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Abstract

With the rapid proliferation of data platforms collecting and curating data related to various
domains such as governments data, education data, environment data or product ratings,
more and more data are available online. This offers an unparalleled opportunity to study
the behavior of individuals and the interactions between them. In the political sphere, being
able to query datasets of voting records provides interesting insights for data journalists
and political analysts. In particular, such data can be leveraged for the investigation of
exceptionally consensual/controversial topics.

Consider data describing the voting behavior in the European Parliament (EP). Such a
dataset records the votes of each member (MEP) in voting sessions held in the parliament,
as well as information on the parliamentarians (e.g., gender, national party, European party
alliance) and the sessions (e.g., topic, date). This dataset offers opportunities to study
the agreement or disagreement of coherent subgroups, especially to highlight unexpected
behavior. It is to be expected that on the majority of voting sessions, MEPs will vote along
the lines of their European party alliance. However, when matters are of interest to a specific
nation within Europe, alignments may change and agreements can be formed or dissolved.
For instance, when a legislative procedure on fishing rights is put before the MEPs, the
island nation of the UK can be expected to agree on a specific course of action regardless
of their party alliance, fostering an exceptional agreement where strong polarization exists
otherwise. In this thesis, we aim to discover such exceptional (dis)agreement patterns not
only in voting data but also in more generic data, called behavioral data, which involves
individuals performing observable actions on entities. We devise two novel methods which
offer complementary angles of exceptional (dis)agreement in behavioral data: within and
between groups. These two approaches called Debunk and Deviant, ideally, enables the
implementation of a sufficiently comprehensive tool to highlight, summarize and analyze
exceptional comportments in behavioral data. We thoroughly investigate the qualitative and
quantitative performances of the devised methods. Furthermore, we motivate their usage in
the context of computational journalism.

Keywords: Subgroup Discovery, Exceptional Model Mining, Behavioral Data Analysis,
Computational Journalism.
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Résumé

Avec la prolifération rapide des plateformes de données qui récoltent des données relatives à
plusieurs domaines tels que les données de gouvernements, d’éducation, d’environnement
ou les données de notations de produits, plus de données sont disponibles en ligne. Ceci
représente une opportunité sans égal pour étudier le comportement des individus et les
interactions entre eux. Sur le plan politique, le fait de pouvoir interroger des ensembles
de données de votes peut fournir des informations intéressantes pour les journalistes et les
analystes politiques. En particulier, ce type de données peut être exploité pour l’investigation
des sujet exceptionnellement conflictuels ou consensuels.

Considérons des données décrivant les sessions de votes dans le parlement Européen (PE).
Un tel ensemble de données enregistre les votes de chaque député (MPE) dans l’hémicycle
en plus des informations relatives aux parlementaires (e.g., genre, parti national, parti
européen) et des sessions (e.g., sujet, date). Ces données offrent la possibilité d’étudier les
accords et désaccords de sous-groupes cohérents, en particulier pour mettre en évidence des
comportements inattendus. Par exemple, il est attendu que sur la majorité des sessions, les
députés votent selon la ligne politique de leurs partis politiques respectifs. Cependant, lorsque
les sujets sont plutôt d’intérêt d’un pays particulier dans l’Europe, des coalitions peuvent
se former ou se dissoudre. À titre d’exemple, quand une procédure législative concernant
la pêche est proposée devant les MPE dans l’hémicycle, les MPE des nations insulaires
du Royaume-Uni peuvent voter en accord sans être influencés par la différence entre les
lignes politiques de leurs alliances respectives, cela peut suggérer un accord exceptionnel
comparé à la polarisation observée habituellement. Dans cette thèse, nous nous intéressons à
ce type de motifs décrivant des (dés)accords exceptionnels, pas uniquement sur les données
de votes mais également sur des données similaires appelées données comportementales.
Nous élaborons deux méthodes complémentaires appelées Debunk et Deviant. La première
permet la découverte de (dés)accords exceptionnels entre groupes tandis que la seconde
permet de mettre en évidence les comportements exceptionnels qui peuvent au sein d’un
même groupe. Idéalement, ces deux méthodes ont pour objective de donner un aperçu
complet et concis des comportements exceptionnels dans les données comportementales.
Dans l’esprit d’évaluer la capacité des deux méthodes à réaliser cet objectif, nous évaluons
les performances quantitatives et qualitatives sur plusieurs jeux de données réelles. De
plus, nous motivons l’utilisation des méthodes proposées dans le contexte du journalisme
computationnel.

Titre: Fouille de Modèles Exceptionnels dans les Données Comportementales.

Mots-Clés: Découverte de Sous-Groupes, Fouille de Modèles Exceptionnels, Analyse de
Données Comportementales, Journalisme Computationnel.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



Contents

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Behavioral Data 4

1.2 Behavioral Data Analysis 7

1.3 Research Questions 12

1.4 Contributions 13

1.4.1 From Behavioral Data to Exceptional Inter-Group (Dis)Agreements . . . . . 13

1.4.2 From Behavioral Data to Exceptional Intra-Group (Dis)Agreements . . . . . 14

1.4.3 A web platform for exceptional voting behaviors analysis . . . . . . . . . . . . 14

1.5 Thesis Outline 15

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



2 Subgroup Discovery and Exceptional Model Mining . . . . . . . 17

2.1 Introduction 18

2.2 Subgroup Discovery 18

2.2.1 On Description Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 On Subgroup Interestingness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 On Search Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Exceptional Model Mining 38

2.3.1 On Description Languages and On Search Space Exploration . . . . . . . . 40

2.3.2 On Model Classes and Interestingness Measures . . . . . . . . . . . . . . . . . . . 41

2.4 Standard Exploration Algorithms 44

2.4.1 A Standard Enumeration Algorithm For SD/EMM . . . . . . . . . . . . . . . . . . . . 46

2.4.2 A Standard Branch and Bound Algorithm For SD/EMM . . . . . . . . . . . . . . . 48

2.5 Potentials and Limitations 51

3 Identifying exceptional (dis)agreement between groups . . 53

3.1 Introduction 54

3.2 Setup and Problem Formalization 57

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Formal Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Inter-Group Agreement Measure and Interestingness Evaluation 59

3.3.1 Quality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Inter-group Agreement Similarity (IAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Examples of IAS Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Mining Exceptional Inter-Group Agreement Patterns 62

3.4.1 Enumerating Candidate Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Hierarchical Multi-Tag Attribute (HMT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Optimistic Estimates on Quality Measures . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.4 Algorithm DEBuNk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Sampling Inter-Group Agreement Patterns 71

3.5.1 Frequency-Based Sampling (Step 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 RWC - Random Walk on Contexts (Step 2) . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.3 Algorithm Quick-DEBuNk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Empirical Study 78

3.6.1 Aims and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6.2 Qualitative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.3 Quantitative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7 Summary 96

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



4 Identifying exceptional (dis)agreement within groups . . . . . 99

4.1 Introduction 100

4.2 Setup and Problem Formalization 102
4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.2 Formal Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Intra-Group Agreement Measure 104

4.4 Exceptional Contexts: Evaluation and Pruning 107
4.4.1 Gauging Exceptionality of a Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.2 Pruning the Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 On Handling Variability of Outcomes Among Raters 116

4.6 A Branch-and-bound Solution: Algorithm DEvIANT 117
4.6.1 Enumerating Candidate Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.2 Algorithm DEvIANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Empirical Study 119
4.7.1 Aims and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7.2 Qualitative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7.3 Quantitative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8 Summary 128

5 Behavioral Data Analysis for Computational Journalism . . . 129

5.1 Introduction 130

5.2 Platform ANCORE 132

5.3 Use cases: Computational Fact Checking/Lead Finding 137
5.3.1 Fact Checking using ANCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.2 Lead finding using ANCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4 Summary 145

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1 Summary 147

6.2 Outlook 151
6.2.1 Enriching the Visualization tool of ANCORE . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.2 Discovering Exceptional Contextual Clusters in Behavioral Data . . . . . . 152

6.2.3 Discovering Change and Trends of Intra/Inter-Group Agreement . . . . . 152

6.2.4 Anytime Exceptional Behaviors Mining . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A Study of DEBuNk and Quick-DEBuNk on synthetic data . . . 155

A.1 Comparison to SD/EMM methods 156

A.2 Robustness to noise and ability to discover hidden patterns 161

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



B Multiple Comparisons Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C Symbol Table (Chapter 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . 167

D Symbol Table (Chapter 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

E Symbol Table (Chapter 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



List of Figures

1.1 Behavioral data as an attributed bipartite graph . . . . . . . . . . . . . . . . . 4

2.1 A patient dataset describing individuals and whether they have a lung cancer. . 19
2.2 Building blocks of a subgroup discovery task (Summary) . . . . . . . . . . . . 24
2.3 Illustration of a Pattern structure (G,(D,v),δ ) . . . . . . . . . . . . . . . . . 28
2.4 Building blocks of an exceptional model mining task (Summary) . . . . . . . 40
2.5 Illustration of the regression model class in EMM . . . . . . . . . . . . . . . . 42
2.6 Illustration of the area and closed descriptions enumerated by EnumCC . . . . 48
2.7 Illustration of the interesting closed subgroups enumerated by B&B4SDEMM . 50

3.1 Discovering exceptional (dis)agreement between groups . . . . . . . . . . . . 55
3.2 A collection of records labeled each by a set of tags and its flat representation. 63
3.3 Illustration of the conjunction operator ∧ between two HMT descriptions . . . 64
3.4 Quick-DEBuNk approach in a nutshell . . . . . . . . . . . . . . . . . . . . . 72
3.5 Illsutration of Pattern 1 from Table 3.4 . . . . . . . . . . . . . . . . . . . . . . 81
3.6 Illsutration of Pattern 2 from Table 3.6 . . . . . . . . . . . . . . . . . . . . . . 83
3.7 Illsutration of Pattern 3 from Table 3.7 . . . . . . . . . . . . . . . . . . . . . . 84
3.8 Illsutration of Pattern 3 and 4 from Table 3.8 . . . . . . . . . . . . . . . . . . . 85
3.9 Comparison between DEBuNk and DSC’ full results . . . . . . . . . . . . . . 87
3.10 Comparison between DEBuNk and DSC’ top-k results . . . . . . . . . . . . . 88
3.11 Effectiveness of DEBuNk considering EPD8 . . . . . . . . . . . . . . . . . . . 89
3.12 Effectiveness of DEBuNk considering Movielens . . . . . . . . . . . . . . . . 89
3.13 Effectiveness of DEBuNk considering Yelp . . . . . . . . . . . . . . . . . . . 89
3.14 Efficiency of HMT against itemsets closed descriptions enumeration . . . . . . 90
3.15 Effectiveness and scaling of DEBuNk on EPD8 . . . . . . . . . . . . . . . . . 91

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



3.16 Effectiveness and scaling of DEBuNk on Movielens . . . . . . . . . . . . . . . 92
3.17 Effectiveness and scaling of DEBuNk on Yelp . . . . . . . . . . . . . . . . . . 92
3.18 Efficiency of Quick-DEBuNk compared to DEBuNk on EPD8 . . . . . . . . . 94
3.19 Efficiency of Quick-DEBuNk compared to DEBuNk on Movielens . . . . . . . 94
3.20 Efficiency of Quick-DEBuNk compared to DEBuNk on Yelp . . . . . . . . . . 94
3.21 EMM for Identifying exceptional (dis-)agreement between groups . . . . . . . 96

4.1 Discovering exceptional (dis)agreement within groups . . . . . . . . . . . . . 101
4.2 Main DEvIANT properties for safe sub-search space pruning . . . . . . . . . . 111
4.3 Illustration of Pattern 1 from Table 4.4 . . . . . . . . . . . . . . . . . . . . . . 121
4.4 Illustration of the distribution of false discoveries on EPD8 . . . . . . . . . . . 123
4.5 Illustration of the distribution of false discoveries on CHUS . . . . . . . . . . . 123
4.6 Illustration of the distribution of false discoveries on Movielens . . . . . . . . . 124
4.7 Illustration of the distribution of false discoveries on Yelp . . . . . . . . . . . . 124
4.8 Comparison between DEvIANT and Naive algorithm . . . . . . . . . . . . . 125
4.9 Effectiveness of DEvIANT on EPD8 . . . . . . . . . . . . . . . . . . . . . . . 126
4.10 Effectiveness of DEvIANT on CHUS . . . . . . . . . . . . . . . . . . . . . . 127
4.11 Effectiveness of DEvIANT on Movielens . . . . . . . . . . . . . . . . . . . . 127
4.12 Effectiveness of DEvIANT on Yelp . . . . . . . . . . . . . . . . . . . . . . . 127
4.13 EMM for Identifying exceptional (dis-)agreement within groups (Summary) . . 128

5.1 Overview of Computational Fact-checking major steps . . . . . . . . . . . . . 130
5.2 Typologie of fake news . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3 Global overview of Platform ANCORE . . . . . . . . . . . . . . . . . . . . . 132
5.4 GUI for querying DEBuNk in ANCORE . . . . . . . . . . . . . . . . . . . . . 133
5.5 GUI for querying DEvIANT in ANCORE . . . . . . . . . . . . . . . . . . . . 134
5.6 Illustration of the aggregated view in ANCORE . . . . . . . . . . . . . . . . . 135
5.7 Detailed view of an inter-group agreement pattern . . . . . . . . . . . . . . . . 136
5.8 Detailed view of an exceptional intra-group agreement pattern I . . . . . . . . 136
5.9 Illustration of ANCORE for a fact-checking scenario I . . . . . . . . . . . . . 138
5.10 Illustration of ANCORE for a fact-checking scenario II . . . . . . . . . . . . . 139
5.11 Illustration of ANCORE for a fact-checking scenario III . . . . . . . . . . . . 141
5.12 Detailed view of an exceptional intra-group agreement pattern II . . . . . . . . 141
5.13 Illustration of conflictual contexts in EPP group via ANCORE . . . . . . . . . 142
5.14 Illustration of ANCORE for a lead-finding scenario I . . . . . . . . . . . . . . 143
5.15 Illustration of ANCORE for a lead-finding scenario II . . . . . . . . . . . . . . 144
5.16 Illustration of ANCORE for a lead-finding scenario III . . . . . . . . . . . . . 144

A.1 Example of input data format for Cosmic . . . . . . . . . . . . . . . . . . . . 158
A.2 Comparative qualitative performance study between DEBuNk and Quick-DEBuNk160
A.3 Efficiency of DEBuNk and Quick-DEBuNk w.r.t. Noise in behavioral data . . . 161

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



List of Tables

1.1 Example of a behavioral dataset - European Parliament Voting dataset . . . . . 5
1.2 Example of a behavioral dataset - Movielens Dataset . . . . . . . . . . . . . . 6

2.1 Example of a behavioral dataset with single categorical target . . . . . . . . . . 20
2.2 Example of a behavioral dataset with single numerical target . . . . . . . . . . 20
2.3 Illustation of mapping operator δ via a single numerical attributed dataset G . . 25
2.4 2×2 Contingency table for d→+ . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Example of a behavioral dataset with multiple numerical targets . . . . . . . . 38

3.1 Example of behavioral dataset - European Parliament Voting dataset . . . . . . 54
3.2 Behavioral datasets characteristics before and after scaling. . . . . . . . . . . 79
3.3 Characteristics of the datasets after oridnal scaling . . . . . . . . . . . . . . . . 80
3.4 Top-3 disagreement patterns discovered on Movielens . . . . . . . . . . . . . . 80
3.5 Top-5 disagreement patterns discovered on Yelp . . . . . . . . . . . . . . . . . 81
3.6 Top-5 disagreement patterns discovered on EPD8 . . . . . . . . . . . . . . . . 82
3.7 Top-3 agreement patterns discovered on EPD8 . . . . . . . . . . . . . . . . . . 83
3.8 Top-4 discrepancies patterns discovered on Openmedic . . . . . . . . . . . . . 85

4.1 Example of behavioral dataset - European Parliament Voting dataset . . . . . . 102
4.2 Example of a Summarized Behavioral Data . . . . . . . . . . . . . . . . . . . 107
4.3 Benchmark behavioral datasets for the evaluation of DEvIANT . . . . . . . . . 119
4.4 Exceptional consensual/conflictual subjects in US House of Representatives . . 120
4.5 Top-10 exceptional intra-group patterns between counteries in EPD8 . . . . . . 121
4.6 Top-5 exceptional intra-group patterns between groups in EPD8 . . . . . . . . 122
4.7 Top-3 exceptional intra-group patterns between groups in Movielens . . . . . . 122
4.8 Top-10 exceptional intra-group patterns between groups in Yelp . . . . . . . . 122

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



4.9 Coverage error between empirical CIs and Taylor CIs. . . . . . . . . . . . . . 125

A.1 Default Parameters Used for Generating Artificial Behavioral Data . . . . . . . 156
A.2 Example of input data format for SD-Majority . . . . . . . . . . . . . . . . . . 157
A.3 Example of input data format for SD-Cartesian . . . . . . . . . . . . . . . . . 158

C.1 Symbol table related to Chapter 1 and Chapter 2 . . . . . . . . . . . . . . . . 167

D.1 Symbol Table related to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 169

E.1 Symbol Table related to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 171

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



List of Definitions

List of Definitions

1.1.1 Definition (Behavioral Dataset) . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Definition (Group) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Definition (Context) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Definition (Subgroup Discovery) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Definition (Description) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Definition (Extent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Definition (Specialization v) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Definition (Refinement operator η) . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.6 Definition (Quality measure) . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.7 Definition (Pattern Structure) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.8 Definition (Lower bound and Upper bound of S) . . . . . . . . . . . . . . . . 25
2.2.9 Definition (Meet and Join) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.10 Definition (Meet-semilattice, Join-semilattice and Lattice) . . . . . . . . . . . 26
2.2.11 Definition (Equivalence relationship) . . . . . . . . . . . . . . . . . . . . . . 27
2.2.12 Definition (Description (instantiated attributes)) . . . . . . . . . . . . . . . . 30
2.4.1 Definition (Optimistic Estimate) . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Definition (Tight Optimistic Estimate) . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Definition (Inter-Group Agreement Pattern) . . . . . . . . . . . . . . . . . . 58
3.2.2 Definition (Specialization between patterns v) . . . . . . . . . . . . . . . . . 58
3.3.1 Definition (Outcome Aggregation Operator θ ) . . . . . . . . . . . . . . . . . 60
3.3.2 Definition (Similarity between aggregated outcomes sim) . . . . . . . . . . . 60
3.3.3 Definition (Inter-group Agreement Similarity Measure IAS) . . . . . . . . . . 61
3.4.1 Definition (HMT Attribute) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Definition (Condition on a HMT attribute) . . . . . . . . . . . . . . . . . . . 63

4.2.1 Definition (Intra-Group Agreement Pattern) . . . . . . . . . . . . . . . . . . 103
4.2.2 Definition (Intra-group Agreement Measure) . . . . . . . . . . . . . . . . . . 103

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



List of Algorithms

1 EnumCC: An algorithm for enumerating all closed descriptions . . . . . . . . . 47
2 B&B4SDEMM: A Standard Branch and Bound algorithm for SD/EMM . . . . . 50

3 DEBuNk: An algorithm for enumerating all exceptional inter-group agreements 71
4 FBS: A frequency-based sampling algorithm . . . . . . . . . . . . . . . . . . . 73
5 RWC: A random walk algorithm for enumerating contextual (dis)agreements . . 76
6 Quick-DEBuNk: An algorithm for sampling exceptional (dis)agreement patterns 77

7 DEvIANT: An algorithm for enumerating all exceptional intra-group agreements 118

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



Introduction

“Journalism is the activity of gathering, assessing, creating, and presenting news and informa-
tion"1. The primary objective of journalism is to “provide citizens with the information they
need to be free and self-governing.” as argue Kovach and Rosenstiel, 2014 in the Elements
of Journalism. In this book, the authors underline ten enduring values of journalism. We
highlight in the following two values that represent the main motivations behind the project
ContentCheck2,3 within which this thesis is conducted:

1. “Journalism’s first obligation is to the truth.”

2. “Its essence is a discipline of verification.”

� Truth, Accuracy and Verifiability are the backbone of a Trustworthy Journalism. �

The digital era and the advent of social media platforms brought sweeping changes to
how information is published and consumed (Alejandro, 2010). This affected the whole
process of traditional journalism and undermined its credibility and quality with the rise
of misinformation (Ireton and Posetti, 2018). Despite the undeniable potential of social
media in improving the life of citizens (e.g. organizing efforts in the aftermath of natural
disasters (Palen and Hughes, 2018)), its weaponisation4 impacted profoundly the landscape
of journalism (Kucharski, 2016). For instance, according to a recent survey on Internet
Security and Trust5, 85% of the respondents said they had fallen for fake news at least once,
with 44% saying they sometimes or frequently did. In this context, journalists around the
world gathered in a joint-initiative to fight the scourge of misinformation. For instance,

1

1https://www.americanpressinstitute.org/journalism-essentials
2https://contentcheck.inria.fr/
3ContentCheck is funded by the French National Research Agency (ANR) under the project code:

ANR-15-CE23-0025 - https://anr.fr/Projet-ANR-15-CE23-0025
4https://www.rappler.com/nation/148007-propaganda-war-weaponizing-internet
5https://www.cigionline.org/internet-survey-2019
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2 Chapter 1. Introduction

The International Fact-Checking Network6 (IFCN) was launched in 2015 to support Fact-
Checking in the world. More than 65 established news organizations, such as The Washington
Post Fact Checker7 and Le Monde - Les Décodeurs8, are signatory of the IFCN code of
principles9 which is a series of commitments organizations abide by to promote excellence
in transparent fact-checking. In the same spirit, by July 2019, there were 188 fact-checking
projects active in more than 50 countries according to Duke Reporters’ Lab10.

Within this ecosystem, we have been collaborating with journalists from Le Monde
(Les Décodeurs Team) since 201511 in a research and development project (ContentCheck
(Manolescu, 2017)). The goal is to assist and empower journalists by content management
technologies in order to improve fact-checking work. Content management technologies
are cross-fertilization of methods (Cazalens et al., 2018) pertaining to various data-driven
computer science disciplines including: data and knowledge management, data mining,
information retrieval and natural language processing. This extends the capabilities of a
nascent inter-disciplinary field known as Computational Journalism (Cohen et al., 2011;
Hamilton and Turner, 2009). This field represent the application scope of the tools devised
in this thesis.

During the last decade, the field of computational journalism has witnessed growing
efforts to meet journalists’ needs in many facets of their work (Caswell and Dörr, 2018;
Cazalens et al., 2018; Cohen et al., 2011; Flew et al., 2012; Young and Hermida, 2015) .
Essential to this work are data, of any kind and on any topic, which have to be collected,
understood and analyzed (Coddington, 2015). Sources complying with the open data
movement offer good quality information in many domains such as science, government,
health, etc. (Charalabidis, Alexopoulos, and Loukis, 2016). In particular, parliamentary
institutions make voting data available for transparency. For instance, Voteview12 offers
access to every congressional roll-call votes in American history. Similarly, Parltrack13

publishes on a daily basis vote results in the European Parliament. Such data can be
leveraged to objectively analyze several aspects of the democratic process (Hix, Noury, and
Roland, 2007; Poole and Rosenthal, 2000). This kind of data has been the main driver of the
research conducted in this thesis.

In this context, fine-grained analysis of voting behaviors is necessary, as it would help in
holding politicians accountable for their actions and voting behavior. Such investigation can
make use of simple queries to obtain basic information like whether a given parliamentarian
has voted for or against in a given voting session. Deeper analyses may take advantage
of other methods such as query perturbation (Yang et al., 2018) or data mining techniques
in general (Fayyad, Piatetsky-Shapiro, and Smyth, 1996). These last years, descriptive
data mining algorithms (such as Subgroup Discovey (Klösgen, 1996; Wrobel, 1997)) have

6https://www.poynter.org/ifcn/
7https://www.washingtonpost.com/news/fact-checker
8https://www.lemonde.fr/les-decodeurs/
9https://ifcncodeofprinciples.poynter.org/

10https://reporterslab.org/fact-checking/
11More precisely, this joint-initiative between Le Monde and Four Research Laboratory in France started in

December 2015. This thesis work started in October 2017.
12https://voteview.com/data
13https://parltrack.org/
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3

proved to be helpful to explore such datasets (Etter et al., 2014; Grosskreutz, Boley, and
Krause-Traudes, 2010) and to point out interesting relationships between elements in specific
data regions, in any application domain (Duivesteijn, Feelders, and Knobbe, 2016; Herrera
et al., 2011). Such tools are particularly compelling in the context of fact-checking as they
can rapidly uncover useful insights to put claims into perspective and evaluate their veracity.
Furthermore, what makes descriptive data mining techniques particularly appealing in the
context of computational journalism in general, is the fact that they involve discovering
hypotheses from data. For instance, Subgroup discovery (a descriptive data mining technique)
has been explained as “a convenient hypothesis generator for further analysis” (Wrobel,
2001). This perfectly fits one of the main endeavors of computational journalism which,
as argued by Cohen et al., 2011, is not only about finding answers but finding interesting
questions to ask starting from the data of interest (e.g. voting data).

Considering parliamentary institutions and their votes which constitutes our data of inter-
est, to understand the political positions, it is of major interest to find the contexts hardening
or softening oppositions. Accordingly, the problem we focus on is to find peculiar behavior
of groups of individuals (e.g. parliamentarians) in some context (e.g. judicial legislative pro-
cedures) when compared to the behavior of groups observed in overall terms. For instance, In
the European Parliament, despite the fact that the votes of the French MEPs (Members of the
European Parliament) reflect a strong disagreement between “Rassemblement National” and
the “Front de Gauche” in overall terms, there is a strong agreement when voted legislative
procedures concerns external relations of the EU. Such elements of information can provide
valuable insights for both political analysts and journalists, as it allows, amongst others, (i)
to help discover ideological idiosyncrasies when comparing parliamentarians against their
peers, (ii) determining red lines between political groups and (iii) exhibiting contexts where
nations’ representatives coalesce against others in critical matters.

The main endeavor of this thesis is to expand the portfolio of tools of computational
journalism for the analysis of voting data and “similar data”, called next Behavioral Data.
In this thesis, we are primarily interested in:

� Discovering and characterizing Exceptional Behaviors
between and within sub-populations in Behavioral data. �

The statement above brings to the fore three important questions whose answers define
the scope of this thesis:

• What are behavioral data?

• What is behavioral data analysis?

• What kind of exceptional behaviors are we looking for?

This chapter aims to provide answers to the these questions. First, it briefly defines the
research background of this thesis by introducing behavioral data (Section 1.1), behavioral
data analysis and its related works (Section 1.2). Subsequently, the chapter formulates the
research questions we address from the view point of behavioral data analysis and charac-
terizes what kind of exceptional behaviors we are interested in (Section 1.3). Finally, an
overview of the contributions of this thesis (Section 1.4) and its general structure (Section 1.5)
are given.
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4 Chapter 1. Introduction

1.1 BEHAVIORAL DATA

The data we are interested in consist of a set of individuals (e.g. social network users,
parliamentarians, patients) who express outcomes (e.g. opinions, ratings, votes, purchases)
on entities (e.g. legislative procedures, movies, restaurants, drugs). We call data of this type:
Behavioral data. Similarly structured data have been considered in several previous works
Bendimerad et al., 2017b; Das et al., 2011; Lemmerich et al., 2016; Omidvar-Tehrani and
Amer-Yahia, 2018; Omidvar-Tehrani and Amer-Yahia, 2019; Omidvar-Tehrani, Amer-Yahia,
and Borromeo, 2019. UGA (User Group Analytics) (Omidvar-Tehrani and Amer-Yahia,
2019; Omidvar-Tehrani, Amer-Yahia, and Borromeo, 2019) is the most generic and mature
framework for behavioral data analysis whose main objective is to “breakdown users into
groups to gain a more focused understanding of their behavior” (Omidvar-Tehrani and
Amer-Yahia, 2019). In UGA, Behavioral Data are called User Data. Behavioral Data/User
Data can be seen as bipartite graphs having individuals on one side and entities on the other
side. An edge linking an individual to an entity indicates that the corresponding individual
expressed an outcome on the referred entity. Hence, each edge carries information about the
expressed outcome (cf. Figure 1.1).
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Figure 1.1: Behavioral data as an attributed bipartite graph

While, behavioral data and user data are practically the same in terms of their structure,
we choose the term behavioral data to refer to our data of interest. This choice is mainly
motivated by the fact that the term “behavioral data” covers, in our view, a broader range of
collections of data describing individuals (social network users, parliamentarians, patients)
who express outcomes on entities. In contrast, the term “user data”, in turn, suggests a more
restrictive collection of data where only social network users are considered. Below, we give
the definition of a behavioral dataset (Definition 1.1.1).
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1.1 Behavioral Data 5

Definition 1.1.1 — Behavioral Dataset. A behavioral dataset B = 〈GI, GE , O, o〉 is
defined by (i) a collection of Individuals GI , (ii) a collection of Entities GE , (iii) a domain
of possible Outcomes O, and (iv) a function o : GI×GE →O that gives the outcome of an
individual i over an entity e, if applicable.

The two sets GI and GE are collections of records defined over a set of descriptive
attributes. We denote such collection of records by G, reintroducing the subscripts only in
case of possible confusion. We assume A = {a1, ...,am} to be the set of attributes constituting
the schema of G. Each attribute a j has a domain of interpretation, noted dom(a j), which
corresponds to all its possible values. We denote dom(A)= dom(a1)× ...×dom(am). Hence,
each record r ∈ G can be seen as a tuple r = (ar

1, ...,a
r
m) ∈ dom(A) where ar

j corresponds
to the value of ar

j ∈ dom(a j) in the record r. Finally, the domain of possible outcomes O
can include, but not limited to, numerical outcomes (e.g. ratings), ordinal outcomes (e.g.
preference), categorical outcomes (e.g. votes), texts (e.g. opinions).

Several real-world datasets can be modeled as behavioral datasets. For instance, The Eu-
ropean Parliament Voting Dataset14 (cf. Table 1.1) features parliamentarians who cast votes
on legislative procedures in the European parliament. In turn, Movielens15 (cf. Table 1.2)
corresponds to a movie review dataset featuring users who rate movies on a 5-star scale.

ide themes date

e1 1.20 Citizen’s rights 20/04/16
e2 2.10 Free Movement of goods 16/05/16
e3 1.20 Citizen’s rights; 7.30 Judicial Coop 04/06/16
e4 7 Security and Justice 11/06/16
e5 7.30 Judicial Coop 03/07/16
e6 7.30 Judicial Coop 29/07/16

(a) Entities (Voting sessions)

idi country group age

i1 France S&D 26
i2 France PPE 30
i3 Germany S&D 40
i4 Germany ALDE 45

(b) Individuals (Parliamentarians)

idi ide outcome

i1 e1 For
i1 e2 Against
i1 e5 For
i1 e6 Against
i2 e1 For
i2 e3 Against
i2 e4 For
i2 e5 For
i3 e1 For
i3 e2 Against
i3 e3 For
i3 e5 Against
i4 e1 For
i4 e4 For
i4 e6 Against

(c) Outcomes

Table 1.1: Example of a behavioral dataset - European Parliament Voting dataset. Individuals
are described by categorical attributes (country, group) and a numerical attribute (age).
Entities are described by a categorical attribute augmented with a taxonomy (themes) and a
date percieved as a numerical attribute (date). Outcomes are categorical (not ordered)

14http://parltrack.euwiki.org/
15https://grouplens.org/datasets/movielens/100k/
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ide genres releaseDate

e1 Comedy 1987
e2 Crime; Drama; SciFi 1992
e3 Action; Adventure; Crime 1996
e4 Animation; Comedy 1996
e5 Action; Romance; War 1992
e6 Comedy 1997

(a) Entities (Movies)

idi gender age occupation

i1 M 30 programmer
i2 F 53 healthcare
i3 F 48 educator
i4 M 55 marketing

(b) Individuals (Users)

idi ide outcome

i1 e1 4
i1 e2 2
i1 e4 5
i1 e5 3
i2 e2 1
i2 e3 2
i2 e5 2
i2 e6 5
i3 e1 5
i3 e2 3
i3 e4 5
i3 e6 5
i4 e1 4
i4 e3 1
i4 e4 5

(c) Outcomes

Table 1.2: Example of a behavioral dataset - Movielens Dataset. Individuals are described
by categorical attributes (gender,occupation) and a numerical attribute (age). Entities are
described by a categorical attribute augmented with a taxonomy (genres) and a date percieved
as a numerical attribute (releaseDate). Outcomes are numerical (totally ordered).

In this thesis, we are interested in characterizing exceptional behaviors in behavioral
datasets. For now, we do not introduce what kind of exceptional behaviors we are looking
for, though we introduce the concepts required to characterize such peculiarities. For this,
two concepts are central and recurrent through this thesis: Groups and Contexts whose
generic definitions are given below (Definition 1.1.2 and Definition 1.1.3). In short, Groups
characterize subsets of individuals in GI and Contexts characterize subsets of entities in GE .

Definition 1.1.2 — Group. A group u is a selection predicate which, when applied over
a behavioral dataset B, returns a subset of individuals Gu

I ⊆ GI for which the selection
predicate holds:

Gu
I = {i ∈ GI |u(B, i) = True} with B = 〈GI,GE ,O,o〉

We depict a group in a behavioral dataset in example 1.1.

� Example 1.1 Given the behavioral dataset B = 〈GI, GE , O, o〉 depicted in Table 1.2, the
following group description:

u = 〈 (gender,F), (age,[25,55]), (genre,comedy)〉

Covers all female individuals whose age is in between 25 and 55 in the GI who reviewed
comedy movies, i.e. Gu

I = {i2, i3}.
�
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1.2 Behavioral Data Analysis 7

Definition 1.1.3 — Context. A context c is as a selection predicate which, when applied
over a behavioral dataset B , returns a subset of entities Gc

E ⊆ GE for which the selection
predicate holds:

Gc
E = {e ∈ GE |c(B,e) = True} with B = 〈GI,GE ,O,o〉

Several description languages can serve to characterize subsets of individuals or subset
of entities. For attribute-value data, the most common and easy-to-interpret languages are
propositional languages, where subsets of data are characterized by conjunctions of predicates
of the corresponding attributes (Duivesteijn, Feelders, and Knobbe, 2016; Kloesgen, 2000;
Lemmerich et al., 2016; Omidvar-Tehrani, Amer-Yahia, and Borromeo, 2019). For now,
we confine ourselves to such generic definition. Having in mind what are behavioral data,
we give in the following section a brief overview of the state-of-the-art of behavioral data
analysis.

1.2 BEHAVIORAL DATA ANALYSIS

With the advent of platforms collecting and curating data related to various domains such
as governments data, education data, environment data, product ratings, social network
data, outpatient data, more and more behavioral data are available online. This offers an
unparalleled opportunity to study the behavior of individuals and the interactions between
them. This attracted the interest of both researchers and practitioners from various disciplines
such as, social network analysis (Wasserman and Faust, 1994), biology and medicine (De
Nooy, Mrvar, and Batagelj, 2018; Zitnik et al., 2019), political analysis (Clinton, Jackman,
and Rivers, 2004), psychology (Smith and Osborn, 2004), journalism (Cohen et al., 2011),
education (Romero and Ventura, 2013; Romero et al., 2010), marekting (Erevelles, Fukawa,
and Swayne, 2016), commerce (Kohavi, 2001), etc.

One of the appealing possibilities that behavioral data analysis can deliver, is the study
of how groups of individuals sharing the same characteristics (e.g. young students, smoking
patients, left-wing parliamentarians) behave with regards to entities of interest (e.g. horror
movies, chemotherapy, European integration related matters). Pieces of information uncov-
ered from such data can help both novice and seasonal analysts to generate hypotheses on
group behaviors and to investigate them in keeping with exploratory data analysis (Behrens,
1997; Tukey, 1977). In this spirit, User Group Analytics (UGA) (Omidvar-Tehrani and
Amer-Yahia, 2019; Omidvar-Tehrani, Amer-Yahia, and Borromeo, 2019) brings under its
umbrella a broad range of literature approaches that address the task of discovery, exploration
and visualization of user group behaviors. In a nutshell, UGA can be performed along three
principled components summarized below (cf. (Omidvar-Tehrani and Amer-Yahia, 2019)):

Discovery: it concerns the set of approaches that strive to discover a collection of interesting
groups S⊆ 2GI given a behavioral data B with regards to some property of interest ϕ

and multiple optimization criteria. Typically, this class of methods can be divided into
two complementary categories:
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8 Chapter 1. Introduction

Global Behavior Model: this category encompasses techniques whose aim is
to provide a comprehensive and global characterization of the behavior of the
whole population of interest. The most typical methods are: community detection
(Fortunato, 2010; Pool, Bonchi, and Leeuwen, 2014; Rossetti and Cazabet, 2018)
and clustering (Xu and II, 2005). For example, one can build a similarity graph
where each vertex represents an individual from the underlying population GI

and each edge represents the similarity between two individuals. Using this data
and by applying, for instance, Louvain algorithm (Blondel et al., 2008), one can
extract groups where similar behaving individuals are put together. In this spirit,
Amelio and Pizzuti, 2012 study the voting behavior in the Italian parliament
based on, amongst other techniques, community detection. Similarly, Jakulin et
al., 2009 propose to study the US Senators voting behavior using agglomerative
hierarchical clustering algorithm (Murtagh and Contreras, 2012). In a related
effort to analyze political related data, Garimella et al., 2018 investigate how to
characterize controversy on social media (e.g. in Twitter) given a topic of interest.
In a nutshell, the proposed approach start by building a conversation graph where
vertices represent users and edges represent interactions between them. Next a
graph partitioning technique (Karypis and Kumar, 1995) is used to produce two
disjoints partitions (aka. the two sides of the debate) on the conversational graph.
Last, a controversy measure is used to evaluate how controversial the topic is, by
using, for instance, betweenness centrality (Freeman, 1977).

Local Behavior Model: this category refers to the set of methods that attempt
to characterize the behavior of sub-populations rather than the whole population.
description-oriented community detection (Atzmueller, 2017), multi-objective
group discovery (Das et al., 2011; Omidvar-Tehrani et al., 2016), patients cohorts
discovery (Li et al., 2005; Mullins et al., 2006), subgroup discovery (Grosskreutz,
Boley, and Krause-Traudes, 2010), etcetera. For instance, Li et al., 2005 propose
the task of identifying risk patterns in medical data where each patient is labeled
by a target class: abnormal (disease, identified risk) or normal. In summary, the
aim is to identify from such data a group of patients (cohort) characterized by
demographic and inpatient attributes where a high risk is observed. Similarly, one
can leverage educational data to identify influencing factors on students’ success
rate. In this perspective, Lemmerich, Ifl, and Puppe, 2011 discuss how subgroup
discovery can be utilized to mine for groups of students where the drop-out is
relatively high compared to the rest of students. In contrast to the community de-
tection approaches that aim to characterize the global behavior model mentioned
in the former category, the goal of COMODO (Atzmueller, Doerfel, and Mitzlaff,
2016) is to identify top-k communities from a given behavioral data (seen as an
attributed graph) using some adapted interestingness measure (e.g. Newman’s
modularity (Newman, 2004)). Each uncovered community is characterized by
the set of descriptive attributes augmenting the behavioral data in question.

Exploration: it concerns the set of approaches that provide an in-depth understanding of
groups by navigating the space of groups S (that may be provided by the discovery
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1.2 Behavioral Data Analysis 9

step). In this category, the end-user is an active part of the process of exploration.
This process can be seen as a sequence of interactive steps (Dzyuba, 2017; Omidvar-
Tehrani, Amer-Yahia, and Termier, 2015; Van Leeuwen, 2014). In short, each step
requires an input group u ∈ S provided by the end-user. An exploration phase consists
in looking within the provided group (Sozio and Gionis, 2010) or around it (Omidvar-
Tehrani, Amer-Yahia, and Lakshmanan, 2018), returning a collection of groups in the
powerset 2S. The exploration process restarts by considering the output of the previous
step as the input collection of groups, from which the end-user picks her next group of
interest. For instance, Omidvar-Tehrani et Al. propose GNavigate (Omidvar-Tehrani,
Amer-Yahia, and Borromeo, 2019; Omidvar-Tehrani, Amer-Yahia, and Termier, 2015)
an interactive tool that enables to navigate among groups of individuals which are as
diverse as possible while covering some seed group given upfront by the end-user.
Interactive database exploration (Dimitriadou, Papaemmanouil, and Diao, 2014; Huang
et al., 2018) makes it possible to select some individuals to form group of interest,
which evolves and converges after successive iterations toward the terminal relevant
group. This is done by actively integrating the end-user feedback in the underlying
classification model (e.g. decision tree (Breiman et al., 1984)). In the same vein,
Siren (Galbrun and Miettinen, 2018) enables to interactively explore redescriptions
(Galbrun and Miettinen, 2017) of some starting sub-population which can evolve
through multiple interactions of the end-user with the system by modifying either the
characterization (description) of some returned subset of individuals or by updating
the subset itself.

Visualization: it concerns approaches that transform a collection of groups (may consists
in a single group) S⊆ 2GI to visual variables through visual views. Several techniques
in the literature fall into this category. Graph visualization can be applied when social
links between individuals are available (Herman, Melançon, and Marshall, 2000).
For instance, Vizster (Heer and Boyd, 2005) enables to visualize social networks
users and community structures. Also g-Miner (Cao et al., 2015) allows to visualize
multivariate graphs. Multidimensional scaling (MDS) (Cox and Cox, 2000) can be
employed to graphically represent groups of individuals by leveraging a pairwise
distance based on their outcomes. For example, Jakulin et al., 2009 employ Rajski’s
distance (Rajski, 1961) to illustrate dissimilarities between parliamentarians based
on their votes. Similarly, in the political sphere, Poole and Rosenthal, 1985 propose
Nominate, a MDS technique tailored specifically for the analysis and visualization
of legislative roll-call voting behavior. Time-based visualization can also be crucial
to understand trends of groups behavior. For example, Silva, Spritzer, and Freitas,
2018 propose a tool which provide the big picture of groups cohesiveness over time
by leveraging similarity between actions expressed by the individuals comprising
the group of interest. Furthermore, one can utilize off-the shelf softwares such as
Gephi16 or Tableau17 to visualize either raw behavioral data or results obtained by
pre-processing such as graphs of similarities between actions of individuals.

16https://gephi.org/
17https://www.tableau.com/
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10 Chapter 1. Introduction

Above, we gave a brief overview of UGA framework components which revealed the
rich array of methods available for analyzing behavioral data and the behavior of groups
from various perspectives. The scope of this thesis falls within the perimeter of the discovery
component. Recall that the objective in such a component is to transform an input raw
behavioral data to a concise collection of “interesting" patterns (e.g. groups) with regards to
some property of interest. More precisely, we are interested in locally characterizing excep-
tional behavior of groups by using the descriptive attributes to unveil easily-interpretable
insights. This pertains to the second category “local behavior model" in the discovery com-
ponent. We review below some existing approaches specifically tailored for attribute-based
discovery of interesting groups in behavioral data.

Representative Groups’ Discovery: the goal here is to extract groups of individuals
S ⊆ 2GI that best represent a selected group or selected distribution of ratings. For
instance, Das et al., 2011 aim is to identify, given a probe group (e.g. users who
rated Toy Story), subgroups of raters that substantially agree or disagree while using
the average rating within the group as an interestingness measure. Extensions have
been proposed to enable multi-objective groups identification, thanks to more complex
statistical measure: rating distributions (Amer-Yahia et al., 2017; Omidvar-Tehrani,
Amer-Yahia, and Borromeo, 2019; Omidvar-Tehrani, Amer-Yahia, and Termier, 2015;
Omidvar-Tehrani et al., 2016). These approaches take into account several criteria
as diversity, coverage, size or proximity with a desired opinions distribution (e.g.
polarized opinions, homogeneous opinions, etc.). Groups discovered can be abstracted
in a smaller number of groups using the descriptive attributes to reduce information
overload for the end users (Omidvar-Tehrani and Amer-Yahia, 2017).

Subgroup Discovery: given an input behavioral dataset B and an interestingness
measure ϕ defined according to the aim of study, the objective is to uncover a collec-
tion of interesting groups S ⊆ 2GI essentially with regards to ϕ (e.g. top-k groups).
Standard Subgroup discovery (Atzmueller, 2015; Herrera et al., 2011; Klösgen, 1996;
Wrobel, 1997) (detailed in Chapter 2) encompasses several techniques of this type.
Here, we give two examples where the methods were specifically designed for the
category of data we are interested in (e.g. votes). For instance, Grosskreutz, Boley, and
Krause-Traudes, 2010 investigate election result data to study what socio-economic
variables, determining a subpopulation, characterize a voting behavior that substan-
tially differ from the global voting behavior of the whole population. For this task, the
authors compute for each subpopulation: the mean vector representing the share of
votes of each party and compare it against the mean vector representing the share of
votes of each party for the whole population. For this comparison, they propose an
interestingness measure ϕ which evaluates the weighted difference between the two
vectors where the weight is equal to the size of the sub-population (group) in question.
In the same spirit, Du, Duivesteijn, and Pechenizkiy, 2018 propose ELBA to mine
for subgroups of students that have significantly high dropout rate compared to the
whole population of study. The authors utilize, among others, the Weighted Relative
Accuracy (WRAcc) (Lavrač, Flach, and Zupan, 1999) as the interestingness measure
ϕ to evaluate to what extent the dropout rate changes for some subpopulation.
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1.2 Behavioral Data Analysis 11

Preference Mining: such approaches are interested in finding socio-demographic
factors that substantially impact the preferences of subpopulations. For instance,
consider a political survey where respondants emit their vote preferences for particular
national parties (e.g. p1, p2, p3). Each individual i in GI is associated to her personal
details (e.g. age, family income) along with her vote preference (e.g. p2 � p1 � p3).
One can obtain the overall preference of the entire population by aggregating individual
preferences, then look for subgroups where the aggregated preference relation between
subsets of the parties significantly differ from the aggregated overall preference. It is
the goal of Exceptional Preference Mining (EPM) (Sá et al., 2016; Sá et al., 2018)
which is grounded on the Exceptional Model Mining framework (Duivesteijn, Feelders,
and Knobbe, 2016). EPM aims to uncover exceptional subgroups where preference
between some labels significantly differs from the overall preference. In EPM, the
authors propose several interestingness measures to gauge the exceptionality of a
subgroup. For example, the labelwise measure aims to identify subgroups where only
a single label behaves differently, disregarding the interaction between the other labels.

Transition Behavior Mining: the objective here is to find exceptional transition
behavior of groups of individuals. In this case, the behavioral dataset B given as
input describes a collection of individuals i ∈ GI and their transitions (e.g. from
location a to location b at a time t) between entities e ∈ GE (e.g. locations, web
pages, etc.). To discover and extract hypotheses about human navigation, Lemmerich
et al., 2016 propose to model the transition behavior of a group by a first-order
markov chain (Norris, 1998). In order to extract the exceptional transition behaviors,
the proposed algorithm mines for subgroups whose fitted markov transition’ matrix
significantly differs (using an adapted manhattan distance) from the one computed
over the entire population. Similarly, HypTrails (Singer et al., 2015) extended to
MixedTrails (Becker et al., 2017) operationalizes bayesian model comparsion on
simple markov chains (HypTrails) and hetergeneous mixed comparison markov chains
(MixedTrails). Although, these methods do not consider descriptive attributes to
extract groups but rather evaluate the transition behavior of an input group. Similarly
as the work of Lemmerich et al., 2016, Kaytoue et al., 2017 and Bendimerad et al.,
2017a strive to find exceptional transition of groups of individuals between areas in a
city. To this aim, the behavioral data is modeled as an attributed graph where vertices
depict places and edges represent the trips. This enables the enumeration of contextual
subgraphs where each represents a subset of places characterized by means of the
descriptive attributes. Each contextual subgraph may suggest an exceptional transition
behavior according to the used interestingness measures ϕ . Several interestingness
measures have been investigated to measure to what extent the number of transitions
in a subgraph is high compared to the expected number of transitions. The latter
being estimated either by considering a simple contingency matrix (Bendimerad et al.,
2017a) or more sophisticated models (Kaytoue et al., 2017) as the gravity model (Zipf,
1946) and the radiation model (Simini et al., 2012).
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1.3 RESEARCH QUESTIONS

While each of the aforecited methods aims to uncover various insights from behavioral
data, they share in common the fact that entities attributes AE and individuals attributes AI

are confounded. Both collections of attributes serve to characterize groups of individuals
(cf. definition 1.1.2). For example, in representative group discovery’ methods, a group
in a movies review dataset can be described by 〈 (gender,female), (location,DC),
(genre,comedy)〉 which contains individual who are all females living in Washington D.C.
and who expressed at least one rating over a comedy movie. In contrast, in preference min-
ing, only individual attributes are used to characterize groups with exceptional preferences,
leaving the labels (perceived as entities) without characterization. By merging AE and AI ,
some insights of crucial importance cannot be unveiled. For instance, consider the European
parliament voting dataset (an excerpt is given in table 1.1) featuring parliamentarians voting
for legislative procedures. Each parliamentarian is associated to his national party, country
and political group and each voting session is characterized by its date and the topics of
interest. Using this dataset, a data journalist can be interested in answering the following
question:

What are the controversial topics between French parties representatives in the European
Parliament?

At first sight, the question seems simple, yet finding an answer is a daunting task if
the journalist investigates manually all possible topics treated in the European parliament
between all possible combinations of French national parties. If we take a deep look in the
question, it can be brought down to three elements highlighted below:

What are the [controversial] [topics] [between French parties] in the European
Parliament?

In this configuration, the french parties are the groups (cf. definition 1.1.2) of interest,
the topics represent the contexts (cf. definition 1.1.3) containing the voted legislative
procedures. Both contexts and groups must be characterized and enumerated independently
by their corresponding attributes: groups by using descriptors from AI and contexts by
using descriptors from AE . Finding controversial topics now requires the definition of
proper interestingness measures that objectively capture such an information by analyzing,
for instance, the inter-group agreement observed in each context (e.g. agriculture, judicial
matterns, Citizen’s rights) related legislative procedures.

This is a challenging task as it requires to handle both complex search spaces induced
by the set of all possible groups and all possible contexts that one can characterize using
attributes from AI and AE respectively. Moreover, one needs to only return the most relevant
combinations of groups and context to avoid overwhelming the end-user with too many
options. As discussed earlier, the state-of-art does not offer an off-the-shelf method that
enables providing a ready answer to the aforementioned question or to similar ones (e.g.
what are the contexts that divides groups sharing naturally the same political line ?). Having
these elements in mind, we formulate in the following the two main complementary research
questions for which we endeavor to provide answers in this thesis:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés
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Research Question. 1 How to characterize, discover, summarize and present excep-
tional (dis) agreement between groups (sub-populations) in behavioral data ?

Research Question. 2 How to characterize, discover, summarize and present excep-
tional (dis) agreement within groups (sub-populations) in behavioral data ?

These are the challenges we are addressing in this thesis. Interestingly, these challenges
pertain to the scope of the generic framework of Subgroup discovery (Klösgen, 1996;
Wrobel, 1997), a popular task in the data mining research field (Fayyad, Piatetsky-Shapiro,
and Smyth, 1996). Subgroup discovery has been extended recently to Exceptional Model
Mining (Leman, Feelders, and Knobbe, 2008) (both detailed in Chapter 2). The techniques
falling in Subgroup Discovery (SD) or Exceptional Model Mining (EMM) frameworks aim
to discover interpretable patterns in the data that stand out w.r.t. some property of interest.

1.4 CONTRIBUTIONS

This thesis bring three main contributions that aim to provide solutions in response to R.Q. 1
and R.Q. 2. These contributions are summarized in what follows:

1.4.1 CONTRIBUTION 1: FROM BEHAVIORAL DATA TO EXCEPTIONAL INTER-GROUP (DIS)AGREEMENTS

In response to Research Question 1, we propose to define the task of “Discovering Excep-
tional (Dis)Agreement between Groups" grounded on SD/EMM. The solution of such a task
is a list of triples (patterns) of the form (c,u1,u2); where c is a context (cf. Definition 1.1.3)
and (u1,u2) are two groups (cf. Definition 1.1.3), (c,u1,u2) reads as follows:

� There is an exceptional disagreement (or agreement) between group u1 and group u2 in
the context c compared to the overall inter-group agreement �

To tackle this task and retrieve such patterns, we first define the underlying search
space corresponding to all the characterizable18 contexts and groups. Subsequently, we
define an inter-group agreement measure to evaluate to what extent two groups are in
agreement with regards some subset of entities. This enables the definition of interestingness
measure which assesses how exceptional the inter-group agreement observed in a context
is, compared to the one observed for the whole collection of entities. Once these elements
are defined, we propose two algorithms: DEBuNk and Quick-DEBuNk.

• DEBuNk is an exhaustive branch and bound algorithm which guarantees the retrieval
of all the desired patterns. To make this possible, we propose several optimizations to
avoid enumerating uninteresting patterns. For instance, optimistic estimates are used
to safely prune as soon as possible unpromising areas of the search space.

18Characterizable subset means a subset of the data that can be retrieved by a conjunctive query on the
attributes value domains. This notion will be properly formalized in Chapter 2 and appropriately instantiated
afterward for both tasks associated to: Contribution 1 (Chapter 3) and Contribution 2 (Chapter 4).
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• Quick-DEBuNk is a stochastic algorithm which heuristically approximates the exact
solution of the task of finding exceptional inter-group agreement. This algorithm is
proposed to render the solving of such a task tractable, since an exhaustive traversal of
the search space is computationally expensive even when optimizations are used.

