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Abstract
The 3D planar discontinuity presents several difficulties related to the volume mesh.
The entire volume space must be taken into account even the smallest details. In
this thesis, we propose a formulation based on the Reciprocity Theorem combined
with the Generalized Equivalent Circuit Method (MGEC) to model a planar discon-
tinuity of RF circuits which excited by a coaxial cable. The major advantage of this
formulation is the fact to reduce the computational volume into a 2D ones in the
discontinuity plane. Also, we focused on the calculation of the discontinuity between
the excitation source and the planar structure to determine the exact behavior of the
electric coaxial excitation model. The obtained current density, electric field distribu-
tions, and the input impedance are presented and discussed in the following Sections.
An approximately good agreement of input impedance with those obtained by the
simulator and measurement is shown. The 3D concept of hybridization is also proved
by the modeling of microstrip antenna which connected to the conductor and excited
by coaxial cable. Results obtained in the current density of antenna shown the exist-
ing of the discontinuity between antenna and conductor. As well as a mathematical
formulation based on hybridization to model a microstrip filter.
Keywords. Reciprocity Theorem, MGEC, Discontinuity, Modeling, Circuit Analyz-
ing, localized source.
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Resumé
Le calcul de la discontinuité dans l’espace 3D présente plusieurs difficultés qui liées
au maillage volumique. En fait, tout l’espace du volume entier doit être pris en
considération même pour les petits détails. Dans cette thèse, nous proposons une
formulation basée sur le théorème de réciprocité combiné avec la méthode des circuits
électriques généralisées (MGEC) pour modéliser des structures planaires ou fermées
excité par deux sources (planaire et coaxiale). L’avantage majeur de cette formula-
tion est le fait de réduire le calcul volumique en calcul surfacique dans le plan de
discontinuity. De plus, nous nous sommes concentrés sur le calcul de la disconti-
nuité entre l’excitation et la structure planaire dans le but de déterminer le circuit
électrique de model coaxial. La densité du courant et le champ électrique distribués
ainsi que l’impédance d’entrée sont présentés et discutés par la suite. Un accord
approximatif de la valeur de l’impédance d’entrée avec celles obtenues par le simula-
teur et la mesure. Le concept de l’hybridation est aussi prouvé par la modélisation
d’une antenne microstrip connecté à un conducteur et excitée par un câble coaxial
dont sa valeur de la densité du courant montre l’existence d’une discontinuité entre
l’élément rayonant et le conducteur. Ainsi que, une formlation mathématique basée
sur l’hybridation de modéliser un filtre microstrip.
Mots Clés. Théorème de Réciprocité, MGEC, Discontinuité, Modelisation, Analyse
de Circuit, source localisée.
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Chapter 1

General Introduction
1.1 Context

Microwaves are a form of electromagnetic radiation[1], just like radio waves, ultra-
violet rays, X-rays and gamma rays. They are of intermediate wavelength between
infrared and broadcast waves, approximately in the range of 30 centimeters (1 GHz)
to 1 millimeter (300 GHz). Microwaves cover the end of UHF (from 1 to 3 GHz),
SHF (from 3 to 30 GHz) and EHF (from 30 to 300 GHz)[2–4]. Microwaves have inter-
esting applications including those used for satellite transmissions (case of the GPS),
mobile communications, broadcasting of terrestrial digital television programs, radar
applications, medicine, industrial heating and even cooking food[5–9]. However, the
advantages of the microwave can be resumed in those things:

• The microwave spectrum has larger bandwidth and a hence large amount of infor-
mation can be transmitted using it.

• Microwave technology helps to manage crowded spectrum with the use of highly
selective receivers, modulation (SSB, PSK, QAM, etc.) and spread spectrum
techniques, data compression, etc.

• The microwave spectrum is divided into different channels as per application.

• The microwave communication is used since earlier days as one of the Line of Sight
Communication in hilly remote areas where other means of wired communica-
tion is not possible to be installed.

It has also some disadvantages, among those:

• For the frequencies in the microwave range, E-H wave analysis needs to be applied.

• At microwave frequencies, the transit time of the current carrier i.e. electron is
higher which takes a large percentage of the actual signal. Due to this fact,
conventional transistors do not function properly at microwave frequency com-
pare to lower frequency.

• As microwave communication is limited to line of sight mode only.

14
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• As we know lumped components such as resistors, inductors and capacitors do not
have the same characteristics at microwave frequencies as they have at lower
frequencies

Thereof, with the increasing complexity of microwave integrated circuits, passive com-
ponent modeling becomes more and more important in accurately determining the
performance of the designed circuits[10, 11]. Also, Scientists and mathematicians of
the nineteenth century laid the foundation of telecommunication and wireless tech-
nology, which has affected all facets of modern society. In 1864, James C. Maxwell[12]
put forth fundamental relations of electromagnetic fields that not only summed up
the research findings of Laplace, Poisson, Faraday, Gauss, and others[13] but also
predicted the propagation of electrical signals through space[14]. Since Maxwell’s
equations involve vector differential or integral operations on vector field quantities,
and these fields are functions of special coordinates[15].

1.2 Thesis objectives

Otherwise, a field theory solution generally provides a complete description of the
electromagnetic field at every point in space, which usually gives much more infor-
mation than we need for most practical purposes. Consequently, the problem of
electromagnetic (EM) propagation in stratified isotropic and anisotropic media has
been studied extensively[16]. However, this field is neither a purely TE nor a purely
TM mode, rather it is a hybrid mode and cannot be obtained from a single scalar
potential[17]. Besides, full-wave three-dimensional-discretization numerical methods
are considered the most versatile, as they apply to geometrically more complex struc-
tures at higher frequencies. Just as the high frequencies and short wavelengths of
microwave energy make for difficulties in the analysis and design of microwave de-
vices and systems especially in space (3D dimensions). In the design of microwave of
[18] microstrip and millimeter-wave circuits, compensation of microstrip discontinu-
ities is widely used to reduce the effects of discontinuity reactance. For low-frequency
applications, planar waveguide models have been successfully applied for compen-
sation of some discontinuities such as steps, right-angle bends and T junctions. At
higher frequencies and three-dimensional space, a dynamic model based on a full-wave
analysis is required to take into account more physical effects such as radiation and
surface-wave losses. Furthermore, it is necessary to take advantage of the ability to
optimize analog and digital simultaneously to reach our goals. There are many algo-
rithms and circuit techniques that have been employed at a high frequency that may
bring benefits to the microwave space. For this reason, we resort obligatory for elec-
tromagnetic methods named ”global methods”. These methods can be classified into
two groups: integral and differential[19]. Differential methods like the finite-difference
time-domain (FDTD)[20] approach, the transmission-line matrix method (TLM)[21]
and finite element method (FEM)[22]. These methods use a structured grid for spa-
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tial discretization. However, they are quite costly in terms of their computational
requirements. Integral methods also adapt well to these types of problems. Among
the integral methods, we can cite the method of moment (MOM). The method of
moment gives a general procedure for treating field problems, but the details of the
solution vary widely with the particular problem. It is perhaps the most widely used
tool for electromagnetic modeling. The advantages of the method of moment are
accuracy, versatility, and the ability to compute near as well as as-far zone parame-
ters. The most widely used forms of method of moment are the thin wire computer
programs[23]. Despite its advantages, it has been proven its insufficiency when it
comes to 3D problems[24, 25]. To remedy this drawback, we propose a hybridiza-
tion of methods that combines the one mentioned before (MOM or a version of it
named MGEC) with the reciprocity theorem(RT)[26]. Also, the reciprocity theorem
is among the most useful tool in fields and circuit problems. Thereby, the principle of
reciprocity was formulated and established some time ago. As we shall demonstrate,
this principle proves to be a powerful tool of investigation, establishing a far-reaching
analogy in the performance of receiving and transmitting antennas and after that for
electromagnetic radiation structures[27]. It also has been used to study scattering,
interference, ultra-wide-band and discontinuity problems existing in radiate planar
structures. Basing on these approaches, we try in this work to concentrate on the
study and the analysis of discontinuity phenomena existing between source and mi-
crowave circuit using hybridization. In this thesis, we apply and validate this latest
technique by the meaning of reciprocity theorem combined with the EGC method to
model planar structure which based on the microstrip resonator, microstrip antenna
and developing the theoretical concept of a microstrip filter for 5G applications.

1.3 Thesis outline

Our manuscript is divided into five chapters as follows:
− The present chapter is an overview of microwaves, their applications, problems
encountered in microwaves circuits and with which tools it can resolve. Also, it shows
the content of other chapters − In the second chapter 2, we introduce the discontinu-
ity problems existing in microwave components. We will also give an overview of the
discontinuity problems existing between microwave structure elements as well as at
the source. Furthermore, we will cite the different research which started this type of
problem by concentrating on the discontinuity between source and planar structure .
− In the third chapter 3, we will apply the reciprocity theorem by developing its math-
ematical formulation giving the original expression of the excitation source which was
the aim of our conference paper. To show the efficiency of this theorem, we will ap-
ply and validate it to our first example which described by a microstrip resonator in
an open-end metallic waveguide excited by coaxial cable. For the first time, we will
calculate the value of current and field distribution as mentioned in our conference
paper. After that, we will give the value of input impedance given by the source and
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compare it to HFSS and the one seen by the fundamental indicates the existence of
discontinuity.
− In the fourth chapter 4, we will study this discontinuity, which was the aim of our
journal paper, calculating its parameters and giving the equivalent electric discon-
tinuity circuit and its parameter. As well as, we will give the relationship between
planar and coaxial source parameters. Finally, we will give an example of a planar
source applying the reciprocity theorem.
− In the last chapter 5, we will model microstrip antenna connected to the conduc-
tor and excited by coaxial source. We will show if conductor dimensions affect on
current value and behavior. Another example will be modeled which defined by the
microstrip filter for 5G applications using the hybridization to give its theoretical
concept in transmitter parameter values.
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2.1 Research Context

Wireless communications in the literature are very rich with analytical studies and
measurement campaigns that study the nature of the wireless propagation waves. De-
spite their undoubted usefulness, many of these studies have omitted a fundamental
yet key feature of the physical signal propagation[28]. However, signal propagation
in wireless channels can be subjected to many types of environmental parameters
that degrade its performance. Such factors include noise, discontinuity, interference,

18



Motivation and Problems Description 19

large-scale fading, small-scale fading, path loss, delay, and other temporal and spec-
tral dynamics of the link that act on the propagated electromagnetic signal in 2-D
or 3-D dimensional. For that, the problem of solving the discontinuity, interference
characteristics has been taken by many authors using more rigorous analytical tech-
niques. Most of the techniques used to involve some large set of equations to be
numerically solved[29]. The numerical solutions of these equations of different prob-
lems, which mentioned before, are invoked by analytical methods in its differential or
integral forms which are widely used as solution for an electromagnetic radiation and
scattering problems[30]. Among these integral methods, we can cite the surface inte-
gral equation method, the matrix boundary element method(BEM), the transmission
line matrix method(TLM) and the reciprocity theorem which based on the method
of moment. For the differential methods, it exists the Finite Difference(FD) method,
the Finite Element Method(FEM). In this chapter, we will introduce the discontinuity
problems in 3D space and the integral methods of resolution which based essentially
on the reciprocity theorem. This one has proven to be an extremely powerful tool for
solving a variety of electromagnetic problems.

2.2 Motivation and Problems Description

The introduction of new three-dimensional passive devices that yield higher package
densities reducing the size, weight and cost necessitate progress in analysis and circuit
design. Most of the commercially available software for the characterization of passive
structures are based on models, or can only handle planar structures in the sense of
a full-wave analysis. The use of the full-wave techniques[31] is to model accurately
transmission line and discontinuities taking into account dispersion, mismatch, cou-
pling effect, radiation, etc... For the first time, ”the full-wave analysis of such real
three-dimensional structures has to be done using the finite-difference approach[32]
or the transmission line matrix method[33]”. Up to now, other analytical methods
are used such as the finite element method and the reciprocity theorem which based
on the method of moment. The region to which this last one applies may consist
of dissipative, dispersive, non-homogeneous, and an-isotropic media, and all these
properties may extend to infinity. Based on this theorem a variational expression
that provides an approximation for giving discontinuity characteristic by calculating
scattered fields, current density distribution, and input impedance has been obtained.
The meaning of the approximation for the previous parameters as arbitrary functions
that verify the boundaries conditions of the studied structure.

