.

t (sec) = tclock × fl(0.1) (19)

48

Unfortunately, the constant 0.1 cannot be represented using 24 bit fixed-point num-

bers (it is also not the case for floating-point numbers). Therefore, this constant was

chopped and induced an error on the time computation that was not expected by the

engineers. The small rounding error, when multiplied by the large number giving the

Figure 32: US Patriot Missile

time in tenths of a second, led to a significant error. After 100 hours the resulting

time error was approximately of 0.34 sec (see equation (19)). Equivalently, because

a Scud travels at about 3, 750 mph, it corresponds to an error of more than 1, 600 ft.

4.1.2 Ariane 5 Rocket

This error is known as one of the most expensive floating-point error. It caused a

damage worth half a billion dollars. The horizontal velocity of the rocket encoded on

a 64 bit floating-point number was converted to a 16 bit signed integer. The problem

here being the fact that this number was larger than the largest integer representable

on a 16 bit signed integer. The conversion failed and the software ended up triggering

a SAFETY mode, switching to a backup computer. Unfortunately, the same error

happened and it was misinterpreted as a scenario where aggressive control input

from the motor was needed. Only 40 seconds after ignition, at an altitude of about

12000 ft, the rocket went out of its nominal trajectory, broke up and exploded.

49

Figure 33: European Ariane 5 Rocket

4.1.3 Motivations

As seen from the past sections, it is undeniable that floating-points errors could lead

to system failure. We now argue that, in addition to that, the nature of the algorithm

we are developing are particularly sensitive to numerical errors and thus analyzing

its numerical properties is even more important. A large majority of optimization

algorithms are iterative algorithms. Meaning that within its structure, lies a main

loop in which the n − th approximation is derived from the previous ones. Each

iterate have given properties, which are necessary for the algorithm convergence. If

we consider the operations performed by the computer to have errors, those errors

could potentially be added-up at each iteration and could lead to a software error.

Therefore, studying numerical stability is indeed a need and would give guarantees

that are highly appreciated.

4.2 Controlling the Condition Number

In this section we explain how the condition number of the successive Ellipsoids of the

algorithm can be bounded through the execution of the code and why it is important.

We recall below the definition of the condition number of a non-singular matrix.

Definition 5 (Condition Number of a Matrix) Let A ∈ Rn×n a non-singular

50

matrix. We define the condition number of the matrix A the scalar k(A) such that:

k(A) = ‖A‖ ·
∥∥A−1∥∥

By extension, we talk about the condition number of an Ellipsoid Ell(B, c) by taking

the condition number of the matrix B, k(B).

Bounding the condition number of the matrix B is fundamental and represents the

main argument of the algorithm numerical stability. Unfortunately, for the original

algorithm, no reasonable bound on k(B) can be found. Therefore, we slightly mod-

ified the ellipsoid algorithm to make it able to correct the current ellipsoid Ei in

the case where its condition number had become too high (ellipsoid too flat). That

way we can control the condition number of B. Additionally, we made sure that

this correcting step, when it occurs, does not break the convergence of the algorithm

and its semantics described in Section 3.2. In this section, we give details about the

modification performed on the original algorithm.

4.2.1 Bounding the Singular Values

When updating the matrix Bi by the usual formulas of the Ellipsoid Algorithm, Bi

evolves according to

Bi+1 = Bi ·Di, (20)

where n− 1 singular values of Di are n/
√
n2 − 1, and one singular value is n/(n+ 1).

It follows that at a single step the largest and the smallest singular values of Bi can

change by a factor from [1/2, 2].

Proof From the update equation (20), we have the property:

σmax(Bi+1) = σmax(Bi ·Di) = ‖Bi ·Di‖2 ≤ ‖Bi‖2 · ‖Di‖2

because the two norm is a consistent norm and

‖A‖2 = σmax(A) ∀A ∈ Rn×n

51

Therefore,

σmax(Bi+1) ≤ σmax(Bi) · σmax(Di) = σmax(Bi) ·
n√

n2 − 1
.

Which implies that:

σmax(Bi+1) ≤ 2 · σmax(Bi) ∀n ∈ N , n ≥ 2

For σmin, let us take first the inverse of the update equation (20) (we know that all

the matrices are indeed invertible). We have: B−1i+1 = D−1i ·B−1i . Thus,

σmax(B
−1
i+1) = σmax(D

−1
i ·B−1i) ≤ σmax(D

−1
i) · σmax(B−1i)

Using the fact that for an invertible matrix A, we have: σmax(A
−1) = 1

σmin(A)
we

conclude that:

1

σmin(Bi+1)
≤ 1

σmin(Di)
· 1

σmin(Bi)

Rearranging this last equation, we end up with:

σmin(Bi+1) ≥ σmin(Di) · σmin(Bi) = σmin(Bi) ·
n

n+ 1
.

Again, if we consider all possible sizes, we end up with:

σmin(Bi+1) ≥
1

2
· σmin(Bi) ∀n ∈ N , n ≥ 2

�

Let us argue now that one can bound the singular values of the matrix Bi throughout

the execution of the program.

Minimum Half Axis: First, we claim that if σmin(B) is less than rε/V then the

algorithm has already found an ε-solution. The scalar ε being the wanted precision

and the scalars r and V being defined in Section 3.2.

Let us assume σmin(B) < rε/V . In this case, Ei is contained in the stripe between

two parallel hyperplanes, the width of the stripe being strictly less than 2 · rε/V

52

and consequently Ei does not contain Xθ (defined in equation (21)), where x∗ is the

minimizer of fo and θ = ε/V . This argument being a consequence of the fact that Xθ

contains a ball of radius rε/V (by definition).

Xθ = θX + (1− θ)x∗ = {θz + (1− θ)x∗ , z ∈ X} (21)

Consequently, there exists z ∈ X such that y = θz + (1 − θ)x∗ ∈ Xε but y /∈ Ei,

implying by the standard argument that the best value f+ of f processed so far

for feasible solutions satisfies f+ ≤ f(y) ≤ f(x∗) + θf(z − x∗) which implies that

f+ ≤ f ∗+ ε. We can thus stop the algorithm and return the current best point found

(feasible and smallest cost).

Maximum Half Axis: We argue in the section that one can modify the original ellipsoid

algorithm in order to bound the value of the maximum singular value of Bi. When

the largest singular value of Bi is less than, say, 2R
√
n+ 1, we carry out a step as in

the basic ellipsoid method. When this singular value is greater than 2R
√
n+ 1, we

take some time to “correct ”Bi , namely, to pass from Ei = BiX to E+
i = B+

i X in

such a way that E+
i is a localizer along with Ei, meaning that Ei ∩X ⊂ E+

i ∩X. In

addition to that, we have the following properties:

(a) The volume of E+
i is at most γ times the volume of Ei ;

(b) The largest singular value of B+
i is at most 2R

√
n+ 1.

For this, let us define σ = σmax(Bi) > 2R
√
n+ 1 and let eo being corresponding

direction and index. We then consider the matrix G such that:

G = diag

(√
n/(n+ 1),

√
n+ 1/σ, . . . ,

√
n+ 1/σ

)
We conclude then this case by performing the below update on Bi and ci:

Bi+1 = Bi ·G and ci+1 = ci − (eTo ci) · eo (22)

Figure 34 shows an illustration of such a correction. The unit ball being the feasible

53

Figure 34: Corrected Ellipsoid

set. Hence, we conclude from this that, throughout the execution of the code we

have:

σmin(Bi) ≥
1

2

rε

V
=

rε

2V
and σmax(Bi) ≤ 2× 2R

√
n+ 1 = 4R

√
n+ 1

We have the following element of proof. First, let us compute the volume of the

ellipsoid obtained using this correction step.

Vol(E+
i) = det(G) · Vol(Ei)

So,

Vol(E+
i) = (1 + 1/n)(n−1)/2

√
n+ 1/σ · Vol(Ei) ≤

exp(1/2)

2R
· Vol(Ei).

Usually, R being quite large, we have exp(1/2)/(2R) ≤ γ. If we look at this equa-

tion more carefully, we can see that having R ≥ exp(1/2) = 1.65 implies that

exp(1/2)/(2R) ≤ γ for all dimension n (we recall that γ depends on n) greater than

2. Hence, as R is usually a substantial scalar (radius of a ball including the feasible

set), it will most likely be true. If it is not the case, then we could just make R bigger

until we have the wanted property.

54

4.2.2 Corresponding Condition Number

Let us now see how this process impact the condition number of B. First, from the

definition of the condition number we have:

k(B) = ‖B‖ ·
∥∥B−1∥∥ =

σmax(B)

σmin(B)

Because of the very well known property of the two norm: ‖A‖ = σmax(A). and for

A non-singular: ∥∥A−1∥∥ = σmax(A
−1) =

1

σmin(A)
.

Thus, by bounding the singular values of B, we concluded on a bound on the condition

number of the matrix B.

k(B) ≤

(
2

1/2
·

2R
√
n+ 1

rε/V

)
=

(
8R
√
n+ 1

rε/V

)
and

‖B‖ = σmax(B) ≤ 4R
√
n+ 1

4.2.3 Corresponding norm on c

At each iteration we know that we have:

x∗ ∈ Ell(B, c)

Thus,

‖x∗ − c‖ = ‖Bu‖ ≤ ‖B‖ · ‖u‖ ≤ ‖B‖ , for some u ∈ B1(0)

Finally,

‖c‖ ≤ R + ‖c‖+ ‖B‖

4.2.4 Consequences on Code

In this section, we explain how to implement this correcting step and give the tools to

verify it. In order to detect ellipsoids with large semi-major axes, we need to compute

55

the largest singular value σmax of the current matrix Bk. However, performing a sin-

gular value decomposition would be way too expensive and slow (this decomposition

being performed at each iteration). On the other hand, because σmax(P) is equal to

the two norm, we compute an over approximation of the two norm, the Frobenius

norm. The latter one being an over approximation of σmax(P) and extremely fast to

compute, it represents the best option. Because in practice, the successive ellipsoids

stay within acceptable bounds, no semi-major axis should be detected. Thus, if we

know that the Frobenius norm of the matrix Bi is less than the maximum value ac-

ceptable for semi-major axis, we can conclude that the ellipsoid is well conditioned.

The equations (23), (24) and (25) show more details about matrix norm equivalence

and semi-major axis. We have the following very well known properties corresponding

to matrix norms:

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 ∀A ∈ Rn×n (23)

with:

σmax(A) = ‖A‖2 ∀A ∈ Rn×n. (24)

Thus, we have the property needed below:

σmax(A) ≤ ‖A‖F ∀A ∈ Rn×n. (25)

The mathematical definition of the Frobenius norm of a matrix is presented in defi-

nition 6.

Definition 6 The Frobenius norm of a matrix A ∈ Rn×n is:

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

a2i,j

We axiomatized the Frobenius norm of a vector by being equal to the vector two norm

of the “vectorized” matrix. We “vectorize” a matrix by concatenating all its rows in

56

C Code + ACSL

1 #include "axiom_def_lin_alg.h"
2 #include "getNorm_256.h"
3 #include "socp/sizes.h"
4

5 extern double P_minus[N*N];
6

7 /*@
8 @ ensures \result == normFrobenius(mat_of_16x16_scalar (& P_minus [0]));
9 @ assigns \nothing;

10 */
11 double getFrobeniusNorm () {
12 return getNorm_256(P_minus);
13 }

Figure 35: getFrobeniusNorm Annotated C Function

a single vector. As an example, we present the ACSL function contract of the C code

function computing the Frobenius norm of a matrix in Figure 35. In the case where

a too large semi-major axis is detected, The direction e in which this axis lies is also

needed. Therefore, we perform a power’s iterative algorithm in order to compute this

information. Other algorithms could be used in order to get the full decomposition

of the current matrix, but does not represent useful information for our use. Work

already have been made concerning the formal verification of matrix decomposition

algorithms [42].

4.3 Propagating the rounding errors through the algorithm

Let F denotes the set of all floating-point numbers and R the set of reals. We use

standard notation for rounding error analysis [43, 45, 46], fl(·) being the result of

the expression within the parenthesis computed in rounding to nearest. We write

the relative rounding error unit u and the underflow unit eta. For IEEE 754 double

precision (binary64) we have u= 2−53 and eta= 2−1074.

We present in this section an analysis targeting the numerical properties of the el-

lipsoid algorithm. Contributions already have been made concerning finite-precision

calculations within the ellipsoid method [30]. However, this work only shows that it

is possible to compute approximate solutions without giving exact bounds; it remains

57

very theoretical and only applied to Linear Programming (LP). Also, the analysis per-

formed considers abstract finite-precision numbers and floating-points are not men-

tioned. Thanks to the analysis performed in this section, using the IEEE standard for

floating-point arithmetic and knowing exactly how the errors are being propagated,

we would be able to check a posteriori the correctness of the analysis using static

analyzers [22, 23, 40].

4.3.1 Preliminaries

Within this algorithm, we focus our attention on the update formulas (12), (13) and

(14), allowing us to update the current ellipsoid into the next one. This program deal-

ing with ellipsoids, when investigating its numerical property, the condition number

is a decisive information.

Theorem 5 [Matrix perturbations and Inverse] Let A be a non-singular matrix of

Rn×n and ∆A a small perturbation of A. Then, from [17], we know that,

‖(A+ ∆A)−1 − A−1‖
‖A−1‖

≤ k(A)
‖∆A‖
‖A‖

(26)

4.3.2 Norms and Bounds

To successfully perform the numerical analysis of the algorithm, we need to know

how “big” the variables can grow within the execution of the algorithm. Indeed, for a

given instruction, the errors due to floating-point arithmetic are usually proportional

to the value of the variables.

Bound on variables c, B, k(B) and p.

For the variable p, we have:

‖p‖ =

∥∥BT e
∥∥

√
eTBBT e

= 1 (27)

58

After modifying the original algorithm in the way described in Section 4.2 we have

the following results:

‖B‖ ≤ 4R
√
n+ 1 (28)

k(B) ≤ 8RV
√
n+ 1

rε
(29)

‖c‖ ≤ R + ‖xc‖+ ‖B‖ (30)

Where n,R, r, V, xc and ε are the variables described in Section 3.2.