In order to evaluate both the usefulness of exceptional inter-group agreement patterns
and the efficiency of the proposed algorithms (DEBuNk and Quick-DEBuNk), a thorough
experimental study is performed over four real-world datasets relevant to three different
application domains: political analysis, rating data analysis and healthcare surveillance.

A preliminary version of this contribution has appeared in the proceedings of the The
European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD’2017) (Belfodil et al., 2017a). An extended version
has been accepted for publication in Data Min. Knowl. Disc. Jounral (Belfodil et al., 2019c).

1.4.2 CONTRIBUTION 2: FROM BEHAVIORAL DATA TO EXCEPTIONAL INTRA-GROUP (DIS)AGREEMENTS

In response to Research Question 2, we propose the task of “Discovering statistically
significant exceptional (Dis)agreement within Groups" grounded on SD/EMM. The solution
of such a task is a list of pairs (u,c) where u is a group and c a context; (u,c) reads as follows:

� There is a systematic exceptional disagreement (or agreement) among members of the
group u in the context c compared to what is expected in overall terms. �

Along the same lines as in the previous contribution, we first model the underlying
search space by identifying and formally characterizing all candidate patterns (groups
and contexts). We propose an adequate intra-group agreement measure to capture how
consensual/conflictual the situation is between members of a group when a subset of entities
is selected. Particularly, the proposed measure needs to handle the sparsity encountered in
behavioral data. Subsequently, we formally define an interestingnesss measure which rates
how exceptional a contextual intra-group agreement is. Once these elements are defined,
we devise an algorithmic solution, named DEvIANT, to solve efficiently and optimally the
search of such patterns. To do so, several optimizations are integrated into the algorithm to
avoid enumerating uninteresting patterns. Finally, we study the efficiency of the proposed
algorithm DEvIANT and show the interpretability of such patterns via two application
domains: political analysis and rating data analysis.

This contribution has appeared in the proceedings of the the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD’2019) (Belfodil et al., 2019a).

1.4.3 CONTRIBUTION 3: A WEB PLATFORM FOR EXCEPTIONAL VOTING BEHAVIORS ANALYSIS

The third contribution pertains to the two fundamental research questions that we ask in
this thesis (R.Q. 1 and R.Q. 2) and comes as a use case which links the two precedent
contributions. Hence, providing two complementary angles of exceptional (dis)agreement in
behavioral data: between and within groups. With this aim in mind, we propose ANCORE,
a web-platform19 which is tailored specifically for the analysis of exceptional behaviors in

19The web platform is available online on https://contentcheck.liris.cnrs.fr.
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1.5 Thesis Outline 15

voting data (e.g. European Parliament Voting Data and United States Congresses).
ANCORE allows, via a user-interface, to query an input voting dataset perceived as a

behavioral dataset (cf. Definition 1.1.1) for exceptional (dis)agreement within and between
groups. Moreover, for a better understanding and interpretation for each pattern, the platform
offers a fine-grained visualization tool which offers the possibility to retrieve the data that
were used to assess the exceptionality of the findings. In order to evaluate the usefulness
of such a tool, we give two exemplary applications which are relevant to computational
journalism field: Fact-checking and Lead-finding. For fact-checking, we paints several
portraits of how ANCORE can be used to provide contextual counter-arguments, if possible,
for some given claim on the voting behavior of parliamentarians. Furthermore, for lead-
finding which consists on finding interesting information nuggets from the data that can raise
further investigations or stories around them, we discuss several scenarii using voting data.

This contribution extends the work that appeared in the proceedings of Extraction et
Gestion des connaissances - Demo Track (EGC’2019) (Lacombe et al., 2019).

1.5 THESIS OUTLINE

This chapter presented the context of this thesis: first, by depicting the data we are interested
in, i.e. behavioral data, and by briefly introducing behavioral data analysis. Upon this
background, the chapter draws particular attention to the main research questions motivating
the contributions of this thesis. The remainder of this thesis is organized as follows:

� Chapter 2 is devoted to the presentation of the theoretical background of the three
aforementioned contributions, namely: Subgroup Discovery (SD) and Exceptional
Model Mining (EMM). The chapter reviews the state-of-the-art works and outlines
the main building blocks of both frameworks. This building blocks are required to
formally define and optimally solve the underlying mining tasks.

� Chapter 3 details Contribution 1 by introducing the problem of discovering excep-
tional (dis)agreement between groups in behavioral data. The chapter expands the
possibilities of SD/EMM framework by instantiating its building blocks according to
the problem statement. The chapter discusses an algorithmic solution (DEBuNk and
Quick-DEBuNk) to the problem and evaluate its efficiency through a comprehensive
experimental evaluation.

� Chapter 4 concerns Contribution 2, it introduces the problem of discovering ex-
ceptional (dis)agreement within groups in behavioral data. In the same spirit as the
precedent chapter, it instantiates SD/EMM building blocks for such a task in order
to propose an adequate and efficient algorithm (DEvIANT) for solving the problem
of finding the desired patterns. A thorough experimental evaluation is conducted to
evaluate the effectiveness and efficiency of the proposed algorithm.

� Chapter 5 details Contribution 3 by presenting ANCORE. This tool consolidates
the results of the two precedent chapters by illustrating how they can be used in the
context of a Computational Journalism process.

� Chapter 6 concludes this thesis by summarizing its contributions and by discussing
opportunities for future work.
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Subgroup Discovery and Exceptional
Model Mining

Subgroup Discovery and its extension Exceptional Model Mining provide generic frame-
works that enable to define descriptive data mining tasks and to efficiently solve them.
This chapter addresses the formalization of these two frameworks. Furthermore, it reviews
state-of-the-art works that are relevant in the scope of this thesis. However, it is not the
sole aim. Our endeavor via this chapter, is to create the theoretical foundations on which
this thesis is grounded. Moreover, our aim is to consolidate the concepts required for the
understanding of the main contributions of this work discussed in details in the following
Chapters (Chapter 3 and Chapter 4).

2
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18 Chapter 2. Subgroup Discovery and Exceptional Model Mining

2.1 INTRODUCTION

Subgroup Discovery and Exceptional Model Mining provide generic frameworks that can be
used to model several mining tasks while handling appropriately the complexity of both the
underlying search space and the interestigness measures. The aim of this chapter is to review
the work that has been done in the state-of-the-art and to build a theoretical background of
the algorithms proposed in Chapter 3 and Chapter 4.

Scientists have always seen Exploratory Data Analysis (EDA) as an important research
area since its introduction (Tukey, 1977). Among the various EDA techniques that aim
to maximize insight into datasets and uncover underlying structures, Subgroup Discovery
(SD) (Atzmueller, 2015; Herrera et al., 2011; Klösgen, 1996; Wrobel, 1997) is a generic
data mining task concerned with finding regions in the data that stand out with respect to
a given target1. Many other data mining tasks have similar goals as SD, e.g., emerging
patterns (Dong and Li, 1999), significant rules (Terada et al., 2013), contrast sets (Bay and
Pazzani, 2001) or classification association rules (Liu, Hsu, and Ma, 1998). However, among
these different tasks, SD is known as the most generic one, especially SD is agnostic of the
data and the pattern domain. For instance, subgroups can be defined with a conjunction of
conditions on symbolic (Lavrač et al., 2004) or numeric attributes (Atzmüller and Puppe,
2006; Grosskreutz and Rüping, 2009) as well as sequences (Grosskreutz, Lang, and Trabold,
2013). Furthermore, the single target can be discrete or numeric (Lemmerich, Atzmueller,
and Puppe, 2016). Exceptional Model Mining (EMM) (Leman, Feelders, and Knobbe, 2008),
while sharing exactly the same exploration space (i.e., the description space), extends SD by
offering the possibility to handle complex targets, e.g., several discrete attributes (Duivesteijn,
Feelders, and Knobbe, 2016; Duivesteijn et al., 2010; Leeuwen and Knobbe, 2012) or graphs
(Bendimerad, Plantevit, and Robardet, 2016; Bendimerad et al., 2017b; Kaytoue et al., 2017).

Roadmap. The remainder of this section is organized as follows. We first introduce
the generic framework of Subgroup discovery in section 2.2 and discuss the related works.
Subsequently, in Section 2.3 we introduce its generalization called Exceptional Model Mining
and review its literature. Section 2.4 summarizes the concepts introduced in both precedent
sections. Moreover, it presents two guideline algorithms which serves as backbone for the
algorithms presented in the next chapters. Section 2.5 concludes the chapter by discussing
the potential and limitations of state-of-the-art SD/EMM techniques for behavioral data
analysis.

2.2 SUBGROUP DISCOVERY

Subgroup discovery as a research field, although called Data Surveying, dates back to
the seminal paper of Siebes, 1995 where it is described as “the discovery of interesting
subgroups”. The term Subgroup Discovery was coined by Klösgen, 1996 and Wrobel, 1997.
It is defined as the problem of finding statistically unusual subgroups in a given database
(Wrobel, 1997). Below, we give a generic definition of SD, first introduced in (Wrobel, 2001)
and pointed out in a recent survey (Herrera et al., 2011).

1Subgroup discovery definitions corresponds here more to supervised descriptive rule discovery (Carmona,
Jesus, and Herrera, 2018; Herrera et al., 2011; Kralj Novak, Lavrač, and Webb, 2009) than the original definition
(Klösgen, 1996; Siebes, 1995; Wrobel, 1997)
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2.2 Subgroup Discovery 19

Definition 2.2.1 — Subgroup Discovery. (Generic Definition) In subgroup discovery,
we assume we are given a so-called population of individuals (objects, customer, ...) and a
property of those individuals we are interested in. The task of subgroup discovery is then
to discover the subgroups of the population that are statistically “most interesting", i.e. are
as large as possible and have the most unusual statistical (distributional) characteristics
with respect to the property of interest.

For example, consider a patient dataset where each patient is associated with her demo-
graphic attributes (e.g. age) along with her inpatient data (e.g. average heart beat rate per
minute). More over each patient is classified to a variable which states whether or not she
has developed lung cancer. One interesting investigation that can be conducted over such a
dataset is the search of subgroups whose lung cancer is substantially higher than the average.
Figure 2.1 illustrates such a dataset.
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Figure 2.1: A patient dataset describing individuals and whether they have a lung cancer.

Figure 2.1 shows an example where in the overall terms, only 23% of the patients are
diagnosed with a lung cancer. In this Figure, two subgroups are highlighted S1 and S2 which
bring to the fore two subgroups where the cancer prevalence is substantially higher than in
the rest of the dataset. Considering such subgroups of patients, a medical researcher can be
interested in finding an answer to the following question:

� What are the common characteristics shared by patients of subgroup S1 (or S2) ? �

This is the prime objective of Subgroup Discovery, finding interpretable links between
different characteristics (descriptive variables) and the property of those individuals we are
interested in (e.g. cancer incidence in this example) as argued by Siebes, 1995: “Clearly, the
result of a data mining session should never be a listing of the members of such a subgroup.
Rather, it should result in a (characteristic) description of the subgroup".

Consider a collection G of records g and its underlying schema {a1,a2, ...,am, t} (the
schema as previously presented is extended with a new attribute t). Each attribute a j has
a domain of interpretation, noted dom(a j), which corresponds to all its possible values.
Attributes a1, a2,..., am are called descriptive attributes and are denoted A. We have
dom(A) = dom(a1)× ...×dom(am). t is an attribute called target attribute and represent
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20 Chapter 2. Subgroup Discovery and Exceptional Model Mining

the property of interest. The target attribute has also a domain of its possible values denoted
dom(t). Hence, each record r ∈ G can be seen as a tuple g = (ag

1, ...,a
g
m, tg) ∈ dom(A)×

dom(t) where ag
j corresponds to the value of a j ∈ dom(a j) in the record g and tg ∈ dom(t)

the associated target value for g. Tables 2.1 and 2.2 give two standard SD dataset extracted
respectively from the behavioral datasets depicted in tables 1.1 and 1.2. The two datasets
will serves for running example through this section. The two datasets differ mainly on
the domain of interpretation of the target attribute. Table 2.1 describes a dataset with a
categorical target. Table 2.2 describes a dataset with a numerical target.

idi country group national party age Vote

i1 France S&D PS 26 For
i2 France PPE LR 30 For
i3 France PPE LR 40 Against
i4 France ENF RN 45 Against
i5 Germany ENF BP 26 For
i6 Germany PPE CDU 30 For
i7 Germany S&D SPD 40 Against
i8 Germany PPE CSU 45 Against

Table 2.1: Example of behavioral dataset - European Parliament dataset depicting the votes
of parlementarians for a single voting session (session 72229) concerning the second amend-
ment of Social dumping in the European Union. The descriptive attributes characterizing
parlementarians are: country, group, national party and age. The target attribute is Vote
(categorical attribute) representing the voting outcome of the parliamentarians.

idi gender age occupation Rating

i1 M 30 programmer 4
i2 F 53 healthcare 5
i3 F 48 marketing 1
i4 M 21 healthcare 5
i5 M 25 educator 3
i6 F 19 educator 5
i7 F 61 educator 4
i8 M 55 marketing 1

Table 2.2: Example of behavioral dataset - Movielens dataset depicting the ratings of users for
a single movie (Pulp Fiction). The descriptive attributes characterizing users are: gender,
age and occupation. The target attribute is Rating (a numerical attribute) representing
the rating outcome of the users for Pulp Fiction.

The aim of subgroup discovery is to find characteristic descriptions for interesting
subgroups. Two important concepts are highlighted here: the notion of “description" and
the notion of “interestingness". Let us first consider the descriptions.
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2.2 Subgroup Discovery 21

Descriptions (also called selectors (Kloesgen, 2000)) represent by intent a subgroup
which is by extent a subset of individuals S⊆ G. In its most generic definition, a description
d of a subgroup S is a statement in a subgroup description language, noted hereafter D

,that specifies the properties that must be satisfied by the subgroup records (Kloesgen, 2000).
It can be seen as a selection query on the underlying database (Siebes, 1995) using the
descriptive attributes. The literature abounds of possible descriptions language: itemsets
(Agrawal, Imielinski, and Swami, 1993), hyper-rectangles (Grosskreutz and Rüping, 2009;
Kaytoue, Kuznetsov, and Napoli, 2011; Kaytoue et al., 2011; Mampaey et al., 2012) ,
polygones (Belfodil et al., 2017b), sequences (Agrawal and Srikant, 1995; Grosskreutz,
Lang, and Trabold, 2013; Mathonat et al., 2019), graphs (Kaytoue et al., 2017; Yan and
Han, 2002) which define the space (set) of possible descriptions defining, by extent, the set
of possible subsets of records that one can consider in the analysis task. In the scope of
this thesis, we confine ourselves to propositional languages which are the most commonly
used languages for attribute-value data (Kralj Novak, Lavrač, and Webb, 2009). In this case,
descriptions are formalized as conjunction of conditions (restrictions), each corresponding to
a single attribute. The subset of elements of G supporting the description is the subset of
elements for which the conjunction of conditions hold. For example:

� Example 2.1 Given the collection G depicted in table 2.1 and the following description:

d = 〈Country ∈ { France } and age ∈ [20,39]〉

Subset S⊆ G supporting the description d is S = {i1, i2}. �

Below, we give the generic definition of a description, also called the intent or pattern, in
the conjunctive descriptions language D.

Definition 2.2.2 — Description. Let G be a collection of records with A = {a1, ...,am}
the descriptive attributes. A description d ∈D is a conjunction of conditions of the form
d = 〈r1, ...,rm〉 where r j is a membership test in a subset χ j of the value domain dom(a j)

of the attribute a j. A description d is hence given by:

d = r1∧ r2∧ ...∧ rm where r j : a j ∈ χ j with χ j ⊆ dom(a j).

Note that, if χ j = dom(a j), the condition r j can be removed from d or replaced in d
by the wildcard ∗ which means that the condition do not restrict the domain of possible
values of the attribute a j.

A description d characterizes a subset of records, also called the extent, the support or
the cover of d.

Definition 2.2.3 — Extent. Let G be a collection of records with A = {a1, ...,am} the
descriptive attributes. Let d = 〈r1, ...,rm〉 ∈D a description d ∈D with r j : a j ∈ χ j. The
extent of d denoted Gd is the subset of records g ∈ G fulfilling the conditions of d, hence:

Gd = {g = (ag
1, ...,a

g
m, tg) ∈ G s.t. ∀ j ∈ 1..m : ag

j ∈ χ j}.

Note that, we also denote the extent of a description d by ext(d) where ext : D→ 2G with
ext(d) = Gd .

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



22 Chapter 2. Subgroup Discovery and Exceptional Model Mining

Through this thesis, if no confusion can arise, the term subgroup is interchangeably used
to express a description d or its extent Gd . Note also that the term support is used in the
literature both to express the extent Gd or its cardinality |Gd |. To avoid confusion, we will
use cardinality or size of the subgroup to refer to the number of records in G fulfilling the
conditions of d.

Descriptions are partially ordered in D by a specialization relationship defined as follows.

Definition 2.2.4 — Specialization v. Let d and d′ be two descriptions from D. d′ is said
to be a specialization of d, denoted d v d′, iff d′⇒ d.

As a consequence, if d v d′ then Gd′ ⊆ Gd , since each record supporting d′ supports by
definition d. For example:

� Example 2.2 Given the collection G depicted in table 2.1 and the two following descrip-
tions:

d = 〈Country ∈ { France } and age ∈ [20,39]〉
d′ = 〈Country ∈ { France } and age ∈ [20,39] and National Party = PS 〉

We have d v d′ since d′⇒ d. We have: Gd = {i1, i2} and Gd′ = {i1}, thus Gd′ ⊆ Gd . �

In most standard subgroup discovery enumeration algorithms (Atzmüller and Puppe,
2006; Leeuwen and Knobbe, 2012), the search space induced by (D,v) is explored in a top-
down fashion starting from the most general description, it proceeds by atomic refinements
to progress, step by step, toward more specific descriptions with regard to v. Intuitively, an
atomic refinement of a description d produces a more specific description d′ by reinforcing the
condition of one attribute only. Furthermore, such refinement is minimal. Such descriptions
are provided by a refinement operator η .

Definition 2.2.5 — Refinement operator η . A refinement operator is function η : D−→
2D that maps each description d ∈D to its neighbors in D, i.e.

η(d) = {d′ ∈D s.t. d @ d′ ∧ @e ∈D : d @ e@ d′}

� Example 2.3 Resuming the example 2.2, where the two following descriptions are:

d = 〈Country = France and age ∈ [20,39]〉
d′ = 〈Country = France and age ∈ [20,39] and National Party = PS 〉

We have d v d′, moreover d′ ∈ η(d) as, colloquially, d′ contains only a new atomic condition
National Party = PS. �

For now, we confine ourselves to this high definition of the refinement operator, we shall
return to this point later in section 2.2.1.

Recall that the aim of subgroup discovery is to find the collection of “interesting”
subgroups. For this, an objective characterization of interestingness measurement is required.
For this purpose, a quality measure is generally defined to evaluate the interestingness of
a subgroup transforming it to a quantity in a totally ordered set, most usually R (Wrobel,
1997).
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2.2 Subgroup Discovery 23

Definition 2.2.6 — Quality measure. A quality measure is a function ϕ : D→ R which
assigns to each description d ∈D a real number ϕ(d) ∈ R.

Whilst some of the work in the literature use the description (syntax) to compute the
interestingness of a subgroup (Bie, 2011a; Lijffijt et al., 2018; Siebes, Vreeken, and Leeuwen,
2006; Vreeken, Leeuwen, and Siebes, 2011), we emphasize in the scope of this thesis,
on extent-based quality measures that are computed exclusively using the extent of a
description and mostly relies on the target value. Therefore, we will occasionally use ϕ(Gd)

to denote the quality of a subgroup whose description is d. Hence, by abuse of notation and
to avoid overloading notations, ϕ is also defined on the powerset of 2G , i.e. ϕ : 2G → R.
It follows that, two equivalent descriptions d,d′ ∈ D in terms of their respective extent
(Gd = Gd′) have the same quality, i.e. ϕ(d) = ϕ(Gd) = ϕ(Gd′) = ϕ(d′).

The notions of subgroups (descriptions d and extents Gd) along with the specialization
v and the quality measure ϕ allows to define the task of subgroup discovery. In short, the
task of subgroup discovery consists in exploring the search space defined by the description
language D and structured with the partial orderv in order to find a succinct list of subgroups
L = {d1,d2, ....dk} (k ∈ N) where each subgroups di observe a high interestingness score
ϕ(d). Additionally, a set of constraints C can be given by the end-user to limit the collection
of valid subgroups. Usually these constraints encompasses a cardinality constraint and a
minimal quality constraint. Cardinality constraints imposes that subgroups are of sufficient
size. This translates to a minimum size threshold σG that must be satisfied by subgroups
in L, i.e. ∀d ∈ L : |Gd | ≥ σG . Minimal quality constraint requires that the subgroups in L
are above a minimal quality threshold σϕ ∈ R, i.e. ∀d ∈ L : ϕ(d) ≥ σϕ . We give in the
following, a typical subgroup discovery task which consists in finding the top-k subgroups
with regard to the defined quality measure (solving the problem 2.2.1). The task is simlarly
formalized as the generic problem defined in (Duivesteijn, Feelders, and Knobbe, 2016) .

Problem 2.2.1 (Top-k Subgroup Discovery Problem).
Given a collection G, a description language D, a quality measure ϕ , a quality

threshold σϕ and a minimum support threshold σG , the problem is to find the list L =

{d1, ...,dk} ⊆D such that:

[Validity] ∀d ∈ L : d valid, that is |Gd | ≥ σG and ϕ(d)≥ σϕ .

[Top-k] (∀d′ ∈ (D \L))(∀d ∈ L) : ϕ(d)≥ ϕ(d′).

To solve this problem, we need to devise an efficient algorithm which explore the
search space D by smartly leveraging both its structure induced by the partial v and
the properties of the quality measure ϕ . Figure 2.2 summarizes the building blocks of a
subgroup discovery task. In summary, when it comes to define a subgroup discovery task
and solve it, one need to answer the three following questions:

Language: what is the description space D of candidate subgroups?

Interestingness: how to assess the interestingness of a subgroups (quality measure)?

Algorithm: How to explore the search space of candidate subgroups?
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Subgroup
Discovery

Algorithm

How is the search space 
explored: is it exhaustive ? 
Heuristic ?, by sampling ? 

Language 

What is the considered pattern 
language: symbol sets, numerical 
intervals, subsequences, 
subgraphs, … 

Interestingness

Descriptive Attributes
Relies mainly on the

Target Attributes

How to assess the quality 
/interestingness of a subgroup

Figure 2.2: Building blocks of a subgroup discovery task (Summary)

The remaining of this section is organized as follows. We give in Section 2.2.1 an
overview of how description spaces are structured and the main properties that one can
leverage for an efficient enumeration of candidate subgroups. Next, we enumerate in
Section 2.2.2 examples of noteworthy quality measures that can be used to assess the
interestingness of subgroups. Eventually, we discuss in Section 2.2.3 several search strategies
developed in the literature to explore the potentially exponential search space.

2.2.1 ON DESCRIPTION LANGUAGES

In the scope of this thesis, we only consider descriptions that are conjunction of conditions
restricting the domain of values of the descriptive attributes (cf. definition 2.2.2. These
descriptions are members of a description language denoted D and are partially ordered
by the operator v (cf. definition 2.2.4) which roughly translates to a logical implication.
This induces a partially ordered set (poset) that is denoted henceforth (D,v). In the
search space related to a subgroup discovery task, we have on one hand descriptions from
the description language2 (D,v) and in the other hand objects from the collection G.
These two collections are closely related, hence a mapping linking G with D is essential to
manipulate objects and descriptions when it comes to look for interesting subgroups. Below,
we define a mapping function δ :

δ : G −→D

δ maps each record g∈G to the tightest (maximum) description δ (g) in D with regard to
v. Given this mapping, a record g ∈ G supports a description d in D if and only if d v δ (g).

2From now on, description space refers to D, search space refers to (D,v) and, if no confusion can arise,
description language interchangeably refers to both D and (D,v).
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2.2 Subgroup Discovery 25

It follows that the extent of a description d can be formalized as such:

ext : D −→ 2G ,d 7−→ ext(d) = {g ∈ G | d v δ (g)}= Gd (2.1)

For the ease of presentation, we will consider for now G as a finite collection of single
attributed records. Table 2.3 is extracted from Table 2.2 and gives an example of such a
dataset and the mapping operator δ .

idi age δ (age)

i1 30 [30,30]
i2 53 [53,53]
i3 48 [48,48]
i4 21 [21,21]
i5 25 [25,25]
i6 19 [19,19]
i7 61 [61,61]
i8 55 [55,55]

Table 2.3: Example dataset G with a single numerical attribute age. The mapping describe δ

the transformation of an attribute value to its corresponding description in D. For numerical
attributes, the most commonly used and easy to interpret language is interval language where
D contains all interval that one can form using the values in dom(age).

When grouped, these concepts form a pattern setup (G,(D,v),δ ) (Lumpe and Schmidt,
2015) which builds upon Formal Concept Analysis (FCA) (Ganter and Wille, 1999; Wille,
1982). Although, several structures can be induced from pattern setups (Belfodil, Kuznetsov,
and Kaytoue, 2018; Belfodil, Kuznetsov, and Kaytoue, 2019), we emphasize on pattern
structures (Ganter and Kuznetsov, 2001) as they provide a sufficient framework to manipu-
late datasets with various complex attributes (numerical, categorical, etc.).

Definition 2.2.7 — Pattern Structure. A pattern structure is essentially a Pattern Setup:
(G,(D,v),δ ) where G is a collection of records, (D,v) is a poset (a description space D

partially ordered with v). δ is a mapping function δ : G −→D which maps each record
g ∈ G to the tightest (maximum) description δ (g) in D with regard to v. (G,(D,v),δ )
is a pattern structure if and only if the poset (D,v) is a meet-semilattice.

Below, we give the definition of a meet-semilattice and the important surrounding
concepts. For more details about lattices and order, we invite the reader to consult (Davey
and Priestley, 2002; Roman, 2008).

In what follows, (D,v) is a poset and S⊆D an arbitrary subset.

Definition 2.2.8 — Lower bound and Upper bound of S. The lower bound (resp. upper
bound) of S denoted Sl (resp. Su) is the subset of elements in D that are below (resp.
above) all elements in S, Formally:

Sl = {d ∈D |(∀s ∈ S) d v s} Su = {d ∈D |(∀s ∈ S) sv d}
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The lower bound concept allow to, among other things, to formalize the collection of
common descriptions between records in G. For instance:

� Example 2.4 in Table 2.3, the description language D considers all possible intervals.
Hence, the common descriptions between individuals i4 and i8 are all possible intervals d ∈D

that contains simultaneously 21 and 55. That is {δ (21),δ (55)}l = {[21,21], [55,55]}l . If we
restricts the domain to the values appearing in the dataset (i.e. {19,21,25,30,48,53,55,61}),
we have {δ (21),δ (55)}l contains all intervals whose left endpoints are lower or equal to 21
and whose right endpoints are higher than 55, that is {δ (21),δ (55)}l = {[21,55], [19,55],
[21,61], [19,61]}. �

Definition 2.2.9 — Meet and Join. The meet also called infimum or minimum (resp.
join also called supremum or maximum) of a subset S denoted

∧
S (resp.

∨
S) is the

greatest lower bound (resp. least upper bound) in D that is above (resp. below) all
elements in Sl (Su), Formally:

∀d′ ∈ Sl we have d′ v∧S also ∀d ∈ S we have
∧

Sv d
∀d′ ∈ Su we have

∨
Sv d′ also ∀d ∈ S we have d v∨S

The meet concept allows in turn to characterize the maximum common description
between records in G. An example is given below:

� Example 2.5 We resume the example 2.4. Given the two individuals i4 and i8, the infimum
of the two descriptions corresponding to i4 and i8 is the maximum element of the set of lower
bounds {δ (21),δ (55)}l = {[21,55], [19,55], [21,61], [19,61]}. That is:

∧{i4, i8} [21,55]. �

The definition of meets and joins makes ∧ a binary operations which given two descrip-
tions d1,d2 returns the maximum common description between them. i.e. d1∧d2 =

∧{d1,d2}.
The same goes for the join operation ∨. By definition, the two operations are idempotents,
commutatives and associatives.

Below, we give a definition of lattices from a partial order theory point of view:

Definition 2.2.10 — Meet-semilattice, Join-semilattice and Lattice. A description
space with the specialization operator (D,v) form:

1. a meet-semilattice if and only if every finite non-empty subset S⊆D has a meet∧
S in D.

2. a join-semilattice if and only if every finite non-empty subset S⊆D has a join
∨

S
in D.

3. a lattice if and only if it is a both a meet-semilattice and a join-semilattice.

In the pattern structure (G,(D,v),δ ), one can extend by abuse of notation, the operator
δ to map subsets F of G to their maximum common description.

δ : 2G −→D ,F 7−→ δ (F) =
∧

F (2.2)

Considering the two operations: ext (cf. equation 2.1) and δ (cf. equation 2.2), we
can go back and forth between the description space D and the collection of records G.
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Interestingly, these two operations form a Galois connection between the power set 2G and
(D,v) . Hence, the composite operator clo = δ ◦ext : D→D is a closure operator (Ganter
and Kuznetsov, 2001; Ganter and Wille, 1999). Using this operator one can compute the
closed descriptions (also called closed patterns (Pasquier et al., 1999)) which are useful to
reduce redundancy when it comes to generate all characterizable subsets in a collection G.
In summary, using the aforementioned concepts, in a pattern structure (G,(D,v),δ ), for
every description d ∈D, clo(d) = δ (ext(d)) = δ (Gd) is a closed description.

As stated above, the closed descriptions serves to summarize the characterizable subsets
in the underlying description language (D,v) (i.e. ext[D] = {Gd | d ∈ D}). These come
from the fact that many descriptions in D may have the same extent in G, such descriptions
are said to be equivalents. That is:

Definition 2.2.11 — Equivalence relationship. Let (G,(D,v),δ ) be a pattern structure
and let d,d′ be two descriptions from D. d and d′ are said to be equivalents if and only if
Gd = Gd′ . Hence, the equivalence class of a description d is denoted ḋ = {d′ ∈D | Gd =

Gd′}.

Hence, the collection of closed descriptions clo[D] = {d ∈ D |d = clo(d)} contain
a unique representative description per equivalence class of D, each corresponding to
a characterizable subset in ext[D]. This is closely related to pattern concepts (Ganter
and Kuznetsov, 2001) (linked to formal concepts (Ganter and Wille, 1999)) where each
pair (F,d) | F = ext(d) and d = δ (F) contain a closed description from clo[D] and its
characterizable subset in ext[D]. These pattern concept form what the so called concept
lattice (Ganter and Kuznetsov, 2001) which contain the smallest possible lattice representing
the whole information (from the extents point of view) of the original pair lattice (d,Gd)

as it provides a one to one correspondance between descriptions in D and characterizable
subsets of G.

In subgroup discovery and considering the fact that we are interested only on extent-based
quality measures, candidate subgroups can be generated solely from the concept lattice (e.g.
to solve problem 2.2.1). This enables to avoid redundancy in the resulting list of interesting
subgroups. Several algorithms enables to efficiently traverse the concept lattice in order to
generate all candidate subgroups and their associated closed descriptions (Ganter et al., 2016;
Kuznetsov and Obiedkov, 2002). We shall return to this point later in this chapter. Figure 2.3
summarizes the concepts presented so far in this section.

So far, we introduced the pattern structure in an abstract way without instantiating
it to formalize the complex search space dealing with multiple heterogeneous attributes
(itemsets, numerical, categorical, etc.) (see Table 2.1 and Table 2.2). Interestingly, in order
to handle such description language, given to a certain extent in definition 2.2.2, one can
build the lattice of descriptions on each attribute independently, and then perform a Cartesian
product between these lattices to obtain the full one dealing with the whole attribute set
A = {a1,a2, ...,am} (Roman, 2008).

A description in our full setting is seen as a tuple d = 〈r1,r2, ...,rm〉 ∈ D where each
condition r j is a restriction on the domain of values of the corresponding attribute a j (cf.
definition 2.2.2). In a such configuration, we can build a condition space (D j,v), along
with its meet operation ∧ j ,the mapping function δ j : G→D j and the induced refinement
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Figure 2.3: Pattern structure (G,(D,v),δ ) represented by its associated description lan-
gauage (D,v) and the collection of characterizable subsets of the powerset 2G . Note
that, the collection of characterizable subsets ext[D] with the inclusion form a lattice.
Also, the derivation operators ext and δ are order reversing, i.e. d v d′⇒ Gd′ ⊆ Gd and
F ⊆ F ′⇒ δ (F ′)v δ (F).

operator η j (cf. definition 2.2.5). All this being done to consider the specificity of the
corresponding attribute a j. This, will build the corresponding pattern structure for each
attribute a j, i.e. (G,(D j,v),δ j). From this point of view, it follows that:

D = D1×D2...×Dm (2.3)

(G,(D,v),δ ) = (G,(D1× ...×Dm,v),〈δ1(�), ...,δm(�)〉) (2.4)

δ (ag
1,a

g
2, ...,a

g
m) = (δ1(a

g
1),δ2(a

g
2), ...,δm(ag

m)) (2.5)

〈r1,r2, ...,rm〉 v 〈r′1,r′2, ...,r′m〉 ⇔ ∀ j ∈ 1..m |r j v r′j (2.6)

〈r1,r2, ...,rm〉∧ 〈r′1,r′2, ...,r′m〉 = 〈r1∧1 r′1,r2∧2 r′2, ...,rm∧m r′m〉 (2.7)

η(d) =
{〈r′1, ...,r′m〉 ∈D : ∃!i ∈ 1..m | r′i = ηi(ri)

and (∀ j ∈ 1..m) j 6= i⇒ r′j = r j}
(2.8)

What remains now, is to build properly the description language associated to each
attribute a j by defining the mapping function δ j and the meet operation ∧ j. The associated
partial order is induced by the latter meet operation, this comes from the fact that for any
two restriction r j and r′j from (D j,v), we have as usual r j v r′j ⇐⇒ r j ∧ j r′j = r j. Recall
that we use the wildcard ∗ to say that the condition is always valid and can be omitted from
the description d. in the following ag

j is the value of an arbitrary attribute a j in a an arbitrary
record g ∈ G:

Categorical attribute: if a j is categorical, the domain dom(a j) is a collection of
unordered values v (Wrobel, 1997).

Condition: it can be seen as an equality test, i.e. a j = v with v ∈ dom(a j) which
roughly translate to a j ∈ {v}.
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2.2 Subgroup Discovery 29

Condition space: it is the domain of all singletons augmented with the ∗, i.e.
D j = {∗}∪{{v} | v ∈ dom(a j)} with ∗= dom(a j).

Partial Order: Correspond to an inclusion between sets i.e. r j v r′j ≡ r′j ⊆ r j.

Mapping: returns the singleton corresponding to the value ag
j , i.e. δ j : G→D j,

g 7→ δ j(g) = {ag
j}

Meet operator: r j ∧ r′j =

r j if r j = r′j
∗ else

Refinement operator: the atomic refinement of a condition ∗ gives a condition
of the form a j = v ∈ dom(a j). Otherwise, a condition of the form a j = v does
not admit any refinement, i.e. η j(∗) = {{v}|v ∈ dom(a j)} and η j(v) = /0.

Numerical attribute: if a j is numerical, the domain dom(a j) is a list of totally ordered
values (some total order ≤). This has been formalized by pattern structure tools by
Kaytoue et Al. (Kaytoue, Kuznetsov, and Napoli, 2011; Kaytoue et al., 2011).

Condition: it can be seen as a membership test in an interval, i.e. a j ∈ [v,w]
with v,w ∈ dom(a j), this roughly translate to a j ∈ {x ∈ dom(a j) | v≤ x≤ w}.
Condition space: it is the domain of all closed intervals, i.e. D j = {[v,w]|v,w ∈
dom(a j) and v≤ w}, we have ∗= [min(dom(a j)),max(dom(a j))].

Partial Order: Correspond to inclusion between intervals i.e. r j v r′j ≡ r′j ⊆ r j.
Given r j = [v,w] and r′j = [v′,w′], we have r j ⊆ r′j ≡ v≤ v′ ≤ w′ ≤ w.

Mapping: returns the degenerate interval corresponding to the value ag
j , i.e.

δ j : G→D j, g 7→ δ j(g) = [ag
j ,a

g
j ]

Meet operator: Given r j = [v,w] and r′j = [v′,w′], we have:

r j ∧ r′j = [v,w]∧ [v′,w′] = [min(v,v′),max(w,w′)]

Refinement operator: the atomic refinement of an interval r j = [v,w] returns
two intervals, one resulting on minimal left change and the second resulting on
a right minimal change, i.e. η j([v,w]) = {[v,w], [v,w]}. With v (resp. w) the
predecessor of v (resp. successor of w) in the totally ordered domain dom(a j).

Itemset attribute: if a j is itemset, the domain dom(a j) = 2Z (the powerset of Z)
with Z = {v1, ...,vl} the possible items. Recall that in itemset language (Agrawal,
Imielinski, and Swami, 1993) each record is associated to a set of items.

Condition: it can be seen as a superset test of the form a j ⊇ S with S ∈ dom(a j).
This roughly translates to: a j ∈ {X ∈ dom(a j) | S⊆ X}.
Condition space: it is the domain of all subsets of Z, i.e. D j = 2Z = dom(a j).
We have ∗= /0.

Partial Order: Correspond to inclusion between sets, i.e. r j v r′j⇔ r j ⊆ r′j.

Mapping: the mapping is straightforward as the condition space and the domain
are equal: δ j : G→D j, g 7→ δ j(g) = ag

j .
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Meet operator: the meet ∧ j between two itemset conditions correspond to a
simple intersection, i.e. r j ∧ j r′j = r j ∩ r′j.

Refinement operator: the atomic refinement of a condition (itemset) r j corre-
spond to adding a new item from Z in r j, i.e. η j(r j) = {r j ∪{x} | x ∈ Z}.

Clearly, one can augment the collection of attributes presented above as long as all the
required components are appropriately stated, we will see in Chapter 3 a new descriptions
language dealing with nominal attributes (or itemsets) augmented with a taxonomy. In a
nutshell, the definition of a description given in Definition 2.2.2 can be summarized along
the handled types of attributes in the following definition:

Definition 2.2.12 — Description (instantiated attributes). Let G be a collection defined
over the schema A = {a1, ...,am}, a description d ∈D is a conjunction of conditions of
the form d = 〈r1, ...,rm〉 (cf. Definition 2.2.2) where r j depends on the type of attribute a j:

• If a j is a categorical attribute then condition r j is an equality test of the form a j = v
with v ∈ dom(a j) ;

• If a j is a numerical attribute then condition r j is a membership test of the form
a j ∈ [v..w] with v,w ∈ dom(a j).

• If a j is an itemset attribute then condition r j is a superset test of the form a j ⊇ S
with S an itemset ∈ dom(a j).

A description d characterizes a subgroup Gd = {g ∈ G s.t. d v δ (g)}.

With these instances of condition spaces along with the equations (2.3 — 2.8), we can
use algorithms that enumerates efficiently candidate subgroups by traversing the concept
lattice induced by the pattern structure (G,(D,v),δ ) (Boley et al., 2010; Ganter et al., 2016;
Kuznetsov and Obiedkov, 2002). A standard enumeration algorithm will be discussed later
in Section 2.4.
Summary: in this section, we have discussed the component "description language" of a
subgroup discovery task, by providing a deeper understanding of the search space induced
by an attribute-value datasets. We discussed particularly descriptions that are conjunction of
conditions over multiple and different types of attributes. We explained how to transform
it to a pattern structure and defined the closure operator which will be useful to reduce
substantially the number of enumerated descriptions when it comes to generate candidate
subgroups. Now that candidate subgroups are characterized, we discuss in the following
section 2.2.2 how to evaluate their interestingness, which represent the second component
"interestingness" of an SD task (cf. Figure 2.2).

2.2.2 ON SUBGROUP INTERESTINGNESS EVALUATION

Up to now, we have treated aspects about candidate subgroups, mostly how they are charac-
terized by a description language and how we can enumerate them exhaustively. In subgroup
discovery, one need to evaluate in an objective manner the interestingness of subgroups. This
in order to return a list or the most interesting one with regard to the conducted analysis.
In this section, we will discuss some examples of interestingness measures (also called
quality measures). Several surveys has been proposed in the litterature to address, mostly, the
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discriminative power of descriptions (patterns (Tan, Kumar, and Srivastava, 2004), descrip-
tive rules (Kralj-Novak, Lavrac, and Webb, 2009), subgroups (Wrobel, 1997), association
rules (Lenca et al., 2008), classification rules (Todorovski, Flach, and Lavrač, 2000), etc.)
with regard to a target categorical class (Geng and Hamilton, 2006; Hébert and Crémilleux,
2007; Janssen and Fürnkranz, 2006; Kirchgessner et al., 2016; Lavrac, Flach, and Zupan,
1999; Lenca et al., 2008; Tan, Kumar, and Srivastava, 2004).

In the remaining of this subsection, we have in mind a pattern structure (G,(D,v),δ )
with G a set of records associated to a single target label t (cf. Table 2.1 and Table 2.2),
(D,v) the lattice of descriptions and δ a mapping between records g in G and their maximum
description δ in D with regard to v.

Recall that we are interested in the scope of this thesis on extent-based interesting-
ness measures. That is, measures whose computations depends solely on the extent of a
descriptions, i.e.

∀d,d′ ∈D : Gd = Gd′ =⇒ ϕ(d) = ϕ(d′) (2.9)

Recall that we extend the definition of a quality measure over the powerset 2G , we have:
∀d ∈D : ϕ(d) = ϕ(Gd) (cf. Definition 2.2.6) .

In what follows, we give a quick overview of measures that are used in SD and divide
them onto three categories: quality measures that are agnostic of the target label, quality
measures that address categorical target label and quality measures that address numerical
target label. Note that, in this section, we do not seek to provide an extensive review of
interestingness measures in the litterature. For such, we invite the reader to consult, as
a starting point Tan, Kumar, and Srivastava, 2004 Survey and Geng and Hamilton, 2006
Survey.

2.2.2.1 Quality measures that are agnostic of a target label:

In subgroup discovery, the support size is the most basic quality measure that, given a
description d ∈ D, counts the number of records supporting d, i.e. the cardinality |Gd |.
This measure is used as the main interestingness measure for a frequent pattern mining task
(Agrawal, Imielinski, and Swami, 1993) and play usually the role of a constraint in SD. We
have:

Support size: also called cardinality:

supsize : D→ R+ : d 7→ supsize(d) = |Gd | (2.10)

Frequency: it is the relative support size, i.e.

freq : D→ [0,1] : d 7→ freq(d) =
|Gd |
|G| (2.11)

� Example 2.6 Consider Table 2.1, for the description:

d = 〈Country = France and age ∈ [20,39]〉

We have supsize(d) = |{i1, i2}|= 2, hence freq(d) =
1
4

.
�
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2.2.2.2 Quality measures for categorical target labels:

Given a target class t with dom(t) = {c1,c2, ...ck} with k labels. The aim of such measures
is to evaluate the descriminative power of a description d to some target values c⊆ dom(t)
selected upfront. In this category, usually the domain of possible labels is partitioned to
two sets dom(t)+ and dom(t)− shortly and respectively denoted + and −. Where + is the
property of interest. This consequently partitions the collection G into G+ = {g ∈ G | tg ∈
dom(t)+} and G− = {g ∈ G | tg ∈ dom(t)−}. For example, in Table 2.1, if some analyst
is interested in explaining For votes with the parliamentarians attributes, + = {For} and
−= {Against}. Having this in mind, most measures are defined in terms of the frequency
counts tabulated in 2×2 contingency table (Tan, Kumar, and Srivastava, 2004) where the
descriptions can be seen as if-then rules d→+ with d ∈D and +⊆ dom(t):

+ -

d
|Gd

+|
|G+|

|Gd
−|
|G−|

|Gd |
|G| = freq(d)

d
|Gd

+|
|G+|

|Gd
−|
|G−|

|Gd |
|G| = 1− freq(d)

|G+|
|G| = α+ |G−|

|G| = α− 1

Table 2.4: A 2×2 contingency table for d→+ with d a description characterizing the subset
Gd and d is an abuse of notation characterizing the complement set of Gd . Thus, we have
S = G \S with S⊆ G.

From Table 2.4, we call positive prevalence denoted α+, the proportion of records in G
labeled by the positive target class +. Dually, α− is the negative prevalence and is defined
as 1−α+. The two most basic interestingness measures that are present in the contingency
table are the true positive rate (tpr) and the false positive rate (fpr) which are usually used to
express several other interestingness measures (Fürnkranz and Flach, 2005).

True Positive Rate: it is the relative support size of a description d in G+:

tpr : D→ [0,1] : d 7→ tpr(d) =
|Gd

+|
|G+|

(2.12)

False Positive Rate: it is the relative support size of a description d in G−:

fpr : D→ [0,1] ; d 7→ fpr(d) =
|Gd
−|
|G−|

(2.13)

One of the most standard measures that is used in discriminative tasks in SD is the
weighted relative accuracy (WRAcc)(Lavrac, Flach, and Zupan, 1999) which is closely
related to Piatetsky-Shapiro Measure (Piatetsky-Shapiro, 1991) (cf. (Kralj Novak, Lavrač,
and Webb, 2009)). The measure aims to discover subgroups which fosters the presence of
positive instances while disadvantaging the presence of negative instances:

WRAcc : D→ [−0.25,0.25] ; d 7→WRAcc(d) = α
+

α
− (tpr(d)− fpr(d)) (2.14)
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� Example 2.7 In Table 2.1, if we consider the vote for as the positive class, we have
α+ = 0.5. For the description:

d = 〈Country = France and age ∈ [20,39]〉

We have tpr(d) = 0.5 and fpr(d) = 0, thus WRAcc = 0.125. Note that the best subgroup
maximizing the WRAcc is obviously the one covering all positive instances while not
containing any negative instance. The best subgroup w.r.t. the for votes as the property of
interest and the WRAcc measure is:

d = 〈age ∈ [20,39]〉, as WRAcc(d) = 0.25.

�

In the same spirit, other SD interestingness measures relies on the contingency table 2.4
such as: Accuracy, Precision, Laplace Correction, Linear Correlation coefficient, Cohen’s
Kappa, FMeasure, Cosine, etc... (Fürnkranz and Flach, 2005; Geng and Hamilton, 2006;
Tan, Kumar, and Srivastava, 2004).

2.2.2.3 Quality measures for numerical target labels:

For this category of measures, the underlying dataset has a totally ordered domain of the
target class t that is usually a subset dom(t) ⊆ R (e.g. Table 2.2). For a comprehensive
state-of-art of measures dealing with continuous target label, we invite the reader to consult
(Lemmerich, Atzmueller, and Puppe, 2016). For a brief overview of such measures, we
advise the reader to refer to (Pieters, Knobbe, and Dzeroski, 2010) and (Atzmueller, 2015).
We explore some of these measures in what follows:

Mean: the simplest way to determine the interestingness of a subgroup in numerical
target dataset is to use the deviation between the mean value observed in the subgroup
d and the mean observed in the whole dataset, i.e.

ϕmean : D→ R ; d 7→ ϕmean(d) =
1
|Gd | ∑

g∈Gd

tg− 1
|G| ∑g∈G

tg (2.15)

Mean-Test: this measures was first proposed by Klösgen (Klösgen, 1996) and was
used in a dedicated subgroup discovery task by Grosskreutz (Grosskreutz, 2008).
Mean test measure is a weighted version of the mean quality. It uses the root of the
support size of the subgroup in question to ponderate the mean deviation, i.e.:

ϕmean−test : D→ R ; d 7→ ϕmean−test(d) =
√
|Gd | ·ϕmean (2.16)

The mean-test can be divided by the standard deviation std(G) of the target value
over the entire dataset to obtain a standardized Z-Score (Trajkovski, Lavrač, and
Tolar, 2008). i.e. ϕz−score =

1
std(G)ϕmean−test. Note that this measure is compatible

(Fürnkranz and Flach, 2005) with the mean-test as the two measures equivalently order
the subgroups w.r.t. their interestingness. Similarlty, the t-statistic (Klösgen, 2002;
Pieters, Knobbe, and Dzeroski, 2010) can be obtained by weighting the mean-test
measure by the standard deviation std(Gd) of the subgroup d instead of the standard
deviation of the whole population.
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Other measures exist which deal with the specificities of numerical target variables, such
as Median χ2 statistic (Pieters, Knobbe, and Dzeroski, 2010) which uses the median to
calculate the difference in distributions. The median-based measures has been extended
recently by Boley et al., 2017 to take into account the dispersion of the target values in the
subgroup while providing an efficient branch and bound algorithm to handle the complexity
of the measure.

� Example 2.8 Consider the dataset given in Table 2.2, for the description:

d = 〈occupation = marketing 〉

We have ϕmean(d) = 1−3.5 =−2.5 which read: the users in the group of individuals whose
occupation is marketing strongly dislikes Pulp Fiction compared to the whole population. �

Summary: in this section, we gave a brief overview of interestingness measures that can
be used to evaluate the quality of candidate subgroups generated by some enumeration
algorithm in order to return the most relevant subgroups to the end-user. Of course, the
literature abounds of interestingness measures and the choice depends tightly on the desired
objective of an SD task. In this section, we discussed what is dubbed objective interestingness
measures. Other measures are addressed in the state-of-the-art and takes into account the
prior knowledge of the end-user (formalized as a set of constraints) and are called subjective
interestingness measures (Bie, 2011a; Bie, 2011b; Lijffijt et al., 2018), although these
measures are not extent-based quality measures. Moreover, some of the work address the
statistical significance of the deviation between some quantity observed in the subgroup and
the one expected over the whole dataset (Hämäläinen, 2010b; Hämäläinen, 2012; Hämäläinen
and Webb, 2019; Webb, 2007).

2.2.3 ON SEARCH SPACE EXPLORATION

Up until now, we have presented two out of three building bricks of a subgroup discovery
task, namely: Language and Interestingness. The third component revolves around Algo-
rithms and links between the two aforementioned components to enable solving a subgroup
discovery task (e.g. Problem 2.2.1) and return a collection of interesting subgroups. In what
follow, we have in mind a pattern structure (G,(D,v),δ ) and some given interestingness
measures ϕ .

Many SD algorithms exists in the literature covering multiple search space exploration
paradigms: exhaustive search algorithms (Atzmüller and Puppe, 2006; Grosskreutz and
Rüping, 2009; Kavšek and Lavrač, 2006; Klösgen, 1996; Lemmerich, Atzmueller, and
Puppe, 2016; Lemmerich, Rohlfs, and Atzmueller, 2010; Spyropoulou, De Bie, and Boley,
2014; Wrobel, 1997; Zimmermann and Raedt, 2009), heuristic search algorithms (Boley,
Gärtner, and Grosskreutz, 2010; Carmona et al., 2014; Jesús et al., 2007; Klösgen and May,
2002; Lavrac et al., 2004; Leeuwen and Knobbe, 2011; Leeuwen and Knobbe, 2012; Lucas,
Vimieiro, and Ludermir, 2018; Luna et al., 2013; Mampaey et al., 2012; Moens and Goethals,
2013), sampling algorithms (Al Hasan and Zaki, 2009; Boley, Moens, and Gärtner, 2012;
Boley et al., 2011; Diop et al., 2018; Dzyuba, Leeuwen, and De Raedt, 2017; Giacometti and
Soulet, 2018; Li and Zaki, 2016) and anytime algorithms (Belfodil, Belfodil, and Kaytoue,
2018; Bosc et al., 2018). Furthermore, many off-the-shelf tools and softwares have been

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



2.2 Subgroup Discovery 35

proposed for a plug-and-play subgroup discovery: Orange (Demsar et al., 2013), Cortana
(Meeng and Knobbe, 2011), Vikamine (Atzmueller and Lemmerich, 2012), PySubgroup
(Lemmerich and Becker, 2018).

In the following, we give an overview about the search space exploration paradigms
presented above. Particular attention is drawn to exhaustive search algorithms and branch-
and-bound like algorithms, since the core algorithms proposed in this thesis mostly follow a
branch-and-bound scheme (Land and Doig, 1960; Little et al., 1963; Narendra and Fukunaga,
1977) to solve subgroup discovery like tasks (e.g. top-k interesting subgroups as stated in
Problem 2.2.1). In a simple formalization, Algorithms (hereafter denoted Solve) can be
formalized under constraint-based pattern mining framework (Boulicaut and Jeudy, 2009;
Nijssen and Zimmermann, 2014). Consider an input dataset G and its associated description
space D, a quality measure ϕ and a collection of constraints C that need to hold for the
subgroups resulting in the list L. i.e. Solve(G,D,C )→ L = {d ∈ D |C (d,G) = True}.
C can be roughly translated to an operator which combines all constraints and transform
them to a boolean value. The constraints in C in most standard SD algorithms consider
a threshold on the quality measure σϕ (ϕ(d) ≥ σϕ ), a threshold σG on the frequency of
the descriptions (|freqd| ≥ σG), a plethora of constraints exists in the literature that can be
tailored for different tasks of SD, we refer the interested reader to (Bonchi et al., 2009).

