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GENERAL INTRODUCTION

Tsunamis can be triggered by subaerial or submarine landslides involving numerous types
of gravitational mass movements from dry to wet media more or less cohesive and moving
at different velocities (Figure 1). For instance, amongst the long list of landslide tsunamis,
two of the most treated examples in the litterature are the Lituya Bay tsunami generated
by a subaerial landslide (Figure 2a) and the submarine Storegga slide for which tsunami
evidences have been found all along the Norwegian coast, in Scotland and Greenland
(Figure 2b). Wave generation by subaerial and submarine lansdlide are two kind of
processes which are treated in this thesis.

Figure 1: A classification of the gravitational mass movements as a function of water
content (dry-wet), velocity (slow-fast), and material type (granular-cohesive) from Yavari-
Ramshe & Ataie-Ashtiani [98]

Two mechanisms studied in this thesis are also volcanic tsunamis: wave generation by
pyroclastic flows and slope instabilities.

Pyroclastic flows are gravity currents produced by explosive volcanoes. They are
composed of a mixture of hot gas and particles of variable size. Evidences of tsunamis
generated by pyroclastic density currents (PDC) have been found from tide gauges, de-
posits and observations for eruptions of Montserrat 2003 (maximum run-up of 4m in
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(a) Map showing topographic and
bathymetric contours, trace of Fair-
weather fault, 1958 landslide and trim-
line of tsunami runup, from Fritz et al.
[26]

(b) Location of deposits of the tsunami triggered
by the Storegga slide indicated by red dots and
reconstructed run-up heights from field evidence,
from Bondevik et al. [7]

Figure 2: Two examples of landslide tsunami triggered by a subaerial slide (a) and sub-
marine slide (b)

Montserrat and 1m in Guadeloupe, Pelinovsky et al. [73]) and Rabaul 1994 (maximum
run-up of 8m in Rabaul Bay, Nishimura et al. [69]). Among the mechanisms that gener-
ated the tsunamis during the Krakatau eruption of 1883, pyroclastic flows are considered
to be the principal source (Carey et al. [10]).

Most volcanoes have slope instabilities due to their high relief, steep slopes, the layers
of more or less cohesive materials (Figure 3). The size of the volcanic landslides is in
average at least twice the size of nonvolcanic landslides. These failure can be triggered by
earthquakes or during eruptions but not always and which makes them difficult to predict
(Siebert [83]). Volcano flank failures cover a large spectrum from small landslides, rock
fall to large debris avalanche. An example of the damage done by such landslides is the
tsunami generated by the landslide on Iliwerung volcano in 1979, Indonesia which killed
about 900 people on Lembata Island (Paris [70]).

Tsunamis generated by volcanoes are not rare particularly in south-east Asia (Fig-
ure 4). In Europe, Italian volcanoes for instance may also be a threat. More distant
volcanoes can also be a concern for the distant national territories (e.g. Montagne Pelée,
Lesser Antilles) or even for Europe (e.g. Cumbre Vieja Volcano, La Palma, Canary Is-
lands, Ward & Day [90], Løvholt et al. [57], Abadie et al. [1]).

The case of the Cumbre Vieja Volcano was in the framework of the TANDEM project
(Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through
numerical Modeling) in order to assess the risk associated to this volcano on the French
Atlantic coast. Some results from the present thesis are being currently used in this
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Figure 3: Factors contributing to structural instability of volcanic edifices, from
Siebert [83]

program to improve the relevance of this assessment.
Part of this thesis was also carried out in the framework of the RAVEX project (Risques

Associés au Volcanisme EXplosif) which aims to assess risks associated to explosive vol-
canism focusing on the Montagne Pelée case. Amongst those risks, we studied more
specifically the wave generation by pyroclastic flows.

Figure 4: Location of volcanoes that have generated tsunami in recorded history, from
Bryant [8]

The process of wave generation by landslide can be studied in laboratory experiments
and numerical computations. Numerical models can also help to assess risks for different
scenarios in real cases. Regarding wave generation by pyroclastic flows, there are only
a few experimental studies available, although they are essential for the validation of
numerical models and some of them are used in this study. Experimental results on
granular media are presented. In the scope of the RAVEX project, new experiments for
pyroclastic flow were planned and some of them are presented in this document.

In this framework, the general objective of the thesis is to propose several approaches
for the modelling of wave generated by mass failure and validate them with the long term
goal of better assess the risk associated to real cases such as the ones studied in RAVEX
(Montagne Pelée) or TANDEM (Cumbre Vieja). The numerical study focuses on the
understanding of the generation processes and the energy transfers.
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The thesis is divided in five chapters:

• Chapter 1 outlines the state of the art of waves generated by landslides in terms of
experimental and numerical studies.

• Chapter 2 presents the equations and methods employed for the numerical simula-
tions.

• In Chapter 3, a model to deal with solid collision in a Navier-Stokes code is prensented
and validated on one case.

• In Chapter 4, rheologies employed to model landslide as a continuous media are
presented and applied on two experimental benchmarks.

• Chapter 5 deals with the validation of a model for wave generated by pyroclastic
flow.
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CHAPTER 1. STATE OF THE ART

Wave generation by landslide has been mainly studied with three approaches: labora-
tory experiments, analytical work and numerical simulations. Each of these approaches
provides a specific level of understanding of the phenomenon.

In the following, the principal methods existing in literature and results are presented.
The chapter is organised as follows:

• Experimental studies which present a process analysis of wave generation

• Numerical models for debris avalanches

• Flow description and the associated numerical models

• Wave generated by pyroclastic flow and the associated models

• Energy transfers in the wave generation process

1.1 Experimental studies
This section aims first to describe wave generation and processes involved and then to
highlight the important parameters.

Experimental studies are presented in two categories: the ones involving rigid slide
and those based on a deformable slide.

The rigid slide is the most simple approximation of a real slide. In this case, the
slide is considered as one whole block which does not deform during the wave generation
process.

The deformable slide model is closer to what is likely to occur in a real case. Nonethe-
less, the grain size varies in space and time during a real landslide which is very difficult
to reproduce in experiments. Therefore, most of the experiments use beads of the same
diameter. Hence, this approach can give an idea of the role of deformation and block
size in wave generation compared to the rigid slide case but does not include the whole
complexity.

1.1.1 Processes analysis

Rigid slide

Heinrich [38] studied the slide of a triangle solid block on a 45° incline. Two cases are
presented, one with the block initially under water and one initially just above the free
surface. In the submarine case, the block generates a wave exhibiting a first crest, followed
by a big through, a crest of same amplitude as the through and then a wave train of three or
four waves. The velocity of the first wave is

√
gh (h being the water depth), corresponding

to long wave celerity. The other waves are dispersive and travel at lower speed. The second
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crest is a nonlinear wave (crest amplitude greater than the throughs) and then evolves into
a sinusoidal wave during the propagation phase. Unlike the submarine case, the subaerial
case generates a first wave which has the greatest amplitude, followed by a wave train.
The second difference is that the block initially above water entrains air while entering
water, creating air cavities and wave breaking close to the slide.

Ataie-Ashtiani & Najafi-Jilani [4] studied the influence of shape and volume of the
block, and slope angle on the waves generated in a submarine slide case. Ataie-Ashtiani
& Nik-Khah [5] presented a similar study for subaerial landslides. In both cases, the
wave pattern observed is a first through followed by the greatest crest and a wave train
whatever the slide shapes and volumesand slope angle.

Deformable slide

Only a few studies are related to submarine deformable landslides, one of the reasons
being the difficulty of properly setting up the underwater gate (i.e. disturb as little as
possible the water and be watertight if it opens under the tank). For instance, experiments
presented in Grilli et al. [31] consist in the release of a mass between 1.5 and 2.5 kg of glass
beads with a diameter of 4 or 10mm on a 35° slope. The water depth is between 0.320
and 0.370mm, the slide is initially placed at a few centimetres under the free surface
and has a triangular shape. When the beads are released, the slide deforms: first the
triangular shape flattens and then a bulk is formed at the front of the slide and the rear
gets thinner. The waves generated have the same pattern as described for rigid slide: a
first crest followed by a large through, a second wave with the maximum amplitude and
a wave train with decreasing amplitude.

Similar experiments were earlier performed by Viroulet [86]. In this case, the mass
of glass beads were released just above the free surface. Unlike the submarine case, the
slide front immediately forms a bulk as soon as it starts to slide and impacts water. The
pattern of the generated waves is the same except that the first wave has the maximum
amplitude. This behaviour was also observed in the subaerial experiment of Heinrich [38].

Data on actual cases are very rare. This is one of the motivations for laboratory
experiments where part of a real geometry can be reproduced at smaller scale. Hence,
Fritz et al. [25] reproduced at a 1 : 675 scale a cross section of the Gilbert Inlet in the
Lituya Bay (Figure 1.1). The slide is modelled by a granular material with an average
diameter of 4mm. After the rockslide impact, a flow separation is observed which creates
an air cavity, and an impulse wave is generated which propagates and runs up on the
opposite incline. During the sliding sequence above water, the slide front inclination is
gentle and its thickness increases continuously. After impact, the slide front forms a bulk.
The air cavity collapses after the slide has reached the bottom and causes a mixing of
water and air. This happens after the propagation of the leading wave and has therefore
no effect on its generation. Waves are then reflected on both sides of the inlet.
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Figure 1.1: Photo-sequence of a granular slide impact experiment, time increment of 5s,
from Fritz et al. [25]

Effect of slide deformation

The effects of slide deformation can be quantified based on experiments with similar
initial conditions but using rigid blocks or a deformable medium. As an illustration,
the experiments of Ataie-Ashtiani & Najafi-Jilani [4] and Ataie-Ashtiani & Nik-Khah
[5] include both rigid and granular slides. They compare the wave train generated by
deformable and rigid slides initiated from the same triangular shape and weight. In
both submarine and subaerial test cases, the maximum wave crest amplitude appears
reduced for the deformable slide (15 to 25% of reduction in submarine cases, 25 to 35% in
subaerial cases, Figure 1.2) compared to the rigid slide. They also observed an increase in
the period of the maximum wave: about 15% and 20 to 30% for submarine and subaerial
cases respectively is also observed. The effect of slide deformation on wave characteristics
is therefore not negligible. This shows that if a deformable slide is modelled by a rigid
slide of same geometry, the maximum wave amplitude will be overestimated.

Summary of the processes involved

The examples mentioned above show the complexity of the water flow during the genera-
tion process. To sum up the processes presented above, generation of waves by landslides
can lead to: creation of air cavities, air-water mixing, dispersive wave, non-linear wave,
wave breaking, turbulence. A general observation is that submarine cases seems less com-
plex in terms of the flow involved than subaerial cases as there is no impact, no air-water
mixing, no wave breaking in the generation zone. Therefore, the model employed for
numerical simulations has to be adapted to the specific situation.

8
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Figure 1.2: Subaerial slide rigidity effects on impulse wave feature, from Ataie-Ashtiani
& Nik-Khah [5]

Waves types

The type of wave also varies with the slide characteristics during the generation phase
which may subsequently have an influence on run-up height and wave force on structure.
Fritz et al. [24] and Heller & Hager [42] classify the subaerial slide generated wave in
function of the slide characteristics. During the experiments were observed Stokes-like,
cnoidal-like, solitary-like and bore-like waves. The type of waves depends on the Froude
number (computed with slide impact velocity and still water depth) and the relative slide
thickness (maximum thickness of the slide at impact divided by water still depth) for Fritz
et al. [24]. Heller & Hager [42] also add the slide impact angle and the relative slide mass
in the parameter list. Heller & Hager [42] classified about 430 experiments including their
study and two previous ones. But the classification does not hold for submarine slide,
partly submerged slide or in the limit case of a subaerial case when the base of the slide
levels the free surface as in all these cases, there are no slide characteristics at impact.

1.1.2 Influence of parameters on wave generation

For a dimensional analysis (Buckingham [9]), the parameters which can potentially in-
fluence the wave generation by landslides (Kamphuis & Bowering [49], Zweifel et al.
[101], Fritz et al. [24], Heller & Hager [43], Mulligan & Take [67]) are: the volume, density,
length, thickness, impact velocity, porosity of the slide, slide front angle, grain diameter,
still depth water, slope angle.
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Physical models

Physical models trying to relate the generated wave to the slide parameters are numerous.
Among those, the semi-empirical models of Zweifel et al. [101] and Fritz et al. [24] are
obtained with multiple regression on results of a high number of experiments (more than
100 and 200 for Fritz et al. [24] and Zweifel et al. [101] respectively) with the aim to predict
impulse wave characteristics like maximum wave amplitude, wavelength or impact energy
conversion ratio.

Heller & Hager [43] define an impulse product parameter P depending on govern-
ing parameters. P ((1.1)) is obtained by optimising the coefficients of determination of
impulse wave parameters (relative maximum amplitude and relative wave period among
others). This study tends to demonstrate that the more relevant parameters for wave
generation by subaerial landslides are the Froude number Fr, the relative thickness S,
the relative mass M and the slide impact angle α. The impulse wave characteristics can
be determined using a simple expression depending only on the value of P in the slide
impact zone and on a relative distance.

P = FrS1/2M1/4cos[(6/7)α]1/2 (1.1)

Analytical models

Analytical models developed to predict waves generated by landslides also give an indica-
tion on the governing parameters. For instance, the model of Mulligan & Take [67] solves
the idealised momentum flux balance considering two conditions: dominantly hydrostatic
or dominantly hydrodynamic. This model predicts the maximum wave amplitude in the
near field. The model parameters are still water depth, slide density, thickness, impact
velocity and slope angle. Their results are in agreement with the experimental results
of Miller et al. [63] and Heller & Hager [43]. Moreover, this analytical model is also in
agreement with the semi-empirical model of Heller & Hager [43]. It is however limited to
dry granular subaerial slide on moderate slope.

Lo & Liu [56] also developed analytical models solving free surface elevation and flow
velocity. By studying the wave generated for prescribed landslides of the same height and
area but different shapes, they show that the slide area has more influence on the generated
waves than the shape. In this sense, the slide area seems to be a critical parameter more
important than the slide shape.

1.2 Numerical models of landslides
The most important slide numerical models are presented in this section divided in two
subsections: rigid and deformable slides. This part focuses more specifically on the motion
and deformation of the slide, not on wave generation.
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1.2.1 Rigid slides

Moving boundaries

The simplest model for rigid slide is to impose the movement of the slide on the boundaries
of the domain, i.e. the slide is a deformation of the bottom floor. The kinematics of the
slide is prescribed. This method has the advantage of not having to manage the solid body
in the domain. On the experiments presented previously, Heinrich [38] carried out a few
computations imposing a moving boundary. The movement of the numerical slide is of
course in agreement with experiments as it is prescribed. Similar validation computations
were performed in by Grilli & Watts [34] with an idealised Gaussian shape.

Harbitz et al. [36] carried out simulations of the Tafjord event (1934) in Norway. They
neglected the shear stress between masses and fluid, considering therefore the slide as
a box with the total water displacement being the only important parameter for wave
generation. The motion of the slide is prescribed following the method of Harbitz &
Pedersen [35] to determine the slide characteristics. There are obviously no records of
the slide during the event but run-up measurements along the fjord shoreline. With this
simple method, they were able to obtain satisfactory run-up values.

The main limitation of this method is the no coupling between slide and waves as the
motion is prescribed. From a laboratory experiment, one can get the motion of the slide
but applications on real events are of course limited as the motion of the slide is never
known.

Penalised fluid

The importance of coupling between water and slide is highlighted by Jiang & LeBlond
[47].Abadie et al. [2] used a fluid penalised by viscosity to model a rigid landslide. This
method will be described in section 3.3.4, but in a few words, the viscosity is set to a high
value which allows to cancel the deformation term in the Navier-Stokes equations. This
approach has the advantage of implicitly resolving the coupling previously mentioned.
Abadie et al. [2] simulated the 2D submarine experiment of Heinrich [38] and the 3D
experiment of a partially submerged rigid triangular body sliding down an incline (Liu
et al. [55] experiment). The slide centre of mass displacement is shown to be in good
agreement with experimental results (Figure 1.3).

Intermediate conclusion on rigid slide models

Assuming that only the general characteristics of the slide like its thickness, mass, velocity
and volume are important in wave generation led to the rigid slide model. This first ap-
proximation can give an assessment of the wave amplitude and run-up heights. However,
considering wave amplitudes observed in real events, a difference between 15 to 35% in
these predictions due to the deformation of the slide (Ataie-Ashtiani & Najafi-Jilani [4],
Ataie-Ashtiani & Nik-Khah [5]) can not be neglected.
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Figure 1.3: Time evolution of vertical slide displacement (dots), Heinrich’s experiment
(line): NS-TVD model simulations for a single rigid triangular block, from Abadie et al.
[2]

1.2.2 Deformable slides

A second approach more elaborated is to take into account the landslide deformability.
Most studies model the slide as a fluid based on different rheologies. Other approaches
impose moving boundaries like for rigid slide or couple the fluid code with a solid code
that solves the slide motion.

Moving boundaries

In a first paper, Watts et al. [95] studied the effect of deformation of submarine landslides
using a parabolic shape. Comparing to a simulation with a modified Bingham model,
they found that, at early stage, the movement of the slide centre of mass can be defined
by a curve and the maximum thickness decreases linearly in time. They also showed that
typical length and slide front position are proportional to the centre of mass position.
Following this study, Grilli & Watts [34] applied this theory by imposing the movement of
the slide as well as the slide thickness and length deformation working on the boundaries of
a fully non-linear potential flow. The influence of the deformation on the generated waves
was studied, and it was concluded that the characteristic tsunami amplitude increases
for deforming slides compared to rigid slides in contrast with the observations of Ataie-
Ashtiani & Najafi-Jilani [4].