2.3 Study of the discontinuity

Accurate, efficient and general computational techniques are developed to evaluate
the scattering parameters of passive microstrip components composed of discontinu-
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ities in microstrip structures. Geometrical discontinuities associated with these lines
affect the circuit performance[34]. Various dimensions considered correspond to those
of the planar models. Two-dimensional(2-D) analysis is used to analyze accurately the
discontinuities. In recent years, a full-wave analysis that includes these physical ef-
fects has been developed for various microstrip planar structures discontinuities[35] in
the space mentioned before and in the 3D space. Today, personal computers(PCs)are
capable of performing calculations at speeds similar to the biggest computers of a few
years ago. Hence, numerical techniques have become more practical for microwave
CAD design. Still, even the supercomputers of today much faster and much more
expensive than the PCs can be overwhelmed by brute force attempts to solve the
partial differential or integral equations of general electromagnetics problems of mod-
est complexity. Sorrentino states that when considering numerical methods, although
computer efficiency increases with the amount of analytical preprocessing required,
the versatility of the method is generally reduced. He acknowledges that most general
structures can be attacked only by essentially numerical methods with no restriction
on the type of geometry. Unfortunately, techniques in this category(FE, FD, gen-
eral MOM, etc....)have the largest computer memory and calculations requirements.
However, the modeling of discontinuity was viewed as being one of the key-bottleneck
problems in the successful implementation of CAD. As an alternative, integral equa-
tion techniques for the analysis of integrated circuit discontinuities problems was done
by individuals with interest in microstrip antenna technologies. Still the application
of the techniques which cited above specifically to the problems of microstrip disconti-
nuities can be date back only as far as 1985, when Jackson and Pozar and Katehi and
Alexopoulos published their respective works on open-end and gap discontinuities[36]
of different planar structures which excited with different type of excitation sources
like planar source,modal source and coaxial cable source. This last one will be con-
sidered our basic source.
Transverse-electromagnetic (TEM) mode waves are conducted through a coaxial cable
with very low loss compared to free-wave radiation and are resistant to outside signal
interference. As there are many environments and applications were RF devices find
themselves, coaxial cables need to be built to meet a range of challenges[37].

2.4 Integral Methods

2.4.1 Reciprocity Theorem

2.4.1.1 General Definition of Reciprocity Theorem

The principle of reciprocity finds a wide range of applications, from human relations to
international trade, politics to science and engineering. Reciprocity denotes a mutual
exchange between two interacting agents. Technically, it describes the reversibility
or bilateral-ism of interaction upon interchange of the source and target. Although a
loose statement of the principle is usually sufficient for many cases, a precise definition



Integral Methods 21

is essential in science and engineering. The next subsection aims will discuss the
reciprocity principle in electromagnetic engineering[38].

2.4.1.2 Reciprocity Theorem in Electromagnetic: Theory

Figure 2.1: Geometry of Lorentz Reciprocity Theorem
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Reciprocity is a general concept that occurs in many areas of physics and engineer-
ing, and the reader may already be familiar with the reciprocity theorem of circuit
theory. Here, we will derive the Lorentz reciprocity theorem for electromagnetic fields
in two different forms. This theorem will be used later in our manuscript to obtain
general properties of network matrices representing the current and field values of
microwave circuits. There are several other important uses of this powerful concept.
Reciprocity theorems are among the most useful tools in field and circuit problems,
ranking with the superposition theorem and the equivalence theorems. It is conve-
nient to classify the reciprocity theorems into three types: pure circuit, pure field,
and mixed circuit[39]. The pure circuit form developed by Rayleigh for networks of
lumped elements was extended to antennas by Carson. It applies to a pair of antennas
only if each antenna has suitable terminals where voltage and current can be defined
in[40] by:

V12I11 = V21I22 (2.1)

A theorem of the second type (pure field) involving electric and magnetic-fields in-
tensities was derived by Lorentz in the form of the surface integral as shown in the
following equation:∫

s1

(E1 ×H2 − E2 ×H1) · ds =

∫
s2

(E2 ×H1 − E1 ×H2) · ds (2.2)

Where S1 is the encloses surface of antenna 1 and S2 is the encloses surface of antenna
2. Carson also presented a pure field theorem in the form of a volume integral involving
electric-current density and electric-field intensity.∫

V1

J1 · E2dτ =

∫
V2

J2 · E1dτ (2.3)

Where volume V1 includes antenna 1 and V2 includes antenna 2. Rumsey has given
the name ”reaction” to the quantity represented by the integrals which appear in
the Lorentz reciprocity theorems and Carson has proposed the symbol〈1, 2〉 for the
integrals on the left side in (2.2) and (2.3). However, if the conditions of reciprocity
are satisfied, this reaction theorem can be combined with any one of the ”pure”
reciprocity theorems given above to obtain a reciprocity theorem of the ”mixed type”.
Circuit quantities (voltage and current) appear on one side of the equation, while
field quantities appear on the other side. Thus, the general formulation of reciprocity
theorem is based on Maxwell’s equations. Considering, two types of sources Ja, Ma

and Jb, M b which has the same frequency and existing in the same linear plane. The
electromagnetic fields which produced by source “1” are Ea, Ha and with source “2”
are Eb, Hb as mentioned in this equation. {Ja, Ma} → {Ea, Ha}

{Jb, Mb} →
{
Eb, Hb

} (2.4)
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The relations between electromagnetic fields are given by the below equation:

∇×Ha = ŷEa+Ja ∇×Hb = ŷEb+Jb ∇×Ea = ẑHa+Ma ∇×Eb = ẑHb+M b

(2.5)
We multiply the first scalar by Eb and the last one by Ha and add the resulting
equation, we obtained:
−∇ ·

(
Eb ×Ha

)
= ŷEa · Eb + ẑHa ·Hb + Eb · Ja +Ha ·M b

where the left hand term has been simplified by the identity. Hence, the interchange
of two sources ”a” which corresponds to the source ”1” and ”b” which corresponds
to the source ”2” and a subtraction of the former equation from the latter given:

−∇ ·
(
Ea ×Hb − Eb ×Ha

)
= Ea · Jb +Hb ·Ma − Eb · Ja −Ha ·M b

(2.6)

This equation is named the Lorentz Reciprocity Theorem, its integral form is given
by the below equation:∫∫

©
(
Ea ×Hb − Eb ×Ha

)
dS

=

∫∫∫ (
Ea × Jb −Ha ×M b − Eb × Ja +Hb ×Ma

)
dτ

(2.7)

Let us consider that all sources and components are of finite extent, so the left-hand
term of equation(??) is equal to zero and its new expression is given by:∫∫∫ (

Ea × Jb −Ha ×M b
)
dτ =∫∫∫ (

Eb × Ja −Hb ×Ma
)
dτ

(2.8)

This is the general form of the Reciprocity Theorem in the electromagnetic field and
the most useful. Thereafter, we will apply that one to our analysis structure which
will be studied in the next chapter.

2.4.1.3 Historic of Reciprocity Theorem

The reciprocity theorem was presented by Lord Rayleigh in 1894[41] who was dis-
covered the original proof of the reciprocity theorem, which is stated by him in the
language of electric circuit theory as follows: “Let there be two circuits of insulated
wire A and B, and in their neighborhood any combination of wire circuits or solid
conductors in communication with condensers. A periodic electromotive force in the
circuit A will give rise to the same current in B as would be excited in A if the electro-
motive force operated in B”. Before proceeding with the generalization. Rayleigh’s
theorem, in the following modified form, will be stated and proved. Hence, he has
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proven its utility in communication engineering and it has been applied only to quasi-
stationary transducers that have obeyed simple laws of electrical circuit theory[42].
For electromagnetism relations[43], Hendrik Antoon Lorentz (Nobel Prize winner in
1905), who was in 1896 gave the mathematical formulation of the reciprocity principle
for electromagnetic fields. He has indeed proved that it is a powerful tool for solv-
ing many of the theoretical and practical electromagnetic problems[44]. His theorem
applies the propagation light vibration to time harmonic field. Following Guglielmo
Marconi’s success in 1895 in demonstrating the possibility of sending and receiving
signals using electromagnetic waves, radio communication research boomed[45]. A
reciprocity theorem for electromagnetic fields was very much needed, particularly to
understand the behavior of transmitting and receiving antennas. In July 1924[46], it
was the journal subject named “The ”Bell System Technical Journal” whose author
is declared and proved the general object of reciprocity theorem. However, to the
limitation that the permeability must be the same in every point of medium. Later,
Pleijel declared the theorem for unlimited values of discussing the reciprocity the-
orem in June 1929 from “The Proc. I.R.E.”. Over the years, these two theorems
of Rayleigh and Lorentz have been elucidated and extended by several authors[47].
A version of these theorems specialized to the case of harmonic time dependence is
now included in many textbooks in electromagnetic theory. Moreover, the interaction
quantity that occurs in Lorentz’s reciprocity theorem was later denoted by Rumsey
in 1954 as the ”reaction” between source and fields in the two states. In their analy-
ses, H.A.Lorentz’s and Rumsey incorporated general reciprocal an-isotropic and lossy
media. Consequently, the first detailed discussion of a reciprocity theorem for electro-
magnetic fields with arbitrary time dependence was given in a paper which written by
Welch in 1960, some 64 years after the paper of Lorentz[48], Welch’s[49, 50]paper was
quickly followed by others presenting different formulations. Furthermore, Ballantine,
whose name lives on in the Stuart Ballantine Medal, published a most important ap-
plication of the field reciprocity theorem, referring to important work carried out by
Raymond M. Wilmotte of the National Physics Laboratory in the U.K. A convo-
lution type of the reciprocity theorem applying to general causal dispersive media
was presented by Ru-Shao Cheo(1965)[51]. His proof based on space-time arguments
only. Geurst(1963) had earlier derived a similar reciprocity relation, using, however,
the Time Fourier Transform in the intermediate step. Bojarski(1983) clearly distin-
guished between convolution- and correlation-type and presented the corresponding
time domain reciprocity theorems for homogeneous, isotropic, and lossless media,
where the electromagnetic field is easily expressible in terms of its scalar and vec-
tor potentials (in the Lorentz gauge) and where the electromagnetic Green’s dyadic
is shift-invariant in space-time. The application of reciprocity theorems to radiating
apertures was studied by Van Bladel(1966). Hoop(1959) investigated their application
to the direct scattering of electromagnetic waves and to multi-port antenna(1975). As
we will show below, this application leads to a hybrid reciprocity theorem that is of
importance when considering antenna factors, radiated emission and immunity mea-



Integral Methods 25

surements, shielding effectiveness and uncertainties in EMC measurements.
Here the meaning of ”hybrid” is that, mathematically, the theorem is expressed in
terms of voltage and current, on the one hand, and in electric and magnetic field
components, on the other hand.

2.4.1.4 Some Applications of Reciprocity Theorem

The earliest days of radio communication, the reciprocity theorems of Rayleigh and
Lorentz have been applied to the antenna problems especially[52, 53]. After that,
it has been used for several applications of which we can cite: a printed slot fed
by a microstrip line which it concentrated on the study of the interference between
pcb electronics components[54–56]. Another application, the reciprocity theorem has
been applied to simplify the calculations[42] of the interactions of the electromagnetic
dispersion’s from an existing target on a rough surface[57–59]. Hence, the reciprocity
technique is used to calculate the radiations of some form of microstrip antenna
located on a dielectric and covered by cylindrical surfaces on it. We can quote that
the technique of reciprocity was used to calculate the electromagnetic coupling in
emission and in reception of a reflector antenna[60].For that, the aim application of
the reciprocity theorem is to calculate the far electric field existing in the surface
which cover the plane space of structure.
The major advantage of this method is that it does not require the tedious evaluation
of complicated media.