Exhaustive Algorithms: an exhaustive search algorithm Solveexh explores the whole
search space defined by D to return the subgroups of interest. Th most straightforward
approach is to perform a Brute-Force search algorithm by enumerating every possible
descriptions d in the description language (D,v). This is clearly unfeasible in most
settings since the number of possible descriptions is exponential to the number of
attributes. e.g. if we have an itemset attribute with 100 items, the number of possible
descriptions is equal to 2100 ' 1030. To enable an exhaustive search one need to
exploit efficient pruning properties and data-structures (e.g. FP-Trees (Han, Pei, and
Yin, 2000) or vertical representations (Zaki, 2000)). For instance, given a frequency
threshold σG , one can exploit the monotonicity of the constraint |Gd | ≥ σG (e.g.
Apriori (Agrawal and Srikant, 1994) and Apriori-SD (Kavšek and Lavrač, 2006))
to prune the sub-search space of a description d whenever its frequency is below
some given threshold. In general, one can push any monotonous constraints (Bonchi
et al., 2003; Jeudy and Boulicaut, 2002) to prune the sub-search space related to
some given descriptions when traversing the search space in a top-down (bottom-up)
fashion. More sophisticated constraints can also be exploited to reduce substantially
the size of the search space while guaranteeing the completeness of the algorithm (i.e.
∀d ∈D C (d,G) = True⇒ d ∈ L with L the returned subgroups) (Bonchi et al., 2009).
Moreover, interestingness measures ϕ properties can be leveraged to avoid generating
subgroups in unpromising areas of the search space. For instance, by defining proper
optimistic estimates (bounds) (Grosskreutz, 2008; Grosskreutz, Rüping, and Wrobel,
2008). In practice, two standard algorithms are provided in the state-of-the-art to
mine for interesting subgroups while ensuring completeness: (i) SD-Map (Atzmüller
and Lemmerich, 2009; Atzmüller and Puppe, 2006) with its extension for numerical
target concepts NumBSD (Lemmerich, Atzmueller, and Puppe, 2016) and RMiner
(Spyropoulou, De Bie, and Boley, 2014). Both exploit efficient data structures and
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pruning properties over constraints while leveraging optimistic estimates for several
interestingness measures. The main feature of R-Miner is the fact that it exploits
closure operators to reduce the number of generated candidates when the quality-
measure is extent-based. It relies on Divide-and-Conquer algorithm (Boley et al.,
2010). In this thesis and since we focus particularly on extent-based interestingness
measures, the core algorithms resemble - in terms of the search space explored not the
functioning - to RMiner (Spyropoulou, De Bie, and Boley, 2014).

Heuristic Algorithms: most typical SD algorithms are heuristic algorithms. A heuris-
tic algorithm Solveheur abandons the completeness property of exhaustive search
algorithms in favor of runtime, hence tractable. Standard heuristic algorithms in SD
rely on a beam-search strategy (Lowerre, 1976). In a nutshell, a simple beam search
SD algorithm perform a level-wise search (similarly to a breadth-first-search (BFS)).
At each level, a breadth-width number of valid subgroups are chosen with regard to
the constraints C . The choice is usually made by considering the top subgroups with
regard the interestingness measure ϕ . Other techniques, CN2-SD (Lavrac et al., 2004)
and DSSD (Leeuwen and Knobbe, 2011; Leeuwen and Knobbe, 2012) among others,
diversify the beam so as to have a better trade-off between exploration and exploitation.
Once the beam is selected, only its description are used to generate the next level. The
stop-condition is commonly fixed by a depth-level which specify how far in-depth
the algorithms goes in the search space. The depth-level corresponds usually to the
descriptions length, i.e. the maximum number of conditions allowed in a description
d ∈D. Since beam-search grounded algorithms are enumeration algorithms, they can
take into consideration most of the properties of constraints and optimistic estimates
to avoid having in some current beam uninteresting subgroups (e.g. (Mampaey et al.,
2012)). Other techniques follow an evolutionary scheme (genetic algorithms (Whitley,
1994)) (Carmona et al., 2014). Having the fitness operator which corresponds to the
interestingness measures ϕ . Genetic algorithm additionally requires the definition of
proper generation selection, mutation and crossover operators. For instance, SSDP+
(Lucas, Vimieiro, and Ludermir, 2018) select a diversified beam on each generation by
considering only the non-dominated subgroups (Relevance theory (Garriga, Kralj, and
Lavrač, 2008)) and a diversification criterion (e.g. Jaccard index). The mutation con-
sists in an itemset language to remove, update or insert a random item. The crossover
consists on a uniform crossover between two descriptions where the output have the
same number of items by randomly taking items from both input descriptions.

Sampling Algorithms: Similarly to heuristic algorithm, a sampling algorithm Solvesamp

abandon the completeness condition. Several techniques had been proposed in the
literature to provide guarantees while relying on a small sample of drawn descriptions
of the whole description space D. For instance, Algorithms proposed in (Al Hasan and
Zaki, 2009; Boley, Gärtner, and Grosskreutz, 2010) rely on Markov Chain Monte Carlo
(MCMC) to generate descriptions according to some desired probability distribution
(e.g. a subgroup d ∈D chance to be returned in the resulting set proportional to its
quality ϕ(d). Interestingly (Boley, Gärtner, and Grosskreutz, 2010) implements a
Metropolis–Hastings algorithm to generate only closed descriptions (formal concepts -

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



2.2 Subgroup Discovery 37

see Section 2.2.1) while guaranteeing the former property. Despite the generic nature
and the interesting guarantees that MCMC algorithms provide, it requires a number
of steps that grows exponentially in the input size to generate a single pattern which
usually hinder their usage. To overcome this issue, some techniques abandon the
genericity of MCMC techniques while maintaining hard theoretical guarantees. This
is done by devising direct-output sampling algorithms (Boley, Moens, and Gärtner,
2012; Boley et al., 2011; Diop et al., 2018; Giacometti and Soulet, 2018) tailored for
specific quality measures. Direct-output sampling technique (Boley et al., 2011) are
non-enumerative methods which sample subgroups directly from the full search space.
They enable to produce a collection of subgroups, each of which is generated following
exactly some distribution (e.g. frequency, discriminativity, etc.). Other algorithms
tackles the sampling by combining the advantages of exhaustive search algorithms
and sampling (Dzyuba, Leeuwen, and De Raedt, 2017; Riondato and Vandin, 2018)
while ensuring guarantees on the quality of the returned subgroups. For instance,
MiSoSouP (Riondato and Vandin, 2018) sample the input dataset G and perform an
exhaustive search afterwards. It derive bounds to the sample size sufficient to ensure
that an ε-approximation of the top-k subgroups hold with a sufficiently high probabil-
ity. Conversely, Flexics (Dzyuba, Leeuwen, and De Raedt, 2017) maintains the full
collection of records G and proposes to sample the description space D beforehand.
This, followed by an exhaustive search on the sampled description space.

Anytime Algorithms: this category of algorithms combines the properties of the
three first categories in the aim of providing tractable algorithms ensuring a complete-
ness guarantee. Anytime pattern mining algorithms Solveany (Belfodil, Belfodil, and
Kaytoue, 2018; Bosc et al., 2018; Hu and Imielinski, 2017) are enumerative methods
which exhibits the anytime feature (Zilberstein, 1996), a solution is always available
whose quality improves gradually over time and which converges to an exhaustive
search if given enough time, hence ensuring completeness. While MCTS4DM (Bosc
et al., 2018) ensures interruptibility (i.e. the execution can be interrupted anytime)
and an exhaustive exploration if given enough time and memory budget, it does not
ensures any theoretical guarantees on the distance from optimality and on the diversity.
In contrast, RefineAndMine (Belfodil, Belfodil, and Kaytoue, 2018) is an anytime
algorithm tailored specifically for subgroup discovery in numerical attributed dataset
which ensures hard guarantees on the quality of the found solutions upon interruption.

Summary: in this section, we have discussed the component "Algorithms" of a subgroup
discovery task which comes in between the "Description Language" and "Interestingness"
components. In short, an algorithm enumerates candidate subgroups from the search space
defined upon the description space, measures their interestingness and returns the most
important ones. Although, as discussed in this section, multiple paradigms exists to handle
this task, we will focus on the exhaustive search paradigm where the aim is to guarantee
that the best patterns are found and returned to the end-user given a SD problem (e.g.
Problem 2.2.1). Since the enumeration algorithms for SD are roughly equivalents to the ones
used for Exceptional Model Mining (EMM), we will first introduce and discuss EMM in the
next section.
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2.3 EXCEPTIONAL MODEL MINING

Exceptional model mining (EMM) is a framework (Duivesteijn, Feelders, and Knobbe, 2016;
Leman, Feelders, and Knobbe, 2008) can be seen as a multi-target generalization of Subgroup
discovery (SD) framework (standard SD seen as supervised descriptive rule discovery (Kralj-
Novak, Lavrac, and Webb, 2009)). In this perspective, EMM deals with similarly structured
dataset as SD where the schema of attributes is partitioned to two parts: descriptive attributes
and target attributes (rather than a single target attribute). Hence, the underlying dataset is a
collection G of records g with its schema {a1,a2, ...,am, t1, ..., tl}. Recall that each attribute
has a domain of interpretation which corresponds to all its possible values. Attributes
A = {a1,a2, ...,am} are called descriptive attributes which are used to characterize subsets
(subgroups) of data in the same way as in SD. t1, t2,..., tl are called target attributes and
are used to build models and evaluate interestingness of subgroups. First of all, we give an
example of a standard EMM dataset that can be seen as an excerpt of the behavioral dataset
given in Table 1.2.

ide genres releaseDate RatingDate RatingAvg

e1
3 Comedy 1974 1998 2.5

e1 Comedy 1974 2001 3.5
e1 Comedy 1974 2007 4
e2 Crime; Drama; SciFi 1992 1999 4
e2 Crime; Drama; SciFi 1992 2002 4.5
e3 Action; Adventure; Crime 1996 2002 3
e4 Animation; Comedy 1996 2003 4
e5 Action; Romance; War 1992 1999 2
e6 Comedy 1997 2005 1.5

Table 2.5: Example of behavioral dataset - Movielens dataset depicting the average ratings per
year given by users on movies. The descriptive attributes characterizing movies are: gen-
res and releaseDate. The target attributes are RatingDate and RatingAvg. RatingAvg
represents the average rating of users given in a RatingDate.

Considering this dataset given in Table 2.5, one can ask the following question: "Do
movies get better or worse ratings over time?"4. In order to give elements of answer to this
question, one can use linear regression to explain RatingAvg with RatingDate to provide
an initial answer. Furthermore, this analysis can be refined to produce additional details
on subgroups of movies, particularly those who do not follow the norm. This is the main
objective of Exceptional Model Mining:

� finding subgroups where an unusual interaction between the targets is observed �

3Moviename = The Return of The Pink Panther
4an example of such a question can be found in https://www.quora.com/

Does-the-IMDb-rating-for-a-movie-change-over-time
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In EMM, and having in mind the pattern structure (G,(D,v),δ )5, the interaction
between targets is captured by what is called a model. The unusualness is captured by an
interestingness (quality) measure ϕ . This interestingness measure relies on an objective
function which compare the model fitted on the targets in the subgroup Gd (d ∈D) with
the model induced over the whole dataset G. Subgroups are characterized as in SD by
descriptive attributes where the syntax is defined by the description language (D,v) and
finding interesting subgroups consists in enumerating candidate subgroups in (G,(D,v),δ )
by some exploration algorithm. We will summarize this concepts in Figure 2.4 after briefly
introducing a standard EMM task.

A typical task of EMM is to find the top-k exceptional subgroups as formalized in
(Duivesteijn, Feelders, and Knobbe, 2016). It is similar to the task of finding top-k interesting
subgroups formerly introduced in Problem 2.2.1. Clearly, the main difference resides in
how interestingness measure is evaluated for some given candidate subgroup. In SD6, the
interestingness of a subgroup is evaluated using directly the target values of records as
detailed in Section 2.2.2. Conversely, in EMM, the interestingness evaluation of a subgroup
in EMM combines:

1. The computation of a model class M : D→Ω over the targets of some given subgroup.

2. The evaluation of a designed distance measure ∆ : Ω×Ω→R comparing between the
model induced on a subgroup characterized by a description d and the model induced
on the description ∗ corresponding to the whole dataset (sometimes the complement of
the subgroup G \Gd is used instead). Intuitively, this distance captures how significant
the model fitted on the subgroup deviates from the norm, i.e. the model fitted on the
whole dataset.

This roughly translates to:

ϕ(d) = ∆(M(d),M(∗)) with d an arbitrary description in D

Similarly as in subgroup discovery, we confine ourselves to extent-based interestingness
measures. That is, the model is computed by relying solely on the extent of a description d.

Having this concepts in mind, we give in the following the standard top-k exceptional
model mining problem.

Problem 2.3.1 (Top-k Exceptional Model Mining Problem).
Given a collection G, a description language D, a model class M : D→Ω, a quality

measure ϕ : D→ R, a quality threshold σϕ and a minimum support threshold σG , the
problem is to find the list L = {d1, ...,dk} ⊆D such that:

[Validity] ∀d ∈ L : d valid, that is |Gd | ≥ σG and ϕ(d)≥ σϕ .

[Top-k] (∀d′ ∈ (D \L))(∀d ∈ L) : ϕ(d)≥ ϕ(d′).

5Of course, any collection of records G with a schema A inducing a description space D can be considered
as an input to an Exceptional Model Mining task. As discussed in the former section 2.2, we confine ourselves to
descriptions languages that induces a lattice structure. It follows that, the input can be formalized as a pattern
structure (G,(D,v),δ ).

6from the perspective of Supervised Descriptive Rule Discovery (Kralj-Novak, Lavrac, and Webb, 2009)
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In short, when it comes to define an exceptional model mining task and solve it, one
need to answer to the four following questions which are summarized in Figure 2.4:

(Q1) Language: what is the description space D of candidate subgroups?

(Q2) Model: what is the model class used to capture interaction between target
attributes?

(Q3) Interestingness: how to assess the interestingness of a subgroups (quality mea-
sure) - how to compare between the model fitted on the targets in the subgroup and the
model fitted on the targets in the whole dataset?

(Q4) Algorithm: How to explore the search space of candidate subgroups?

Exceptional 
Model Mining

Algorithm

How is the search space 
explored: is it exhaustive ? 
Heuristic ?, by sampling ? 

Language 

What is the considered pattern 
language: symbol sets, numerical 
intervals, subsequences, 
subgraphs, … 

Model class

How to capture the relationship 
among the targets?  

Interestingness

How to quantify the 
exceptionality of a subgroup?

Descriptive Attributes
Relies mainly on the

Target Attributes

Figure 2.4: Building blocks of an exceptional model mining task (Summary)

2.3.1 ON DESCRIPTION LANGUAGES AND ON SEARCH SPACE EXPLORATION

The top aspects in Figure 2.4, namely, the description language and the algorithms have
been already discussed in the former section 2.2 for Subgroup Discovery. Almost nothing
changes for these two building blocks, subgroups are characterized in most configurations
by conjunction of conditions on the attributes values as discussed in Section 2.2.1. Since
the considered interestingness measures are extent-based, one can use any algorithm that
exhaustively generate all candidate subgroups by traversing the concept lattice induced from
the underlying pattern structure (G,(D,v),δ ). For this task, algorithms like Close-By-One
(Kuznetsov and Obiedkov, 2002) or Divide-and-Conquer (Boley et al., 2010) can be used.
We will elaborate a standard enumeration algorithm later in Section 2.4). In the literature,
some algorithms have been specifically designed for generic EMM tasks (Krak and Feelders,
2015; Lemmerich, Becker, and Atzmueller, 2012; Moens and Boley, 2014). As an example,
GP-growth (Lemmerich, Becker, and Atzmueller, 2012) is an exhaustive search algorithm
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for EMM. It extends the well-known FP-tree (Han, Pei, and Yin, 2000) data structures to
GP-tree data structures to efficiently handle the computation of models, which is usually the
most computationally extensive part in an EMM algorithm. Hence, (Q1) and (Q4) are already
covered in Section 2.2.1 and Section 2.2.3. In the following, we emphasize on the evaluation
of interestingness of candidate subgroups, that is: the models that had been proposed in the
literature (Q2) and the associated interstingness measures (Q4) as they are tightly linked.

2.3.2 ON MODEL CLASSES AND INTERESTINGNESS MEASURES

Several model classes and interestingness measures have been proposed in the state-of-
the-art since the seminal paper (Leman, Feelders, and Knobbe, 2008). We briefly review
in the following some of these models. Recall that, we have in mind a pattern structure
(G,(D,v),δ ) as an input, a subgroup is denoted d ∈D and its extent is denoted Gd . For a
comprehensive survey, we draw the reader’s attention to Duivesteijn, Feelders, and Knobbe,
2016 work and Ventura et Al. book (Ventura and Luna, 2018, Chapter 6).

Correlation and Rank Correlations Models: given two target attributes t1 and t2,
the simplest correlation model was defined in the original EMM model classes (Le-
man, Feelders, and Knobbe, 2008) by measuring the linear association between the
two pearson’s correlation coefficient in the subgroup Gd and its complement in the
whole dataset G \Gd . Several interestingness measures had been proposed to capture
how significant is the differences between the two correlation models. For instance,
the simplest measure that had been proposed is the absolute difference between the
two correlation coefficients (Duivesteijn, Feelders, and Knobbe, 2016). This models
suffered from several pitfalls, mainly, the high sensitivity to outliers and the (hard)
assumption targets normality. To mitigate these problems, Downar and Duivesteijn
(Downar and Duivesteijn, 2015; Downar and Duivesteijn, 2017) proposed to use rank
correlation models. In short, rather than measuring the interaction between the two
targets t1 and t2 with pearson’s correlation coefficients, it uses rank correlation coeffi-
cients like the well-known Spearman’s rank correlation coefficient and Kendall’s rank
correlation coefficient (Kendall, 1948). The authors propose several interestingness
measures to capture the difference between the rank correlation model computed over
the subgroup and its complement. This work have been extended to evaluate rank
correlation between more than two target attributes in (Hammal et al., 2019).

Classification Models: in this category, methods (Duivesteijn, Feelders, and Knobbe,
2016; Leman, Feelders, and Knobbe, 2008) are given a set of target attributes t1,...,tl−1,
tl along with the descriptive attributes a1, ...,am. The model used to capture interaction
between the target attributes is a classifier on the discrete target value tl (boolean or
categorical) using t1, ..., tl−1. To judge whether the effect of the these descriptive target
attributes is substantially different in a subgroup d, the methods builds a classifier
over both the collection of records Gd and its complement G \Gd and measure the
difference between the two classifier with an adapted interestingness measure. In this
spirit two classification models had been proposed in the original EMM framework
(Leman, Feelders, and Knobbe, 2008): logistic regression (Neter et al., 1996) and
simple decision tables (Decision Table Majority - DTM) (Kohavi, 1995) with adapted
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interestingness measures. For instance, in DTM model classes, Leman, Feelders, and
Knobbe, 2008 propose to use Hellinger Distance (Le Cam and Yang, 2012) to evaluate
how exceptional the subgroup d is. It measures the conditional distribution of tl in the
subgroup and its complement for each possible combination of t1, ..., tl−1 which are
summed to obtain an overall distance (Duivesteijn, Feelders, and Knobbe, 2016).

Regression Models: Conversely to the precedent category, regression models, pro-
posed in (Duivesteijn, Feelders, and Knobbe, 2016; Leman, Feelders, and Knobbe,
2008), are used to characterize interaction between target attributes t1, ..., tl−1, tl when
the target of interest tl is numerical. Simply put, the regression model class in the case
of two target attributes t1, t2 in EMM is used as follows: a linear regression is fitted on
the subgroup d to explain t2 with t1 and is compared to the linear regression fitted on
the whole dataset G or the complement of the subgroup. To measure how significant
the difference is between the two regressions model in hand, several interestingness
measures ϕ had been proposed (Duivesteijn, Feelders, and Knobbe, 2012; Duivesteijn,
Feelders, and Knobbe, 2016; Leman, Feelders, and Knobbe, 2008). The simplest one
consists in comparing the two slopes βd (subgroup) and βd (complement) and measure
the p-value resulting from the following hypothesis testing: H0 : βd = βd against
H1 : βd 6= βd . An illustration of such a model class is given in Figure 2.5 where the
input dataset is the one given in Table 2.5. In order to compare between multiple linear
regression models where the target of interest tl is explained with multiple descriptive
target attributes, i.e. t1, ..., tl−1, Duivesteijn, Feelders, and Knobbe, 2012 propose to
use Cook’s distance.

RatingAvg

RatingDate

Plotting records w.r.t their 
target attributes

The regression model fitted 
on the subgroup 𝑑

The regression model 
fitted on the whole 

dataset 𝐺
A subgroup characterized by a 
description 𝑑 and its extent 𝐺𝑑

𝜑

e.g. Significance of Slope Difference

Interestingness measures 
comparing the two models

Figure 2.5: Exceptional model mining - Regression model as a model class to capture
relationship between two numerical targets values. This illustration considers the example
given in Table 2.5 where the aim is to analyze how movies ratings evolve with time .
Note: this figure was largely inspired by a figure in Bendimerad, 2019 thesis manuscript.

Bayesian Networks Models: Duivesteijn et al., 2010 propose to analyze exceptional-
ity of inter-dependencies between discrete target variables t1, ...tl in subgroups by using
Bayesian Networks. In short, the task of analyzing exceptional subgroups based on
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Bayesian networks consists in finding subgroups whose fitted Bayesian network signif-
icantly differ from the one computed on the whole dataset. The adapted interestingness
measure is grounded on edit distance (Shapiro and Haralick, 1985). Such a model can
be useful for several tasks where an exceptional inter-dependencies between variables
can highlight spurious correlations. For instance, one of the interesting findings in this
work (Duivesteijn et al., 2010) resuts from analyzing the emotions dataset (Trohidis
et al., 2008) (songs associated with rhythmic and timbre descriptive attributes and
emotions (e.g. sad-lonely) as targets attributes. In this dataset, the emotion sad-lonely
is correlated with all the other emotions (e.g. happy pleased) in overall terms. When
the dataset is restricted on songs having bright sounds (the subgroup), the sad-lonely
emotion becomes not correlated with none of the other emotions.

Markov Chains Models: Lemmerich et al., 2016 proposed to mine for exceptional
transition behaviors by utilizing first-order Markov Chains as the model class (Norris,
1998). The dataset given as input represents sequential data where the records are
transitions characterized by multiple descriptive attribute a1, ...,am (e.g. weekday) and
three target attributes t1, t2, t3, where t1, t2 represent respectively the source state and
the target state in the transition, while t3 represent the number of visits. A records can
be roughly translated to: #t3 individuals went from t1 to t2 on Wednesday (a1) morning
(a2). Considering this target attributes and some given subgroup d, the transition
matrix is built and the first-order markov chain is subsequently computed. A subgroup
is considered exceptional if its associated markov chain deviates significantly from the
markov chain fitted on the whole dataset G. The deviation is captured by an adapted
Manhattan distance.

Graph Models: this category pertains to those techniques that model the input dataset
as attributed graphs and mine for exceptional sub-graphs with regards some inter-
estingness measure. For instance, similarly as the work of Lemmerich et al., 2016,
Kaytoue et al., 2017 mine for exceptional transition behavior of groups. To this aim,
the proposed model consists of contextual sub-graphs which captures the transitions
between nodes (e.g. areas of a city). The contextual sub-graphs is computed for
each subgroup and the number of transition in the subgroup are compared to the
overall context in the same sub-graph via a WRAcc-like measure (Lavrac, Flach, and
Zupan, 1999). Other attributed graph models have been proposed in the literature
(Bendimerad, Plantevit, and Robardet, 2016; Bendimerad, Plantevit, and Robardet,
2018) to capture exceptional characteristics in sub-graphs by looking for significant
increase or decrease in some numerical target attributes of interest. This can be used
to mine for predominant activities in cities neighborhoods (Bendimerad, Plantevit, and
Robardet, 2016) (e.g. there is substantially more bars and restaurants in the subgroup
(subgraph) neighborhood compared to the rest of the city) or to extract exceptional
activated area in brain (Moranges et al., 2018).

Preferences Models: Rebelo de Sá et Al. (Sá et al., 2016; Sá et al., 2018) proposed
exceptional preference mining (EPM) to look for sub-population (subgroup) having
exceptional preferences compared to the whole population. To this aim, the input of an
EPM approach is a dataset which describe individual and his preferences (partial order)
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with regard to a collection of discrete targets (t1, t2, ..., tl). To mine for exceptional
preference behavior, the model chosen is a preference matrix which aggregate the
preferences of the subgroup. Several interestingness measures had been proposed to
capture how significant the deviation of preferences is, compared the preferences of the
overall population. For instance, the author propose to calculate the Frobenius norm
of the distance matrix to measure how unusual the average ranking is for the subgroup.
The distance matrix used corresponds to the difference between the preference matrix
fitted on the whole population and the one fitted on the subgroup.

Compression Models: Leeuwen and Knobbe, 2012 propose Krimp code tables
(Vreeken, Leeuwen, and Siebes, 2011) as a new model class. They utilize WKG
(Weighted Krimp Gain) to evaluate the interestingness of a subgroup. In short, a
subgroup is considered interesting if it can be compressed much better by its own
compressor, than by the compressor induced on the overall dataset.

Summary: this section was devoted to exceptional model mining framework and how it
generalizes Subgroup discovery to analyze multiple target attributed dataset. In short, a
task grounded in exceptional model mining goes in the same line as SD where the aim
is to discover exceptional subgroups. Exceptionality is captured by: (1) defining a model
characterizing the interaction between the target attributes and (2) comparing the model
fitted on the subgroup with the one fitted on the overall population. Once the model and the
interestingness measure are properly defined, several algorithms can be used to approach the
solution of an EMM task (e.g. Problem 2.3.1). The focus of the next section is to provide a
standard Branch and Bound algorithm that can be used for such a task.

2.4 STANDARD EXPLORATION ALGORITHMS

Section 2.2 and Section 2.3 gave an overview of the theoretical background of Subgroup
Discovery (SD) and Exceptional Model Mining (EMM). We have discussed the main building
blocks in SD and EMM frameworks required to define and solve a mining task. We briefly
recall below these building blocks while bringing to the fore the main concepts that we are
going to use to formulate a standard and guideline algorithm for SD/EMM.

Description Language: as discussed in Section 2.2.1, one need to define the syntax
used to characterize subgroups. In this thesis, in the same spirit of most past works
in SD/EMM (Kloesgen, 2000; Klösgen, 1996; Leman, Feelders, and Knobbe, 2008;
Wrobel, 1997), we choose to characterize subgroups by conjunctions of conditions
(cf. Definition 2.2.2 and Definition 2.2.12). Although, many formalisms exist in the
literature to build the search space induced by such a description language, we choose
Pattern structures (G,(D,v),δ ) (Ganter and Kuznetsov, 2001) (cf. Definition 2.2.7).
(D,v) and (2G ,⊆) are both lattices (cf. definition 2.2.10). Recall that, in pattern
structures, two operators are important and allow to go back and forth between the two
lattices: δ : 2G →D and extD→ 2G . δ computes the maximum common description
between records belonging to a subset of G and ext computes the extent (support) of a
description in G. These two operations form a Galois connection between the power
set (2G ,⊆) and (D,v) . Hence, the composite operator clo = δ ◦ ext : D→ D is a
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closure operator (Ganter and Kuznetsov, 2001; Ganter and Wille, 1999). In this thesis,
we are interested in generating candidate subgroups from the collection of closed
descriptions clo[D] = {d ∈D |d = clo(d)}. The latter contain a unique representative
description per equivalence class of D (cf. Definition 2.2.11), each corresponding to a
characterizable subset in ext[D] (cf. Figure 2.3).

Interestingness Measures (and Model classes): in SD/EMM, the objective is to
find "interesting" subgroups with regard a property of interest. The latter is usually
implemented via a quality measure ϕ : D→ R (cf. Definition 2.2.6. In this thesis, we
are solely interested by extent-based quality measures (∀d ∈ D : ϕ(d) = ϕ(Gd) =

ϕ(ext(d))). As discussed in Section 2.2.2 and Section 2.3.2, several interestingness
measures have been proposed in the literature (Duivesteijn, Feelders, and Knobbe,
2016; Fürnkranz and Flach, 2005; Geng and Hamilton, 2006; Kralj-Novak, Lavrac,
and Webb, 2009; Lavrac, Flach, and Zupan, 1999; Tan, Kumar, and Srivastava, 2004)
depending on the target attributes types (numerical, categorical) and the study objective.
In the scope of this thesis, no interesting measure in the literature makes it possible to
convey the semantic of the desired patterns (i.e. exceptional (dis)agreement). Hence,
one of the main contributions of this thesis is to define proper and interpretable model
classes and interestingness measures to capture (dis)agreement between and within
groups in behavioral data.

Algorithms: Section 2.2.3 discussed the multitude of possible paradigms that one
can follow to explore the search space related to an pattern structure (G,(D,v),δ ).
We briefly recall these paradigms in here: Exhaustive search algorithms (e.g. SD-
Map (Atzmüller and Lemmerich, 2009; Atzmüller and Puppe, 2006), NumBSD
(Lemmerich, Atzmueller, and Puppe, 2016) and RMiner (Spyropoulou, De Bie, and
Boley, 2014)); Heuristic search algorithms (e.g. beam-search algorithms, CN2-SD
(Lavrac et al., 2004), DSSD (Leeuwen and Knobbe, 2011; Leeuwen and Knobbe, 2012)
and FSSD (Belfodil et al., 2019b)); Sampling Algorithms (e.g. Direct-output sampling
techniques (Boley et al., 2011) and MiSoSouP (Riondato and Vandin, 2018)); and
Anytime Algorithms (e.g. MCTS4DM Bosc et al., 2018 and Refine&Mine (Belfodil,
Belfodil, and Kaytoue, 2018)). In this thesis, we are mainly interested by providing
complete solutions for the problem of discovering exceptional behavior in behavioral
data. Hence, we emphasize on designing efficient exhaustive search algorithms.

In what follows, and given an input pattern structure (G,(D,v),δ ), we will first design
in Section 2.4.1 a standard enumeration algorithm, dubbed EnumCC, which generates all
candidate subgroups corresponding to closed descriptions clo[D] = {d ∈ D |d = clo(d)}.
This choice is motivated by (i) the fact that enumerating only closed descriptions substantially
reduces the number of generated candidates and also (ii) the fact that we consider only extent-
based quality measures ϕ . In algorithm EnumCC, the interestingness measure ϕ is not
taken into account. Hence, subgroups quality is not evaluated. For this aim, we devise in
Section 2.4.2 a standard branch-and-bound algorithm called B&B4SDEMM. The algorithm
perform an exhaustive search to find all interesting subgroups w.r.t. ϕ in order to solve
Top-k SD/EMM problems (see Problem 2.2.1 and Problem 2.3.1). B&B4SDEMM leverages
EnumCC and optimistic estimates for an efficient exhaustive traversal of the search space.
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2.4.1 A STANDARD ENUMERATION ALGORITHM FOR SD/EMM

Considering instances of condition spaces in Defintion 2.2.12 along with the equations (2.3 —
2.8), we can use algorithms that enumerates efficiently7 subgroups corresponding to formal
concepts by traversing the concept lattice induced by the pattern structure (G,(D,v),δ )
(Boley et al., 2010; Ganter et al., 2016; Kuznetsov and Obiedkov, 2002). We give in
this section an exhaustive algorithm which enumerate all candidate subgroups (closed
descriptions) corresponding to clo[D] = {d ∈D |d = clo(d)}.

A simple yet efficient7 algorithm to enumerate all formal concepts is Close-By-One
(CbO for short) (Kuznetsov, 1993; Kuznetsov, 1999; Kuznetsov and Obiedkov, 2002). The
algorithm functioning is similar to Divide-and-Conquer (Boley et al., 2010) which enumerates
all closed elements in a closure system given a closure operator clo (e.g. clo = δ ◦ ext). CbO
was defined particularly to handle itemsets, even though the functioning is closely similar,
the algorithm that enumerate closed descriptions in the complex search space containing
heterogeneous attributes will be dubbed here EnumCC (introduced and formalized first in
(Belfodil et al., 2017a)).

Given G a collection of records and its schema A = {a1,a2, ...,am} (given in an arbi-
trary order fixed upfront) inducing the pattern structure (G,(D,v),δ ), Algorithm 1 called
EnumCC (Enumerate Closed Candidate) enumerates once and only once all closed descrip-
tions in (D,v) whose associated support fulfill the minimum support constraint σG ∈ N. It
traverses the search lattice (D,v) in a top-down, DFS fashion starting from the most general
description ∗ whose extent is the entire collection G. It proceeds by atomic refinements to
progress, step by step, toward more specific descriptions. This is enabled by the refinement
operator η (cf. definition 2.2.5 and equation 2.8). We override its previous definition (given
in equation 2.8) below to specify that only the condition corresponding to the attribute whose
index is equal to some given index k ∈ [1,m] should be refined. For any description d ∈D,
we have:

η(d,k) = {〈r′1, ...,r′m〉 ∈D : r′k = ηk(rk) and (∀ j ∈ 1..m) j 6= k⇒ r′j = r j} (2.17)

η(d) =
⋃

j∈[1,m]

η(d,k) (2.18)

Starting from a description d, EnumCC first computes its corresponding support Gd . If
the size exceeds the threshold (line 1), the closure of d is computed (line 2). Subsequently,
a canonicity test between closure_d and d is assessed (line 3). It allows to determine if a
description after closure was already generated and to discard it, if appropriate, without
addressing the list of already generated closed descriptions requiring hence no additional stor-
age. The canonicity test relies on an arbitrary order between attributes in A = {a1,a2, ...,am}
indicating that, in the enumeration process, attribute conditions are refined following this

7 Efficiency here corresponds to the fact that the algorithm in question enumerates all closed descriptions in
the concept lattice and which is polynomial delay(Johnson, Papadimitriou, and Yannakakis, 1988) and PSPACE
(Arora and Barak, 2009). Polynomial delay algorithms are algorithms where the delay between the beginning and
the first output, two outputs and the final output and the end is polynomial to the input size. PSPACE algorithms
are algorithms using a polynomial amount of space w.r.t. the input size. This is valid as long as the computation
of closure (i.e. clo(d) = δ (ext(d)))) is polynomial time which is the case in our setting ( itemsets, numerical
and categorical attributes and also heterogeneous attributes with a mixed schema).
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arbitrary order. Let d = 〈r1, ...,r f , ...,rm〉 a description resulting from the refinement of the
f th condition of some preceding description, and d′ = 〈r′1, ...,r′f , ...,r′m〉= clo(d) the closure
of d. Following the arbitrary order between attributes, we expect for d′, if it is the first time
that it is encountered, that no condition before r′f (i.e. r′1, ...,r

′
f−1) is refined; otherwise,

clo(d) was already generated after a refinement of preceding conditions and need thus to be
discarded. The intuition behind the canonicity test being explained, a canonicity test rests
essentially on a lectic order (cf. (Ganter and Wille, 1999, p.66-68)) between d and its closure
d′ denoted dl f d′ which is defined as follows: dl f d′⇐⇒∀i∈ [1.. f −1] | ri = r′i ∧ r f lr′f .
The latter condition, r f l r′f , corresponds to an analogous canonicity test between conditions
and makes sense for multi-valued attributes types only (e.g. itemsets8 (Ganter and Wille,
1999, p.66-68)). It does not need to be calculated for simple attributes (numerical, categor-
ical). If the canonicity test is successful (line 3), closure_d is returned as a valid closed
candidate (line 5). The algorithm then generates the neighbors by refining the attributes
{a f , ...,an} continuing from d on the condition that cnt_c is not switched to False (lines 6-8).
Flag f determines the index of the last attribute that was refined in the description d (operator
η). Boolean cntc can be modified externally by some caller algorithm to prune the search
space, for instance, when using optimistic estimates on the quality measures. Eventually,
a recursive call is done to explore the sub search space related to d (lines 9-10). Hence, to
enable the full exploration of search space related to the pattern structure (G,(D,v),δ ), the
algorithm is called with this initial parameters EnumCC(G,∗,σ ,1, true). Recall that ∗ is the
description 〈∗,∗, . . .∗〉 having the complete collection G as its support.

Algorithm 1: EnumCC(G, d, σG, f , cnt)
Inputs :G is the collection of records, each encompassing m attributes,

d is a description from D,
σG is a minimum support threshold,
f ∈ [1,m] is a refinement flag,
cnt is a Boolean.

Output: yields all closed descriptions, i.e. clo[D] = {clo(d) s.t. d ∈D}
1 if |Gd | ≥ σ then
2 closure_d← clo(d) = δ(Gd)

3 if d l f closure_d then
4 cnt_c← copy(cnt) ; // can be modified by a caller algorithm

5 yield (closure_d,Gclosure_d,cnt_c) ; // yield results and wait

6 if cnt_c then
7 foreach j ∈ [ f ,m] do
8 foreach d′ ∈ η(closure_d, j) do
9 foreach (nc,Gnc,cnt_nc) ∈ EnumCC(G,d′,σG, j,cnt_c) do

10 yield (nc,Gnc,cnt_nc)

Figure 2.6 illustrates the area and the elements of the search space explored by EnumCC,
its depiction rely on the figure 2.3.

8Let r j = {v1, ...,vq} be an itemset condition and its closure r′j = clo(r j) = {v′1, ...,v′q, ...,v′s} with Z =

{v1, ...,vl} the set of possible items, all r j, r′j and Z are ordered using some arbitrary total order l defined on
Z. To assess the canonicity test between r j and r′j, and considering that r j is generated after a refinement of its
previous f th item, the lectic order is defined as: r j l f r′j⇔∀i ∈ [1.. f −1] : vi = v′i∧ t f lu f
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Only black circles        in the blue zone           corresponding to closed descriptions are 
enumerated by EnumCC
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Figure 2.6: Illustration of the area and elements (formal concepts, closed descriptions)
enumerated by EnumCC in some given pattern structure (G,(D,v),δ ) represented by its
associated description langauage (D,v) and the collection of characterizable subsets of the
powerset 2G (c.f. Figure 2.3).

2.4.2 A STANDARD BRANCH AND BOUND ALGORITHM FOR SD/EMM

Having in mind the three building components of subgroup discovery (cf. Figure 2.2) and
algorithm EnumCC (cf. Algorithm 1). We explain below the standard scheme of a branch
and bound algorithm which efficiently leverage the properties of the description language
(D,v) in the pattern structure (G,(D,v),δ ) and extent-based interesting measures ϕ . Since,
most interestingness measures are not monotonous, one need to define proper optimistic
estimates (upper bounds) on the quality measure (Grosskreutz, Rüping, and Wrobel, 2008)
to quickly discard unpromising parts of the search space. In general, an optimistic estimate
oe for a quality measure is defined as follows:

Definition 2.4.1 — Optimistic Estimate. An optimistic estimate oe for a given quality
measure ϕ is a function such that:

∀ d′ ∈D . d v d′⇒ ϕ(d′)≤ oe(d)

Intuitively, the definition above states that: given a description d from the lattice (D,v),
an optimistic estimates ensure that every description d′ subsumed by d has its quality ϕ(d′)
bounded by the quantity oe(d).

Several optimistic estimates had been proposed in the literature to allow an efficient
exhaustive search for specific quality measures. For instance, Webb, 2001 proposed an
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optimistic estimate for the impact interestingness measure used for numerical target at-
tributed datasets, i.e. ϕimpact(d) = |Gd |ϕmean(d). For a survey on optimistic estimates on
quality measures for numerical target labels, we refer the interested reader to (Lemmerich,
Atzmueller, and Puppe, 2016). Morishita and Sese, 2000 exploit convexity of interestingness
measures in the ROC (coverage) space (Fürnkranz and Flach, 2005) (x-axis defined by fpr
and y-axis defined by tpr, see Section 2.2.2) to provide proper optimistic estimates for
correlation measures like χ2 (Chi-squared) statisic and information gain (see (Abudawood
and Flach, 2009; Fürnkranz and Flach, 2005)). The convexity property of interestingness
measures in the ROC space has been also leveraged for defining optimistic estimates for
other interestingness measures like the well-known Weighted Relative Accuracy (WRAcc),
the proof of WRAcc convexity can be found in (Zimmermann and Raedt, 2009). In summary,
one need to leverage properties of the underlying interestingness measures in the pattern
structure (G,(D,v),δ ) to devise adapted optimistic estimates.

Some optimistic estimates are better than other in terms of their pruning abilities (conser-
vativeness (Grosskreutz, Rüping, and Wrobel, 2008)). Grosskreutz, Rüping, and Wrobel,
2008 defined the concept of tight optimistic estimates to refer to optimistic estimates that are
as efficient as possible.

Definition 2.4.2 — Tight Optimistic Estimate. An optimistic estimate oe for a given
quality measure ϕ is said to be tight if and only if:

∀d ∈D ∃S⊆ Gd s.t. oe(d) = ϕ(S)

Intuitively, an optimistic estimate is said to be tight if there exists a subset S in the extent
of some given description whose quality ϕ(S) is equal to the upper bound of the description
oe(d). Note that, the subset does not need to be characterized by a description in D.

Considering the Problem 2.2.1 (or 2.3.1) with the common SD constraints C : minimum
support size |Gd | ≥ σG , a minimum threshold on the quality of subgroups ϕ(d) ≥ σϕ . A
standard SD/EMM branch-and-bound algorithm performs a full traversal of the concept
lattice induced from the pattern structure (G,(D,v),δ ) to generate candidate subgroups
without redundancy (cf. Section 2.2.1). This can be done by relying on the formerly presented
algorithm EnumCC (cf. Algorithm 1). Each generated candidate subgroup have its quality
evaluated, if it is above the required threshold σϕ , it need to be kept in the final result set.
Otherwise, the optimistic estimate oe is evaluated and the sub-search space of the current
candidate can be pruned if the corresponding oe is below the quality threshold σϕ . The
algorithm stops when there is no remaining candidate subgroup. We call this algorithm
B&B4SDEMM and we illustrate its pseudo-code in Algorithm 2.

We conclude this section by summarizing the concepts that have been introduced
through this section in Figure 2.7. We augment Figure 2.6 depicting the search space
explored by EnumCC. The figure depicts the subgroups that are traversed by the algorithm
B&B4SDEMM. In short, only the closed descriptions are considered since we consider
extent-based interestingness measures. Moreover, if applicable, an optimistic estimate is
leveraged by the algorithm so as to prune as soon as possible unpromising areas of the
search space. It is to be noted that most algorithms proposed in this thesis follow the same
scheme defined by the algorithm B&B4SDEMM.
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Algorithm 2: B&B4SDEMM((G,(D,v),δ ),σG ,ϕ,oe,σϕ ,k)
Inputs :(G,(D,v),δ ) a pattern structure;

σG minimum support threshold of a description;
ϕ the quality measure;
oe the optimistic estimate;
σϕ quality threshold on the quality; k of the top-k.

Output: L is the list of interesting subgroups.
1 L←{}
2 σ current

ϕ ← σϕ

3 foreach (d,Gd ,cont) ∈ EnumCC(G,∗,σG ,0,True) do
4 if oe(d)< σ current

ϕ then
5 cont← False ; // Prune the sub-search space under d

6 else if ϕ(d)≥ σ current
ϕ then

7 L← (L∪d)
8 if |L|> k then
9 L← L\{r} with r ∈ {d ∈ L | ϕ(d) = min({ϕ(d) | d ∈ L}}

10 σ current
ϕ ←min({ϕ(d) | d ∈ L})

11 return L

Only black circles        in the blue zone           corresponding to closed descriptions are 
enumerated by B&B-SD. Only green circles          are considered in the final result set.
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Figure 2.7: Illustration of the area and elements (interesting closed subgroups) enumerated
by B&B4SDEMM via EnumCC in some given pattern structure (G,(D,v),δ ) (updating
Figure 2.6). Only the interesting closed subgroups are kept in the final result set while
unpromising areas of the search space are pruned by leveraging the optimistic estimates .
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2.5 POTENTIALS AND LIMITATIONS

We conclude this chapter by showing the potential and limitations of SD/EMM9 frameworks
for the discovery of exceptional (dis)agreements in behavioral data (c.f. Definition 1.1.1).
Considering the building blocks of SD and EMM (summarized in Figure 2.2 and Figure 2.4)
and the algorithms presented in the previous Section 2.4, all we need to do is to instantiate
properly these building blocks to enable the efficient discovery of exceptional (dis)agreement
between and within groups. Recall that both aforementioned tasks consider contexts (cf.
Definition 1.1.3) and groups (cf. Definition 1.1.2) to extract peculiar behavior between/among
groups. Since, no model classes and interestingness measures have been proposed in the
literature to mine for such patterns, our objective in this thesis is to harness the potentials of
SD/EMM. The latter provides a solid theoretical framework to model the desired tasks and
to devise efficient exhaustive algorithms for the analysis of exceptional subgroups once the
property of interest is appropriately defined.

Before getting into the core of the proposed EMM tasks for behavioral data analysis,
let us briefly review the limitations that prevented us from applying straightforwardly the
existing EMM models to uncover the desired patterns from behavioral data, i.e. exceptional
intra-group agreement and exceptional inter-group agreement.

� In most existing EMM models (cf. Section 2.3.2), the target attributes (t1, ..., tl) are
fixed and given upfront to the task. This is not the case in our setting, a target space
(groups) is provided instead of explicit targets. Dynamic EMM (i.e., EMM with
a non-fixed model) has been recently investigated for different aims. Bosc et al.,
2016 propose a method to handle multi-label data where the number of labels per
record is much lower than the total number of labels which prevents the use of usual
EMM model. Other dynamic EMM approaches aim to discover exceptional attributed
sub-graphs (Bendimerad, Plantevit, and Robardet, 2016; Bendimerad et al., 2017b;
Kaytoue et al., 2017) (cf. Section 2.3.2). Although, none of this (dynamic) models is
straightforwardly adaptable for the discovery of the desired patterns in behavioral data.
This point concerns Chapter 3 and Chapter 4.

� Considering the previous point and since no models have been proposed in the literature
to discover exceptional intra/inter-group agreement, it is required to define proper
model classes and adapted interestingness measures. Furthermore, correct optimistic
estimates need to be devised to make the exhaustive search of the desired patterns
possible. This point concerns Chapter 3 and Chapter 4.

� Earlier in this chapter, we discussed several possible interestingness measures and how
they are handled both in SD and EMM frameworks. While most of the interestingness
measures requires a threshold on the quality fixed by the end-user before starting the
algorithm (or a number k of desired patterns), evaluating interestingness via statistical
significance (Hämäläinen and Webb, 2019) is an interesting paradigm since: (1) it

9Starting from now, we deliberately confound SD and EMM and we note SD/EMM since: (i) EMM is a
generalization of SD when SD is seen from the perspective of supervised descriptive rule discovery (Kralj-Novak,
Lavrac, and Webb, 2009) and SD is generalization of EMM when SD is seen from the perspective of Siebes,
1995 or Wrobel, 1997. Although this choice seems late as it comes in the end of the chapter, it was motivated by
the fact that presenting EMM as a generalization of SD is more intuitive and more didactic.
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requires almost no input from the end-user (only the conventional intuitive critical value
α), (2) it statistically validate the found patterns, avoiding hence to return spurious
findings. However, there is no straightforward adaptations of existing approaches
in the literature to handle statistical significance of results in our setting. Moreover,
except for works addressing associations rules (Hämäläinen, 2010b; Minato et al.,
2014), most of the literature work rely on non-efficient search algorithms (no pruning
of uninteresting branches) (Duivesteijn and Knobbe, 2011; Lemmerich et al., 2016)
to measure statistical significance of patterns during enumeration. Thus, we need
to investigate proper and efficient significance measuring of patterns and associated
correct optimistic estimates to render possible an exhaustive search algorithm for the
desired patterns. This point concerns Chapter 4.

The next Chapters are devoted to the instanciation of SD/EMM framework for the
discovery of exceptional inter-group agreement in behavioral data (Chapter 3) and the
discovery of exceptional intra-group agreement in behavioral data (Chapter 4).

Note: The notations that have been introduced introduced in Chapter 1 and Chapter 2 are
listed in Table C.1 in Appendix C.
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Identifying exceptional (dis)agreement
between groups

This chapter addresses the problem of discovering exceptional (dis)agreement patterns
between groups in such data, i.e., groups of individuals that exhibit an unexpected mutual
agreement under specific contexts compared to what is observed in overall terms. To
tackle this problem, we design a generic approach, rooted in the Exceptional Model
Mining framework, which enables the discovery of such patterns in two different ways.
A branch-and-bound algorithm ensures an efficient exhaustive search of the underlying
search space by leveraging closure operators and optimistic estimates on the interestingness
measures. A second algorithm abandons the completeness by using a direct sampling
paradigm which provides an alternative and tractable algorithm when an exhaustive search
approach becomes unfeasible. To illustrate the usefulness of discovering exceptional
(dis)agreement patterns, we report a comprehensive experimental study on four real-world
datasets relevant to three different application domains: political analysis, rating data
analysis and healthcare surveillance.

3
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3.1 INTRODUCTION

In the former chapter, we have presented the theoretical background of Subgroup Discovery
and Exceptional Model Mining which will serves to model the task of finding exceptional
(dis)agreement between groups in behavioral datasets (cf. definition 1.1.1). In a nutshell, the
aim of this chapter is to extend the capabilities of SD/EMM in order handle the discovery of
such patterns in an efficient way. To this aim, we first need to instantiate the building blocks
of EMM for this underlying problem. Also, we need study the properties of the proposed
interestingness measures to propose (tight) optimistic estimates. This enables to discover
exceptional (dis)agreement in behavioral data in an optimal way.

Consider a behavioral dataset (cf. definition 1.1.1) describing the organization and
votes of a parliamentary institution (e.g., European Parliament1, US Congress2). Such
datasets record the activity of each member in voting sessions held in the parliament,
as well as information on the parliamentarians and the sessions. Table 3.1 provides an
example. It reports the outcomes of European parliament members (MEPs) on legislative
procedures. These procedures are described by attributes such as themes and dates. MEPs
are characterized by their country, parliamentary group and age. The general trends are
well known, and easy to check on these data with basics queries on data. For instance,
the Franco-German axis is reflected by consensual votes between parliamentarians of both
countries as well as the usual opposition between right wing and left wing. An analyst (e.g.,
a data journalist) is aware of these political positions and expects deeper insights. To this end,
it is of major interest to discover groups of individuals that exhibit an unexpected mutual

ide themes date

e1 1.20 Citizen’s rights 20/04/16
e2 2.10 Free Movement of goods 16/05/16
e3 1.20 Citizen’s rights; 7.30 Judicial Coop 04/06/16
e4 7 Security and Justice 11/06/16
e5 7.30 Judicial Coop 03/07/16
e6 7.30 Judicial Coop 29/07/16

(a) Entities (Voting sessions)

idi country group age

i1 France S&D 26
i2 France PPE 30
i3 Germany S&D 40
i4 Germany ALDE 45

(b) Individuals (Parliamentarians)

idi ide outcome

i1 e1 For
i1 e2 Against
i1 e5 For
i1 e6 Against
i2 e1 For
i2 e3 Against
i2 e4 For
i2 e5 For
i3 e1 For
i3 e2 Against
i3 e3 For
i3 e5 Against
i4 e1 For
i4 e4 For
i4 e6 Against

(c) Outcomes

Table 3.1: Example of behavioral dataset - European Parliament Voting dataset . This dataset
is a replica of the dataset presented in Table 1.1

1http://parltrack.euwiki.org/
2https://voteview.com/data
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agreement (or disagreement) under specific conditions (contexts). For example, from Table
3.1, an exceptional inter-group agreement pattern is p= (c= 〈themes = 7.30 Judicial Coop〉,
u1 = 〈country = France〉, u2 = 〈country = Germany〉), which reads: “in overall terms, while
German and French parliamentarians are in agreement (comparing majority votes leads to
66%3 of equal votes), an unexpected strong disagreement between the two groups is observed
for Judicial Cooperation related legislative procedures (the respective majorities voted the
same way only 33% of the time in the corresponding voting sessions, i.e. {e3,e5,e6})”.

In this chapter, we aim to discover such exceptional inter-group agreement patterns not
only in voting data but also in more generic data which involves individuals, entities and
outcomes, i.e. behavioral data (cf. definition 1.1.1). From such datasets, we aim to discover
exceptional (dis)agreement between groups of individuals on specific contexts. That is to say,
an important difference between the groups’ behaviors is observed compared to the usual
context (i.e., the whole data). This could answer a large variety of questions. For instance,
considering political data, an analyst may ask: what are the controversial subjects in the
European parliament in which groups or parliamentarians have divergent points of view?
In collaborative rating analysis, one may ask what are the controversial items? And which
groups are opposed? In Healthcare surveillance, the analyst may want to know if some
medicines are prescribed much more often for one group of individuals than another one.

No model in the SD/EMM framework (cf. Chapter 2) makes it possible to investigate
exceptional contextual (dis)agreement between groups. We made a first attempt to discover
exceptional inter-group agreement patterns in (Belfodil et al., 2017a). However, the model
proposed in (Belfodil et al., 2017a) requires the specification of many non-intuitive parame-
ters that may be source of misleading interpretation. In this work (Belfodil et al., 2019c), we
strive to provide a simpler and more generic framework to analyze behavioral data.

Entities
(e.g., Movies, Voting sessions) 

Individuals
(e.g., Users, Parlementarians) 

Select a subset of entities

e.g. Dotted diamonds

Overall Inter-group agreement2

Contextual Inter-group Agreement4

Select two groups of individuals  

eg. Confront      vs.      