Coulomb-like continuum medium

The Coulomb-like continuum model described in Savage & Hutter [81] is commonly used
for landslides modelling (Yavari-Ramshe & Ataie-Ashtiani [98]). This model consists in
modelling the intergranular stresses by a Coulomb friction.
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For instance, Ma et al. [59] included the model of Iverson & Denlinger [46] in their
two-layer granular landslide and tsunami model. The basal shear stress is a Coulomb-type
friction law. There is no mixing between landslide and water and the continuity of the
normal stress is imposed at the interface. The validation of the granular flow is realised
by comparison with an analytical model. It is established that granular flow motion is
well captured by the model. The model is also validated by simulating the 2D experiment
of impulse waves generated by a subaerial landslide as presented in Heller [40] and Heller
& Hager [43]. The slide profile was correctly except for a slight overprediction of the
slide height. The slide velocity was also in good agreement with measurements. However,
because of the use of a depth-averaged model, air cavities observed in the experiment
are not present in the simulations. Additionnaly, because the Coulomb friction is not
modified in the model after a change of slope, there is an overprediction of the slide front
and wave height. The validation on a 3D experiments (Mohammed & Fritz [65]) gives
similar conclusion: waves are slightly overpredicted.

Kelfoun et al. [51] also employed a two fluids model with a Coulomb-like continuum as
landslide model for simulations on the Réunion Island volcano. The landslide rheological
law was calibrated based on comparison with natural deposits. Unlike Ma et al. [59],
imposing the basal shear stress as a constant frictional retarding stress, gave better results
than the Mohr-Coulomb frictional law. From this calibration, simulations were carried out
to predict the waves generated on the Reunion Island and Mauritius coasts for different
scenarios of slide volume, type of collapse (single or retrogressive), and basal shear stress
value.

Inviscid fluid

The inviscid fluid has no viscosity and therefore no tuning parameter can be used for
calibration.

For instance, Abadie et al. [1] performed simulations of wave generated by the Cumbre
Vieja Volcano flank collapse modelling the landslide by an inviscid fluid. Four scenarios
were considered depending on slide volumes (i.e. 20, 40, 80 and 450m3). In this work,
using an inviscid fluid for landslide model is interpreted as the worst case scenarios as
there is no dissipation during the sliding.

Newtonian fluid

The Newtonian fluid includes viscous dissipation and has one parameter to calibrate,
namely the viscosity.

Grilli et al. [31] simulated the experiments of wave generation by the submarine gran-
ular slide presented in section 1.1.1 and modelled the slide as a Newtonian fluid. A first
approximation of the viscosity value is done by using a theoretical expression for suspen-
sion of water with a high concentration of glass beads (Eilers [20], Frankel & Acrivos [22],
Quemada [78]). The viscosity is evaluated for the packing of randomly packed spheres.
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By taking into account that the volume fraction decreases during the experiment as the
slide runs down the incline, this viscosity value finally imposed in the model is lower than
its evaluation from theoretical expressions. The influence of viscosity on wave generation
is studied. Slide maximum velocity, and distance travelled by the slide at a given time
are shown to drop off as the viscosity increases, also leading to a reduction of wave am-
plitudes. After validation on laboratory experiments, they applied the method on real
geometry off the US East Coast. The model is calibrated using previous simulations with
a rigid slide. The principal remark is that at this scale the slide motion is more sensitive
to the bottom friction that viscosity.

Bingham fluid

The Bingham fluid is a non Newtonian fluid which flows when a specified shear stress is
reached, hence the formation of a plug zone with no deformation and a shear zone during
the flow. Therefore two parameters must be calibrated: yield stress and viscosity. It is
usually employed for modelling snow, muds, submarine and river sediments or volcanic
lava.

Jiang & LeBlond [48] used the Bingham fluid but limited their range of study to
laminar cases (small incline angle) of underwater slides. Compared to a viscous fluid, the
Bingham fluid travels to a finite distance and generates waves of smaller amplitudes but
the evolution of the waves is quite similar. Energy transfer is greater for small values of
yield stress (which lead to greater slide mobility), i.e. it is largest for a viscous fluid.

Coupling with a solid code

It is possible to couple a fluid code to a code capable of computing the motion of a
large number of particles, therefore no rheology is applied to model the slide but it is
represented by a set of solid blocs whose motions are solved by the solid code. This
method allows water seepage between the solid bodies to be taken into account unlike the
previous models which consider the slide as one fluid volume immiscible with water.

Zhao et al. [100] coupled a CFD (Computational Fluid Dynamics) code with a DEM
(Discrete Element Method) code. They carried out simulation of the Vajont rockslide.
The slide is modelled by relatively coarse grains (particles of diameter between 1.8 and
3.8m) due to the high computational cost. The hydraulic conductivity of the model is
two orders of magnitude larger than regular materials, which leads to a large permeability
of the slope, i.e. the water flows back into the slope quickly. This can induce more fluid
seepage than in reality. The run-up values are compared with available measurement and
are found to be in relatively good agreement.
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1.3 Numerical flow modelling
Different degrees of numerical flow modelling can be chosen depending on the details of
interaction and on the processes which are needed for the aim of the study.

1.3.1 Shallow water equations

The shallow water equations are depth-averaged equations very commonnely used in lit-
erature. Even though it is more common for wave propagation, a few studies also employ
them for wave generation (about 50% of the studies on landslide generated waves accord-
ing to Yavari-Ramshe & Ataie-Ashtiani [98]).

In their simulations of the Tafjord event, Harbitz et al. [36] justify the use of linear
shallow water equations by the hypothesis that landslide generated waves are long waves
with a few non-linear effects. Non-linear effects can appear in the wave generation zone on
a short period of time. However errors associated to the linear hypothesis are generally not
greater that the errors generated by the approximations on the slide shape and motion.
The shallow water approximation can be both applied to landslide and water waves.
Heinrich et al. [39] compared a shallow water model and a Navier-Stokes model. Jiang &
LeBlond [47] consider that the shallow water approximation can be taken only for small
slope (between 1 and 10°).

From Lynett & Liu [58], the shallow water equations are valid only for submarine
slides in very shallow water, i.e. a water depth above the slide 15 times greater than the
characteristic horizontal length of the slide. From smaller ratio, dispersive effect can not
be neglected and Boussinesq wave equations are recommended.

1.3.2 Boussinesq wave equations

Unlike shallow water equations, Boussinesq wave equations allow a non-constant value
of velocity over depth, which is is often encountered during propagation and inundation
(Watts, Grilli, Kirby, Fryer & Tappin [92]). Boussinesq-type models are usually employed
for the propagation of waves because they take into account dispersive and non-linear
effects but are not as expensive as Navier-Stokes models. Their use for wave generation
by landslide is also somehow limited because of the depth-averaging. Nevertheless, there
are a few studies of this kind in the litterature.

For instance, Ataie-Ashtiani & Yavari-Ramshe [6] extended the model of Lynett & Liu
[58] to a fourth-order scheme. After a validation with experimental results, they applied
the model on two real cases of landslide in dam reservoirs. The model is shown to achieve
high accuracy on the resolution of the non-linear effects and frequency dispersion.

However, Lynett & Liu [58] indicate that depth-integrated model becomes inaccurate
when the water depth above the slide is 3.5 times less than the characteristic horizontal
length of the slide. For smaller water depth, other type of models need to be employed.
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1.3.3 Potential flow equations

In potential flow equations, the fluid is assumed to have an ideal motion of homogeneous
stream flow without whirls or friction forces (Yavari-Ramshe & Ataie-Ashtiani [98]), nev-
ertheless, these types of models include both dispersive and non-linear effects.

A numerical wave tank based on fully non-linear potential flow theory to simulate
tsunami generation by underwater landslides has been developed in 2D by Grilli & Watts
[33] and 3D by Grilli et al. [32]. The 2D model was successfully validated by Grilli &
Watts [34] on experimental results with a semi-elliptical rigid slide and used for the study
of parameters on wave generation and the development of predictive equations (Watts
et al. [93]). The validation 3D model is also demonstrated in Enet & Grilli [21], Grilli
et al. [30].

However, these equations have limitations as they are accurate for rigid submarine
slides but cannot be employed for subaerial landslides where the water-slide interactions
are more complex with vorticity created by flow separation or interface reconnection
(Abadie et al. [2]).

1.3.4 Navier-Stokes equations

The equations that take the least hypothesis on the flow are the full Navier-Stokes equa-
tions.

Examples can be found in Heinrich [38] with a prescribed slide motion. The results are
in agreement with the experiments except near the block due to the absence of turbulence
model according to the authors. Liu et al. [55] also prescribed the slide motion and
obtained quite good agreement with experimental results for 3D simulation of subaerial
rigid slide with a Large Eddy Simulation (LES) model.

Abadie et al. [2] solved the Navier-Stokes equations and simulated 2D, 3D, submarine
and subaerial cases of wave generated by rigid slide (modelled as a penalised fluid as
presented in the section 1.2.1) and obtained good results on the free surface deformation.
Solving Navier-Stokes equations for the slide aslo allows to describe its bulbous shape and
the vortex at the front as observed in the Viroulet’s experiments and achieved in their
simulations using a Newtonian fluid (Viroulet [86], Viroulet et al. [88]).

The models can be separated between Eulerian and Lagrangian methods. Yim et al.
[99] compared simulations of the Scott Russel wave generator for a Volume Of Fluid
(VOF) model and a Smoothed Particle Hydrodynamics (SPH) model. In this case, the
wave amplitude and phase were better predicted by the VOF model than the SPH model.

Navier-Stokes equations can be applied in most cases, however it is also very expensive
in time and computer resources for large or complex geometries.
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1.4 Pyroclastic flow wave generation and models

1.4.1 Wave generation process
According to the definition of Cas &Wright [11] pyroclastic flow is a hot, variably fluidized,
gas-rich, high particle concentration mass-flow of pyroclastic debris. The pyroclastic flow
has two components: a first dense, ground-hugging part (the pyroclastic debris flow) and
a second less dense, more buoyant part (the plume) (Watts & Waythomas [94]).

Several processes of wave generation are involved during the entering of pyroclastic
flow into a water body. They are illustrated on Figure 1.4. The possible processes are the
wave generation by a steam explosion which can be produced when the hot pyroclastic
flow comes into contact with water, the penetration of dense pyroclastic debris flow,
plume pressure or shear on water surface. To explain how those mechanisms can or
cannot generate a coherent wave, Watts & Waythomas [94] evaluated the wave amplitude
they can produce. They conclude that the dense part of the pyroclastic flow is the most
energetic one and dominates the tsunami generation. The other possible processes do not
produce coherent and significant waves able to propagate away and affect shoreline.

Figure 1.4: Schematic illustration of interaction scenarios where pyroclastic flows gener-
ated on land enter the sea, from Freundt [23]

1.4.2 Experimental studies
As only few observations were recorded on real events, the experiments carried out
by Freundt [23] is a valuable resource to better understand the interactions between
hot (> 250°C) and cool (< 150°C) pyroclastic flow and water. From this study, the
pyroclastic flow enters water and generates a wave, an ash-cloud surge and a turbidity
current develops. Some explosions throw ash forward that collapses and then merges with
the turbidity current. At laboratory scale, it seems that the waves are mainly generated
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by the dense current but also by steam explosion and particles collapsing into water at
low or high temperature. These experiments confirm that pyroclastic flow can generate
waves whatever its temperature.

In order to model numerically the dense part of the pyroclastic flow, it is necessary
to study its behaviour during motion. For Druitt et al. [16], gas retention is likely to be
able to retain gas a few metres thick for a few tens to a few hundreds of seconds. In this
condition, pyroclastic flows might be able to maintain low friction for a long period of
time during its motion.

This theory is strengthened by Roche et al. [79] study. Comparing a water dam break
to a dam break of initially fluidized dense granular flow, Roche et al. [79] observe that
their propagation is very similar except in a last stage where the granular flow stops
while the water flow decelerates slightly. They conclude that the pyroclastic flow can be
modelled as an inertial fluid providing the flow occurs at a high shear rate. However, at
lower shear rate, the behaviour is closer to dry granular flow and friction between grains
has to be taken into account.

1.4.3 Numerical studies

Waythomas & Watts [96] simulated a tsunami generated by pyroclastic flow at the Ani-
akchak Volcano, Alaska. They computed the tsunami source using the Tsunami Open
and Progressive Initial Conditions System (TOPICS) that provides tsunami sources for
earthquakes, underwater slides, debris flow and pyroclastic flows (Watts, Grilli, Kirby,
Fryer & Tappin [92]). TOPICS generates initial water surface elevations and velocities
using curve fitting techniques (Grilli & Watts [33], Grilli & Watts [34]). This source is
then used as initial condition in a Boussinesq model. Their results agree generally with
the deposits recorded. The potential of far-field tsunami generation by pyroclastic flow is
also demonstrated.

Maeno & Imamura [60], Maeno & Imamura [61] modelled pyroclastic flow as an invis-
cid flow. They tried to reproduce the tsunami generated during the Krakatau eruption of
1883 by three different sources: pyroclastic flows, phreatomagmatic explosion and caldera
collapse (Maeno & Imamura [61]). Comparing their results with the estimation of wave
heights from historical records, the pyroclastic flows sources appears to be the most prob-
able source providing the better prediction.

1.5 Energy transfers between slide and waves

The study of the energy transfers between landslide and waves is an essential part of the
process understanding. Before the event, the slide has a potential energy. During the
motion of the landslide, this energy is part converted into kinetic energy, lost by friction
or transferred to water. A part of energy transferred to water generates the waves. A
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few studies focused on these energy transfers for subaerial and submarine slides based on
laboratory experiments or numerical simulations.

1.5.1 Slide energy computation

Potential energy released during a real event can be evaluated by knowing the initial and
final positions of the slide. However, kinetic energy is more difficult to estimate as the
velocity and acceleration of the slide are very seldom known. In this case, the use of
laboratory experiments or numerical simulations enables to know the slide motion and to
evaluate the energy released by the slide during wave generation.

For instance, Ruff [80] considers that the energy released is only the difference between
potential energy before and after the event and does not take kinetic energy into account.

In other studies, only kinetic energy is computed and considered for the assessment
of energy transfer from slide to waves. For example, for submarine slide, Watts [91]
computes the slide kinetic energy as Ek = ρsu

2
tA with ρs the slide density, ut the slide

terminal velocity evaluated by the initial slide parameter and A the cross-sectional area.
In a similar way, for subaerial slide, Fritz et al. [24] compute a kinetic slide impact energy
as Ek = 1

2msv
2
s with ms the slide mass and vs the slide impact velocity depending on slide

drop height, a friction coefficient and slope angle. Heller et al. [41] used sensors on a rigid
slide to compute the kinetic energy.

Energy conversion from potential to kinetic energy can be evaluated from the compu-
tation of both energies. From their experiments on submarine landslides, Sue et al. [84]
found that the conversion ratio increases with the initial slide acceleration (30% and 50%
of conversion in their experiments) but initial submergence seems to have a low influence
on this conversion.

1.5.2 Wave energy computation

Similarly, the wave field is rarely known in real events and wave heights are evaluated
from records, deposits or wave gauges. This makes it even more difficult to quantify wave
energy.

In laboratory experiments, wave gauges or videos give water free surface elevation.
From these data, wave potential energy can be assessed. Wave kinetic energy requires
more complex techniques like Particle Image Velocimetry (Heller et al. [41]) or Particle
Tracking Velocimetry (Sue et al. [84]) to get the water velocity field. If kinetic energy
is not known, equipartition between potential and kinetic energy is often assumed (Fritz
et al. [24], Ataie-Ashtiani & Nik-Khah [5]). Fritz et al. [24] showed that this hypothesis
is not correct near the impact zone. The hypothesis of equipartition is validated in linear
wave theory, however it is common for landslide tsunamis to be highly non-linear and
exhibit kinetic energy larger than potential energy (Heller et al. [41], Heller & Hager
[42]). Heller et al. [41] computed kinetic and potential energy at probes considering that
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the wave crest and through travel at the same speed even if this is not completely true
(Fritz et al. [24]) and estimated that this hypothesis leads to a maximum error of 10%.
Sue et al. [84]) computed both energies directly on parts of the domain. Considering the
repartition of energy in the wave train, Fritz et al. [24] observe that between 8 and 100%
of the energy is located in the leading wave crest.

1.5.3 Evaluation of the energy transfer
The range of energy conversion rate found in literature is very broad. Furthermore, the
conversion is evaluated considering different slide energy.

For instance, for subaerial slide, Fritz et al. [24] and Ataie-Ashtiani & Nik-Khah [5]
evaluate the conversion of kinetic slide impact energy to the wave train between 4 and
50%.

For submarine slide, Ruff [80] estimates the transfer of slide potential energy to wave
energy between 0 to 50% quantitatively from reasonable geologic and hydrodynamic pa-
rameters. From laboratory experiments, Watts [91] evaluates the energy conversion from
solid block kinetic energy to water wave energy per unit width between 3 and 7%. Be-
tween 1 and 14% of energy is transferred to waves for Ataie-Ashtiani & Najafi-Jilani [4]
with the same expression. For Sue et al. [84], conversion of landslide kinetic energy to
wave potential energy is between 2.8% and 13.8%. In numerical simulations of Jiang &
LeBlond [47], the maximum value of ratio of wave energy and slide potential energy is
between 2 and 4%.

These observations highlight the parameters which control the energy transfer between
slide and waves. For subaerial slide, the energy transfer decreases for increasing Froude
number (Ataie-Ashtiani & Nik-Khah [5]). For submarine slide, the energy conversion
increases when the initial slide submergence decreases (Ataie-Ashtiani & Najafi-Jilani
[4], Sue et al. [84]).

