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Résumé en francais

L’effet Josephson, prédit en 1962 par Brian Josephson [!], et observé expérimentalement seule-
ment un an plus tard par Anderson et Rowell [2], est au coeur de beaucoup d’appareils utilisés
aujourd’hui en biologie [—7], métrologie [(], mesures & bas bruit [7, %], information quan-
tique [9—10] et méme astronomie [17,1%]. Ce travail de these se concentre sur la réalisation d’un
nouvel outil pour la physique mésoscopique reposant sur cet effet, le spectrometre Josephson,
concu pour opérer a des fréquences pouvant atteindre la gamme des térahertz. Il n’y a actuelle-
ment pas d’équipement micro-ondes commercial pour étudier des systémes mésoscopiques au-
dela de 50 — 80 GHz. En outre, une calibration est nécessaire pour tenir compte de possibles
résonances due aux lignes de mesures. Le spectrometre Josephson proposé ici est un appareil
fabriqué sur une puce, qui peut étre placé proche du systeme a sonder (& moins d’une longueur
d’onde, de l'ordre du mm & 100 GHz) et supprime ainsi la nécessité de calibrer les lignes de
mesure micro-ondes.

Il consiste en une boucle supraconductrice interrompue par deux jonctions Josephson et
repose sur 'effet Josephson pour convertir une tension continue V' en des oscillations micro-
ondes a une fréquence proportionnelle & V. La constante de proportionnalité entre les deux est
une constante fondamentale, la constante Josephson Ky, définie comme 'inverse du quantum
de flux magnétique, K; = 1/®y = 483.6 MHzpuV~!. L’absorption des micro-ondes émises
est directement mesurée comme un pic de courant dans la caractéristique courant-voltage du
spectrometre.

Utiliser une jonction Josephson pour effectuer la spectroscopie d’un autre systéme n’est pas
une idée totalement nouvelle. Rapidement apres la prédiction de Josephson, un courant alter-
natif & haute fréquence a été observé dans des jonctions tunnel [19], et des contacts ponctuels
ont été utilisés pour détecter des radiations millimétriques et submillimétriques [20]. L’idée
de combiner a la fois ’émission et ’absorption pour faire un spectrometre a été mise en ceu-
vre pour la premiere fois en 1967 par Silver et Zimmerman dans une expérience [21] ou ils
ont mesuré la résonance magnétique nucléaire du Co® & 218 MHz en utilisant des contacts
ponctuels de niobium.

Cependant, ce premier spectrometre n’a pas été suivi d’un grand développement de la tech-
nique. Dans les années 1970 et 1980, ces processus d’émission et de réabsorption de photons
par des jonctions Josephson ont principalement été utilisés pour expliquer des pics de courant
dans des caractéristiques courant-voltage de dispositifs supraconducteurs a interférences quan-
tiques (Superconducting QUantum Interference Device ou SQUID en anglais) [22-25]. Il y a
eu quelques applications a la spectroscopie de systemes mésoscopiques : des modes résonants
de micro-résonateurs [20,27] et de lignes de transmission [2%] ont été mesurés. Des jonctions
Josephson ont aussi été utilisées pour mesurer des transitions entre les niveaux d’énergie d’une
autre jonction [29], d'un SQUID [30] ou d’un transistor a paires de Cooper uniques [31].

Plus récemment, le groupe Quantronique a Saclay a réalisé la spectroscopie par absorption
d’états liés d’Andreev (Andreev Bound States ou ABS en anglais) dans un contact atomique

xi



Résumé en francais

supraconducteur en utilisant une jonction Josephson [32,33]. Ce spectrometre a cependant
quelques inconvénients :

e Présence de résonances additionnelles dues a des modes dans ’environnement non controlé
du spectrometre.

e Couplage non-uniforme au systéeme a sonder sur toute la plage de fréquence considérée.

Cette these cherche a résoudre ces problémes en améliorant la conception du spectrometre
déja existant.

Tout d’abord, les propriétés générales des jonctions Josephson nécessaires a la compréhension
du fonctionnement du spectrometre sont exposées. En particulier, ’effet Josephson est redérivé
et la caractéristique courant-tension idéale d’une jonction est présentée. La dynamique d’un
systeme & deux jonctions (le SQUID) a la base du spectrometre est aussi détaillée.

Ces propriétés sont ensuite utilisées pour expliquer le principe de fonctionnement du spec-
trometre, notamment la modification de la caractéristique courant-tension en présence d’un
mode résonnant dans I’environnement de la jonction. Plusieurs moyens de coupler le spec-
trometre au systéme a sonder sont présentés, tels que l'utilisation d’un condensateur (comme
dans le cas de la spectroscopie des états d’Andreev [32]), de l'inductance mutuelle entre le
SQUID et le systeme, ou encore la connexion galvanique au systéme.

La troisieme partie présente un modele plus complet d’une jonction Josephson. Cela permet
de comprendre 'origine des modes résonants parasitiques ainsi que les éléments indésirables
pouvant apparaitre dans la caractéristique courant-tension d’une jonction.

Partant de ces considérations, plusieurs circuits pour le spectrometre sont testés et analysés.
Le circuit d’alimentation semble notamment avoir un role considérable dans la forme de la
caractéristique courant-tension. L’ajout de résistances, d’inductances et de condensateurs sur
la puce est tout particulierement considéré.

Plusieurs spectrometres sont ainsi fabriqués et utilisés pour mesurer le spectre de quatre
systemes simples sur une large gamme de fréquence : un mode LC' autour de 150 GHz,
I’excitation de quasiparticules dans un supraconducteur au-dessus de 90 GHz, la fréquence
plasma d’une jonction Josephson a 15 GHz et la fréquence plasma d’un RF-SQUID proche de
80 GHz.

Finalement des cibles plus complexes et stimulantes pour le spectrometre sont présentées.
Les projets les plus avancés consistent a sonder les états d’Andreev dans deux jonctions proches
ou ils peuvent s’hybrider ou dans des liens faibles a base de nanofils en InAs ou de l'isolant
topologique HgTe dans lesquels le spectre d’Andreev est modifié a cause du couplage spin-
orbite. Une autre direction prometteuse serait d’observer des croisements de niveaux non-évités
dus a la topologie de certains circuits quantiques supraconducteurs.

Introduction aux jonctions Josephson

L’effet Josephson a lieu a tout contact électrique faible entre deux supraconducteurs. Ils
peuvent étre séparés par un isolant, un métal normal, un semi-conducteur ou n’importe quel
autre type de matériel. Dans ce cas, un courant non-dissipatif de paires de Cooper Is (appelé
super-courant) peut circuler & travers la jonction. Il traduit la présence d’une cohérence de
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Figure (i).1.: Super-courant porté par un canal de conduction pour différentes transmissions.

phase entre les deux supraconducteurs et il est, dans le cas le plus général, une fonction
2m—périodique de la différence de phase,

® =2 — P1.

De plus, la symétrie par renversement du temps impose Is(—¢) = —Ig(p) [31]. Combiner ce
résultat avec la 2wr—périodicité donne Ig(nm) = 0, n € Z. Le super-courant d’un lien faible
peut donc étre écrit sous la forme

Is () = Z I, sinnp. (i)
n=1

Une telle relation courant-phase est toujours limitée par une valeur maximale Iy, appelée
courant critique. Il s’agit du courant non-dissipatif maximal que la jonction peut supporter.
Il est en général proportionnel a l'aire de la jonction et décroit quand ’épaisseur augmente.
Dans une description mésoscopique de effet Josephson, un lien faible court (plus petit que
la longueur de cohérence supraconductrice) est modélisé par des canaux de conduction de
transmission 7;, accueillant chacun une paire d’états d’Andreev (Andreev Bound States ou
ABS en anglais) [37]. Les énergies Ey de ces états |£) sont données par

Ei (p) = £Ay /1 — Tsin? g

Le super-courant est alors porté par ’état fondamental, |—). Il peut étre exprimé comme la
dérivée de I’énergie de 1’état par rapport a la différence de phase parce que la phase et la charge
sont conjuguées. A température nulle, cela s’écrit

1 0F_ A Tsin
e el v ——
¥o op #0/1—7sin? £
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Figure (i).2.: Caractéristique courant-tension idéale pour une jonction Josephson tunnel.

En remarquant que sin® /2 est 2mr—périodique, il est possible de développer cette expression
en série de Fourier et d’obtenir une forme similaire a celle de 1’équation (i), faisant ainsi un
lien entre les deux théories.

La Figure (i).1 montre la forme du super-courant pour plusieurs transmissions. Comme
attendu, il est nul & ¢ = 0, 7 et 27 et il est plus grand pour des transmissions plus importantes.
Pour des faibles transmissions, le super-courant est proche d’une forme sinusoidale.

Par la suite, nous nous intéresserons principalement a des jonctions avec de faibles trans-
missions, appelées jonctions Josephson tunnels. Elles ont une relation courant-phase simple,

Is (¢) = Ipsing. (i)

La loi de Faraday pour I'induction nous fournit aussi une relation entre la tension et la différence
de phase aux bornes de la jonction. Habituellement, on Pécrit V = &, ot V est la tension aux
bornes d’'une bobine et ® le flux magnétique la traversant. Pour une inductance supraconduc-
trice ou une jonction Josephson, le flux est proportionnel a la différence de phase, & = pgp.
La tension induite s’écrit alors

V = ¢op. (iii)
Les équations (ii) et (iii) sont souvent appelées les relations Josephson DC et AC. En les

combinant avec les densités d’états des deux supraconducteurs, on peut obtenir la forme de la
caractéristique courant-tension (représentée sur la Figure (i).2) d’une jonction tunnel :

e 3 tension nulle (en rouge), la différence de phase est constante et un super-courant (plus
petit que le courant critique) traverse la jonction.

e & une tension V telle que 0 < |V| < 2A/e (en vert), la différence de phase croit a un
taux wy = |V| /o, ce qui se traduit par des oscillations de courant a une fréquence de
lordre de 100 GHz (& V = A/e dans I"aluminium). En moyenne, ce processus résulte en
un courant nul.
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Figure (i).3.: (a) Tunneling inélastique de paires de Cooper ; (b) Caractéristique courant-
tension idéale d’une jonction tunnel couplée a un systeme a deux niveaux.

e Pour une tension plus grande que 2A /e (en bleu), des quasiparticules d’un supraconduc-
teur peuvent franchir la barriere tunnel et rejoindre le second supraconducteur. a cause
de la singularité BCS a énergie A, il y a une marche de courant a tension 2A/e.

Principe du spectrometre Josephson

En présence d’un mode électromagnétique dans I’environnement d’une jonction Josephson, sa
caractéristique courant-tension est fortement modifiée. Pour expliquer ce phénomene, con-
sidérons le cas d'un systéme a deux niveaux |g) et |e) séparés par une énergie Eg. Les
oscillations de courant dans la région sous le gap (0 < |V| < 2A/e) peuvent étre comprises
en termes d’émission et de réabsorption par la jonction de photons d’énergie 2¢|V| = hwy :
une paire de Cooper du supraconducteur de gauche Sz dans la Figure (i).3(a) doit émettre
une énergie 2e |V| pour pouvoir traverser la barriere par effet tunnel. Si le photon émis n’est
pas résonnant avec le mode, il est réabsorbé par la paire de Cooper qui revient ainsi en Sy.
Cependant, si 2e |V| = Ey, le photon peut aussi étre absorbée par le mode électromagnétique,
empéchant ainsi la paire de Cooper de revenir en Sy. Cela se traduit par un courant continu
fini & travers la jonction, représenté sur le graphe (b) de la Figure (i).3. La hauteur du pic
de courant est reliée a la dissipation dans le mode et peut donc étre exprimée en fonction de
la partie réelle R. de I'impédance vue par la jonction, ou de fagon équivalente par le taux
d’absorption T,

Re (wg) Ig
2V
Quand |V| > 2A/e, ces pics sont moins visibles car la contribution au courant des quasipar-

ticules domine devant celle des paires de Cooper. Pour de I’aluminium, cela fait une limite
supérieure de 180 GHz.

(V)= = 2el" (wy) .
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Ce principe a déja été démontré par le groupe Quantronique a Saclay [32,33]. Cependant
leur spectrometre était trop efficace ! Dans cette expérience, il a non seulement permis de
sonder le spectre des états d’Andreev dans un contact atomique (ce qui était leur objectif),
mais il a aussi révélé de nombreuses résonances dues a l’environnement électromagnétique et
en particulier au circuit de polarisation.

Afin de limiter le couplage & ces modes, un SQUID polarisé en flux a un demi quantum de
flux est utilisé & la place d’une seule jonction Josephson, comme montré sur la Figure (i).4.
Les deux jonctions sont symbolisées par des croix dans des boites carrées et les inductances !
modelent 'inductance de la boucle du SQUID. Les lignes en pointillés partant du spectrometre
sont connectées au circuit de polarisation qui ferme le circuit.

Appliquer un champ magnétique génere un flux ®. dans la boucle du SQUID qui est relié
aux différences de phase 1 et ¢y des jonctions par ®./p9 = w2 — ¢1. Quand il n’y a pas de
flux dans la boucle (image du haut), les deux jonctions ont la méme différence de phase, ce qui
correspond a des courants micro-ondes circulant dans la méme direction, représentés par des
fleches rouges sur le schéma. Ils ne peuvent exciter que des modes hors de la boucle. Cette
situation est donc équivalente au spectrometre a simple jonction Josephson de Réf. [32,33].

Quand le SQUID est polarisé a un demi quantum de flux (image du bas), les deux courants
micro-ondes sont déphasés de 7 et, dans le cas ou les deux jonctions ont le méme courant
critique, ils sont confinés dans la boucle. Les modes électromagnétiques en dehors de la boucle
ne sont donc pas excités. Cependant, il y a un inconvénient a cette configuration. Il y a un
mode LC intrinseque a la boucle, du a la capacité électrique des jonctions et a 'inductance de
la boucle. Pour le SQUID symétrique représenté en Figure (i).4, ce mode LC est a la fréquence
1/(2mV/1C7), ou Cj est la capacité de chaque jonction du SQUID. Pour des valeurs typiques de
[ =50pH et C; = 50fF, cette fréquence est de 'ordre de 100 GHz, ce qui se trouve au milieu
de la gamme de fréquences ou le spectrometre peut étre utilisé. En faisant des jonctions ou
des boucles plus petites, cette fréquence peut étre déplacée en dehors de la bande passante du
spectrometre.

Dans cette situation, le systéme & sonder (Device Under Test ou DUT en anglais) doit étre
situé dans la boucle, ol le courant micro-onde est maximal. Le DUT peut aussi étre dans une
seconde boucle, couplée inductivement a celle du SQUID.

Conception du spectromeétre

En pratique, il n’est pas facile de fabriquer deux jonctions avec un rapport de courants cri-
tiques plus grand que 99% avec I'appareil de lithographie optique disponible au College de
France. Cela permet déja de bien se découpler des modes parasites de I’environnement. La
petite quantité de courant micro-onde qui peut circuler hors de la boucle du SQUID a demi
quantum de flux peut néanmoins exciter ces modes et faire une différence assez importante
dans la caractéristique courant-tension. Il est donc crucial de concevoir un environnement
électromagnétique pour le SQUID permettant de déplacer les modes résonants non désirés
hors de la bande passante du spectrometre ou de les amortir pour qu’ils n’apparaissent pas
dans le spectre. Plusieurs géométries ont été implémentées, jusqu’a ce qu’un spectre sans
résonance soit mesuré. Cela est résumé dans la Figure (i).5.

La premiere géométrie (ligne supérieure du tableau) consiste & connecter directement le spec-
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Figure (i).4.: Schéma électrique d’un spectrometre constitué d’un SQUID symétrique a &, =0
et (1)0/2

trometre a des fils supraconducteurs pour utiliser leur inductance qui a une haute impédance a
hautes fréquences pour découpler le spectrometre du circuit de polarisation. La caractéristique
courant-tension obtenue contient plusieurs résonances & basse fréquence & ¢, = 0 (en rouge)
qui sont partiellement supprimées a demi quantum de flux (courbe bleue). Elles ont a présent
été identifiées comme des modes de la ligne de transmission formée par les wirebonds utilisés
pour connecter la puce sur laquelle le spectrometre est fabriqué au circuit de polarisation.
Grace a 'ajout d’un condensateur (ligne centrale du tableau), ces modes sont court-circuités.
Mais une nouvelle résonance apparait, a la pulsation 1/ VLC, typiquement de I'ordre de 20 —
50 GHz. A demi quantum de flux, il y a encore quatre pics présents dans le spectre, mais
celui-ci est déja bien plus propre, notamment a basse fréquence. L’augmentation du courant a
haute tension & ®, = ®(/2 correspond a l’excitation du mode LC' de la boucle du SQUID.
Des résistances sont finalement ajoutées sur la puce pour amortir les modes présents mais
aussi pour faire office de filtre passe-bas en dessous de 1/(RC'). Cette fréquence de coupure
peut facilement étre plus petite que 500 MHz, garantissant peu de modes basse-fréquence. La
caractéristique courant-tension obtenue a ®. = 0 ne contient plus que deux pics. Le plus large
a 275pV, est a présent identifié comme un mode di a des trop grands plans d’aluminium
présents dans le dessin du spectrometre. Le second, autour de 150 GHz, correspond a la
fréquence 1/ (2%\/@). Méme avec un faible rapport de symétrie’ o ~ 0.75, la caractéristique
courant-tension est quasiment vierge a demi quantum de flux. Il ne reste plus que le pic a

Le rapport de symétrie d’'un SQUID est défini comme le rapport entre les courants critiques de ces deux
jonctions. Un rapport égal a un correspond a un SQUID parfaitement symétrique.
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Figure (i).5.: Tableau récapitulant les géométries testées.
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2751V qui culmine a 400 pA.

Spectroscopie Josephson de quatre systémes test

Afin de vérifier que le spectrometre fonctionne comme prévu, ce dernier a tout d’abord été testé
sur quatre systemes simples couvrant une grande partie de sa bande passante (2 — 180 GHz) :
le mode d’un résonateur LC autour de 150 GHz, 'excitation de quasiparticules dans un supra-
conducteur au-dessus de 90 GHz, la fréquence plasma d’une jonction Josephson vers 15 GHz,
ainsi que celle d’'un RF-SQUID autour de 80 GHz.

Ces quatre systéemes ont aussi permis de montrer le fonctionnement du spectrometre dans
différentes situations. Les trois premiers ont été mesurés avec un couplage galvanique dans la
boucle du SQUID. Cette configuration est facile & mettre en place, mais seulement si le systéme
a sonder peut étre fabriqué dans la boucle du spectrometre, ce qui n’est pas le cas de la plupart
des systemes qui pourraient étre mesurés. Le spectre du RF-SQUID a été mesuré en couplant
le spectrometre inductivement a la boucle du RF-SQUID. Cela prouve la possibilité d’utiliser
un tel mode de couplage ainsi que de controler indépendamment deux flux magnétiques : celui
dans la boucle du SQUID et celui dans la boucle du RF-SQUID. Dans cette expérience, une
largeur de raie de 550 MHz a été obtenue.

Cibles proposées pour le spectromeétre

Cette these va plus loin que cette preuve de fonctionnement et présente des cibles plus com-
plexes et stimulantes pour le spectromeétre, pour lesquelles la fabrication a déja commencé.
Les projets les plus avancés consistent & sonder les états d’Andreev dans des liens faibles non
conventionnels :

e Rapprocher deux jonctions Josephson plus proche que la longueur de cohérence supra-
conductrice permet d’hybrider leurs états d’Andreev et de former ainsi une molécule
artificielle dans laquelle des super-courants non locaux devraient étre observés [30].

e Le fort couplage spin-orbite dans des longs nanofils leve la dégénérescence de spin des
états d’Andreev méme en ’absence de champ Zeeman et peut donner lieu & des croise-
ments non-évités de niveaux d’énergie, similaires & des points de Weyl [37, 35].

e Des jonctions Josephson a base d’isolants topologiques voient la 2w —périodicité habituelle
du spectre transformée en une 4m—périodicité anomale due a des invariants topologiques
non-triviaux. [39].

La forme de ces états d’Andreev modifiés est présentée, ainsi que des estimations du courant
que 'on mesurerait si ’on sondait ces états avec un spectrometre Josephson.

D’autres systemes qui pourraient étre sondés avec un spectrometre Josephson sont les circuits
quantiques supraconducteurs topologiques. Ce sont des circuits électroniques comportant des
composants linéaires habituels tels que des condensateurs et des bobines, mais aussi les com-
posants non-linéaires que sont les jonctions Josephson. Ces dispositifs non-dissipatifs peuvent
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Figure (i).6.: Photographies au microscope et au MEB (Microscope Electronique & Balayage)
et caractéristique courant-tension de la derniére version du spectrometre.

dans certains cas donner lieu a des croisements entre niveaux d’énergie protégés topologique-
ment, & la base de propriétés de transport quantifiées. Fabriquer de tels circuits quantiques
permet de créer un Hamiltonien avec autant de parametres que souhaités et peut avoir des
applications potentielles & la simulation quantique de systeémes plus complexes.

Conclusion

Partant d’une réalisation expérimentale d’un spectrometre reposant sur l'effet Josephson [32],
nous avons compris ses défauts et implémenté un nouveau dispositif (visible dans la par-
tie gauche de la Figure (i).6) pour y remédier. Les principaux désavantages de la premiere
génération de spectrometre étaient la présence de plusieurs modes résonants parasites dus
a lenvironnement électromagnétique de la jonction ainsi qu'un couplage non-uniforme au
systeme d’intérét.

Utiliser un SQUID symétrique (colorisé en bleu) polarisé & un demi quantum de flux permet
de découpler de maniere significative la jonction de son environnement. Ce dernier est aussi
congu soigneusement afin de supprimer les modes restants. La haute impédance d’inductances
(en rouge) placées proche des jonctions contribue & un bon découplage. Une grande partie des
micro-ondes émises, ainsi que le bruit venant de I’extérieur, sont court-circuités par deux con-
densateurs (en orange) a l’autre bout des inductances. Les modes résonants toujours présents
sont ensuite amortis par de grandes résistances (en vert) fabriquées sur la puce.
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Le couplage au systeme d’intérét peut se faire en utilisant 'inductance de la boucle du SQUID
au lieu d’un condensateur, comme dans la premiere version du spectrometre. Cela garantit une
excitation de phase uniforme aux bornes de I'inductance, alors que dans le cas d’'un couplage
capacitif, cette dépendance était proportionnelle & 'inverse du carré de la fréquence.

Toutes ces améliorations ont permis de mesurer un spectre quasiment vierge lorsque le spec-
trometre n’est couplé & aucun systeme. La partie droite de la Figure (i).6 montre de telles car-
actéristiques courant-tension. La carte couleur du haut montre ’évolution des caractéristiques
IV par rapport au flux ®. dans la boucle du SQUID et les courbes du bas sont des coupes
(en échelle logarithmique) suivant les lignes pointillées rouge et bleue a &, = 0 et ®¢/2. Le
courant restant & ®, = ®(/2 en dessous du gap est de 'ordre de 200 pA pour des jonctions avec
un courant critique de 100nA. Cela correspond & une puissance équivalente de bruit (Noise
Equivalent Power en anglais) intrinseque de 10~'7 W /y/Hz sur une bande passante de 180 GHz.
Les quelques modes résiduels a 150 et 275 pV ont maintenant été identifiés comme dus aux
larges plans d’écrantage visible en jaune pale sur la photographie microscope. Ils peuvent donc
étre déplacés hors de la bande-passante du spectrometre dans la prochaine version.

Le spectre de quatre systemes de test a été mesuré sur une large gamme de fréquence : le
mode d’un résonateur LC & 150 GHz, ’excitation de quasiparticules dans un supraconducteur
au-dessus de 90 GHz, la fréquence plasma d’une jonction Josephson a 15 GHz, ainsi que celle
d’un RF-SQUID a 80 GHz. Les spectres mesurés coincident avec la théorie et permettent de
prouver que le spectrometre peut étre utilisés dans des situations variées. La spectroscopie
du RF-SQUID a notamment été faite par un couplage mutuel & une inductance en paralléle
avec le spectrometre, prouvant ainsi la faisabilité d’un tel couplage sans contact. Puisque le
couplage a la boucle est resté assez faible dans ce cas, les prochains spectrometres a SQUID
contiendront les systemes a sonder directement dans leur boucle.

Finalement, quelques systemes particulierement adaptés a étre sondés par spectroscopie
Josephson ont été présentés, tels que des états d’Andreev hybridés dans deux jonctions proches,
des états d’Andreev modifiés par le couplage spin-orbite dans des nanofils d’InAs et des liens
faibles a base de I’isolant topologique HgTe, ainsi que des circuits quantiques supraconducteurs
topologiques dans lesquels les niveaux d’énergie plasma peuvent subir des croisements non-
évités dus a la topologie des systemes.

Perspectives

Le dispositif obtenu dans cette these peut encore étre amélioré. Une des directions possi-
bles consiste en le fabriquer sur un substrat transparent en saphir. Avec une telle puce-
spectrometre, il serait possible de sonder tout type de systéeme en les approchant 1'un de
I'autre. Cela permettrait d’éviter des étapes de fabrication sur le systeme d’intérét qui peut
étre fragile et ne pas supporter les étapes de chauffage nécessaires a la fabrication du spec-
trometre. Avec une boucle de SQUID de rayon 50 um, le couplage reste conséquent jusqu’a
une distance de 'ordre de 100 um entre le spectromeétre et le systeme d’intérét, facilement
atteignable avec des techniques d’alignement simples. Le groupe ®( est actuellement en train
de travailler a la conception d’un nouveau dispositif pour ’alignement dans lequel la puce
contenant le systeme a sonder peut étre déplacé avec des vis micrométriques et ainsi étre bien
aligné sur le spectrometre. Le premier essai d’alignement a résulté en une distance verticale
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entre les deux puces de 10 pm et une erreur horizontale de I'ordre de 20 pm. La fabrication et la
caractérisation de spectrometres sur des substrats de saphir ont déja commencé et donnent des
caractéristiques courant-tension comparables a celles obtenues sur des substrats de silicium.

Une autre amélioration possible serait d’utiliser un matériau supraconducteur avec un gap
plus grand pour atteindre des fréquences plus élevées. Avec des jonctions en niobium, 1.4 THz
pourrait étre atteint, contre 180 GHz avec des jonctions en aluminium. Cependant la fabrica-
tion est plus délicate car il faut former un sandwich Nb/Al/AlOx/Al/Nb pour avoir un bon
oxyde. Ceci requiert un systeme a pulvérisation, plutot qu’'un évaporateur, a cause du caractere
réfractaire du niobium. Cependant, des expériences sont en cours dans le groupe pour essayer
d’obtenir des jonctions tunnels avec du niobium évaporé. Des jonctions Al/AlOx/Al/Nb ont
ainsi déja été fabriquées avec un gap supraconducteur plus grand que celui de I'aluminium mais
plus petit que celui du niobium. La tension a laquelle la branche de quasiparticules commence
(2A/e) est de 'ordre de 800 pV, correspondant a une fréquence de 400 GHz.

Le groupe ®q est aussi en train de travailler sur un autre dispositif capable de délivrer une
tension continue précise a un milliardieme pres. Il repose sur la stabilité des pas de Shapiro
apparaissant lors d’une irradiation par des micro-ondes. Brancher cette source haute-précision
sur le spectrometre permettrait théoriquement une largeur de raie de ’ordre du kHz.

Le plus grand inconvénient du spectrometre développé dans cette these est que le signal
mesuré dépend de la dissipation dans le systeme que ’on sonde. Etre capable de détecter
I’amplitude et surtout la phase du signal micro-onde réfléchi vers la jonction permettrait
de sonder des systemes dissipant moins et augmenterait donc la sensibilité du spectrometre.
La possibilité de verrouiller la phase de jonctions Josephson a celle d’'une source micro-onde
cohérente pourrait contribuer au développement d’un tel analyseur de réseau vectoriel sur puce
et large-bande.
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Introduction

The Josephson effect, predicted in 1962 by Brian Josephson [!] and observed experimentally

only one year later by Anderson and Rowell [2], is at the heart of various devices used today
in biology [3—7], metrology [], low noise measurements [7, %], quantum information [0—10]
and even astronomy [!7, 15]. This thesis work focuses on the realization of a new tool for

mesoscopic physics based on this effect, the Josephson spectrometer, designed for operating
at frequencies up to the terahertz range. Commercial microwave equipment for the study of
mesoscopic systems is not available above 50 — 80 GHz. In addition, a calibration is needed to
account for possible resonances in the measurements lines when using conventional spectrum
or network analyzers. The proposed Josephson spectrometer is an on-chip device which can
be located within a wavelength (some millimeters in the 100 GHz range) of the device under
test and thus suppresses the need for calibration of the measurement lines.

It consists of a superconducting loop interrupted by two Josephson junctions and relies
on the Josephson effect to convert a DC voltage V' to microwave oscillations at a frequency
proportional to V. The proportionality constant between both is a fundamental constant,
the Josephson constant Kj, defined as the inverse of the magnetic flux quantum, K; =
1/®¢ = 483.6 MHzpV~!. Absorption of the emitted microwaves can be directly measured
in the current-voltage characteristic of the Josephson junction as a current peak.

Using a Josephson junction to perform the spectroscopy of another system is not a totally
new idea. Rapidly after the prediction of Josephson, an alternative high-frequency current
was observed in tunnel junctions [19] and point contacts were used to detect millimeter and
sub-millimeter radiations [20]. The idea of combining both emission and absorption to make
a spectrometer was first implemented in 1967 by Silver and Zimmerman in an experiment [21]
where they measured the nuclear magnetic resonance of Co® at 218 MHz using niobium point-
contacts.

This early spectrometer was however not followed by a large development of the technique.
In the 1970s and the 1980s, this phenomenon of emission and re-absorption of photons by
Josephson junctions was mainly used to explain current peaks in current-voltage character-
istics of SQUIDs [22-25]. Some applications to the spectroscopy of mesoscopic systems were
found: resonant modes of microresonators [20,27] and transmission lines [25] were measured.
Josephson junctions were also used to measure transitions between energy levels of another
junction [29], a SQUID [30] or a single-Cooper-pair transistor [31].

More recently, absorption spectroscopy of Andreev Bound States in a superconducting
atomic contact using a Josephson junction was demonstrated by the Quantronics group at
Saclay [32, 33], paving the way for the development of a ready-to-use spectrometer. This
device suffers however several drawbacks:

e Presence of spurious resonance peaks due to electromagnetic modes in the uncontrolled
environment of the spectrometer
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e Non-uniform coupling to the device under test over the frequency range of interest

This thesis aims at resolving these issues by improving the design of the existing spectrom-
eter.

First, the general properties of Josephson junctions needed to understand the operation of
the spectrometer are discussed. This includes a derivation of the Josephson effect and the ideal
shape of the current-voltage characteristic of a junction. The dynamics of the two-junction
device, the SQUID, used in the spectrometer is also described.

These properties are then applied to understand the principle of the spectrometer and the
modification of the current-voltage characteristic in presence of a resonant mode. Different
coupling schemes are presented, such as using a capacitor (as in Ref. [32]), coupling via two
mutual inductors or directly connecting to the system of interest.

In a third part, a more comprehensive model of a Josephson junction is exhibited. It allows
understanding the origin of most spurious resonance peaks as well as all undesired features
which can be encountered when designing a Josephson junction.

Using these results, different designs for the spectrometer are experimentally implemented
and discussed. The role of the biasing circuit appears to be of preponderate importance: the
effect of adding on-chip resistors, inductors and capacitors is analyzed in details.

Consequently, fabricated spectrometers are used to measure the spectra of four simple sys-
tems over a wide frequency range: an LC resonator mode around 150 GHz, the excitation of
quasiparticles in a superconductor above 90 GHz, the plasma frequency of a Josephson junction
around 15 GHz and the plasma frequency of a RF-SQUID around 80 GHz.

Finally, some more complex and challenging targets for the spectrometer are presented. The
most developed projects consist of probing Andreev Bound States in two close junctions, where
they can hybridize, or in weak links based on InAs nanowires and on the topological insulator
HgTe, in which the ABS spectrum is considerably modified by spin-orbit coupling. Another
exciting direction is measuring non-avoided energy crossings in topological superconducting
quantum circuits.

Introduction to Josephson junctions

The Josephson effect occurs at any weak electrical contact between two superconductors. They
can be separated by an insulator, a normal metal, a semiconductor, or any other type of
material. In that case, a non-dissipative current of Cooper pairs Ig (called supercurrent)
can flow through the junction. It is the sign of the presence of phase coherence between the
two superconductors and it is, in the most general case, a 2r—periodic function of the phase
difference,

© = P2 — Q1.

Furthermore, time-reversal symmetry imposes Is(—¢) = —Is(¢) [?1]. Combined with the
2w —periodicity argument, this gives Ig(nm) = 0, n € Z. The supercurrent of a weak link can
thus be written in the form
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Figure (ii).1.: Supercurrent carried by a conduction channel for several transmission ampli-
tudes.

Is(p) = > Iusinng. (i)
n=1

Such a current-phase relation is always limited by a maximal value Ip. It is the maximal
non-dissipative current that the junction can withstand and is called the critical current. It is
in general proportional to the surface area of the junction and decreases when its thickness is
increased. In a mesoscopic theory of the Josephson effect, a short weak link (smaller than the
superconducting coherence length) is modeled by a set of conduction channels of transmission
7i, each hosting a pair of Andreev Bound States (ABS) [35]. The energies E1 of these |+)

states are given by
— / 2P
Ey(p)=+A /1 —Tsin 5"

The supercurrent is then carried by the ground state, |—). It can be expressed as the derivative
of the energy with respect to the phase, because phase and charge are conjugate. At zero
temperature, this gives

1 0F_ A Tsin
Is(¢) = o e Ao T
Yo 0¥ Y0, /1 — 7sin2 &

i

Noticing that sin? ¢/2 is 2r—periodic, it is possible to develop this expression in the form of
Equation (i’), making a link between both theories.

Figure (ii).1 shows the shape of the supercurrent for several transmission amplitudes. As
expected, it is zero at ¢ = 0, m and 27 and it is larger for larger transmissions. For low
transmission, the supercurrent is close to a simple sin ¢ shape.



Introduction

Iy

Current [
o

,]0

—2A/e 0 2A /e
Voltage V'

Figure (ii).2.: Ideal current-voltage characteristic of a tunnel Josephson junction.

In the following, we will mostly deal with low transmission junctions, called tunnel Josephson
junctions. They have a simple current-phase relation,

Is () = Ipsinp. (ii")
The Faraday’s law of induction also provides a relation between the voltage across the junction
and its phase difference. Its usual formulation is V' = ®, where V is the voltage across

an inductor and ® the magnetic flux threading it. For a superconducting inductance or a
Josephson junction, the flux is proportional to the phase difference, ® = gy, such that the
induced voltage is

V= o (i)
Equations (ii’) and (iii’) are often referred to as the DC and AC Josephson relations. Combined
with the densities of states of the two superconductors, they allow calculating the shape of the
current-voltage characteristic (shown in Figure (ii).2) of a tunnel Josephson junction:

e At zero voltage (in red), the phase difference is constant and a supercurrent (smaller
than the critical current) flows.

e At a voltage 0 < |V| < 2A/e (in green), the phase increases at a rate wy = |V /o,
resulting in current oscillations at a frequency of the order of 100 GHz (for V = A/e in
the case of aluminum). In average, this makes a net zero current.

e At a voltage larger than 2A /e (in blue), single quasiparticles of one superconductor can
tunnel to the other one. The BCS singularity at the gap predicts a current step at 2A/e.

Principle of the Josephson spectrometer

In presence of an electromagnetic mode in the environment of the Josephson junction, its
current-voltage characteristic is strongly modified. To explain this phenomenon, consider a
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Figure (ii).3.: (a) Inelastic Cooper pair tunneling ; (b) Ideal current-voltage characteristic of a
tunnel Josephson junction coupled to a two-level system.

simple two-level system with energy spacing Ey.. The current oscillations in the subgap region
(0 < |V| < 2A/e) can be understood in terms of the emission and re-absorption by the junction
of virtual photons of energy 2e |V| = hw;: a Cooper pair on the left-hand side superconductor
S1, of Figure (ii).3(a) needs to emit an energy 2e|V| to tunnel to Sg. If the emitted photon
is not resonant with the mode, it is reabsorbed by the Cooper pair which tunnels back to
Sr. However, if 2e |V| = Ey, the photon can be absorbed by the electromagnetic mode, thus
preventing the Cooper pair from tunneling back to Syp. This gives rise to a finite current
through the junction, shown in panel (b) of Figure (ii).3. The height of the current peak is
related to the dissipation in the mode and can thus be expressed in terms of the real part R,
of the impedance seen by the junction or equivalently of the rate of absorption I,

Re (WJ) Ig
2V

When |[V| > 2A/e, such peaks are less visible, as the contribution of the quasiparticles domi-
nates over that of the Cooper pairs. For aluminum, this yields an upper limit of 180 GHz.

The principle of absorption spectroscopy using a Josephson junction was already demon-
strated by the Quantronics group at Saclay [32,33]. But the spectrometer was too effective! In
this experiment, it allowed not only probing the desired Andreev Bound States spectrum, but
it also revealed many spurious resonances due to the uncontrolled electromagnetic environment
and in particular to the biasing circuit.

In order to limit the coupling to these modes, a Superconducting QUantum Interference
Device (SQUID) biased at half a flux quantum is used in place of a single Josephson junction
as depicted in Figure (ii).4. The two junctions are symbolized by cross symbols in boxes and
the inductors [ model the inductance of the loop of the SQUID. The dashed lines leaving from
the spectrometer are connected to the biasing circuit which closes the circuit.

In the SQUID loop, the applied flux is linked to the phase differences 1 and @9 of the

I(V)= = 2el" (wy).
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Figure (ii).4.: Electric diagram of a spectrometer based on a symmetrical SQUID at &, = 0
and ®g/2.

junctions by ®./p9 = @2 — p1. When no flux is applied to the SQUID (top panel), the two
junctions have the same phase difference, corresponding to microwave currents flowing in the
same direction (represented by red arrows). They can only excite modes outside the loop. This
device is in that sense equivalent to the single junction spectrometer of Ref. [32,33].

When the SQUID is biased at half a flux quantum (bottom panel), the two microwave
currents are dephased by 7 and, if the two junctions are identical, they cannot leave the loop.
The undesired electromagnetic modes are thus not excited. However, there is a drawback to
this configuration. There is an intrinsic LC mode due to the capacitance of the junctions and
the inductance of the loop. For the symmetrical SQUID shown in Figure (ii).4, the LC mode
is at the frequency 1/(27/IC;), where C} is the capacitance of each junction of the SQUID.
For typical values of [ = 50pH and C; = 50fF, this makes a frequency of 100 GHz which is
in the operating range of the spectrometer. Using smaller junctions or smaller loops allows
pushing this frequency out of the bandwidth of the spectrometer.

In this situation, the device under test (DUT) must be placed in the loop, where the probing
current is maximal. Another possible location for the DUT is in a second loop, inductively
coupled to the SQUID loop.

Design of the spectrometer

In practice, it is difficult to fabricate two junctions with a ratio of critical currents larger
than 99% with the optical lithography setup available at College de France. This already
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allows for a large decoupling from the undesired environmental modes but the small amount
of microwave current leaving the SQUID at half a flux quantum can excite them and make a
noticeable difference in the current-voltage characteristic. It is thus crucial to carefully design
the electromagnetic environment of the SQUID to shift the undesired resonance frequencies
out of the bandwidth of the spectrometer or to damp these modes so that they do not appear
in the spectrum. Several designs were implemented until a flat spectrum was measured, as
summarized in Figure (ii).5.

The first design (top line of the table) consists of directly connecting the spectrometer to
superconducting wires in order to take advantage of their high impedance at high frequency to
decouple the spectrometer from the biasing circuit. The measured current-voltage characteris-
tic exhibits several low-frequency resonances at ®. = 0 (in red), which are partially suppressed
at half a flux quantum (blue curve). They have now been identified as resonant modes of the
microwave transmission line formed by the wire-bonds used to connect to the circuit.

Adding a large capacitor (central line of the table) allows shunting these modes but intro-
duces resonances at higher frequencies, in particular one at 1/ VLC, typically of the order of
20—50 GHz. At half a flux quantum, some of them are still excited but the spectrum is already
cleaner. The rise of the IV characteristic at . = ®(/2 at high frequencies corresponds to the
excitation of the LC' mode of the loop of the SQUID.

On-chip resistors are finally added to the design to damp the existing modes but also to cut
all frequencies higher than 1/(RC). This cut-off frequency can easily be smaller than 500 MHz.
The resulting current-voltage characteristic at ®. = 0 only exhibits one large peak at 2751V,
now understood to be due to a too large design of the spectrometer, as well as a smaller and
narrower peak around 150 GHz, possibly at a frequency 1/ VLC. Even with a low symmetry
ratio! for the SQUID of only 0.75, the current-voltage characteristic is almost flat at ®, = ®¢/2
and consists of only one single peak which culminates at 400 pA.

Josephson spectroscopy of four mesoscopic test systems

In order to verify that the spectrometer operates as expected, it was first tested on four simple
benchmark systems covering a large part of its bandwidth (2 — 180 GHz): an LC' resonator
mode around 150 GHz, the excitation of quasiparticles in a superconductor above 90 GHz,
the plasma frequency of a Josephson junction around 15 GHz and the plasma frequency of a
RF-SQUID around 80 GHz.

These four systems also allowed showing the operation of the spectrometer in different situ-
ations. The LC resonator mode, the excitation of quasiparticles and the plasma frequency of a
Josephson junction were measured using a galvanic in-loop coupling scheme which is quite easy
to implement but only if the system to probe can be fabricated in the loop of the spectrometer.
The RF-SQUID was probed in a mutual coupling to an inductance shunting the junctions of
the spectrometer. It proved the possibility of using such a coupling scheme, as well as inde-
pendently controlling two magnetic fluxes. In this experiment, a linewidth of 550 MHz was
measured.

The symmetry ratio o of a SQUID is defined as the ratio between the critical currents of its two junctions.
It is one for two identical junctions.
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Proposed targets for the spectrometer

This thesis goes beyond this proof of operation and presents more challenging targets for the
spectrometer, on which experimental work is currently under progress. The most advanced
projects are focused on probing the Andreev Bound States (ABS) in non-conventional types
of weak links:

e Bringing two Josephson junctions close (closer than the superconducting coherence length)
allows hybridizing their ABS and form an artificial molecule in which non-local super-
currents should be observed [30].

e The strong spin-orbit coupling in long semiconducting InAs nanowires lifts the spin
degeneracy of the ABS even without applied magnetic field and can reveal interesting
non-avoided energy crossings, similar to Weyl points [37, 35].

e Making Josephson junctions based on topological insulators permits to transform the
usual 2w —periodicity of the spectrum in an anomalous 4w —periodicity due to non-trivial
topological invariants [39].

The form of these modified ABS is presented, as well as estimates of the current that we
would measure if we were to probe them with a Josephson spectrometer.

Other pertinent systems to be probed via Josephson spectroscopy are topological super-
conducting quantum circuits. They consist of electronic circuits including usual linear com-
ponents such as capacitors and inductors, but also non-linear Josephson junctions. These
non-dissipative devices can, in some cases, exhibit topologically protected crossings of energy
levels, at the basis of quantized transport properties. Building such quantum circuits allows
completely designing a Hamiltonian with as many parameters as wanted and have potential
applications to quantum simulation of more complicated systems.






1. General properties of Josephson junctions

A Josephson tunnel junction consists of two superconductors weakly coupled by a thin insulating
layer. The phenomenon of tunneling of Cooper pairs from one side to the other that occurs
in such a junction was first predicted by Josephson in 1962 [1] and observed one year later by
Anderson and Rowell [”].

In this chapter we will first derive the equations governing the dynamics of Josephson junc-
tions using two quite different approaches: a macroscopic one in which the junction is seen as
a barrier between two Cooper pair condensates and a microscopic one in which the junction is
a scattering element for quasiparticles.

Next we will consider the junction as a non-linear circuit element and derive its ideal current-
voltage characteristic in the limit of zero temperature.

Then we will turn to the interference effects occurring when two junctions are brought
together in a superconducting loop, called a Superconducting QUantum Interference Device
(SQUID).

Finally, we will describe the applications of Josephson junctions in physics and other scien-
tific fields and show how challenging it can be to fully capture their complex behavior.

1.1. Derivation of the Josephson effect

1.1.1. Macroscopic approach

Consider two superconductors S;, and Sg separated by an insulating layer I as sketched in
Figure 1.1. Both superconductors can be described by their macroscopic Ginzburg-Landau

wavefunctions [10]
V(P t) = \/np r(F t)ern ), (1.1)

They describe the fact that each superconductor is a condensate of Cooper pairs of density
nNL.R and phase PL,R-

If the insulating layer is thick (compared to the superconducting coherence length &), the two
superconductors are completely decoupled and there is no leakage from one side to the other.
If it is thinner, tunneling can occur between the two superconductors through the insulating

barrier [11]. The Schrodinger equation for this system can be written
L0
VL = Epy ~ Tum,
o (1.2)
i 87tR =ErYr — TYL,

where 7T is the tunneling amplitude of the junction which depends mainly on the thickness
of the insulator. &; and Er are respectively the chemical potentials of the left and right

11
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Figure 1.1.: A junction between two superconductors Sy, and Sg.

superconductors. Applying a voltage V between the two superconductors allows tuning the
difference £ — Eg = 2eV'!. Choosing the 0 of energy, such that &7, = eV and £z = —eV allows
rewriting Equations (1.2) as

0
inYL _ oy, — Tm
ot
8 On (1.3)
R
— —eVipp —
T eVip —TYL
Writing the wavefunctions in terms of density and phase, as in Equation (1.1) gives
61/ .
ot — h/nror — eVy/ng = =T /nre™ "%,
(1.4)

8”nR — h/nror + eV/ng = —T/nre®

where ¢ = ¢ — R is the phase difference across the junction. By taking the real and imaginary
part of equations (1.4), we get four equations:

= Y + T PR cos
YL = &4 a n\ ng 2
. eV T Ing
PR=——3 +t 7/ Ccosy,
h A\ ngr (1.5)

nrg = Q%N/nLnRsingo,
np = —2%\/nLnRsing0.

The last two equations show that ny+ng = 0. When Cooper pairs leave the L superconductor,
they enter the R superconductor at the same rate and reciprocally. This can be understood
as a current of amplitude I = 2eny. It has for direct consequence that ny, — 0 or ng — 0. In
fact, due to the battery connected to L and R, ny; and ng are kept constant at the same value
ng. By calling Iy = 46% V/nrng, we obtain the DC Josephson relation:

(19

!The factor 2 is here because the charge of a Cooper pair is 2e.

12
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The two other lines of Equation (1.5) show that
o=—V+ ———=cosy. (1.7)

Because ny, = ng = ng, equation (1.7) can be written

19

This last equation is the AC Josephson relation and relates the phase difference to the voltage
across the junction. The proportionality constant g is the reduced magnetic flux quantum
and yields ¢y = 3.291059 x 10716 Wh.

The combination of the two Josephson relations show that there can be a current flowing
between the two superconductors, even when no voltage is applied to the junction. Such a
non-dissipative current is called a supercurrent and is the sign of the phase coherence between
the two superconductors. A constant voltage V' leads to oscillations of the current at frequency
vy = 2eV/h. The proportionality constant between frequency and voltage is 483.6 MHz V1.

1.1.2. Microscopic theory: Andreev Bound States

Another way of understanding the Josephson effect is with a mesoscopic point of view. The
junction is considered as an assembly of independent conduction channels [12,13] of transmis-
sion 7;. The total current flowing through the junction can then be expressed as the sum of
the contribution of each channel:
I=> "I(n).
(2

The number of conduction channels in a tunnel junction can be estimated by the ratio of the
surface of the junction to the area of a channel: (Ar/2)?, A\ being the Fermi wavelength of
the electrons. In a junction of ~ 1 pm? (which is the typical size of the junctions we will
consider), there are ~ 5 x 10% channels (considering a Fermi wavelength of 1 nm). In reality,
the roughness of the surface reduces this figure by a factor of ~ 10.

To get the current flowing through the junction, we can calculate the current for each
channel independently and then sum these individual channel currents. For each channel, we
will consider the situation sketched in Figure 1.2. The junction is modeled by a ¢ function
potential of amplitude Vg at x = 0. The zero width of this model is enough as long as the
barrier is thin compared to the superconducting coherence length. To the left and right are
the superconductors Sy, and Sgi forming the junction.

Normal state scattering

Consider first the case where the two superconductors are normal metals and assume an elec-
tron is coming from the left-hand side of Figure 1.2 (in blue). The wavefunction of the electron
is

ik —ikx
U(z) = { Ae'™ + Be ifx <0, (1.9)

Cetke ifx > 0,

where A, B and C are respectively the incident, reflected and transmitted amplitudes. At the
interface, the continuity of the wavefunction and its derivative yield:

13
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Figure 1.2.: A junction between two superconductors Sy, and S with incoming plane wave on
the left in blue, reflected wave in green and transmitted wave in red.
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This gives two equations linking A, B and C

A+B=0C,
A— B = (1+2in)C,

where 1 = mVj/(h%k) describes the barrier. What we called earlier the transmission probability
7 of the conducting channel is the absolute square of the ratio of the transmitted amplitude
to the incoming amplitude and can be expressed as

= (1.10)

Superconducting case

For superconductors, another formalism is required to describe the scattering processes. In the
BCS mean-field approximation [!1], a complex coupling term A(z) at position x is introduced
between spin-up annihilation operators ¢y(z) and spin-down creation operators cl(sc) in second

quantization formalism. An adequate object to describe the situation is a spinor operator

cy(x)
U(x) = .
It can be understood as the annihilation field of a quasiparticle composed of a spin-up electron

annihilation field and a spin-down hole annihilation field. This spinor obeys the Bogolioubov-
de Gennes (BdG) Equation [!1] linking the Schrédinger equations for electron-like and hole-like

14
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part of the wavefunction:
H(r)  A) .
(240 S ) v = B (111)

where H(z) = —%Vz + V(x) — EF is the single-particle Hamiltonian with a potential V(z) =
Voo(x). Ep is the Fermi energy and A(xz) is the pairing potential. If we consider Sy, and Sr
to be made of the same material, A(z) can be written as A(x) = Ae®?(®) everywhere, except
in the insulating barrier (z = 0) where it is 0. The order parameter phase ¢ is taken constant
in each superconducting electrode. Call it ¢y, in the left superconductor and ¢ in the right
superconductor.

To solve the BAG equation in the case of a Josephson junction, we first must solve it inde-
pendently in the left and the right superconductors and look for a solution Wy (z) as a plane
wave as we did for normal metals:

Uy(x) = (ak> etk
br

For x < 0 or x > 0, the BdG Equation (1.11) can be rewritten
h2k? ;
(m B EF> a + Ae? @by = Fy(z)ag,
h2k? ;
— ( — EF> bk + Ae*“p(x)ak = Ek(x)bk
m

This gives two sets of solution:

E,j(x):y/fg—i-AQ, E, (z) = —\/& + A2,

u g OF - vpet @Y (1.12)
wm:( _i-;(x))e'f, \Pk<x>=<’f )’f

ug,

where & = h; 7';2 — Er is the kinetic energy referred to the Fermi energy and

1 &k
— = (143~
Ul 2<+E>,

Vi — ;(1—2’;)

For a given energy F, the wavevector k can be expressed as

21.2
MK e VB A,

2m

(1.13)

E2 _ A2
k=+k 1 ————
F EF )

where kp is the wavevector at the Fermi energy.
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Figure 1.3.: Spectrum of the Andreev Bounds States for 7 = 0.5, 7 = 0.9 and 7 = 1.

If E> A, k € R and the states are purely propagating as was the case for normal metals.
When E < A, k ¢ R and another type of states is possible: evanescent waves. In that case,
and when A < Ep, k can be expressed as

k = kp +ix(E).

This Taylor expansion is called the Andreev approximation and

VAZ _ |2
H(E) =kp— < kp.
2Ep
These states are bound to the junction and decay exponentially over a length 1/k(E). It is
possible to find the admissible energies Fy for a given phase difference ¢ = ¢ — ¢pgr. This
calculation is done in Appendix A and yields

Ey ::i:Awl—Tsin2 g,

where 7 is the transmission amplitude given by Equation (1.10). These energies are plotted
in Figure 1.3 for several transmission probability values. When the transmission is small, the
energy of the bound states stays close to the superconducting gap. The larger the transmission,
the larger the modulation of the energy with the phase difference. For a transmission of 1, the
energy even reaches 0 at a phase difference of 7.

In the case of a tunnel junction, all 7; <« 1, so the expression for the bound state energy
reduces to E4 ~ A (1 - %sin2 %)

According to the derivation made in Appendix B, the current carried by an Andreev bound
state |t+) is

16
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1 0F+
Ip=———.
¢o Op

In the case of a low transmission channel, this gives

1A
IL =F——7sine.
@o 4

The contribution of the channel 7 to the current through the junction is the sum of the positive
and negative bound states currents weighted by the Fermi population of the states: I, =

I (f- = f+4).