4.3.3 Floating-Point Rounding of Elementary Transformations

In this section, we express the floating-point errors taking place when performing the

update formulas (12) and (13). For this, we present first the error analysis for basic

operations appearing in the algorithm.

Rounding of a Real. Let z ∈ R

z̃ = fl(z) = z + δ + η with |δ| < u and |η| < eta/2

Product and Addition of Floating-Points. Let a, b ∈ F.

fl(a× b) = (a× b)(1 + ε2) + η2

fl(a+ b) = (a+ b)(1 + ε1)

with: |ε1| < u, |ε2| < u, |η2| < eta and ε2η2 = 0

Reals-Floats Product. Let z ∈ R and a ∈ F,

|fl
(
fl(z) · a

)
− z · a| ≤ |z||a| · u + |a| · 2u(1 + u)

Scalar Product. Let a, b ∈ Fn. We define,

〈a, b〉 =
∑n

i=1 aibi and |a, b| =
∑n

i=1 |aibi|. We have then:

|fl〈a, b〉 − 〈a, b〉| ≤ An|a, b|+ Γn

With:

An =
n · u

1− n · u
and Γn = A2n

eta

u
=

2n · u
1− 2n · u

eta

u

59

Multiplication of Reals and Floating Scalar Product.

Let z ∈ R and a, b ∈ Fn. We have the following property:

|fl
(

fl(z) · fl〈a, b〉
)
− z × 〈a, b〉| ≤ |a, b| · |z| · 2u(1 + n) + |a, b| · 4u (31)

Now that the propagation of the numerical errors through the elementary transfor-

mations have been presented. In the same fashion, we identify the kind of operations

performed to update the current ellipsoid. For this, we define ∆B, ∆B−1 and ∆c

representing the floating-point errors, such that:

∆c = fl(c+)− c+ (32)

∆B = fl(B+)−B+ (33)

∆B−1 =
(
fl(B+)

)−1 − (B+
)−1

(34)

and assume that after performing the floating-point analysis we found EB and Ec such

that:

|(∆B)i,j| ≤ EB ∀i, j ∈ [1, n] (35)

and

|(∆c)i| ≤ Ec ∀i ∈ [1, n]. (36)

We dedicated Section 4.3.3 to the computation of Ec and EB.

Rounding Error on c+. Knowing how the errors are being propagated through

elementary transformations, we want to compute the error for a transformation similar

to what happen for the vector c update. For each component of c, we have:

c+i = ci − 1/(n+ 1) · 〈Rowi(B), p〉.

Therefore, the operation performed, in floating-point arithmetic is:

fl
(
c+ fl

(
fl(z) · fl〈a, b〉

)
.

60

With: a, b ∈ Fn, c ∈ F and z ∈ R.

Using the type of floating-point transformation (37) and neglecting all terms in eta

and powers of u greater than two we get:

Ec ≤ u ·
((

16n2 + 16n+ 3
)
· ‖B‖+ ‖c‖

)
. (37)

Error on B+. Similarly, For each component of B, we have:

B+
i,j = α ·Bi,j + β · 〈Rowi(B), p〉 · pj

which is of the form, in floating-point arithmetic:

fl

(
fl
(

fl(z1) · d
)

+ fl
(

fl(z2) · fl
(
fl〈a, b〉 · c

))
.

Hence, we found:

EB ≤ u · ‖B‖ ·
((
n2/(1− nu) + 2

)
|β|+ n+ 2|α|+ 1

)
. (38)

4.4 Necessary conditions for numerical stability

4.4.1 Problem Formulation

In order to take into account the uncertainties on the variables due to floating-point

rounding, we want to modify the algorithm to make it more robust. For this, we

choose to evaluate those uncertainties and conclude on a coefficient λ that represents

by how much we are going to widen the ellipsoid Ek at each iteration (see Figure 36).

Let us assume we have B ∈ Fn×n, p ∈ Fn, c ∈ Fn. We want to find λ ≥ 1 ∈ R such

that:

Ell
(
B+, c+

)
⊂ Ell

(
λ · fl(B+), fl(c+)

)
. (39)

4.4.2 Equivalent and Sufficient Conditions for Covering

In this section, we state two lemmas that give an equivalent and a sufficient condition

for the ellipsoid Ell
(
λ · fl(B+), fl(c+)

)
to include the ellipsoid Ell

(
B+, c+

)
.

61

Figure 36: Ellipsoid Widening

Lemma 1 [Widening - Equivalent Condition]

Ell
(
B+, c+

)
⊂ Ell

(
λ · fl(B+), fl(c+)

)
⇐⇒∥∥∥fl

(
B+
)−1 · (B+u+ c+ − fl(c+)

)∥∥∥ ≤ λ ∀u, ‖u‖ ≤ 1

Proof Let us denote B1(0) the unit Euclidean ball. (i.e. B1(0) = {x ∈ Rn : xTx ≤

1}). Using definition (10), we have the following equivalent statement:

∀ u1 ∈ B1(0) , z = B+u1 + c+ → ∃ u2 ∈ B1(0) , z = λ · fl(B+)u2 + fl(c+)

Let us now reformulate the second part of the statement.

∀ u1 ∈ B1(0) , z = B+u1 + c+ → ∃ u2 ∈ B1(0) ,
(
λ · fl(B+)

)−1
·
(
z − fl(c+)

)
= u2

which is equivalent to:

∀ u1 ∈ B1(0) , z = B+u1 + c+ →
∥∥∥∥(λ · fl(B+)

)−1
·
(
z − fl(c+)

)∥∥∥∥ ≤ 1

Let us now replace z by its formula in the second part of the statement.

∀ u1 ∈ B1(0) ,

∥∥∥∥(λ · fl(B+)
)−1
·
(
B+u1 + c+ − fl(c+)

)∥∥∥∥ ≤ 1

Putting on the other side of the inequality λ, we end up with the wanted property.

∀ u ∈ B1(0) ,

∥∥∥∥(fl(B+)
)−1
·
(
B+u+ c+ − fl(c+)

)∥∥∥∥ ≤ λ

�

62

We now state lemma 2, which gives a sufficient condition for the coefficient λ to have

Ell
(
λ · fl(B), fl(c)

)
including Ell(B, c). If the calculations of B+ and c+ were perfect,

using lemma 2, we would have λ = 1 working; no correction is indeed necessary.

Lemma 2 [Widening - Sufficient Condition]

∥∥∥fl
(
B+
)−1

B+
∥∥∥+

∥∥∥fl
(
B+
)−1∥∥∥ · ∥∥c+ − fl(c+)

∥∥ ≤ λ =⇒

Ell
(
B+, c+

)
⊂ Ell

(
λ · fl(B+), fl(c+)

)
.

Proof let us assume that∥∥∥fl
(
B+
)−1

B+
∥∥∥+

∥∥∥fl
(
B+
)−1∥∥∥ · ∥∥c+ − fl(c+)

∥∥ ≤ λ (40)

The goal here is to end up this the inclusion property (39). Using the fact that the

two norm is a consistent norm, we have:

∀ u ∈ B1(0) ,
∥∥∥fl
(
B+
)−1

B+u
∥∥∥ ≤ ∥∥∥fl

(
B+
)−1

B+
∥∥∥ (41)

and: ∥∥∥fl
(
B+
)−1(

c+ − fl(c+)
)∥∥∥ ≤ ∥∥∥fl

(
B+
)−1∥∥∥ · ∥∥c+ − fl(c+)

∥∥ (42)

Therefore using equations (41), (42) and (40) we have:

∀ u ∈ B1(0) ,
∥∥∥fl
(
B+
)−1

B+u
∥∥∥+

∥∥∥fl
(
B+
)−1 · (c+ − fl(c+)

)∥∥∥ ≤ λ

Then, using the triangle Inequality (‖x+ y‖ ≤ ‖x‖+ ‖y‖), we finally have that:

∀ u ∈ B1(0) ,
∥∥∥fl
(
B+
)−1

B+u+ fl
(
B+
)−1 · (c+ − fl(c+)

)∥∥∥ ≤ λ

yields:

∀ u ∈ B1(0) ,
∥∥∥fl
(
B+
)−1 · (B+u+ c+ − fl(c+)

)∥∥∥ ≤ λ

So, using lemma 1 we have:

Ell
(
B+, c+

)
⊂ Ell

(
λ · fl(B+), fl(c+)

)
�

63

4.4.3 Analytical Sufficient Conditions for Covering

From Lemma 2, one can see that the calculation of a widening coefficient λ highly

depends on the accuracy of the matrix fl(B+)−1. Therefore, we also need to compute

a number EB−1 such that:

|(∆B−1)i,j| ≤ EB−1 ∀i, j ∈ [1, n]. (43)

The quantity (B+)−1 is not used explicitly in the algorithm and its floating-point

error could not be evaluated by numerically analyzing the method. Instead, we will

use perturbation matrix theory [17] and Theorem 5. This will give us an upper bound

on EB−1 given EB, the norm of B and its condition number. The result is stated in

the following lemma.

Lemma 3 [Widening - Analytical Sufficient Condition]

λ ≥ 1 +
k(B)

‖B‖
√
n ·
(√

n · k(B)EB + Ec +
k(B)

‖B‖
nEBEc

)
=⇒

Ell
(
B+, c+

)
⊂ Ell

(
λ · fl(B+), fl(c+)

)
.

Proof First, in order to prove this theorem, we need to evaluate ‖∆B−1‖. Using

equation (26),

‖∆B−1‖ ≤ k(B)
‖B−1‖
‖B‖

‖∆B‖ =
k2(B)

‖B‖2
‖∆B‖

But,

‖∆B‖ ≤ ‖∆B‖F ≤ nEB

So, we have:

‖∆B−1‖ ≤ k2(B)

‖B‖2
nEB

let us now define the three constants below:

I =
∥∥∥fl
(
B+
)−1

B+
∥∥∥ ,

64

J =
∥∥∥fl
(
B+
)−1∥∥∥

and

K =
∥∥c+ − fl(c+)

∥∥ .
Using equation (57):

I =
∥∥In + ∆B−1B+

∥∥ =⇒ I ≤ ‖In‖+ ‖∆B−1‖
∥∥B+

∥∥ = 1 +
k2(B)

‖B‖
nEB

J ≤
∥∥(B+)−1

∥∥+ ‖∆B−1‖ =
k(B)

‖B‖
·
(

1 +
k(B)

‖B‖
nEB

)
and

K ≤
√
nEc

So, if:

1 +
k(B)

‖B‖
√
n ·
(√

n · k(B)EB + Ec +
k(B)

‖B‖
nEBEc

)
≤ λ =⇒ I + J ·K ≤ λ

implying that: ∥∥∥fl
(
B+
)−1

B+
∥∥∥+

∥∥∥fl
(
B+
)−1∥∥∥ · ∥∥c+ − fl(c+)

∥∥ ≤ λ

Using lemma 2 we conclude then on the inclusion property (39). �

Thus, due to this lemma, following the floating-point analysis of the algorithm, we are

now able to compute a coefficient λ such that equation (39) is valid. After founding

such a λ, we would like to know whether the algorithm is still converging. On the

other hand, because the method’s proof lies in the fact that the final ellipsoid has a

small enough volume, this correction will have an impact of the number of iterations.

Lemma 4 addresses those issues.

Lemma 4 [Convergent Widening Coefficient] Let n ∈ N, n ≥ 2.

The algorithm implementing the widened ellipsoids, with coefficient λ, will converge

if:

λ < exp
(1

n(n+ 1)

)
(44)

65

In that case, if N denotes the original number of iteration needed, the algorithm

implementing the widened ellipsoids will require:

Nλ =
N

1− n(n+ 1) log(λ)
iterations (45)

Proof We recall that the algorithm converges if and only if the volumes of the suc-

cessive ellipsoids are decreasing.

Vol
(
Ell(Bk+1, ck+1)

)
< Vol

(
Ell(Bk, ck)

)
But we know when using the original update process of the Ellipsoid Method we have:

Vol
(
Ell(Bk+1, ck+1)

)
≤ γ · Vol

(
Ell(Bk, ck)

)
With γ = exp(−1/(2(n+ 1))). Also, thanks to equation (11), we know that

Vol
(
Ell(λ ·Bk, ck)

)
= λn/2 · Vol

(
Ell(Bk, ck)

)
Therefore, the corrected algorithm, with widening coefficient λ will converge if and

only if:

λn/2 · γ < 1

Which is equivalent to:

λ < exp

(
1

n(n+ 1)

)
Therefore using equation (11),

Vol(E ′k+1) = λn/2 · Vol(Ek+1)

So, we have:

γλ =
Vol(E ′k+1)

Vol(Ek)
=

Vol(E ′k+1)

Vol(Ek+1)

Vol(Ek+1)

Vol(Ek)
= λn/2 · γ

In order to end up at the final step with an ellipsoid of the same volume, we need:

Vol(Eo) · γNλλ = Vol(Eo) · γN

66

Which implies:

Nλ ·
(

log(γ) +
n

2
log(λ)

)
= N · log(γ)

Replacing γ by its value, using property 1:

Nλ ·
(−1

2(n+ 1)
+
n

2
log(λ)

)
= N · −1

2(n+ 1)

And thus, finding the wanted formula:

Nλ =
N

1− n(n+ 1) log(λ)
.

�

An application of this framework is presented in Section 5.4.

67

Chapter V

AUTOCODER AND CLOSED LOOP MANAGEMENT

In this Chapter, we give details about the closed-loop management of optimization

algorithms. We show how to extract convergence guarantees for parameterized opti-

mization problems. Following this, we present how to use the autocoder GENEMO

that we built and how to modify the output generated code. Finally, real-time simu-

lations using generated code for different systems are presented.

5.1 Closed Loop Management – Sequential Optimization
Problems

In this section, we are interested in extracting convergence guarantees for a class of

optimization problems that are going to be used online. For this, considering the

MPC controller input as a parameter, we end up with an optimization problem with

parameterized constraints and cost. The work presented in this section is about

studying how this parameter affects the constraints and the cost at each iteration

and trying to find hypothesis for this parameter to fulfill in order to conclude on the

convergence of the algorithm for every points along the trajectory.

First, we focus on the special case where only linear constraints are present. Fol-

lowing this, another section will be dedicated to the more general setting of SOCP

constraints.