1.6 Conclusion
Wave generation involves complex processes which must be correctly modelled. Although
different numerical models of landslide and flow are avalaible, some grey areas are still
present in the litterature,especially on the energy transfer from slide to water and the
importance of slide parameters.

In this thesis, a model of landslide composed of several rigid blocks in a Navier-
Stokes code is proposed. The originality of this model is the development of a routine
inside the code which manages the collision between the blocks composed of penalised
fluid (Section 1.2.1). This method enables to solve fluid/solid and solid/solid interactions
without the addtion of any external code.

Then, we propose to simulate two cases of granular flow using a Newtonian fluid model
and a µ(I) formulation (Section 2.5). The µ(I)-rheology models dense granular flow and
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have not yet been found in litterature for wave generation study. Moreover, this model
can help calibrate the Newtonian fluid viscosity. Additionnaly to these models, energy
transfers from slide to waves is studied computing both kinetic and potential energies as
only realised in a few studies. An energy conversion rate which takes viscous dissipation
into account is proposed.

The last chapter deals with wave generation by pyroclastic flow. Only a few numerical
studies addressed this subject. In the framework of the RAVEX project, experiments
with fluidized granular beds will be carried out. In order to prepare simulations on
these experiments, computations are performed on fluid/fluid experiments. This work is
an overview of what is intended for the project in terms of energy transfer study and
parameters influence.
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NUMERICAL TOOL PRESENTATION: THETIS
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2.1 THETIS presentation
THETIS is a numerical model developed by the I2M Laboratory in Bordeaux. It enables
to resolve various problems encompassing fluid flows, thermal transfers or porous media.
The approach is Eulerian with a fixed cartesian mesh. For this chapter, only the solving
of the Navier-Stokes equations that govern the incompressible flows of Newtonian fluids
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are presented: 
∇ · v = 0

ρ

(
∂v

∂t
+ (v · ∇)v

)
+∇p−∇ · [µ(∇v +∇tv)] = ρb

(2.1)

One of the particularity of the code is that to propose a 1-fluid formulation (Kataoka
[50]) to solve multiphase flow of immiscible fluids. In this model, in the Navier-Stokes
equations one equivalent fluid intervenes whose physical characteristics, ρ and µ, vary in
space and time. In order to determine the interface position between phases and the local
physical properties of the flow, a function called the colour function or Volume-Of-Fluid
function defines the presence rate of each phase in the cells.

2.2 Boundary conditions and obstacles
Boundary conditions at the domain limits or solid element included in the domain are
treated with a method consisting in the addition of a penalty term in the momentum
equation.

2.2.1 Boundary conditions
The method is only presented here for boundary conditions on velocity but it can also
be applied on scalar variables like pressure. For instance, the addition of a penalty
term in momentum equation is based on the work of Angot [3] and Khadra [52]. This
method consists in writing the boundary conditions as surface flux directed outward the
computation domain:

−
(
∂v

∂n

)
S

= Bu(v − v∞) (2.2)

where Bu is a matrix whose coefficients determine the type of boundary conditions to
impose. The boundary condition is a Neumann condition if the diagonal coefficients are
zero and therefore the flux is null. On the contrary, if the diagonal terms are infinite,
it follows v = v∞ and the boundary condition is a Dirichlet condition. In this case,
the velocity to impose can be chosen by setting the value of v∞. Mixed conditions can
be imposed by changing the value of the matrix coefficients. For computation of waves
generated by landslides, the following boundary conditions have been considered:

i. slip condition (or symmetry) which imposes a Neumann condition to the tangential
component on the boundary and zero normal velocity. The fluid can only move
parallel to the boundary.

ii. no-slip condition (or wall) imposing zero velocity on all the boundaries. The fluid
is blocked on all directions.
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Considering the penalty term, the system (2.1) becomes:
∇ · v = 0

ρ

(
∂v

∂t
+ (v · ∇)v

)
+Bu(v − v∞) = ρb−∇p+∇ · [µ(∇v +∇tv)]

(2.3)

2.2.2 Obstacles
For an obstacle situated inside the computation domain, three numerical methods are
possible:

i. The first method consists in penalised the velocity by using the penalty terms added
in the previous subsection. By changing coefficients in the matrix Bu, it is possible
to impose a velocity at points anywhere in the domain. To obtain an obstacle, it is
only necessary to impose a zero velocity at the location of the intended obstacle.

ii. The second method is inspired from Brinkman theory. It consists in considering
each phase as a porous media of varying permeability K. By adding a new term
(Brinkman term) in momentum equation, it is possible to distinguish a fluid phase
from a solid phase by varying the value of K:

ρ

(
∂v

∂t
+ (v · ∇)v

)
+Bu(v − v∞) + µv

K
= ρb−∇p+∇ · [µ(∇v +∇tv)] (2.4)

For K → +∞, the Brinkman term disappears from equation (2.4) and the media is
considered as fluid. For K → 0, the Brinkman term becomes preponderant over the
other terms of the equation. At considerated nodes, the imposed velocity is null in
all directions and the media is treated as an obstacle. In practice, the values of K
are set to 10−40 for a solid and 1040 for a fluid.

iii. The third method consists in considering the obstacle as a fluid of infinite viscos-
ity. This method has been used in this work to model solid/fluid interaction and
extended to solid/solid interaction. It will be detailed in Section 3.3.4.

2.3 Navier-Stokes solving method

2.3.1 Temporal discretisation
The simulations are divided into time steps ∆t. These time steps are either fixed at a
given value or evaluated by a dynamic Courant-Friedrichs-Levy (CFL) condition. The
CFL condition controls the maximal distance travelled by a particle during one time step.
The implicit temporal discretisation of equations is realised by a Euler scheme of first
order (GEAR1):

∂v

∂t
= vn+1 − vn

∆tn (2.5)
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Applied to the Navier-Stokes equations (2.1), with the convective term (vn+1 · ∇)vn+1

linearised as (vn · ∇)vn+1 to give a linear formulation of the problem, this leads to the
following system:

∇ · vn+1 = 0

ρn(v
n+1

∆tn + (vn · ∇)vn+1) +Bu(vn+1 − v∞) + µvn+1

K

+∇pn+1 −∇ · [µn(∇vn+1 +∇tvn+1)]− ρnb = ρn
vn

∆tn

(2.6)

2.3.2 Spatial discretisation

Figure 2.1: Presentation of offset grids and control volumes in THETIS

The spatial discretisation of equations uses the finite volume method. The compu-
tation domain is discretised in control volumes for each variable of the problem. The
equations are integrated on these control volumes, in which each variable is supposed
constant during a time step ∆t. The terms of the equations are expressed by a conserva-
tive form in order to use the Stokes formula on the control volume (VΩ):

1
VΩ

∫
Ω

(∇.F ) dv = 1
VΩ

∫
Γ
F.n ds (2.7)

with
∫

Γ
F.n ds =

∫
ΓN

F.nN ds+
∫

ΓS

F.nS ds+
∫

ΓE

F.nE ds+
∫

ΓW

F.nW ds (2.8)
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F is the considered variable, Γi the interface of the volume VΩ with the neighbour volume
oriented along i (i.e. North, South, East or West) and ni the normal to the interface Γi.

Patankar [71] showed that the use of offset grids between the different variables as on
Figure 2.1 allows to improve the accuracy of pressure gradient and velocity divergence
computation. This method is also called Marker And Cells (MAC) method (Harlow &
Welch [37]).

With this method, scalar variables (pressure, density and colour function) are given
on mesh nodes composing the main grid. They are evaluated by integration on control
volumes centred on mesh nodes represented by a green surface on Figure 2.1. Velocity
components are evaluated on offsets grids represented by red and blue surfaces on Fig-
ure 2.1. The viscosity is also evaluated on offset grid whose control volume is yellow on
Figure 2.1.

2.3.3 Velocity-pressure coupling resolution

Augmented Lagrangian method

The Lagrangian Augmented method has been developed a few years ago in order to solve
the velocity-pressure coupling presented by the system (2.6). The pressure term is made
explicit and the problem is reformulated. The new problem consists of optimising the
search of the saddle point associated to Augmented Lagrangian. The method is iterative
(Uzawa algorithm) whith iterations intern to time iterations. With k iteration, the system
becomes:

ρn(vn,k+1

∆tn + (vn,k∇)vn,k+1) +Bu(vn,k+1 − v∞) + µnvn,k+1

K
− ρnb−∇pn,k

−∇[µn(∇vn,k+1 +∇tvn,k+1)]− ru∇(∇ · vn,k+1) = ρn vn

∆tn

pn,k+1 = pn,k − rp∇ · vn,k+1

(2.9)

with n the temporal iteration
and ru and rp two strictly positive convergence parameters

The algorithm convergence is reached when (vn,k+1, pn,k+1) = (vn,k, pn,k). The advantage
of this method is the explicit computation of the pressure where no limit condition on its
value is required.

Pressure correction

The pressure correction introduced by Chorin [13] and Goda [29] is composed of two steps:

i. From the couple (vn,pn), a velocity field v̄ is computed by the following expression:

v̄ − vn = ∆tn
ρn

(
ρnb−∇pn +∇ · (µn[∇vn +∇tvn])−∇ · (ρnvn ⊗ vn)

)
(2.10)

This field satisfies the momentum equation but not the incompressibility condition.
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ii. Velocity v is computed by projection of v̄ on a field of zero divergence:

vn+1 = v̄ − ∆tn
ρn
∇(pn+1 − pn) (2.11)

The second step (projection step) imply the determination of the pressure pn+1. In
order to achieve that, the Poisson’s equation:

∇ ·
(

∆tn
ρn

∆(pn+1 − pn)
)

= ∇ · v̄ (2.12)

is implicitly solved beforehand.

2.4 Interface tracking methods

2.4.1 Volume Of Fluid method
As presented earlier, the 1-fluid model of Navier-Stokes equations requires knowing the
physical properties of the equivalent fluid in the domain. In order to achieve that, the
position of the interface between the phases must be determined. A colour function φFi

for each phase defines the volume fraction of a phase Fi in each cell, namely:

φFi
= 1 if the fluid Fi occupies all the cell

φFi
= 0 if the fluid Fi is not present in the cell

0 < φFi
< 1 if the fluid Fi partially occupies the cell

(2.13)

The temporal evolution of the colour function during the computation is determined
by solving the following advection equation:

∂φFi

∂t
+ v · ∇φFi

= 0 (2.14)

where v is the fluid velocity. The evolution of the interface is represented by the iso-
contour φFi

= 0.5 and is modelled by the interface transport methods presented in the
subsections 2.4.2 and 2.4.3.

Determination of physical properties The physical properties of the equivalent
fluid, i.e. the density ρ and the dynamic viscosity µ, are expressed according to the colour
functions φFi

. If the cell is occupied only by a fluid Fi, the density and dynamic viscosity
are equal to those of fluid Fi. Otherwise in mixed cells, in order to take into account
the weight of each present fluid, the equivalent properties are computed by an arithmetic
mean even if this method can not be physically justified for the viscosity, namely:

ρ =
∑
i

φFi
· ρFi

(2.15)

µ =
∑
i

φFi
· µFi

(2.16)
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2.4.2 VOF-TVD
The so-called TVD (Total Variation Diminishing) method consists in simply transporting
the colour function by solving algebrically the advection function (2.14) using an appro-
priate numerical scheme. When using a classic upwind scheme, an excessive numerical
diffusion is generated at the interface. However, solving the advection equation with a
higher order scheme, a Lax-Wendroff scheme for instance, induces large numerical oscil-
lations to appear at the interface. In order to avoid these problems, a TVD numerical
scheme is used (Vincent & Caltagirone [85]). A TVD scheme is equivalent to a high or-
der scheme in domain part where the solution is regular, namely where only one fluid is
present, avoiding the diffusion. At the interface between fluids, where the colour is highly
discontinue, the scheme is first order, limiting oscillations. In this method, the interface is
not reconstructed conversly to the so-called geometrical VOF methods (see next section).

2.4.3 VOF-PLIC
The PLIC (Picewise Linear Interface Construction) method uses an interface reconstruc-
tion method into straight segments based on the colour function.

The method consists in three steps:

i. Reconstruction of the interface:

• The segment is oriented by computed the normal directed outward. This is
realised by approaching the gradient of the colour function in the neighbour
cells by a 9 points finite difference. It follows:

n = −∇φ (2.17)

• The segment is positioned in the cell according to the value of the colour
function in the cell.

ii. Advection of the segment by linearly interpolating the velocity components previ-
ously computed on the offset grids.

iii. Determination of the new field of colour function by computed the area ratios de-
limited by the new position of the segments.

Phase regularisation It may occur that the PLIC method does not allow the flow to be
correctly solved and generates a cloud of drops in particular during interface reconnection.
This phenomenon can be avoided by using the method SVOF (for Smooth VOF) developed
by Pianet et al. [76]. The idea is to introduce a controled diffusion zone in order to smooth
the interface. This smoothed colour function φS is obtained by analogy with the thermal
diffusion equation:

∂T

∂t
−∇aT∇T = 0 (2.18)

29



CHAPTER 2. NUMERICAL TOOL PRESENTATION: THETIS

where aT is the thermal diffusion coefficient and T the temperature. The characteristic
length of diffusion in this case is δ = √aT τd where τd is the characteristic time of diffusion.

The function φS is built from the time discretised equation (2.18):

−∇aT∇φS,n+1 + φS,n+1 = φS,n (2.19)

The equivalent diffusion coefficient aT is expressed in function of the interface thickness
Li and the local cell dimensions ∆h as:

aT = Li∆h2 (2.20)

This equation is then discretised in space by a finite volume method and a centred
scheme. The function φS is iteratively obtained by the following algorithm:

L1 = φ (2.21)
For k = 1 . . . N − 1, solve
−∇.τ ∗d∇φS,k+1 + φS,k+1 = Lk (2.22)

Lk+1 = φS,k+1 (2.23)

where τ ∗d is defined by τ ∗d = Li∆h2

N
. After the solving of equations (2.21)-(2.23), the

condition φS = φS,N is verified.
The function φS has a thin zone of diffusion which allows to represent the interface in

a more regular way. In practice, parameters L1 and N are chosen arbitrarily in order to
limit the interface splitting while keeping an accurate description of the interface.

2.5 Granular media modelling: µ(I)-Rheology
In the simulations presented here, three phases are present: air, water and slide. Air and
water are modelled by a classic Newtonian fluid. The slide will be modelled differently
according to the cases. In order to model granular slide, two fluid models are used:
Newtonian fluid and µ(I)-rheology.

The µ(I)-rheology has been developed to model dense granular flow. The µ(I)-
rheology implemented in THETIS during the thesis has the form described by Lagrée
et al. [53] and implemented in the CFD software Gerris. The viscosity η, the friction
coefficient µ(I) and the inertial coefficient I are defined as follows:

η = max

(
µ(I)√
2D2

p, 0
)

(2.24)

µ(I) = µs + ∆µ
I0/I + 1 (2.25)

I = d
√

2D2√
|p|/ρ

(2.26)

with
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• D2 the second invariant of the strain rate tensor

• p the pressure

• µs, ∆µ and I0 three material-dependent coefficients

• d the diameter of the grain

• ρ the density of the grain
This rheology has been developed for dry granular flow. In the case of granular

flow in a viscous fluid, Cassar et al. [12] distinguished different regimes and adapted
the expression of the inertial coefficient depending on of the regime. Three regimes are
classified according to the values of two dimensionless numbers, the Stokes number St
and the density ratio r:

St =
(2

3

)1/2 αpd
√
ρpPg

ηf
(2.27)

r =
√

ρp
ρfCd

(2.28)

with
• αp a coefficient depending on the permeability of the porous medium

• ρp the density of the grain

• Pg the confining pressure

• ηf the kinematic viscosity of the fluid

• ρf the density of the fluid

• Cd the drag coefficient
The following scheme shows the regime in a (St, r) plane:

Figure 2.2: Different flow regimes in (St, r) plane based on the fall of one grain, from
Cassar et al. [12] and [17]
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The inertial coefficients for the different regimes are:

• Free-fall regime for St� 1 and r � 1:

Iff = γ̇d

√
2ρp
3Pg

(2.29)

• Viscous regime for St� 1 and r � St:

Iv = γ̇ηf
αPg

(2.30)

• Inertial regime for St� r and r � 1:

Ii = γ̇d

√
2ρfCd
3Pg

(2.31)

Cassar et al. [12] showed that the friction coefficient followed the same curve for both
free-fall and viscous regime, the inertial regime having not been experimented.

2.5.1 Validation simulation

Case

The model implemented in THETIS had to be validated. The validation case chosen is
a 2D granular column collapse. The data were obtained from discrete simulation (Lagrée
et al. [53]), and also used for the validation of the µ(I)-rheology implemented in Gerris.
The column has an aspect ratio a = 6.26. The parameters of the rheology are set to
µs = 0.32, ∆µ = 0.28 and I0 = 0.4 in Gerris simulation. The data are dimensionless,
in particular time is adimensionalised by

√
H0/g. The viscosity in the fluid column is

computed at each time step and then the Navier-Stokes equations are solved.

Results

A comparison between the discrete and the continuum models is made at several times
of the computation on Figure 2.3. The results from THETIS reproduced accurately the
discrete simulation data at all time steps except for the last one where THETIS simulation
shows a more flattened media at the middle and thicker on the sides.
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(a) t∗ = 0 (b) t∗ = 0.66

(c) t∗ = 0.95 (d) t∗ = 1.24

(e) t∗ = 1.52

(f) t∗ = 2.28

Figure 2.3: Comparison between continuum (THETIS, red line) and discrete (from Lagrée
et al. [53], grey and black points) models for the granular column collapse
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3.1 Principle
A landslide is composed of grains in a very broad size range from decametres to particles
much smaller than micrometres (Davies & McSaveney [14]) due to the fragmentation of
the slide. This phenomenon makes landslides difficult to model as a discontinuous media
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composed of solid blocks. Moreover, the landslides are observed to have great mobility
and to travel in a manner similar to fluids (Legros [54]). For this reason, most of the
studies quoted in the Chapter 1 model the slide as a fluid.