I-—ié ; Si tanh A
1—90047-2 in  tan %, T )

The total current flowing through the junction is then Iy =Y I,

Using Landauer’s fundamental relation [12] for the conductance G of a channel of transmission
7, G = %T, the total normal state resistance of the junction Ry can be expressed as Ry =

(2¢2/h 7))~

Using this relation, the Josephson current is given by

In the zero-temperature limit, we retrieve the DC Josephson relation derived earlier in
Equation (1.6), I = Iysinp, where Iy is the critical current of the junction given by the
Ambegaokar-Baratoff relation [15]:

_TA
N 2eRN’

Io (1.14)

Considering a uniform distribution of transmissions on the surface, the normal conductance
Gy = 1/Ry of the junction is proportional to its surface S. This results in the critical current
Iy also being proportional to S,

Iy x S. (1.15)

1.1.3. The Josephson potential energy
Intrinsic potential energy

Now that we derived the Josephson relations, consider the Josephson junction from an energetic
point of view. The DC relation I; = Ijsin ¢ describes the tunneling of Cooper pairs across the
junction without any applied voltage. There is thus no dissipation in the junction. However,
there can be energy stored in a junction. To calculate it, consider changing the phase difference
from @1 at time t1 to o at time to. The change in potential energy W during this process is:
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1. General properties of Josephson junctions

to
w=[ I,V (1.16)

t1

Using the Josephson relations (1.6) and (1.8), we get

Y2
W = goolo/ sin pdp = ol (cos p1 — cos ) . (1.17)
)

1

This energy W only depends on the initial and final states of the junction and therefore derives
from a potential U. The potential which is 0 at zero phase difference is

‘U((p):EJ(l—cosap),‘ (1.18)

where Ej = ¢l is the Josephson energy of the junction.

Current-biased Josephson junction

When the junction is biased with an external current Iy, the total energy of the system consists
of the potential energy (1.18) of the junction and the potential energy of the current source:

t ®
—/ Idet = —(po/ Ibd¢ = —(pogp[b. (1.19)
0 0

Introducing the reduced current i, = I,/ Iy, the total potential energy of the circuit is thus

(U () = By (1 —cosp — i) .| (1.20)

This potential energy (1.20) is often called the titled washboard potential due to its shape
shown in Figure 1.4 for different bias currents.

The evolution of the current and voltage across the junction is equivalent to the classical
movement of a fictitious “phase” particle (represented as a circle mark in Figure 1.4) in the
tilted washboard potential. In the absence of fluctuations, if the bias current is smaller than I
(blue and green curves), the system will stay at a local minimum of the potential. The phase
being constant, there is no voltage across the junction (V = g = 0). When I, becomes larger
than I there is no local minimum in the potential and the particle will slide down acquiring
a phase velocity and a voltage will develop across the junction.

In practice, a Josephson junction always has a parallel capacitance C'. The junction consists
of two metallic planes separated by an insulating layer of thickness ¢. If the junction has a
surface S, its capacitance is approximately C' = £S/I, with ¢ the permittivity of the insulator.

The effect of the capacitance C' has to be added to the total energy of the junction to better
understand its behavior. When there is a voltage V' across the junction, the capacitor stores

an energy

2 2
R s T (1.21)

K
2 2 7 T2

where w, = <p{)700 is the “plasma frequency” of the Josephson junction, the importance of

which is emphasized later. One remarkable property of w, is that, as Iy oc S and C' o 9, it
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1.1. Derivation of the Josephson effect

Potential energy U

0 s 27 3T
Phase difference ¢

Figure 1.4.: The tilted washboard potential for bias currents from 0 to 1.5Ip.

pendulum ‘ Josephson junction
angle 0 phase difference ¢
mass m capacitance C'
applied torque T' bias current I,
critical gravitational torque mgl critical current Iy

Table 1.1.: Analogy between a pendulum and a Josephson junction.

is independent of the area of the junction. It only depends on the insulator permittivity and
thickness. For the junctions we consider later, w, is typically around 15 GHz.

In the tilted washboard potential, the capacitive energy can be seen as a kinetic energy, as
it is proportional to ¢?. Adding a capacitance is analogous to adding inertia to the fictitious
phase particle.

The total energy E of the circuit can be written as E = U + K.

E(p,9) = By (1 = cosp — ing) + 5 Bawy % (1.22)

Note that the Equation (1.22) with 4, = 0 is the same as for a simple mechanical pendulum
(sketched in Figure 1.5). The potential energy of such a pendulum of mass m and length [
forming an angle 6 with the vertical axis is £, = mgl (1 — cos #) and its kinetic energy is given
by Ej, = %ml292. The total energy is thus mgl (1 — cos8) + %ml292. The ipp term can be seen
as the work W of a constant torque 71" applied to the pendulum W = T0. The analogous terms
are summarized in Table 1.1.

Consider now the behavior of the junction around an equilibrium phase ¢, when the bias
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1. General properties of Josephson junctions

Figure 1.5.: The pendulum, a mechanical analogue of the Josephson junction.

current is smaller than the critical current of the junction (minimum of the potential in Fig-
ure 1.4). ¢, is defined as % (peg: @) = 0, 1e. sinpe, = 4. Around ¢ = @4, the energy can
be written as:

. ok
E(¢eqg +9p,9) — E(peq,0) = gch +5 (6¢)%, (1.23)

where p = Ejw, 2 and k = Ejcos pe,. Equation (1.23) is the energy of a harmonic oscillator of

mass i and spring constant k. The frequency of the oscillations around an equilibrium position

iswp = %

wo = w, (1—2)"*. (1.24)

When i, = 0, the frequency of the oscillations is the plasma frequency w), of the junction. These
oscillations are therefore called plasma oscillations and can be understood as oscillations of the
charge from one side of the junction to the other as is the case in plasma oscillations of a bulk
metal.

1.1.4. Tunneling Hamiltonian of a Josephson junction

The Josephson junction is intrinsically a quantum object, as the DC and AC Josephson effects
consist of tunneling of particles through a barrier. However, we can ignore quantum fluctuations
and describe the dynamics classically, considering that the phase ¢ across the junction and
the current I flowing through it are classical variable, as we did in Section 1.1.3. But when
the temperature is sufficiently low compared to the zero-point energy of quantum fluctuations
(kT < hwp, where hwq is the zero-point energy), we cannot neglect the quantum nature of
these variables.

To derive a Hamiltonian for a junction, we need first to calculate the Lagrangian £, follow-
ing the method of Ref. [10] to quantize electromagnetic circuits. The potential energy of a
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1.1. Derivation of the Josephson effect

Josephson junction is U = —E cos ¢ (as derived in Equation (1.18)?) and its kinetic energy is
K = CV?/2. Using the AC Josephson relation (1.8), the Lagrangian £ is

) . ) C? .
L(p,0)=K(p,¢)—U(p,¢) = %902 + Ejcosg. (1.25)

The momentum conjugate to the phase difference ¢ can be expressed as q, = %‘ This gives

g = Cp. (1.26)

Using again the AC Josephson Equation (1.8), it becomes

4y = poCV = ¢oQ, (1.27)

where (@) is the charge accumulated across the capacitance. The classical Hamiltonian H of the
Josephson junction is thus

2
H(@,Q):K+U:§2—C—chosgo. (1.28)
In this Hamiltonian framework, the quantization is easily performed, just by replacing the

classical variables ¢ and @ by quantum operators ¢ and Q The fact that ¢ and @ are
Lagrangian conjugate gives the commutation relation [cﬁ, Q} = ih{p,Q} = ihpo = 2ie, where

{, } denotes the classical Poisson bracket. The quantum Hamiltonian H of the junction is
therefore

. . 2
H (g?), Q) = % — Ejcosp. (1.29)

To work with dimensionless variables, we introduce the charge energy Ec = % and the Cooper

pairs number operator N defined as Q= 2eN. Tt corresponds to the number of transferred
Cooper pairs. The Hamiltonian now becomes

# (gﬁ, N) — EoN? — Ejcos ¢, (1.30)

with commutation relation [cﬁ, N ] = .

It is possible to find the eigenstates and eigenenergies of this Hamiltonian in the general case
using Mathieu functions [17] but it is more instructive to start looking at the two particular
limits of large Josephson energy E; > F¢ and large Coulomb energy Fo > Fj.

Large Josephson energy
In the case where F; > FE¢, tunneling through the barrier occurs easily and N is not a

. A\ 2
good quantum operator to describe the situation, as ’<N2> — <N> > 1. On the contrary,

2The origin of energy is here chosen differently as in Equation (1.18). This is the reason for the absence of the
constant E; term.
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1. General properties of Josephson junctions

0 g |

- —7;/2 (I) 7rl/2 7IT
Phase difference ¢

Figure 1.6.: Schematic of the energy levels for a Josephson junction in the limit F; > E¢.

the phase operator satisfies <¢2> < 1. So, cosp can be approximated by 1 — %2 and the
Hamiltonian of Equation (1.30) is reduced to that of a harmonic oscillator,

~2
H (@, N) = EcN? + EJ%. (1.31)

Its eigenvalues are just E, = hw, (n + %) where n is a positive integer and hw, = v/2EcFE; is
the plasma frequency of the Josephson junction.

Figure 1.6 shows the cosine potential of a Josephson junction in thick blue lines, as well as
the harmonic approximation in red. The energy levels of both are also plotted in dashed lines.
At low energies, the approximation is good. But at higher energies, the actual cosine potential
is wider than the parabolic one, resulting in closer energy levels.

Large Coulomb energy

In that case, operator N is best suited to express the Hamiltonian. Recalling that [g?:, N } =1,
it is possible to express e? and thus cos ¢ = 1 (e? + %) in the charge (| M) (N1)(ar,n) basis.

The operator e can be explained as an operator transforming |N) in [N 4 1). To understand
this, consider the case of the usual position # and impulsion p operators. The operator eP%/".
where a is a distance, is the translation operator T, such that T; |x) = |z + a). Here, the

commutator [&,p] = ih is replaced by [g&, N} = i. Thus, e |[N) = |N + 1) and
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1.1. Derivation of the Josephson effect

—+00
e = 3" INL£1)(N].
N=—00

The Hamiltonian (1.30) can therefore be written

+oo
7%(@,1\7) = Y EcN?|N)(N| - %(WH) (N +|N — 1) (N)). (1.32)
N=—00

This gives in matrix form, with N from —oco to +o0,

0 0 0

A Ec(N —-1)2 —E;/2 0 0

H=|0 —E;/2 EcN? —E;/2 0. (1.33)
0 0 —E;/2 Ec(N +1)?
0 0 0 '

The lowest energy levels are close to |[—1), |0) and |1) as the tunneling terms —E;/2 are much
smaller than the diagonal matrix elements of the order of Ex and the Hamiltonian can reduce
to

R Ec —E;/2 0
H=|—-FE;/2 0 —Ej5/2]. (1.34)
0 —-E;/2  Ec
It is easy to find the eigenstates and eigenenergies of this Hamiltonian as it is a 3 x 3 matrix.

The eigenenergies are —E2/(2E¢), Ec and Ec + E%/(2E¢), which tend to 0 and E¢c when E;
goes to 0.

General case

Recalling that N and ¢ are conjugate quantum variables, the operator N acts in phase space
as a derivative:
N-19
i Op
The time-independent Schrodinger equation for the Hamiltonian of the junction can thus be
written (in phase space)

— EcV" (o) + (—Ejcosp — E)¥(p) =0, (1.35)

where W(yp) is the wavefunction in phase space of the eigenstate with eigenenergy E. This
differential equation is the Mathieu Equation [17]: 3" + (a — 2qcosx)y = 0 with a = 4E/E¢,
q= —2E;/Ec and x = ¢/2.

The solutions of the Mathieu equation are the Mathieu cosines (C subscript) and sines (S
subscript) M¢ s (a,q, x) which are tabulated functions. Because the wavefunction () has to
be 2w —periodic, we are only interested in the periodic Mathieu functions. Only those for which
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1. General properties of Josephson junctions
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Figure 1.7.: The 5 first energy levels for a Josephson junction with arbitrary E;/FE¢ ratio.

the parameter a is a Mathieu characteristic value are periodic. Half of them are m—periodic
and the other half is 2r—periodic in the variable + = /2. So, we need only consider the
m-periodic Mathieu functions.

Figure 1.7 shows the first allowed energies with appropriate periodicity. The limits of large
Coulomb and large Josephson energy can be seen for E;/Ec — 0 and E;/Ec — oo. In the
limit E; < E¢, the eigenenergies tend to Ecn? with n integer, as seen just above. In this
limit, the levels are degenerate because the |—n) and |n) states have the same energy. In the
opposite limit F; > FE¢, the eigenenergies tend to be uniformly spaced as in the case of the
harmonic oscillator.

1.2. The current-voltage characteristic

Now that we have derived the basic equations governing the dynamics of a Josephson junction,
let us focus on the shape of the ideal current-voltage characteristic of a Josephson junction of
critical current Iy and consider it as a circuit element.

The electric schematic of a Josephson junction is represented in Figure 1.8. The cross
symbol in the left-hand side part symbolizes a junction without capacitance, where the current
1, voltage V' and phase difference ¢ obey

{ I = Iysin g, (1.36)

V = pop.

The box with a cross inside in the right-hand part of the figure symbolizes a Josephson
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1.2. The current-voltage characteristic

Figure 1.8.: Electric schematic for a single Josephson junction of critical current Iy and intrinsic
capacitance C.

junction, taking its intrinsic capacitance into account. Equation (1.36) is modified to

. (1.37)
V= po¢.

This model is often called the CSJ (Capacitively Shunted Junction) model. A more refined
model also contains a shunt resistance R in parallel with the junction and the capacitance: the
RCSJ (Resistively and Capacitively Shunted Junction) model. The R in this model accounts
for losses in the conduction channels at finite voltage and is usually high in tunnel junctions.

{ I = Iysinp + Cpop,

1.2.1. The zero-voltage state

For a Josephson junction biased at a current I, in the tilted washboard model plotted in
Figure 1.4, as long as |Ip| < Iy, there is no voltage drop across the junction. This part of the
current-voltage characteristic is called the supercurrent peak, as the current flowing through
the junction is dissipationless. In the RCSJ model, as the voltage drop is constant and equals
0, there is no current flowing in the shunt resistance nor in the shunt capacitance.

On this branch, the DC Josephson relation, I; = Ipsin ¢, is reminiscent of the current-flux
relation for an inductance L: I = pgp/L, except that it is not linear. To better understand
this, consider the Taylor expansion about I,

I+ 0I = Iysin(p + dp) .
The change in current is

01 = Iydp cos . (1.38)

Comparing Equation (1.38) to the similar expression for a standard inductance (I = op/L)
gives an expression for the non-linear Josephson inductance Lg,
%o L,

= = 1.39
S cosp  cose’ (1.39)

where Lj = ¢o/Iy is the Josephson inductance. The inductance Lg of a Josephson junction
differs from a standard linear inductance as it diverges when ¢ — /2 and can even be negative
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1. General properties of Josephson junctions
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Figure 1.9.: Energy levels of the Cooper pairs condensates of two superconductors forming a
Josephson junction when the applied voltage is below 2A /e.

for m/2 < ¢ < 3w /2. Physically, however, the junction is not equivalent to an inductor. When
a supercurrent flows, no magnetic field is generated.

Note that with this definition of L, it is possible to write the plasma frequency of a Joseph-
son junction as wy, = (L JC)_I/ 2 and understand the plasma oscillations as occurring in a LC
resonator circuit made of the Josephson inductance and the capacitance of the junction. The
characteristic impedance Z; of this circuit, called the Josephson impedance, is

Ly Yo
Zy=1|"L = |22
7 C I,C

Consider a Josephson junction biased at a voltage V. As represented in Figure 1.9, no Cooper
pair can tunnel from one side to the other since there are no states available at the same
energy level. The only way for a Cooper pair to tunnel through the junction is to emit the
energy 2e|Vy|, as there are two electrons in a Cooper pair. If a photon is emitted this way, it
is reflected by the capacitance of the junction and is absorbed again. The Cooper pair that
tunneled from one side to the other tunnels back to its original side. This corresponds to an
average zero DC current flowing through the junction.

Implicitly, the electromagnetic environment is limited to the junction capacitance. In reality,
the situation is more complicated. For instance, if we include a simple bias circuit, such as the
one shown in Figure 1.10, the voltage across the junction is not V but V; =V — Ryl;.

Using the Norton equivalent of the right-hand side of the figure, it appears that the parallel
R resistance of the RCSJ model can be taken into account by changing the bias resistance
Ry, in the parallel combination of Ry and R,, called R in the following. A Josephson junction
biased with a current source of amplitude [ is also described by this circuit, with R = R.

Using the Josephson relations, the Kirchhoff’s law can be rewritten

1.2.2. The subgap region

Vv ) wo . Coq .
= Oy ZF0 1.40
Rolo Sms0+RIOso+ T 7 (1.40)

To have a better understanding of this equation, we introduce the time constant 7 = ¢/ (RIp),
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1.2. The current-voltage characteristic
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Figure 1.10.: Electric schematic of a Josephson junction biased via a resistance.

the reduced voltage v = V/(Rylp) and the plasma frequency w, = /Io/(¢0C). With these
notations, Equation (1.40) can be written

v :sincp—l—ﬂ,b—i—wp_ng. (1.41)

This non-linear second order differential equation cannot be solved analytically. It is the same
problem as in Section 1.1.3 of a particle in the tilted washboard potential of Equation (1.22)
with a viscous force 7¢ accounting for dissipation. In order to understand the behavior of the
junction, it is instructive to rewrite this equation as a function of the reduced time ¢ = t/7.
Differentiation with respect to ¢ is denoted by a prime symbol,

v=sing+ ¢ + Boy”, (1.42)
where B¢ is the Stewart-McCumber parameter introduced by W.C. Stewart [15] and D.E.
McCumber [19] in 1968,
R%I,C » R?
= =7 (1.3

This parameter quantifies the damping of the junction by the resistance R. It is the square
of the quality factor of the RLC resonator circuit made of the Josephson inductance, the
capacitance of the junction and the resistance R. A large f¢ parameter corresponds to a
high quality factor and thus a low damping. It is therefore called the underdamped limit. In
this case, the phase particle slides down the potential with almost no friction. The opposite
overdamped limit (S < 1) corresponds to a particle slowed down effectively in the potential
and easily trapped in potential wells.

To find conditions under which Equation (1.41) can be solved, we write the phase difference
©(t) in the form

o(t) = o0 4wyt + Z an sin (nw st + p), (1.44)
n>0
where wy = V/¢g. This form comes from the fact that a voltage across the junction induces a
linear phase increase and thus current oscillations. They can in turn induce voltage oscillations
due to the capacitance of the junction and the biasing circuit acting as a linear impedance.
Substituting this expression for ¢ in Equation (1.41) gives
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1. General properties of Josephson junctions

v = sin <gp(0) +wyt + Z ap sin (nw st + gon)>

n>0 (1.45)

2

w

+Twy + Z anpnw T cos (nw it + ¢p) — Z an <n‘]> sin (nw st + ¢p).
n>0 n>0 “p

The first term can be expanded in Fourier series to give components at all harmonics of w:

sin ((p(o) +wyt + Z ap sin (nw st + gon)> =qag + Z ap sin (nw st + @p).
n>0 n>0
The exact derivation of the a, and ¢, coefficients involves products of sums of Bessel functions
and is not performed here. One important remark on these coefficients is that the a,, are of
order 1 or smaller because the sine function in the left-hand side of the above equation is
smaller than 1 (in absolute value).
In Equation (1.45), the term oscillating at frequency nw satisfies

- . - wy 2 .
ap sin (nw st + @) + apnw gt cos (nwyt + op) — an <n> sin (nwyt + @) = 0.
Wp

If there is a ng for which nowy > wy or nowy > 1/7, the first term can be neglected. This
results in all the a,, coefficients with n > ng being 0. If in addition ng = 1, all a,, are 0 and
the phase difference is just given by

© = 90(0) + wt.

This limit is called the high-frequency limit and can be expressed

wy > min (wp, 1/7). (1.46)

As Bc = (pr)_2, this condition is different for underdamped and overdamped junctions. In
underdamped junctions, it is w; > wy,, while in overdamped junctions, it is w; > 1/7.

Underdamped junction

In the case of a tunnel junction, the underdamped limit is almost always achieved as the shunt
resistance of the junction is large for good tunnel junctions. Typical shunt resistance values
are 10 M€ for junctions with Iy = 100nA and C = 150fF. This gives Bc ~ 5 x 107 > 1. The
high-frequency limit of Equation 1.46 is reached as soon as w; > w, ~ 15 GHz. ¢ is thus given
by

Y= 90(0) + wyt.

The resulting current is purely sinusoidal at frequency w; and results in an averaged current
of 0.

A more physical interpretation of this averaged zero current is that the capacitance has a
low impedance at frequencies higher than w, and shunts effectively the oscillating part of the
junction current: sing + w, 2% ~ 0. This results in an almost constant voltage across the
junction and thus a phase increasing linearly with time: ¢ = (0 + wt.
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1.2. The current-voltage characteristic

Overdamped junction
In the case of a junction with a small bias resistance, the quality factor is low and Equa-
tion (1.42) reduces to

v=sinp+ ¢ (1.47)

This differential equation has an analytical solution (calculated by integration in Appendix C)
for bias current larger than the critical current (v > 1):

/ 1 Vo2 —1. 1 1
(p = 2 arctan 1 - —tan Uit — arctan | ——— + — | + 2nm.
v?2 2 2 — 1 v

The 2n7 in this expression accounts for the fact that the phase of the junction is continuous
and does not jump from 7 to —m when the argument of the arctan function reaches oo, that
is to say when the argument of the tan reaches (2k + 1) /2. n is the integer such that:

v

;715— arctan <\/U;7_1> + g

s

From this expression for the phase, the current flowing through the junction and the voltage
across it can readily be calculated using the Josephson relations: Iy = Iysiny and V; = ¢g¢ =
RIyy'.

o, I; and V; are plotted in the top panel of Figure 1.11 for bias voltages 1.1RIy, 2RIy and
10RIy. The bias resistance R is 0.1Ry. For small bias voltage (blue curves), the current and
voltage oscillations are highly non-sinusoidal, resulting in a finite average current. When the
bias gets larger, the phase tends to a linear shape and the current becomes sinusoidal with an
average value of zero. The average values of current and voltage are plotted in dashed lines in
the figure.

The frequency w = 27 /T of the current and voltage oscillations depends on the voltage as
w = Vv? —1/7. This frequency can be expressed as a function of the Josephson frequency

LL)J:V/QO(],
/ 1 / RIO>2
! (wJT)2 J <V

At large voltage, this oscillation frequency tends to the Josephson frequency. This behavior
was expected, as this corresponds to the high-frequency limit expressed in Equation (1.46).

Using the Josephson relation linking voltage and phase, it is straightforward to compute the
average voltage:

1 T
(Vy) = T/o @opdt,

RI()\/ U2 —1
TQO(T)a

(V) =/ V2= (RIp)>.

(Vy) =
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Figure 1.11.: Top graphs: evolution of the phase, current and voltage of a Josephson junction
biased in series with a resistance R = 0.1Ry. For the current and voltage, the
dashed lines correspond to the average value. Bottom graph: averaged current-
voltage of a junction for three different bias resistances.
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1.2. The current-voltage characteristic

Figure 1.12.: The density of states for the two superconductors forming a Josephson junction
when applied voltage is above 2A/e.

The average current is then obtained from the Kirchhoff law, V' = R (I;) + (Vy),

() V) (V)
oV Ga) e

This expression shows a universal shape for the averaged current-voltage characteristic when
the voltage is normalized to RIy. However, in the bottom panel of Figure 1.11, the voltage is
not expressed in terms of RIy but in terms of A/e, resulting in different curves.

1.2.3. The quasiparticle branch

When the bias voltage becomes larger than 2A /e there is also a possibility for quasiparticles
to tunnel through the insulating barrier as shown in Figure 1.12. For V' >> 2A /e, the density
of states is the same as for a normal metal and the junction acts as a normal resistance,
Iy =V;/Ry, where Ry is the normal state resistance of the junction, which is related to the
supercurrent via Equation (1.14).

For V' 2 2A/e, the exact shape of the current-voltage characteristic can be calculated using
Fermi’s golden rule for the tunneling rate, o, (V') = eI, where

F:%</+Oons(E+eV)n5(E)f(E)(1—f(E+eV))dE

i ive (1.49)
—/ nS(E)nS(EJreV)f(EJreV)(l—f(E))dE),
r— 2% T s (B4 eV)ns (B) (f (E) — f (E + ¢V)) dE. (1.50)
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1. General properties of Josephson junctions

and ng (F) is the superconducting density of states and f (E) is the Fermi function describing
the thermal occupation of the levels. In the BCS theory, ng (E) = nN\/ELL for |[E| > A
with ny the normal state density of states. ny is related to the normal resistance Ry via the

same integral as (1.50) but for normal densities of states:

7r |4
dE = — V = — 1.51
v =2 [ am =Ty = (1.51)
In the limit of 7' = 0, Equation (1.50) gives
1 —A |E| |E + eV|
= dE. 1.52
e2Ry / ( )

aeev VEZ A2 (g ey a2
The integral (1.52) can be written in terms of elliptic integrals [70],

0 if [eV] <2A,

INV)=4q V Al?
B (E(x)—Q’eV

(1.53)

K(x)) if [eV] > 2A,

where functions K and FE are complete elliptic integrals of the first and second kind of argument

== 3P

3 1
—/ N S,
0 \/1—22sin40
—/2 V1 — x2sin? 0d6.
0

The shape of Iy(V) is plotted in Figure 1.13a in blue.

1.2.4. ldeal zero-temperature current-voltage characteristic

The calculations made in Sections 1.2.1, 1.2.2 and 1.2.3 give the shape plotted in Figure 1.13a
for the ideal current-voltage characteristic of an underdamped (for which the high-frequency
condition is always satisfied) Josephson junction of critical current Iy at zero temperature.
The red branch corresponds to the supercurrent discussed in Section 1.2.1, the green branch
is the subgap region explained in Section 1.2.2 and the blue branch is the quasiparticle branch
of Section 1.2.3. At high voltage, the I-V characteristic tends to the straight line of equation
I = V/Ry plotted in dashed line.

Figure 1.13b shows an experimental current-voltage characteristic. It is similar to the theo-
retical one except for some details:

e The region for |V| < 501V does not have I = 0. This is due to an unstable biasing
circuit as discussed in Chapter 3.

e There is a feature around +300pV which will be explained in Chapter 2 and is the core
of the spectrometer operation.
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(a) Theoretical IV characteristic. (b) Experimental IV characteristic.

Figure 1.13.: The ideal current-voltage characteristic for a Josephson junction and an experi-
mental characteristic.

e The rounding of the quasiparticle branch at 2A/e is due to the density of states not
being exactly the BCS one.

1.3. The Superconducting QUantum Interference Device (SQUID)

As seen with the DC Josephson Equation (1.6), the current flowing through a junction depends
on the phase difference across the junction. A good way of controlling the phase difference
across a Josephson junction is to make a superconducting loop. In addition, if we want to
apply a voltage, we need a loop with two junctions.

1.3.1. Ciritical current and loop current

Consider a superconducting loop interrupted by two Josephson junctions JJ; and JJ2 of critical
current Ip; and Iy as sketched in Figure 1.14 and consider injecting a current I. The phase
difference across junction 1 is ¢ and the phase difference across 2 is 9. The superconductor
forming the loop can be modeled as an inductor and divided into two parts L1 and Lo corre-
sponding to the metal of the side of junction 1 and 2 respectively. A perpendicular magnetic
field B; =V x /_fe can be applied to the loop.

The phase difference acquired around the loop is

1 1 1 - o
d=p1+ —Lilh — —Loly —po + — A - dl. (1.54)
¥0 ¥0 ¥0 Jioop

The integral |, loop A, -dl is the magnetic flux &, = B,S threading the loop of surface S. It can
be decomposed in two parts:

A‘e.gz:/ A -di+ [ A (1.55)
loop left right

If we consider the trajectory of a Cooper pair injected from the top of Figure 1.14, the first
integral (labeled left) corresponds to the phase acquired after the traveling through the left
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Figure 1.14.: Schematics of a superconducting loop interrupted by two Josephson junctions.

branch of the loop and the second integral is the phase acquired through the right branch.
The sum of both can therefore be considered as an interference term between these two paths.
This is the reason why this superconducting loop interrupted by two Josephson junctions is
called a Superconducting QUantum Interference Device (SQUID).
The total phase difference § of Equation (1.54) must be equal to 0 (or to a multiple of 2m)
to satisfy the uniqueness of the wavefunction in the superconductor,
Ly Ly D,

Y2 — P1 = 711 _7[24_7 (27‘&') (156)
¥o ¥0 %0

Negligible loop inductance

If we neglect the inductance of the loop, Lilp1, Lalps < ¢o. For typical junctions of critical
current Iy ~ 500nA, this gives L2 < 650 pH. Because po ~ 1pH pm~! such an inductance
corresponds to a loop perimeter of 650 pm which is quite large compared to typical perimeters
of 50 pm considered in this thesis.

In this limit, Equation (1.56) can be rewritten

.
w2 —p1=— (2m). (1.57)
%0

This shows that the external magnetic flux directly gives the difference in phase drops across
the junctions.

The total current I, flowing through the SQUID is I, = I1 4+ I» = Ip1sing; + Io2 sin ps.
If we denote @, the reduced flux such that ¢, = ®./pp (27) with 0 < ¢, < 27, we obtain
Iy = Ipisin 1 + Ip2sin (¢1 + @e). Using a trigonometric identity,

Iy = Iysin (o1 + ) , (1.58)

where Iy and ¢ are defined by:
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Figure 1.15.: Schematics of a SQUID with no inductance.

Ig = 1021 + Igg + 2[01]02 COS Pe,
To2 sin @ (1.59)

tan = .
v Io1 + Ipz cos @e

Equation (1.58) shows that a SQUID acts as a Josephson junction with tunable critical current.
Its maximal value is Iy; + Ip2 and is reached for an external flux of &, = 0 (®p). The minimal
critical current is |Ip; — Ip2| and is reached for &, = ®4/2 (Pg). When the SQUID is biased at
d, = Dy/2 (Py), there is also a current circulating in the loop of maximal magnitude Io; + o2
to impose the phase equality of Equation (1.57).

The amplitude of the maximal current Iy is directly given by Equation (1.59). To get the
maximal amplitude of the loop current I;, we have to do the same reasoning as with Ip.
The current flowing in the loop is |I1 — Iz| = |Ip1sing; — Ipasin (p1 + ¢e)|. Noticing that
—Ipasin (1 + @e) = lp2sin (p1 + @e + ), we can see that I, (@) is just Iy (we + 7).

The critical current and maximal loop current are plotted in Figure 1.16 for three ratios of
a = lp2/Io1. It is possible to cancel the critical current only when the two junctions are exactly
identical (a = 1, blue curves in the figure).

In practice, it is impossible to make two identical junctions and obtain o = 1. Typical values
are of the order of 98%.

Larger loop inductance

When the inductance of the loop is not negligible, the phase drops across the inductance, so
the phase difference of the junctions is not directly proportional to the external magnetic flux
and it is not possible to derive the dependence of I () in the same way as before. If we
introduce two parameters 51 = L11p1/po and B2 = Lolga /o, the ratios of the loop inductance
to the Josephson inductance, Equation (1.56) can be rewritten,

P2 — p1 = Prsiney — B2sinpe + @, (1.60)

where ¢, is again the reduced flux taken between 0 and 2.
The total potential energy U of the SQUID is made of three terms:

e the Josephson potential: —pqly; cos; for junctions ¢ = 1 and 2,
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Figure 1.16.: Critical current and maximal loop current in a SQUID for av = Iy2/Io; ratios of
0.1,0.5 and 1.

e the inductive energy: %Lilf = %Lilgi sin? p; = %,Bifgi sin? Vi,

e the work of the external current: — f(f LVdt =21, ([ do+ [* do).

(Z) = —Io1 cospy — Ipz cos 2 + % (B1lo1 sin® 1 + Balog sin® pa) — Iew- (1.61)

To get the values of ¢ and 2 for every applied flux ®. and extract the Iy (®.) dependence,
one way is to solve numerically for ¢o as a function of ¢; in Equation (1.60), inject this value
in the potential U and find a stable minimum of U ().

For a symmetrical SQUID (L; = L = L and Ip; = Ip2 = 1I.), the Iy (P.) dependence is
plotted in Figure 1.17. The [ parameter is 81, = 81 = [2. The effect of the inductance is to
reduce the accessible values of the phase differences of the junctions. The larger the inductance,
the larger the phase drop across the inductance and the smaller the phase difference across the
junctions. The inductance also makes the system bistable: for 8 # 0, there are flux values
for which two critical currents are possible for the SQUID.

As for the SQUID with negligible inductance, the reduction of the critical current corresponds
to the creation of a current circulating in the loop.

More details about the critical current of a SQUID with non-negligible loop inductance and
different critical currents can be found in Ref. [71] and Ref. [52].

1.3.2. Plasma frequency control

In a SQUID, not only can the critical current and loop current be controlled by an external
magnetic field, but also the plasma frequency. To derive an expression for w, (¢¢), consider
the case of negligible loop inductance which can be analytically solved. Setting 81 = 2 =0
in Equation (1.61), the total potential energy of the SQUID is:

U (1, 92) = —polor cos p1 — woloz cos (p2) . (1.62)
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Figure 1.17.: Critical current of a symmetrical SQUID for gy = 0,0.3 and 1.

Recalling that @2 = ¢1 — e, this expression can be rewritten

U (1, 9¢) = —polocos (w1 — ), (1.63)
where Iy and ¢ are defined as in Equation (1.59) by
1§ = Iy + 1§, + 2151102 cos e,

To2 sin g, (1.64)

tanp = — 2o
ey Io1 + Io2 cos @e

The kinetic energy of the SQUID, due to the capacitances C; and Cs of the junctions has the
form

.. & . Cy . 1 .
K ($1,¢2) = 7@39012 + 7%9022 =5 (C1+C) wop1”. (1.65)
So, the total energy of the SQUID is
. 1 .
E(p1,¢1) = —polocos (p1 — ¢) + 5 (C1 + C2) w1, (1.66)

This energy is minimal when @1 = ¢. Around this equilibrium position, the energy can be
estimated with the harmonic approximation,

2

The plasma oscillations around this equilibrium position occur at the plasma frequency w,
such that

. 1 1 .
B (o) ~ sl (1= 5 (1= 0 ) + 5 (C1 + Co)in® (167)

W2 (g0) = Iy _ \/Igl + I5, + 2101102 cos ¢, (1.68)
pAre ©o (Cl —|-02) ®o (Cl +02) ’ ’
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Figure 1.18.: Plasma frequency w), for a SQUID with negligible loop inductance for o = 0.1, 0.5
and 1.

where C7 + C5 is the total capacitance of the SQUID, corresponding to C; and Cs in parallel.
Recalling that both Ip; and C; are proportional to the area S; of the junctions, the plasma
frequency of the SQUID can be expressed as

2 2 2
_ O \/Sl + 55 + 25152 cos pe .
wp (gﬁe) wp ( Sl +S2 9 ( 69)
(0)

where wy "’ is the plasma frequency of a single Josephson junction. The plasma frequency of the
SQUID is maximal when no magnetic field is applied and takes the value of the single junction
plasma frequency wl(yo). When the SQUID is biased at half a flux quantum, the plasma frequency
is minimal and goes to 0 for a symmetric SQUID. This dependence is plotted in Figure 1.18
for some ratios a = Sy/S1.

In the case of a symmetrical SQUID, the plasma frequency is simply

wp (pe) = wI(JO) ‘cos %

When the inductance of the loop is larger, the effect is the same as for the critical current:
a large Br, reduces the variations in w, and makes it multi-valued. This appears more clearly
when writing the plasma frequency as

. (1.70)

N
o (C1 + C2)’

O.)p:

1.3.3. Flux quantization in a SQUID

Consider a symmetrical SQUID with negligible loop inductance to which we apply a magnetic
flux starting from ®. = 0. The potential energy of such a SQUID is plotted in Figure 1.19a for
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Figure 1.19.: Potential energy of a symmetrical SQUID and corresponding current in the loop.

different magnetic flux values. When ®, = 0 (blue curve in the figure), the minimum energy
is obtained for ¢1 = w2 =0 (2m).

When the magnetic flux ®, is increased from 0 to ®g, 1 decreases and o increases until @,
reaches ®y/2. This phase difference modification is plotted in Figure 1.19b and corresponds
to interferences between the two arms of the loop, generating a current in the loop. It is also
plotted in the figure. The colored vertical dashed lines correspond to the colored marks in
Figure 1.19a.

When the applied flux reaches ®(/2, (¢1, p2) reaches (—m/2,7/2) and the potential becomes
flat. For a magnetic flux slightly larger than ®,/2, both phase differences undergo a 7 kink
and the current in the loop switches direction. This corresponds to one magnetic flux quantum
entering the loop through the Josephson junctions.

When the flux is increased further, ¢; keeps on decreasing and o keeps on increasing, to
reach (¢1,p2) = (0,2m) for &, = ®¢ which is the same situation as when no flux was present,
except that one flux quantum has entered the loop, making @y — 1 = 27.

If we keep increasing the flux, the same process will take place: at ®, = (2n + 1) /2 with
n an integer, a flux quantum enters the loop, ;1 and @2 undergo a 7 kink and the current
switches direction. At ®, = n®q, w3 — 1 = 2nmw and n flux quanta are in the loop.

This process was explained in the case of a symmetrical SQUID with negligible loop induc-
tance, but the same happens for a non-negligible inductance and for junctions with different
critical currents.
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1.4. Applications of Josephson junctions

Josephson junctions are widely used today due to their strong dependence in the magnetic
field, their non-linearity and their quantum nature. Various applications exist, not only in
mesoscopic physics, but also in biology, metrology, quantum information and even astronomy.

1.4.1. A sensitive magnetometer

The SQUID introduced in Section 1.3 has a current-voltage characteristic which depends sensi-
tively on the magnetic flux. Biasing a SQUID with a current and measuring the voltage across
it is a common method used to measure magnetic fields precisely. To keep the ratio of the
Josephson inductance to the inductance of the loop small, these SQUIDs have necessarily small
loop area and thus collect little flux. To increase the signal, larger superconductive pick-up
loops as often added to the device, coupled via a mutual inductance to the loop of the SQUID.
The resolution of such magnetometers can then be as low as a few fT/v/Hz [3,53].

A simpler device based on a Josephson junction is also commonly used to measure low
magnetic fields, the RF-SQUID. It consists of a superconducting loop interrupted by one
single junction. The flux threading it imposes a phase difference across the junction and a
supercurrent in the loop to satisfy flux quantization. If the RF-SQUID is inductively coupled
to a resonator circuit, a change in the magnetic field induces a change of the impedance of
the junction (because of its non-linearity) and thus a change of the resonance frequency of
the resonator. This response is ®g—periodic in the flux threading the RF-SQUID, allowing
determining the magnetic field. However, RF-SQUIDs are less sensitive than SQUIDs with a
typical resolution of 10 fT/v/Hz [3] but cheaper and easier to fabricate.

Using two SQUIDs located close to each other and subtracting their signals also allows for
measurement of the gradient of the magnetic field, providing efficient spatial filtering. Because
the field from a dipole decays with distance r from the source as 1/r3, the first-derivative
decays even faster, as 1/7*. Noise sources located far away from the gradiometer thus produce
significantly less signal than a source close to it. Another common method to measure the
gradient of the magnetic field is to add two pick-up loops of the same area S at positions
7 and 7+ 67 wound in opposition. They are threaded respectively by fluxes B (7) - S and
—B (74 67) - §. The total measured flux is thus proportional to the gradient of the magnetic
field, 07 - V (é () - §)

Since the measurement of the magnetic activity of the heart in 1970 by Cohen [51], SQUID-
based magnetometers and gradiometers have been widely used in biology to study the activity
of the heart and the brain [3—5]. The SQUIDs can detect the magnetic fields generated by
neuronal electrical currents in the brain of order 1 — 10T [3,55]. They are also a good asset
for this purpose, as they have a good spatial resolution. Using an array of ~ 300 SQUIDs is
now a common method to make functional maps of the brain [3].

1.4.2. Detectors for astronomy

Josephson junctions are also commonly used as detectors in radio astronomy [!7, 15]. They
exploit the process of photo-assisted tunneling (described in more detail in Chapter 4), the
tunneling of quasiparticles through the junction with the help of an incident photon. If the
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Figure 1.20.: Photo-assisted tunneling: a photon of energy elj excites a quasiparticle which
can tunnel through the junction.

junction is voltage-biased at V' = 2A/e — Vj), a photon of energy eVj can increase the energy
of a quasiparticle and make it tunnel to the other side of the junctions where energy levels are
available, as sketched in Figure 1.20.

The energy of the detected incoming photons has to be smaller than twice the gap. This
threshold is ~ 180 GHz for aluminum and can reach 1.4 THz for niobium. There are few detec-
tors available in this energy range of hundreds of GHz which is rich for astronomy. For instance,
the cosmic microwave background has its maximal spectral radiance around 280 GHz [70].

1.4.3. The voltage standard

The Josephson effect introduced in this chapter states that a constant voltage V' applied to a
Josephson junction induces an oscillating supercurrent at the Josephson frequency wy = V/py.
The opposite is also possible: applying an oscillating signal at frequency w develops a constant
voltage V,, = pow across the junction. This effect, predicted by Josephson [!]|, was observed
by Shapiro one year later [57].

Because commercial microwave sources can achieve extremely narrow linewidth (below the
hertz for gigahertz signals), the voltage on a Shapiro step is stable and is at the basis of the
voltage standard. In the 1980s, different Josephson junctions were tested and a reproducibility
of 1076 was found for the V, to w ratio [7%]. The volt is nowadays defined using arrays of
~ 8000 Josephson junctions and the relative uncertainty is below 10~ [6].

Figure 1.21 shows the evolution of the uncertainty on the volt between 1930 and 2000.
Between 1930 and 1970, Weston cells (stable mercury cadmium chemical batteries) were used
to realize the volt. Around 1970, single Josephson junctions (single Junction JVS in the figure)
replaced the Weston cells and helped reduce the uncertainty by two orders of magnitude. In
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Figure 1.21.: Evolution of the uncertainty on the volt between 1930 and 2000, adapted from
reference [0].

the 1980s, array of Josephson junctions (Array JVS in the figure) were introduced and another
order of magnitude was gained.

1.4.4. A building block for superconducting qubits

As seen in Section 1.1.4, the Josephson junction energy levels are not uniformly spaced as
opposed to the levels of a harmonic oscillator. This allows working with only the two lowest
states: exciting the ground state |g) with energy hw, will excite the Josephson junction to the
first excited state |e). Exciting the state |e) with the same energy won’t make a transition to
a higher level, as the energy spacing is not the same. Being able to restrict the dynamics to
two levels is a prerequisite for qubits, making Josephson junctions good candidates.

Another prerequisite for qubits is long decoherence times, allowing performing error cor-
rection and operations on the qubits before they lose coherence. Josephson junctions are
non-dissipative as they are superconducting and should therefore grant long coherence times.

As of today, Josephson junctions are used to make qubits with coherence times larger than
10ps [9]. Using microwave pulses, single qubit as well as two qubits quantum gates have also
been implemented, such as the controlled-NOT (or ¢cNOT) gate [10].

Josephson junctions are not used on their own but in various superconducting circuits using
also capacitors and inductors, such as

e the phase qubit [! |]: alarge Josephson junction (E; > FE¢) biased with a current slightly
smaller than the critical current,
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pendulum Josephson junction
angle 6 phase difference ¢
mass m capacitance C
applied torque T' bias current I
damping constant b bias conductance 1/R
critical gravitational torque mgl critical current Iy

Table 1.2.: Extended analogy between a pendulum and a Josephson junction.

e the Cooper pair box [12]: a small Josephson junction (E¢ > Ej) on which it is possible
to add charges via a local gate,

e the quantronium [13]: a variant of the Cooper pair box where the junction is replaced
by a SQUID,
e the flux qubit [11]: a large Josephson junction (E; > E¢) shunted with a large induc-

tance (made of an array of larger Josephson junctions),

e the transmon [15]: a Cooper pair box shunted by a large capacitance to decrease F¢ so
that E; > E¢,

e the fluxonium [/0]: a small junction shunted by the high inductance of an array of
large-capacitance junctions (E; ~ E¢).

1.4.5. Quantum limited amplifiers

The non-linearity of the Josephson junction has also been used to make amplifiers for microwave
photons adding little noise to the signal. The first implementations were using a large junction
in a microwave resonator [59,00]. Now, more sophisticated circuits consisting of a Wheatstone-
like structure with four Josephson junctions [7,%] can almost reach the quantum limit of adding
half a photon of noise [(1].

Such amplifiers have promising applications, in particular in circuit QED and quantum
information where quantum states are manipulated, and the signals are weak and need to be
amplified without adding noise.

1.5. Rich phenomena and chaos in a quantum non-linear system

The fact that the Josephson equations are non-linear can lead to a lot of interesting physics
which need the tools of non-linear physics to be understood. Some situations can even lead to
chaotic behavior as we will see in this section.

As introduced in Section 1.1.3, the current biased Josephson junction is analogous to a
pendulum driven by a torque 7. This analogy (summarized in Table 1.2) can be extended
by adding the bias resistance R which is analogous to a viscous damping torque bd. The two
analogous differential equations are
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Figure 1.22.: Homoclinic bifurcation between a stable point and a stable limit cycle, taken from
reference [07].

.1 )
Iy = Cpop + RP0P+ Iy sin g,
T = mi?6 + b 4+ mgl sin 6.

These differential equations are highly non-linear and can thus exhibit curious behaviors. Con-
sidering the pendulum, when the applied torque is not too strong (smaller than mgl), there
can be two distinct stable limits: it can either come to a stable rest angle compensating for the
applied torque or to a periodic evolution in which it rotates over the top of the pendulum. In
non-linear physics, these two states are respectively labeled a stable fixed point and a stable
limit cycle [62]. For the Josephson junction, the stable fixed point corresponds to having a
finite phase difference and thus a current flowing through the junction and no voltage drop
across the junction (supercurrent peak). The stable limit cycle corresponds to an oscillating
current and a voltage across the junction (subgap region).

The transition between these two stable limits is called a homoclinic bifurcation. Considering
the pendulum, this bifurcation occurs when the applied torque becomes smaller than a critical
value and cannot overcome gravity and damping. The phase diagram for this bifurcation is
shown in Figure 1.22, where I and « are respectively the normalized bias and damping.

For the Josephson junction, I = I,/Iy and a = \/¢o/(Cly)/R.

For the pendulum, I = T'/(mgl) and o = b/+/m?2gl3.

This situation corresponds to one of the simplest bias circuit to work with a Josephson
junction and is already quite complicated to understand. Adding an inductance in the bias
circuit, as shown in Figure 1.23 can lead to even more sophisticated non-linear dynamics. This
inductance is always present in experiments, as every wire generates a magnetic field when a
current flows through it. When dealing with usual resistive electronic circuits, this inductance
is often neglected compared to the resistance of the wires, but at high frequencies (above
wr, = R/L), it must be considered.
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Figure 1.23.: Electric schematic of a Josephson junction biased via a resistance and an induc-
tance.

The Kirchhoff’s laws for this circuit give V;, = RI;+ V; + LI, that is to say

Vi LC .. LI

Eb:fgoosf’-l-CSOO@—F%gb <1—|—%Ocosg0> + Ipsin . (1.71)
To make this equation dimensionless, we introduce the reduced time 7 = RIyt/pg. Differen-
tiation with respect to 7 is noted with a prime symbol. I = V;/(RIy) is the dimensionless
bias. 1 = Lly/wo and Bc = R?Cly/po are the dimensionless inductance and capacitance.
Equation (1.71) can be rewritten in a dimensionless form,

I =BrBoe" + Boe” +¢' (14 B cos p) + singp. (1.72)

The equation governing the evolution of the junction is now a third-order non-linear differential
equation. Such equations cannot be solved numerically using standard computational methods
as they lead to chaotic solutions [03,01]. Figure 1.24 shows the numerical simulation of the
bifurcation diagram for a Josephson junction shunted by an inductance, with I = 1.2 and
Bc = 0.707. The horizontal axis is the reduced inductance ;, and the vertical axis V4, show
the local maxima of the reduced voltage v = V;/(RIy) with V; the voltage across the junction.
For a value of fr, if there is one point in the diagram (as for 8 = 0 corresponding to the
limit considered above), the evolution is periodic with one maximum. If there are two points,
the evolution is still periodic, but with two maxima in a period and so on. If the diagram is
denser, as for 81, ~ 2.4, the system is chaotic.

For values of 81, between 0 and 10, the system undergoes several transitions from periodic
to chaotic evolutions. If I and ¢ were also to change, this diagram would be even richer.
Totally predicting the dynamics of one single Josephson junction thus requires tools from
several fields of physics and mathematics and is beyond the scope of this thesis. We will thus
concentrate only on the details of the dynamics of junctions which are relevant to the Josephson
spectrometer.
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Figure 1.24.: Bifurcation diagram for I = 1.2 and f¢ = 0.707, taken from reference [03].

1.6. Conclusion

In this first chapter, we have shown that a junction between two superconductors acts as a
non-linear circuit element in which the current I, the voltage V' and the phase difference ¢ are
related by two simple fundamental equations:

I = Iysin ¢,

V= op.
These equations were then used to derive the dynamics and the current-voltage characteristic
of a Josephson junction in the case of a simple biasing circuit. The characteristic consists of a
non-dissipative current at zero voltage, an open-circuit like situation for voltages below twice
the gap and an approximately resistive behavior for larger voltages.

Bringing two junctions together in a loop introduces interference effects, allowing modulating
and even suppressing in some cases the zero-voltage supercurrent with an applied magnetic
field.

Even in simple situations, predicting the behavior of a Josephson junction can be complex
due to their non-linear character. This behavior can even be chaotic.

The physics of the Josephson effect is rich and numerous applications exist in magnetome-
try, astronomy, metrology, quantum information and low-noise measurement. The application
which is the focus of this thesis and the topic of the next chapter is the realization a spectrom-
eter in the terahertz range.
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2. The Josephson spectrometer

In the previous chapter, we derived some essential equations to describe a Josephson junction.
We will now use them to explain the principle of the Josephson spectrometer.

For that purpose, we will first come back to the AC Josephson effect and see how it is modified
in the presence of dissipative modes in the electromagnetic environment. This will lead us to a
recent implementation of the spectrometer [, 73] which will be commented. Some limitations
will be discussed and we will describe how they can be overcome by using a two-junction device
instead of a single Josephson junction.

Then we will discuss the coupling schemes to the systems of interest and detail the modifi-
cations of the current-voltage characteristic due to dissipative modes.

Finally, the limitations of the Josephson spectrometer and a brief comparison to other con-
ventional spectrometers will be presented.

2.1. Principle of the single junction spectrometer

2.1.1. Inelastic Cooper pair tunneling

As described in Section 1.2.2, the AC Josephson effect can be understood in terms of tunneling
of Cooper pairs from one side to the other of a Josephson junction by emitting and re-absorbing
photons of energy 2e|V|, where V is the voltage applied between the two superconductors
forming the junction.

In this case, photons are reflected because the impedance of the junction is purely imaginary
(it consists of its intrinsic capacitance). They are then re-absorbed by the Cooper pairs which
tunnel back to their original side. If the impedance had a real part, some emitted photons
could have been dissipated. This would result in a net DC current as some Cooper pairs that
have tunneled cannot tunnel back because of missing photons.

Consider the situation depicted in Figure 2.1 where a Josephson junction is coupled to a
two-level system with energy spacing E,.. When the energy of the photon emitted by the
junction 2eV is resonant with the two-level system, it is absorbed. It may then relax by
emitting another photon, or some other process. If this photon is not emitted in the direction
of the junction, the Cooper pair which tunneled does not tunnel back.

This creates a current (called inelastic Cooper pair tunneling) from the left electrode to
the right electrode of magnitude I (V') = 2el’ (2¢V'), where I' (E) is the rate at which Cooper
pairs tunnel and is proportional to the probability that the two-level system absorbs photons
at energy E. In the limit where this rate stays small compared to the difference between
the energy levels of the junction (of the order of the plasma frequency), inelastic Cooper pair
tunneling can be seen as a perturbation of the Hamiltonian and I' can be expressed using
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2. The Josephson spectrometer

Figure 2.1.: Josephson junction biased with voltage V' coupled to a two-level system with energy
spacing Fye.

Fermi’s golden rule [(7, (0]

_27r

r(E) ==

(a-x|#])f e

Here, |@) is the initial state with charge @ on the left electrode of the junction and |Q — 2e¢)
is the state where the charge is ) — 2e because a Cooper pair (of charge 2e) has tunneled.
H is the Hamiltonian of the junction and P(FE) is the probability density to absorb photons

of energy E in the two-level system. The matrix element <Q — 2e ‘ A ‘ Q> is simply given by
—FE;/2 = —pply/2. This gives an expression for the current flowing through the junction:

(V)= ggoong@eV). (2.1)

Measuring the current flowing through the junction as a function of the voltage V across
it gives the spectrum of the system(s) coupled to the junction: when the current is zero, no
photon is absorbed at energy 2eV and when the current is different from zero, photons are
absorbed and the current is proportional to the absorption probability of the system(s).

