

Polymerization of ethylene: from free radical homopolymerization to hybrid radical/catalytic copolymerization

An "ideal" polymer: PE

- Advantages of PE:
 - Efficient and low cost industrial processes
 - Easy to work up
 - Different materials (HDPE, LDPE, LLDPE)
 - Interesting properties
 - Due to a balance between crystalline and amorphous part
 - Chemical inertia
 - Water impermeability

An "ideal" polymer: PE

- Disadvantage of PE
 - Polyethylene is a non-polar material
 - Low interaction with inks, dyes, fillers ...

- How to solve this issue? → material has to contain some polar functions
 - Post-treatment step
 - Copolymerization

Incorporation of polar function via a radical copolymerization

Two distinct reactivities

Efficient copolymerization only under severe experimental conditions (P>500 bar, T>100°C)

GRAU Etienne

Incorporation of polar function via a catalytic copolymerization

L_n[Met]-----R

Most catalysts are totally deactivated in presence of polar comonomer

Some results have been obtained using specific catalysts

What is the purpose of these three years of study?

Synthesis of copolymers of non polar/polar olefins under mild conditions (T<100°C and P<100 bar)

6

Interactions between radical and organometallic compounds already observed

Organometallic specie which traps radical

Pioneering work done by Alexandra LEBLANC at the LCPP (2005-2008)

Catalytic polymerization
of ethylene
Radical polymerization
of MMA, Sty and BuA

First results on ethylene/MMA copolymerization

15 November 2010

7

Outlook of the presentation

- Development of the hybrid copolymerization
 - Efficiency of the system
 - Investigation of the mechanism
- Study of free radical polymerization
 - Copolymerization
 - Ethylene radical polymerization

Hybrid copolymerization

The NiNO system

Mono-component catalyst \rightarrow no akylating agent Relatively low oxophilicity

NiNO

Is the hybrid system efficient?

Polymerizations are performed during 12 hours with 50 mg of NiNO at 70°C in 250 mL of toluene with 25 g of comonomer under **20 bar of ethylene pressure**

Could be due to an inefficient exchange between mechanisms

GRAU Etienne

"Full" hybrid system: NiNO + AIBN

Is the full hybrid system efficient?

	NINO alone				
Comonomer		Yield (g)	Comonomer molar insertion (%)	Yield (g)	Comonomer molar insertion (%)
MMA		2.8	4.3	12	60
BuMA		5.5	3.3	12.7 +	54
tBuMA		6.3	4.5	17.3	35
MA		0.02	nd	12	88
BuA		0.05	95	16 +	+ 75
tBuA		0.1	97	15.5	51

Polymerizations are performed during 12 hours with 50 mg of NiNO and ½ molar equivalent of AIBN at 70°C in 250 mL of toluene with 25 g of comonomer under **20 bar of ethylene pressure**

IT WORKS

Is the hybrid system efficient?

GRAU Etienne

It works with various comonomers

GRAU Etienne

Efficient and tunable system

Variation of MMA concentration

Two simple ways to control the Ethylene/Polar monomer ratio in copolymer

GRAU Etienne

So it works But, how does it work?

GRAU Etienne

Copolymer microstructures

SEC analysis

- Monomodal distribution in molecular weight
- Thermal analysis
 - > Tm & crystallinity remain even at high polar content
- Extractions by solvent
 - No homopolymer
- LC-CC in collaboration with DKI Darmstadt
 - Monomodal distribution in polar content
- NMR
- Amphiphilic properties analysis

Copolymers are synthesized

E/MMA copolymer microstructure Polymers are multiblocks

13C NMR new signals

Copolymer microstructure Polymers are multiblocks

Case of ethylene/acrylic acid copolymer

GRAU Etienne

Investigations on the exchange mechanism

Experimental proof of the homolytic cleavage of Ni-C bond

400 440

50-

100

80 120

40

200 240 280 320

Difference

PhD Derense

160

GRAU Etienne

Synergy effect between AiBN and NiNO

MMA radical polymerization

50 mg NiNO and/or 10 mg AiBN (1/2 eq) 10 mL MMA 40 mL Toluene 70°C

NiNO = (poor) initiator Synergy between AiBN and NiNO Ethylene catalytic polymerization

100 mg NiNO and/or 20 mg AiBN (1/2 eq) 20 bar Ethylene pressure 250 mL Toluene 70°C 1h

Reactivation of dead catalyst by AiBN

GRAU Etienne

Versatility of the NiNO complex

25

What is the interaction between NiNO and AiBN?