2.4.2 Method of Moment

Harrington was introduced the general moment method to the electromagnetics area
when it had already been applied to specific problems by Mei and Van Blade1, An-
dreasen, Richmond, Waterman, and others. Since then, the moment method has been
widely adopted for solving electromagnetic problems like radiation and dispersion via
the integral-equation approach[61]. The method of moments (MoM) has been rec-
ognized as one of the most powerful candidates for accurate and efficient modeling
of planar circuits. It is a technique used to solve the electromagnetic problems at
the borders or the integral equations in volume in the frequency domain[62]. It is a
matrix method.

2.4.2.1 Historic

In 1967[63], Harrington introduced the method of moments for solving problems re-
lated to antennas. This numerical method consists of transforming a problem (dif-
ferential or integral equation) into a system of linear equations. In electromagnetic,
the method of moments consists of solving the integral formulation of the Maxwell
equations, in the temporal or spectral domain.
Principle:
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◦ The current density on the antenna is the variable considered.

◦ From the current density, all the parameters of the antenna can be deduced.

◦ The current density is discretized into a set of elements called basic functions where
the amplitudes are unknowns to be determined.

◦ Boundaries conditions for electric and magnetic fields are reinforced on the surface
of the element using the test functions.

2.4.2.2 Definition

The method of moments is a general concept that we can apply to numerical or
analytic concepts[64]. This method makes it possible to determine the current dis-
tribution as well as the field in planar or closed environments[65–68]. It solves an
equation of form

Γf = g (2.9)

Γ is the Hilbert operator on a free space, f is the unknown problem function and
g is a given function that represents the excitation. Consequently, the method of
moment makes it possible to obtain an approximation by an inversion of Γ−1, hence
an approximation of f.

2.4.3 Equivalent Circuit Generalized Method

The Generalized Equivalent Circuit Method (GEC) is an integral method[69, 70]
that models a given structure with an equivalent electrical scheme in terms of the
impedance and admittance operators. It solves Maxwell’s equations on the surface of
the discontinuity.

Figure 2.2: Modeling with Equivalent Generalized Circuit

2.5 Objectives and Contributions

An integral equation for the discontinuity is written by enforcing the boundary con-
dition that the total 2 electric field due to all the currents on the line must be zero
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on the line. A significant amount of work has been invested and oriented essentially
the analysis and modeling of a class of planar discontinuities that are bounded in a
metallic enclosure.

2.6 Conclusion

In this chapter, we announced the discontinuity problems existing in planar structures
especially in a 3D plane and their difficulties of resolution. we started with a brief
description of our aim work. In a second way, we gave the analytical tools based
essentially on the reciprocity theorem which also based on the method of moment
for analyzing and modeling the 3D discontinuity combined with MGEC. Thirdly,
we defined the reciprocity theorem in the general case and its different applications.
But before that, we described the excitation source which will be used in the next
chapters. In what follows, we will detail the formulation of reciprocity theorem and
we will validate that with a simple structure.
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3.1 Introduction

The practical advantages of microstrip structures have been discussed in many papers.
On the other hand, it is perhaps worthwhile to point out that such structures are
very well suited for mathematical modeling. This seldom mentioned ”theoretical”
advantage is mostly due to the relatively simple geometry of microstrip structures
and has certainly contributed to their popularity. Indeed, every analytical techniques
commonly used in electromagnetic has been applied to microstrip, giving rise to a
surprisingly great number of different and unrelated models. In this chapter, the
basic mainstream of the validation process of analytical technique which is based
on the reciprocity theorem can be detailed then explored. To show how it could
be important using such a reciprocity theorem(RT) within the electromagnetic field.
After all whole things of exploration, the formulation of the main problem would
be explicitly defined to turn this work into operative balancing behavior of sight
satisfaction with the required ideas of using digital concept.

3.2 Structure Description

We will study the structure given by the figure below:
It described by a microstrip resonator injected in an open-end metallic waveguide.

Figure 3.1: Descriptive Schema of Structure Excited with Coaxial Source sizing:
a(waveguidelength)=47.55mm,b(waveguidewidth)=22.15mm,h=1.5mm,l(lengthstrip)=λg/4,
w(widthstrip)=2.8mm,εr=4.32,freq=6.9GHz,r(outerradiuscoaxial)=2.7mm.

The microstrip resonator was excited by a coaxial cable which introduces a magnetic
current source noted Ms existing in the aperture of the cable. The source induces the
current distribution Js on the conducting microstrip resonator and produces the total
electric field Etot and the total magnetic field Htot inside an open-end waveguide.
Hence, an auxiliary source that exists in a subsection of microstrip resonator de-
noted Jq named test current that induces the auxiliary electric field Eq and auxiliary
magnetic field Hq as indicated in Figure(3.1).
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3.3 Development of Reciprocity Theorem Attached to
GEC Method

In this section, we will develop the numerical techniques used for calculating structure
parameters of Figure(3.1).

3.3.1 Definition of Reciprocity Theorem

Let suppose two pairs of sources which is given by: {Ja, Ma} → {Ea, Ha}

{Jb, Mb} →
{
Eb, Hb

} (3.1)

The general form of reciprocity theorem (reciprocity theorem is the reaction between
two different sources) is given by the below equation:∫∫∫

V

Ea · Jb −Ha ·Mb−Eb · Ja +Hb ·Mb

 dV = 0 (3.2)

Equation(3.2) is named Reciprocity Theorem of Lorentz.

3.3.2 Generalized Equivalent Circuit Method

All numerical methods are based on Maxwell equations which defines the physical laws
governing the electrical and magnetic field in time and space variation[71]. They(mean
numerical methods)differ in solving these equations. To lighten the resolution of
these equations, the Generalised Equivalent Circuit Method noted GECM or MGEC
which was produced by H. Baudrand[72]. It used to modulate the integral equations
by an equivalent electric circuit. This method represents an extension of integral
equations based on a transposition field problem into electrical circuit problems. The
idea arises from an analogy between equations describing boundaries conditions of
an electromagnetic state (current and field) on a discontinuity interface, and that
highlighting voltage and intensity in a circuit[73, 74]. This modeling allows extending
Kirchoff laws used with the concept(V, I) in Maxwell’s formalism(E, H)[75].

3.3.3 Theory

The resolution of our problem is given by this organigram which describes different
steps of analysis.

Now, we consider these excitation sources of subsection one which describe our case
and which replaces by this couple of sources (Ms, Js) and Jq. The electromagnetic
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Figure 3.2: Descriptive Algorithm of Reciprocity Theorem.

fields produced by the first source are noted Etot and Htot, and by the second source
are noted Eq and Hq. Applying the reciprocity theorem, the relation between the
electromagnetic fields is given by:∫∫∫

V

(−→
E
tot
·
−→
J q −

−→
E q ·

−→
J s −

−→
H q ·

−→
M s

)
· dV = 0 (3.3)

Where V represent the inside waveguide volume. So, the previous equation can be
written as: ∫∫∫

V

(−→
E
tot
·
−→
J q

)
· dV =

∫∫∫
V

(−→
E q ·

−→
J s −

−→
H q ·

−→
M s

)
· dV (3.4)

By simplifying the 1st term of previous integral
(−→
E
tot
·
−→
J q

)
= 0, of equation(3.4)

because the test current Jq exists only in the subsection of microstrip resonator and
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in the other hand Etot coverage the hole waveguide volume. So, the tangential com-
ponent is null. A new equation is given by equation(3.5):∫∫∫

V

(−→
E q ·

−→
J s

)
· dV =

∫∫∫
V

(−→
H q ·

−→
M s

)
· dV (3.5)

Using the reciprocity theorem, we can reduce the volume integral to surface integral,
such that: ∫∫ (−→

E q ·
−→
J s

)
dS =

∫∫ (−→
M s ·

−→
H q

)
dS (3.6)

Hence, the auxiliary electric field Eq will be calculated in the plane which z=0 and the
auxiliary magnetic field Hq in the plane which x=0 as shown in the below equation:∫∫
Sresonator

−→
E q (z = 0) ·

−→
J s · dSresonator =

∫∫
Sfeed(coaxial)

−→
H q (x = 0) ·

−→
M s · dScoaxial (3.7)

where Sresonator = (xoy) plane and Sfeed(coaxial) = (yoz) plane.

3.3.3.1 Integrals Elements

The test current Jq is defined by:

Jq = Iq · gq (3.8)

where Iq is the magnitude of Jq and gq represent the basis function of microstrip
resonator subsection and it defined by echelon function(3.9) as shown in Figure(3.3):

Figure 3.3: Test Function Definition of Subsection.
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gq (x) =

1 if xq ≤ x ≤ xq+1 &
b− w

2
≤ y ≤ b+ w

2
0 others

(3.9)

The current distribution density of equation(3.10) which exists in microstrip resonator
is given by: −→

J s =
∑
p

Ip · gp (x, y)−→x (3.10)

Figure 3.4: Test Function Definition.

where Ip represent the vector of unknown coefficients, gp is the test function which
has been chosen to verify boundaries conditions of metallic waveguide. It defined by
the Figure(3.4) and equation(3.11):

gp (x, y)

 cos

(
(2p− 1)π

2l
x

)
if 0 ≤ x ≤ l &

b− w
2
≤ y ≤ b+ w

2

0 others

(3.11)

By applying the Generalized Equivalent Circuit Method (MGEC) which shown in
Figure(3.5), the auxiliary electric field could be expressed such that:

Eq = Ŷ −1
eq · Jq = Ŷ −1

eq · Iq · gq (3.12)

And the auxiliary magnetic field is given by the below equation which is based on
Maxwell-Fraraday laws:

−→
H q =

j

wµ0

−→
rotEq (3.13)

3.3.4 System Resolution

Basing of integral form which defined by equation(3.7), we can transform the integral
form to product scalar in the below equation:

〈Eq (z = 0) , Js〉 = 〈Hq (x = 0) ,Ms〉 (3.14)
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Figure 3.5: Equivalent Circuit of Subsection.

We can also write: 〈
Eq (z = 0) ,

∑
p

Ip · gp

〉
= 〈Hq (x = 0) ,Ms〉 (3.15)

Multiplying the equation(3.15) by the coefficientIq, we obtained the below equation:∑
p,q

IpIq 〈Eq (z = 0) , gp〉 =
∑
p,q

Iq 〈Hq (x = 0) ,Ms〉 (3.16)

Which, it can be transformed to:[〈
E
′
q (z = 0) , gp

〉]
· [Ip] =

[〈
H
′
q (x = 0) ,Ms

〉]
(3.17)

E
′
q = IqEq, H

′
q = IqHq and the magnetic current source is defined by:

−→
M s = − V0

ρ ln
(
rb
ra

)−→φ (3.18)

with
−→
φ = ρdρdϕ(in cylindrical coordinates).

The main principles of solving linear systems like AX = B which should ask for
constraint conditions to satisfy some proposals and then to invoke the mainstream
mechanism of boundary conditions limit theory to can vary some values from initial
values to desirable values to non-desirable values to infinite or semi finite and so on.
This could help people understand the meaningfulness of solving signal complexity
and building a great bridge deal of entire excitement could figure out any associate
assignment of trustfulness and hopefulness. Thus, this proposal table could then
return the operative occurrence of some solutions that would be used along over
away.
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A =
[
E
′
q, gp

]
Matrix for impedance variations

B =
[
H
′
q,Ms

]
Excitation vector

X = [Ip]Vector for ponderation show [Ip] =
∑
p,q

[
H
′
q,Ms

]
·
[
E
′
q, gp

]−1

Solution

3.3.5 Element Computation of Linear System

3.3.5.1 Computation of Matrix Element A

The matrix values could be determined using this equation such that: Although much

A =
∑
p,q

[〈
E
′
q|gp

〉]
=
∑
p,q

[〈
Ŷ −1gq|gp

〉]
Ŷ −1 =

∑
m,n

∣∣∣fTE,TMmn

〉
y
−1(TE,TM)
mn

〈
fTE,TMmn

∣∣∣
more detailed designs of solving the problem of impedance’s values could be found in
appendix B, but its final value for the TE mode and TM mode could be given by this
equation as flowing:

A =
∑
p,q

∑
m,n

〈gp, fmn〉TE,TMy−1
mn〈fmn, gq〉

TE,TM (3.19)

3.3.5.2 Computation of Excitation Vector B

The excitation vector B could be given by this equation such that:

B =
[
Ms, H

′
q (x = 0)

]
(3.20)

The computation details of are given in appendix C and which obtained this expres-
sion:

B =
∑
q

〈
Ms, H

′
q

〉
i

=
∑
q

〈
(Msy +Msz) ,

(
H
′
qy +H

′
qz

)〉
i

=
∑
q

〈
Msy, H

′
qy

〉
i
+
∑
q

〈
Msz, H

′
qz

〉
i

(3.21)

Where i= region (1,2) of the source. The source excitation vector will be calculated
for all propagation modes. Thereof, from the element matrix and excitation vector
values, we will give the current distribution density as well as electric field distribution
of microstrip resonator.
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3.4 Current Distribution Density Js and Electric Field
distribution Ex

The current distribution density of the microstrip resonator is given by:

Jx (x, y) =

∑
p,q

(∑
m,n

Ip 〈gp (x, y) , fmn〉fmn

)TE
+
∑
p,q

(∑
m,n

Ip 〈gp (x, y) , fmn〉 fmn

)TM−→x
(3.22)

The electric field distribution of an open waveguive in (xoy) plane is following by:

−→
E x = Ŷ TE,TMJx

−→x (3.23)

3.5 Results and discussions

In this section, we will give reciprocity theorem results which applied on microstrip
resonator.