However, the fluid model does not take into account the behaviour of solid blocks.
The exception is the µ(I)-rheology which models the interactions between grains (GDR
MiDi [28]) but it does not solve all the problems caused by fluid modelling as presented in
Chapter 4. For the modelling of wave generation by landslides, the slide can be modelled
as a set of solid spheres but this generally imposes a coupling between a CFD code and
an external code solving the solid/solid interactions, for example a CFD-DEM coupling
(Zhao et al. [100]).

The approach presented herein consists in using only a CFD code to solve both the
solid/fluid and solid/solid interactions. The slide is modelled as a set of discs in a 2D
domain (Figure 3.1). The discs consist of penalised fluid based on the method presented
in Section 3.3.4 and described in Ducassou et al. [19]. The discs behave as solid except
that because of their high viscosity and the specificity of the VOF method, they merge
when they collide mimicking a perfectly plastic shock. For this reason, a Fortran routine
has been developed in the code THETIS in order to manage the collisions between the
discs during the simulation.

Figure 3.1: Generation of wave by a landslide modelled as a set of discs

The routine works as follows:

• a first function predicts the possible collisions between the discs by first detecting
the neighbour discs and then evaluating their possible collision using their velocities
and relative distance. The method is presented in the first section.

• after the detection of collision, a function computes the time of the collisions and
the velocity of the discs after the impact. The trajectory of the disc is then managed
by the routine. The second section presents this model.

Two validation cases are carried out and presented in the third section.
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3.2 Collision detection

3.2.1 Neighbour disc detection
The neighbour disc detection is mainly inspired by methods used in DEM. In the latter,
simulations involve a large number of bodies and therefore numerous impacts can happen
at each time step. Therefore, algorithms for contact detection of bodies of different
shapes and sizes have been developed (Munjiza & Andrews [68], Perkins & Williams [74],
G. Nezami et al. [27], Mio et al. [64]). For the routine developed here, the aim is to
manage a reasonable number of discs (less than 20). Therefore, the algorithm has not
been optimised and may not be efficient for a larger number of discs. Moreover, the only
geometry considered is a disc which facilitates the resolution as only one contact point is
possible between two discs.

In the litterature, algorithms of contact detection are divided in two categories: the
space-based search and the body-based search (Munjiza & Andrews [68]). The two ap-
proaches have been adapted in THETIS.

Disc identification array

For ND discs in the simulation, they are all assigned an identification number i in
{1, 2, . . . , ND}, a radius ri, a centre Ci of coordinates Xi and velocity Vi, and a mass
mi.

The space-based method uses one or several grids to divide the space. The advantage
of THETIS is that the space is already partitioned by the mesh. Therefore, the grid can
be used for neighbour detection.

At each time step, the position of the disc centres are computed using the coordinates
of the centre at the previous time step and its velocity. An array DiscID of the size of
the pressure grid is created. For each pressure point P , its distance to the centres of the
discs is computed. If the distance if less than the radius of the disc i, the array value
corresponding to the index of pressure point P is set to i.

An example is given in Figure 3.2. Two discs 1,2 whose centres are respectively C1 and
C2 have the same radius R. The grid represented here is coarser than the real mesh for
clarity sake. The distances between the pressure point P and the centres C1 and C2 are
d1 and d2 respectively. d1 is greater than the radius R while the distance d2 is less than
R. Therefore, the array value corresponding to P is set to 2, the identification number of
the disc present at the pressure point P .

This array allows to locate the entire disc in space and not only its centre.

Neighbour detection using the cell array

In the same way as the conventional cell model (Mio et al. [64]), the neighbour points
of the pressure points belonging to a disc are tested for the presence of disc. This is
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Figure 3.2: Computation of the distances between a pressure point and the disc centres

realised thanks to the disc identification array DiscID. The presence of disc neighbouring
a pressure point could have been achieved using the colour function. However, all the
discs are the same fluid, therefore they have the same colour and the routine is unable to
know to which disc the pressure point belongs in contrast to using the disc identification
array. The size of the neighbour zone can be then adjusted by controlling the number of
cells in all directions.

For instance, on the Figure 3.3, the size of the zone is one cell in each direction. The
point P belongs to the disc 2, one neighbour is detected as the south-east neighbour
pressure point belongs to the disc 1.

Neighbour detection using the distance to the centre

The previous method is dependent on the cell size. By relying more on a body-based
search, a second method is developed by looking for neighbour in an annulus zone around
the disc whose size is independent of the mesh size. The zone has for centre the centre
of the disc Ci, and has an inner and outer radius equal to the disc radius ri and ri + δ

(δ > 0) respectively. In a similar way to the previous method, the distance between the
pressure points and the centres of the discs is computed. If the pressure point is located
in the neighbouring zone of a disc i, the value in the array DiscID is read. If this value
corresponds to a disc j, this disc is considered to be a neighbour of the disc i.

For instance, on the Figure 3.4, the disc 1 is considered a neighbour of the disc 2
because the point P is at a distance lower than R+ δ from C1 and belongs to the disc 2.
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Figure 3.3: Neighbour disc detection using the array DiscID: one neighbour detected at
the orange point

Figure 3.4: Neighbour disc detection using the distance to the centre

3.2.2 Collision test

The previous methods generate list of neighbours. We now have to dtermine whether they
are likely to collide or not. A routine has been developed to test the collision between two
neighbours. If the test is positive, namely they are going to collide, this routine predicts
the time and distance to the collision.
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The distance vector between the two centres is as follows:

dij = Xj(0)−Xi(0) + (Vj + Vi)t (3.1)

Two discs collide if the distance between their centres is the sum of the two radii, namely
if dij · dij = (ri + rj)2. Using the equation (3.1), it leads to the resolution of a quadratic
equation:

at2 + 2bt+ c = 0 (3.2)
with a = (Vix − Vjx)2 + (Viy + Vjy)2

b = (Xjx −Xix)(Vjx − Vix) + (Xjy −Xiy)(Vjy − Viy)
c = (Xjx −Xix)2 + (Xjy −Xjy)2 − (ri + rj)2

The reduced discriminant ∆ = b2−ac is calculated. Depending on its value, several cases
are distinguished:

• ∆ < 0: there is no real solution, hence no collision

• ∆ ≥ 0: there are one or two real solutions: t1 = −b−
√

∆
a

and t2 = −b+
√

∆
a

– if t1 < 0 and/or t2 < 0: there is no collision
– if t1 > 0 and t2 > 0: there is a collision at time tc = min(t1, t2)

3.2.3 Groups of collision
The collision test gives pairs of discs (i, j) that will collide at the time and distance
computed by the function. The next step is to compute the disc velocity after the collision.
This is done by solving a system on groups of discs involved in a collision. For now, only
pairs of discs are defined by the collision test. However, it is likely that the collisions are
quasi-simultaneous between more than two discs. For this reason, a criteria on time is
added to decide whether the collisions are simultaneous or not. Based on this criteria,
the groups of collision are created, i.e. the pairs of discs which are going to collide in a
time lower than τ are merged in one group if they have one disc in common.

For example, if the initial collision pairs are (i, j), (k, l), (i,m) and (m,n), considering
they all collide under a time τ , the final groups of collision are (i, j,m, n) and (k, l). The
time τ is for now arbitrarily chosen.

3.3 Model the collision
It is recalled that the objective of the routine is to avoid the collision and the merging
of the penalised discs while keeping their physical trajectories. In order to do this, the
routine only manages the trajectories of the discs during a few time steps around the
collision time.
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This section presents the collision model that first computes the velocity of the discs
after the impact and second manages the discs accordingly. Moreover, the chosen model
is very simple in order to give an idea of the practicality of a solid/solid interaction model
using only THETIS. To begin with, the model for the velocity computation is introduced
for two discs and then extended for a larger number N .

The velocities of a disc i before and after the collision are respectively V −i and V +
i .

3.3.1 Collision between two discs

The impact between two discs 1 and 2 leads to four unknows, namely the components of
the velocities after the impact V +

1 and V +
2 .

For this simple model, the assumptions are that following: the momentum is conserved,
there is no friction between two discs and a Newton’s restitution law is considered for the
normal impact velocity.

Momentum conservation

The momentum is conserved in the system composed by both discs leading to two equa-
tions:

m1(V +
1 − V −1 ) = p12 (3.3)

m2(V +
2 − V −2 ) = −p12 (3.4)

with p12 the exchanged momentum.

The sum of these equations leads to one vectorial equation, namely two scalar equations:

m1V
+

1 +m2V
+

2 = m1V
−

1 +m2V
−

2 (3.5)

No friction

As no friction is considered, the force due to the impact is collinear to the normal of the
contact point leading to the following scalar equation:

(V +
1 − V −1 ) · T = 0 (3.6)

with T a vector tangent to the contact point

Newton’s restitution law

The Newton’s restitution law directly links the velocities normal to the contact point while
the second well known model based on the Poisson’s hypothesis, prescribes the normal
forces. The choice of this model can lead to a violation of energy principle, however it
works in most of the cases (Wang & Mason [89]).
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This leads to the last equation given by the Newton’s restitution law:

(V +
1 − V +

2 ) ·N = −e(V −1 − V −2 ) ·N (3.7)
with e the restitution coefficient
and N a normal vector at the contact point

The coefficient of restitution e has values between 0 and 1 where values 0 and 1 respectively
represent an impact perfectly plastic and perfectly elastic.

Solving the equation system

The equation system is:

m1V
+

1x +m2V
+

2x = m1V
−

1x +m2V
−

2x

m1V
+

1y +m2V
+

2y = m1V
−

1y +m2V
−

2y

V +
1xTx + V +

1yTy = V −1 · T
V +

1xNx + V +
1yNy − V +

2xNx − V +
2yNy = −e(V −1 − V −2 ) ·N

(3.8)

This linear system can be written in a matrix way AU = B with:

A =


m1 0 m2 0
0 m1 0 m2

Tx Ty 0 0
Nx Ny −Nx −Ny

 (3.9)

U =


V +

1x
V +

1y
V +

2x
V +

2y

 (3.10)

B =


m1V

−
1x +m2V

−
2x

m1V
−

1y +m2V
−

2y
V −1 · T

−e(V −1 − V −2 ) ·N

 (3.11)

This system can easily be solved using a Gaussian elimination.

3.3.2 Collision between N discs
The same assumptions are taken in the case with N discs as in the case of 2 discs. Hence,
it leads to a similar set of equations. In contrast to the previous case, a disc i receives an
impulse pij from each disc j with which it is in contact. Therefore, there is one impulse by
pairs of discs (defined by a positive collision test) present in the group of collision (using
the example of the section 3.2.3, it is the pairs (i, j), (k, l), (i,m) in the collision group
(i, j,m, n)).
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In the equation system, the unknowns are the impulses and the velocities. Thus, if N
is the number of discs in collision and Np is the number of pairs in collision, the unknowns
are N discs velocity components and Np impulses.

Momentum conservation

A disc i receives an impulse from each disc with which it collides, namely all the discs j in
pair with it. This set of pairs is named P (i) leading to the following vectorial equations.

mi(V +
i − V −i ) =

∑
j∈P (i)

pij (3.12)

To ensure momentum conservation, we have:

pij = −pji (3.13)

No friction

There is no friction at the contact point, so the impulse has no tangential component.
Hence the following equation:

pij · Tij = 0 (3.14)
with T a vector tangent to the contact point between the disc i and j

Newton’s law of restitution

In the same way as for two discs, the Newton’s coefficient of restitution is used.

(V +
i − V +

j ) ·Nij = −e(V −i − V −j ) ·Nij (3.15)

with e the restitution coefficient
and N a normal vector at the contact point between the disc i and j

Equation system

miV
+
ix −

∑
j∈P (i)

pijx = miV
−
ix

miV
+
iy −

∑
j∈P (i)

pijy = miV
−
iy

pijTijx + pijyTijy = 0
(V +

ix − V +
jx)Nx + (V +

iy − V +
jy )Ny = −e[(V −ix − V −jx)Nx + (V −iy − V −jy )Ny]

(3.16)

The first two equations are for each disc, namely N equations, the last two equations are
for each pair, namely Np equations. As in the previous case with two discs, the system is
solved using a Gaussian elimination.
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3.3.3 Manage the discs

Now that the time of collision and the velocities after the impact are known, the routine
has to manage the discs in order to impose the correct trajectories while avoiding the
collisions. After some tests with penalised discs, it has been established that two discs
merge if they are at a distance lower than two cells. Thus, the routine manages the discs
if the collision test is positive and they reach the critical distance of two cells.

In order to avoid the collision, a transitional velocity Vti for a disc i is introduced. This
velocity is computed based on the initial position of the disc and the final position where
the disc resumes its correct trajectory. The time and coordinates of the final position
relatively to the initial position can be known thanks to the previous computation of the
time of collision and the velocity after the impact.

The trajectory imposed by the routine is illustrated by the Figure 3.5. The routine has
predicted that the disc i collides at the collision point Pc and the velocity V +

i is computed.
Knowing the collision time tc, the velocities V −i and V +

i , the position of a point C+
i in

the theoretical course of the disc i after the impact can be predicted as well as the time
it is reached. Therefore, the trajectory of the disc i is diverted from C−i to C+

i directly.
During the diversion, the transitional velocity is imposed on the disc i. As soon as the
disc reaches the point C+

i , its theoretical velocity after impact V +
i is imposed and the disc

is no longer managed by the routine (i.e. its velocity is back again obtained by solving
the Navier-Stokes equations).

Figure 3.5: Trajectories of the disc between its position before (centre C−, velocity V −)
and after (centre C−, velocity V −) the collision: theoretical in blue, simulated in red, N
and T are normal and tangential vectors to the collision point Pc.

The distance from the point C−i to the position at impact is defined as dc. The point
C+
i , to which the disc is diverted, is defined to be at a distance dc from the impact position.

Hence, the theoretical time of travel from C−i to C+
i is tc + dc

V +
i

and the vectorial distance
from C−i to C+

i is tcV −i + d
V +

i

V +
i . It leads to the expression of the transitional velocity Vt
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to apply on the disc during the diversion from C−i to C+
i :

Vt =
tcV

− + dc

V +V
+

tc + dc

V +

(3.17)

3.3.4 Solid modelling: penalty method

Principle

In this section, the landslide is composed by a set of solids for which displacement is
computed by THETIS. In section 2.2, three methods have been presented to silumate solid
obstacles inside the computation domain. Among these methods, the velocity penalty
method or the use of the Brinkman term do not permit the obstacle to move freely
because the location of the solid is imposed by the user. The third method, namely the
viscosity penalty method, that consists in creating a phase with infinite viscosity, is used
here and adapted to our needs.

In the momentum equation (2.4), the local deformation term ∇v +∇tv is in factor of
the dynamic viscosity µ. By making this viscosity tends to infinity, the only solution is
for the local deformation term to be null. For this reason, the fluid phase with an infinite
viscosity behaves as a solid. In practice, an infinite viscosity is not possible and viscosity
is set to a very high value. This value has been setup by Ducassou [18] by studying the
deformation of the penalised fluid as a function of viscosity. It was remarked that the
computation time increases with the viscosity. As a compromise between deformation and
computation time, the viscosity value of 5.107 Pa.s has been chosen by Ducassou [18]. If
not otherwise specified, this value is set as viscosity value of penalised fluid in simulations
presented in this work.

Kinematic data

For the discontinuous method, some kinematic data have to be known to compute the
interaction between solid blocks. The solid blocks are so far only discs, they are referred
as such hereafter.

Velocity The velocity of the disc is computed by averaging the velocity in each point
of penalised fluid in the disc defined by the radius R and its known centre.

Position The initial position of the gravity centre is known. After getting the velocity,
the new position can be computed as follows: X(0) = X0

X(tn+1) = X(tn) + V (tn)dt
(3.18)
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Acceleration The acceleration is approximated using the velocities of the current and
previous times :

a(tn) = V (tn)− V (tn−1)
tn − tn−1

(3.19)

Controlling the velocity It is possible to control the velocity of the disc by changing
the acceleration in the disc. When it is needed to change the velocity of the disc (discussed
in the last part of the report), the gravitational acceleration is replaced for a few time
steps only by the following acceleration.

g =
V target − V current

δt
(3.20)

3.3.5 Comparison with a python routine

To ensure the resolution of the velocities after the collision by the routine in THETIS,
simulations are performed with two discs. The positioning of the discs is shown on the
Figure 3.6. The two discs have the same radius R = 0.1m. The disc D1 is accelerated
to a velocity V1 = V −1 x with V −1 = 1m.s−1, the velocity of the disc D2 is null. The
distance x is fixed for all computations to 0.5m and the distance y varies from 0 to
2R. Velocities results after the collision computed by the subroutine and compared with
the ones computed with the python routine can be found on Figure 3.7. All velocities
computed and imposed by the routine are in agreement with the values computed by the
python routine.