With this inelastic Cooper pair tunneling, it is possible to use a Josephson junction as a
spectrometer. However, at voltages higher than 2A /e (where A is the superconducting gap),
quasiparticles can tunnel through the junction, resulting in a large background current of the
order of the critical current of the junction. This reduces greatly the sensitivity of the device.
For aluminum, this gives an upper limit of ~ 180 GHz.
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2.1. Principle of the single junction spectrometer

Figure 2.2.: Josephson junction connected to an impedance Z..

2.1.2. Energy conservation

The DC current flowing through the junction in the case of the inelastic Cooper pair tunneling
is dissipative, as the voltage across the junction is non-zero. The DC power Ppc = IpcVpe
which is provided by the DC power supply is converted in an AC power radiated by the
junction, P,. Considering the external system which can absorb photons as an impedance Z,,
the radiated power is P, = 1 |L, PR (Ze(wy)), if we assume that the AC current is sinusoidal
with amplitude I,,, at the Josephson frequency w; = V/y.

The DC voltage V implies, via the Josephson relations, the flow of an alternative current
at frequency w; and of amplitude Iy. But if the junction is connected to an impedance Z.,
this current creates an alternative voltage at frequency wy and of amplitude V,,, = Z, (wy) lo.
Substituting this voltage in the AC Josephson relation gives an oscillating phase at frequency
wy which generates currents at all frequencies which are multiple of wjy. The assumption that
the alternative current is purely sinusoidal appears to be quite illusory! We will see later that
this assumption can be a good approximation in many situations.

Energy conservation implies that Ppoc = P,. But there is no simple expression for P, in the
general case where the current is not purely a sine wave. This equality allows calculating the
DC current flowing through the junction at finite voltage according to Ipc = P, /Vpe.

2.1.3. Detailed operation

Consider a Josephson junction of critical current Iy and intrinsic capacitance C' connected to
an impedance Z, (including the DC biasing circuit) as sketched in Figure 2.2.

From the Kirchhoff’s laws and the Josephson relations, it is possible to write the differential
equation governing the dynamics of this circuit,

Iysinp 4 Ve [op] + Cpop = 0, (2.2)

where ) is a linear operator with its Fourier transform being the admittance Y, (w) = 1/Z,(w).

49



2. The Josephson spectrometer

Such an operator is introduced because ¢ is a priori non-sinusoidal. However, if the junction
is biased at a constant voltage Vp¢, the oscillating phase at frequency wy = Vpe /o generates
current at all harmonics w,, = nwj, such that the phase can be written in the form

“+o00
p= 90+wjt+2an sin (wpt + 0, , (2.3)

n=1

where 60, and a,, are real constants. The current flowing through the junction is thus

+o0
I; = Iysin (00 +wyt + Z ap sin (wyt + 9n)> ) (2.4)

n=1
It can also be expanded in Fourier series,

400 B
I; = IOZELnSin (nLth+9n>,
n=0

such that Equation 2.2 writes, at frequency wy,,
Ioei(é"_en)&n + (zYe (wn) wown, — Cgoowfl) an, = 0. (2.5)

The coefficients a,, can be calculated by writing

+o0o
_ i(Bo+w st iy, Si Jt+6
I =1L,S ez( o+w.st) H elan sin(nw yt+6r,) ’

n=1
+o0
I =LS ei(90+th) ela1 sin(w t+61) H elan sin(nw jt+6n) )
n=2

Using the Jacobi-Anger expansion [(7], this gives

+o0 +o0o
I =1LS el(00+WJt) Z Jnl (al) ezn1(oJJt+91) H elan sin(nw jt+6n) ,

ni=—o00 n=2

+oo +oo
I;=1, Z S Jnl (al) 61(90+n191)ez(1+n1)wﬂ H elan sin(nw yt+6n) ,

n|=—o0 n=2

where .J,,, is the first Bessel function of the n;-th order. Using the same identity for all n gives

+oo —+o00
=1 Y - Y 3 (Jm (a1) - Jpo (aoo)ez‘(90+n191+...+nooeoo)ei(1+n1+...+noo)wt>,
n1=—00 Noo=—00
+oo +oo
I; =1 Z Z H n; (@) sin <anwjt+2nl l) (2.6)
ny=—o0 Noo=—00 =1
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2.1. Principle of the single junction spectrometer
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Figure 2.3.: A LC resonator with a dissipative part R. (a) Parallel configuration ; (b) Series
configuration.

By convention, ng = 1. This expression allows extracting the component oscillating at nw;. It
is the sum of all terms such that

14+n1+...+ne = *En.

With this expression for a,, Equation (2.5) seems quite complicated to solve. At frequency
nwy, the coefficient a,, is coupled to a non-linear combination of Bessel functions of all other
Ay«

To simplify it, we write the modulus of Equation (2.5) as

2
1
_ . , (2.7)

an

an

where z = Iy/(pownR(Ye)) is the coupling parameter to the impedance. Using the Ambegaokar-
Baratoff relation (Equation (1.14)), z can be expressed as

TR Vy
 4RNV,

where R, = 1/R(Y.), Ry is the normal state resistance of the junction, Vj = ¢ow, and
Vy = 2A /e is the gap voltage. For instance, in the middle of the gap, a R, resistance of Ry /2
makes z ~ (.8.

In the general case of an arbitrary Z., the situation is quite complex to describe, but it is
always possible to approximate an impedance Z, by a different RLC model (parallel or series)
around each frequency. For instance, a transmission line has alternate series and parallel types
of resonances [05]. Each series type resonance (diverging impedance) can be modeled by a
series RLC resonator and each parallel type resonance (diverging admittance) by a parallel
RLC resonator. We focus therefore on the study of both types of RLC resonators, sketched in
Figure 2.3. In both cases, a simple biasing circuit consisting of a voltage source V; and a bias
resistor Ry is added.

e The parallel RLC resonator (Figure 2.3(a)). At low frequencies, the admittance Y
is dominated by the inductance, Y. ~ 1/(iL.w), such that the amplitude of the a,
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2. The Josephson spectrometer

coefficients in Equation (2.7) is small. At high frequencies, the admittance is dominated
by the capacitance Y, ~ iCew and the a,, coefficients tend to zero. Around the frequencies
wo such that

S (Ye) + iwogC = 0,

the amplitude of the a,, depends on the real part 1/R + 1/Ry, of the admittance, that is
to say on the value of the z coefficient. If z is small (in the case of a low quality factor
resonator), the a, coefficients can stay small. On the other hand, large z values result in
large a,, coefficients. The limit of small z parallel resonator is discussed in Section 2.1.4.

e The series RLC resonator (Figure 2.3(b)). At low frequencies, the admittance Y, tends
to 1/ Ry and the situation is the same as the one discussed in Section 1.2.2 for the biasing
of a junction via a resistor. The current-voltage characteristic has thus the universal

shape of Equation 1.48,
s _ [y . VN (V)
Iy RI RIy’

where (V) and (I;) are the average values of the voltage and current of the junction.
At high frequencies, the junction capacitance contribution makes that a, ~ 0. Between
these two limits, the admittance of the RLC resonator is small and increases close to
the resonance frequency wyp. If it overcomes the admittance of the bias resistor and the
junction capacitance, a drop in the current-voltage characteristic can be seen. The series
resonator is presented in Section 2.1.5.

2.1.4. The parallel resonator

For the parallel resonator, the total admittance Y. (including the biasing circuit) is

11 i
Y, = — 4 — 4iwC, — ——
=R TR oL

such that the effect of the bias resistor is to increase the real part of the admittance. In the
following, R is the parallel combination of R and Rj.
Two limits are discussed for the parallel resonator:

e The zeroth order approximation, corresponding to small z: all a,, are zero. In that case,
the phase is linear, ¢ = 6y + w t.

e The first order approximation, corresponding to larger z: all a, but a; are zero. The
phase has a sinusoidal component, ¢ = 0y + w st + a1 sin (wst + 61).

Zeroth order approximation

In the case of the coupling to a low z system, ¢ can be approximated by a linear expression,
¢ =0y + wyt, (2.8)

resulting in sinusoidal oscillations of the supercurrent.
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2.1. Principle of the single junction spectrometer

In that case, the current I flowing through the impedance is also sinusoidal, of amplitude

= Ye
]:[J(—WJ.)‘
Ye(wy) +iw,C

The power dissipated in the external system is

_ L2 _ 1§ R(Ye(ws))
Pr= 2 ‘I‘ R(Ze(ws)) = EO |Ye(wy) + Z'WJC‘Q‘ (29)

For a dissipative external system (for which R(Z,) > 0), the dissipated power P, is positive.
As the DC current flowing through the spectrometer is proportional to it (P, = VIp¢), this
expression allows calculating the current-voltage characteristic of the junction.

A peak in the current-voltage characteristic is thus equivalent to a maximum of P,. This
is achieved when the denominator of Equation (2.9) is minimal, which is at the frequency wp,
such that

‘3(3/@(000)) = —woC. ‘ (2.10)

Such a frequency always exists if the external system has an inductive part (for which ¥(Y:) <
0), which is the case for a parallel resonator. For the resonator of Figure 2.3(a) of intrinsic
resonance frequency we = 1/v/L.Ce, wp is different from we,

oy
wgzwe<1—|—ce> .

This value is smaller than w.. Having a resonator with a large capacitance allows keeping
wp ~ we. At frequency wy, the dissipated power is

1, 1
Pr,maz 210 %(}é(w())) .
Energy conservation imposes this power to be equal to the power supplied by the DC bias:
P. = IpcV. At the resonance voltage Vo = woypp, the DC current can thus be written
Ipc = Pr maz/Vo. With the formalism introduced in Section 2.1.1, it is also possible to write
Ipc(V) = ZgolgP(2eV). So, the photon absorption probability density P is linked to the
impedance of the environment by

(2.11)

G
hwo P (hwo) = Gfo (2.12)

e

where G, = R (Yo(wp)) and Gy = 4e%/h = 15578 is the superconducting quantum of con-
ductance. Equation (2.12) is a fundamental relation showing that the probability to absorb
a photon of energy hAwg in an admittance Y, is simply given by the ratio of the conductance
quantum to the real part of the admittance.

It is also possible to find the shape of the current-voltage characteristic around the resonance
value wp. In that case, we write, close to the resonance frequency wy,
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2. The Josephson spectrometer

Ye(wy) +iCwy = Ge (1 +1i8),

where
_ws—wo d
N Ge dw J

For a parallel RLC resonator of resonance frequency wy and quality factor @, £ can be expressed
as

3 (S (Ye(ws)) + Cwy).

§ =20,

wo

With these notations, Equation (2.9) can be transformed to a Lorentzian,

2
(V) = 1012152.

First order approximation

When the z parameter is larger, the next order approximation consists of adding a sinusoidal
term to ¢, such that,
w0 =00+ wyt+ dsin(wst+61).

By changing the origin of time, it is possible to choose 6; = 0 without loss of generality. ¢ is
the amplitude of the oscillations of the phase and is to be determined.
Equation (2.6) for the current can be written in that case

+o0o
I=1Ip ) Ju(8)sin(f0+ (n+ 1) w,t). (2.13)
The DC component Ipc can be extracted of this expression, obtained when n = —1:
IDC = *IoJl((S) sin (60) . (214)

The negative sign in this expression does not necessarily imply a negative current. We will see
later that sinfy < 0, resulting in a positive value for the current. The complex ! amplitude of
the first harmonic of I at frequency wy is

L, =1I (—ug(a)ewo v ¢J2(5)e—i90) . (2.15)

With this expression, it is possible to rewrite Equation (2.5) as

0w R (Ye(wy)) = =21, J 1(5‘”

06wy (3 (Ya(ws)) + Cwy) = In (Jo(8) — Ja(6)) cos by

The first line of (2.16) is similar to Equation (2.14) for the DC current and combining them
gives the following expression for the DC current at voltage V',

sin 90 (2 16)

'The real and imaginary axis are chosen such that cos (wst) is the real part of the phasor I, .
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2.1. Principle of the single junction spectrometer

Ipc(V) = %V&zﬁ? <Y <;fo>> : (2.17)

The fundamental Harmonic-Balance [23, (9] equation relating the amplitude 0 of the phase
oscillations to the admittance of the external system at the Josephson frequency can be found
by summing the squares of the two lines of Equation (2.16).

Solving this equation for § allows getting the DC current and thus predict the current-voltage
characteristic of the spectrometer coupled to an external system. But this equation is highly
non-linear and cannot be solved analytically.

Section 2.1.3 predicts a non-zero DC current at frequencies wy, such that S (Y (wp)) +Cwo =
0. At these frequencies, Equation (2.18) takes the form

) Iy
Jo(8) + 2 (8)  VoGe

where Vg = @powg. The coupling parameter z can also be written

2, (2.19)

_ I 1

T G Wlo

With this expression, it appears as the ratio of power dissipated in the impedance to the
available power at voltage Vj. It is also possible to express z as a function of the photon
absorption probability density P(E) using Equation (2.12),

2 = E;P(hwy).

With these notations, the maximal DC current at wg can be expressed as

142
Imax = 510 .
z

Numerically solving Equation (2.19) gives ¢ at the resonance frequencies and thus the DC
current. Figure 2.4 shows the dependence of this maximal current on the coupling parameter
z. For low z values, the maximal current first increases with z until it reaches a maximum
for z ~ 2.92. The maximal value reached is I, ~ 0.581y, which is smaller than Iy. For
larger coupling constants, the height of the resonance peak decreases slowly. To understand
what happens when z > 2.92, it is instructive to focus on the shape of the current-voltage
characteristic in the vicinity of a resonance.
Around a resonance frequency wp, we can develop Ye(wy) + iCw;y and write

Ye(wy) +iCwy = G (1 +1€),

with
L wy—wo d

R

(S (Ye(wy)) + Cwy).
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Figure 2.4.: Maximal DC current as a function of the coupling parameter z.
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Figure 2.5.: Shape of the resonance peak for coupling parameter z from 0.3 to 10.
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Figure 2.6.: Effective peak position &.p.

With these notations, Equation (2.18) can be rewritten

(o) o) — () (220)

This equation can be solved numerically to give the amplitude of the phase oscillations §
for an admittance Y, at a voltage £. Figure 2.5 shows the DC current obtained by solving
Equation 2.20 for z between 0.3 and 10. The dashed lines are obtained with the Lorentzian
approximation of Section 2.1.4. When z is small, resonance peaks have a smooth shape (z = 0.3,
0.5 and 1 in the picture) and are close to the Lorentzian approximation. For z < 0.5, the
relative error made with the approximation is below 5%. When z approaches the critical 2.92
value of Figure 2.4 (green curve), the peak becomes sharper and forms a cusp at the resonance
frequency (£ = 0). For larger z, a loop appears above the cusp and the height of the peak
reduces. The loop also gets wider when z increases. For even higher z (above ~ 38), the loop is
disconnected from the bottom branch and when z > 130, a third manifold is also possible [(9].

In the loops, there is a voltage for which dI/d¢ — oo. The biasing for the part of the loop
above this current becomes unstable, such that the measured voltage at the maximum of current
is not the resonance voltage. Figure 2.6 shows the position of the effective peak maximum &g
as a function of the parameter z from 0 to 10. £,z = 1 corresponds to an effective frequency
wep = wo (1 +1/(2Q)), which is displaced from the true resonance frequency wp by half the
width of the peak. This can make quite noticeable changes in the spectrum.

Figure 2.7 emphasizes the different peak shapes with the same maximal value. The curves
with z = 5 and 10 from Figure 2.5 are plotted in full lines and peaks with the same I,,,, and
smaller z are plotted in dashed lines. The width of the peak is larger for the large z parameters.
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Figure 2.7.: Shape of the resonance peak for the same maximal value but different z.

2.1.5. The series resonator
For the series resonator, the total admittance Y. (including the biasing circuit) is

1 1
Ye= =

+ - .
R, R+iwL.+ iwlce

The situation is thus quite different from the parallel resonator.

For low frequencies, w < min (1/(RC,), 1/(R,C)), all capacitors can be considered as open
circuits, such that the junction only sees the bias resistance and the shape of the current-voltage
characteristic is described by the universal shape of Section 1.2.2.

For barely larger frequencies, the capacitors have to be considered, such that the total
admittance seen by the junction is

1 .
Y, ~ & + iCew.

The equivalent circuit (including the junction capacitance) is thus that of Figure 2.8.
When applying a bias current I to that circuit, the Kirchhoff’s laws give

v
I:ﬁ—l—losingo—l—(C—l—C’e)V.
b

The Josephson relation between voltage and phase yields

I / . C+0Ce..
= 207 | sing + o 7 P
0

Iy Ryl
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2.1. Principle of the single junction spectrometer

V Rb ¥ XIO C + Ce

Figure 2.8.: Equivalent circuit of a Josephson junction coupled to a series resonator at low
frequency.

Introducing the time constant 7 = g /(Rplp) and the reduced time £ = ¢/7, this gives

I Ry (C+Ce) I
— =¢ +sinp+ 27— @+ C) %", (2.21)
Io )
where the prime symbol denotes differentiation with respect to . The solutions ¢(7) of this
equation depend only on the parameter

R (C+C.) Iy
/BC = -
%0

which is a generalization of the Stewart-McCumber parameter of Equation (1.43). A small
Bc corresponds to a small capacitance and thus to a situation close to Equation (1.48) where
only a bias resistor is present. Equation (2.21) is not analytically solvable. Applying usual
numerical methods to solve it is difficult as the period of the solution depends greatly on the
bias current (as for the resistive case for which some solutions are plotted in Figure 1.11). The
period can be large for small bias, resulting in a tedious numerical integration. Nevertheless,
this equation was numerically analyzed with AUTO [70], a software for continuation and
bifurcation problems in ordinary differential equations. This software finds the period of the
solutions and is thus able to compute the solutions. Figure 2.9 shows the resulting averaged
current-voltage characteristic for various S parameters. For small 8¢, the solutions are close
to the shape calculated in Section 1.2.2. For larger ¢, the current decreases faster to its zero
limit at high voltages.

At high frequencies, the junction capacitance dominates the admittance, such that the a,
coefficients are quite small, and the average current is zero.

For intermediate frequencies, the total admittance of the system is

1 1
Y, +iwC = — + iwC + )
¢ Rb R—f—iwLe-l-ﬁ

It is possible to observe noticeable deviations from the resistive and capacitive behaviors when
the admittance of the resonator becomes of the order of 1/Rp+iwC'. The maximal admittance
for the resonator is achieved when w = we = 1/y/L.Ce. At this frequency, it is 1/R. If R is
larger than Ry, the resulting change in the admittance is small. On the other hand, if R < Ry,
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Figure 2.9.: Current voltage characteristic of a resistively and capacitively shunted Josephson
junction.

there is a peak in R(Ye) at we, as well as a peak in R(1/(Ye +iwC)) at the frequency wp, such
that,
R (Y;) + iweC' = 0,

C.\ 2
Wy = We <1+C> .

The peak in R(Y,) leads to a current drop at we and the peak in the real part of the impedance
leads to a current peak at wy.

The resonance frequency wg appears as the resonant frequency of an LC' resonator with
inductance L. and capacitance the series combination of C' and C., CC./(C + C.). The
frequency shift is in the other direction as for the parallel resonator, such that the measured
peak frequency is always larger than the true resonator frequency.

For small C'/C, ratios, the peak at wg can be at high frequency, where the resonator capacitor
can be considered as a short-circuit. For large C/C, ratios, wy ~ we. In that case, the junction
capacitance shunts most of the microwave current, resulting in a smaller peak.

The current peak at frequency wy can be described independently of the current dip at
frequency we if wp > we. In that case, the calculations of Section 2.1.4 for the parallel resonator
hold true. However, when wy ~ we, the description below is more adapted (in the limit of large
C/C, ratio).

As the current is quite small already (for tunnel junctions), the current drop is almost
invisible, except at low frequencies where the current can be higher. For voltages above 2A /e,
there is also a large quasiparticle current, on which the current drop can also be observed. If
junctions with less opaque transmission channels are used, the current in absence of resonator
is higher, such that the current dip is noticeable.

which can here be rewritten as
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Figure 2.10.: Reduced current-voltage characteristic of a junction coupled to a series resonator
with C/(QC.) =0, z =0.1.

To estimate its depth, we write the phase difference as
@ =00 +wyt+ dsinwyt. (2.22)

This leads to the same Harmonic-Balance equation as for the parallel resonator. Around the
resonance frequency we, the impedance Z,. of the resonator can be expanded in Taylor series,
such that

Zy = R(1+1f),
with p
wy—wy d
_ I L (7).
7 de\S( (wy))

The total admittance seen by the junction (including the bias resistor and the junction capac-
itance) is thus

1 1 1
e ) = — ) —_——,
Ve (wy) + iw C Rb+WJC+R1+i§

Substituting this expression in the Harmonic-Balance Equation (2.18) leads to

2 2
T Re N wiC ~ fiie _ ( Io )2
To (8) + J2 (9) To (0) = J (8) S0y )

Multiplying this expression by R? gives

r+s (288 - e\ ey
NOETAG A IO ENAG) =(3)"
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Figure 2.11.: Reduced current-voltage characteristic of a junction coupled to a series resonator
with C/(QC.) =0, r = 1.

where r = R/ Ry, is the ratio of the resonator resistance to the bias resistance, Q@ = 1/R+/L./C.
is the quality factor of the series resonator and z = RIj/w, is the coupling parameter. Fig-
ures 2.10, 2.11 and 2.12 show the effects of the different parameters z, r and C'/(QC,) on the
resulting current dip. The normalized current i; is the DC current divided by its value without
the resonator, which is quite small for tunnel junctions and depend on the bias resistor Rj.

First, the ratio C/(QC,) was taken equal to zero, which is a good approximation if the
quality factor of the resonator is large, and the ratio of capacitances C/C, is not too small. In
that case, the current dip is more significant for smaller R/ Ry, ratios, as shown in Figure 2.10.
This behavior was expected, as, at resonance, the impedance of the resonator is R. A large
R/ Ry, ratio implies that the alternative current mainly flows through the bias resistor R, and
thus makes only a small change in the DC current.

Keeping C'/(QC.) = 0, the effect of the coupling parameter z was then investigated. The
resulting current-voltage characteristics are plotted in Figure 2.11. For small z values, the
shape of the dip is not affected. Only for z > 1 does it change. It gets wider and less deep for
larger z.

Finally, the C'/(QC¢) ratio is changed with a constant » = 1 and z = 1. When it increases,
the dip first becomes less deep and moves to lower voltages. For large enough ratio, a peak
appears at a larger voltage than the dip voltage, getting higher and higher for larger ratios.
For large ratio, the peak height decreases, and the current becomes flat. This peak is at the
frequency wgy and cancels the dip when wy — we.

For tunnel junctions, in the limit of small C'/(QC,) ratio, the current dip at w. is not
observable, as the background current is quite small. However, it can have visible effects
when probing a system exhibiting a parallel type resonance at a frequency w, close to w, in
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Figure 2.12.: Reduced current-voltage characteristic of a junction coupled to a series resonator
withr =1, z=1.

presence of a series mode at w.. The expected peak at w, is readily reduced due to the peak
of admittance of the series resonator.

When considering the coupling to a series resonator, it is possible to transform the reso-
nances into parallel type resonances and therefore get a larger signal in the current-voltage
characteristic. To do so, an inductance can be added in parallel of the resonator, such that the
impedance is zero at low frequencies. For instance, for the spectroscopy of the Andreev Bound
States [2?] in an atomic contact, a large Josephson junction (equivalent to an inductor) was
added in parallel because the admittance of the ABS in a weak link with high transmission
diverges at the transition frequency between the two levels [71], such that the weak link can
be represented by a series resonator.

2.1.6. Implementations and limits of the single junction spectrometer

Already in 1966, Josephson junctions were proposed as microwave generators for frequencies
up to 1 THz [72]. One year later, the principle of absorption spectroscopy was demonstrated by
Silver and Zimmerman in 1967 when they measured the nuclear magnetic resonance of Co®? at
218 MHz [21]. The inelastic Cooper pair tunneling was afterwards extensively used to explain
current peaks in current-voltage characteristics of SQUIDs in the 1970s and 1980s [22-25].
Resonant modes of microresonators [20,27] and transmission lines [2%] were measured using
the same principle. Josephson junctions have also been used to measure transitions between
energy levels of another junction [29], a SQUID [30] or a single-Cooper-pair transistor [31].
More recently, absorption spectroscopy of a mesoscopic system using a Josephson junction
was demonstrated by the Quantronics group at Saclay [32,33]. Figure 2.13 shows the electric
schematic of this spectrometer as well as the measured spectrum for the Andreev Bound States
in an atomic contact. The spectrometer is the yellow Josephson junction in Figure 2.13a and
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Figure 2.13.: The Quantronics spectrometer, taken from [32]: (a) Schematic of the Quantronics
spectrometer, capacitively coupled to an atomic contact SQUID and (b) Spectrum
of the ABS in an atomic contact with two channels of transmission 0.942 and 0.26
as a function of the reduced flux in the SQUID loop. The colors represent the
current in the junction according to the color scale and grey means no data
because the bias is unstable.
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2.2. The SQUID-based spectrometer

the pink superconducting atomic contact is a mechanical break junction between two aluminum
electrodes: it is only a few atoms wide. The Josephson junction spectrometer is coupled to the
atomic contact via the large capacitor X, allowing microwave photons to access the contact and
blocking the DC bias. The atomic contact together with a larger Josephson junction makes
a SQUID, allowing for control of the phase difference ¢ by applying a magnetic flux in the
SQUID. Figure 2.13b shows the measured spectrum for an atomic contact with two conduction
channels of transmissions 0.942 and 0.26 (these transmissions were measured independently).

The most prominent feature in the spectrum is the plasma frequency of the SQUID (the
almost flat red line around A/2) and its harmonic around A. Along these two lines, two white
lines showing a larger modulation with respect to the reduced flux ¢ can be seen. The one
with the lowest energy corresponds to the excitation of a negative Andreev bound state |—)
to the corresponding positive bound state |+). The energy difference is 2A+/1 — 7sin? /2, as
shown in Section 1.1.2. The second line corresponds to a two-photon process: the excitation
of the Andreev transition with one photon and the excitation of the SQUID plasma frequency
with another.

This spectrum is quite promising as the Andreev transition can easily be seen, but there are
three main drawbacks:

1. low energies cannot be reached because of the supercurrent peak,

2. there are a lot of spurious resonances (in particular at low energy) due to an uncontrolled
electromagnetic environment. They were subtracted in the data shown here but are
visible in the Supplementary Information of Ref. [32],

3. the signal becomes weaker at higher energy. This is due to the intrinsic capacitance of
the junction shunting efficiently the microwave signal at high frequency.

These three issues can efficiently be addressed by using a SQUID instead of a single junction.

2.2. The SQUID-based spectrometer

Asintroduced in Section 1.3, applying a magnetic field through the loop of a SQUID can modify
its critical current and create a current circulating around the loop. Biasing the SQUID at
half a flux quantum allows for a smaller critical current which can reach 0 with a symmetrical
interferometer. This fully removes the inaccessible low energy range of the single junction
spectrometer.

Biasing a SQUID at half a flux quantum also allows for a better isolation from the biasing
circuit and thus reduces the amount of spurious resonances. At ®, = ®(/2, the phases of the
two Josephson junctions of the SQUID are opposite. This corresponds to AC currents of the
same magnitude but opposite signs (in the case of a symmetrical device). This situation is
represented in Figure 2.14b. The dashed lines are connected to the biasing and measurement
circuits which close the circuits. Figure 2.14a correspond to having a flux bias of 0 in the loop
and is the same excitation as with a single junction. In that case, the AC Josephson current
can circulate everywhere, including in the bias circuit, whereas when ®, = ®(/2, it is confined
in the loop.

In the rest of this section, these two excitation modes are described in more details.

65



2. The Josephson spectrometer

(a) The off-loop mode

(b) The in-loop mode

Figure 2.14.: Electric diagram of a spectrometer based on a symmetrical SQUID. The ! induc-
tors model the SQUID loop inductance. ®, = 0 or ®(/2 is the flux threading the

loop.
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Figure 2.15.: SQUID connected to an impedance Z, out of the loop. Iy; and Iyy are the critical
currents of the junctions and C7 and Cs their intrinsic capacitances. ®. is the
external magnetic flux. The two representations are equivalent if C' = C7 + Cs is
the association of Cy and Cy in parallel and Iy (®) is the critical current of the
SQUID calculated in Section 1.3.

2.2.1. Off-loop mode

Consider the off-loop mode in the circuit shown in Figure 2.15 where a SQUID is connected
to an external impedance Z.. Because Z. is out of the loop, the SQUID can be considered as
a Josephson junction with tunable critical current Iy (®.) and a capacitance C = C1 + Cy. An
expression for Iy (®.) can be found in Section 1.3. It is always maximal at ®. = 0 and minimal
at @, = ®(/2. This makes the measured signal maximal when there is no flux in the loop.

2.2.2. In-loop mode

If the device under test is located in the loop, as shown in Figure 2.16, the situation is different.
As the current in the loop is maximal at half a flux quantum, we should expect the signal to also
be maximal at the same flux bias. Only parallel resonators are considered in this configuration
because a series resonator has an infinite impedance at zero frequency and forbids flux biasing.

In a first time, the biasing circuit is not included in the calculations as it is out of the loop.
Its role will be described in Section 2.2.3. In that case, the current I flowing through the
impedance is given by

I = Iy sin g + Copopa — Io1 sinpr — Crpopn,

where 1 and o are the phase differences across the junctions. In average, their difference is
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Figure 2.16.: SQUID connected to an impedance Z. in the loop. Iy; and Ips are the critical
currents of the junctions and C and C9 their intrinsic capacitances. ®. is the
external magnetic flux.

given by the flux ®,,

w2 — Y1 = —.
¥o

In addition to these equations, the voltage drop across the impedance follows

Ve [po (91 — ¢2)] = 1,
where ), is a linear operator with its Fourier transform being the admittance Y,. The differ-
ential equation governing this circuit is thus

Ve lpo (01 — p2)] = Loz sin pg + Copppa — Ip1 sin 1 — CrpoPs .- (2.23)

As for the single junction spectrometer, it is possible to expand @1 and 9 in Fourier series
to re-express Equation (2.23) in terms of the Fourier coefficients of ¢ and 3. This gives the
same type of equation as Equation (2.7) which we can solve in the same limits.

The zeroth order approximation

In the zeroth order approximation (and thus in the high-frequency limit), when the two Joseph-
son junctions are biased at the same voltage V', the phase difference across them have the
form ¢; = Oy + wyt where wy = V/pg is the Josephson frequency and 6y; are integration
constants. This will generate alternative currents in each junction I; = Iy;sin (6p; + wt).
They have the same frequency but are dephased because of the magnetic flux in the loop:
w2 — @1 = Op2 — o1 = e (in the case of negligible loop inductance).
The current flowing through the external system of impedance Z. is
Ye

- Y.,
=02 12,
B

where Y; is the admittance seen by junction ¢ = 1, 2 in parallel of its own capacitance and Yy;
is the total admittance seen by junction ¢ including its own capacitance. Each junction sees
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2.2. The SQUID-based spectrometer

the other junction as a current source and therefore as an open circuit, implying
1

w7

Ysi(w) = Yei(w) + iwC;.

Y N w) = Zo(w) +

el

In these definitions, when subscript ¢ stands for junction 1, subscript j denotes junction 2 and
vice versa. These expressions are only valid in the high-frequency limit (w > wp). At low
frequency (below the plasma frequency), I is simply I — 1.

Because the intrinsic capacitance and the critical current of a Josephson junction are both
proportional to the surface of the junction, Ipa/Ip; = Cy/Cy. If we call this ratio o and define
Ic and Cy such that Iy = Io, Ipes = alg, we get C7 = Cy and Co = aCy. With these
notations,

_ 1 _ 1
Y, I(W) = Ze(w) + iwaCy Y, l(w) = Ze(w) + iwCo
1 and 1 .
Y5 (w) = + iwCy YEQ((AJ) =— +iwalC)y
Ze ((/J) + iwioo Ze(w) + iwlco

I can be expressed as

~ aei(PQ eupl
I= IC . - 1 ] .
1 +Oé+’LCL)JOéC()Ze(wJ) 1+ P —i—ZwJC()Ze(WJ)
The complex amplitude of I is therefore

. 1
I, =2I¢ sin 2. (2.24)

1+ 1 4iw;CoZe(wy) 2

2 ~
R(Ze(ws)) = § [Ty Ze(wos)

Equation (2.24) for I, the power can be expressed as:

’ 2

The dissipated power is given by P, = 3 ‘fwj R(Ye(wy)). With

P, =212 (sin E)Q ()
2 |(1+é)YVe(WJ)+iWJCO

Again, it is a positive quantity for a dissipative system. It is maximal at wg such that

I

[0
S(Ye(wo)) = =37 Cowo = ~Ciwn, (2.25)

where C is the series combination of Cy and aeCy. Such a frequency exists, providing that the
external system has an inductive part (J(Yz) < 0).
The maximal dissipated power at frequency wg can be expressed as

1/ 20\ o,/ N2 1
7)7‘7777,(]/3) = 5 (1+a) IC (Sln;) m (226)

Both Equations (2.25) and (2.26) show that the in-loop mode is formally equivalent to the
off-loop mode of a junction with capacitance Cs = Cpar/(1 4 «) and critical current I,
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=1 2+aa I sin %

Putting an external system inside the loop of a SQUID appears to be a promising direction,
as the dissipated power in an in-loop mode is maximal at half a flux quantum, that is to say
when the coupling to the off-loop mode (and therefore the bias circuit) is minimal. However,
there is a drawback to this which is described below.

If we consider a SQUID with no external system in the loop, Ye(w) is simply —i(wL)~! with
L the inductance of the superconducting loop. There is an intrinsic resonance frequency wg
of the SQUID, such that wg = 1/y/LCs. This intrinsic resonance appears as the LC mode
formed of the total inductance of the loop and the series combination of the capacitances of
the junctions.

It is possible to go around this intrinsic SQUID loop mode by carefully designing the spec-
trometer in order to have this mode out of the working range of the spectrometer. For instance,
if the loop length is of the order of 10 um, the corresponding inductance is roughly L ~ 10 pH.
With typical junction capacitance of 50 fF, this makes a resonance frequency around 225 GHz
which is above 4A /h for aluminum (~ 180 GHz).

When working with superconductors with larger superconducting gaps, this mode stays in
the middle of the operating range of the spectrometer. Using smaller junctions with higher
supercurrent density, it is possible to decrease the capacitance while keeping the critical current
almost constant. This allows pushing the resonant SQUID loop mode to higher frequencies
without decreasing the signal. However, this has some limitations. A too high supercurrent
density can degrade the oxide, giving rise to larger subgap currents.

I

In-loop mode in the first order approximation

As for the single junction case, we add sine terms to the expression of the phase differences
and a2,

p1 = 01 + wyt + 61 sinwt,
o = By + wt + b9 sinw t.

The applied flux ®. imposes

Pe = P2 — p1 = O — 01,

where the horizontal bar symbol denotes temporal averaging. The current circulating in the
loop obeys

Ze [I} = ()00(@1 — (pg) = @0(51 — 52)&]] COSOJJt.
The current I is also related to I 1 and Is by

— I("-’J) 1 _I(WJ) 1
T2 l4a+iaCywiZ 1 Ly ’
oW JLe 1+E+ZCQWL]Ze

= 1 (ws) (ws)
i (I D _al J),
1+ a+iaCywsZ, 2 “h
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2.2. The SQUID-based spectrometer

where I&g ) are the components at frequency wy of I1 and Is. In the bottom branch of the

SQUID, Kirchhoff’s laws impose
Il(wJ) +I2(WJ) _i_Ié"-iJ) +Ig§]) — O,

where I (9) is the current flowing through the capacitor of junction 1(2). It is given by

{I(wa) = —CowJpodi,

Ig‘;) = —OzCocd%gOo(Sg.

Substituting these expressions in Kirchhoff’s law gives

I§w‘]) + Iéw‘]) = Cow?](po ((51 + 05(52) .

So, we have two equations:

: 1 (w) (wg)
—_ — I J) I J
ipow, (01 = 02) 1+ )Y, + iaCow,y < 2 @h ) ’

(2.27)
Cowlipo (61 + ady) = (1) + 1§7)

[("JJ)

Using Bessel functions to develop I, )

we get

I{w‘]) = —iIC (Jo((51>ei01 — JQ((Sl)e_i91> y
1) = —ialo (Jo(8:)e™ — Ja(d2)e ™).

Substituting these expressions in Equations (2.27) give two complex equations to get four
real variables (61, 62, d; and d2). Once these equations have been solved numerically, it is
possible to get the DC current flowing out of the SQUID by taking the DC component of
I + I,

Ipc =1¢ (J1(51) sin 61 + aJl((Sg) sin 92) .

In the case of a symmetrical SQUID (a = 1), the situation is much simpler, as we can assume

91 + 62 = 0 following Ref. [23]. This gives expressions for the sum and differences of phases:
22 —; 1 = 60 +th7
P29 ; LA % + dsinwt.

The first line of Equation (2.27) can be rewritten

. ]- w w

This gives
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L — I
Ic

= sin (02 + wyt + S sinwst) — sin (61 + wyt + 01 sinw st)

= 2cos (0y + wyt) sin (% + (5siant)

+o00
=2 kz_: Ji(0) sin (kat + %) cos (6o + wt)

= Ji.f Ji(9) (sin <(k—|— Dwyt + % +00> + sin ((k — Dwyt + % —90)>.

k=—0o0

The component at frequency wy is thus

I, — 1, (ws) . 0o —i0p | o
( " ) _2(J0(5)e + J2(0)e )sm(soe/2)-

So, Equation (2.28) gives
Iosin (9 /2) (Jo(8)e™ + Jp(8)e™% ) = ~ by (2, + iwws Co) .

Taking the real and imaginary parts of this equation gives two equations similar to Equa-
tion (2.16):

podwR(Ye) = — Jl(g(s) cos Oplcsin (pe/2),

(2.29)
PooW s (2%(1/@) + C[)CL)J) = — (Jo((5> — Jg(é)) sin 0y sin ((pe/Q) .
It is also possible to get the Harmonic balance equation to solve to get 9:
2R (Ye(ws)) \* | (23 (Ye(ws)) + Cows \* _ (Iosin (pe/2)\”
— = | t = —] . (2.30)
J0(5) + JQ((S) J()((S) - JQ((S) gDo(SOJJ

When 2S5 (Y (wp)) + Cowp = 0, the phase oscillation amplitude is maximal and sin fy = 0. The
equation to solve to get the maximal phase oscillation amplitude ¢ is

0
Jo(6) + J2(9)

=z

This equation is the same as for the off-loop mode (2.19) with a coupling parameter Z slightly
different,

IcJsin (pe/2)|
2VG.

The DC current flowing out of the SQUID can be calculated by taking the DC component of
I + Iy = I (sin g1 + singy) . Calling ot = (2 £ 1) /2, we get

2z =
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L+ I
Ic

= 2siny, cosp_—

=2 Z Ji(0) cos (kw st + e /2) sin (6p + wt)

k=—o00

Z Ji(0)sin ((1 — k)wy + 0o — e /2) + Z Ji(0)sin ((1 + k)wy + 0p + ve/2).

k=—o00 k=—o00

The DC component is:

Ipo = Jl((;)lc (sin (6 — @e/2) — sin (Bp + e /2))

= —J1(0)I¢ sin (902 ) cos .

At a resonance frequency, sinfy = 0, so cosfy = +1 and
Liaz = —cos0pJ1(0) I sin (e /2) .
This expression can be substituted in Equation (2.29) to give

Iez = @0“1052%(1/6((‘)0))‘
Using the definition of Z, this gives

52
Imaz = IC |Sln ((706/2” 7'

As seen in Section 2.1.4, the maximum of §2/(2z) is 0.58. This means that for an optimal
coupling, the maximal current for an in-loop mode is also 0.581¢ [sin (¢ /2)|.

2.2.3. Comparison between in and off-loop modes
LC resonator

To emphasize on the differences between in-loop and off-loop modes, consider the case of a
simple external system: a parallel LC resonator with losses as shown in Figure 2.3(a). A
resistance R was added in order to account for losses and quantify dissipation. R is chosen
such that the coupling parameter z stays small and the zeroth order approximation is valid.
The admittance at frequency w is Ye(w) = 1/R + iCew — i/ (Lew).

If the LC resonator is out of the loop, according to the calculations of Section 2.2.1, the

(0

resonance occurs at w ) such that S(Ye(w (O))) wéo) (1 4+ «) Cy. In that case,

w(()o):we <1+(1+a)c0> ,
Ce (2.31)

R
plo) — 51(2) (1+ o? + 200 oS e -

N
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Figure 2.17.: Maximal dissipated power in the (a) off-loop mode and (b) in-loop mode as a
function of applied magnetic flux for symmetry ratios from 0 to 1.

If the LC resonator is in the loop, the calculations from Section 2.2.2 show that the resonance

occurs at w(()i) such that %(Ye(w[()i))) = —M_LaCow((]i). This gives
oy
T
“hes (2.32)
; R 200
(M — °p2 in ¥e
Pruz 210<1+asm2> .

In both cases, the resonance frequency is displaced from its bare value w. = 1/v/L.C, towards
lower frequencies. The resonant frequency is different in the in-loop and in the off-loop modes
and depends on the intrinsic capacitances of the junctions. In the off-loop mode, the parallel
combination of the two junctions capacitances ((1 + a) Cp) is relevant and in the in-loop mode,
it is the series combination (aCp/ (1 + «)).

Figure 2.17 shows the maximal dissipated power in an RLC resonator located out of the loop
(a) and in the loop (b) as a function of the applied magnetic flux ®.. The off-loop mode is
maximally excited when the flux is a multiple of ®y while the in-loop mode is maximal at $¢/2
(®g). This was expected as the loop current is maximal at half a flux quantum and minimal
at 0 flux bias.

For the off-loop mode, the maximal dissipation occurs at multiples of ®3. With this flux,
the dissipated power can reach 2R] % for « = 1. For an asymmetrical SQUID, the dissipation
is less and is proportional to (1 + a)2 so it is always non-zero. At half a flux quantum, the
dissipation is minimal and goes as (1 — a)2. In the case of a symmetrical SQUID, there is no
dissipation at all as all the current circulates in the loop. But in an asymmetrical situation,
there is always dissipation because there is always some current proportional to (1 — ) I
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2.2. The SQUID-based spectrometer

Figure 2.18.: Equivalent circuit of an in-loop mode with a bias resistor Rp.

leaking out of the loop.

For the in-loop mode, the maximal dissipation occurs at half a flux quantum. It is always
smaller than RI % /2, the maximal value achieved with a symmetrical SQUID. At zero flux, the
dissipation is always 0 as no current at all circulates in the loop.

At &, = 9y /2, if the junctions are not identical, there is a small amount of microwaves I,
which can circulate in the bias circuit. To estimate its effect on the resonance peak, we consider
the circuit shown in Figure 2.18 where the bias circuit is represented by a bias resistor Rp. In
the limit of small z, the current is sinusoidal at frequency w; and

I, = Ipe!wstto) (1 + aei‘pe) .

The amplitude of this quantity is
I,|* = 12 (1+ o? + 2a cos Pe) -

This makes a dissipated power in the bias resistance of Ry, (% /2 (1 + a? + 2a.cos goe), maximal at
e = 0 and minimal at ¢, = 7. This additional dissipation has for effect to decrease the quality

factor of the resonator. In the loop of the SQUID, the dissipated power is R/4 (]Il|2 + |I2|2>,

which makes R (1 + o?) I% /4.
At . = m, the ratio of power dissipated in the bias circuit to the power dissipated in the

resonator is thus
2Ry (1—a)®
"R 1+a2°
For o ~ 1, we can write &« = 1 — &, with & < 1. This gives v o< @%. This square dependence
shows that the quality factor of the resonance stays quite close to the intrinsic quality factor

in a large range of a close to 1.

Example

Figure 2.19 (a) shows an experimental current-voltage characteristic of a SQUID with I, =
88nA and o = 0.84. The red curve corresponds to zero flux bias and the blue one to half a
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Figure 2.19.: (a) Experimental current-voltage characteristic of a SQUID with a = 0.84 show-
ing a few resonance peaks at zero and 7 flux bias. (b) Evolution of the height of
the two smallest peaks with respect to the applied flux. The dashed lines are fits
using equations (2.31) and (2.32). The red and blue dashed lines correspond to
the red and blue curves in (a).

flux quantum. The shape of the quasiparticle branch will be explained later in Section 3.6.
Three resonant peaks can be seen in the spectrum. The two around 100 pV are due to filtering
capacitances and inductances and are thus located out of the loop and maximally excited at
zero flux bias. The last one is maximal at 7 reduced flux bias and corresponds to the LC mode
of the loop briefly introduced in Section 2.2.2.

Figure (b) shows the evolution of the height of these peaks with respect to the reduced
flux . = ®c/po. Only the first off-loop mode and the in-loop mode are plotted because
the largest off-loop mode is too strongly coupled to the spectrometer to be described by the
zeroth order approximation. As the maximal current on top of the peak is proportional to
the power I = Pmaz/Vo (where Vj is the voltage at the peak maximum), Equations (2.31)
and (2.32) can be used to obtain the dependence of I, on the flux. The dashed lines are fits
to the experiment data using these formulas. From the fits, we obtain R, = 46 Q (respectively
R; = 542Q) for the real part of the impedance at the resonance in the case of the off-loop
mode (resp. the in-loop mode).

2.2.4. Power tunability

Both in and off-loop modes have coupling parameters z depending on the flux ®.. For the
off-loop mode, z is proportional to the critical current of the SQUID and for the in-loop mode,
Z is proportional to I¢ [sin (¢e/2)|. This allows tuning the power radiated to the system and
thus the coupling parameter z. If it is too large, the current is not sinusoidal, giving rise to
peaks with cusps or loops. In that case, the measured resonance frequency is not the true
one as explained in Section 2.1.4. Changing the flux allows bringing z to the sinusoidal phase
region, where the position of the peak is the true resonance frequency. It is thus possible to
observe peaks moving to lower frequencies when the flux is changed to reduce z.
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Figure 2.20.: Galvanic coupling of the spectrometer to a device of impedance Z. out of the
SQUID loop.

2.3. Coupling to an external system

In the previous sections, only galvanic coupling was considered, that is to say the device under
test (DUT) is directly connected to the spectrometer with wires. But it is also possible to
consider different coupling schemes, such as a capacitive one (as was the case in the Quantronics
spectrometer [32,33]) or an inductive one using the inductance of the superconducting loop.

2.3.1. Galvanic coupling

A galvanic coupling is the easiest scheme to imagine as it consists of connecting the DUT to
the spectrometer with DC wires. This situation is represented in Figure 2.20 in the case of
off-loop spectroscopy. The large capacitor Cj, is here to filter out noise and has no important
role in this discussion. Because the DUT is out of the loop, the SQUID is represented as a
simple Josephson junction with tunable critical current. The spectrometer is colored in blue
and the DUT in red.

The main advantage of this coupling scheme resides in that the coupling is the same for
every frequency. However, if the admittance of DUT at zero frequency is not zero, such as in
a parallel resonator, the DC bias current is divided between the spectrometer and the DUT.
This results in a non-zero background for the current-voltage characteristic if the current is
measured across the bias resistance Rp.

The galvanic coupling is thus well adapted for systems with zero admittance at zero fre-
quency, such as series resonator, which prevents the DC bias current from reaching the DUT.

Also, if we want to couple the spectrometer to other mesoscopic systems, it is not always
possible to make good electric contacts between the spectrometer and the DUT.

2.3.2. Capacitive coupling

Adding a large capacitance C. between the spectrometer and the DUT is a good way to
decouple the DC currents from the radiated microwaves, in particular if the system has a finite
admittance at zero frequency. This was the solution chosen in Ref. [32]. The capacitance acts
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2. The Josephson spectrometer

as an open circuit for the DC bias and forbids DC current to flow through it and through the
DUT. On the other hand, for the microwaves radiated by the junction, the capacitance has a
low impedance 1/(iC.w) which allows for a good coupling.

Capacitive coupling is only possible when considering off-loop modes. As a matter of fact,
adding a capacitance in the SQUID loop in series with the DUT opens the superconducting
loop (at least for DC magnetic fields) and forbids flux biasing.

The phase excitation provided by a capacitive coupling is not uniform over the spectrometer
frequency range. According to Josephson relations, the AC voltage across the junction is ~

(Ze + m) Ipe™7t, The phase thus oscillates with an amplitude ~ ﬁ (Ze + ﬁ Ipert,
Away from divergences of Z, (such as resonances in parallel resonators with high quality factor)
or series resonator (where Z, is large at all frequencies except at resonance), Z. is usually
smaller than the impedance of the coupling capacitance, such that the amplitude of the phase
oscillations decreases as 1/w? with frequency. This reduces the coupling to the DUT at high
frequencies.

The coupling capacitance C. also changes the impedance of the DUT. From the junction,

the impedance is now .
- i
Le=1l,— :
e e ch
For a simple parallel LC resonator circuit (with inductance L. and capacitance C.), this added
capacitance will change the resonance frequency to

1
\/ Le (Ce + Ccfccc)

A large coupling capacitance C. is thus required to keep this frequency close to 1/v/L¢C,
which is the resonance frequency of the LC circuit.

If C is of the order of 50 fF, C,. must be at least some pF in order to be much larger than
C. For instance a capacitor made of two squares of side d = 100 pm separated by a layer of
t = 50 nm of alumina (with &, ~ 10) gives C, ~ 20 pF.

Making a large capacitance can introduce other resonant modes due to the physical extension
of the capacitor planes. For two metallic planes with longest dimension d and separated by a
thickness t of insulator with permittivity € and permeability u, the speed of light is reduced
to ¢ = 1/,/ep. This results in a planar resonator mode at frequency f = c/(2d) [05]. If
the metallic planes are superconducting, the speed of light will be further reduced due to the
kinetic inductance of the superconductor, resulting in lower resonant frequencies. This resonant
modes will be discussed in more details in Section 4.3.2. The square capacitor considered just
above has for instance a self-resonance around f ~ 70GHz which is in the middle of the
frequency range of a spectrometer made of aluminum. Care must be taken in order to avoid
such resonances when capacitive coupling is envisaged.

2.3.3. Inductive coupling

Another possibility to couple the spectrometer to a DUT is using mutual inductances. If the
microwave current generated by the junction encounters an inductance, an oscillating magnetic

78



2.3. Coupling to an external system

Ce

| |
11 ]

Ry
0= c= Xn@ |z
— W [
Spectrometer DUT

Bias circuit Coupling elements

Figure 2.21.: Capacitive coupling of a spectrometer to a device of impedance Z. out of the
SQUID loop, with coupling capacitance C..

field is produced which can generate a current in another inductance coupled to the first one.
But placing an inductor ! in parallel with a Josephson junction prevents from imposing a
voltage across it. Using a SQUID allows for inductive coupling and the ability of applying a
voltage to the junctions. The schematic for such a coupling scheme is shown in Figure 2.22.
As the coupling inductance is in the SQUID loop, the coupling is maximal when the applied
flux is half a flux quantum.

When there is an alternative current I, in the SQUID loop, there is also a current Iz flowing
in the loop of the DUT due to the mutual coupling of the two loops. The voltages Vi, and Vz
and currents Iy, and Iz in the two loops are related by

Vi =idlwlp +iMwly,
Vz =ilewly +iMwly,.

The mutual inductance M is often expressed as a function of the coupling constant k:

M = k/ll..

It is a number between —1 and 1 quantifying the coupling between two systems: k£ = 0 means
that a current flowing in one system does not influence the second one. £ = +1 means that
all the magnetic flux generated by one loop threads the other. The sign of k indicates the
direction of the induced current.

In the loop of the DUT, the current is also related to the voltage by V; = —Z.Iz. This
gives the following relation between I; and Iy:

ikl w I

Iy =— .
Z Zo +ilow -

In the SQUID loop, this gives
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Figure 2.22.: Inductive coupling of a SQUID spectrometer to a device of impedance Z, with
coupling inductances [ and ..

This equation shows that the mutual coupling to another loop is equivalent to having an
impedance Z. in the loop, such that

. I,
Ze = ilw (1 . k2°"> . (2.33)

lew — 17,

The corresponding admittance Y, is

~ —14 lew -
Vo= — (1-K—— .
lw ( lcw—iZe>

It is therefore possible to use Equation (2.25) with Y, to find the resonance frequency of this

circuit: F(Ye) = —Cyw.
Using the SQUID loop frequency ws = 1/+/1CY, this condition can be written

o) )

In the limit where there is no coupling between the two loops (k = 0), we recover w;, as the
resonance frequency of the system. The simplest case we can consider is when the spectrometer
is just coupled to an LC' circuit formed of the coupling inductance [, and a capacitance C,
with eigenfrequency we = 1/v/{.Ce. The impedance Z. is in that case Z.(wy) = 1/(iCewy).
The resonance condition (2.25) becomes
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Figure 2.23.: Resonance frequencies for a LC circuit coupled inductively to the spectrometer.

(2) (e () )= (2)

Figure 2.23 shows the two solutions of this equation for different w/ws ratios. For low coupling
constant k, the two resonant frequencies are just w. and wg, as expected because the two loops
are not coupled in that case. When k increases and tends to maximal coupling, only one
solution stays finite, at

WelWs
/2 2°
wg + wg

To have the resonance frequency at the desired value we, it is best to work in one of these two

conditions:
k<,
(2.35)

Wy =

We K Wg.

