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Abstract

Driven by the Semantic Web standards, an increasing number of RDF data sources
are published and connected over the Web by data providers, leading to a large
distributed linked data network. However, exploiting the wealth of these data
sources is very challenging for data consumers considering the data distribution, their
volume growth and data sources autonomy. In the Linked Data context, federation
engines allow querying these distributed data sources by relying on Distributed
Query Processing (DQP) techniques. Nevertheless, a naive implementation of the
DQP approach may generate a tremendous number of remote requests towards
data sources and numerous intermediate results, thus leading to costly network
communications. Furthermore, the distributed query semantics is often overlooked.
Query expressiveness, data partitioning, and data replication are other challenges to
be taken into account.

To address these challenges, we first proposed a Distributed Query Processing
semantics which preserves the SPARQL language expressiveness. Afterwards, we
presented several strategies for a federated query engine that transparently addresses
distributed data sources. Firstly, we proposed a federated query semantics on top
of RDF and SPARQL standards, and following this, we specified the semantics of
federated SPARQL queries on top of the standard SPARQL semantics through a set
of rewrite rules relying on service clause. Secondly, we proposed both static and
dynamic strategies for the main steps of DQP approach in order to allow transparent
and efficient distributed and autonomous data sources querying, and therefore
enhance the federated query processing. The static optimizations rely on the results
of the source selection step in which we proposed a Sampling Query-Based approach.
On the one hand, based on these results we proposed a Hybrid BGP-Triple query
rewriting approach which addresses both horizontal and vertical data partitions
and reduces the query engines workload. On the other hand, we introduced a
static query sorting approach which combines the cost estimation, heuristics on
query patterns and query expressions links. The dynamic optimizations are achieved
during query evaluation step at three levels. First, the bindings (already known
values of variables) are propagated to the following sub-queries sharing the same
variables. Secondly, we use parallelism to concurrently query remote data sources
and independent remote requests. Finally, we use triple results duplicate-aware
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evaluation to avoid results redundancy which are side effects of triple replication. We
implemented and evaluated our approach and optimization strategies in a federated
query engine to prove their applicability.

Keywords: Semantic Web, Web of Data, Linked Data, Linked Open Data, Data
Integration, Distributed Query Processing, Federated query evaluation, SPARQL,
Query Optimization
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Résumé

De plus en plus de sources de données liées sont publiées par des fournisseurs de don-
nées à travers le Web en s’appuyant sur les technologies du Web sémantique, formant
ainsi un large réseau de données distribuées. Cependant, il devient plus difficile pour
les consommateurs de données de tirer profit de la richesse de ces données, compte
tenu de leur distribution, de l’augmentation de leur volume et de l’autonomie des
sources de données. Dans le contexte du Web des données, les moteurs fédérateurs
de données permettent d’interroger des sources de données distribuées en utilisant
des techniques de traitement de requêtes distribuées. Cependant, une mise en œuvre
naïve de ces techniques peut générer un nombre considérable de requêtes distantes
vers les sources de données et de nombreux résultats intermédiaires entraînant ainsi
un long temps de traitement des requêtes et une communication réseau coûteuse.
Par ailleurs, la sémantique des requêtes distribuées n’est pas clairement définie.
L’expressivité des requêtes, le partitionnement des données et la réplication des
données sont d’autres défis auxquels doivent faire face les moteurs de requêtes.

Pour répondre à ces défis, nous avons d’abord proposé une sémantique de traitement
de requêtes distribuées qui préserve l’expressivité du langage SPARQL et nous avons
présenté plusieurs stratégies d’optimisation pour un moteur de requêtes fédérées
qui interroge de manière transparente les sources de données distribuées. Notre
sémantique de requêtes distribuées s’appuie sur les standards RDF et SPARQL. Elle
est mise en œuvre à travers un ensemble de règles de réécriture basées sur la clause
SERVICE. Des stratégies d’optimisation statiques et dynamiques proposées sont pour
chacune des principales étapes du processus de traitement de requêtes distribuées
afin de permettre une interrogation efficace et transparente des sources de données à
la fois distribuées et autonomes et par conséquent améliorer la gestion des requêtes
fédérées. Les optimisations statiques portent sur la sélection des sources et le tri des
requêtes. Une approche hybride de réécriture de requêtes traite à la fois les partitions
de données horizontales et verticales et réduit la charge de travail des moteurs de
requêtes. Une approche statique de tri des requêtes combine l’estimation des coûts,
des heuristiques sur les modèles de requêtes et les liens entre les requêtes. Les
optimisations dynamiques sont effectuées lors de l’étape d’évaluation des requêtes
à trois niveaux. D’abord, les variables dont les valeurs sont déjà connues sont
propagées aux sous-requêtes suivantes partageant les mêmes variables. Ensuite,
nous avons utilisé le parallélisme pour interroger simultanément des sources de
données distantes et envoyer des requêtes indépendantes. Enfin, nous avons mis
en œuvre une évaluation de requêtes qui prend en compte la redondance des
données pour éviter dans les résultats des doublons induits uniquement par cette
redondance liée à la distribution. Nous avons implémenté et évalué les différentes
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stratégies d’optimisation dans un moteur de requêtes fédérées pour montrer son
applicabilité.

Mots-clés:Web de Données, Données liées, Intégration des données, Traitement de
requêtes distribuées, Evaluation des requêtes fédérées, Optimisation de requêtes
SPARQL.
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1.1 Context

The Semantic Web is an extension of the Web, invented by Tim Berners-Lee in 1989
[9], to move from a Web of documents to a Web of data. The traditional Web
is more dedicated to humans as it allows persons to share and to have access to
information by navigating in a network of documents connected through hypertext
links. However, the information of this network of documents without explicit
semantics is meaningless for machines. Furthermore, the evolution of the Web over
the three last decades resulted in a an enriched network which links large amount of
data, things, applications, etc, in addition to documents. As a consequence, achieving
processing on this network became very challenging hence the need to make the
Web more computer-processable. Tim Berners-Lee et al. proposed in 2001 [11] the
Semantic Web as an extension of the current Web in which the information has a
well-defined meaning (structured data and semantics) and therefore is readable for
both machines and humans and helping them to work in cooperation.

To enable an efficient processing of the Semantic Web, the data should be shared and
connected through links so that for a given data, related data can be easily found,
hence the term "Linked Data". In 2006, the Linked Data principles [10] are defined
by Tim Berners-Lee. He also proposed a set of rules which enable data providers
to publish and to link data to other related data. As a result, the number of linked
data sources over the Web increased [13] by relying on URI [8] and on a set of W3C
standards [77] (RDF [68], RDFS [69], SPARQL [78] and OWL [57]).

• URI (Uniform Resource Identifier): is used to identify things.

• RDF (Resource Description Framework): is used as data model for semantic
data representation.

• RDFS (RDF Schema): is a basic schema language for RDF data.

• SPARQL (SPARQL Protocol and RDF Query Language): is both a query lan-
guage and a protocol to query RDF data sources over the Web. The language
allows users to query RDF data and provides the protocol to send HTTP
requests to remote data source servers.

• OWL (Web Ontology Language): is a richer and more complex schema lan-
guage used to define ontologies and to perform sophisticated reasoning on
data.
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Thus, data providers make their data available through RDF datasets and data
consumers mainly get access to them through SPARQL endpoints. The growth of
the volume of data and the number of data sources gradually led the Web of data to
a large network of distributed and connected knowledge bases at the scale of the
Web. It becomes thus challenging to query these datasets while addressing both data
distribution and data volume. Hence, distributed and federated querying becomes a
prominent research question in the data processing area [46, 31].

1.2 Motivations

Federated querying consists in processing a query over a set of distributed data
sources through their SPARQL endpoints by rewriting an initial query in a set of
sub-queries and sending them to the appropriate source. The SPARQL standard
addresses federated query processing through the SERVICE clause which allows to
send a query to a given data source by specifying its URI. However, it requires for
the query designer to know beforehand how knowledge pieces matching the initial
query are distributed over the data sources to write proper SERVICE clauses.

Federated query processing allows users to transparently query distributed data
sources by automating this process through a federated query engine. To do so, the
federated engine first needs to query the data sources and identify the ones capable
to answer the parts of the query, called relevant sources. This process is performed
in a source selection step by sending SPARQL queries to endpoints. Afterwards, the
initial user query is rewritten to suit the identified relevant sources and to allow an
optimal evaluation.

Linked Data Fragment (LDF) [39, 88] is an initiative as an alternative approach to
SPARQL endpoints. LDF aims at addressing the availability issue of data sources
which prevents reliably querying these data. Thus, to balance the workload between
the data sources servers and the clients and to increase the data availability, a
fragment of needed data is loaded at the client side based on a specific selector to
allow a local processing. LDF, and more specifically Triple Pattern Fragment(TPF)
[87] based on it is out of the scope of this thesis.

With respect to federated query processing in the Web of data context, as shown
in Chapter 3, several approaches have been proposed to address query processing
optimization issues. However, performance and scalability issues rapidly arise due to
the data distribution and volume. Moreover, the federated engines results can vary
depending on their specific interpretation of the distributed query semantics. Finally,
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in most of the work in the state-of-the-art, the query expressiveness is reduced to a
subset of SPARQL features.

1.3 Objectives

In this thesis, we tackle the federated query processing in a context of autonomous
data sources. We first aim at improving the federated query expressiveness by making
it more compliant with SPARQL. The second goal is to enhance the reliability on query
results by defining a clear federated query semantics. Finally, the third objective
is to propose an efficient federated query approach that allows to transparently
query distributed data sources while taking into account the data partitioning, data
replication and results completeness challenges. This work relies on a previous work
that proposed the KGRAM-DQP SPARQL federated query engine [30].

More specifically, this thesis will address the following main research question:

• RQ1: How to specify a semantics for SPARQL federated queries?

• RQ2: How to allow highly expressive federated queries in the context of Linked
Data?

• RQ3: How to improve the federated query engines performance ?

We break down this research question into several sub-questions:

– RQ3a: How to reduce processing time and communication cost ?

– RQ3b
: How to ensure the results completeness?

– RQ3c: How to address the data partitioning in this process?

1.4 Thesis outline

• In Chapter 2, we introduce the general principles of data integration through
the mappings approaches used to process it. Afterwards, we review the data
fragmentation approaches and we show their impact on data integration. Then
we focus on data integration in the Linked Open Data context after describing
its principles and the data representation and querying.
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• Chapter 3 reports the state of the art for federated query processing approach
over Linked Open Data. We first describe the Distributed Query Processing prin-
ciple through its main steps: source selection, query rewriting, query planning
and query evaluation. Afterwards, we introduce several SPARQL federated
query processing engines, while describing their optimization approaches for
each step. Finally, we discuss these optimizations and underline challenges to
improve SPARQL federated query processing performance.

• In Chapter 4, we investigate the SPARQL federated query semantics by com-
paring the evaluation of a standard SPARQL query over a centralized and a
distributed RDF graph to highlight the necessity to define a clear semantics
for SPARQL federated queries. Based on this comparison, we express the con-
straints that federated query engines should address to be compliant with both
RDF and SPARQL standards. Finally, we express SPARQL federated queries
through the standard SPARQL features, using the SERVICE clause, in order to
define their semantics on top of standard SPARQL semantics.

• In Chapter 5, we propose optimization strategies for each step of the distributed
query processing. For source selection step we introduce a sampling query-
based approach which aims at identifying relevant sources and retrieving triple
patterns cardinality. Afterwards, we propose a query decomposition technique
that aims at pushing as much of the initial query as possible towards the
remote data sources to reduce the processing cost at query engine side. Then,
we present a query sorting approach based on cardinality cost estimation and
shared variables heuristics. For the query evaluation, we introduce a results
redundancy aware query evaluation approach to address side effect of triples
replication on distributed data sources.

• Chapter 6 reports the experimental results to assess the performance of our
federated query processing approach and optimizations. To do so, we first
present KGRAM-DQP federated query engine that supports the implementation.
Then, we present the results for the different experiments performed and we
discuss the impact of our strategy regarding several challenges, namely results
completeness, data replication and query processing efficiency.
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2.1 Introduction

In several areas of activity such as science, economics or research, sharing and
integrating information and knowledge are needed. However, information and
knowledge are often distributed in several sources. Data integration aims at giving
access through a unified view to data located in miscellaneous sources. For instance,
search engines enable users to query several data sources through a single interface
instead of querying each data source.

Previously, this integration was mainly done on data internal to institutions and
structures, e.g. when merging two company department databases. Thus, different
sources are integrated in a common source to materialize the integrated database.
Later, in particular with the emergence of the Web, links between independent data
sources became common. In this context, data sources autonomy prevents their
clustering. To face this challenge, another data integration approach, called virtual
integration has been proposed. It consists in federating autonomous sources through
a virtual unified view.

More generally, virtual data integration concerns all distributed data sources. In-
deed, for the sake of efficiency, reliability and availability, data can be intentionally
distributed: fragmented (split up in several partitions) and allocated (assigned to
different databases). On the other hand, the data can also be replicated (duplicating
data in another database) and databases interconnected through the use of shared
schemas or ontology to describe and produce data on related objects and concepts.
Across the Web, interconnected and distributed data sources are called Linked Open
Data.

In this chapter, we first review the general principles of data integration, the mapping
approaches used to manage different conceptual schemas and the methods by
which the integration is implemented in practice. Then, we underline the different
data fragmentation approaches and we show their impact on the data integration
process. Afterwards, we focus on the aspects of Linked Open Data (LOD) which are
relevant for our work. We outline Linked Open Data principles. Then, we review
semantic data representation and querying. Finally, we describe the LOD integration
process.

2.2 Data integration principles

Data integration [34, 36] enables to transparently manage several distributed data
sources (or databases) by providing a unified view over all data. In, other words,
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the user should be able to query the data sources without dealing with the data
distribution and possible replication. We define distributed data sources as a set of
autonomous databases distributed over a network but logically related.

Formally, a data integration [15] system is defined as a triple {G, S, M } where:

• G is the global conceptual schema of the unified view,

• S is the set of sources structured along local schemas {S1, ..., Sn}

• M is the mapping between G and S which links global and local schemas.

The effective integration of distributed data sources can be either physical or logical
[58]. In the former approach, the unified view is materialized in a distinct database
in which the different data sources are aggregated. In the latter, the unified view is
virtual and data are kept in their original databases. Instead, the data integration
is virtually handled through a system managing the global schema and the data
mappings to express queries sent to the local schemas.

2.2.1 Materialized data integration

The materialized data integration approach, also called data warehousing [33, 35] or
Extract-Transform-Load (ETL) approach, consists in centralizing data in one database.
Therefore data is queried in a centralized way. As suggested by the term ETL we can
identify three phases. The extraction phase uploads the data from the target sources.
Then, during the transformation phase, extracted datasets are transformed to obtain
homogeneous data (aligned to the global schema G). Afterwards, these datasets are
aggregated and are saved in the data warehouse through the loading step.

The main drawbacks of the materialization approach are (i) the need to update the
central repository (repeat the ETL process) when remote sources evolve or a new
data source appears, and (ii) to duplicate every data from the source repositories.
This approach has limited scalability and data freshness issues. It is also not suitable
in the context of autonomous and distributed data involving managing sensible data,
hardly relocatable for ethical or legal reasons. However, it has the advantage of
reducing data communication after the ETL process and making available all data
from one dataset. It may be very efficient for query processing. In particular, if there
are few changes in data sources or using slightly outdated data is allowed.
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2.2.2 Virtualized data integration

The virtualized data integration is also known as federated querying or distributed
query processing (DQP). Based on a query answering [37] interface, handled by a
federation engine, the virtual data integration system provides answers to queries
expressed in the global schema by translating them into the local schemas through
the mapping M.

The data sources distribution is addressed through query rewriting mechanisms. The
initial query is split in several sub-queries which are sent to remote data sources for
evaluation. Then, the intermediate results generated by these sub-queries are gath-
ered through joins or unions by the federated query engine. This approach prevents
the replication and the periodical extraction of the source databases. Furthermore,
new data sources can be added more easily in the integration process. The datasets
are kept at initial sources and the data formats are preserved. However the DQP ap-
proach is also difficult to achieve efficiently. Indeed, this approach requires handling
the physical distribution, the network communication cost, data heterogeneity, and
unavailability or failure of data sources. The Figure 2.1 summarizes the advantages
and the drawbacks for each approach.

Figure. 2.1: Data integration approaches

In addition, the mapping M deals with the possible heterogeneity of distributed data
sources, without doing an actual transformation of data, by using the global schema
as a homogeneous model over multiple data sources. Consequently the mapping is
no longer necessary. Two main approaches have been proposed to tackle the virtual
data integration mapping expression: Global-As-View (GAV) and Local-As-View (LAV)
[48, 49].
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2.2.3 Virtual data integration mapping

In the GAV approach, the global schema is defined as a view over the data sources
(union of views over each local schema). It is a bottom-up approach, given that
the global schema is generated from the local schemas of data sources. The main
advantage of GAV is a straightforward query processing. Indeed, to answer a query,
a concept of the global schema has to be replaced by the corresponding one(s) in the
local schemas. Moreover, the global schema update can be easily done since views
over local sources are independent. The GAV approach also has some downsides: (i)
the need to know all local schemas to be able to build the global mapping, and (ii)
adding a new local schema may imply modifying several global concepts.

Conversely, the LAV is a top-down approach. It represents each local schema as
a view of the global schema. In fact, the global schema is defined and each local
schema is expressed based on it. The main advantage of the LAV approach is to allow
gracefully increasing the number of sources while preserving the global schema.
Besides, the independence of data sources in LAV systems facilitates handling data
sources unavailability. However, the LAV global schema is less scalable since changing
a concept in the global schema may involve modifying the mapping of several local
schemas. In addition, the LAV query rewriting process is very costly [52] arising
from the complexity of rewriting a query expressed in the global schema into all
local schemas.

Furthermore, a third approach, called Global-and-Local-As-View (GLAV), has been pro-
posed to take advantage of both approaches [29]. The GLAV approach expresses both
a global schema and local schemas by using LAV and GAV query rewriting processes
to reduce the LAV complexity while ensuring the global schema scalability.

Thus, with regards to virtual integration mapping expression, the GAV approach
is more scalable and provides a simple query answering process, while the LAV
approach is more appropriate in a context of dynamic local data sources with
the drawback of query processing complexity. The GLAV approach is a middle
way between the two foregoing strategies. Therefore the best mapping expression
depends on data sources schemas which are related to data distribution and to data
fragmentation.

2.3 Data distribution and data fragmentation

Data fragmentation, alternatively called data partitioning, consists in separating
data in several partitions and storing them in different sites for the sake of query
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processing efficiency and reliability. In the literature, we distinguish two main data
fragmentation approaches: horizontal partitioning [24] and vertical partitioning [18,
1]. We exemplify below data fragmentation approaches with relational databases
on which they have first been implemented. Horizontal data partitioning consists in
splitting relations along their tuples. Thus, to each partition is assigned a subset of
tuples (rows). Vertical data partitioning, on the other hand, consists in fragmenting
the initial relations throughout their attributes. Each partition contains a subset of
attributes (columns) of the relations. In addition, there is a mixed approach [3]
which combines horizontal and vertical partitioning. When data fragmentation is
performed, three criteria have to be complied with to ensure correctness:

• completeness [59, 38]: The fragmentation completeness ensures no data loss
during the decomposition process between the initial relation and the subset
of relations in partitions

• disjointness: The disjointness avoids data overlapping between the fragments.

• reconstruction: The initially fragmented relation should be reformable through
the different fragments. The data for horizontal and vertical partitions are
reconstructed across union or join operators respectively. For instance, for
a relation R fragmented into FR = {R1, R2, ..., Rn}, the reconstruction for
horizontal and vertical partitions are formally defined as follows respectively:

– R = ∪Ri

– R =on Ri

Fragmented data is queried by translating the query expressed on the global relation
into several sub-queries expressed on the local relations of the partitions. To some
extent, this is similar to the LAV approach. Indeed, query answering over distributed
data sources amounts to integrate fragmented data in addition to the complexity
related to the data distribution, data replication and communication cost.