Figure 3.6: Sketch of the simulation

3.4 Validation cases

3.4.1 Floating cylinder

The first simulation case is an oscillating floating cylinder. Only the interaction solid/fluid
is validated here.
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Figure 3.7: Comparison of the velocities after the collision computed by the python routine
and Thetis simulation. In blue: analytical results, in red: thetis results; circle: disc D1,
square: disc D2

Set-up

Following the experiments of Itō [45], the cylinder is initially displaced along the y axis of
a distance yini = R/3 (Figure 3.8). The simulation is 2D and the radius R of the cylinder
is fixed to the value of the experiment, namely R = 0.0762m. The water depth is also
defined based on the experiment (i.e. 1.2192m). The density of the cylinder is chosen in
order to have an equilibrium position where the centre of the disc is at the level of the
water surface at rest, namely y = 0. Three meshes are considered with ∆x = ∆y near
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the cylinder (Figure 3.9). The time step is fixed according to the space resolution. The
space and time resolution are summarised in the following table:

Figure 3.8: Sketch of the floating cylinder simulation

∆x (m) ∆t (s)
mesh 1 0.004 0.001
mesh 2 0.002 0.0005
mesh 3 0.001 0.00025

Table 3.1: Simulations space and time resolutions

Figure 3.9: Mesh 2 of oscillating cylinder simulations, water in red, air in blue and
penalised fluid in grey

Viscosity computation in mixed cells Using the equivalent viscosity in Navier-
Stokes with an arithmetic mean as presented in subsection 2.4.1 in the presence of fluid
with very high viscosity, can generate problems at the interface and particularly at triple
points (Ducassou [18]). By computing the arithmetic mean between a small viscosity
(1.85e−5 Pa.s or 1e−3 Pa.s for air and water respectively) and a high viscosity (5e7 Pa.s)
in mixed cells, the equivalent viscosity increases quickly as it can be seen on Figure 3.10
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and all mixed cells have high viscosity. Therefore their deformation is highly reduced
and this phenomenon is not physical. THETIS proposes other methods of averaging:
harmonic, geometric and discontinuous mean. The distribution of viscosity computed by
harmonic and geometric mean is illustrated on Figure 3.10. With these two methods,
the equivalent viscosity in mixed cells where the colour function of penalised fluid φPF is
lower than 0.5 is low enough for a fluid to flow (< 102 Pa.s). However, for φPF > 0.5,
the viscosity is still low enough for the penalised fluid to flow as observed by Ducassou
[18]. The discontinuous mean consists in setting the viscosity in mixed cell to the value
of the fluid the most present in the cell. Same problems as with harmonic and geometric
means appear and the penalised fluid can deform, particularly in shear zones (Ducassou
[18]). In the case studied here, velocities are low enough for this problem not to appear
and the discontinuous mean is chosen.
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Figure 3.10: Example of computation of equivalent viscosity µ as a function of the colour
function of penalised fluid φPF using three methods: arithmetic mean in blue, harmonic
mean in red and geometric mean in green

Results

In addition to experimental results from Itō [45], the oscillations of the cylinder from
THETIS simulations can also be compared with analytical results computed by Maskell
& Ursell [62]. The analytical model assumes no viscosity and no surface tension.

The cylinder has first a damped harmonic oscillatory motion (Maskell & Ursell [62]).
These oscillations are observed in the simulations and the amplitudes are compared with
experimental and analytical results on Figure 3.11. The Table 3.2 summarises the first
two peaks and troughs amplitude and time. Analytical results have greater oscillations
amplitude than experimental ones (Figure 3.11 and Table 3.2), probably because the
viscosity damping is not taken into account by Maskell & Ursell [62], but the oscillations
are in phase. For the simulations, except for the first trough where all meshes give similar
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amplitudes, the mesh 1 gives slightly lower amplitudes than mesh 2 and 3. The very two
give very close amplitudes and are in agreement with the experimental results. In term of
oscillation phase, the thinner the mesh, the closer the amplitudes are to the experimental
results.

The mass loss of penalised fluid has been evaluated on Figure 3.11. During the simula-
tion, the maximum surface loss is of about 1% for the coarser mesh. The thinner the mesh,
the less loss is observed. This is explained by the reduction of mixed cell surface with the
size of the mesh inducing therefore less problems with equivalent viscosity. It can also be
remarked that in THETIS, the geometry follows the mesh grid. For this reason, the disc
is not completely circular (Figure 3.9). However, comparing THETIS simulations with
OpenFOAM simulations carried out by Monroy et al. [66] using the same initial cylinder
position, meshes and time steps but with a solid cylinder and a mesh adjusted to the
cylinder, results are quite similar with for example an error of 5% and 4.3% with the
mesh 3 for OpenFOAM and THETIS respectively on the first trough amplitude.
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Figure 3.11: Vertical movement of the cylinder: comparison between three meshes (mesh
1 in blue, mesh 2 in red, mesh 3 in green), experimental results from Itō [45] in black
dotted line and analytical results from Maskell & Ursell [62] in black dashed line (top).
Evolution of the surface of penalised fluid during the simulation: comparison of three
meshes (same colour) (bottom).

3.4.2 Cylinders on slope

The routine added to THETIS is validated thanks to experiments of cylinders sliding
down an incline. Experiments were realised with and without water in the tank. These
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Trough 1 Peak 1 Trough 2 Peak 2
y/yini t(s) y/yini t(s) y/yini t(s) y/yini t(s)

Maskell & Ursell [62] -0.677 0.322 0.345 0.646 -0.242 0.934 0.151 1.250
Itō [45] -0.599 0.339 0.301 0.659 -0.180 0.942 0.111 1.243
mesh 1 -0.616 0.344 0.298 0.663 -0.186 0.974 0.101 1.282
mesh 2 -0.624 0.340 0.310 0.655 -0.192 0.962 0.112 1.268
mesh 3 -0.625 0.337 0.315 0.650 -0.188 0.955 0.122 1.257

Table 3.2: First two throughs and peaks amplitude and time from the analytical, experi-
mental and numerical results

simulations were intended to validate the management of the collisions by the routine and
the interaction solid/fluid.

Set-up

To limit the rotation of cylinders on the incline which so far cannot be managed by our
method, experiments with half-cylinders, cut lengthwise, placed on the slope have been
carried out by our colleague Yves Le Guer and his students in a tank of dimensions
3.31m× 0.6m× 0.08m (Figure 3.12).

Figure 3.12: Picture of the experimental tank with two inclines and a reservoir on the left
incline

The other limitations of the code is that the half-cylinders can not pass from the
incline to the bottom of the tank because only no-slip condition is possible on obstacles.

The cylinders and half-cylinders are placed on the 30° incline, above water at the
limit of the free surface (Figure 3.13). The water depth is 10 cm, the cylinders are in
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aluminium (density ρ = 2700 kg.m−3) and have a radius of 3 cm. In the experiment, half
of the disc surface of the cylinders are painted in black in order to observe their rotation.
The cylinders are initially held by a stick (Figure 3.15 for example).

The numerical domain is inclined to have the slope as a domain boundary so slip
condition can be imposed (Figure 3.14). Therefore, the gravity vector is also inclined of
30°. In this configuration, the incline has slip condition but the bottom of the tank is
an obstacle and has a no-slip condition. The mesh is particularly fine near the cylinders
with dx = dy = 0.001m. During the experiments, a lot of drops are generated when the
cylinders fall into water. For this reason, a VOF-TVD scheme is used for water interface.
However, the routine seems to have problems of neighbour detection with this method so a
VOF-PLIC scheme is used for penalised fluid interfaces. Moreover, the viscosity of water
and air is multiply by 100 in order to reduce the turbulence during wave generation and
the difference between fluid penalised, water and air viscosities which make the resolution
of equations more complex. Time steps are adjusted to have the CFL number equals
to 0.3. Cylinders are initially placed at a distance of four cells between them, namely
0.004m. This distance enables to have a little margin on the minimum of two cells for
the cylinders not to merge.

Figure 3.13: Sketches of the cylinder experiments with two half-cylinders and one cylinder,
three half-cylinders and three cylinders, four half-cylinders and six cylinders with water

Without water

A first case with two half-cylinders, one cylinder and without water is presented. Cylinders
are initially 10 cm above the bottom of the tank, namely the same distance as in cases
with water. Figure 3.15 compares experimental and numerical results. In both, the half
cylinders split apart and the full cylinder falls between them. Numerical cylinders are
delayed first, then catch up the experimental ones on the sixth picture, namely around
t = 0.31 s, because of the lowest friction during simulation due to the slip condition. The
three numerical solids are then blocked at the bottom of the incline as the lower half
cylinder can not pass the change of angle with the tank bottom, whereas experimentally
they continue their trajectory and stop around x = −0.36m for the first half cylinder.

With water

The same experiment is performed with water. First with the same number of cylinders
and then in the two configurations showed on Figure 3.13.
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Figure 3.14: Numerical domain of the simulations with cylinders and half-cylinders on
slope
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Figure 3.15: Pictures of the experiment with two half-cylinders and one cylinder, 0.0625 s
time difference between two pictures, in cyan numerical cylinder contours.

Two half-cylinders, one cylinder Results for two half cylinders and one full cylinder
are illustrated on Figure 3.16. The motion of the cylinders in the experiment is similar to
the experiment without water, the two half cylinders split apart and the full cylinder fall
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between them. The lower half cylinder takes twice the time to reach the bottom of the
tank. The splitting is not observed in the simulation. The numerical lower half cylinder
reaches the tank bottom a little earlier than in the experiment due to the slip condition
on the incline. The numerical full cylinder passes above the lower half cylinder and fall
on the bottom of the tank, its movement is stopped due to the no-slip condition on the
obstacle.

As for wave generation, for both experiment and simulation water is lifted by the
cylinders. From this a first wave is generated and propagates in the tank. This wave
amplitude is more important in the simulation, propably because of the position of the
full cylinder that seems to lift a greater water volume. In addition to wave generation, a
run-up on the incline is observed in the simulation and is absent in the experiment. This
run up seems to be induced by a water jet caused by the fall of the full cylinder in front
of the half cylinder.

Three half-cylinders, three cylinders Figure 3.17 shows experimental and numerical
results for the setup with three half cylinders and three full cylinders. In both experiment
and simulation, the cylinder stack begins to collapse from the lower part. Motion of
cylinders during the simulation is close to what is observed in the experiment except that
half cylinders reach the bottom of the tank.

The wave generation is quite similar between experiment and simulation with an
amplitude slightly greater for the latter.

Four half-cylinders, six cylinders Illustrations of numerical and experimental resuts
are presented on Figure 3.18. In this case, cylinder motion is quite different between
simulation and experiment. The stack does not collapse from the front but two full
cylinders are pushed above the lower half cylinder. This difference is due to the initial
distance between the cylinders which makes the stack unstable. A t = 0 s, the cylinders
are released and because of this distance, they fall and the routine detects these collisions
and the more cylinders, the more chaotic the reaction. After some time, a few cylinders
merge despite the routine and the stack reaches an equilibrium state.

Because of the angle formed by the three cylinders at the front of the stack, a jet of
water is generated which is not observed in the experiment.

3.4.3 About these simulations
Some remarks can be drawn from these simulations.

• Contrary to experiments where water passes between the sides of the tank and
cylinders, water does not penetrates between cylinders.

• It would be interesting to make experiments where cylinders are blocked at the
bottom of the incline.
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Figure 3.16: Pictures of the experiment with two half-cylinders and one cylinder, 0.0625 s
time difference between two pictures

• The more cylinders, the more difficult the simulation because of the initial distance
between cylinders that makes the computation more complex.

3.5 Conclusion and perspectives

This chapter proposes to model a slide with several solid discs. The routine succeeds in
managing the collision but still shows some instabilities growing with the number of discs.

However, this simple model has showed that solid/solid interactions can be managed
by a Navier-Stokes code. Simulations can not be realised at a granular scale due to high
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Figure 3.17: Pictures of the experiment with three half-cylinders and three cylinders,
0.0625 s time difference between two pictures

computational cost associated to this approach but this can open new opportunities for
simulations with a few solid blocks not only for wave generation. For instance, it could
be applied on wave impact on a dike composed of solid blocks.
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3.5. CONCLUSION AND PERSPECTIVES

The main difficulty experienced is to find experiments for the model validation because
of the limitations of the code (no slip and no rotation on the boundaries). New experiments
with the cylinders stopped at the bottom of the incline could be easier to reproduce.

To go further on this model, improvements can be added. For instance, it would be
possible to:

• add friction between solids.

• manage other geometry of solids.

• manage interaction with fixed obstacles.
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Figure 3.18: Pictures of the experiment with four half-cylinders and six cylinders, 0.0625 s
time difference between two pictures
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4.1 Introduction
In the present section, the wave generation process is simulated for two cases of granular
slide (subaerial and submarine). The granular slide is modelled as a fluid either based
on a simple viscous Newtonian approximation or a more elaborated non-Newtonian µ(I)-
rheology. The potential, kinematic and dissipated energies are computed at each time
step in the water and the slide, giving the whole process of energy transfers from the slide
to the waves. Finally, the wave generation process is discussed.
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4.2 Method

4.2.1 Benchmark test presentation
The numerical model was tested using two series of available experimental data involving
the wave generation by granular slides. The first one (Viroulet et al. [87]), is a subaerial
case, initially retained by a gate just a the level of the water free surface with no initial
velocity when it impacts water. It is therefore very different from the experiments of
impulse waves generated by granular slides presented by Fritz et al. [24] and Heller &
Hager [42] where the slide has an impact velocity of 2.06-8.77m/s (Heller & Hager [43])).
The second one (Grilli et al. [31]) is a submarine landslide case, similar to the subaerial
case of Viroulet et al. [87] in terms of its initial dimensions.

Case 1 : Subaerial case Viroulet et al. [87] conducted an experiment in a tank of
dimension 220 cm in length, 40 cm in height and 20 cm in width with a water depth of
148 cm (Figure 4.1(a)). A mass of 2 kg of spherical glass beads of 1.5mm of diameter and
density of 2500 kg.m−3 was placed on a slope of 45° at the limit with the water free surface.
Four gauges of water elevation were disposed at 0.45m, 0.75m, 1.05m and 1.35m from
the gate.

A t = 0 s, the granular material is released. The glass beads slide down the slope
toward the bottom of the tank and finally stop under the action of the different dissipative
forces (Figure 4.1(b)). When the slide penetrates into water, the free surface is lifted up
and forms the first wave that propagates in the tank followed by the trailing waves, in
which the second appears to be the largest.

Submarine case The submarine case (Grilli et al. [31]) is similar to the subaerial
experiment except that the granular media is released underwater. A sketch of the 6.27m
long flume is presented on Figure 4.2 (a). A 2 kg mass of glass beads of diameter 4mm is
released on a slope of 35° (Figure 4.2(b)). The water depth is 0.330m. Four gauges are
placed at 600, 1600, 2600, 3600mm from the gate to record the water surface fluctuations.
Two larger waves followed by a wave train are generated. Contrary to the subaerial case,
the second wave is larger that the first one. Moreover, there is no impact as the slide is
initiated underwater and with the same mass of glass beads, the wave is smaller than for
the subaerial case (maximum elevation for the subaerial case: 2 cm, and for the submarine
case: 0.6 cm.

4.2.2 Numerical model
A free slip conditions are imposed on the velocities on the left, right and top domain
faces while a wall condition is imposed on the bottom boundary. The slope is obtained by
positioning a porous body [15] with a nil porosity. The computational mesh follows the
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(a)

(b)

Figure 4.1: Subaerial test case. (a) Sketch of the experimental set-up and (b) snapshots
of the generation area at different times (0.2 s between pictures), from Viroulet et al. [87]

geometry of each solid part of the domain with a stair-like slope. According to the simu-
lations we performed, the mesh resolution (∆x = 5mm, ∆y = 2mm and ∆x = 2.85mm,
∆y = 1.25mm in the subaerial and submarine case respectively) used is sufficient to limit
the effects of the slope irregularities on water and slide flows.

The water, the air and the slide are firstly modelled as Newtonian fluids, giving one
parameter, namely viscosity, for the slide to be calibrated. Then, the slide is modelled as
a fluid with a µ(I)-rheology (Section 2.5).

4.2.3 Energy transfers

The slide potential energy is maximum at the initial time. During the landslide motion,
a part of the potential energy is converted into kinetic energy, lost due to the viscous
dissipation, and converted into the water kinetic and potential energies including wave
energy which is of interest here.

During the simulations, the different energy components are computed in the slide
and water in order to better understand the energy transfer process and in particular
determine the time duration of energy transfer from the slide to waves and the ratio or
efficiency of this energy transfer.
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Figure 4.2: Submarine landslide test case. (a) Sketch of the experimen-
tal set-up and (b) snapshots of the generation area at different times t =
−0.125, 0.02, 0.17, 0.32, 0.47, 0.62 s, from Grilli et al. [31].

The local formulation of the kinetic energy theorem gives (with gravity as the only
volume force):

∂

∂t

(1
2ρv

2
)

+∇ ·
(1

2ρv
2v
)

= ρv · g +∇ · τ · v −∇ · pv + p∇ · v − τ : D (4.1)

By integrating this equation over the fluid volume (i.e., either the slide ,water or air
volume), it leads to:

∫∫∫
Ω

∂

∂t

(1
2ρv

2
)
dΩ +

∫∫
∂Ω

1
2ρv

2v · ndS =∫∫∫
Ω
ρv · gdΩ +

∫∫
∂Ω

(τ · v) · ndS−
∫∫

∂Ω
pv · ndS +

∫∫∫
Ω
p∇ · vdΩ−

∫∫∫
Ω
τ : DdΩ

(4.2)
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Using the transport and the continuity equations, it can be written as:

a︷ ︸︸ ︷
d

dt

∫∫∫
Ω

(1
2ρv

2
)
dΩ +

b︷ ︸︸ ︷
d

dt

∫∫∫
Ω

(ρgz)dΩ +

c︷ ︸︸ ︷∫∫
∂Ω

(1
2ρv

2 + ρgz
)

(v − va) · ndS+

d︷ ︸︸ ︷∫∫
∂Ω
pv · ndS =

e︷ ︸︸ ︷∫∫
∂Ω
τ · vdS+

f︷ ︸︸ ︷∫∫∫
Ω
p∇ · vdΩ−

g︷ ︸︸ ︷∫∫∫
Ω
τ : DdΩ
(4.3)

including kinetic energy variation (a), potential energy variation (b), kinetic and po-
tential fluxes through the envelope (c), power of the pressure force on the envelope (d),
power of the viscous stress on the envelope (e), power of the pressure force in the volume
(f) and rate of the viscous dissipation (g).