68

5.1.1 Parameterized Linear Constraints

Let us write the optimization problem we are aiming to solve in real-time. The vector

X ∈ Rnx denotes the decision vector.

minimize
X

fo(X)

subject to AX ≤ b
(46)

Let us assume the initialization of this optimization problem is being done such as

equation (47), where S is a full rank matrix. Usually, S represents a selector matrix

and is of the form: [Ip Op×(nx−p)]. In that case it is obviously full rank. xo denotes

the input of the controller. We write x̂o to account for the fact that xo will change

from one optimization problem to another.

S ·X = x̂o (47)

We decompose and separate the equality and inequality constraints hidden behind

the original matrix A and vector b. That way, Problem 46 can be written as:

minimize
X

fo(X)

subject to Aeq ·X = beq

Aineq ·X ≤ bineq

S ·X = x̂o

(48)

The idea here is to project all the equality constraints in order to eliminate it while

keeping track of the variable parameter, x̂o. We know there exist matrices M , A1 and

A2 such that for all vector X ∈ Rnx satisfying the equality constraints of Problem 48,

there exists a vector Z ∈ Rnz such that:

X = A1 · beq + A2 · x̂o +M · Z (49)

M being a matrix formed by an orthonormal basis of the null space of the matrixAeq
S

. d denotes the total number of equality constraints (number of rows of Aeq

69

+ number of rows of S). Then Z ∈ Rnz with nz = nx − d. Thus, the original

optimization problem 48 is equivalent to the below projected problem.

minimize
Z

fo(A1 · beq + A2 · x̂o +M · Z)

Af · Z ≤ bf,o + Af,l · x̂o
(50)

With:

Af = Aineq ·M and bf,o = bineq −Aineq ·A1 · beq and Af,l = −Aineq ·A2 (51)

More details and references about equality constraints elimination can be found

at [10]. In order to solve this optimization problem with the Ellipsoid Method and

have convergence guarantees for every possible xo, we need to compute geometric

characteristics on the feasible set of this parametric optimization problem. For that

reason, for now, let us assume: ‖xo‖2 ≤ ro.

We define the parameterized polyhedral set:

Px̂o = {z ∈ Rnz : Af · z ≤ bf,o + Af,l · x̂o} (52)

Having this collection of polyhedral sets, we want to compute ball radii that will tell

us about the volume of the feasible set that would be true for every initialization

point xo. Beforehand, let us define the operator φ(.) that returns for a matrix A

the vector φ(A) whose coordinates are the two norm of the rows of A. Let us now

consider the two extreme polyhedral sets below:

Pl = {z ∈ Rnz : Af · z ≤ bf,o − ro · φ(Af,l)} (53)

Pu = {z ∈ Rnz : Af · z ≤ bf,o + ro · φ(Af,l)} (54)

In order to give an example of this concept, we show in Figure 37 an illustration of

such polyhedral sets (the illustrated sets have no physical meaning and do not repre-

sent any MPC problem. We used the values below:

70

Af =



−1 1

1 1

1 −0.5

0 1

−1 0

0 −1


;φ(Af,l) =



1

1

1

1

1

1


; bf,o =



1

2

1

1.5

0.5

0.5


; ro = 0.5.

We state an important Lemma, illustrating the fact that for every point along the

Figure 37: Pu and Pl Polyhedral Sets

trajectory, the feasible set of the current optimization problem is bounded by the two

extreme polyhedral sets defined previously. We also provide the proof for it.

Fact 1 [Extreme Polyhedral Sets]

∀xo ∈ Rn s.t. ‖xo‖2 ≤ ro , Pl ⊂ Pxo ⊂ Pu

Proof Let us take xo such that ‖xo‖2 ≤ ro.

First, let us establish a very simple inequality using Cauchy-Schwarz inequality:

|(Af,l · xo)(i)| = |row(Af,l, i)
T · xo|

≤ ‖row(Af,l, i)‖2 · ‖xo‖2

≤ φ(Af,l)(i) · ro ∀i

(55)

71

Therefore,

− φ(Af,l) · ro ≤ Af,l · xo ≤ φ(Af,l) · ro

Then, if x ∈ Pl we have Af · x ≤ bf,o − ro · φ(Af,l) . Using the inequality below, it is

clear that it implies x ∈ Pxo. The same way, assuming that x ∈ Pxo and using the

inequality below, it is clear that we have x ∈ Pu. �

The work of the control engineer consists in finding three scalars r, R and V such

that:

∃ z̄1 such that B(z̄1, r) ⊂ Pl , (56)

∃ z̄2 such that Pu ⊂ B(z̄2, R) , (57)

V ≥ max
z∈Px̂o

fo(xsol +Mz)− min
z∈Px̂o

fo(xsol +Mz) , ∀ ‖x̂o‖ ≤ ro. (58)

For the first scalar, r, one can compute a numerical value by running an off-line

optimization problem finding the largest ball inside Pl. If no solution can be found,

the value of ro need to be decreased, and we repeat the process until finding an

acceptable ro and radius r. Further information about finding the largest ball in a

polytope can be found at [10].

As a consequence of equality constraint elimination, and recalled in Eq. 49, we have

the relation below between the original decision vector X and the projected one Z:

X = Aproj ·

beq
x̂o

+MZ (59)

We decompose now the decision vector X into two parts, x and u. The part u being

bounded due to constraints in the original optimization problem. If no constraints

on u were originally present, one can add some making the problem bounded and

simpler to analyze. The point here being that from bounded variables within the

vector X, one can conclude on bounds on the projected vector Z. There is no need

72

to have original bounds particularly on the collection of future inputs u. Rewriting

equation 59 yield: x

u

 =

A11 A12

A21 A22


beq
x̂o

+

M1

M2

Z (60)

Following this, we would have:

Z = M−1
2 ·

(
u− A21beq − A22x̂o

)
(61)

and therefore assuming again that ‖x̂o‖ ≤ ro, one can compute a value of R such

that:

‖Z‖ ≤
∥∥M−1

2

∥∥ · (‖u‖+ ‖A21beq‖+ ‖A22‖ ro
)

= R (62)

On the other hand, from the physical meaning of the variables and the constraints of

the optimization problem, one can conclude on bounds in which the variables should

live in, and therefore find a lower bound for V .

Additionally, when the original problem is too hard to analyze one can add constraints

in order to make the analysis easier. Adding constraints in order to find acceptable

values for the scalars R and V more easily is a very efficient technique but can have

a negative effect on the value of r. When adding constraint to a given optimization

problem, its feasible set get smaller and it is harder to find a inscribed ball that lies

inside.

We now state the general lemma, giving an upper bound on the number of iteration

throughout a trajectory.

Fact 2 [MPC Ellipsoid Method Convergence]

Let us assume we want to run the problem 48 on-line in order to implement a receding

horizon control.

That way, using the Ellipsoid Method and initializing the first Ellipsoid by B(z̄2, R),

the method will find an ε-solution using Nit iteration for all xo such that ‖xo‖ ≤ ro,

73

with:

Nit = 2 · nz(nz + 1) · log
(R
r

V

ε

)
and nz = dim

(
Null

([
Aeq S

]T))

Proof Let us assume, we are running this problem online and we are currently trying

to solve this problem for a given point. We assume xo such that ‖xo‖ ≤ ro. Let us

write Xf to denote the feasible set of the current optimization problem to solve. that

way, we know that we have Eq. 56 Thus, by definition of r, we know that:

∃z̄1 such that B(z̄1, r) ⊂ Pl ⊂ Xf

The same way, because we assume R satisfies Eq. 57, we also have:

∃z̄2 such that Xf ⊂ B(z̄1, r)

We also have the scalar V meeting the wanted requirement. Finally, we see that all

the needed hypothesis are fulfilled and we can conclude that the returned point will

indeed be ε-optimal using Nit iteration thanks to Theorem 4. �

Linear Programs: In the case of Linear Programs, the method developed is identical

and having a linear cost, the scalar V is easily found by running the two optimization

problems below.

minimize
x̂o,z

cT · (A1beq + A2x̂o +Mz)

Af · z ≤ bf,o + Af,l · x̂o
‖x̂o‖2 ≤ ro

maximize
xo,z

cT · (A1beq + A2xo +Mz)

Af · z ≤ bf,o + Af,l · xo
‖xo‖2 ≤ ro

Having fo(x) = cTx.

5.1.2 Second-Order Conic Constraints

In the previous section, we used the fact that we had linear constraints to construct

extreme polyhedral sets and conclude on geometric characteristics on feasible set. In

this section we aim at giving ways of computing the same needed constants for the

74

general setting of second-order constraints. Let us now consider we want to solve a

model predictive control optimization problem of the form:

minimize
X

fo(X)

‖Ai ·X + bi‖2 ≤ cTi X + di , i = 1 . . .m

AeqX = beq

S ·X = x̂o

(63)

First, let us assume that no equality constraint are hidden in the second-order con-

straints (if it is not the case, a very simple analysis will confirm it and one can extract

those equality constraints and put it into the couple (Aeq, beq)). Unfortunately, even

after eliminating the equality constraints of problem 63, in order to find a value for

the scalar r, we need to find the largest balls inside a second-order cone, which is not

an easy task. To get around this, we use the equivalence of norm in finite dimensions

(see Eq. 64, 65 and Figure 38), noting that ‖·‖1 and ‖·‖∞ can be expressed with linear

constraints. We perform a linear relaxation, by replacing the second-order constraints

with stronger constraints that can be expressed with linear constraints. That way,

the feasible set becomes a polyhedron and the previous tools could be applied. For

instance, problem 66 represents a linear relaxation of the original problem 63.

‖x‖∞ ≤ ‖x‖2 ≤
√
n · ‖x‖∞ (64)

n−1/2 · ‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1 (65)

minimize
X

fo(X)

√
n · ‖Ai ·X + bi‖∞ ≤ cTi X + di , i = 1 . . .m

AeqX = beq

S ·X = x̂o

(66)

Figure 39 shows an illustration of a second-order linear relaxation, along with the

largest ball inside the relaxed polyhedral set.

75

Figure 38: Unit balls of R2

Figure 39: Linear Relaxation of a Second Order Cone

5.2 Running Time Evaluation

In this chapter, we analyze the online use of optimization algorithms in order to

extract convergence guarantees for every point along the trajectory. In Section 5.1, we

showed how one can decomposed the online optimization problem as a parametrized

one and compute an a priori upper bound on the number of iterations needed to

be performed for every points along the trajectory. Those algorithms are run online

and have very strict time constraint on their execution time. Therefore, the key

information here is the running time of those algorithms, which could be directly

evaluated from the number of iterations. From the floating-point operations per

second (flops) relative to each processor, one can therefore evaluate this execution

76

time for a given problem size and number of iterations. In this thesis, we only highlight

that it is a needed work in order to predict feasibility of the real-time use of those

algorithms but do not present such analysis.

5.3 GENEMO Programming Language Syntax

5.3.1 Using Genemo and Autocode Credible Implementation of Opti-
mization Algorithms

The input text file used to formulate an optimization problem or a MPC controller

consists in several different sections. Each sections are introduced by a given key-

words. A section, introduced by the keyword “Constants” allows the user to introduce

constants that could be used throughout the GENEMO file. The defined constants

could be scalars, vectors or matrices. The user can give information about the ob-

GENEMO

1 Constants
2 N = 10;
3 Ts = 0.01;
4 A = [1 Ts;-Ts 1];
5 B = [0;Ts];
6 uMax = 5;
7 positionMax = 10;
8 speedMax = 10;
9 M = N-1;

10 Q = [5 0;0 1];
11 xinit = [2; -1];

Figure 40: Constants Section For The Spring-Mass System

jective function using the keywords “Minimize”. Because most MPC controllers are

trying to minimize a sum of quadratic form on the state or input along the trajec-

tory, the sum function has been implemented in the autocoder. Thus encoding of this

type of cost function becomes really necessary. The sum function implemented in the

autocoder, follows the syntax described in equation 67.

sum(f(k), k=1..N) =
N∑
k=1

f(k) (67)

The user can access the norm of a vector x by writing ||x||. On the other hand, if

x is a matrix, x(:, k) denotes the k-th column of the matrix x. Figure 41 presents

77

an example of a objective function written in GENEMO. Constraints are encoded in

GENEMO

1 Minimize
2 sum (|| Q * x (: , k) || , k =1.. N)

Figure 41: Objective Section For The Spring-Mass System

with the use of the keyword “subjectTo”. A constraint is of the form:

“constraintj: ... ; ”.

The same way we used a receding index variable to implement the sum function, we

also used such index to define sliding constraints. Figure 42 presents an example of

constraints written in GENEMO. Also, with the use of the keyword “Information”,

one can incorporate the a priori information needed described in Chapter 3 (see Fig-

ure 43). The next and last section that will be discussed deals with the fact that

GENEMO

1 SubjectTo
2 constraint1: x (: ,1) = xinit;
3 constraint2: x (: , k +1) = A * x (: , k) + B * u (: , k) , k =1..N-1;
4 constraint3: || u (: , k)) || <= uMax , k =1..N-1;
5 constraint5: x (1 , k) <= positionMax , k =1..N;

Figure 42: Constraint Section For The Spring-Mass System

GENEMO

1 Information
2 r = 4.05;
3 R = 26.47;
4 V = 282.84;
5 eps = 1e-1;
6 lambda = 1.000554155008;

Figure 43: Information Section For The Spring-Mass System

the GENEMO file could implement an MPC controller but also a single optimization

problem. In the latter case, the goal being to solve and give the solution of a given sin-

gle optimization problem and the sections described below (Input/Output sections)

78

should be ignored. On the other hand, if the purpose of using this autocoder was

to automatically generate C code implementation of MPC controller, the user has to

complete these sections in order to give information about the Input/Output aspect

of the MPC controller. Figure 44 presents the input and output sections completed

for the spring-mass example. Comments can be added along the code thanks to the

sign #. Only single line comments are managed.

GENEMO

1 Input
2 xo(2)
3 Output
4 u(:,1)
5 #This is a comment

Figure 44: Input/Output Sections For The Spring-Mass System

Several examples of GENEMO files are presented in Appendix C. A single optimiza-

tion problem formulated in GENEMO is presented in Figure 66. GENEMO MPC

controllers formulation are shown in Figures 67 and 68.