3.5.1 Study of convergence

We start by studying the convergence of numerical results of coaxial excitement in
order to calculate the current density and field distributions appropriately at the fre-
quency equal to 6.9GHz. For reaching the convergence, we need to increase the modal
functions number by fixing the test functions number. The convergence is reached
for modal functions M = N = 300 and test functions P = Q = 10 . Hence, we will
consider these values to model the structure excited by the coaxial cable given in this
work.

3.5.2 Current Distribution
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Figure 3.6: Current Density Distribution.

Figure 3.7: Current Density in 3D Space.
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Let’s take a look at this driven distribution of current density, it is assumed to
notice that the above graphic could ask of its variation along the microstrip line
resonator. The value of current distribution density is given by this Figure(3.6) for

microstrip resonator length equal to
λg
4 at frequency equal to 6.9GHz. We noticed

that the current value verifies the boundary condition of metallic waveguide. It’s
maximum on the metallic microstrip resonator and null.

3.5.3 Electrical Field Distribution

Figure 3.8: Electric Field Distribution in (xoy) Plane in Convergence.
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Figure 3.9: Density of 3D-Electrical Field Distribution in (xoy) plane of Coaxial
Source in Convergence.

Figure(3.8) and Figure(3.9) show the behavior of electric field for coaxial source.
We noticed that the electric field is maximum near the coaxial source and on the
dielectric, despite it is near to zero on metallic microstrip resonator. This small value
of electric field is explained by the existing of discontinuity which is not well modeled.
Hence, its behavior verifies the boundary condition of an open-end metallic waveguide.
The below figure shows the behavior of electric field distribution in (yoz) waveguide
plane with variation of its height in function of the wavelength λg.
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(a) z = 0 (b) z = λg/8

(c) z = λg/3 (d) z = λg

Figure 3.10: Electric Field Distribution by Varying the Height of the Waveguide

3.5.4 Value of Zin

3.5.5 Theory

The input impedance of microstrip resonator excited by coaxial cable is given by the
flowing expression:

Zin =
〈Ms, H〉
〈H,H〉

(3.24)

where E =
(
Ŷ1 + Ŷ2

)−1
· Js and

−→
H = − 1

jωµ0

−→
rot
−→
E .

3.5.6 Results and Discussion

Figure(3.11) gives the value of input impedance. We noticed that the resonance
frequency value of coaxial source case is equal to 7.3GHz. In figure(b) and figure(c),
we compare the imaginary and real part of the input impedance to those found by
HFSS simulation such as the resonance value is equal to 7.2GHz. Consequently,
the two graphs have approximately an agreement. This agreement is provided by
the value of relative error between the theoretical and simulation which is given by
equation(3.25) and it’s equal to 0.6%.

δαT =
|absulate value|
theoritical value

(3.25)
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(a) Value of Zin of Coaxial Source

(b) Imaginary Zin of Coaxial Source(Reciprocity-HFSS)

(c) Real Zin of Coaxial Source(Reciprocity-HFSS)

Figure 3.11: The Value (a) of Input Impedance and Comparison Between Imaginary
Part Zin of Microstrip Resonator Excited by: (b) Coaxial Cable with HFSS, (c) Real
Zin with HFSS and (d) Input Impedance Seen by Fundamental Mode
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Figure 3.12: Measurement of Microstrip Line Resonator.
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Figure 3.13: Comparison of Input Impedance Value with Measurement.

Due to theoretical and simulation results of input impedance that compared to
measurement which is realized. Figure(3.12) showed the microstrip resonator con-
nected to analyzer network. The calibration of this network is focused. In addition,
in Figure(3.13), we have given the input impedance value in module obtained by
measurement and HFSS simulation for the same structure conditions of Figure(3.12).
We noticed that the two graphs are in concordance and has the same magnitude. On
the other hand, the slight frequency difference value is explained by the measurement
conditions and the materials used. This figure shown an agreement for a resonant
frequency equal to 12GHz between our results which obtained by our method and
those obtained by measurements. Those are observed with new dimensions in length
and width of microstrip resonator quiet higher than those of the previous simula-
tions and which are compatible with that of measurement environment. the new
dimensioning of the waveguide (90.5mm× 22.15mm) for HFSS simulation case make
possible to overcome the electromagnetic coupling effect between the structure and
the waveguide. Numerically, the test function number used for our method(which is
proportional to computational time) is evaluated to 328 test functions while HFSS
has not yet reached the desired convergence solution for 388 test functions.
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Figure 3.14: Imaginary Zin Seen by Fundamental Mode of Propagation

Figure(3.14) presents the input impedance of source compared to that seen by
the fundamental mode. However the impedance of the fundamental is defined in β
variation as Zl = jZc coth (βl). However, these graphs show an offset of resonance in
which the input impedance is in quadrature phase advance compared to that seen by
fundamental mode. However, the first resonance is equal to 2GHz. So, this allows
the existence of discontinuity between coaxial source and the structure.

3.6 Conclusion

The integral method which based on the reciprocity theorem combined with GECM
is a very convenient tool for studying microstrip structure. We have applied this
method on a microstrip resonator which excited by a coaxial cable. We have shown
the value in current, electric field distribution as well as the input impedance which
has an agreement with those found by HFSS simulation and measurement. However,
the comparison of the imaginary part of input impedance with that found by funda-
mental mode shows the existence of discontinuity between source and structure. This
discontinuity will be studied in the next chapter. Finally, this technique(reciprocity
combined with MGEC) can be applied to obtain the equivalent electric circuit of any
microstrip structure.
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4.1 Introduction

THE problem of electromagnetic(EM) propagation in stratified isotropic and anisotropic
media has been studied extensively. A versatile work was evaluated the static anal-
ysis gaps in microstrip, gaps, and steps and other microstrip discontinuities. The
fast computation time is taken by the RF structure in the electromagnetic field and
the complexity of the integral equation solution needs to model the real source with
its mathematical one to minimize the computation time. In the first section of this
chapter, we will study the discontinuity existing between the excitation source and
radiation element which studied in the previous chapter. In the second section, we
will apply the reciprocity technique on the structure studied in the previous chapter
but at this time we will replace the coaxial source by a planar one.

45
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4.2 Study of Discontinuity

In this section, we will study the existence discontinuity between source and mi-
crostrip resonator. We will give the electric equivalent discontinuity circuit and give
its parameter values.

4.2.1 Theory

4.2.1.1 Homographical Relation

To resolve discontinuity[76–79] problems existing between source and the planar struc-
ture, we try to give it a coupling circuit. The planar shorted-circuit structure, allows
us to validate the variation of input impedance given by equation(3.24) in the previous
chapter. When the shorted-circuit was placed away from, the reflected higher prop-
agation mode was disappeared. In that case, we compare the numerical values given
by equation(3.24) of the previous chapter with the following theoretical expression of
reduced input impedance seen by the line and given by the following expression:

Figure 4.1: Planar Circuit Excited by Source of Current
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The planar shorted-circuit structure, allows us to validate the variation of in-
put impedance given by equation(3.24) which cited in previous chapter. When the
shorted-circuit was placed away from, the reflected higher propagation mode was
disappeared. In that case, we compare the numerical values with the following the-
oretical expression of reduced input impedance seen by the line and given by the
following expression:

zl = j tan (βgl) (4.1)

Where l represents the length of the microstrip resonator and βg is the propaga-
tion constant. This one is defined by: βg = 2π

λg
, where λg = λ0√

εeff
and εeff =

εr+1
2 + εr−1

2

(
1√

1+( 12h
w )

+ 0.04
(

1−
(
w
h

)2))
Nevertheless, the comparison of the pre-

vious expressions of input impedance is not possible with one port excitation source.
While, it is necessary to couple the source with the microstrip resonator, for this rea-
son, we will introduce the technique of coupling of two port networks described by the
mathematical expression which is named ”Homographical relation”. This technique
was used by many researches[80, 81], in different forms order to correct the numerical
values of input impedance given by equations(3.24) and (4.1). It may be convenient,
by calculations to introduce a current source. In the first time, we need to calculate
the impedance seen by the source. We are considering two surfaces, a surface S1 which
is a surface completely surrounding the source and a surface S2 which is a section of
the microstrip line oriented towards the load. Let E1, E2, J1,and J2 be the fields and
currents at S1 and S2 as shown in Figure(4.2).{

E2 = V2e2

J2 = I2j2
(4.2)

Where e2, j2 represent respectively the fields of unitary wave. I2 is the magnitude
of J2. The matrix impedance which relate electrical field to current density of two
surfaces is given by these expressions and shown in Figure(4.9).
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Figure 4.2: : Equivalent Electric Circuit of Coupling

E1 = Ẑ11J1 + Ẑ12j2I2 (4.3)

V2e2 = Ẑ21J1 + Ẑ22j2I2 (4.4)

We multiply the two previous equations(4.4) and (4.5) by J1 and j2, we can obtain
the below expression:

〈J1E1〉 =
〈
J1Ẑ11J1

〉
I1 + I2

〈
J1Ẑ12j2

〉
(4.5)

V2 =
〈
j2Ẑ21J1

〉
I1 + I2

〈
j2Ẑ22j2

〉
(4.6)

From the value of J1, we can evaluate the magnitude I1 and by the next we can
calculate the I2 magnitude which equal to:

I2 =

〈
j2Ẑ21J1

〉
zl −

〈
j2Ẑ22j2

〉 (4.7)

The aim is not to calculate the matrix impedance but to deduce existence of an
homographical relation between input impedance Zin and load impedance zl which
given by:zl = V2

I2
. While the electric equation is defined these two equations:

V1 = Z11I1 + Z12I2 (4.8)

V2 = Z21I1 + Z22I2 (4.9)

However, the input impedance is given by the below expression:

Zin = Z11 −
Z12Z21

zl + Z22
(4.10)
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In addition, the input impedance has another expression when we replacing the mag-
nitude I2 with its expression in equation(4.8), such that:

〈J1E1〉 =
〈
J1Ẑ11J1

〉
+

〈
J1Ẑ12j2

〉〈
j2Ẑ21J1

〉
zl −

〈
j2Ẑ22j2

〉 (4.11)

We dividing the previous equation by |I1|2, we can obtain this new expression of input
impedance given by the equation:

Zin =
〈J1E1〉
|I1|2

= A+
B

Czl + 1
(4.12)

Where A and B have the dimensions of impedance and C is without dimension. We
can also express the input impedance with homographical parameters like this below
equation:

Zin = Zsin serial

(
Zp//zl
n2

)
(4.13)

Zin = Zs +
Zpzl

n2 (Zp + zl)
(4.14)

Where (Zs, Zp, andn) represent respectively the serial, parallel impedance and pro-
cessing factor of equivalent electric circuit of discontinuity, which are the unknown
coefficients. By identification of two equations(4.12) and (4.14), the serial impedance
Zs is equivalent to A, for parallel impedance Zp, processing factor n, A and B will be
calculated thereafter. The computation process of different coefficient is as follows:
To proceed these values of Zs, Zp and n, we choose three different lengths l1 = 3λg/2,
l2 = 5λg/4 and l3 = 11λg/8 of short-circuited microstrip resonator given by the figure
(3.10) and which are expressed with the wavelength of the waveguide. The computa-
tion proceeding was based on the Kirchoff law and given by the equation(4.15)

l1 =
3λg
2
⇒ zl = 0⇒ Zin1 =

ZpZs
Zp + Zs

l2 =
5λg
4
⇒ zl = j∞⇒ Zin2 = Zp

l3 =
11λg

8
⇒ zl = −j ⇒ Zin3 =

Zp
(
Zs − j/n2

)
Zp + Zs − j/n2

(4.15)
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Figure 4.3: Planar Structure Used for Homographical Relation for εr = 4.4.