(f) vanishes assuming incompressible fluids. In our case, the envelope velocity is equal
to the fluid velocity, therefore (c) is also nil. In the following equation, the left-hand side
contains the terms that are calculated while the terms on the right-hand side are deduced
from the numerical computation.

d

dt
(Ek + Ep) + Φ =

∫∫
∂Ω
τ · vdS −

∫∫
∂Ω
pv · ndS (4.4)

Where Ek =
∫∫∫

Ω

(
1
2ρv

2
)
dΩ , Ep =

∫∫∫
Ω(ρgz)dΩ , Φ =

∫∫∫
Ω τ : DdΩ

Equation 4.4 shows that changes in the mechanical energy within the fluid volume is
due to the total power of pressure force and shear stress on the fluid envelope. Hence,
for water, changes in the total mechanical energy is through the pressure and the shear
forces induced by the slide along the slide/water interface and vice versa. The balance
equation (4.4) can be written for all three considered fluids, namely the slide, water and
air volumes. By computing the air energy, it is remarked that its value does not change
significantly during the simulation (section 4.3.2). Therefore, only the variation of energy
in the slide and the water portions are considered. Based on the Newton’s third law, the
right hand sides of the energy balanced equations written for the slide and the water are
equal (action-reaction) in each control volume. For this reason, the integrated left hand
terms of this equation computed for one phase represents the energy transferred to the
other phase.

The dissipation term τ : D is numerically computed for an incompressible Newtonian
fluid, namely:

τ : D = 2µDijDij (4.5)

By integrating equation (4.4) between times 0 and t, the transferred energy can be
expressed as:

Et(t) = Ek(t) + Ep(t)− Ek(0)− Ep(0) +
∫ t

0
Φdt′ (4.6)

The total mechanical energy can be defined as Em = Ek + Ep, therefore :
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Et(t) = Em(t)− Em(0) +
∫ t

0
Φdt′ (4.7)

This transferred energy is positive if the fluid studied (i.e., slide or water) gains energy,
negative in case of a loss of energy.

Following the previous set of equation, the computation of the different energy com-
ponents is carried out for the slide, water and air domains separately as follows:

Ek =
NX∑
i=1

NY∑
j=1

φ(i, j)1
2ρV (i, j)2∆x(i, j)∆y(i, j) (4.8)

Ep =
NX∑
i=1

NY∑
j=1

φ(i, j)ρgy(i, j)∆x(i, j)∆y(i, j) (4.9)

Φ =
NX∑
i=1

NY∑
j=1

φ(i, j)2µDkl(i, j)Dkl(i, j)∆x(i, j)∆y(i, j) (4.10)

where NX and NY are the number of nodes in the direction X and Y respectively, φ is
the color function value of the phase, ∆x and ∆y are the cell size in the direction X and
Y respectively.

To separate the wave energy from the water energy, the water domain is divided in
two zones (Figure 4.3) : the generation zone (zone 1) and the propagation zone (zone 2).
In the two experimental cases studied, waves propagate faster than the slide (subcritical
cases), which helps defining the propagation zone as the one limited by the slide front.
Additionally, one may expect zone 1 to be rotational and zone 2 irrotational. The squared
vorticity is locally computed to verify this assumption. For this reason, it is considered
that the water energy computed in the propagation zone is the wave energy. Kinetic and
potential wave energy are computed as follows:

Ek,w =
NX∑
i=XP

NY∑
j=1

φ(i, j)1
2ρv(i, j)2∆x(i, j)∆y(i, j) (4.11)

Ep,w =
NX∑
i=XP

NY∑
j=1

φ(i, j)ρgy(i, j)∆x(i, j)∆y(i, j)−
NX∑
i=XP

YW∑
j=1

ρgy(i, j)∆x(i, j)∆y(i, j) (4.12)

where XP is the abscissa limiting the propagation zone and YW the initial free surface
elevation ordinate.

Jiang & LeBlond [47] formerly characterised the energy transfer ratio as the mechanical
energy of the waves divided by the potential energy of the slide.

λJLB = Em,w(t)
Ep,slide(t)− Ep,slide(0) (4.13)

However, in the present study with Navier-Stokes simulations, the kinetic energy and
the viscous dissipation of the slide can also be easily computed, and therefore the ratio of
wave energy on the actual energy transferred to water can be accurately defined.
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Figure 4.3: Sketch illustrating assumed generation (1) and propagation (2) zones

The instantaneous part of energy transferred to the waves that propagate offshore can
then be expressed as:

λ(t) = Em,w(t)
Et,slide(t)

(4.14)

with Et,slide(t) the energy transferred by the slide defined by equation (4.7).

4.3 Results

4.3.1 Model validation

Subaerial landslide

The slide is first modelled as a Newtonian fluid with viscosity considered as a parameter
to calibrate. The slide density value in the simulation may be questioned. At t = 0 s,
when the slide is at rest above water, with a random close pack, the maximum volume
fraction of the beads is about 0.6, which gives a density of 1500 kg.m−3 for the slide.
However, the slide is moving beneath the water with a maximum density of 1900 kg.m−3

for the most of the time of the experiment. Nevertheless, during the experiment, the slide
volume expands (almost a 50% expansion) as the beads does not form a close pack. For
this reason, the latter density is maximal and simulation were run with this density to
show its influence on the wave heights. The change of density was found to have little
influence on the wave heights. First and second waves are only slightly higher with the
1900 kg.m−3 density. Therefore, in the following results, the density is set to 1500 kg.m−3.

The focus is now on the influence of the viscosity value. With a low viscosity, the
slide moves faster and a bulge shape slide front is observed similar to the experiment
results (Figure 4.4(a)). The best results in terms of the slide motion are obtained with a
viscosity of 2Pa.s, even though in this case the slide is a bit slower than in the experiment.
However, the height of the first wave at the four gauges (Figure 4.4(b)) appears to be
almost twice as high as the experimental results for this viscosity. At a lower viscosity,
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the free surface elevation seems to be discontinuous because it is more perturbed due to
wave breaking and harder to capture at the gauges. The first wave and the wave train
are well reproduced for a viscosity of 10Pa.s, even though the slide at this viscosity is
shown to be slower than in the experiment. The same overall behaviour was observed in
the second test performed in Viroulet et al. [87] with a glass beads diameter of 10mm
(results not shown here), but a higher value of viscosity has to be set in order to fit the
experimental wave heights.
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Figure 4.4: Simulation results for different values of slide viscosity (Newtonian fluid). (a)
: snapshots of slide contour and (b) : elevation of the free surface at the experimental
gauges. Experimental results (black) line and the simulations for different viscosity values,
η = 1Pa.s: blue, η = 2Pa.s: red , η = 5Pa.s: green and η = 10Pa.s: cyan; 0.1 s between
figures

Simulations were also performed with the µ(I)-rheology for which the parameters are
defined by the granular media. For the simulation, we took I0 = 0.279, µs = 0.38 and
∆µ = 0.26 from Pouliquen & Forterre [77]. From the µ(I)-rheology, it is possible to
approximate the viscosity of the fluid during the sliding (see Ionescu et al. [44]). It leads
to:

η =

µs + ∆µ
I0
√
p/ρg

d
√

2D2
+ 1

 p√
2D2

(4.15)

With p = ρsg
h0
2 , D2 =

√
gh0

h0/2 , d = 0.0015m, h0 = 0.11m, ρg = 2500 kg.m−3, ρs =
1500 kg.m−3, it leads to η = 11.7Pa.s giving approximately the same value as the one
finally chosen after test and error procedure for the Newtonian fluid consideration.
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Figure 4.5 shows the evolution of the viscosity inside the slide during the simulation.
After entering the water, the viscosity at the front part of the slide gets higher and the
slide quickly stops. It seems that the water impact rapidly slows down the slide and based
on the µ(I) formulation, increases the viscosity with decreasing the slide deformations
which ends up stopping the slide. However, waves are generated very quickly in this
experiment and we can see in Figure 4.6 (b) that the wave height is quite close to the
experimental results. Comparing to the computation with the Newtonian fluid, during
the first 0.5 s where the waves are generated, the deformation of the slide is very similar
to the Newtonian slide (Figure 4.6 (a)).

Figure 4.5: Simulation results for the µ(I) rheology. Evolution of the viscosity inside the
slide, 0.1 s time difference between figures

Submarine test case

For the submarine landslide case, the numerical domain has a length of 6.27m and a
water depth of 0.33m. The slide is modelled as a Newtonian fluid, with parameters
defined in Grilli et al. [31], i.e. a viscosity of 0.01Pa.s and a density of 1951 kg.m−3. A
few other viscosity values are also considered to evaluate the sensitivity of the model to
this parameter. No simulation with the µ(I)-rheology are presented as the flow initiation
has been proved to be difficult with the parameters from Pouliquen & Forterre [77].

Results of slide shapes and wave heights are presented in Figures 4.7 and 4.8. The
slide shape evolution as well as the slide overall velocity is shown to strongly depend on
the viscosity value. For the low viscosity used in Grilli et al. [31], the slide front exhibits
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Figure 4.6: Simulation results for the µ(I) rheology. (a) : snapshots of slide contour and
(b) : elevation of the free surface at the experimental gauges. Experiment (black), and
THETIS simulations (blue line: Newtonian fluid µ = 10Pa.s, red line: µ(I)-rheology)

a bulge head due to the presence of a strong counter-clockwise vortex generated at the
water/slide interface. This vortex gets weaker and weaker with increasing the viscosity
value. The experimental snapshots also show the occurrence of this vortex more or less
consistent with the results corresponding to the two stronger viscosities tested in our
simulations. Nevertheless, in all the cases tested, the slide motion appears to be very slow
compared to the experiment. The best approximation would be with the lowest viscosity
but due to the aforementioned large vortex and the subsequent additional drag induced,
the slide velocity cannot reach higher values.

Figure 4.8 shows that with a slide viscosity of 0.01Pa.s, the first wave is higher than
the experimental value and the wave train is not correctly reproduced on the first gauge.
By reducing the viscosity, the generated waves are lower. We observe that with a viscosity
of 1Pa.s, the first wave is close to the experimental results as well as the first waves in the
train wave. Generally, the wave heights are closer to the experiment when the numerical
slide moves slower than the experimental slide with having a higher viscosity.

4.3.2 Energy transfers

Simulations are now interpreted in terms of energy transfer from the slide to the generated
waves.
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Figure 4.7: Slide colour function and vorticity contours for the submarine landslide bench-
mark (Grilli et al. [31]) with experiment results in the first row and simulation results
(following rows) for different values of viscosity (η = 0.01, 1, 10Pa.s for second, third and
fourth row respectively) at times t = 0.02, 0.17, 0.32, 0.47 s

Subaerial test case - Newtonian fluid

The total energy of the system {air+water+slide} should be constant in time. Figure 4.9
(a) illustrates the time evolution of the relative error of the total system energy which
can be attributed to the numerical dissipation. This dissipation is very low and reaches
only 0.3% at 2 s, the time at which, as will be shown below, most of the energy has
been transferred. Therefore, the total energy is properly conserved during the simulation.
Additionally, the air total energy varies only very slightly. Accordingly, only the transfer
of energy between the water and the slide is considered in these simulations.

Figure 4.9 (b) illustrates the time evolution of energy components and energy dissi-
pated at time t in the slide, with E0 the initial slide mechanical energy. As the gate
opens, the slide is released and flows over the slope. Its velocity increases and so does
its kinetic energy (in red) but with fairly small amount compared to the potential en-
ergy decrease. Conversely, the total viscous dissipation, linked to the slide velocity and
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Figure 4.8: Elevation of the free surface for the submarine landslide benchmark (Grilli
et al. [31]), comparison between experiment (black) and simulation results with different
viscosity values (0.01Pa.s: cyan, 1Pa.s: blue, 5Pa.s: red, 10Pa.s: green)

the viscosity value, increases very significantly and reaches an asymptotic value as the
slide stops. Likewise, the energy transferred to the water appears to be very significant
compared to the slide kinetic energy.

Water is set in motion as the slide enters it and deforms the free surface, including
kinetic and potential energies increase. The viscous dissipation in water (not shown here)
is very small because of the low viscosity of water and represents less than 0.33% of the
initial total water energy at t = 2 s.

Regarding the distinction between wave generation and propagation, in this subaerial
case, vorticity is confined near the slide and at the free surface (Figure 4.10). At the right
of the slide, we observe the typical stream contours of a wave field. The limit between
both zones, as defined previously, is therefore relevant. In the propagation zone, wave
energy is computed. We see (Figure 4.9(c)) that the wave kinetic and potential energy
increases quickly at the beginning of the simulation and stabilizes around t = 0.5 s. The
significant variation of energy around t = 1.5 s is explained by the reflection of the first
wave on the side of the tank opposite to the slope (Figure 4.9 (d)).

The Figure 4.9 (e) shows the wave energy divided by the slide initial energy. The wave
energy reaches its maximum at t = 0.45 s and then decreases slightly before stabilizing.
This reduction of energy is due to the slight breaking of the first wave which may be
observed on the third snapshot of the Figure 4.10. Therefore, we can conclude that the
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transfer to the wave field is very quick in this case and nothing more happens in terms of
transfer to the free surface downstream the slide after t = 0.45s.

The transfer ratio is of course different considering equation 4.13 or equation 4.14, the
first not considering the part of the slide energy going to kinetic energy and dissipation.
These transfer ratios are plotted on Figure 4.9 (e) as soon as the wave energy has a non
negligible value. Logically, the transfer ratio given by equation 4.13 has a lower value all
along the simulation.

The ratio of wave to water energy shows a peak at t = .2s around 0.5. When all
the energy has been transferred to waves (t=.45s), the transfer ratio is about one third
evidencing the efficiency of this subaerial slide to produce energetic waves. Afterwards,
no more energy is transferred to the surface (and propagating off-shore) but as energy
is still transferred to the water mass (Figure 4.9 (b)), the energy ratio decreases to an
asymptotic value around 0.13 (0.067 with the transfer ratio of Jiang & LeBlond [47]).

Subaerial test case - µ(I) rheology

The wave generated by the µ(I)-rheology slide are more energetic than in the Newtonian
slide simulation (Figures 4.11). Moreover, the slide has transferred more energy during the
0.5 s compared to the Newtonian slide. However, the transfer ratio at the wave maximum
energy is lower because more energy is transferred to the water but not to the waves.
One can remark that the slide stops around 0.6 s and beyond that time no longer releases
energy.

It is also observed (Figure 4.9 (d-e)) that the maximum of the waves energy is reached
around t = 0.5 s, namely a little before the slide stops. The final transfer ratio is 0.2, so
significantly more than with the Newtonian fluid but this is only due to the fact that the
slide stops in the second case, vanishing by this way, the energy transfer to water that
still existed in the first case. We also noticed that the numerical dissipation appears more
significant in this case (around 0.9%).

Submarine test case

Results for the submarine case are only presented with the slide modelled as a Newtonian
fluid (Figure 4.12). The transfer of energy is very low, which explains the small waves
observed in this case, compared to the subaerial case.

As in the subaerial case, the total energy of the system {air+water+slide} is preserved
during the simulation with an error at t = 5 s of about 0.012% (Figure 4.12 (a)).

Figure 4.12 (b) illustrates the repartition of energy in the slide during the simulation.
The results are very similar to the subaerial case, except that the greater water depth
in this case causes more potential energy to be released. Similar to the subaerial case,
the wave field potential energy (Figure 4.12) increases and then stabilizes itself to a
constant value. However, in this case, the kinetic energy does not follow this pattern.
It first increases faster than in the previous case, where the kinetic energy followed the
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potential energy (Figure 4.9 (c)). This behaviour is explained by the recirculation of the
flow above the slide illustrated in Figure 4.14. When the slide is flowing over the slope,
significant velocities appear just above the slide front. However, as soon as the slide
reaches the bottom, this recirculation quickly moves to the back of the slide explaining
the fast decrease of the kinetic energy in the propagation zone from the time t = 0.9 s.
It then decreases to reach the potential energy value but subsequently, increases again
around t = 2 s. This unexpected behaviour is explained by the presence of strong vorticity
in the propagation zone (Figure 4.13). This vorticity, which was generated by the slide
front, is then advected more rapidly than the slide itself. Therefore, the mechanical wave
energy will be taken as twice the potential energy even if this hypothesis is known to be
only approximative (Fritz et al. [24], Heller et al. [41]).

In this submarine case, the slide kinetic energy and the dissipation have low values
compared to the slide potential energy so the transferred energy is almost equal to the
potential energy (Figure 4.12 (a)). The difference between the ratio introduced by Jiang
and LeBlond and Equation 4.14 is not very marked with a final transferred energy ratio of
about 0.01 (Jiang and LeBlond) against 0.02 (Equation 4.14), with the wave mechanical
energy taken as twice the potential energy until the waves are reflected on the opposite
side of the tank (Figure 4.12 (d)). Moreover, the efficiency of the system, when no more
energy is transferred to the waves (at t=1 s), is around 0.03, namely 10 times less than
the subaerial case.

4.4 Discussion

A first observation by comparing the actual experiment and the simulations with the
Newtonian fluid or the µ(I)-rheology is that even if similar waves are generated, the slide
shape and velocity are quite different.