If we want to quantify the dissipated power, we add a resistance R in parallel to C.. According
to Equation (2.26), the dissipated power is proportional to % (1/(Y. + iwCy)). Introducing the
quality factor of the resonator, @Q = R\/C¢/I., this real part can be expressed as the real part
of

w\?_ 0
(wi) CHQE
2 iQwi
w ) (1- k?) — 1+iQ =

/N
Ele

81



2. The Josephson spectrometer

Figure 2.24.: Two concentric circular loops.

After some calculations, this gives at the resonance frequency wy (if we < ws),

e (1 ~ () a- k2)>

)

wo

If we consider that wg ~ w, in one of the limits of Equation 2.35, this expression is

Q k?
WeCs (ﬁ)Q _ 1.

wo

As this expression is proportional to k2, the second condition of Equation 2.35 (we < w;) is
more favorable to get a large signal. It permits working with large k& while the other possible
condition implies a weak signal.

The mutual inductance (and thus the coupling constant k) between two loops of zero thick-
ness can be expressed using the Neumann formula (derived in Appendix D)

M:NO¢ 35 dly -diz (2.36)
4 CczJcy T

It is possible to derive an analytic expression for M (and thus k) in the case of two concentric
circular loops, as sketched in Figure 2.24. This situation is quite close to the actual spectrom-
eter design: the SQUID and the probe system loops can be modeled by circular loops placed
on top of one another as described in Chapters 4 and 5. If we call 74 the radius of the SQUID
loop, rp the radius of the loop of the DUT and d the distance between their centers, the double
integral in the Neumann formula can be expressed in terms of the complete elliptic integrals
K and E (the derivation is presented in Appendix E):
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Figure 2.25.: Coupling coefficient between two circular loops with wire radius a = 200 nm as a
function of (a) the distance d between the loops and (b) the radius r5 of loop B.

1 (TA+TB)2+d2< r4 + 1%+ d B >
k_v\/ TATB (TA+TB)2+d2K(/8) BB

with § = 2 L A
(ra+rp)”+ d?

(2.37)

The coefficient v accounts for the radius a of the wires forming the loops in the evaluation

of the loop inductances,
2 = (111874'4 —2) <ln8mg —2> .
a a

Figure 2.25 shows the coupling coefficient for different values of r4, rp and d, with a fixed
wire radius of 200 nm.

In panel (a), the two loops have fixed radii and the distance between them is changed. The
coefficient k decreases when the distance between the loops increases. The decrease rate is
larger when the loop is smaller.

In panel (b), the distance between the loops is fixed, as well as the radius of one loop, and
the radius of the probe loop is changed. For each distance d, there is an optimum probe loop
radius for which the coupling is maximal, but the highest value is for d = 0.

However, this analytic calculation of the coupling coefficient is not fully realistic: several
parameters were not considered, such as the superconducting character of the conductors, the
width of the wires or the real shape of the loops.

To make an adequate calculation, the correct procedure would be to

e combine Maxwell and London equations to get V2B = B /A% in the superconductors and
V2B = 0 outside

e solve this differential equation for B with boundary conditions modeling the junctions
by current sources and imposing fluxoid quantization in superconducting loops
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Figure 2.26.: Coupling coefficient k as a function of the distance d between the loops for r4 =
10 pm. The dashed lines are calculated using Equation 2.37 and the full lines are
simulated with 3D-MLSI.

e calculate the total energy of the system and extract the inductance matrix

For the systems considered in this thesis, two other assumptions can be made on the con-
ductors: the thickness of the films ¢ is small compared to their width and ¢ is of the order of
the London penetration A. Typically, ¢ ~ 100 nm and A ~ 100 nm for aluminum.

The 3D-MLSI simulator, developed by M. Khapaev [73], assumes these considerations and
allows for calculation of current density, magnetic fields and inductance matrices using a finite
element method.

Figure 2.26 shows results of simulation of two circular loops (of radii r4 = 10 pm and rp = 74,
rp = 2r4 or rg = 5r4) on top of one another with 3D-MLSI. The wires are 400 nm thick. The
full lines are obtained with 3D-MLSI and the dashed lines are calculations using Equation 2.37
for thin wires of radius 200 nm. Both calculations yield close values for the coupling parameter
k showing that the effect of the penetration of the magnetic field in aluminum is negligible.

In conclusion, the best coupling parameter is obtained for loops with similar radius, located
as close as possible.

2.4. Limitations of the Josephson spectrometer

The Josephson spectrometer as presented in this chapter seems to be a powerful tool, as it can
easily couple to mesoscopic systems and cover a frequency range which is not easily accessible
with conventional microwaves techniques. However, it has some limitations.

2.4.1. Frequency limitation

First, the inelastic Cooper pair tunneling at the basis of the spectrometer principle of operation
is the dominant tunneling process only below 2A/e. Above this voltage, the tunneling of
quasiparticles add a contribution of the order of V/Rpx to the current, reducing the sensitivity
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of the device. This corresponds to a high frequency limitation of 4A /h. In the case of aluminum
(which is the material used throughout this thesis), the maximal frequency is f; ~ 180 GHz.
It is possible to reach higher frequencies by using other superconductors with higher critical
temperature such as tin (fs, ~ 500 GHz), lead (fpy ~ 1.1 THz) or niobium (fy; ~ 1.4 THz)
but the fabrication processes are less advanced for these materials.

There is also a low frequency limitation due to dissipation in the junction and its environ-
ment. At small voltage, the phase particle (introduced in the previous chapter) can be trapped
in a potential well because of losses which can decrease its kinetic energy. This results in a
switching towards the zero-voltage state. This retrapping phenomenon is described in more
details in Section 3.2. Usually in experiments, it is possible to reduce the voltage to a value of
~ 21V, corresponding to a frequency of ~ 1 GHz.

2.4.2. Magnetic field effect

For a SQUID-shaped spectrometer, applying a magnetic field to the device allows controlling
the phase difference across the junctions. The typical magnetic fields used in experiments
correspond to one flux quantum. For a 10 x 10 pm? SQUID loop, it makes a value of 20 T.
Such fields have no visible effect on one junction, but when they are stronger they can have
unpleasant consequences.

Vanishing critical current

First, when the magnetic field inside a Josephson junction becomes large, the phase difference
starts being inhomogeneous and the critical current can vanish. To understand this effect,
consider the junction sketched in Figure 2.27a. The insulating barrier is the yellow region
labeled I and the superconductors are the blue regions labeled S; and S3. The junction has
an extension in the z direction of width W and a magnetic field is applied along this direction.

The magnetic field is expelled by the Meissner effect in the superconductors. It is thus
confined in a region of thickness of order t = a + 2\ where A\ is the London penetration length
and is typically 15nm in bulk aluminum and 100 nm in more realistic aluminum. So, if the
contour C goes deep inside the superconductors, such that at yg > A, there is no magnetic
field at y = £yq.

Inside the Junctlon the magnetic ﬁeld 1s not exactly B.. The Josephson current along y
generates a field B;. The total field B = B, + B; satlsﬁes Maxwell’s equation: V x B = 140J
in the static limit, with ] the density of current. Bz can be taken in the form BZ = Bi(z)Z if
we consider the length a of the junction small and the current being oriented along ¢. B; then
follows dcg" (x) = poj(z).

If we integrate the gradient of the superconducting phase ¢ along the contour C, we get

A dl+§l§v¢ dl=0 (2m),
<P0

where A is the potential vector from which derives B. If we note ¢1(2) the superconducting
phase in superconductor 1 (2), we get

i}//‘gg.dtS’Jrle(:andx)gpl(x)¢2(x+dx)+<p2(x):0 (2n).
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(a) Schematic of a Josephson junction with applied magnetic field B. The green arrows represent the
supercurrent density in the case of ® = ®.
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(b) Critical current of a Josephson junction as a function of the magnetic field.

Figure 2.27.: Effect of the magnetic field on a Josephson junction.
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Calling ¢(x) = pa(x) — p1(x) the phase difference across the junction, the last equation gives

1 d
— B(x)tdx — —So(x)das =0,
%o dx
where t = a + 2 is the effective thickness of the insulating layer. Differentiating this equation

with respect to = gives

d*p dB .
vo 5 (@) = t%(w) = potj(x).

The Josephson relation for j(z) is j(x) = josin(z), where jo is the supercurrent density,
such that Iy = joW L in a homogeneous junction of supercurrent Iy and widths W and L. This
leads to a Sine-Gordon equation for the phase

o PP
sin () = A5 (@),
where \; = #0“’%0 is the so-called Josephson length and is usually much larger than the

London penetration length: Ay ~ 50um for a typical aluminum Josephson junction. If the
width L of the junction is much smaller than the Josephson length (this is always the case in
this thesis as the junctions we consider have a size ~ 2pm x 500 nm), it is possible to neglect
the contribution of the induced field B; and get a linear expression for the phase difference:

Iailed (0 )
P T + ¢
(@) = o L
where @ is the magnetic flux of the applied field ée through the entire junction. The su-
percurrent of the junction is given by the integral of josinp(x) over the whole junction:

I=w 17, j(z)de.

Y
SIHT . 0
I= IOTWO sin (np( )) .
2p0
The critical current in a uniform junction with applied magnetic field is proportional to

‘smc (22 )‘ This shape (shown in Figure 2.27b) is the same Fraunhofer dependence as for
diffraction of light through a slit. As in diffraction, it describes interferences between different
phases. When @ is a multiple of ®q, there is no supercurrent. In the case where ® = &,
the phase ¢ is linearly increased by 27 along the junction width L. This wrapping of the
phase corresponds to having one flux quantum inside the Josephson junction and results in the
supercurrent density plotted in Figure 2.27a with green arrows.

In the case of a spectrometer, having a zero critical current means that no spectrum can
be measured. The current response to a resonance is indeed proportional to the square of
the critical current as discussed in this chapter. For a typical size of junction of 2pm x 1nm,
one flux quantum corresponds to ~ 100mT. Due to magnetic field focusing (more details in
Appendix F) by the superconducting electrodes, having 100 mT inside the junction can be
reached with much lower fields, of order 1 — 10mT.
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Figure 2.28.: Typical bias circuit with bias resistor R; and filtering capacitor C.

Superconductivity loss

When the applied field becomes larger than the superconducting critical field, the junctions
lose their superconducting character and the spectrometer cannot operate. For aluminum, the
critical field is of the order of 100mT. Using lead or niobium would allow for a gain of one
order of magnitude.

2.4.3. Emission linewidth

As the frequency of the emitted photons is proportional to the voltage across the junction, the
emission frequency linewidth of the spectrometer depends on the voltage noise.

For an RC low-pass filter as sketched in Figure 2.28, the thermal noise spectral density
of the resistance is given by V}% = 4kpTRp. In order to get the spectral density of noise
across the capacitor, V2 must be multiplied by the square of the gain of the filter: |H ((,u)|2 =

1/(1+ R?C*w?). The total integrated noise is then

s 2w fo 1+R502w2 ’

[kpT
Vrms = .
C

Interestingly, this noise doesn’t depend on the resistance in the circuit before the filtering
capacitor. For 100 nF capacitors, this gives at 100mK a voltage noise of 4nV, corresponding
to a frequency linewidth of 2 MHz.

In practice, commercial capacitors have parasitic components dominating their impedance at
high frequencies: an Equivalent Series Resistance (ESR) and an Equivalent Series Inductance
(ESL). The capacitors we use (Murata ULSC and ULEC series) are designed for operation
at high-frequency, such that their ESR and ESL are quite low. They have ESR ~ 500 mS2,
resulting in a voltage noise of the order of 25pV at 100 mK in a 1kHz bandwidth, smaller than
the noise due to the capacitance.

This emission linewidth has to be compared to that of conventional microwave sources. It is
common to have commercial devices providing a linewidth of the order of 1 Hz up to a frequency
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of the order of ~ 80 GHz, which is a better resolution than that of the Josephson spectrometer.
However, one possible improvement of the spectrometer discussed in the conclusion consists of
using the narrow linewidth of such sources to generate a precise voltage across the junction and
thus reduce the emission linewidth to a value comparable to that of conventional microwave
sources.

2.4.4. Absorption linewidth
Broadening due to the bias circuit

A resonance peak can get wider because of dissipation in the biasing circuit: the probe system
is connected to the bias circuit and its impedance is modified by the bias resistance Rp. In other
words, losses in the bias resistance are added to the losses in the probe system. To estimate
the effect of the biasing circuit, we consider both parallel and series resonator of quality factor
Qe.

For a parallel resonator out of the SQUID loop, the bias resistance is in parallel of the
resonator resistance R, such that the total resistance is RRy/(R + Rp), reducing the quality

factor to L
1 1\
SNEREA

Qe Qb

where @ is the quality factor due to the bias circuit. Here @, = Rpy/Ce/Le. For instance,
for a circuit with L, = 100pH and C, = 100fF and a large Q. factor of order 1000, a bias
resistance of 1k) reduces @) to 30.

For a series resonator out of the SQUID loop, the situation was already treated in Sec-
tion 2.1.5. Figure 2.10 shows the effect of the bias resistor on the depth of the resonance. A
small bias resistance leads to a smaller current dip than a larger resistance. At resonance, the
two resistors are in parallel, such that the quality factor is increased to

Q:Qe“‘Qb-

Here Q = R, '/L.C..

If the resonator is in the loop of a perfectly symmetric SQUID, no microwave current can
leave the loop, such that no power is dissipated in the bias resistor. For a SQUID with a # 1,
the ratio of power dissipated in the bias resistor to the power dissipated power in the resonator

1S
2R, (1-a)’

R 1+4a%’
as seen in Section 2.2.3.

The spectrometer is thus not well adapted to measure off-loop parallel resonances because
their width is extensively increased by the bias circuit. On the contrary, in-loop spectroscopy
is almost not affected by the bias circuit and leaves the width of the peaks close to their actual
one. This result is comparable to usual microwave spectroscopy setups, where the width of
the measured peak is limited by the quality factor of the used resonator. But the Josephson
spectrometer guarantees this linewidth over a broader bandwidth: up to 180 GHz, compared

to a limit of the order of 40 GHz for conventional setups.
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Figure 2.29.: Full width at half-maximum of a resonance detected by the spectrometer as a
function of the coupling parameter z.

Broadening due to the shape of the peak

But dissipation in the bias circuit is not the only element that can broaden a peak. As seen in
Section 2.1.4, at high coupling parameter z, parallel resonance peaks can take unusual shapes
and get broadened. In order to quantify the width of the peaks, we can calculate the full width
at half-maximum for different couplings z.

For low z, the shape of resonance peaks is simply a Lorentzian:

Ipc = 1011252.

Ipc is half of its maximum when & = +1. For an RLC resonator with resonance frequency
we and quality factor @, this gives wy = we (1 +1/(2Q)). The full width at half-maximum is
thus we/Q. This is the same width as the bare resonator and can be of order 500 kHz for a
resonator with high quality factor (Q ~ 10°) and v, ~ 50 GHz.

When the coupling z increases (and stays below the critical value 2.92), the peak gets
sharper. Using the Harmonic balance equation, it is possible to numerically calculate the full
width at half-maximum of a peak for arbitrary coupling z < 2.92. This dependence is shown
in Figure 2.29. It is possible to reduce the width of a peak down to ~ 0.8w/@ with optimal
coupling. However, when z is larger than the critical value, the peak gets wider because of the
formation of a loop.

2.4.5. Sensitivity

To estimate the sensitivity of the spectrometer, we consider the bias circuit presented in the
left-hand side panel of Figure 2.30. It consists of a voltage source V;, a bias resistor R, and a
Josephson junction (of critical current Iy and capacitance C'). The signal of the spectrometer
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Figure 2.30.: Simplified bias circuit and equivalent noise circuit.

is the DC current of the junction ;. We measure it across the resistor Rp, such that the signal
voltage is Vg = Ryl ;. The noise sources in this circuit are

o The resistor Ry. It generates a Johnson noise of current spectral density St, = \/4kgT/Ry.
We model it by a current source Ip.

e The spectrometer. It generates a shot noise of spectral density Sy,, = \/2el,, where
Iy, is the background current in the subgap region. A typical value if I;; = 10pA for
junctions with Iy ~ 100nA. We model it by a current source ;.

e The amplifier used to measure the voltage across Rp. It has a voltage noise density e,
and a current noise density e;. We model it by a current source Iy, of spectral density

Slamp = \/ egb/Rl% + 612'

These three noise sources are independent, such that the total spectral density of the current
noise is

Sp = \/S%R + 52+ S

Iy

4]€BT 62
Sr= + 2elp, + —% + €2
! \/ R, WTR T

The corresponding voltage spectral density across the resistor is Sy = RpS;. The signal-to-
noise ratio in a 1 Hz bandwidth of the spectrometer can thus be written as

I
SNR = J

kT ez 2
\/Rb—{—Qerg—FRg—i—eZ

The first two terms of the denominator are dominated by 4RykpT as long as the bias resistor
is smaller than R, = 2kpT/(ely,). At 100mK with a subgap current of 10 pA, this crossover
resistance is 2 M(2, much larger than the typical resistances we use, of order 1k{) and below.
For such a resistance, \/4kpT /Ry, is of the order of 100fA/ VHz. The amplifiers we use at
the moment (NF, LI-75A) have e, ~ 1nV/vVHz and ¢; ~ 10fA/v/Hz. With R, = 1kQ,
en/Ry = 1pA/v/Hz, which is then the dominant noise source.
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Using amplifiers based on high electron mobility transistors (HEMT) operating at cryogenic
temperatures, it is possible to reach a noise level of the order of 100 pV/ vHz at frequencies of
the order of 1kHz [71]. With such amplifiers, the sensitivity would be limited by the Johnson
noise of the resistance, such that the signal-to-noise ratio becomes

Ryl
VakgT
The minimal current that the spectrometer can detect (in a 6f bandwidth) corresponds to
SNR = 1. This corresponds to I% = 4kpTAf/Ry. If we consider using the spectrometer in
its linear regime where z = R.Iy/Vp < 1 (where R, is the real part of the probed impedance
and Vj the resonance voltage), I; = z1y/2 at the current peak. Using the amplifiers described
above, the minimal detectable R, is thus given by

SNR =

Re,min _ i kBT5f
Vo I2 Ry

For a better sensitivity, the temperature must stay low, and the bias resistance and critical

current must be as large as possible. In practice, to correctly voltage bias the junction, R

cannot be much larger than Ry, the normal resistance of the junction. If we impose Ry ~ Ry,

the minimal R, can be expressed, using the Ambegaokar-Baratoff relation derived in Chapter 1,

as
Remin 4 [2ekgTof
Vb - Ig/z TA '

For instance, at Vj = 200puV, the minimal measurable resistance in a 1Hz bandwidth is

Re min = 2mQ with Iy = 100nA. With a junction ten times larger (o = 1 pA), Re min = 50 pfd.
In comparison, these values become respectively 3 m{2 and 300 u2 when using NF amplifiers.

A common figure of merit used to quantify the sensitivity of a spectrometer is the noise
equivalent power (NEP) corresponding to the emitted power giving a signal-to-noise ratio of
one in a bandwidth of 1 Hz. For the spectrometer, it can be expressed as

2eknT I
NEP = I inVo = 2Vpy| ——2=0.
’ TA

This expression is proportional to the square root of the critical current. Small junctions
are therefore favorable to obtain a small NEP. For a junction with Iy = 100nA, NEP =
10717 W/VHz at Vj = 200pV. This value is low compared to other conventional tera-
hertz spectrometers reaching values of the order of 1076 W/v/Hz with a larger linewidth
or 1071 W/y/Hz with a comparable linewidth of the order of 1 MHz [75]. When using NF
amplifiers, the NEP becomes

26[0‘/0

TA

which gives NEP = 7 x 10717 W/v/Hz for the same junction.

A more common quantity in mesoscopic physics is the minimal absorption rate I'yy,, also
proportional to /Iy for the spectrometer. It is of the order of I';;, ~ 100kHz for a 100 nA
critical current Josephson spectrometer in the middle of the subgap region, which is much less
than typical rates of the order of 1 MHz for usual mesoscopic systems.

NEP =

€n,
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2.5. Conclusion

Using the essential equations governing Josephson junctions derived in the previous chapter, we
have shown that a single Josephson junction can be used as a spectrometer to detect photon
absorption for frequency below 4A/h. However, such a spectrometer has some drawbacks:
an inaccessible low frequency region, a too high coupling to an uncontrolled electromagnetic
environment and a bad coupling to the system of interest at high frequencies.

One simple way to palliate these weaknesses is to use a SQUID instead of a single Josephson
junction. This allows reducing the inaccessible low frequency region by decreasing the zero-
voltage current at half a flux quantum bias, an efficient decoupling from the electromagnetic
environment by taking advantage of currents in the SQUID loop and a more constant coupling
to the probe system by using the SQUID loop inductance as a coupling element.

This coupling scheme is then discussed and compared to galvanic and capacitive couplings,
showing that they can all be adapted to different situations and result in a modified impedance
for the probe system.

Regardless of the coupling scheme, the microwave interaction of the spectrometer with a
resonant mode is explained, leading to a modified current-voltage characteristic exhibiting
current peaks at the resonant frequencies. The shape of these peaks is also described, revealing
that the peaks can become flat when the coupling is too high.

The limitations of the spectrometer are finally exposed. They show that the Josephson
spectrometer can reach a linewidth of 2 MHz with a minimal measurable absorption rate of
100kHz in its 180 GHz operating frequency range. It is also shown that there is a tradeoff
for the size of the junction. A larger junction gives a better sensitivity and a smaller junction
gives a lower Noise Equivalent Power.

The next chapter explains the shape of a realistic current-voltage characteristic and the
possible solutions to limit these features in order to make a Josephson spectrometer.
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3. Comprehensive model of a Josephson
junction

In practice, the current-voltage characteristic of a Josephson junction (or a SQUID) is not
as simple as presented in Chapters 1 and 2. Multiple parameters can alter its shape such as
temperature, noise, the biasing circuit. .. Figure 3.1 shows a more realistic IV characteristic for
positive voltage. The thick black line is the ideal zero-temperature form described in Chapter 1.
The colored features will be described separately throughout this chapter. In order to have an
optimal spectrometer, these features need to be suppressed.

Briefly, the switching current Is is the bias current at which the junction leaves the zero-
voltage state. When decreasing the bias voltage, there is a finite voltage at which the junction
is trapped in a potential well. This phenomenon is called retrapping. The bias circuit can have

several effects on the I-V characteristic, such as adding or relazation
oscillations. Applying microwaves to a Josephson junction leads to Shapiro steps and photo-
assisted tunneling (not shown in the figure). For V< 2A/e, there is a due

to temperature and possibly to high transmission channels in the junction. The temperature
is mot zero, resulting in rounding of the quasiparticle branch. This branch can also exhibit
surprising back-bending behaviors due to quasiparticle heating.

3.1. The switching current

When we first introduced the ideal current-voltage characteristic of a junction, the tilted wash-
board potential approach showed that for a bias current I, < Iy, the junction stays in the
zero-voltage state. However, it is possible for the junction to leave the potential minimum,
even with I, < Iy because of thermal noise, quantum fluctuations or microwave oscillations.
The current value at which the junction switches out of the potential well is called switching
current and is denoted I, in this section.

To have an estimate of I, consider the tilted washboard potential shown in Figure 3.2 in
the case of I, < Iy. ¢y, is the phase difference in the n-th minimum of the potential and ¢/, the
phase difference at the n-th maximum. For the junction to escape the n-th potential well and
acquire a finite voltage, it has to go over a potential barrier of height AUy. This can be done
in several ways: thermal noise can give energy kg7 to the junction, resulting in oscillations of
the phase and the junction can tunnel across the potential barrier.

Calling i, = I,/ Iy, the potential U of the junction is U (¢) = Ej (1 — cos¢ — ipp). @n and
¢, can be expressed as p, = arcsini, + 2nm and @], = (2n + 1)7 — arcsind,. This gives an

expression for AUy,
AUy = Ej; <2. /1 -2 — 21 arccosz'b> .
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Figure 3.1.: Realistic shape of a Josephson junction current-voltage characteristic.

3.1.1. Thermal fluctuations

Consider a Josephson junction biased via a bias resistor Ry at temperature 1. This resistance
generates a noise voltage V across it (and thus a noise current ) of spectral density Sy, =
4kpT Ry, where kp is the Boltzmann constant. This thermal noise provides energy to the
junction and can make it overcome the barrier AUy. The probability for the junction to escape
the well in one attempt is thus e 2V0/(k5T)  yging standard Boltzmann statistics. At the

bottom of the well, the phase particle oscillates at a frequency wp = w, (1 — zg)% (as seen in
Chapter 1). It has thus a probability I' (called escape rate) to escape the potential well per
unit of time, where
T = ﬂe*AUo/(kBT)_
27

Biittiker et al. [70] and Devoret et al. [77] give an expression close to this approximation by
considering damping by a parallel resistance R,

F—aﬂex —%
Y P\ T ks )

where the prefactor a depends weakly on the ratio kgT' /AUy,

4oy

5.
/ QkT
(1 + 1 + ?.8&%{))

a =
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3.1. The switching current

Potential energy U (a.u.)

Phase difference ¢

Figure 3.2.: The tilted washboard potential for I}, < Ij.

In this expression, « is a numerical constant of order 1 and @ is a quality factor describing
dissipation in the junction. @ is linked to the Stewart-McCumber parameter ¢ introduced
in Chapter 1, @ = 1/v/Bc. A high @ corresponds to low dissipation. In Ref. [77] and in
more recent simulations [7%], a is considered constant and of the order of 1, giving a simple
expression for I,

wo AUy
I'=—e - . 3.1
o P ( kBT) (3:-1)
This expression is the same as the one given by simple physical arguments and was proposed
by Kramers in 1940 [79] to describe the escape of a particle over a smooth potential barrier.

In spectroscopy measurements, the junction (or SQUID) is biased via a bias resistor and the
voltage across it is swept slowly (compared to the plasma frequency), such that all voltages
between 0 and 2A/e are reached. To estimate the switching current in such a situation, we
consider a Josephson junction with no bias current at time ¢ = 0 and increase the bias current
at a constant rate I = Iy/7 (with 1/7 < wp). The barrier height gradually decreases, resulting
in a higher escape rate for the junction.

Between t and ¢ + dt, there is a probability I'(¢)dt that the junction has escaped over the
barrier. If we call p(t) the probability that the junction is still in the well at time ¢,

p(t+dt) = p(t) (1 =T (t)dt),

dp

= = _T(t)dt,

» (t)

dp = —7I(ip)dip.
p

This differential equation cannot be analytically integrated as I'(7p) is a quite complex expres-
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Figure 3.3.: Switching probability as a function of the bias current for a rate I such that
wplo/T = 10°.

sion. However, it is possible to integrate it numerically to get p(is) for a given I /I rate. The
probability that the junction has switched ¢(ip) = 1—p(ip) is plotted in Figure 3.3 for w,7 = 10°
and 107, for two Josephson energies: e; = Inpo/(kpT) = 25 (in blue) and 250 (in red). The
slower rate (w,7 = 10%) is plotted in full lines and the faster in dashed lines. At a temperature
of 50mK, e; = 25 corresponds to a critical current of 50nA and e; = 250 to a junction with
Ip = 500nA. Small junctions are much more sensitive to thermal fluctuations and it can be
difficult to reach I; ~ Iy. Sweeping the bias current faster allows increasing I, the shorter it
takes to increase I, the less time the junction has to switch out of the zero-voltage state. This
is the solution we commonly use to measure the dependence of the critical current of a SQUID
on the flux threading it. A more refined method consists of sending short (7, ~ 1ps) current
pulses of intensity I, < Iy as in Ref. [30]. For each pulse, the rate I'(I;) is constant, and the

differential equation for p can be integrated, yielding

q(t)y =1- e Tt

At the end of the pulse, the probability that the junction has switched is ¢(7,) =1 — e TUe)m,

Averaging over numerous pulses allows extracting I'.

3.1.2. Noise around the plasma frequency

To get a better insight of the reason why the plasma frequency is the relevant frequency to
use in the escape rate of Equation (3.1), it is instructive to look at the spectral density of the
phase S,(w) in presence of thermal noise and see what is its behavior around wy.

As Likharev [69], we consider small oscillations of the phase around the potential minimum
©n and write ¢ = ¢, + dp, with |dp| < 1. ¢ is linearly related to the voltage V' by V = ¢p¢.
So, the Fourier transform of dp and V, ¢(w) and V(w) follow V(w) = iwpe@(w). This gives
the following relation between the spectral densities,

98



3.1. The switching current

pow

The spectral density of the junction voltage is related to the spectral density of the current
by Sy (w) = |Zs(w)[* S;(w), where Z;(w) is the impedance of the junction. The admittance
Y;(w) = 1/Z;(w) is formed by the capacitance C of the junction and the non-linear inductance
Lj = ¢o/ly for small oscillations around ¢,. Y;(w) = iCw — icos,/(Ljw). This gives for
the spectral density of the phase,

Sso(w):(l)Q oo VI _251<w>.

pow Lyw

Using the plasma frequency of the junction wy = w (1 — zg) Y 4, this expression can be rewritten
as

2

1 1 1
Se(w) = 212 | = Sr(w). (3.2)
0+~ % \ 72—
“o
For a white source of noise such as a resistance, S;(w) = 4kgT/R is independent of the

frequency. Equation (3.2) shows that the noise is maximal at the plasma frequency wy of the
junction. With this expression, there should be infinite phase fluctuations at wg bringing the
junction out of the considered limit of [0p| < 1. In practice, the admittance Y; always has a
small real part G, resulting in a finite value of S, (wo) = (powoG.r) ~2S1(wo). Equation (3.2)
also explains why small junction are more sensitive to noise than larger junctions. S, (w) is
proportional to 1/ Ig which is smaller for large junctions.

3.1.3. Macroscopic Quantum Tunneling

As briefly mentioned earlier in the introduction of this section, it is also possible that the
junction tunnels out of the potential well. This tunneling effect is different from the tunneling
of Cooper pairs across the junction at the basis of all Josephson physics: it consists indeed of
the tunneling of the whole junction state and is thus called Macroscopic Quantum Tunneling
(MQT). As introduced in Section 1.1.4, the quantum state of a Josephson junction is a com-
bination of phase and charge states and the wavefunction has a certain extension in the phase
space as shown in Figure 3.4. The potential of the junction is plotted in red and a symbolic
shape of the square of the wavefunction of the junction corresponding to (¢) = ¢y, is plotted
in blue. It is possible that the wavefunction is not zero for ¢ > ¢/ where the maximum of
the potential is located. In that case, the junction can tunnel out of the well and is not in a
localized state (in the phase space) anymore.

For this phenomenon to occur, the width of the junction wavefunction has to be of the
order of ¢ — ¢, = m — 2arcsini. In order to get an order of magnitude of this width,
consider the case of a Josephson junction with a large Josephson energy (E; > FE¢). In
this case, the junction potential can be approximated around the minimum of potential by
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Figure 3.4.: Tilted washboard potential for I, < Iy and schematics of the junction wavefunc-
tion.
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3.1. The switching current

U= EcN?+Ej\/1—1 (8¢)? /2 according to the calculations of Section 1.1.3. This gives a

Hamiltonian

- - E PR
H(@,N) :ECNQ—i—?J 1—i2¢2,

A N hw h -
# (@,N) o (g AR0 52
2\ pwo h
This Hamiltonian is that of a harmonic oscillator with frequency wy = w, (1 — z'g)l/ * and
effective mass = h?/(2E¢). The extension of the phase is thus of order
1
4

h 2F

o Ej\/1 -4

For typical junctions with critical current Iy = 500nA and intrinsic capacitance 50fF, the
Ec/Ej ratio is of the order of 5 x 1073, This gives A¢ ~ 0.4rad at 0.9I current bias which
stays smaller than ¢/, —¢,, = 0.9rad. For junctions 10 times smaller, F/FE is 100 times larger
and Ap ~ 1.3rad which indicates a phase extension larger than the width of the potential well
and thus a larger tunneling probability.

This probability can be crudely estimated by considering the potential barrier as an infinitely
thin barrier of height AUy. The tunneling probability for a particle with energy E is then
p = e AU/E Ty get an estimate of the macroscopic quantum tunneling rate out of the

junction potential well, we can use this formula with AUy = E; (2. /1 — ig — 24p arccos ib> and

E = hwy/2 the energy of the junction at the fundamental level of the well. This gives an escape

rate of
wo 2AU
FMQT = —exXp | — .

27 huwg

It is possible to get a more exact result by using the harmonic oscillator approximation in the
vicinity of the potential minimum and the quasi-classical WKB approximation for the shape of
the wavefunction around ¢/,. This gives a slightly different expression for the escape rate [(9],

wo 8647TAUO ( 36AUO>
—F—exXp | — .

Cyor = =2
MQT = o1 hido 570

This tunneling has globally the same effect as thermal fluctuations to reduce the switching
current. As long as kg1 is much larger than fwgy, the thermal effects are dominant and
macroscopic quantum tunneling barely happens. In the opposite limit hwg > kg1, switching
due to thermal fluctuations is almost non-existent. The crossover temperature between both
regimes if commonly [%1,37] expressed as

h
kBTCT = %WO.

The 27 factor accounts for the 36/5 = 7.2 in the exponential and the prefactor before the
exponential. For junctions with w, = 27 x 15 GHz, the crossover temperature is of the order of
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100mK. In practice, it can be hard to achieve electronic temperatures in junctions of 100 mK
and below.

3.1.4. Phase diffusion

In an ideal junction, as soon as the junction moves out of a potential well, it runs down the
potential and acquires a constant voltage V such that V' = ¢g¢. But in realistic junctions,
due to dissipation in the dielectric or in the environment, it is possible that the junction stops
in the next potential well. This results in another zero-voltage state with a phase difference
increased by 27. Due to fluctuations, it is also possible for the junction to jump from potential
minimum ¢, to the previous one ¢,_;. This leads to a random walk between the potential
minima. Because of the tilt of the potential, in the case of a positive bias current, jumps
to larger phase differences are more favorable than jumps to smaller phase difference. This
diffusion process leads to an average positive drift: () > 0, resulting in turn in a finite voltage
(V) = 0 ().

It is rather straightforward to estimate this voltage for small bias currents in the case of
infinite damping where the junction always stops in the next or previous potential well after one
jump as shown in Ref. [33]. Starting from the n-th minimum ¢,,, the junction can jump over the
next or previous potential maximum ¢}, or ¢),_;. The potential height for the next maximum

is AUy = Ej (21 /1— ig — 213 arccos ib) calculated just above. For the previous maximum, the
potential difference is AU_ = Ej (21 /11— ig + 2ipm — 24y arccos ib) = AUy 4 2ipmEy. Using
the same expression for the probability rate as in Section 3.1.1, we get

I —ﬂex —AUi
T o P\ T )

With these definitions, the junction has a probability I'dt to jump to ¢,41 and a probability
['_dt to jump to @,—1 in a time dt. Calling p,(t), the probability for the junction to be in the
n-th minimum at time ¢, we get the following equation for the evolution of p,(t),

pn(t + dt) = pnfl(t)Fert + pn+1(t)1—1*dt + pn(t) (1 - Fert - F*dt) )
Pn(t) =Ty (pn-1(t) = pa(t)) + T (P21 (t) — pa(t)) .-

Let p(¢,t) the probability for the junction to be at phase ¢ at time t. If we assume that
the jumps occur instantly, p(p,t) = 0 except at the potential minima, where p(@y,,t) = p,(t).

With these notations,
Ip

Pn+1 (t) - pn(t) = 27‘-% (‘Pm t) .

This gives the following partial differential equation for p(¢p,t),

9p op
ot Oy
The solutions of this equation are functions of the variable ¢ — 27 (I'y. — I'_) ¢ which propagates

towards higher ¢ if the bias current is positive (resulting in AU, < AU_ and thus 'y >T'_).
This gives an average phase velocity (¢) = 2w (I'y — T'_) and a voltage (V') = ¢ (¢),

(o t) +2m (Ly =T-) == (p,t) = 0.
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Figure 3.5.: Experimental current-voltage characteristic of a small Josephson junction exhibit-
ing phase diffusion.

(V) = wowo <6Xp <_iBU;> - P <_§BUI:>) '

Noticing that AU_ = AU, + 2ipmE;, the voltage can be written as

AU,

(V) = wopoexp (_kBT

> (1 —exp(—2ipmEy)).

When i, < 1, AUy ~ 2E;, such that

_2B; 2y By
V) ~ EgT ]
< ) wopoe "B kT

This gives an effective resistance R,; at low voltage,

wo h,2 _ 2E7J

Ry =0 ipT
v o kg T

For junctions with plasma frequency 15 GHz at a temperature of 50 mK, a critical current of
100nA gives Ryg ~ 10739 Q. Smaller junctions with Iy = 10nA have R,q ~ 4 making a
noticeable deviation from the vertical supercurrent peak. Figure 3.5 shows an experimental
current-voltage characteristic of a junction with Iy ~ 10nA. The non vertical slope at the
origin does not appear quite clearly, but the effect of phase diffusion is more visible close to
the switching current where the I-V characteristic is bent. Simulations and a more accurate
theory, taking into account a finite damping and valid at larger bias currents, can be found for
example in Ref. [31,85].
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3. Comprehensive model of a Josephson junction

To make a spectrometer, large junctions are thus favorable as they are less sensitive to noise
and have a current-voltage characteristic close to the ideal one. With smaller junctions, the
deviation from the vertical supercurrent peak makes it difficult to operate the spectrometer in
the low voltage region.

3.2. The retrapping phenomenon

Starting from the subgap region and decreasing the bias voltage, there is a finite voltage below
which the phase particle can stay trapped in a potential well. In the tilted washboard potential,
the subgap region corresponds to the phase particle sliding down the potential with a finite
¢. For small tilts (with I, < Ip), the profile of the potential consists of several hills that the
particle has to climb. If there is no dissipation, it is always possible to overcome them. But,
in presence of a parallel resistance, the energy of the phase particle decreases and the junction
can be trapped in a potential well. This phenomenon is called retrapping and the bias current
at which the junction switches back to the zero-voltage state the retrapping current I,.

To model the dissipation in the junction, we use the RCSJ (Resistively and Capacitively
Shunted Junction) model in which the Josephson junction is modeled by an ideal junction in
parallel to a capacitance C and a resistance R as done for instance in Ref. [30,57]. The damping
parameter So = (waC)2 is supposed large in this reasoning, leading to little dissipation.

When biased at a voltage V', the junction slides down the tilted potential and its phase
oscillates at frequency wy = V/pg. Per cycle, the junction dissipates (with Ir the current
flowing through the resistance)

27wy 2
W = / IRth = (po/ IRng.
0 0

The current Ig is linked to the phase difference via Josephson relation and Ohm’s law: Ig =
vop/R. This gives
30% 2w
W== bdp.
R /0 pap

For small bias currents, I < Iy, the energy of the junction can be approximated by E(y) =
Ej(1—cosp+ wy, 2¢?/2) as derived in Chapter 1. For small dissipation, E(y) is essentially
constant. This allows expressing ¢ as a function of £ and ¢,

E
¢:wp\/2 (E]—l—i—cosgp).

The retrapping current is the current for which the kinetic energy cancels at the maximum of
the potential well, i.e. E = 2F;. This allows to calculate the dissipation integral W,

2
PoWp
W =8"—"—+.
R
This dissipated energy is equal to the energy supplied by the current source W

27‘(‘/&)]
Ws = / 1Vdt = ®ol,.
0
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Figure 3.6.: Bias circuit with a resistance in parallel to the junction.

30N
— SOC = O
— (706 =T
<
E 2
+~
=
o
g
=
o
retrapping
10 voltage '\
ge
0 &
0 10 20 30 40 50

Voltage (V)

Figure 3.7.: Current-voltage characteristic of an asymmetric SQUID at 0 and 7 flux biasing.
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This gives an expression for the retrapping current,

; _Betwn _ 4 Iy
" R®y  w/Bo

When the bias resistance is Ry, the retrapping voltage is thus

y, = 2Bl (3.3)
T/ Be

The R and the C' in this expression are the junction intrinsic capacitance and resistance. But

if there are additional capacitances in the circuit in parallel to the junction, they increase the

total capacitance, leading to a higher B¢ parameter and thus a lower retrapping voltage. On

the contrary, adding a resistance in parallel to the junction reduces the B¢ parameter and

increase the retrapping voltage.

For junctions with the bias resistor in parallel to them as in Figure 3.6, V, = 4pow, /.
This gives V, ~ 40pV for a typical plasma frequency of w, = 27 x 15GHz. For SQUIDs,
this retrapping voltage is reduced when the flux threading the loop is non-zero as the plasma
frequency is changed. With a capacitance Cs in parallel to the junction, V,. becomes

4 C

Vo= Lo e e

It is rather easy to fabricate on-chip capacitors of order 1 pF, reducing the retrapping voltage
to V. ~ 51V for junctions with critical current around 500 nA.

Figure 3.7 shows the low-voltage region of an experimental current-voltage characteristic of
an asymmetric SQUID shunted by a ~ 1pF capacitance. The arrows on the characteristic
denote the biasing direction. Retrapping occurs when the bias voltage is decreased (arrow
to the left). Changing the flux in the SQUID allows to change the plasma frequency of the
device. At 0 flux bias, the retrapping voltage is maximal and is of order 15pV. At half a flux
quantum, the retrapping voltage is reduced to 5puV. The discrepancy between the calculated
value of 5pV and the actual 1511V can be due to the fact that the actual resistance at high
frequencies is not Rp. Because of a parasitic capacitance to the ground, this resistance is
decreased, resulting in a smaller S parameter and thus in a larger retrapping voltage.

For the Josephson spectrometer to operate at low frequencies, a small retrapping voltage is
necessary. Adding a large shunt capacitance in parallel to the junction is thus favorable.

3.3. Influence of the biasing circuit

We have already seen that the bias circuit can influence the behavior of the junctions in many
ways: changing the spectrometer absorption and emission linewidth (Section 2.4), altering the
switching current because of the induced current noise (Section 3.1), modifying the retrapping
voltage with parallel resistors and capacitors (Section 3.2). But there are other features due
to the biasing circuit which can occur, in particular because of too high inductors.
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3.3.1. Low frequency resonances

The principle of the Josephson spectrometer is to detect the absorption of emitted photons by
the environment. In the most ideal situation, the only resonant modes are the one we want
to study but it is highly probable that there are other modes due to the biasing circuit as
already briefly introduced in Section 2.2.1 when the bias circuit consists of a shunt capacitance
and a decoupling inductance. If the inductor has a large inductance value, the corresponding
frequency is quite low. For instance, if there are aluminum wirebonds directly connected to
the spectrometer and a filtering capacitance at the other end, the corresponding LC mode has
a low frequency resonance: the inductance of a 1 mm long wirebond is ~ 1nH and a typical
capacitance used to filter out noise of 100 pF gives a resonance frequency of ~ 500 MHz.
Because the length of the wirebonds is comparable to the wavelength of the microwaves (6 mm
at 50 GHz in vacuum), they have to be considered as transmission lines with several resonance
frequencies.

In addition, a Josephson junction biased at half a resonance frequency wy generates an
oscillating supercurrent at frequency wg/2. Because of the non-linear character of the junction,
there will also be harmonics at wg, 3wo/2, 2wy, ... and the harmonic at wy is resonant. This
generation of harmonics can add several spurious peaks in the spectrum, at wp/2, wo/3, ...

If the junction is biased at 2wq, the revers process can occur. The emitted photon at 2wy
can be converted in two photons at the resonant frequency wg. The same can happen at 3wy,
4wy, ... If there are several resonant modes, for instance at wy and wj, biasing the junction
at nowo + njwy (with ng and ny positive integers) can generate photons resonant with both
modes.

The TV characteristic quickly becomes quite complicated. The processes leading to the
generation of such harmonics and sub-harmonics is explained in more details in Section 3.3.3.

An experimental current-voltage characteristic of a Josephson junction with a resonant mode
close to 2.5 GHz is shown in Figure 3.8. There are current peaks for every multiple of the
resonance frequency. It is not straightforward to deduce the spectrum of the system of interest
from such an IV characteristic.

3.3.2. Relaxation oscillations

Another interesting feature due to large inductors connected to a Josephson junction is the
appearance of relaxation oscillations. To understand this phenomenon, we follow the work of
Ref. [#%] and consider the bias circuit sketched in Figure 3.9a with a bias resistance R;, and
a bias inductance L. Depending on the bias current I, = V,/R}, there are three different
situations (represented in Figure 3.9b) for a junction with critical current Iy and intrinsic
capacitance C:

(1) The zero-voltage state: the Josephson junction acts as a wire with no resistance,
(2) The subgap region: the junction is equivalent to its intrinsic capacitance C,

(3) The quasiparticle branch: the junction can be modeled by a voltage source of voltage
2A/e.
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Figure 3.8.: Current-voltage characteristic of a Josephson junction with a mode close to
2.5 GHz.
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Figure 3.9.: (a) Bias circuit for a Josephson junction containing an inductance and a resistance.
(b) Equivalent circuit in the CSJ model.
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3.3. Influence of the biasing circuit

Figure 3.10 shows a simulation of these oscillations for a bias voltage of V;, = 0.6A/e with
a bias resistance R, = 0.3Ry, resulting in a current bias [, = 41y/m > Iy. The quality factor
Q = 1/Ry+\/Ly/C of the series RLC circuit is 5. The different colors correspond to the three
different situations described above: in phase (1) the junction is a superconducting wire, in
phase (2) and (2) it is equivalent to a capacitor and in phase (3) to a voltage source. Figure
(a) and (b) show the voltage V across the junction and the current I flowing through the
junction as a function of time ¢ with V and I the average values. Figure (c) represents the
current against the voltage during one oscillation cycle with the average value (V, T) marked
with a cross. (d) is the average current-voltage characteristic for values of bias voltage ranging
from 0 to above the gap. The cross corresponds to the bias voltage of panels (a), (b) and (c).

When I, 2 Iy, without the inductance, after a short time ~ 7o = RyC, the junction voltage
would simply go to Ryl and the current would reach 0. But with the inductance L, when
I reaches Iy, a voltage 2A/e rapidly (in a time ~ 7¢) develops across the capacitance C
since current cannot change instantaneously. In the same time, the current almost stays Iy
because of the inductance. At this point, the junction acts as a voltage source and the current
decreases slowly (in some 77, = L/R) until it reaches 0 and the junction switches rapidly back
to the zero-voltage state (in ~ 7¢) because of the overshoot of the voltage in the RLC circuit.
This leads to oscillations of the junction voltage and current. The measured current-voltage
characteristic is the average value of these so-called relaxation oscillations. They stop as soon
as the energy stored in the inductance is not sufficient to charge the capacitance up to the
voltage 2A /e in phase (2) and charge it to 0 in (2). At this bias voltage, the amplitude of the
oscillations decreases with time and the current tends to zero.

Figure 3.11 shows two experimental current-voltage characteristics of a Josephson junction
with a large bias inductance L; of about 5nH as well as the biasing circuit. The shunt
capacitance Cg was evaporated on the sample (following the method described in Chapter 4)
and is of the order of 1pF. The bias resistance is 200 2. The red capacitance C; was added
in the red curve of the left-hand side graph. It is a high-frequency capacitor of 100 nF. The
quality factors of both circuits estimated with these values are ) ~ 0.4 without C'y and ~ 1073
with C¢. In the red curve, the relaxation oscillations have almost disappeared and it is possible
to see peaks which were hidden in the blue curve. These peaks are due to a non-controlled
electromagnetic environment and will not be discussed here.

Low bias inductances and large shunt capacitances are thus a good solution to limit the
relaxation oscillations and have an appreciable sensitivity at low frequencies for the spectrom-
eter.

3.3.3. Generation of harmonics and sub-harmonics

Consider the same biasing circuit as in Figure 3.9a with V; such that the junction is not in
the zero-voltage state. Kirchhoff’s law gives V, = V + Ryl + Lpl. Combining with the AC
Josephson relation, this gives an expression for ¢,

ppo = Vi — Ryl — Lyl (3.4)

If we consider a large bias voltage, such that Vi, > Ryly, we can neglect R,I in Equation (3.4)
and integrate it to get
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Figure 3.10.: Evolution of voltage (a), current (b) when the current bias is larger than the
critical current. (c) Resulting current-voltage characteristic for one bias voltage
Vp. (d) Current-voltage characteristic for V3 varying from 0 to above the gap.
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Figure 3.11.: (a) Experimental current-voltage characteristic of a Josephson junction exhibiting
relaxation oscillations ; (b) Biasing circuit.
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Figure 3.12.: Phase difference as a function of time for A =0, 0.5 and 5.

Y =wyt — Asinp,

where wy = V/¢p is the Josephson frequency and A = Lyly/po = Lp/Ly is the ratio of the
bias inductance to the Josephson inductance.

If there is no bias inductance or if it is negligible (A < 1), ¢ = wt and we get usual Josephson
oscillations at the Josephson frequency. If A > 1, ¢(t) is not continuous and ~ 27 jumps are
possible or even ~ 2n7 jumps as shown in Figure 3.12. The time interval between a phase jump
of n phase quanta and n’ phase quanta is At = 2n7/w;. During this time, the phase increases
by Ay = 2n/w. This results in a phase oscillation frequency w = Ap/At = wyn'/n. There are
of course oscillations at the Josephson frequency w; but also at harmonics and sub-harmonics
of this frequency!

When A > 1, it is easy to estimate the number of solutions of ¢ + Asinp = 0. There is
always 1 evident solution of this equation (¢ = 0) plus 2 other solutions per 27 period, until
|| > A. This gives 4N + 1 solutions where N ~ |\/(27)] is the largest integer smaller than
or equal to A/(2m). Only half of them are stable. Starting from one value, it is thus possible
to make a maximal phase jump of 2V, resulting in a greatest harmonic of 2Nwj; and a lowest
sub-harmonic of wy/(2N)

As the generated frequencies are wyn’/n with n and n’ integers smaller than 2N, there are
in total a bit less than 4N? frequencies! These frequencies are plotted in the case of N = 0,
N =1 and N = 2 in Figure 3.13 with the fundamental Josephson frequency wy in red. If
N > 1, the measured spectrum can be quite complicated to read.

A biasing circuit such that A < 1 is thus favorable for the spectrometer. As A\ = Lyly/ o,
decreasing Ly is a good solution. Iy can also be decreased but has to stay large enough to limit
the sensitivity to noise.
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Figure 3.13.: Frequencies generated by a Josephson junction with a series inductance and re-
sistance.

3.4. External microwave effects

Josephson junctions are quite sensitive to their microwave environment. This is the basis
of the operation of the Josephson spectrometer. A resonant mode is indeed translated in a
peak in the current-voltage characteristic. It appears therefore quite logical that an external
microwave source can influence the behavior of a junction. The two main phenomena resulting
from external microwaves are the appearance of so-called Shapiro steps or peaks in the current-
voltage characteristic and photo-assisted tunneling of quasiparticles through the junction.

3.4.1. The Shapiro steps

Applying a DC voltage Vpe to a junction results in a fast oscillating current through the
junction at the Josephson frequency w; = Vpco/po. Similarly, applying microwaves at a
frequency wrr to a Josephson junction results in a DC voltage Vrr = powrpr. This effect was
first observed in 1963 by S. Shapiro [77] and is at the heart of the Josephson voltage standard
as already mentioned in Section 1.4.3. Due to the non-linearity of Josephson junctions, there
are also peaks at multiples of this voltage, nVgp.

Applying microwaves at frequency wrp creates a voltage at the same frequency across the
junction and its capacitance (and also the bias circuit or any other impedance in parallel to
the junction). This gives

V= Vl COSWRFt,

where V7 is the amplitude of the microwaves. In presence of an additional DC voltage Vp¢,
the phase difference ¢ can be written as

v
¢ =0+ wst + —— sinwppt. (3.5)
Vrr

The total current through the junction is thus (using the Jacobi-Anger expansion introduced
in Chapter 2)

+oo Vi
I =1Iysinp =1y Z Jn <VRlp> sin (90 + wyt + anFt),

n=—oo
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Figure 3.14.: Ideal current-voltage characteristic of a Josephson junction irradiated by mi-
crowaves at frequency wrp with Vi /Vzp = 8.

where J,(0) is the n-th Bessel function of the first kind of argument 6. The average value of
this current is 0 except when the DC voltage is such that w; = nwrp. At these voltages, the
current is

Vi .
I, =IopJ_p | — o.
0 (VRF> S1 O

The current-voltage characteristic consists of current peaks at voltages nVxp, called the Shapiro
peaks, as shown in Figure 3.14. The steps around 2A/e are due to photo-assisted tunneling
and are described in the next section. The dashed blue line is the ideal characteristic without
applied microwaves. The red curve has V3 /Vrr = 8. Due to the properties of the Bessel
functions, it is possible to have several peaks of non-negligible amplitude.

The supercurrent of the junction is also modulated by the microwaves. For V =0, then =0
term of the sum gives IyJo(Vi/Vrr)sinfy which is smaller in amplitude than the ordinary
supercurrent Ij.

As shown in the figure, it is possible to have I < 0 and V' > 0. This means that the junction
provides a positive power P = —IV to the DC power supply and acts as an active element!
This is only possible because this power is supplied by the microwave source. The junction
here converts microwave power to DC power. These Shapiro peaks are thus different in nature
from the peaks due to a resonance in the environment which can never have I'V < 0 as they
correspond to absorption of energy by the resonant system.