4.2.2 Results Discussion

Figure(4.11) and Figure(4.12) shows the values of serial element Zs and parallel el-
ement Zp impedances respectively as a function of frequency variation for the two
types of excitation(coaxial and planar source).

Figure 4.4: Comparison of Zs Value in Frequency Variation.
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Figure 4.5: Comparison of Zp Value with Frequency Variation.

Figure 4.6: Comparison of Processing Factor n Value with Frequency Variation for
the Two Sources.
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While observing, the relative curves to Zs and Zp, we notice a similar behavior
of serial and parallel resonance circuit with approximation between values found for
both excitation: coaxial and planar, essentially for low frequencies range [1GHz to
3GHz]. The Zs of planar source approaches from that of coaxial source. Furthermore,
in this frequency range [1:3] GHz, Zs of planar source behaves as inductance and
of the coaxial source behaves as capacity. Also, in the same frequency range Zp
of coaxial source behaves like an inductance and for the planar source behaves as
capacity. Where the higher order modes generated at the discontinuity are a localized
type(evanescent). Same for the processing factor n Figure(4.13), we observe in the
case of the two excitations considered only a good coupling between cylindrical TEM
mode (or the TEM mode of planar source) of coaxial excitation and quasi-TEM
mode of microstrip structure for specific frequency value which equal to 7GHz that
could be explained by the approximation of characteristic impedance relating to this.
However, in frequency equal to 9GHz, we observe, a serial resonance in transformer
primary(Zs = 0) and parallel resonance in secondary(Zp = ∞). Also, at the same
frequency, the coupling value is small which bring us to resize the structure such as
h
w = 1

2π log
(
rout
rin

)
and the current value of two sources is given by:

Figure 4.7: Comparison of Current Value of Two Sources.



Planar Source 53

In this condition that mentioned, the planar source represent the mathematical
modeling of coaxial source. For getting a good model of coaxial source with that
planar, it’s necessary to respect planar dimensions compared to coaxial. In addition,
the equivalent circuit representing the studied discontinuity for both source in given by
Figure(4.8), where Ls and Cs present respectively serial inductance and capacitance,

Figure 4.8: Electric Equivalent Circuit of Discontinuity.

Lp and Cp are respectively the parallel inductance and capacitance.

4.3 Planar Source

In this figure, we replace the coaxial source by the planar source and we will calcu-
late the same parameters to that one cited in the previous chapter by applying the
reciprocity theorem combined with MGEC. We applied the reciprocity theorem to

Figure 4.9: Microstrip Resonator Excited with Planar Source sizing a=47.55mm,
b=22.15mm, h=1.5mm, εr=4.32 ,freq=9GHz

the above structure but at this time we will change coaxial source by planar source.
In addition, same formulation will be obtained like that one which developed in the
previous chapter but at this time the excitation vector is given by: B = E0 = f0V .
The results obtained in current, field distributions and also the input impedance value
will be discussed in the next sections.
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4.3.1 Study of Convergence

For reaching the convergence, we need to increase the modal functions number by
fixing the test functions number. Figure(4.10) shows the study of convergence ac-
cording to modal functions M = N = 300 and test functions P = Q = 10. Hence,
we will consider these values to model the structure given in this work. Compared
to convergence value for coaxial source cited in previous chapter, we noticed that
the relationship in dimension between planar source and coaxial should be verify this

condition h
w = 1

2π log
(
rout
rin

)
at frequency equal to 9GHz.

Figure 4.10: Study of Current Convergence

Figure 4.11: Convergence of Impedance
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Figure(4.10) shows the convergence of current distribution of structure excited by
planar source, we notice that the current keep the same behavior from M = N = 300
and P = Q = 10.

4.3.2 Current Distribution

Figure 4.12: Current Density Distribution

4.3.3 Electric Field Distribution

In this figure, we noticed that the electric field is maximum near the excitation source
and in the end of the metallic microstrip resonator. So, it verified the boundary
condition of an open metallic waveguide. However, the using of virtuel waveguide
didn’t disturb the behavior of electric field.

4.3.4 Electric Field Distribution (yoz) plane

Figure(4.14) schematized the variation of electric field radiated in z plane of the
waveguide. We noticed that for the small values of the height(z) of the waveguide,
the electric field was disturbed by the evanescent mode which propagated near the
discontinuity plane. Those modes gives the design antenna characteristic. If we move
away from the discontinuity plane, the evanescent modes disappeared and only the
propagate modes which appeared that created the far electric field (z = λg).
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Figure 4.13: Electric Field Distribution in (xoy) plane

(a) z = 0 (b) z = λg/8

(c) z = λg/3 (d) z = λg

Figure 4.14: Electric Field Distribution by Varying the Height of the Waveguide
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4.3.5 Value of Zin

The value of input impedance Zin of microstrip line excited with planar source is
given by the below equation:

Zin =
〈J0, E〉
〈J0, J0〉

(4.16)

where J0 is the current source of planar excitation and Etot is the electric field in the
waveguide. However, the value of input input is shows by the below figures:

1.

(a) Value of Zin of Planar Source (b) Real Part of Input Impedance with
HFSS

(c) Imaginary Zin of Planar Source Com-
pared to HFSS

(d) Imaginary Zin Seen by Fundamental
Mode

Figure 4.15: Value (a) of Input Impedance and Comparison of Real Part(b) and Imag-
inary Part Zin of Microstrip Resonator Structure Excited by Planar Source with (c)
HFSS and to that (d)Seen by Fundamental Mode
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Figure(4.15) gives the value of in input impedance of microstrip line resonator ex-
cited by planar source. These values of impedance are taken for microstrip resonator
dimensions equal to:(l = 18.75mm, w = 0.31), the length of planar source is qual to
0.5mm and εr = 2.2. The 1st resonance frequency is equal to 5.9GHz. Compared
real part and imaginary part of Zin value to HFSS simulation shown in figures (a)
and (c), we found the same value. Hence, we have approximately an agreement for
two different methods (reciprocity theorem combined with MGEC and FEM (Finite
Element Method) for HFSS). This agreement is given also by relative error which
calculated in previous chapter and given by the equation (3.23) for frequency value
equal to 8.9GHz and its equal to 1.7%. But if we compare the input impedance value
with the one seen by the fundamental mode (figure(d)), we found shift in frequency
value. So, this prove the presence of discontinuity between planar source and mi-
crostrip resonator inside an open waveguide.
In the previous section, we are applied the reciprocity theorem on microstrip line
resonator excited by the planar source. We found an agreement between resutlts ob-
tained with our method and HFSS simulation. Hence, we are noticed the existence of
discontinuity between source and structure. So, this is it will be the aim of the next
section.

4.4 Conclusion

In this chapter, we applied the reciprocity theorem combined with GECM on mi-
crostrip line resonator in an open metallic waveguide excited with planar source. We
found an agreement in impedance values which compared to HFSS simulation. We
studied the discontinuity between planar structure and excitation (coaxial and pla-
nar) source by giving the equivalent electric circuit of discontinuity. As a conclusion,
the coaxial source can be modeled by planar source.
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5.1 Introduction

Microstrip antennas and microstrip filters[82] are widely used in wireless communica-
tion, radar, satellite systems, and also aerospace application[83, 84]. Because of their
ease manufacturing, their lightweight, low profile and also their ability to conform
non-planar structure in free space. These structures need tools based on numerical
techniques to be modeled and resolved some electromagnetic problems like interfer-
ence, discontinuity. In this chapter, we will model a microstrip antenna with a coaxial
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source in the middle. Hence, we also modeling a microstrip line filter excited from
either side with coaxial cable.

5.2 Microstrip Antenna Modeling

We consider a structure given by Figure(5.1). It is described by a microstrip antenna
powered by a conductor and excited by a magnetic current source existing in a coaxial
aperture. This structure is located in an open-end wave guide.

Figure 5.1: Structure Design: a = 47.55mm, b = 22.15, c = 15.5mm, L = 24.5mm,
W = 2.8mm, l = 1.5mm, h = 1.5mm, rin = 0.37mm, rout = 0.8mm, εr = 1
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5.2.1 Computation of Structure Parameters

Let’s consider these couple of sources
{
Jsp , Jqp , Jsc , Ms, Jqc

}
which produce these

couple of electric and magnetic fields
{
Et, Ht, Eq, Hq

}
We applied the reciprocity

theorem to the structure of Figure(5.1), we have:∫∫∫
V

(
Et · Jq −Ht ·Mq − Eq · Js +Hq ·Ms

)
· dV = 0 (5.1)

We can write the previous equation in this form∫∫∫
V

(
Et · Jq

)
· dV =

∫∫∫
V

(Eq · Js −Hq ·Ms) · dV (5.2)

The first term of equation(5.2), Et · Jq = 0 because Jq exist in subsection of planar
structure and occupied the hole volume of waveguide. Thereafter, the equation(5.2)
will transform to this below equation:∫∫∫

V

(−→
E q ·

−→
J s1

)
· dV +

∫∫∫
V

(−→
E q ·

−→
J s2

)
· dV =

∫∫∫
V

(−→
H q ·

−→
M s

)
· dV (5.3)

Where Js1 and Js2 are the distribution of current density in the microstrip antenna
and in the conductor respectively. Eq = Eq1 + Eq2 , Eq1 is the auxiliary field in the
microstrip antenna and Eq2 is that of the conductor. By application of the reciprocity
theorem, we can transform the volume integral to surface integral, because the volume
integral resolution is not easy to do. So, we can deduce this equation:∫∫

S1

((
~Eq1 + ~Eq2

)∣∣∣
z=0
· ~Js1

)
· dS1 +

∫∫
S2

((
~Eq1 + ~Eq2

)∣∣∣
y=0
· ~Js2

)
· dS2

=

∫∫
Sfeed

(
~Hq1 · ~Ms

)
.dSfeed +

∫∫
Sfeed

(
~Hq2 · ~Ms

)
.dSfeed

(5.4)

where dS1 = dxdy, dS2 = dxdz and the distribution of current density of microstrip
antenna and conductor are both given by the following equation{−→

J s1 (x, y) = xp1gp1 (x, y) · −→y
−→
J s2 (x, z) = xp2gp2 (x, z) · −→z

(5.5)

The expression of the auxiliary electric field in our structure is given by the Figure(??):{
Eq (x, y, z) = Eq1 (x, y, z) + Eq2 (x, y, z)

Hq (x, y, z) = Hq1 (x, y, z) +Hq2 (x, y, z)
(5.6)

Hq represent the magnetic field induced by the test current Jq in the two subsections
of the microstrip antenna and the conductor respectively.
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Figure 5.2: Analyzing Structure

The auxiliary electric field and auxiliary magnetic field which is modeled in the
Figure(5.2) defined by: Eccq (x, y, z) =

∑
n
anfnsh (γccn z): short-circuit

Ecoq (x, y, z) =
∑
n
anfne

−γcon z: open-circuit

which an = zn 〈Jq, fn〉 = zn 〈Iqgq, fn〉, gq is the test function of each subsection and
Iq represent the magnitude of Jq.