5.3.2 Internal Aspect of The Autocoder

In this section we give details about the internal aspect of the autocoder. The user

first has to formalize the MPC controller desired and write the corresponding input file

detailed in Section 5.3. In addition to this, the user has to specify the implementation

of the method used to solve optimization problems. By default, this autocoder has

been created in order to generate C code implementation of the Ellipsoid Algorithm.

Nevertheless, the C code generator is generic and could be applied to any algorithms.

In order to generate C code implementation of another solving method, the user

has to give and formalize the augmented AST (Abstract Syntax Tree) using a python

library wrote beforehand. This library implements all the necessary properties relative

to trees, AST and C code generation. Additionally, this library has been written in

79

a way to facilitate the augmentation for semantics and Hoare Triples to those AST.

By default, the usual control structures will be autocoded along with annotations.

For instance, when creating a node relative to a for loop using the AST library,

the autocoder will by default generate the C code implementation of the for loop

structure along with trivial loop invariants, loop variant and assigns clauses. That

way, a considerable amount of annotations, required for the proof, are handled directly

by the autocoder which makes the development process faster.

Figure 45: Internal Aspect of The Autocoder

5.4 Real-Time Simulations and Examples

5.4.1 Spring-Mass System

We present in this section an application of this framework for the spring-mass system

described in Section 2.3, Figure 14. For this, we use again a discretization period of

T = 0.1 sec and an horizon of N = 10.

We recall the discrete state-space realization matrices A and B of this system below:

A =

 1 T

−T 1

 ; B =

0

T

 .
80

Let us assume the initial point at t = 0 is:

xo =

[
2 −1

]T
,

and the matrix Q equal to:

Q =

10 0

0 1

 .
We want to generate C code in order to perform the below MPC for this system. The

goal is to stabilize the origin as fast as possible (minimizing the norm of the state

along the future trajectories).

minimize
X=[x,u]

N∑
k=1

‖Q · xk‖

xk+1 = Axk +Buk , k = 1..N − 1

− 5 ≤ uk(1) ≤ 5 , k = 1..N − 1

− 10 ≤ xk(1) ≤ 10 , k = 1..N

− 10 ≤ xk(2) ≤ 10 , k = 1..N

x1 = xi

(68)

We use an accuracy of ε = 0.1 and using the method developed in the previous

sections, we found:

r = 4.55, R = 18.19, V = 141.42.

From that, we conclude that the program will need Nit = 1556 iterations in order to

compute an ε-solution. Using double precision floating points, we can also conclude

on a widening coefficient λ = 1 + 5.2 · 10−5 to apply in order to account for the

rounding errors. As stated in Section 4.3, a new number of iterations of Nλ = 1563.

is now needed. In order to automatically generate the C code used for the control,

we used to GENEMO input file presented in Appendix C.3. We repeated the same

analysis for different horizon values. The results are collected in Tables 1 and 2.

81

N r R V nz Nit f ∗(Ell) RunTime(s) f ∗(CVX)
5 4.79 12.24 70.71 4 300 5.1565 0.001 5.15648
7 4.69 14.90 98.99 6 677 6.9293 0.003 6.92928
10 4.54 18.19 141.42 9 1556 9.3116 0.010 9.31154
15 4.30 22.67 212.13 14 3916 12.6910 0.050 12.6910
20 4.05 26.47 282.84 19 7466 15.6975 0.169 15.6974

Table 1: Performances For Different Problem Sizes

N Nit λ (double) Nλ (double)

5 300 1 + 5.9e−7 301
7 677 1 + 5.2e−6 678
10 1556 1 + 5.2e−5 1563
15 3916 1.000709 4548
20 7466 1.004669 Not Converging

Table 2: Floating Point Consideration

5.4.2 The 3 DOF Helicopter

A picture of the 3 DOF helicopter is presented in Figure 46. We used this system in

order to perform a running example for the framework developed in this thesis. The

vector state of the system is x = [λ ψ φ λ̇ ψ̇ φ̇]T and the system’s inputs are the front

and back DC motors voltages. λ denotes the elevation angle, ψ the pitch angle and φ

Figure 46: 3 DOF Helicopter

82

the travel angle. The different axis are presented in figure 47. We use a closed-loop

Figure 47: 3 DOF Helicopter Axis and Dimensions

system with a inner feedback controller, and a discretization step of T = 0.5 sec. The

resulting system is a stable linear system that we control using MPC. The problem

we are trying to solve is supposed to model a landing of the 3 DOF helicopter. We

initialize the system with an angle of 25 deg in elevation and 15 deg travel and we

want to make the system go back and land at the origin while avoiding the ground.

The ground is the area below λ = 0. Thus, the constraint in order to avoid the ground

is a combination of the elevation and pitch angle and can be formulated as:

h sin(λ)± d sin(φ) >= 0

We linearized those constraints, assuming small angles perturbations, and naturally

end up with linear inequalities of the form: Aobs · x ≤ bobs. The MPC controller that

83

we want to implement is formalized in problem 69.

minimize
X=[x,u]

N∑
k=1

‖xk‖

xk+1 = Axk +Buk , k = 1..N − 1

‖uk‖ ≤ 50 , k = 1..N − 1

‖xk‖ ≤ 200 , k = 2..N

Aobs · xk ≤ bobs , k = 2..N

− 40 ≤ xk(2) ≤ 40 , k = 1..N − 1

x1 = x̂o

(69)

Assuming that ‖xo‖ ≤ 30, we found, using the method developed in section 5.1 a

radius 8.0612 (running an off-line optimization problem that finds the largest ball

inside Pl). For R, using the method described in 5.1 and equation 62 we found

R = 322. From the problem formulation, one can see that if the problem is feasible,

the sum of the norm of the successive x is supposed to be minimized. That way, the

worst case is when xo had the largest norm, and when the system stay at this point

throughout the whole trajectory (or keep the same norm at least). That way, we

should have a V of:

V = N · ‖xo‖ ≤ N · 27 = 162 (70)

For all those cases, we can also conclude on a widening coefficient lambda to apply

in order to control floating-point errors. The method we use to control the floating

points error is affecting the volume ratio of the method. Therefore, in order to account

for it, we need to do more iteration depending on the value of the widening coefficient

λ. Using double precision floating points and a accuracy of ε = 0.25 we have the

following results:

λ = 1.0063428

An original number of iteration equal to N = 5528 and therefore an updated number

of steps of: Nλ = 6817. Doing the simulation on a Intel Core i5-3450 CPU @ 3.10GHz

× 4 processor we have a running time of approximately 0.2 sec for a single point and

84

therefore it took the computer 4 sec to simulate 10 sec (because we discretized the

system at 2Hz). The results of the simulation are presented in Figures 49 and 50.

We used the text file presented in Figure 68 in appendix C to generate the C code

in order to performed the simulation. The whole simulation was performed using

the generated C code and the Simulink model presented in Figure 48. The block

“MPC CONTROLLER”, with the help of the Matlab coder, compiles and calls the

generated and annotated C code.

Figure 48: Simulink File Used for the Quanser Simulation

Figure 49: Simulation of State Vector versus time

85

Figure 50: Simulation of Lowest Altitude versus time

5.4.3 Quadcopter Drones

We present in this section an application of this framework for Quadcopter Drones.

For this we used a linear discrete-time representation of the drone of the form:

xk+1 = Axk +B1uk +B2uk+1 + fd. (71)

The vector input u collects the vector thrust and the vector x regroups the position

and velocities and the drone along each axes. The matrix A, B1 and B2 are described

below. The mass of the system is written m , Ts denotes the sampling period and g,

the gravity constant.

In this section, we implement a path-planner based on the autocoder we built. For

this, we generate beforehand a nominal trajectory using convex optimization tech-

niques. We formulate an optimization problem, to compute an optimal trajectory for

the drone to go from a point A to a point B, while satisfying constraints.

One of the constraints to respect is the fact that the input of this system, the thrust

86

Figure 51: Cone constraint on drone

vector u, needs to stay within a cone from the vertical. This last constraint models

the fact that we do not want the drone to rotate too much because non-linearities

phenomenon will rise and it will be difficult to control it. One of the problem, was the

fact that this constraint is not convex. For that, we perform a lossless convexification

step adding slack variables in order to encode this constraint in a convex manner.

More details about lossless convexification can be found at [2]. We end up with the

optimization problem presented in equation 72. Following the method described in

Section 5.1, we found the values for the variable r, R and V listed in Table 3. A plot

N r V R Nit

4 0.4648 13.9245 13.9245 297
5 0.1454 15.5680 64.9628 1474
6 0.2796 17.0539 144.4199 3267
7 0.3359 18.4204 242.6074 5920
8 0.3457 19.6922 359.5805 9504
9 0.3535 20.8867 496.0807 14007
10 0.3617 22.0165 652.8481 19449
11 0.3692 23.0911 830.4812 25860

Table 3: Performances For different Horizon – Drone

of the MPC simulation applied for the quadricopter using the autocoded C code is

87

shown in figure 52.

A =



1 Ts 0 0 0 0

0 1 0 0 0 0

0 0 1 Ts 0 0

0 0 0 1 0 0

0 0 0 0 1 Ts

0 0 0 0 0 1


; fd =



0

0

0

0

0.5 · Ts · Ts · g

Ts · g



B1 =



(1/3) · Ts · Ts/m 0 0

(1/2) · Ts/m 0 0

0 (1/3) · Ts · Ts/m 0

0 (1/2) · Ts/m 0

0 0 (1/3) · Ts · Ts/m

0 0 (1/2) · Ts/m



B2 =



(1/6) · Ts · Ts/m 0 0

(1/2) · Ts/m 0 0

0 (1/6) · Ts · Ts/m 0

0 (1/2) · Ts/m 0

0 0 (1/6) · Ts · Ts/m

0 0 (1/2) · Ts/m


minimize
X=[x,s,u]

‖s‖

xk+1 = Axk +B1uk +B2uk+1 + fd. , k = 1..N − 1

‖uk‖ ≤ s(k) , k = 1..N

Tmin ≤ s(k) ≤ Tmax , k = 1..N

− uk(3) ≥ s(k) · cos(φmax)

xk(5) ≥ 0

x1 = xi ; u1 = ui ; xN = xf ; uN = uf

(72)

88

Figure 52: MPC Simulation for a Quadcopter

89

Chapter VI

CONCLUSION

One of the goals of this research was to fill the gap between computer science, op-

timization and control theory. We used fundamental results in those areas with the

hope of advancing V&V techniques.

In Chapter 1, we introduced the subject, gave details about the needed elements

and presented a literature review. Following this, we recalled some important results

of control theory for understanding the application we are targeting in this research

in Chapter 2. Chapter 3 presents an axiomatization of second-order cone programs,

a subset of convex optimization problem, using the specification language ACSL.

Additionally, annotations for numerical algorithms solving these problems were pro-

posed. We focused our attention on the Ellipsoid Method. A numerical analysis

of the method has been presented in Chapter 4. We first show how to modify the

original Ellipsoid Algorithm to properly bound the programs variables. Then the

propagation of numerical errors due to floating-point calculations through the opera-

tions performed by the program is presented. Finally, Chapter 5 gives mathematical

evidence of the online use of these optimization algorithms. Closed-loop system is

handled and receding-horizon controllers can be autocoded with soundness guaran-

tees.

As it was recalled earlier, one of the purposes of this research was to improve V&V

techniques while developing critical software. Nevertheless, this work should not be

seen as a replacement for unit or integration testing. Instead, we intend to see it as a

90

process that takes places throughout the development of the embedded software and

a way to force control engineers and programmers to keep in mind that algorithms

should follow mathematical evidence and need to be implemented with caution and

rigor.

Distributed systems and architectures are growing in interest within Aerospace Indus-

tries. It is especially the case for engine manufacturers. Formal verification or certifi-

cation of an engine controller running on a multi-core architecture is very challenging.

The work developed in this thesis naturally fits the use of multi-core architecture in

the sense that it is extremely promising in terms of computational resources and

power, which are crucial features when using real-time optimization based control.

Work towards the parallelization of optimization algorithms and its formal verification

would therefore be interesting and might need to be addressed.

91

Appendix A

ACSL LINEAR ALGEBRA THEORY

ACSL

1 #ifndef LIB_LINALG
2 #define LIB_LINALG
3
4

5 /*@ axiomatic LinAlg {
6

7 //NEW TYPES DEFINITION
8 type vector;
9 type matrix;

10
11

12 logic vector vec_of_0_scalar(double * x);
13 logic vector vec_of_3_scalar(double * x)
14 reads x[0..2];
15 logic vector vec_of_9_scalar(double * x)
16 reads x[0..2];
17 logic vector vec_of_2_scalar(double * x)
18 reads x[0..1];
19 logic matrix mat_of_3x3_scalar(double * x)
20 reads x[0..8];
21 logic matrix mat_of_2x3_scalar(double * x)
22 reads x[0..5];
23 logic real mat_select(matrix A, integer i, integer j);
24 logic integer mat_row(matrix A);
25 logic integer mat_col(matrix A);
26 logic matrix mat_add(matrix A, matrix B);
27 logic matrix mat_mult_scalar(matrix A, real z);
28 logic matrix mat_mult(matrix A, matrix B);
29 logic vector getRow(matrix A, integer i);
30 logic vector getCol(matrix A, integer i);
31 logic matrix getRows(matrix A, integer i, integer ni);
32 logic matrix inverse(matrix A);
33 logic integer invertible(matrix A);
34 logic matrix ident(integer n);
35 logic vector delta(integer n, integer i);
36 logic real det(matrix A);
37 logic vector vector_add(vector A, vector B);
38 logic vector vector_minus(vector A, vector B);
39 logic real vector_select(vector x, integer i);
40 logic integer vector_length(vector x);
41 logic real scalarProduct(vector x, vector y, integer n);
42 logic real twoNorm(vector x);
43 logic real normFrobenius(matrix A);
44 logic vector vec(matrix A);
45 logic vector subArray(vector x, integer i, integer ni);
46 logic vector vec_mult_scalar(vector x, real z);
47 logic integer sum(int * m, integer i);
48 logic vector mat_mult_vector(matrix A, vector x);
49 logic vector vector_affine(vector x, real alpha , vector y);
50 logic matrix transpose(matrix A);
51 logic real absolutevalue(real a);
52 logic matrix ketbra(vector x);
53 logic real pow(real a, integer i);
54 */