Consider all entities

Outcomes
(e.g., Scores, Votes) 

Similarity based on all entities

Compare models to 

evaluate the 

intensity of change 

5 vs.
Pointed out by an 

interestingness 

measure

Significant variation 
of agreement

(   ,   ,   )

Behavioral 
Dataset

1

3

Figure 3.1: Overview of the task of discovering exceptional (dis)agreement between groups

3Since the majorities of 〈u1,u2〉 voted respectively on {e1,e2,e3,e4,e5,e6} as follows:
〈For,For〉,〈Against,Against〉,〈Against,For〉,〈For,For〉,〈For,Against〉,〈Against,Against〉.
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Figure 3.1 gives an overview of the approach we devise to discover exceptional agree-
ment/disagreement between groups. At a high level of description, five steps are necessary to
discover interesting inter-group agreement patterns. First, two groups of individuals (u1,u2)

are selected by intents (1) . Then, their usual agreement on all their expressed outcomes is
computed in step (2). All characterizable subsets of entities (contexts (c)) are then enumer-
ated (3) and for each selected subset, the agreement between the two groups is measured (4)
and compared to their usual agreement (5) to evaluate to what extent the mutual agreement
changes conveyed by a inter-group agreement pattern (c,u1,u2). Eventually, all pairs of
groups (at least conceptually) are confronted. The discovery of exceptional inter-group
agreement patterns requires to explore (simultaneously) both the search space associated to
the individuals and the search space related to the entities. Moreover, behavioral datasets
may contain several types of attributes (e.g., numerical, categorical attributes potentially
organized by a hierarchy), and outcomes. This requires efficient enumeration strategies. Last
but not least, different measures to capture agreement may be considered depending on the
application domain. Accordingly, the proposed method must be generic.

Contributions. this chapter makes the following contributions:

Problem formulation. We define the novel problem of discovering exceptional (dis)agreement
between groups of individuals when considering a particular subset of outcomes com-
pared to the whole set of outcomes.

Algorithms. We propose two algorithms to tackle the problem of discovering exceptional
inter-group agreement patterns. DEBuNk4 is a branch-and-bound algorithm that effi-
ciently returns the complete set of patterns. It takes benefit from both closure operators
and optimistic estimates. Quick-DEBuNk is an algorithm that samples the space of
inter-group agreement patterns in order to support instant discovery of patterns.

Evaluation. We report an extensive empirical study on both synthetic and real-world datasets.
Synthetic datasets with controlled ground truth allows to make some qualitative
comparisons with some existing methods. It gives evidence that existing methods
fail to discover inter-agreement patterns. The four real-world datasets are then used
to demonstrate the efficiency and the effectiveness of our algorithms as well as the
interest of the discovered patterns. Especially, we report three case-studies from
different application domains: political analysis, rating data analysis and healthcare
surveillance to demonstrate that our approach is generic.

The following content is based on our article on Flash points (Belfodil et al., 2017a) and its
extension has been accepted in Data Min. Knowl. Disc. journal (Belfodil et al., 2019c).
Roadmap. The rest of this chapter is organized as follows. The problem formulation is
given in Section 3.2. We present the agreement measure and how it is integrated into an
interestingness measure to capture changes of inter-group agreement in Section 3.3. DEBuNk
algorithm is presented in Section 3.4 while a pattern space sampling version, Quick-DEBuNk,
is defined in Section 3.5. We report an empirical study in Section 3.6. Eventually, we discuss
the potentials and limitations of the proposed approach in Section 3.7.
Note: Notations used in this chapter are listed in Appendix C and Appendix D.

4DEBuNk stands for Discovering Exceptional inter-group Behavior patterNs
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3.2 Setup and Problem Formalization 57

3.2 SETUP AND PROBLEM FORMALIZATION

Here, we first define the fundamental concepts that we use throughout the chapter in Sec-
tion 3.2.1, followed by the formal problem statement in Section 3.2.2. Some definitions and
notions that were already introduced in Chapter 2 will be recalled in brief in this section for
the convenience of the reader.

3.2.1 PRELIMINARIES

We are interested in discovering exceptional (dis)agreement among groups in Behavioral
Datasets whose formal definition is given in Definition 1.1.1. Recall that a behavioral dataset
is quadruple 〈GI, GE , O, o〉 where GI is a collection of individuals, GE is a collection of
entities, O is the domain of possible outcomes and o : GI×GE → O gives the outcome of an
individual i over an entity e, if applicable.

In order to define appropriately the form of the sought patterns, we need first to character-
ize subgroups of data records in GI and GE . These two sets are collections of records defined
over a set of descriptive attributes (Schema). We denote such collection of records by G, rein-
troducing the subscripts only in case of possible confusion. We assume A = (a1, ...,am) to be
the ordered list of attributes constituting the schema of G. Each attribute a j has a domain of
interpretation, noted dom(a j), which corresponds to all its possible values. Attributes may be
numerical or categorical potentially augmented with a taxonomy referred to by Hierarchical
Multi-Tag (HMT) attributes (see section 3.4.2). For instance, in Table 3.1, parliamentarians,
described by their country (categorical), their political group (categorical) and their age
(numerical), decide on some voting sessions outlined by a date (numerical) and themes
(HMT attribute). The attributes’ domains define a description domain DE (resp. DI) which
corresponds to the set of all possible descriptions that one can use to characterize subgroups
of records in GE (resp. GI). Recall that descriptions are conjunction of conditions of the
form d = 〈r1, ...,rm〉 where r j depends on the type of the attribute a j (cf. Definition 2.2.2 and
Definition 2.2.12). Descriptions are ordered via a specialization operator v which roughly
translates to: d v d′, iff d′⇒ d (cf. Definition 2.2.4). Formally, the concept of description is
used to describe both sets of individuals and sets of entities. Yet, for the ease of interpretation,
we use two different terms to name them: group description and context. An example is
given below.

� Example 3.1 In Table 3.1, the context c = 〈 date ∈ [05/06/16..30/07/16] 〉 identifies the set
of entities Gc

E = {e4,e5,e6}. Similarly, the group description u = 〈 group=‘S&D’ 〉 selects
the set of individuals Gu

I = {i1, i3}. �

In the remaining, we manipulate the two pattern structures (cf. Definition 2.2.7)
(GE ,(DE ,v),δ E) and (GI,(DI,v),δ I). Recall that δ E (resp. δ I) is a mapping opera-
tor which transforms a record e ∈ GE (resp. i ∈ GI) to its maximal description c ∈ DE

(resp. u ∈ DI). Thus a subgroup of entities characterized by a context c ∈ DE is denoted
Gd

E = {e ∈ GE | d v δ E(e)}. Similarly a subgroup of individuals by a group description
u ∈DI is denoted Gu

I = {i ∈ GI | uv δ I(i)}.
Since we are interested in patterns highlighting exceptional (dis)agreement between two

groups of individuals described by u1 and u2, in a context c compared to the overall context,
the sought patterns are defined as follows:
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58 Chapter 3. Identifying exceptional (dis)agreement between groups

Definition 3.2.1 — Inter-Group Agreement Pattern. A inter-group agreement pattern
is a triplet p = (c,u1,u2) where c ∈ DE is a context and (u1,u2) ∈ D2

I are two group
descriptions.

The extent of a inter-group agreement pattern p is ext(p) = (Gc
E ,G

u1
I ,Gu2

I ) with Gc
E the

set of entities satisfying the conditions of context c, and Gu1
I (resp. Gu2

I ) the set of individuals
supporting the description u1 (resp. u2). The set of all possible patterns is denoted as
P = DE ×DI×DI . Furthermore, as P = DE ×DI×DI is the product of three partially
ordered collections, patterns of P are also partially ordered. Since (GE ,(DE ,v),δ E) and
(GI,(DI,v),δ I) are both pattern structures and the cartesian product of lattices related to
forms a lattice (Roman, 2008), we have 〈GE ×GI×GI,(P,v),δ = (δ E ,δ I,δ I)〉 is a pattern
structure (cf. Definition 2.2.7)).

Definition 3.2.2 — Specialization between patterns v. Let p and p′ be two patterns
from P , p′ is a specialization of a pattern p, denoted p v p′, iff c v c′, u1 v u′1 and
u2 v u′2.

Notice that, if pv p′ then ext(p′)⊆ ext(p), that is Gc′
E ⊆ Gc

E and Gu′1
I ⊆ Gu1

I and Gu′2
I ⊆

Gu2
I . Some descriptions are considered to be equivalent if they characterize the same subset

S⊆ G. i.e. two descriptions d1,d2 ∈D are equivalent iff Gd1 = Gd2 (cf. Definition 2.2.11).
Similarly, two patterns p, p′ ∈P are equivalent if they share the same extent, i.e. ext(p) =
ext(p′).

To objectively evaluate how interesting a inter-group agreement pattern, a quality measure
ϕ is required as formerly introduced in Definition 2.2.6 and discussed in Section 2.2.2, in the
scope of this chapter and since the sought patterns are in P , the quality measure is a function
ϕ : P → R which assigns to each pattern p = (c,u1,u2) ∈P a real number ϕ(p) ∈ R.

A quality measure is designed to compare patterns: the quality of one will be compared
to the quality of the others, most of the time to choose the best one. Consequently, it must
be carefully designed with respect to what the algorithm is expected to produce. Our first
objective is to identify particular parts of the data. This naturally leads to quality evaluation
functions focusing on the extent of the pattern. Moreover, in this case, any consideration
about the syntax of the pattern can only interfere and has to be avoided. Consequently, the
quality measures we propose5 are extent-based quality measures which are of the form:
ϕ(p) = ϕ ′(ext(p)) (see Definition 2.2.6 and its following paragraph). It follows that two
patterns characterizing the same data, i.e. with the same extent, share the same quality
measure: ∀p, p′ ∈P, if ext(p) = ext(p′) then ϕ(p) = ϕ(p′).

3.2.2 FORMAL PROBLEM DEFINITION

The user will be provided with a collection of patterns that captures exceptional (dis)-
agreements in a given behavioral dataset. A first intuitive idea is to provide all patterns
of high quality, i.e. with a quality greater than a user-defined threshold σϕ . However,
by construction of the quality measures, different patterns sharing the same extent will
reach the same quality level, leading to multiple descriptions of the same parts of the data.

5Different quality measures are proposed in Sec. 3.3.
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3.3 Inter-Group Agreement Measure and Interestingness Evaluation 59

Assuming that the user can be quickly bothered by such duplication, we propose to expose
each interesting part of the data only once. More interestingly, the system should provide the
user with the best generalizations only, i.e., patterns whose extent is not included in some
other found ones. Additionally, some cardinality constraints can be added to avoid patterns
of too small extent. Given two minimum support thresholds σE and σI , these constraints
ensure, for a pattern p = (c,u1,u2), that the size of the context extent (i.e. |Gc

E | ≥ σE) and
the size of both groups (i.e. |Gu1

I | ≥ σI and |Gu2
I | ≥ σI) are large enough. Now, we introduce

formally the core problem we tackle in this chapter.

Problem 3.2.1 (Discovering Exceptional (Dis)Agreement between Groups).
Given a behavioral dataset 〈GI, GE , O, o〉, a quality measure ϕ , a quality threshold

σϕ and a set of cardinality constraints C , the problem is to find the pattern set P⊆P

such that the following conditions hold:

1. (Validity) ∀p ∈ P : p valid, that is p satisfies C and ϕ(p)≥ σϕ .

2. (Maximality) ∀p ∈ P ∀q ∈P : ext(q) = ext(p)⇒ qv p

3. (Completeness) ∀q ∈P \P : q valid ⇒∃p ∈ P s.t. ext(q)⊆ ext(p)

4. (Generality) ∀(p,q) ∈ P2 : p 6= q⇒ ext(p)* ext(q).

Condition (1) ensures that the patterns in P are of high quality and satisfy the cardinality
constraints. Condition (2) retains only one unique representative among patterns sharing the
same extent: the maximal one w.r.t. v. Such a pattern exists only if the specialization relation
v over the pattern space induces a lattice structure (Ganter and Kuznetsov, 2001) (we have
〈GE ×GI×GI,(P,v),δ 〉 is a pattern structure). The maximal pattern w.r.t. v is commonly
refered to as the closed pattern (Pasquier et al., 1999). We confine ourselves to such pattern
spaces. Condition (3) ensures that each valid pattern in P has a representative in P covering
it, while condition (4) ensures that only the most general patterns w.r.t. their extents are in P.
In other words, the combination of conditions (3) and (4) guarantees that the solution P is
minimal in terms of the number of patterns while having each valid pattern represented in
the solution. Considering the generic definition of the quality measure discussed here, this
problem extends the top-k problem addressed in (Belfodil et al., 2017a) (see Problem 2.3.1)
by introducing conditions (3) and (4). That is, for a sufficiently large k, the method formerly
provided in (Belfodil et al., 2017a) solves this problem only limited to the two first conditions
providing, hence, a solution with a much larger number of redundant patterns.

3.3 INTER-GROUP AGREEMENT MEASURE AND INTERESTINGNESS EVALUATION

The previous section has already hinted at the fact that pattern interestingness is assessed
with a quality measure ϕ whose generic definition is given. Here we show how such measure
captures the deviation between the contextual inter-group agreement and the usual inter-
group agreement. The inter-group agreement being the model (as required by the EMM
framework (cf. Figure 2.4)) we choose to capture the inter-group agreement.
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3.3.1 QUALITY MEASURES

For any pattern p = (c,u1,u2) ∈P , we denote by p∗ the pattern (∗,u1,u2) which involves
all the entities. IAS(p∗) (resp. IAS(p)) represents the usual (resp. contextual) inter-group
agreement observed between the two groups u1,u2. In order to discover interpretable patterns,
we define two quality measures that rely on IAS(p∗) and IAS(p).

- ϕconsent assesses the strengthening of inter-group agreement in a context c:

ϕconsent(p) = max(IAS(p)− IAS(p∗) ,0) .

- ϕdissent assesses the weakening of inter-group agreement in a context c:

ϕdissent(p) = max(IAS(p∗)− IAS(p) ,0) .

For instance, one can use ϕconsent to answer: “What are the contexts for which we observe
more consensus between groups of individuals than usual?”.

3.3.2 INTER-GROUP AGREEMENT SIMILARITY (IAS)

Several IAS measures can be designed according to the domain in which the data was
measured (e.g., votes, ratings) and the user objectives. The evaluation of an IAS measure
between two groups of individuals over a context requires the definition of two main operators:
the outcome aggregation operator (θ ) which computes an aggregated outcome of a group of
individuals for a given entity, and a similarity operator (sim) which captures the similarity
between two groups based on their aggregated outcomes over a single entity. These operators
are defined in a generic way as following.

Definition 3.3.1 — Outcome Aggregation Operator θ . An aggregation operator is
a function θ : 2GI ×GE → D which transforms the outcomes of a group of individuals
Gu

I over one entity e ∈ GE (i.e. {oa(i,e) | i ∈ Gu
I }) into a value in a domain D (e.g. R,

categorical values).
ao(i,e) returns the outcome expressed by an individual i to an entity e, if given.

Definition 3.3.2 — Similarity between aggregated outcomes sim. sim : D×D→R+

assigns a real positive value sim(x,y) to any couple of aggregated outcomes (x,y).

Based on these operators, we properly define IAS which assigns to each pattern p =

(c,u1,u2) ∈P a value IAS(p) ∈ R+. This similarity evaluates how the two groups of
individuals (u1,u2) behave similarly given their outcomes w.r.t. the context c. In the scope of
our study, we confine ourselves to IAS measures that can be expressed as weighted averages.
The next definition, though limiting, is generic enough to handle a wide range of behavioral
data.
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Definition 3.3.3 — Inter-group Agreement Similarity Measure IAS. Let w be a func-
tion associating a weight to each triple from (GE × 2GI × 2GI ). The IAS of a pattern
(c,u1,u2) (IAS : P → R+) is the weighted average of the similarities of the aggregated
outcomes for each entity e supporting the context c.

IAS(c,u1,u2) =
∑e∈Gc

E
w(e,Gu1

I ,Gu2
I )× sim(θ(Gu1

I ,e),θ(Gu2
I ,e))

∑e∈Gc
E

w(e,Gu1
I ,Gu2

I )

3.3.3 EXAMPLES OF IAS MEASURES

By simply defining sim and θ , we present two instances of IAS measure that address two
types of behavioral data with specific aims.

3.3.3.1 Behavioral Data With Numerical Outcomes

Collaborative Rating datasets are a classic example of behavioral data with numerical
outcomes. Such datasets describe users who express numerical ratings belonging to some
interval O = [min,max] (e.g., 1 to 5 stars) over reviewees (e.g. movies, places). A simple
and adapted measure for aggregating individual ratings over one entity is the weighted mean
θwavg : 2GI ×GE → [min,max].

θwavg(Gu
I ,e) =

1
∑i∈Gu

I
w(i) ∑

i∈Gu
I

w(i)×o(i,e) (3.1)

Weight w(i) corresponds to the importance of ratings given by each individual i ∈ GI . Such
weight may depend on the confidence of the individual or the size of the sample population if
fine granularity ratings (rating of each individual) are missing. If no weights are given, θwavg

computes a simple average over ratings, denoted θavg. To measure agreement between two
aggregated ratings over a single entity, we define simrating : [min,max]× [min,max]→ [0,1].

simrating(x,y) = 1−
( |x− y|

max−min

)
(3.2)

3.3.3.2 Behavioral Data with Categorical Outcomes

A typical example of such datasets are Roll Call Votes (RCVs)6 datasets where voting
members cast categorical votes. The outcome domain O is the set of all possible votes (e.g.,
O = {For,Against,Abstain}). To aggregate categorical outcomes we use the majority vote7

θmajority. We adapt its definition to handle potential ties (i.e., non unique majority vote).
Hence, θmajority : 2GI ×GE → 2O returns all the outcomes that received the majority of votes.

θmajority(Gu
I ,e) = {v ∈ O : v = argmax

z∈O
#votes(z,Gu

I ,e)}

with #votes(z,Gu
I ,e) = |{(i,e) : i ∈ Gu

I ∧ o(i,e) = z}|
(3.3)

6Roll-Call vote is a voting system where the vote of each member is recorded, such as http://www.
europarl.europa.eu (EU parliament) or https://voteview.com (US Congresses).

7The same measure is used by votewatch to observe the voting behaviors of groups of parliamentarians-
http://www.votewatch.eu/blog/guide-to-votewatcheu/
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We use a Jacquard index to assess the similarity between two majority votes x and y.
Hence, simvoting : 2O×2O→ [0,1] is defined as follows.

simvoting(x,y) =
|x∩ y|
|x∪ y| . (3.4)

3.3.4 DISCUSSION

We introduced above two simple similarity measures that can be used as part of the IAS
measure to assess how similar two groups of individuals are. More sophisticated measures
can be considered. For instance, in behavioral datasets with categorical outcomes, one can
define an outcome aggregation measure which takes into account the empirical distribution
of votes and then a similarity measure which builds up on a statistical distance (e.g. Kullback-
Leibler divergence (Csisz, 1967; Johnson and Sinanovic, 2001)). Such measures can also be
used on behavioral datasets which involves numerical outcomes, for instance Earth Mover
Distance measure was investigated in similarly structured dataset (rating dataset) in (Amer-
Yahia et al., 2017). Several other measures can be relevant to analyze behavioral data with
numerical outcomes depending on the aim of the study. In the empirical study, we investigate
another similarity measure which relies on a ratio to highlight discrepancies between the
medicine consumption rates of two subpopulations.

3.4 MINING EXCEPTIONAL INTER-GROUP AGREEMENT PATTERNS

We address the design of an efficient algorithm for enumerating exceptional inter-group
agreement patterns. First, we present how candidates are enumerated without redundancy
by relying on the pattern structure formalization (cf. Section 2.2.1). Second, we detail
the enumeration process, paying particular attention to the attributes domains depicted
by a hierarchy. Next, we propose optimistic estimates for the quality measures to enable
pruning uninteresting branches of the search space. Eventually, these elements are used to
define an efficient branch-and-bound algorithm which computes the complete set of relevant
inter-group agreement patterns.

3.4.1 ENUMERATING CANDIDATE SUBGROUPS

Exploring the space of inter-group agreement patterns from DE ×DI×DI is equivalent to
enumerating descriptions in DE and DI concurrently. Given the fact that the quality measures
addressed in this work are extent-based quality measures and since (GE ,(DE ,v),δ E) and
(GI,(DI,v),δ I) are two pattern structures (cf. Definition 2.2.7), we enumerate all closed
descriptions (closed contexts, and closed groups of descriptions) using Algorithm EnumCC
(cf. Algorithm 1). Recall that EnumCC enumerates, in a depth-first search manner, once
and only once all the closed contexts c (closed group descriptions u) that fulfill the support
constraint |Gc

E | ≥ σE (resp. |Gu
I | ≥ σI) with σE (resp. σI) a user defined minimum support

threshold on the context (resp. group description) related subgroup.
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3.4.2 HIERARCHICAL MULTI-TAG ATTRIBUTE (HMT)

Vote and review datasets often contain multi-tagged records whose tags are part of a hier-
archical structure. For instance, voting sessions in the EU parliament can have multiple
tags. For example, procedure Gender mainstreaming in the work of the EU Parliament is
tagged by 4.10.04-Gender equality and 8.40.01-EU Parliament. Tag 4.10.04 is identified in
a a hierarchy as a specialization of tag 4.10 that depicts Social policy and which is itself a
specialization of tag 4 that covers all the sessions related to Economic, social and territorial
cohesion. We formally define this type of attribute named HMT.

Definition 3.4.1 — HMT Attribute. Let T = {t1, t2 . . . tk}∪ {∗} be a set of values (also
called tags), < be a partial order over T inducing a tree structure (T,<) whose root is ’∗’.
ti < t j denotes the fact that t j is a descendant of ti in T . In addition, the ascendants (resp.
descendants) of a tag t ∈ T is ↑ t = {t ′ ∈ T |t ′ ≤ t} (resp. ↓ t = {t ′ ∈ T |t ′ ≥ t}). If t is a
parent of a tag t ′ according to the tree T , it is denoted by t = p(t ′).
A HMT attribute a j takes its values in dom(a j) = 2T .

As an example, Fig. 3.2b describes G, a set of tag records defined by a unique attribute
tags. Elements of tags are organized through the tree from Fig. 3.2a. We have ∗< 1 < 1.20
and ↑ 1.20 = {1.20,1,∗}.

For a HMT attribute a j, each record g ∈ G is mapped by δ j(g) to its corresponding
tightest set of tags in dom(a j). If δ j(g) = {t1, ..., tn}, the record g is tagged explicitly by
all the tags tk for k ∈ [1,n] and also implicitly by all their generalizations ↑ tk. Figure 3.2c
illustrates this by reporting the flat representation of the collection of tagged records depicted
in Figure 3.2b. It follows that a condition over a HMT attribute is defined as follows:

Definition 3.4.2 — Condition on a HMT attribute. (extends definition 2.2.12) Let G be
a collection defined over the schema A = {a1, ...,am}

• If a j a HMT attribute then condition r j is a superset test of the form a j ⊇ χ with
χ ∈ dom(a j).

Accordingly, a HMT condition can be depicted by a rooted sub-tree of T and a record
supports such a condition if it contains at least all tags of the sub-tree. Moreover, it can be
seen as a restricted itemset language (cf. Section 2.2.1). It follows that, the partial order
between two HMT conditions r,r′ denoted r v r′ (r′ is a specialization r) is valid if the
sub-tree r covers the sub-tree r′. i.e. , r v r′ means ∀t ∈ r ∃t ′ ∈ r′ s.t. t ′ ∈ ↓ t.

Two ways are possible to take this attribute into account in the enumeration of descrip-

*

1 2 3

1.10 1.20 2.10

(a) Tree of tags - T

tags

g1 {1.20,2.10}
g2 {1,3}
g3 {1.10,2.10,3}
g4 {2.10}
g5 {1.20}

(b) Tagged records

∗ 1 1.10 1.20 2 2.10 3

g1 × × × × ×
g2 × × ×
g3 × × × × ×
g4 × × ×
g5 × × ×

(c) Flat representation

Figure 3.2: A collection of records labeled each by a set of tags and its flat representation.
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*

1 2 3

1.10 1.20 2.10

(r)

∧

*

1 2 3

1.10 1.20 2.10

(r′)

=

*

1 2 3

1.10 1.20 2.10

(r ∧ r′)

Figure 3.3: Illustration of the conjunction operator ∧ between two HMT descriptions

tions from the complex search space aforementioned. One straightforward solution is to
consider HMT attribute values as itemsets as depicted in the vector representation in Fig.
3.2c. However, such a solution ignores the taxonomy T implying the enumeration of chain
descriptions. For instance, a chain description {1,1.20.01} is regarded as a different descrip-
tion than {1.20.01}. This stems from the fact that items are unrelated from the viewpoint of
itemsets solution. As a consequence, a larger search space is explored while determining
the same number of closed descriptions. To tackle this issue, we define a HMT description
language.

Similarly to the aforementioned attributes, we define the conjunction operator ∧ between
two conditions which computes the maximum common sub-tree covering a set of conditions.
Let r = {t1, ..., tn} and r′= {t ′1, ..., t ′m} be two HMT conditions, r ∧ r′=max(∪t∈r ↑t∩∪t ′∈r′ ↑
t ′) where max : 2T → 2T maps a subset of tags s ⊆ T to the leafs of the sub-tree induced
by s: max(s) = {t ∈ s|(↓ t \ {t})∩ s = /0}. Intuitively, r ∧ r′ is the set of the maximum
explicit (green) and implicit tags (yellow) shared by the two descriptions. For instance, if
r = {1.10,2} and r′ = {1.10,2.10}, we have r∧ r′ = {1,2} (cf. Fig. 3.3).

Moreover, we define an atomic refinement operation which enables calculating neighbors
of a HMT condition r. A condition r′ is said to be a neighbor of r if: either only one tag of r
is refined in r′ or a new tag is added in r′ that shares a parent with a tag in r or with one of its
ascendants. Formally:

∃! (t,u) ∈ r× r′ : t = p(u) ∧ ∀t ′ ∈ (r \ t) ∃u′ ∈ r′ : t ′ = u′ if |r|= |r′|
∀t ∈ r ∃u ∈ r′ : t=u∧∃!(t,u) ∈ r×r′ s.t. ∃t ′∈ ↑ t : p(u)= p(t ′) |r|= |r′|+1

(3.5)

Finally, we define the lectic order between two conjunctions of tags r = {t1, ..., tn} and
its closure r′ = {t ′1, ..., t ′n, ..., t ′m} for the canonicity test to avoid the enumeration of already
visited descriptions. Let r be generated after a refinement of the f th tag, the lectic order is
defined as: rl f r′⇔∀i ∈ [1.. f −1] : ti = t ′i ∧ t f l t ′f . The linear order l between tags can
be provided by a depth first search order on T . These concepts being defined, the mapping
function δ can be extended easily to handle HMT among other attributes. Note that HMT
supports itemsets. This can be done simply by considering a flat tree T with all the items as
leaves. Hence, HMT can be seen as a generalization of itemsets, where implications between
items are known. Within this aim, we investigated a more generic generalization of itemsets
with underlying implications in a recent work (Belfodil, Belfodil, and Kaytoue, 2019) which
is out of the scope of this thesis.
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3.4.3 OPTIMISTIC ESTIMATES ON QUALITY MEASURES

The enumeration of closed patterns enables a non-redundant traversal of the search space
without pruning based on the quality measure. We present some pruning properties based on
bounds on ϕconsent and ϕdissent .

Let u1, u2 be two descriptions from DI that respectively cover the two groups Gu1
I , Gu2

I .
We consider optimistic estimates (cf. Definition 2.4.1) only with regards to the description
space DE . We assume that u1 and u2 are instantiated a priori. In the scope of this work, an
optimistic estimate oe for a given quality measure ϕ is a function such that:

∀ c,d ∈DE . cv d⇒ ϕ(d,u1,u2)≤ oe(c,u1,u2)

Tight optimistic estimates (cf. Definition 2.4.2) offer more pruning abilities than simple
optimistic estimate. Without loss of generality, we assume that the input domains of oe and
ϕ are defined over both the pattern space P and over 2GE ×2GI ×2GI . This is possible, since
the quality measure only depends on extents. In the scope of this work, a tight optimistic
estimate oe is tight iff:

∀c ∈DE . ∃S⊆ Gc
E : oe(Gc

E ,G
u1
I ,Gu2

I ) = ϕ(S,Gu1
I ,Gu2

I )

.

3.4.3.1 Lower Bound and Upper Bound for the IAS Measure

The two quality measures ϕconsent and ϕdissent rely on the IAS measure. Since u1 and u2 are
considered to be instantiated for optimistic estimates, we can rewrite the IAS measure for a
context c ∈DE and its extent Gc

E :

IAS(Gc
E ,G

u1
I ,Gu2

I ) =

∑
e∈Gc

E

we×α(e)

∑
e∈Gc

E

we
with

α(e) = sim(θ(Gu1
I ,e),θ(Gu2

I ,e))

we = w(e,Gu1
I ,Gu2

I )
.

We can now define a lower bound LB and an upper bound UB for the IAS measure based
on the following operators that are defined for any context c ∈DE and for n ∈ N:

• m(Gc
E ,n) = Loweste∈Gc

E
({we×α(e) | e ∈ Gc

E},n) returns the set of the n distinct
records e from Gc

E having the lowest values of we×α(e).

• M(Gc
E ,n) = Higheste∈Gc

E
({we×α(e) | e ∈ Gc

E},n) returns the set of the n distinct
records e from Gc

E having the highest values of we×α(e).

• mw(Gc
E ,n) = Loweste∈Gc

E
({we | e ∈ Gc

E},n) returns the set of the n distinct records e
from Gc

E having the lowest values of we.

• Mw(Gc
E ,n) = Higheste∈Gc

E
({we | e ∈ Gc

E},n) returns the set of the n distinct records e
from Gc

E having the highest values of we.
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Proposition 3.4.1 — Lower bound LB for IAS. we define function LB as

LB(Gc
E ,G

u1
I ,Gu2

I ) =
∑e∈m(Gc

E ,σE ) we×α(e)

∑e∈Mw(Gc
E ,σE ) we

For any context c (corresponding to a subgroup Gc
E ), LB provides a lower bound for IAS

w.r.t. contexts with σE a minimum context support threshold:

∀c,d ∈DE . cv d⇒ LB(Gc
E ,G

u1
I ,Gu2

I )≤ IAS(Gd
E ,G

u1
I ,Gu2

I )

Before giving the proof of the proposition 3.4.1 we present the following lemma.

Lemma 3.4.2 Let n ∈ N∗, A = {ai}1≤i≤n and B = {bi}1≤i≤n such that:

∀i ∈ 1..n−1 : 0≤ ai ≤ ai+1

∀i ∈ 1..n−1 : 0 < bi+1 ≤ bi

we have:

∀k ∈ 1..n :
∑

k
i=1 ai

∑
k
i=1 bi

≤ ∑
n
i=1 ai

∑
n
i=1 bi

≤ ∑
n
i=n−k+1 ai

∑
n
i=n−k+1 bi

Proof (lemma 3.4.2). Using the same notations of the lemma, we know that:

∑
n
i=1 ai

∑
n
i=1 bi

− ∑
k
i=1 ai

∑
k
i=1 bi

is of the same sign of:(
n

∑
i=1

ai

)
×
(

k

∑
i=1

bi

)
−
(

k

∑
i=1

ai

)
×
(

n

∑
i=1

bi

)
This above quantity is equal to:(

k

∑
i=1

ai +
n

∑
i=k+1

ai

)
×
(

k

∑
i=1

bi

)
−
(

k

∑
i=1

ai

)
×
(

k

∑
i=1

bi +
n

∑
i=k+1

bi

)
Which is equal to(

n

∑
i=k+1

ai

)
×
(

k

∑
i=1

bi

)
−
(

k

∑
i=1

ai

)
×
(

n

∑
i=k+1

bi

)
Using the lemma hypotheses (orders between ai’s and bi’s), we have:

n

∑
i=k+1

ai ≥ (n− k)×ak

k

∑
i=1

bi ≥ k×bk

k

∑
i=1

ai ≤ k×ak

n

∑
i=k+1

bi ≤ (n− k)×bk
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Thus: (
n

∑
i=k+1

ai

)
×
(

k

∑
i=1

bi

)
≥ (n− k)× k×ak×bk(

k

∑
i=1

ai

)
×
(

n

∑
i=k+1

bi

)
≤ (n− k)× k×ak×bk

We conclude that

(
n

∑
i=k+1

ai

)
×
(

k

∑
i=1

bi

)
−
(

k

∑
i=1

ai

)
×
(

n

∑
i=k+1

bi

)
≥ 0

Hence, we have:

∀k ∈ 1..n :
∑

k
i=1 ai

∑
k
i=1 bi

≤ ∑
n
i=1 ai

∑
n
i=1 bi

Similarly the inequality
∑

n
i=1 ai

∑
n
i=1 bi

≤ ∑
n
i=n−k+1 ai

∑
n
i=n−k+1 bi

can be easily proved following the same

line of reasoning of the proof of the first part of the inequality.
�

Proof (Proposition 3.4.1). By a straightforward application of Lemma 3.4.2 we obtain for
any d s.t. |Gd

E | ≥ σE the following inequality.

LB(Gd
E ,G

u1
I ,Gu2

I )≤ IAS(Gd
E ,G

u1
I ,Gu2

I ) (3.6)

This stems from the fact that LB(Gd
E ,G

u1
I ,Gu2

I ) takes the sum of the lowest σE quantities
constituting the numerator of IAS(Gd

E ,G
u1
I ,Gu2

I ) and divides them by the sum of the greatest
σE quantities forming the denominator of IAS(Gd

E ,G
u1
I ,Gu2

I ).
Moreover, we have that LB is monotonic w.r.t. v of DE . i.e.

cv d⇒ LB(Gc
E ,G

u1
I ,Gu2

I )≤ LB(Gd
E ,G

u1
I ,Gu2

I ) (3.7)

This results from c v d ⇒ Gd
E ⊆ Gc

E . Hence, if we reorder values of Gc
E and Gd

E where
Gc

E = {ec
1, ...,e

c
|Gc

E |
} and Gd

E = {ed
1 , ...,e

d
|Gd

E |
} as such:

wec
1
.α(ec

1)≤ wec
2
.α(ec

2)≤ ...≤ wec
σE
.α(ec

σE
)≤ ...≤ wec

|Ec|
.α(ec

|Gc
E |
)

wed
1
.α(ed

1)≤ wed
2
.α(ed

2)≤ ...≤ wed
σE
.α(ed

σE
)≤ ...≤ wed

|Gd
E |
.α(ed

|Gd
E |
)

Given that Gd
E ⊆ Gc

E , it is clear that: ∀i ≤ σE | wec
i
.α(ec

i ) ≤ wed
i
.α(ed

i ). Having that
m(Gc

E ,σE) = {ec
1, ...,e

c
σE
} and m(Gd

E ,σE) = {ed
1 , ...,e

d
σE
}, it follows that:

∑
e∈m(Gc

E ,σE )

we×α(e)≤ ∑
e∈m(Gd

E ,σE )

we×α(e) (3.8)
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Similarly, if we reorder entities e in descending order w.r.t the weights we we have
∀ j ≤ σE | wed

j
≤ wec

j
. Resulting in:

∑
e∈Mw(Gc

E ,σE )

we ≥ ∑
e∈Mw(Gd

E ,σE )

we (3.9)

Hence, from (3.8) and (3.9) we have LB(Gc
E ,G

u1
I ,Gu2

I )≤ LB(Gd
E ,G

u1
I ,Gu2

I ) and provided
that LB(Gd

E ,G
u1
I ,Gu2

I ) ≤ IAS(Gd
E ,G

u1
I ,Gu2

I ) from (3.6), we have: ∀c,d ∈ DE . c v d ⇒
LB(Gc

E ,G
u1
I ,Gu2

I )≤ IAS(Gd
E ,G

u1
I ,Gu2

I )

�

Proposition 3.4.3 — Upper bound UB for IAS. we define function UB as

UB(Gc
E ,G

u1
I ,Gu2

I ) =
∑e∈M(Gc

E ,σE ) we×α(e)

∑e∈mw(Gc
E ,σE ) we

For any context c (corresponding to a subgroup Gc
E), UB provides an upper bound for

IAS w.r.t. contexts. i.e.

∀c,d ∈DE . cv d⇒ IAS(Gd
E ,G

u1
I ,Gu2

I )≤ UB(Gc
E ,G

u1
I ,Gu2

I )

Proof (proposition 3.4.3). This proof is similar to the proof of Proposition 3.4.1. For the
sake of brevity, we give a proof sketch. By a direct application of Lemma 3.4.2, it is clear
that for any d s.t. |Gd

E | ≥ σE .

IAS(Gd
E ,G

u1
I ,Gu2

I )≤ UB(Gd
E ,G

u1
I ,Gu2

I ) (3.10)

We have that UB is anti-monotonic w.r.t. v of DE . i.e.

cv d⇒ UB(Gc
E ,G

u1
I ,Gu2

I )≥ UB(Gd
E ,G

u1
I ,Gu2

I ) (3.11)

This results from cv d⇒ Gd
E ⊆ Gc

E . Thus,

∑
e∈M(Gc

E ,σE )

we×α(e)≥ ∑
e∈M(Gd

E ,σE )

we×α(e) and ∑
e∈mw(Gc

E ,σE )

we ≤ ∑
e∈mw(Gd

E ,σE )

we

Hence, given (3.10) and (3.11) it follows that:

∀c,d ∈DE . cv d⇒ IAS(Gd
E ,G

u1
I ,Gu2

I )≤ UB(Gc
E ,G

u1
I ,Gu2

I )

�

Now that both the lower bound and the upper bound of IAS are defined w.r.t. contexts,
we define the optimistic estimates corresponding to ϕconsent and ϕdissent.
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3.4.3.2 Optimistic Estimates for Quality Measures

Proposition 3.4.4 — Optimistic estimate for ϕconsent and ϕdissent. oeconsent (resp. oedissent)
is an optimistic estimate for ϕconsent (resp. ϕdissent) with:

oeconsent(Gc
E ,G

u1
I ,Gu2

I ) = max(UB(Gc
E ,G

u1
I ,Gu2

I )− IAS(GE ,G
u1
I ,Gu2

I ),0)

oedissent(Gc
E ,G

u1
I ,Gu2

I ) = max(IAS(GE ,G
u1
I ,Gu2

I )−LB(Gc
E ,G

u1
I ,Gu2

I ),0)

Proof (proposition 3.4.4). given c,d ∈DE such that cv d, using proposition 3.4.1 we have:

IAS(Gd
E ,G

u1
I ,Gu2

I )≤ UB(Gc
E ,G

u1
I ,Gu2

I )

IAS(Gd
E ,G

u1
I ,Gu2

I )− IAS(GE ,G
u1
I ,Gu2

I )≤ UB(Gc
E ,G

u1
I ,Gu2

I )− IAS(GE ,G
u1
I ,Gu2

I )

Since ϕconsent(Gd
E ,G

u1
I ,Gu2

I ) = max(IAS(Gd
E ,G

u1
I ,Gu2

I )− IAS(GE ,G
u1
I ,Gu2

I ),0) thus
ϕconsent(Gd

E ,G
u1
I ,Gu2

I )≤ oeconsent(Gc
E ,G

u1
I ,Gu2

I )

Similarly we have:

IAS(Gd
E ,G

u1
I ,Gu2

I )≥ LB(Gc
E ,G

u1
I ,Gu2

I )

IAS(GE ,G
u1
I ,Gu2

I )− IAS(Gd
E ,G

u1
I ,Gu2

I )≤ IAS(GE ,G
u1
I ,Gu2

I )−LB(Gc
E ,G

u1
I ,Gu2

I )

Since ϕdissent(Gd
E ,G

u1
I ,Gu2

I ) = max(IAS(GE ,G
u1
I ,Gu2

I )− IAS(Gd
E ,G

u1
I ,Gu2

I ),0) we get:
ϕdissent(Gd

E ,G
u1
I ,Gu2

I )≤ oedissent(Gc
E ,G

u1
I ,Gu2

I ) �

The two defined optimistic estimates tight if the IAS measure is a simple average. i.e. all
weights are equal to 1.

Proposition 3.4.5 If ∀({e},Gu1
I ,Gu2

I ) ⊆ GE ×GI ×GI : w(e,Gu1
I ,Gu2

I ) = 1, oeconsent

(resp. oedissent) is a tight optimistic estimate for ϕconsent (resp. ϕdissent).

Proof (proposition 3.4.5). Given that ∀(e,Gu1
I ,Gu2

I ) ∈ E×2I×2I : w(e,Gu1
I ,Gu2

I ) = 1, we
have for any c ∈DE s.t. |Gc

E | ≥ σE .

IAS(Gc
E ,G

u1
I ,Gu2

I ) =

∑
e∈Gc

E

α(e)

|Gc
E |

and UB(Gc
E ,G

u1
I ,Gu2

I ) =

∑
e∈M(Gc

E ,σE )
α(e)

σE

It follows from the fact that M(Gc
E ,σE)⊆ Gc

E :

∃S⊆ Gc
E : UB(Gc

E ,G
u1
I ,Gu2

I ) = IAS(S,Gu1
I ,Gu2

I )

UB(Gc
E ,G

u1
I ,Gu2

I )− IAS(GE ,G
u1
I ,Gu2

I ) =

IAS(S,Gu1
I ,Gu2

I )− IAS(GE ,G
u1
I ,Gu2

I )

oeconsent(Gc
E ,G

u1
I ,Gu2

I ) = ϕconsent(S,G
u1
I ,Gu2

I )

The subset S being for example the set M(Gc
E ,σE) itself. The same reasoning applies when

considering oedissent. In this case we consider the lower bound LB. We have:

LB(Gc
E ,G

u1
I ,Gu2

I ) =
∑e∈m(Gc

E ,σE ) α(e)

σE

Given that m(Gc
E ,σE)⊆ E, we have:
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∃S⊆ Gc
E : LB(Gc

E ,G
u1
I ,Gu2

I ) = IAS(S,Gu1
I ,Gu2

I )

IAS(GE ,G
u1
I ,Gu2

I )−LB(Gc
E ,G

u1
I ,Gu2

I ) =

IAS(GE ,G
u1
I ,Gu2

I )− IAS(S,Gu1
I ,Gu2

I )

oedissent(Gc
E ,G

u1
I ,Gu2

I ) = ϕdissent(S,G
u1
I ,Gu2

I )

This proves that, if IAS is a simple mean, for any c ∈DE s.t. |Gc
E | ≥ σE :

∃S,S′ ⊆ Gc
E :

oeconsent(Gc
E ,G

u1
I ,Gu2

I ) = ϕconsent(S,G
u1
I ,Gu2

I )

dissent(Gc
E ,G

u1
I ,Gu2

I ) = ϕdissent(S′,G
u1
I ,Gu2

I )

Hence oeconsent and oedissent are tight optimistic estimates for respectively ϕconsent and ϕdissent

if the underlying IAS is a simple average. �

3.4.4 ALGORITHM DEBUNK

DEBuNk is a Branch-and-Bound algorithm which returns the complete set of patterns
as specified in the problem definition (Section 3.2). To this end, it takes benefit from
the defined closure operator and optimistic estimates. DEBuNk uses in the same line of
reasoning as Algorithm B&B4SDEMM (cf. Algorithm 2). Relying on algorithm EnumCC (cf.
Algorithm 1), DEBuNk starts by generating the couples of confronted groups of individuals
that are large enough w.r.t. σI (lines 2-3). Then it computes the usual agreement observed
between these two groups of individuals when considering all entities in GE (line 4). Next,
the context search space is explored to generate valid contexts c (line 5). Subsequently,
the optimistic estimate oe is evaluated and the context sub search space is pruned if oe is
lower than σϕ (lines 7-8). Otherwise, the contextual inter-group agreement is computed
and the quality measure is calculated (lines 9-10). If the pattern quality exceeds σϕ then
two scenarios are possible. Either the current pattern set P already contains a more general
pattern, or it does not. In the former case, the pattern is discarded. In the latter, the new
generated pattern is added to pattern set P while removing all previous generated patterns that
are more specific than p w.r.t. extents (lines 11-14). Since the current pattern quality exceeds
the threshold and all the remaining patterns in the current context sub search space are more
specific than the current one, the sub search space is pruned (line 15). Eventually, if the
quality measure is symmetric w.r.t. u1 and u2 (i.e. ∀u1,u2 ∈D2

I | ϕ(c,u1,u2) = ϕ(c,u2,u1))
there is no need to evaluate both qualities. As a consequence, it is possible to prune the sub
search space of the couple descriptions (u1,u2) whenever u1 = u2 (lines 16-17).

DEBuNk and DSC algorithm (Belfodil et al., 2017a) differs on several levels. First,
DEBuNk overcomes the limitations of lack of diversity of results provided by DSC which
was designed to discover the top-k solutions. The present algorithm discards all patterns
for which a generalization is already a solution. Second, DEBuNk handles a wider range of
bounded quality measures (i.e. weighted mean IAS), in contrast to DSC algorithm which
handles only a subset of these measures. Finally, DSC requires the prior definition of an
aggregation level which makes it difficult to use and interpret. DEBuNk overcomes this issue
by reducing the number of input parameters and integrating relevancy check between patterns.
Hence, it requires less effort from the end-user both in terms of setting the parameters, and
in terms of interpreting the quality of the resulting patterns.
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Algorithm 3: DEBuNk(B,σE ,σI,ϕ,σϕ )
Inputs :B = 〈GI,GE ,O,o〉 a Behavioral dataset;

σE (resp. σI) minimum support threshold of a context (resp. group);
ϕ the quality measure; σϕ quality threshold on the quality.

Output: P the set of exceptional inter-group agreement patterns.
1 P←{}
2 foreach (u1,G

u1
I ,contu1) ∈ EnumCC(GI,∗,σI,0,True) do

3 foreach (u2,G
u2
I ,contu2) ∈EnumCC(GI,∗,σI,0,True) do

4 IASref← IAS(∗,u1,u2)

5 foreach (c,Gc
E ,contc) ∈ EnumCC(GE ,∗,σE ,0,True) do

6 if oeϕ(c,u1,u2)< σϕ then
7 contc← False ; // Prune the sub-search space under c

8 else
9 IASref← IAS(c,u1,u2)

10 quality← ϕ(c,u1,u2) ; // computed using IASref and IAScontext

11 if quality≥ σϕ then
12 pnew← (c,u1,u2)

13 if @pold ∈ P | ext(pnew)⊆ ext(pold) then
14 P← (P∪ pnew)\{pold ∈ P | ext(pold)⊆ ext(pnew)}
15 contc← False ; // Prune the sub search space

16 if ϕ is symmetric and u1 = u2 then
17 break ; // Prune the sub search space

18 return P

3.5 SAMPLING INTER-GROUP AGREEMENT PATTERNS

The discovery of the complete set of interesting patterns as ensured by DEBuNk, has two
disadvantages that limit the use of such methods in practice. It is time consuming to
compute the complete set of solutions. Furthermore, this set can be absolutely huge and
non-manageable for a human expert. To overcome this limitation, many approaches that can
effectively sample the pattern space for interesting patterns have been proposed for a decade.
These methods address some frequent or discriminant itemset mining tasks (Boley et al.,
2011; Giacometti and Soulet, 2016; Li and Zaki, 2016; Moens and Goethals, 2013) offering
some theoretical guarantees on the sampling quality or more generic ones (Al Hasan and
Zaki, 2009; Boley, Gärtner, and Grosskreutz, 2010; Dzyuba, Leeuwen, and De Raedt, 2017).
In (Dzyuba, Leeuwen, and De Raedt, 2017), the authors define the problem of sampling
pattern sets and propose a method based on a SAT solver sampling solution. However,
this approach only supports pattern languages that can be compactly represented by binary
variables such as itemsets. It requires the discretization of numerical attributes. Authors in
(Al Hasan and Zaki, 2009; Boley, Gärtner, and Grosskreutz, 2010) use a MCMC (Monte-
Carlo Markov-Chain) based algorithm to achieve sampling with guarantees according to a
desired probability distribution. Despite the generic nature and the interesting guarantees
that MCMC algorithms provide, it requires a number of steps that grows exponentially in
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the input size to generate a single pattern (Boley, Gärtner, and Grosskreutz, 2010). This
may prevent the user to obtain instant results. The problem we are interested in has several
specificities. First, the search space involves attributes of different types (i.e., numerical,
symbolical, HMT attributes) which prevents us to use sampling techniques based on itemset
language. Second, the quality measure is not considered in the state-of-the-art methods that
mainly support frequency and discriminative measures (Boley, Moens, and Gärtner, 2012;
Boley et al., 2011). Finally, the method proposed in (Moens and Boley, 2014) for EMM is
not suited to our problem since we have to simultaneously consider both description space
and target space. To address this concerns, we devise Algorithm Quick-DEBuNk handles
the specificity of the problem by yielding approximate solutions that improve over time. It
combines an exploration step (Step 1) and an exploitation step while taking profit of the
quality measures properties (Step 2). These two steps are summarized in Fig. 3.4.

Minimum support 
threshold Individuals 

Search Space DI

Contexts Search 
Space DE

u1

contexts c forming interesting

patterns (c,u1,u2)

Sampled groups 
of  individuals 

Local sub-search space 
corresponding to the 
sampled context c

Step 1 : Sampling patterns satisfying cardinality constraints (FBS) Step 2 : Random Walk on Contexts (RWC)

Selected context to 
refine in a random 
walk process iteration

Interesting pattern p
found by Quick-DEBuNk

Sampled context c to expand

u2

Confronted
groups

Figure 3.4: Quick-DEBuNk approach in a nutshell

Frequency-Based Sampling (Step 1). A inter-group agreement pattern p ∈P is drawn
with a probability proportional to the size of its extent (i.e. |ext(p = (c,u1,u2))| =
|Gc

E |× |Gu1
I |× |Gu2

I |). The key insight is to provide more chance to patterns supported
by larger groups and contexts which are less likely to be discarded by more general
ones generated by future iterations. This technique is inspired by the direct frequency-
based sampling algorithm proposed in (Boley et al., 2011) which considers only
Boolean attributed datasets. Here, this method is extended to handle more complex
data with HMT, categorical and numerical attributes.

Random Walk on Contexts (step 2). Starting from a context obtained in step 1, a random
walk traverses the search tree corresponding to the contexts description space DE . We
introduce some bias to fully take advantage of the devised quality measures and the
optimistic estimates , this being done to reward high quality patterns by giving them
more chance to be sampled by the algorithm.

3.5.1 FREQUENCY-BASED SAMPLING (STEP 1)

To sample patterns of the form p = (c,u1,u2), we aim to draw description c, respectively
u1 and u2, from description space DE , respectively DI , with a probability proportional to
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their respective support size. To this end, we devise the algorithm FBS (Frequency-Based
Sampling).

Algorithm 4: FBS(G)
Input: G a collection of records which may be GE or GI

Output: a description d from D with P(d) = |Gd |
∑d′∈D |Gd′ |

1 draw gv wg from G ; // with wg = | ↓δ(g)|
2 draw d v uniform(↓δ (g))
3 return d

In the following, for any d ∈D, ↓d denotes the set of all descriptions subsuming d, i.e:
↓d = {d′ ∈D : d′ v d}. Since the cartesian product8 D = D1×D2× ...×Dm, it follows
that: ↓d =↓(r1,r2, ...,rm) =↓ r1× ↓ r2× ...× ↓ rm, where ↓r j is the set of conditions less
specific than (implied by) r j in the conditions space D j.

FBS generates a description d with a probability proportional to its frequency P(d) =
|Gd |)

∑d′∈D |Gd′ | (formally defined in proposition 3.5.1). To this end, FBS performs two steps as
depicted in Algorithm 4.

FBS starts by drawing a record g from G (line 1) with a probability proportional to the
number of descriptions d ∈D covering g (i.e: | ↓δ(g)|). To enable this, each record g ∈ G is
weighted by wg = | ↓δ(g)|. For now, we use dg to refer to δ(g). Knowing dg =(rg

1, ...,r
g
m), the

weight wg = | ↓dg|= ∏ j∈[1,m] | ↓rg
j | is the product of the numbers of restrictions subsuming

each rg
j . The size of | ↓rg

j | depends on the type of the related attribute a j:

- categorical attribute: given that rg
j corresponds to a value v ∈ dom(a j), we have

↓rg
j = {∗,v} thus | ↓rg

j |= 2.

- numerical attribute: given that rg
j corresponds to an interval [v,w] with v,w ∈ dom(a j),

we have ↓ rg
j is equal to the number of intervals having a left-bound v ≤ v and a

right-bound w≥w. More formally, ↓rg
j = {[v,w] | v≤ v∧w≥w}. Hence, the cardinal

of this set is | ↓rg
j |= |{v ∈ dom(a j) : v≤ v}|× |{w ∈ dom(a j) : w≥ w}|.

- HMT attribute: given that rg
j corresponds to a set of tags {t1, t2, ...tl} ∈ dom(a j), with

tk ∈ T and T a tree, the condition rg
j can be conceptualized as a rooted subtree of T

where the leaves are {t1, t2, ...tl}. Thus, ↓ rg
j represents the set of all possible rooted

subtrees of rg
j . The latter cardinality can be computed recursively by starting from the

root ∗ using nbs(tree, root) = ∏
k
1 (nbs(treei,neighbori)+1) where neighbori returns

the child tags of a given root and treei the subtree rooted on neighbori.