When centralized data is intentionally fragmented, the more suitable partition
approach may be selected based on several criteria like most queried data or most
common joins. However, in the LOD data aggregation context, due to the data
sources autonomy the data may be both vertically and horizontally partitioned. In
addition, it is also common to face partially or fully replicated data in the distributed
context, either to improve their availability, or because the fragmentation process
is not managed. All these factors make the distributed databases query processing
complex.
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2.4 Linked Open Data integration

2.4.1 Linked Open Data principles

The Linked Open Data [10] results from Open Data and Linked Data concepts. Open
Data1 is data (common knowledge or information) that is available for anyone to
use, modify and share. The Open data movement, also called Open Knowledge,
advocates free data access under open licence. However, the data provenance should
be indicated and data openness must be preserved. The whole aim behind this
concept is to allow breakthrough innovation through data sharing by finding various
areas of application or by cross-analyzing data to produce new or more complete
data. Consequently, open data, whether it is raw or well structured, should be public.
Thus, the Web has become the suitable and simple way to share open data in several
domains like scientific research, life science and government data. The Linked Data
[10] or Web of data, on the other hand, aims at connecting related data available
over the Web. The goal is to build links between these data to ease data exploration
by both humans and machines. Indeed, building links between different data creates
a global network of data which enables users to have access to all connected and
related data from a given piece of data, thus transforming the Web into a global data
space [41]. The Linked Data, introduced by Tim Berners-Lee in 2006 [10], advocates
several Web standards: URI (Uniform Resource Identifier) [86, 8], HTTP (Hypertext
Transfer Protocol), RDF (Resource Description Framework) and SPARQL (SPARQL
Protocol and RDF Query Language) to identify, describe, connect, and query data on
the Web. A data provider should therefore use:

• URIs to identify any thing (all objects and concepts)

• HTTP protocol to enable things to be looked up

• RDF to describe useful information on URIs and SPARQL to query them

• RDF links between URIs in data description to provide connected data sources
and to allow to discover more things

Relying on the previous principles, more and more linked data sources have been
made available over the last decade, hence the use of the term "Web of Data" by
analogy with the Web of documents [12]. The combination of Open and Linked data
gave rise to Linked Open Data (LOD). LOD is defined as "Linked data released under
an open licence, which does not impede its reuse for free" by Tim Berners-Lee. He

1http://opendefinition.org/od/2.1/en/
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also proposed a 5-stars rating scale2 to help data publishers to facilitate the use of
their data by people, and therefore making them more powerful:

1. Data is available on the Web (whatever the format), with an open licence to
be Open Data.

2. Above + in a machine-readable structured format.

3. Above + in a non-proprietary format.

4. Above + open standards from W3C (URI and RDF) are used to name, represent
and query data.

5. Above + data are linked to other people’s data to provide context.

2.4.2 Resource Description Framework

The Resource Description Framework (RDF) [68] is the W3C (World Wide Web
Consortium) recommendation language commonly used for representing knowledge
and information on the Semantic Web. The term "Resource" refers to everything
that can be identified on the Web and represented through URIs. "Description"
refers to the description of characteristic of resources and relations between those
resources. "Framework" refers to the RDF data model as a whole with both the
language and the different concrete syntaxes to represent RDF data (RDF/XML,
Turtle, etc.). URIs are used either to denote concrete, or abstract concepts, e.g.
events, animals, places, universe of discourse, or relations between those concepts
like "Taj Mahal is located in India" (mausoleum-located-country). URIs thus aim at
uniquely identifying resources on the Web in order to avoid ambiguity among them.
URIs are therefore the basis for building the semantic Web by enabling to identify
resources and linking them.

IRIs are a generalization of URIs which are a generalization of URLs (Uniform
Resource Locators). URLs, commonly called Web addresses, enable to identify, to
locate and to retrieve resources existing on the Web, e.g. Web page, picture or files.
URL is a particular type of URI and may be thus used as URI in RDF data. URIs also
enable to identify on the Web resources existing outside of the Web. For instance,
we can give an URI to the Eiffel Tower and describe it through several properties
(location, tip, date of construction, etc.). Finally, IRIs allow to define URIs in all
languages of the world, no longer only in ASCII characters in which URIs are limited,
e.g. by using Arabic or Chinese characters.

2http://5stardata.info/en/
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Relying on IRIs, RDF describes information about the resources by expressing simple
statements in the form (Subject, Predicate, Object) as depicted in Figure 2.2:

• a subject representing the resource to describe. Subjects are IRIs (Internation-
alized Resource Identifiers) or blank nodes.

• a predicate representing a type of property applicable to this resource. Predi-
cates are IRIs.

• an object, representing the value of the property for a subject (this object may
be a subject or object for statements). Objects are IRIs, blank nodes or literals.

Figure. 2.2: Statement in RDF

Thus, RDF is a graph model (more specifically, a directed labeled graph) composed by
a set of triples (subject, predicate, object) where subjects and objects are nodes and
predicates are edges linking subjects and objects. As illustrated in Figure 2.3, both
nodes and edges are labeled with identifiers (IRIs or literals) in order to differentiate
them. IRIs, blank nodes, and literals are collectively called RDF Terms.

Blank nodes, also called bnodes, are used to represent anonymous or unknown
resources. Blank nodes are neither URIs nor literals but local anonymous resources.
Their scope is limited to the RDF store in which they are defined. Consequently,
blank nodes do not foster the global graph building by preventing to reuse and to
refer to the same resources in different RDF sources. Therefore, in practice, they
are used to describe multi-component structures like RDF lists, RDF containers
and to represent complex attributes for which properties are known but not the
identifier. Blank nodes can also be used to describe RDF data provenance and to
protect sensitive data.

In addition to URIs and blank nodes, objects can also be literals. Literals are
representing values such as strings, numbers, dates, times, etc. They can be typed
(typed literals) or untyped (plain literals). The type of values is usually necessary to
allow applications to know how to interpret data. For instance, if they are typed
as number "6" and "06" refers to the same numerical value but two text strings are
different. Plain literals are interpreted as strings.
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Figure. 2.3: Example of RDF graph

RDF triples may belong to named graphs, which correspond to different (possibly
overlapping) RDF data sub-graphs. RDF triples without explicit named graph attach-
ment belong to the default graph. As RDF resources are identified by IRIs and these
IRIs may be shared by different data sources referencing the same data element,
RDF graphs can easily be distributed over different sources. Links between several
sources are implicitly expressed by shared IRIs. The RDF global graph, connecting all
graphs through shared IRIs, is sometimes referred as the global giant graph (GGG)
or Linked data Cloud.

2.4.3 The SPARQL query language

The SPARQL Protocol and RDF Query Language (SPARQL) is the W3C standard
language and protocol to query RDF data [78]. Triple patterns are triples where
subject, predicate and/or object value can be unknown and replaced by a variable
(traditionally identified by a question mark, e.g. ?v for variable v). A triple pattern
may match different triples in a given RDF graph, hence its name. For instance, the
triple pattern ?s p ?o matches all triples with the predicate p, and triple pattern
"?s ?p ?o" matches any triple. SPARQL uses triple patterns to query RDF data. The
triple patterns evaluation returns mappings between the query variables and their
matching values.

A SPARQL query is a graph pattern (set of triple patterns) which has to match a
sub-graph of the queried RDF graph to provide results. The graph pattern matching
is performed through the conjunctions and the disjunctions of triple patterns which
respectively refer to the logical "and" and "or" operators. A set of triple patterns is
called a Basic Graph Patterns (BGP). A BGP may either be required or optional.

SPARQL queries are composed of two main clauses: the first one specifies the query
form, while the second is the WHERE clause.

There are four forms of SPARQL queries:
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• The SELECT form returns a list of variable bindings where variables are bound
to values (resources, literals or blank nodes) matched by the query pattern.

• The CONSTRUCT form builds an RDF graph by replacing the query pattern
variables with their corresponding values for each query solution.

• The ASK form returns a boolean to indicate whether the query produces a
result or not.

• The DESCRIBE form enables to retrieve the description of query pattern re-
sources found in a form of RDF graph.

The WHERE clause specifies a graph pattern to be matched by queried graph re-
sources. The WHERE block is mandatory for all queries forms, except for DESCRIBE
queries, which can be directly used with the URIs of resources (e.g. DESCRIBE
<http://example.com/>).

Let us consider a data set representing an organization composed by some teams
divided into groups. Each group has a number of members. Consider the example
SPARQL query Q 2.1 below:

Query Example 2.1: SPARQL Query example

1 prefix ns: <http :// examples .fr/team#>
2 select ?team ?group ?name ? members
3 where {
4 ?team ns:team " SPARKS ".
5 ?team ns:group ?group.
6 ?group ns:name ?name.
7 ?group ns: members ? members .
8 }

This query is composed of a BGP with 4 triple patterns (TPs) in lines 4 to 7, defining
different query patterns for the RDF graph triples, and implicit join operations.
Applying Q 2.1 to a single data source containing all data will return the group, name
and number of members for each group in the ”SPARKS” team in the database.

Besides BGPs, more complex graph patterns may be used by combining BGPs to
form the query graph pattern of the WHERE clause. Indeed, the query graph pattern
may:

• be a union of graph patterns to express alternative graph patterns matching:
P1 UNION P2
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• have optional graph patterns to allow mandatory patterns results to be possibly
extended with additional information by adding the results to the part where
the information is available: P1 OPTIONAL P2

• have some restrictions applied to the patterns results: P FILTER (expression)

• have named graph pattern for matching a graph pattern against a specific RDF
named graph identified by a variable or URI: GRAPH VARIABLE P or GRAPH
URI P

In addition, the SPARQL language provides operators to modify the query solu-
tions:

• DISTINCT: to delete duplicate solutions.

• REDUCED: to enable duplicate results to be eliminated.

• ORDER BY: to order the solutions according to a set of expressions (variables,
ASC() and DESC() functions, etc.).

• LIMIT: to give the maximum number of solutions to return.

• OFFSET: to slice the solutions and to indicate the size from which they are
generated.

In 2013 new features have been introduced: sub-queries (nested select queries),
aggregates (compute expression on a results set), negation (NOT EXISTS and MI-
NUS), select expression (to evaluate an expression and assign its value to a variable),
property path (possible route between two nodes of a RDF graph), assignment (BIND
and VALUES) and more complex functions and operators.

Furthermore, SPARQL was natively designed for querying remote data sources.
Beyond a graph query and update language (to modify RDF data graph), SPARQL
defines a protocol for transferring queries towards remote servers (SPARQL endpoints)
and returning solution sequences.

A SPARQL endpoint is a query processing service based on the SPARQL HTTP
protocol which enables to query remote data sources for both machines and humans.
Since SPARQL 1.1, the language defines a SERVICE clause aiming at applying a
sub-query to a specific endpoint identified by its access URI. A SPARQL query can
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thus be composed by several SERVICE clauses computed on different endpoints,
which results are combined together.

2.4.4 Linked Open Data (LOD) integration

Driven by the 5-stars rating scale, a plethora of triplestores (RDF data sources) were
published and connected to the Web. The Linking Open Data project3 identifies
open data sources which are compliant with LOD principles and shows existing links
between them. These sources are mainly published by the project members but
other organizations and individuals may also participate. The project occasionally
publishes a cloud diagram representing the datasets as you can see in Figure 2.4.
In ten years (from 2007 to June 2018), the number of datasets increased from
12 to 1224. The published data covers various domains and topics such as life
science, music, geography, government or media data. The project also publishes
statistics about datasets4, the vocabularies5 used within and information [81] about
associated SPARQL endpoints. Some notable organizations such as DBpedia [47,
7], BBC, UK Government or the New York Times can be identified among the data
providers.

The LOD integration aims at integrating these kind of autonomous and distributed
data sources which, as mentioned above, might be considered as a global distributed
RDF graph thanks to their RDF links. In order to do so, the LOD integration relies
on RDF and SPARQL through the Distributed Query Processing (DQP) approach.
Indeed, performing RDF-based data integration is equivalent to virtually integrate
homogeneous data sources. Thus, the query answering mechanism is handled by
(i) expressing queries (initial and sub-queries) in SPARQL and (ii) sending them to
triplestores through their SPARQL endpoint. The vocabularies and ontologies used to
describe RDF data represent both global and local schemas. The significant increase
of the amount of RDF datasets drives more complex information and queries to deal
with. Finding efficient query processing approaches thus became one of the main
research question in this area [44] and raised several studies.

3http://lod-cloud.net/
4http://stats.lod2.eu/
5http://lov.okfn.org/dataset/lov/
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3.1 Introduction

A large number of RDF datasets are made available and are linked by data providers
over the Web according to the Linked Open Data principle. SPARQL endpoints are
mainly used to provide RDF datasets to the data consumers. The links between these
data sources lead to a distributed knowledge graph on the Web. Querying these
knowledge bases therefore requires to request them through federated queries.

In this chapter, we review the state of the art for federated query processing over
Linked Open Data. We first remind the Distributed Query Processing principles
and their main steps (source selection, query rewriting, query planning and query
evaluation). Then, in Section 3.3, we introduce several existing SPARQL DQP
engines and we describe their approaches for optimizing each step. Finally, we
further discuss the described SPARQL federation engines optimization approaches.
Meanwhile, we underline the challenges needed to be addressed in order to improve
the SPARQL federated query processing performance.

3.2 Distributed Query Processing principle

Given the fact that the knowledge graph is distributed over several data sources,
applying the original query to partial data sources is likely to return a subset, possibly
empty, of the expected results only since data from different sources need to be
joined. A proper DQP strategy will therefore decompose the original query into sub-
queries that are relevant for each data source and compute joins later on. Distributed
querying typically implies four main steps [58]: source selection, query rewriting,
query planning and query evaluation (see in Figure 3.1).

• Source selection identifies data sources that are likely to contribute to the result
set in order to avoid unnecessary processing. Indeed, all data sources are not
necessarily containing data that are relevant for a given query. Thus selecting
relevant sources prevents from sending useless remote queries.

• The Query rewriting [16] step decomposes the original query into a set of
sub-queries to be distributed to the remote data servers. It both ensures preser-
vation of the original query semantics and takes into account the performance
of the sub-queries to be processed.

• The order in which sub-queries are applied can have a drastic impact on
performance. The Query planning step sorts sub-queries in order to generate an
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optimal evaluation plan that minimizes the overall query execution time [63].
As a general rule, the most selective queries should be processed first.

• Finally, the query evaluation (or query execution) step executes the query
plan and collects results from all sub-queries generated. Partial results thus
aggregated often require further processing (different result sets typically need
to be joined) to compute final results.

Figure. 3.1: SPARQL DQP steps

3.3 Federated SPARQL query processing
engines

Source selection requires information on the sources content. This information is
usually acquired prior to query processing, either through data statistics collection on
the endpoints, or by probing the endpoints through source sampling queries. Query
rewriting involves decomposing the original query into source-specific sub-queries
so as to retrieve all data that contribute to the final result set based on information
gathered in the previous step. The query plan orders the sub-queries generated
during the query rewriting stage. The evaluation step performs the sub-queries
plan execution and incrementally builds the final results set by choosing the most
suitable join method and joining intermediate results retrieved from sub-queries.
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Naive DQP implementations may lead to a tremendous number of remote queries
and generate large partial result sets. The optimization of DQP is therefore critical
and many related work primarily address the problem of query performance. This is
the case for several DQP engines designed to query federated RDF data stores over
SPARQL endpoints (Figure 3.2), such as DARQ [64], FedX [75], SPLENDID [32],
ANAPSID [2], LHD [89], WoDQA [4] and ADERIS [51]. Their data source selection,
query decomposition strategies, query planning and query execution are described
below.

Figure. 3.2: SPARQL DQP engines architecture
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3.3.1 Source selection

We have identified two main source selection approaches regarding to the litera-
ture: (i) metadata catalogs source selection and (ii) sampling query-based source
selection.

3.3.1.1 Metadata catalogs

Metadata catalogs provide descriptions of SPARQL endpoints. These descriptions are
usually composed by information on predicates and their related subjects and objects
or statistics (cardinalities about number of instances of triples or query patterns,
execution time, etc.). Two sorts of metadata catalogs can be distinguished:

• Service Descriptions [80] describes SPARQL endpoints data as statistics on
predicates and possible restriction on query patterns.

• VoID [5] descriptions not only provide metadata on SPARQL endpoints data
but also indicate their links with other data sources

Based on metadata retrieved, SPARQL DQP engines perform source selection to
identify the relevant sources for the initial query. The metadata freshness will impact
its accuracy and possible query optimizations for the subsequent steps.

3.3.1.2 Sampling Query-based source selection

Rich prior information on data sources content is useful to implement elaborated
source selection strategies. However, it requires specific instrumentation of data
sources, and therefore does not apply to most SPARQL endpoints. According to the
LODStats [50, 81] project only 13.65% of the endpoints provide a VoID description
and 25.18% provide a Source Description. To address source selection for SPARQL
endpoints without data description, DQP engines try to build their own data indexing
by sending queries to SPARQL endpoints to obtain necessary information. We can
classify Sampling Query-based source selection in two groups:

• ASK queries: it consists of sending SPARQL ASK queries to know whether
a SPARQL endpoint may provide a result for a triple pattern (TRUE) or not
(FALSE). If the ASK query result is TRUE, the data source is relevant to the triple
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pattern. In general, ASK queries are used to identify predicates distribution
over SPARQL endpoints [42].

• Complex queries: a data source can be relevant for a triple pattern without
contributing to the final results. Indeed, intermediate results from one relevant
dataset might be later excluded after join processing with results from another
relevant dataset. To take this issue into account, some DQP engines use more
complex SPARQL queries relying on rdf:type, owl:sameAs, heuristics and joins
between triple patterns.

For both metadata catalogs and query-based sampling, caching may avoid to request
the same information several times. However caches have to be updated to remain
accurate if endpoints data are frequently changing.

3.3.1.3 Federated query engines source selection

Most of existing engines rely on prior information on sources content for source
selection. DARQ [64] relies on service descriptions to identify relevant sources. The
descriptors provide information on predicate capabilities and statistics on triples
hosted in each source. DARQ compares service descriptions predicates with the query
pattern predicates. For that reason, predicates with variables are not handled.

Similarly, the LHD [89] engine also compares triple pattern predicates and descrip-
tions predicates. It uses VoID descriptions but combines them with ASK queries to
refine them. Moreover, unlike DARQ, LHD can support triple patterns with a variable
as predicate.

SPLENDID [32] index manager uses statistical data on sources expressed through
VoID [5] to build an index of predicates and their cardinality. But for triple pattern
with predicates not covered by the VoID descriptions, SPARQL ASK queries are used.
All sources are assigned to triple patterns with a variable as predicate.

ADERIS [51] source selection relies on list of predicates metadata catalogs. But some
SELECT DISTINCT queries on predicates are also sent during execution to update
predicates tables. These tables are used for its query evaluation step.

Similar to LHD [89], ANAPSID [2] also has predicate lists catalogs. Besides predi-
cates, ANAPSID catalogs contain predicates and various statistics (e.g. endpoints
execution timeout) for all available endpoints. The statistics, also used for query
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planning, are updated dynamically by the query engine during the query evaluation
step. ASK queries with heuristics are also used to complete the catalogs.

The WoDQA [4] engine selects sources by using VoID information about the dataset
links. Based on IRIs analysis, WoDQA selects as relevant source all sources having
the query triple pattern IRIs in their links description.

FedX [75] also performs source selection optimization but unlike the previous
approaches, without prior knowledge on sources. Only SPARQL ASK queries are
sent to identify the relevant sources for querying predicates. Relevant sources are
managed through an index and stored in a cache to avoid to repeat the process for
the same query.

Table. 3.1: Source selections approaches for SPARQL DQP engines

Metadata catalogs Sampling Query-based Cache

DARQ Service Descriptions (predicates) X
LHD VoID (predicates) ASK
SPLENDID VoID (statistics) ASK
ADERIS SELECT DISTINCT
ANAPSID Predicates list ASK
WoDQA VoID (dataset links and IRIs) ASK X
FedX ASK X

Table 3.1 resumes the SPARQL DQP engines sources solution strategies. Most of them
use a hybrid approach by combining both Metadata catalogs to get information on
endpoints data and Sampling Query-based either to update and refine the metadata
or to obtain further information to perform a more accurate source selection. Only
FedX and DARQ are using one approach of source selection. FedX uses the Sampling
Query-based approach and DARQ the metadata catalogs one. Both of them are using
caches to reduce the communication cost with the SPARQL endpoints.

3.3.2 Query rewriting

Based on the relevant data sources previously identified, the original query is de-
composed into source-specific sub-queries so as to retrieve all data that possibly
contributes to the final result set. There are mainly two query rewriting methods:
Triple-based and BGP-based.

Triple-based evaluation is the finest-grained and simplest query decomposition strat-
egy. It consists in decomposing the query into each of its triple patterns, evaluating
each triple pattern on a source independently, collecting the matching triples on the
endpoints and performing the intermediate results joins.
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The obvious drawback of evaluating triples patterns individually is that many triples
may be retrieved from the sources and returned to the federated query engine just to
be filtered out by the join operations. If this strategy is returning correct results (all
potentially matching triples are necessarily returned), it is often inefficient. Indeed,
all the joins processing have to be achieved at the query engine side.

Conversely, the BGP-based strategy consists in evaluating Basic Graph Patterns (BGPs)
sub-queries [83]. The BGPs are groups of triple patterns. BGP-based strategy involves
grouping the triple patterns in order to reduce the number of remote queries and
intermediate results. Indeed, BGPs evaluation processes joins at the endpoint level,
which is more efficient than retrieving all possible triples at the server level before
computing joins. The use of SPARQL SERVICE clauses is typically a way to send
BGPs for evaluation to remote endpoints. However, SERVICE clauses can be used for
a whole BGP in a data source only if this data source is relevant for all triple patterns
of this BGP. This kind of BGP is also called an exclusive group by some federated
query engines.

The query rewriting step also depends on the data distribution scheme. Indeed,
in the case of vertically partitioned data sources, a whole partition is contained
in a single server, to which an exclusive group can be sent, in particular through
a SERVICE clause. However, in the case of horizontally partitioned data sources,
exclusive groups can only return a subset of the expected results due to the need to
compute joins between data distributed in different data partitions. To preserve the
semantics of the original query, it is mandatory to carefully split it into sub-queries
that do not cause results losses.