Figure 53: Linear Algebra ACSL Theory

92

ACSL

1 /*@
2 axiom pow_zero:
3 \forall real a;
4 pow(a, 0) == 1.0;
5 axiom pow_n:
6 \forall real a, integer n;
7 n > 0 ==> pow(a,n) == a * pow(a,n-1);
8 axiom pow_mult:
9 \forall real a,b, integer n;

10 pow(a, n) * pow(b, n) == pow(a*b, n);
11 axiom pow_r_eps_N:
12 \forall real epsilon , V, r;
13 r == 0.2 ==>
14 epsilon == 0.1 ==>
15 V == 110 ==>
16 pow(epsilon/V * r, 3) >= 6.0105004e-12;
17 axiom non_singular_mat_mult_scalar:
18 \forall matrix A, real a;
19 invertible(A) == 1 ==>
20 a != 0 ==>
21 invertible(mat_mult_scalar(A,a)) == 1;
22 axiom non_singulatI_AB:
23 \forall vector x, real a;
24 twoNorm(x) == 1 ==>
25 a != -1 ==>
26 invertible(mat_add(ident(3), mat_mult_scalar(ketbra(x),a))) == 1;
27 axiom det_non_null:
28 \forall matrix A;
29 invertible(A) == 1 ==> det(A) != 0;
30 axiom det_matrix_mult:
31 \forall matrix A, B;
32 det(mat_mult(A,B)) == det(A)*det(B);
33 axiom det_matrix_mult_scalar:
34 \forall matrix A, real a;
35 mat_col(A) == 3 ==>
36 mat_row(A) == 3 ==>
37 det(mat_mult_scalar(A,a)) == pow(a,3)* det(A);
38 axiom det_I_AB:
39 \forall vector x, real a;
40 twoNorm(x) == 1.0 ==>
41 det(mat_add(ident (3), mat_mult_scalar(ketbra(x),a))) == 1.0 + a;
42
43 axiom normalize_vector:
44 \forall vector x;
45 twoNorm(vec_mult_scalar(x,1/ twoNorm(x))) == 1;
46 axiom ketbra_axiom_select:
47 \forall vector p, integer i,j;
48 0 <= i < 3 ==>
49 0 <= j < 3 ==>
50 mat_select(ketbra(p),i,j) == vector_select(p,i) * vector_select(p,j);
51 axiom ketbra_axiom_size:
52 \forall vector p;
53 mat_row(ketbra(p)) == vector_length(p) &&
54 mat_col(ketbra(p)) == vector_length(p);
55 axiom absolutevalue_positivity:
56 \forall real a; absolutevalue(a) >= 0;
57 axiom absolutevalue_positive:
58 \forall real a; a >= 0 ==> absolutevalue(a) == a;
59 axiom absolutevalue_negative:
60 \forall real a; a <= 0 ==> absolutevalue(a) == -a;
61 axiom transpose_select:
62 \forall matrix A, integer i, j;
63 0 <= i < mat_col(A) ==>
64 0 <= j < mat_row(A) ==>
65 mat_select(transpose(A), i, j) == mat_select(A, j, i);
66 axiom transpose_row:
67 \forall matrix A;
68 mat_row(transpose(A)) == mat_col(A);
69 axiom transpose_col:
70 \forall matrix A;
71 mat_col(transpose(A)) == mat_row(A);
72 axiom vec_mult_scalar_length:
73 \forall vector A, real x;
74 vector_length(vec_mult_scalar(A,x)) == vector_length(A);

Figure 54: Linear Algebra ACSL Theory (Part 2)

93

ACSL

1 /*@
2 axiom vec_mult_scalar_select:
3 \forall vector A, real x, integer i;
4 0 <= i < vector_length(A) ==>
5 vector_select(vec_mult_scalar(A,x), i) == vector_select(A, i) * x;
6 axiom invertible_same_matrix:
7 \forall matrix A, B;
8 A == B ==> invertible(A) <==> invertible(B);
9 axiom invertible_matrix:

10 \forall matrix A;
11 mat_col(A) == mat_row(A) ==>
12 invertible(A) == 1 <==> det(A) != 0;
13 axiom invertible_identity:
14 \forall real a;
15 a > 0 ==> invertible(mat_mult_scalar(ident(3),a)) == 1;
16 axiom inverse_col:
17 \forall matrix A;
18 mat_col(A) == mat_row(A) ==>
19 mat_col(inverse(A)) == mat_col(A);
20 axiom inverse_row:
21 \forall matrix A;
22 mat_col(A) == mat_row(A) ==>
23 mat_row(inverse(A)) == mat_row(A);
24 axiom inverse_select:
25 \forall matrix A;
26 mat_col(A) == mat_row(A) ==>
27 mat_mult(A,inverse(A)) == ident(mat_col(A));
28 axiom ident_col:
29 mat_col(ident (3)) == 3;
30 axiom ident_row:
31 mat_row(ident (3)) == 3;
32 axiom ident_select_diff:
33 \forall integer i, j;
34 0 <= i < 3 ==>
35 0 <= j < 3 ==>
36 i != j ==> mat_select(ident (3), i, j) == 0;
37 axiom ident_select_diag:
38 \forall integer i, j;
39 0 <= i < 3 ==>
40 0 <= j < 3 ==>
41 i == j ==> mat_select(ident (3), i, j) == 1;
42 axiom getRows_select:
43 \forall matrix A, integer i, ni, k, l;
44 0 <= i < mat_row(A) ==>
45 0 <= i+ni -1 < mat_row(A) ==>
46 k < ni ==>
47 l < mat_col(A) ==>
48 mat_select(getRows(A, i, ni), k, l) == mat_select(A, k+i, l);
49 axiom getRows_row:
50 \forall matrix A, integer i, ni;
51 mat_row(getRows(A, i, ni)) == ni;
52 axiom getRows_col:
53 \forall matrix A, integer i, ni;
54 mat_col(getRows(A, i, ni)) == mat_col(A);
55 axiom subArray_select:
56 \forall vector x, integer i, ni, k;
57 vector_select(subArray(x,i,ni), k) == vector_select(x, i+k);
58 axiom subArray_length:
59 \forall vector x, integer i, ni;
60 vector_length(subArray(x,i,ni)) == ni;
61 axiom vector_minus_length:
62 \forall vector x, y;
63 vector_length(x) == vector_length(y) ==>
64 vector_length(vector_minus(x, y)) == vector_length(x);
65 axiom vector_minus_select:
66 \forall vector x, y, integer i;
67 vector_length(x) == vector_length(y) ==>
68 0 <= i < vector_length(x) ==>
69 vector_select(vector_minus(x, y), i) == vector_select(x, i) - vector_select(y, i);
70 */

Figure 55: Linear Algebra ACSL Theory (Part 3)

94

ACSL

1 /*@
2 axiom vector_add_length:
3 \forall vector x, y;
4 vector_length(x) == vector_length(y) ==>
5 vector_length(vector_add(x, y)) == vector_length(x);
6 axiom vector_add_select:
7 \forall vector x, y, integer i;
8 vector_length(x) == vector_length(y) ==>
9 0 <= i < vector_length(x) ==>

10 vector_select(vector_add(x, y), i) ==
11 vector_select(x, i) + vector_select(y, i);
12 axiom vector_affine_length:
13 \forall real alpha , vector x,y;
14 vector_length(x) == vector_length(x) ==>
15 vector_length(vector_affine(x, alpha , y)) == vector_length(x);
16 axiom vector_affine_select:
17 \forall real alpha , vector x,y, integer i;
18 vector_length(x) == vector_length(x) ==>
19 vector_select(vector_affine(x, alpha , y), i) ==
20 vector_select(x, i) + alpha*vector_select(y, i);
21 axiom mat_mult_vector_length:
22 \forall matrix A, vector x;
23 mat_col(A) == vector_length(x) ==>
24 vector_length(mat_mult_vector(A, x)) == mat_row(A);
25 axiom mat_mult_vector_select:
26 \forall matrix A, vector x, integer i;
27 mat_col(A) == vector_length(x) ==>
28 0 <= i < mat_row(A) ==>
29 vector_select(mat_mult_vector(A, x), i) == scalarProduct(getRow(A,i), x, mat_col(A));
30 axiom sum_init:
31 \forall int *x;
32 sum(x, 0) == 0;
33 axiom sum_next:
34 \forall int *x, integer i;
35 sum(x, i+1) == *(x+i) + sum(x, i);
36 axiom vec_of_3_scalar_select:
37 \forall double *x, integer i;
38 0 <= i < 3 ==>
39 vector_select(vec_of_3_scalar(x), i) == x[i];
40 axiom vec_of_3_scalar_length:
41 \forall double *x;
42 vector_length(vec_of_3_scalar(x)) == 3;
43 axiom vec_of_9_scalar_select:
44 \forall double *x, integer i;
45 0 <= i < 9 ==>
46 vector_select(vec_of_9_scalar(x), i) == x[i];
47 axiom vec_of_9_scalar_length:
48 \forall double *x;
49 vector_length(vec_of_9_scalar(x)) == 9;
50 axiom mat_of_3x3_scalar_select:
51 \forall double *x, integer i, j;
52 0 <= i < 3 ==>
53 0 <= j < 3 ==>
54 mat_select(mat_of_3x3_scalar(x), i, j) == *(x + i*3+j);
55 axiom mat_of_3x3_scalar_row:
56 \forall double *x;
57 mat_row(mat_of_3x3_scalar(x)) == 3;
58 axiom mat_of_3x3_scalar_col:
59 \forall double *x;
60 mat_col(mat_of_3x3_scalar(x)) == 3;
61 axiom vec_of_2_scalar_select:
62 \forall double *x, integer i;
63 0 <= i < 2 ==>
64 vector_select(vec_of_2_scalar(x), i) == x[i];
65 axiom vec_of_2_scalar_length:
66 \forall double *x;
67 vector_length(vec_of_2_scalar(x)) == 2;
68 axiom mat_of_2x3_scalar_select:
69 \forall double *x, integer i, j;
70 0 <= i < 2 ==>
71 0 <= j < 3 ==>
72 mat_select(mat_of_2x3_scalar(x), i, j) == *(x + i*3+j);
73 axiom mat_of_2x3_scalar_row:
74 \forall double *x;
75 mat_row(mat_of_2x3_scalar(x)) == 2;
76 */

Figure 56: Linear Algebra ACSL Theory (Part 4)

95

ACSL

1 /*@
2 axiom mat_of_2x3_scalar_col:
3 \forall double *x;
4 mat_col(mat_of_2x3_scalar(x)) == 3;
5 axiom mat_add_select:
6 \forall matrix A, B;
7 mat_row(A) == mat_row(B) ==>
8 mat_col(A) == mat_col(B) ==>
9 \forall integer i, j;

10 0 <= i < mat_row(A) ==>
11 0 <= j < mat_col(A) ==>
12 mat_select(mat_add(A,B),i,j) == mat_select(A, i, j) + mat_select(B, i, j);
13 axiom mat_add_row:
14 \forall matrix A, B;
15 mat_row(A) == mat_row(B) ==>
16 mat_col(A) == mat_col(B) ==>
17 mat_row (mat_add(A, B)) == mat_row (A);
18 axiom mat_add_col:
19 \forall matrix A, B;
20 mat_row(A) == mat_row(B) ==>
21 mat_col(A) == mat_col(B) ==>
22 mat_col (mat_add(A, B)) == mat_col (A);
23 axiom mat_mult_scalar_select:
24 \forall matrix A, real z;
25 \forall integer i, j;
26 0 <= i < mat_row(A) ==>
27 0 <= j < mat_col(A) ==>
28 mat_select(mat_mult_scalar(A, z),i,j) == mat_select(A, i, j)*z;
29 axiom mat_mult_scalar_row:
30 \forall matrix A, real z;
31 mat_row(mat_mult_scalar(A, z)) == mat_row(A);
32
33 axiom mat_mult_scalar_col:
34 \forall matrix A, real z;
35 mat_col(mat_mult_scalar(A, z)) == mat_col(A);
36 predicate
37 nonnull(vector x) =
38 \exists integer i;
39 0 <= i < vector_length(x) &&
40 vector_select(x, i) != 0;
41 predicate
42 isZeroVector(vector A) =
43 \forall integer i;
44 0 <= i < vector_length(A) ==>
45 vector_select(A, i) == 0.0;
46 predicate
47 isZeroMatrix(matrix A) =
48 \forall integer i,j;
49 0 <= i < mat_row(A) ==>
50 0 <= j < mat_col(A) ==>
51 mat_select(A, i, j) == 0.0;
52 predicate
53 isIdentMatrix(matrix A) =
54 mat_row(A) == mat_col(A) &&
55 \forall integer i,j;
56 0 <= i < mat_row(A) ==>
57 0 <= j < mat_col(A) ==>
58 ((i == j ==> mat_select(A, i, j) == 1.0) &&
59 (i != j ==> mat_select(A, i, j) == 0.0));
60 predicate
61 isNegatif(vector x) =
62 \forall integer m;
63 0 <= m < vector_length(x) ==>
64 vector_select(x, m) <= 0;
65 predicate
66 isNotNegatif(vector x) =
67 \exists integer m;
68 0 <= m < vector_length(x) &&
69 vector_select(x, m) > 0;
70 axiom twoNorm_main:
71 \forall vector x;
72 twoNorm(x) == \sqrt(scalarProduct(x,x,vector_length(x)));
73 axiom twoNorm_mult_scalar:
74 \forall vector x, real a;
75 twoNorm(vec_mult_scalar(x,a)) == absolutevalue(a) * twoNorm(x);
76 */

Figure 57: Linear Algebra ACSL Theory (Part 5)

96

ACSL

1 /*@
2 axiom getRow_length:
3 \forall matrix A, integer i;
4 0 <= i < mat_row(A) ==>
5 vector_length(getRow(A, i)) == mat_col(A);
6 axiom getRow_select:
7 \forall matrix A, integer i,j;
8 0 <= i < mat_row(A) ==>
9 0 <= j < mat_col(A) ==>