Given g the record returned from the first step and its corresponding description dg = δ (g) =
〈rg

1, ...,r
g
m〉, FBS uniformly generates a description d from the set of descriptions covering g,

that is ↓dg. This can be done by uniformly drawing conditions r j from ↓rg
j , hence returning

a description d = 〈r1,r2, ...,rm〉. This comes from the fact that ∀ j ∈ [1,m] : P(r j) =
1
|↓rg

j |
:

P(d|g) = ∏
j∈[1,m]

P(r j) =
1

∏ j∈[1,m] | ↓ rg
j |
=

1
|∏ j∈[1,m] ↓ rg

j |
=

1
| ↓ dg| .

8Cartesian product of the m lattices related to attributes conditions spaces forms a lattice(Roman, 2008)
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We now define the method used to uniformly draw a condition corresponding to an
attribute a j, according to its type:

- categorical attribute: given that ↓ rg
j = {∗,v} with v ∈ dom(a j), it is sufficient to

uniformly draw an element r j from {∗,v}.

- numerical attribute: given that ↓rg
j = {[v,w] | v≤ v∧w≥ w}, to generate an interval

[sv,sw] from ↓rg
j uniformly, one needs to uniformly draw a left-bound sv from the set

{v ∈ dom(a j) : v≤ v} and a right-bound sw from the set {w ∈ dom(a j) : w≥ w}.

- HMT attribute: given that ↓rg
j represents the set of rooted subtrees of rg

j , we have to
uniformly draw such rooted subtrees. A first way is to generate all the possible rooted
subtrees and then uniformly draw an element from the resulting set. This does not
scale. Hence we devised another method, relying on a stochastic process using the
aforementioned function nbs (which counts the number of subtrees rooted on some
given node). The algorithm takes the root ∗ as a starting tree. Next, the resulting
subtree is augmented by a child c of ∗ with a chance equal to the number subtrees of

↓ rg
j containing c. That is

nbs(rg
j ,∗)−nbs(rg

j−{c},∗)
nbs(rg

j ,∗)
. Recursively, the algorithm continues

from a drawn candidate child c.

Proposition 3.5.1 A description d ∈ D has a probability of being generated by FBS
equal to P(d) = Gd

∑d′∈D |Gd′ | .

Before giving the proof of the proposition 3.5.1 we present the following lemma.

Lemma 3.5.2 The sums of the number of all descriptions covering each record in G is
equal to the sum of the supports of all descriptions in D. That is:

∑
g∈G
|↓δ (g)|= ∑

d∈D
|Gd |

Proof (lemma 3.5.2). For g ∈ G, we have ↓δ (g) = {d ∈D : d v δ (g)} and for d ∈D , we
have Gd = {g ∈ G | d v δ (g)}. Let us define the indicator function on D×G:

1v(d,g) =

1 if d v δ (g)

0 else

Hence, we have | ↓δ (g)|= ∑d∈D 1v(d,g) and |Gd |= ∑g∈G1v(d,g) thus:

∑
g∈G
| ↓δ (g)|= ∑

g∈G
∑

d∈D
1v(d,g) = ∑

d∈D
∑
g∈G

1v(d,g) = ∑
d∈D
|Gd |

�

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



3.5 Sampling Inter-Group Agreement Patterns 75

Proof (proposition 3.5.1). We denote by gs the random record drawn in line 1 and by ds the
random description drawn in line 2 of FBS.

P(ds = d) = ∑
g∈G

P((gs = g)(ds = d|g))

= ∑
g∈Gd

1
|↓δ (g)| ×

|↓δ (g)|
∑i∈G |↓δ (i)|︸ ︷︷ ︸

weight wg normalized

=
|Gd |

∑g∈G |↓δ (g)|

It follows that from Lemma 3.5.2 that P(ds = d) =
|Gd |

∑d′∈D |Gd′ |
�

FBS algorithm makes it possible to generate valid patterns p= (c,u1,u2) from the pattern
space P = DE ×DI×DI . This is achieved in the first step of Quick-DEBuNk (lines 3-6 in
Algorithm 6) by sampling two group descriptions u1, u2 from DI and a context c from DE

followed by assessing if the three descriptions satisfy the cardinalities constraints C (min.
support thresholds).

Proposition 3.5.3 Given the cardinality constraints C , every valid pattern p is reachable
by the first step of Quick-DEBuNk. i.e. ∀p ∈P : p satistifies C ⇒ P(p)> 0

Proof (proposition 3.5.3). Given Proposition 3.5.1, it is clear that ∀p ∈P : p = (c,u1,u2)

satisfies C ⇒P(p)= |ext(p)|
Z > 0. with |ext(p)|= |Gc

E |×|Gu1
I |×|Gu2

I | and Z =∑p′∈P |ext(p′)|
a normalizing factor. �

Step 1 of Quick-DEBuNk does not favor the sampling of high quality patterns as it does
not involve an exploitation phase. The random walk process on contexts used in Step 2
enables a smarter traversal of the search space while taking into account the devised quality
measures and optimistic estimates.

3.5.2 RWC - RANDOM WALK ON CONTEXTS (STEP 2)

RWC ( Algorithm 5) enumerates contexts of the search space corresponding to DE while
considering closure and optimistic estimates. RWC takes as input two confronted groups of
individuals described by u1,u2 for which it looks for relevant contexts (i.e., to form an inter-
group agreement pattern) following a random walk process starting from a context c. Mainly,
RWC has two steps that are recursively executed until a terminal node is reached. RWC
starts by generating all neighbors d of the current context c (line 2). Next, RWC assesses
whether the size of the corresponding support Gc

E and the optimistic estimates respectively
exceed the support threshold σE and the quality threshold σϕ (line 3). If appropriate, the
closed description d is computed (line 4). The algorithm proceeds by evaluating the quality
of pattern (line 5). If the quality exceeds the threshold σϕ , the pattern is valid and is hence
yielded (line 6). Otherwise, the pattern is added to NtE (Neighbors to be Explored) (line
8) as its related sub search space may contain interesting patterns (i.e oeϕ(d,u1,u2)≥ σϕ ).
The second step of RWC consists in selecting a neighbor from NtE to be explored with a
probability proportional to its quality (lines 10−12). This process is recursively repeated
until a terminal node is reached (i.e. NtE = /0).
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Algorithm 5: RWC(B,c,u1,u2,σE ,ϕ,σϕ )
Inputs :B = 〈GI,GE ,O,o〉 a Behavioral dataset;

c the current context;
(u1,u2) couple of confronted group descriptions of individuals;
σE threshold on support;
ϕ the quality measure;
σϕ quality threshold.

Output: yield valid patterns (c,u1,u2)

1 NtE←{}
2 foreach d ∈ η(c) do
3 if |Gd

E | ≥ σE and oeϕ(d,u1,u2)≥ σϕ then
4 closure_d← δ(Gd

E)

5 if ϕ(d,u1,u2)≥ σϕ then
6 yield closure_d
7 else
8 NtE← NtE∪{d}
9 if NtE 6= /0 then

10 draw nextv ϕ(next,u1,u2) from NtE
11 foreach cnext ∈ RWC(〈GI,GE ,O,o〉,next,σE ,ϕ,σϕ ,u1,u2) do
12 yield cnext

3.5.3 ALGORITHM QUICK-DEBUNK

Quick-DEBuNk (Algorithm 6) samples patterns from the full description space DE ×DI×
DI . It is based on FBS and RWC. It takes as input the same parameters as DEBuNk in
addition to a timebudget. It starts by generating a couple of closed group descriptions of
individuals u1, u2 that fulfill the support constraint (lines 3− 5) using FBS. Next, Quick-
DEBuNk generates a context while only considering entities having a quality greater than
the threshold σϕ (line 6). The reason behind considering only G≥σϕ

E is clear: we have
∀p ∈P p satisfies C and ϕ(p)≥ σϕ ⇒∃e ∈Gc

E : ϕ({e},Gu1
I ,Gu2

I )≥ σϕ (since the quality
measure is a weighted mean). If the context fulfills the cardinality constraint and its evaluated
optimistic estimate is greater than the quality threshold (line 7), the algorithm then evaluates
the quality of the sampled pattern (line 8). If this quality is greater than the threshold σϕ ,
the pattern is appended to the resulting pattern set if and only if it is not more specific of an
already found pattern w.r.t. extents (lines 9−11). Otherwise, a random walk is launched
starting from context c (line 13). This is done by relying on RWC. The algorithm continues
by updating the resulting pattern set by each pattern yielded by RWC, as long as there is
no more general pattern in the current pattern set P (lines 14− 16). Otherwise, RWC is
interrupted (line 18). The process is repeated as long as the time budget allows.
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Algorithm 6: Quick-DEBuNk(B,σE ,σI,ϕ,σϕ ,timebudget)
Inputs :B = 〈GI,GE ,O,o〉 a Behavioral dataset;

σE (resp. σI) minimum support threshold of a context (resp. group);
ϕ the quality measure;
σϕ threshold on the quality;
timebudget the maximum amount of time given to the algorithm.

Output: P the set of local relevant inter-group agreement patterns
1 P←{}
2 while executionTime < timebudget do
3 u1← clo(FBS(GI))

4 u2← clo(FBS(GI))

5 if |Gu1
I | ≥ σI ∧|Gu2

I | ≥ σI then
6 c← clo(FBS(G≥σϕ

E )) ; // G≥σϕ

E = {e ∈ GE | ϕ({e}, Iu1 , Iu2)≥ σϕ}
7 if |Gc

E | ≥ σE ∧oeϕ(c,u1,u2)≥ σϕ then
8 if ϕ(c,u1,u2)≥ σϕ then
9 pnew← (c,u1,u2)

10 if @pold ∈ P | ext(pnew)⊆ ext(pold) then
11 P← (P∪ pold)\{pold ∈ P | ext(pold)⊆ ext(pnew)}
12 else
13 foreach d ∈ RWC(〈GI,GE ,O,o〉,c,u1,u2,σE ,ϕ,σϕ) do
14 pnew← (d,u1,u2)

15 if @pold ∈ P | ext(pnew)⊆ ext(pold) then
16 P← (P∪ pnew)\{pold ∈ P | ext(pold)⊆ ext(pnew)}
17 else
18 break
19 if executionTime ≥ timebudget then
20 return P

21 return P
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3.6 EMPIRICAL STUDY

In this section, we report on both quantitative and qualitative experiments over the imple-
mented algorithms. For reproducibility purposes, source code (in Python) and data are made
available in a companion page9.

3.6.1 AIMS AND DATASETS

The experiments aim to answer the following questions:

• Do the algorithms provide interpretable patterns?

• How effective is DEBuNk compared to classical SD/EMM algorithms and DSC?

• Are the closure operators and optimistic estimate based pruning, efficient?

• How effective is HMT closed description enumeration?

• Does DEBuNk scale w.r.t. different parameters?

• How effective is Quick-DEBuNk at sampling patterns?

Most of the experiments were carried out on four real-world behavioral datasets whose
main characteristics are given in Table 3.2. Each dataset involves entities and individuals
described by an HMT (H) attribute together with categorical(C) and numerical(N) ones.

EPD810 features voting information of the eighth European Parliament about the 958
members who were elected in 2014 or after. The dataset records 2.7M tuples indicating
the outcome (For, Against, Abstain) of a member voting during one of the 4161
sessions. Each session is described by its themes (H), a voting date (N) and the
organizing committee (C). Individuals are described by a national party (C), a political
group (C), an age group (C), a country(C) and additional information about countries
(date of accession to the European Union (N) and currency (C)). To analyze inter-group
agreement patterns in this dataset, we consider IASvoting which is defined by using
θmajority and simvoting.

Movielens11 is a movie review dataset (Harper and Konstan, 2016) consisting of 100K
ratings (ranging from 1 to 5) expressed by 943 users on 1681 movies. A movie is
characterized by its genres (H) and a release date (N), individuals are described with
age group (C), gender (C) and occupation (C). To handle the numerical outcomes, we
use the measure IASrating which relies on θwavg and simrating.

Yelp12 is a social network dataset featuring individuals who rate (scores ranging from 1
to 5) places (stores, restaurants, clinics) characterized by some categories (H) and a
state (C). The dataset originally contains 1M users. We preprocessed the dataset to
constitute 18 groups of individuals based on the size of their friends network (C), their
seniority (C) in the platform and their account type (e.g., elites or not) (C). We also
use IASrating measure in this dataset.

9https://github.com/Adnene93/DEBuNk
10http://parltrack.euwiki.org/, last accessed on 17 November 2017
11https://grouplens.org/datasets/movielens/100k/
12https://www.yelp.com/dataset/challenge, last accessed on 25 April 2017
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Openmedic13 is a drug consumption monitoring dataset that has been recently made avail-
able by Ameli14. This dataset inventories the number of drug boxes (described by their
Anatomical Therapeutic Chemical (ATC) Classification15(H)) yearly administered to
individuals (from 2014 to 2016). Individuals are described with demographic informa-
tion such as age (C), gender (C) and region (C). We further discuss an adapted IAS
measure.

Comparing the size and the complexity of these datasets is difficult because of the
heterogeneity of the attributes. In particular, the hierarchies of the HMT attributes are
very different, as well as the range of the numerical ones. To enable a fair comparison,
we employ a conceptual scaling (Ganter and Wille, 1999). The attributes are “projected"
on a set of items by transforming each one to a Boolean representation. Each possible
value of a categorical attribute provides a single item (e.g., gender gives male, f emale and
unknown). The items corresponding to an HMT attribute are all the nodes of the tag tree
(T ). Each numerical attribute is transformed to an itemset via interordinal scaling (Kaytoue
et al., 2011). To a given set of values [v1,v2, ...vn], we associate 2n items {≤ v1,≤ v2, ...≤
vn,≥ v1,≥ v2, ...≥ vn}. Table 3.2 illustrates this step, while Table 3.3 shows the obtained
comparable characteristics.

Entities Individuals Outcomes

EPD8 Size (Nb. records) 4161 958 2.7M
attribute types 1H +1N +1C 1N +5C
size after scaling 347+26+40 = 413 16+285 = 301
avg scaling per record 20.44 14

Movielens Size (Nb. records) 1681 943 100K
attribute types 1H +1N 3C
size after scaling 20+144 = 164 4+2+21 = 27
avg scaling per record 75.72 3

Yelp Size (Nb. records) 127K 18 750K
attribute types 1H +1C 3C
size after scaling 1175+29 = 1204 3+2+3 = 8
avg scaling per record 5.77 3

Openmedic Size (Nb. records) 127K 78 500K
attribute types 1H 3C
size after scaling 14094 2+13+3 = 18
avg scaling per record 7 3

Table 3.2: Behavioral datasets characteristics before and after scaling.

13http://open-data-assurance-maladie.ameli.fr/, last accessed on 16 November 2017
14Ameli - France National Health Insurance and Social Security Organization
15The Anatomical Therapeutic Chemical classification system classifies therapeutic drugs according to

the organ or system on which they act and their chemical, pharmaco- logical and therapeutic properties –
https://www.whocc.no/atc/structure_and_principles/.
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Dataset Transactions Items AverageSize

EPD8 1 727 032 585 1 015 34.48
Movielens 16 807 109 218 79.37
Yelp 5 860 354 1 220 9.00
Openmedic 28 512 418 14 130 10.00

Table 3.3: Characteristics of the datasets considered as plain collections of itemsets records -
the plain collections correspond to GE×GI×GI while considering only pairable individuals
(i.e., the cartsian product contains a record (e, i1, i2) only if both individuals expressed an
outcome on the entitiy e, that is o(i1,e) and o(i2,e) are given).

3.6.2 QUALITATIVE STUDY

First, we focus on illustrating patterns discovered by DEBuNk. To this end, we report three
real world case studies: (i) In collaborative rating platforms (Yelp, Movielens), we study
the affinities between groups of users with regard to their expressed ratings. (ii) In a voting
system (European Parliament Dataset), we show how the voting behavior of parlementarians
can provide interesting insights about the cohesion and the polarization between groups of
parliamentarians in different contexts. Such information can be valuable for journalists and
political analysts. (iii) We give example patterns reporting substantial differences in medicine
consumption behavior between groups. Such results can be leveraged by epidemiologists to
study comparative prevalence of sicknesses among subpopulations.

3.6.2.1 Study of Collaborative Rating Data

Table 3.4 describes some patterns returned by DEBuNk on the Movielens dataset when
looking for contexts that lead to a disagreement between groups of individuals labeled by
their professional occupations. The first pattern describes that, while students and Health
professionals agree 74% of the time, they tend to disagree for Horror and comedy-like movies
released between 1986 and 1994 (e.g., Evil Dead II, Braindead). Figure 3.5 illustrates the
usual and the contextual rating distribution of each groups. We observe from this rating
distributions, that the students like the movies highlighted by the pattern, whereas the
healthcare professionals dislike them.

(c,u1,u2) |Gc
E | |Gu1

I | |Gu2
I | o(i,e) ϕdissent

1
Student vs. Healthcare in

6 196 16 106
0.42 =

[’11 Horror’, ’5 Comedy’] [1986, 1994] 0.74−0.33

2 Student vs. Healthcare in
5 196 16 40

0.41 =

[’5 Comedy’] [1991, 1991] 0.74−0.33

3 Healthcare vs. Artist in
5 16 28 28

0.42 =

[’5 Comedy’, ’8 Drama’] [1987, 1993] 0.73−0.3

Table 3.4: Top-3 w.r.t. number of expressed outcomes (o(i,e) column) of disagreement
patterns discovered on Movielens (|AE |= 2, |AI|= 1, σE = 5, σI = 10 and σϕ = 0.4).
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Figure 3.5: Pattern 1 Illustration – distribution of ratings of individuals constituting the
group of students versus distribution of ratings of individuals constituting the group of health
professionals. Left figure corresponds to the usual distribution observed over all movies.
Right figure corresponds to the contextual distribution observed over the context of pattern 1
from Table 3.4.

In Table 3.5, we present some results provided by DEBuNk over Yelp dataset. The
groups of individuals are labeled by the size of their friend network and their seniority in
the Yelp platform. Notice that additional demographic data about users are missing. This
prevents DEBuNk from obtaining concrete results similar to the ones obtained in Movielens.
The resulting patterns highlight the places for which groups of individuals have divergent
opinions. For example, pattern 2 states that Senior Yelp users (registered in Yelp before
2010) having a friend network of medium size (less than 100 friends) disagree with users
registered in Yelp before 2015 having a large friend network (more than 100 friends) on
Internal Medicines Clinics in Nevada (e.g., Las Vegas Urgent Care), contrary to the usual,
where these two groups roughly share the same opinions about places (81% of the time).

(c,u1,u2) |Gc
E | |Gu1

I | |Gu2
I | o(i,e) ϕdissent

1
(Newcomer,*) vs. (Middler,*) in

10 6 6 43
0.4 =

[’03 Automotive’, ’14.22 Electronics Repair’, 0.8−0.4
’22.06 Battery Stores’, ’22.21 Electronics’] *

2
(Senior, Medium) vs. (Middler, Large) in

15 2 2 39
0.43 =

[’10.55.21 Internal Medicine’] Nevada 0.81−0.38

3
(Newcomer, Medium) vs. (Middler, Large)

14 2 2 30
0.4 =

[’11.59.01 Apartments’, 0.78−0.38
’11.59.18 University Housing’] Arizona

4
(*, Small) vs. (Middler, Large),in

10 6 2 30
0.43 =

[’10.55.50 Urologists’] * 0.79−0.36

5
(*, Large) vs. (Newcomer,*) in

12 6 6 30
0.4 =

[’08 Financial Services’, ’22 Shopping’] AZ 0.79−0.39

Table 3.5: Top-5 w.r.t. number of expressed outcomes (o(i,e) column) of disagreement
patterns discovered on Yelp dataset (|AE |= 2, |AI|= 2, σE = 10, σI = 1 and σϕ = 0.4).
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3.6.2.2 Analysis of the Voting Behavior in the European Parliament Dataset

The two past decades have witnessed an increasing emergence of Open Government Data16

(OGD) promoting transparency and accountability in public institutions. Consequently, many
researchers from different fields (e.g., information science, political and social sciences,
data mining and machine learning) have studied such data (Charalabidis, Alexopoulos, and
Loukis, 2016). For instance, Jakulin et al., 2009 uses hierarchical clustering and PCA to
identify cohesion blocs and dissimilarity blocs of voters within the US Senate. Similar work
was done on the Finnish (Pajala, Jakulin, and Buntine, 2004), the Italian (Amelio and Pizzuti,
2012) and the Swiss (Etter et al., 2014) parliaments to study the polarization and cohesion
between parliamentarians. In the same spirit, Grosskreutz, Boley, and Krause-Traudes,
2010 investigates the voting behavior of citizens instead of politicians relying on subgroup
discovery. The algorithms proposed in this chapter go further and supports the discovery of
new insights in such data.

Table 3.6 reports patterns obtained by DEBuNk where the aim is to find contexts (subsets
of voting sessions) that lead groups of parliamentarians (labeled by their countries and their
corresponding date of accession to the European Union) to strong disagreement compared to
the usual observed agreement. Note that we choose carefully σE ≥ 25 to reach subgroups
of the third level of the themes hierarchy which on average contain v 25 voting sessions.
Such analysis can be valuable to political analysts and journalists as it enables to uncover
subjects/thematics of votes on which countries have divergent opinions. For instance, the
second pattern in Table 3.6 illustrated in Figure 3.6, states that the voting sessions about

(c,u1,u2) |Gc
E | |Gu1

I | |Gu2
I | o(i,e) ϕdissent

1
([1973, 1973] United Kingdom) vs. (*,*)

47 88 958 30255
0.54 =

[’4 Economic, social & territorial 0.68−0.14
cohesion’, ’8.70 Budget of the Union’]

2
([1973, 1973] United Kingdom) vs. (*,*)

47 88 958 30250
0.54 =

[’4.15.05 Industrial restructuring, job 0.68−0.14
losses, Globalization Adjustment Fund’]

3
([1958, 1958] Italy) vs. ([1981, 2013] *)

79 99 433 29501
0.51 =

[’3.40 Industrial policy’, ’6.20.02 Export 0.87−0.35
/import control, trade defence’]

4
([1958, 1995] *) vs. ([1973, 2013] *)

44 709 547 28989
0.55 =

[’3.40.16 Raw materials’] 0.91−0.36

5
([1958, 1995] *) vs. ([1973, 2013] *)

38 709 547 25268
0.51 =

[’6.20 Common commercial policy’ 0.91−0.39
, ’6.30 Development cooperation’]

Table 3.6: Top-5 w.r.t. number of expressed outcomes (o(i,e) column) of inter-group
agreement patterns discovered on EPD8 (|AE |= 1, |AI|= 2, σE = 25, σI = 1 and σϕ = 0.5
using ϕdissent).

16http://www.oecd.org/gov/digital-government/open-government-data.htm
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Figure 3.6: Illustration of pattern 2 reported in Table 3.6. The left matrix depicts the
agreement observed in general between countries when considering all voting sessions. The
right matrix corresponds to the inter country agreement for the context of pattern 2.

theme 4.15.05 (Industrial Restructuring, job losses, EGF, e.g., Mobilization of the European
Globalization Adjustment Fund: redundancies in aircraft repair and installation services in
Ireland) lead to strong disagreements between parliamentarians from the United Kingdom
and their peers. In Figure 3.6, we provide a visualization of this pattern through a similarity
matrix where each cell represents the similarity between two countries. This can be seen
as a post-processing step where the end-user chooses to augment the pattern with more
related information (similarities between other countries). Such visualization brings more
context to the pattern. While the second pattern conveys that British parliamentarians are
in strong disagreement with their peers, the visualization goes beyond by reporting that all
other countries formed a coalition against the voting decision of British parlementarians.
The Algorithms elaborated in this work also allow to discover patterns exhibiting consensual
subjects, thanks to the quality measure ϕconsent.

Algorithms elaborated in this work also enable the discovery of consensual subjects,
thanks to the quality function ϕconsent. In Table 3.7 , we report patterns where groups of

(c,u1,u2) |Gc
E | |Gu1

I | |Gu2
I | o(i,e) ϕconsent

1
S&D vs. ECR in

185 211 103 43162
0.41 =

[’6.20.03 Bilateral economic and 0.9−0.49
trade agreements and relations’]

2
PPE vs. GUE/NGL 137 263 60 33664 0.41 =

[’8.70.03.03 2013 discharge’] 0.85−0.43

3
ENF vs. *

42 48 958 27191
0.4 =

[’3’, ’8 State & evolution of the Union’] 0.69−0.29

Table 3.7: Top-3 w.r.t. number of expressed outcomes (o(i,e) column) of relevant inter-group
agreement patterns discovered over European Parliament Dataset considering by default the
full dataset, |AE |= 1, |AI|= 1, σE = 15, σI = 1 and σϕ = 0.4 using ϕconsent .
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84 Chapter 3. Identifying exceptional (dis)agreement between groups

parliamentarians agree more than what is observed in general. For example, pattern 1 of
Table 3.7 shows that while Socialists and Democrats (S&D - left-wing) parlementarians
are usually in disagreement (IASvoting = 0.41) with European Conservatives and Reformists
(ECR - right-wing), they tend to have convergent opinions (IASvoting = 0.9) on ballots
concerning theme 6.20.03 (bilateral agreement and relations with countries external to the
union, e.g. Implementation of the Free Trade Agreement between the European Union and
the Republic of Korea). In Figure 3.7, we illustrate the similarities between political groups
for pattern 3 reported in Table 3.7. It is worth to note that, as part of a collaboration with
political journalists, we provide an online tool17, dubbed ANCORE (Lacombe et al., 2019),
which makes it possible to analyze European parliament voting sessions.
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Figure 3.7: Illustration of pattern 3 reported in Table 3.7. The left matrix depicts the
agreement observed in general between political groups when considering all ballots. The
right matrix corresponds to the inter-group agreement between groups for the context pointed
out by pattern 3. We observe that group ENF is in disagreement with ALDE, PPE and
S&D who hold 63% of the seats in the 8th European Parliament. The context of Pattern 3,
which mainly covers EGF (European Globalisation Adjustment Fund) ballots, suggests an
agreement between group ENF and the majority.

3.6.2.3 Illnesses Prevalence on the Basis of Medicine Consumption

Monitoring the disease prevalence is an important task. Many researchers dedicated their
effort to analyze the prevalence of diseases considering different sources of data. Orueta et al.,
2012 highlight the importance of considering outpatient data (e.g. medical prescriptions) in
such epidemiology studies. With this in mind, one interesting analysis task to be conducted
on Openmedic dataset is to look for subgroups of drugs where the ratio of intakes between
two groups of individuals is substantially different than the one usually observed. For
instance, we find that while Females takes 1.32× more drugs than Males in overall terms,
this ratio increases up to 5× when considering drugs prescribed for Hyperthyroidism (see
Pattern 3 in Table 3.8). These results are similar to those reported in an epidemiology study
by Wang and Crapo, 1997. Such task can provide some insight regarding illness prevalence

17http://contentcheck.liris.cnrs.fr
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for particular groups of individuals. In the behavioral dataset Openmedic, the outcomes
expressed by individuals are depicted by numerical values reporting the count of medicine
boxes. As we are interested in characterizing the agreement by the consumption ratio, we
instantiate IAS as follows:

IASratio(c,u1,u2) =
∑e∈Gc

E
θavg(G

u1
I ,e)

∑e∈Gc
E

θavg(G
u2
I ,e)

This ratio falls under the definition of IAS considered in Definition 3.3.3 as it can be
expressed as a weighted average:

IASratio(c,u1,u2) =

∑
e∈Gc

E

w(e,Gu1
I ,Gu2

I )× simratio(θavg(G
u1
I ,e),θavg(G

u2
I ,e))

∑e∈Gc
E

w(e,Gu1
I ,Gu2

I )

with w(e,Gu1
I ,Gu2

I ) = θavg(G
u2
I ,e) and simratio(x,y) =

x
y
.

In order to provide interpretable patterns according to the aim of the study, we define an
adapted quality measure ϕratio as:

ϕratio(p) =
IASratio(p)
IASratio(p∗)

with p = (c,u1,u2) ∈P and p∗ = (∗,u1,u2) .

Drug boxes are labeled by tags in the ATC classification system. We aim at leveraging
the medical consumption differences between groups of individuals to investigate the com-
parative prevalence18 of illnesses between gender groups. Table 3.8 shows some patterns

(c,u1,u2) |Gc
E | |Gu1

I | |Gu2
I | o(i,e) ϕratio

1
Men vs. Women in 138 39 39 4195 4.59 = 3.48

0.76
N07B - Drugs used in addictive disorders

2
Women vs. Men in 54 39 39 3174 3.96 = 5.21

1.32
A12A - Calcium

3
Women vs. Men in 31 39 39 1981 3.89 = 5.13

1.32
H03 - Thyroid Therapy

4
Men vs. Women in 42 39 39 1940 3.91 = 2.97

0.76
M04A - Antigout preparations

Table 3.8: Top-4 w.r.t. the number of expressed outcomes on Openmedic considering by
default the full dataset, |AE |= 1, |AI|= 1, σE = 10, σI = 1 and σϕ = 3.5 using ϕratio.
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Figure 3.8: Drugs consumption behavior of gender groups in Patterns 3 (left) and 4 (right).

18http://www.med.uottawa.ca/sim/data/epidemiology_rates_e.htm
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discovered by DEBuNk on Openmedic. Note that we carefully choose σE ≥ 10 to reach
subgroups of drugs of the fifth level of ATC tree which on average contains v 10 drugs.

Pattern 4 states that, for drugs prescribed for Gout19, men consume 3× more drugs than
women, whereas in overall terms, men consume 0.76× less drugs than women. Similar
results were reported by an epidemiology study of Gout in (Roddy and Doherty, 2010) giving
an incidence of gout per 1,000 person-years of 1.4 in women and 4.0 in men. Patterns 3 and
4, depicted in Figure 3.8, report details on the differences between the two gender groups in
terms of population size and number of drugs consumed both in overall and in the context
highlighted by the pattern.

3.6.3 QUANTITATIVE STUDY

In this section, we first start by comparing the devised algorithms against some standard
SD/EMM techniques and against DSC (Belfodil et al., 2017a) in section 3.6.3.1. Next, we
evaluate the efficiency of both the closure operator and the optimistic estimates proposed
to improve the performance of DEBuNk in section 3.6.3.2. Moreover, in section 3.6.3.3,
we investigate empirically the performance contribution of HMT descriptions enumerations
compared to a standard itemsets enumeration when items are augmented with a taxonomy.
Subsequently, we analyze in section 3.6.3.4, how DEBuNk scales with regards to different
parameters. Finally, we compare the performance of Quick-DEBuNk in section 3.6.3.5. We
wrap up by a discussion in section 3.6.4.

3.6.3.1 Comparison to classical SD/EMM techniques and to DSC

We have investigated the ability of classical SD/EMM techniques to tackle the problem
of discovering exceptional (dis)agreement among groups of individuals. To this end, we
have considered three appropriate SD/EMM adaptations20 and tested them on synthetic
datasets with ground truth. No existing quality measure (in classical SD) or model (in
classical EMM) makes it possible to uncover exactly the inter-group agreement patterns,
and these experiments obviously supported this observation (for more details, please refer
to Appendix A). This is due to the fact that SD and EMM techniques are usually tailored
to tackle a specific mining task. Therefore and for the interest of brevity, we report here
only comparative experiments against our first attempt (Belfodil et al., 2017a) implemented
by DSC.

DSC aims at discovering top-k patterns that elucidate exceptional (dis)agreement between
groups of individuals. In addition, for a sufficiently large k, DSC solves the core problem
tackled in this chapter limited to the two first conditions (i.e., validity and maximality). Note
that, we disable the aggregation dimension parameter for DSC to obtain comparable pattern

19https://www.medicinenet.com/gout_gouty_arthritis/article.htm
20Since common SD techniques require flat representations of the underlying dataset augmented with a target

attribute, we have proposed two adaptations: SD-Majority for discovering (dis)agreement with the majority
and SD-Cartesian for discovering (dis)agreement between two groups on the cartesian product GE ×GI ×GI .
In both of the aformentioned adaptations, the target is equal to 1 if there is an agreement, 0 else. Experiments
are performed using PySubgroup(Lemmerich and Becker, 2018) while utilizing the precision gain (Fürnkranz,
Gamberger, and Lavrač, 2012) as a quality measure. Moreover, to take into account the usual agreement between
groups, we adapt Exceptional Subgraph Mining(Kaytoue et al., 2017) to discover contextual (dis)agreement in
subgraphs representing individuals group pairs.
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sets. To compare between DEBuNk and DSC, we designed experiments to answer to the two
following questions:

Q1. How concise is the patterns set provided by DEBuNk compared to the one provided
by DSC?

Q2. How diversified is the patterns set, limited to k patterns, provided by DEBuNk
compared to the one provided by DSC?

In order to answer (Q1), we evaluate the number of patterns returned by DEBuNk
and DSC when looking for complete pattern set P (i.e., k sufficiently large for DSC). For
this, we run both methods on EPD8 with various21 quality thresholds σϕ and descriptive
attributes AE , AI . Figure 3.9 reports the results of these experiments. Results demonstrate
that DEBuNk considerably reduces the desired pattern set while ensuring that each pattern
returned by DSC is represented by a pattern returned by DEBuNk (according to the problem
definition). On average, DSC returns 38 times more patterns than DEBuNk. Moreover,
DEBuNk achieves better performance than DSC in terms of run time . This is explained by
(i) the model simplification which reduces the complexity of computing the interestingness
measure and (ii) the pruning property implemented by DEBuNk supported by condition (3)
of the problem definition.

So far, we compared DEBuNk against DSC when looking for the complete pattern set.
Experiments (Q1) demonstrated the fact that in such a setting DSC returns an overwhelmingly
large results set. To tackle this problem, DSC implements a top-k algorithm to control the
size of the returned pattern set. Of course, the main drawback of using a top-k algorithm is
the lack of diversity even when redundancy is avoided by closure operators. This lack of
diversity is induced by the fact that, most likely, the patterns observing the highest qualities
are condensed in small region of the dataset.

To fairly evaluate the diversity of patterns returned by both DSC and DEBuNk (Q2), we
run both algorithms for several parameters22 and compare the size of the datasets regions
covered by both returned pattern sets. This quantity can be captured by the number of out-
comes covered by a results set, that is |o[Pk]|= |{(i,e) ∈ GI×GE s.t. o(i,e) is expressed}|
with Pk an arbitrary pattern set containing k patterns. For a fair comparison, we compare
|o[Pk

DSC]| (top-k patterns) against |o[Pk
DEBuNk]|. To obtain the latter quantity, we run DEBuNk
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Figure 3.9: Comparison between DEBuNk and DSC for the task of discovering the complete
set of the desired patterns on EPD8 dataset (default parameters are: |AE | = 2, |AI| = 2,
σϕ = 0.4, σE = 40, σI = 10 and ϕdissent). Lines correspond to the execution time and bars
correspond to the number of returned patterns.

2127 runs for each method by varying (|AE |, |AI |,σϕ ) ∈ [[1,2,3] , [1,2,3] , [0.2,0.4,0.6]]
2281 runs by varying (k, |AE |, |AI |,σϕ ) ∈ [[10,50,100] , [1,2,3] , [1,2,3] , [0.2,0.4,0.6]]
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so as to obtain the complete pattern set PDEBuNk. Next, we draw 100 k-sized samples drawn
uniformly from the obtained PDEBuNk and then compute the average |o[Pk

DEBuNk]|. It is worth
mentioning that comparison can be made also by taking the top-k patterns PDEBuNk rather
than an arbitrary k-sized sample. We decided to study the latter scenario, since the philosophy
of DEBuNk is to retrieve the complete patterns set summarizing exceptional (dis)agreement
in an underlying behavioral dataset.

Results are reported in Figure 3.10. Clearly, DEBuNk’s k-sized pattern set covers larger
(and different) parts of the dataset compared to DSC’s top-k pattern set. We observe that
DEBuNk surpasses DSC by one order of magnitude (×12.5 in average) when comparing the
portions of the dataset covered by their respective k-sized pattern set. Simply put, when the
pattern set related to DEBuNk covers 10% of the dataset, DSC patterns cover less than 1%
of the underlying dataset records.
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Figure 3.10: Comparison between DEBuNk and DSC (top-k) for the task of discovering
k-sized pattern sets on EPD8 Dataset (default parameters: |AE | = 2, |AI| = 2, σϕ = 0.4,
σE = 40, σI = 10 and ϕdissent). Box plots correspond to the size of O[Pk] when varying k in
[10,50,100].

3.6.3.2 Efficiency of closure operators and optimistic estimates

To evaluate the efficiency of closure operators and optimistic estimates, we compare DE-
BuNk against two baseline algorithms. The first baseline, named Baseline, is obtained
by disabling both closure operators and the pruning properties supported by the defined
optimistic estimates. Thus, Baseline only pushes the anti-monotonic constraints (i.e., the set
of cardinality constraints C ). The second baseline, Baseline+Closed, is proposed to study
more precisely the efficiency of the optimistic estimates. Thus, it is obtained by disabling the
optimistic estimate based pruning. In this experiments, we interrupt a method if its execution
time exceeds 10 hours. Figures 3.11, 3.12 and 3.13, carried on respectively EPD8, Movielens
and Yelp datasets, report the execution time and the number of candidate patterns processed
by each of the three methods when varying the size of the dataset w.r.t. both the number of
records and the size of the description space.

Experiments give evidence that the closure operator and the canonicity tests performed by
EnumCC are effective as they drastically reduce the number of evaluated patterns. Addition-
ally, DEBuNk is about one order of magnitude faster than the Baseline+Closed algorithm,
thanks to the optimistic estimate-based pruning. This especially happens when the IAS
measure is a simple average, which is the case of the IAS measure used for EPD8, Yelp and
Movielens. This is explained by the fact that the corresponding optimistic estimate is tight.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



3.6 Empirical Study 89

100 500 1500 4161
#entites

102
103
104
105
106
107
108
109

#
ev

al
u

at
ed

100

101

102

103

104

105
E

xe
cu

ti
on

ti
m

e
(s

)
Baseline Baseline+Closed DEBuNk

50 100 250 500 958
#individuals

104

105

106

107

108

109

#
ev

al
u

at
ed

100

101

102

103

104

105

E
xe

cu
ti

on
ti

m
e

(s
)

Baseline Baseline+Closed DEBuNk

1 2 3
#attributes entities

104

105

106

107

108

109

#
ev

al
u

at
ed

101

102

103

104

105

E
xe

cu
ti

on
ti

m
e

(s
)

Baseline Baseline+Closed DEBuNk

1 2 3 4
#attributes individuals

105

106

107

108

109

#
ev

al
u

at
ed

101

102

103

104

E
xe

cu
ti

on
ti

m
e

(s
)

Baseline Baseline+Closed DEBuNk

Figure 3.11: Effectiveness of DEBuNk considering EPD8 Dataset with |GE |= 2000, |GI|=
500, |Outcomes|= 750k, |AE |= 3, |AI|= 4, σE = 40, σI = 10, σϕ = 0.5 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of evaluated patterns.
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Figure 3.12: Effectiveness of DEBuNk considering Movielens Dataset with |GE |= 1681,
|GI|= 943, |Outcomes|= 100k, |AE |= 2, |AI|= 3, σE = 8, σI = 50, σϕ = 0.2 and ϕdissent.
Lines correspond to the execution time and bars correspond to the number of evaluated
patterns.
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Figure 3.13: Effectiveness of DEBuNk considering Yelp Dataset with |GE |= 25000, |GI|=
18, |Outcomes| = 146k, |AE | = 2, |AI| = 3, σE = 5, σI = 1, σϕ = 0.5 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of evaluated patterns.
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3.6.3.3 Efficiency of HMT closed descriptions vs. closed itemsets enumeration

In order to evaluate the performance of the closed descriptions enumeration in the presence
of a taxonomy linking the tags (items), we study the behavior of DEBuNk (i.e. execution
time and the number of explored patterns) both with and without leveraging the hierarchy
between items. The latter can be done by scaling the HMT values (as illustrated in Fig.
3.2) using a vector representation for each tagged record. Experiments are carried out on
EPD8 and Yelp datasets whose entities are characterized by a hierarchy of 347 tags and 1175
tags respectively. To vary the number of items/tags constituting the hierarchy, we remove
tags from the tree in a bottom-up fashion until the desired number of tags/items is reached,
followed by replacing the HMT values of each entity by the set of ascendants tags remaining
in the obtained tree.

Experiments reported in Figure 3.14 demonstrate that taking into account the hierarchy
of tags significantly improves the performance of DEBuNk (5× faster). This results from
the fact that, in contrast to itemsets enumeration, HMT descriptions enumeration exploits
the structure of the hierarchy and therefore avoids considering chain descriptions (e.g.,
{1, 1.10.40}). Note that the bars depict the number of patterns that are visited by EnumCC
used in DEBuNk to generate the closed patterns. Obviously, the HMT and Itemset closed
description enumeration return the same number of closed patterns. We choose to represent
the number of visited patterns rather than the number of closed patterns to illustrate the
differences between the HMT and Itemset enumeration in terms of the size of the explored
search space.
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Figure 3.14: Efficiency of HMT against itemsets closed descriptions enumeration according
to the number of items/tags constituting the hierarchy for the two datasets EPD8 (left) and
Yelp (right). For both datasets we only consider the HMT attribute for entities |AE |= 1. The
used parameters for EPD8 are: |AI|= 6, σE = 1, σI = 10, σϕ = 0.5 and ϕdissent. The used
parameters for Yelp are: |AI|= 3, σE = 5, σI = 1, σϕ = 0.5 and ϕdissent. Lines correspond
to the execution time and bars correspond to the number of visited patterns.

3.6.3.4 Performance study of DEBuNk

We now focus on the study of DEBuNk according to the size of the description spaces
(DE , DI), the support thresholds, the quality threshold and the quality measures. To study
the behavior of DEBuNk according to the size of the description spaces, we choose to
vary the number of items resulting from projecting the attributes values of each record
(entity/individual) on their corresponding vector representation. To this end, we select values
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from each attribute according to the size of its corresponding domain so as to obtain the
required number of items. We follow the same approach as in the experiments reported in
Figure 3.14 to select the required number of tags for an HMT attribute. Numerical attributes
domains are discretized according to the required number of items. Subsets of values of
categorical attributes are regrouped under single categories in order to obtain the desired
number of values.

Figures 3.15, 3.16 and 3.17 report the behavior of DEBuNk when carried on EPD8,
Movielens and Yelp. Clearly, the number of evaluated candidates and the execution time
increase with regards to the size of description spaces DI and DE and also the size of the
datasets (i.e. |GI| and |GE |). These experiments confirm that pushing monotonic constraints
(i.e. supports threshold σE , σI) drastically improves the efficiency of DEBuNk. Finally, a
higher threshold on the quality σϕ leads to an important reduction of the number of visited
patterns and therefore to a better execution time. This demonstrates the effectiveness of the
pruning properties enabled by the use of optimistic estimates. We also notice that ϕconsent

performs slightly better than ϕdissent. This effect arises mainly from the fact that, in the EU
Parliament dataset, the overall observed agreement between groups of individuals is rather
consensual.
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Figure 3.15: Effectiveness of DEBuNk on EPD8 according to the sizes of GE , GI , DE , DI , the
supports and quality measures thresholds. Considering by default |GE |= 4161, |GI|= 958,
|Outcomes| = 2.7M, |AE | = 3, |AI| = 6. σE = 40, σI = 10, σϕ = 0.5 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of evaluated patterns.
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Figure 3.16: Effectiveness of DEBuNk on Movielens according to the sizes of GE , GI , DE ,
DI , the supports and quality measures thresholds. Considering by default |GE | = 1681,
|GI|= 943, |Outcomes|= 100k, |AE |= 2, |AI|= 3. σE = 8, σI = 50, σϕ = 0.2 and ϕdissent.
Lines correspond to the execution time and bars correspond to the number of evaluated
patterns.
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Figure 3.17: Effectiveness of DEBuNk on Yelp according to the sizes of GE , GI , DE , DI , the
supports and quality measures thresholds. Considering by default |GE |= 127k, |GI|= 18,
|Outcomes| = 750k, |AE | = 2, |AI| = 3. σE = 50, σI = 1, σϕ = 0.5 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of evaluated patterns.
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3.6.3.5 Quick-DEBuNk vs. DEBuNk

To evaluate the efficiency of Quick-DEBuNk, we compare it against the exhaustive search
algorithm DEBuNk over different time budgets. To objectively measure how well Quick-
DEBuNk results approximates DEBuNk results, let us first define a similarity measure simP

between two patterns p = (c,u1,u2) and p′ = (c′,u′1,u
′
2) from P . It captures to what extent

two patterns covers the same context and groups and relies on a Jacquard Index (J in what
follows):

simP (p, p′) =

√
J(Gc

E ,G
c′
E )×

1
2
.
(

J(Gu1
I ,Gu′1

I )+ J(Gu2
I ,Gu′2

I )
)

with J(G,G
′
) =
|G∩G

′ |
|G∪G′ | .

Note that, the quantity (J(Gu1
I ,Gu′1

I )+ J(Gu2
I ,Gu′2

I )) is replaced by the following measure
if the quality measure ϕ is symmetric:

max(J(Gu1
I ,Gu′1

I )+ J(Gu2
I ,Gu′2

I ),J(Gu1
I ,Gu′2

I )+ J(Gu2
I ,Gu′1

I )) .

For comparing two pattern sets P, P′ returned by respectively DEBuNk and Quick-
DEBuNk, we use an F1 score defined as follows.

F1(P,P′) = 2 · precision(P,P′) · recall(P,P′)
precision(P,P′)+ recall(P,P′)

, (3.12)

with


precision(P,P′) =

∑p∈P max({simP(p, p′) | p′ ∈ P′})
|P| ,

recall(P,P′) =
∑p′∈P′ max({simP(p′, p) | p ∈ P})

|P′| .

A similar measure to recall has been proposed by Bosc et al., 2018 to evaluate the
ability of their algorithm to retrieve ground-truth patterns. We extend this measure with the
precision to evaluate not only that all the patterns returned by DEBuNk have been retrieved by
Quick-DEBuNk (i.e. recall=1) but also the conciseness of the returned set (i.e. precision=1 if
and only if all returned patterns by Quick-DEBuNk are actually present in the ground-truth
results set, namely the returned patterns by DEBuNk).

Figures 3.18a, 3.19a and 3.20a report the comparative study between DEBuNk and
Quick-DEBuNk carried out on respectively EPD8, Movielens and Yelp. We notice that in all
situations, Quick-DEBuNk is able to promptly returning high quality patterns. Interestingly,
some differences can be observed between datasets. Quick-DEBuNk is less efficient on Yelp
dataset. We argue that this is due to the fact that the corresponding context search space is
much larger than the three other behavioral datasets (see Table 3.2) which might impede
random walk step RWC for finding high quality patterns.

We also investigate the empirical distribution from which the patterns are sampled when
using Quick-DEBuNk. This requires the true distribution of the qualities of valid patterns
in the corresponding datasets. To this end, we run DEBuNk by disabling the generality
condition (see Problem definition). This makes it possible to identify all interesting inter-
group agreement patterns in the dataset. In these experiments, we choose an arbitrary
threshold set to σϕ = 0.1. Similarly, we run Quick-DEBuNk so as to obtain a sufficiently
large pattern set, and calculate the sampling distribution from the retrieved patterns’ qualities.
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We observe from the empirical distributions depicted in Figures 3.18b, 3.19b and 3.20b that
Quick-DEBuNk rewards high quality patterns by giving them a better chance to be sampled.

Finally, to evaluate the importance of the RWC (Random Walk on Contexts) step in
Quick-DEBuNk, we perform the same experiments with the same time budgets with the
RWC step disabled. This configuration, Quick-DEBuNk without RWC returned only 3472,
389 and 120 valid patterns compared to 408610, 64198 and 75398 valid patterns when
carried out on, respectively, EPD8, Movielens and Yelp. In average, Quick-DEBuNk without
RWC retrieved 20× fewer valid patterns than the original Quick-DEBuNk. This clearly
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Figure 3.18: Efficiency of Quick-DEBuNk compared to DEBuNk on EPD8. Parameters
used are σE = 40, σI = 10, σϕ = 0.5 and ϕdissent. The red line corresponds to the required
time by DEBuNk to perform an exhaustive search.
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Figure 3.19: Efficiency of Quick-DEBuNk compared to DEBuNk on Movielens. Parameters
used are σE = 5, σI = 10, σϕ = 0.25 and ϕdissent. The red line corresponds to the required
time by DEBuNk to perform an exhaustive search.
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Figure 3.20: Efficiency of Quick-DEBuNk compared to DEBuNk over Yelp. Parameters
used are σE = 15, σI = 1, σϕ = 0.1 and ϕdissent. The red line corresponds to the required
time by DEBuNk to perform an exhaustive search.
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3.6 Empirical Study 95

indicates that RWC improves the performance of Quick-DEBuNk. This stems from the fact
that when the first step (FBS step) generates a pattern, most of the time the pattern is not
of a sufficient quality. RWC tackles this issue by locally searching for interesting patterns,
starting from the generated pattern.

3.6.4 DISCUSSION

DEBuNk scales well w.r.t. the size of the search space corresponding to the entities collection
thanks to the defined optimistic estimates which enable to prune unpromising parts of the
search space. However, DEBuNk does not scale according to the size of the description spaces
related to the individuals. This limits its application when behavioral datasets have a large
number of individuals described with many attributes. This is due to the need of taking into
account the usual inter-group agreement in the interestingness measures. As a consequence,
it is notoriously difficult to define an optimistic estimate which not only works on the entities
related search space, but also on the one corresponding to the confronted couples of groups of
individuals. This should be the scope of future research, starting with definition of bounds on
the usual agreement quantity. Algorithm Quick-DEBuNk partially addresses this scalability
issue by sampling the couples of groups directly from the patterns space rather than starting
from the search tree root. Interestingly, the experiments demonstrated that Quick-DEBuNk
makes it possible to retrieve most of the interesting patterns in a relatively small amount
of time (i.e. compared to what returns the exhaustive search algorithm DEBuNk and the
ground truth in artificial data). This is particularly observed for EPD8 dataset involving the
largest description space DI×DI , hence empirically demonstrating its interest. Nevertheless,
Quick-DEBuNk does not have theoretical guarantees on the distribution of the sampled
patterns (we only proved that all valid patterns are reachable and are generated proportionally
to their size). This shortcoming is due to two reasons. On the one hand, the three-set format
of the patterns makes them challenging to be sampled proportionally to their interestingness
measure since the value is computed only when the context is known (no information is
available before the instantiation of the two groups). On the other hand, quality measures that
are expressed as average functions are complex to apprehend under direct pattern sampling
framework. Dealing with this two issues is required to obtain theoretical guarantees.

To avoid misleading interpretations, it is important to be aware of the data sparsity.
Remind that the proposed approaches enable to discard some patterns that involve too small
subset of entities on which the two confronted groups haven’t expressed enough outcomes.
Moreover, the strength of the claim related to the pattern should be assessed according not
only to the data sparsity but also to the representativeness of the two subpopulation of interest
(e.g., the claims drawn from the EU parliament votes are usually consistent even though the
data are fairly sparse).
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96 Chapter 3. Identifying exceptional (dis)agreement between groups

3.7 SUMMARY

In this chapter, we have defined the problem of discovering exceptional (dis)agreement in
behavioral data and tailored an approach rooted in SD/EMM with a novel pattern domain and
associated quality measures for the discovery of exceptional inter-group agreement patterns
(cf. figure 3.21). We have defined DEBuNk, a branch-and-bound algorithm which takes
benefit from closure operators, properties of the underlying description space (as for HMT
attributes) and (tight) optimistic estimates to efficiently enumerate the patterns. Alternatively,
we devised Quick-DEBuNk that samples the space of patterns instead of returning the com-
plete set of inter-group agreement patterns. We have investigated several quality measures to
assess inter-group agreement. The extensive experimental study demonstrates the efficiency
of our algorithms as well as their ability to provide new insights in three case-studies: (i) the
investigation of contexts that impact the inter-group agreement between parliamentarians,
(ii) the characterization of affinities and contrasted opinions between reviewers in rating
platforms and (iii) the study of prevalence of certain sicknesses that can be pointed out by
high discrepancies between the medicine consumption rates of two subpopulations.

Heterogeneous 
Attribute-Value Data

(Categorical, Numerical, HMT)

logical conjunctions
of conditions on single 

attributes

Inter-group 
Agreement Similarity 

Measure (IAS)

DEBuNk

Quick-DEBuNk

Exhaustive Approach

Sampling Approach

Exceptional Disagreement

Exceptional Agreement

Identifying 
Exceptional  

(Dis-)Agreement 
between groups  

ϕdissent

ϕconsent

Figure 3.21: Exceptional Model Mining for Identifying exceptional (dis-)agreement between
groups.