BGP-based query rewriting is used by most of the federated SPARQL query engines
to improve performance. DARQ introduces a triple pattern grouping approach
and also adds filters pushing to BGP-based sub-queries for more selectivity. This
approach was first name a exclusive grouping by FedX and reused by SPLENDID.
Furthermore, SPLENDID added a heuristic based on triple patterns with owl:sameAs
as predicate. When this kind of triple pattern has a variable as subject or object, it
is included in the exclusive group of the triple pattern with the same variable. This
heuristic is based on the assumption that data sources providers only use owl:sameAs
predicate to link their own data. ANAPSID also uses a BGP-based approach. WoDQA
separates an exclusive group into several when some triple patterns do not share
variables. SPLENDID and DARQ support SPARQL 1.0, which does not include the
SPARQL SERVICE clause. However, in all these approaches, BGP generation is only
considered for triples patterns relevant to a single source (vertically partitioned
data). For horizontally partitioned data sources, Triple-based query rewriting is used
to avoid missing solutions generated by intermediate results from different data
partitions.
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Table. 3.2: Query Rewriting approaches vs data partitioning

Vertically partitioned data Horizontally partitioned data

DARQ BGP-based (filters) Triple-based
SPLENDID BGP-based (owl:sameAs) Triple-based
ADERIS BGP-based Triple-based
ANAPSID BGP-based Triple-based
WoDQA BGP-based (shared variable) Triple-based
FedX BGP-based Triple-based
LHD Triple-based Triple-based

Table 3.2 summarizes the SPARQL federated query engines approaches for query
rewriting. Both Triple-based and BGP-based evaluations are leveraged by most of
the engines with some particularities for the second approach. Only LHD makes use
of the Triple-based approach in all cases. However, the BGP-based approach, which
is the more efficient one, is only used for vertically partitioned data. Indeed, for
horizontally partitioned data, Triple-based evaluation is always used.

3.3.3 Query planning

Besides query rewriting, query planning is another way to optimize a SPARQL query
evaluation. Indeed, the same SPARQL query can be rewritten in different statement
forms with high processing time variations. A simple sub-queries reordering can
significantly reduce the processing time. Indeed, sorting the sub-queries is equivalent
to reordering the query joins. Therefore the sub-query sorting is a key aspect of the
query planning step of federated query engines.

Dynamic programming [76] is the most commonly used approach to perform query
planning. This approach iterates over all possible evaluation plans before selecting
one, given a cost estimation function, by progressively pruning the non-optimal ones.
Dynamic programming involves computing a quick cost estimation function to be
efficient. Otherwise it becomes very expensive for complex queries, particularly in
terms of processing time since the query planning time is accounted as part of the
overall query processing time.

Conversely, the greedy algorithm approach generates only one "optimal" plan. This
approach starts with the sub-query with the lowest cost and recursively chooses the
next one based on a cost estimation function. The plan generated might not be the
best one but should be close enough to it to improve the query evaluation within a
reasonable time. Thus, the query planning step needs to keep a balance between the
accuracy of the plan and query planning time. On the other hand, estimating the
optimal query execution plan is known as an intractable problem [45]. Therefore,
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the actual purpose of the query planning step is to find an optimal plan close to
the best one. To do so, heuristics are more commonly used to define the Cost
Estimation functions. In the SPARQL DQP context, heuristics can be classified into
two categories: (i) heuristics based on query patterns and (ii) plan cost estimation
heuristics

3.3.3.1 Heuristics based on query patterns

Several federated query engines perform query planning by using some heuristics to
assess the selectivity of query patterns and sort them based on their selectivity. The
main heuristics approaches used are: Free Variables Counting [82], Shared Variables
and Query Patterns Priority.

• The Free Variables Counting (FVC) heuristic consists in assessing the selectivity
cost of a query pattern by counting its number of free variables, assuming that
subject variables are more selective that object variables, which are themselves
more selective than predicate variables. Then, the query patterns are evaluated
according to this number. Free variables which are already bound by a previous
query pattern, are also considered as being bound for the following ones.

• The Shared Variables (SV) heuristic takes into account the variables reuse be-
tween query patterns. Indeed, processing the query patterns sharing variables
with a given query pattern previously executed, enables in some cases the en-
gine to propagate the values already known for these variables and potentially
reduce their selectivity.

• The Query Patterns Priority (QPP) heuristic sorts the sub-queries by giving a
priority to some types of query patterns, for instance the exclusive groups.

FedX uses both Free Variables Counting (FVC) and Query Patterns Priority (QPP)
heuristics. QPP gives priority to exclusive groups over triple patterns. Both of them
are sorted through FVC before. In the WoDQA engine, the query planning relies on
the Shared Variable (SV) heuristic. After re-ordering the query patterns based on a
given selectivity coefficient, they are sorted again through the SV approach in order
to place alongside query patterns with common variables.
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3.3.3.2 Plan cost estimation heuristics

Other federated query engines define a Cost Estimation Function through heuristics in
order to perform either dynamic programming or greedy algorithms. These heuristics
aim at estimating the joins cardinality, and the communication cost associated to
some query patterns. They are defined by considering either statistics on SPARQL
endpoints data provided by VOID and Service descriptions, or some observations on
RDF features and datasets.

DARQ, LHD, ADERIS and SPLENDID engines use this approach for their query
planning. ADERIS performs greedy algorithm, while all others are using dynamic
programming. DARQ estimates the cardinality cost with the cardinality retrieved
from the service descriptions combined with a selectivity fatcor for each join. Since
this factor is missing in the service descriptions, it is arbitrarily fixed to 0.5. Similarly
SPLENDID and LHD also estimate the cardinality cost relying on VOID descriptions.
However in this case, the selectivity is given by the VOID descriptions.

Table. 3.3: Query Planning approaches for SPARQL DQP engines

Heuristics on query patterns Plan cost estimation heuristics

DARQ dynamic programming
LHD dynamic programming
SPLENDID dynamic programming
ADERIS greedy algorithm
WoDQA Shared Variables
FedX FVC & QPP for exclusive group

Table 3.3 shows the different query planning approaches for several engines. DARQ,
SPLENDID and LHD apply dynamic programming considering a cardinality cost
function to generate different plans and chose the best one. But LHD focuses on
the optimization of each BGP separately. Conversely, ADERIS, FedX and WoDQA
generate one optimal plan. ADERIS uses greedy approach with a cardinality cost
estimation, whereas WoDQA and FedX only focus on query patterns selectivity
heuristics.

3.3.4 Query evaluation

The first purpose of the Query Evaluation step is to send sub-queries to SPARQL
endpoints following the plan previously decided and to retrieve intermediate results
from remote datasets. These results are then joined in order to produce the final
results. The SPARQL query result is called solution sequence which is a list of solution
mappings. A solution mapping associates the variables of the query graph pattern to
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their matching RDF terms (resources, literals or blank nodes). A solution mapping is
a set of variable bindings where each variable binding is a pair of a variable name
and an associated value). The term bindings is commonly used to refer to query
variable bindings and, more generally, to already known values for variables.

To compute joins, several kind of operators may be used:

• nested-loop join: processes a join between two relations in a nested loops
fashion. It iterates over the bindings of the first relation for each binding of
the second relation.

• bind join [34]: unlike nested-loop, bind join propagates the bindings of the
first relation to the second relation instead of iterating over the results and
propagating one by one known values.

• merge join: also called sort merge join, aims at merging two sorted relation
bindings.

• hash join: builds a hash table of the smallest relation bindings and compares
them with the larger relation bindings. The latter, are also hashed before
checking if they match with hash table values.

The join operations aggregate intermediate results from different remote data
sources. The DARQ engine implements both nested-loop join (NLP) and bind
join (BJ). NLP is used for accessing patterns without limitations and BJ in the oppo-
site case. SPLENDID has two query evaluation strategies: bind join evaluation and
parallel evaluation. On the one hand, it aims at identifying independent sub-queries,
sending them in parallel and using hash join (HJ) to locally aggregate the results.
On the other hand, bind join is used to sequentially evaluate dependent sub-queries.
Similarly, LHD makes use of both bind join and hash join operators respectively.

The FedX engine query evaluation relies on bind joins and SPARQL UNION queries
to send all the mappings in one remote query to data sources. FedX also performs
a parallel evaluation trough a multithreading approach and a pipelining strategy
to process intermediate results as early as possible. Bind joins are also used by the
WoDQA engine to execute queries.

The ADERIS engine query evaluation builds predicate tables for each sub-query to
complete subjects and objects values. The join operation through nested loop join
starts once the tables are complete. This approach is called index nested loop join.
Indeed, the tables values are used as index on join attributes.
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Finally, ANAPSID [2] is an adaptive query engine since its query evaluation is based
on two types of joins: adaptive group join (AGJ) and adaptive dependent join (ADJ).
AGJ relies on Symmetric Hash Join [23] and Xjoin [85]. AGJ detects when a data
source becomes blocked and adapts the query evaluation according to the data
availability. ADJ extends a Dependent join operator [26] and sends a query once the
results of the dependent query are retrieved from the first data source. Therefore,
ANAPSID is capable of quickly producing the first final results.

Table. 3.4: Query Evaluation approaches for SPARQL DQP engines

Join methods Parallelism

DARQ Nested Loop Join & Bind Join
LHD Hash Join & Bind Join Hash join in parallel
SPLENDID Hash Join & Bind Join Hash join in parallel
ADERIS Index-based Nested Loop Join
ANAPSID AGJ & ADJ Join in parallel
WoDQA Bind Join
FedX Bind Join Multithreading & join pipelined

Table 3.4 sums up the different join methods used by SPARQL federated query
engines for query evaluation and their parallelism approach. Different kind of joins
are performed by the engines based on their query evaluation strategy. Bind join is
the most frequently used operator in order to propagate bindings to the followings
sub-queries and therefore to reduce intermediate results. Bind join is combined
with Nested Loop join or Hash join operators in DARQ, LHD and SPLENDID. While
FedX defines an optimized version of bind join with SPARQL UNION queries to
reduce remote queries. ADERIS uses an index-based nested loop join. ANAPSID
defines two joins operators adaptive group join (AGJ) and adaptive dependent join
(ADJ) which tailor its query evaluation strategy at runtime and quickly produce the
first results. Some parallelism mechanisms are also operated to improve the query
evaluation efficiency. In that respect, LHD and SPLENDID achieve hash joins in
parallel as well as ANAPSID for AGJ and ADJ join operators. Lastly, FedX completes
joins operation in a pipelined fashion and also uses multithreading for its query
evaluation approach.

3.4 Discussion and Challenges

In the previous section, we compared several SPARQL federated query engines
approaches through the distributed query processing main steps. The primary
purpose of these engines is to improve the efficiency of SPARQL federated query
processing. To achieve this goal, several optimization techniques are implemented.
These optimization can be categorized as static and dynamic. Static optimization
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refers to optimization processed before the effective query evaluation, whereas
dynamic optimization refers to those done during the query execution phase. In
particular, the optimization strategies aims at reducing the processing time and the
communication cost between the query engine and remote data sources.

The first issue to deal with is identifying the relevant data sources with accuracy.
Indeed, overestimating the data sources tends to lead to useless communications and
intermediate results processing and consequently to increase the overall distributed
query processing time. Conversely, underestimating the relevant data sources will
prevent engines from retrieving all expected results. As we have seen in Section 3.3.2,
Metadata catalogs and Sampling Query-based are the two main approaches for the
source selection step. The first approach, used by DARQ for instance, relies on a
prior knowledge (e.g. predicates, statistics, links) on data sources trough VOID
and Service Descriptions provided by the endpoints. The efficiency and accuracy of
this approach depend on the catalogs freshness. Therefore, the Metadata catalogs
need to be frequently updated to preserve the results accuracy and completeness.
However, data catalogs are expensive to keep up to date [84].

We have also noticed that very few endpoints provide these catalogs, which forces
federated query engines to use the Query-based Sampling approach to try to achieve
accurate source selection. This method, performed by the FedX engine, consists in
sending sampling queries to endpoints to retrieve information and in building its
own data catalog. This approach will more likely provides up-to-date results. The
main drawback of the Query-based Sampling method is the unavoidable processing
time for retrieving the information and for building the index on the fly.

As seen in the previous section, most of the SPARQL federated query processing such
as LHD, SPLENDID, ANAPSID and WoDQA perform a hybrid approach by mixing the
two foregoing approaches. The former provides default information on data sources
and the latter completes, updates or refines it.

Regarding the query rewriting optimization, all the engines try to take advantage
of the BGP-based approach, which is more efficient than the Triple-based approach.
However, its use is restricted to exclusive groups and therefore to vertical partitions.
Indeed, a naive usage of the BGP-based approach for horizontal partitions may lead
to miss results generated by different data sources. The question then arises of how
to benefit from the advantage of the BGP-based method in horizontally partitioned
data without losing accuracy or completeness. This question is related to the more
general issue of query semantics preservation in context of distributed data sources.
Indeed, the query rewriting step has to both take into account the performance
of the sub-queries generated and to ensure the preservation of the original query
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semantics. The SPARQL distributed query semantics is not addressed by the engines
reviewed in this chapter.

Data replication in RDF data sources is another challenge that needs to be taken into
consideration by the federated query engines. Data redundancy is very common in
the Linked Open Data context since several data sources are built by crawling other
sources. Consequently, data replication may have a negative impact on the query
processing performance by increasing the number of intermediate results, increasing
the communication cost, and by providing duplicated results. Thus, data replication
should be taken into account, either by detecting it during the source selection step
(in order to avoid to resend a sub-query which will retrieve intermediate results
already provided by another source), or during the query evaluation step. None
of the reviewed engines investigate this issue. However, DAW [72], built on the
top of FedX, and BBQ [43] propose a duplicate detection mechanism throughout
the source selection phase to estimate data overlapping among data sources relying
on data summaries. Fedra [54] takes into account the fragment replication in data
sources during source selection step to reduce the size of data transferred.

Regarding the SPARQL language expressiveness, only ANAPSID and WoDQA can
cope with some SPARQL 1.1 features. The initial version of FedX, SPLENDID, LHD
and DARQ support SPARQL 1.0. However, FedX has been updated to support several
SPARQL 1.1 features. ADERIS supports a subset of SPARQL 1.0 query patterns and
can not handle features such as OPTIONAL. SPARQL expressiveness, emphasized
with SPARQL 1.1, should be preserved by the federated query engines as much as
possible. The increase number of RDF data sources creates more complex information
to query. Consequently preserving the expressiveness is essential to avoid users to
be limited in their data querying capability.

3.5 Conclusion

In this chapter, we have first described the Distributed Query Processing (DQP)
approach which is the main method used for Linked Open Data integration. Inte-
grating distributed and autonomous RDF data sources is equivalent to performing
a virtual integration of homogeneous data sources. Applying the DQP approach
requires achieving the source selection, query rewriting, query planning and query
evaluation steps. Afterward, we have described several current SPARQL federated
query engines approaches to address these stages. For each step, we have compared
the different optimizations performed by these engines. Finally, we have discussed
in detail the approaches proposed to improve the federated query processing effi-
ciency related to the processing time and the communication cost. We also have
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highlighted the challenges to tackle such as the source selection accuracy, the results
completeness, the data replication, the SPARQL distributed query semantics and its
expressiveness.

The first aim of this thesis is to propose a clear SPARQL and RDF-compliant Dis-
tributed Query Processing semantics in order to ensure the query semantics and
expressiveness preservation. The following goal is to develop a SPARQL federated
query engine that transparently addresses distributed data sources, while taking into
account the previously underlined challenges.

In this thesis, we propose a federated query semantics taking into account distributed
RDF datasets constraints and specify the semantics of federated SPARQL queries on
top of standard SPARQL semantics to respectively enhance their reliability and ex-
pressiveness. Afterwards, we propose an approach to transparently query distributed
data sources while addressing data partitioning, data replication and query results
completeness challenges through both static and dynamic optimization strategies.
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4.1 Introduction

SPARQL federated query engines aim at virtually integrating several autonomous
and distributed RDF data sources through their endpoints. This federation should be
transparent from the query designer point of view as if all sources were aggregated
in a single data source. As mentioned in the previous chapter, dedicated engines
perform the distributed queries evaluation over a Virtual Knowledge Graph (VKG)
aggregating all source RDF graphs. Owing to the knowledge graph distribution,
an initial query needs to be rewritten into sub-queries in order to interrogate each
source on its own data before performing joins. Otherwise, applying the whole
query over remote sources is likely to retrieve partial or empty results. Therefore,
the distributed query semantics preservation becomes a crucial question to address.
If the semantics of SPARQL queries is clearly defined for a single data source1, this
is not the case for federated SPARQL queries. The assumption intuitively made in
the current state of the art is that a SPARQL query evaluation over multiple data
sources should return the same results as if all data sources had been managed as
a single one and the VKG had been materialized. However, as we are going to see
further in the next section, making the federated query engines compliant with this
assumption is not straightforward.

In this chapter, we first investigate federated SPARQL query semantics issue through
a comparison between a standard SPARQL query execution over a single data source
(centralized RDF dataset) and a federated SPARQL query execution over several data
sources (distributed RDF dataset). Then, we express the constraints that federated
engines should comply with. In a second step, we express federated SPARQL queries
through the standard SPARQL features in order to define their semantics on top of
standard SPARQL semantics.

4.2 SPARQL query evaluation over a distributed
knowledge graph

Semantic Web knowledge and information are represented through the RDF data
model. In that respect, the Linked Data query federation data sources are RDF
datasets. Therefore the standard SPARQL semantics is defined according to the
RDF semantics [67]. As defined in this semantics, an RDF dataset2 is a set of RDF
graphs and is composed of two main elements: one default graph and zero or more
named graphs. The default graph may be empty and graph names are unique in a

1https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#sparqlAlgebraEval
2https://www.w3.org/TR/rdf11-concepts/#section-dataset

38 Chapter 4 Towards Federated SPARQL query semantics and specifications



given RDF dataset. The RDF dataset graphs can share blank nodes between them.
RDF specification does not allow triples replication in an RDF graph, even though
triples may be replicated in different RDF datasets either to improve their availability.
Standard SPARQL queries are evaluated over RDF datasets in accordance with this
semantics [67].

Federated SPARQL queries are evaluated assuming that data sources are a distributed
RDF dataset, or Virtual Knowledge Graph (VKG), aggregating all RDF datasets. Since
the data distribution should be transparent to users, most works on federated
SPARQL engines consider that users expect the SPARQL query to be evaluated in the
"union" of the RDF datasets. This "union" would correspond to a single RDF dataset
with the union of the default graphs as default graph and the union of the named
graphs as named graphs.

Intuitively, it also means that the VKG, on which federated queries are evaluated,
should be compliant with RDF semantics. Nevertheless, implementing this semantics
is not obvious. Indeed, to define a semantics for federated SPARQL queries evalua-
tion, there are RDF graph particularities such as named graphs, blank nodes and data
replication, and the impact of the latter on SPARQL redundant results handling need
to be considered.

This semantics specification has to deal with the constraints below:

• Named graphs are graphs in an RDF dataset, identified by an IRI. In an RDF
dataset, the graph names are unique. So what is the relation between two
named graphs in different RDF datasets with the same IRI? According to the
RDF standard, the fact that the same IRI for named graphs appears in different
RDF datasets does not imply anything on the relation between these named
graphs. Thus, there is an alternative in dealing with this problem since there is
no semantics for the relation between the named graph and its URI:

– the named graphs can arbitrarily be considered as different: the SPARQL
query would be separately evaluated in the two graphs

– the named graphs can arbitrarily be considered as same named graph :
the SPARQL query would be evaluated in the merge of the two named
graphs.

• Blank nodes are locally scoped nodes which identifier, if any, is not a IRI. Hence
identifiers in SPARQL results of two blank nodes from two different endpoints
may collide. In a single dataset, graphs can share blank nodes (for instance
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two named graphs). However, in the federated context blank nodes identifiers
collisions in SPARQL results may occur for unrelated nodes from two data
sources or a given blank node may not have the same identifier in two SPARQL
results. Therefore, the blank nodes distributed join processing is not always
feasible or may result in inappropriate results.

• Data replication: triple redundancy in a single RDF graph is not allowed by
RDF semantics, but in a distributed context, it is common to replicate data
items over several data servers to improve availability [58]. RDF triples may
thus be replicated in different servers.

Figure. 4.1: Data replication on Virtual Knowledge Graph

In Figure 4.1, the triple (t1 team "SPARKS") is unique in RDF datasets S1 and
Sn, but replicated in the VKG which is the collection (S1, Sn).

• Redundant results: SPARQL can return some results multiple times in a re-
sult multiset, if a graph pattern matches several times the same data. In a
distributed context, data replication is also likely to lead to redundant results
if the same triple is accounted for several times in a query results. However,
this redundancy in results is only a side effect of data duplication that would
disappear if data was effectively aggregated in a single RDF dataset.

The Figure 4.2 shows a SPARQL query executed over the VKG (S1, Sn). The
number of results is 2 whereas it would be 1 if S1 and Sn were actually merged
in a single RDF graph.