We have tried several strategies to produce faster slides such as vanishing the basal
friction, tuning the density, etc. but they did not have any significant effect on the slide
velocity. The reason may be that the slide is simulated as an equivalent phase instead
of a granular water mixed medium. The difference is important as the latter allows
water to flow within, whereas the former does not. This differential flow may reduce
very significantly the global drag on the slide, which could explain the final velocity
reached in the experiment. A second approximation is that the volume fraction of grain
is constant in the simulations, whereas, looking at the experiment, the granular slide
expands significantly during the sliding and the volume fraction decreases.

The energy transfer ratio is often only based on the potential energy released by the
landslides (Jiang & LeBlond [47]) or the kinetic energy (Fritz et al. [24]). The present
paper shows that, at least, the slide energy dissipation should be taken into account to
better understand the transfer process. Indeed, the asymptotic transfer ratio for the
subaerial case is twice its value without taking the dissipation and kinetic energy into
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account. However, it has been highlighted, in section 4.3.2, that in the submarine case,
the potential energy is predominant over the dissipation and kinematic energy. In this
case, the two transfer ratios give similar values.

The energy transfer to the free surface was shown to be very quick in the subaerial
case. In fact, the whole wave field seems completely determined at t ≈ 0.5s. This time
corresponds to the situation shown in Figure 4.5 (fourth and fifth panels). Because of this
observation, we can say that the trailing waves are not generated by the slide. In order
to evidence this further, a simulation is carried out with a slide artificially forced to stop
very early in the simulation (stop time ts respectively : t = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 s) by
using penalizing techniques (Ducassou et al. [19]).

For the lowest stop time value (i.e.,ts = 0.2, s), the first wave is noticeably smaller
than measured (Figure 4.15). With ts = 0.3 s, the wave train is only very slightly smaller
than in the experiment and is very well reproduced for larger values of ts. Figure 4.16
(a) illustrates the energy transferred by the slide to water in each simulation. A drop is
observed in the wave total energy (Figure 4.16 (b)) due to a very quick water slowdown
around the slide, but not at the free surface. This is less noticeable as the stop time is
high and the flow around the slide has lower velocities. It appears clearly (Figure 4.16
(b)) that the energy released by the slide after t = 0.5 s does not contribute to the wave
energy as its evolution in time is the same for the slide stopped at t = 0.5 s or after.

As a wave train is observed in each simulation even with the slide stopped very early,
this support the hypothesis that the latter is not generated by energy transfer from the
slide. However, it is not clear in the simulations whether the second wave is generated by
the reflection on the slope or by dispersion of the first wave. Nonetheless, the wave train
following the second wave is clearly generated by dispersion of the latter.

If we focus now on the first wave, the simulations with the slide stopped demonstrated
that the wave can be quite accurately generated without modelling the slide flow from
the release to the deposition. The slide dynamics and shapes between the Newtonian
simulations of the slide stopped or not, the µ(I)-rheology simulation and the experiment
(Figures 4.6 (a)) are quite different. However, they succeed in generating very similar
waves. This interrogates on the slide parameters that need to be respected for the gener-
ation of accurate waves.

4.5 Conclusion

Navier-Stokes simulations where the landslide is modelled by a Newtonian fluid or a µ(I)-
rheology have been presented on two cases: subaerial and submarine. By comparing with
experimental results, we validated that the waves can be quite accurately reproduced.
Moreover, the energy transfers between the slide and the wave have been studied, leading
to the following conclusions:

• waves gain all their energy very quickly in the subaerial case (about 0.5 s) while it
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takes longer in the submarine case (1 s).

• The process is significantly more efficient in the subaerial case than in the submarine
case: about one third of the slide energy transferred to water is wave energy at the
end of the transfer, 10 times less in the submarine case.

• With the simulations using the µ(I)-rheology and stopping the slide on the slope, we
showed that the wave train is not generated by energy transfer but is a consequence
of the generation of the first wave. For this reason, for the prediction of maximum
amplitude of wave generated by landslide, the whole dynamics of slide does not need
to be accurately reproduced, only the first instants matter.

4.6 Application to the Cumbre Vieja Volcano

Based on these results, simulations on the CVV case already run by Løvholt et al. [57]
and Abadie et al. [1] using non-viscous fluid have been carried out again with a Newtonian
fluid. The characteristics of the CVV slide are scaled by respecting the Froude and
Reynolds numbers between experiments and CVV scales.

urs√
ghrs

= uls√
ghls

(4.16)

ρurshrs
µrs

= ρulshls
µls

(4.17)

with g earth acceleration, urs(uls) characteristic velocity, hrs(hls) characteristic length
scale and µrs(µls) slide viscosity at real scale (resp. reduced scale). Combining the two
equations leads to :

µrs
µls

=
√
h3
rsh

3
ls (4.18)

Which for a viscosity µls = 10Pa.s at reduced scale gives µrs = 4.4 ∗ 107 Pa.s at real
scale given the length ratio. Considering that the slide considered in [1] (Figure 4.17) is
partially submerged, the latter viscosity value is arbitrarily reduced to µ = 2 ∗ 107 Pa.s

to take into account of the result obtained with Grilli’s experiment. Based on these
hypothesis, simulations were performed with three initial slide volumes corresponding to
resp. 20, 40 and 80 km3

4.6.1 Wave generation

Wave generation is computed with THETIS at a local grid around the CVV. As observed
in THETIS computations presented in Abadie et al. [1], it is not necessary to model the
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landslide during its whole runout to obtain the wave generation but only during the super-
critical period of the slide local Froude number (less than 100 s). Results are presented
on Figure 4.18 for a volume of 80 km3.

An initial phase of propagation consists in using this first computation as an initial
state in the Boussinesq model FUNWAVE-TVD (Shi et al. [82]) at a local scale. This
state is filtered in order to be adapted for a Boussinesq model (see Abadie et al. [1] for
more details). Results of this initial phase is transferred to larger-scale simulations to
predict impact on the European coastline.

4.6.2 Wave propagation
Several models are used to compute the wave propagation in Atlantic ocean. A few results
are showed here comparing results on French coast for three models: Calypso (shallow
water equations or Boussinesq equations following Pedersen & Løvholt [72]), FUNWAVE-
TVD (Wei et al. [97]) and Telemac-2D (www.opentelemac.org).

Only wave impact in France for the 80 km3 scenario is presented here. We obtain
between 15 and 20 cm on the continental shelf (Figure 4.19(A)), between 30 and 40 cm
in south Brittany (Figure 4.19(B)), between 15 and 25 cm in the Gironde estuary (Figure
4.19(C)), and between 30 and 40 cm in Saint-Jean-de-Luz (Figure 4.19(D)). The leading
wave on Figures 4.19(A) to (D) reaches the gauges after 3 h 20 min (or 3 h 25 min since the
landslide triggering), 4 h 10 min, 4 h 35 min and 3 h 40 min of propagation respectively,
with periods of 30 min for the first two and 60 min for the last two. We observe a lag
time of 5 to 10 minutes of the arrival times between the two slide scenarios.

All models give quite similar results except for high frequencies appearing especially
for Calypso signal due to the difference of resolution between bathymetric grids.
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(a)

(b)

(c)

(d)

(e)

Figure 4.9: Time evolution of computed energy components in the subaerial benchmark
case (Viroulet et al. [87] with Newtonian slide (µ = 10Pa.s)). (a) Relative error on
system total energy {air+water+slide} (b) Slide potential energy (blue), kinetic energy
(red) and energy dissipated (green), Energy transferred to water (black), divided by the
initial slide mechanical energy E0 (c) Wave potential energy (blue), kinetic energy (red)
divided by E0, (d) Free surface elevation at x = 2m, (e) Evolution of the wave energy
(green, right axis) divided by E0, Transfer ratio (left axis) from Jiang and LeBlond from
expression 4.13 (blue) and from expression 4.14 (red)

76



4.6. APPLICATION TO THE CUMBRE VIEJA VOLCANO

Figure 4.10: Slide snapshots with stream contour (white) and water coloured with vor-
ticity, 0.2 s between two snapshots
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(a)

(b)

(c)

(d)

Figure 4.11: Same caption as figure 4.9 with µ(I) rheology
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(a)

(b)

(c)

(d)

Figure 4.12: Same caption as Figure 4.9 for the submarine landslide case and a Newtonian
slide with viscosity 1Pa.s
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Figure 4.13: Slide snapshots with stream contour (white) and water coloured with vor-
ticity, 1 s between two snapshots

(a)

Figure 4.14: (a) Time evolution of the wave kinetic (red) and potential (blue) energy
with the green lines representing the times at which the fourth following snapshots were
taken. (b-e) Slide snapshots with black arrows representing the velocity field at times
t = 0.6, 0.9, 1.2, 1.5 s
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Figure 4.15: Elevation of the free surface for the Viroulet’s experiment (black line),
THETIS simulation with the slide viscosity at µ = 10Pa.s stopped at t = 0.2 s (blue
line), 0.3 s (red line), 0.4 s (green line), 0.5 s (cyan line), 0.6 s (magenta line), 0.7 s (yellow
line)
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(a)

(b)

Figure 4.16: Time evolution of computed energy transferred by the slide (a) and wave
energy (b) with the slide stopped at t = 0.2 s (blue line), 0.3 s (red line), 0.4 s (green line),
0.5 s (cyan line), 0.6 s (magenta line), 0.7 s (yellow line) and not stopped (black line)

Figure 4.17: Cross section of the 80 km3 La Palma slide scenario considered in Abadie
et al. [1]
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(a) (b)

(c)

Figure 4.18: THETIS 3D computations for 80 km3 slide volume. Contours of wavefield
at t = (a) 102 s, (b) 230 s, (c) 342 s. Slide viscosity 2. ∗ 107 Pa.s
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Figure 4.19: Surface elevations for the 80 km3 scenario at Gauge 3 in the continental shelf
of the Bay of Biscay (A), Gauge 4 in south Bretagne (B), Gauge 5 in the Gironde estuary
(C) and Gauge 6 in Saint-Jean-de-Luz (D), computed by Calypso (black), FUNWAVE-
TVD (red) and Telemac-2D (blue). The time takes into account the 20 first minutes of
the slide and tsunami generation.
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5.1 Introduction
In the framework of the RAVEX project, experiments of wave generation by fluidized
granular slide are intended. Following the work of Roche et al. [79] and presented in
Section 1.4, the model which seems to be appropriate to pyroclastic flow is the Newtonian
fluid with low viscosity.
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First, in order to validate THETIS on wave generation by a fluid slide, water/water
simulations based on experiments are carried out. Following these simulations, energy
transfers are computed to ensure the possibility to model a pyroclastic flow as a Newtonian
fluid.

This work is preliminary to further simulations on wave generation by fluidised gran-
ular flows.

5.2 Experimental and numerical setup

5.2.1 Experimental setup

The experiments consist in releasing a volume of water retained in a reservoir on an
incline in a tank filled with still water up to a defined depth. These experiments have
been realised in a tank by Yves Le Guer and his students in the framework of the RAVEX
project. The dimension of the tank are 3.31m×0.6m×0.08m with two inclines at the left
and right of the tank. The water volume in the reservoir is defined by a water height in
reservoir hr for the 2D simulations. The gate closing the reservoir is opened at a height hg.
Initially, the reservoir has been built for granular experiment and is therefore not totally
waterproof. This can lead to water leak from the reservoir, hence some uncertainty on the
water volume released at the gate opening and generation of ripples at the free surface
before the gate opening. The slope angle is fixed to 30°.

5.2.2 Numerical setup

The 2D numerical geometry reproduces the exact geometry of the tank, namely 2 inclines
and the reservoir (Figure 3.12)).

Mesh

The mesh is refined in the zone of interest, namely near the incline and the free surface.
The domain is rectangular and numerical obstacles are used to define the left and right
inclines as well as the wall of the reservoir (in red on Figure 5.1). The gate is not
represented as it is considered to open at time t = 0 s. The opening height of the gate is
controlled by the size of the obstacle. The bottom part of the domain, from the top of
the left incline, has a constant mesh size of dx = 0.004mm and dy = 0.001mm. The top
part keeps the same space step in x-direction but the cells are exponentially elongated in
the y-direction. All the conditions on domain boundaries are set to symmetry except the
bottom part, set to wall (see Section 2.2).

86



5.2. SETUP

Figure 5.1: Picture of the numerical domain reproducing the experimental tank with two
inclines and the reservoir

Numerical methods

The projection method is chosen for the resolution of pressure-velocity coupling. Because
the free surface is highly perturbed at impact and droplets are generated, the VOF-TVD
scheme is privileged for these simulations.

5.2.3 Studied cases

Four cases have been chosen for the validation which involve two masses of water in the
reservoir and two water depths. The water mass is translated in terms of water height hr
in the reservoir (Figure 5.2). The parameters for each case is summarised in Table 5.1.
The experimental system does not allow to control precisely the opening height of the
gate, this height hg have been mesured after each experiment and may vary from one case
to another.

slide mass (kg) hr (m) hw (m) hg (m)
expe 1 0.5 0.1 0.2 0.09
expe 2 0.5 0.1 0.1 0.10
expe 3 1 0.18 0.2 0.09
expe 4 1 0.18 0.1 0.12

Table 5.1: Parameters of the validation cases for the experiments and the numerical
simulation
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5.2.4 Experimental and numerical data

Experimental data

Experiments have been videotaped with an iPhone camera. A grid (dimension of a square:
0.052 × 0.052m2) has been placed at the back of the tank in order to mesure the wave
heights. Videos of the water on the incline have also been taken in order to study the
dynamics of the slide (thickness and velocity). From videos of the waves and the incline,
spatio-temporal pictures are made at fictitious gauges (Figure 5.2): several gauges normal
to the incline mesuring the evolution of the slide thickness (SG1-3), one parallel to the
incline (SG0) and several normal to the free surface at rest (WG1-3). The water in
the reservoir, hereafter also called slide, has been colored with fluorescein in order to
distinguish it from the water initially at rest in the tank and observe the behaviour
of the slide at impact with still water. The diffusion coefficient of fluorescein is low
(0.436e−9m2.s−1, Petrášek & Schwille [75]), but due to quick mixing of slide and tank
water after the impact, the color water does not represent the location of slide water
only in the tank. This is important to precise because in the numerical simulations, the
reservoir and tank fluids are considered non-miscible.

Figure 5.2: Sketch of the gauges: SG slide gauges and WG wave gauges

Numerical data

As previously mentioned, the simulations are realised with three fluids: water initially
in the tank, slide fluid (initially in the reservoir) and air. These fluid are considered
incompressible, Newtonian and non-miscible. The physical characteristics of slide fluid
are the same as water. Same gauges as in experiments are used during the simulation
(Figure 5.2). The waves gauges (WG) detects the water interface and the slide gauges
(SG) detects the slide interface on the gauge lines. The positions of the gauges during
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the experiments and numerical simulations are summarised in Table 5.2. Two frames are
defined to plot data: (O, x, y) and (O, xs, ys) are represented on Figure 5.2. Origin O is
the position at the intersection of the free surface and the slope. The frame (O, x, y) is
located so as to have the x-direction along the free surface. The frame (O, xs, ys) is placed
with xs-vector along the slope pointing downwards.

SG1 SG2 SG3 SG4 WG1 WG2 WG3
y (m) 0.0 0.05 0.1 0.15
x (m) 0.5 0.8 1.1

Table 5.2: Gauges placement for water elevation (SW) and slide interface position (SG)

Numerical and experimental results are compared and analysed in the next sections.

5.3 Numerical results

5.3.1 Wave elevation
The Figures 5.3 to 5.6 show comparisons of waves generated by slide at three gauges for
the four experiments presented in Table 5.1.

Measurement uncertainty due to by the video system depends on the position of the
camera with respect to the free surface inducing parallax error. This uncertainty has been
evaluated by measuring the thickness of the free surface on pictures and can be found in
Table 5.3. For wave height measurement, the error on experimental amplitude is assessed
from these values.

As in the subaerial case of Chapter 4, a first wave is generated followed by a second
and a wave train that is more or less clearly defined depending on the case and the gauge.

The first wave amplitude obtained from experiments and simulations are summarized
in Table 5.4. Errors are particularly important on the second experiment which corre-
sponds to the lowest reservoir height and water depth.

expe 1 expe 2 expe 3 expe 4
Free surface thickness (m) 0.004 0.008 0.003 0.01

Table 5.3: Evaluation of the free surface thickness on experimental pictures

5.3.2 Slide dynamics
Importance of slide thickness and slide velocity have been highlighted in wave generation
process by numerous studies (Section 1.1.2). For this reason, comparison of slide dynamics
between experiments and simulations have been realised on experiments 2 and 4. The
slide thickness is plotted along the axis ys normal to the slope (Figure 5.2).
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Figure 5.3: Wave elevation at gauges WG1 to WG3, experiment 1: comparison between
experiment (picture) and simulation (blue points)

WG1 WG2 WG3
ysim (m) yexp (m) εrel ysim (m) yexp (m) εrel ysim (m) yexp (m) εrel

Expe 1 0.029 0.036 -0.19 0.021 0.028 -0.25 0.015 0.022 -0.32
Expe 2 0.031 0.049 -0.37 0.024 0.042 -0.43 0.021 0.034 -0.38
Expe 3 0.058 0.062 -0.06 0.055 0.056 -0.02 0.045 0.051 -0.12
Expe 4 0.072 0.076 -0.05 0.057 0.067 -0.15 0.043 0.061 -0.29

Table 5.4: Error on first wave amplitude εrel = (ysim − yexp)/yexp with ysim and yexp
respectively the numerical and experimental first wave amplitudes

Slide thickness

The time of gate opening in experiment is not known on experimental spatio-temporal
pictures but begin all at the same time. Therefore, the numerical results on Figures 5.7
and 5.8) are superimposed on experimental results so that the slide fronts are at the same
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Figure 5.4: Wave elevation at gauges WG1 to WG3, experiment 2: comparison between
experiment (picture) and simulation (blue points)

time at gauge SG5.
In both experiments and simulations, the evolution of slide thickness at a gauge is

similar (Figures 5.7, 5.8): namely a steep slope to reach the maximum thickness and then
a decrease. A thin tail is observed in simulations when the rear of the slide seems to stop
more abruptly whereas the thickness is about 0.005m during experiments. The time it
takes for all the slide to pass through a gauge is similar for the mass of 0.5 kg (experiment
2) or 1.0 kg (experiment 4) with about 0.6 s. The difference of volume is observed in
the difference of maximum thickness with 0.02m and 0.04m for experiments 2 and 4
respectively at gauge SG4. The simulation reproduces quite well the slide thickness of
experiment 2 whereas thickness is underestimated in simulation of experiment 4 with
a maximum of 0.031m on gauge SG4. The delay of simulations on experiments which
increases at each following gauge shows a lower velocity of the numerical slide compared
to the experimental one. This difference of velocities is better highlighted by the gauge
parallel to the slope and discussed in a further paragraph. However, this velocity difference
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Figure 5.5: Wave elevation at gauges WG1 to WG3, experiment 3: comparison between
experiment (picture) and simulation (blue points)

seems more important on experiment 2 than experiment 4.
Figure 5.9 shows the evolution of the slide thickness (i.e. the maximum distance

between top and bottom part of the slide) at four gauges for simulations on the four
experimental setups. Slide thickness seems maximum in the top part of the slope and
then decreases to finally reach a stable value. At SG1, slides with the same initial volume
reaches water with a similar thickness of about 0.02m and 0.03m for experiments 1-2 and
3-4 respectively. Reaching water does not seem to affect the thickness of the slide except
the thin tail which tends to disappear.