Figure 5.3: Generalized Equivalent Circuit of Each Subsections of Microstrip Antenna
Connected to Conductor
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Furthermore, the integral equation(5.6) can be written as:∑
p

〈
Eq1 |z=0, gp1

〉︸ ︷︷ ︸
M11

xp1 +
∑
p

〈
Eq2 |z=0, gp1

〉︸ ︷︷ ︸
M12

xp1 +
∑
p

〈
Eq1 |y=0, gp2

〉
︸ ︷︷ ︸

M21

xp2

+
∑
p

〈
Eq2 |y=0, gp2

〉
︸ ︷︷ ︸

M22

xp2 =
∑
q

〈
j

ωµ0

−→
rot (Eq1) , Ms

〉
︸ ︷︷ ︸

A1

+
∑
q

〈
j

ωµ0

−→
rot (Eq2) , Ms

〉
︸ ︷︷ ︸

A2

(5.7)
We replace the auxiliary field by their expressions in equation(5.23), we can obtain
the following equation:∑

p

〈fn, gq1〉|z=0zn 〈gp1 , fn〉︸ ︷︷ ︸
M11

Iq1xp1 +
∑
p

〈fn, gq2〉|z=0zn 〈gp1 , fn〉︸ ︷︷ ︸
M21

Iq2xp1

+
∑
p

〈fn, gq1〉|y=0zn 〈gp2 , fn〉︸ ︷︷ ︸
M12

Iq1xp2 +
∑
p

〈fn, gq2〉|y=0zn 〈gp2 , fn〉︸ ︷︷ ︸
M22

Iq2xp2

=
∑
q

j

ωµ0
〈fngq1〉 zmn 〈rot (fn) ,Ms〉︸ ︷︷ ︸

A1

Iq1 +
∑
q

j

ωµ0
〈fngq2〉 zmn 〈rot (fn) ,Ms〉︸ ︷︷ ︸

A2

Iq2

(5.8)
The previous equation can be transformed to matrix equation given by:

I1 [M11X1 +M12X2 −A1] + I2 [M21X1 +M22X2 −A2] = 0 (5.9)

then (
M11 M12

M21 M22

)(
X1

X2

)
=

(
A1

A2

)
(5.10)

which X1 and X2 are the unknown vector coefficient that their values will be calculate
from this equation: (

X1

X2

)
=

(
M11 M12

M21 M22

)−1(
A1

A2

)
(5.11)

5.2.2 System resolution

5.2.2.1 Computation of M11 and M21 Matrix in (xoy)Plane:(Appendices
D)

M11 = 〈gp1 , fn〉 zn〈fn, gq1〉z=0; M21 = 〈gp2 , fn〉 zn〈fn, gq1〉y=0;

5.2.2.2 Computation of M12 and M22 Matrix in (xoz)Plane:(Appendices
D)

M12 = 〈gp2 , fn〉 zn〈fn, gq2〉z=0; M22 = 〈gp2 , fn〉 zn〈fn, gq2〉y=0
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5.2.2.3 Test function in (xoy)Plane: Antenna

gq1 =

1 if xq ≤ x ≤ xq+1 &
W − wp

2
≤ x ≤ W + wp

2
0 others

(5.12)

gp1 =

 sin

(
2pπ

L
x

)
if 0 ≤ x ≤ L & 0 ≤ y ≤W

0 others

(5.13)

5.2.2.4 Test function in (xoz)Plane: Conductor

gq2 =

1 if zq ≤ z ≤ zq+1 &
L− wc

2
≤ x ≤ L+ wc

2
0 others

(5.14)

gp2 =

 cos
(pπ
l

(z + l)
)
if − l ≤ z ≤ 0 &

L− wc
2

≤ x ≤ L+ wc
2

0 others
(5.15)

5.2.3 Results and Discussion

Figure(5.4)shows the value of the density current distribution in the conductor.

Figure 5.4: Value of the Conductor Current Density Distribution
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We noticed that the current in conductor is maximum in the section which it
was connected to the antenna. Hence, it’s value verify the boundary condition which
given by the conductor test function. On the other hand, the value of current density
distribution in the antenna is given by the Figure(5.5).

Figure 5.5: Value of Current Density Distribution of the Antenna
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The current behavior in antenna verify the boundaries conditions of its test func-
tion. However, the value of current is taken at a frequency that equals 28GHz and
at the same subsection width value for each element and it’s equal to 0.61mm . We
noticed that the current is small in the half-length of the antenna which it’s in con-
tact with the conductor which represents its excitation source. The smallest current
value is explained with the existing of the discontinuity between source and radiation
element. Furthermore, the relative error between these two elements is equal to 0.4%
We noticed also that the current behavior is symmetrical on both sides of the source
position. The density current values of conductors and antennas are taken for test
functions number is equal to P = Q = 5 and for that modal number is equal to
M = N = 350. However, the variation of conductor length influences the current
value. In fact, Figure(5.6) shown the variation of discontinuity value in antenna with
variation of conductor length. In the first figure, the length of the conductor is equal
to 2mm, the value of discontinuity is small compared to 0.5mm. So, if we increase or
decrease the conductor length, the antenna current density value change. As a result,
the antenna discontinuity affects with conductor dimensions.
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(a) Value of Microstrip Antenna Current Density for
lcond = 2mm

(b) Value of Microstrip Antenna current Density for
lcond = 0.5mm

Figure 5.6: Value of Antenna Current Density in Conductor Length Variation
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5.3 Filter Modeling

Filter was found in many RF and microwave circuits. It existing many type of filters,
for example low pass-filter which only pass signals of a low frequency range, or high
pass-filter is applied to pass signals with higher frequency and block others, and also
pass-band filter passes signals within a certain band of frequencies. In this context,
we consider the structure which given by the following figure:
It shown two microstrip line excited by two coaxial souces and coupling by a discon-

Figure 5.7: Microstrip Filter Structure Excited by Coaxial Cable

tinuity in the middle on the other side. A magnetic current source Ms existing in the
aperture of coaxial. The current distribution density existing in the two microstrip
lines also in quadruple producing the total electric field Etot and the total magnetic
field Htot in the waveguide. An auxiliary current Jq in the subsections of microstrip
lines and the discontinuity named test current produces the auxiliary electric field Eq
and auxiliary magnetic field Hq. The two microstrip lines are sized by (ll1 × wl1) and
(ll2 × wl2) respectively and the dimension of discontinuity is (lQ ×WQ). However, the
two microstrip lines are related to discontinuity through an attachment functions.



Filter Modeling 69

5.3.1 Filter Theory

By applying the reciprocity theorem to the above structure, we can deduce this math-
ematical relation:∫∫

S1

Eq1 · Js1 · dS1 +

∫∫
S1

Eq1 · gAtt1 · dS1 +

∫∫
SQ

EqQ · JsQ · dSQ

+

∫∫
SQ

EqQ · gAttQ · dSQ +

∫∫
S2

Eq2 · Js2 · dS2

=

∫∫
Sf1

Hq1 ·Ms1 · dSf1 +

∫∫
Sf2

Hq2 ·Ms2 · dSf2

(5.16)

where S1 = S2 = (xoy)plane, Sf1 = Sf2(yoz)plane of excitation source and SQ =
(xoy)plane surface of quadruple. We can also write the previous integral equation as
a scalar product such that:〈
E
′
q1 , Js1

〉
+
〈
E
′
q1 , gAtt1

〉
+
〈
E
′
qQ
, JsQ

〉
+
〈
E
′
qQ
, gAttQ

〉
+
〈
E
′
q2 , Js2

〉
=
〈
H
′
q1 ,Ms1

〉
+
〈
H
′
q2 ,Ms2

〉
(5.17)

Applying now the reciprocity theorem combined with MGEC to the previous equation,
we find the relation which gives by equation(5.1):〈
Ip1gp1 |Ŷ −1

1mn
gq1

〉
+
〈
E
′
q1 |gAtt1

〉
+
〈
IpQgpQ |Ŷ

−1
Qmn

gqQ

〉
+
〈
E
′
qQ
|gAttQ

〉
+
〈
Ip2gp2 |Ŷ −1

2mn
gq2

〉
=
〈
H
′
q1 |Ms1

〉
+
〈
H
′
q2 |Ms2

〉
(5.18)

Ŷimn represent the modal admittance for each region i = (microstrip lines or quadruple).
The test functions of microstrip lines gp are defined as:

gp1 =

 cos

(
(2p− 1)π

ll1
x

)
if 0 ≤ x ≤ ll1

0 others

(5.19)

gp2 =

 cos

(
(2p− 1)π

ll2
(x− (ll1 + lQ))

)
if ll1 + lQ ≤ x ≤ ll2

0 others

(5.20)

The gpQ is the test function of discontinuity which given by the following equation:

gpQ =


cos

(
(2p− 1)π

lQ
(x− l1)

)
sin

(
qπ

W

(
y +

W

2

))
· −→x

sin

(
(2p+ 1)π

2lQ
(x− l1)

)
cos

(
qπ

W

(
y +

W

2

))
· −→y

0 others

(5.21)
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And the test function gq for each subsection of the Figure(5.1) is defined by echelon
function and it’s given by:

gq =

{
1 if xq ≤ x ≤ xq+1

0 others
(5.22)

The attachment function is given by the trigonometric function:

gatt =

{
Natt sin (kx− p) if x ∈ [l −∆l, l + ∆l]

0 others
(5.23)

where N represent the normalization coefficient, k = π
2∆l and p = −k (l −∆l) are the

coefficients of the attachment function.
Based on the reciprocity theorem for analyzing microstrip filter which is given by
equation(5.16), the aim of this section is to give the filter parameters in reflection
and transmission coefficients. However, the impedance matrix is based on the value
of the input impedance of each block of our structure. Thereof, the input impedance
expression is given by:

Zin =
〈Ms, H〉
〈H,H〉

(5.24)

Where the total magnetic field H has this expression:

H =
j

ωµ0
rot (E) (5.25)

which inspired from total electric field Etot via Maxwell-Ampere relation, and

E = Ŷ −1Js (5.26)

by application of the method of Generalized equivalent circuit(MGEC). To obtain the
value of S parameter matrix, we need to calculate the values of unknown coefficients
given by the previous equations.

5.3.2 System Resolution

Since the complexity of our structure given by Figure(5.1) and the difficulty in system
equations resolution , we tried to simplify our analytical computation. In addition,
we are divided our structure into 3 parts: the first one is described by microstrip line
open-circuit, the second one is given by the quadruple and the last one define by the
microstrip line short-circuit. The system resolution wil be as follows:

• We given the input impedance value of microstrip line open-circuit as well as that
of short-circuit,
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• We calculated the resulting impedance matrix of the two microstrip lines,

Zlines =

[Zincc+Zinco
2

Zincc−Zinco
2

Zincc−Zinco
2

Zincc+Zinco
2

]
=

[
Z11l Z12l

Z21l Z22l

]
(5.27)

• We given the impedance matrix value of the discontinuity,

• We calculated the transfer matrix of each component(two microstrip lines and dis-
continuity),

• We calculated the global transfer matrix of our structure,

• We given the scattering matrix from the transfer matrix,

• Finally, we given the reflection and transmitter coefficient of the microstrip filter.

5.3.2.1 Transfer Matrix and Scattering Matrix of Microstrip Filter

Impedance matrix and Transfer matrix are often used in the analysis of linear dy-
namical system[85] noted T . In addition the transfer matrix of two microstrip lines
is given from their impedance matrix and it defined by the flowing equation:

Tl =

Z11l
Z21l

Z12l −
Z11l

Z22l
Z21l

1
Z22l

−Z22l
Z22l

 (5.28)

and that of the discontinuity is written as:

TQ =

Z11Q

Z21Q
Z12Q −

Z11Q
Z22Q

Z21Q

1
Z22Q

−
Z22Q

Z22Q

 (5.29)

the global transfer matrix of the microstrip filter is given by:

T = [Tl] · [TQ] · [Tl] (5.30)

Consequently, the scattering matrix of our structure is expressed by this equation:

Sfilter =

[
−T21
T22

1
T22

T11 − T12T21
T22

T12
T22

]
(5.31)
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5.4 Conclusion

In this chapter, We modeled a microstrip antenna in 3D space connected to a con-
ductor in the middle and which excited by a coaxial cable. The results obtained
of current density distribution in radiation element and coaxial source showed the
existing of discontinuity. We noticed also from the current antenna graphs that the
length of conductor affects antenna behavior. We have also developed the analytical
formulation based on the Reciprocity theorem combined with MGEC techniques to
model a microstrip filter for 5G applications that we will give its type in the future
works.