In the remainder of this thesis, we will refer to Virtual Knowledge Graph and to
Federated dataset as follows:
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Figure. 4.2: Side effect of data replication

Definitions:
Let S1, S2, ...Sn be a set of RDF datasets where Si is a dataset with dGi as default
graph and (ui1 , Gi1), (ui2 , Gi2), ...(uik

, Gik
) as named graphs.

Definition 4.2.1. The Virtual Knowledge Graph (VKG) is a collection of the RDF
datasets of the remote data sources: VKG = (S1, S2, ..., Sn).

Definition 4.2.2. The Federated dataset (FDS) is the RDF Dataset Merge of S1, S2, ... and Sn

as defined in the SPARQL semantics [79].

According to this semantics the RDF Dataset Merge of two RDF Datasets is defined as
follows:

Let S1 = {dG1 , (u11 , G11), ..., (u1n , G1n)}, S2 = {dG2 , (u21 , G21), ..., (u2m , G2n)} and
S the RDF Dataset Merge of S1 and S2.

S = {dG, (u1, G1), ..., (uk, Gk)}

where:

• dG is the merge of the default graphs dG1 and dG2 .

• (ui, Gi) where Gi is from S1 if ui belongs only to named graph URIs of S1.

• (ui, Gi) where Gi is from S2 if ui belongs only to named graph URIs of S2.
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• (ui, Gi) where Gi is the merge of G1j and G2k
if G1j and G2k

respectively
belong to S1 and S2 and share the same URI ui.

Based on this definition, we define the Federated dataset (FDS) of S1, S2, ... and Sn

as follows:
FDS(S1, S2, ..., Sn) = {dGF DS

, (uF DSk
, GF DSk

)}
where:

• dGF DS
is the merge of the default graphs dGi of the datasets Si (1 ≤ i ≤ n).

• (uF DSj , GF DSj ) where GF DSj is from Sm if uF DSj belongs only to named
graph URIs of Sm.

• (uF DSj , GF DSj ) where GF DSj is the merge of named graphs from Si (1 ≤ i ≤
n) and sharing the same URI uF DSj .

Triple replication may occur in VKG as shown in Figure 4.2. However, in the FDS
this replication disappears as result of the merge operation. Thus, for instance in
Figure 4.2 the FDS for S1 and Sn would give 1 result to the SPARQL query.

4.3 Federated dataset semantics on top of RDF
semantics

The main existing federated engines focus on improving the query processing perfor-
mance with regard to the execution time and communication cost. This performance
is mainly measured through parameters such as source selection time, evaluation
time, number of intermediate results and result completeness. The constraints listed
above are most of the time disregarded while they may have a significant impact on
both the number of distinct results retrieved and their redundancy. The number of
results can vary because of the the data partitioning and duplication effect [53]. In
a similar way, the processing of named graphs distribution and blank nodes collision
may also change the query evaluation results. The disparity between the results
provided by the SPARQL federated query engines, for the same query over the same
endpoints, shows their lack of reliability. Consequently, it is essential to define a clear
semantics for federated queries evaluation and to make it as compliant as possible
with both standard SPARQL and RDF semantics.

Hence, we propose the approach below to address the constraints identified before-
hand in our SPARQL federated query evaluation strategy:
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• Named Graph collision: in the federated context, we consider that data associ-
ated to the same named graph IRI belong to a single named graph, even if it is
distributed in different sources. This is coherent with the idea of aggregating
all data sources into a single virtual graph. In addition, IRI are usually specific
enough to prevent most accidental collisions between identical names.

• Blank Node collision: it is not possible to properly address the blank nodes
distributed joins issue with their identifiers that are exchanged through query
results. To accurately achieve this distributed joins, IRIs need be assigned to
these blank nodes before RDF data duplication or distribution. This process is
called skolemization3. Thus, we advocate the use of skolemization to overcome
the blank nodes distributed joins problem and, failing that, to consider the
blank nodes identifiers between two given results sets always differ. In the
remainder of this thesis, we make this hypothesis.

• Triple replication: when evaluating a query, an RDF triple should be accounted
for only one time, even if it is replicated over different servers. In other words,
federated queries should be evaluated as if they were processed over the
federated dataset defined above which does not contain duplicated triples.

• Result redundancy: the query engine needs to detect which redundant results
are legitimate (products of the SPARQL evaluation) and which ones are side
effects and should be filtered out.

4.4 SPARQL features over distributed data
sources

On one hand, we aim at proposing a SPARQL and RDF-compliant federated query se-
mantics and preserving SPARQL expressiveness as much as possible in the distributed
context. On the other hand, the SPARQL service clause is the only semantics4 clearly
defined for federated query and endpoints are mainly using standard SPARQL inter-
preters. Therefore to specify the federated SPARQL query semantics in compliance
with the standard SPARQL semantics, we propose to rewrite SPARQL federated
queries into standard SPARQL queries with service clauses.

In practice, processing a federated SPARQL query means executing a SPARQL query
over several data sources through their SPARQL endpoints. Thus, given a set of
SPARQL endpoints URIs a query pattern has to be evaluated on each relevant SPARQL

3https://www.w3.org/TR/rdf11-concepts/#section-skolemization
4https://www.w3.org/TR/sparql11-federated-query/#fedSemantics
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endpoint. For each triple pattern the union of results provided by endpoints has to
be computed and joined with the results of the other triple patterns.

4.4.1 Rewrite rules

A federated query is a SPARQL query provided with a set of SPARQL endpoint URIs.
As general rule, a federated query EXP is evaluated as the joins of the results of each
triple pattern of EXP, each result being obtained through the union of several service
clauses with the same triple pattern and different service URI.

Definition:

Let S = {S1, S2, ...Sn} be the endpoint URIs and EXP = {T1, T2, ..., Tk} be a set of
triple patterns.

service(S) {EXP} ::= join { RT1 , RT2 , ..., RTk
} where

RTi ::= ∪s∈S { service s {Ti} }

::= {service S1 {Ti}} union {service S2 {Ti}} union ... {service Sn {Ti}}

Below, we propose federated SPARQL query rewrite rules for each SPARQL state-
ment:

• Triple Pattern: a triple pattern is rewritten as a union of service clauses.
Since for a federated query, it is recommended to evaluate expression only
on relevant data sources, we introduce the function Relevant. This function
provides the relevant data sources for each triple pattern. Two cases can be
distinguished: (i) query without from clause, and (ii) query with from clause.

let S = {S1, S2, ...Sn} and Triple pattern T to evaluate over S.

Relevant (S, T)::= ST where ST is subset of S containing only the relevant
data sources for T.

Without from clause:

rewrite(triple T) ::= service(ST) { T }

::= ∪s∈ST {service s {T}}
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With from clause: For a query with from clause, the ideal rewrite rule would
be:

Let F = {f1, f2, ..., fn} be a set of URIs of the from clause and from F be the
shortcut for: from f1, ..., from fn.

rewrite(triple T) ::= service(ST) { select * from F where { T } }

However, SPARQL does not allow to specify a dataset in a sub-query, therefore
the query above is illegal. But since only one triple pattern is evaluated,
achieving this over a From fi can be approximated by processing it over a
graph fi under two conditions. Indeed, a From clause implies the merge of the
named graphs without duplicates and with blank nodes renaming. The blank
node renaming condition is handled through the skolemization assumption
but that related to the duplicates need to be taken into account in the rewrite
rule. We achieve this by adding a DISTINCT clause to the rewrite rule. Thus,
we relying on named graph, we propose the rewrite rule below:

rewrite(triple T) ::= select distinct * where {

service(ST) { graph f1 { T } } union ... union service(ST) { graph fn { T } }}

• Basic Graph Pattern (BGP): each triple pattern of the BGP is rewritten.

rewrite(BGP {T1, T2, ...Tn}) ::= BGP {rewrite(T1), rewrite(T2), ...rewrite(Tn)}

• Union: each graph pattern is rewritten

rewrite(P1 union P2) ::= rewrite(P1) union rewrite(P2)

• Minus: each graph pattern is rewritten

rewrite(P1 minus P2) ::= rewrite(P1) minus rewrite(P2)

• Optional: each graph pattern is rewritten

rewrite(P1 optional P2) ::= rewrite(P1) optional rewrite(P2)

• Filter Expression: is recursively rewritten and remains unchanged, except for
exists pattern which is rewritten as a BGP. Thus, each triple pattern of the exists
expression is rewritten.
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– Filter (F) :
rewrite(Filter F) ::= Filter rewrite(F)

– CST :
rewrite(CST) ::= CST

– VAR :
rewrite(VAR) ::= VAR

– F (EXP1, ..., EXPn) :
rewrite(F (EXP1, ..., EXPn)) ::= F (rewrite(EXP1), ..., rewrite(EXPn))

– Exists:
rewrite (exists {EXP})::= exists {rewrite(EXP)}

Furthermore, the same rewriting is also performed in all other expressions
such as select, bind, group by, order by and having, in which exists pattern
may appear.

• Sub-query: the inner query is rewritten using the same rules as for the outer
query.

rewrite(select PROJECTION where{EXP}) ::= select rewrite(PROJECTION)
where {rewrite(EXP)}

For outer query with named graph, the named graph has to be propagated for
the sub-query (inner query) evaluation (e.g. using overload rewrite(triple T)).

• Named Graph Pattern: named graph pattern is rewritten by overloading
rewrite(triple T). There are two cases to consider, depending on the identifica-
tion of the named graph by a URI or a variable:

Let G be the federated dataset URIs, which means the set of URI of named
graphs in remote SPARQL endpoints.

– Graph URI:

rewrite(graph URI EXP) ::= rewrite(EXP)

overload rewrite(triple T) ::= service(S) { graph URI {T} }
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– Graph VAR:

rewrite(graph VAR EXP) ::= union(g in G) { rewrite(EXP) values VAR {g}
}

And for each g: overload rewrite(triple T) ::= service(S) { graph g {T} }

In the first case, the named graph is identified by a URI which is propagated
into the service clauses to focus graph matching.

In the second case the named graphs are identified by a set of URIs in G. The
aim of this rewrite rule is to replace the variable of the named graph pattern
by a set of Graph URI clauses.

The reason is that SPARQL semantics requires that the BGP of the named graph
pattern must be evaluated without the binding of the named graph pattern
variable and that the value of the variable of the named graph pattern must be
joined to the solution afterward.

The point is that, in some cases as shown in the example below (Query 4.1),
the same variable used for the named graph is also used inside the graph
pattern. For instance, in this example the variable ?g is both used as the named
graph variable and in the minus clause. In such cases, the variable in the minus
must not be bound to the name of the graph pattern.

Query Example 4.1: named graph and minus sharing variable

1 select * where {
2 graph ?g { ?x us:p1 ?y minus { ?y us:p2 ?g } }
}

• Property Path: Regarding the property path, we rely on the property path
evaluation defined by the SPARQL recommendation5. Indeed, we recursively
follow the property path evaluation semantics defined in the recommendation
until we reach a triple pattern (X IRI Y). Then we rewrite its evaluation as
a service clause. Property path (PP) expressions are made of predicates and
operators. The PP interpreter recursively evaluates complex PP expressions
with operators that eventually resume to predicates (e.g. p1 / p2). In the
context of federated query, evaluating a predicate in a property path expression
consists in evaluating the result of the triple pattern rewrite rule with the
predicate, the subject and the object as well as the reverse, negation, alternative

5https://www.w3.org/TR/sparql11-query/#sparqlPropertyPaths
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and sequence operators. Evaluating a predicate consists of finding triples that
match the predicate and whose subject (resp. object) match current subject
(resp. object). There are several cases: subject and object being known or
unknown which respectively means being a RDF term or a variable.

Below we define the rewrite rule for the different property path patterns:

– Predicate Property Path: (S p O) S and P may be RDF Term or Variable

1. case: (S:var p O:var) ::= rewrite(?s p ?o)

2. case: (s p O:var) ::= rewrite(s p ?o)

3. case: (S:var p o) ::= rewrite(?s p o)

4. case: (s p o) ::= rewrite(s p o)

– ZeroOrMorePath (*), OneOrMorePath (+) and ZeroOrOnePath: in the
semantics, these operators are evaluated through functions which take as
parameter a path(X,P,Y). This path is rewritten in the same way as in the
previous rule.

– Inverse Property Path :ˆ(S p O) ::= rewrite(O p S)

– Alternative Property Path : (S p1|p2 O) ::= rewrite(S p1 O) union rewrite(S
p2 O)

– Sequence Property Path : (S p1/p2 O) ::= BGP (rewrite(S p1 X), rewrite(X
p2 O))

Sequence, as well as Inverse and Alternative, arguments may be property
path expressions, in this case the arguments a recursively rewritten.

– NegatedPropertySet : (S !(p1|p2|...|pn) O) ::= BGP(rewrite(S ?p O), fil-
ter(?p not in (p1...pn))

4.4.2 Triples replication

To be compliant with the semantics defined above, the possible redundancy in results
which are side effects of data distribution should be pruned. In the case of triple
pattern it means avoiding redundancy in the results. However, this is not performed
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by the standard SPARQL union operator used in the triple pattern rewrite rule. To
overcome this issue, we propose to use the DISTINCT solution modifier to remove
results redundancy by applying a SELECT DISTINCT * on the union of the services
clauses as follows:

rewrite (triple T) ::= select distinct * where {

{service S1 {T} } union {service S2 {T}} union ... {service Sn {T}}

}

In other words, we eliminate several occurrences of the same triple in different
endpoints.

However, regarding federated queries with FROM NAMED clauses, the results redun-
dancy pruning must be respectively applied only on each named graph evaluation
and triple pattern evaluation.

Query Example 4.2: from named rewrite rule

Let G = {g1 , g2}
select from named g in G where {graph ?g EXP} ::=
{ select * where {

rewrite (graph g1 EXP )}
values ?g {g1}

}
union
{ select * where {

rewrite (graph g2 EXP )}
values ?g {g2}

}
The triple pattern rewrite rule ( rewrite ( triple T)) is
overloaded above for the evaluation of each named graph
g in G with the SELECT DISTINCT * statement .

4.5 Conclusion

In this chapter we have shown the necessity to define a clear semantics for federated
SPARQL queries in order to ensure the reliability of federated query results and to
avoid the disparity between the results they provide. However, this semantics has to
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face some constraints related, on the one hand to some RDF graph specific features
such as named graph and blank nodes, and on the other hand to data replication
and redundant results of RDF distributed graphs. Thus, we propose a federated
query semantics while addressing these constraints: (i) named graph collision, (ii)
blank nodes, (iii) triple replication.

Afterwards, we specified the semantics of federated SPARQL queries on top of the
standard SPARQL semantics by a set of rewrite rules using the service clause since it
is the only statement with a clearly defined federated semantics. As a general rule
for defining their semantics, federated queries are rewritten as a union of service
clauses targeting the remote SPARQL endpoints.
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5.1 Introduction

In the previous chapter, we have defined a semantics for federated SPARQL queries
and specified it on top of standard SPARQL. Now, we aim at implementing a more
expressive and efficient federated query processing engine in compliance with this
semantics while taking into consideration the data distribution, data replication and
results completeness challenges. As explained beforehand, SPARQL federated query
engines intend to transparently integrate distributed and autonomous RDF data
sources through their endpoints. The query processing is mainly performed with the
following steps: (i) source selection, (ii) query rewriting, (iii) query planning and
(iv) query evaluation.

In Chapter 3, we have seen that several engines, such as DARQ [64], FedX [75],
SPLENDID [32], ANAPSID [2], LHD [89], WoDQA [4] and ADERIS [51], have been
proposed. As a reminder, most of them use hybrid sources selection approach by
combining metadata catalogs and sampling query-based approaches to get infor-
mation on sources in order to accurately identify the relevant ones. Regarding the
query rewriting step, Triple-based and BGP-based evaluations are respectively used
for vertically and horizontally partitioned data. There are two main approaches for
the query planning step, both based on heuristics. The first one uses heuristics with
search algorithms (dynamic and greedy) and the last one applies heuristics on query
patterns to sort them. Finally, several kinds of operators such as bind join, nested
loop join and hash join are used to process the results during the query evaluation
step.

In this chapter, we first introduce our sampling query-based source selection which
aims at both identifying relevant sources and retrieving triple patterns cardinality.
Then, the query rewriting problem is outlined and a query decomposition technique
that aims at pushing as much as possible of the query processing towards the remote
data sources for maximal filtering of the query results is proposed. Subsequently, we
propose a query sorting approach based on cardinality cost estimation and shared
variables heuristics. Finally, we introduce our redundancy aware query evaluation
approach.

5.2 Hybrid sources selection

This section presents our source selection strategy to both identify relevant sources
for candidate triple patterns and retrieve their cardinality statistics. As discussed
in section 3.3.1.3, the metadata catalogs approach is not suitable for most of the
data sources. Indeed, only few SPARQL endpoints provide them and they need to be
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frequently updated to be accurate. Moreover, since we are in a context of dynamic
data sources related to the nature of the Web, the sources undergo frequent changes.
Thus, we decide to build our own data indexing through a Sampling Query-Based
approach to acquire knowledge on data sources. More specifically, instead of only
sending ASK queries to know whether a predicate appears in a given source or
not, we propose to send a SELECT COUNT(*) query to retrieve at the same time an
estimation of the cardinality of this predicate. In this way, we build two indexes:
idxPredicateSources and idxPredicateCardinality.

• The idxPredicateSources index records for each predicate the potential sources
that are contributing to its results, in order to avoid unnecessary remote
requests.

• The idxPredicateCardinality index provides cardinality statistics in order to
estimate the triple patterns cost, which is useful during the query planning step.
For each predicate the estimated cardinality will be the sum of the estimated
cardinality in remote data sources (Card(p) = Σi card(p, si)).

The accuracy of this cardinality is a key factor of our optimization since our query
planning approach is partially based on it. Thus, some less selective predicates such
as rdf:type and owl:sameAs or non-selective predicates (variable as predicate for
instance) need more processing. Indeed, the SELECT COUNT query will tend to give
a high number of cardinality due to their wide use in data sources or because the
predicate is a variable. Therefore, instead of sending a query with only the predicate
and variables as subject and object, we replace the subject and object by their values
when they are known to refine the cardinality estimation and possibly avoid source
selection overestimation.

When the subject, the object and the predicate of a triple pattern are variables (?s
?p ?o), we assign the MaxCard as cardinality to this triple pattern. MaxCard is a
high number arbitrarily fixed to denote the maximum cardinality. For the sake of
simplicity this MaxCard value is also assigned to predicates which are property paths
operator such as the binary operator ZeroOrMorePath (*). Indeed, estimating the
cardinality of these kind of predicates can be very time-consuming. Therefore, a
trade-off between the cardinality estimation accuracy and the processing time needs
to be made.

5.2.1 Sample source selection

The following paragraph illustrates the source selection approach through an exam-
ple of federated query (Q 5.1). This query retrieves the name and total population of
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each departement and is evaluated over three remote data sources. The data sources
S1 and S2 contain French geographic [28] data and the data source S3 contains
French demographic [27] data. These RDF graphs are published by the National
Institute of Statistical and Economical Studies (INSEE).

Query Example 5.1: federated SPARQL query over three data sources

1 prefix demo: <http :// rdf.insee.fr/def/demo#>
2 prefix geo: <http :// rdf.insee.fr/def/geo#>
3 select ?name ? totalPop where {
4 ? region geo: subdivisionDirecte ?dpt .
5 ? region geo: codeRegion ?v .
6 ?dpt geo:nom ?name .
7 ?dpt demo: population ? popLeg .
8 ? popLeg demo: populationTotale ? totalPop .
9 }

This query involves 5 triple patterns (from line 4 to line 8). The predicates
(geo:subdivisionDirecte, geo:codeRegion and geo:nom) related to geographic data
belong to S1 and S2 and the predicates (demo:population and demo:populationTotale)
related to demographic data belong to S3.

Thus, the previous source selection approach applied to Q 5.1 will generate the
following indexes:

• idxPredicateSources = {
geo : subdivisionDirecte→ {S1, S2};
geo : codeRegion→ {S1, S2};
geo : nom→ {S1, S2};
demo : population→ {S3};
demo : populationTotale→ {S3}}

• idxPredicateCardinality = {
geo : subdivisionDirecte→ 3934;
geo : codeRegion→ 27;
geo : nom→ 41458;
demo : population→ 37149;
demo : populationTotale→ 37147}

The index idxPredicateSources prevents from sending the triple patterns relevant for
the source S1 and S2 (line 4 to line 6) to the source S3, and conversely, the triple
patterns relevant for S3 (line 6 and line 7) to S1 and S2.
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The index idxPredicateCardinality, for instance, informs that the first triple pattern
(line 4) is less selective than the second triple pattern (line 5) based on their
cardinality. Therefore, processing the second triple pattern before and propagating
afterwards the values of the variable ?region while processing the first triple pattern
will be more efficient.

5.2.2 Source selection algorithm

In this paragraph, we describe the algorithm of our source selection approach. This
algorithm builds the two indexes idxPredicateSources and idxPredicateCardinality
that are used to properly rewrite the initial query and to generate an optimal
query plan respectively. Given a federated SPARQL query, the algorithm consists
in recursively iterating over all the query expressions and for each triple pattern a
SELECT COUNT query with its predicate is sent to remote data sources in order to
identify the relevant ones for this predicate. In the interest of readability, the source
selection algorithm is split into two algorithms. Algorithm 1 describes the recursive
part whereas Algorithm 2 handles the SELECT COUNT queries.