10 vector_select(getRow(A, i),j) == mat_select(A, i, j);
11 axiom getCol_length:
12 \forall matrix A, integer i;
13 0 <= i < mat_col(A) ==>
14 vector_length(getCol(A, i)) == mat_row(A);
15 axiom getCol_select:
16 \forall matrix A, integer i,j;
17 0 <= i < mat_col(A) ==>
18 0 <= j < mat_row(A) ==>
19 vector_select(getCol(A, i),j) == mat_select(A, j, i);
20 axiom scalarProduct_init:
21 \forall vector x, y, integer n;
22 n <= 0 ==>
23 scalarProduct(x, y, n) == 0;
24 axiom scalarProduct_induction:
25 \forall vector x, y, integer n;
26 0 <= n < vector_length(x) ==>
27 0 <= n < vector_length(y) ==>
28 scalarProduct(x, y, n+1) == scalarProduct(x, y, n) +
29 vector_select(x,n)* vector_select(y,n);
30 axiom Forbenius_Norm:
31 \forall matrix A;
32 normFrobenius(A) == twoNorm(vec(A));
33 axiom Vectorization_mat_3_3:
34 \forall double * x;
35 vec(mat_of_3x3_scalar(x)) == vec_of_9_scalar(x);
36 axiom mat_mult_row:
37 \forall matrix A,B;
38 mat_col(A) == mat_row(B) ==>
39 mat_row(mat_mult(A,B)) == mat_row(A);
40 axiom mat_mult_col:
41 \forall matrix A,B;
42 mat_col(A) == mat_row(B) ==>
43 mat_col(mat_mult(A,B)) == mat_col(B);
44 axiom mat_mult_select:
45 \forall matrix A,B, integer i,j;
46 mat_col(A) == mat_row(B) ==>
47 0 <= i < mat_row(A) ==>
48 0 <= j < mat_col(B) ==>
49 mat_select(mat_mult(A,B), i, j) ==
50 scalarProduct(getRow(A,i), getCol(B,j), mat_col(A));
51 axiom equalityVec:
52 \forall vector x, y;
53 (vector_length(x) == vector_length(y) &&
54 \forall integer i;
55 0 <= i < vector_length(x) ==>
56 vector_select(x, i) == vector_select(y, i)) ==> x == y;
57 axiom equalityMat:
58 \forall matrix A, B;
59 (mat_row(A) == mat_row(B) &&
60 mat_col(A) == mat_col(B) &&
61 (\forall integer i, j;
62 0 <= i < mat_row(A) ==>
63 0 <= j < mat_col(A) ==>
64 mat_select(A, i, j) == mat_select(B, i, j))) ==> A == B;
65 axiom axiom_delta_length:
66 \forall integer n,i;
67 n > 0 ==>
68 0 <= i < n ==>
69 vector_length(delta(n,i)) == n;
70 axiom axiom_delta_select_diff:
71 \forall integer n, i, j;
72 n > 0 ==>
73 0 <= i < n ==>
74 0 <= j < n ==>
75 i != j ==>
76 vector_select(delta(n,i), j) == 0;
77 */

Figure 58: Linear Algebra ACSL Theory (Part 6)
97

ACSL

1 /*@
2 axiom axiom_delta_select_egal:
3 \forall integer n, i, j;
4 n > 0 ==>
5 0 <= i < n ==>
6 i == j ==>
7 vector_select(delta(n,i), j) == 1;
8 predicate
9 equalVec(vector x, vector y) =

10 vector_length(x) == vector_length(y) &&
11 \forall integer i;
12 0 <= i < vector_length(x) ==>
13 vector_select(x, i) == vector_select(y, i);
14 predicate
15 equalMat(matrix A, matrix B) =
16 mat_row(A) == mat_row(B) &&
17 mat_col(A) == mat_col(B) &&
18 (\forall integer i, j;
19 0 <= i < mat_row(A) ==>
20 0 <= j < mat_col(A) ==>
21 mat_select(A, i, j) == mat_select(B, i, j));
22 axiom equalityVecFromPre:
23 \forall vector x,y;
24 equalVec(x, y) ==> x == y;
25 axiom equalityMatFromPre:
26 \forall matrix A, B;
27 equalMat(A, B) ==> A == B;
28 axiom negative_vec_mult_scalar:
29 \forall vector x,y, real a, real b;
30 isNegatif(x) ==>
31 isNegatif(y) ==>
32 a >= 0 ==>
33 b >= 0 ==>
34 isNegatif(vector_add(vec_mult_scalar(x,a),vec_mult_scalar(y,b)));
35 }
36 */
37 #endif

Figure 59: Linear Algebra ACSL Theory (Part 7)

98

99

Appendix B

ACSL OPTIMIZATION AND ELLIPSOID THEORY

ACSL

1 /*@
2 #include "axiom_def_lin_alg.h"
3 #ifndef LIB_OPTIM
4 #define LIB_OPTIM
5 /*@ axiomatic Optim {
6 //NEW TYPES DEFINITION
7 type optim;
8 type myset;
9 logic myset feasible_set(optim OPT);

10 logic myset epsilon_optimal_set(optim OPT , real epsilon , real V);
11 logic real volume(myset A);
12 logic myset tomyset(ellipsoid E);
13 logic boolean in(myset A, vector x);
14 logic optim socp_of_size_3_2_2(matrix A, vector b,
15 matrix C, vector d, vector f, int* m)
16 reads m[0..1];
17 logic integer size_n(optim OPT);
18 logic integer size_m(optim OPT);
19 logic integer size_na(optim OPT);
20 logic matrix getA(optim OPT);
21 logic vector getb(optim OPT);
22 logic matrix getC(optim OPT);
23 logic vector getd(optim OPT);
24 logic vector getf(optim OPT);
25 logic int* getm(optim OPT);
26 logic matrix getAi(optim OPT , integer i);
27 logic vector getbi(optim OPT , integer i);
28 logic vector getci(optim OPT , integer i);
29 logic real getdi(optim OPT , integer i);
30 logic real constraint(optim OPT , vector x, integer i);
31 logic vector constraints(optim OPT , vector x);
32 logic real minimum(optim OPT);
33 logic vector Optimal(optim OPT);
34 logic real cost(optim OPT , vector x);
35 logic boolean isBetter(optim OPT , vector x, vector y); //y >= x
36 logic real shrinkCoef(optim OPT);
37 axiom getAi_axiom:
38 \forall optim OPT , integer i;
39 0 <= i <= vector_length(getd(OPT)) ==>
40 getAi(OPT ,i) == getRows(getA(OPT), sum(getm(OPT), i), *(getm(OPT)+i));
41 axiom getbi_axiom:
42 \forall optim OPT , integer i;
43 getbi(OPT ,i) == subArray(getb(OPT), sum(getm(OPT), i), *(getm(OPT)+i));
44 axiom getci_axiom:
45 \forall optim OPT , integer i;
46 getci(OPT ,i) == getRow(getC(OPT), i);
47 axiom getdi_axiom:
48 \forall optim OPT , integer i;
49 getdi(OPT ,i) == vector_select(getd(OPT), i);
50 axiom optim_getA:
51 \forall matrix A, C, vector b, d, f, int* m;
52 getA(socp_of_size_3_2_2(A,b,C,d,f,m)) == A;
53 */

Figure 60: Optimization ACSL Theory

100

ACSL

1 /*@
2 axiom optim_getb:
3 \forall matrix A, C, vector b, d, f, int* m;
4 getb(socp_of_size_3_2_2(A,b,C,d,f,m)) == b;
5 axiom optim_getC:
6 \forall matrix A, C, vector b, d, f, int* m;
7 getC(socp_of_size_3_2_2(A,b,C,d,f,m)) == C;
8 axiom optim_getd:
9 \forall matrix A, C, vector b, d, f, int* m;

10 getd(socp_of_size_3_2_2(A,b,C,d,f,m)) == d;
11 axiom optim_getf:
12 \forall matrix A, C, vector b, d, f, int* m;
13 getf(socp_of_size_3_2_2(A,b,C,d,f,m)) == f;
14 axiom optim_getm:
15 \forall matrix A, C, vector b, d, f, int* m;
16 getm(socp_of_size_3_2_2(A,b,C,d,f,m)) == m;
17 axiom cost:
18 \forall matrix A, C, vector b, d, f, x, int* m;
19 cost(socp_of_size_3_2_2(A,b,C,d,f,m), x) == scalarProduct(f, x, 3);
20 axiom optim_n:
21 \forall matrix A, C, vector b, d, f, int* m;
22 size_n(socp_of_size_3_2_2(A,b,C,d,f,m)) == 3;
23 axiom optim_m:
24 \forall matrix A, C, vector b, d, f, int* m;
25 size_m(socp_of_size_3_2_2(A,b,C,d,f,m)) == 2;
26 axiom optim_na:
27 \forall matrix A, C, vector b, d, f, int* m;
28 size_na(socp_of_size_3_2_2(A,b,C,d,f,m)) == 2;
29 axiom equalityOpt:
30 \forall matrix A1,A2, C1,C2, vector b1,b2 ,d1,d2 , f1,f2 , int *m1 ,*m2;
31 A1 == A2 ==>
32 b1 == b2 ==>
33 C1 == C2 ==>
34 d1 == d2 ==>
35 f1 == f2 ==>
36 \forall integer l; 0 <= l < 2 ==> m1[l] == m2[l] ==>
37 socp_of_size_3_2_2(A1,b1 ,C1,d1,f1 ,m1) == socp_of_size_3_2_2(A2,b2,C2 ,d2,f2,m2);
38 predicate
39 isFeasible(optim OPT , vector x) =
40 isNegatif(constraints(OPT ,x));
41 predicate
42 include(myset A, myset B) =
43 \forall vector x; in(A,x) ==> in(B,x) ;
44 predicate
45 isEpsilonSolution(optim OPT , vector x, real epsilon) =
46 isFeasible(OPT , x) && cost(OPT , x) <= epsilon + minimum(OPT);
47 predicate
48 ValueV(optim OPT , real V, real epsilon) =
49 \forall vector x1, x2; isFeasible(OPT , x1) ==> isFeasible(OPT , x2) ==>
50 epsilon/V*(cost(OPT ,x1) - cost(OPT ,x2)) <= epsilon ;
51 axiom Stay_in_Ellipsoid:
52 \forall matrix P, P_plus , vector x, x_plus ,p, grad , optim OPT , real alpha , beta , gamma;
53 inEllipsoid(Ell(P,x),Optimal(OPT)) ==>
54 p == vec_mult_scalar(mat_mult_vector(transpose(P), grad),
55 1/ twoNorm(mat_mult_vector(transpose(P),grad))) ==>
56 x_plus == vector_add(x, vec_mult_scalar(mat_mult_vector(P, p),beta)) ==>
57 P_plus == mat_mult(P,mat_mult_scalar(mat_add(ident(size_n(OPT)),
58 mat_mult_scalar(ketbra(p),gamma)),alpha)) ==>
59 inEllipsoid(Ell(P_plus , x_plus), Optimal(OPT));
60 axiom volumeEllipsoid:
61 \forall matrix P, vector x;
62 volume(tomyset(Ell(P,x))) == absolutevalue(det(P));
63 axiom constraints_select:
64 \forall optim OPT , vector x, integer i;
65 0 <= i < size_m(OPT) ==>
66 vector_select(constraints(OPT , x), i) == constraint(OPT , x, i);
67 axiom constraints_length:
68 \forall optim OPT , vector x;
69 vector_length(constraints(OPT , x)) == size_m(OPT);
70 axiom constraint_linear_axiom:
71 \forall optim OPT , vector x, integer i;
72 getm(OPT)[i] == 0 ==>
73 constraint(OPT , x, i) == -scalarProduct(getci(OPT ,i), x, size_n(OPT))-getdi(OPT ,i);
74 */

Figure 61: Optimization ACSL Theory (part 2)

101

ACSL

1 /*@
2 axiom constraint_socp_axiom:
3 \forall optim OPT , vector x, integer i;
4 getm(OPT)[i] != 0 ==>
5 constraint(OPT , x, i) ==
6 twoNorm(vector_add(mat_mult_vector(getAi(OPT ,i),x),getbi(OPT ,i))) -
7 scalarProduct(getci(OPT ,i), x, size_n(OPT)) -
8 getdi(OPT , i);
9 axiom isBetter_case1:

10 \forall optim OPT , vector x, vector x_best;
11 (! isFeasible(OPT , x)) ==>
12 isBetter(OPT , x_best , x) == \false;
13 axiom isBetter_case2:
14 \forall optim OPT , vector x, vector x_best;
15 (isFeasible(OPT , x) &&
16 !isFeasible(OPT , x_best)) ==>
17 isBetter(OPT , x_best , x) == \true;
18 axiom isBetter_case3:
19 \forall optim OPT , vector x, vector x_best;
20 (isFeasible(OPT , x) &&
21 isFeasible(OPT , x_best) &&
22 cost(OPT , x_best) <= cost(OPT , x)) ==>
23 isBetter(OPT , x_best , x) == \false;
24 axiom isBetter_case4:
25 \forall optim OPT , vector x, vector x_best;
26 (isFeasible(OPT , x) &&
27 isFeasible(OPT , x_best) &&
28 cost(OPT , x_best) > cost(OPT , x)) ==>
29 isBetter(OPT , x_best , x) == \true;
30 axiom minimum_feasible:
31 \forall optim OPT , vector x;
32 isFeasible(OPT ,x) ==> cost(OPT ,x) >= minimum(OPT);
33 axiom optimal_point_feasible:
34 \forall optim OPT;isFeasible(OPT ,Optimal(OPT));
35 axiom optimal_point_cost:
36 \forall optim OPT;
37 cost(OPT ,Optimal(OPT)) == minimum(OPT);
38 axiom convex_cost:
39 \forall optim OPT , vector x,y, real a;
40 0 <= a <= 1 ==>
41 cost(OPT ,vector_add(vec_mult_scalar(x, a),vec_mult_scalar(y, 1-a))) <=
42 a * cost(OPT ,x) + (1-a)*cost(OPT ,y);
43 axiom convex_constraint:
44 \forall optim OPT , vector x,y,z, real a;
45 0 <= a <= 1 ==>
46 x == vector_add(vec_mult_scalar(y, a),vec_mult_scalar(z, 1-a)) ==>
47 isNegatif(constraints(OPT ,y)) ==>
48 isNegatif(constraints(OPT ,z)) ==>
49 isNegatif(constraints(OPT ,x));
50 axiom epsilon_optimal_set_axiom:
51 \forall optim OPT , vector x, real epsilon , V;
52 in(epsilon_optimal_set(OPT ,epsilon ,V),x) <==>
53 (\exists vector y ;
54 isFeasible(OPT ,y) &&
55 x == vector_add(vec_mult_scalar(y, epsilon/V),
56 vec_mult_scalar(Optimal(OPT), 1-epsilon/V)));
57 axiom feasible_set_axiom:
58 \forall optim OPT , vector x;
59 in(feasible_set(OPT),x) <==> isFeasible(OPT , x);
60 axiom PositiveVolume:
61 \forall myset A; volume(A) >= 0;
62 axiom greatherVolume:
63 \forall myset A, B;
64 (\forall vector x; in(A,x) ==> in(B,x)) ==> volume(B) >= volume(A);
65 lemma lemmaExitsElement:
66 \forall myset A, B;
67 (volume(A) < volume(B))==> \exists vector x; in(B,x) && !in(A,x) ;
68 lemma lemmaInclude:
69 \forall myset A,B;
70 include(A,B) ==> volume(A) <= volume(B);
71 axiom tomySet_ell:
72 \forall matrix P, vector x, y;
73 in(tomyset(Ell(P,x)),y) == inEllipsoid(Ell(P,x),y);
74 lemma lemmatest1:
75 \forall myset A, matrix P, vector x;
76 volume(tomyset(Ell(P,x))) < volume(A) ==>
77 \exists vector y; in(A,y) && !in(tomyset(Ell(P,x)),y);
78 */