We believe that this work opens new directions for future research. First, while our
method is able to analyze behavioral datasets with large collections of entities (e.g., Yelp),
tackling large collections of individuals still remains challenging to ensure the scalability
of both DEBuNk and Quick-DEBuNk. Indeed, the search space related to individuals does
not have, according to our problem definition, properties that can be leveraged to prune
unpromising parts of this search space. Another interesting future direction is to take into
account the temporal dimension into the analysis of behavioral data. This can offer the
opportunity to investigate how the relationship (e.g., inter-group agreement) between groups
of individuals evolves through time.
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3.7 Summary 97

This generic framework allows to discover exceptional inter-group agreement in several
kind of behavioral datasets. By following the same reasoning as for this chapter, one can pay
particular attention to the analysis of intra-group agreement within a group of individuals.
It may support the discovery of contexts that divide a political group. This requires the
definition and the integration of suited similarity measures. For instance, the cohesion of a
political group can be assessed by the “agreement index” (Hix, Noury, and Roland, 2005),
which is an application-specific measure to the study the European parliament. More generic
measures could also be investigated to tackle a broader range of behavioral data. This is the
scope of the next chapter.
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Identifying exceptional (dis)agreement
within groups

In this chapter, we devise a method which enables the discovery of exceptional (dis)agreement
patterns within groups by searching for exceptional intra-group agreement patterns. We
strive to find contexts (i.e., subgroups of entities) under which exceptional (dis-)agreement
occurs within a group of individuals, in any type of data featuring individuals (e.g., par-
liamentarians, customers) performing observable actions (e.g., votes, ratings) on entities
(e.g., legislative procedures, movies). To this end, we introduce the problem of discovering
statistically significant exceptional contextual intra-group agreement patterns. To handle
the sparsity inherent to voting and rating data, we use Krippendorff’s Alpha measure for
assessing the agreement among individuals. We devise a branch-and-bound algorithm,
named DEvIANT, to discover such patterns. DEvIANT exploits both closure operators and
tight optimistic estimates. We derive analytic approximations for the confidence intervals
(CIs) associated with patterns for a computationally efficient significance assessment. We
prove that these approximate CIs are nested along specialization of patterns. This allows
to incorporate pruning properties in DEvIANT to quickly discard non-significant patterns.
Empirical study on several datasets demonstrates the efficiency and the usefulness of
DEvIANT.

4
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100 Chapter 4. Identifying exceptional (dis)agreement within groups

4.1 INTRODUCTION

The previous chapter discussed how SD/EMM framework can be used to formalize and
discover exceptional (dis)agreement between groups. While this technique is generic enough
to handle several kind of behavioral datasets, it does not allow to discover exceptional
(dis)agreement within groups. This chapter aims to extend the capabilities of SD/EMM to
efficiently discover exceptional intra-group agreement patterns.

Consider a behavioral dataset (cf. Definition 1.1.1) describing voting behavior in the
European Parliament (EP). Such a dataset records the votes of each member (MEP) in voting
sessions held in the parliament, as well as the information on the parliamentarians (e.g.,
gender, national party, European party alliance) and the sessions (e.g., topic, date). This
dataset offers opportunities to study the agreement or disagreement of coherent subgroups,
especially to highlight unexpected behavior. It is to be expected that on the majority of
voting sessions, MEPs will vote along the lines of their European party alliance. However,
when matters are of interest to a specific nation within Europe, alignments may change and
agreements can be formed or dissolved. For instance, when a legislative procedure on fishing
rights is put before the MEPs, the island nation of the UK can be expected to agree on a
specific course of action regardless of their party alliance, fostering an exceptional agreement
where strong polarization exists otherwise.

We aim to discover such exceptional (dis-)agreements. This is not limited to just EP or
voting data: members of the US congress also votes on bills, while Amazon-like customers
post ratings or reviews of products. A challenge when considering such voting or rating data
is to effectively handle the absence of outcomes (sparsity), which is inherently high. For
instance, in the European parliament data, MEPs vote on average on only 3⁄4 of all sessions.
These outcomes are not missing at random: special workgroups are often formed of MEPs
tasked with studying a specific topic, and members of these workgroups are more likely
to vote on their topic of expertise. Hence, present values are likely associated with more
pressing votes, which means that missing values need to be treated carefully. This problem
becomes much worse when looking at Amazon or Yelp rating data: the vast majority of
customers will not have rated the vast majority of products/places.

In this chapter, we introduce the problem of discovering significantly exceptional contex-
tual intra-group agreement patterns in behavioral data, rooted in the Subgroup Discovey (SD)
(Wrobel, 1997)/ Exceptional Model Mining (EMM) (Duivesteijn, Feelders, and Knobbe,
2016) framework. To tackle the data sparsity issue, we measure the agreement within groups
with Krippendorff’s alpha, a measure developed in the context of content analysis (Krippen-
dorff, 2004) which handles missing outcomes elegantly. We develop a branch-and-bound
algorithm to find subgroups featuring statistically significantly exceptional (dis-)agreement
within groups. This algorithm enables discarding non-significant subgroups by pruning
unpromising branches of the search space.

Figure 4.1 gives an overview of the approach we devise to discover exceptional (dis-
)agreement within groups. At a high level of description, seven steps are necessary to
discover significantly exceptional contextual intra-group agreement patterns. First a group
of individuals g is selected by intent (1) followed by the computation of overall intra-group
agreement using Krippendorff’s Alpha and the confidence region of such measurement for
statistical soundness (2). In order to find significantly exceptional (dis-)agreement between
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Figure 4.1: Overview of the task of discovering statistically significant exceptional
(dis)agreement within groups

members of the selected group, all characterizable subsets of entities (e.g. voting sessions)
are (conceptually) enumerated (3). Each characterizable subset corresponds to a context
reflecting the shared properties between the entities of the subset (e.g. voting sessions of
judicial matters). In each enumerated context, the intra-group agreement is evaluated (4).
To gauge the excpetionality of such a contextual intra-group agreement, we compute its
p-value: the probability that for a random subset of entities, we observe an agreement at
least as extreme as the one observed for the context. Thus we avoid reporting subgroups
observing a low/high intra-agreement due to chance only. To achieve this, we estimate the
empirical distribution of the intra-agreement of random subsets (DFD: Distribution of False
Discoveries, cf. (Duivesteijn and Knobbe, 2011)) (5) and establish, for a chosen critical value
α , a confidence interval CI1−α over the corresponding distribution under the null hypothesis
(6). If the subgroup intra-agreement is outside CI1−α , the context is statistically significant
(p-value ≤ α) and should be reported (7); otherwise the subgroup is a spurious finding.

Contributions. The main contributions of this chapter are threefold:

Problem formulation. We define the novel problem of discovering significantly exceptional
contextual (dis)agreement within groups when considering a particular subset of
outcomes compared to the whole set of outcomes.

Algorithms. We derive an analytical approximation of the confidence intervals associated
with subgroups. This allows a computationally efficient assessment of the statistical
significance of the findings. Moreover, we define tight optimistic estimates for the
intra-group agreement measure (Krippendorff’s Alpha) and prove that analytical
approximate confidence intervals are nested. These two notions are leveraged in the
devised branch-and-bound algorithm, named DEvIANT, to safe-prune unpromising
branches of the search space.

Evaluation. We report a thorough empirical study to demonstrate the efficiency of the
proposed algorithm as well as the interest of the found patterns over four real-world
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102 Chapter 4. Identifying exceptional (dis)agreement within groups

behavioral datasets (Two voting datasets and two collaborative rating datasets).

The following content is based on our article on DEvIANT (Belfodil et al., 2019a).
Roadmap. The rest of this chapter is organized as follows. The problem formulation is
given in Section 4.2. We present the intra-group agreement measure in Section 4.3. Next,
we show how such a measure is used to gauge the exceptionality of a found context for some
selected group in Section 4.4 while discussing the safe-pruning properties. Then, we give
particular attention to the variability of outcomes among rater in Section 4.5. Subsequently, in
Section 4.6, we present the branch and bound algorithm called DEvIANT which implements
the discovery of exceptional (dis)agreement within groups. Eventually, empirical evaluation
is conducted in Section 4.7 to study the qualitative and quantitative performance of DEvIANT.
We wrap up this chapter in Section 4.8 with some concluding thought.
Note: Notations used in this chapter are listed in Appendix D and Appendix E.

4.2 SETUP AND PROBLEM FORMALIZATION

Here, we first define the fundamental concepts that we use throughout the paper in Sec-
tion 4.2.1, followed by the formal problem statement in Section 4.2.2. Some definitions were
given previously, although, we recall some of them for the convenience of the reader.

4.2.1 PRELIMINARIES

A Behavioral dataset (cf. Definition 1.1.1) B = 〈GI,GE ,O,o〉 consists of a set of individuals
GI (e.g., social network users, parliamentarians) who give outcomes o : GI×GE → O (e.g.,
ratings, votes) on entities GE (e.g., movies, ballots). An example dataset is given in Table 4.1
(a modified version of Table 1.1 for the sake of toy examples).

ide themes date

e1 1.20 Citizen’s rights 20/04/16
e2 5.05 Economic growth 16/05/16
e3 1.20 Citizen’s rights; 7.30 Judicial Coop 04/06/16
e4 7 Security and Justice 11/06/16
e5 7.30 Judicial Coop 03/07/16
e6 7.30 Judicial Coop 29/07/16

(a) Entities (Voting sessions)

idi country group age

i1 France S&D 26
i2 France PPE 30
i3 Germany S&D 40
i4 Germany ALDE 45

(b) Individuals (Parliamentarians)

idi ide outcome

i1 e2 Against
i1 e5 For
i1 e6 Against
i2 e1 For
i2 e3 Against
i2 e4 For
i2 e5 For
i3 e1 For
i3 e2 Against
i3 e3 For
i3 e5 Against
i4 e1 For
i4 e4 For
i4 e6 Against

(c) Outcomes

Table 4.1: Example of behavioral dataset - European Parliament Voting dataset
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4.2 Setup and Problem Formalization 103

Similarly as in Chapter 3, from now on we refer to both sets GE and GI by the generic term
collection of records denoted G if no confusion can arise. Elements from G are augmented
with descriptive attributes A = (a1, ...,am). Attributes a ∈ A can be boolean, numerical
or categorical, potentially organized in a taxonomy (cf. Section 3.4.2). The domains of
possible values of each attribute a j ,denoted dom(a j), define altogether a description space
D (cf. Section 2.2.1) which is the set of all possible descriptions that one can use to
characterize subgroups of records ∈ G. A description is a conjunction of conditions of the
form d = 〈r1, ...,rm〉 where r j depends on the type of the attribute a j (cf. Definition 2.2.2 and
Definition 2.2.12). Descriptions are partially ordered with a specialization operator denoted
v (cf. Definition 2.2.4). (G,(D,v),δ ) forms a pattern structure (cf. Definition 2.2.7) with
δ a mapping function δ : G→D which maps each record g ∈ G to the tightest (maximum)
description δ (g) in D with regard to v. A description d in D characterizes a subgroup of
records Gd = {g ∈ G s.t. d v δ (g)}.

In this chapter, we are interested in finding patterns where each one highlights a context
in which an exceptional (dis-)agreement is observed between some group members. Hence,
the sought patterns are defined as follows:

Definition 4.2.1 — Intra-Group Agreement Pattern. An intra-group agreement pattern
is defined by intent by p = (u,c) where u ∈ DI is a group description and c ∈ DE is a
context.

The collection of all intra-group agreement pattern is denoted P = DI ×DE and is
called the pattern space. A intra-group agreement pattern p = (u,c) is defined by extent by
ext(p) = (Gu

I ,G
c
E) with Gu

I the set of individuals supporting the group description u and Gc
E

the set of entities satisfying the conditions of context c.
Each pattern depicts a group whose members express outcomes on the entities identified

by the pattern’ context. These outcomes are the input of an intra-group agreement measure
which is required to evaluate to what extent members of a group are in (dis)agreement over
the context’ entities. Below, we only give the generic definition of an intra-group agreement
measure in the scope of this thesis, delaying its proper instantiation in section 4.3.

Definition 4.2.2 — Intra-group Agreement Measure. An intra-group agreement mea-
sure A : P → R assigns to each pattern p = (u,c) ∈P a real number Au(c) ∈ R.

This quantity captures the agreement observed among members of the group g in the
context c and is computed exclusively using the outcomes o(i,e) expressed by individuals
i ∈ GI on the entities e ∈ GE .

4.2.2 FORMAL PROBLEM DEFINITION

We are interested in finding patterns of the form (u,c)∈P (with P =DI×DE ), highlighting
an exceptional intra-agreement between members of a group of individuals u over a context c.
We formalize this problem using the well-established framework of SD/EMM (Duivesteijn,
Feelders, and Knobbe, 2016), while giving particular attention to the statistical significance
and soundness of the discovered patterns (Hämäläinen and Webb, 2019).

Statistical assessment of patterns has received attention for a decade (Hämäläinen and
Webb, 2019; Webb, 2007), especially for association rules (Hämäläinen, 2010b; Minato et al.,
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104 Chapter 4. Identifying exceptional (dis)agreement within groups

2014). Some work focused on statistical significance of results in SD/EMM during enumera-
tion (Duivesteijn and Knobbe, 2011; Lemmerich et al., 2016) or a posteriori (Duivesteijn
et al., 2010) for statistical validation of the found subgroups. This work goes in the same
line of the first collection of methods, where statistical significance of patterns is assessed
during enumeration.

Given a group of individuals u∈DI , we strive to find contexts c∈DE where the observed
intra-agreement, denoted Au(Gc

E), significantly differs from the expected intra-agreement
occurring due to chance alone. In the spirit of (Duivesteijn and Knobbe, 2011; Lemmerich
et al., 2016; Webb, 2007), we evaluate pattern interestingness by statistical significance of
the contextual intra-agreement: we estimate the probability to observe the intra-agreement
Au(Gc

E) or a more extreme value, which corresponds to the p-value for some null hypothesis
H0. The pattern is said to be significant if the estimated probability is low enough (i.e., under
some critical value α). The relevant null hypothesis H0 is: the observed intra-agreement is
generated by the distribution of intra-agreements observed on a bag of i.i.d. random subsets
drawn from the entire collection of entities (DFD: Distributions of False Discoveries, cf.
(Duivesteijn and Knobbe, 2011)).

The choice of evaluating the interestingness intra-group agreement pattern by statistical
significance is motivated by: (i) the desire to not specify to the algorithm an arbitrary
threshold on the distance from the overall observed intra-group agreement, since fixing
the critical value α is more intuitive, (ii) the recommendations of Krippendorff (Hayes
and Krippendorff, 2007) to provide a confidence interval on the alpha metric rather than a
point-value.

Problem 4.2.1 (Discovering Exceptional Contextual Intra-group Agreement Patterns).
Given a behavioral dataset B = 〈GI,GE ,O,o〉, a minimum group support threshold σI , a
minimum context support threshold σE , a significance critical value α ∈]0,1], and the
null hypothesis H0 (the observed intra-agreement is generated by the DFD); find the
pattern set P⊆P such that:

P = {(u,c) ∈DI×DE : |Gu
I | ≥ σI and |Gc

E | ≥ σE and p-valueu(c)≤ α}
where p-valueu(c) is the probability (under H0) of obtaining an intra-agreement A at

least as extreme as Au(Gc
E), the one observed over the current context.

4.3 INTRA-GROUP AGREEMENT MEASURE

Measuring the agreement between two things is historically well-studied. The most famous
version is Pearson’s correlation coefficient (Pearson et al., 1901), a measure of the degree
of linear relationship between two variables. If one is not necessarily interested in linear,
but rather monotone relationships, one can consider rank correlation instead, for instance
Spearman’s ρ (Spearman, 1904) or Kendall’s τ (Kendall, 1938). All these measures primarily
target two variables that are continuous; an equivalent of Pearson’s correlation coefficient for
two variables that are categorical is Association (Goodman, 1970). All these measures of
agreement focus on two targets, and cannot handle missing values well. As pointed out by
Krippendorff (Krippendorff, 1980, page 145), using association and correlation measures to
assess agreement leads to particularly misleading conclusions. When all data falls along a
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4.3 Intra-Group Agreement Measure 105

line Y = aX +b, correlation is perfect, but agreement requires that Y = X which is not what
correlation coefficients measure.

Cohen’s κ (Cohen, 1960) is a seminal measure of agreement between two raters who
classify items into a fixed number of mutually exclusive categories. The Fleiss κ (Fleiss,
1971) extends this notion to multiple raters. We will see the fundamental definition of
Krippendorff’s α in Section 4.3. A modified definition (Krippendorff et al., 2016) is able to
assess the reliabilities of diverse properties of unitized continua, making alpha available for
time series of texts, videos, or sounds.

It has been shown (Krippendorff, 1980, page 138) that when the number of (dis-)agreeing
observers is exactly two, various variants of Krippendorff’s alpha are strongly related to
various famous other measures. If the observations have unordered categories (nominal
attribute), then alpha is aymptotically equal to Scott’s Pi (Scott, 1955) (which, in turn, differs
from Cohen’s Kappa only by the way the probability of agreement by chance is computed).
If the observations are ordinal, alpha is identical to Spearman’s ρ without ties in ranks. If
the observations are interval data, alpha is identical to Pearson et al.’s intraclass-correlation
coefficient (Pearson et al., 1901). For more than two entities, Krippendorff’s alpha formalizes
a method suggested by Spiegelman et al. (Spiegelman, Terwilliger, and Fearing, 1953). More
on Krippendorff’s alpha, similar measures, their relations and design principles can be found
in (Hayes and Krippendorff, 2007).

The simplest example to illustrate how Krippendorff’s alpha (hereforth denoted A)
measures agreement, concerns two observes who each mark each of then documents as
relevant or not to a specific topic. Hence, the outcome is binary, there are two observers and
ten documents to mark, and each observer assigns a binary mark to each document. One can
simply count the percentage of documents on which both observers agree, but this is not
such a meaningful number: the contingency table marginals matter too, to assess whether a
certain agreement is significant or not. For instance, if the observers agree on all documents,
this is much more significant if the total fraction of ones in cells is 50% than if it were 80%.
Instead, one would want to assess how the agreement compares to chance.

Summarizing the actual marks in an observer-outcome contingency table is easy to
do. Given the relative proportions of zeroes and ones in the dataset, we can construct the
hypothetical contingency table of maximum agreement as well, with all off-diagonal entries
equal to zero. Instead, we can also determine the contingency table of chance agreement, by
generating observer-outcome contingency table cells through the corresponding process of
simulating drawing balls from urns.

Krippendorff’s alpha now uses these three contingency tables1 to quantify the degree of
observed agreement. The core idea is that a proper measure would be: on a scale from the
contingency table of chance agreement to the contingency table of maximum agreement, how
far along that line do we find the contingency table of observed agreement? More formally:

observed co-occurrences = A(maximum agreement)+(1−A)(chance agreement)

Hence, when A = 1, the agreement is as large as it can possibly be (given the class prior),
and when A = 0, the agreement is indistinguishable to agreement by chance. We can also

1to make the contingency table math work out, one must balance the disagreement (off-diagonal) cells, but
this does not alter the outcome
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106 Chapter 4. Identifying exceptional (dis)agreement within groups

have A < 0, where disagreement is larger than expected by chance and which corresponds to
systematic disagreement. Simple algebra gives us the direct formula:

A = 1− observed disagreement
expected disagreement

= 1− Dobs

Dexp
(4.1)

In summary, Krippendorff’s alpha (A) measures the agreement among raters. This
measure has several properties that make it attractive in our setting, namely: (i) it is applicable
to any number of observers; (ii) it handles various domains of outcomes (ordinal, numerical,
categorical, time series); (iii) it handles missing values; (iv) it corrects for the agreement
expected by chance.

Given a behavioral dataset B, we want to measure Krippendorff’s alpha for a given
context c ∈DE characterizing a subset of entities Gc

E ⊆ GE , which indicates to what extent
the individuals who comprise some selected group are in agreement g ∈DI . From Equation
(4.1), we have: A(S) = 1− Dobs(S)

Dexp
for any S ⊆ GE . Note that the measure only considers

entities having at least two outcomes; we assume the entities not fulfilling this requirement
to be removed upfront by a preprocessing phase. We capture observed disagreement by:

Dobs(S) =
1

∑e∈S me
∑

o1o2∈O2

∆o1o2 ·∑
e∈S

mo1
e ·mo2

e

me−1
(4.2)

Where me is the number of expressed outcomes for the entity e and mo1
e (resp. mo2

e ) represents
the number of outcomes equal to o1 (resp. o2) expressed for the entity e. ∆o1o2 is a distance
measure between outcomes, which can be defined according to the domain of the outcomes
(e.g., ∆o1o2 can correspond to the Iverson bracket indicator function [o1 6= o2] for categorical
outcomes or distance between ordinal values for ratings. Choices for the distance measure
are discussed in (Krippendorff, 2004)). In the following, we define two distance measures
that are used in this chapter.

1. Distance between categorical outcomes: this distance measure is appropriate when
the underlying behavioral data consider categorical outcomes such as in voting datasets.
Given O a set of possible categorical votes and o1,o2 two outcomes in O, the expression
of such a distance is given as following:

∆o1o2 =

0 iff o1=o2

1 iff o1 6=o2
(4.3)

2. Distance between ordinal outcomes: this distance measure is appropriate when the
underlying behavioral data consider ordinal outcomes such as in rating datasets. Given
O a set of possible totally ordered ratings and o1,o2 two outcomes in O2, the expression
of such a distance is given as following:

∆o1o2 =

(
z=o2

∑
z=o1

mz− mo1 +mo2

2

)2

(4.4)

We define below Dexp that represents the disagreement expected by chance in Krippen-
dorff’s alpha:

Dexp =
1

m · (m−1) ∑
o1,o2∈O2

∆o1o2 ·mo1 ·mo2 (4.5)
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Where m is the number of all expressed outcomes, mo1 (resp. mo2) is the number of expressed
outcomes equal to o1 (resp. o2) observed in the entire behavioral dataset. This corresponds
to the disagreement by chance observed on the overall marginal distribution of outcomes.

Example:

Table 4.2 summarizes the behavioral data from Table 4.1. The disagreement expected by
chance equals (given: mF = 8, mA = 6): Dexp = 48/91. To evaluate intra-agreement among
the four individuals in the global context (considering all entities), first we need to compute
the observed disagreement Dobs(GE). This equals the weighted average of the two last lines
by considering the quantities me as the weights: Dobs(GE) =

4
14 .

Hence, for the global context, A(GE) = 0.46. Now, consider the context c = 〈themes⊇
{7.30 Judicial Coop.}〉, having as support: Gc

E = {e3,e5,e6}. The observed disagreement is
obtained by computing the weighted average, only considering the entities belonging to the
context: Dobs(Gc

E) =
4
7 . Hence, the contextual intra-agreement is: A(Gc

E) =−0.08.
Comparing A(Gc

E) and A(GE) leads to the following statement: “while parliamentarians
are slightly in agreement in overall terms, matters of judicial cooperation create systematic
disagreement among them”.

[F]or [A]gainst
e1 e2 e3 e4 e5 e6

i1 A F A
i2 F A F F
i3 F A F A
i4 F F A

me 3 2 2 2 3 2
Dobs(e) 0 0 1 0 2

3 0

Table 4.2: Summarized Behavioral Data; Dobs(e) = ∑o1,o2∈O2 ∆o1o2

mo1
e ·mo2

e

me · (me−1)

4.4 EXCEPTIONAL CONTEXTS: EVALUATION AND PRUNING

To avoid overloading notation and for the sake of simplicity, from now on we omit the
exponent g if no confusion can arise, while keeping in mind a selected group of individuals
u ∈DI related to a subset Gu

I ⊆ GI .

4.4.1 GAUGING EXCEPTIONALITY OF A SUBGROUP

To evaluate the extent to which our findings are exceptional, we follow the significant pattern
mining paradigm. That is, we consider each context c as a hypothesis test which returns a
p-value. The p-value is the probability of obtaining an intra-agreement at least as extreme as
the one observed over the current context A(Gc

E), assuming the truth of the null hypothesis
H0. The pattern is accepted if H0 is rejected. This happens if the p-value is under a critical
significance value α which amounts to test if the observed intra-agreement A(Gc

E) is outside
the confidence interval CI1−α established using the distribution assumed under H0.
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108 Chapter 4. Identifying exceptional (dis)agreement within groups

H0 corresponds to the baseline finding: the observed contextual intra-agreement is
generated by the distribution of random subsets equally likely to occur, a.k.a. Distribution
of False Discoveries (DFD, cf. (Duivesteijn and Knobbe, 2011)). We evaluate the p-value
of the observed A against the distribution of random subsets of a cardinality equal to the
size of the observed subgroup Gc

E . The subsets are issued by uniform sampling without
replacement from the entire entities collection. The rationale behind using sampling without
replacement is that the observed subgroup does not contain multiple instances of the same
entity. Moreover, drawing samples only from the collection of subsets of size equal to |Gc

E |
allows to drive more judicious conclusions: the variability of the statistic A is impacted by
the size of the considered subgroups, since smaller subgroups are more likely to observe
low/high values of A. The same reasoning was followed in (Lemmerich et al., 2016).

We define θk : Fk → R as the random variable corresponding to the observed intra-
agreement A of k-sized subsets S ∈ GE . I.e., for any k ∈ [1,n] with n = |GE |, we have
θk(S) = A(S) and Fk = {S ∈ GE s.t. |S| = k}. Fk is then the set of possible subsets which
are equally likely to occur under the null hypothesis H0. That is, P(S ∈ Fk) =

(n
k

)−1. We
denote by CI1−α

k the (1−α) confidence interval related to the probability distribution of θk

under the null hypothesis H0. To easily manipulate θk, we reformulate A using Equations
(4.1)-(4.5):

A(S) =
∑e∈S ve

∑e∈S we
| we = me and ve = me−

1
Dexp

∑
o1,o2∈O2

∆o1o2 ·
mo1

e ·mo2
e

(me−1) (4.6)

Under the null hypothesis H0 and the assumption that the underlying distribution of intra-
agreements is a Normal distribution2 N (µk,σ

2
k ), one can define CI1−α

k by computing
µk = E[θk] and σ2

k = Var[θk]. Doing so requires either empirically calculating estimators
of such moments by drawing a large number r of uniformly generated samples from Fk, or
analytically deriving the formula of E[θk] and Var[θk]. In the former case, the confidence
interval CI1−α

k endpoints are given by Geisser, 1993, p.9: µk± t1− α

2 ,r−1σk
√

1+(1/r), with
µk and σk empirically estimated on the r samples, and t1− α

2 ,r−1 the (1− α

2 ) percentile of
Student’s t-distribution with r− 1 degrees of freedom. In the latter case, (µk and σk are
known/derived analytically), the (1−α) confidence interval can be computed in its most
basic form, that is CI1−α

k = [µk−z(1− α

2 )
σk,µk +z(1− α

2 )
σk] with z(1− α

2 )
the (1− α

2 ) percentile
of N (0,1).

However, due to the problem setting, empirically establishing the confidence interval is
computationally expensive, since it must be calculated for each enumerated context. Even
for relatively small behavioral datasets, this quickly becomes intractable. Alternatively,
analytically deriving a computationally efficient form of E[θk] is notoriously difficult, given

that E[θk] =
(n

k

)−1
∑S∈Fk

∑e∈S ve
∑e∈S we

and Var[θk] =
(n

k

)−1
∑S∈Fk

(
∑e∈S ve
∑e∈S we

−E[θk]
)2

.
Since θk can be seen as a weighted arithmetic mean, one can model the random variable

θk as the ratio Vk
Wk

, where Vk and Wk are two random variables Vk : Fk→ R and Wk : Fk→ R

2In the same line of reasoning of (Bie, 2011a; Lijffijt et al., 2018), one can assume that the underlying
distribution can be derived from what prior beliefs the end-user may have on such distribution. If only the
observed expectation µ and variance σ2 are given as constraints which must hold for the underlying distribution,
the maximum entropy distribution (taking into account no other prior information than the given constraints) is
known to be the Normal distribution N (µ,σ2) (Cover and Thomas, 2012, p.413).
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with Vk(S) = 1
k ∑e∈S ve and Wk(S) = 1

k ∑e∈S we. An elegant way to deal with a ratio of two
random variables is to approximate its moments using the Taylor series following the line of
reasoning of (Duris et al., 2018) and (Kendall, Stuart, and Ord, 1994, p.351), since no easy
analytic expression of E[θk] and Var[θk] can be derived.

Proposition 4.4.1 — An Approximate Confidence Interval ĈI
1−α

k for θk. Given k ∈
[1,n] and α ∈]0,1] (significance critical value), ĈI

1−α

k is given by:

ĈI
1−α

k =

[
Ê[θk]− z1− α

2

√
V̂ar[θk], Ê[θk]+ z1− α

2

√
V̂ar[θk]

]
(4.7)

with Ê[θk] a Taylor approximation for the expectation E[θk] expanded around (µVk ,µWk ),
and V̂ar[θk] a Taylor approximation for Var[θk] given by:

Ê[θk] =
(n

k
−1
)

µv

µw
βw +

µv

µw
V̂ar[θk] =

(n
k
−1
)

µ2
v

µ2
w
(βv +βw) (4.8)

with:

µv =
1
n ∑

e∈GE

ve

µv2 =
1
n ∑

e∈GE

v2
e

µw =
1
n ∑

e∈GE

we

µw2 =
1
n ∑

e∈GE

w2
e

n = |GE |

µvw =
1
n ∑

e∈GE

vewe

and: βv =
1

n−1

(
µv2

µ2
v
− µvw

µvµw

)
βw =

1
n−1

(
µw2

µ2
w
− µvw

µvµw

)
Note that the complexity of the computation of the approximate confidence interval

ĈI
1−α

k is O(n), with n the size of entities collection GE .

Proof (proposition 4.4.1). For any f (x,y), the bivariate second order Taylor expansion
about any λ = (λx;λy) is:3

f (x,y) = f (λ )+ f ′x(λ )(x−λx)+ f ′y(λ )(y−λy)

+
1
2
(

f ′′xx(λ )(x−λx)
2 +2 f ′′xy(λ )(x−λx)(y−λy)+ f ′′yy(λ )(y−λy)

2)+ ε

(4.9)

where ε is a remainder of smaller order than the term of the equation.
An approximation of the expectation E[ f (x,y)] expanded around λ = (λx;λy) is:

E[ f (x,y)]≈ f (λ )+
1
2
[

f ′′xx(λ )Var[X ]+2 f ′′xy(λ )Cov[X ,Y ]+ f ′′yy(λ )Var[Y ]
]

Given that f (x,y) = x
y and using the fact that E[X −µx] = 0 (which is valid for both V

and W ), we have: Var[X ] = E[(X−µx)
2] and Cov[X ,Y ] = (X−µx)(Y −µy). We can derive

an approximation of E[θk] = E[ Vk
Wk
] around (µVk ,µWk ):

E[θk] = E[
Vk

Wk
] = E[ f (Vk,Wk)]≈

µVk

µWk

− Cov[Vk,Wk]

µ2
Wk

+
Var[Wk]µVk

µ3
Vk

(4.10)

3a concise lecture note follows the same reasoning and explains the derivations; see http://www.stat.
cmu.edu/~hseltman/files/ratio.pdf
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110 Chapter 4. Identifying exceptional (dis)agreement within groups

The formulas of E[Vk] (resp. E[Wk]) and Var[Vk] (resp. V [Wk]) can be derived analytically.
We denote by µv (resp. µw) the arithmetic mean of the values (resp. weights) corresponding
to each entity e ∈ GE , i.e.: µv =

1
n ∑e∈GE

ve and µw = 1
n ∑e∈GE

we with n = |GE |.

E[Vk] =
1(n
k

) ∑
S∈Fk

1
k ∑

e∈S
ve =

1
n ∑

e∈GE

ve = µv (4.11)

Var[Vk] =
1(n
k

) ∑
S∈Fk

(
1
k ∑

e∈S
ve−E[Vk]

)2

=
1(n
k

) ∑
S∈Fk

(
1
k ∑

e∈S
ve−µv

)2

=
1
k

(
n

n−1
(
µv2−µ

2
v
))
− 1

n−1
(
µv2−µ

2
v
)

with µv2 =
1
n ∑

e∈GE

v2
e

(4.12)

The same reasoning applies to compute the expected value and the variance related to Wk:

E[Wk] =
1
n ∑

e∈GE

we = µw (4.13)

Var[Wk] =
1(n
k

) ∑
S∈Fk

(
1
k ∑

e∈S
we−E[Wk]

)2

=
1
k

(
n

n−1
(
µw2−µ

2
w
))
− 1

n−1
(
µw2−µ

2
w
)

with µw2 =
1
n ∑

e∈GE

w2
e

(4.14)

We now derive the formula for Cov(Vk,Wk). The same line of reasoning for the computa-
tion of the variance of Vk and Wk applies. We obtain:

Cov[Vk,Wk] =
1(n
k

) ∑
S∈Fk

(
1
k ∑

e∈S
ve−E[Vk]

)(
1
k ∑

e∈S
we−E[Wk]

)

=
1
k

(
n

n−1
(µvw−µvµw)

)
− 1

n−1
(µvw−µvµw)

with µvw =
1
n ∑

e∈GE

weve

(4.15)

Using Equations (4.11), (4.12), (4.13), (4.14), (4.15), we derive the approximation of
E[θk] after simplifications of (4.10):

E[θk]≈ Ê[θk] =
(n

k
−1
)

µv

µw
βw +

µv

µw
with βw =

1
n−1

(
µw2

µ2
w
− µvw

µvµw

)
(4.16)

The same reasoning applies to approximate Var[θk] using Taylor expansions. We will
confine ourselves to a first-order Taylor expansion around (µv,µw) to make the analytic
derivation of the approximation of Var[θk] feasible. The same observation has been made by
(Duris et al., 2018; Kempen and Vliet, 2000) and (Kendall, Stuart, and Ord, 1994, p. 351) to
approximate the variance for a ratio random variable. We obtain:

Var[θk] = Var[ f (Vk,Wk)]≈
Var[Vk]

µ2
Wk

−2
µVk Cov[Vk,Wk]

µ3
Wk

+
µ2

Vk
Var[Wk]

µ4
Wk

(4.17)
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After simplifications and by using the same line of reasoning when deriving the expected
value approximation reported in Equation (4.16), we obtain:

Var[θk]≈ V̂ar[θk] =
(n

k
−1
)

µ2
v

µ2
w
(βv +βw)

with βw =
1

n−1

(
µw2

µ2
w
− µvw

µvµw

)
and βv =

1
n−1

(
µv2

µ2
v
− µvw

µvµw

) (4.18)

We denote by ĈI
1−α

k the approximate confidence interval calculated using the approxima-
tions from Equations (4.16) and (4.18) of the expected value Ê[θk] and the variance V̂ar[θk],
respectively. This results in:

ĈI
1−α

k =

[
Ê[θk]− z1− α

2

√
V̂ar[θk], Ê[θk]+ z1− α

2

√
V̂ar[θk]

]
It is worth mentioning that the complexity of the computation of this approximate

confidence interval is linear to the size n. �

4.4.2 PRUNING THE SEARCH SPACE

Before introducing formally the main components required for pruning areas of the search
space, we give an overview of how these components are leveraged for safe-pruning un-
promising branches (cf. Figure 4.2).

Suppose that we are interested in subgroups of entities (context) whose sizes are greater
than a support threshold σ . Recall that the exceptionality of a given subgroup of size
X ≥ σ , by its p-value: the probability that for a random subset of entities, we observe

Distribution of qualities for 
subsets of size X (σ≤X)

under the null hypothesis H0

Distribution of qualities for 
subsets of size Y (σ≤Y≤X)

under the null hypothesis H0

Optimistic estimate 
(OE) region

Critical-region (reject H0

for subgroups of size Y) 

Critical-region (reject H0

for subgroups of size X)  

(Case 1)            
OE region inside
the pruning area

CIY
1-α

CIY
1-α

CIX
1-α

CIX
1-α

Axis of Krippendorff’s 
Alpha possible values

Insignificant 
subgroup

Significant 
Subgroup

2

3

4 5

Min. support 
threshold σ

Subgroup
of size Y≤X

Candidate Context 
Subgroup S is of size X

Observed Krippendorff’s Alpha

1
Full Search 
Space Lattice 

[

[[[

(Case 2)               
OE region outside
the pruning area

Figure 4.2: Main DEvIANT properties for safe sub-search space pruning. A subgroup is
reported as significant if its related Krippendorff’s Alpha falls in the critical region of the
corresponding empirical distribution of random subsets (DFD). When traversing the search
space downward (decreasing support size), the approximate confidence intervals are nested.
If the optimistic estimates region falls into the confidence interval computed on the related
DFD, the sub-search space can be safely pruned.
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112 Chapter 4. Identifying exceptional (dis)agreement within groups

an intra-agreement at least as extreme as the one observed for the subgroup. To achieve
this, we estimate the empirical distribution of the intra-agreement of random subsets (DFD:
Distribution of False Discoveries) for a chosen critical value α , a confidence interval CI1−α

X

over the corresponding distribution under the null hypothesis. If the subgroup intra-agreement
is outside CI1−α

X , the subgroup is statistically significant (p-value ≤ α); otherwise the
subgroup is a spurious finding. In section 4.4.2.1, we compute a tight optimistic estimate
(OE) (Grosskreutz, Rüping, and Wrobel, 2008) to define a lower and upper bounds of
Krippendorff’s Alpha for any specialization of a subgroup having its size greater than σ .
In section 4.4.2.2, we prove that the analytic approximate confidence intervals are nested:

σ ≤ Y ≤ X ⇒ ĈI
1−α

X ⊆ ĈI
1−α

Y (i.e., when the support size grows, the confidence interval
shrinks). Combining these properties, if the OE region falls into the corresponding CI, we
can safely prune large parts of the search space that do not contain significant subgroups.
The latter point is discussed in the concluding section 4.4.2.3.

4.4.2.1 Optimistic Estimate on Krippendorff’s Alpha (A)

To quickly prune unpromising areas of the search space, we define a tight optimistic estimate
(Grosskreutz, Rüping, and Wrobel, 2008) on Krippendorff’s alpha. Eppstein and Hirschberg,
1997 propose a smart linear algorithm Random-SMWA4 to find subsets with maximum
weighted average. Recall that A can be seen as a weighted average (cf. Equation (4.6)).

In a nutshell, Random-SMWA seeks to remove k values to find a subset of S having
|S|− k values with maximum weighted average. The authors model the problem as such:
given |S| values decreasing linearly with time, find the time at which the |S|− k maximum
values add to zero. In the scope of this work, given a user-defined support threshold σE on
the minimum allowed size of context extents, k is fixed to |S|−σE . The obtained subset
corresponds to the smallest allowed subset having support ≥ σE maximizing the weighted
average quantity A. The Random-SMWA algorithm can be tweaked5 to retrieve the smallest
subset of size ≥ σE having analogously the minimum possible weighted average quantity
A. We refer to the algorithm returning the maximum (resp. minimum) possible weighted
average by RandomSMWAmax (resp. RandomSMWAmin).

Proposition 4.4.2 — Upper and Lower Bounds for A. Given S⊆GE , minimum context
support threshold σE , and the following functions:

UB(S) = A(RandomSMWAmax(S,σE)) LB(S) = A
(
RandomSMWAmin(S,σE)

)
we know that LB (resp. UB) is a lower (resp. upper) bound for A, i.e.:

∀c,d ∈DE : cv d ∧ |Gc
E | ≥ |Gd

E | ≥ σE ⇒ LB(Gc
E)≤ A(Gd

E)≤UB(Gc
E)

Before giving the proof of Proposition 4.4.2, we present the following lemma:

4Random-SMWA: Randomized algorithm - Subset with Maximum Weighted Average.
5Finding the subset having the minimum weighted average is a dual problem to finding the subset having

the maximum weighted average. To solve the former problem using Random-SMWA, we modify the values of
vi to −vi and keep the same weights wi.
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Lemma 4.4.3 Let n∈N∗, A = {ai}1≤ j≤n and B = {bi}1≤ j≤n such that: ∀i∈ 1..n : b j ≥ 0

Given M =
∑

n
j=1 a j

∑
n
j=1 b j

and M(i) =
∑

n
j=1; j 6=i a j

∑
n
j=1; j 6=i b j

we have: ∃i ∈ 1..n s.t. M(i) ≥ M

Informally, their exists always an element i that can be removed to increase the
function M (weighted arithmetic mean).

Proof (lemma 4.4.3). This can be proved by reductio ad absurdum. Assume that ∀i ∈ 1..n :
M(i)< M. Given that:

∀i ∈ 1..n : M =

(
1− bi

∑
n
1 b j

)
M(i)+

ai

∑
n
1 b j

∀i ∈ 1..n : M(i)−M =
1

∑
n
1 b j

(biM(i)−ai)

Provided that, ∀i ∈ 1..n we have: M(i)−M < 0. It follows that for any i ∈ 1..n, we have:

biM(i)−ai < 0 ⇒
M(i) <

ai

bi
⇒

∑
n
j=1 a j−ai

∑
n
j=1 b j−bi

<
ai

bi
⇒

∑
n
j=1 a j

∑
n
j=1 b j

<
ai

bi
⇒

M <
ai

bi
⇒

biM < ai ⇒
n

∑
1

biM <
n

∑
1

ai ⇒

M <
∑

n
1 ai

∑
n
1 bi

⇒

M < M which is absurd.

�

Hence, given the results of lemma 4.4.3, we know that we can always find an element e
to remove from S so as to increase the weighted average quantity A. It follows that, the subset
Smax ⊆ S having its support ≥ σE maximizing the weighted average quantity belongs to the
minimal frontier, i.e. |Smax|= σE . Such subset is returned by RandomSMWAmax as proved by
Eppstein and Hirschberg, 1997.

Proof (proposition 4.4.2). To simplify the text, we will omit σE as a parameter in the proof
and keep in mind that we consider the minimum support threshold σE . Given that c v d,
with c,d two descriptions from D, we have Gd

E ⊆ Gc
E . The proposition stems from the fact

that:
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114 Chapter 4. Identifying exceptional (dis)agreement within groups

1. A(Gc
E)≤UB(Gc

E), since RandomSMWAmax computes the subset Sc
max having the maxi-

mum weighted average A as proven by Eppstein and Hirschberg, 1997.

2. UB is monotonic w.r.t. the partial order ⊆ between sets. That is:

∀S,S′ ⊆ GE : S′ ⊆ S⇒UB(S′)≤UB(S)

This can be proved by reductio ad absurdum. We denote by S′max ⊆ S′ (resp. Smax ⊆ S)
the optimal subset of S′ (resp. S) having its size ≥ σE and the maximum possible
weighted average A. Suppose that ∃S,S′⊆GE : S′⊆ S ∧ UB(S′)>UB(S) (A(S′max)>

A(Smax)). Since S′ ⊆ S, this means that there is another subset in S, namely S′max, that
observes a greater weighted average A than the actual optimal subset Smax, which is
absurd.

From properties 1. and 2. we have: A(Gd
E)≤UB(Gd

E)≤UB(Gc
E). The same reasoning

holds to prove that LB is a lower bound.
�

Using these results, we define the optimistic estimate for A as an interval bounded by
the minimum and the maximum A measure that one can observe from the subsets of a given
subset S⊆ GE , that is: OE(S,σE) = [LB(S),UB(S)].

4.4.2.2 Nested Confidence Intervals for Krippendorff’s Alpha (A)

The desired property between two confidence intervals of the same significance level α

related to respectively k1,k2 with k1 ≤ k2 is that CI1−α

k1
encompasses CI1−α

k2
. Colloquially

speaking, larger samples lead to “narrower” confidence intervals. This property is intuitively
plausible, since the dispersion of the observed intra-agreement for smaller samples is likely
to be higher than the dispersion for larger samples. Having such a property allows to prune
the search subspace related to a context c when traversing the search space downward if
OE(Gc

E ,σE)⊆CI1−α

|Gc
E |

.

Proving CI1−α

k2
⊆CI1−α

k1
for k1 ≤ k2 for the exact confidence interval is nontrivial, since

it requires to analytically derive E[θk] and Var[θk] for any 1≤ k ≤ n. Note that the expected
value E[θk] varies when k varies. We study such a property for the approximate confidence

interval ĈI
1−α

k .

Proposition 4.4.4 — Minimum Cardinality Constraint for Nested Approximate Con-
fidence Intervals. Given a context support threshold σE and α .

If σE ≥Cα =
4nβ 2

w

z2
1− α

2
(βv +βw)+4β 2

w
,

then ∀k1,k2 ∈ N : σE ≤ k1 ≤ k2⇒ ĈI
1−α

k2
⊆ ĈI

1−α

k1

Proof (proposition 4.4.4). In order to prove the desired property for the approximate confi-
dence intervals, we first must determine if the variance decreases when k increases.

k1,k2 ∈ N : if k1 ≤ k2⇒ V̂ar[θk1 ]≥ V̂ar[θk2 ] (4.19)
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From Equation (4.18), V̂ar[θk] =
(n

k −1
)

µ2
v

µ2
w
(βv +βw). Given that n

k −1 is a decreasing
function w.r.t. k, proving Equation (4.19) requires that βv +βw is a positive quantity. This
stems from the fact that the original formula of the approximate variance given in Equation
(4.17) is positive. This can be proved by a direct application of the Covariance inequality
(Mukhopadhyay, 2000, p. 149), which itself is an application of the Cauchy-Schwarz
inequality (Steele, 2004). Since βv +βw is of the same sign of Equation (4.18), we have
βv +βw ≥ 0. For the sake of a self-contained proof. We give the proof of this assertion
below:

From Equations (4.17) and (4.18), we have: βv +βw is of the same sign of:

Var[Vk]

µ2
Vk

−2
Cov[Vk,Wk]

µVk µWk

+
Var[Wk]

µ2
Wk

(4.20)

From the Covariance inequality, we have Cov[Vk,Wk]≤ σ [Vk]σ [Wk] with σ2[Vk] = Var[Vk]

and σ2[Wk] = Var[Wk], hence Equation (4.20) is greater than:

σ2[Vk]

µ2
Vk

−2
σ [Vk]σ [Wk]

µVk µWk

+
σ2[Wk]

µ2
Wk

=
σ [Vk]

µVk

(
σ [Vk]

µVk

− σ [Wk]

µWk

)
− σ [Wk]

µWk

(
σ [Vk]

µVk

− σ [Wk]

µWk

)
=

(
σ [Vk]

µVk

− σ [Wk]

µWk

)2

≥ 0

Hence βv +βw ≥ 0, which confirms that the variance is decreasing under increasing size k,
as stated in Equation (4.19).

Recall that, by approximation, we want to ensure that for σE ≤ k1 ≤ k2 with σE a

threshold on the context support, we have ĈI
1−α

k2
⊆ ĈI

1−α

k1
. Hence, we need to find the

minimum σE above which such property is valid. This amounts to finding a lower bound for
σE such that:

z1− α

2

√
V̂ar[θk1 ]− z1− α

2

√
V̂ar[θk2 ]≥

∣∣∣Ê[θk1 ]− Ê[θk2 ]
∣∣∣ (4.21)

Using the definitions of V̂ar[θk] and Ê[θk] from Equations (4.16) and (4.18), the Equation
(4.21) can be rewritten to:

(√
n
k1
−1+

√
n
k2
−1
)
≤ z1− α

2

√
βv +βw

β 2
w

Since σE ≤ k1 ≤ k2, we require that:

2
√

n
σE
−1≤ z1− α

2

√
βv +βw

β 2
w

After simplifications, we obtain that σE must satisfy the following constraint:

σE ≥Cα =
4nβ 2

w

z2
1− α

2
(βv +βw)+4β 2

w
(4.22)

�
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4.4.2.3 Pruning branches using Optimistic estimates regions and nested CIs for A

Combining Propositions 4.4.1, 4.4.2 and 4.4.4, we formalize the pruning region property
which answers: when to prune the sub-search space under a context c?

Corollary 4.4.5 — Pruning Regions. Given a behavioral dataset B, a context support
threshold σE ≥Cα , and a significance critical value α ∈]0,1]. For any c,d ∈ DE such
that cv d with |Gc

E | ≥ |Gd
E | ≥ σE , we have:

OE(Gc
E ,σE)⊆ ĈI

1−α

|Gc
E | ⇒ A(Gd

E) ∈ ĈI
1−α

|Gd
E | ⇒ p-value(d)> α

Proof (corollary 4.4.5). The proof is straightforward. From Proposition 2, we have that for
any c,d ∈DE s.t. cv d, if Gc ≥ Gd ≥ σE then:

A
(

Gd
E

)
∈ OE (Gc

E ,σE) (4.23)

From Proposition 3, if σE ≥Cα we have:

CI1−α

|Gc
E | ⊆ ĈI

1−α

|Gd
E | (4.24)

From Equations (4.23) and (4.24) and the fact that OE(Gc
E ,σE) ⊆ ĈI

1−α

|Gc
E | , it follows that

A
(
Gd

E
)
∈ OE (Gc

E ,σE)⊆ ĈI
1−α

|Gc
E | ⊆ ĈI

1−α

|Gd
E |, hence p-value(d) > α .

�

4.5 ON HANDLING VARIABILITY OF OUTCOMES AMONG RATERS

In Section 4.4, we defined the confidence interval CI1−α established over the DFD. By
taking into consideration the variability induced by the selection of a subset of entities, such
a confidence interval enables to avoid reporting subgroups indicating an intra-agreement
likely (w.r.t. the critical value α) to be observed by a random subset of entities. For more
statistically sound results, one should not only take into account the variability induced by
the selection of subsets of entities, but also the variability induced by the outcomes of the
selected group of individuals. This is well summarized by Hayes and Krippendorff, 2007:
“The obtained value of A is subject to random sampling variability—specifically variability
attributable to the selection of units (i.e., entities) in the reliability data (i.e., behavioral data)
and the variability of their judgments”. To address these two questions, they recommend to
employ a standard Efron & Tibshirani bootstrapping approach (Efron and Tibshirani, 1994)
to empirically generate the sampling distribution of A and produce an empirical confidence
interval CI1−α

bootstrap.
Recall that we consider here a behavioral dataset B reduced to the outcomes of a selected

group of individuals u. Following the bootstrapping scheme proposed by Krippendorff
(Hayes and Krippendorff, 2007; Krippendorff, 2004), the empirical confidence interval is
computed by repeatedly performing the following steps: (1) resample n entities from GE with
replacement; (2) for each sampled entity, draw uniformly me · (me−1) pairs of outcomes
according to the distribution of the observed pairs of outcomes; (3) compute the observed
disagreement and calculate Krippendorff’s alpha on the resulting resample. This process,
repeated b times, leads to a vector of bootstrap estimates (sorted in ascending order) B̂ =
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[Â1, . . . , Âb]. Given the empirical distribution B̂, the empirical confidence interval CI1−α

bootstrap is
defined by the percentiles of B̂, i.e., CI1−α

bootstrap = [Âb α

2 ·bc, Âd(1− α

2 )·be]. We denote by MCI1−α

(Merged CI) the confidence interval that takes into consideration both CI1−α = [le1, re1] and
CI1−α

bootstrap = [le2, re2]. We have MCI1−α = [min(le1, le2),max(re1, re2)].
Bootstrapping is a computationally expensive operation. To speed up such step, we

employ BLB (Bag of Little Bootstraps) procedure (Kleiner et al., 2012). BLB is a simple
technique to implement. In a nutshell, the techniques consists of two major steps: (1) Re-
peatedly subsample n′ < n without replacement from the original dataset of size n (GE in
our setting). (2) For each subsample, perform a standard Efron & Tibshirani bootstrapping
approach and compute an estimate of the statistic of interest (the confidence interval end-
points). Finally, the obtained estimates of each subsample are aggregated to output the final
estimate of the statistic of interest. Three hyper-parameters are required to be fixed upfront
to run BLB: the number of subsamples s, the size of each subsample n′ and the number of
Monte-Carlo iterations in each bootstrap r′. Kleiner et al., 2012 recommend to have s' 5,
n′ ' n0.7 and r′ ' 50 to achieve low-relative error compared to standard Bootstrapping . In
this work, we have fixed these hyper-parameters as follows: s = 5, n′ = n0.7 and r′ = 80.

4.6 A BRANCH-AND-BOUND SOLUTION: ALGORITHM DEVIANT

We start by recalling how candidate subgroups of individuals (groups) and candidate sub-
groups of entities (contexts) are enumerated in section 4.6.1. Subsequently, in section 4.6.2,
we present algorithm DEvIANT tailored for the discovery of statistcally significant excep-
tional (dis)agreement among groups.

4.6.1 ENUMERATING CANDIDATE SUBGROUPS

In order to detect exceptional contextual intra-group agreement patterns, we need to enumer-
ate candidates p = (u,c) ∈ (DI,DE). Several enumeration algorithms exist in the literature,
ranging from heuristic (e.g., beam search (Leeuwen and Knobbe, 2012)) to exhaustive
techniques (e.g., GP-growth (Lemmerich, Becker, and Atzmueller, 2012)). In this paper, we
exhaustively enumerate all candidate subgroups while leveraging closure operators (Ganter
and Kuznetsov, 2001) (since A computation only depends on the extent of a pattern). This
makes it possible to avoid redundancy and to substantially reduce the number of visited
patterns. With this aim in mind, and since (GE ,(DE ,v),δ E) and (GI,(DI,v),δ I) are two
pattern structures (cf. Definition 2.2.7), we apply EnumCC (Enumerate Closed Candidates)
(cf. Algorithm 1) to enumerate subgroups u (resp. c) in DI (resp. DE ). Recalls that EnumCC
follows the line of the CloseByOne algorithm (Kuznetsov, 1999). Given a collection G of
records (which can be either GE or GI), EnumCC traverses the search space (D,v) (which
can be either DE or DI) depth-first and enumerates only once all closed descriptions fulfilling
the minimum support constraint σ .