Algorithm 1 buildIndexes iterates over the initial query expressions to build in-
dexes. For each expression the function initRelevantSourcesCardinality(tpSet,
sourceSet) is processed on its triple patterns
Input: Query: the initial query and S : the set of remote data sources
Output: idxPredicateSources and idxPredicateCardinality
foreach (exp ∈ Query) do

switch (exp.getType()) do
/* Union, Minus and Optional expressions */

case UNION, MINUS, OPTIONAL do
buildIndexes(exp.getLeftOp());
buildIndexes(exp.getRightOp());

end
/* Named graph, Exists and Subquery expressions */

case NAMED GRAPH, EXISTS, SUBQUERY do
buildIndexes(exp.getExp());

end
/* BGP with one or several triple patterns */

case BGP do
initRelevantSourcesCardinality(exp.getTriplePatterns(), S);

end

end

end
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Algorithm 2 initRelevantSourcesCardinality generates SELECT COUNT queries
depending on the type of predicate and builds idxPredicateCardinality (IPC) and
idxPredicateSources (IPS).
Input: triplePatternList: A list of triple patterns,
Sources: a set of remote data sources,
nonSelectivePredicateList: a list of less selective predicates.
Output: idxPredicateSources and idxPredicateCardinality indexes
foreach tp ∈ triplePatternList do

p← predicate(tp);
foreach s ∈ Sources do

cardinality ← 0;
if (¬ p.isPropertyPath()) then

if (p.isConstant()) then
if (nonSelectivePredicateList.contains(p)) then //less selective
predicate such as rdf:type or owl:sameAs
cardinality = getNonSelectivePredicateCardinality(s, tp);

else
cardinality = getSelectivePredicateCardinality(s, tp);

end

else //variable as predicate such as {x ?p y}
cardinality = getNonSelectivePredicateCardinality(s, tp);

end

else //p is property path such as {x p1/p2 y}
cardinality = getPropertyPathCardinality(s, tp);

end
updateIPCandIPS(p, s, cardinality);

end

end
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where:

nonSelectivePredicateList contains a list of non selective predicates which are more
popular in datasets. In our case, this list contains rdf:type and owl:sameAs by default.
However it can be improved by selecting the N most populated predicates for which
the cardinality estimation will be refined if the values of the subject and/or the
object are known.

updateIPCandIPS: associates to each predicate p its cardinality in the index IPC
and adds the source s, in the set of relevant data sources the predicate p in the index
IPS if cardinality > 0.

getSelectivePredicateCardinality: submits the SPARQL COUNT query for tp to the
data source s:
SELECT (COUNT(*) AS ?number) WHERE {
SERVICE s {?subject predicate(tp) ?object } };
and return the cardinality of tp in s.

getNonSelectivePredicateCardinality: Either, submits the SPARQL COUNT query
for triple pattern tp by using the value of subject(tp) and/or object(tp) when they
are known. Or, returns MaxCard if subject, predicate and object are variables.

getPropertyPathCardinality: handles propertyPath predicates cardinality estima-
tion and returns:

• For predicate with unary operators (zeroOrMorePath and oneOrMorePath):
MaxCard, to avoid increasing the preprocessing time.

• unary operators (inverse and zeroOrOnePath): SPARQL COUNT query method
result (getSelectivePredicateCardinality or getNonSelectivePredicateCardinal-
ity).

• binary operators alternative and sequence: the maximum or the product of
cardinality respectively.

This sampling query-based approach through SELECT COUNT queries identifies
relevant sources for each triple pattern and possibly retrieves their cardinality
statistics which are crucial in the followings steps.

5.3 Hybrid query rewriting

This section is devoted to our hybrid BGP-Triple-based query rewriting strategy. The
SPARQL federated query engines state of the art, as stated in section 3.3.2, showed
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that there are two main approaches: Triple-based and BGP-based. Triple-based
approach consists in evaluating the triple patterns one by one in remote data sources,
retrieving the intermediate results and performing joins on the query engine side.
BGP-based approach consists in grouping the triple patterns in a BGP in order to
perform the intermediate results joins on the remote data servers side. The Triple-
based approach is applied on horizontally partitioned data whereas the BGP-based
approach is performed on vertically partitioned data.

The restriction of the BGP-based approach to vertical partitions prevents incomplete
results due to missing solutions that can only be computed by joining intermediate
results from different data sources. Indeed, in the case of horizontal data partitions
there are two possibilities. First, results may be retrieved from a single source
possibly using a BGP. Second, results may be provided by partial results from several
sources which cannot be retrieved through BGPs. However, since the BGP-based
strategy is more efficient than the Triple-based one, in our approach we aim at
also applying it to horizontal partitions without losing results completeness. To do
so, we combine both BGP-based and Triple-based approaches through heuristics
that generate BGP-based sub-queries designed to maximize the parts of the query
processed by the remote endpoints and Triple-based sub-queries to handle results
from several sources.

The hybrid strategy described below, one of our contribution, can generate BGPs
for both vertical and horizontal data partitions. The heuristics implemented aims
at creating the BGPs as large as possible and applying as much as possible pattern
matching at the endpoints level to minimize the number of queries generated, and
minimizing the number of intermediate results collected for post processing on the
federated query engine side. The larger BGPs can be evaluated independently in
each data source, the more efficient the query.

A hybrid BGP-Triple evaluation strategy rewrites the query, computing the largest
BGPs usable without alterating the results. It mixes the evaluation of BGPs and triple
patterns. The BGPs generated describe local joins that can be computed in a single
source. The remaining triple patterns collect a set of intermediate results over which
remaining distributed join operations can be computed on the federated engine side
to obtain the final results. The difficult part of hybrid strategies is to estimate the
most efficient BGPs to process for each data source and the combinations of triple
patterns that complete the query, from the original query and information on the
distribution of data.

We use the following formalism to compute BGPs in our hybrid query evaluation
strategy:
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• the Gon operator represents all join operations (distributed and local) when
evaluating a SPARQL query,

• the Lon operator corresponds to local joins computed by endpoints,

• the Don operator corresponds to distributed joins computed by the federates
query engine.

Let TP = {tp1, . . . , tpn} be the set of triple patterns of a BGP from the WHERE clause
of a SPARQL query, UNION the usual set union and {S1 . . . Sm} be a set of RDF data
sources interfaced through SPARQL endpoints. Each result of the evaluation of TP
is a mapping: {variablei → valuei}. Thus, mappings are combinations of the query
variables to their matching values.

Each operator will retrieve mappings as follows:

• Gon{S1,S2,...,Sm} (TP ) represents the join of mappings, i.e. results for TP
evaluated on a federated dataset aggregating all data sources. It corresponds to
the SPARQL query computed over the federated dataset, complying with the
semantics described in Section 4.3:

Gon{S1,S2,...,Sm} (TP ) = the result evaluation of {tp1, . . . , tpn}
in the Federated dataset (S1, S2, . . . , Sm) as defined in section 4.2 (1)

• Lon{S1,S2,...,Sm} (TP ) represents the UNION of mappings results from the local
evaluation of the BGP in each data source. This UNION gathers the mappings
and deletes the duplicates (i.e. a SPARQL BGP evaluated in each source):
Lon{S1,S2,...,Sm} (TP ) = ({TP} in S1) )

UNION ({TP} in S2)

UNION ... ({TP} in Sm) (2)

Note that Lon (TP ) is included in Gon (TP ).

• DonSD
(TP ) represents the join of mapping results from the distributed eval-

uation of TP (i.e. results retrieved from at least two different sources by
evaluating triple patterns) with the results duplicates deletion for each triple
pattern of TP:

DonSD
(TP ) = Gon{S1,S2,...,Sm} (TP ) \ Lon{S1,S2,...,Sm} (TP )
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and

Gon{S1,S2,...,Sm} (TP ) = Lon{S1,S2,...,Sm} (TP ) UNION DonSD
(TP ) (3)

With SD = (SD1 , SD2 , ..., SDn) where each SDi (1 ≤ i ≤ n) is the set of
relevant sources for tpi (1 ≤ i ≤ n) and SDi ⊂ {S1, S2, . . . , Sm}.

To illustrate these operators, let us consider the execution of query Q1 introduced
in Section 2.4.3 (TP = {?team ns:team "SPARKS", ?team ns:group ?group, ?group
ns:name ?name, ?group ns:members ?members}) over the two distributed data
sources S1 and S2 described below:

Table. 5.1: Sample data sources for hybrid rewriting

S1 S2

{t1 ns:team "SPARKS"} {t1 ns:team "SPARKS"}
{t1 ns:group g1} {t1 ns:group g2}

{g1 ns:name "Modalis"} {g2 ns:name "Wimmics"}
{g1 ns:members 12} {g2 ns:members 9}

{t1 ns:group g3} {g3 ns:name "MinD"}
{g3 ns:members 7}

The 3 join operators defined above produce the following mappings when applied to
the S1 and S2 distributed data sources in Table 5.1:

Table. 5.2: Evaluation operators mappings results

Operators Mappings Values Sources

Lon (TP )
µ1 { ?team = t1 , ?group = g1, ?name = ”Modalis”, ?members = 12} S1

µ2 { ?team = t1 , ?group = g2, ?name = ”Wimmics”, ?members = 9} S2

Don (TP ) µ3 { ?team = t1, ?group = g3, ?name = ”MinD”, ?members = 7} S1, S2

Gon (TP )
µ1 { ?team = t1 , ?group = g1, ?name = ”Modalis”, ?members = 12} S1

µ2 { ?team = t1 , ?group = g2, ?name = ”Wimmics”, ?members = 9} S2

µ3 { ?team = t1 , ?group = g3, ?name = ”MinD”, ?members = 7} S1, S2

Table 5.2 summarizes the retrieved results for each operator:

60 Chapter 5 Towards efficient Federated SPARQL Query Processing



• Lon (TP ) computes a join of all 4 triple patterns of TP in each data source,
producing one 4-items mapping for each of them: µ1 from S1 and µ2 from
S2. However, triples associated to the group named ”MinD” are distributed
between the two data sources and they do not match the Lon local join.

• Conversely, Don (TP ) accounts for distributed mappings joins and therefore
retrieves the remaining group with the mapping µ3.

• Finally, Gon (TP ) is the complete result set, resulting from the union of
Lon (TP ) and Don (TP ) results.

5.3.1 Global join decomposition

The Gon operator is associative and commutative [6, 61]:

∀k < n, Gon (tp1, . . . , tpn) = Gon (tp1, . . . , tpk) . Gon (tpk+1, . . . , tpn)
= Gon (tpk+1, . . . , tpn) . Gon (tp1, . . . , tpk)

where " . " represents the binary operator for joins.

Consequently, ∀k < n, Gon (tp1, . . . , tpn) =
(Lon (tp1, . . . , tpk) UNION Don (tp1, . . . , tpk)) .
(Lon (tpk+1, . . . , tpn) UNION Don (tpk+1, . . . , tpn)) (4)

This equation can be used to compute the global join operation through a combina-
tion of local and distributed joins. In the case where no source contains triples match-
ing all triple patterns in TP, Lon (tp1 . . . tpn) is empty and Gon (TP ) = Don (TP ).
However, even in this case, the Gon operator can be computed as a join of several
independent partial joins according to the distribution of triple patterns over sources.
The partial joins can be computed as a union of partial Lon and Don with subsets of
(tp1 . . . tpn).

5.3.2 Joins generation strategy

Our hybrid evaluation strategy is based on the idea of maximizing the part of
the query processed by the remote endpoints. It therefore pushes as much as
possible intermediate results into the sub-queries generated to improve partial
results filtering at the source. It also exploits the local and distributed join operators
composition properties shown above since the partial Lon operators size correspond
to the evaluation of the largest possible BGPs at the endpoints level. However, this
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maximization is constrained by the fact that TP should be decomposed in disjoint
subsets of triple patterns (rule 4 in Section 5.3.1).

The hybrid evaluation strategy also requires prior knowledge on the data sources
partitioning scheme to decide on the best decomposition of triple patterns. This
knowledge is provided by the source selection step through the idxPredicateSources
index. Below, we explain the strategy of distributed and local joins generation based
on the data partitioning over remote sources.

5.3.2.1 Distributed joins generation strategy

This section describes the Don generation strategy. Unlike the Lon operators, the
evaluation of Don operators compute query results built with at least two distributed
sources. Don operators aim at handling the distributed results of horizontal partitions
only, as there is no distributed join for vertical partitions.

In addition to Lon query results for horizontal partitions, distributed joins need to be
processed in order to ensure the results completeness. For this purpose, correspond-
ing Don operators need to be generated. Thus, Lon generated for horizontal partitions
have a corresponding Don to retrieve the results provided by the distributed joins
of the same triple patterns. The full result of the evaluation of triple patterns on
horizontal partition is the union of the Lon and Don as shown by the rule 3 in
Section 5.3.

5.3.2.2 Local joins generation strategy

This section describes the Lon generation strategy given a BGP. As previously ex-
plained Lon operators handle joins at endpoints level.

Let TP a set of triple patterns as a BGP query. The Lon operators are generated
according to the triples partitioning over data sources:

• Triple patterns of TP which predicates are only available in vertical partitions
are used to compose a BGP (one BGP per vertical partition) that can be
evaluated independently. Thus, this BGP which is also called exclusive group as
explain in Section 3.3.2, is handled by a Lon.
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• Among the remaining triple patterns of TP, which are in horizontal partitions,
we generate both Lon and Don. Regarding, Lon two criteria are considered with
the aim of creating the largest possible BGPs to maximize the computation
delegated to each endpoint through Lon operator:

(i) The distribution of predicates inside horizontally partitioned data sources
needs to be taken into account in order to generate relevant BGPs. Indeed,
if two triple patterns are connected, but with their predicate not being
present in the same source, there is no interest to build a connected BGP
with these triple patterns since they will be evaluated in different sources.

Definition 5.3.1. A BGP is connected if every RDF term (subject or object)
is connected to every RDF term of the BGP by a path of connected triple
patterns. Two triple patterns are connected if they share an RDF term.

Two triple patterns can thus be connected through their subjects (subject-
subject), their objects (object-object) and subject of the first one with the
object of the second one (subject-object), and conversely, the object of
the first one with the subject of the second one (object-subject).

(ii) Two triple patterns may be grouped into a BGP only when the BGP is
connected.

A connected BGP enables to perform the join between triples matching
the triples patterns through their shared variables, IRI or literals and
therefore to reduce intermediate results. Indeed in SPARQL, joining not
connected triple patterns corresponds to computing a Cartesian product
between the triples matching each triple pattern. There is no interest
in computing BGPs on remote servers to reduce the number of results
retrieved in this case.

5.3.3 Query rewriting algorithm

In this section, we describe the main steps required to perform the hybrid query
rewriting approach.

• Step 1: First, Algorithm 3 determines, for a given BGP, which triple patterns
are horizontally or vertically partitioned.

• Step 2: Afterwards, for each partition a specific query rewriting strategy is
performed:(i) verticalRewrite for vertical partitions and (ii) horizontalRewrite
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for horizontal partitions. Besides the triple patterns, the relevant FILTER
clauses are also added to generated expressions.
Definition 5.3.2. A relevant filter is a filter which can be inserted in a BGP to be
evaluated at the endpoint level.

A filter is inserted in every BGP within which it can be evaluated following
scope of filters as defined in the SPARQL semantics1. Indeed, according to this
semantics:"a filter is a restriction on solutions over the whole group in which the
filter appears". Thus, we insert filters in the generated BGPs in such a way that
the initial query semantics is unchanged by the application of these filters. The
precise criteria is that all the variables of the filter necessary for its evaluation
are bound in the solution of the BGP.

The filters related to triple patterns which are not in the same BGP are pro-
cessed by the federated query engine. The filters exists are not taken into
account in relevant filters. Indeed, their semantics requires to consider the
group graph pattern in which they occur for their evaluation. In our approach,
we modify the initial group graph patterns to generate BGPs. As a consequence,
it is more challenging to identify the context of filters exists and to check if all
relevant variables are bound in the generated BGPs solutions. This issue needs
more investigation. For this reason, they are also processed on the federated
query engine side.

• Step 3: Lastly, a join expression between the two rewriting is generated to
perform the query processing in such a way to produce the same results as the
initial query.

Algorithm 3 focuses on BGP rewriting for the sake of readability. Similarly to
Algorithm 1, this BGP query rewriting algorithm is recursively applied to each BGP
for all the expressions, such as optional, union, minus, etc. forming the initial
federated query.

The query rewriting algorithm makes use of 2 indexes:

• idxPredicateSources associates to each triple pattern a set of data sources
hosting candidate RDF triples. It is used to determine which part of the data is
horizontally and vertically partitioned. This index is an outcome of our source
selection step as shown in section 5.2.1.

1https://www.w3.org/TR/sparql11-query/#scopeFilters
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• idxSourceTPs associates to each remote data source, the list of triple patterns
which are relevant to it (i.e. the source which contain their predicates). This
index is built based on the idxPredicateSources index and enables to have an
overview of each data source content.

For the query Q 5.1 in section 5.2.1, we obtain the idxSourceList below:

– idxSourceTPs = {
S1 → {(?region geo : subdivisionDirecte ?dpt),
(?region geo : codeRegion ?v),
(?dpt geo : nom ?name)};
S2 → {(?region geo : subdivisionDirecte ?dpt),
(?region geo : codeRegion ?v),
(?dpt geo : nom ?name)};
S3 → {(?dpt demo : population ?popLeg),
(?popLeg demo : populationTotale ?totalPop)}}

• idxBGPList is based on the idxSourceTPs index and determines the triple pat-
terns distribution over data sources to identify the candidate BGPs for the
horizontal query rewriting. The previous index is reversed and each list of
triple patterns is associated to its relevant source. In addition, sources associ-
ated to the same list of triple patterns are grouped.

From the previous idxSourceTPs, the idxBGPList below is obtained:

– idxBGPList = {
{(?region geo : subdivisionDirecte ?dpt),
(?region geo : codeRegion ?v),
(?dpt geo : nom ?name)} → {S1, S2};
{(?dpt demo : population ?popLeg),
(?popLeg demo : populationTotale ?totalPop)} → {S3}}

For the sake of clarity, we respectively note the triple patterns of the query
Q 5.1 from line 4 to line 8 as tp1, tp2, tp3, tp4, and tp5. Thus, tp1, tp2, tp3 are
associated to S1 and S2 and tp4, tp5 are associated to S3

From this information, the algorithm rewrites the initial federated query into a set
of sub-queries preserving the query semantics. The generated sub-queries are then
evaluated on the remote endpoints and their results joined by the federated query
engine.
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Algorithm 3 describes how BGP expressions are rewritten either as unions of Lon and
Don operators for horizontally partitioned data (Algorithm 4), or as an exclusive Lon
for vertically partitioned data. The input for this algorithm is a queryExp expression
containing the list of triple patterns, idxPredicateSources and idxSourceTPs indexes
and the relevant FILTERs clauses from the initial federated SPARQL query.

Algorithm 3 determines the rewriting strategy for a set of triple patterns based on
the data partitioning over remote sources.
Input: queryExp, idxPredicateSources, idxSourceTPs, queryFilters
Output: the rewritten SPARQL query
horizontalTriplePatterns← �;
verticalTriplePatterns← �;
foreach (tp ∈ queryExp.getTriplePatterns()) do

p← predicate(tp);
if ( idxPredicateSources.get(p).size() > 1 ) then

horizontalTriplePatterns.add(tp);
else

verticalTriplePatterns.add(tp);
end

end
//generate the candidate BGPs index for the horizontal triple patterns
idxBGPList← buildBGPList(horizontalTriplePatterns, idxSourceTPs);

return
evaluate(join(horizontalRewrite(idxBGPList, queryF ilters),
verticalRewrite(verticalTriplePatterns, queryF ilters)));

where:

verticalRewrite: rewrites triple patterns as Lon for each relevant source (i.e. SPARQL
SERVICE clause to send this BGP to a specific source) and adds relevant filters. The
triple patterns which are exclusive to the same data source are gathered in the
same SERVICE clause. For instance in the sample query Q 5.1: triple patterns with
predicates demo:population and demo:populationTotale are concerned.

horizontalRewrite (Algorithm 4): rewrites triple patterns as unions of Lon and Don
operators to perform the hybrid evaluation strategy. For instance in the sample
query Q 5.1: triple patterns with predicates geo:subdivisionDirecte, geo:codeRegion
and geo:nom are concerned.

evaluate: handles evaluation as explained in section 5.3.4.