Figure 62: Optimization ACSL Theory (part 3)102

ACSL

1 /*@
2 lemma lemmatest2:
3 \forall myset A, matrix P, vector x;
4 volume(tomyset(Ell(P,x))) < volume(A) ==>
5 \exists vector y; in(A,y) && !inEllipsoid(Ell(P,x), y);
6 lemma epsilon_optimal_set_cost_1:
7 \forall optim OPT , vector x, real epsilon , V;
8 0 < epsilon/V <= 1 ==>
9 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>

10 (\exists vector y ; cost(OPT ,x) <=
11 epsilon/V*cost(OPT ,y) + (1-epsilon/V)*cost(OPT ,Optimal(OPT)));
12 lemma epsilon_optimal_set_cost_2:
13 \forall optim OPT , vector x, real epsilon , V;
14 0 < epsilon/V <= 1 ==>
15 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>
16 (\exists vector y ; cost(OPT ,x) <=
17 epsilon/V*(cost(OPT ,y)-cost(OPT ,Optimal(OPT)))
18 + cost(OPT ,Optimal(OPT)));
19 lemma epsilon_optimal_set_cost_3:
20 \forall optim OPT , vector x, real epsilon , V;
21 0 < epsilon/V <= 1 ==>
22 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>
23 (\exists vector y ; isFeasible(OPT , y) &&
24 cost(OPT ,x) <= epsilon/V*(cost(OPT ,y)-cost(OPT ,Optimal(OPT)))+ minimum(OPT));
25 lemma epsilon_optimal_set_cost:
26 \forall optim OPT , vector x, real epsilon , V;
27 V > 0 ==>
28 0 < epsilon/V <= 1 ==>
29 ValueV(OPT , V, epsilon) ==>
30 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>
31 (\exists vector y ; isFeasible(OPT , y) &&
32 cost(OPT ,x) <= epsilon/V*(cost(OPT ,y)-cost(OPT ,Optimal(OPT)))+ minimum(OPT) &&
33 cost(OPT ,x) <= epsilon + minimum(OPT));
34 lemma epsilon_optimal_set_cost5:
35 \forall optim OPT , vector x, real epsilon , V;
36 V > 0 ==>
37 0 < epsilon/V < 1 ==>
38 ValueV(OPT , V, epsilon) ==>
39 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>
40 cost(OPT ,x) <= epsilon + minimum(OPT);
41 lemma epsilon_optimal_set_constraints:
42 \forall optim OPT , vector x, real epsilon , V;
43 0 < epsilon/V < 1 ==>
44 V > 0 ==>
45 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>
46 (\exists vector y ;
47 isNegatif(constraints(OPT ,y)) &&
48 isNegatif(constraints(OPT ,Optimal(OPT))) &&
49 x == vector_add(vec_mult_scalar(y, epsilon/V),
50 vec_mult_scalar(Optimal(OPT), 1-epsilon/V)) &&
51 isNegatif(constraints(OPT ,x)));
52 lemma epsilon_optimal_set_constraints2:
53 \forall optim OPT , vector x, real epsilon , V;
54 0 < epsilon/V < 1 ==>
55 V > 0 ==>
56 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>
57 isFeasible(OPT ,x);
58 lemma epsilon_optimal_set:
59 \forall optim OPT , vector x, real epsilon , V;
60 0 < epsilon/V < 1 ==>
61 0 < V ==>
62 0 < epsilon ==>
63 ValueV(OPT , V, epsilon) ==>
64 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>
65 isEpsilonSolution(OPT , x, epsilon);
66 lemma better_epsilon_optimal_set:
67 \forall optim OPT , vector y, x, real epsilon , V;
68 0 < epsilon/V < 1 ==>
69 0 < V ==>
70 0 < epsilon ==>
71 ValueV(OPT , V, epsilon) ==>
72 in(epsilon_optimal_set(OPT ,epsilon ,V),x) ==>
73 isBetter(OPT ,x,y) ==>
74 isEpsilonSolution(OPT , y, epsilon);
75 */

Figure 63: Optimization ACSL Theory (part 4)

103

ACSL

1 /*@
2 lemma better_epsilon_optimal_set_exists:
3 \forall optim OPT , vector x, real epsilon , V;
4 0 < epsilon/V < 1 ==>
5 0 < V ==>
6 0 < epsilon ==>
7 ValueV(OPT , V, epsilon) ==>
8 (\exists vector y; in(epsilon_optimal_set(OPT ,epsilon ,V),y)
9 && isBetter(OPT ,y,x)) ==>

10 isEpsilonSolution(OPT , x, epsilon);
11 axiom volume_ball_set:
12 \forall real r, integer n;
13 n > 0 ==>
14 det(mat_mult_scalar(ident(n),r)) == pow(r, n);
15 axiom positive_pow:
16 \forall real r, integer n;
17 r > 0 ==>
18 pow(r,n) > 0;
19 axiom axiom_algebra:
20 \forall real a,b,c;
21 a <= b ==>
22 c >= 0 ==>
23 c*a <= c*b;
24 axiom axiom_algebra2:
25 \forall real a, b, c,d;
26 a >= 0 ==>
27 b >= 0 ==>
28 c >= 0 ==>
29 d >= 0 ==>
30 (d <= c && a == b*c) ==>
31 a <= b*d;
32 lemma epsilon_solution_lemma_test1:
33 \forall optim OPT , real V,epsilon , matrix P, vector x, x_best;
34 volume(tomyset(Ell(P,x))) <
35 volume(epsilon_optimal_set(OPT ,epsilon ,V)) ==>
36 \exists vector y; in(epsilon_optimal_set(OPT ,epsilon ,V),y)
37 && !inEllipsoid(Ell(P,x), y);
38 lemma epsilon_solution_lemma:
39 \forall optim OPT , real V,epsilon , matrix P, vector x, x_best;
40 (0 < epsilon/V < 1) ==>
41 0 < V ==>
42 0 < epsilon ==>
43 ValueV(OPT , V, epsilon) ==>
44 (\forall vector z; !inEllipsoid(Ell(P,x), z) ==>
45 isBetter(OPT , z, x_best)) ==>
46 volume(tomyset(Ell(P,x))) <
47 volume(epsilon_optimal_set(OPT ,epsilon ,V)) ==>
48 isEpsilonSolution(OPT , x_best , epsilon);
49 axiom volume_epsilon_optimal_set_1:
50 \forall optim OPT , real epsilon , real V;
51 volume(epsilon_optimal_set(OPT , epsilon , V)) ==
52 pow(epsilon/V, size_n(OPT))* volume(feasible_set(OPT));
53 lemma volume_epsilon_optimal_set_2:
54 \forall optim OPT , real r, epsilon , V, vector x;
55 r > 0 ==>
56 include(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x)) ,
57 feasible_set(OPT)) ==>
58 volume(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x))) <=
59 volume(feasible_set(OPT));
60 lemma volume_epsilon_optimal_set_3:
61 \forall optim OPT , real r, epsilon , V, vector x;
62 volume(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x))) ==
63 absolutevalue(det(mat_mult_scalar(ident(size_n(OPT)),r)));
64 lemma volume_epsilon_optimal_set_4:
65 \forall optim OPT , real r, epsilon , V;
66 r > 0 ==>
67 (\exists vector x; include(tomyset(Ell(mat_mult_scalar(
68 ident(size_n(OPT)),r), x)) , feasible_set(OPT))) ==>
69 absolutevalue(det(mat_mult_scalar(ident(size_n(OPT)),r))) <=
70 volume(feasible_set(OPT));
71 */

Figure 64: Optimization ACSL Theory (part 5)

104

ACSL

1 /*@
2 lemma volume_epsilon_optimal_set_5:
3 \forall optim OPT , real r, epsilon , V;
4 r > 0 ==>
5 size_n(OPT) > 0 ==>
6 (\exists vector x; include(tomyset(Ell(mat_mult_scalar(
7 ident(size_n(OPT)),r), x)) , feasible_set(OPT))) ==>
8 absolutevalue(pow(r, size_n(OPT))) <= volume(feasible_set(OPT));
9 lemma volume_epsilon_optimal_set_6:

10 \forall optim OPT , real r, epsilon , V;
11 r > 0 ==>
12 size_n(OPT) > 0 ==>
13 (\exists vector x; include(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x)) ,
14 feasible_set(OPT))) ==>
15 pow(r, size_n(OPT)) <= volume(feasible_set(OPT));
16 lemma volume_epsilon_optimal_set_7:
17 \forall optim OPT , real r, epsilon , V;
18 r > 0 ==>
19 size_n(OPT) > 0 ==>
20 (\exists vector x; include(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x)) ,
21 feasible_set(OPT))) ==>
22 pow(r, size_n(OPT)) <= volume(feasible_set(OPT)) &&
23 volume(epsilon_optimal_set(OPT , epsilon , V)) ==
24 pow(epsilon/V, size_n(OPT))* volume(feasible_set(OPT));
25 lemma volume_epsilon_optimal_set_8:
26 \forall optim OPT , real r, epsilon , V;
27 r > 0 ==>
28 size_n(OPT) > 0 ==>
29 (\exists vector x; include(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x)) ,
30 feasible_set(OPT))) ==>
31 volume(epsilon_optimal_set(OPT , epsilon , V)) >=
32 pow(epsilon/V, size_n(OPT))*pow(r, size_n(OPT));
33 lemma volume_epsilon_optimal_set:
34 \forall optim OPT , real r, epsilon , V;
35 r > 0 ==>
36 size_n(OPT) > 0 ==>
37 (\exists vector x; include(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x)) ,
38 feasible_set(OPT))) ==>
39 volume(epsilon_optimal_set(OPT , epsilon , V)) >= pow(epsilon/V*r, size_n(OPT));
40 lemma epsilon_solution_lemma_BIS:
41 \forall optim OPT , real r,V,epsilon , matrix P, vector x, x_best;
42 (0 < epsilon/V < 1) ==>
43 0 < r ==>
44 0 < V ==>
45 0 < epsilon ==>
46 size_n(OPT) > 0 ==>
47 ValueV(OPT , V, epsilon) ==>
48 (\forall vector z; !inEllipsoid(Ell(P,x), z) ==> isBetter(OPT , z, x_best)) ==>
49 (\exists vector x; include(tomyset(Ell(mat_mult_scalar(ident(size_n(OPT)),r), x)) ,
50 feasible_set(OPT))) ==>
51 volume(tomyset(Ell(P,x))) < pow(epsilon/V*r, size_n(OPT)) ==>
52 isEpsilonSolution(OPT , x_best , epsilon);
53 }
54 */
55 #endif

Figure 65: Optimization ACSL Theory (part 6)

105

Appendix C

INPUT FILE USED TO GENERATE C CODE

C.1 Single Optimization Problem Example

Input File to the Autocoder

1 #GENEMO format example
2 Constants
3 # No constants defined
4 Variables
5 a b c
6 Minimize
7 5*a + 6*b + 5*c
8 SubjectTo
9 constraint1: a + b >= 11 ;

10 constraint2: a - b <= 5 ;
11 constraint3: c - a - b = 0 ;
12 constraint4: 7*a >= 35 - 12*b ;
13 constraint5: a >= 0 ;
14 constraint6: b >= 0 ;
15 constraint7: c >= 0 ;
16 Information
17 r = 0.1;
18 R = 40.0;
19 eps = 0.02;
20 V = 2;
21 #Solution: x = [8.00000 ; 3.00000 ; 11.00000]

Figure 66: Single Point Optimization Text File

106

C.2 Spring Mass System

Input File to the Autocoder

1 Input
2 xinit (2)
3 Output
4 u(:,1)
5 Constants
6 N = 10;
7 Ts = 0.01;
8 A = [1 Ts;-Ts 1];
9 B = [0;Ts];

10 uMax = 5;
11 positionMax = 10;
12 speedMax = 10;
13 M = N-1;
14 Q = [5 0;0 1];
15 Variables
16 x(2,N) u(1,M)
17 Minimize
18 sum(||x(:,k) || , k=1..N)
19 SubjectTo
20 constraint1: x(:,1) = xinit;
21 constraint2: x(:,k+1) = A*x(:,k) + B*u(:,k) , k=1..N-1;
22 constraint3: u(:,k) <= uMax , k=1..N-1;
23 constraint4: -1*u(:,k) <= uMax , k=1..N-1;
24 constraint5: x(1,k) <= positionMax , k=1..N;
25 constraint6: -1*x(1,k) <= positionMax , k=1..N;
26 constraint7: x(2,k) <= speedMax , k=1..N;
27 constraint8: -1*x(2,k) <= speedMax , k=1..N;
28 Information
29 r = 1e-5;
30 R = 1.25*1 e5;
31 V = 1e3;
32 eps = 0.1;