According to the calculations made just above, the linewidth of the Shapiro peaks is zero.
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3. Comprehensive model of a Josephson junction

In practice, the measured width is limited by the linewidth of the microwaves irradiating the
junction. Commercial sources allow for a linewidth of the order of 1 Hz, resulting in a voltage
linewidth of the order of 1{fV. This precise DC voltage could be used to bias the spectrometer
and thus provide a narrow emission linewidth. This is also one of the projects of the ® group
and is one of the perspective presented in the conclusion of this work.

3.4.2. Photo-assisted tunneling

Microwave signals can also provide energy to quasiparticles in the superconductors and help
them tunnel. If the junction is voltage biased at a voltage V = 2A/e — Vp (or higher), a
photon of energy eV} can raise the energy of quasiparticles on one side of the junction to the
level of free levels on the other side. This leads to an increased current between 2A/e — V)
and 2A/2. When the junction is biased at 2A/e — nVj, n photons of energy eVp can also
produce the same phenomenon. On the contrary, when the junction is biased at 2A/e + Vj,
the quasiparticle current is reduced because the tunneling of a quasiparticle is accompanied
by the emission of a photon of energy eVy. The resulting current-voltage characteristic is thus
modified around the gap voltage and consists of steps at V;, = 2A /e —nVj and downwards steps
at V,, = 2A /e +nVp. The amplitude of these steps can be calculated by a method introduced
by Tien and Gordon [29]. In presence of a DC voltage Vpe and microwaves at frequency
wgrF, we write the phase difference as in Equation (3.5) giving the following expression for the
voltage
V= VDC + V1 coswprrt.

The energy of a quasiparticle in the junction is thus F = eV, such that the quantum phase
factor exp (—iEt/h) writes

) \%
exp <—; <eVDct + j—l sianFt>> .
RF

Using the Jacobi-Anger expansion, this phase factor is

—%(EVDC"FTLEUJRF)t
Z Jn <2VRF>e 7 .

n=—oo

This can be understood as the quasiparticles being divided between the energy levels at eVpo +
nhwrpr with amplitudes the Bessel coefficients. The density of states is thus modified from
p(eVpc) without microwaves to

+oo 2
Vi
pRF(GVDc) = ng_oo p (CVDC + nﬁpr) In <2VRF> .

The quasiparticle current calculated in Section 1.2.3 without microwaves now becomes

2
N (Vpe) = Z Jn <2VRF) I} (Vbe + 2npowrr),

n=—0oo

where I3 (V) is the current calculated without microwaves. The steps visible in Figure 3.14
were calculated with this formula for V; /Vgp = 8.
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Figure 3.15.: Landau-Zener transition for a quasiparticle in a Josephson junction.

3.5. Background in the subgap region

3.5.1. Dissipative current carried by Andreev Bound States

When the current-voltage characteristic was first introduced in Chapter 1, the current at finite
voltage was assumed to be zero because no Cooper pairs or quasiparticles can tunnel since
there are no available states at the same energy. In the microscopic description of Josephson
junctions, the current at zero voltage is carried by Andreev bound states (ABS) in the junction.
However, at a finite voltage, some quasiparticles can tunnel through the junction via Landau-
Zener transitions [90,91] between two ABS. To estimate the magnitude of these processes, we
follow the work of Ref. [92].

At finite voltage V', the phase of the junction changes with a rate ¢ = V/¢g. As shown in
Figure 3.15 a quasiparticle starting from the ground state (the lower ABS) at ¢ = 0, will stay
in this state as the phase is swept to 27 and there is no current through the junction. There
is also a finite probability p;z to induce a Landau-Zener transition to the upper ABS. When
such a transition occurs, the quasiparticle which was in the lower band of the continuum at
¢ = 0 ends up in the upper band of the continuum at ¢ = 27. At this point, it can tunnel to
the other electrode and generate a current through the junction.

The Landau-Zener probability prz to have a transition between the two levels is given by
the following relation [0, 91],
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3. Comprehensive model of a Josephson junction

T (<5E)2> 7 (3.6)

e (‘%\;@e\m

where JF is the energy difference between the states |+) and |—) at ¢ = m where they are the
closest in energy. € is the energy difference of the states if they were to cross. In the case of
Andreev bound states, it is the energy of |+) with a transmission of 1. They are plotted in
Figure 3.15 in thin dashed blue lines. The Landau-Zener probability of Equation (3.6) holds
true as long as the sweeping is adiabatic which is when the sweeping rate is small compared
to the difference between the energy levels where they are the closest (h¢ < JFE). For a
conduction channel with transmission 7,

0E =2Av1 —T.

So, the condition to stay adiabatic is eV < Ay/1 — 7. For junctions with 7 < 1072, Ay/1 — 7/e
is of the order of 200 pV.

d . d @
Yol = 22A tim Lleos?
'dt6 o oom— dt 12
_ AV
o

This gives an expression for py 7,

TA
= ———(1-7)].
e exp< v ”)

This probability is higher for larger transmissions and reaches 1 for a transparent barrier. In the
case of a tunnel junction where 7 < 1, this probability is low. For instance, at V' = A/(10e),
prz ~ 1071 for 7 = 1073.

Considering independent channels, the total current associated with this process is Iaps =
Quyprz where @Q is the charge transferred in one cycle and vy = |V|/®q is the Josephson
frequency. This transition transfers as many charges as one single channel of transmission one.
The current carried by such a channel is A/(2¢p) sin¢/2, using the formula derived in the first
chapter. The charge @ is then

-1
A Y 2A
= — sin fdt = T
2¢0 Jo 2 14
This gives the following expression for the current carried by one conduction channel of trans-
mission T,
A TA
IABS:aneXp(—l—T>. 3.7
n(V)exp (=20 (1= 7) (37)

In the case of tunnel junctions, this current is negligible: with the gap of aluminum and
7 = 1073, the current is below 1072! A at V = A/(10e) which is much smaller than the typical
noise of 10 pA. Only transmissions above 0.75 result in a current above this noise background.
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3.5. Background in the subgap region

Figure 3.16.: Andreev reflection: an electron arriving at the interface between a normal metal
and a superconductor is reflected as a hole.

For a junction with several independent channels, the total current is the contribution of all
channels. So, only one channel with a high transmission can give rise to a large current.

Equation (3.7) is only valid for small voltages where the ABS slowly vary in time. At larger
voltages, the ABS are largely out of equilibrium and another formalism is needed to quantify
the resulting dissipative current, the multiple Andreev reflections (MAR).

3.5.2. Multiple Andreev Reflections

This process consists of tunneling of quasiparticles between the two superconducting electrodes
of a Josephson junction to which a finite voltage V' is applied. It was first introduced in the
1980s [93] and further investigated in the 1990s [91,95]. To explain it, we first need to under-
stand the Andreev reflection mechanism occurring at the interface between superconducting
and normal regions.

Consider an electron with spin up arriving from a normal metal to a superconductor with
energy below the gap as shown in Figure 3.16. The incoming electron is sketched as a full
blue circle with an arrow (representing its spin) pointing up. The simplest process that can
happen is a simple back-scattering as a spin-up electron (not depicted in the figure). Because
its energy is below the gap energy of the superconductor, it cannot go into the superconductor
as it is. The only possible way for the electron to enter the superconductor is to be coupled
to an electron with spin down going to the left via the superconducting pairing interaction
(represented as a light blue ellipse). This process implies that a hole with spin down comes
out of the superconductor (empty blue circle). It is called Andreev reflection. As it is elastic,
all electrons and holes have the same energy.

In Josephson junctions, Andreev reflections are the process giving rise to the Andreev Bound
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3. Comprehensive model of a Josephson junction

Figure 3.17.: Multiple Andreev reflection: an electron arriving at the interface between a nor-
mal metal and a superconductor is reflected as a hole.

States: the reflected hole then arrives at the left-hand side superconducting electrode and is
Andreev-reflected as an electron, forming a bound state in the junction.

If a voltage is applied across a Josephson junction, multiple Andreev reflections can occur
in the junction as sketched in Figure 3.17 for one conduction channel of transmission 7. The
two electrodes of the junction St and Sg are plotted at the same chemical potential and the
voltage V across the junction is represented as kinetic energy for the electrons and holes. A
quasiparticle from the left electrode crosses the insulating barrier and acquires an energy eV'.
There is only a probability 7 that the electron crosses the barrier and a probability 1 — 7 that
it is reflected directly by the insulator as an electron. When it arrives at the right electrode,
the electron is Andreev reflected as a hole and a Cooper pair is created in the right electrode.
The reflected hole crosses in turn the barrier (with probability 7) and loses energy —eV (or
gain eV'). It can also be Andreev reflected when it arrives at the left electrode resulting in the
destruction of a Cooper pair in the left electrode. After a certain even number of reflections
(2 in the figure), an electron reaches the right upper continuum. It is also possible that a hole
reaches the left upper continuum after an odd number of reflections.

A MAR process involving n reflections is called the MAR of order n + 1 and involves the
transfer of a charge (n + 1) e across the junction.

e When n is even, n/2 Cooper pairs are created in the right-hand electrode and n/2 Cooper
pairs are annihilated in the left-hand electrode. This makes a charge ne. To this charge,
e is added accounting for the quasiparticle ending in the upper continuum.

e When n is odd, (n + 1)/2 Cooper pairs are created in the right-hand electrode and
(n — 1)/2 are annihilated in the left-hand electrode. On top of that, a quasiparticle is
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Figure 3.18.: Experimental current-voltage characteristic of a Josephson junction with high
transmission channels and numerical fit using the technique of Ref. [90].

excited to the left upper continuum, equivalent to the breaking of one Cooper pair. It
makes a total of (n + 1) e transferred to the right.

For a given voltage V', the minimum number of reflections n is

(V) = E‘ﬂ 1

This corresponds to a transferred charge

QV) = ﬁﬂ ‘.

For the MAR of order n, the barrier is crossed n times, resulting in a current proportional to
7. As 7 < 1, the MAR of the lowest order n(V') is dominant.

The resulting current-voltage characteristic consists of steps at voltages V,, such that V,, =
2A/(ne): when V41 <V < V,, the n-th order MAR is dominant and the current scales as
7". The exact shape of I(V') is calculated for example in Ref. [07]. For a junction with several
conduction channels of transmission ¢, these MAR processes occur independently in all the
channels, so that the current is the sum over every channels

1v)y=> rm",

where k; is the proportionality constant between 7' and the resulting current. Figure 3.18
shows an experimental current-voltage characteristic of a Josephson junction with high trans-
mission channels. This junction was made small and with a thin oxide layer to allow for pin-
holes, channels with high transmission. The numerical fit was performed using the technique
developed in Ref. [90] to find the transmission of the conduction channels with a non-negligible
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Figure 3.19.: Experimental current-voltage characteristics of a Josephson junction at different
temperatures.

contribution to the current. In this case, the channels with a transmission larger than 1% have
7=081,7=0.12, 7 = 0.098, 7 = 0.07 and 7 = 0.026.

To make a spectrometer, a current-voltage characteristic such as the one shown in Figure 3.18
is not acceptable, as the background current is quite large and rapidly of the order of 10nA.
This greatly reduces the sensitivity of detection, proportional to the square root of the subgap
current. Junctions with low transmissions are thus needed for a sensitive spectrometer.

3.6. The quasiparticle branch

3.6.1. Temperature effect

At a finite temperature, it is possible for quasiparticles to tunnel through the junction due to
thermal activation. The effect of temperature on the current-voltage characteristic is shown in
Figure 3.19 where a Josephson junction of critical current of the order of 200 nA was measured
at different temperatures! with a large bias resistance of the order of 20 kQ2, approximately ten
times the normal resistance of the junction. There are two main features visible in the figure.

e The superconducting gap decreases when the temperature increases. This effect is
well described by the BCS theory and gives a dependence of the gap A as A(T) =

Aoy/1 — (T/Te)* with Ag the gap at zero temperature.

!The temperatures printed in the graph were obtained by fitting the IV characteristic with Equation (3.8).
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Figure 3.20.: Experimental current-voltage characteristic of a Josephson junction at 720 mK
and fit with and without the influence of the electromagnetic environment.

e The background current below the gap increases with temperature. This effect is ex-
plained in the following.

As explained in Section 1.2.3, the current due to quasiparticles is

- 2em

+oo
In(V) = h/_ ng (B +eVng (B) (f (E) — [ (E+ V) dE, (3.8)

where the temperature T appears in the Fermi function f and in the superconducting gap:

A(T) = Agy/1 — (T/TC)Q. At zero temperature this expression is exactly 0 for V' < 2A/e,
increases rapidly at 2A /e and tends to V/Ry at large voltages.

For a finite temperature, a current of quasiparticles can flow for V' < 2A/e because some
quasiparticles are thermally excited. This leaves empty levels for other quasiparticles to tunnel
in through the junction.

Figure 3.20 shows one of the current-voltage characteristics of Figure 3.19 in yellow and the
result of the integral (3.8) at 720mK in black. The current far below the gap (V' < 300puV)
and far above the gap, as well as the gap value are in good agreement with the experiment
but the shape around the gap is not well described by this integral. The discrepancy between
both comes from the electromagnetic environment of the junction.

3.6.2. Role of the electromagnetic environment

The presence of an electromagnetic environment can help quasiparticles tunnel through the
junction because they can exchange energy with it. Without environment, the quasiparticle

121



3. Comprehensive model of a Josephson junction

current is gi_x;en by Equation (3.8), which can be decomposed in tunneling rates towards both
directions, I'g(V') and ﬁ)(V),

Both tunneling rates are linked by ﬁ)(V) = I_‘O>(—V), and

T p eV)n
R) = g [ S B w0 @ evan,

This integral can be rewritten as

+oo /
To(V) = e211-'aN //_oo ns (£) ”i?(VE V) p(B) (1 f (' +eV)) 8(E — B')dEdE.
The Dirac function in this expression can be understood as the probability for a system with
energy E to change its energy to E’. This probability is 0 as soon as F # E’. Adding
the possibility for the quasiparticle to exchange energy with the electromagnetic environment
changes this probability to P(E — E’) [00,95]. For positive energy F, P(E) is the probability
for the environment to absorb E. For negative F, it is the probability for the environment to
emit E. At zero temperature, P(F) vanishes for negative energy as no energy is emitted. The
tunneling rate is now

1 T ng (E)ng (E' +eV) , y y
T(V)= E)(1— f(E' +eV)) P(E — E'dEdE'.
V) == ST B (- 1 (B V) P(E - )
A little algebra (done in Appendix G) allows finding an expression for the current in presence
of an electromagnetic environment,

. +oo 1— —BeV E
19w) = / ﬁp(ev — E)Iy (e> dE, (3.9)

—0o0

where 8 = 1/(kpT) is the inverse temperature and Ix (V) is the current without environment
calculated using Equation (3.8). Figure 3.20 shows in red the result of this calculation for the
same Josephson junction as before. The environment seen by the junction is modeled in this
case by the junction intrinsic capacitance (15fF) in parallel to a bias resistance of 450 2. The
model is now close to the experimental data.

Temperature decreases the gap and increases the background current. These two effects
are prejudicial to the sensitivity of the spectrometer. Working at a temperature well below
the critical temperature of the superconductor is thus a prerequisite for a sensitive spectrom-
eter. Dilution cryostats allow for an electronic temperature of the order of 100 mK, where the
quasiparticle current is negligible.
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Figure 3.21.: (a) Experimental current-voltage characteristic of a SQUID at 10 mK exhibiting
a backbending behavior and (b) detail around the gap voltage.

3.6.3. Backbending and oscillations

At low temperatures (< 100mK), the quasiparticle current below the gap calculated in the
previous section is negligible. However, the current of the quasiparticle branch is not fully
described by Equation (3.8) as can be seen in Figure 3.21.

For a bias voltage slightly larger than 2A /e, a dissipative current develops in the junction,
generating quasiparticles in the superconductors close to the junction. As they have a long
lifetime compared to the time it takes them to thermalize with the lattice [99, 100], they have a
non-equilibrium distribution which can decrease the superconducting gap. An exact calculation
of the gap in the BCS theory as a function of the generated quasiparticle density can be found
in Ref. [I01]. The result of this calculation gives a quasiparticle branch bent to lower voltages
in the current-voltage characteristic and is often called backbending.

The IV characteristic shown in Figure 3.21 has this typical shape for low currents. For
currents slightly smaller than 100nA, I(V) has a linear shape before entering a second back-
bending zone for higher currents. The reason for this is that this is not the IV characteristic of
a single Josephson junction but of a SQUID. If the gap is slightly different for the two junctions
of the SQUID, the current first flow through one junction where V' > 2A; /e while the second
stays at zero current because the voltage is smaller than 2As /e.

For current larger than 100 nA, there is a region with large current and voltage oscillations.
This is possibly due to an inhomogeneous gap in the electrodes due to the non-equilibrium
quasiparticle distribution [102]. To explain them, we consider a model in which the supercon-
ducting electrodes consist of two distinct regions a and b with gaps A, and A, (A, < Ap).
The current-voltage characteristics for region a is sketched in Figure 3.22 with a simple back-
bending modeling consisting of a negative differential resistance region. The two regions are
biased in parallel, such that both regions are at the same voltage. Starting form a bias voltage
below 2A,/e, both a and b are in the subgap region (mark (1) in the figure). Region a is
much smaller than region b because the quasiparticle density is close to the equilibrium one.
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Figure 3.22.: Quasiparticle oscillations process.

The current in region b between 2A,/e and 2A,/e is essentially zero, such that the total cur-
rent is dominated by the tunneling of quasiparticles of region a. As this current is small, the
negative differential resistance modeling the backbending is quite large. If it is higher than
the bias resistance (as in the figure), when the bias is increased from mark (1) to mark (2),
the current rapidly increases to reach mark (3) in the upper part of the IV characteristic of
region a. When the bias is further increased to mark (4), more and more out of equilibrium
quasiparticles are generated. This has for effect to increase the size of region a and thus rescale
the IV characteristic (the dashed blue line in the figure). At some point, the bias point comes
back to the lower branch of the IV characteristic at mark (5), at a voltage larger than mark
(2). Some out of equilibrium quasiparticles have had time to recombine, reducing the effective

size of region a. This process is then repeated until the bias current is large enough to be on
the resistive branch of the IV characteristic of both junctions.

3.7. Conclusion

In this chapter, we have seen that, if no special care is taken, the measured current-voltage
characteristic of a Josephson junction (or a SQUID) is not as simple as the ideal one presented
in the first chapter.

The critical current is reduced due to thermal noise and quantum fluctuations. These effects
are smaller for larger junctions and low temperatures. For small junctions, the supercurrent
peak deviates from a true zero-voltage state and has a resistive behavior, limiting the sensitivity
of the spectrometer at low voltages.

The low voltage region is inaccessible due to the retrapping phenomenon. Adding a shunt
capacitance in parallel to the junction allows decreasing the retrapping voltage and thus in-
creasing the low frequency bandwidth of the spectrometer.

A too inductive biasing circuit can generate several parasitic features to the IV characteristic:

124



3.7. Conclusion

a current plateau below a voltage as large as 50 1V in some cases, harmonics and sub-harmonics
of the Josephson frequency. Reducing the inductance of the leads and shunting them at high
frequencies with a capacitance allows reducing these effects.

Applying microwaves to a Josephson junction changes greatly its IV characteristic and can
be useful to generate a precise voltage to bias the spectrometer.

For voltages below 2A/e, a current can flow through the junction if the transmission of
at least one of its conduction channels becomes large. The spectrometer must therefore be
realized with a tunnel junction with low transmission.

The effect of temperature on the IV characteristic was also studied, showing that quasipar-
ticles can be thermally excited, giving rise to a current at voltages below 2A /e as soon as the
temperature becomes comparable to the critical temperature of the superconductor.

The next chapter explains how the spectrometer is designed in practice to suppress these
undesired features.
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4. Design of the Josephson spectrometer

The previous chapter described all the undesired features which can be encountered when making
a Josephson junction or a SQUID. We will now see how they are avoided in practice with a
well-thought design. To test a design, the current-voltage characteristic of the device is taken
at half a flur quantum. The desired IV characteristic consists of zero current at every voltage
between 0 and 2A/e. The ideal design will be exposed starting from the spectrometer core and
continuing with elements located farther and farther away.

The essential elements of the spectrometer are the two Josephson junctions acting as emitter
and receiver of photons. Their design will be discussed in the first place.

These two junctions are put in a superconducting loop forming a SQUID to improve the
spectrometer as discussed in Section 2.2. This loop is also crucial to the good operation of the
spectrometer and will be described subsequently.

Then we will turn to the on-chip electromagnetic environment of the SQUID which need to
be designed carefully as seen in Chapter 3.

Finally the off-chip measuring setup, also of paramount importance, will be exposed.

4.1. Design of Josephson junctions

4.1.1. Superconductor material

In order to have the largest bandwidth for the spectrometer, the material with the largest
superconducting gap A should be used as the sensitivity is greatly reduced for frequencies above
4A/h. The most promising candidates compatible with usual nanofabrication techniques are
niobium (A ~ 1.5meV), lead (A ~ 1.1meV), tin (A ~ 520peV) and aluminum (A ~ 190 ueV).

4.1.2. Thickness of the junctions

In order to have a good sensitivity, the background current I, at voltage below 2A /e needs to
be small enough so that the shot noise in the junction is smaller than the Johnson noise of the
bias resistor Ry, 2el, < 4kpT'/ Ry, as seen in Section 2.4.5. For a typical bias resistance of 1k(2,
this makes an upper limit for the background current of 15nA at 100mK. The calculations
of Section 3.5 show that the transmission of the conduction channels forming the junction
has to be quite low for that purpose. This is achieved by making a thick insulating barrier.
The simplest way to make such a barrier is to let the superconductor oxidize in an oxygen
environment, creating a native oxide layer, usually insulating. Unfortunately, niobium native
oxide creates strain at the interface between niobium and niobium oxide resulting in bad
Josephson junctions [103]. However, it is possible to make hybrid niobium (Nb)/aluminum
(Al) junctions, with a Nb/Al/AlOx/Al/Nb structure, taking advantage the high quality of
aluminum oxide (AlOx). But this is a more complicated process which requires niobium layers
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Figure 4.1.: Experimental current-voltage characteristic of a Josephson junction with low sub-
gap current.

with a small roughness obtained by sputtering. At College de France, we do not have a
sputtering system and therefore do not use niobium for tunnel junctions. One of the projects
of the group, mentioned in the Conclusion, is to develop good niobium based junctions to
increase the bandwidth of the spectrometer. Lead and tin are not used either because they
do not make good tunnel barriers. However, aluminum is quite easy to process with a simple
electron beam evaporator.

This is the reason why all junctions described subsequently are made of aluminum. The
insulating layer is grown in a 200 mbar pressure of pure oxygen during 10 min. This results in
a ~ 1nm thick barrier.

With such barriers the measured current in the subgap region is lower than 100 pA as shown
in Figure 4.1 for a junction of critical current of the order of 100nA. The left panel is the
current-voltage characteristic and the right panel is the same curve with a logarithmic scale
to highlight the current amplitude. The measured device is a SQUID biased at half a flux
quantum so that there are as few features as possible. The current rise after 200pV ~ A/e
is due to excitation of the quasiparticle by photons of energy 2A. This feature is described in
more details in Section 5.2.

The thickness t of the barrier also determines the supercurrent density as well as the surface
capacitance:

e According to the Ambegaokar-Baratoff relation (Equation (1.14)), the supercurrent of a
Josephson junction is proportional to its normal conductance Gp. As the phenomenon
responsible for this normal conductance is tunneling, G is exponential in the thickness
of the barrier. The fabricated junctions are highly inhomogeneous in thickness due to
the roughness of the aluminum surfaces. Only the regions with the smallest thickness
actually contribute to the supercurrent density. In general, this represents ~ 10% of the
surface. The distribution of thicknesses is independent of the surface of the junction,
such that the normal conductance is nevertheless proportional to the surface. For the

128



4.1. Design of Josephson junctions

oxidation described just above, the measured supercurrent density jg is of the order of
80nA pm~2.

e The capacitance can crudely be estimated by C' = ep&,S/t where ¢, is the dielectric
constant of the barrier, S the surface of the junction and ¢ the average thickness of the
insulating barrier. For an alumina (e, ~ 10) barrier of 1 nm thick, the estimated surface
capacitance is Csx, = 80 fF pm~2. This value was not directly measured experimentally.

If the supercurrent density and the surface capacitance are fixed, the plasma frequency of
the junctions is also fixed by

Jo
©0Cx:

Wp =

This plasma frequency was directly measured using Josephson spectroscopy. The experimental
setup and spectrum are described in Section 5.3. These measurements give w;, = 27 x16.0 GHz.

Using the measured values of supercurrent density and plasma frequency, it is possible to
get a value for the surface capacitance: Cyx, = 25fF pm~2. This value is quite different from
the estimated value of 80 fF pm~2. The discrepancy mainly comes from the junction not being
made of two infinite parallel plates. Their finite size allows for large fringing fields increasing
the capacitance.

The intrinsic Stewart-McCumber parameter (Equation (1.43)) of the junctions is also fixed
by their thickness. In the RCSJ model, the quasiparticle leakage resistance of the junction R

is inversely proportional to the surface and only depends on the oxide quality,

B R%I,C B R%j0Cs:

®0 o
With the above values of jy and Cs;, a B¢ of 1 corresponds to a resistance of Ry, = 400 Q pm?.
The typical measured values of leakage resistance are larger than 1 MS2 for junctions of area
~ 1pm?. The junctions are thus well in the underdamped limit. When put in an electrical
circuit, B¢ is largely decreased. For instance when a bias resistance R, < R is in parallel to
the junction, Sc becomes

Bo

R%IOC
20

B = < Be.

4.1.3. Area of the junctions

The area of the junctions determine the critical current and the capacitance of the junction.
The larger the junctions, the larger the critical current and capacitance. As seen in Chapter 2,
the minimal detectable absorption rate is proportional to the square root of the critical current.
Small junctions are thus needed in order to have a good sensitivity.

In order for the spectrometer to operate in the linear regime where the resonant peaks have
a Lorentzian shape, the z parameter introduced in Chapter 2 (z = Iy/(VoGe) with G the real
part of the admittance at the resonance voltage Vj) has to stay small. Small junctions are thus
favorable for that purpose.

In practice, because we use an optical lithography setup (see details in Appendix H), the
resolution of the designs is limited by the size of the laser spot of the order of 1 ym. With the
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4. Design of the Josephson spectrometer

two-angle evaporation technique, the overlap between the two superconducting electrodes in
the junctions is not limited by the resolution of the lithography but by the precision on the
angle in the evaporator, resulting in an overlap of ~ 100 nm. The minimal size for a junction
is thus of the order of 0.1 pm?.

The spectrometer is not made of one junction, but of two junctions which have to be as
similar as possible. As seen in Section 2.2.3, to have a good decoupling from the bias circuit
and the external electromagnetic environment, the ratio a between the two critical current
has to be as close to one as possible. Experimentally, the minimal reproducible width of the
junction obtained is of the order of 1.5 ym and the minimal reproducible overlap of the order
of 300nm. This makes junctions of area 0.5 um? which have a critical current of the order of
40nA.

4.2. Design of the SQUID loop

When the SQUID-shaped spectrometer was introduced in Section 2.2.2, an intrinsic LC mode
appeared, due to the junctions capacitances and the loop inductance. Its resonance frequency
1/v/LCs, where L is the loop inductance and Cy the series combination of the two junctions
capacitances, can be in the operating frequency range of the spectrometer and hide features
which are close to this frequency. It is thus necessary to make this frequency larger than 4A/h,
the upper limit of the operating range of the spectrometer. For two aluminum junctions of
0.5m?, with a surface capacitance of 25 fF pm~—2, a loop inductance smaller than 130 pH is
required to have the resonance frequency above 4A/h = 180 GHz.

The inductance of the loop also needs to be smaller than the Josephson inductance of the
junctions, such that the phase drop induced by an applied magnetic flux mainly occur across
the junctions and not across the loop inductance as explained in Section 1.3. This allows being
able to have the phase differences of the junctions separated by 7, where the decoupling is
maximal. For junctions of 0.5 pm?, Iy = 40nA and the Josephson inductance is L; = 16 nH.
If the condition to have the SQUID intrinsic LC mode at a frequency larger than 180 GHz
(L < 130pH) is satisfied, g, = L/L; < 1, which allows good flux biasing.

Following this reasoning, the loop should be as small as possible, but if the coupling is made
using the loop inductance, it should not be zero! The best compromise is thus to have the
largest inductance L satisfying both 1/4/LCs > 27 x 180 GHz and 1, < 1. This gives a value
of 130 pH for two junctions of 0.5 pm?.

To get the size of the loop needed to have L = 130 pH, two contributions to the inductance
have to be taken into account: the geometrical inductance Ly, due to the magnetic field
generated by the current flowing in the wire and the kinetic inductance Lx due to the inertial
mass of charge carriers.

4.2.1. Geometric inductance

In first order approximation, the SQUID loop is made of two parallel wires as sketched in
Figure 4.2. The thickness of the wires t is considered much smaller than their width a. The
length of the wires [ is considered much larger than the distance d between them.

If the two wires are sufficiently far away, the inductance of the loop is just the sum of the
contribution of the wires [101],

130



4.2. Design of the SQUID loop

=

d | Josephson junctions — &

Figure 4.2.: Sketch of a SQUID.
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where pg is the vacuum permittivity. If the wires are closer, a current flowing in one arm

can induce current in the other and the correct value for L., is Ly — M where M is the

mutual inductance between the two wires. Exact expressions for M can be found for instance

in Ref. [101]. There are also simulators available on the internet to estimate the value of L,

for a given circuit. For example, two parallel wires of section ¢ x a = 100nm x 5 pm and length
= 100 pm separated by a distance d = 25 pm give an inductance of Lge, ~ 120 pH.

4.2.2. Kinetic inductance

When a DC current flows through a superconducting wire, there is no resistance. But if the
current is not DC and varies with time, the charge carriers (the Cooper pairs) will not react
instantly due to their mass. This delay is similar to an inductive behavior. To prove it and
estimate the kinetic inductance L of a superconducting wire, we calculate the kinetic energy
of the Cooper pairs traveling at a speed v. For a wire of length | and surface S, this energy is

1
Ex = 5 (2me) (nslS) v,
where 2m, is the mass of a Cooper pair and n is the density of Cooper pairs. If an AC current
I is flowing through this wire, the speed v is related to the current by: I = 2evn,S. Injecting
this expression in the kinetic energy gives

_ L omel
22e2n,8

This expression is the same as the magnetic energy of an inductance Ly through which a
current I flows, with

K

el
K= 2e2n, S’

(4.1)
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4. Design of the Josephson spectrometer

It is possible to find a relationship between L and Ry the normal state resistance of the same
superconducting wire if we consider a piece of wire of length £, the superconducting coherence
length. A current I flowing through it induces a phase drop ¢ = LiI/pp. If this phase drop
becomes of the order of 27, superconductivity is lost because coherence in a Cooper pair is
broken. The current such that ¢ = 27 is thus the critical current of the wire Iy. This gives

LIy = ®y.

We have seen in Chapter 1 that the critical current of a tunnel junction is linked to its normal
state resistance via the Ambegaokar-Baratoff relation Ryly = mA/e. For a weak link with a
higher transmission this relation is not true but the Ry Iy product stays proportional to A/e,
at least in the short limit where the length of the weak link is of the order or smaller than
& [11]. This can be applied to our short superconducting wire, comparable to a weak link in
the short limit to give

h
L —Ry.
KO(AN

A more exact derivation of Ly within the BCS theory is performed in Appendix J, based
on [11], yielding
h

Ly = —Ry.
K= NI

For aluminum, this impedance is quite low. Considering the same two wires as before (of cross
section t X @ = 100nm X 5um and length 100 pm), this kinetic inductance is close to 5pH
which is much lower than the geometric inductance of 120 pH.

For metals with smaller gap such as titanium (A ~ 501eV) or hafnium (A ~ 20 peV), this
kinetic inductance can be much higher. For the same wires, it reaches 300 pH for titanium and
800 pH for hafnium.

The SQUID in Figure 4.3 is a typical design of a spectrometer. The blue and red zones are
aluminum electrodes forming the SQUID. Purple zones are overlap regions. The two Josephson
junctions of the SQUID are denoted JJ and indicated by black arrows.

The total inductance of the loop is of the order of L = 45 pH and the critical current of the
SQUID is Ip = 40nA. This makes a capacitance of 35fF per junction and thus a resonant
frequency of 182 GHz, just above the gap voltage. The [, ratio is quite small: gy = 0.05 < 1.

4.3. On-chip electromagnetic environment

As discussed in Chapters 2 and 3, the bias circuit is crucial for the good operation of the
spectrometer. It can broaden the probe system absorption linewidth, influence the noise seen
by the Josephson junctions, increase the retrapping voltage, add spurious resonances, modify
the low-voltage part of the current-voltage characteristic or contribute to the generation of
sub-harmonics and harmonics of the Josephson frequency.

The main constraints we have on the design is that it has to let the DC bias current flow
and stop all high-frequencies signal (noise and Josephson oscillations). There should also be
an inductive element through which the oscillating Josephson current flows to allow coupling
to a system of interest, as well as a bias resistor to apply a current.
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Figure 4.3.: False colors SEM picture of a SQUID.

4.3.1. Highly inductive leads
Preliminary considerations

The simplest bias circuit satisfying these constraints is shown in Figure 4.4, where the spec-
trometer is the SQUID colored in blue. The inductance of its loop allows coupling to a system
of interest and is not represented in the figure. The black inductors of the diagram are un-
avoidable. They represent the aluminum wirebonds used to connect the sample to the biasing
circuit, consisting here of a voltage source V4, a bias resistor Ry across which the current can be
measured and a filtering capacitor C to filter out high-frequency noise. The element realizing
the decoupling of the spectrometer from the electromagnetic environment is the inductance Ly
(in red). It has a negligible impedance at low frequencies and thus allows current biasing and
a high impedance at high frequencies. It can be fabricated in a superconductor with a high
kinetic inductance (such as titanium or hafnium) to grant a higher inductance, ~ 10 pH pm ™!
for a titanium wire with section 100 nm x 1 pm. This value is to be compared to the geometric

inductance of a wire close to pig ~ 1.3 pHpm™!.

This bias circuit is an RLC series resonator for which the calculations made in Chapter 2
predict a series type resonance (dip in the current) at

1

V (Lb + Lw) C1f’

We =
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Figure 4.4.: Schematic of the spectrometer with inductive leads.

as well as a parallel type resonance (current peak) at

\/1+Cf
wo = We )
0 C

where C' is the sum of the capacitances of the junctions. For 50pum long titanium leads
(Ly = 1nH), 5mm long wirebonds (L,, ~ 10nH) and C; = 1nF, w, is of the order of
21 x 50 MHz. With C of the order of 100 {F, wy = 27 x 5 GHz.

However, such a schematic is a simplified vision of the situation. A more refined model of
the situation consists of replacing the inductances (both on-chip and wirebonds) by lossless
transmission lines as they can be quite long (some mm for the wirebonds) and their length can
reach the wavelength (~ 6 mm at 50 GHz in vacuum).

The inductive leads form microstrip lines (5], represented in Figure 4.5 in red. Estimating
the effective permeability and permittivity allows obtaining the speed of light and thus the
resonant frequencies. They are the electromagnetic parameters of an equivalent homogeneous
medium replacing the substrate and the air around the microstrip line.

The effective permittivity of a microstrip line is calculated in Ref. [07],

e tl -1 1

ge = + :
2 2 1128

with the notations of Figure 4.5. In our case, d = 350pm and W = 1pm, such that this
expression reduces to

er+1
Ce=—5

This gives for a silicon substrate with ¢, = 12, e, = 6.5.
As the wire is superconducting, the magnetic field can penetrate in a depth of the order
of the London length A. Swihart [105] gives a value for the effective permeability in the case
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£

Figure 4.5.: Microstrip line.

where the width of the line is of the order or larger than the thickness of the substrate,

Acoth (&
o =1+ Cod(,\)_

For titanium, A is of the order of 1um, such that p. for a ¢ = 100nm thick wire can be
expressed as

)\2

~14+—.

He + i
However, the limit W > d considered by Swihart is not achieved in our case. Belitsky et
al. [106] analyzed the case of arbitrary W/d ratio and found that the A\/d factor calculated

by Swihart has to be multiplied by a factor of order 10. In our case, u. stays close to 1, as
ALd,t.

This gives a speed of light v = ¢/ /Ecfte ~ ¢/2.5 which can give rise to resonant modes
at low frequencies. The characteristic impedance of the microstrip lines made of titanium is
Zms = Zo\/ lre/€e ~ 1508, where Zy = \/po/eo = 3772 is the impedance of vacuum.

The aluminum wirebonds connected to the chip also form a transmission line. They can
be considered as two parallel wires of radius r ~ 50 um separated by a distance d ~ 1 mm in
vacuum. In that case, the speed of light is close to ¢ because r < d and the kinetic inductance of
aluminum is smaller than the geometric inductance of the wires. The characteristic impedance
Zup 1s also close to that of vacuum.

Due to the change of impedance between the on-chip titanium microstrip lines and the
aluminum wirebonds, there can be resonant modes in the microstrip lines. Because Z,,,s > Z»,
the wirebonds can be approximated by a short circuit. At the other end, they are connected
to the junctions, acting as a microwave current source which can therefore be considered as
an open circuit. Resonant modes in the microstrip lines thus satisfy (n + 1) \/4 = L, where X
is the wavelength of the wave, L is the length of the lines and n is an integer. This gives the
resonant frequencies y
i
These modes are at frequencies larger than 180 GHz, as soon as the length of the leads is
smaller than 170 pm. In practice, it is easy to design leads smaller than this value.

vp=(n+1)
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Figure 4.6.: False colors microscope picture of a SQUID with high inductive leads (in red).

For the wirebonds, the filtering capacitance Cy acts as a short-circuit for high-frequency
microwaves. The other side of the line is an open circuit as Z,,s > Z,», leading to resonant
modes such that (2n + 1) \/4 = L', where X is the wavelength of the wave, L’ is the length of
the wirebonds and n is an integer. This gives the resonant frequencies

v, =(2n+1)—.

The first one, vy, is at 15 GHz for 5mm long wirebonds. To have this mode above 180 GHz,
the maximal length L’ is 400 pm, which is quite hard to manage in practice.

Experimental realization: sample SSQ05

Figure 4.6 shows a microscope picture of sample SSQO05, a SQUID with inductive leads, high-
lighted in red in the figure. They are made of titanium and have a section 100 nm X 1 pm.
Each lead is 50 pm long, granting the microstrip modes v, to be above 180 GHz. Using the
same notations as above, L, = 1nH. The SQUID loop (in blue) was made quite small in order
to have the SQUID LC resonance out of the frequency range.

Figure 4.7 shows the current-voltage characteristic of this SQUID at reduced flux 0 and .
The maximal switching current is quite low: ~ 20% of the critical current. This is mainly due
to the fact that the junctions are small and thus more sensitive to noise. The filtering circuit
was also not optimal at the time of these measurements, resulting in a high noise density. At
we = 0, the IV characteristic consists of a typical relaxation oscillation shape, explained in
Section 3.3.2 and represented in dashed green line in panel (b). On top of it, several narrow
peaks are superimposed. The shape of the IV characteristic after one of such peak is also due
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Figure 4.7.: (a) Current-voltage characteristic of a spectrometer with inductive bias, at reduced
flux ¢ = 0 and 7 ; (b) Zoom on the low voltage region ; (¢) Map of current-voltage
characteristics ; (d) Current-voltage characteristic in log scale.
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to relaxation oscillations. One pattern seems to be repeated in the characteristic: one peak
followed by two smaller peaks (the first peak is indicated with green arrows in (b) and (d)).
At lower voltage, the structure is less clear, probably because of the relaxation oscillations.
Two following patterns are separated by ~ 16 pV, corresponding to a frequency of ~ 8 GHz.
2 cm long wirebonds could be responsible for such a spacing. The resonant modes at the origin
of these peaks are located out of the loop because their amplitude is maximal at ¢, = 0 and
decreases when @, — .

The SQUID has an excellent symmetry ratio: the remaining supercurrent at ¢, = 7 is only
500 pA, compared to a theoretical value of 92nA at zero flux bias. This gives a ratio between
the area of the two junctions of o = 0.989. This allows for a good decoupling from most of the
off-loop modes at ¢, = w. Only four peaks remain at Vi = 17pV, Vir = 34pV, Vin = 51pV
and Vo = 211V as can be seen in the blue curves. The three first are most likely harmonics of
the same resonance or correspond to multiple photon processes, as Vi» = 2V; and Vi» = 3V7.

Advantages: High inductive leads allow for good quality factors as they do not add dissipation.

Drawbacks: They lead to relaxation oscillation phenomena and do not decouple efficiently
from off-loop resonances.

4.3.2. Inductive leads and shunting capacitance
Preliminary considerations

To limit the relaxation oscillations, the leads can be made less inductive and a shunt capaci-
tance can be added just after the inductive leads as depicted in Figure 4.8. This capacitance
adds to the capacitance of the junction in the RLC circuit responsible for relaxation oscilla-
tions. Another beneficial effect is to shunt all emitted microwaves with frequencies higher than
1/(v/LyCs), with Ly, the inductance of the wirebonds and Cg the shunt capacitance. Above
this frequency, which can be of the order of 27 x 5 GHz with Cs = 1pF and L,, = 1nH, the
capacitance has a low impedance compared to that of the wirebonds. It also forms a low-pass
filter with the inductance of the leads L; for high-frequency noise coming from the voltage
source and the “hot” part of the circuit.

However, there are several resonant frequencies in this circuit. The impedance seen by the
junction is
1

iCrw
1-LyCrw?
As 1/,/LCf5 is of the order of 15 MHz for Cy = 100nF and L., = 1nH, the admittance can
be expressed as (at frequencies higher than 15 MHz)

Lo = iwa +

1Csw +

1 1 — L,Cguw?
Y, = - — 5 (4.2)
i(Ly+ Ly)w1— ﬁcsw

In the limit where L, < L,,, the condition for parallel resonances, $(Y,) = —iCw, with C' the
capacitance of the SQUID, can be written
1 — LyCgw?

CLyw? = —— w59
Y T I T L,Ow?

138



4.3. On-chip electromagnetic environment

L,/2 Ly/2
(Y Y Y Y

Ry ¢, )

AN AT
Ly/2 Ly/2

Figure 4.8.: Schematic of the spectrometer with inductive leads and a shunt capacitance.

This equation has two solutions which are (when the capacitance of the junctions is smaller
than the shunt capacitance)

wo = .
2T VIO
Typical values are L,, = 1nH, Cs = 1pF, L, = 100pH and C = 100fF. This gives w; ~
27 x 5 GHz and w9 ~ 27 x 50 GHz.
The admittance of Equation (4.2) also has a pole at

Lb —+ Lw 1
B EN LLuCs  VLos " z

where a series type resonance occurs.

In addition to resonances at wi, wo and ws, the microstrip line and the wirebonds also
contribute to the spectrum, with modes at the same v, and v}, as before.

Figure 4.9 shows a simulation of the response of the junctions to the circuit shown in Fig-
ure 4.8 where the wirebonds are modeled by a transmission line of fundamental frequency
15 GHz, corresponding to ~ 5mm long wirebonds. The inductive lines are assumed small
enough for v, to be above 180 GHz. The junctions are replaced by a capacitance C' = 100 fF in
parallel with an alternative current source of amplitude Iy = 100 nA, the frequency of which is
swept from 1 to 100 GHz. This current creates an alternative voltage of complex amplitude V,,
across the SQUID. The vertical axis of the graph is the real part of V,, divided by the equivalent
DC voltage Vpo = ¢pow. This quantity z. is related to the real part of the impedance Z. of
the circuit seen by the SQUID and thus to the losses in the circuit corresponding to peaks in
the IV characteristic:
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Figure 4.9.: Reduced real part of the impedance of circuit 4.8 seen by the SQUID.
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According to the calculations of Chapter 2, the minimal detectable z in a § f bandwidth is

2€]€BT(5f
Zmin = 4\/ —.
WAIO

In a 1 Hz bandwidth, a junction with 100 nA can detect at 100 mK a value of zpin ~ 1076, This
is represented by a black dashed horizontal line in the graph. The blue curve with Cg = 2{F
corresponds to the situation where there is no shunt capacitance. This value is an estimate
of the capacitance between the two pads, through the ground plane. The curve exhibits wide
peaks close to the resonance frequencies of the transmission line. When a shunt capacitance
is added, these peaks are slightly displaced and get sharper. The peak at frequency f; also
appears (close to 40 GHz for C's = 100 fF and close to 20 GHz for Cs = 1pF). A capacitance
as large as possible is thus advantageous to have a simple IV characteristic.

The simplest way to make a large capacitance is to use two metallic plates separated by a
layer of dielectric. The resulting capacitance is then given by Cg = ¢,£05/s where S is the area
of the plates and s is the thickness of dielectric of relative permittivity ¢,. To get C's > 1 pF,
two 25 x 25 pm? plates separated by 50 nm of alumina are sufficient.

But there are possible resonant modes in such a structure. If we consider two metallic plates
of dimensions L x [ separated by a thickness s of a dielectric of permittivity ¢ = .69 and
permeability 19, microwaves can propagate at a speed v = c¢/,/e,; in the dielectric. If the
structure is closed (or open) at both sides, there are resonance modes at frequencies f such
that A\/2 = (m?/1* + nQ/LQ)_1/2, where A = v/f is the wavelength of the wave and m and n
are two integers with mn # 0 [65]. This gives resonant frequencies
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=52\ (7) + ()"

For the spectrometer, these resonant modes are undesired. Fortunately they can easily be
pushed to frequencies higher than 180 GHz. The lowest resonant frequency is fo 1 if L > .
fo,1 > 180 GHz corresponds to L < 260 pm with alumina as dielectric (e, ~ 10).

However, when using superconductors, this rationale is not sufficient. The magnetic field
of the light traveling in the transmission line penetrates in the superconductor on a thickness
close to the London penetration length. This has for effect to reduce the speed of light in the
dielectric [105]. An effective relative permeability can be derived for two superconductors of
thickness ¢; and t2 and London length A; and s,

feg =1+ /llcoth/t\ll + ?cothf\z.

To minimize this effect, the dielectric and aluminum thicknesses have to be as large as possible.
The characteristic thickness is the London length which is close to 100 nm in aluminum. With
a thickness of 150nm for the two aluminum planes, the two coth functions give a value of
1.1 close enough to 1. However, increasing the dielectric thickness decreases the capacitance
value. A thickness of 125 nm for the dielectric is a good compromise, giving p.g ~ 2.8. This
decreases the maximal dimension admissible for the design by a factor /meg ~ 1.7. The
condition L < 260 pm is transformed in L < 155 pm imposing a more restrictive design. But a
40 x 40 pm? square is sufficient to get C's > 1pF. It is even possible to reach C's = 7 pF with
a 100 x 100 pm? square.

Experimental realization: sample SSQ14

Figure 4.10 shows sample SSQ14, a sample with inductive leads (in red) and two shunt capac-
itors (in orange). Using two capacitors instead of one not only allows for a capacitance value
twice as big, but also reduces high-frequency magnetic noise: in the design, there appears to
be two loops (each delimited by one capacitor and the inductive leads) which are closed at
high-frequency and can thus only be threaded by quantized values of high-frequency flux. The
high-frequency magnetic field generated by the alternative current in the SQUID loop is also
contained in these loops due to the Meissner effect forbidding the magnetic field to cross the
superconductors.

The inductive leads (in red) are made in aluminum. They are 65pm long, 1 pm wide and
100 nm thick, resulting in an inductance of ~ 70 pH per lead. Each orange plane in the figure
is a 100 x 250 pm? rectangle of 150 nm thick aluminum, separated by a thickness ¢ = 125 nm
of alumina from the large aluminum planes (in light yellow in the picture). This results in two
series capacitors U4 of section S = 100 x 100 pm?. The total capacitance per orange plane is
thus C, = Csq/2. The total shunt capacitance is Cg = 2C, = Csy = 7pF.

Figure 4.11 shows the current-voltage characteristic of this SQUID at reduced flux 0 and
w. The maximal switching current is almost equal to the critical current of the SQUID,
showing good noise filtering. At ¢., the switching current is reduced to 2.5 nA, showing a good
symmetry ratio of a = (0.98.

141



4. Design of the Josephson spectrometer

100 ym
—_—

Figure 4.10.: False colors microscope picture of a SQUID with inductive leads (in red) and two
shunt capacitors (in orange).
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against the reduced flux ; (d) Map of current-voltage characteristics ; (e) Current-
voltage characteristic in log scale.
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The backbending shape of the quasiparticle branch at 2A /e is due to heating caused by the
quasiparticles, as explained in Section 3.6.3. The rise of the current at . when V' — 2A/e is
believed to originate from the LC resonance of the SQUID loop. The inductance of the loop
is estimated to ~ 25 pH and the capacitance of each junction to 50 fF, leading to a resonant
voltage of 41511V. Because this corresponds to a frequency of 200 GHz above 2A /h ~ 90 GHz,
the real part of the impedance of the loop is not zero. Quasiparticles can be excited at such
frequencies, as explained in Section 5.2. This decreases the quality factor of the LC resonance
and increases its width, making it visible far from the resonance frequency. The green curve
in graph (c) shows the intensity at a voltage V' = 3601V (represented by a green dashed line
in (d)) plotted against the flux, in the rising part of the IV characteristic. This evolution is
out of phase with the orange curve, which is the switching current of the SQUID. All of this
is consistent with this peak being the SQUID loop LC mode.

For this sample, the capacitance C of the SQUID can be estimated with the critical current
of the SQUID, C' ~ 100fF. The inductance of the bias lead is geometrically estimated at
Ly ~150pH. Cg = 7pF and L,, ~ 1 nH. This gives wy ~ 27 x 2 GHz and wy ~ 27 x 41 GHz.
The position of the estimated w; and wy are indicated in panel (e) by vertical green lines, as
well as wy/2 and 2ws. They are quite close to peaks in the IV characteristic.

To understand the origin of the remaining modes, the device was simulated using a high fre-
quency electromagnetic software for planar circuit analysis: Sonnet. Details on this simulation
are given in Appendix K.1. It predicts one resonant mode at wy = 27 x 24 GHz, corresponding
to current circulating around the central loop of the design, similar to an electric dipole.

Most of these peaks disappear at ¢, = m, where only three peaks remain, two of them have
resonant voltages multiple of one another.

Advantages: The inductance of the leads allows for good quality factors. The shunt capaci-
tance helps to reduce the relaxation oscillations and decoupling from off-loop resonances.

Drawbacks: Some off-loop resonances are still present.

4.3.3. Inductive leads, shunting capacitance and series resistance
Preliminary considerations

Adding a resistance in series with the previous circuit can damp the remaining off-loop modes,
so that they do not appear in the spectrum. Figure 4.12 shows the schematic of such a circuit.
With the shunt capacitance, the series resistance form a low pass filter allowing only microwaves
with frequency lower than 1/(RsCyg) to leave the SQUID. With a shunt capacitance of 7pF, a
resistance of 100 €2 makes a cut-off frequency of 200 MHz, filtering out most of the frequencies
of interest.

Figure 4.13 shows how the resistance damps the modes of the transmission line formed by
the wirebonds. The horizontal line at z,,;, is the detection threshold of the spectrometer. The
larger the resistance, the broader the resonance peaks. For R; = 1000 €2, only the peak due to
the bias inductance and the shunt capacitance remains.

At . = 7 for a symmetric SQUID, this resistance does not affect the width of the resonance
peaks as no microwave current can leave the loop in principle. However, if the SQUID is
asymmetric, there can be an alternative current flowing through the resistance whose effect
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Figure 4.12.: Schematic of the spectrometer with inductive leads, a shunt capacitance and
resistive leads.

is to reduce the quality factor of the resonances. For a SQUID with symmetry ratio «, the
current out of the loop is (1 — a) I and the current in the loop is (14 «) I¢ at @, = 7. If
we call Y, the admittance seen by the SQUID in its loop and Yj, the admittance out of the
loop, the total admittance seen by the SQUID is

Y=01-0a)You+ (1+a)Y.

At a parallel resonance in the loop, R(Yin) = 1/ R, and R(Yoy:) = 1/Roye. If no current flows
out of the loop, the quality factor of the resonance is given by Q;, = Y.Ri,/(1 + «), where

Y, is the characteristic admittance of the mode. In presence of current out of the loop, it is
modified to @ = Y, /R(Y), such that

11—« Rm>_1

=Qin |1
Q Q < +1+04R0ut

Ryt is dominated by the resistance of the leads, R,: ~ Rs. A large resistance is thus desirable
to keep this modified quality factor as large as possible, as well as two identical junctions in
the SQUID.

The bias current flows through this series resistance, which can cause heating of the substrate
and thus heating of the superconductors. This is an unwanted effect which can dramatically
affect the shape of the current-voltage characteristic. To estimate the temperature increase,
consider the current flowing through the spectrometer at a resonance peak of I ~ Ij/10.
With Iy = 100nA, this current generates 10 fW when flowing in a 100 €2 resistor. This power
heats the electrons to a temperature T,. They can then cool by exchanging energy with the
phonons (at a temperature 7),). The rate at which this energy transfer occurs is given by
Pewsp = X0 (T (f’ -T ;’) where 2 is the volume of the resistance and ¥ the electron-phonon
coupling constant depending on the material and of the order 1nWpm—2K=5 [107]. When
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Figure 4.13.: Reduced real part of the impedance of circuit 4.12 seen by the SQUID.

the phonons are totally cooled to the substrate temperature T (assumed much lower than
T, and T,) the electrons can only cool down to (PJ/(EQ))1/5 because of the power P;. For
P; = 10fW, a volume larger than 1pm? is needed to ensure 7' < 100mK. For instance, a
metal of thickness 100nm and width 1 pm has to be at least 10 um long to keep the electrons
cooler than 100 mK.