66 Chapter 5 Towards efficient Federated SPARQL Query Processing



Algorithm 4 (horizontalRewrite) decomposes a set of triple patterns of a BGP as a
union of local and distributed expressions based on the source selection result.
Input: ixdBGPList: a list of BGPs annotated by their relevant sources as follows :
BGPi → {s1, ..., sm} with BGPi a set of triple patters.
Output: expResult is the rewritten expression
// BGPs are sorted by the number of triple patterns
idxBGPList.sortByDecreasingCardinality();
expConnected← �;
BGP_TP_List← �;
foreach bgp in idxBGPList do

if (bgp.isConnected()) then
// gets relevant sources for the whole BGP (local joins): SL ⊆ {s1, . . . , sm}
SL ← bgp.getLocalSources();

// gets relevant sources for each triple pattern of the BGP (distributed
joins): SD = (SDtp1 , SDtp2 , . . . )
// SDtpi: all relevant sources for tpi (i.e. SL + remaining relevant sources)
SD ← bgp.getDistributedSources();

// LonSL
is generated for each source in SL (local joins)

// DonSD
is generated for sources in SD (distributed joins)

expUnionLandD ← union(createLon (SL, bgp), createDon (SD, bgp));
expConnected← join(expConnected, expUnionLandD);
// deletes in the remaining BGPs all occurrences of triple patterns handled
by the current BGP
clean(bgp, idxBGPList);
// adds tp of the current BGP to visited triple patterns list
BGP_TP_List.add(bgp);

end

end
// gets not visited TPs
free_TP_List← set_substract(queryExp,BGP_TP_List);

// generates a distributed join operator in a Don expression
SD ← free_TP_List.getDistributedSources();
expNotConnected← createDon (SD, free_TP_List);

// creates a join expression with visited TPs and free TPs
expResult← join(expConnected, expNotConnected);

return expResult;
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where:

createLon: creates an expression evaluated through the BGP-based approach from a
set of triple patterns forming a BGP and adds relevant filters from the original query
for each relevant sources.

createDon: creates an expression to evaluate through the Triple-based approach
from a set of triple patterns and adds relevant filters from the original query for a
set of relevant sources.

clean: deletes the triple patterns handled by the current Lon and Don from the list of
BGPs.

By way of illustration, applied to the query Q 5.1, Algorithm 3 produces the following
query expression:

JOIN {UNION{Lon{S1,S2} (tp1, tp2, tp3), Don(S1,S2) (tp1, tp2, tp3)} , {LonS3 (tp4, tp5)}}
with tp1, tp2, tp3, tp4 and tp5 respectively corresponding to the query triple patterns
from line 4 to line 8 in Q 5.1.

• Lon{S1,S2} retrieves the local results in S1 and in S2 for tp1, tp2, and tp3.

• Don{S1,S2} retrieves the distributed results in S1 and S2 for tp1, tp2, and tp3.

• LonS3 retrieves the local result in S3 for tp4 and tp5.

This query is a simple example, in which we have one connected BGP (tp1, tp2, tp3)
relevant for both S1 and S2 sources for triple patterns horizontally partitioned
without using the clean method. However in the case of more complex idxBGPList
as proposed below, the clean method would have been required.

More complex query example:

Let idxBGPList = {
{tp1, tp2, tp3} → {S1, S2}, {tp4, tp5} → {S3, S4}, {tp2, tp6, tp7} → {S5, S6}}.

We assume that all candidate BGPs are connected.

Algorithm 4 applied to this index will produce the ordered list of expressions be-
low:

• Exp1 : UNION{LonSL
(tp1, tp2, tp3), DonSD

(tp1, tp2, tp3)}with SL = {S1, S2}
and SD = (SD1 , SD2 , SD3) where SD1 = SD3 = {S1, S2} and SD2 = {S1, S2, S5, S6}
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• Exp2 : UNION{LonSL
(tp4, tp5), DonSD

(tp4, tp5)} with SL = {S3, S4}
and SD = (SD4 , SD5) with SD4 = SD5 = {S3, S4}

• Exp3 : UNION{LonSL
(tp6, tp7), DonSD

(tp6, tp7)} with SL = {S5, S6}
and SD = (SD6 , SD7) with SD6 = SD7 = {S5, S6}

First, in Exp1, SL = SD1 = SD3 = {S1, S2} and is included in SD2 . Indeed, in
addition to SL the triple pattern tp2 is also relevant for {S5, S6}. Thus, these sources
must be taken into account for the distributed joins operator. We can see, in Exp3

that the triple pattern tp2 has been removed. This is due to the fact that the triples
from S5 and S6 matching tp2 are already handled by Don of Exp1 with SD2 . Thus, it
is not necessary to keep tp2 in Exp3. This cleaning process is handled by the clean
method in Algorithm 4. The Exp2 is similar to the previous query.

5.3.4 Hybrid rewriting expressions evaluation

Once the hybrid query rewriting is completed, the evaluation of the generated
expressions is done at two different levels. On the one hand, the Lon evaluation is
delegated to the relevant remote data sources servers. On the other hand, the Don
evaluation is handled by the federated query engine itself. Algorithm 5 describes the
evaluation strategy for the different expressions.

To avoid redundancy with query results already handled by Lon, caution must be
taken to ensure that the query results found during the Don evaluation are not local
to a source (i.e. not built with intermediate results from only one source). In order
to do so, we make sure that the results generated by Don come from at least two
different sources. This is implemented through an algorithm (Algorithm 6) that
prevents retrieving the last intermediate results of a distributed query from a given
data source when all the previous ones came from this same source. This algorithm
relies on an index idxResultsSources which associates to each partial result a set of
remote sources URIs that contributed to it:

idxResultsSources: {

R1 → {S1, S2}

R2 → {S3}

.....,

Rn → {S4, S5}}
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We can classify the partial results of the index idxResultsSources in two groups:

• (i) results built from several sources: Card(sources(Ri)) > 1,

• (ii) results built from one source: Card(sources(Ri)) = 1.

When evaluating a Don (tp1, ..., tpn), if the penultimate partial result is built from
several sources, the last triple pattern tpn can be evaluated in any source. However,
if this result is given by one source Si, tpn should not be evaluated on Si.

Furthermore, to handle the triples replication, which are side effect of the distribution
and may generate unexpected additional duplicate results, we add a redundancy
pruning processing in the Don evaluation algorithm. To achieve this, we avoid to
account replicated triple several times in idxResultsSources when intermediate results
are retrieved from remote sources.

Algorithm 5 evaluate: resumes the evaluation strategy for the different rewritten
expressions
result← �;
foreach exp ∈ expResult do

switch exp.getType() do
case UNION do

results← join(results,
union(evaluate(exp.leftOp()), evaluate(exp.rightOp()));

end
case Don do

results← join(results,
evaluateDon (exp.getTriplePatterns());

end
case Lon do

results← join(results,
evaluateLon (exp.getTriplePatterns());

end

end

end
return result;

evaluateLon: generates a query with all triple patterns in the expression and sends it
to sources containing all edges related to these triple patterns.

evaluateDon (Algorithm 6): evaluates a set of triple patterns by generating a query
for each triple pattern and avoids redundancy by pruning.
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Algorithm 6 (evaluateDon): evaluates all triple patterns of Don and avoids redun-
dancy by pruning.
Input: idxSourceTPs, idxTPVariables, triplePatterns, sourceSet
Output: Results, the set of SPARQL query results.
Result← �;
foreach tp ∈ triplePatterns do

newResults← �;
foreach s ∈ tp.getSources() do

if (¬ tp.isLastPattern()) then
newResults+ = process(Results, tp, s);

else // last pattern: handle the pruning
partialResultToPrune← �;
foreach Ri ∈ Results do

// partial results to prune for s because already handled by the corre-
sponding Lon

if (Ri.sources.card() = 1) & (Ri.sources.contains(s)) then
partialResultToPrune.add(Ri);

end

end
copiedResults← Results.copy();
relevantPartialResult← copiedResults.remove(partialResultToPrune);
newResults+ = process(relevantPartialResult, tp, s);

end

end
Results← newResults;

end
return Results;

where:

process (Results, tp, s):
tmp← execQuery(Results, tp, s);
tmp′ ← bookKeeping.add(tmp, s); //skips replicated triples and saves the source
newResults← join(Results, tmp′);
return newResults;

bookKeeping: handles the history of results to determine if all results came from
the same source in order to avoid redundancy. Also avoids accounting for replicated
triples several times in results.

In general, the query rewriting algorithm produces a set of sub-queries with varied
processing time as previously shown in section 3.3.3. Therefore, before the evalua-
tion, sub-queries planning is necessary to efficiently evaluate federated queries.
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5.4 Sub-queries sorting optimization

In this section we describe the cost-based query sorting we use to optimize the sub-
queries planning. Instead of using only heuristics on the federated query patterns
through their number of variables or their shared variables or arbitrary giving priority
to some query patterns such as SERVICE clauses, we are seeking to estimate the
query expressions cost based on the cardinality statistics we retrieved during the
source selection step. We first estimate the cost for all the query expressions and
build the idxExpCost index. Algorithm 7 creates this index. Based on it, Algorithm 8
sorts the whole query. Besides the cost estimation, we also take into account the
links between expressions. Indeed since we are propagating intermediate results
to the following expressions, when two expressions share several variables, IRIs,
or literals, evaluating these two expressions consecutively may be more efficient
than evaluating another with lower estimated cost. This heuristics is similar to
Free Variables Counting (FVC) and Shared Variables (SV) described in section 3.3.3.
Finally, when two expressions have the same cost and are not linked to the previous
one we give the priority to the one with filters, when appropriate. Therefore, we
combine both cost estimation and heuristics on query patterns.

5.4.1 Cost estimation algorithm

The aim of the cost estimation algorithm is to statically estimate the initial expres-
sions cost based on the cardinality statistics retrieved for each triple pattern during
the source selection step. We also rely on heuristics based on the simplified semantics
below which does not take into account the whole results cardinality as defined
in the SPARQL semantics2. We use the compatibility between solution mappings
terminology, written µ1 ∼ µ2. The incompatibility between solution mappings
terminology is denoted by µ1 � µ2. Let Ω1 and Ω2 be sets of mappings; the join,
union, minus, and optional operations for Ω1 and Ω2 are defined as follows [14]:

• Ω1 Join Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2},

• Ω1 Union Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

• Ω1 Minus Ω2 = {µ ∈ Ω1 | ∀ µ0 ∈ Ω2 : µ � µ0},

• Ω1 Optional Ω2 = (Ω1 JOIN Ω2) ∪ (Ω1 MINUS Ω2)

2https://www.w3.org/TR/sparql11-query/#sparqlAlgebra
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In our approach, based on the previous definitions we estimate the initial expressions
cost as follows:

• Triple pattern : we use the estimated cardinality in the index idxPredicateCar-
dinality as cost for triple pattern.

• BGP: the BGP expression results cardinality is obtained by the results cardinal-
ity of each triple pattern. However, this is the cardinality in case of Cartesian
product between triple patterns mappings. Since we generally generate con-
nected BGPs and are propagating the known values for the following triple
patterns, we decide to use the minimum estimated cost of the triple patterns
as BGP estimated cost.

• Union: the cost of a union of two expressions is the sum of the cost of the two
expressions.

• Minus: the minus expression cardinality will not exceed its first expression
cardinality therefore we use the estimated cost of the first expression as its
cost expression.

• Optional: the result of the optional expression is the union of the mappings of:

– the join between the two expressions mappings and,

– the difference between these two mappings.

Based on the previous heuristics each part cost is estimated by the first
expression cost. therefore, we also estimate the optional cost as the
estimated cost for its first expression.
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Algorithm 7 buildExpCost iterates over the query expressions and recursively esti-
mates their cost based on the index idxPredicateCardinality
Input: Query: the initial query and S : the set of remote data sources
idxPredicateCardinality: the predicate cardinality index built during sources selection.
Output: idxExpCost
foreach (exp ∈ Query) do

expCost← 0;
switch (exp.getType()) do

case UNION do
expCost = idxExpCost.get(exp.getLeftOp())
+ idxExpCost.get(exp.getRightOp());

end
case OPTIONAL, MINUS do

expCost = idxExpCost.get(exp.getLeftOp());
end
case BGP do

expCost = exp.getMinCostTP ();
end
case NamedGraph do

expCost = idxExpCost.get(exp.getF irstExp());
end

end
idxExpCost.put(exp, expCost);

end
return idxExpCost;

5.4.2 Cost-based and shared links sorting approach

This algorithm combines the estimated cost for the query expressions and heuristics
on query patterns through the number of links between expressions and the number
of connected expressions.

Algorithm 8, recursively determines the expression with the lowest cost from the
query expressions list and appends it to the sorted query expressions list. A selected
expression, which is not a triple pattern, is also sorted. Once an expression is
appended, its linked expressions are also appended to the sorted query expressions
list.
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Algorithm 8 sortQuery: performs the sub-queries sorting based on their estimated
cost.
Input: idxExpCost, queryExpList (the query expressions list)
Output: querySortedExpList: the sorted list of the query expressions
querySortedExpList← �;
while (¬ queryExpList.isEmpty()) do

currentExp← getMinExpCost(idxExpCost, queryExpList);
if (¬ querySortedExpList.contains(currentExp)) then

if (¬ currentExp.isTriple()) then
tmpSortedExpList← sortQuery(idxExpCost, currentExp.getExpList());
currentExp.setExpList(tmpSortedExpList)

end
querySortedExpList.add(currentExp);
queryExpList.remove(currentExp);
connectExpList← getConnectedExp(currentExp, queryExpList);
foreach (relatedExp ∈ connectExpList) do

if (¬ querySortedExpList.contains(relatedExp)) then
sortQuery(idxExpCost, relatedExp.getExpList());
querySortedExpList.add(relatedExp);
queryExpList.remove(relatedExp);

end

end

end

end
return querySortedExpList;

where:

getMinExpCost: gives the expression with the lowest cost through (idxExpCost).
When two expressions have the same cost, the one with filter (or more filters) will
be selected.

getConnectedExp: gives the list of expressions linked to the current expression
from the current query expressions list. This list is sorted by the number of shared
links (variables, IRIs or literals) and the number of linked expressions. Indeed, we
want to evaluate a succession of expressions sharing links because we propagate
the intermediates results into the following expressions. getconnectedExp returns a
list of expressions sorted in such a way that the first expression is the one sharing
more links with the current expression and then related to more expressions.
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5.5 Query evaluation

At this step, the federated query is evaluated following the previous query plan. First,
sub-queries are progressively sent to the remote sources. Then, intermediate results
are retrieved by the query engine and remaining joins are performed to build the
final query results. As shown in section 3.3.4, different kinds of joins operators such
as nested loop join or bind join can be used. In this section, we describe our query
evaluation based on two strategies: (i) using variable bindings for joins processing
as much as possible, and (ii) exploiting parallelism to enhance the remote requests
processing.

5.5.1 Bindings strategy

This strategy aims at exploiting the values of variables already known from the
intermediate results of previous query expressions in the following query expressions
with the same variables. Each time we have a partial results and we are sending
query expressions to the remote servers, we add to these expressions the relevant
bindings from the partial results. The processed expressions can either be a single
triple pattern, or a BGP depending on the evaluation strategy. Both VALUES or
FILTER SPARQL clauses can be used to constrain the remote evaluation of subsequent
expressions with bindings. Therefore, FILTER and VALUES expressions in the initial
federated query can also be considered as bindings. The binding strategy produces
more selective triple patterns or BGPs and therefore reduces the partial results
transferred from the remote data sources.

5.5.2 Parallelism strategy

This strategy consists in using parallelism when querying the remote data sources
to enable more asynchronous distributed evaluation of federated queries. Let L
the list of sub-queries resulting from the query rewriting processing step. First, the
different sub-queries are sequentially evaluated to take advantage of the bindings
strategy as explained above. Furthermore, the expressions of this sequence are to
be executed on several remote endpoints and the execution of an expression on
these endpoints is performed in parallel. The federated engine sends the expression
to the remote endpoints in parallel. Then the aim is to concurrently query the
endpoints of data sources for each sub-query of L which can be a single triple pattern
or a BGP depending on the evaluation strategy (Don or Lon). The federated query
engine handles the partial results as soon as they are retrieved from the endpoints.
Algorithm 9 below illustrates the parallelism evaluation of remote endpoints.
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Algorithm 9 Parallel federated evaluation
Input: endpointList: the list of endpoints,
scheduler: a thread pool handling the parallel execution,
queryExpList: the list of query expressions,
bindingsList: the list of bindings.
Output: Results: the set of SPARQL query results
foreach (exp ∈ queryExpList) do

// sends remote requests to relevant sources for exp in parallel with its relevant
bindings

foreach (e ∈ exp.endpointList()) do
scheduler.submit(e.execute(exp, exp.getBindings(bindingsList)));

end
// retrieves partial results when task are completed
foreach task ∈ scheduler.getF inished() do

Results+ = cleanDuplicate(task.getResult());
end

end

5.6 Conclusion

This chapter aimed at efficiently addressing SPARQL federated query processing
while transparently querying distributed data sources and taking into account the
data replication and results completeness challenges. To achieve this, we proposed
different strategies to enhance each step of the federated query processing approach,
namely source selection, query rewriting, query planing and query evaluation.

First, we proposed a Sampling Query-Based approach for the source selection step to
acquire knowledge on data sources. The Sampling Query-based approach proposed
relies on SELECT COUNT queries which enable to both identify relevant sources for
the initial query triple patterns and to retrieve an estimation of the cardinality of the
predicates when possible. At this step we build two indexes: idxPredicateSources and
indxPredicateCardinality. The former keeps the relevant sources for each predicate
and gives information on data distribution, and the latter is useful for the query
planing step.

Afterwards, we introduced a hybrid BGP-Triple query rewriting approach. The aim
of this approach is to maximize the part of the query processing handled by the
endpoints in order to reduce network cost communication (remote requests and
transferred data) while maintaining the results completeness. In that perspective,
we introduced some heuristics to generate efficient BGPs for both horizontal and

5.6 Conclusion 77



vertical data partitions to handle local joins and to restrict Triple-based evaluation to
only distributed joins.

Then, based on statistics on predicates retrieved during the sources selection step,
we proposed to improve the query sorting by combining the cost estimation and
heuristics on query patterns sorting during the query rewriting process. In addition
to the estimated cost of each query pattern, the links between query expressions are
also considered in our sorting strategy. The choice of the last criterion is explained
by the fact that we are using bindings during the query evaluation phase. Indeed, in
the query evaluation step, we used bindings to propagate already known values in
order to reduce intermediate results from remote data sources. Besides, we also used
parallelism to concurrently query remote endpoints. Finally, our evaluation strategy
avoids to generate duplicate results which are side effect of triple replication.

In summary, we proposed both static and dynamic strategies to improve the federated
query processing efficiency. The static optimizations are performed during query
rewriting and planning steps whereas the dynamic optimizations are achieved during
the query evaluation. In the following chapter we will demonstrate the impact of
these different strategies on federated query processing performance.
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6.1 Introduction

We previously introduced several optimization strategies for SPARQL main feder-
ated query steps. In this chapter we first briefly present the KGRAM-DQP engine
that supports our federated query processing approach and optimization strategies.
Afterwards, we propose several experiments to assess the impact of these strategies
with regard to the challenges related to federated query processing such as results
completeness, data replication, and query processing efficiency. The first experiment
compares KGRAM-DQP, instrumented with the different optimizations proposed,
with its initial version. The second experiment compares the optimized KGRAM-DQP
with competitor SPARQL federated query engines from the state-of-the-art.

6.2 Implementation

The implementation of our federated query processing approach is performed on
the Knowledge Graph Abstract Machine (KGRAM) framework. KGRAM [20, 21]
is part of the Corese [22, 19] Semantic Web framework which enables users to
represent RDF data, to query this data through SPARQL queries and to reason on
it. KGRAM can be used for both data providers and data queriers. On the one
hand, providers can expose their data through a SPARQL endpoint and interpret
SPARQL queries. On the other hand, queriers can use KGRAM to query any remote
data source endpoint through a Producer. A Producer is the query engine interface
for data sources that sends sub-queries to remote data source endpoints. More
generally, Producers handle data sources heterogeneity. Indeed, KGRAM introduced
Abstract Knowledge Graphs (AKG) which allow on the one hand to represent and to
query semantic data and on the other hand to address heterogeneous data through
graph-based view representation of targeted databases. A query received by the
KGRAM engine is transformed into an abstract query language (AQL), independent
of specific data source types, to be evaluated on Abstract Knowledge Graphs. The
Producers use AKGs and AQLs as pivot representations and act as mediators for
heterogeneous data sources.

KGRAM-DQP, is an extension of KGRAM that handles federated querying over
several distributed data sources through a MetaProducer, an interface to several
producers that implements parallel querying. Two main parallelism approaches are
implemented by the MetaProducer:

• Parallel-wait approach : this strategy consists in querying the data sources
through Producers in parallel and waiting for the complete query results
retrieval of all Producers through a synchronization barrier for each sub-query.

80 Chapter 6 Implementation and Evaluation



• Parallel-pipeline approach: this approach queries the data sources in parallel
but processes the query results as soon as they are produced by the Producers
instead of waiting all Producers to finish their processing.

The Parallel-pipeline approach is more efficient than the Parallel-wait approach,
since query results are processed as soon as they are available. However, its impact
is restricted because the KGRAM evaluation engine on which relies KGRAM-DQP
does not make use of a full asynchronous query processing approach that would be
needed to take the full advantage of this approach.

KGRAM has a local Producer interface for each remote endpoint. All producers are
interfaced to the core engine through a MetaProducer as illustrated in Figure 6.1
that depicts the architecture of the KGRAM-DQP federated query engine. The query
processing component handles the different steps of the federated query processing:
source selection, query rewriting, query planing and query evaluation.