Chapter 6

Conclusion and Future Work
G

In this final chapter, we summarize our work in Section 6.1 and present our future
research directions in Section 6.2.

6.1 Conclusion

Our research aims is to analyze the planar discontinuity founded between excitation
source which described by coaxial cable and circuit in 3-D space. This analysis has
been done by an application of a volume integral method based on the reciprocity
theorem which combined with MGEC. Besides, we have started by giving the discon-
tinuity problems in microwave domain and resolution techniques used in this context
especially in 3-d space. We are concentrated on the numerical methods in their in-
tegral form especially based on the method of moment(MOM). We are shown from
much research that the method of moment is unable to resolve planar discontinuity in
3-D. We are an integral technique derived from the method of moment and which car
resolve volumetric discontinuity. This technique named the ”Reciprocity Theorem”.
After that, we have applied this technique combined with the MGEC on the planar
structure described by microstrip resonator in an open-end metallic waveguide which
excited with a coaxial source. Furthermore, in this chapter, we are concentrated on
the development of coaxial source excitation formulation. The results obtained in
the density of current and field distribution verified the boundaries conditions of the
metallic waveguide. The value of input impedance obtained shows an agreement with
HFSS simulations also with measurement results. Compared this one to that found
by fundamental mode, We observed a discontinuity which studied in the next chapter.
Consequently, in this chapter, we studied the discontinuity that exists between the
source and planar structure. A homographical relation was written in the function
of input impedance. Results obtained in serial parameter and parallel parameter and
also in coupling value proven that the planar source represent the mathematical model

of coaxial in this condition h
w = 1

2π log
(
rout
rin

)
and for this frequency 9GHz. Hence,

we are given the characteristic in the current, the electrical and the impedance of the
planar source. Finally, we applied this hybridization to model two structures, the
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first one is described by microstrip antenna excited by coaxial cable vias a conductor.
We concluded that the conductor length effects on antenna current behavior. The
second one is described with a microstrip filter in that, we given our mathematical
formulation.

6.2 Future Work

The study of planar discontinuity in 3D space with real source possessed some diffi-
culties in mathematical resolution and the big computational time. In this context,
we resort to find or to implement an optimization algorithm which can minimize CPU
computational time. Also, we try to apply this apply in industrial millimeter-wave
applications. Hence, the theory of a microstrip filter that developed in the last chap-
ter in our manuscript will be implemented in 5G application which will study and
given its type for fifth-generation frequency.
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Appendix A

Modal Functions Definition
The modal functions of metallic waveguide EEEE
TE modal :

TEmn =

∣∣∣∣∣∣∣∣∣∣∣∣

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
cos (Kxx) sin (Kyy)

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (Kxx) cos (Kyy)

TE0n =

∣∣∣∣∣∣∣
√

2

ab
sin (Kyy)

0

and TEm0 =

∣∣∣∣∣∣∣
0

−
√

2

ab
sin (Kxx)

TM modal:

TMmn =

∣∣∣∣∣∣∣∣∣∣∣∣

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
cos (Kxx) sin (Kyy)

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (Kxx) cos (Kyy)

TM0n and TMm0 not exist.
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Microstrip Resonator
Formulation

B.1 Structure Description

Using the structure of Figure(3.1) and Figure(3.5) of chapter(3). Based on the reci-
procity theorem combined with MGEC, we can find this expression∫∫∫

V

(−→
E
tot
·
−→
J q

)
· dV =

∫∫∫
V

(−→
E q ·

−→
JS −

−→
H q ·

−→
MS

)
· dV (B.1)

By applying the reciprocity theorem, we can transform the volume integral to surface
as following: ∫∫

Sstrip

(
~Eq (z = 0) · ~JS

)
· dS =

∫∫
Sfeed

(
~MS · ~Hq (x = 0)

)
· dS (B.2)

If we multiply the equation(3.12) by the coefficient Iq, we will find the following
equation:

Iq [〈gp, Eq (z = 0)〉] · [Ip] = Iq [〈Ms, Hq (x = 0)〉] (B.3)

which can be written as:[〈
gp, E

′
q (z = 0)

〉]
· [Ip] =

[〈
Ms, H

′
q (x = 0)

〉]
(B.4)

where E
′
q = IqEq and H

′
q = IqHq

B.2 System Resolution

B.2.1 Value of A Matrix

A =
[〈
gp (x, y) , E

′
q (z = 0)

〉]
=
[〈
gp (x, y) , Ŷ −1 · gq (x)

〉]
=
[〈
gp (x, y) , Ẑmn · gq (x)

〉] (B.5)

where gp and gq are the test function respectively of the microstrip resonator and of
the subsection which defined in chapter(3).
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B.2.2 Modal Admittance Expression

The modal admittance Ŷ1 and Ŷ2 used in equation(B.5) are given by: Ŷ1 =
∑
m,n

α=TE,TM

|fαmn〉Y α
1mn 〈fαmn|

and Ŷ2 =
∑
m,n

α=TE,TM

|fαmn〉Y α
2mn 〈fαmn|

The analytic expressions of modal functions (fαmn)m,n∈TE,TM are given in appendix
A. The modal admittance (Y α

1mn) m,n∈N
α=TE,TM

and (Y α
2mn) m,n∈N

α=TE,TM

given the waveguide

behavior: short or open circuit.
Modal Admittance of an open-end waveguide:

Y TE
1vmn =

γTE1vmn

jωµ0
(B.6)

where γ1mn =
√
K2
x +K2

y −K2
0

Y TM
1vmn =

jωε0

γ1vmn
(B.7)

Modal Admittance of a short circuit waveguide:

Y TE
2hmn =

γTE2hmn

jωµ0
coth (γ2hmnh) (B.8)

where γ2mn =
√
K2
x +K2

y −K2
0εr

Y TM
2hmn =

jωε

γ2hmn
coth (γ2hmnh) (B.9)

The modal impedance is given by: zαmn = 1/yαmn
TEmn modal(Appendix A)

ATEmn =
∑
p,q

∑
m,n

〈
gp (x, y) ,

(∣∣fTEmn 〉 zmn 〈fTEmn ∣∣ · gq (x, y)
)〉

=
∑
p,q

∑
m,n

〈
gp (x, y) , fTEmn

〉︸ ︷︷ ︸
1

zmn
〈
fTEmn , gq (x, y)

〉︸ ︷︷ ︸
2

(B.10)
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x projection of modal functions:

ATEmn =
∑
p,q

∑
m,n

∫∫
gp (x, y) ·fTEmn dxdy

=
∑
p,q

∑
m,n

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab

∫∫
gp (x, y) cos (Kxx) sin (Kyy)dxdy

=
∑
p,q

∑
m,n

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab

l∫
0

b+w
2∫

b−w
2

gp (x, y) cos (Kxx) sin (Kyy) dxdy

·
n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab

xq+1∫
xq

dx

b+w
2∫

b−w
2

dy

(B.11)

Finally the value of A matrix for TE is

ATEmn =
∑
p,q

∑
m,n

 n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab

2

·

[
cos
(
Ky

b−w
2

)
− cos

(
Ky

b−w
2

)
Ky

]2

·
[

sin (Kxxq)− sin (Kxxq+1)

Kx

]

· 1

2

sin
((
Kx + (2p−1)π

2L

)
l
)

Kx + (2p−1)π
2l

+
sin
((
Kx − (2p−1)π

2l

)
l
)

Kx − (2p−1)π
2l


(B.12)

TM modal form

ATMmn =
∑
p,q

∑
m,n

 −m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab

2

·

[
cos
(
Ky

b−w
2

)
− cos

(
Ky

b−w
2

)
Ky

]2

·
[

sin (Kxxq)− sin (Kxxq+1)

Kx

]

· 1

2

sin
((
Kx + (2p−1)π

2l

)
l
)

Kx + (2p−1)π
2l

+
sin
((
Kx − (2p−1)π

2L

)
l
)

Kx − (2p−1)π
2l


(B.13)

The next step will give the value of Ip which given by Ip = B
A . Replacing A and B

by their expressions, we will find the value of unknown coefficient Ip.



Appendix C

Coaxial Source

Figure C.1: Coaxial Source.

We have two excitation source coaxial and planar source. In this section, we
will give a detailed computation of coaxial source. Figure(C.1) described the coaxial
structure, which ra and rb are respectively the inner and outer radius of coaxial.
Our excitation is defined by equation(3.18), the magnetic current source is given by
equation(3.15) and the magnetic field is defined by equation(3.10)in chapter(3). We
notice that the electric field E

′
q is equal to Iq · Eq and also the magnetic field H

′
q

is equal to Iq · Hq as announced in appendix B. Thereof,the electrical field E
′
q in

region(2)is expressed by:

−→
E
′(2)
q =



TE,TM∑
mn

〈fmnx, gq〉︸ ︷︷ ︸
αmnq

y−1
mnfmnxe

−γ(2)mnz · −→x

TE,TM∑
mn

〈fmny, gq〉︸ ︷︷ ︸
αmnq

y−1
mnfmnye

−γ(2)mnz · −→y

0

(C.1)
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and the field E
′
q in region(1)is given by the following equation:

−→
E
′(1)
q =



TE,TM∑
mn

〈fmnx, gq〉︸ ︷︷ ︸
αmnq

y−1
mnfmnxsh

(
γ(1)
mn (z + l1)

)
· −→x

TE,TM∑
mn

〈fmny, gq〉︸ ︷︷ ︸
αmnq

y−1
mnfmnysh

(
γ(1)
mn (z + l1)

)
· −→y

0

(C.2)

Where fmn represent the modal function of TE and TM modes of waveguide covered
with electric walls, gqis the test function in microstrip resonator subsection defined
by echelon, γmn represent waveguide propagation,for region(2) is defined by:

γ(2)
mn =

√(mπ
a

)2
+
(nπ
b

)2
−K2

0 (C.3)

for region(1)is given by:

γ(1)
mn =

√(mπ
a

)2
+
(nπ
b

)2
−K2

0εr1 (C.4)

From the value of E
′
q we can give the value of H

′
q of region(2) which equal to:

H
′
qx (x |= 0) = 0

H
′
qy (x |= 0) =

TE,TM∑
mn,q

− jαTE,TMmnq

ωµ0
γI(TE,TM)
mn coefTE,TMx ·

e−γ
(2)(TE,TM)
mn z sin (Kyy) y−1

mn

H
′
qz (x |= 0) =

TE,TM∑
mn,q

jαTE,TMmnq

ωµ0

[
Kxcoef

TE,TM
y −

Kycoef
TE,TM
x

]
·

e−γ
(2)(TE,TM)
mn z cos (Kyy) y−1

mn

(C.5)

where Kx = mπ
a and Ky = nπ

b , a and b represent respectively length and width of

waveguide, coefx =
n
b√

(ma )
2
+(nb )

2

√
4
ab and coefy =

−m
a√

(ma )
2
+(nb )

2

√
4
ab . The last value

of excitation vector is given by the below equation:

Vq =
∑
q

〈
(Msy +Msz) ,

(
H
′
qy +H

′
qz

)〉
i

=
∑
q

〈
Msy, H

′
qy

〉
i
+
∑
q

〈
Msz, H

′
qz

〉
i

(C.6)

where i = region(1, 2) of the source. The source excitation vector will be calculated
for all propagation modes.
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Variable Relation Vector Relation

x = x x̂ = x̂

y = ρ cos (φ) ŷ = cos (φ) ρ̂− sin (φ) φ̂

z = ρ sin (φ) ẑ = sin (φ) ρ̂+ cos (φ) φ̂

Table C.1: Transformation Variables Coordinates



Appendix D

Microstrip Antenna Element
Matrix

D.1 Computation of Modal Function in (xoy) Plane: EEEE
Wall

fTEmn modal function of short-circuit case:

fTEmn (x, y, z = 0) =

∣∣∣∣∣∣∣∣∣∣∣∣

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
cos (Kxx) sin (Kyy) sh (γccmnz)