If this resistance is made too long, microwaves can propagate in it but will be attenuated
because of dissipation. Considering a transmission line along the z axis. The power of a
wave injected at z = 0 propagates as e~27* towards the positive 2 direction. In the case of a
transmission line with inductance per length £, capacitance per length C and resistance per
length R, the propagation constant v is given [03], at a frequency w, by

v =+ (iLlw+ R)iCw,

R
vy =1wVLCA/1 —i—(—.
Lw
If we assume for the moment a transmission line with low losses, R < Lw, v can be expressed
as

, R
v~ iwVLC + Y%

where Zy = /L/C is the characteristic impedance of the transmission line. The amplitude
of a wave injected at x = 0 is thus reduced after a length L by a factor exp (—RL/Zy) =
exp (—R/Zy) where R = RL is the total resistance of the line. As soon as R is larger than
some Zj, the amplitude of the wave is almost zero. For a transmission with higher losses, where
the Taylor expansion is not possible, the damping is even faster. As mentioned in Section 4.3.1,
the typical impedance of microstrip lines is 100 €2, such that the total resistance of the line has
to be of the order of some hundreds of Ohms.

In summary, the resistance has to be larger than 100 €2 to damp the transmission line modes
and voluminous enough to allow good thermalization.The solution we choose is to use a stack
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of 25 nm of palladium and 45 nm of hafnium. Hafnium is a metal with high resistivity but is
superconducting under T ~ 170 mK. Fortunately, the inverse proximity effect due to the layer
of palladium weakens the superconductivity in the hafnium layer and even brings the hafnium
back to its normal state. The resulting resistance at low temperature is 4Q/0. With this
value and a width of 20 pm, a total length of 1.5 mm is needed to reach 300 €2. This geometry
guarantees a temperature below 30 mK when a current of 10nA flows through the resistor.
The temperature starts to overcome 100 mK for currents of 300 nA.

Experimental realization: sample HS04

Sample HS04 shown in Figure 4.14 has four resistive leads (in green): two for measuring the
voltage and two for biasing the sample. The leads are each 20 pm wide and 900 pm long,
yielding a resistance of 1802 at low temperature. The 1.5 mm length obtained above is the
minimal value for a pair of leads, here measuring 1.8 mm long.

The size of the capacitance was reduced in this sample, as compared to the previous one.
Cys in this sample is estimated to 440fF. The red bias inductance was also made smaller to
yield Ly ~ 30 pH.

The current-voltage characteristic of this sample is shown in Figure 4.15. The maximal
switching current is only 80% of the critical current of 45nA, but the junctions are quite small,
making them more sensitive to thermal activation as discussed in Section 3.1. At ¢, = m,
the remaining switching current is 6 nA, that is 15% percent of the critical current, showing a
symmetry ratio of only o = 0.75 because of the difficulty to make small and identical junctions
with the optical lithography setup used, as discussed in Appendix H.1.

At ¢, = 0, there are only two visible peaks: a narrow one at 1481V and a second one,
much wider, centered around 275nV. At ¢, = m, the first one completely disappears and the
second one is much reduced. This is compatible with these modes being off-loop. In order to
understand the origin of these modes, the device was simulated using Sonnet. Details on this
simulation are given in Appendix K.2. It predicts resonances at 38.5 GHz (80pV), 72.5 GHz
(150nV), 112 GHz (23011V) and 126 GHz (260 pV) which are damped in presence of a resistive
environment. The predicted resonance frequencies are indicated by green dashed vertical lines
in panel (d) of Figure 4.15. The first mode is due to the inductance of the leads (in red in
Figure 4.14) and of the large aluminum planes and the capacitance of the junctions. It is not
clearly observed experimentally but there is a small hump just below 1001V which could be
the mode damped by the resistors. The second mode (a “drumhead” mode) is close to the
observed peak at 148 uV. The large resonance experimentally measured at 2751V is close to
the predicted mode at 260 1V. Its large width can be explained by damping due to the resistive
leads, but also by the fact that above a frequency 2A/h (90 GHz or 190 nV for aluminum),
superconductors acquire a resistance due to the excitation of quasiparticles (as discussed in
Section 5.2). Both these phenomena make the observed resonance quite large and can hide the
expected mode at 230 pV in the tail of the higher frequency mode.

Advantages: Inductive leads (with g7 < 1) allow for good quality factors and no relaxation
oscillations. The shunt capacitance helps further reducing the relaxation oscillations and
decoupling from some off-loop resonant modes. The series resistance damps all remaining
off-loop modes on the other side of the resistance.
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Figure 4.14.: Top picture: false colors microscope picture of a SQUID (in blue) with inductive
leads (in red), two shunt capacitors (in orange) and resistive leads (in green).
Bottom picture: false picture scanning electron micrograph of the yellow rectangle
in the top picture.
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capacitance and resistive leads, at reduced flux ¢, = 0 and 7 ; (b) Zoom on
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4.4. Experimental measurement scheme

Not only the on-chip filtering circuit is important to get low noise and a flat background, but
also the off-chip environment. To understand the solution implemented in this work, consider
first a simple circuit composed of a bias source and a load Zj; which is our spectrometer.
There can be various sources of noise, but they can be classified in two categories depending
on the position of the noise source: differential noise and common noise. Panels (a) and (b) of
Figure 4.16 show these two situations. Noise is here represented by a voltage source Vjy either
in the circuit (a) or out of the circuit (b). The red and blue arrows represent respectively dif-
ferential and common noise currents circulating in the circuit and the capacitor C; symbolizes
the stray capacitance between the load and the ground. Situation (a) is commonly referred to
as differential noise since the noise current is opposite in the upper and lower branches of the
circuit. Situation (b) is called common noise as the noise is the same in both branches.

To reduce high-frequency differential noise, shunt capacitors (such as Cy in panel (c) of Fig-
ure 4.16) can be added between the two lines. They have a low impedance at high frequencies,
such that differential noise is shunted. A better solution consists of using low-pass filters made
of a shunt capacitor and a resistor in series (R in the figure) with the line. However, this
solution does not work for common noise as the capacitor is not in parallel to the noise current
path. To decrease common noise, capacitors to the ground (C, in the figure) can be added, such
that their low impedance at high frequency shunts the common noise current to the ground.
Both these solutions are implemented in the experimental setup shown in Figure 4.17.

This diagram represents only the circuit contained in the sample box, visible in Figure 4.18.
The off-chip circuit is only shown for the voltage measurement line V4. It is the same for
the current measurement lines (1), represented by dotted lines on the right-hand side of the
figure. In the bias lines (B4), there are additional shunt resistors to divide the voltage from
the source (RIGOL DG 1032). The colors in the on-chip region corresponds to the colors used
throughout this chapter.

Large filtering capacitors (C'y in Figure 4.17) of 100 nF are added close to the sample in order
to shunt high-frequency differential noise. These capacitors (Murata ULSC and ULEC series)
are components designed specially for microwave use. Their construction and their small size
(Imm x 0.5mm x 0.4mm) minimize their equivalent series resonance (ESR ~ 500m{2) and
maximize their self-resonance frequency above which their behavior deviates from an ideal
capacitor. This guarantees a good operation up to 20 GHz.

To further decouple the spectrometer from the upstream circuit, microwave resistors (Vishay
FC series) are placed close to the capacitors (R in the diagram). They are designed to have
a high self-resonance frequency (SRF) larger 10 GHz for 1009 resistors. For typical non-
microwave resistors, this SRF is of the order of several hundreds of MHz. For frequencies
above SRF, the resistors acquire a capacitive behavior.

The lid and the bottom of the sample box shown in Figure 4.18 are covered with a layer of a
magnetically loaded material (Ecosorb MF'S series) which has a high permeability and magnetic
losses. Its high permeability allows to concentrate the magnetic field which is then damped
due to the high magnetic losses. This should help reduce the resonant modes originating from
the finite size of the sample box.

The bonding pads on the sample holder are connected to larger metal planes on both side
of a 25 pm thick polyimide film, creating an additional capacitance (of several hundreds of
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Figure 4.16.: Common and differential noise and a solution to filter them out.
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pF) between + and — lines. The tracks on the printed circuit board (PCB) visible in picture
(c) of Figure 4.18 are long meandering lines stacked between the polyimide film and a layer
of magnetically loaded material. This absorbs microwaves possibly propagating through the
wires. Inside the sample box are located several standard resistors of the order of 10082 (R
in the diagram) and capacitors of 100nF (C and Cy), realizing low-pass filters with a cut-off
frequency below 100 kHz to reduce the high-frequency noise coming from the outside of the
cryostat and to prevent microwaves generated by the junctions to leave the region of interest.

When cooled down, the sample box is wrapped in aluminum foil, making an impervious
screen for outside magnetic fields, due to the Meissner effect.

Outside of the sample box, commercial twisted pairs, thermally connected to each stage of
the cryostat, are used. Resistive (with a total resistance of the order of 20 2) phosphor-bronze
wires, adding a distributed low-pass filtering, were chosen for voltage measurements lines and
superconducting niobium-titanium wires for bias and coil lines.

All measurements presented in this thesis were performed in a Bluefors LD cryostat reach-
ing a base temperature below 10 mK. It encloses a mu-metal shield preventing the external
magnetic field from entering the cryostat.

Such a cryostat uses a pulsed tube to cool down to 4 K. This generates mechanical friction
between the wires and thus tribo-electric noise. To reduce it, homemade cables printed on
a PCB are currently being developed in the group. They are visible in Figure 4.18 (b) as a
large gray sheet. Each pair consists of two continuous meandering tracks printed on both sides
of the PCB made in polyimide. As this film is thin, there is a large distributed capacitance
(2.8nF along the whole line) between both conductors and little magnetic noise can thread
between them. The fact that the tracks are continuous along the whole PCB helps to reduce
friction between the cables. The resistance of such a copper wire is of the order of 602 at room
temperature and 42 when the cryostat is at base temperature. This PCB is wrapped in a
material with high permeability and magnetic losses in order to damp all high frequency signals.
A metallic shielding is finally added to provide protection from high-frequency electromagnetic
noise and a distributed capacitance (of order 2nF) to the ground.

4.5. Conclusion

In this chapter, we have seen that, via a careful design of the SQUID and the on-chip electro-
magnetic environment, it is possible to get a quasi-featureless current-voltage characteristic at
half a flux quantum.

The use of opaque Josephson junctions allows for a quite low background current for voltages
below 2A/e. Typical values are of the order of 100pA. Making them small increases the
sensitivity and junctions with a critical current of 100 nA can reach a Noise Equivalent Power
of 10717 W/+/Haz.

It is feasible to make SQUIDs which do not add resonances to the spectrum with a symmetry
such that the switching current is almost zero at half a flux quantum. This grants access to
the low frequency range (as low as 1 GHz in some cases).

Adding inductors close to the junctions contributes to a good decoupling from the envi-
ronment. This inductance is made small enough to reduce relaxation oscillations and low
frequency resonances. A capacitance fabricated near the junctions is used to shunt a large
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4. Design of the Josephson spectrometer

()

Figure 4.18.: (a) Recto of sample box opened with one sample inside ; (b) Sample box closed
and mounted in the cryostat ; (c) Verso of sample box opened to show filtering
resistors and capacitors.
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4.5. Conclusion

amount of the microwaves emitted by the spectrometer, as well as the high frequency noise
coming from the external environment. Several features are already removed with this capac-
itance. The remaining resonant modes are then damped by on-chip resistors, large enough to
prevent heating.

The off-chip filtering circuit, including several both distributed and lumped low-pass filters
permits efficient high-frequency noise rejection.

The last measured IV characteristic at half a flux quantum consists of only a broad peak
around 275V, the height of which is smaller than 400 pA. This paves the way for using the
spectrometer to analyze other systems.
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5. Josephson spectroscopy of four mesoscopic
test systems

While Chapter 2 presented the principle of operation of the Josephson spectrometer, Chapter 3
introduced the obstacles which can be encountered when making such a device. Chapter 4
explained how to overcome these difficulties by carefully designing the spectrometer. With such
a design, it is now possible to investigate some simple systems.

The simplest resonant mode to examine is the mode due to the inductance of the loop and the
capacitance of the junctions of the SQUID forming the spectrometer. This mode is naturally
present when making a loop large enough and can be used to estimate the inductance of the
loop and the losses in the spectrometer.

Another interesting and simple spectroscopy to perform is to study the losses in the supercon-
ductor forming the junction: at a voltage larger than A/e, the energy of the generated photons
is larger than 2A which allows the excitation of quasiparticles.

A Josephson junction itself has an intrinsic resonance frequency: the plasma frequency wp.
It is possible to use the Josephson spectrometer to measure the plasma frequency of another
Josephson junction.

Shunting a Josephson junction with an inductor to form a loop allows significantly increasing
the plasma frequency up to some 100 GHz. Conventional microwave techniques cannot reach
frequencies as high as this but a Josephson spectrometer can measure this resonant frequency.

5.1. LC loop mode of a SQUID

In order to verify the proper operation of the spectrometer, the simplest spectroscopy to per-
form is to examine the LC loop mode of a SQUID. For that purpose, the total inductance L of
the loop of the SQUID must be large enough, such that the resonant frequency 1/(2mw/LC5) is
below 180 GHz, where (5 is the series combination of the capacitance of the two junctions. For
a SQUID with two junctions with critical current around 100nA, Cs ~ 15fF. The inductance
L must be larger than 50 pH in order to have 1/(2mv/LC5) < 180 GHz.

The loop of the sample shown in Figure 5.1 can be approximated by a rectangular loop of
50 x 50 pm? with a cross section of 100 nm x 5 pm. This gives an inductance of L ~ 60 pH, using
an analytical formula from Ref. [101]. A more exact estimation can be obtained by using the
3D-MLSI simulator (introduced in Chapter 2) which takes into account the actual geometry
of the sample, as well as the kinetic inductance of aluminum. It gives L = 62 pH.

The current-voltage characteristic of this device is plotted in Figure 5.2. Graph (a) shows
a large scale IV characteristic at ¢, = 0 and 7. The shape of the quasiparticle branch with
two visible backbends is believed to originate from different gaps in the junctions, as explained
in Section 3.6.3. The low-voltage region exhibits the typical relaxation oscillations shape
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5. Josephson spectroscopy of four mesoscopic test systems

Figure 5.1.: Microscope picture of a SQUID with a loop large enough to have the LC mode
below 180 GHz.

described in Section 3.3.2. This is due to the absence of shunt capacitance and a large bias
inductance (~ 5nH) and does not affect the considered LC resonance at higher voltages!.

Measured at the bend of the quasiparticle branch, an estimate of the critical current of
the SQUID is 245nA. Taking a plasma frequency of ~ 15 GHz? for the two junctions, it is
possible to estimate the capacitance Cs: Cs ~ 20 fF and thus the expected resonance frequency:
wo ~ 21 x 145 GHz.

At p. = 0, the IV characteristic is featureless, except for the relaxation oscillation region.
When a magnetic flux ¢, = 7 threads the loop, a peak appears around 300V (or 150 GHz).
Graph (b) shows this peak in more detail for several values of flux between 0 and 7. The peak
develops a shoulder on the right side (V' > 300uV) as ¢. — 7 due to relaxation oscillations
of the circuit similar to the relaxation oscillations observed after the supercurrent branch
presented in Section 3.3.2. At a bias voltage larger than the peak voltage, the bias circuit
can impose underdamped oscillations which are larger when the peak current is higher. This
results in more prominent oscillations at ¢, = 7 for the in-loop mode. The reduced current
on the right-hand scale is defined as i, = 41 /Iy where I is the critical current of the SQUID,
such that i, corresponds to the coupling parameter Z of a symmetric SQUID (as defined in
Chapter 2).

Because i, (and therefore Z) is small, the resonance peak can reasonably be approximated by
a Lorentzian, as discussed in Chapter 2. For z < 0.5, the error made with this approximation

'This sample was made before the considerations of Chapter 4 on the relaxation oscillations, in order to test
the operation of the spectrometer.
2The plasma frequency of the Josephson junctions was measured at 16.0 GHz in a setup presented in Section 5.3.
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5.1. LC loop mode of a SQUID
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Figure 5.2.: (a) Large scale current-voltage characteristic of the sample of Figure 5.1 ; (b) Detail
of the resonance peak for several fluxes with fit to a Lorentzian ; (c) Evolution of
the height of the peak with respect to applied flux.
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5. Josephson spectroscopy of four mesoscopic test systems

is smaller than 5%. The dashed black lines in (b) are numerical fits to Lorentzians for each
flux value. Only the left-hand part of the peak is fitted for the blue curves because of the
shoulder around 3501V. This fit also gives a value for the voltage (or frequency) position of
the resonance. Averaging over fluxes from 7/2 to 37/2 and —37/2 to —m /2 (where the signal
is the largest), the resonance is found at

Vo = 30871V,
wo = 27 x 149 GHz.

This value is in good agreement with the estimated value of 27 x 145 GHz.

Graph (c) of the figure displays in orange the height of the peak resulting from the fit. The
dependence of the height of the peak on the applied flux is also verified: the dashed green line
in (c) is a fit of the height of the peak with Equation (2.32),

RI? Ve 2
I = —Vgin (—e) .
max 8-‘/v0 2
The resistance R in this expression quantifies the dissipation in the resonator. It is the inverse

of the real part of the admittance seen by the spectrometer. The fit gives

Because this mode is in the loop, this value of R has to be compared to the losses in the
loop. As 149 GHz is above twice the gap of aluminum (~ 90 GHz), quasiparticles can be
excited in the loop (as explained in Section 5.2). The resulting resistance is of the order of the
normal resistance of the SQUID loop, which is of the order of the Ohm. This is two orders
of magnitude smaller than the observed value of 595¢). There should therefore be another
mechanism responsible for the losses in this mode.

In Figure 5.1, four leads are visible on each side of the SQUID. They are made in titanium and
were designed to be highly inductive by taking advantage of the high inductance of titanium.
In order to be sure to apply the same voltage across both junctions, the titanium leads at the
top and bottom of the sample were connected together by wirebonds as shown in Figure 5.3,
where the wirebonds are represented by curved red lines. This creates an impedance in parallel
to the inductance of the loop. Titanium has a much lower gap than aluminum, of the order of
10 GHz, such that the contribution of the quasiparticles dominates the impedance at 149 GHz
and the resistance is close to the normal state resistance. The long leads visible in the picture
as twice as long as the short leads, such that the total admittance in parallel to the SQUID
(both upper and lower arms) can be estimated by

1 1 1
Y, ~ 2 + + — 5.1
b <RTi +Zwy 2Ry +Zwb> Ry, +ilw 5-1)
where R7p; is the normal state resistance of one short lead, Z,,;, the impedance of the wirebonds
connecting the ends of the leads, L the inductance of the SQUID loop and R,, the normal state
resistance of the SQUID loop. The simplest model for a wirebond is an inductance of the

order of 1 pHpum™!. At room temperature, we measured Rp; ~ 2kQ. At low temperature, it
is reduced to Rp; ~ 1k{2. The inductance of the loop was evaluated earlier at L = 62 pH. The
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5.2. Quasiparticle excitation

250 pm

Figure 5.3.: Larger scale micrograph of the sample considered in this section.

normal state resistance of the loop R, can be estimated by considering the sheet resistance of
aluminum of 93 mQ /[0 measured in another sample just above the critical temperature. The
loop contains approximately 20 squares, such that R,, ~ 2. The length of the wirebonds is of
the order of 5 mm, such that their inductance L,y is close to 5nH. Because they are close to
each other, this value can be decreased due to the mutual coupling of two wirebonds carrying
currents in opposite directions. With L,; = 2nH, we obtain R ~ 7002 at 149 GHz which is
of the order of the measured R ~ 595 ().

However, at such a high frequency, the wavelength in vacuum is small, 2mm at 149 GHz.
The wirebonds cannot be modeled by simple inductors but have to be described as transmission
lines. Their exact length is difficult to extract and thus their impedance as well. This could
be a reason for the small discrepancy between the estimated and measured values of R.

5.2. Quasiparticle excitation

5.2.1. Theoretical considerations

When a superconductor is irradiated with photons of energy lower than 2A, quasiparticles
cannot be excited. However, for larger energies, quasiparticles can be excited, resulting in
absorption of photons and thus dissipation. This absorption A is related to the real part of the
conductivity o1 of the superconductor [11,10%]: for a field of amplitude E penetrating inside
the superconductor, the dissipation per unit volume is oy E?. This dissipation is also equal to
the absorbed energy which is proportional to AE?. Mattis and Bardeen [10%] give expressions
for the conductivity ¢ = o1 — i09, considering the applied microwaves as a perturbation of the
BCS Hamiltonian. At zero temperature, they find
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Figure 5.4.: Conductivity (a) and resistivity (b) of a superconductor with the BCS density of
states.

0 if hw < 24,
T () =
an( ) (1 + 25) E(k) — %K(k) if fw > 24, (5.2)
oy, . (24 E(K) [2A K(K')
;Z(w)— <hw+1) 5 +<hw_1> 2

where K and E are the complete elliptic integrals of first and second kind. Their arguments k
and k' are

_ hw—2A
w4+ 2A

K =/1—- k2,

Figure 5.4 (a) shows the real and imaginary parts of the conductivity, calculated with Equa-
tion 5.2. The real part (in blue) is exactly zero for frequencies below 2A /h and rises for greater
energies. It tends to the normal conductivity o, for large frequencies. The imaginary part is
large for low frequencies and vanishes at large frequencies. At 2A/h, there is an abrupt change
of slope for o9 corresponding to the rise of o1 at the same frequency.

The resistivity p = 1/0 = p1 +ip2 (plotted in (b)) gives a better insight on the behavior of
the superconductor: at low frequency, the real part of the resistivity is zero, as expected for a
superconductor, and the imaginary part rises linearly, as for an inductance. The slope of ps
corresponds to the kinetic inductance calculated in Chapter 2. At 2A/h, the superconductor
acquires a resistance and the slope of py diverges. Close to 3A/h, the real part reaches a
maximum which is larger than the normal state resistivity 1/0,. For larger frequencies, the
real part decreases and tends to the normal state resistivity while the imaginary part tends to
Zero.

It is possible to measure the absorption spectrum of a superconductor using the Josephson
spectrometer. At a voltage V', the junctions generate an alternative current at the Josephson
frequency wy = V/po of magnitude Iy. At ¢, = 7, this current circulating in the SQUID is
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5.2. Quasiparticle excitation

dissipated by the real part of the conductivity. Writing the power balance allows relating the
measured dc current I to the real part of the impedance Z of the superconductor,
Lo
VI= §IO§R(Z (wy)) -

The impedance Z of the superconductor is proportional to its resistivity

Z(0)=cp(w),

Where S and L are the surface area and the length of the superconductor. The real part of
the impedance Z is thus given by

R(Z () = G @) = g

Using the notations 12 = 01,2/0p, the dc current at voltage V' is

RnI2 5’1 (wJ)
[(V) =20
( ) 2V &%(wJ)—l—&%(wJ)’

(5.3)

where R, is the normal resistance of the piece of superconductor of surface area S and length
L.

5.2.2. Experimental results

Figure 5.5 shows a microscope picture of sample HS02 for which the quasiparticle spectrum
was measured. Its current-voltage characteristic is shown in Figure 5.6. Panel (a) shows a
large scale IV characteristic at zero flux and half a flux quantum threading the SQUID. In
the (b) panel, a detail of the spectrum at half a flux quantum is exhibited. Two resonance
peaks are visible. One at 301V and a second one close to 200 pV. The former is the plasma
frequency of two parasitic RF-SQUIDs formed by the small inductive leads ((«) and (3) in
the microscope picture) and large Josephson junctions (labeled PJJ in the figure) between
the two layers of aluminum. More details about these parasitic RF-SQUIDs can be found in
Appendix I. The second peak below 20011V is due to the large size of the design and is an LC
resonance with the capacitance of the junctions and the inductance of the leads, similar to the
ones simulated in Appendix K. For voltages larger than ~ 200V, the current starts to rise,
possibly corresponding to the excitation of quasiparticles discussed above. The dashed red line
is a fit of the experimental data with expressions (5.2) and (5.3). The fit agrees well with the
experimental data up to 300V. Above this voltage, the data increases faster. This is due to
the LC loop mode of the SQUID. With this geometry, the inductance of the loop is estimated
at 32pH (according to a simulation with the 3D-MLSI software) and the capacitance of each
junction of the order of 40fF. With these two values, the LC resonance is expected around
410nV (or 200 GHz). The orange dashed line is a numerical fit including both the quasiparticle
excitations and the LC mode. It reproduces quite well the experimental data.

There are four fitting parameters for the orange curve, the superconducting gap A and the
normal state resistance of the loop R, for the quasiparticle excitation and the LC frequency
wr o and its corresponding resistance Ryc. The best fit is obtained with
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5. Josephson spectroscopy of four mesoscopic test systems

Figure 5.5.: Microscope picture of sample HS02, for which the quasiparticle spectrum was

measured.
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Figure 5.6.: (a) Current-voltage characteristic of a SQUID at ¢. = 0 and 7 ; (b) Zoom on the
current-voltage characteristic at ¢ = 7 and fit using formulae (5.2) and (5.3).
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5.3. Spectrum of a Josephson junction

A =196 peV,
R, =150,
wro = 2w x 199 GHgz,
Rrc =909.

The dashed black lines in (a) were drawn at voltage +2A /e, with the value of A obtained from
the fit. They correspond quite well to the experimental rise of the quasiparticle branch.

The value of R,, is also consistent with the geometry of the sample. The SQUID loop contains
approximately 10 squares. Using a value of 93m€ /[0 for the sheet resistivity of aluminum?,
we obtain a crude estimate for R, of 930 m{2, not too far from the value of 1.5 2 obtained from
the fit.

The resonance frequency of the LC loop mode is close to the estimated value of 200 GHz.
The resistance Rpc is the inverse of the real part of the loop admittance at the resonance

frequency Y; = 1/(R,, + iLwr¢), such that

Rue = o (14 (2o
LC — 1w Rn .
Using the estimated value of 32 pH for L and the value obtained from the fit for R, = 1.5€2,
this expression gives Ry = 1050 2, not so far from the value of 909 Q). The difference between

these values can be explained by the fact that the fit of the LC mode is not accurate because
only the left-hand side part of the peak is visible and not the top of the peak.

5.3. Spectrum of a Josephson junction

5.3.1. Plasma frequency of a Josephson junction

As introduced in Chapters 1 and 4, the frequency of small oscillations at the bottom of the
potential of a Josephson junction is independent of its area and depends only on the oxidation
parameters. This plasma frequency w, can also be understood as the frequency separating
the two lowest energy levels of a Josephson junction and can thus be measured by absorption
spectroscopy. For a junction with critical current I and capacitance Cjy, it is

Ic
Wy = .
b ©oCy

When a magnetic field threads the junction, the critical current is reduced, following

. Dy
SINnc—
2¢9

where ®;; is the magnetic flux threading the junction. This results in a modified plasma
frequency,

Io = Io

)

3This value was measured just above the critical temperature in another sample.
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20 ym

Figure 5.7.: Microscope picture of a SQUID with a large Josephson junction (pJJ) in the loop.

sinc%
2¢0

Op = wp . (5.4)

5.3.2. Design used to perform the spectroscopy

In order to measure the plasma frequency of our junctions, a large junction was made in the
loop of the SQUID, as can be seen in Figure 5.7. This junction (labeled pJJ in the figure)
was made large enough so that its critical current I is larger than the critical current of the
junctions of the SQUID Iy. This ensures that pJJ is always kept in the zero-voltage state. In
practice, its area is ~ 12um x 500 nm whereas the two smaller junctions of the SQUID each
measure ~ 1pum x 200nm. This makes a I /I ratio of the order of 15.

With such a design, pJJ can be modeled by an inductor of inductance L; = ¢o/I¢c in
parallel with a capacitor of capacitance Cj. At ¢, = 7, there should be a resonant peak in
the current-voltage characteristic at the frequency wy calculated using formula (2.25) for an
in-loop mode,

1

\/LJ(CJ"‘%)

where Cj is the capacitance of one junction of the SQUID, such that C/2 is the series combina-

(5.5)

wo =
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5.3. Spectrum of a Josephson junction

tion of both junctions capacitances. Because I¢ /Iy = 15, C;/Cpy = 15. This allows expanding
Equation (5.5) in

C
wp ~ Wp (1 - 4;{}) ~ Wp. (5.6)

The measured frequency is thus close to the plasma frequency.

5.3.3. Spectroscopy

Figure 5.8 shows the current-voltage characteristic measured for the sample shown in Figure 5.7
containing a large Josephson junction in the SQUID loop. The curves in (a) were taken at
we =0 (red) and 7 (blue). They are asymmetric with respect to the voltage axis because the
voltage is swept from the negative values to the positive values only. The minimal negative
value of the supercurrent peak corresponds to the retrapping current and the maximal positive
value to the switching current. The maximal switching current is 85% of the critical current,
showing good noise rejection. The remaining switching current at ¢, = 7is4nA, corresponding
to 11% of the critical current and thus to a symmetry ratio of o = 0.79.

The blue curve in (b) shows more detail on the structure of the IV characteristic at ¢, = 7.
There are three visible peaks:

(¢) Vi = 33.51V, corresponding to a frequency of 16.2 GHz. This frequency is close
to the estimated value for the plasma frequency of 15 GHz.

(¢’) Viy = 67pV. Vy is close to 2V;. This could be the transition between the
ground state and the second energy level of pJJ. If Ic ~ 500nA, E;/Ec ~ 500, such
that the energy levels of pJJ are almost those of a harmonic oscillator (as discussed in
Section 1.1.4).

(¢¢) Vi; = 36.5uV. This peak was not clearly identified but is believed to originate
from the lower arm of the SQUID loop acting as a small inductor in parallel with pJJ.

In order to verify that the (i) peak is the plasma resonance of the Josephson junction, it is
instructive to increase the magnetic field, so that a magnetic flux threads pJJ. The surface area
of pJJ is quite small (~ 2nm x 12um) and a large field is needed to have one flux quantum
threading pJJ. Fortunately, as explained in Appendix F, when a magnetic field is applied
perpendicularly to the sample, it cannot cross the superconducting regions and it is deviated
and focused towards the non-superconducting regions, including the Josephson junctions. This
increases significantly the magnetic field threading pJJ. The orange, green and violet curves
were measured at ¢, = 197, . = 357 and . = 497 respectively (vertically shifted for clarity
purposes). The last one corresponds to having almost a flux quantum in pJJ.

The (i) peak, as well as the (i') and (i) peaks are displaced to lower voltages. The (i) peak
is less marked in the orange curve and invisible in the green and violet curve.

Panel (c) shows the evolution of the IV characteristic with respect to the applied magnetic
field. The horizontal axis is the reduced flux ¢, threading pJJ. The red, blue, orange and
green vertical dashed lines correspond to p. = 0, e = T, @e = 197 and ¢, = 357, the IV
characteristics of which are plotted in (a) and (b). The (i), (¢') and (i) peaks are visible in
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5.8.: (a) Current-voltage characteristic of the SQUID with a Josephson junction in the
loop at ¢ = 0 and 7 ; (b) Zoom on the low-voltage region for three different
coil currents (the orange, green and violet curves are shifted by 1, 2 and 3nA
respectively) ; (¢) Map of current-voltage characteristics with ¢, from —7 to 27 ;
(d) Position of peak (i) and fit with Equation (5.4).



5.4. Spectrum of a RF-SQUID

this figure and highlighted with arrows. The (i') peak is hardly visible in the figure and is
always at twice the voltage of the (i) peak.

Panel (d) shows the position of peak (i) (in solid red) and a fit (in dashed blue) of this
voltage using Equation (5.4). For several values of the current in the coil, the data appears
quite erratic or there is even no data point for the position of the peak. This is due to the fact
that the (i) peak can be hidden by the supercurrent when ¢, is a multiple of 27r. The fit gives

|wp = 2m x 16.0 GHz. |

When ¢, — nm (with n € Z*), the critical current Ic () of pJJ is almost zero, such that
the alternative current Iy flowing in the SQUID loop can be larger than the critical current
of pJJ. In that case, the description of the device as a SQUID with a parallel LC circuit
in the loop is not sufficient. The circuit must be treated as a three-junction device to fully
understand its behavior. However, the flux region where the LC approximation is not valid
is small. As the plasma frequency is proportional to the square root of the critical current of
pJJ, having Ic (p,) < Iy, i.e. Io (¢z) < Ic (@ = 0) /15 corresponds to a plasma frequency
below w,/ 152 ~ 0.07wp. This limit corresponds to quite narrow regions around ¢, = —7, 7
and 2. Even a less strict condition, for instance I () < 5Ip, corresponds to narrow regions,
highlighted in orange in Figure 5.8 (d).

All features visible in Figure 5.8 are not totally understood, in particular those concerning
the (ii) peak. The reason for its broadening around +37/4 and 37/2 remains unclear, as well
as its disappearance close to —m, m and 27. A more comprehensive model would certainly
require the description of the circuit as a three-junction device.

5.4. Spectrum of a RF-SQUID

The previous spectra were measured using a galvanic coupling scheme, ensuring a large coupling
to the system of interest. To assess the performance of the Josephson spectrometer in the
inductive coupling scenario, a simple system to couple to was needed. A superconducting loop
interrupted by one junction (called RF-SQUID) seems adequate, as it contains an inductance
allowing for inductive coupling. In addition, the resonant frequency of a RF-SQUID depends
on the magnetic flux threading the loop. In order to control both spectrometer and RF-
SQUID fluxes independently, a second flux line is needed. Measuring the plasma frequency of
a RF-SQUID thus also allows testing such a configuration.

5.4.1. The plasma frequency of a RF-SQUID

As briefly introduced just above, a RF-SQUID is a superconducting loop interrupted by one
Josephson junction as sketched in panel (a) of Figure 5.9. It was first introduced and described
by Silver and Zimmerman in 1967 [21]. Having a Josephson junction in an inductive loop allows
imposing a phase difference ¢ across the junction and thus controlling the plasma frequency
of the junction. If we call ¢y, the phase difference across the inductance L and ®, the applied
magnetic flux, we get the following equation for the phase differences,

Dy /0 = ¢ + oL (5.7)
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Figure 5.9.: (a) Electric diagram of a RF-SQUID ; (b) Potential energy of a RF-SQUID for
several B, = LIy/¢p ratios and ¢, = 7/2; (¢) Minimum of the potential energy
for several Sy, ratios.

For a single Josephson junction, the plasma frequency is defined as the frequency of small
oscillations around the minimum of potential. For a RF-SQUID, it is the same. The potential
energy for the RF-SQUID sketched in Figure 5.9 can be written

2
G R,

Using Equation (5.7) linking the phase differences and writing ¢, = ®,/¢o, the potential
energy can be written

2
U(e) = 22 (o = ¢u)’ = polocos .

Introducing the ratio 57, between the loop inductance and the Josephson inductance: (7 =
LIy/po, as well as the Josephson energy E; = olp, the potential energy can be written

Ulp 1
E; 241,

Panel (b) of Figure 5.9 shows this potential energy for 5, = 0.1, 0.5, 1 and 5 in units of E;/f8L.
For small 8, values, the potential energy is close to the parabolic energy of the inductance L.
For larger 1, the energy looks more like the cosine shape of the Josephson junction.

To obtain the plasma frequency, we need to find the minimum ¢,, of this potential. This
can be done by solving dU/d¢(py,) = 0. That is to say

2
(¢ — pz)” — cosp.
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Om + Br siny, = p,. (5.8)

The solution of this non-linear equation is plotted in panel (c) of Figure 5.9 for several values
of 81, between 0.1 and 5. For small (7, most the phase difference occurs across the junction,
resulting in an almost linear dependence. For larger fr, the phase difference imposed by the
magnetic field is divided between the junction and the inductance, giving a more complicated
dependence. When (1, > 1, ¢,, becomes multi-valued for some applied flux values and jumps
in ¢ can occur when sweeping ., indicated by the dashed lines.

Around ¢,,, U(p) can be written

1d*U 9
Ulp) =Ulpm) + 57@2(9@@ (o —om)” -
The total energy of the RF-SQUID also includes the capacitive energy K = C;V?2/2, where
V' is the voltage across the junction. Using the Josephson relations, this total energy can be

expressed as

E(p, ¢) 1d°U 2 1 9.9
o :U(wm)+§d72(@m) (¢ = om)” + Jwpo &7

where wyq is the bare junction plasma frequency. This energy is that of a harmonic oscillator
around (,, with an effective mass u = EJ/WZQ)O and stiffness k = E;d*U/de*(¢m). The
frequency of small oscillations around ¢, (the plasma frequency) is thus

/i
wp =4/ —,
1
Wp = Wpo E =+ COS Py, .

Note that this expression can be rewritten in terms of the loop inductance L and the Josephson
inductance Lj = ¢o/ I,

1 1 cosym
VOV L " Ly~
This result could have been guessed immediately by noting that the Josephson junction acts
as an inductance Lj/cos in parallel with a capacitance Cy, such that the circuit shown in
Figure 5.9 reduces the parallel combination of Cy, L and L/ cos ¢, the resonant frequency of
which is given by Equation (5.9).

Figure 5.10 shows the dependence of plasma frequency on the applied flux for 8;, = 0.1, 0.5,
1 and 5. As long as 81 < 1, the plasma frequency is single-valued and reaches its minima
at ¢, = —m or m. When S > 1, the plasma frequency becomes multi-valued, due to the
presence of several minima in the potential energy. This translates in a hysteretic behavior
around ¢, = 2nm, with n € Z. The dashed lines correspond to other minima of the potential
energy.

Wp (5.9)
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Figure 5.10.: Plasma frequency of a RF-SQUID for several 5, ratios.

5.4.2. Design of the device

In order to have the largest coupling to the RF-SQUID, it should be made on top of the
spectrometer SQUID, with the same radius. However, this is not the solution chosen for this
device, in particular because this would require more fabrication steps. Furthermore, the design
of the spectrometer discussed in the previous chapter (such as the one shown in Figure 4.14)
allows for a relatively large space between the SQUID and the large aluminum planes. It is
thus possible to fabricate a RF-SQUID quite close to the spectrometer SQUID and keep a
reasonable coupling constant.

Figure 5.11 shows a false color scanning electron micrograph of the fabricated device. The
SQUID spectrometer is colored in blue and its two junctions are ~ 0.5um? large. The two
orange planes are capacitors made according to the considerations of the previous chapter.
They have each a capacitance of ~ 5pF. The large yellow aluminum planes act as shield
planes possibly screening magnetic flux noise. The RF-SQUID of interest is highlighted in
red. In order to control independently the flux ¢, in the SQUID and the flux ¢, in the RF-
SQUID, a local gradiometric flux line (green) was evaporated in front of the symmetry axis
of the SQUID. A layer of 120nm of alumina insulates this line from the spectrometer. The
flux current follows the green arrows and generates a magnetic flux which is almost zero in
the spectrometer, as the contributions of the lower and upper arms cancel out. However, in
the RF-SQUID, only the lower arm generates a non-negligible flux in the loop. A larger coil,
located on the sample holder and not visible in this picture, allows changing the flux threading
the SQUID.

In order to estimate the value of £ for this RF-SQUID, we need to know the critical
current Iy of the Josephson junction and the inductance L of the loop. The surface area of
the Josephson junction is 2.5 pm?, corresponding to a critical current of ~ 200nA. The loop
can be approximated by a wire of cross section 100 nm x 2.5 pm making a rectangular loop of
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Figure 5.11.: False color scanning electron micrograph of a SQUID spectrometer (in blue) cou-
pled to a RF-SQUID (in red). The green line is a local flux line.
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Figure 5.12.: Sketch of the spectrometer (in blue) coupled to a RF-SQUID (in red).

30 x 20pm?. This gives a geometric inductance of Ly, ~ 30pH, using an analytical formula
from Ref. [101]. A better estimate for the inductance of the loop can be obtained with the 3D-
MLSI simulator [73] assuming the conductors are superconducting and considering the actual
geometry. It yields L = 57 pH. This gives an estimate for 57, of 8r = 0.035.

A crude estimate of the coupling constant between the SQUID spectrometer and the RF-
SQUID can be obtained by considering the SQUID loop as a magnetic dipole, represented in
blue in Figure 5.12. More than a conductor’s width away from the loop, the magnetic field
decreases as 1/r3, where r is the distance from the center of the loop. We write it By/r3. The
flux threading the gray circular annulus with a radius between 2R and 4R can be estimated

by
4R
Bo o 1 1
o= | Doprdr="TBy(— - ).
¢ /2R 3T 0<8R3 64R3>

If we consider that the red RF-SQUID occupies 1/10 of this annulus, the flux threading it is
® = 0.1®,.. The total flux created by the SQUID is of the order of

T By 21 By
Dyt = —27rdr = — —.
tot /R rs e 3 R3

With these estimates, the coupling coefficient k is

)

k pu—
(I)tot

= 0.01.

A simulation with the 3D-MLST simulator [73], introduced earlier in Section 2.3.3, taking into
account the exact geometry of the sample and assuming that the materials are superconducting,
gives k = 0.0181.
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(a) pe = . (b) e =0.

Figure 5.13.: Schematic representation of the spectrometer coupled to the RF-SQUID (in light
red) at reduced flux 7 and 0.

Because of the large aluminum shield planes and the two shunt capacitors around the SQUID
and the RF-SQUID, the high-frequency magnetic field generated by the spectrometer at o, = 7
is confined in the central region, as explained in Appendix F. This can increase the coupling
constant between the SQUID and the RF-SQUID. Including this shield plane, the 3D-MLSI
simulators gives k = 0.0184. The coupling constant is increased by 1.5% but stays quite low.

Fortunately, it is also possible to couple to the RF-SQUID at ¢, = 0. With this flux biasing,
the microwave current circulates around the RF-SQUID, as shown in panel (b) of Figure 5.13.
In that case, the coupling constant k& is much higher than for ¢, = 7 where the microwave
current only circulates in the SQUID loop. As the surface area of the RF-SQUID is of the
order of 10% of the area in gray in Figure 5.13b, the flux threading it is of the order of 10%
of the total flux created by the current, such that £ ~ 0.1. The 3D-MLSI simulator yields
k = 0.123 when ¢, = 0, which is one order of magnitude larger than when ¢, = 7.

As the power dissipated in the case of inductive coupling is proportional to k? (as seen in
Section 2.3.3), the signal is expected to be almost 50 times larger at ¢, = 0. In that case, the
situation is as shown in Figure 5.14. The Josephson junction of the RF-SQUID is equivalent
to its capacitance in parallel with the Josephson inductance Lg(®;), depending on the flux
threading the RF-SQUID. For small g ratio, Lg(®,) ~ Lj/cosp, with the notations of
Section 5.4.1.

According to the calculations of Section 2.3.3, the equivalent impedance seen by the junction
is
Zo—ilw (1— k2
° lw—iZ.)’
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Figure 5.14.: Electric schematic of the spectrometer coupled to a RF-SQUID.

where Z, = iLsw/ (1 — (w/(LsCy)?). In the small 1, limit, this gives

2
1 2
) Freosps T (1 —k ) <1 - (w%o) cosapx>

Zo = tlw 5
1
L+ grcosor — (ﬁ) COS Py

where wp is the bare plasma frequency of the junction in the RF-SQUID, wyy = 1/+/L;C}.
The resonance condition can thus be written, with ws = 1/VIC,

2 2 2
— 1—-kKF4+—-——(1—-k% — | cos =1+——— | — | cosy,.
<Ws > ( B, cos @, ( ) Wpo o 1, cos Py Wpo Pa

Written in terms of the plasma frequency wj, of the RF-SQUID, this gives

w)* (4 g2 PLCOSPr gy (@0 A w)* 5.10
() (et o () )= () o

The designed [ value is of the order of 0.035 and k ~ 0.12, such that 8,k < 1. Equa-

tion (5.10) thus reduces to
wo\ 2 wo'\ 2 wo'\ 2
ws Wp Wp

which has two solutions, ws and w,. We are therefore assured to measure the exact plasma
frequency of the RF-SQUID, as well as the frequency of the [C circuit.
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The measured signal is then proportional to k2 (as seen in Section 2.3.3). But if k is too
large, the resonant frequencies deviate from w, and w,. For small 8, ratios, Equation (5.11) is
the same as Equation (2.34) discussed in Section 2.3.3 for the case where the junction of the
RF-SQUID is replaced by a capacitance. The calculated solutions are plotted in Figure 2.23
for several wy,/ws ratios. For the sample considered here, ws is of the order of 40 GHz and
wp ~ wpo /v Br ~ 70 GHz, such that w,/ws ~ 2. With such a ratio, wy stays within 5% of w,
as long as k£ < 0.26. For the estimated value of k = 0.12, wy = 1.0097wy,.

5.4.3. Spectroscopy

Figure 5.15 shows the current-voltage characteristic measured for the device of Figure 5.11.
The (a) graph is a large-scale IV characteristic at . = 0 and 7. The bias voltage is swept from
negative values to positive values, giving an asymmetric shape to the curves. The switching
current at ¢, = 0 is 85% of its nominal value, showing good noise filtering. At ¢, = m, the
switching current is around 3nA, that is 6% of the critical current, corresponding to a good
symmetry ratio of a = (.88.

Panels (b) and (c) show the detailed structure of the IV characteristic at ¢, = 0 and 7. The
small peaks S7 at 8011V and S at 1501V as well as the large peak S5 at 270 nV were identified
in Section 4.3.3 as corresponding to resonant modes due to the large dimensions of the shield
planes. In addition to these peaks, there are three other peaks in the spectrum at ¢, = 0. The
signal of the plasma resonance of the RF-SQUID is expected to be ~ 50 larger at ¢, = 0 than
at @, = m. So, if one of these peaks of amplitude ~ 500 pA is the plasma peak, it should be
~ 10 pA at . = 7, which is in the noise of the measurement.

In order to understand their origin and confirm that one of them is the plasma resonance of
the RF-SQUID, the gradiometric flux line was used to thread the RF-SQUID with a magnetic
flux ¢, while keeping the flux in the spectrometer at 0. The effect of this is displayed in (d).
The red curve is the same as in (a)-(c). The violet, orange and green curves were all taken at
e = 0 with different ¢, values. They were shifted respectively by 0.5, 1 and 1.5 nA for clarity.
The S1, S2, G1 and G2 peaks do not change when ¢, increases. But the P peak first moves
to lower voltages and then comes back to higher voltages.

(e) shows the evolution of the IV characteristic with the applied flux ¢,, while the flux in
the SQUID stays at ¢ = 0. The colored vertical lines correspond to the curves in (d). As
seen in (d), only the P peak moves and its position is periodic with respect to the magnetic
field, as expected for the plasma frequency of the RF-SQUID.

(1 and G4 are suspected to originate from resonant modes introduced by the gradiometric
flux line. This hypothesis was confirmed by a simulation made with Sonnet, described in
Appendix K.3.

As these peaks are small (~ 1% of the critical current of the SQUID), it is possible to fit
them with a Lorentzian according to the considerations of Chapter 2 to obtain the resonance
frequency at the center of the peak. The result of this fit for the plasma peak is plotted in
red below the map. The dashed blue line is a fit of this resonance frequency using the formula

derived in Section 5.4.1,
1
Wp = Wpo ﬁ—L + COS @y
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Figure 5.15.: (a) Large scale current-voltage characteristic of the spectrometer coupled to a
RF-SQUID for ¢ = 0 and 7 ; (b)-(c) Low current region of the IV characteristic
in linear and logarithmic scale ; (d) Detail of the five first peaks at ¢, = 0 and for
different values of flux ¢, in the RF-SQUID ; (e) IV characteristics as a function
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The fit gives

wpo = 27 x 17.3 GHz,
Br, = 0.052.

The value found here for the plasma frequency of the Josephson junction is close to the value
of 2w x 16.0 GHz found in Section 5.3, but a bit higher. The small discrepancy between both
measured plasma frequencies can come from differences in the geometry of the junctions. As
stated in Chapter 4, the plasma frequency of a Josephson junction does not depend on its
surface area S since both capacitance and critical current are proportional to S. This can be
considered true if the junction consists only of two parallel plates separated by a thin dielectric
layer. In practice there is always a stray capacitance between the two electrodes of a junction
which is not necessarily proportional to its surface area and depends on the geometry of the
sample. The devices measured in Section 5.3 and here have quite different geometries (visible
in Figures 5.7 and 5.11), resulting in different capacitance per surface area.

The value obtained for 7, is larger than the estimated one of 0.035. The value taken for the
critical current of the junction to estimate 51 was obtained with its surface area measured in
a microscope picture. This value is therefore not precise and can be wrong by a factor of 2. If
we take L = 57 pH for the inductance of the loop, the critical current of the junction has to be
I = 300nA to ensure S, = 0.052.

The fit also gives the width of the peak. It is almost constant with respect to flux. Averaged
over all measured peaks, the full width at half maximum AV is found to be AV = 1.141V,
corresponding to a frequency linewidth of Aw = 27 x 550 MHz. The voltage thermal noise
across the shunt capacitance Cg is given by Vs = 1/kpT/Cs according to the discussion
of Section 2.4.3. With Cg of the order of 1pF, this gives Vs = 1.2V, comparable to the
measured width of the peaks.

It is also possible to extract the real part G. of the admittance of the mode via I, =
I3/ (2V,G,) or I, = RI2/(2V,,), where V, and I, are the voltage and the current at the peak.
This gives here

G, = 13.2mS,
R="1758Q.

This dissipation is mainly due to the on-chip bias resistors (in blue in Figure 5.11). The
bonding pads at the end of the leads are quite large and there can be a non-negligible capaci-
tance C), between them. In our case, they are squares of 250 x 250 pm? separated by a length
of 250 um. Using a software available online [109], the capacitance between them is estimated
at 40 fF in pure silicon. Writing R}, the resistance of one bias lead, the admittance seen by the
junction in parallel with the resonator is

B 2

With Ry = 160€2 and C), ~ 40fF for the capacitance, an estimate for the inverse of the real
part of Y, at 80 GHz is R ~ 1652, larger than the measured value. In practice, there is also
a distributed capacitance between the bias leads which can reduce the effective value of R. A
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simulation of the actual geometry of the sample with Sonnet gives a resistance seen by the
junction of the order of 75 ).

5.5. Conclusion

The first spectra measured with the Josephson spectrometer shown in this chapter were taken
on simple systems to demonstrate the good operation of the designed device.

The LC mode of a SQUID was measured at 149 GHz, which is a quite high frequency for
conventional microwave techniques. For this spectrum, the dependence of the amplitude of the
signal on the applied magnetic field was also understood and modeled with the considerations
of Chapter 2.

The spectrometer also allows measuring quantities directly related to the density of states
of a superconductor as shown in Section 5.2.

It was also used to measure one characteristic properties of the fabricated Josephson junc-
tions: their plasma frequency. The measured spectrum shows w, = 27 x 16 GHz and has the
expected dependence on the magnetic field.

Finally, the spectrum of a RF-SQUID was taken to verify the ability to use an inductive
coupling scheme in which there is no galvanic contact between the spectrometer and the system
of interest.

In conclusion, we have implemented a new type of spectrometer able to operate in a large
frequency range from 2 GHz up to 180 GHz with a linewidth as small as 550 MHz in some cases.
There are only a few parasitic resonances in the spectrum which have now been understood and
can thus be suppressed (or at least shifted to other frequencies). The ability of using a local
gradiometric flux line to control independently two magnetic fluxes was also demonstrated. All
these elements are necessary for using the spectrometer on the systems of interests presented
in the next chapter.
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As shown in the previous chapters, the designed spectrometer allows measuring spectra in the
1—180 GHz range. There are several other particular systems which seem pertinent for the use
of the spectrometer and which were studied in this thesis. The Andreev Bound States hosted
in various types of weak links between superconductors can be addressed with the Josephson
spectrometer. It can also probe mesoscopic quantum circuits exhibiting interesting topological
properties.

6.1. Spectrum of Andreev Bound States

The Josephson spectrometer is well suited to measure the spectrum of Andreev Bound States
as the excitation energies vary between zero' and twice the superconducting gap A. If they
are made in pure aluminum, the frequency range of excitations is 0 — 90 GHz, which is half the
range of the spectrometer. In practice, it is not possible to measure a zero-gap in conventional
ABS because this would require a transmission exactly equal to one which is only possible
in unconventional situations due to spin-orbit coupling as will be explained in Sections 6.1.3
and 6.1.4. Typically, the smallest gap values obtained with aluminum atomic contacts are
1 GHz.

As derived in Section 1.1.2, a conduction channel of transmission 7 between two supercon-
ductors hosts two ABS: |£) of energies:

Ey ::I:Aﬂll—Tsin2§

The spectrometer can only measure transitions between these states. The resulting spectrum
is shown in Figure 6.1 for conduction channels ranging from 0 to 1. If the transmission is 0,
the excitation energy is always 2A, no matter the phase difference ¢ across the weak link.
When the transmission increases, the energy starts to change when ¢ varies with a minimum
at ¢ = m, leaving an excitation gap opened. For 7 = 1, the modulation is maximal and the
energy gap is closed.