Study of the S_R1: ligand effect

• How to tune the kinetics of the reaction?

Possible control of the length of the non-polar bloc

High k_a

Low k_d Additionnal ligand can favor or disfavor the process

Polymerization of MMA

50 mg NiNO (3eq phosphine) 10 mL MMA 40 mL Toluene 70°C

Phosphine effect : 7 Kinetic with PPh₃

GRAU Etienne

Quantification of the phosphine effect

29

Summary – multiple role for NiNO compound

- NiNO = catalyst
 - Reactivated by free radical

- NiNO = initiator
 - Synergy with free radical
 - Both $S_R 1$ and $S_R 2$ exist

Can be tuned by phosphorous ligand

• NiNO = radical trap ($S_R 1$), transfer agent ($S_R 2$)

Influence of ethylene on radical polymerization of the polar monomer

Radical copolymerization ethylene-polar vinyl monomers

Experimental conditions: Toluene 40 mL 10 mL of MMA AIBN 16 or 160 µmol 4 hours at 70°C

Free radical copolymerization only efficient at higher AIBN concentration

Radical copolymerization ethylene-polar vinyl monomers

Ethylene sequences analysis

Can ethylene be polymerized by free radical polymerization under these mild conditions? Consecutive ethylene units

High ethylene content even at medium pressure

GRAU Etienne

Standard radical LDPE process

Ethylene homopolymerization

Can we increase significantly the yield?

GRAU Etienne

Effect of other solvents

GRAU Etienne

Influence of solvents on MWD

Is it a physical effect ?

THF>DEC>toluene

E. Grau, J.-P. Broyer, C. Boisson, R. Spitz, V. Monteil, *Phys. Chem. Chem. Phys.*, **2010**, *12*, 11665 GRAU Etienne PhD Defense 15 November 2010

The route to the optimum solvent

Solvent	<i>E</i> : Dielectric constant (at 20°C)	μ : Dipole moment (10 ⁻³⁰ C.m)	Yield (g)	Experimental conditions: Solvent 50 mL
None	-	0	0.1	AIBN 160 µmol
Heptane	1.9	0	0.7	100 bai 4 hours
Toluene	2.4	1	0.7	Any Solvent > Bulk
DMSO	46.5	13.5	1	
Acetonitrile	35	11.8	1.1	
Ethanol	24.5	5.8	1.4	No simple relation
Acetone	20. 6	9	1.5	
DMF	36.7	10.8	1.7	
Ethyl acetate	6	6.1	2.3	······································
DCM	8.9	5.2	2.7	
1,4-dioxane	2.2	1.5	3.2	
THF	7.6	5.8	3.9	
GRAU Etienne		PhD Defense		15 November 2010 4

GRAU Etienne

Rationalization of the solvent effect

Rationalization of the solvent effect

Micro- or macroscopic effect

Summary - on free radical polymerization of ethylene

Polyethylene synthesis under mild conditions

- ➢ 50-90°C / 0-250 bar
- \succ Conversion up to 40% in 4 hours
- New kind of PE LDPE<Tm, crystallinity<HDPE</p>
- Low Mn<20000 g/mol</p>
- Fundamental description and understanding of the solvent effect
- ➢ Determination of the phase transition
 ➢ Highest yield → $\left(\frac{\mu}{\varepsilon}\right)^2 \approx 0.6 \cdot 10^{-60} C^2 \cdot m^2$
 - \rightarrow nearest to the phase transition

Opened research topics

GRAU Etienne

Polymerization in water

E. Grau, P-Y Dugas, J.-P. Broyer, C. Boisson, R. Spitz, V. Monteil, Angewandte Chemie, 2010, 49, 6810. **GRAU** Etienne PhD Defense 15 November 2010

Final conclusion

Development of hybrid catalytic/radical polymerization

- First efficient copolymerization system
- Control of exchange mechanism via radical addition (or phosphorous ligand)
- > New kinds of mutiblock copolymers

Final conclusion

- Investigation of radical copolymerization
 - Polymerization in solution and emulsion
 - ➢ With VAc, Ethylene content up to 95%
 - ➤ With MMA, Sty and BuA up to 60%
 - Dual role of polar monomer as solvent and comonomer (not detailled in this presentation)