4.6.2 ALGORITHM DEVIANT

DEvIANT implements an efficient branch-and-bound algorithm to Discover statistically
significant Exceptional Intra-group Agreement paTterns while leveraging closure, tight
optimistic estimates and pruning properties. It follows the same principles as B&B4SDEMM
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(cf. Algorithm 2). DEvIANT (Algorithm 7) starts by selecting a group u of individuals. Next,
the corresponding behavioral dataset Bu is established by reducing the original dataset B to
elements concerning solely the individuals comprising Gu

I and entities having at least two
outcomes. Subsequently, the bootstrap confidence interval CI1−α

bootstrap is calculated.
Before searching for exceptional contexts, the minimum context support threshold σE is

adjusted to Cα(u) (cf. Proposition 4.4.4) if it is lower than Cα(u). While in practice Cα(u)�
σE , we keep this correction for algorithm soundness. Next, contexts are enumerated by
EnumCC. For each candidate context c, the optimistic estimate interval OE(Gc

E) is computed
(cf. Proposition 4.4.2). According to Corollary 4.4.5, if OE(Gc

E ,σ
u
E)⊆MCI1−α

|Gc
E |

, the search
subspace under c can be pruned. Otherwise, Au(Gc

E) is computed and evaluated against
MCI1−α

|Gc
E |

. If Au(Gc
E) 6∈MCI1−α

|Gc
E |

, then (u,c) is significant and kept in the result set P. To
reduce the number of reported patterns, we keep only the most general patterns while ensuring
that each significant pattern in P is represented by a pattern in P. This formally translates
to: ∀p′ = (u′,c′) ∈P \P : p-valueu′(c′)≤ α ⇒ ∃p = (u,c) ∈ P s.t. ext(q)⊆ ext(p), with
ext(q = (u′,c′)) ⊆ ext(p = (u,c)) defined by Gu′

I ⊆ Gu
I and Gc′

E ⊆ Gc
E . This is based on

the following postulate: the end-user is more interested by exceptional (dis-)agreement
within larger groups and/or for larger contexts rather than local exceptional (dis-)agreement.
Moreover, the end-user can always refine their analysis to obtain more fine-grained results
by re-launching the algorithm starting from a specific context or group.

Algorithm 7: DEvIANT(B,σE ,σI,α)
Inputs :B = 〈GI ,GE ,O,o〉 a Behavioral dataset;

σE minimum support threshold of a context;
σI of minimum support threshold a group;
α critical significance value.

Output: Set of exceptional intra-group agreement patterns P.
1 P←{}
2 foreach (u,Gu

I ,contu) ∈ EnumCC(GI ,∗,σI ,0,True) do
3 GE(u) = {e ∈ GE s.t. me(u)≥ 2} ; // me(u): number of individuals of

4 Bu = 〈GE(g),G
u
I ,O,o〉 group u who expressed an outcome on e

5 CI1−α

bootstrap = [Âb α
2 ·bc, Âd(1− α

2 )·be] ; // With B̂ = [Âu
1, ..., Â

u
b] computed on

6 σu
E = max(Cα (u) ,σE) respectively b resamples of Bu

7 foreach (c,Gc
E ,contc) ∈ EnumCC(GE(u),∗,σu

E ,0,True) do
8 MCI1−α

|Gc
E |

= merge
(

ĈI
1−α

|Gc
E | ,CI1−α

bootstrap

)
9 if OE(Gc

E ,σ
u
E)⊆MCI1−α

|Gc
E |

then
10 contc← False ; // Prune the unpromising search space under c

11 else if Au(Gc
E) /∈MCI1−α

|Gc
E |

then
12 pnew← (u,c)
13 if @pold ∈ P s.t. ext(pnew)⊆ ext(pold) then
14 P← (P∪ pnew)\{pold ∈ P | ext(pold)⊆ ext(pnew)}
15 contc← False ; // Prune the sub search space (generality)

16 return P
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4.7 EMPIRICAL STUDY

In this section, we report on both quantitative and qualitative experiments over the imple-
mented algorithms. For reproducibility purposes, source code (in Python) and data are made
available in a companion page6.

4.7.1 AIMS AND DATASETS

The experiments aim to answer the following questions:

• Does DEvIANT provide interpretable patterns?

• How well does the Taylor-approximated CI approach the empirical CI?

• How efficient is the Taylor-approximated CI and the pruning properties?

• Does DEvIANT scale w.r.t. different parameters?

Most of the experiments were carried out on four real-world behavioral datasets whose
main characteristics are given in Table 4.3. Each dataset involves entities and individuals
described by an HMT (H) attribute together with categorical(C) and numerical(N) ones.

|GE | AE (Items-Scaling) |GI | AI (Items-Scaling) Outcomes Sparsity C0.05

EPD8 4704 1H +1N +1C (437) 848 3C (82) 3.1M (C) 78.6% ' 10−6

CHUS 17350 1H +2N (307) 1373 2C (261) 3M (C) 31.2% ' 10−4

Movielens 1681 1H +1N (161) 943 3C (27) 100K (O) 06.3% ' 0.065
Yelp 127K 1H +1C (851) 1M 3C (6) 4.15M (O) 0.003% ' 1.14

Table 4.3: Main characteristics of the behavioral datasets. C0.05 represents the minimum
context support threshold over which we have nested approximate CI property.

EPD87 features voting information of the eighth European Parliament about the 848
members who were elected in 2014 or after. The dataset records 3.1M tuples indicating
the outcome (For, Against, Abstain) of a member voting during one of the 4704
sessions. Each session is described by its themes (H), a voting date (N) and the
organizing committee (C). Individuals are described by a national party (C), a political
group (C), an age group (C), a country(C) and additional information about countries
(date of accession to the European Union (N) and currency (C)).

CHUS8 features voting information of the United States House of Representatives about
the 1373 members who were elected in between 1991 and 2015. The dataset records
3M tuples indicating the outcome (Yea, Nay) of a member voting during one of the
17350 sessions. Each session is described by its topic9 (H), the session (N) and the
year (N). Individuals are described by a political party (C) and a state (C).

Movielens10 is a movie review dataset (Harper and Konstan, 2016) consisting of 100K
ratings (ranging from 1 to 5) expressed by 943 users on 1681 movies. A movie is

6https://github.com/Adnene93/Deviant
7http://parltrack.euwiki.org/, last accessed on 04 October 2018
8https://voteview.com/data, last accessed on 09 January 2019
9https://www.comparativeagendas.net/

10https://grouplens.org/datasets/movielens/100k/
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characterized by its genres (H) and a release date (N), while individuals are described
with demographic information such as age group (C), gender (C) and occupation (C).

Yelp11 is a social network dataset featuring individuals who rate (scores ranging from 1
to 5) places (stores, restaurants, clinics) characterized by some categories (H) and a
state (C). The dataset originally contains 1M users. We preprocessed the dataset to
constitute 18 groups of individuals based on the size of their friends network (C), their
seniority (C) in the platform and their account type (e.g., elites or not) (C).

4.7.2 QUALITATIVE STUDY

In this section, we focus on illustrating some patterns discovered by DEvIANT when carried
on the four behavioral datasets. First, we show how DEvIANT can provide interesting
insights when analyzing voting datasets (EU Parliament Dataset and U.S. House of Repre-
sentatives).

Table 4.4 reports exceptional contexts observed among House Republicans during the
115th Congress. Pattern p1, illustrated in Figure 4.3, highlights a collection of voting sessions
addressing Government and Administrative issues where a clear polarization is observed
between two clusters of Republicans. A roll call vote in this context featuring significant
disagreement between Republicans is “House Vote 417”12 which was closely watched by
the media13.

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Republicans 20.11 Government Branch Relations, Admin. 0.83 0.32 <.001 Conflict
Issues, and Constitutional Reforms

p2 Republicans 5 Labor 0.83 0.63 <.01 Conflict
p3 Republicans 20.05 Nominations and Appointments 0.83 0.92 <.001 Consensus

Table 4.4: Exceptional consensual/conflictual subjects among Republicans Party representa-
tives in the 115th congress of the US House of Representatives. α = 0.01

DEvIANT can detect interesting highlights on exceptionally conflictual or consensual
topics between parliamenterians. For instance, Table 4.5 reports 10 patterns suggesting
such peculiarities between countries representatives in the Eighth European Parliament.
A valuable pattern that emerges when conducting such study in the EU parliament voting
dataset is Pattern 5. The latter bring attention upon an exceptional conflict between Slovakia’s
Parliamentarians on EU Fundamental rights matters. An interesting news article14 covers
some aspects of an ongoing discussion in the European Parliament about the human right
situation in Slovakia. Similarly, one can analyze the cohesion of political groups using
DEvIANT, a sample set of patterns is depicted in Table 4.6. It is worth mentioning that
recently Krippendorff’s Alpha as an intra-group agreement measure was also used to analyze
cohesion within political groups (Cherepnalkoski et al., 2016).

11https://www.yelp.com/dataset/challenge, last accessed on 25 April 2017
12https://projects.propublica.org/represent/votes/115/house/1/417
13Washington Post:https://wapo.st/2W32I9c; Reuters:https://reut.rs/2TF0dgV
14https://www.dw.com/en/slovakia-has-the-eu-looked-the-other-way-for-too-long/

a-43015470
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(a) Overall intra-agreement 
between Republicans

(b) intra-agreement between Republicans 
in Government and Administrative Issues 

related voting sessions 

Pro-Trump: Many rep. of 
this cluster endorsed

Donald Trump for the 2016 
presidential election 

Anti-Trump: Many rep. of 
this cluster opposed

Donald Trump for the 2016 
presidential election 

Figure 4.3: Illustrating Pattern 1 from Table 4.4 with a similarity matrix between Republicans.
Each cell represents the ratio of voting sessions in which Republicans agreed. Green cells
report strong agreement; red cells highlight strong disagreement.

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Sweden 4 Economic, social and territorial cohesion 0.3 0.84 <0.0001 Consensus
6.30 Development cooperation

p2 Finland 4 Economic, social and territorial cohesion 0.36 0.87 <0.0001 Consensus
6.30 Development cooperation

p3 Finland 8.20.04 Pre-accession and partnership 0.36 0.75 <0.01 Consensus

p4 Sweden 8.20 Enlargement of the Union 0.3 0.66 <0.0001 Consensus

p5 Slovakia 1.10 Fundamental rights in the EU, Charter 0.48 0.13 <0.0001 Conflict

p6 Malta 4.60.06 Consumers economic 0.63 0.97 <0.0001 Consensus
and legal interests

p7 Malta 2.10 Free movement of goods 0.63 0.34 <0.0001 Conflict

p8 Latvia 4.60.06 Consumers economic 0.42 0.69 <0.0001 Consensus
and legal interests

p9 Luxembourg 1.20 Citizen’s rights, 0.51 0.23 <0.01 Conflict
8 State and evolution of the Union

p10 * 2 Internal market, single market 0.27 0.54 <0.001 Consensus
6 External relations of the Union

Table 4.5: Top-10 exceptional consensual/conflictual subjects among countries’ parlemen-
tarians in the 8th EU parliament. α = 0.01. Patterns are ranked by the absolute difference
between Ag(c) and Ag(∗).
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id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 S&D 8.10 Revision of the Treaties and 0.81 0.44 < 0.001 Conflict
intergovernmental conferences

p2 * 2 Internal market, single market 0.27 0.54 < 0.001 Consensus
6 External relations of the Union

p3 S&D 8.30 Treaties in general 0.81 0.55 < 0.001 Conflict

p4 * 2 Internal market, single market, 0.27 0.53 < 0.001 Consensus
4.15 Employment policy, act. combat unemployment

p5 ALDE 1.20.09 Protection of privacy and data protection 0.73 0.48 < 0.001 Conflict
8 State and evolution of the Union

Table 4.6: Top-5 exceptional consensual/conflictual subjects among European Political
Groups in the 8th EU parliament. α = 0.01. Patterns are ranked by the absolute difference
between Ag(c) and Ag(∗).

DEvIANT also enables the discovery of exceptional intra-group (dis)agreement patterns
in collaborative rating data. As an example, table 4.7 reports patterns returned by DEvIANT
on the Movielens dataset. Pattern p2 reports that “Middle-aged Men” observe an intra-group
agreement significantly higher than overall, for movies labeled with both adventure and
musical genres (e.g., The Wizard of Oz (1939)). A similar exceptional (dis)agreement
analysis was conducted on Yelp dataset whose results are depicted in Table 4.8.

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Old 1.Action & 2.Adventure & 6.Crime Movies -0.06 -0.29 < 0.01 Conflict
p2 Middle-aged Men 2.Adventure & 12.Musical Movies 0.05 0.21 < 0.01 Consensus
p3 Old 4.Children & 12.Musical Movies -0.06 -0.21 < 0.01 Conflict

Table 4.7: Top-3 exceptionally consensual/conflictual genres between Movielens raters,
α=0.01. Patterns are ranked by absolute difference between Ag(c) and Ag(∗).

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 * 03 Automotive 0.14 -0.16 <0.0001 Conflict

p2 * 10 Health & Medical 0.14 -0.14 <0.0001 Conflict

p3 * 08 Financial Services 0.14 -0.11 <0.0001 Conflict

p4 newcomer 09.38.07 Health Markets, 09.47 Juice Bars & Smoothies 0.14 -0.07 <0.01 Conflict

p5 * El Dorado Hills, California 0.14 0.35 <0.0001 Consensus

p6 * 14 Local Services 0.14 -0.06 <0.0001 Conflict

p7 * 04 Beauty & Spas 0.14 -0.06 <0.0001 Conflict

p8 * 15 Mass Media 0.14 -0.05 <0.01 Conflict

p9 * 11 Home Services’ 0.14 -0.05 <0.0001 Conflict

p10 * Midlothian, Edinburgh 0.14 0.31 <0.0001 Consensus

Table 4.8: Top-10 exceptional consensual/conflictual places/categories/states among Yelp
users. α = 0.01. Patterns are ranked by the absolute difference between Ag(c) and Ag(∗).
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4.7 Empirical Study 123

4.7.3 QUANTITATIVE STUDY

Before studying the performance of DEvIANT, we give an overview of the empirical
distributions of Krippendorff’s Alpha for 1000 draws from Fk equally likely to occur. Recall
that Fk represents the subsets of the entire collection of entities of size k over which we
define the random variable θk : Fk → R. Thus, the distributions presented here illustrate
the values observed on 1000 trials of θk. To illustrate the fact that the confidence intervals
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Figure 4.4: Empirical distribution of the observed values of 1000 trials of θk for four
valuations of k (DFD), experiments were carried on EPD8. We observe that the distributions
are encapsulated when k decreases. Also, the dispersion of A increases and the corresponding
empirical confidence interval grows in size.
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Figure 4.5: Empirical distribution of the observed values of 1000 trials of θk for four
valuations of k (DFD), experiments were carried on CHUS. We observe that the distributions
are encapsulated when k decreases. Also, the dispersion of A increases and the corresponding
empirical confidence interval grows in size.
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124 Chapter 4. Identifying exceptional (dis)agreement within groups

associated with θk (considering its distribution under the null hypothesis) are nested (when k
grows, the confidence interval shrinks), we perform the experiments for various valuations
of k. Figures 4.4, 4.5, 4.6 and 4.7 depict the results of such experiments carried on the
four underlying behavioral datasets. We observe that the distributions are bell-shaped and
resemble the normal distribution. Moreover, normality test (Shapiro-Wilk-Test (Shapiro and
Wilk, 1965)) was not rejected at the α = 0.05 for these distributions. It is important to note
that empirical confidence intervals are also nested w.r.t. increasing k.
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Figure 4.6: Empirical distribution of the observed values of 1000 trials of θk for four valua-
tions of k (DFD), experiments were carried on Movielens. We observe that the distributions
are encapsulated when k decreases. Also, the dispersion of A increases and the corresponding
empirical confidence interval grows in size.
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Figure 4.7: Empirical distribution of the observed values of 1000 trials of θk for four
valuations of k (DFD), experiments were carried on Yelp. We observe that the distributions
are encapsulated when k decreases. Also, the dispersion of A increases and the corresponding
empirical confidence interval grows in size.
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4.7 Empirical Study 125

Now, we evaluate to what extent the empirically computed confidence interval approxi-
mates the confidence interval computed by Taylor approximations. We run 1000 experiments
for subset sizes k uniformly randomly distributed in [1,n = |GE |]. For each k, we compute

the corresponding Taylor approximation ĈI
1−α

k = [aT ,bT ] and empirical confidence interval
ECI1−α

k = [aE ,bE ]. The latter is calculated over 104 samples of size k from GE , on which
we compute the observed A which are then used to estimate the moments of the empirical
distribution required for establishing ECI1−α

k . Once both CIs are computed, we measure

their distance by Jaccard index, i.e., dist(ECI1−α

k , ĈI
1−α

k ) = 1− (min(bE ,bT )−max(aE ,aT ))
(max(bE ,bT )−min(aE ,aT ))

. Ta-
ble 4.9 reports the average µerr and the standard deviation σerr of the observed distances
(coverage error) over the 1000 experiments. Note that the difference between the analytic
Taylor approximation and the empirical approximation is negligible (µerr is less than 10−2).
Therefore, the CIs approximated by the two methods are so close, that it does not matter
which method is used. Hence, the choice is guided by the computational efficiency.

B µerr σerr

CHUS 0.007 0.004
EPD8 0.007 0.004
Movielens 0.0075 0.0045
Yelp 0.007 0.004

Table 4.9: Coverage error between empirical CIs and Taylor CIs.

To evaluate the pruning properties’ efficiency ((i) Taylor-approximated CI, (ii) optimistic
estimates and (iii) nested approximated CIs), we compare DEvIANT with a Naive approach
where the three aforementioned properties are disabled. For a fair comparison, Naive pushes
monotonic constraints (minimum support threshold) and employs closure operators while
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Figure 4.8: Comparison between DEvIANT and Naive when varying the size of the
description space DI . Lines correspond to the execution time and bars correspond to the
number of output patterns. Parameters: σE = σI = 1% and α = 0.05.
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126 Chapter 4. Identifying exceptional (dis)agreement within groups

empirically estimating the CI by successive random trials from Fk. In both algorithms we
disable the bootstrap CI1−α

bootstrap computation, since its overhead is equal for both algorithms.
We vary the description space size related to groups of individuals DI while considering the
full entity description space. Figure 4.8 displays the results: DEvIANT outperforms Naive
in terms of runtime by nearly two orders of magnitude while outputting the same number of
the desired patterns.

Figures 4.9, 4.10, 4.11, and 4.12, report respectively the performance of DEvIANT in
terms of runtime and number of output patterns when carried on EPD7, CHUS, Movielens
and Yelp datasets. When varying the description space size, DEvIANT requires more time to
finish. Note that the size of individuals description space DI substantially affects the runtime
of DEvIANT. This is mainly because larger DI leads to more candidate groups of individuals
g which require DEvIANT to: (i) generate CI1−α

bootstrap and (ii) mine for exceptional contexts c
concerning the candidate group g. Also, when α decreases, the execution time required for
DEvIANT to finish increases while returning more patterns. This may seem counter-intuitive,
since fewer patterns are significant when alpha decreases. It is a consequence of DEvIANT
considering only the most general patterns. Hence, when α decreases, DEvIANT goes deeper
in the context search space, implying thus much more candidate patterns to be tested and thus
a larger result set. Finally, we observe that the bootstrap confidence interval computation
induces an overhead by a factor of about 1.5x to 3x, such overhead is mainly impacted by the
number of evaluated groups of individuals which is determined by the size of the individuals
description space D.
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Figure 4.9: Effectiveness of DEvIANT on EPD8 when varying sizes of both description
spaces DE and DI , minimum context support threshold σE and the critical value α . Default
parameters: full description spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled in the figures
on the top row, and enabled in the figures on the bottom row.
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Figure 4.10: Effectiveness of DEvIANT on CHUS when varying sizes of both description
spaces DE and DI , minimum context support threshold σE and the critical value α . Default
parameters: full description spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled in the figures
on the top row, and enabled in the figures on the bottom row.
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Figure 4.11: Effectiveness of DEvIANT on Movielens when varying sizes of both descrip-
tion spaces DE and DI , minimum context support threshold σE and the critical value α .
Default parameters: full description spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05.
Bootstrapping Confidence intervals for handling variability of outcomes is disabled in the
figures on the top row, and enabled in the figures on the bottom row.
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Figure 4.12: Effectiveness of DEvIANT on Yelp when varying sizes of both description
spaces DE and DI , minimum context support threshold σE and the critical value α . Default
parameters: full description spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled in the figures
on the top row, and enabled in the figures on the bottom row.
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128 Chapter 4. Identifying exceptional (dis)agreement within groups

4.8 SUMMARY

In this chapter, we have defined the problem of discovering exceptional (dis)agreement
inside groups in behavioral data and tailored an approach rooted in SD/EMM with a novel
pattern domain and associated interestingness measure for the discovery of exceptional
intra-group agreement patterns (cf. Figure 4.13). To efficiently search for such patterns, we
devise DEvIANT, a branch-and-bound algorithm leveraging closure operators, approximate
confidence intervals, tight optimistic estimates on Krippendorff’s Alpha measure, and the
property of nested CIs. Experiments demonstrate DEvIANT’s performance on behavioral
datasets in domains ranging from political analysis to rating data analysis.

Heterogeneous 
Attribute-Value Data

(Categorical, Numerical, HMT)

logical conjunctions
of conditions on single 

attributes

Krippendorff’s
Alpha

Exhaustive Approach

Identifying 
Exceptional  

(Dis-)Agreement 
Among groups  

DEvIANT

Statistical 
Significance 
p-value using DFD

Figure 4.13: Exceptional Model Mining for Identifying exceptional (dis-)agreement among
groups (Summary)

In future work, we plan to (i) tackle the multiple comparison problem (MCP15) (Hämäläi-
nen and Webb, 2019), (ii) investigate intra-group agreement which is exceptional w.r.t. all
individuals over the same context, and (iii) integrate the option to choose which kind of
exceptional consensus the end-user wants: is the exceptional consensus caused by common
preference or hatred for the context-related entities? All this is to be done within a compre-
hensive framework and tool16 for behavioral data analysis alongside exceptional inter-group
agreement pattern discovery. Such a tool, dubbed ANCORE, is presented and developed in
the following chapter.

15MCP is a non-trivial task in our setting, and solving it requires an extension of the significant pattern
mining paradigm as a whole: its scope is bigger than this work. We provide a brief discussion in Appendix B.

16A prototype is available online in http://contentcheck.liris.cnrs.fr
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Behavioral Data Analysis for
Computational Journalism

In this chapter, we motivate the usage of the two proposed approaches, namely DEBuNk
and DEvIANT, in the context of computational journalism, where the analysis is conducted
on voting data perceived as behavioral data. We introduce ANCORE, a web platform
tailored for the discovery of exceptional (dis)agreement within and among groups in voting
data. The objective of this tool is to facilitate both fact checking and lead finding tasks. We
present several scenarii illustrating its use in data-driven fact checking/lead finding. The
web platform is available online on https://contentcheck.liris.cnrs.fr.

5
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130 Chapter 5. Behavioral Data Analysis for Computational Journalism

5.1 INTRODUCTION

Hamilton and Turner, 2009 define computational journalism as: “the combination of al-
gorithms, data, and knowledge from the social sciences to supplement the accountability
function of journalism”. In the last few years, much efforts have been done by journalists and
computer scientists in the development of computational journalism tools and algorithms to
assist journalists in the process of investigating the data and fact-check claims. Fact-checking
is the act of asserting the correctness of factual claims. Fact-checking has become increas-
ingly common in political journalism which aroused much interest amongst researchers in
the computational journalism community. The survey (Cazalens et al., 2018) provides an
extensive overview of the recent research in the area. Figure 5.1 depicts, in a brief manner,
the different stages of an end-to-end Computational Fact-Checking system.

Claim

Assign truth value 
to a claim

Present the final 
verdict

Assess quality of 
claims

Lead finding : Discover 
interesting facts

Detect check-
worthy claims

Translate claims 
to queries

Extract 
sentences

Find the relevant 
datasets

Recover the 
omitted details 
of a vague claim

Figure 5.1: Overview of Computational Fact-checking major steps

While the quest of building a full automated fact-checking framework remains utopian,
several works in the state of art tackle different parts of the fact checking process. The
different stages of an end-to-end Computational Fact-Checking system depicted in figure 5.1,
can be summarized into three major steps. The first step focuses on extracting check-
worthy claims from scripted texts (Ennals, Trushkowsky, and Agosta, 2010; Hassan, Li, and
Tremayne, 2015; Hassan et al., 2017b). The second step takes as input a claim and searches
for relevant datasets (one or more) by relying, for instance, on some underlying knowledge
base (Bonaque et al., 2016). The third and last step exploits relevant data to provide
perspectives and insights that can leveraged in the claim quality assessment task (Ciampaglia
et al., 2015; Wu, 2015; Wu et al., 2014; Wu et al., 2017). The results can be consolidated
to output the final verdict (Ennals, Trushkowsky, and Agosta, 2010; Hassan et al., 2017a).
Some projects emerged recently to combine all these components in order to provide an
end-to-end fact-checking tool: ClaimBuster (Hassan et al., 2017a), DeFacto (Lehmann et al.,
2012) or ClaimChecker (Nguyen et al., 2018), to name a few.

The work presented in this chapter falls within the scope of the third step. Our main
objective is to provide a data mining tool that helps putting into perspective some investigated
claim in voting data by unraveling insights about exceptional (dis)agreements. This can
serve, for instance, to disentangle what is false from what is true by bringing more context
to a studied claim which pertains to one category of fake news reported in the typology of
figure 5.2. Moreover, our endeavor is to provide a tool which allows also to query voting
datasets for interesting facts without having a particular claim in mind to investigate. This
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5.1 Introduction 131

falls within the task of computational lead-finding (Wu, 2015), whose main goal is to find
interesting information nuggets from raw data that lead to further investigation and/or news
stories around them.

Figure 5.2: Typologie of fake news (source1)

The web platform, debbed ANCORE, presented in this chapter can be specifically tai-
lored for putting into perspective behavioral comparison claims (BCC). The latter category of
claims encompasses any claim stating a comparison of behavior between groups, individuals,
countries, populations, etc. Such claims can be investigated by leveraging the contents of
some underlying behavioral datasets. For example, the Vote Correlation Claim (Wu et al.,
2014): “Jim Marshall, a Democratic incumbent from Georgia voted the same as Republican
leaders 65 percent of the time” can be seen as a BCC since it states a comparison between
the voting behavior of two individuals. Such a claim can be investigated by using the U.S.
congress roll call votes data2. Since DEBuNk (Chapter 3) aims to discover exceptional
inter-group agreement patterns, it can be used to look for contexts (time periods, specific
themes or topics) to shed more light on the claim, by providing contextual counter-arguments
or elements reinforcing the claim from the data. Moreover, an analyst can goes beyond by
using DEvIANT (Chapter 4) to analyze intra-group agreement patterns among republicans
or democrats to study, among others, the cohesion within such political groups.

This chapter gives a brief overview of how the algorithms developed in this thesis can
serve in data-driven fact checking or lead finding. Recall that, the task of fact-checking
aims to evaluate to what extent some objective claim is valid (Vlachos and Riedel, 2014).
Lead-finding, in turn, aims to uncover interesting facts from some given collection of data.
Contributions. The contributions of this chapter are:

Tools. We introduce ANCORE, a platform which enables to integrates the two approaches
presented in the previous chapters (i.e. DEBuNk and DEvIANT) into an easy-to-use
and interactive tool for exceptional intra-group and inter-group analysis in voting data.

Use Cases. We demonstrate the usefulness of ANCORE for computational journalism
through multiple real-world use cases in the context of fact-checking and lead-finding.

1https://firstdraftnews.org/fake-news-complicated/
2https://voteview.com/data
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The following content extends our article on ANCORE (Lacombe et al., 2019).
Roadmap. The remainder of this chapter is organized as follows. Section 5.2 describes

platform ANCORE and develops its building components. Section 5.3 demonstrates two ex-
emplary applications of ANCORE by developing multiple scenarii of fact-checking and lead
finding using voting data. We wrap up by summarizing the chapter conclusions in Section 5.4.

5.2 PLATFORM ANCORE

In order to provide a system facilitating the investigation of exceptional behaviors in voting
data, we design ANCORE whose overview is depicted in Figure 5.3.
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Figure 5.3: Global overview of Platform ANCORE

The platform not only provides an easy-tool to query voting datasets3 for the discovery
of exceptional inter-group and intra-group agreement patterns, but also displays the results
in an intuitive fashion. All this being done to help the user to understand and interpret the
found patterns. ANCORE relies on two main modules, namely DEBuNk and DEvIANT to
mine for the exceptional patterns which are queried via a dedicated GUI:

Module DEBuNk (Chapter 3) addresses the problem of discovering exceptional inter-
group agreement patterns. Such patterns exhibit an unexpected contextual agreement
between two groups of individuals compared to their overall agreement. DEBuNk
considers a voting dataset, perceived as a behavioral dataset. Voting sessions and voting
members are characterized by descriptive attributes (e.g., numerical, categorical). The

3Currently, the platform ANCORE maintains: (1) the Eighth and the Seventh European Parliament roll call
votes and (2) the US House of Representatives Votes ranging from the 102th(1991) to the 115th(2017) congresses.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



5.2 Platform ANCORE 133

patterns are of the form (c,g1,g2) with c a context and g1, g2 two groups. DEBuNk
enumerates conceptually all the patterns and outputs the most interesting ones. A
pattern interestingness is measured by a quality measure which enables to rank the
pattern in the result set from the most to the least interesting one according to some
given query. It evaluates the deviation between (i) the overall agreement between
the two groups g1, g2 observed when considering all the voting sessions and (ii) the
contextual agreement between the same two groups over the voting sessions supporting
context c. To facilitate the interpretation of the patterns, the contextual (resp. overall)
agreement is measured by the percentage of the context corresponding (resp. all)
voting sessions on which the two majorities of the two confronted groups agree.

In ANCORE, the input of DEBuNk is specified by an end-user’s query through the
configuration GUI (see Figure 5.4), where she can select: (1) Which voting dataset
she is interested in (EU Parliament or U.S. House of Representatives); (2) Which
groups of voting members she wants to confront in her investigation (e.g. France v.s.
Germany); (3) Which contexts she is interested in (e.g. Time period ranging from
2012 to 2016); (4) Which dimensions of study she wants to use to characterize the

1

22

3

4

5

Figure 5.4: GUI for querying DEBuNk in ANCORE - in case of the EU parliament is
selected as an underlying voting dataset.
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desired exceptional inter-group agreement patterns (e.g. contexts described by the
addressed topics). Eventually, (5) she determines which type of contexts she is looking
for (e.g. conflictual or consensual) while specifying the intensity of changes (i.e. the
minimum quality threshold) required to consider a pattern as exceptional.

Module DEvIANT (Chapter 4) addresses the problem of discovering exceptional intra-
group agreement patterns. Such patterns highlights a statistically significant contextual
intra-group agreement pattern. DEvIANT takes as input, a voting dataset seen as
a behavioral dataset where sessions and members are characterized by descriptive
attributes. The patterns are of the form (g,c) with g a group of voters and c a context
regrouping a subgroup of voting sessions. The intra-group agreement is measures
by Krippendorff’s Alpha. A pattern interestingness is measured by its p-value: the
probability to observe for a random subset of voting sessions an intra-group agreement
between members of g as extreme as the one observed for the subset of voting sessions
characterized by the context c.

In ANCORE, the input of DEvIANT is specified by an end-user’s query through the
configuration GUI (see Figure 5.5), where she can select: (1) Which voting dataset she

1

2

3

4

5

Figure 5.5: GUI for querying DEvIANT in ANCORE - in case of the EU parliament is
selected as an underlying voting dataset.
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is interested in (EU Parliament or U.S. House of Representatives); (2) Which group
of voting members she wants to study in her investigation (e.g. S&D); (3) Which
contexts she is interested in (e.g. Judicial matters); (4) Which dimensions of study she
wants to use to characterize the desired exceptional intra-group agreement patterns.
Eventually, (5) she determines the intensity of changes required to consider a pattern as
exceptional by fixing the critical value α , under which a returned pattern is considered
as statistically significant.

The exceptional patterns once computed by one of the two modules, are processed by the
visualization module (VIZ. Module, cf. Fig 5.3). A visual rendering of the retrieved patterns
should enable to understand and interpret the patterns. To this end the visualization module
presents the results with different levels of granularity. Indeed the visual rendering depends
on which kind of patterns are given to the module. First, an aggregated view (see Fig. 5.6),
enables to summarize the set of patterns, by consolidating the following details in a table:

Agreement-o-meter. It depicts, with a gauge, the overall inter-group/intra-group agreement
level and the contextual inter-group/intra-group agreement level.

Pattern’ descriptions. In case of inter-group agreement patterns are analyzed, the descrip-
tions characterizing the confronted voting members groups g1, g2 and the exceptional
context c are given. Similarly, for the visualization of intra-group agreement patterns,
the descriptions corresponding to the voting group g and the context c are displayed.

Textual description. A natural language text is optionally given as a supplementary
material for each returned exceptional inter-agreement pattern by adopting a "data
to text generation approach" (Portet et al., 2009; Vizzini, Labbé, and Portet, 2017).
Sentence templates take the form of a tree that convey the syntactic structure of the
sentence. These templates are completed according to the returned patterns and a
SimpleNLG (Gatt and Reiter, 2009) surface realization engine is used to generate the
final phrases by applying grammatical rules: number and gender concordance of verbs
and adjectives.

Figure 5.6: Aggregated view summarizing the list of retrieved exceptional inter-group agree-
ment patterns. They correspond to exceptional consensual contexts between Democrats
and Republicans in the U.S. House, for the time period 1991-2017.
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Second, for a better understanding and interpretation of each pattern, the user is offered
a more fined-grained visualization where she can navigate the data used to compute the
intensity of changes between the contextual inter-group/intra-group agreement and the overall
one. In this detailed view, the set of voting sessions supporting the context is ranked from
the most consensual to the most conflictual one (see (1) in Figures. 5.7 and 5.8). Each voting
session, represented by a colored square, can be selected by the user to provide additional
information. For instance, the voting decision made by each voting member is reported (see
(3) in Figures. 5.7 and 5.8). For the EU Parliament, the link to the official procedure file
concerning the voting session is given (see (2) in Figures. 5.7 and 5.8), so as to help the user
navigate through all the context surrounding a reported pattern.

Figure 5.7: Detailed view of an inter-group agreement pattern, reporting the context, all
the voting sessions and the vote of every voting member.

Figure 5.8: Detailed view of an intra-group agreement pattern, reporting the context, all
the voting sessions and the vote of every voting member.
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5.3 USE CASES: COMPUTATIONAL FACT CHECKING/LEAD FINDING

We envision platform ANCORE as a computational journalism tool which enables political
analysts and data journalists to investigate exceptional behavior in voting data. Insights
provided by ANCORE can be used to put into perspective and to assess the quality of some
given claim in the context of a fact-checking process. For instance, the claim: “In the
European parliament, French deputies vote always following the voting recommendation
given by their respective national parties” can be studied using ANCORE. We develop
this point in Section 5.3.1. Furthermore, highlights brought up by ANCORE can raise
further investigations in the context of a lead-finding process. For example, by answering
to the question: “What are the most conflictual subjects between countries in the European
parliament?”. We present two lead-finding use-case scenarii in Section 5.3.2.

5.3.1 FACT CHECKING USING ANCORE

First, in Section 5.3.1.1, we start by giving some examples of claims that can be evaluated
using (dis)agreement patterns that can be returned by ANCORE. Next, in Section 5.3.1.2,
we particularly focus on studying claims reported in a real news article to demonstrate how
ANCORE can assists an analyst in a real-world case scenario.

5.3.1.1 From Behavioral Comparison Claims to (Dis)Agreement Patterns

Earlier in this chapter, we presented briefly the category of claims dubbed Behavior Com-
parison claims (BCC) which covers any claim reporting a comparison of behavior between
individuals or groups. We give below a set of claims that can be straightforwardly seen as
BCCs.

• Claim 1: Parliamentarian X votes always the same as parliamentarian Y.

• Claim 2: German and French S&D representatives share the same political line in
most of the subjects treated in the European Parliament.

• Claim 3: The majority of the french far-right party Front National (FN) deputies vote
always the same as their political leader Marine Le Pen (MLP).

For instance, in order to evaluate Claim 3, we can first compute the overall agreement
between MLP and the majority. If we observe a low percentage of agreement then we can
conclude that the claim is not valid. As a second step, DEBuNk algorithm can be used to
look for contexts in which a weakening of agreement between MLP and her peers in FN,
thereby providing a set of patterns that can be presented as contextual counter-arguments.
Figure 5.9 illustrates the exceptional inter-group agreement patterns found between FN’
parlementarians and their leader MLP when using DEBuNk via ANCORE. Overall, we
observe that MLP and the majority of FN are in strong agreement (i.e. MLP agrees with
the majority in 98% of the voting sessions of the Eighth EU parliament). Still, in the three
inter-group agreement patterns featured in Figure 5.9, we observe that MLP do not express
the same voting outcome as her FN peers. For example, for the 18 sessions concerning both
themes “4 - Economic, social and territorial cohesion” and “7.40 - Judicial Coop”, we
note that MLP disagrees with the majority of FN in 8 sessions out of 18. Although, when
investigating the voting decisions of FN members in these sessions, we observe that MLP
abstained while her peers voted “for” the legislative procedures concerned.
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Figure 5.9: Patterns illustrating conflictual contexts between MLP and the majority of
the Front National Party (Stripped from MLP) in the eighth European parliament. The
minimum threshold for inter-group agreement measure change is fixed to 0.5 (50%).

With these information, the end-user (e.g. journalist) is well informed on the voting
sessions where MLP has a different voting outcome than the majority of her national party.
Hence, providing a sharper vision on the contexts surrounding the investigated claim.

Several other claims can be studied using ANCORE even if they are not explicitly
expressed as comparisons as it was the case in the three former claims.

• Claim 4: In the European parliament, French parliamentarians vote always following
the voting recommendation given by their respective national parties.

• Claim 5: There is no national position when it comes to votes of EU Political Groups.

• Claim 6: Migration policy is one of the most controversial topics between countries
in the European Parliament.

For example, Claim 5 can be examined using ANCORE in various ways. For instance,
the claim can be investigated across each of the eight political groups composing the EU
parliament. This can be done either by using DEBuNk by confronting countries’ representa-
tives in each political groups and then look for conflictual inter-group agreement patterns
to provide contextual counter-arguments; or by using DEvIANT to look for exceptional
intra-group agreement patterns among each political group and then investigate the voting
behavior of each country representatives in the discovered pattern.

In Figure 5.10, we illustrate an example pattern uncovered by DEBuNk when considering
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parliamentarians of the S&D political group. While, in the overall case, we observe an
agreement between countries majorities (i.e. countries majorities in S&D votes the same in
more than 80% of the cases). Though, several conflictual patterns between countries emerges
(13 patterns) as illustrated in Figure 5.10. Such patterns besides other patterns returned by
DEvIANT, can constitute relevant materials to provide deeper insights on the situations
between parliamentarians in each group and their cohesiveness in particular contexts.

Here, we purposely choose to analyze a particular claim (Claim 5) to demonstrate how
complex is the task of fact checking even when the relevant data are available. Moreover,
no peremptory verdict can be given on the claim. Although, depending on the resulting
(dis)agreement patterns given by ANCORE, one can assess the quality of the claim, by
providing a better understanding of the situation as a whole of the agreement between
parlementarians within their respective political groups while considering the countries
dimension. Still, efforts need to be invested by the analyst in terms of (i) formulating the
proper queries, (2) consolidating the results and (3) combining the results with materials
from other sources in a such complex fact-checking scenario.

Figure 5.10: Patterns illustrating conflictual contexts between countries in the Socialists
& Democrats (S&D) political group. The minimum threshold for inter-group agreement
measure change is fixed to 0.6 (60%).
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5.3.1.2 From a Real-World News Article to (Dis)Agreement Patterns

In this section, we choose to demonstrate the platform capabilities by analyzing the news
article “Groups in the European Parliament, sometimes surprising alliances”4. It refers
particularly to the EPP (European People’s Party, the majority group of the 8th legislature
of the EU parliament), and argues that the desire of some political group to bring together
as many parties as possible leads sometimes to “surprising alliances”. One specific party is
brought to the fore in the article, the Fidesz party (Hungary) which belongs to EPP. This
raises several questions that one can study using ANCORE:

• Is the Fidesz in conflict with the rest of the EPP?

• Does the Fidesz have any conflicts with specific EPP parties?

• Are there any other conflicts within the EPP?

Fidesz against the rest of EPP

We first confront the Fidesz MEPs with the rest of the EPP members, by looking for
conflictual contexts. By analyzing the results provided by ANCORE, the first insight that
emerges, is that the Fidesz MEPs are in agreement with their EPP peers in 94% of the cases.
The most conflictual subjects highlighted by the system were agricultural measures and the
administrative processes of the EU.

Fidesz against other EPP parties

We now focus on contexts that oppose the Fidesz to other EPP parties. The most intense
change of intra-group agreement is observed between the Fidesz and the Partido Popular
(Spain). The returned pattern shows that, while the Fidesz and the Partido Popular are in
strong agreement (91%), the following contexts lead to strong disagreement (cf. Figure 5.11):

• 2 Internal market and 4.10 Social policy, charter and protocol.

• 4.10.07 The elderly.

To investigate in more depth the relationship between the Fidesz and other national
parties, we look for consensual contexts. When analyzing the results provided by ANCORE,
we observe that the EPP has an overall consistent political line. Moreover, the results
highlight two national parties: the Partido da Terra (Portugal), and the Centre Démocrate
Humaniste (Belgium, mentioned in the article), both represented by one single MEP and
respectively having a usual agreement of 75% and 76% with the Fidesz.

4goo.gl/43MM3k, article published on the RTBF website on 23 Oct. 2015
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Figure 5.11: Patterns highlighting conflictual contexts between Fidesz and Partido Pop-
ular. The minimum threshold for inter-group agreement measure change is fixed to 0.8
(80%).

Conflicts within the EPP

We are now interested in the conflicts within the EPP as a whole, without emphasizing on the
Fidesz. When investigating the results, two patterns arise which oppose the Partido Popular
with the rest of the group. The patterns highlight the same contexts observed when analyzing
conflictual contexts with the Fidesz. This demonstrates that the conflict was rather on the
side of Partido Popular, since the Fidesz was in agreement with the majority decision. An
example pattern is visualized in detail in Figure 5.12. Another important conflict within EPP

Figure 5.12: Detailed view of an exceptional intra-group agreement pattern, showing the
context (defined by the procedure subject), all the voting sessions and the vote of every voting
member. It corresponds to an exceptionally conflictual context in the European Parliament
between the Spanish National Party “Partido Popular" and the EPP Group.
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is revealed by DEBuNk and concerns the Forza Italia party with the rest over relations with
Russia. Overall, these two parties are in agreement with the rest of EPP in 97% of the voting
sessions. Furthermore, when investigating the conflict among EPP representative using
DEvIANT we obtain 19 significantly conflictual contexts in EPP as illustrated in Figure 5.13.

Figure 5.13: Two conflictual contexts among the 19 conflictual contexts in the EPP
group during the eighth European Parliament voting dataset. The critical value alpha
is fixed to 0.05.

5.3.2 LEAD FINDING USING ANCORE

Lead finding, as defined by (Wu, 2015; Wu et al., 2017) in the context of computational
journalism, is ”the task of finding interesting information nuggets from raw data that lead to
further investigation and/or news stories around them". In the scope of this chapter, and more
generally, in the scope of this thesis, we define the lead-finding as: ”the task of discovering
exceptional (dis)agreement between or among groups from behavioral data“.

Practically, patterns exhibited in the qualitative experimental sections 3.6.2 and 4.7.2
provide some good examples where raw data corresponding to roll call votes are transformed
to interpretable and actionable insights. In a more general scope, The philosophy behind our
Subgroup Discovery/Exceptional Model Mining approaches is rather close to the philosophy
behind computational lead-finding, since our end-user persona (e.g. data-journalist), in
this thesis, is interested in finding exceptional areas in some underlying behavioral data
without knowing upfront what these patterns look like. While computational lead finding
covers various types of interesting pieces of information that one can extract from a dataset
(examples are given in (Wu, 2015; Wu et al., 2014; Wu et al., 2017)), in this section, we are
interested in uncovering exceptional (dis)agreement patterns in voting data. For instance,
the end-user can use ANCORE to look for high-conflict/high-consensual topics between or
within national parties, political groups or countries when considering European Parliament
voting dataset. In Figure 5.14, we give some example patterns returned by ANCORE when
looking for high-controversial contexts between German national parties. For instance, we

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



5.3 Use cases: Computational Fact Checking/Lead Finding 143

observe that while FDP (Free Democratic Party) and CDU (Christian Democratic Union of
Germany) agree most of the time (v 81%), they express diverging opinions on procedures
voted under the theme “3.30.06 Information and Communication Technologies” covering
most importantly the dossier: open internet access5. These pieces of information alongside
other materials may help a journalist investigating the failure of the so-called "Jamaica"
coalition after the 2017’ German federal election by studying the relationship between its
constituting parties.

Figure 5.14: Exceptional conflictual contexts between German national parties in the
eighth European parliament voting dataset. The minimum threshold for inter-group agree-
ment measure change is fixed to 0.8 (80%).

Similarly, as in Section 5.3.1, we give an example of using ANCORE in the context
of a real-world computational lead-finding case scenario. Let us consider, the recent news
article “European Elections 2019 : How did the 82 French MEPs voted since 2014 ?"6

published on Le Monde website on 10 Mai 2019. Exceptional (dis)agreement patterns both
within and between French national parties representatives in the EU, can provide valuable
information for the analysis of French MEPs votes. This enables the analysis to go beyond
by outlining highlights on the inter-group and intra-group voting behavior of french MEPs
in the European parliament. For example, when using DEvIANT via ANCORE to mine
for exceptionally conflictual or consensual topics among french national parties, several
exceptional intra-group agreement patterns are brought to the fore (cf. Figure 5.15), some
of which are relevant to the investigation conducted on French MEPs voting behavior in
the news article. For instance, voting sessions related to judicial cooperation in criminal
matters led to a conflict between members of the French left-wing party “Front de Gauche".
Additionally, DEBuNk was able to retrieve exceptional conflict between French national

5https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015R2120
6https://www.lemonde.fr/les-decodeurs/article/2019/05/10/

europeennes-2019-comment-ont-vote-les-deputes-europeens-francais-depuis-2014_

5460395_4355770.html
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parties (cf. Figure 5.16). As an example, we observe that while French Social-Democratic
MEPs and Green Party MEPs are in agreement in the overall terms, matters of external
borders crossing, controls and visas create a strong disagreement between these two parties.
A controversial legislative procedure in this context was “2011/0023(COD)”7 which was
raised in the considered news article.

Figure 5.15: Exceptional conflictual contexts within french national parties during the
eighth European Parliament voting dataset. The critical value alpha is fixed to 0.05.

Figure 5.16: Exceptional conflictual contexts between french national parties in the eighth
European parliament voting dataset. The minimum threshold for inter-group agreement
measure change is fixed to 0.6 (60%).

7Use of passenger name record (PNR) data for the prevention, detection, investigation and prosecution
of terrorist offences and serious crime, available on https://oeil.secure.europarl.europa.eu/
oeil/popups/ficheprocedure.do?reference=2011/0023(COD)&l=en.
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5.4 SUMMARY

In this chapter, we devised platform ANCORE, which enables discovering patterns exhibiting
exceptional (dis)agreement within and among groups of voting members by leveraging
DEBuNk or DEvIANT depending on the aim of the study. The proposed platform not only
computes and returns the list of exceptional patterns, but also, for better interpretability, it
enriches the provided results by offering a visualization tool covering the reported patterns
from various perspectives. To demonstrates the capabilities offered by ANCORE, we showed
how this analytic tool can serve as a basis to quickly put claims into perspective in the context
of a fact-checking process, or to uncover insights from voting data for lead-finding.

Note that, besides lead-finding examples outlined from the EU voting dataset presented
here, the study of medicines consumption discrepancies between french sub-population
presented in Table 3.8 (leveraging Openmedic data) in Section 3.6.2.3 (Chapter 3) is an
interesting illustration of computational lead finding in the context of epidemiology studies
and health monitoring applications. For instance, a news article, entitled “Medicines and
refunds: Openmedic dataset in six points"8 covering Openmedic dataset was published on
Le Monde website on 28 November 2017. The investigation conducted in this article can
be enriched by highlighting, for example, substantial differences in medicine consumptions
between subpopulations of interest (e.g., age-, gender- or region-specific) by using DEBuNk.

We believe that this work sets the ground for many interesting improvements. First, the
visualization module can be enhanced for better usability and user-friendliness of ANCORE
tool. Also the visualization tool can be improved by allowing richer graphical representations.
For example, Nominate (Hix, Noury, and Roland, 2006; Poole and Rosenthal, 1985; Voeten,
2009) can be implemented to depict and compare the positions (Left/Right, Conservative/Lib-
erals, Pro-integration/Anti-Integration ) of voting members in both the overall terms and the
discovered contexts. Second, additional unsupervised learning methods can be investigated
to improve the interpretability of the found patterns. For instance, clustering can summarize
in a compact way the agreement between parlementarians both in overall terms and in the
contexts uncovered by DEBuNk or DEvIANT. In this perspective, several dissimilarity met-
rics can be used ranging from a simple Iverson bracket [o1 6= o2] (with o1, o2 are two voting
outcomes) to Rajski’s Distance (Jakulin et al., 2009) to cluster parliamentarians and study,
among others, how contexts impacts the cohesion and the polarization in/between political
groups, countries, national parties, etc. Third, ANCORE can benefit from interactive pattern
mining paradigm (Dzyuba, 2017; Dzyuba et al., 2014; Leeuwen, 2014) to actively involve
the user in the exploratory data mining process, therefore providing more interesting results.

8https://www.lemonde.fr/les-decodeurs/article/2017/11/28/

medicaments-et-remboursements-la-base-de-donnees-open-medic-en-6-points_

5221378_4355770.html
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Conclusion

This thesis brings several contributions to the following task:

� Discovering and characterizing Exceptional (Dis-)Agreement
between and within sub-populations in Behavioral data. �

In this vein, we proposed two approaches for the efficient and optimal discovery of such
insights from behavioral data and consolidated them into a web-platform for the analysis of
exceptional voting behaviors in voting data. Section 6.1 summarizes the contributions of this
thesis, and Section 6.2 discusses opportunities for future works.

6.1 SUMMARY

In order to tackle the aforementioned problem, we have proposed two novel and comple-
mentary approaches to mine for exceptional (dis)agreement between and within groups in
behavioral data. All this has been done by relying on the frameworks of Subgroup Discovery
(SD) and Exceptional Model Mining (EMM) that have been discussed in Chapter 2.

We now review the research questions outlined in the introduction of this thesis and
highlight how each chapter of this thesis contributes to answering the addressed questions.

Research Question. 1 How to characterize, discover, summarize and present excep-
tional (dis) agreement between groups (sub-populations) in behavioral data ?

In this thesis, the research question has been brought down to four questions:

�1 How to characterize exceptional (dis)agreement between groups in behavioral data ?

�1 (Chapter 2 and Chapter 3) The characterization exceptional (dis) agreement between
groups requires the definition of the syntax and the semantic of patterns conveying
such kind of insights.

6
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148 Chapter 6. Conclusion

For the syntax of the desired patterns, we choose to structure them as triplets: (c,u1,u2)

with c a context describing a subset of entities and (u1,u2) two confronted groups of
individuals. For easier interpretation, Groups and Contexts are conjunctive selection
predicates over the corresponding attributes. This induces a description language
which was introduced and established in Chapter 2.

Once the syntax of the patterns had been formalized, we relied on SD/EMM framework
to objectively define what exceptional (dis)agreement means in the scope of this thesis,
a.k.a the semantics of the patterns. Recall that, under the umbrella of EMM framework,
two aspects need to be appropriately instantiated in order to convey the meaning of a
pattern: the model class and the interestingness measure. In Chapter 3, the chosen
model class was IAS (Inter-group Agreement Similarity measure) which captures to
what extent two groups of individuals (u1,u2) are in agreement with regards to entities
characterized by some context c.

To assess the exceptionality of a pattern, we defined several interestingness mea-
sures (ϕconsent,ϕdissent and ϕratio) which evaluate the deviation between the contextual
inter-group agreement measure and the overall one observed over the entire entities
collection. For instance ϕconsent gives better score to patterns where there is more
consensus between the two confronted (u1,u2) groups in the context c compared to
the consensus observed in the overall terms. Conversely, ϕdissent is associated to the
discovery of conflictual situations rather than consensual ones.

�2 How to discover exceptional (dis)agreement between groups in behavioral data ?

�2 (Chapter 3) The previous answer formalized the description language for exceptional
inter-group (dis)agreement patterns and the interestingness measure used to evaluate
the exceptionality of such patterns. In order to discover these patterns, we devised two
algorithmic solutions DEBuNk and Quick-DEBuNk.

DEBuNk (cf. Algorithm 3) is an exhaustive search algorithms which uses EnumCC
to generate candidate subgroups. It uses several optimization techniques in order to
efficiently return the most interesting patterns as defined in Problem 3.2.1 (Chapter 3).
First, closure operators are used to avoid redundancy in the discovery process, this
is possible since the interestingness measure is extent-based and the underlying de-
scription language induces a pattern structure. Moreover, DEBuNk relies on (tight)
optimistic estimates for the proposed interestingness measures to prune as soon as
possible unpromising branches of the search space.