The ABS spectrum of an atomic contact was already probed by the Quantronics group [32,

], using a Josephson junction as a spectrometer as detailed earlier in Section 2.1.6.

When some properties of the superconductor forming the weak link are changed, the usual
spectrum shown in Figure 6.1 can be modified, resulting in level crossings or gap closings.
Before looking at these non-conventional ABS, we first investigate what the ABS spectrum
looks like when probed with a Josephson spectrometer.

1Zero for ABS with transmission 7 = 1. For a transmission 7, the minimum excitation energy is 2Av/1 — 7.
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Figure 6.1.: Calculated ABS spectrum for conduction channels with transmissions 0, 0.1, 0.5,
0.9 and 1.

6.1.1. Form of the ABS spectrum probed by a Josephson spectrometer

Due to the presence of inductors and capacitors in the spectrometer circuit, the measured
frequency can be different from the actual transition frequency, as in the case of an LC par-
allel resonator discussed in Chapter 2. To estimate the frequency we will measure with the
Josephson spectrometer, we need an expression for the admittance Y,,; of the weak link. Kos et
al. calculate such an expression in the case of a short superconducting weak link [71] by using
linear response theory on an alternative voltage applied to the tunneling Hamiltonian describ-
ing the weak link. They obtain for a single transmission channel at a frequency w,

5

Yot @) = —— + 3V (@), (6.1)

 iLjw
J i1

where L is the Josephson inductance of the weak link present at low frequencies,

4

Ly o 0p Z 4¢3 (1—Tjsin2%)

(6.2)

1 1 01y ZATj cos ¢ + 7;sin* £
3/2°

with I; the current flowing through the weak link, ¢ the phase difference across it and 7; the
transmission of channel j. The five Y; (w) terms in Equation (6.1) are due to quasiparticles
excitations and each have a different origin depicted in Figure 6.2. F4 is the energy of the
Andreev Bound State of the transmission channel and A the superconducting gap. The five
excitation schemes, labeled (1) to (5), correspond respectively to the five Y; terms in the
admittance. (1) is the excitation of a pair of quasiparticles to the continuum, (2) of one
quasiparticle to the continuum and one to the ABS, (3) of two quasiparticles to the ABS, (4)
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ground state

Figure 6.2.: Possible quasiparticles excitation schemes in a superconducting weak link.

of one quasiparticle from the continuum to a higher energy, (5) of one quasiparticle from the
ABS to the continuum.

The transitions discussed in Sections 6.1.2 and 6.1.4, as well as the even manifold of Sec-
tion 6.1.3 correspond to excitations between the ground state and the ABS and are thus of
type (3). For such excitations the admittance is given by

221 (A2 — Ei) (EE‘ — A2 cos? %)

R(Y3) = 25 (hw — 2F
() = 22T (A2 — sz) (E124 — A2 cos? %) - 1 B 1 N 1 .
YT h hwE? hw—2E4 hw+2Es  Ea)’

The imaginary part is plotted in Figure 6.3 at ¢ = 7 for several values of transmission. The
real part is only non-zero when fiw = 2F 4 and the reached value corresponds to absorption of
photons by the weak link. At this frequency, the imaginary part has a pole. For low frequencies,
Y3 is proportional to —iw and tends to zero, as for a capacitance. At high frequencies, Y3 is
proportional to i/w and tends to zero, as for an inductance.

For fw close to hwa = 2E4, the admittance of the weak link of Equation (6.1) is dominated
by (Y3). (Y1) can be large, but close to 2A and (Y2) at A + E4. S (Ys) and S (Ys)
are zero when no quasiparticle is present in the weak link. The contribution of L is only
important at low frequencies.

Writing
2¢rr (A% — F3) (B3 — A%cos® £)

é pr—
h 4E% ’

Y3 can be expressed close to 2FE 4,

R (Y3) ~ m1Gwad (w—wa),

)
3(Y3) ~ —G Ay
A

This expression is similar to the admittance of a lossless series LC circuit with resonance
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Figure 6.3.: Imaginary part of Y3 at ¢ = 7 for several values of transmission, in units of
Go = 2¢2/h.

frequency wg = 1/v/ LC and characteristic impedance Zy = /L/C,

TTW,
R (Yio) = 70“5 (w—wo),
1 wwy 1 w%

SYpe)=———5~———5"—.
(Yie) Zyw? —w? Zow? —w?
Both systems are formally equivalent if we impose Zy = 1/ G and wp = wa.

In order to quantify dissipation in the equivalent LC circuit, the simplest way is to add a
series resistance R. This changes the admittance to

1
%(YLC):ZQ 29
A Ch)
2 w _ wo
%(YLC):_Q wo w

bl -
ZOl—l—Qz(w%—%)

where ) = Zy/R is the quality factor of the resonator. The effect of the resistance R is to
give a width to the resonance peak in the real part of the admittance. The full width at half
maximum due to R is Aw = wy/Q. For weak links, it is possible to measure experimentally
the width of the ABS. For instance, in atomic contacts in aluminum, Aw was found of the
order of 20 MHz [110]. A method to model the admittance of a weak link with dissipation is
to replace it by an RLC series circuit (as shown in Figure 6.4) in the vicinity of the resonance
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R L C

Figure 6.4.: Equivalent circuit of a weak link close to resonance.

(w~ wy) with

wo = w4,
PR AES
° T 2% (A2 - B2) (B — A2cos? 2) (6.4)
_ WA
@= Aw’
The equivalent R, L and C are then given by
Zy Zy 1
Rzi’in’C: . 6'5
Q wo Zpwo (6.5)

Galvanic or capacitive coupling

If we consider coupling a weak link to the spectrometer galvanically (or capacitively, using a
large capacitance), it has to be in a superconducting loop to allow changing its phase differ-
ence. This corresponds to adding an inductance L, in parallel with the weak link, such that the
admittance is Y,,; —i/(Lpw). The inductance L, has the same effect as reducing the Josephson
inductance L; in Equation (6.1) to the parallel combination Ly of L; and L,. For one con-
duction channel of transmission 7, according to the expression of Equation (6.2) for L, Ly is
always larger (in absolute value) than the value reached at ¢ = m, L (1) = 4p3y/1 — 7/(AT).
For 7 = 0.99 for instance, |L;| > 1.5nH and reaches larger values for smaller transmissions.
The total inductance for a weak link is the parallel combination of all transmission channels,
such that for a weak link with a few channels, the inductance can hardly be smaller than 1 nH.
The inductances realized experimentally to make loops are typically much smaller than this
value, of the order of 100 pH, such that L ~ L,. The resonant frequency we will measure wy,
corresponds to having

1

Lpwm

3 (V3) = — Cywm, (6.6)

with C'; the capacitance of the spectrometer. The other Y; terms were not considered here.
With the equivalent RLC circuit introduced in Equations (6.4) and (6.5), the resonance con-
dition can be rewritten
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Equation (6.7) is in general not easy to solve. With a width for the ABS of the order of

Aw = 20MHz, Q = wq/Aw ~ 1000 > 1. To find the resonance frequency, we can replace
Equation (6.7) by

(6.7)

)
Lywrm,

1 1 1
— oo = Ciwm —
A

)
Lywn,

This equation can be recast in a biquadratic form

Wm 4_ 1+ 1 i_|_ 1 Wm 2+#_0
wo CJ(.L)[) ZO prg wo LpCJwg N

The expression for Zj in Equation (6.4) diverges at ¢ = 0 and is minimal at ¢ = 7. Its minimal

value is

141—71

Gom 12

For 7 = 0.99, this minimal value is 150 2. It is larger for smaller transmissions. For typical
L,, of the order of 50 pH, Lywo reaches 30€2 at 100 GHz, such that, in the frequency range of
interest, 1/Zy < 1/(Lpwo). This simplifies greatly the equation for the resonance frequency
which now has two solutions

ZO,m'm =

w1 = Wwo,

1
Wy = ———

LpCy

The measured frequency is thus the actual Andreev frequency wg = w4. The second resonance
frequency ws can be problematic if it crosses the Andreev line. To avoid such a crossing,
there are two possible solutions, either wy > w4 maez Or W2 < WA min. The former condition is
easier to fulfill since w4 min can be quite close to 0 if the transmission of the channel is large.
WA maz = 20 /h = 2w x 95 GHz with the bare superconducting gap of aluminum. This value
can be reduced due to the proximity effect in long junctions, making an easier condition on
wo. With a typical value of L, = 50pH, C; has to be smaller than 50 fF, corresponding to
a Josephson junction with critical current 150nA. Larger junctions are possible if the shunt
inductance is smaller.

We can evaluate the height of the peak in the case where w,, ~ w4 to understand what
parameters are favorable to a large signal. At w4, the real part of the impedance seen by the
spectrometer is

Re:% ! ; = ’
Y3 (wq) +iCrws — +——— + Ge

Lpwa

where G, describes the real part of the admittance of the biasing circuit. G, is generally of
the order of the bias resistance Rp. At the resonance frequency, the imaginary part of the
denominator cancels out, such that
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(a) Real part R, of the impedance. (b) Peak current in the junction.

Figure 6.5.: Real part of the impedance seen by the spectrometer and peak current in a junction
with Iy = 100nA for conduction channels of transmission 0.1, 0.5 and 0.8 with
bias resistances 100 and 200 €2.

1
R, i Z% :
R, is plotted in Figure 6.5a for conduction channels of transmission 0.1, 0.5 and 0.8 with bias
resistances 100 and 200 (2, assuming the width Aw of the ABS constant at 20 MHz. At ¢ = 0,
Zy — o0, such that R, would vanish if there was no real part in the biasing circuit. However,
at ¢ = m, Zp is minimal and R, is the parallel combination of the equivalent resistance of
the weak link and the bias resistance. Figure 6.5b shows the resulting peak current flowing

through a spectrometer with critical current 100nA. With G. = 0, the minimal resistance at
p=mIis
hAw 4 1-—71
R (m) = TR
A Gy T

With 7 = 0.9 for instance, R, (7) ~ 3Q. With a spectrometer of critical current Iy, the current
measured at the peak is

2
I, = 4L°;90210 .
T2A
For 7 = 0.9, the peak value is only I, = 250 pA which is small but detectable. A larger
signal can be obtained with a larger Josephson junction. However, this increases the junction
capacitance C; and decreases the resonance frequency wy = 1/,/L,C; which can become of
the order of 2A/h and prevent seeing the Andreev peak. Reducing the parallel inductance L,
is a good solution to keep wy larger than 2A/h and increase the measured signal.

Inductive coupling

If the coupling is made via a mutual inductance to the loop of the SQUID, the situation is quite
different. Consider making a loop with the weak link by adding an inductance [, in parallel
to it. The parallel inductance L, necessary in the case of galvanic or capacitive coupling to
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impose a phase difference across the weak link is here not needed as a loop is naturally present.
The admittance seen by the spectrometer is

1 14 il.wYs

A
lwl+i(l—Ek?)lwYs’

where [ is the inductance of the loop of the SQUID. To find the resonance condition, we first
consider a non-dissipative weak link, i.e. with an infinitely narrow ABS width. This gives for
Y3,

w

Z‘ —_
Vo= —— w0
3 ZO . 9 ) 3
o
with the expressions for Zy and wy given by Equation (6.4). Y, can thus be expressed
(2) (1) -
. j wo + T) -
n:_% 0 0 : (6.8)
w I
<ﬁ)@+u—myﬁﬂ—1
The resonance condition writes here <& <17e> = —Cswm, where Cy is the series combination of

the capacitances of the junctions of the SQUID. This gives
(2) (14 ) -
IO, = —— <l .
Cﬁ)<1+u—k%%%)—1

This can be recast in a biquadratic form

le AN le )’
K@%@+O—H)2§(i& —Q+ww@—2v(ij-uzo (6.9)

As in the previous situation, Zj is much larger than the impedance of the inductance I, typically
of the order of 100 pH, such that Equation (6.9) is simply

@4_ 1_}_# @24_#_0
wo 10swg ) \ wo ICwE

The two positive solutions of this equation are

w1 = Wwo,
1
VIC,

As in the galvanic (and capacitive) case, there is a second resonance frequency wy which is the
loop mode of the SQUID. The spectrometer can be designed to ensure wy > 2A/h, such that
the loop mode does not interfere with the Andreev transitions.

Wy =
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Figure 6.6.: Real part of the impedance seen by the spectrometer and peak current in a spec-
trometer with Iy = 500nA for conduction channels of transmission 0.1, 0.5 and
0.8 with coupling inductances [ = 50 pH and . = 50 pH.

To evaluate the height of the current peak, we add a series resistance in the RLC equivalent
model presented in Equations (6.4) and (6.5). At the resonance frequency w = wo, Y3 = Q/Zp,
such that }78 is
1 1+ ilcwDZQO

Y, =—— :
lwol+i(1— k) lwogs

If the spectrometer is biased at half a flux quantum and if it is perfectly symmetric, the total
admittance seen by the spectrometer is Yy, = Y, 4+ iCswy,

; 1+ ilowd
Yz:iCsw—i " Zo T
w140 (1—k2)lwg

Assuming lC’swg < 1, the real part R, of the impedance Zy; seen by the spectrometer is, after

a few calculation steps,

w2

— 3"
1+ (lchZQO)

As expected, this expression is proportional to k2. Figure 6.6a shows this expression for
conduction channels of transmission 0.1, 0.5 and 0.8 as a function of the phase difference. The
coupling inductances are | = 50pH and [. = 50 pH and Figure 6.6b shows the current that
would be measured at the resonance in a spectrometer with critical current Iy = 500nA. The
signal is maximal at ¢ = 7™ where it reaches 1 nA for a conduction channel with transmission
0.8.

These calculations were made assuming that the spectrometer SQUID is perfectly symmetric.
In practice, it is not the case, such that the admittance Yy seen at half a flux quantum also
contains a small real part Gy due to the biasing circuit. Writing o the symmetry ratio of the
SQUID, Gy = (1 — «) /Ry, where Ry, is the bias resistance. At phase difference ¢ = 0, the

R (Zs) = k? (6.10)
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impedance Zy diverges, such that

1 2
YZ(¢_0)_Gb+m(1—lcsw0).

Assuming ICsw2 < 1, Ys (¢ = 0) ~ Gy —i/(lwp). This gives for the real part of the impedance,

R(Zy) = 2 ————5 ~ (1)’ Gy = (lu)

o1y (lwole>

With typical values of [ = 50pH and R, = 1002, a symmetry ratio of 0.95 gives R (Zy) =
400 m{2, corresponding to a current of the order of 500 pA with a spectrometer of critical
current 500nA. The ABS is thus visible for all phase differences.

21—06
Ry

Summary

It is thus possible to probe the ABS spectrum with a Josephson spectrometer using the galvanic
and inductive coupling schemes, as well as the capacitive coupling scheme, provided that the
coupling capacitance is large. In all cases, a second resonance frequency ws is present due
to the junction of the spectrometer and the shunt inductance L, in the galvanic case or the
SQUID loop inductance [ in the inductive case. This resonance frequency can be tuned to
a frequency larger than the maximal frequency of interest 2A/h = 90 GHz, for an aluminum
weak link. In hybrid long weak links, such as the ones presented in Sections 6.1.3 and 6.1.4,
the gap can be reduced due to the proximity effect, resulting in an easier condition for the
parasitic resonance frequency ws.

The resulting currents that would be measured with a spectrometer with critical current
500nA are larger than 500 pA which is measurable with our setup. For instance, in the spec-
troscopy of a RF-SQUID described Section 5.4, the current at the top of the resonance peak
was of the order of 500 pA. A larger junction increases the measured signal but also results
in larger capacitances and thus a smaller resonance frequency ws which can become smaller
than 2A/h = 90 GHz. The inductance L, in the galvanic case (or [ in the inductive case) can
be made smaller to increase wo. The inductance of the SQUID loop cannot be decreased too
much since this reduces the coupling constant k£ to the weak link loop and thus the measured
signal.

In the most general case, the current measured with the capacitive coupling scheme is larger
than the one measured in the inductive coupling scheme, but the spectrometer is much more
sensitive to resonances in the environment. To measure a clean spectrum, inductive coupling
is thus favorable. However, the signal can be quite small due to the constraint on the parasitic
resonance, wy > A/h. For systems with small gaps, as the ones presented in Sections 6.1.3
and 6.1.4, the junctions of the spectrometer can be made larger, allowing for a larger signal.
But for systems with the intrinsic aluminum gap, such as the one presented in Section 6.1.2,
this constraint is too strong for the height of the peak to be large.

6.1.2. Hybridization of two ABS: the Andreev molecule

Another object of study of the ®y group is the so-called Andreev molecule [30]. It consists of two
Josephson junctions brought within a distance of the order of the superconducting coherence

190



6.1. Spectrum of Andreev Bound States

A
Y

Figure 6.7.: Schematic of the Andreev molecule, adapted from [30].

length &y of each other. This proximity results in a hybridization of the ABS of the junctions
and thus a modified ABS spectrum which can be probed by the Josephson spectrometer.

The ABS of a single Josephson junction (or weak link) are not localized only in the junction.
As they are quantum states, they have a spatial extension and decay exponentially away from
the junction over a distance & = &y/+/T ’sin%‘, where 7 is the transmission of the channel
and ¢ the phase difference across the junction [92]. If two junctions are brought within a
distance &, the wavefunctions of their ABS will overlap, leading to hybridized states. This
hybridization can be microscopically understood in terms of two different mechanisms: the
double elastic cotunneling of Cooper pairs (dEC) and the double crossed-Andreev reflections
(dCAR) [I11=113]. The former is the direct transfer of Cooper pairs across the two junctions
(dEC in Figure 6.7), while the latter is the joint splitting of two Cooper pairs in the center
of the device and their recombination in the left and right electrodes (dACAR in Figure 6.7).
Due to their different natures, these two phenomena have different phase dependence. With
the notations of Figure 6.7, dEC has a g — d; dependence because the transferred Cooper
pair acquires a phase dg —dr. In the dCAR process, the quasiparticles going to the left (right)
acquire dr,(g), resulting in a oz, + dr dependence in the spectrum.

The resulting spectrum was calculated in Ref. [30] by solving the Bogolioubov-de Gennes
equation in which the junctions are modeled by ¢ functions potential with amplitudes Uy, g.
The transmission of the conduction channel is linked to the scattering potential amplitude via
similar equations as in Section 1.1.2; involving the Fermi velocity vp:

ULr -2
hvgp

TL.R = ‘1+’i

Figure 6.8 shows the eigenenergies of this Hamiltonian as a function of the phase §; with
fixed 6 = 37 /5 for different distances [ between the junctions. Both junctions have a single
conduction channel of transmission ~ 0.94. The blue color corresponds to the left-hand side
junction and the red color to the right-hand side junction of Figure 6.7. The pink color in
the figure corresponds to a hybridized state. In (a), [ > £;. The energies of both junctions
are totally independent and cross each other in the spectrum. When [ decreases ((b) to (e)),
the crossings are avoided, sign of the hybridization of the two states. These avoided crossings
separate the energies, such that one ABS is partially pushed out of the gap (|E| > A) and
that the gap in the spectrum is reduced. For [ > &y, one ABS is totally in the continuum
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Figure 6.8.: Calculated ABS spectrum for the Andreev molecule made of two junctions with
one conduction channel of transmission 0.94 at dr = 37/5, adapted from [30].
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and only one remains in the gap. This was expected because the two junctions now form one
single junction with scattering amplitude Uy, + Ugr. This larger amplitude is equivalent to a
smaller transmission, close to 0.8 in the situation of Figure 6.8. In (e), the resulting spectrum
is indeed the spectrum of a single ABS with transmission ~ 0.8 shifted by ér = 37/5.

The spectrum also loses his symmetry with respect to d;, = w. This is due to the fact that
dEC and dCAR respectively depends on dg — 97, and &7, + g, such that time-reversal symmetry
now imposes E (0p,0r) = E (=01, —0R).

Experiments to fabricate Andreev molecules are currently being performed in the ®¢ group.
As the avoided crossings in the spectrum of the Andreev molecule are one strong signature of
the hybridization of the states, probing the spectrum is one of the first experiments to perform
on the realized devices. The Josephson spectrometer is well adapted for this measurement as
the energy scale of the excitations is the superconducting gap of aluminum.

To estimate the expected signal in the case of coupling to a Josephson spectrometer, a
derivation similar to the one of Section 6.1.1 would have to be performed. Because there are
two junctions, their admittances have to be combined to give an expression for the real part
R, of the impedance seen by the spectrometer. To obtain an estimate of R, we can consider
only one junction instead of two.

Considering the inductive coupling scheme with inductances of the order of 30pH and a
coupling coefficient k ~ 0.2, the condition on the series combination Cs of the two junctions
of the SQUID is Cs < 100 fF, corresponding to a critical junction for the SQUID of Iy = 1 pA
assuming a plasma frequency of 15 GHz. This gives for a channel of transmission 0.9 at p =7
a current peak of height 500 pA.

In a capacitive coupling scenario with a shunt inductance of L, = 30 pH, the maximal value
for the critical current of the spectrometer is Iy = 250 nA. This corresponds to a current peak
of height 5nA for the same conduction channel. This current is one order of magnitude larger
than the one in the inductive case but the resulting spectrum can also contain peaks due to
the environment as the microwave current can circulate out of the SQUID loop.

6.1.3. ABS in InAs nanowires
Shape of the spectrum of ABS in nanowires

The ABS in usual weak links are spin degenerate [32, | 10]. However, it is possible to lift this
degeneracy by taking advantage of the strong spin-orbit coupling of semiconducting nanowires
and using them as weak links between two superconductors, as was recently shown [I1/1-110].
These experiments were performed in the limit of [ < & where [ is the length of the nanowire
and thus of the weak link and ¢ is the superconducting coherence length in the weak link. In
the case of ballistic propagation, £ can be estimated as & = hvp/A, where vp is the Fermi
velocity in the weak link and A the gap of the superconductor. It is typically of the order
of 100nm. In the short limit, a finite Zeeman magnetic field is required to observe effects of
the spin-orbit interaction [!17]. Using longer nanowires allows lifting the degeneracy with only
a phase difference across the junction, in presence of several subbands with different Fermi
velocity [37,3%]. However, the spectrum remains degenerate at a phase difference of = where
time-reversal symmetry is preserved. This is visible as non-avoided crossings in the spectrum,
similar to Weyl points.
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Figure 6.9.: Effect of the spin-orbit effect on the Andreev Bound States, taken from Ref. [115].
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Figure 6.9, taken from Ref. [I15], explains the shape of the resulting spectrum for the sit-
uation sketched in (a). As shown in (b), the Rashba spin-orbit (RSO) coupling spin-splits
the parabolic dispersion relation in the nanowire along the k; axis (thin gray lines). Differ-
ent subbands (of opposite spin) are also coupled by the spin-orbit interaction, giving rise to
avoided crossings as shown in thick black lines. The quasiparticles at the Fermi level (at the
chemical potential p in (b)) have thus different velocities. Calculating the Andreev Bound
States resulting from the Andreev reflections shown in (c) (as we did in Section 1.1.2 without
RSO coupling) gives the thin black and blue lines of (d), where the horizontal axis ¢ is the
phase difference across the weak link. The presence of impurities and the possible variation of
electrostatic potential along the nanowire leads to backscattering and thus coupling of electrons
and holes of different energies. The resulting ABS spectrum is shown in thick black lines in
(d) and consists of two manifolds of two spin-split bands. (e) shows the possible excitations at
the phase highlighted with a black arrow in (d). The even transitions correspond to the exci-
tation of a Cooper pair in two quasiparticles of the lower manifold of (d). The odd excitations
correspond to the excitation of a quasiparticle trapped in one of the states of the first manifold
to an empty state of the second manifold. As of today, the origin of such quasiparticles is not
well understood. However, their presence was experimentally measured, showing quite long
lifetimes, typically longer than 100 ps [ 19]. All these transitions can be induced by microwaves
(either with conventional techniques or with the Josephson spectrometer). The resulting ab-
sorption spectrum is shown in (f) and consists of two separate manifolds: an even one with no
information on the spin structure and an odd one with four subbands due to spin-splitting.

Design of the device

In order to measure the spectrum of the ABS in such nanowires, a collaboration with the
Center for Quantum Devices in Copenhagen and the Quantronics group in Saclay has been
made. The Center for Quantum Devices in Copenhagen fabricates InAs nanowires with in-situ
epitaxially grown aluminum on top [120], allowing for a well-defined superconducting gap in
the nanowires [|21]. The fabricated nanowires are then processed by the Quantronics group
which fabricates weak links in the long limit (L > &) with them. Their length L is typically
300 nm, while £ is of the order of 100nm. In Ref. [115], a fit of the experimental data to the
theory described above gives L ~ 2£. Capacitive side-gates are also added in order to deplete
the weak link region and thus modify the transmission of the conduction channels of the weak
links, as shown in Ref. [122]. The fabricated junctions have few and good conduction channels:
one device has less than four conduction channels with non-negligible transmission and the
highest transmission reaches 0.98 with the appropriate gate voltages.

Due to the proximity effect and the length of the weak link, the superconducting gap is
reduced in the nanowire, such that 2A/h ~ 30 GHz. This allows measuring the ABS spec-
trum with a conventional spectroscopy setup. This was performed by the Quantronics group
who recently measured the ABS spectrum of one of these devices by using two-tone spec-
troscopy [! 18], a usual circuit-QED technique where the weak link is coupled to a microwave
cavity resonant at a frequency fy. The weak link is irradiated with photons at a frequency fi.
If a photon is absorbed, the impedance of the weak link changes, resulting in a shift of the
resonant frequency of the cavity. The spectrum they measured is shown in Figure 6.10 where
the horizontal axis is the phase difference across the weak link, the vertical axis is the frequency
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Figure 6.10.: Two-tone spectrum of a weak link based on an InAs nanowire, taken from
Ref. [115].

Figure 6.11.: Preliminary microscope picture of a spectrometer coupled to an InAs nanowire.
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f1 of the applied microwaves and the color scale corresponds to the resonance frequency shift
from the intrinsic value of fy = 3.26 GHz. Several transitions (black and white lines) are visible
in this spectrum including transitions between the Andreev levels. In the right-hand side of
the graph, numerical fits to the model described above are added. Green lines correspond to
odd transitions and red lines to even transitions. The other observable transitions are replica
of the Andreev transitions, shifted by multiples of fy, and involve the absorption of one (or
several) photons of frequency fy by the cavity.

Using the Josephson spectrometer would allow measuring this spectrum without the supple-
mentary transitions. We fabricated a device for that purpose based on the design of sample
HS04 presented in Section 4.3.3. Figure 6.11 shows the resulting device?. The InAs nanowire
is indicated by a red arrow and is put in a superconducting loop (in red) fabricated by the
Quantronics group. The spectrometer SQUID is colored in blue. The green leads are buried
below the pale-yellow aluminum plane and can be used to deplete the weak link region. The
top one is galvanically connected to the red loop and the bottom one ends close to the nanowire
and acts as a capacitive gate. For this design, the 3D-MLSI simulator gives a coupling con-
stant k of k; = 0.062 at ¢ = m and kg = 0.14 at ¢, = 0, where ¢, is the reduced flux in
the spectrometer loop. The coupling constant at ¢, = m is larger than the value simulated
for the design used for the spectroscopy of the RF-SQUID in Section 5.4 where k; = 0.018.
This was made possible by bringing the two loops closer to one another. This increases the
measured signal at ¢, = 7 by a factor of 10 since the signal is proportional to k2 and could
make the peak visible. The value at ¢, = 0 is almost the same as for the spectroscopy of the
RF-SQUID where kg was 0.12. The spectrum at ¢, = 0 can thus be used to verify the presence
of the Andreev transition. At ¢, = 0 however, the spectrum can contain several resonances
due to the biasing circuit and the large geometry of the sample (as described in Sections 4.3.3
and 5.4). The measured peaks can also be broadened due to the biasing circuit. Probing the
nanowire at . = m reduces the height of the parasitic resonances and the width of the peaks
of interest. The best spectrum is thus obtained at this flux bias. Having a coupling constant
of k; = 0.062 could make it possible to measure this spectrum. This sample was cooled down
and measured but no Andreev transition was observed at ¢, = .

A new strategy to further improve the coupling to the nanowire consists of fabricating the
spectrometer SQUID around the loop containing the nanowire, as sketched in Figure 6.12. The
green gradiometric flux line allows flux biasing the red nanowire loop without changing the
flux in the blue spectrometer loop with a current flowing as represented by the green arrows.
The Josephson junctions of the SQUID are labeled JJ in the figure. Simulating such a device
with the 3D-MLSI simulator gives k,; = 0.2, comparable to the coupling constants obtained at
pe = 0 in the previous designs.

To obtain the largest signal, the quantity k?ll.I3 has to be maximized according to Equa-
tion (6.10), while keeping 1/(27/1Cs) > 2A/h ~ 30 GHz. The critical current I is propor-
tional to the capacitance Cs, such that we seek to maximize ZC’S2 and keep [Cy constant. C
has to be made as large as possible and [ as small as possible. To keep a reasonable coupling
constant and enough place to make a loop inside the SQUID loop, ! cannot be too small.
I = 50 pH is the minimal inductance satisfying these constraints. The maximal admissible C

2This is not the finished device. The shunt capacitors on both sides of the spectrometer and a gradiometric
flux line to independently flux bias the nanowire loop are not yet evaporated in the picture.
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Figure 6.12.: New design proposed to couple the spectrometer to an InAs nanowire.

satisfying 1/(2m/1C5) > 2A/h ~ 30 GHz is thus Cs = 500 fF. This is the series combination
of the junctions of the loop, such that the capacitance of each junction is 2Cy; = 1pF, corre-
sponding to a critical current of 3pA per junction and thus Iy = 6 pA for the SQUID. With
l. = 20 pH for the loop of the weak link, a channel of transmission 0.8 would result in a current
peak of height 20nA at ¢ = m which is easily measurable.

6.1.4. ABS in topological insulator-based Josephson junctions
Shape of the spectrum of ABS in a Tl-based Josephson junction

A 3D topological insulator [123] (TI) is an insulating material possessing helical states on its
surfaces. For a quasiparticle in such a state, the spin is locked perpendicular to the momentum.
This provides a good protection against back-scattering, as the spin of the quasiparticle needs
to be flipped in order to be back-scattered.

When a TI is placed in the vicinity of a conventional s-type superconductor, superconduc-
tivity is induced in the TI. But, due to the spin structure of the TI, the spin rotation symmetry
is broken, giving rise to p-type superconductivity [!2/—120].

When making a TI-based Josephson junction as depicted in the left panel of Figure 6.13,
the conduction channels have perfect transmission due to the absence of back-scattering in
the TT [39]. This results in a gapless ABS spectrum such as the one shown in the right panel
of Figure 6.13 as a function of the phase difference ¢ across the junction. Starting at ¢ =0
in the lower blue state and adiabatically increasing ¢ leads to following the full blue line to
reach energy A at ¢ = 27 and —A at ¢ = 47. The supercurrent I o« JF/Jy is thus now
4w —periodic. No direct observation of a 4m—periodic supercurrent was performed up to this
date but some experiments [|27, 125] observed an anomalous Shapiro effect: the doubling of
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Figure 6.13.: Sketch of a TI-based Josephson junction and corresponding spectrum.

the voltage difference between two Shapiro steps, another consequence of the 4r—periodicity
of the spectrum. They were performed using HgTe as the TI and Niobium as the conventional
superconductor.

The Josephson spectrometer is quite adapted to measure the ABS spectrum of a TI-based
Josephson junction and get more insight on this 47—periodicity of the spectrum.

Design of the device

In collaboration with the university of Wiirzburg, we are planning to measure the ABS spec-
trum of TI-based Josephson junctions on the samples they used to measure the anomalous
Shapiro steps [127, 128]. The difficulty here resides in the fact that the HgTe layers are quite
fragile and cannot be heated at too high temperature, which is incompatible with the tech-
niques used to fabricate the Josephson spectrometer.

The solution we choose is to use the inductive coupling scheme and fabricate the Josephson
spectrometer on a different chip. It will then be brought as close as possible to the TI-based
Josephson junction fabricated by the group of Wiirzburg. Using sapphire as a substrate for
the spectrometer allows for a good alignment between the two chips. To favor good coupling,
the TI-based junction is put in a superconducting loop, forming a RF-SQUID, the spectrum
of which should be 2®y—periodic in the flux threading the RF-SQUID loop.

In practice, due to unavoidable dust, the two loops will be separated by distance of the
order of 50 pm. Simulations made with the 3D-MLSI simulator (described in Section 2.3.3)
show that the coupling coefficient k stays quite high as long as the distance between the two
loops is of the order of their radii. The spectrometer SQUID and the loop with the topological
junction can be fabricated with a radius of order 30 ym, allowing for a relatively good coupling
constant between them, of the order of 0.1. The resulting inductances [ for the SQUID loop
and [. for the loop of the weak link are then of the order of 50 pH. The induced gap is of the
order of 9011eV [125], such that the constraint 1/(27y/IC5) > 2A/h to ensure the parasitic
resonance away from the frequency range of interest corresponds to Cs < 250 fF for the series
combination of the capacitances of the SQUID. This makes a condition on the critical current
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Figure 6.14.: Photography of a Josephson spectrometer fabricated on a sapphire substrate.

of the SQUID Iy assuming a plasma frequency of 15GHz, Iy < 3pA. For a weak link of
transmission 0.9, the Andreev peak measured with the spectrometer has a height of the order
of 2nA at phase difference . Such a current is easily measurable with our setup.

Figure 6.14 shows a photography of a preliminary design of a Josephson spectrometer fab-
ricated on a sapphire substrate.

6.2. Topological quantum circuits

6.2.1. Topology and quantized properties

Topology is a domain of mathematics which focuses on global properties of a given space rather
than local ones. Two different geometric objects can share the same topological properties,
such as the number of holes in a closed surface. Often in quantum physics, quantized prop-
erties can be linked to topological invariants. For instance, in the quantum Hall effect [129],
the Hall conductance is quantized. This quantized conductance has later been restated in
terms of a topological invariant (the Chern number over the magnetic Brillouin zone) of the
band structure [130, 131]. Such topological invariants only depend on the global properties
of the system and are thus robust against local perturbations. Finding a system exhibiting
topologically quantized properties is therefore a much-pursued goal.

In order to deeper understand these topological invariants, in particular the Chern number,
we follow the work of M. Berry [132] and a more recent review of it by A. Garg [133], as well
as their introduction of the Berry phase and curvature, useful to compute Chern numbers.
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6.2.2. The Berry curvature and the Chern number of a quantum system

These concepts intervene in the case of a quantum system, the Hamiltonian of which can
be tuned by n external parameters (Xi,...,X,) = R. The eigenstates |¥;(R)) and the
eigenergies E; (R) of the system depend on the parameters. If the system is originally in
eigenstate |¥; (R(0))) and the parameters R(t) are changed slowly, the system will follow the
eigenstate |¥; (R(t))) as long as there is no degeneracy between the eigenstates. If, in a time
T, the parameters are brought back to their original values: R(T') = R(0), the wavefunction
of the system can a priori have a different phase as the original eigenstate. Berry [132] showed
that this phase factor consists of two terms:

e A dynamical phase, accounting for the change of energy:

T
o) =~ | B (R ar

e A geometrical phase, called the Berry phase:

v(T) = i/OT <\Ifj (R(1)) ’ % ‘ 2 (R(t))> dt.

This phase v; is qualified of geometrical because it does not depend on the rate R at which
the parameters are varied. To show this propriety, we write the time derivative in «y; as

& 1w () = R 5 15 (R(1)
It is more convenient to write the derivative with respect to R with a gradient symbol V, even
if the parameter space is not the usual three-dimensional space. With this, the integral in -,
can be expressed as an integral over the parameter R:

=i (W (R)| V¥, (R)) dR.
C

The contour C is the path followed by R in the parameter space. With this expression for the
Berry phase, it is clear that it depends only on the path in the parameter space and not on the
rate at which they are changed. This expression also shows that this phase is gauge-invariant.
Adding a phase o (R) to |¥; (R)) adds an iV (R) term to the integral, which integrates to
0 over the closed contour C.

The integrand is often called the Berry connection and is written A; (R). The Berry curva-
ture B; (R) (mentioned earlier) is the curl of this connection. With this notation, the Berry
phase appears as the integral of the Berry curvature over a surface S spanning C, using Stokes

theorem:
yj://SBj(R)-dS.

After a little algebra, the Berry curvature of the eigenstate W; can be expressed in terms of
derivatives of ¥;:
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Bj(R) = -3 ((V¥; (R)| x [V¥; (R))). (6.11)

This expression for the Berry curvatures helps to understand its curvature name. It appears
here as the cross product of the derivative of the eigenstates. In the usual three-dimensional
Euclidean space, the Gaussian curvature K of an oriented surface can be expressed, close to
a point where the normal is the z axis, as the cross product between the derivatives of the
normal to the surface n [133]:

dn dn
— X — =Kz.
dr dy
Equation (6.11) is similar to this expression for the Gaussian curvature K, in a more complex
space. However, this expression is not practical to be computed. Expressing V¥; (R) in the

(¥; (R)), basis and using the Schrédinger equation allows expressing the Berry curvature as

(U | VH| W) x (V| VH|T;)
(E; — E;)?

B;j(R)=-S () (6.12)

i#j
This expression shows that degeneracies play an important role for the Berry curvature and
the Berry phase. At a degeneracy point in parameter space, the Berry curvature is singular
and decreases away from the degeneracies. For this reason, it is often compared to a magnetic
field and the degeneracy to monopoles of this field. A recent review [I33] emphasizes the
relations between degeneracies in the spectrum of a quantum system and the Berry curvature
and topological invariants. To better understand the implications of this in real systems, we
consider a simple example.

6.2.3. A simple Hamiltonian with a degeneracy

The simplest system with a degeneracy is a two-level system with an energy crossing in the
parameter space. The Hamiltonian of such a two-level system can be expressed as a 2 x2 matrix.
Because the Hamiltonian is Hermitian, this matrix can be written as a linear combination with
real coefficients of the Pauli matrices (04, 0y, 0, and oy = Id), defined as:

(01 (0 —i /10 (10
92=\1 o) %= \i o) %27 \o —1) 7 \o 1)

Such a Hamiltonian writes

H = ao, + foy + o + doo,

where «, 3, v and § are real coefficients depending on n parameters R = (X1,...,X,). The
dog term only shifts all the energy levels by the same value §. § can be thus taken as 0 without
losing any generality. H can therefore be written

_( v a—ip
H_<oz—|—z'6 — )
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6.2. Topological quantum circuits

It is easy to calculate the spectrum of such a Hamiltonian. There are two eigenenergies E
and E_, corresponding to eigenstates |+ (R)) and |— (R)), such that

Ei =4va?+4 32 +72

These two levels can only be degenerate if a, 8 and v are 0 at the same time. The smallest
number of needed parameters to cancel these 3 coefficients at the same time is 3. This classical
argument was first stated by von Neumann and Wigner [1 3], as well as Teller [135]. If we call
these parameters X, Y and Z, it is always possible to write, up to a rotation and scalings,

2y 1 Z X —iY
T2 <X +iY  —Z > '
It is interesting to note that this Hamiltonian is that of a spin 1/2 in a magnetic field of
direction R = (X,Y, 7). This system is often called the diabolo because the shape of the
spectrum in a X =0, Y =0 or Z = 0 plane is a double cone.

The degeneracy is located at the (0,0,0) point, called a Weyl point because of the similarity
of the spectrum with a Weyl semi-metal.

The Berry curvature for the diabolo can easily be computed. Because H = Xo,+Yo,+Zo,
its gradient is just

1
Oz
For R # 0, the Berry curvature for the |+) state can be calculated using expression (6.12):
B, (R) = -5 <<+(R) IVH(0)| - (R)) x (= (R) |2V7'l )]+ (R)>> .
(E+ (R) - E_(R))

The scalar products can easily be calculated if we take advantage of the isotropy of the spin
and rotate the axis such that the Z axis is aligned with R. In this rotated basis,

=)= ().

This gives
1 0
B =——

For the |—) state, the Berry curvature is simply the opposite.

In the unrotated basis,
R

2R3’

We now calculate the Berry phase of this system for a closed trajectory C in parameter space
represented in blue in Figure 6.15. At ¢t = 0, the system is prepared at the blue dot (0,0, R).
The parameters evolve, following the blue circle in the X = 0 plane. At time ¢ = T, the system
is back at the blue dot. The accumulated Berry phase is given by

Bi(R)=7F
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Figure 6.15.: Trajectory in parameter space.

’YiZ//SBi(R)‘dS-

An adequate surface S is the X > 0 hemisphere spanning C.

2 g 1
2 .
o :/ / - R?sin@dody,
o=0Jo=o 217

Y+ = F7.
The system acquires a phase m when performing a rotation around the X axis.
Recalling that Hamiltonian # is that of a spin 1/2 in a magnetic field of direction R, the
path C consists of applying a rotating magnetic field in the X = 0 plane to the spin. The

acquired Berry phase is Fm. If the spin was prepared in the |+z) = <0) state, it is in the

-1 . . . . . .
< 0 > = |—z) after one rotation around the X axis. This usual spin rotation is here explained

as originating from the degeneracy in the spectrum of the spin.
The topological invariant linked to this Berry phase is the so-called Chern number, defined
as the flux of the Berry curvature over a closed surface S:

1
cj_%#sBj(R)-ds.

An important topological result is that the Chern number is always an integer. The demonstra-
tion of this result uses the same arguments as Dirac when describing magnetic monopoles [130].
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6.2. Topological quantum circuits

It is 0 when the surface S encloses no degeneracy. If one degeneracy is enclosed, the Chern
number quantifies the strength of this monopole of Berry curvature.

For the diabolo, this integral is twice the one calculated above, such that

Cy =F1.

The sum of these two numbers is equal to 0. More generally, it can be proven [133] that the
sum of the Chern numbers of all states involved in a degeneracy is always 0.

6.2.4. Engineering Weyl points: the biSQUID

Recently, devices were proposed [137, 135] in which crossings between Andreev Bound States
occur, resulting in non-zero Chern numbers. They consist of n superconducting electrodes
connected to the same normal metal region acting as a scattering element. If this region is
smaller or of the order of the superconducting coherence length (¢ ~ 100 nm for aluminum)
and n > 4, there can be Weyl points in the Andreev Bound States spectrum. The integer
Chern numbers of such degeneracies lead to quantized transconductance (in units of 4e?/h)
between the superconducting leads [13%, 139]. If there are too many conducting channels in
the scattering region, there are also a lot of Weyl points and it is hard to distinguish between
them. Thus, low density materials have to be used, such as 2D electron gases, graphene or
nanowires.

This situation seems promising, as it is possible to fabricate devices with simple materials
only. Another asset of this device is that the parameter space is accessible experimentally. It
is indeed spanned by magnetic fluxes which can be individually tuned by using local flux lines.
However, it is hard to control the number of Weyl singularities. It depends on the scattering
properties of the central region, which are not fully accessible experimentally. One solution to
design a Hamiltonian (and thus its spectrum) is to make a quantum electromagnetic circuit
with capacitors, inductors and Josephson junctions, as reviewed in Ref. [10]. For instance, the
plasma energy of a symmetric SQUID is exactly zero when the SQUID is flux biased at half
a flux quantum, showing a degeneracy in the spectrum. However, it is impossible in practice
to fabricate a perfectly symmetric SQUID, but it is possible to replace one of the junctions of
the SQUID by a SQUID, in order to equate the Josephson energy of the SQUID to the third
junction. From now on, we call this circuit (depicted in Figure 6.16) the biSQUID, and we will
show that its spectrum has indeed Weyl points.

The biSQUID consists of three parallel Josephson junctions (of Josephson energies Ej,
Ejo and Ej3) separating a superconducting island (in blue) from the ground. It is possible
to change the charge on the island by applying a gate voltage V,; on a capacitance C. This
capacitance accounts for the capacitance between the gate and the superconducting island, as
well as the intrinsic capacitance of the three junctions. The spacing between the junctions
allow for magnetic field to thread through, creating fluxes ®; and ®g in the left and right
loops. The three control parameters of the device are highlighted in red in the figure and are
the magnetic flux ®, the magnetic flux ®r and the gate voltage V.
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Figure 6.16.: Electrical schematic of the biSQUID.

6.2.5. Hamiltonian and spectrum of the biSQUID

In order to derive a Hamiltonian for this circuit, we need to know how many independent
quantum variables are present in this circuit. The phase differences 1, o and @3 and their
conjugates are all the variables here. But the two loops are linking them by

o1 =P/ + o2,
2 = Pr/po + 3.

These two equations imply that there is only one independent variable in the circuit. We
choose ¢y and call it ¢. According to the calculations of Section 1.1.4, it is conjugate to the
charge Q@ = CV = Cpg¢.

The potential energy of the circuit consists of the Josephson potential of the three junctions:

U(p)=—Ejicos(p+¢r)— Ejacosp — Ejzcos (v — pRr).

o1, and g are the reduced fluxes: ¢ p = @1, r/po. The capacitive (kinetic) energy can be
written as

K () =C(V—=Vy)?/2=C (o — Vy)? /2.

Introducing the number of Cooper pairs on the island N = @Q/(2¢e), the number of Cooper
pairs brought by the gate voltage n, = C'V,/(2e) and the capacitive energy Ec = 2¢%/C, the
kinetic energy can be expressed as

K (N)=Ec (N —ny)*.
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This gives an expression for the Hamiltonian

H(p,N) = —Ejicos(p+¢r) — Ejgcosp — Ejzcos (o — or) + Ec (N —ny,)*|,  (6.13)

where the quantum variables ¢ and N satisfy the canonical commutation relation:

[p, N] = i.
In order to calculate the spectrum of this circuit, we write Hamiltonian (6.13) in the N basis.

Because [p, N] = i, it is possible to express e™*? in the (|M) (N) (a1, basis:

+o0o
et = " [N 1)(N].
N=—00
As cos (¢ + 0) = (el#19) 4 ¢7i(¢F9)) /2 every term in the Hamiltonian can be written in the
(|M) (N1)(ps,ny Pasis. The resulting matrix has a tridiagonal shape:

Ec (N —1—ny,)? a
H= a* Ec (N —ny)? « (6.14)
a* Ec (N +1—ny)?
where o« = — (Ejlei‘“ + Ej + EJge_WR) /2 and a* is the complex conjugate of a.

If two consecutive terms N and N + 1 on the diagonal are equal and o = 0, states |N) and
N + 1) are degenerate. In the (|N),|N + 1)) basis, the corresponding matrix is indeed

E 0
0 E)°
Two conditions on the control parameters ny, ¢ and ¢ have to be fulfilled to have such a
degeneracy:
e Eg(N —ny)? = Ec(N +1—n,)?
o Eje¥l + Ejp + Ejze ¥R = (.

The first condition is equivalent to
1
ng:N+§. (6.15)

Provided that it is possible to tune n, as precisely as wanted, this condition can always be
fulfilled.

The second condition can be interpreted geometrically. Solving the equality Ejie™L + Ej+
Ej3e™ "R = () is equivalent to finding two angles 7 and g to form a triangle of sides Ej,
Ejo and Ej3 as shown in Figure 6.17. It is only possible to find such angles as long as the
following triangle inequalities are respected:
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(a) (6.4) is satisfied (b) Ejo > Ej1 + Eys

Figure 6.17.: The triangle inequality.

Ejn < Ejp+ Eys,
Ep < Ej3+ Ej, (6.16)
Ej;3 < En+ Ejs.

If the inequalities are strict, there are two couples of solutions (¢, pr) = (gbl,g, gZ;LQ) with the

symmetry <¢1,<l~51> = (27T — 2,2 — €Z~52)
It is also possible to have a degeneracy between states |[N — 1) and |N + 1) if the two
following conditions are met.

° Ec(N—l—ng)QZEc(N+1_ng)27
° EJleWL + Ejo + Ejge_WR =0.

The first one can be rewritten ny = N and the second one is the same as for the degeneracy
between two consecutive states.

Figure 6.18 shows the first energy levels of the biSQUID for different sets of junctions pa-
rameters. The plasma frequency w,, in the energy axis is that of the three parallel Josephson
junctions with capacitance C: hw), = \/ 2Ec (Ej1 + Ejo + Ejs3). These spectra were calculated
using an open-source package for Python: QuTiP [110]. This package allows simulating the
dynamics of open quantum systems.

The left-hand side column (graphs (a), (¢) and (e)) corresponds to a situation where Fj =
Ej9 = Ej3 = E¢, which satisfies the triangle inequalities (6.16).

Graph (a) shows the dependence on n, of the spectrum (with ¢ = ¢r = 27/3). As
expected, the gap between the two first levels closes when ngy = 1/2 4+ n. For these values of
ng, there are other gap closings between two following levels. For integer values of ng, the
spectrum also has levels crossings, not between the two first levels, but between the second
and the third.

Graph (c) has ny = 1/2 and both reduced fluxes ¢, and ¢r vary between 0 and 27. The
gap between the two first levels (in blue and green) closes twice, when ¢, = ¢r = 27/3 and
when ¢, = ¢g = 47/3, according to the complex equality E e’ + E o + Ejze” PR = (.
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In graph (e), ng = 0, there are also gap closings at the same values of ¢, and ppr. This
time, the crossings occur between the second and third levels. Another difference with (c) is
the shape of the spectrum around this gap closings. In (c¢), both levels look linear, while in
(e), they look parabolic.

The right-hand side column shows the same spectra in the situation where one of the triangle
inequalities is not satisfied. Here Ej9/3 = Ej1 = Ej3 = FE¢. This results in no gap closing in
(b), (d) and (f).

Figure 6.19 shows the dependence on the reduced fluxes (taken equal) and n, of the first
excitation (a), as well as the energy difference between the second and third energy levels (b).

The difference between half-integer and integers value of n, can be understood by looking
at the Berry curvature around these degeneracies.

6.2.6. Berry curvature and Chern number of the degeneracies
Half-integer number of Cooper pairs

When ng = 1/2 (or any half-integer value), the degeneracy occurs between the two states with
the lowest energy. To understand the shape of the levels crossings in Figure 6.18, we consider
only states |0) and |1) around the degeneracy point. The Hamiltonian in the basis spanned by
these states is

_ Ecng «
H—( < Ec(lng)2>, (6.17)

with o = — (E 1€ + Ejg 4+ Ejze™"¢®) /2. If we call (¢1, ¢r) one degeneracy point (in the
(pr, pr) parameter space), it is possible to expand the Hamiltonian around (¢, ¢r,1/2). We
write (¢r, ¥R, ng) = (o1, ¢R,1/2) + (d¢L,d¢R, ong). With these notations,

16
Egn? ~ Ec <+"9>

4 2
1 n
Ec(l_ng)QNEC <4—29>7

o~ —% (Ejlei¢L(5<,0L — EJge*id’RégoR) .

With these expressions, matrix (6.17) can easily be written as a function of the Pauli matrices,
Ej3singr

( FE ;1 sin

FEji cos FEj3cos
+<_ Jl2 ¢L5¢L+ J32 ¢R5¢R>0y

E
+7C(5n90'z

Ec
\ Ty

If we subtract the term in o( (only shifting the origin of energy), this Hamiltonian can be
written in the form
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Figure 6.18.: Spectrum of the biSQUID.
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Figure 6.19.: First energy levels of the biSQUID for ¢, = ¢gr: (a) First excitation ; (b) Differ-
ence between second and third energy level.
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where the matrix M is the rotation and scaling matrix mentioned in Section 6.2.3.

Ejnsing;, FEjssingr 0
M = —EJ1 COS¢L EJ3 COS¢R 0
0 0 Ec

With these notations, Hamiltonian H is that of the diabolo of Section 6.2.3, deformed via the
matrix M.

The Chern number of these degeneracies is thus £1. For the lowest energy level, the sign
of the Chern number is given by the sign of the determinant of the matrix M [135] and the
opposite for the other state. Here it is the sign of sin (¢, + ¢r).

For the case considered above (Ej; = Ejo = Ej3 = E¢), the degeneracy at (2m/3,27/3)
has a Chern number of —1, while the degeneracy at (47/3,47/3) has a Chern number of 1.

Integer number of Cooper pairs

When ngy = 0 (or any integer value), the degeneracy occurs between states |[—1) and |1). Only
considering these states is not enough, as they are also coupled via |0). In the basis spanned
by [1), |0) and |—1), the Hamiltonian is

Ec(14+ny)? « 0
H= a* Ecn? a . (6.18)
0 o Ec(1—ny)?

Around (¢, ¢r,0), this Hamiltonian can be expanded at first order in

211



6. Future directions

: //.//////
Lo///
//’\
L= ?
AT ey
e e
// :,o/’/
, ///\
Ng  1/2 = §
2 - - - g - e
YR - e
Lo
0 2T
YL

Figure 6.20.: Localization and Chern number of the degeneracy points in parameter space.

Ec(1+2n,) « 0
H = o 0 o )
0 o Ec(1—2ny)

with o ~ —i (Ejlei‘z’L&pL — EJge*wR&pR) /2. H = Ecld — H is similar to the Hamiltonian
given in example in Ref. [133]. The Berry curvature of this Hamiltonian can be calculated
using perturbation theory to yield a Chern number of 0 for state |0), —2 for |—1) and 2 for |1)
(for the degeneracy at (27/3,2m/3)).