Final conclusion

- Study of free radical homopolymerization of ethylene
 - Synthesis of new kinds of PE
 - Efficient polymerization in water
 - Fundamental understanding of solvent effect
 - Promising results toward CRP of ethylene

Some perspectives

- Hybrid copolymerization
 - New catalysts
 - Copolymerization of propylene, styrene
 - Fine characterization of copolymers produced
- Free radical homopolymerization of ethylene
 - Theoretical investigation of solvent effect
 - Controlled radical polymerization of ethylene
 - Architectures based on polyethylene

Thank you for your attention

Dr. Roger SPITZ

Dr. Christophe BOISSON

Jean-Pierre BROYER

GRAU Etienne

Pierre-Yves DUGAS for TEM Dr. Pierre-Antoine ALBOUI, LPS, for X-Rays Dr. Medhi ZEGHAL, LPS, for Latex-SSNMR Dr. Christophe CHASSENIEUX, PCI, for SLS David ALBERTINI, INL, for AFM Xavier JAURAND, CTµ, for Tomo-TEM Dr. Laurent BONNEVIOT and Dr. Belen ALBELA, ENS, for EPR Dr. Fernande BOISSON and Annick WATON, for NMR Dr. Vincent LEDENTU, LCTMM, for DFT/MM calculations Dr. Robert BRULL and Chitta RAJESH, DKI, for HT-LC-CC Olivier BOYRON for HT-SEC Dr. Christian GRAILLAT Dr. Alexandra LEBLANC

Last but not least all project students: Nérimel LAGGOUNE, Christoph FISCHER, Alexandre FAURIE Clément CID, Cédric DOMMANGET, Alexandra TCHERNOOK All « microprojet » students

GRAU Etienne

Toward CRP of ethylene

Using CMRP

Free radical polymerization of ethylene

Under 100 bar of ethylene pressure

Solubility measurement

15 November 2010 57

Methodology

Methodology

0 59

Monophasic or biphasic?

THF/Ethylene phase diagrams

TEM pictures of PE particles

Without CTAB

100 nm 100 nm Sphere-like Facets due to PE lamella Identical surface As CTAB = 80\AA^2

With 1 g/L CTAB

Sphere like
+ low contrasted

Disk-like

Tomographes of PE particles

With 1 g/L CTAB

Without CTAB

Confirm morphology but only for one particle

AFM of PE particles

Without CTAB

With 1 g/L CTAB

GRAU Etienne

X-Ray analysis

PE is semi-crystalline

CTAB effect on particles morphologie

GRAU Etienne

GRAU Etienne

Polymerization initiate by APS

PS core / PE shell

Phosphine effect during catalytic polymerization

Additional phosphine	Activity (g mmol ⁻¹ h ⁻¹)	Mn (g/mol) ^b [PDI] ^b	Melting Temperature (°C) ^c
-	94.7	7150 [2.2]	117.9
PPh ₃	209	16150 [2.2]	118.1
P(o-Tol) ₃	146	14200 [1.9]	113.3
PBu ₃	1.1	nd [nd]	nd
P^tBu_3	40.6	nd [nd]	118.1
PCy ₃	201	23700 [2.1]	118.0
$P(C_6F_5)_3$	135	10600 [2.1]	110.9
P(p-MeO-Ph) ₃	96.1	16300 [2.3]	115.6

Polymerizations are performed during 1 hour with 20 mg of NiNO at 50°C in 250 mL of toluene under 20 bar of ethylene pressure

Phosphine	Bite angle (°)	Activity (g mmol ⁻¹ h ⁻¹)	Mn (g/mol) ^b [PDI] ^b	Melting temperature (°C) ^c
-	-	94.7	7150 [2.2]	117.9
PPh ₃	-	209	16150 [2.2]	118.1
DPPPh	109	201	18200 [2.1]	115.1
PEtPh ₂	-	54.1	15794 [3.2]	119.6
DPPM	<80	117	16100 [2.3]	117.1
DPPE	85	155	12700 [2.5]	116.2
DPPP	91	120	18400 [2.2]	115.4
DPPB	98	21.7	11000 [1.9]	116.2
DPPPe	111	344	9450 [2.6]	111.8
DPPH	120	21.0	10100 [2.0]	114.4

GRAU Etienne

PhD Defense

72 5 November 2010