Quick-DEBuNk (cf. Algorithm 6), in turn, offers an alternative and tractable solution to
the problem 3.2.1 of discovering exceptional (dis)agreement between groups. The end-
user is given the possibility to specify a time-budget to the algorithm within which the
algorithm is required to stop and return the currently found patterns. Quick-DEBuNk
is a stochastic algorithm which combines exploitation and exploration techniques in
order to (quickly) find the desired patterns. For exploration, the algorithm relies on
direct sampling paradigm via FBS (cf. Algorithm 4) where the patterns (c,u1,u2) are
drawn randomly and with a chance proportional to the product of the support size
of each description. For exploitation, Quick-DEBuNk uses RWC (cf. Algorithm 5)
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6.1 Summary 149

to search for exceptional (dis)agreement between groups starting from the pattern
(c,u1,u2) returned by FBS. In order to give more chance to high-quality patterns,
RWC chooses to expand neighbor search nodes (from a given search node, i.e. context)
with a probability proportional to their quality. Moreover it relies on closure operator
and optimistic estimates to avoid generating uninteresting patterns.

�3 How to summarize exceptional (dis)agreement between groups in behavioral data ?

�3 (Chapter 3) As a first step, the summarization of exceptional (dis)agreement between
groups have been defined through a set of constraints that need to be satisfied in
the returned list of patterns. Redundancy is avoided by using closure operators.
Furthermore, only the most general patterns are returned. This is motivated by the
following postulate: the end-user is more interested by (dis)agreement observed
between larger groups in larger context rather than local (dis)agreements.

�4 How to present exceptional (dis)agreement between groups in behavioral data ?

�4 (Chapter 5) In Chapter 3, the proposed algorithms returned the list of exceptional
inter-group agreement patterns in the form of a raw table (csv file). This requires
effort from the end-user to interpret the results and find proper explanation of why
a pattern from the final result set has been declared exceptional. Within this aim,
we proposed ANCORE, a web platform for discovering exceptional (dis)agreement
in voting data. ANCORE has been presented and detailed in Chapter 5. ANCORE
provides an easy-to-use tool to search for exceptional inter-group agreement patterns
and to interpret them. It enables the end-user to have an in-depth understanding of
why an intra-group agreement pattern is considered as exceptional, by bringing to the
fore the data used to evaluate the interestingness of pattern. For instance, for every
exceptional pattern (c,u1,u2), the visualization tool of ANCORE prints out every
outcome expressed by the individuals comprising the two confronted groups in every
entity covered by the context in question.

Research Question. 2 How to characterize, discover, summarize and present excep-
tional (dis) agreement within groups (sub-populations) in behavioral data ?

Similarly as Research Question 1, this question was brought down to four question:

�5 How to characterize exceptional (dis)agreement within groups in behavioral data ?

�5 (Chapter 2 and Chapter 4) Exceptional (dis)agreement within groups is captured by
patterns of the form (u,c) where c is a context and u a group. Contexts and groups are
formalized as conjunctive selection predicates (syntax) as detailed in Chapter 2.

The semantic of exceptional intra-group agreement patterns (c,u) is instantiated via
EMM framework by the definition of an appropriate model class and its associated
interestingness measure. In order to evaluate to what extent the members comprising
a group are in agreement when considering the entities related to the context c, we
used Krippendorff’s Alpha measure. The latter measure is adapted to our setting as
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it handles the sparsity usually encountered in behavioral data and various possible
domains of outcomes.

To evaluate the exceptionality of an intra-group (dis)agreement pattern, we used
statistical significance (p-value) of the contextual intra-group agreement measure
(Krippendorff’s alpha). In short, the proposed interestingness measure is the probability
of observing an intra-group agreement for a random subset of the collection of entities
which is at least as extreme as the one observed for the context c. If such a probability
is under a critical value α (usually 0.05) the pattern is declared exceptional, otherwise,
it is considered as a spurious finding.

�6 How to discover exceptional (dis)agreement within groups in behavioral data ?

�6 (Chapter 4) the former point addressed the syntax and semantics of pattern conveying
exceptional (dis)agreement within agreement. In order to discover the desired patterns,
we devised DEvIANT (cf. Algorithm 7) to solve the problem of finding exceptional
(dis)agreement within groups in behavioral data as defined in Problem 4.2.1. DEvIANT
is a branch and bound algorithm which relies on EnumCC (cf. Algorithm 1) to generate
closed candidate subgroups without redundancy. For further optimization, DEvIANT
uses tight optimistic estimates on Krippendorff Alpha to establish the interval within
which the contextual intra-group agreement varies when considering the search space
under some context c. Along this interval, an interesting property between confidence
intervals is leveraged which states, in brief, that confidence intervals grow in size
and are encompassed when going downward in the search tree. These concepts,
when combined, ensure a safe-pruning strategy to avoid generating and evaluating
unpromising candidate subgroups.

�7 How to summarize exceptional (dis)agreement within groups in behavioral data ?

�7 (Chapter 4) As for Question�3 , two concepts are used to provide a concise list of
exceptional intra-group (dis)agreement patterns. First, redundancy is avoided via
closure operators. Second, only the most general patterns are kept in the final result
set, that is, if an exceptional (dis)agreement is observed in the pattern (c,u), no
specialization of this pattern is included in the results set.

�8 How to present exceptional (dis)agreement within groups in behavioral data ?

�8 (Chapter 5) In Chapter 4, only a raw list in csv format is returned at the end of
execution of DEvIANT. This requires further processing by the end-user to explore
exceptional (dis)agreement within groups in behavioral data. To facilitate the reading
and the interpretation of the patterns, we use ANCORE. its visualization tool enables
to explore in details the outcomes used to assess the exceptionality of a pattern (u,c).

In order to demonstrate the usefulness of exceptional inter-group (dis)agreement patterns
and exceptional intra-group (dis)agreement patterns, we conducted several qualitative experi-
ments in this thesis. Chapter 3 illustrates the search for exceptional (dis)agreement between
groups within three different types of behavioral data: political analysis using European
parliament voting data, rating data analysis using yelp rating data and movielens rating data,
healthcare surveillance using Openmedic dataset. Chapter 4 depicts examples of exceptional
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(dis)agreement within groups in two different types of behavioral data: political analysis
using European parliament voting data and United States Congress votes in the House of
representatives; rating data analysis using yelp rating data and movielens rating data. Finally,
Chapter 5 focus on computational journalism, highlighting how exceptional (dis)agreement
between and within groups can empower and help journalists in fact-checking claims or
finding interesting facts from data in a lead-finding process.

6.2 OUTLOOK

The contributions of this thesis set the ground for many improvements and instigate new
research venues that we foresee could to lead to interesting results. In the following, we
review some of the promising perspectives of this work.

6.2.1 ENRICHING THE VISUALIZATION TOOL OF ANCORE

We proposed in ANCORE a visualization tool which provides an in-depth consultation
of every outcomes expressed by the individuals in each entity covered by the context in
question. This allows to study the impact of each context’ entity on the contextual inter/intra-
group agreement. An interesting improvement that we started to investigate recently is
the integration of new graphical representations of exceptional intra/inter-group agreement
patterns. For instance, for both kinds of patterns, we can depict at a high-granularity level the
agreement between the individuals (if applicable) in a heatmap. For inter-group agreement
patterns (c,u1,u2), one can confront the individuals of group u1 against the individuals of
group u2 and draws two associated similarity matrices: the contextual similarity matrix and
the overall one. The similarity measure can rely on the inter-group agreement similarity
(IAS). Similarly, two heatmaps can be associated to each exceptional intra-group agreement
pattern (u,c) by confronting the individuals of the group u by an adapted similarity measure.

Other graphical representations can leverage the above similarity matrices. For instance,
Multi-Dimensional Scaling (Cox and Cox, 2000) Techniques (MDS) can be used to represent
in two-dimensional space the individuals of the considered groups. This can help to identify
quickly the disagreeing /agreeing parties when comparing the contextual representation
against the overall one. An application of MDS is Nominate (Poole and Rosenthal, 1985)
which is widely used to analyze the legislative roll-call voting behavior of parliamentarians
in the United States Congresses. The interesting feature of Nominate is the fact that the
projection dimensions convey more meaning than a standard MDS technique and can be
used to describe political ideology of parlementarians (Hix, 2001; Hix, Noury, and Roland,
2006; Poole and Rosenthal, 2000). For example, in the U.S. congress and in the European
parliament, the first dimension usually represents the Left/right positions which is the most
used dimension to describe the voting behavior of parliamentarians.

Other unsupervised learning approaches can be used to provide additional insights on the
voting behavior of individuals. For instance, Hierarchical Clustering (Murtagh and Contreras,
2012) and K-Nearest Neighbors (Fukunage and Narendra, 1975) can be leveraged to identify
clusters of individuals in both the context and the entire collection of entities. This offers
the possibility to compare and study how alignment may change between groups and how
agreement can be formed or dissolved from a context to another.
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6.2.2 DISCOVERING EXCEPTIONAL CONTEXTUAL CLUSTERS IN BEHAVIORAL DATA

In the same spirit of the final point discussed above, we can leverage clustering algorithms to
provide contextual insights of the behavior of individuals and bring to the fore exceptional
ones. This can fill the gap between local and global behavior models by providing a deep
understanding of peculiar comportment of the whole population of interest.

For this aim, we can define via the EMM framework a new model class which uses a
clustering algorithm for characterizing the (dis)agreement between individuals. The input
considered for the clustering algorithm (e.g. Hierarchical Clustering (Murtagh and Contr-
eras, 2012), K-Nearest Neighbors (Fukunage and Narendra, 1975), Community Detection
(Blondel et al., 2008)) consists in a similarity/distance matrix. The latter leverages a defined
similarity/distance between the outcomes expressed by individuals of the population of
interest of interest. Exceptional Contextual Clusters patterns can be formalized similarly
to the ones returned by DEvIANT as such, (u,c) which reads: "there is an exceptional
clustering of individuals of group u in the context c when compared to the clustering of the
same group in overall terms".

Once the clustering algorithm (model class) is appropriately defined, we need to define
the associated interestingness measure which instantiates the meaning of "exceptional" in
this setting. One can compare two clusterings by using variation of information (Meilă, 2007)
which measures the amount of information lost and gained in changing from the overall
clustering to the contextual clustering.

In this thesis, we were mainly interested in providing exhaustive search algorithms which
rely on efficient pruning properties to avoid enumerating unpromising areas of the search
space. For the problem of discovering exceptional contextual clusters, we need to investigate
the properties of the interestingness measure to define proper optimistic estimates. Moreover,
determining an incremental computation of the clustering from a context to a sub-context
can be essential to the functioning of an algorithm which solves this problem since clustering
algorithms are computationally expensive.

6.2.3 DISCOVERING CHANGE AND TRENDS OF INTRA/INTER-GROUP AGREEMENT

In the study of exceptional inter-group and intra-group agreement patterns (Chapter 3 and
Chapter 4), time (if present) was simply considered as a numerical attribute. Hence time
attribute was perceived as a static variable. While such considerations enabled the discovery
of interesting and exceptional local patterns, it do not offer the possibility to uncover how
time affects the behavior of groups in behavioral data. For this aim, a dynamic representation
of time is required.

In this perspective work, both inter-group and intra-group agreement works can be
extended by a dynamic representation of time to enable a longitudinal study of the interactions
between individuals of the population of interest. For intra-group agreement patterns (u,c),
one can transform time into a sequence of bins and evaluate the intra-group agreement
measure (e.g. Krippendorff Alpha - cf. Chapter 4) for each bin both in the context c and in
overall terms. Having this two sequences of measurements, one can use an EMM regression
model class (Duivesteijn, Feelders, and Knobbe, 2012; Duivesteijn, Feelders, and Knobbe,
2016) induced on the context sequence and the overall one; and compare between the two
regression models by using one of the proposed interestingness measures for this EMM
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instance (e.g. Cook’s distance (Duivesteijn, Feelders, and Knobbe, 2012), Significance of
Slope Difference (Leman, Feelders, and Knobbe, 2008) - see Section 2.3 of Chapter 2).

Similarly as for dynamic intra-group agreement patterns, one can consider EMM re-
gression model to study the inter-group agreement patterns (c,u1,u2). For this objective,
first a transformation of time to a sequence of time bins is required. This is followed by the
evaluation of inter-group agreement measures (e.g. IAS) in each time bins both in the context
c and in overall terms. Once this measuring is achieved, we can apply the regression model
over both sequences and evaluate how exceptional the deviation is between the contextual
regression model and the one evaluated in the overall terms.

Additional interesting measures in this setting can be investigated to enable the discovery
of how time and context impact inter-group agreements or intra-group agreements. For
instance, one can compare locally or globally the two built sequences of measurements as
explained beforehand and then compare the two curves representing the sequences using
a Freshet Distance (Alt and Godau, 1995; Eiter and Mannila, 1994). Moreover, to enable
an exhaustive search algorithm when considering Freshet Distance, we need to investigate
optimistic estimates to prune, as soon as possible, uninteresting areas of the search space
induced by the context description language.

6.2.4 ANYTIME EXCEPTIONAL BEHAVIORS MINING

In this thesis, we have been mainly interested in providing exhaustive search algorithms that
ensures the discovery of all the desired patterns for some given SD/EMM task. However, even
when several optimization techniques are used to improve the efficiency of the exhaustive
search algorithms, they become unfeasible when the search space grows in size (e.g. above
descriptive attributes for entities collection and individuals collection). To alleviate this
problem, we proposed in Chapter 3 Quick-DEBuNk which is a stochastic algorithm that
makes tractable the discovery of exceptional inter-group agreement patterns. A similar
approach, dubbed Quick-DEvIANT, can be devised to heuristically approximate the complete
solution of the problem of discovering exceptional intra-group agreement patterns. This can
offer an alternative tractable version of DEvIANT.

However, although these heuristic solutions offer a good trade-off between efficiency
and effectiveness, they do not provide guarantees upon interruption on how far they are from
the exact solution. In this spirit, Anytime Algorithms (Zilberstein, 1996) with guarantees
can be used to provide error bounds of the best pattern found compared to the best pattern
existing in the underlying search space. Towards this objective, we started investigating such
paradigm in numerical data (all descriptive attributes are numerical) for standard Subgroup
Discovey (e.g. using WRAcc (Lavrac, Flach, and Zupan, 1999) as an interesting measure).
We proposed Refine&Mine (Belfodil, Belfodil, and Kaytoue, 2018), an anytime algorithm
with four key properties: It yields progressively interval patterns whose quality improves
over time; (ii) It can be interrupted anytime and always gives a guarantee bounding the error
on the top pattern quality and (iii) It always bounds a distance to the exhaustive exploration;
(iv) It converges to an exhaustive search algorithm if enough time is given, hence ensuring
completeness. These are compelling properties that need to be investigated to see how they
can be extended to our algorithms (Namely DEBuNk and DEvIANT) for providing anytime
solutions to the problem of discovering exceptional (dis)agreement in behavioral data.
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Study of DEBuNk and Quick-DEBuNk on
synthetic data

In this appendix, we qualitatively compare DEBuNk and Quick-DEBuNk with standard
state-of-the-art methods using artificially generated behavioral data. Additionally, we study
their ability of finding the sought exceptional (dis)agreement patterns when confronted to
noisy data.

Some questions we aim to answer require data for which the ground truth is known. Since
it is notoriously difficult to obtain such data, we designed an artificial behavior data generator.
The generator works as follows. It first generates nb_hidden_patterns inter-group
agreement patterns. Each pattern is represented by two group descriptions (u1,u2) and a
context (c) where u1, u2 and c are defined over random categorical descriptions and are of
random size. For each pattern, the extent is generated (i.e., context_support_size
entities for the context and the two groups involving group_support_size individuals).
The extents are generated as follows: first, a random description ds is uniformly drawn from
DE (resp. DI). Next, support_size records are generated, which have a description
equal to or subsumed by ds. This process is repeated for each component of the pattern so
as to built nb_hidden_patterns inter-group agreement patterns. Note that the pattern
generation process avoids overlapping between groups and contexts between differents
patterns. These patterns describe conflictual situations, i.e., the individuals of one group in
the pattern context express a voting outcome which is different from the other group’ voting
outcome. Conversely, the two groups are in agreement in the usual case, i.e., their votes
over the entities outside the pattern context are similar. To achieve this, for each planted
pattern (c,u1,u2) and for each entity e ∈ GE , a random outcome os is drawn from the pool
of possible outcomes (in here we consider O = {Yes,No}). Subsequently, each member
comprising Gu1

I votes os for the entity e. Accordingly, individuals from Gu2
I cast a different

outcome, if e is described by the context c. Otherwise, they cast the same outcome os.
Once these patterns are generated, the rest of the dataset is generated by adding entities and

A
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individuals randomly while preserving the exceptionality of the patterns (i.e., the patterns
must remain the most general exceptional patterns) till the desired size of the dataset is
reached (i.e. |GE |= nb_entities and |GI|= nb_individuals). As described, the
hidden patterns are pure. A last step enables to add noise within the patterns. For each
pattern, the expressed outcome of individuals are randomly replaced with a noise_rate
probability. Similarly, noise is added outside the patterns. Eventually, to get as close as
possible to real-world behavioral dataset, we add sparsity in the data. To perform this
task, each outcome of each pair (i,e) ∈ GI×GE have a probability of data_sparisty
to be removed from the generated artificial behavioral dataset. The parameters used are
summarized in Table A.1.

Parameter Description
Default
value

|GE | (nb_entities) Number of entities 2000
|GI | (nb_individuals) Number of individuals 500
|O| Number of possible categorical outcomes 2
|AE | Number of categorical attributes for entities 2
|dom(a j)| with a j ∈AE Domain size of a categorical attribute a j ∈AE 4
|AI | Number of categorical attributes for individuals 2
|dom(a j)| with a j ∈AI Domain size of a categorical attribute a j ∈AI 4
nb_hidden_patterns Number of planted conflictual patterns 3
context_support_size Support size of a hidden pattern context 5
group_support_size Support size of a hidden pattern group 5
noise_rate Noise rate in/out the ground truth patterns 0
data_sparsity Probability of an individual not to cast an outcome 0.33

Table A.1: Default Parameters Used for Generating Artificial Behavioral Data

A.1 COMPARISON TO SD/EMM METHODS

We aim to study how the SD/EMM methods are able to discover relevant inter-group agree-
ment patterns. SD algorithms available in public implementations (e.g., Vikamine(Atzmueller
and Lemmerich, 2012), Cortana (Meeng and Knobbe, 2011), PySubgroup (Lemmerich and
Becker, 2018)) only consider one flat table with a target attribute. However, behavioral
datasets involve three relations (Entities, Individuals, Outcomes) which are all processed by
DEBuNk and its sampling alternative Quick-DEBuNk to discover the interesting inter-group
agreement patterns. To handle the problem we defined with a classical SD algorithm, we
need to preprocess the data. We discuss and compare several problem adaptations.

SD-Majority: SD to discover contextual disagreements with the majority. The most
direct way to apply SD on behavioral data is to consider the discovery of groups of individuals
who express disagreement with the majority vote. This enables to discover patterns (c,g1)

where c is a context describing a set of entities and g1 is a description of a group of
individuals. To this end, we preprocess the behavioral data to obtain a Flat Behavioral Dataset
(FBD) with a single table and a singe target class SAME_AS_MAJORITY as following: (1)
we combine the entities and individuals tables using a join operation with the outcomes
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collection. (2) We compute the majority vote by aggregating the votes expressed on each
entity. (3) We use this information to extend each record in the newly generated FBD with
the attribute SAME_AS_MAJORITY which is equal to +, indicating that the individual voted
in agreement with the majority in the considered entity. Otherwise SAME_AS_MAJORITY
is equal to −. Example of FBD after such preprocessing is given in Table A.2. Having this
FBD augmented with the target class SAME_AS_MAJORITY offers the possibility to run
common SD techniques to identify subgroups with a high prevalence of disagreement with
the majority (Target label = ′−′). The most adapted interestingness measure in this case is the
precision gain (Fürnkranz, Gamberger, and Lavrač, 2012), i.e. Precision(subgroup)−α−,
which is high when there is a high disagreement in a subgroup compared to the disagreement
observed in the full dataset. Note that this model does not fit perfectly our problem setting.
It enables only the discovery of bi-set patterns (c,g1) rather than the desired three-set
patterns (c,g1,u2). Nevertheless, highlighting this type of pattern may help to partially
identify interesting inter-group agreement patterns in a behavioral dataset. Furthermore, this
adaptation does not takes into account the usual behavior of the group against the majority.
This might clearly lead to the discovery of obvious patterns highlighting the individuals that
are known to be a systematic opposition.

Entities Individuals Outcomes

ide theme date idi country group outcome SAME_AS_MAJORITY

e1 1.20 Citizen’s rights 20/04/16 i1 France S&D For +

... ... ... ... ... ... ... ...

Table A.2: Example of input data format for SD-Majority after transforming the behavioral
dataset given in Table 3.1.

SD-Cartesian: SD to discover contextual disagreement between two groups. We pro-
pose a second modeling to enable the discovery of three-set patterns (c,u1,u2) with SD
techniques. To this end, the behavioral dataset is transformed into a flat table equivalent to
the Cartesian product GE ×GI ×GI . This flat table is then augmented with a target class
attribute SAME_VOTE which captures the (dis-)agreement between each couple of individu-
als on each entity for which both expressed an outcome. SAME_VOTE is thus equal to + if
both individuals expressed the same outcome for the entity, − otherwise. This modeling –
illustrated in Table A.3 – makes it possible to discover patterns (c,u1,u2) which identify two
groups of individuals and a context regrouping a set of entities over which the individuals
in the first group disagrees with the ones composing the second group. This can be done
using the precision gain as the interestingness measure. Even if the syntax of the patterns is
similar to ours, the usual agreement between the two selected groups is not take into account.
Hence, the semantics conveyed by these patterns is different from ours. Another major
drawback of such modeling is the size of the table resulting from the Cartesian product. For
instance, a small behavioral dataset with 200 entities and 100 individuals can contain up to
2×106 records which clearly make this setting not adapted and not scalable for real-world
behavioral data.
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Entities Individuals Individuals Outcomes

ide theme idi_1 country_1 idi_2 country_2 outcome1 outcome2 SAME_VOTE

e5 7.30 i1 France i2 France For For +

e5 7.30 i1 France i3 France For Against -

... ... ... ... ... ... ... ...

Table A.3: Example of input data format for SD-Cartesian after transforming the behavioral
dataset given in Table 3.1 to a Cartesian product GE ×GI×GI .

Exceptional Contextual Subgraph Mining to discover contextual disagreement between
two groups. Applying SD in the two aforementioned modelings does not allow to take into
account the usual inter-group agreement in the model. A way to overcome this issue is to
model the behavioral dataset as an attributed graph and looking for exceptional contextual
subgraphs (Kaytoue et al., 2017). The so-called COSMIC algorithm is rooted in SD/EMM
and aims at discovering contextual subgraphs whose edges have weights larger than expected.
To this end, we transform the behavioral dataset to the Cartesian product GE ×GI ×GI

extended with SAME_VOTE attribute like in SD-Cartesian formalization. This table is then
used to build a bipartite graph where each side represents the collection of individuals GI

and an edge is instantiated between two vertices (individuals) for each entity on which the
two individuals expressed conflicting outcomes. The set of transactions from GE ×GI×GI

where two individuals are disagree are associated to the edge between the two corresponding
vertices (see Fig. A.1). Once this transactions set obtained, COSMIC algorithm can be used
to obtain exceptional contextual subgraphs. Note that, in this problem setting, an excep-
tional contextual subgraph corresponds to two groups of individuals which exhibit a higher
disagreement rate in the considered context compared to the disagreement expected in a
similar sized subgraph. Several interestingness measures have been proposed in the COSMIC
framework (Bendimerad et al., 2017b; Kaytoue et al., 2017). For the aim of this study, the

ide themes date

e1 1.20 20/04/16
e2 2.10 16/05/16
e3 1.20; 7.30 04/06/16
... ... ...

(a) Entities

idi country group age

i1 France S&D 26
i2 France PPE 30
... ... ...

(b) Individuals

id_edge ide idi_1 idi_2

t1 e2 i1 i3
t2 e5 i1 i3
t3 e3 i2 i3
t4 e5 i2 i3

(c) Transactions set (edges)

i3i1

i2 i4

e2  , e5 

(d) Augmented Graph

Figure A.1: Example of input data format for Cosmic after transforming the behavioral
dataset given in Table 3.1 to an augmented graph and its corresponding transactions set
according to the observed discords.
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lift measure is the most adapted: ϕ(S) = P(S|C)
P(S) with S is the connected contextual subgraph

induced by the selection performed by the description C. Note that: P(S|C) is the probability
that a random drawn edge from all the edges in the full graph supporting the selection C
falls in the induced contextual subgraph, P(S) is the relative weights in terms of the number
of edges of the full subgraph S (the subgraph with the most general context). Note that a
post-processing is necessary to transform exceptional contextual subgraphs into inter-group
agreement patterns (c,u1,u2). Applying contextual subgraph mining given this modeling
has some limitations: (1) the expected disagreement between two groups is computed from
all the individuals instead of the individuals of the two groups. This can lead to the discovery
of obvious patterns. (2) it considers as an input a transaction dataset computed from the
Cartesian product GE ×GI×GI which limits its usage, even for relatively small behavioral
dataset.

We aim to compare how state-of-the-art methods perform in this three modelings and
compare them to DEBuNk and Quick-DEBuNk. To this end, we generated 81 artificial
dataset with 3 hidden patterns by varying several parameters (see Fig. A.2). Note that
the behavioral datasets are relatively small to be sure to obtain results for each modeling,
especially ones that requires to build a Cartesian product. For SD-Majority and SD-Cartesian
modelings, we used PySubgroup(Lemmerich and Becker, 2018) to discover subgroups for
the following reasons: the implementation is available online1 as well as the easiness of
its use. We ran the exhaustive search algorithm BSD (Lemmerich, Rohlfs, and Atzmueller,
2010) which is tailored to find relevant subgroups (Garriga, Kralj, and Lavrač, 2008), this
choice is also motivated by the fact that the selected interestingness measure is the Precision
gain. For the attributed graph modeling, we used an implementation of COSMIC algorithm
provided by the authors (Kaytoue et al., 2017).

To evaluate the ability of the different approaches of uncovering planted patterns, we first
define a similarity measure simP between two patterns p = (c,u1,u2) and p′ = (c′,u′1,u

′
2)

from P . It captures to what extent two patterns provide similar insights about changes of
inter-group agreement.

simP (p, p′) =

√
J(Gc

E ,G
c′
E )×

1
2
.
(

J(Gu1
I ,Gu′1

I )+ J(Gu2
I ,Gu′2

I )
)

with J(G,G
′
) =
|G∩G

′ |
|G∪G′ | .

Note that, the quantity (J(Gu1
I ,Gu′1

I )+ J(Gu2
I ,Gu′2

I )) is replaced by the following measure
if the quality measure ϕ is symmetric:

max(J(Gu1
I ,Gu′1

I )+ J(Gu2
I ,Gu′2

I ),J(Gu1
I ,Gu′2

I )+ J(Gu2
I ,Gu′1

I )) .

For comparing two pattern sets P, P′ returned by respectively DEBuNk and Quick-
DEBuNk, we use an F1 score defined as follows.

F1(P,P′) = 2 · precision(P,P′) · recall(P,P′)
precision(P,P′)+ recall(P,P′)

, (A.1)

1https://bitbucket.org/florian_lemmerich/pysubgroup
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with


precision(P,P′) =

∑p∈P max({simP(p, p′) | p′ ∈ P′})
|P| ,

recall(P,P′) =
∑p′∈P′ max({simP(p′, p) | p ∈ P})

|P′| .

A similar measure to the recall has been proposed by Bosc et al., 2018 to evaluate the
ability of their algorithm to retrieve the ground-truth patterns. We extend this measure with
the precision to evaluate not only that all the hidden patterns have been discovered by an
algorithm (i.e. recall=1.) but also the conciseness of the returned set (i.e. precision=1 if and
only if all returned patterns are actually present in the behavioral dataset).

We report in Figure A.2a the comparative experiments between DEBuNk, Quick-
DEBuNk, SD-Cartesian, SD-Majority and COSMIC in terms of their ability to retrieve
each planted pattern in synthetic behavioral datasets. We report for each method the average
similarity (over the 81 artificial data) between one of the three hidden patterns and its nearest
representative in the result set. As expected, DEBuNk and Quick-DEBuNk outperforms other
approaches. Moreover, the order between the approaches/modelings is sound. Majority-SD
has the worst results due to the fact that this method, in the best case scenario, is only able
to identify two of the three restrictions of a inter-group agreement pattern which impact on
its performance. COSMIC performs slightly better than its alternative SD technique over
the Cartesian product GE ×GI ×GI thanks to a more sophisticated model to capture the
usual behavior.

Pattern 1

Pattern 2Pattern 3

20%

40%

60%

80%

100%

DEBuNk Quick-DEBuNk COSMIC SD-Cartesian SD-Majority

P1

P2P3

20%

40%

60%

80%

(a) Average similarity between the
planted patterns and their representatives
returned by each method.

DEBuNk Quick-DEBuNk COSMIC SD-Cartesian SD-Majority
0.0
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0.8

1.0
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(b) Boxplots of F-score comparing the top-10 discovered
patterns set by each method on each generated artificial
data and the corresponding ground truth.

Figure A.2: Comparative qualitative performance study between DEBuNk (σE = 3, σI = 3,
σϕ = 0.5 and the quality measure ϕdissent), Quick-DEBuNk (same parameters as DEBuNk
with timebudget = 5 seconds), SD-Majority (resultSetSize= 50, i.e. Top-50), SD-
Cartesian (resultSetSize= 25, i.e. Top-25) and Cosmic (Default parameters) performed
over 81 artificial behavioral data with 3 hidden patterns by varying the number of individuals
in [100,125,150], the number of entities in [100,150,200], the sparsity factor in [0.,0.25,0.5]
and the noise in [0.,0.2,0.4].
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Figure A.2b summarizes the results obtained after running the five approaches. For a fair
comparison (i.e., the problem of setting the good thresholds), we report the average F-Score
of the only top-10 results for each approach. We observe that DEBuNk and Quick-DEBuNk
achieves to return high-quality results compared to the other approaches. Interestingly,
COSMIC adaptation is of less quality than SD-Cartesian adaptation when analyzing both
their conciseness and exactitude in terms of hidden pattern identification. Finally SD-
Majority performs the worst due to its fundamental difference with the other approaches
when comparing the provided patterns format.

A.2 ROBUSTNESS TO NOISE AND ABILITY TO DISCOVER HIDDEN PATTERNS

We now study the ability of DEBuNk and Quick-DEBuNk to discover hidden patterns for
larger behavioral datasets as well as their robustness to noise. To this end, we carried out
DEBuNk and Quick-DEBuNk over several artificial datasets varying the noise rate from 0 to
0.8. The results illustrated in Figure A.3 demonstrates that the exhaustive search approach
DEBuNk is able to discover almost exclusively all the hidden patterns (F1_Score > 0.8)
even if the noise rate is rather high (≤ 0.6). Indeed when the noise rate is substantially
high, DEBuNk does not retrieve the noisy hidden patterns. This clearly results from the
evidence that several planted patterns disappear in the underlying artificially generated data
after adding too much noise. This is an advantage for DEBuNk since the quality threshold is
able to remove nonsensical patterns from the final set. In contrast, from these experiments,
we observe that Quick-DEBuNk less robust to noise than DEBuNk. The performance of
Quick-DEBuNk in terms of finding hidden patterns decreases faster with regard to the
noise rate compared to DEBuNk. This is mainly due to the random walk procedure (RWC)
which considers other sub search space than the one actually containing a hidden context
as the noise reduces the quality of its subsuming parents. Still, it is worth mentioning that
Quick-DEBuNk is able to retrieve partially planted patterns even when the noise is rather
high. Interestingly, the sampling approach achieves a comparable precision to the exhaustive
approach, this demonstrates that most of returned patterns are valid.

(DEBuNk)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F1 Score

(Quick-DEBuNk)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F1 Score

Figure A.3: Efficiency of DEBuNk (σE = 7, σI = 7, σϕ = 0.5 and ϕdissent) and Quick-
DEBuNk (σE = 7, σI = 7, σϕ = 0.5, timebudget = 3 mn and ϕdissent) performed over 21 be-
havioral artificial data generated with the following default parameters (|GE |= 2000, |GI|=
500, |AE | = |AI| =3, size_dom_entities_attributes = size_dom_individuals_attributes =4,
nb_hidden_patterns =5, context_support_size =10, group_support_size =10).
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Multiple Comparisons Problem

In what follows, each pattern Hi = (ui,ci) is seen as a hypothesis test which returns a p-value
pi. Recall that, in this thesis (Chapter 4), the list of hypotheses to test corresponds to the full
search space L = {(u,c) ∈DI×DE : |Gu

I | ≥ σI and |Gc
E | ≥ σE} where u (resp. c) is a closed

description (i.e. the maximum description w.r.t. v) in the equivalence class [u] (resp. [c])
of descriptions having their extent equal to Gu

I (resp. Gc
E), i.e. [u] = {u′ ∈DI s.t. Gu′

I = Gu
I }

(resp. [c] = {c′ ∈DE s.t. Gc′
E = Gc

E}). Having this in mind, in what follows, the content of L
is shortly denoted by L = {H1, . . . ,Hω} and comprises ω hypotheses. Hypotheses in L are
ordered by their p-values {p1, . . . , pω} where pi = p-valueui(ci).

The Multiple Comparisons Problem (MCP) (Holm, 1979) is a critical issue in significant
pattern mining (Hämäläinen and Webb, 2019). In a nutshell, given the critical value α which
roughly corresponds to the probability of type 1 error (rejecting a true null hypothesis which
is equivalent to accepting a spurious pattern), it is to be expected that ω ·α hypotheses will
erroneously pass the test, i.e., ω ·α hypotheses suffer a type 1 error. The classic approach to
deal with the MCP is to control the family wise error rate (FWER), which is the probability
of accepting at least one false discovery. Other approaches control the false discovery rate
(FDR), which corresponds to the expected proportion of false discoveries. We give an
overview of relevant existing approaches that deal with the MCP and point out why using
them in our setting is a non-trivial task. For a survey on methods dealing with the MCP, we
refer the interested reader to (Hämäläinen and Webb, 2019).

The most famous method to control FWER at ≤ γ (typically 0.05) is Bonferroni adjust-
ments (Dunn, 1961). The critical α used to test the significance of a pattern is adjusted to
γ

ω
so as to have FWER at ≤ γ with ω the number of all patterns to test in L. The problem

with this approach is that when ω is huge1, Bonferroni adjusts α to a value very close to 0.
This leads to a high number of false negatives as most interesting pattern will be considered

B

1Which is the case in the general setting of pattern mining even if we consider only closed patterns satisfying
the support size threshold constraint.
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164 Chapter B. Multiple Comparisons Problem

spurious (high Type 2 error rate). Clearly, ω is unknown and needs, in the most trivial way,
to be bounded by a quantity ω0 which is larger than ω . Usually, ω0 corresponds to the
maximum size of the search space: it is equal to 2#items in the case of an itemset dataset.
Webb, 2007 gives a bound on the size of the search space when dealing with the MCP
in attribute-value datasets when the description length is bounded. Using this reasoning
without bounding the description length and considering the specification of each attribute
(numerical, categorical, . . . ), in the smallest of our datasets (Movielens; see Table 3) we have
ω0 = 72349200. This requires α to be equal to 6.92×10−10 for the FWER to be at ≤ 0.05.
All the other datasets require α to be ≤ 10−76 when bounding ω with the size of the search
space. Clearly, such settings for α prohibit the discovery of any meaningful information
from the datasets, which cannot possibly be the desired effect of attempts at solving the MCP.

Several techniques exist in the literature to relax the requirements on α while ensuring a
FWER at ≤ γ in order to increase the statistical power:

1. Terada et al. (Terada, duVerle, and Tsuda, 2016; Terada et al., 2013) propose the
LAMP technique, relying on Tarone’s Exclusion Principle (TEP) (Tarone, 1990). This
principle stipulates that in the list of m hypotheses in L to be tested, one must ignore
untestable patterns for multiple comparisons. A pattern Hi is said to be untestable
if the lower bound of its p-value, denoted p∗i , is under the adjusted α = γ

m . Terada
et al., 2013 proposed this lower bound p∗i for the particular task of finding significant
rules2 (Webb, 2006) where significance is commonly assessed using a Fisher exact
test (Hämäläinen, 2010a; Hämäläinen, 2010b), since a 2× 2 contingency table is
available. The lower bound p∗i computation depends on this contingency table. Clearly,
there is no trivial mapping of our problem to the problem of finding significant rules.
Hence, adapting the LAMP algorithm to have an efficient branch and bound technique,
incorporating both the proposed bounds in this work (the DEvIANT algorithm) and
LAMP reasoning, is clearly a daunting task that requires an in-depth investigation and
a new devoted approach which is beyond the scope of this work.

2. Similarly, most of the existing work measuring the interestingness of patterns with
statistical significance while efficiently handling the MCP, deals with the significant
rule discovery setting (Komiyama et al., 2017; Llinares-López et al., 2015; Pellegrina
and Vandin, 2018; Terada, Tsuda, and Sese, 2013). Some of these methods (Llinares-
López et al., 2015; Pellegrina and Vandin, 2018; Terada, Tsuda, and Sese, 2013) rely
on the Westfall-Young permutation testing method (Westfall and Young, 1993) to
increase statistical power. Still, no straightforward application of these techniques in
our setting is possible: these methods perform random permutations on the class label,
and no class label is given in the problem addressed in our work.

3. Other state-of-the-art techniques follow a multi-stage procedure (Hämäläinen and
Webb, 2019) to tackle the MCP. A first step constrains L to a subset of patterns (e.g.,
testable under TEP). A subsequent post-processing phase controls the FWER (Webb,
2007) or FDR (Komiyama et al., 2017; Webb, 2007). For example, Webb, 2007
proposes to divide the data into Exploratory and Holdout data. Hypotheses are sought

2Each record in the underlying dataset is associated with a binary target label and the objective is to find
rules that have significant association with one of the two labels.
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by analyzing solely the exploratory data. Eventually, a constrained number of patterns
are found which are validated against the holdout data. In our setting, one needs to
investigate how to divide the data into these two parts, since we have two dimensions:
context space and group space. In this configuration, a question of crucial importance
must be answered: do we need to consider each group independently and divide the
entities dataset (defining the context space) into exploratory vs holdout data for each
group? Or do we need to jointly consider both these dimensions? This clearly requires
a thorough investigation to avoid proposing a naive solution.

4. Layered critical values (Bay and Pazzani, 2001; Webb, 2008) propose to consider a
varying adjustment factor for each level of the search space as long as the sum of all
critical values is not above γ . This requires:

• estimating the size of each level (which could be done by following the reasoning
of Webb, 2008);

• identifying what is a level of the search space: do we consider levels jointly
between group and context search space?

Choosing joint consideration in the latter bullet point implies ignoring (most of the
time) the level-1 groups in the search space: the level will grow in size after considering
all the contexts corresponding to the group characterizing the whole collection of indi-
viduals. Otherwise, the question raised in the former bullet point needs to be answered
to provide an appropriate algorithm. Furthermore, combining the layered critical
values along with DEvIANT is not straightforward as it requires re-investigation of
the proposed pruning properties.

As we can see, several fundamental questions remain to be answered before one could
incorporate a solution to the MCP in the task of finding significant exceptional contextual
intra-group agreement patterns. We argue that the scope of this problem is bigger than the
work introduced in Chapter 4; it is a non-trivial task that deserves proper attention in the
wider context of the significant pattern mining paradigm. We plan to investigate this in future
work.
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Symbol Table (Chapter 1 and 2)

Symbol Definition

GE A finite collection of records depicting entities
GI A finite collection of records depicting individuals
O The domain of possible outcomes
o A function o : GE ×GI → O returning the outcome o(i,e) of an individual i over an entity e

B = 〈GI ,GE ,O,o〉; A behavioral dataset (cf. Definition 1.1.1)
A AE (resp. AI): Descriptive attributes of entities (resp. individuals)
D DE (resp. DI): The description domain of contexts (resp. groups)
u ∈DI ; A description (cf. Definitions 2.2.2 and 2.2.12) of a group (cf. Definition 1.1.2)
c ∈DE ; a description defining a context (cf. Definition 1.1.3)

Gc
E A subgroup of entities corresponding to the extent (cf. Definition 2.2.3) a context c ∈DE

Gu
I A subgroup of individuals corresponding to the extent of a group description g ∈DI

Now, we omit the indices I or E in the notations and we consider that we have a
collection of records G, its schema of attributes A and the related description space D

δ a mapping function δ : G→D which maps each record g to its maximum
corresponding description δ (g) ∈D w.r.t. v. The definition is extended to return the
maximum description shared between records in some subset in G

v read “less restrictive than” is a partial order (cf. Definition 2.2.4) between
descriptions in some description space D

Gd = ext(d) is the extent (subgroup; cf. Definition 2.2.3) of a description d ∈D in G,
i.e. Gd = {g ∈ G s.t. d v δ (g)}.

〈G,(D,v),δ 〉 a pattern structure (cf. Definition 2.2.7)
clo(d) = δ (Gd) a closure operator in D.

η(d) a refinement operator (cf. Definition 2.2.5) which return the neighbors η(d)⊆D

of a description d ∈D w.r.t. v; i.e. η(d) = {d′ ∈D s.t. d @ d′ ∧ @e ∈D : d @ e@ d′}
ϕ ϕ : D→ R is the interestingness (quality) measure (cf. Definition 2.2.6). The quality measure is

extent-based, hence we can define ϕ as such: ϕ : 2G → R with: ∀d ∈D:ϕ(d) = ϕ(Gd)

oe oe : D→ R is the optimistic estimate (cf. Definition 2.4.1) associated to the quality measure ϕ .

Table C.1: Symbol table related to Chapter 1 and Chapter 2

C
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Symbol Table (Chapter 3)

Symbol Definition

P = DE ×DI×DI and denotes the pattern space
p = (c,u1,u2) ∈P is an inter-group agreement pattern where

c is a context and (u1,u2) two group of individuals
p∗ = (∗,u1,u2) ∈P is the referential inter-group agreement pattern

related to some pattern p = (c,u1,u2)

P ⊆P denotes a pattern set returned by DEBuNk or Quick-DEBuNk
θ An outcome aggregation measure

sim a similarity function between two aggregated outcomes
IAS Inter-group Agreement Similarity Measure

ϕ An interestingness measure

Table D.1: Symbol Table related to Chapter 3

D
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Symbol Table (Chapter 4)
Symbol Definition

P = DI ×DE and denotes the pattern space
p = (u,c) ∈P; is an intra-group agreement pattern where u is a group and c a context
P ⊆P denotes the returned pattern set by DEvIANT

Bg The reduced behavioral dataset for individuals comprising Gg
I

A Intra-group agreement measure - Krippendorff’s Alpha
Au(Gc

E) Intra-group agreement of a group u over a context c
p-valueu(c) p-value of an observed Au(Gc

E) of a group g over a context c considering the DFD

We omit the exponent g in the notations and we assume that
we have a group of individuals g in mind (we use Bg)

Dexp Expected disagreement (via marginal distribution) between individuals
Dobs Observed disagreement between individuals

n Number of entities in GE , i.e., |GE |
m Number of all expressed outcomes

mo1 Number of expressed outcomes equal to o1

me Number of expressed outcomes for entity e (also denoted we)
mo1

e Number of expressed outcomes equal to o1 for entity e
δo1o2 Distance between two outcomes in O

DFD Distribution of False discoveries
Fk Fk = {S⊆ GE s.t. |S|= k}
θk Random variable θk : Fk→ R with S 7→ A(S). Also θk =

Vk
Wk

ve Intra-group agreement (Krippendorff’s Alpha) for one entity,
Vk Random variable Vk : Fk→ R with S 7→ 1

k ∑e∈S ve

Wk Random variable Wk : Fk→ R with S 7→ 1
k ∑e∈S we

α Critical value
CI1−α

k The 1−α confidence interval associated with the DFD of θk.

ĈI
1−α

k The 1−α Taylor-approximated confidence interval of CI1−α

k .

ĈI
1−α

bootstrap The bootstrap confidence interval.

LB(S,σE) Lower bound of A for any specialization of a subgroup having its size greater than σE

UB(S,σE) Upper bound of A for any specialization of a subgroup having its size greater than σE

OE(S,σE) = [LB(S,σE),UB(S,σE)]. Optimistic estimate region of A

Table E.1: Symbol Table related to Chapter 4

E
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and coalition formation in the European Parliament: roll-call votes and Twitter activities”.
In: PloS one 11.11, e0166586 (cited on page 120).

Ciampaglia, Giovanni Luca, Prashant Shiralkar, Luis M. Rocha, Johan Bollen, Filippo
Menczer, and Alessandro Flammini (2015). “Computational fact checking from knowl-
edge networks”. In: PloS one 10.6, e0128193 (cited on page 130).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



Clinton, Joshua, Simon Jackman, and Douglas Rivers (2004). “The statistical analysis of roll
call data”. In: American Political Science Review 98.2, pages 355–370 (cited on page 7).

Coddington, Mark (2015). “Clarifying journalism’s quantitative turn: A typology for evalu-
ating data journalism, computational journalism, and computer-assisted reporting”. In:
Digital journalism 3.3, pages 331–348 (cited on page 2).

Cohen, J. (1960). “A Coefficient of Agreement for Nominal Scales”. In: Education and
Psychological Measurement 20, pages 37–46 (cited on page 105).

Cohen, Sarah, Chengkai Li, Jun Yang, and Cong Yu (2011). “Computational Journalism:
A Call to Arms to Database Researchers”. In: CIDR. www.cidrdb.org, pages 148–151
(cited on pages 2, 3, 7).

Cover, Thomas and Joy Thomas (2012). Elements of information theory. John Wiley & Sons
(cited on page 108).

Cox, Trevor F and Michael AA Cox (2000). Multidimensional scaling. Chapman and hal-
l/CRC (cited on pages 9, 151).

Csisz, I et al. (1967). “Information-type measures of difference of probability distributions
and indirect observations”. In: Studia Sci. Math. Hungar. 2, pages 299–318 (cited on
page 62).

Das, Mahashweta, Sihem Amer-Yahia, Gautam Das, and Cong Yu (2011). “Mri: Meaningful
interpretations of collaborative ratings”. In: PVLDB 4.11, pages 1063–1074 (cited on
pages 4, 8, 10).

Davey, Brian A and Hilary A Priestley (2002). Introduction to lattices and order. Cambridge
university press (cited on page 25).

De Nooy, Wouter, Andrej Mrvar, and Vladimir Batagelj (2018). Exploratory social network
analysis with Pajek: Revised and expanded edition for updated software. Volume 46.
Cambridge University Press (cited on page 7).

Demsar, Janez, Tomaz Curk, Ales Erjavec, Crtomir Gorup, Tomaz Hocevar, Mitar Miluti-
novic, Martin Mozina, Matija Polajnar, Marko Toplak, Anze Staric, Miha Stajdohar, Lan
Umek, Lan Zagar, Jure Zbontar, Marinka Zitnik, and Blaz Zupan (2013). “Orange: data
mining toolbox in python”. In: Journal of Machine Learning Research 14.1, pages 2349–
2353 (cited on page 35).

Dimitriadou, Kyriaki, Olga Papaemmanouil, and Yanlei Diao (2014). “Explore-by-example:
an automatic query steering framework for interactive data exploration”. In: Proceedings
of the 2014 ACM SIGMOD international conference on Management of data. ACM,
pages 517–528 (cited on page 9).

Diop, Lamine, Cheikh Talibouya Diop, Arnaud Giacometti, Dominique Li, and Arnaud
Soulet (2018). “Sequential Pattern Sampling with Norm Constraints”. In: ICDM. IEEE
Computer Society, pages 89–98 (cited on pages 34, 37).

Dong, Guozhu and Jinyan Li (1999). “Efficient mining of emerging patterns: Discover-
ing trends and differences”. In: Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, pages 43–52 (cited on
page 18).

Downar, Lennart and Wouter Duivesteijn (2015). “Exceptionally Monotone Models - The
Rank Correlation Model Class for Exceptional Model Mining”. In: ICDM. IEEE Com-
puter Society, pages 111–120 (cited on page 41).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



Downar, Lennart and Wouter Duivesteijn (2017). “Exceptionally monotone models—the rank
correlation model class for exceptional model mining”. In: Knowledge and Information
Systems 51.2, pages 369–394 (cited on page 41).

Du, Xin, Wouter Duivesteijn, and Mykola Pechenizkiy (2018). “ELBA: Exceptional Learning
Behavior Analysis”. In: EDM. International Educational Data Mining Society (IEDMS)
(cited on page 10).

Duivesteijn, Wouter, Ad Feelders, and Arno J. Knobbe (2012). “Different slopes for different
folks: mining for exceptional regression models with cook’s distance”. In: KDD. ACM,
pages 868–876 (cited on pages 42, 152, 153).

Duivesteijn, Wouter, Ad J Feelders, and Arno Knobbe (2016). “Exceptional model mining”.
In: Data Mining and Knowledge Discovery 30.1, pages 47–98 (cited on pages 3, 7, 11,
18, 23, 38, 39, 41, 42, 45, 100, 103, 152).

Duivesteijn, Wouter and Arno J. Knobbe (2011). “Exploiting False Discoveries - Statistical
Validation of Patterns and Quality Measures in Subgroup Discovery”. In: ICDM. IEEE
Computer Society, pages 151–160 (cited on pages 52, 101, 104, 108).

Duivesteijn, Wouter, Arno J. Knobbe, Ad Feelders, and Matthijs van Leeuwen (2010). “Sub-
group Discovery Meets Bayesian Networks – An Exceptional Model Mining Approach”.
In: ICDM. IEEE Computer Society, pages 158–167 (cited on pages 18, 42, 43, 104).

Dunn, Olive Jean (1961). “Multiple comparisons among means”. In: Journal of the American
statistical association 56.293, pages 52–64 (cited on page 163).

Duris, Frantisek, Juraj Gazdarica, Iveta Gazdaricova, Lucia Strieskova, Jaroslav Budis, Jan
Turna, and Tomas Szemes (2018). “Mean and variance of ratios of proportions from
categories of a multinomial distribution”. In: Journal of Statistical Distributions and
Applications 5 (cited on pages 109, 110).

Dzyuba, Vladimir (2017). “Mine, Interact, Learn, Repeat: Interactive Pattern-based Data
Exploration ; Zoek, Interacteer, Leer, Herhaal: interactieve data-exploratie met patronen”.
PhD thesis. Katholieke Universiteit Leuven, Belgium (cited on pages 9, 145).

Dzyuba, Vladimir, Matthijs van Leeuwen, and Luc De Raedt (2017). “Flexible constrained
sampling with guarantees for pattern mining”. In: Data Mining and Knowledge Discovery
31.5, pages 1266–1293 (cited on pages 34, 37, 71).

Dzyuba, Vladimir, Matthijs van Leeuwen, Siegfried Nijssen, and Luc De Raedt (2014). “Inter-
active Learning of Pattern Rankings”. In: International Journal on Artificial Intelligence
Tools 23.6 (cited on page 145).

Efron, Bradley and Robert J Tibshirani (1994). An introduction to the bootstrap. CRC press
(cited on page 116).

Eiter, Thomas and Heikki Mannila (1994). Computing discrete Fréchet distance. Technical
report. Citeseer (cited on page 153).

Ennals, Rob, Beth Trushkowsky, and John Mark Agosta (2010). “Highlighting disputed
claims on the web”. In: Proceedings of the 19th international conference on World wide
web. ACM, pages 341–350 (cited on page 130).

Eppstein, David and Daniel S Hirschberg (1997). “Choosing subsets with maximum weighted
average”. In: J. Algorithms 24.1, pages 177–193 (cited on pages 112–114).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI086/these.pdf 
© [A. Belfodil], [2019], INSA Lyon, tous droits réservés



Erevelles, Sunil, Nobuyuki Fukawa, and Linda Swayne (2016). “Big Data consumer analytics
and the transformation of marketing”. In: Journal of Business Research 69.2, pages 897–
904 (cited on page 7).

Etter, Vincent, Julien Herzen, Matthias Grossglauser, and Patrick Thiran (2014). “Mining
democracy”. In: COSN. ACM, pages 1–12 (cited on pages 3, 82).

Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996). “From data mining
to knowledge discovery in databases”. In: AI magazine 17.3, pages 37–37 (cited on
pages 2, 13).

Fleiss, J. L. (1971). “Measuring nominal scale agreement among many raters”. In: Psycho-
logical Bulletin 76.5, pages 378–382 (cited on page 105).

Flew, Terry, Christina Spurgeon, Anna Daniel, and Adam Swift (2012). “The promise of
computational journalism”. In: Journalism Practice 6.2, pages 157–171 (cited on page 2).

Fortunato, Santo (2010). “Community detection in graphs”. In: Physics reports 486.3-5,
pages 75–174 (cited on page 8).

Freeman, Linton C (1977). “A set of measures of centrality based on betweenness”. In:
Sociometry, pages 35–41 (cited on page 8).

Fukunage, K and Patrenahalli M. Narendra (1975). “A branch and bound algorithm for
computing k-nearest neighbors”. In: IEEE transactions on computers 7, pages 750–753
(cited on pages 151, 152).

Fürnkranz, Johannes and Peter A Flach (2005). “Roc ‘n’rule learning—towards a better
understanding of covering algorithms”. In: Machine Learning 58.1, pages 39–77 (cited
on pages 32, 33, 45, 49).

Fürnkranz, Johannes, Dragan Gamberger, and Nada Lavrač (2012). Foundations of rule
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