Figure 6.20 shows the localization and the Chern number of these degeneracy points in
parameter space for the symmetric (Ej; = Ej2 = Ej3 = E¢) situation. The blue marks
correspond to the degeneracies with linear crossings (£1 Chern numbers). The green marks
correspond to +2 Chern numbers. Empty circles are for negative values of Chern numbers and
full circles for positive values.

6.2.7. An electron pump

As stated in the introduction of this section, topological invariants often lead to quantized
properties which can experimentally be measured. In the case of the biSQUID, a slightly
different circuit has to be considered to find such quantities. The adequate circuit is presented
in Figure 6.21. The difference with the previous circuit resides in that the left loop was opened
and a voltage source Vi, was added. The phase difference of the left-hand side junction is now
controlled via this voltage source. Applying a voltage V7, to the junction results in a linearly
increasing phase difference: @1 = cpgo) + Vit/po.

The current [,, flowing through the left-hand side junction due to state |n) can be expressed
as a function of the Berry curvature of the Hamiltonian as derived in Appendix L,

1 0F,

I(t) = — 2¢ (—B@R i, + BV ¢p) .
(1) = -5 2 (=B iy + B )
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Figure 6.21.: Electrical schematic of the open version of the biSQUID.

If R is kept constant and n4 increases with a constant rate 7,4, the current is given by

_ 2eB(<PR)hg'

n

When time evolves, ¢y, and ng run through [0, 27] and [0, 1], taking values all over [0, 27] x [0, 1]
(as long as ¢, /(2m) and ng are incommensurate). If the averaged current is measured, the first
term in the expression averages to 0 and the second term becomes the integral of the Berry
curvature over the surface S = [0, 27| x [0, 1],

_ g

(In) = // BYr) (o1, or,ng) dprdng.
S

The surface S (shown in red in the left panel of Figure 6.22 for ¢ = 7) is not a closed
surface. It is possible to close it by adding the ¢r = 0 plane (on which the integral of Bq(fR)
is zero). Due to the 2w —periodicity in ¢, and the 1—periodicity in n, of the Berry curvature,
the ¢y, = 0 surface is the same as the ¢, = 27 surface and the ny = 0 surface is the same as

the ny = 1 surface. The resulting surface S is now a closed surface, and

// B#® (o1, ¢r, ng) derdng = # B, -dS.
S S

This integral is the Chern number of state |n) (up to a 27 factor), such that

s

(In) = —2enyCyp (¢R) -

If the system is kept away from the degeneracies, it will remain in the ground state of the
Hamiltonian (as long as the sweeping rates of ngy and ¢y, are slow enough to avoid Landau-
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Figure 6.22.: Surface S in parameter space for ¢rp = m and quantization of the current.

Zener transitions). Only the Chern number C, of the ground state is thus relevant. According
to the calculations of Section 6.2.6, the Chern number Cj is zero outside of the two Weyl points
and —1 between them. The current that should be measured in the open biSQUID is plotted
in the right panel of Figure 6.22 for three identical junctions.

Realizing topological quantum circuits like the biSQUID is also one of the objectives of the
®( group. Probing the spectrum of the biSQUID with the Josephson spectrometer to observe
the Weyl points is the first step towards the measurement of a quantized current as the one
shown in Figure 6.22.

6.2.8. Towards the Josephson spectroscopy of the biSQUID

To perform the spectroscopy of the biSQUID, there are two main prerequisites: being able to
control the fluxes in the loops and the charge on the superconducting island. The independent
control of two fluxes has already been demonstrated in this work with the spectroscopy of
the RF-SQUID in Section 5.4. Concerning the control of the charge, the first concern is
the amplitude of the charge noise on the superconducting island. This can be estimated by
considering the voltage noise across the capacitance C to the ground. Its integrated value is
Vims = V kBT /C, as derived in Section 2.4.3. As charge and voltage are proportional in a
capacitance, the integrated charge noise is thus Q.ns = vCkpT. In order to have a good
control of the charge on the superconducting island, this noise has to be much smaller than
2e. For instance, Qms < €/10 at 100 mK corresponds to a capacitance smaller than 180 aF.
Because there are three junctions in parallel in the device, each junction capacitance has to
be smaller than 60 aF. With the same oxidation parameters as the one used throughout this
thesis, this corresponds to a surface area of 7200 nm? per junction which is manageable with
an electron-beam lithography.

We propose using a Josephson spectrometer to perform the spectroscopy of the biSQUID.
Among the three coupling schemes presented in Chapter 2, only the capacitive one is possible.

If a Josephson spectrometer is galvanically connected between the superconducting island
and the ground, as represented in Figure 6.23, the capacitance of the spectrometer is added in
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Figure 6.23.: Electrical schematic of a biSQUID galvanically coupled to a Josephson spectrom-
eter.

parallel to the capacitance to the ground which increases the charge noise. The surface area of
the Josephson junction used in the spectrometer thus also has to be of the order of 7200 nm?,
equivalent to a critical current of 500 pA. The peaks that would occur in the spectrum would
then have a quite small height and hardly be measurable. Furthermore, the voltage applied
on the spectrometer is also applied on the three junctions of the biSQUID, bringing them out
of equilibrium and considerably changing their Hamiltonian.

The inductive coupling scheme is also not possible because there is no inductance in the
biSQUID. Adding one in parallel of the three junctions changes greatly the Hamiltonian of
the biSQUID because it shunts the Josephson inductance Lj of the three junctions. If the
added inductance [, is much larger than L, this effect is less visible. For each junction, the
inductance is of the order of 600 nH, such that the total L; is of the order of 200nH. It is
quite hard to fabricate an on-chip inductor with such a large inductance.

When considering capacitive coupling, as sketched in Figure 6.24, a first requirement is that
the coupling capacitance C, has to be smaller than the capacitance C' to the ground, such that
the charge noise is not increased. In that limit, the resonance frequency w,, is given by

1
& = —Cywm, 6.19
M (Zb + iC’Clwm ) - ( )

where Z is the impedance of the biSQUID and C; the capacitance of the spectrometer. To
estimate Z3, we model the three tunnel junctions of the biSQUID as inductances. This model
is only valid for the first excitation of the spectrum since the next excitations have different
energy due to the non-linear character of Josephson junctions. Writing Li, Ly and L3 the
Josephson inductances at zero phase difference of junctions 1, 2 and 3, the admittance of the
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Figure 6.24.: Electrical schematic of a biSQUID capacitively coupled to a Josephson spectrom-
eter.
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The resonant frequency of the bare biSQUID in this model is the frequency wgy such that
}/b (WO) = Oa

1 fcosepr cospy  COss
2 e
WO_C<L1 YL T )

Introducing Eo = 2¢2/C and Ej, = gp% /Ly, this frequency can be written

(hwo)? = 2E¢ (Ej1 cos 1 + Ejg cos o + Ejzcos p3) .

This frequency describes quite well the actual plasma frequency of the biSQUID at ny = 1/2.
If By, Ejo and Ej3 satisfy the triangle inequalities (Equation (6.16)), wy = 0 at certain
combinations of phase differences, as calculated above. To simplify the notations in the fol-
lowing calculations we write Lj the parallel combination of the three inductances, such that
Yy, = 1/(iLjw) + iCw. The resonance condition of Equation (6.19) can thus be written

1 Ljwn, -t c
— = —Cjwpm.
Cewm, 1 —L;Cw2, Jem

The evaluation of this expression yields

[um—y

Wm = Wo .
m 1 _|_ i CCCJ
C Cc+CJ
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6.2. Topological quantum circuits

As stated above, having C. < C helps keeping the charge noise low. If we also impose C'y > C,
the measured frequency is wy,, = wp. The condition C; > C' is easy to satisfy in practice since
C' is quite small (of the order of 200 aF) to ensure a large charge energy for the biSQUID.

If we want to evaluate the dissipation at resonance, we can model it by a resistance R
in parallel with the biSQUID accounting for losses in the dielectric. A typical value for the
junctions we fabricate is 10 M€). At resonance, the impedance of the biSQUID is thus R, such
that the impedance Z, seen by the spectrometer is

—1
1
Ze =\ 1 + iCJw0> .
<Rb + 1Cewo

In the limit where C'; > C, the real part of Z. can be expressed as

_CG R
" Cr14 (RCawp)?

For C. ~ 10aF and Cj ~ 150fF (corresponding to a critical current of 500nA), this gives
R, ~ TQ if wg is of the order of 2r x 15 GHz. This corresponds to a peak of height 30nA,
easily detectable with our setup. As the measured signal is proportional to R, times the square
of the critical current of the junction of the spectrometer and R, is inversely proportional to its
capacitance and thus to its critical current, the measured signal is proportional to the critical
current. Larger junctions are thus favorable, both to increase the signal and to make sure that
the measured frequency is actually the plasma frequency of the biSQUID.
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Conclusion

Starting from an experimental realization of a spectrometer based on the Josephson effect [32],
we have understood its imperfections and implemented a new design (presented in Figure (iii).1)
to palliate them. The two main drawbacks of the first generation of spectrometer were the
presence of several spurious resonant modes due to the electromagnetic environment of the
junction and a non-uniform coupling to the system of interest.

Using a symmetrical SQUID (colored in blue in the SEM picture of Figure (iii).1) biased
at half a flux quantum allows significantly decoupling the junctions from the environmental
modes. The electromagnetic environment of the spectrometer is also carefully designed in order
to suppress all remaining modes. The high impedance of inductors (in red) placed close to the
junctions contributes to a good decoupling. A considerable part of the emitted microwaves,
as well as incoming noise, is shunted by two large capacitors (in orange) at the other end of
the inductors. The remaining resonant modes are then damped by large on-chip resistors (in
green).

Coupling to the system of interest can be made using the inductance of the loop of the
SQUID instead of a capacitor. This guarantees uniform phase excitation across the inductance,
as opposed to a 1/w? dependence for capacitive coupling.

All these improvements allow measuring an almost flat spectrum when the spectrometer is
not coupled to any system of interest. The right-hand side of Figure (iii).1 shows such current-
voltage characteristics. The top color map represents the evolution of the IV characteristics
with respect to the flux ®, in the SQUID loop and the bottom curves are cuts along the
red and dashed lines at ®. = 0 and ®(/2 in a logarithmic scale. The remaining background
current at ¢, = ®y/2 is of the order of 200 pA for junctions with a critical current of 100 nA.
This corresponds to an intrinsic noise equivalent power of 10717 W/ VHz over a bandwidth
of 180 GHz. The few residual undesired features at 150 and 27511V have now been identified
as due to the large shield planes visible in pale-yellow in the microscope picture. They can
therefore be shifted out of the bandwidth of the spectrometer in the next version.

Spectra of four test systems were measured over a wide frequency range: an LC resonator
mode at 150 GHz, the excitation of quasiparticles in a superconductor above 90 GHz, the
plasma frequency of a Josephson junction at 15 GHz and the plasma frequency of a RF-SQUID
at 80 GHz. The measured spectra agree quite well with the theory and allow proving that the
spectrometer can be used in various situations. The spectroscopy of the RF-SQUID was made
via a mutual inductance to the spectrometer which proved the possibility of using such a
coupling scheme. As coupling to the loop mode was too weak in this case, future SQUID
spectrometers will have the device under test directly inside the loop.

Finally, several systems particularly adapted to be probed by the Josephson spectrometer
were presented, including hybridized ABS in close junctions, modified ABS due to spin-orbit
coupling in InAs nanowires and HgTe-based weak links, as well as topological superconducting
quantum circuits where the plasma energy levels can exhibit non-avoided energy crossings.
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Figure (iii).1.: Microscope and SEM (Scanning Electron Microscope) pictures and current-
voltage characteristic of the latest version of the spectrometer.

Perspectives

The resulting device can further be improved. Possible directions include fabricating it on a
transparent sapphire chip as suggested in the previous chapter in the case of the envisaged
coupling to a TI-based junction. With such a chip-spectrometer it will be possible to probe
any system of interest, just by bringing it close enough and without fabrication process on it.
This is convenient for fragile systems. With a SQUID loop of radius 50 pm, the coupling stays
acceptable up to a distance of ~ 100 pm easily achievable with simple alignment techniques.
The group is currently working on a new setup in which the chip to probe can be moved with
micro-metric screws and therefore carefully aligned with the spectrometer. The first alignment
attempt resulted in a vertical distance of 10 pm between the two chips and a horizontal error
of the order of 20 pm. Fabrication and characterization of spectrometers on a sapphire sub-
strate have also already begun and show current-voltage characteristic comparable to the ones
obtained on silicon substrates.

Another possible improvement consists of using a superconducting material with a higher gap
to operate at higher frequencies: possibly up to 1.4 THz with niobium-based junctions. In that
case, the fabrication is less simple as with aluminum because, in order to have a good oxide, one
needs to form a Nb/Al/AlOx/Al/Nb sandwich which requires a sputtering system instead of an
electron beam evaporator due to the refractory nature of niobium. However, experiments are
in progress to test electron-beam evaporated Nb tunnel junctions. Al/AlOx/Al/Nb junctions
have already been realized, with a measured gap larger than that of aluminum but still smaller
than that of niobium. The voltage at which the quasiparticle branch starts is of the order of

220



8001V, corresponding to a frequency of 400 GHz.

The ®( group is also currently working on another device able to deliver a voltage stable to
better than one part-per-billion using the stability of the Shapiro steps in presence of microwave
irradiation. Combining this precise tunable voltage source with the spectrometer theoretically
allows for an extremely narrow linewidth (of the order of the kHz or even smaller).

One of the main drawbacks of the developed spectrometer is that the measured signal relies
on dissipation in the device under test. Being able to measure the amplitude and the phase
of the microwave signal reflected to the junction would allow probing less dissipative systems
and would thus increase the sensitivity of the spectrometer. The possibility of phase locking
Josephson junctions to a coherent microwave source may lead to the development of such an
on-chip broadband vector network analyzer.
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A. Spectrum of the Andreev Bound States

For a given energy F, there are four possible wavevectors in the Andreev approximation
kop = akp + Bik(E),

where @« = +1 and = +1. In the left-hand side region (x < 0), only k with § = —1 are
not diverging and in the right-hand side region, § = 1. The spinor ¥(z) describing the bound
states can thus be written

A <ZA) e~ tkrztr(E)w +B (Z’B) eikratr(E)z  ify <0,
A

U(z) = v
C ac e—ikpac—n(E)x +D ap etkrz—r(E)T  ifg > 0.
b bp

The A, B, C and D coefficients are to be determined with the wavefunction continuity equations
at x = 0. The ax and bx are given by the u; and vy coefficients of Equation (1.13). Calling

1 €k11
— —_ 1 2
" 2<+E ’

v = 1 1—&“1
2 E )

gives

A (UerL) e~ tkrr+r(E)z +B (uei}itpL> ctkrzte(E)T  if <0,

U(x) =
C( v >eikpzn(E)z +D (v u )eikpzn(E'):L" ifr > 0.

ue_i@R e—iSDR

At x = 0, the wavefunction is continuous, so

u v v u
A <’Ue_i¢’L> + B (ue_iL‘DL> - C <ue_i<‘0R> + D (Ue_i@R> . (A].)

The derivative of the wavefunction follows

K2 dU K2 dU n
——— (=0 )=———(x = U(z =0).
2m dx (w=07) 2m d:c(x 07) + Vo¥(z =0)

This can be rewritten as
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A. Spectrum of the Andreev Bound States

A(=ikp + K(E)) <Ue—um> + B (ikr + w(E)) <uez“> B (A.2)
2

C (—ikp — k(E) — 2nkp) (uef’w) + D (ikp — k(E) — 2nk) (Ue?i@R) :

where 7 = mVy/(R%kr). In the zeroth order Andreev approximation, x(E) can be completely
neglected with respect to krp. Combining Equations (A.1) and (A.2) together gives a matrix
equation linking A, B, C and D:

U v —v —Uu A
ve L ye WL —ue PR —pe PR B 0
u —v (=1 +2in)v (14 2in)u cl| -

ve WL —ye WL (=14 2in)ue ¥R (1 + 2in)ve ¥R D

This equation has non-zero solutions only if the determinant of the matrix is zero. This
condition can be written

(ut +0") (1 +7%) = 2u*0? (n* + cos ) ,

By = £A,/1 - 7sin? %, (A.3)

where 7 is the transmission of the channel given by Equation (1.10).

which has two solutions
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B. Derivation of the current carried by an
Andreev bound state

The current carried by an Andreev bound state is the derivative of the charge,

d {n)
I=-2 :
Tt

Ehrenfest theorem gives for the observable 7,

i =),

Because phase ¢ and charge number n are conjugate, n =
d (n) 1 10 - 1 ~1 0
— = — (V| -—H|V)—- (V| H-— |V
dt ih< i@goH‘ > zh< ‘Hiﬁgp >’
1
=—— (V| — |V
__L[oH
A \Op /"’
Consider an Andreev bound state |£) of energy F1. The expectation value in the last equation

oM
(1Y (], -

For |+), the Schrodinger equation gives H |+) = E. |+). Differentiating it with respect to ¢
gives

%%. This gives for a state |¥),

OH

on
dp

OH NCIES IO d|+)
— |* — = — 1% E .
8¢\>+’H8(’0 8¢|>+ =55
Substituting this in Equation (B.1) yields
OH GJon o) ~0%)
— ) =({£| | =— | FE — . B.2
<6¢> e (G 1+ B - A0 (B2)

H being Hermitian, the Schrodinger equation can also be written (£|H = E. (+|. Combining
this with Equation (B.2) gives
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B. Derivation of the current carried by an Andreev bound state

(5) - (| 22] )

OBy
=%
Therefore the current carried by an Andreev bound state /. can be expressed as
1 OF
1, - LB
¢o Op
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C. Resolution of the differential equation
governing the dynamics of a Josephson
junction in series with a resistance

The differential Equation (1.47) governing the dynamics of a Josephson junction in series with
a resistance can be rewritten as

dp

dt = ————.
v —sinp

Integrating from time 0 at which the phase is 0 to time £ when the phase is ¢ gives

f—/wd@é
Jo v—sing’

Using the substitution u = tan ¢/2, for which d¢ = 2du/(1 + u?), transforms the integral in

- /tanso/? 1 2du
t= )
0 v 1-2&2 14 u?

B tan /2 2du

t= S
/0 v(1 +u?) —2u’

.9 tan /2 du

t=— s
v /0 1+u?—2%

t =

2/&1114,0/2 du
h GeE

v

For a bias voltage larger than RIy, v > 1 and this integral can be rewritten as

u—

< =

t~_ 9 1 /tan@/Q du
v]— v% 0 2 .
+1

1
A second substitution w = “1771 leads to
T2
~ 2 Bd
i= . (C.1)
v2—1J4 w2 +1

where the integral limits o and 3 are
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C. Resolution of the differential equation governing the dynamics of a Josephson junction in series with a r

-1
o= ,
v2—1
Bzvtan%—l'
v2 —1

The integral in Equation (C.1) is simply the arctan function, such that

_ 2 ( (vtan‘é7 — 1> < 1 >>
t = ———— | arctan | —————— | + arctan | ——— .
v2—1 v2—1 v2—1

This equation can be inverted to give the phase difference across the junction as a function of

time,
/ 1 V2 —1.- 1 1
(p = 2 arctan 1—-—ta Uit — arctan | ———= + — | 4+ 2nm,
v2 2 v2 —1 v

n
”’; 1f—arctan( L >+%

where

v2—1

™
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D. Mutual inductance and coupling constant

To estimate the mutual inductance M and thus the coupling coefficient k& between two loops
A and B, we have to calculate the flux ® 45 of the magnetic field B4 generated by the current

14 flowing in loop A through loop B:

@AB:// B ds
S

. Introducing the vector potential Ay and using Stokes theorem, this expression is

@AB:// (ﬁng).ds:§£ Ay dip.
SB CB

The potential vector A4 generated by loop A at a distance r is

So the flux ® 43 is

<1>AB=”0L47§ y§ dla-dls
47 Ca JCp r

The proportionality constant between ® 45 and I4 is the mutual inductance M = kv/LaLp,

so we get the Neumann formula:

M:MO§£ 75 dls-dip |
4 CaJCp T
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E. Mutual inductance between two concentric
circular loops

It is possible to get an analytic expression for the mutual inductance between two concentric
circular loops (represented in Figure 2.24) of radii r4 and rp, using the Neumann formula:

dl - di
M_'UO% yg HaA 9B
47T CaJCp T

If we parameterize the A loop with angle ¢ and the B loop with angle # and if we call d the
distance between the two loops centers,

dlp = 14 (— sin ¢, + cos ¢d,) do,
dlp = rp (—sin 0d, + cos 0d,) do,

dia-dlp =rarpcos (¢ — 0)dpdo,

r= /14 +r%+d?—2rargcos(¢—0).

Substituting these expressions in the double integral gives

vl [T [T e dods.
4 Jo  Jo \/ri—kr%—i-dQ—QTATBCOSW—@)

Using the rotation symmetry of the loops, it is possible to reduce this double integral to a
simple integral: the integral over ¢ is the same independently of the value of the angle 6.
Mathematically, this is equivalent to the substitution:

Y= (b - 97
0=46.
This gives

27
cos
M:Mzo/ T AT B COS"Y
0 \/ri+r%+d2—2rAchosv

dry.

Using the fact that

/2” cosy 4v/a+b < a
0

- a+b

et = K(3)-50),
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E. Mutual inductance between two concentric circular loops

where K and E are complete elliptic integrals of the first and second kind as already defined
in Section 1.2.3. The argument [ is
2b

a+b

. This gives an expression for M:

Ti—l—r%—}—dQ
(7”,4-1-7“B)Q—i-d2

MZMO\/(TA+T‘B)2~I—d2< K(B)—E(ﬁ)),

(E.1)
with 8 = 2 \/ L
(ra+rp)” +d?
The inductances of loops A and B: L and Lp are in first order [101]
La = pora <ID8TA - 2) ;
¢ (E.2)

8
Lp = porp <1HTB - 2> ;
a

where a is the width of the wires. In practical, the r4/a and rp/a ratios are close enough,
so that the factor in parentheses in the expressions for L4 and Lg can be taken equal to the
same value v of order 1 — 2. This gives for k:

k_l\/(rA+7'B)2+d2 <(7324+”29+d2 K(B)—E(ﬁ’)).

Y TATB TA+TB)2+d2
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F. Flux focusing

When a magnetic field of magnitude B, is applied to a Josephson junction, currents flow in
the superconductor to prevent the magnetic field from penetrating. These currents create a
magnetic field opposed to the applied field, such that the magnetic field is zero inside the
superconductor. Figure F.1 shows the resulting magnetic field in a plane perpendicular to a
Josephson junction. Here, the applied magnetic field Ee is along the vertical axis as represented
in the figure. The two black rectangles in the center of the figure are the two superconducting
electrodes forming the Josephson junction where they overlap. They have an extension L in the
direction perpendicular to the plane of the figure. The plotted magnetic field was calculated
using the 3D-MLSI simulator [73]. The magnetic field is not exactly zero everywhere in the
superconductor because it can penetrate on a thickness of the order of the London length
before being damped. In the junction, the amplitude of the field is larger than B.: most of
the field lines in the green region of width W are deviated through the junction. This results
in a flux threading the junction of the order BLW | in general much larger than B.Lt (where
t is the thickness of the barrier and thus the junction). There is no simple formula for W but
it is easy to get an approximation with a simple physical argument:

If the length L was infinite, there would only be three possible paths for the magnetic field
lines to cross the superconductors: getting around them by the left-hand side or by the right-
hand side or crossing the junction. This results in three different regions in space, the size of
which should be equal. Thus, L ~ D/3, where D is the total width of the superconductors.
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F. Flux focusing
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G. Quasiparticle current

The current through the junction is

Ivv)=e(T(WV)-T W),
In(V)=e (?(V) - ?(_V)> .

Using the calculated expression for ?(V), this gives

In(V) = eéN <//_:o ns (5) ni%(VEl h ev)f (E)(1—f(E' +¢€V))P(E— E')dEdE'

_ //+oo ns (E)ni?(VE’_eV)f(E) (1—f(E’—eV))P(E—E’)dEdE’> '

The substitutions E = E’ + eV in the first integral and E = E' — eV in the second integral
give

In(V) = S;N (//_:o ’WW;) (1 - f(E)) P(E — E + eV)dEdE

_ //+°O ns(Ens(E) gy (1-7(B)) PE~E~ eV)dEdE) .
o n

Inverting the role of E and F in the second integral gives

_ 1 T ng(E)ns(E) - - -
Iv(V) = —— < I P 1(8) (1 £(B)) P(E — B+ V)
- //+°° ”S<En)§‘5(E>f(E) (1— f(E) P(E—E - eV)dEdE) .
o N
The detailed balance relation [(6]: P(—E) = e PP P(E) allows writing the current as

In(V) = eéN (//_:O Wf@) (1 - f(E)) P(E — E + eV)dEdE

_ //+°° %;”‘S(E)f@) (1— f(E))P(E—~E+ eV)e—5<E—E+eV>dEdE> :
oo ny
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G. Quasiparticle current

Regrouping the two integrals together yields

IN(V GRN//W ~)P(E—E+6V)

(r2) (1- f<E>) — F(E) (1 = f(E) e PE-E+V)) apa.

Calling E' = E — E transforms this integral to

T n nS (E+ E,)
—E
In( eRN // Plev )

F(B)(1- f(E +E)) —f(E+E)(1-f(E) e*ﬁ@"*E’)) dEdE'.

Noticing that

f(E) - f(E+E)

FE)Q1-f(E+E)= | —oBE
it is possible to express the current as
o E + E')
E)-f(E+F
vy == [ * (f(B) ~ f(B + BY)

, 1 e—B(EV—E,) ’
P(eV ~E) | 1= + g | AEE"

The first line of this expression is Equation (3.8) for the quasiparticle current without environ-
ment. This gives the following expression for the current in presence of an environment.

+00 E/ 1— e—/BCV
IN(V) = / IN70 <€> P(QV — E/)l—ieﬂE,dE,

—00
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H. Fabrication processes

This appendiz describes the fabrication processes used to make devices SSQ05, SSQ14 and
HS0/, presented in Section 4.3.1, 4.5.2 and 4.3.3, as well as the spectrometers used in Chap-
ter 5 based on the design of HS04. They include several lithography and evaporation steps.
Sample SSQO05 has the simplest recipe and was realized in one lithography and one three-angle
evaporation step. Sample SSQ14 needed two evaporation steps. One for the junctions and a
second to add the shunt capacitors. Sample HS04 is the most complex design and required three
evaporation steps. It is based on the recipe for SSQ14 with an additional evaporation for the
resistive leads. This is summarized in Table H.1.

H.1. Optical lithography

All lithography steps used in the recipes for samples SSQ05, SSQ14 and HS04 are similar. They
were performed with the Laserwriter LW405B allowing for patterning with an ultra-violet laser
ray of diameter ~ 800nm. The laser source is a GaN diode laser emitting at 405nm. The
stage on which the wafer sits can move along three perpendicular axes: a first vertical one
to allow for a good focusing of the laser on the substrate and the two others to pattern the
desired design.

Prior to exposure, MicroChem resist LOR5B is poured on a silicon wafer and spun at 1000
rpm during 60s, resulting in a layer of ~ 850nm. The substrate is subsequently baked at
200°C for 5min. When it is cooled down, Shipley resist S1813 is poured, spun at 3000 rpm
for 45s and baked at 115 °C for 1 min. The resulting layer is 1.5 um thick. Only the top S1813
layer is photosensitive (to ultra-violet light). The bottom LOR5B layer develops as soon as it
is in contact with the developer solution.

The prepared wafer is then loaded in the optical lithography setup and exposed at an energy

SSQO05 SSQ14 HSo04
Optical lithography 1 | Optical lithography 1 | Optical lithography 1
Evaporation of Evaporation of Evaporation of
the junctions the junctions the junctions
Optical lithography 2 | Optical lithography 2
Evaporation of Evaporation of

the shunt capacitors | the shunt capacitors
Optical lithography 3
Evaporation of
the resistive leads

Table H.1.: Summary of the fabrication of samples SSQ05, SSQ14 and HS04.
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H. Fabrication processes

Sample SSQ05 Sample HS04

Figure H.1.: Samples after the first optical lithography step.

close to 200 mJ cm™2 following the designed pattern. It is then developed in a MF319 solution
during 30s and rinsed with water to stop development.

Figure H.1 shows samples SSQ05 and HS04 after the development following the first lithog-
raphy step. The purple zones are the regions where both LOR5B and S1813 are removed. In
the brightest regions, both resists are still present. In the zones between both colors, only the
top layer is present, such that the regions indicated by red arrows consist of suspended bridges
of S1813. These are the places where the junctions will be located. The loop of the SQUIDs
will be formed of the material evaporated in the developed zones in the dashed green rectan-
gles. The main difference between SSQ05 and HS04 resides in the width of the horizontal lines
leaving the SQUIDs. For SSQO05, they were made as thin as possible, close to 1pm, whereas
for HS04 they are designed to be 6 pm wide.

H.2. Material evaporation

Deposition of metals and aluminum oxide is performed in a Plassys electron gun evaporator.
The pressure in the chamber where the wafer sits is of the order of 10=7 — 1076 mbar. It is in
the 10~® mbar range in a second chamber (~ 50 cm below) where the materials are sublimated
by an electron beam.

After each evaporation, the samples are placed in a hot NMP bath at 80 °C during at least
1h and then rinsed with isopropanol.

H.2.1. Sample SSQ05

In sample SSQO5, inductive leads are wanted between the SQUID and the bonding pads. To
fabricate them, we use a three-angle evaporation technique allowing for thin leads connected
to the SQUID without breaking the vacuum of the chamber. Figure H.2 explains this method
for two typical patterns: a Josephson junction (on the left-hand side of the picture) and a
single wire (on the right-hand side).

(a) 100nm of titanium is evaporated vertically (in green) at a rate of 0.5 nms1.

240



H.2. Material evaporation

S1813

LORS5B

Si wafer

Figure H.2.: Three angle evaporation technique.
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H. Fabrication processes

Figure H.3.: False colors SEM picture of a Josephson junction with titanium leads.

(b) A first layer of 150 nm of aluminum (in blue) is evaporated at a rate of 1 nms~! with an
angle of ~ 45° with respect to the vertical axis. In the design for the wire, all aluminum
is evaporated onto the upper layer of resist.

(c) Oxygen is allowed in the chamber at a pressure of 200 mbar for 10 min, oxidizing the top
of the aluminum layer. Alumina is depicted in violet.

(d) A second layer of 200 nm of aluminum (in red) is evaporated at a rate of 1 nms~! with
the opposite angle with respect to the vertical axis. If the angle is chosen correctly, a
Josephson junction (JJ) is formed under the bridge (indicated with a red arrow).

Figure H.3 shows a SEM (Scanning Electron Microscope) picture of a Josephson junction
of area slightly smaller than 2pm? obtained with the three-angle evaporation technique. The
blue and red zones are the two superconducting electrodes connected to the junction and the
purple zones are the overlaps between the two electrodes. The junction is the small overlap in
the center of the picture, and the green wires are highly-inductive titanium wires.

H.2.2. Samples SSQ14 and HS04
Evaporation of the junctions

For these samples, the inductance out of the loop of the SQUID is made smaller. To do so,
the lines are designed wider, as shown in Figure H.1, and the leads are made in aluminum.
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H.2. Material evaporation

25 pm
(a) Before etching (b) After etching

Figure H.4.: Microscope picture of a SQUID before and after etching the excess leads.

The first angle of the three-angle method used for sample SSQO05 is skipped. The result of
this evaporation is shown in the left-hand side picture of Figure H.4 for sample HS04. It is
not exactly the expected design as each lead is evaporated twice. In this design, each excess
lead forms a loop with the desired lead closed by a large Josephson junction. This forms a
RF-SQUID which has a resonance frequency possibly in the bandwidth of the spectrometer
as shown in Appendix I. The excess leads have thus to be removed. To do so, a wet etching
process is used:

e a thin layer of photosensitive resist is spun on the sample,
e a window is patterned in the resist on the unwanted lead,

e the sample is immersed in the developer for 5 more minutes than for a standard devel-
opment to etch aluminum in the window.

The result of this process is shown in the right-hand side picture of Figure H.4.

Evaporation of the shunt capacitors

For samples SSQ14 and HS04, capacitors are patterned in another optical lithography process.
After development and when the sample is put in the chamber, it is first etched with argon
ions to remove the oxide layer which can contain impurities due to contact to air. The etching
is performed with a current of 20mA and a beam voltage of 500 V for 90s with a tilt angle of
45° while the planetary is rotating at 5 rpm.

After this step, pure oxygen is allowed in the chamber up to a pressure of 200 mbar during
2min to oxidize the top layer of aluminum with a good stoichiometry. After that, 125 nm of
aluminum oxide is evaporated with a tilt angle of 45° at a rate of 0.2nms~! while the planetary
is rotating at 5 rpm. The rotation of the planetary and the tilt angle allow the aluminum easily
climbing on top of the previously evaporated aluminum layers. Pure oxygen is again allowed
in the chamber at the end of the alumina evaporation to make sure that the top of the oxide

is of good quality. 150 nm of aluminum is finally evaporated vertically at a rate of 1nms™!.
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H. Fabrication processes

Evaporation of the resistive leads

For sample HS04, resistive leads are fabricated directly on the substrate. To guarantee a good
electrical contact between them and the layer of aluminum below, when the sample is in the
evaporator chamber, it is first etched with argon ions (with the same parameters as above)
to remove the layer of aluminum oxide which formed when the sample was in the air. The
evaporated leads are made of a first layer of 25 nm of palladium evaporated vertically at a
rate of 0.2nms~!, on top of which is stacked a second layer of 45nm of hafnium evaporated

vertically at a rate of 0.2nms™!.

H.3. Comments on the shape of the junctions

The trapezoidal shape of the aluminum electrodes allows making sure that no spurious junction
is added. Figure H.5 shows a sketch of evaporated junctions viewed from the top. The blue
and red polygons are aluminum planes and the violet region is the Josephson junction.

If the two electrodes have rectangular shapes, as shown in panel (a), the current I represented
in the figure has to cross the two regions (1) and (2) circled in black. If the blue layer is
evaporated first, the current stays in the blue layer in region (1). But in region (2), the red
layer is deposited above the blue one. If it is slightly shifted leftwards (due for instance to a
misalignment with respect to the rotation axis for the evaporation) or thinner than the first
layer, the wire through which the current I exits the device can be discontinuous because of
the step due to the first layer. The current has to cross two additional Josephson junctions.
Using a trapezoidal shape prevents this situation as can be seen in panel (b).

The biasing and measurement wires are also always connected on the sides of the junction
to avoid parasitic junctions. (c) shows a situation with wires leaving the junction vertically.
In that case, the current I arriving in the bottom blue lead crosses first the violet Josephson
junction and has then to cross a large junction (the hatched violet area) between the red and
blue layers before leaving in the top blue lead.

The design used in the following is that of panel (b).
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H.3. Comments on the shape of the junctions

¢I
] Iy f 1 \
(2)
(1)
I i v

(a) (b) ()

Figure H.5.: Three envisaged geometries for a junction.
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|. Parasitic modes introduced by excess leads

Figure 1.1 shows the microscope picture of a SQUID with two extra leads, labeled («) and
(8) in the figure. Each of these leads forms a RF-SQUID with the other lead. The Josephson
junctions of these two RF-SQUIDs are shown in green. The equivalent electrical schematic
is shown in Figure 1.2, where the central SQUID is shown in blue. The two green Josephson
junctions have critical current I, and Ig.

The current-voltage characteristic of this device is shown in Figure 1.3. In (a), the sample
is flux-biased at ¢, = 0 and 7. There are some visible peaks due to resonances in the large
aluminum planes and other off-loop modes. At ¢, = m, all these peaks disappear. As shown
in (b), the first of these peaks moves when magnetic field is applied and this displacement
is not 27 periodic. (c) shows how this peak moves for applied flux from values smaller than
—3®( to larger than 2&y. The measured pattern is not easy to decipher, but resembles two
interlacing patterns with different periodicity which could come from the two RF-SQUIDs
visible in Figures I.1 and I.2.

Lead («) was etched using the method described in Section H.2.2 in order to verify this
hypothesis. The measured spectrum is shown in (d). The pattern is now much simpler and
is consistent with the expected plasma resonance for a RF-SQUID plotted in red on top of
the spectrum. This red line was calculated, assuming not only the modulation of the plasma
resonance of the RF-SQUID, but also the possibility for the large Josephson junction of the
RF-SQUID to be threaded by magnetic field.

According to the calculations of Section 2.4.2, the supercurrent /¢ of a Josephson junction
threaded by a magnetic field is modulated via:

Ic =1y sinc—2L
2¢0
Where ®;; is the flux through the Josephson junction (and not in the loop of the RF-

SQUID).
The plasma frequency of a RF-SQUID is derived in Chapter 5. It is

/1
Wp = Wpo /37 + cos o,

Where wyy is the plasma frequency of the Josephson junction, 51, = Llc/¢q is the ratio of
the loop inductance to the Josephson inductance and ¢, is solution of
©m + Brsing, = %
¥0
®,. is the flux threading the loop of the RF-SQUID. In our case, not only ,, depends on
the magnetic field, but also wyg and 1. However, the dependence is softer for w,g and 3, as

wpo X V1o and B, o< Ic.
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1. Parasitic modes introduced by excess leads

Figure I.1.: Microscope picture of a SQUID with two extra leads.

AT
La

Figure 1.2.: Electrical schematic of the SQUID with the two extra leads.
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The fluxes ®, and ®;; are both related to the applied magnetic field B via

&, = BSgr
&5 =DBSyy

Srr and S are the surfaces of the loop of the RF SQUID and the large Josephson junction.

The red line in the figure was plotted with 8;, = 0.45 and a ratio Sgr/Ss; = 9.8. This ratio
is quite far from the actual ratio between the surfaces of the loop Agrp = 52pm? and Aj; ~
2nm x 10 pm = 0.02 pm?. This is due to the magnetic field focusing by the superconductors: if
a magnetic field is applied to the sample along an axis perpendicular to the plane of Figure I.1,
it cannot penetrate the aluminum planes which are superconducting. The field lines are thus
deviated and take the shortest way to reach the other side of the superconductors. The area
to take to calculate the flux threading the Josephson junction is thus much larger than A ;.

Finally, spectrum (e) of Figure 1.3, was taken after that the second lead () was etched,
leaving no resonance modulating with the magnetic field.
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I. Parasitic modes introduced by excess leads
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Figure 1.3.: (a) Current-voltage characteristic at ¢, = 0 and 7 of the device of Figure 1.1; (b)
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J. Derivation of an expression for the kinetic
inductance

To derive the kinetic inductance of a superconductor, let’s focus on its complex conductivity
o(w) = o1(w) — ioa(w).

At zero temperature, the real part of the conductivity is 0 for frequencies below 2A /i because
there only exists a non-dissipative current of Cooper pairs at these frequencies.

Tinkham [!1] gives an expression for the imaginary part at zero temperature and low fre-
quencies (hw < 2A):

o hw’

where o, is the conductivity in the normal state.
The complex impedance of a piece of superconductor of length [ and section S is

l
Z —
=
At low frequencies, it is thus
Z(w)=1 !
Soa(w)’
I hw
By =ig ok

The resistance Ry of the same piece of metal in the normal state is Rg = [/(So,,). This yields

Ry
Z(w) = N

This expression is the impedance of an inductance L, called the kinetic inductance, such that

h
Ly = —Ry.
K= A0
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K. Microwave simulation using Sonnet

The devices presented in Chapter 4 were simulated using Sonnet, a high frequency electromag-
netic software. This software allows simulating planar metallic layers separated by dielectrics.
It includes the possibility to simulate superconductors by taking into account their kinetic
inductance. Sonnet encloses this stack of materials in a box with perfectly conducting metallic
walls. This can unfortunately generate resonance modes due to the finite size of the box!.
Sonnet then uses a finite element method to calculate the impedance and scattering matrices
at each port in a specified frequency range.

As the two Josephson junctions of the SQUID act as microwave sources, they are designed in
the Sonnet simulations as internal ports. It is possible to simulate the behavior of the SQUID
at ¢, = 0 and 7, by giving a different phase to the two ports. At ¢, = 0, the two junctions
have the same phase difference, so they both generate microwaves at the same phase. On the
contrary, at ¢, = m, both junctions have opposite phase differences, which is equivalent to
adding a 7w phase difference between the ports in Sonnet. In addition, a capacitance is added
in parallel of each port to account for the intrinsic capacitance C; of the junctions.

K.1. Sample SSQ14

Figure K.1 shows the result of the simulation of sample SSQ14 with Sonnet. Panel (a) shows
the real part of the impedance seen by the junction and panel (b) shows the z parameter
introduced in Chapter 2,

For sample SSQ14, the critical current is Iy = 250 nA. This corresponds to a minimal detectable
2 of Zpmin = 5 x 1077, This simulation shows a high and narrow peak at 24 GHz, a smaller
peak at 7 GHz and a wider and less intense peak around 70 GHz. To identify them, the current
density was also simulated, as shown in Figure K.1, simulated at 24 GHz. Panels (a) and (b)
show the amplitude of the current density in the x and y directions. Panel (c) and (d) show
the phase of these currents. They circulate around the central region and correspond to a
dipole-like mode.

The peaks at 7 GHz and 70 GHz are resonant modes due to the finite size of the box. This
was observed by changing the size of the simulation box. When it was made smaller, the
resonant frequencies moved to higher values.

'In the following simulations, these modes are damped by adding an extra layer of a material with high
permeability and magnetic losses. This extra layer is present in the experimental setup. It is the material
introduced in Section 4.4.
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K. Microwave simulation using Sonnet
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Figure K.1.: Simulation of sample SSQ14 with Sonnet. (a) Real part of the impedance seen by
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the junction ; (b) Corresponding z parameter ; Distribution of the current density
at 24 GHz: (c) Current density in the x direction ; (d) Current density in the y
direction ; (e) Schematic direction of the currents.



K.2. Sample HS04

1000 =7/ T S
(a) . —— Without resistive leads
‘ .= With resistive leads
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Frequency (GHz) Frequency (GHz)

Figure K.2.: Simulation of sample HS04 using Sonnet with and without resistive leads.

K.2. Sample HS04

Figure K.2 shows the results of the simulation of sample HS04 with (blue) or without (red)
resistive leads. Without leads, there are four main peaks, at 38.5 GHz, 72.5 GHz, 112 GHz
and 126 GHz. The first peak is the same as observed for SSQ14 at 24 GHz. It is at smaller
frequency because the size of the sample is larger, in particular the size of the loop around
the central SQUID. The current distributions for the modes at 72.5 and 126 GHz are shown
in Figure K.3. These modes correspond to “drumhead” like modes with currents circulating
in the large aluminum regions above and below the central region. The mode at 112 GHz has
a similar current distribution. The small peaks in its vicinity in Figure K.2 are due to box
resonances at frequencies close to 112 GHz.

Adding resistive leads damps all these modes as visible in panel (b) of Figure K.2 and also
lowers the two highest resonant frequencies.

255



K. Microwave simulation using Sonnet

(a) 38.5 GHz
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Figure K.3.: Current distribution in HS04 at 38.5, 72.5 and 126 GHz in the x direction (left-
hand side column) and in the y direction (center column) and schematic direction
of the currents (right-hand side column).
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K.3. Spectroscopy of the RF-SQUID

K.3. Spectroscopy of the RF-SQUID

The spectrometer presented in Section 5.4.2 was simulated using Sonnet. The simulation is
close to the one described in Appendix K.2. Compared to this simulation, the gradiometric flux
line was added, as well as the probed RF-SQUID. The Josephson junction of the RF-SQUID
was modeled by a capacitance in parallel with an inductance. The capacitance represents
the intrinsic capacitance of the Josephson junction, here of order 80 fF, while the inductance
represents the Josephson inductance L = pg/Iy ~ 1 nH of the junction. When a magnetic flux
is applied to the RF-SQUID, the phase difference across the Josephson junction is modified,
resulting in a different Josephson inductance. This is how the effect of the magnetic field is
implemented in the simulation. With this method, it is only possible to simulate values of the
phase difference ¢, across the junction of the SQUID between —7/2 and 7/2. For ¢, > 7/2,
the effective inductance is negative, which cannot be simulated in Sonnet.

Figure K.4 shows the spectrum simulated with Sonnet in green at L; = 1nH (in full lines)
and L; = 100nH (in dashed lines), as well as the experimental data in red at ¢, = 0 (in full
lines) and 7 (in dashed lines). For the simulated data, L; = 1 nH corresponds to ¢, = 0 and
Lj; =100nH to ¢, — 7/2. The current I in the simulated data was obtained by

o Zinlg

=220,
2(p0w

where Zi, is the input impedance seen by the spectrometer, Iy the critical current of the
spectrometer ([p = 45nA) and w the frequency. This expression corresponds to the low
coupling limit of Section 2.1.1. The simulated data exhibits a first peak before 20 GHz which
is not observed experimentally. This mode is due to a microwave current flowing in the bias
leads and is thus largely damped. The second peak close to 40 GHz with the large tail on
the right-hand side is close to the one observed experimentally at 40 GHz. It corresponds to
the mode already seen in samples SSQ14 and HS04 due to currents circulating in the shield
planes around the central hole as represented in the first line of Figure K.3 for sample HS04.
Close to 60 GHz, we observe experimentally two peaks. In the Sonnet simulation however, only
one small peak at 60 GHz is present corresponding to a microwave current circulating in the
gradiometric flux line. The presence of two peaks in the experimental data can originate from
the fact that the two gradiometric lines are not perfectly identical as they are in the Sonnet
simulation. The next peak at 70 GHz agrees well with the one seen in the experimental data.
This mode was already present in sample HS04 and corresponds to current circulating in the
shield plane as shown in the second line of Figure K.3 for sample HS04. The last peak, just
before 80 GHz is the most interesting one. It is the mode of the RF-SQUID observed in the
experiment and is moved when the inductance of the junction of the RF-SQUID is changed.
The simulated data shown here was multiplied by a factor of 4. The discrepancy between
the simulated and measured currents is believed to originate from two different reasons. The
first one is that the losses in the dielectrics (both the silicon substrate and the alumina layer)
are difficult to estimate. In the simulations, loss tangents of the order of 10~% were taken. In
practice these values can greatly vary, especially at high frequencies where they are usually
larger. The second reason is that the currents measured in the spectroscopy of the RF-SQUID
can be underestimated (or overestimated). The bias resistance Ry, of the sample consists of the
two resistive HfPd leads, the resistance of which was not directly measured. A HfPd line of
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Figure K.4.: Red curve: experimental data at ¢. = 0 with ¢, = 0 (full line) and 7 (dashed
line). Green curve: spectrum simulated with Sonnet at ¢. = 0 with Josephson
inductances L; = 1nH (full line) and Ly = 100nH (dashed line).

the same dimension with resistance R; ~ R;, was measured in place of the actual leads. There
can be a small discrepancy between the two resistance values, resulting in a scaling by a factor
R} /Ry, for the experimental data and a scaling by a factor (R, /Rp)? for the simulated data.
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L. Expression of the current in terms of the
Berry curvature

As charge and phase are conjugated, the current operator Iis given by:
1 OH

0 Jp1

For a quantum state |¥), the expected value of the current is thus:

1 oH
I(t) = s00<\1/ o \1/> (L.1)

The quantum state |¥) can be decomposed in the eigenstate basis of H. So we need only
calculate the scalar product (L.1) for the eigenstates of H. For |n), this gives

I=

1 oH
I,(t)=—{(n|—1|n
© a < dp1 >
1 d 0 |n)>
I(t)= — || 77— Hn) —H-—
(0= - (ol (5o (In)) WG
The time-dependent Schrédinger equation for state |n) can be written
_ 0
H |n) =ih 5

Injecting these expressions in the expression for the current gives

1 o (. 0|n) ih 9 (n| 0 |n)

I = — — -7 AN E R

0= g (m ot >+ oo OF O
ih 0 8|n>> ih (n|d|n) ih O (n|d|n)
L(t) = = 2 () S0 ) - OO T E O
() ©®o 3901 <<’I’L 8t ®o 8(,01 8t @0 8t a(pl

At any time ¢, the state |n) also obeys the time-independent Schrédinger equation:

Hn) = En|n)
This gives an expression for the current:

1 0, _4i68(n| d|n)

I,(t) =
®) o g1 Op1 Ot

The time derivative of |n) can be expressed as a function of derivatives of |n) with respect
to all the parameters:
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L. Expression of the current in terms of the Berry curvature

Oln) _\~0m) 5
ot = ox;
Where (X;); =(1,2,3) — = (¢L, PR, Nyg)
1 0E, 9{n|0 |n
t J—
)= po D1 z; 1 ox:
Recalling expression (6.11) for the Berry curvature:
B7(7,¢L)
B, = -S(Vn| x |Vn) = | B{F®
B(”g)

n

It appears that the current can be expressed in terms of the Berry curvature:

1 0E,
I,(t) = —
®) o O

e (—Bﬁfﬂng + B£”9)¢R)
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List of Symbols

Fundamental constants

kg =1.381 x 10723 JK~!
h=6.626 x 10734 Js
e=1.602x 109 C

®y = h/(2e) = 2.068 x 107> Wb

w0 = ®o/ (27)
G() = 462/h =

155 1S

Boltzmann constant

Planck’s constant

Elementary charge

Magnetic flux quantum

Reduced magnetic flux quantum
Superconducting quantum of conductance

Physical properties of a Josephson junction

A
T
Lk
2
Iy
C or CJ
Ry
wy = [V /o
Lj=po/lo
Ej; = ¢olo
Ec =2e?/Cy
[ Iy  2EcE;
“r \/SOOC'J - h

L; 1 [Ec
ZJ: _— = — _—
CJ 7TG() 2EJ

2 2
5C—RIOC—<R>

®0

Zy

Superconducting gap

Transmission of a conduction channel
Kinetic inductance of a superconductor
Phase difference across the junction
Supercurrent of the junction
Capacitance of the junction

Normal state resistance

Josephson frequency, when the junction is biased at voltage V
Josephson inductance

Josephson energy

Charging energy

Plasma frequency

Josephson impedance

Stewart-McCumber parameter of a Josephson junction shunted

by a resistance R
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List of Symbols

Parameters of a SQUID

L Inductance of the loop

Br = Lly/po=L/Ly Ratio of loop inductance to the Josephson inductance
Ic Supercurrent of the larger junction of the SQUID

Iy Total supercurrent of the SQUID

D, Magnetic flux threading the SQUID

e = P /0 Reduced flux in the SQUID

oY Ratio of the supercurrents of the two junctions (a < 1)
Ws Resonance frequency of the LC mode of the SQUID

Spectrometer coupled to an external resonator

Z. (resp. Ye) Impedance (resp. admittance) of the resonator
L. Inductance of the resonator
Ce Capacitance of the resonator
R Resistance of the resonator
we = 1/v/LeCe Resonance frequency of the resonator
Qe Quality factor of the resonator
Iy .
z= Coupling parameter of the spectrometer to the resonator
powe Tt (Ye (we))
wo Resonance frequency measured by the spectrometer
k Coupling constant for two inductive loops

Mathematical functions

K(z),E(x) Complete elliptic integral of the first and second kind of argument x
JIn(z) n-th order Bessel function of the first kind of argument z
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Résumé

Cette these décrit la réalisation d’'un nouveau
dispositif pour la physique mésoscopique : le
spectrometre Josephson. Il est composé de
deux jonctions Josephson et repose sur I'effet

Josephson pour convertir une tension
continue en oscillations micro-ondes de
fréquence pouvant atteindre 180 GHz.

L’absorption de ces photons est directement
mesurée sur la caractéristique courant-
tension du spectrométre.

Le spectrometre est soigneusement dessiné
pour éviter qu’il n’excite des modes
électromagnétiques  parasites et  pour
optimiser le couplage au systéeme d’intérét.

Le spectrométre Josephson est utilisé pour

mesurer le spectre de quatre systemes
simples dans wune large gamme de
fréquences un mode de résonateur LC

autour de 150 GHz, [Iexcitation de
guasiparticules dans un supraconducteur au-
dessus de 90 GHz, la fréquence plasma
d’'une jonction Josephson autour de 15 GHz
et la fréquence plasma d'un RF-SQUID
autour de 80 GHz.

Finalement, quelgques  systéemes plus
complexes et stimulants pouvant étre sondés
avec le spectrometre sont présentés, ainsi
gue quelques améliorations a apporter a la
version actuelle du spectrometre.

Mots Clés

Physique mésoscopique, jonction Josephson,
supraconducteur, topologie, circuits
guantiques

Abstract

This thesis discusses the realization of a new
device for mesoscopic physics:  the
Josephson spectrometer. It consists of two
Josephson junctions and relies on the
Josephson effect to convert a DC voltage to
microwave oscillations at frequencies up to
180 GHz. Absorption of the emitted photons
is directly measured in the current-voltage
characteristic of the spectrometer.

The spectrometer is carefully designed in
order to avoid exciting parasitic
electromagnetic modes and to optimize the
coupling to the device under test.

The Josephson spectrometer is used to
measure the spectra of four simple systems
over a wide frequency range: a LC resonator
mode around 150 GHz, the excitation of
quasiparticles in a superconductor above 90
GHz, the plasma frequency of a Josephson
junction around 15 GHz and the plasma
frequency of a RF-SQUID around 80 GHz.

Finally, some more complex and challenging
targets for the spectrometer are presented, as
well as improvements to be implemented to
the current version of the device.

Keywords

Mesoscopic physics, Josephson junction,
superconductor, topology, quantum circuits
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