Slide velocity

The gauge placed parallel to the slope allows to follow the front and rear of the slide
interface. Figure 5.10 shows a comparison between experiments and simulations for setup
2 and 4. As previously mentioned, the gate opening was not precisely located in time in
the experiments. Therefore, the numerical results are superimposed so that the front of
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Figure 5.6: Wave elevation at gauges WG1 to WG3, experiment 4: comparison between
experiment (picture) and simulation (blue points)

the slide coincides with the front of the experiment when it first appears on the picture.
The difference of velocity between numerical and experimental results is also clearly seen
on this figure, the numerical slide front reaching water with a delay. It is also observed
that for both experiments, the slide front reaches water at about the same time when
simulation of experiment 2 seems slower than for setup 4. Impact velocities have been
evaluated from these plots. On Figure 5.10, the velocity at the impact for experiments
2 and 4 are evaluated by a linear fitting the slide front position near free surface. On
Figure 5.11, the same have been realised before and after impact for numerical simulations
on the four experiments. The velocities are summarized in Table 5.5. As observed on
Figure 5.10, the velocity before impact evaluated on the experiments are similar for both
volume of reservoir water, unlike velocities in simulutions which seem dependent on slide
mass. The error on velocity before impact is of 34% and 52% for setup 4 and 2 respectively.

The velocity after impact in Table 5.5 corresponds to the slide velocity along the xs-
axis after entering water. The loss of velocity after impact is explained by the transfer
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Figure 5.7: Slide contour detected by SG1 to SG4 for the setup 2, spatio-temporal picture
of the experiment at the background and numerical results in blue

of kinetic energy to the tank water but also by the fact that the slide no longer moved
only along the xs axis from the moment it enters water. By comparing the four values of
velocity after impact, it seems more dependent on the slide volume that on water depth.
The loss of kinetic energy will be better illustrated in the next section.

From gauge SG0, the maximum distance of slide penetration into water can be eval-
uated. In order to be more relevant, the distance measured on the xs-axis is converted
into a minimum depth ymin on the principal frame (O, x, y). Minimum depth evaluation
from videos of experiments 1 and 3 and from numerical gauge SG0 are summarised in
Table 5.5. Numerical slide penetrates less into water than in experimental observations.
This may be linked to velocity errors previously mentioned.

Despite velocity and thickness errors, numerical simulations for slide mass of 1 kg are
able to reproduce quite accurately the waves generated. This will be discussed after the
analyse of energy transfers.
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Figure 5.8: Slide contour detected by SG1 to SG4 for the setup 4, spatio-temporal picture
of the experiment at the background and numerical results in blue

V −s,e V −s,n V +
s,n ymin,e ymin,n

expe 1 1.50 0.36 -0.11 -0.04
expe 2 2.84 1.36 0.28 -0.04
expe 3 1.80 0.50 -0.17 -0.11
expe 4 2.92 1.93 0.52 -0.09

Table 5.5: Estimated velocities of the slide front along the incline before the impact
V −s,e and V −s,n (experimental and numerical) and after the impact V +

s,n (numerical) and
maximum distance of slide penetration into water along xs-axis converted to minimum
depth ymin,e and ymin,n (experimental and numerical)
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Figure 5.9: Slide contour detected by SG1 (cyan), SG2 (green), SG3 (red), SG4 (blue)
for experimental setup 1 to 4

5.4 Energy transfers

Energy transfers are studied the same way as in the previous chapter (Section 4.2.3).
Computation of energies are carried out on experiment 3 and plotted on Figure 4.14. Fig-
ure 4.14(a) shows energy loss in the system {air+water+slide} by numerical dissipation.
With a maximum of nearly 4%, this loss is greater than in the previous studies. Fig-
ure 4.14(b) illustrates the evolution of slide energy. Unlike Viroulet’s and Grilli’s cases,
slide kinetic energy is an important part of slide energy with a maximum of 60% of the
initial slide energy. Viscous dissipation energy is very low because of the low viscosity of
the fluid composing the slide, here water. Potential energy decreases until reaching an
assymptotic value. This assymptotic value does not correspond to the deposition of the
slide at the bottom of the tank as in subaerial and submarine cases of Chapter 4 where
the slide density where greater than water density. In this case, the slide stays in motion
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Figure 5.10: Slide contour detected by SG0 for experimental setup 2 and 4, spatio-
temporal picture of the experiment at the background and in blue the numerical results,
red discontinuous lines correspond to the linear fitting of the experimental slide front
displacement before impact

in a zone close to the incline, explaining a kinetic energy low but not null at the end of
the simulation.

Figure 4.14(c) shows the evolution of wave energy in the propagation zone as defined
in Section 4.2.3. At the begining of the wave generation, this zone is difficult to define in
particularly because of small slide drops which are separated from the main slide volume.
For this reason, the evolution of wave energy might not be completely accurate just after
the slide penetration into water. Moreover, the Froude number is around 1.3 at the impact,
namely the case is supercritical. During the generation, the slide velocity is higher than
the waves which explains the quick increase of wave energy after t = 0.5 s when the slide
has slowed down.

Figure 4.14(d) illustrates the energy transferred from slide to wave and the total wave
energy. Wave energy stabilizes around t = 0.84 s, namely when all the slide is under water
level (Figure 5.9). When wave energy reaches its maximum, the energy tranfer from slide
to waves is about 19.4%. This value only decreases slightly to 18.5% at the end of the
computation. This shows that the energy transfer from slide to wave only stops with slide
energy transfer to water. However, energy transfer occurs quickly after slide penetration
into water.
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Figure 5.11: Slide contour detected by SG0 for experimental setup 1 to 4, red and green
discontinuous lines correspond to the linear fitting of the slide front displacement respec-
tively before and after the water penetration

5.5 Discussion

5.5.1 On slide velocity

The numerical results on experimental setup 1 and 2 are particularly deceiving. The first
difference comes from the lower slide velocity found numerically. In order to test the
influence of the obstacle resolution on slide motion, simulations have been realised with
a slanted domain for which the incline is a domain boundary and is completely smooth
(Figure 5.13). Contrary to Viroulet’s experiment, the slide is quite thin (2 and 4 cm for
cases 1-2 and 3-4 respectively) and reach a relatively high velocity (more than 2m.s−1)
which makes the flow more difficult to solve. The slanted domain makes the slide motion
easier to solve by THETIS but instabilities appear at the water free surface and highly
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(a)

(b)

(c)

(d)

Figure 5.12: Time evolution of computed energy components in simulation of the third
experiment (Viroulet et al. [87] with Newtonian slide (µ = 10Pa.s)). (a) Relative error on
system total energy {air+water+slide} (b) Slide potential energy (blue), kinetic energy
(red) and energy dissipated (green), Energy transferred to water (black), divided by the
initial slide mechanic energy E0 (c) Wave potential energy (blue), kinetic energy (red)
divided by E0, (d) Evolution of the wave energy (green, right axis) divided by E0, Transfer
ratio (left axis) from Jiang and LeBlond from expression 4.13 (blue) and from expression
4.14 (red)

increase the computational time.
By comparing Figures 5.10 and 5.14, it can be remarked that the velocity before

impact as been improved by the slanted domain reaching 2.17m.s−1 and 2.43m.s−1 for
case 2 and 4 respectively, compared to previous numerical and experimental results in
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Table 5.5. However, the slide thickness at gauges SG1 to SG4 is more important at the
slide front than in previous simulations (Figure 5.15).

In terms of free surface elevation, it seems that improving the slide velocity has also
enabled to reproduce more accurately the first wave amplitude (Figure 5.16). Simulations
carried out with a mesh adapted to both the incline and the free surface could be a
solution to improve the results and keep reasonable computational time.

Figure 5.13: Slanted domain for fluid/fluid simulations

Figure 5.14: Slide contour detected by SG0 for experimental setup 2 and 4 with slanted
domain, spatio-temporal picture of the experiment at the background and in blue the
numerical results, red discontinuous lines correspond to the linear fitting of the numerical
slide front displacement before impact
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Figure 5.15: Slide contour detected by SG1 to SG4 for the setup 2 with slanted domain,
spatio-temporal picture of the experiment at the background and numerical results in
blue

5.5.2 Parameters influence

Simulations close to the third setup (i.e. hw = 0.2m and hr = 0.1m) have been carried
out in order to evaluate the influence of slide density, viscosity and gate opening height.
The initial fluid is water with a gate opening height of 0.1m. Three series of 5 simulations
are carried out, changing one parameter at a time whose range can be found on Table 5.6.

Slide density

Slide density has an impact on wave amplitude: the denser the slide, the greater the wave
amplitude (Figure 5.17). Density has a few influence on velocity before impact (Table 5.6)
and no effect on slide thickness (Figure 5.18).
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Figure 5.16: Wave elevation at gauges WG1 to WG3, experiment 2: comparison between
experiment (picture) and simulation with slanted domain (blue points)

relative density d 0.6 0.8 1.0 1.2 1.4
V −s,n (m.s−1) 1.41 1.47 1.50 1.52 1.53
µ (Pa.s) 0.001 0.01 0.1 1 10
V −s,n (m.s−1) 1.5 1.46 1.37 0.80 0.1
hg (m) 0.02 0.04 0.06 0.08 0.1
V −s,n (m.s−1) 1.09 1.42 1.47 1.49 1.5

Table 5.6: Estimated velocities of the slide front along the incline before the impact V −s,n
for each series of simulations

Slide viscosity

For viscosity equal and greater than 1Pa.s, the wave amplitude is highly reduced (Fig-
ure 5.19). Similarly to density variation, the viscosity does not seem to impact the slide
thickness (Figure 5.20). However, velocity is highly reduced above a vicosity value of
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Figure 5.17: Wave elevation at gauges WG1 to WG3 for 5 relative density values: d = 0.6
(blue), d = 0.8 (red), d = 1.0 (green), d = 1.2 (cyan), d = 1.4 (magenta)

1Pa.s (Table 5.6).

Gate opening height

Except for its lower value (i.e. 0.2m), the gate opening height does not seem to have a
large influence on wave amplitude. Indeed, only for this value, the slide thickness and
impact relocity are reduced (Figure 5.22, Table 5.6).

5.5.3 Pyroclastic flow model
Following Roche et al. [79], a fluidized dense granular flow behaves like a water flow during
a dam break except for the last stage. The simulations presented here are comparable
to a dam break case. Energy transfer from slide to waves is achieved quite quickly after
slide penetration into water. Therefore, considering that the dense granular flow stays
fluidized during its motion along the incline, a pyroclastic flow could be modelled as a
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Figure 5.18: Slide contour detected by SG1 to SG3 for 5 relative density values

Newtonian fluid with low viscosity in order to reproduce wave generation.

5.6 Conclusion and perspectives
These simulations illustrate the difficulties of modelling subaerial slide impacting water
with a quite high velocity, particularly for small slide volume and water depth. Using a
good mesh is essential to solve accurately both the slide and the free surface elevation.
THETIS mesh limitations make it more challenging to reach.

Nevertheless, based on our most accurate results, we show the quick conversion from
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Figure 5.19: Wave elevation at gauges WG1 to WG3 for 5 viscosity values: µ = 0.001Pa.s
(blue), µ = 0.01Pa.s (red), µ = 0.1Pa.s (green), µ = 1.0Pa.s (cyan), µ = 10.0Pa.s
(magenta)

slide to wave energy ensuring the possiblity to model pyroclastic flow as a Newtonian fluid
during wave generation simulations. This hypothesis will be verified with simulations on
experiments realised in the framework of the RAVEX project.

From this work, a more in-depth study of the influence of parameters could be realised
both experimentally and numerically. In addition to parameters discussed in this chapter,
the slope angle and the temperature could be added.
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Figure 5.20: Slide contour detected by SG1 to SG3 for 5 viscosity values
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Figure 5.21: Wave elevation at gauges WG1 to WG3 for 5 gate opening heights: hg =
0.02m (blue), µ = 0.04m (red), µ = 0.06m (green), µ = 0.08m (cyan), µ = 0.1m
(magenta)
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Figure 5.22: Slide contour detected by SG1 to SG3 for 5 gate opening heights
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This thesis have focused on two modelling approaches: first, modelling a landslide by
discontinuous media by adding a method to solve solid collisions in a Navier-Stokes code
and then modelling a landslide as a continuous media with an emphasis on energy transfers
during the generation process. The principal results and the perpectives for future work
are presented in this chapter.

On the discontinuous approach
A discontinuous model for landslides has been developped by adding a routine which
manages solid/solid collisions to a Navier-Stokes code. In this model, a landslide is com-
posed of discs made up of penalised fluid. Without the routine, these discs behave as
solid blocks whose collisions are perfectly plastic. The routine enables to avoid plastic
collisions, corrects the discs trajectories in order to follow a physical trajectory considering
a collision with a restitution coefficient between 0 and 1. This routine has been tested
in comparison with experimental results of cylinders and half-cylinders packs sliding on
an incline in a tank filled with water. The simulations give moderatly successful results
in terms of cylinder motion and wave amplitudes but this has to be modulated by the
chaotic nature of the experiments performed.

In the continuity of this study, it would be interesting to validate the method on
experiments less chaotic for example with less cylinders. These experiments are being
prepared in the perspective to write an article presenting the method. Moreover, the
routine could be improved to expand its possibilities. For instance, it could be possible
to consider other geometries than the discs, to add interaction with fixed obstacles and
boundaries or make the model more complex by adding friction between blocks. A model
mixing continuous media (Newtonian fluid for instance) and solid blocks in order to take
into account the difference of scale in real landslide blocks and their interaction could
be imagined using this method. We could also apply this method on other applications
than wave generation like predicting blocks motion composing a breakwater under wave
impact.
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On the continuous approach for granular slide

Two continuous models for subaerial and submarine slides have been tested: the Newto-
nian fluid and the µ(I)-rheology. Both of these models give satisfactory results on wave
amplitudes for subaerial slide. Moreover, it is possible to calibrate the Newtonian fluid
with the µ(I)-rheology following Ionescu et al. [44]. The use of µ(I)-rheology for subma-
rine slide has not been possible with THETIS. A study of energy transfer from slide to
waves have be carried out, showing that the transfer is very quick after the penetration of
the slide into water. The process is more efficient for subaerial slide than for submarine
slide. Moreover, simulations showed that the wave train is a consequence of the first wave
generation. Therefore, for wave generation purpose, the slide needs to be correctly model
only during this short period of time. Following this work, new computations have been
performed on the Cumbre Vieja Volcano case.

In the continuity of this work, it could be interesting to apply the energy transfer study
on other subaerial or submarine cases and other slide models (Bingham fluid, discontinu-
ous slide). The TANDEM project focused on the Cumbre Vieja case but the Newtonian
model and µ(I)-rheology can be applied on other real cases. By solving the initiation
problem of µ(I)-rheology underwater, this model could also be applied on submarine
landslide.

On the continuous approach for pyroclastic flow

Simulations of water subaerial slide generating waves in a water-filled tank showed the
complexity of solving these cases with THETIS. From the validated cases, the energy
transfer from slide to water is, similarly to previous simulations with higher viscosity for
the modelling of granular slide, done in a short period of time after the penetration of
the slide into the water initially at rest. Litterature presents pyroclastic flow as a gran-
ular flow with high mobility close to a low viscosity fluid flow. These results of energy
transfer during water/water experiments show that pyroclastic flow can be modelled as a
low viscosity fluid during the wave generation process. Moreover, a preliminary parame-
ter influence study has been realised on the slide density, viscosity and the gate opening
height (which govern the slide penetration velocity magnitude). As expected the wave
amplitude increases with the density and with decreasing viscosity values. Gate opening
height has a low influence on the wave amplitude except for low values where the slide
thickness and velocity are reduced.

This work is ongoing in the framework of the RAVEX project. Following the present
study, simulations on the waves generated by fluidised granular slide with slide modelled
as a Newtonian fluid are expected. Moreover, the parameter influence study can be used as
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a basis for a more in-depth study of the parameters both experimentally and numerically.
These simulations would aim to calibrate a model of pyroclastic flow in order to be applied
on the Montagne Pelée Volcano and assess the risk of tsunami generated by an explosive
eruption on the coast potentially threatened.
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