Figure 67: Spring Mass Autocoder Input File

107

C.3 3 DOF Helicopter

Input File to the Autocoder

1 Input
2 xo(6)
3 Output
4 u(:,1)
5 Constants
6 N = 6;
7 M = N-1;
8 l = 90;
9 r = 40;

10 A = [0.7101 0.0000 -0.0000 0.2331 0.0000 0.0000;
11 0.0000 0.2105 0.4023 0.0000 0.0977 0.7390;
12 -0.0000 -0.1272 0.9846 -0.0000 -0.0134 0.4733;
13 -0.8721 0.0000 -0.0000 0.0724 0.0000 0.0000;
14 -0.0000 -2.0777 0.7830 0.0000 -0.2674 1.6711;
15 -0.0000 -0.4224 -0.1072 -0.0000 -0.0618 0.8109];
16 B = [0.2899 0.0000; -0.0000 -0.4023; 0.0000 0.0154;
17 0.8721 0.0000; 0.0000 -0.7830; 0.0000 0.1072];
18 Aobs = [-l -r 0 0 0 0;
19 -l r 0 0 0 0];
20 bosbt = [0;0];
21 Variables
22 x(6,N) u(2,M)
23 Minimize
24 sum(|| x(:,k) || , k = 1..N)
25 SubjectTo
26 constraint1: x(:,1) = xo;
27 constraint2: x(:,k+1) = A*x(:,k) + B*u(:,k) ,k=1..N-1;
28 constraint3: -30 <= u(1,k) ,k=1..N-1;
29 constraint4: u(1,k) <= 30 ,k=1..N-1;
30 constraint5: -30 <= u(2,k) ,k=1..N-1;
31 constraint6: u(2,k) <= 30 ,k=1..N-1;
32 constraint8: 0 <= x(1,k) ,k=2..N;
33 constraint9: -40 <= x(2,k) ,k=2..N;
34 constraint10: x(2,k) <= 40 ,k=2..N;
35 constraint11: Aobs*x(:, k) <= bosbt ,k=2..N;
36 Information
37 r = 8.06;
38 R = 322;
39 V = 162;
40 eps = 0.25;
41 lambda = 1.000695409372118;

Figure 68: 3 DOF Helicopter Landing Problem: Autocoder Input File

108

REFERENCES

[1] “DO-178B: Software Considerations in Airborne Systems and Equipment Certi-
fication,” 1982.

[2] Açıkmeşe, B. and Blackmore, L., “Lossless convexification of a class of opti-
mal control problems with non-convex control constraints,” Automatica, vol. 47,
no. 2, pp. 341–347, 2011.

[3] Açikmese, B., III, J. M. C., and Blackmore, L., “Lossless convexification
of nonconvex control bound and pointing constraints of the soft landing optimal
control problem,” IEEE Trans. Contr. Sys. Techn., vol. 21, no. 6, pp. 2104–2113,
2013.

[4] Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., and
Prevosto, V., “ACSL: ANSI/ISO C Specification Language. version 1.11..”
http://frama-c.com/download/acsl.pdf, 2016.

[5] Blackmore, L., “Autonomous precision landing of space rockets,” The Bridge,
vol. 4, no. 46, pp. 15–20, 2016.

[6] Blackmore, L., Açikmese, B., and III, J. M. C., “Lossless convexification
of control constraints for a class of nonlinear optimal control problems,” Systems
& Control Letters, vol. 61, no. 8, pp. 863–870, 2012.

[7] Bland, R. G., Goldfarb, D., and Todd, M. J., “The ellipsoid method: A
survey,” Operations research, vol. 29, no. 6, pp. 1039–1091, 1981.

[8] Bonnans, F., Martinon, P., and Trélat, E., “Singular arcs in the gen-
eralized goddard’s problem,” Journal of optimization theory and applications,
vol. 139, no. 2, pp. 439–461, 2008.

[9] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear matrix
inequalities in system and control theory. SIAM, 1994.

[10] Boyd, S. and Vandenberghe, L., Convex optimization. New York, NY, USA:
Cambridge University Press, 2004.

[11] Boyd, S. P. and Barratt, C. H., Linear controller design: limits of perfor-
mance. Prentice Hall Englewood Cliffs, NJ, 1991.

[12] Brogan, W. L., Modern control theory. Pearson education india, 1982.

109

http://frama-c.com/download/acsl.pdf

[13] Champion, A., Delmas, R., Dierkes, M., Garoche, P.-L., Jobredeaux,
R., and Roux, P., “Formal methods for the analysis of critical control systems
models: Combining non-linear and linear analyses,” in International Workshop
on Formal Methods for Industrial Critical Systems, pp. 1–16, Springer, 2013.

[14] Cousot, P. and Cousot, R., “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints,”
in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 238–252, ACM, 1977.

[15] Cousot, P. and Halbwachs, N., “Automatic discovery of linear restraints
among variables of a program,” in Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pp. 84–96, ACM,
1978.

[16] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J.,
and Yakobowski, B., “Frama-c: a software analysis perspective,” SEFM’12,
pp. 233–247, Springer, 2012.

[17] El Ghaoui, L., “Inversion error, condition number, and approximate inverse
of structured matrices,” Linear Algebra and its Applications, vol. 342, Feb. 2002.

[18] Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., and Hrovat, D.,
“Predictive active steering control for autonomous vehicle systems,” IEEE Trans-
actions on control systems technology, vol. 15, no. 3, pp. 566–580, 2007.

[19] Feron, E., “From control systems to control software,” Control Systems, IEEE,
vol. 30, pp. 50 –71, December 2010.

[20] Floyd, R. W., “Assigning meanings to programs,” Proceedings of Symposium
on Applied Mathematics, vol. 19, pp. 19–32, 1967.

[21] Gigante, G. and Pascarella, D., “Formal methods in avionic software certi-
fication: The do-178c perspective,” in Leveraging Applications of Formal Meth-
ods, Verification and Validation. Applications and Case Studies (Margaria,
T. and Steffen, B., eds.), (Berlin, Heidelberg), pp. 205–215, Springer Berlin
Heidelberg, 2012.

[22] Goubault, E., Static Analyses of the Precision of Floating-Point Operations,
pp. 234–259. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

[23] Goubault, E. and Putot, S., Static Analysis of Finite Precision Computa-
tions, pp. 232–247. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[24] Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.-L.,
Feron, E., Perez, G., and Ascariz, P., “Pvs linear algebra libraries for
verification of control software algorithms in c/acsl,” in NASA Formal Methods
Symposium, pp. 147–161, Springer, 2012.

110

[25] Hoare, C. A. R., “An axiomatic basis for computer programming,” Commun.
ACM, vol. 12, pp. 576–580, October 1969.

[26] Jadbabaie, A., Yu, J., and Hauser, J., “Stabilizing receding horizon con-
trol of nonlinear systems: a control lyapunov function approach,” in American
Control Conference - 1999 - Proceedings of the 1999, pp. 1535–1539, 1999.

[27] Jerez, J. L., Goulart, P. J., Richter, S., Constantinides, G. A., Ker-
rigan, E. C., and Morari, M., “Embedded online optimization for model
predictive control at megahertz rates,” IEEE Transactions on Automatic Con-
trol, vol. 59, no. 12, pp. 3238–3251, 2014.

[28] Jerez, J. L., Goulart, P. J., Richter, S., Constantinides, G. A., Ker-
rigan, E. C., and Morari, M., “Embedded online optimization for model
predictive control at megahertz rates,” IEEE Trans. Automat. Contr., vol. 59,
no. 12, pp. 3238–3251, 2014.

[29] Kästner, D., Wilhelm, S., Nenova, S., Cousot, P., Cousot, R., Feret,
J., Mauborgne, L., Miné, A., Rival, X., and others, “Astrée: Proving the
absence of runtime errors,” Proc. of Embedded Real Time Software and Systems
(ERTS2 2010), p. 9, 2010.

[30] Khachiyan, L. G., “Polynomial algorithms in linear programming,” USSR
Computational Mathematics and Mathematical Physics, vol. 20, no. 1, pp. 53–
72, 1980.

[31] Leroy, X., “Formal verification of a realistic compiler,” Communications of the
ACM, vol. 52, no. 7, pp. 107–115, 2009.

[32] Mattingley, J. and Boyd, S., “Cvxgen: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1, pp. 1–27,
2012.

[33] Mattingley, J., Wang, Y., and Boyd, S., “Code generation for receding
horizon control,” in Computer-Aided Control System Design (CACSD), 2010
IEEE International Symposium on, pp. 985–992, IEEE, 2010.

[34] Miné, A., “A new numerical abstract domain based on difference-bound matri-
ces,” in Programs as Data Objects, pp. 155–172, Springer, 2001.

[35] Miné, A., “The octagon abstract domain,” Higher-order and symbolic compu-
tation, vol. 19, no. 1, pp. 31–100, 2006.

[36] Nemirovski, A., Introduction to Linear Optimization. Lecture notes, Georgia
Institute of Technology, 2012.

[37] of RTCA, S. C., “DO-178C, software considerations in airborne systems and
equipment certification,” 2011.

111

[38] Ogata, K., System dynamics, vol. 3. Prentice Hall Upper Saddle River, NJ,
1998.

[39] Patrinos, P., Guiggiani, A., and Bemporad, A., “A dual gradient-
projection algorithm for model predictive control in fixed-point arithmetic,” Au-
tomatica, vol. 55, pp. 226–235, 2015.

[40] Putot, S., Goubault, E., and Martel, M., Static Analysis-Based Valida-
tion of Floating-Point Computations, pp. 306–313. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004.

[41] Raffo, G. V., Gomes, G. K., Normey-Rico, J. E., Kelber, C. R., and
Becker, L. B., “A predictive controller for autonomous vehicle path tracking,”
IEEE transactions on intelligent transportation systems, vol. 10, no. 1, pp. 92–
102, 2009.

[42] Roux, P., “Formal proofs of rounding error bounds,” Journal of Automated
Reasoning, vol. 57, no. 2, pp. 135–156, 2016.

[43] Roux, P., Jobredeaux, R., and Garoche, P., “Closed loop analysis of
control command software,” in Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, HSCC’15, Seattle, WA, USA,
April 14-16, 2015, pp. 108–117, 2015.

[44] Roux, P., Jobredeaux, R., Garoche, P.-L., and Féron, É., “A generic
ellipsoid abstract domain for linear time invariant systems,” in Proceedings of
the 15th ACM international conference on Hybrid Systems: Computation and
Control, pp. 105–114, ACM, 2012.

[45] Rump, S. M., “Verification of positive definiteness,” BIT Numerical Mathemat-
ics, vol. 46, no. 2, pp. 433–452, 2006.

[46] Rump, S. M., “Error estimation of floating-point summation and dot product,”
BIT Numerical Mathematics, vol. 52, no. 1, pp. 201–220, 2012.

[47] Tsiotras, P. and Kelley, H. J., “Goddard problem with constrained time of
flight,” Journal of guidance, control, and dynamics, vol. 15, no. 2, pp. 289–296,
1992.

[48] Wang, T., Jobredeaux, R., Pantel, M., Garoche, P.-L., Feron, E.,
and Henrion, D., “Credible autocoding of convex optimization algorithms,”
Optimization and Engineering, vol. 17, no. 4, pp. 781–812, 2016.

112

VITA

Raphael Cohen was born in Blanc-Mesnil, France. His interest of research includes

control systems, optimization and formal verification. Raphael spent some time at

Onera (Toulouse, France) and University of Washington (Seattle) as a visiting re-

searcher.

This thesis being performed as a Cotutelle between Georgia Tech and ISAE, following

the defense of the thesis, Raphael Cohen is receiving both the diploma of Doctor from

ISAE and the diploma of Doctor of Philosophy from Georgia Tech.

Prior to this Ph.D., Raphael Cohen graduated from ISAE-ENSMA located in Poitiers,

France with a Master of Aerospace Engineering.

113

	Titlepage
	Signatures
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	Summary
	Chapter 1 — INTRODUCTION
	Credible Autocoding Framework
	Formal Verification
	Semantics of Software
	Hoare Logic
	Weakest Precondition

	State of the Art and Scope of the Thesis
	Real-time Optimization Based Control
	Formal Verification of Control Systems Software
	Formal Verification And Software Certification

	Chapter 2 — OPTIMIZATION BASED CONTROL OF LTI SYSTEMS
	Linear Time Invariant (LTI) Systems
	LTI Theory and State Space Realization
	Stability of LTI Systems

	Convex Optimization Problems
	Real-time Convex Optimization Based Control and MPC
	Difference between MPC and Path Planning

	Chapter 3 — THE ELLIPSOID METHOD AND ITS SEMANTICS
	A Brief Recent History of Optimization Theory
	The Ellipsoid Method
	Building ACSL Theory Related to the Ellipsoid Method
	Linear Algebra Axiomatization
	Optimization Theory Axiomatization

	Annotating a C code implementation of the Ellipsoid Method

	Chapter 4 — FLOATING POINTS ANALYSIS
	Past System Failures and Motivation
	US Patriot Missile
	Ariane 5 Rocket
	Motivations

	Controlling the Condition Number
	Bounding the Singular Values
	Corresponding Condition Number
	Corresponding norm on c
	Consequences on Code

	Propagating the rounding errors through the algorithm
	Preliminaries
	Norms and Bounds
	Floating-Point Rounding of Elementary Transformations

	Necessary conditions for numerical stability
	Problem Formulation
	Equivalent and Sufficient Conditions for Covering
	Analytical Sufficient Conditions for Covering

	Chapter 5 — AUTOCODER AND CLOSED LOOP MANAGEMENT
	Closed Loop Management – Sequential Optimization Problems
	Parameterized Linear Constraints
	Second-Order Conic Constraints

	Running Time Evaluation
	GENEMO Programming Language Syntax
	Using Genemo and Autocode Credible Implementation of Optimization Algorithms
	Internal Aspect of The Autocoder

	Real-Time Simulations and Examples
	Spring-Mass System
	The 3 DOF Helicopter
	Quadcopter Drones

	Chapter 6 — CONCLUSION
	Appendix A — ACSL LINEAR ALGEBRA THEORY
	Appendix B — ACSL OPTIMIZATION AND ELLIPSOID THEORY
	Appendix C — Input File Used to Generate C Code
	Single Optimization Problem Example
	Spring Mass System
	3 DOF Helicopter

	References
	Vita