Figure. 6.1: KGRAM-DQP architecture
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6.3 Evaluation

6.3.1 Hybrid Data Partitioning (HDP) experiment

6.3.1.1 Material

The two experimental data sets used are French geographic1 and demographic2 RDF
graphs published by the National Institute of Statistical and Economical Studies
(INSEE). Both contain linked data on the geographical repartition of population
on the French administrative territory decomposition. These data are not natively
available through SPARQL endpoints, therefore we used KGRAM to expose these
RDF graphs.

To reproduce a context of both vertical and horizontal partitioning of data, the
demographic data set is in a vertical partition (source S1) and the geographic data
set is horizontally partitioned in three test cases:

• P1 partitioning (data duplication): the geographic data is duplicated in two
distributed sources (S2 and S3), each containing a whole copy of the data.
This test case aims at evaluating the handling of redundant results by each
query evaluation method.

• P2 partitioning (global distribution of predicates): the geographic data is
partitioned into two sources (S4 and S5), each containing all predicates but
not all triples related to these data.

• P3 partitioning (partial distribution of predicates): the geographic data is
partitioned in three sources (S6, S7 and S8), each containing a subset of
predicates related to these data.

The first partitioning aims at testing the handling of redundant results by all query
evaluation methods, and the two last ones aim at testing the global and partial distri-
bution strategies introduced in Section 5.3.2.2. The data partitions are summarized
in Table 6.1.

1INSEE geographic data set: http://rdf.insee.fr/geo/2014/cog-2014.ttl.zip
2INSEE demographic data set: http://rdf.insee.fr/demo/popleg-2013-sc.ttl.zip
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Table. 6.1: Data sets partitioning

Datasets Predicates File size (Turtle) Nb Triples
S1: Demographic dataset population , populationTotale 17,9 Mo 222 429
S2: Geographic dataset codeRegion, subdivisionDirecte, nom 19,9 Mo 368 761
S3: Geographic dataset copy codeRegion, subdivisionDirecte, nom 19,9 Mo 368 761
S4: Geographic dataset part 1 codeRegion, subdivisionDirecte, nom 19,2 Mo 351 720
S5: Geographic dataset part 2 codeRegion, subdivisionDirecte, nom 749,4 ko 17 217
S6: Geographic dataset part 2.1 codeRegion, subdivisionDirecte 735,3 ko 16 963
S7: Geographic dataset part 2.2 codeRegion, nom 15,5 ko 232
S8: Geographic dataset part 2.3 subdivisionDirecte, nom 33,9 ko 567

6.3.1.2 Methods

Six queries, shown below, where selected as a representative set of SPARQL queries
covering the most common clauses:

1. QSELECT : is made of a simple SELECT clause

2. QUNION : introduces a UNION clause

3. QMINUS: introduces a query with MINUS negation

4. QF ILT ER: introduces a query with several filters

5. QOP T : introduces a query with an OPTIONAL clause

6. QALL: is a combination of all foregoing clauses

In the queries below, the geographical predicates and the demographical predicates
are prefixed as follows:

PREFIX geo : <ht tp :// rd f . in see . f r / def /geo#>
PREFIX demo: <ht tp :// rd f . in see . f r / def /demo#>

The queries are variations around listing the population count in diverse sub-
geographical areas.
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Queries:
Query QSELECT

SELECT ?name ? to ta lPop WHERE {
? reg ion geo : codeRegion ?v .
? reg ion geo : s u b d i v i s i o n D i r e c t e ? dpt .
? dpt geo :nom ?name .
? dpt demo: populat ion ?popLeg .
?popLeg demo: popu la t ionTota le ? to ta lPop .

} ORDER BY ? to ta lPop

Query QUNION

SELECT ? d i s t r i c t ? to ta lPop WHERE {
{ ? reg ion geo : codeRegion ?v .

? reg ion geo : s u b d i v i s i o n D i r e c t e ? dpt .
? dpt geo :nom ?name .
? dpt geo : s u b d i v i s i o n D i r e c t e ? d i s t r i c t .
FILTER (? v <= " 42 " ) }

UNION {
? reg ion geo : codeRegion ?v .
? reg ion geo : s u b d i v i s i o n D i r e c t e ? dpt .
? dpt geo :nom ?name .
? dpt geo : s u b d i v i s i o n D i r e c t e ? d i s t r i c t .
FILTER (? v > " 42 " ) }

? d i s t r i c t demo: populat ion ?popLeg .
?popLeg demo: popu la t ionTota le ? to ta lPop .

} ORDER BY ? to ta lPop

Query QMINUS

SELECT ?name ? to ta lPop WHERE {
? reg ion geo : codeRegion ?v .
? reg ion geo : s u b d i v i s i o n D i r e c t e ? dpt .
? dpt geo :nom ?name .
? dpt geo : s u b d i v i s i o n D i r e c t e ? d i s t r i c t .
MINUS {

? reg ion geo : codeRegion " 24 " .
? dpt geo : s u b d i v i s i o n D i r e c t e

<ht tp :// id . in see . f r /geo/ arrondissement/751>
}
? d i s t r i c t demo: populat ion ?popLeg .
?popLeg demo: popu la t ionTota le ? to ta lPop .

} ORDER BY ? to ta lPop
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Query QF ILT ER

SELECT ? d i s t r i c t ?cantonNom WHERE {
? reg ion geo : codeRegion ?v .
? reg ion geo : s u b d i v i s i o n D i r e c t e ? dpt .
? dpt geo :nom ?name .
? dpt geo : s u b d i v i s i o n D i r e c t e ? d i s t r i c t .
? d i s t r i c t geo : s u b d i v i s i o n D i r e c t e ? canton .
? canton geo :nom ?cantonNom .
FILTER (? v = " 11 " )
FILTER (?cantonNom = " P a r i s 14e canton " )
? dpt demo: populat ion ?popLeg .
?popLeg demo: popu la t ionTota le ? to ta lPop .

} ORDER BY ? to ta lPop

Query QOP T

SELECT * WHERE {
? reg ion geo : codeRegion ?v .
? reg ion geo : s u b d i v i s i o n D i r e c t e ? dpt .
? dpt geo :nom ?name .
OPTIONAL { ? dpt geo : s u b d i v i s i o n D i r e c t e ? d i s t r i c t }
? dpt demo: populat ion ?popLeg .
?popLeg demo: popu la t ionTota le ? to ta lPop .

}

Query QALL

SELECT ?name ? to ta lPop WHERE {
{ ? reg ion geo : codeRegion " 24 " .

? reg ion geo : s u b d i v i s i o n D i r e c t e ? dpt .
? dpt geo : s u b d i v i s i o n D i r e c t e ? d i s t r i c t .
OPTIONAL { ? d i s t r i c t geo :nom ?name }

} UNION {
? reg ion geo : codeRegion ?v .
? reg ion geo : s u b d i v i s i o n D i r e c t e ? dpt .
? dpt geo : s u b d i v i s i o n D i r e c t e ? d i s t r i c t .
? d i s t r i c t geo :nom ?name .
MINUS {

? reg ion geo : codeRegion ?v .
? dpt geo : s u b d i v i s i o n D i r e c t e <ht tp :// id . in see . f r /geo/ arrondissement/751> .
? d i s t r i c t geo : s u b d i v i s i o n D i r e c t e <ht tp :// id . in see . f r /geo/ canton/6448> .
FILTER (? v = " 24 " )

}
}
? d i s t r i c t demo: populat ion ?popLeg .
?popLeg demo: popu la t ionTota le ? to ta lPop .

} ORDER BY ? to ta lPop
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Several metrics are reported for each experiment to measure the query computing
efficiency, both in term of query processing time and in number of remote requests
to endpoints:

• The Query processing time: the total query processing time as measured on the
federated query engine side (from source selection to query results delivery).
This metric assesses the querying performance.

• The number of remote requests: measured as the number of requests sent
to endpoints for evaluation. This metric evaluates the amount of messages
exchanged and the resulting network load.

In each run, our hybrid strategy (optimized KGRAM-DQP), that implements BGP-
based evaluation on both vertical and horizontal data partitions, is compared to
the reference implementation (basic KGRAM-DQP), that implements a triple-based
evaluation strategy with BGP generation for vertical partitions only, similarly to other
state-of-the-art DQP engines. The correctness of the hybrid algorithm is first tested by
verifying that all hybrid requests produce exactly the same results as their reference
counter-part. The evaluation of our optimized KGRAM-DQP implementation ad-
dresses both the completeness of the results (with a minimal number of sub-queries
processing), and query execution performance. The experiments proposed in this
section aim at demonstrating the completeness of the results independently from
the data partitioning scheme and the kind of SPARQL ”select” query executed. They
are based on the querying of two linked RDF datasets, and a set of representative
SPARQL queries covering most common SPARQL clauses. In each case, performance
is measured in terms of number of remote requests generated and computation
time. All experiments are run on a single dedicated quad-core laptop (Dell Latitude
E6430 running Linux Ubuntu 14.04, 2.7 GHz Intel CPU i7-3740QM, 8 GB RAM)
running all SPARQL endpoints and the KGRAM query engine, thus preventing any
impact from the network load on performance measurements. To further alleviate
any problem related to execution time variations that cannot be controlled in a
multi-core multi-threaded execution environment, each experiment is executed 6
times and computation times are averaged.

6.3.1.3 Performance and results

Figure 6.2 displays the performance (processing time) and workload (number of
remote requests performed) for each test query and each partitioning scheme. The
execution times shown in Figure 6.2 (top) are averaged executions of 6 runs and
error bars represent ± 1 standard deviation.
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Figure 6.2 (top) displays groups of measurements for each query, shown in the
following order: SELECT, UNION, MINUS, FILTER, OPTIONAL, ALL. Each group of 6
measurements shows the Basic and the Optimized implementations of KGRAM-DQP
processing time for partitioning schemes P1 (duplication), P2 (global distribution)
and P3 (partial distribution). Similarly, Figure 6.2 (bottom) shows the number of
remote requests processed for each test query. Measurements are further analyzed
by partitioning scheme.

As can be seen, the Optimized strategy is consistently faster than the reference
strategy in all cases, with execution time reduced by 1.9% to 76% depending on the
case. Similarly, the number of remote requests processed is consistently reduced.

The impact of the hybrid approach depends on the efficiency of BGP-based evaluation
which, in turn, depends on the distribution of the data queried. Thus, the more Lon
retrieved results compared to Don, the more efficient the Optimized KGRAM-DQP
approach.

In the P1 partitioning scheme, all data are duplicated in two sources, which means
the local joins (Lon) will retrieve all the final results. However, the distributed joins
(Don) processing is initiated to handle the possible distributed triples and finally
deleted by the pruning algorithm to tackle the distributed redundancy issue. Even
with this additional processing time, the Optimized implementation reduces the
processing time by 33% to 53% and the number of remote requests by 41% to 97%
compared to the Basic implementation depending from the fact Don operator avoids
to reproduce results already given by Lon.

In the P2 partitioning scheme, there is no data duplication, and data predicates are
globally distributed. More results are retrieved through distributed joins processing
than local joins processing. Execution times for the Optimized engine are conse-
quently higher than in the previous case. The experiments still show a reduction
of the processing time by 2.1% to 20% and a reduction of the number of remote
requests by 19% to 48%.

Owing to partial distribution, the P3 partitioning scheme exhibits smaller expressions
(partial BGPs) than in the P2 case (global BGP) in term of number of triple patterns,
with a higher chance for matching more intermediate results through Lon. This
explains why the results of the Optimized approach with P3 is more efficient than
the results with P2. Furthermore, since the distributed joins are less selective in this
case, the pruning algorithm is applied earlier than in the P1 case, which explains why
results are improved. In this case, the hybrid approach reduces the processing time
by 31% to 80% and the number of sub-queries by 41% to 97% between Optimized
KGRAM-DQP and Basic KGRAM-DQP.
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Figure. 6.2: Top: query processing time. Bottom: remote requests sent
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6.3.2 FedBench benchmarck

This experiment aims at comparing the Optimized KGRAM-DQP with FedX, the
most competitive federated query processing engine [30, 71], through the FedBench
benchmark. The FedBench [73] benchmark is dedicated to federated query engines
processing and performance.

6.3.2.1 Material and methods

FedBench proposes several datasets3 and a set of federated queries4 over these data
sources. In this experiment we focus on "Life Science" queries (LS1 to LS7) evaluated
over 4 remote data sources (in Table 6.2):

• DBPedia subset: a subset of DBPedia

• ChEBI: Chemical Entities of Biological Interest

• DrugBank: DrugBank bioinformatics and cheminformatics dataset describing
drugs and drug targets through a pharmacological perspective

• KEGG: Kyoto Encyclopedia of Genes and Genomes

Datasets are related through the keggCompoundId predicate (between DrugBank and
KEGG) and the owl:sameAs predicate. The datasets are exposed through Virtuoso
SPARQL endpoints5. Similarly to the former HDP experiment (Section 6.3.1.1), the
virtuoso [25] SPARQL endpoints and the KGRAM-DQP engine are executed on the
same Linux machine (Dell Latitude E6430 running Linux Ubuntu 14.04, 2.7 GHz
Intel CPU i7-3740QM, 8 GB RAM).

Table. 6.2: FedBench Datasets

Datasets Version Domain Number of Triples
DBPedia subset 3.5.1 Generic 43.6M

KEGG 2010-11-25 Chemicals 1.09M
Drugbank 2010-11-25 Drugs 767k

ChEBI 2010-11-25 Compounds 7.33M

3https://code.google.com/archive/p/fbench/wikis/Datasets.wiki
4https://code.google.com/archive/p/fbench/wikis/Queries.wiki
5https://github.com/openlink/virtuoso-opensource
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Queries: for the sake of clarity, the following namespace prefixes are used:

PREFIX rd f <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#>
PREFIX owl : <ht tp ://www.w3. org /2002/07/owl#>
PREFIX drugbank : <ht tp ://www4. wiwiss . fu−b e r l i n . de/drugbank/ resource /drugbank/>
PREFIX drugbank−d : <ht tp ://www4. wiwiss . fu−b e r l i n . de/drugbank/ resource / drugs/>
PREFIX drugbank−c : <ht tp ://www4. wiwiss . fu−b e r l i n . de/drugbank/ resource / drugcategory/>
PREFIX dbpedia−owl : <ht tp :// dbpedia . org / ontology/>
PREFIX dbpedia−owl−drug : <ht tp :// dbpedia . org / ontology /drug/>
PREFIX kegg : <ht tp :// b io2rd f . org /ns/kegg#>
PREFIX chebi : <ht tp :// b io2rd f . org /ns/ b io2rd f#>
PREFIX pur l : <ht tp :// pur l . org /dc/ elements /1.1/>
PREFIX b io2rd f : <ht tp :// b io2rd f . org /ns/ b io2rd f#>

The 7 life science queries of FedBench are depicted below:

Query QLS1

SELECT ?drug ? melt WHERE {
{ ?drug drugbank : mel t ingPo int ? melt . }
UNION
{ ?drug dbpedia−owl−drug : mel t ingPo int ? melt . }
}

Query QLS2

SELECT ? pred i ca t e ? o b j e c t WHERE {
{ drugbank−d : DB00201 ? pred i ca t e ? o b j e c t . }
UNION
{ drugbank−d : DB00201 owl : sameAs ? c a f f .

? c a f f ? p red i ca t e ? o b j e c t . }
}

Query QLS3

SELECT ?Drug ? IntDrug ? I n t E f f e c t WHERE {
?Drug rd f : type dbpedia−owl : Drug .
?y owl : sameAs ?Drug .
? I n t drugbank : in te rac t ionDrug1 ?y .
? I n t drugbank : in te rac t ionDrug2 ? IntDrug .
? I n t drugbank : t e x t ? I n t E f f e c t .
}
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Query QLS4

SELECT ?drugDesc ?cpd ? equat ion WHERE {
?drug drugbank : drugCategory drugbank−c : c a t h a r t i c s .
?drug drugbank : keggCompoundId ?cpd .
?drug drugbank : d e s c r i p t i o n ?drugDesc .
?enzyme kegg : xSubs t ra te ?cpd .
?enzyme rd f : type kegg : Enzyme .
? r e ac t i on kegg : xEnzyme ?enzyme .
? r e ac t i on kegg : equat ion ? equat ion .
}

Query QLS5

SELECT ?drug ? keggUrl ? chebiImage WHERE {
?drug rd f : type drugbank : drugs .
?drug drugbank : keggCompoundId ?keggDrug .
?keggDrug b io2rd f : u r l ? keggUrl .
?drug drugbank : genericName ?drugBankName .
? chebiDrug pur l : t i t l e ?drugBankName .
? chebiDrug chebi : image ? chebiImage .
}

Query QLS6

SELECT ?drug ? t i t l e WHERE {
?drug drugbank : drugCategory drugbank−c : mic ronut r i en t .
?drug drugbank : casRegistryNumber ? id .
?keggDrug rd f : type kegg : Drug .
?keggDrug b io2rd f : xRef ? id .
?keggDrug pur l : t i t l e ? t i t l e .
}

Query QLS7

SELECT ?drug ? transform ?mass WHERE {
?drug drugbank : af fectedOrganism ’Humans and other mammals ’ .
?drug drugbank : casRegistryNumber ? cas .
?keggDrug b io2rd f : xRef ? cas .
?keggDrug b io2rd f : mass ?mass
OPTIONAL { ?drug drugbank : b io t rans fo rmat ion ? transform . }
FILTER ( ?mass > 5 )
}
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6.3.2.2 Query rewriting and query sorting optimizations
impact

In this section, we illustrate the impact of the query rewriting and sorting optimiza-
tions based on the source selection step, which identifies relevant data sources for
each triple pattern.

The optimized queries of the 7 life science queries by KGRAM-DQP are depicted
below:

tpi corresponds to the triple patterns from the WHERE clause of the queries.

• QLS1optimized
= LonDrugBank (tp1)

QLS1optimized
highlights the importance of the source selection. Since only one

relevant data source is associated to the triple pattern of the first argument
of the UNION, QLS1 is reduced to one triple pattern sent to the data source
DrugBank.

• QLS2optimized
= UNION{LonDrugBank (tp1), JOIN{LonDrugBank (tp2), DonSD

(tp3)}}
with SD = (SDtp3) and SDtp3 = {DrugBank,DBPedia subset,KEGG,ChEBI}

QLS2optimized
stresses the necessity of the query sorting to optimize the query

evaluation. All the data sources are relevant for the triple pattern tp3 of the
query QLS2. In addition, the subject, the predicate and the object are variables.
Processing this triple pattern first would retrieve all triples in all data data
sources and increase the network communication cost. Instead, processing the
triple pattern tp2 first and then using the bindings of the variable ?caff to filter
the results of tp3 is a better strategy. The bindings processing optimization
is dynamically handled during the query evaluation as explained in Section
5.5.1.

• QLS4optimized
= JOIN{LonDrugBank (tp1, tp2, tp3), LonKEGG (tp4, tp5, tp6)}

QLS4optimized
transformes QLS4 into two local joins to separately evaluate in

two data sources whereas the initial query would send 7 triples patterns to
data source endpoints.
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• QLS3optimized
= JOIN{LonDBP edia subset (tp1), DonSD

(tp2), LonDrugBank (tp3, tp4, tp5)}
with SD = (SDtp2) and SDtp2 = {DrugBank,DBPedia subset,KEGG}

• QLS5optimized
= JOIN{LonDrugBank (tp1, tp2, tp4), UNION{LonSL

(tp3, tp5), DonSD

(tp3, tp5)}, LonChEBI (tp6)}
with SD = (SDtp3 , SDtp5) and SL = SDtp3 = SDtp5 = {ChEBI,KEGG}

• QLS6optimized
= JOIN{JOIN{LonDrugBank (tp1, tp2), LonKEGG (tp3)},

UNION{LonSL
(tp4, tp5), DonSD

(tp4, tp5)}}
with SD = (SDtp4 , SDtp5) and SL = SDtp4 = SDtp5 = {ChEBI,KEGG}

• QLS7optimized
= JOIN{LonDrugBank (tp1, tp2, OPTIONAL(tp5)), DonSD

(tp3),
LonDrugBank (tp4, F ILTER(exp))}
with SD = (SDtp3) and SDtp3 = {ChEBI,KEGG}

QLS3optimized
and QLS7optimized

combine local and distributed joins (Lon and Don).
The Don contains a single triple pattern. Therefore, there is no need to rewrite it as
UNION of Don and Lon. Conversely, QLS5optimized

and QLS6optimized
Don are rewritten

in that way as described in Section 5.3. For query QLS7, the triple patterns tp1 and
tp2 are associated to the same relevant data source as tp5 in the OPTIONAL clause.
The OPTIONAL clause also shares variables only with these two triple patterns. For
that reason, the OPTIONAL clause and the triple patterns p1 and tp2 are included in
the same local join. This is an optimization of OPTIONAL in a straightforward case.
A global optimization of OPTIONAL clauses would require more investigation due to
their complexity [62].