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (Kxx) cos (Kyy) sh (γccmnz)

= 0 (D.1)

coefx =
n
b√

(ma )
2
+(nb )

2

√
4
ab ; coefy =

−m
a√

(ma )
2
+(nb )

2

√
4
ab

fTE0n and fTEm0 modal of short-circuit case:

fTE0n (x, y, z = 0) =

∣∣∣∣∣∣∣
√

2

ab
sin (Kyy) sh (γcc0nz)

0

= 0 (D.2)

fTEm0 (x, y, z = 0) =

∣∣∣∣∣∣∣
0

−
√

2

ab
sin (kxx) sh (γccm0z)

= 0 (D.3)

fTMmn modal of short-circuit case:

fTMmn (x, y, z = 0) =

∣∣∣∣∣∣∣∣∣∣∣∣

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
cos (kxx) sin (kyy) sh (γccmnz)

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) cos (kyy) sh (γccmnz)

= 0 (D.4)
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fTEmn modal of open-circuit case:

fTEmn (x, y, z = 0) =

∣∣∣∣∣∣∣∣∣∣∣∣

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
cos (kxx) sin (kyy) e−(γcomnz)

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) cos (kyy) e−(γcomnz)

=

∣∣∣∣∣∣∣∣∣∣∣∣

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
cos (kxx) sin (kyy)

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) cos (kyy)

(D.5)

fTE0n and fTEm0 modal of open-circuit case:

fTE0n (x, y, z = 0) =

∣∣∣∣∣∣∣
√

2

ab
sin (kyy) e−(γcomnz)

0

=

∣∣∣∣∣∣∣
√

2

ab
sin (kyy)

0

(D.6)

fTEm0 (x, y, z = 0) =

∣∣∣∣∣∣∣
0

−
√

2

ab
sin (Kxx) e−(γcomnz)

=

∣∣∣∣∣∣∣
0

−
√

2

ab
sin (Kxx)

(D.7)
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fTMmn modal of open-circuit case:

fTMmn (x, y, z = 0) =

∣∣∣∣∣∣∣∣∣∣∣∣

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
cos (kxx) sin (kyy) e−(γcomnz)

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) cos (kyy) e−(γcomnz)

=

∣∣∣∣∣∣∣∣∣∣∣∣

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
cos (kxx) sin (kyy)

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) cos (kyy)

(D.8)

D.2 Computation of Modal Functions in (xoz) Plane:
EEEE Walls

fTEmn modal function of short-circuit case:

fTEmn (x, y = 0, z) =

∣∣∣∣∣∣∣∣
0

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) sh (γccmnz)

(D.9)

fTE0n and fTEm0 modal of short-circuit case:

fTE0n (x, y = 0, z) =

∣∣∣∣∣00 (D.10)

fTEm0 (x, y = 0, z) =

∣∣∣∣∣∣∣
0

−
√

2

ab
sin (kxx) sh (γccm0z)

(D.11)

fTMmn modal of short-circuit case:

fTMmn (x, y = 0, z) =

∣∣∣∣∣∣∣∣
0

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) sh (γccmnz)

(D.12)
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fTEmn modal of open-circuit case:

fTEmn (x, y = 0, z) =

∣∣∣∣∣∣∣∣
0

−m
a√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) e−(γcomnz) (D.13)

fTE0n and fTEm0 modal of open-circuit case:

fTE0n (x, y = 0, z) =

∣∣∣∣∣00 (D.14)

fTEm0 (x, y = 0, z) =

∣∣∣∣∣∣∣
0

−
√

2

ab
sin (kxx) e−(γcomnz)

(D.15)

fTMmn modal of open-circuit case:

fTMmn (x, y = 0, z) =

∣∣∣∣∣∣∣∣
0

n
b√(

m
a

)2
+
(
n
b

)2
√

4

ab
sin (kxx) e−(γcomnz) (D.16)

TMm0 and TM0n modals not exists

D.3 Computation of the Sub-Matrix Elements

D.3.1 Short Circuit Waveguide

M11 =
∑
p,q,n

〈gp1 , fn〉 · zn · 〈fn, gq1〉z=0 · sh (γccn z)

=
∑
p,q,n

coef2
y

L∫
0

a+W
2∫

a−W
2

gp1 · fndxdy · zn ·
yq+1∫
yq

a+W
2∫

a−W
2

fn·gq1 · sh (γccn z) dxdy = 0

(D.17)

M12 =
∑
p,q,n

〈gp1 , fn〉 · zn · 〈fn, gq2〉|z=0 · sh (γccn z)

=
∑
p,q,n

coef2
y

L∫
0

a+W
2∫

a−W
2

gp1 · fndxdy · zn·
yq+1∫
yq

W+wc
2∫

W−wc
2

fn · gq2 · sh (γccn z)dxdy = 0

(D.18)
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M21 =
∑
p,q,n

〈gp2 , fn〉 · zn · 〈fn, gq1〉|y=0 · sh (γccn z)

=
∑
p,q,n

coef2
y

0∫
−h

W+wc
2∫

W−wc
2

gp2 · fndxdz · zn

zq+1∫
zq

W+wc
2∫

0

fn · gq1 · sh (γccn z) dxdz

=
∑
p,q,n

coef2
y ·

0∫
−h

W+wc
2∫

W−wc
2

cos

(
pπ (z + h)

h

)
sin (Kxx)dxdz · zn·

zq+1∫
zq

W+wc
2∫

0

sin (Kxx) · gq1 · sh (γccn z) dxdz

(D.19)

M22 =
∑
p,q,n

〈gp2 , fn〉 · zn · 〈fn, gq2〉|y=0 · sh (γccn z)

=
∑
p,q,n

coef2
y

0∫
−h

W+wc
2∫

W−wc
2

gp2 · fndxdz · zn

zq+1∫
zq

W+wc
2∫

W−wc
2

fn · gq2 · sh (γccn z) dxdz

=
∑
p,q,n

coef2
y

0∫
−h

W+wc
2∫

W−wc
2

cos

(
pπ (z + h)

h

)
· sin (Kxx) dxdz · zn·

zq+1∫
zq

W+wc
2∫

W−wc
2

sin (Kxx) · gq2 · sh (γccn z) dxdz

(D.20)

D.3.2 Open Circuit Waveguide

M11 =
∑
p,q,n

〈gp1 , fn〉 · zn · 〈fn, gq1〉z=0e
(−γcon z)

=
∑
p,q,n

coef2
y ·

L∫
0

a+W
2∫

a−W
2

gp1 · fndxdy · zn·
yq+1∫
yq

a+W
2∫

a−W
2

fn·gq1dxdy

=
∑
p,q,n

coef2
y ·

L∫
0

a+W
2∫

a−W
2

cos
(pπ

2L
y
)
· sin (Kxx) · cos (Kyy) dxdy · zn ·

yq+1∫
yq

a+W
2∫

a−W
2

sin (Kxx) · cos (Kyy) ·gq1dxdy

(D.21)

M12 =
∑
p,q,n

〈gp1 , fn〉 · zn · 〈fn, gq2〉z=0 · e
(−γcon z)

=
∑
p,q,n

coef2
y ·

L∫
0

a+W
2∫

a−W
2

cos
(pπ

2L
y
)
· sin (Kxx) cos (Kyy)dxdy · zn ·

yq+1∫
yq

wc
2∫

−wc
2

sin (Kxx) cos (Kyy) · gq2dxdy

(D.22)
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M21 =
∑
p,q,n

〈gp2 , fn〉 zn 〈fn, gq1〉|y=0e
(−γcon z)

=
∑
p,q,n

coef2
y ·

0∫
−h

wc
2∫

−wc
2

gp2 · fndxdz · zn ·
zq+1∫
zq

W−wc
2∫

W−wc
2

fn · gq1 · e(−γcon z)dxdz

=
∑
p,q,n

coef2
y ·

0∫
−h

wc
2∫

−wc
2

cos

(
pπ (z + h)

h

)
· sin (Kxx)dxdz · zn·

zq+1∫
zq

W+wc
2∫

W−wc
2

sin (Kxx) · gq1 · e(−γcon z)dxdz

(D.23)

M22 =
∑
p,q,n

〈gp2 , fn〉 · zn· 〈fn, gq2〉|y=0 · e
(−γcon z)

=
∑
p,q,n

0∫
−h

wc
2∫

−wc
2

gp2 · fndxdz · zn

zq+1∫
zq

wc
2∫

−wc
2

fn · gq2 · e(−γcon z)dxdz

=
∑
p,q,n

coef2
y ·

0∫
−h

wc
2∫

−wc
2

cos

(
pπ (z + h)

h

)
· sin (Kxx) dxdz · zn ·

zq+1∫
zq

wc
2∫

−wc
2

sin (Kxx) · gq2 · e(−γcon z)dxdz

(D.24)
The previous equations will be resolved by using these trigonometric functions:
cos (a) cos (b) = cos(a+b)+cos(a−b)

2 ;

cos (a) sin (b) = sin(a+b)−sin(a−b)
2 ;

exp (x) = ch (x)− sh (x) = cos (x)− i sin (x);
ch (x) = cos (ix);
sh (x) = 1

i sin (ix) = −i sin (ix);
cos (x+ kπ) = ± cos (x);
sin (x+ kπ) = ± sin (x) with k ∈ <
cos (x+ iy) = cos (x) ch (y)− i sin (x) sh (y);
sin (x+ iy) = sin (x) ch (y) + i sh (x) cos (y)

D.3.3 Computation of Sub-Vector Elements

A11att =
∑
q

〈
E q1|z=0, gatt1

〉
=
∑
q,n

a1n

〈
fn|z=0, gatt1

〉
(D.25)

A12att =
∑
q

〈
E q2|z=0, gatt1

〉
=
∑
q,n

a2n

〈
fn|z=0, gatt1

〉
(D.26)

A21 =
∑
q

〈
E q1|y=0, gatt2

〉
=
∑
q,n

a1n

〈
fn|y=0, gatt2

〉
(D.27)
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A22 =
∑
q

〈
E q2|y=0, gatt2

〉
=
∑
q,n

a2n

〈
fn|y=0, gatt2

〉
(D.28)
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List of Publications
1. Raja Mchaalia, Mourad Aidi and Taoufik Aguili, A New 3D MOM-GEC For-

mulation Based on Reciprocity Theorem: Analysis of The Dipole Antenna, In-
ternational Conference ACES (indexed IEEE), August 1 -4, 2017.

2. Raja Mchaalia, Bilel Hamdi and Taoufik Aguili, Reciprocity Theorem-MGEC
Combined with Floquet Model Analysis to Model 5G Application, 5G & SC Days,
Tunisia, February 28 - March 3, 2019.

3. Raje Mchaalia, Mourad Aidi and Taoufik Aguili, Study of Planar Structure Ap-
plying Reciprocity Technique Combined with MGEC and Analysis of Discontinu-
ity, International Journal of RF and Microwave Computer-Aided Engineering,
acceptance, 2019-05-10.

91



Bibliography
[1] Janet Golio and Mike Golio. RF and microwave passive and active technologies.

CRC press, 2007.

[2] R Timothy Hitchcock. Radio-frequency and microwave radiation. AIHA, 2004.

[3] Graham A Jones, David H Layer, and Thomas G Osenkowsky. National As-
sociation of Broadcasters Engineering Handbook: NAB Engineering Handbook.
Taylor & Francis, 2013.

[4] Radio&#x2010;Frequency and Microwave Communication Circuits. John Wiley
& Sons, Ltd, 1 edition, 2004.

[5] Bumper Sticker. Aps news apsnews. THE AMERICAN PHYSICAL SOCIETY,
7(4), 1998.

[6] Ms Neha Sharma, Sachin Chawla, and Taruna Sikha. Performance comparison
of (2tx1r) and (2tx2r) mimo cdma system using space time block code (stbc).

[7] Garrison C Cavell. National Association of Broadcasters Engineering Handbook.
Routledge, 2017.

[8] JANET GOLIOl MIKE GOLIO. WHAT ARE MİCROWAVE? LIVE SCIENCE
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Généralisés (MoM-GEC) dans un milieu fermé. PhD thesis, Ecole Nationale
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