6.3.2.3 Results

Figure 6.3 shows the performance of the Optimized KGRAM-DQP and FedX on
the FedBench benchmark. This figure displays the query execution times which
are averaged executions of 6 runs and the error bars which show ± 1 standard
deviation. KGRAM-DQP performance is better than FedX performance for QLS3,
QLS4 and QLS5. FedX query processing time is better for QLS1 and QLS7. The two
engines performances are slightly similar for QLS2 and QLS6. The latter results can be
explained by the fact that FedBench datasets are rather vertically partitioned. Indeed,
we are performing the same query rewriting as FedX in the case of vertical partitions.
FedX performs exclusive grouping which is equivalent to our Lon for vertical partitions.
Regarding the other queries, the variation of the two engines performances can
be explained by the difference on their query planning optimization strategy. We
also note that FedX measures display a large variation whereas the KGRAM-DQP
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Figure. 6.3: Optimized KGRAM-DQP - FedX: query processing time

measures display a little variation. Indeed, FedX manages an efficient query results
caching which improves the query processing time when queries execution are
repeated as in our evaluation method.

Figure 6.4 displays the processing time of FedX without caching (the first run), FedX
with caching (the second run) and KGRAM-DQP (first run) for the life science queries
(QLS1 to QLS7). As can be seen, the processing time is greatly reduced between the
FedX first and second run. The KGRAM-DQP first evaluation is much more efficient
than the FedX first evaluation and sometimes in line with FedX with caching.

The two engines retrieved the same number of results for all queries as shown in
Table 6.3. Both KGRAM-DQP and FedX manage to handle the results completeness.
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Figure. 6.4: Optimized KGRAM-DQP - FedX (first) - FedX (+caching): query processing
time

Table. 6.3: Number of results on FedBench

Engines Queries Number of results

Optimized KGRAM-DQP / FedX

QLS1 1159
QLS2 333
QLS3 9054
QLS4 3
QLS5 393
QLS6 28
QLS7 144

With FedBench, the data are connected (i.e. sharing a relation in such a way that the
subject is in one source and the object in another one) with always two predicates
(kegg:CompoundId and owl:sameAs) and are more vertically partitioned. Moreover,
the queries are simple SELECT query forms. For a more complete comparison, the
engines need to be evaluated in a hybrid data partitioning context (horizontal and
vertical) with data replication as observed in a real world context and with more
diverse SPARQL queries.
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6.3.3 KGRAM-DQP vs FedX

This experiment aims at comparing the Optimized KGRAM-DQP with FedX in a
hybrid partitioning data context and at underlining the impact of triples replication
in data sources over the number of query results. In this experiment we use the same
material and methods as in Section 6.3.1.1 (Hybrid Data Partitioning experiment),
to compare the results and the number of query results retrieved by the Optimized
KGRAM-DQP and the FedX engine (FedX version 3.1). In the remainder, KGRAM-
DQP refers to Optimized KGRAM-DQP.

6.3.3.1 Query rewriting and query sorting impact

In this section, we compare the KGRAM-DQP and FedX query rewriting optimizations
and their query sorting approaches. FedX performs exclusive grouping optimization
for the query rewriting which is similar to our local join operation for vertically
partitioned data. However, there is no optimization for horizontally partitioned data
in FedX whereas KGRAM-DQP performs the hybrid rewriting described in Section
5.3.

To summarize, in this experiment FedX only generates one local join for demographic
data (which is a vertical partition) while KGRAM-DQP also generates local join for
geographic data (which is horizontal partition) when possible. Thus, for instance
the Query QSELECT is rewritten by the two engines in P1 partitioning as follows:

• FedX: QSELECToptimized
=

JOIN{LonS1 (tp4, tp5), JOIN(tp1, tp2, tp3)}

• KGRAM-DQP: QSELECToptimized
=

JOIN{UNION{LonSL
(tp1, tp2, tp3), DonSD

(tp1, tp2, tp3)}, LonS1 (tp4, tp5)}
SD = (SDtp1 , SDtp2 , SDtp3) and SL = SDtp1 = SDtp2 = SDtp3 = {S2, S3}

FedX first evaluates the exclusive group for S1 (LonS1 (tp4, tp5)) then the triple
patterns related to data horizontally partitioned (tp1, tp2 and tp3) by distributing
join over S2 and S3. Conversely, KGRAM-DQP first evaluates triple patterns related
to data horizontally partitioned then the exclusive group for S1. In addition, the
evaluation of the first part is performed through local joins for S2 and S3 and
distributed joins between them (our distributed join avoids to recompute the local
join results).
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Regarding the query planning, FedX gives priority to the exclusive groups based on
the assumption that they are generally more selective (less data transferred to the
engine), while KGRAM-DQP evaluates this exclusive group last thanks to the cost
estimation based on the predicate cardinality retrieved during the source selection.
As a reminder, the idxPredicateCardinality introduced in Section 5.2.1 is depicted
below:

• idxPredicateSources = {
geo : subdivisionDirecte→ {S1, S2};
geo : codeRegion→ {S1, S2};
geo : nom→ {S1, S2};
demo : population→ {S3};
demo : populationTotale→ {S3}}

• idxPredicateCardinality = {geo : subdivisionDirecte→ 3934;
geo : codeRegion→ 27;
geo : nom→ 41458;
demo : population→ 37149;
demo : populationTotale→ 37147}

As can be seen, evaluating the exclusive group first will retrieve more triples due to
the high cardinality (37149) of the predicates demo:population and demo:populationTotale
compared to other predicates, in addition triple patterns subject and object are vari-
ables.

6.3.3.2 Query processing performance

Figure 6.5 displays the query processing time for each query using the two engines
in the P1, P2 and P3 partitions cases. For some queries (MINUS and ALL) FedX does
not provide results. This is explained by the fact that FedX 3.1 does not handle
some SPARQL 1.1 features such as MINUS. The query ALL also contains MINUS. The
execution of queries UNION in P1 and P2 and FILTER in P1 generate time-out on
FedX. Figure 6.5 shows that the Optimized KGRAM-DQP query processing is more
efficient than FedX query processing in almost all queries and in all partitions except
for OPTIONAL in P3.
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Figure. 6.5: Optimized KGRAM-DQP and FedX performance

6.3.3.3 Results

Table 6.4 summarizes the number of results retrieved by the two engines for each
query and for the 3 partitioning schemas (P1, P2 and P3). As shown in this table,
FedX produces more (duplicated) results than the Optimized KGRAM-DQP for most
of the queries. For instance, for the query QSELECT , KGRAM-DQP produces 100
results for P1 whereas FedX generates 800 results. This is explained by the fact that
FedX does not handle triples replication on data sources, thus generating duplicated
results and making the query processing less efficient. X indicates the queries which
cannot be processed due to the fact that FedX (version 3.1) is not compliant with
SPARQL 1.1 and T indicates the queries that timeouted.

Figure 6.6 also illustrates the difference on the number of results between the
Optimized KGRAM-DQP and FedX.
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Table. 6.4: Number of results

Engines Queries P1 partitioning P2 partitioning P3 partitioning

Optimized KGRAM-DQP

QSELECT 100 100 54
QUNION 335 335 185
QMINUS 335 335 185
QF ILT ER 1 1 0

QOP T IONAL 343 343 186
QALL 395 395 11

FedX

QSELECT 800 199 70
QUNION 800 T T
QMINUS X X X
QF ILT ER T 2 0

QOP T IONAL 5488 673 237
QALL X X X

Figure. 6.6: Number of results retrieved on INSEEE data
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6.4 Conclusions

This chapter introduces the KGRAM-DQP engine, which implements our federated
query processing approach within the Corese semantic Web framework. We propose
3 experiments to assess the impact of our optimization strategies regarding query
processing efficiency, result completeness and data replication challenges. A first
experimental study simulates both vertical and horizontal partitioning of data context
in several kinds of partition. Based on this experiment we compared the basic
KGRAM-DQP engine with an optimized version in which we implemented the static
and dynamic optimization proposed in Chapter 5. The results show a significant
performance improvement regarding the query processing time and the number of
remote requests. Afterwards, we compared the optimized KGRAM-DQP with FedX on
FedBench [73] benchmark. In this experiment, KGRAM-DQP results are consistent
with FedX results about the number of results and their completeness. KGRAM-DQP
query processing performance is most of the time better than FedX performance
for first evaluation and sometimes in line with FedX with query results caching
for the following evaluation. KGRAM-DQP results also display more stability than
FedX results. Finally, we compared the engines in the hybrid data partition context
through the first experimental setup. In this one, KGRAM-DQP is more efficient
than FedX. Moreover, KGRAM-DQP managed to handle data replication and more
expressive SPARQL queries. In summary, we can that our federated engine manages
to efficiently query distributed data sources in any kind of data partitioning scheme
through our optimization strategies while addressing results completeness, results
redundancy side effect of triple replication and query expressiveness challenges.
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Driven by the Semantic Web standards, more and more RDF data sources are made
available and connected over the Web by data providers, leading to a large dis-
tributed network. However, processing these data sources becomes very challenging
for data consumers due to data distribution and their volume growth. The Federated
query processing approach allows querying distributed data sources by relying on
Distributed Query Processing (DQP) techniques. A naive implementation of DQP
may generate a tremendous number of remote requests towards data sources and
numerous intermediate results, thus leading to costly network communications. Fur-
thermore, the distributed query semantics is often overlooked. Query expressiveness,
data partitioning, and data replication are other challenges to be taken into account
in order to implement sound and efficient distributed queries.

7.1 Summary

In Chapter 2 we presented the general principles of data integration through map-
pings, taking into account data fragmentation. Then we focused on Linked Open
Data integration which is the equivalent of distributed databases integration at
the Semantic Web scale. Indeed, the Web of Data is a network of distributed, au-
tonomous and linked data sources. We described the Linked Open Data integration
principles, data representation and querying. LOD integration mainly relies on
W3C standards, namely RDF and SPARQL. The continuously increasing number of
RDF datasets made available by data providers lead to complex information and
queries to process. Distributed Query Processing (DQP) introduced in Chapter 3
is the main approach used to perform query processing in this context. DQP, also
called federated query processing, is usually decomposed in four main steps: (i)
source selection, (ii) query rewriting, (iii) query planning and (iv) query evaluation.
We reviewed several state-of-the-art DQP approaches and analyzed them through
the steps identified beforehand. Based on the optimization strategies analysis, we
highlighted several challenges to address, such as source selection accuracy, query
results completeness, data replication, SPARQL distributed query semantics and
query expressiveness, for a more efficient, reliable and scalable federated query
processing.

In Chapter 4, we tackled the first objective of this thesis which is to propose a
SPARQL and RDF compliant Distributed Query Processing semantics in order to
ensure the query semantics and expressiveness preservation during federated query
evaluation. We first showed the need for a semantics to avoid query results disparity
between query engines and to provide more reliability in the results produced. Then,
we proposed a federated query semantics on top of W3C standards while addressing
named graph collision, blank nodes and triples replication constraints in a distributed
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and autonomous data sources context. Following this, we specified the semantics of
federated SPARQL queries on top of the standard SPARQL semantics through a set
of rewrite rules relying on service clauses.

In Chapter 5, we introduced our contribution regarding the second objective of this
thesis, which is to transparently and efficiently address autonomous and distributed
data sources. Thus, we proposed both static and dynamic optimizations to enhance
the federated query processing performance. Static optimizations are performed
during query rewriting and query planning steps while dynamic optimizations are
processed during query evaluation. Our static optimizations rely on the result of
the source selection step in which we proposed a Sampling Query-Based approach.
This approach builds two indices. The source selection index identifies relevant data
sources and collects information on data distribution, while predicates index gives
information on predicates cardinality. Using the source selection index, we proposed
a Hybrid BGP-Triple query rewriting approach which addresses both horizontal and
vertical data partitions and reduces the query engine workload. Using the predicates
index, we proposed a static query sorting approach which combines cost estimation,
heuristics on query patterns and query expressions links. Our dynamic optimizations
are achieved during the query evaluation step at three levels. First, the bindings
(already known values of variables) are propagated to the following sub-queries
sharing the same variables. Secondly, we use parallelism to concurrently query
remote data sources and independent remote requests. Finally, we use triple results
duplicate-aware evaluation to avoid results redundancy which are side effects of
triples replication.

Finally, in Chapter 6, we assessed our federated query processing strategies regarding
query evaluation efficiency, results completeness and data replication challenges.
We implemented our approach in the KGRAM-DQP query engine. We ran several
experiments which showed an improvement of the KGRAM-DQP performance while
handling results completeness, query expressiveness, and results redundancy caused
by triple replication. We also compared KGRAM-DQP with FedX in two data par-
titioning contexts. In vertical partitions, without triple replication, KGRAM-DQP
results are consistent with FedX results and its performance is better in some cases.
However, we have also observed that a results caching system like FedX can improve
the query processing performance when queries evaluation is repeated. In a Hybrid
partition context (both vertical and horizontal partitions), KGRAM-DQP is more
efficient than FedX. Unlike FedX, KGRAM-DQP handles replication and manages
more expressive queries.

In summary, we proposed in this thesis a transparent and trustworthy federated
query processing approach without any prior knowledge on distributed data sources.
In this respect, we first introduced a SPARQL and RDF-compliant Distributed Query
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Processing semantics which preserves the SPARQL language expressiveness. This
semantics also overcomes the query results disparity issue between the federated
query engines and thus increases their reliability. Afterwards, we proposed static
and dynamic optimization strategies for federated query processing steps while
addressing data partitioning, query results completeness, data replication, and
query processing performance. Our strategies reduce the number of data sources
requested, decrease the query engine workload through triple patterns grouping for
both horizontal and vertical data partitions, and efficiently perform a duplicate-aware
query evaluation.

However, some limitations of this work can be highlighted. Our source selection
approach is individually achieved on each predicate for each data source and thus
may generate many remote requests. The triple patterns grouping approach relies on
heuristics, in particular by considering whether the whole BGP is connected or not,
which can restrict the number of BGPs generated. These heuristics may be extended
by considering the subsets of non-connected BGPs when their triple patterns are
connected. In addition, our query sorting approach generates an optimized query
plan performed at the query execution step as it stands. It would be interesting to
make this plan more adaptive during the query execution. Finally, the optimization
of some SPARQL features such as FILTER EXISTS in distributed queries could be
investigated in-depth in order to reap the full benefits of SPARQL expressiveness in a
reasonable query processing performance.

Through this work, we have seen that addressing distributed data sources querying
through a federated query processing approach implies coping with several chal-
lenges and thus might be tedious. Properly overcoming all these challenges can
be time consuming, thus a trade-off needs to be made between the optimization
accuracy and query processing time. Moreover, federated query engines should
have an adaptive approach rather than trying to design a one-size-fits-all solution.
Indeed, in some cases a choice needs to be made between some challenges. For
instance, it is often not possible to support the query results completeness, and at
the same quickly retrieving the results for large data source. In this sense, allowing
end users to specify their requirements might help federated query engines to adapt
their processing strategies and enhance their performance.

7.2 Perspectives

The work done during this thesis can be pursued and improved in many aspects to
overcome the highlighted limitations and towards a more flexible federated query
processing approach. In that respect the following perspectives can be considered:
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• Query processing performance: Regarding the query execution efficiency,
we first introduced a Sampling Query-Based approach to acquire knowledge
(statistics) on data sources and to identify relevant data sources for predicates
of federated queries. Indeed, in Chapter 6, we used a sampling query for
each predicate and sent it to all remote data sources. In very short term, this
sampling phase can be improved by using SPARQL BIND clauses to combine
all the predicates in one query for each data source and to assign the result
for each predicate to a variable. This would allow reducing the number of
remote requests to data sources and processing time during the source selection
step. As a future work on the longer term, this sampling phase can also be
improved by taking into account available information on links between data
sources entities and vocabularies. Indeed, the accuracy of source selection
can be adversely affected by the use of popular properties, and the increasing
number of data sources involved has a negative influence on query processing
performance [66]. Several approaches [70, 17] have been proposed to address
this issue and showed promising results with FedX. Combining these different
approaches and using the most suitable one to the query federation context,
will enhance the relevant sources accuracy while ensuring data sources catalogs
freshness at the same time.

The Query planning approach can also be improved by using Query Perfor-
mance Prediction (QPP) [40]. In this approach, machine learning techniques
are used to predict the query processing performance by learning from the
execution time of already processed queries. In a real-world context, in which
queries can be similar or repeated, using this approach can generate more
optimal query plans if the prediction tasks are achieved within a reasonable
time.

As shown in Chapter 6, during the query evaluation, the use of caching can
improve the query processing performance. A Graph-Aware workload-adaptive
caching approach [60] has also been proposed for SPARQL queries and showed
encouraging performance over large scale RDF datasets. In our work, we
generated our optimized query plan using knowledge retrieved during source
selection, and we executed this plan using bindings and parallelism. However,
adjusting the initial plan during the execution, may be required due to the
data sources response time and the number of intermediate results gathered.
Thus, several adaptive query optimization approaches have been proposed
[23, 2, 55, 56] for federated query processing. After rewriting the federated
query as unions of SERVICE clauses as described in the Chapter 4, instead
of letting the query engine send them one by one to the endpoints, it could
delegate this processing to the endpoints. Indeed, with the whole query and
the relevant data sources URLs, each endpoint, after executing its sub-query,
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could ask the next endpoint through its URL to execute the following sub-
query. Thus, the remote requests and intermediate results processing can
be distributed between the endpoints and the engine and perhaps enhance
the query processing performance. But this requires a controlled execution
environment with reliable endpoints, especially regarding query processing
performance. In our case, where KGRAM can be used as both engine and
endpoint, this might be considered in order to further reduce the engine
workload.

• Query expressiveness: On one hand, we proposed a semantics for federated
queries and specified rewriting for SPARQL. On the other hand, we imple-
mented our federated query engine on top of the KGRAM engine which is fully
compliant with SPARQL. Moreover, to deal with performance issues related to
the complexity of SPARQL [62, 74], we applied several optimizations such as
pushing relevant FILTERs. As a follow-up to this work, it would be interesting
to address more complex FILTERs expressions issues such as FILTER EXISTS
and also others SPARQL features optimization such as NAMED GRAPH in order
to find new heuristics to increase the distributed SPARQL query efficiency.

• Data sources heterogeneity : In this work we focused on homogeneous data.
However, in real-world Web scale applications, the data sources to integrate
can be in different formats such as SQL or NoSQL databases. To allow data
consumers to access to more knowledge bases, the R2RML [65] mapping
language was proposed for relational databases. This language was extended
to manage NoSQL databases (xR2RML [52]). The SPARQL Federated query
engine can take benefit from this works to manage heterogeneous data sources.
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Abstract

Driven by the Semantic Web standards, an increasing number of RDF data sources
are published and connected over the Web by data providers, leading to a large
distributed linked data network. However, exploiting the wealth of these data
sources is very challenging for data consumers considering the data distribution, their
volume growth and data sources autonomy. In the Linked Data context, federation
engines allow querying these distributed data sources by relying on Distributed
Query Processing (DQP) techniques. Nevertheless, a naive implementation of the
DQP approach may generate a tremendous number of remote requests towards
data sources and numerous intermediate results, thus leading to costly network
communications. Furthermore, the distributed query semantics is often overlooked.
Query expressiveness, data partitioning, and data replication are other challenges to
be taken into account. To address these challenges, we first proposed in this thesis a
SPARQL and RDF compliant Distributed Query Processing semantics which preserves
the SPARQL language expressiveness. Afterwards, we presented several strategies
for a federated query engine that transparently addresses distributed data sources,
while managing data partitioning, query results completeness, data replication, and
query processing performance. We implemented and evaluated our approach and
optimization strategies in a federated query engine to prove their effectiveness.

Keywords: Semantic Web, Web of Data, Linked Data, Linked Open Data, Data
Integration, Distributed Query Processing, Federated query evaluation, SPARQL,
Query Optimization
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Résumé

De plus en plus de sources de données liées sont publiées à travers le Web en
s’appuyant sur les technologies du Web sémantique, formant ainsi un large réseau de
données distribuées. Cependant il est difficile pour les consommateurs de données
de profiter de la richesse de ces données, compte tenu de leur distribution, de
l’augmentation de leur volume et de l’autonomie des sources de données. Les
moteurs fédérateurs de données permettent d’interroger ces sources de données
en utilisant des techniques de traitement de requêtes distribuées. Cependant, une
mise en œuvre naïve de ces techniques peut générer un nombre considérable de
requêtes distantes et de nombreux résultats intermédiaires entraînant ainsi un long
temps de traitement des requêtes et des communications réseau coûteuse. Par
ailleurs, la sémantique des requêtes distribuées est souvent ignorée. L’expressivité
des requêtes, le partitionnement des données et leur réplication sont d’autres défis
auxquels doivent faire face les moteurs de requêtes. Pour répondre à ces défis, nous
avons d’abord proposé une sémantique des requêtes distribuées compatible avec
les standards SPARQL et RDF qui préserve l’expressivité de SPARQL. Nous avons
ensuite présenté plusieurs stratégies d’optimisation pour un moteur de requêtes
fédérées qui interroge de manière transparente des sources de données distribuées.
La performance de ces optimisations est évaluée sur une implémentation d’un moteur
de requêtes distribuées SPARQL.

Mots-clés: Web sémantique, Web de Données, Données liées, Données ouvertes
liées, Intégration des données, Traitement de requêtes distribuées, Évaluation des
requêtes fédérées, Optimisation de requêtes SPARQL.
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