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Résumé en français

Assujettir des atomes ou des molécules à des impulsions laser de fortes intensités donne lieu à une variété de
phénomènes hautement non-linéaires, tels que l’ionisation d’électrons et la radiation de photons de fréquences
élevées. Les distributions des vitesses des électrons ionisés ou les distributions des fréquences des photons
radiés encodent des informations pertinentes sur les atomes ou les molécules ciblés à l’échelle temporelle na-
turelle des électrons, l’attoseconde–qui est un millionième, d’un millionième, d’un millionième d’une seconde.
Comprendre la dynamique des électrons ionisés ainsi qu’identifier les mécanismes de radiation de fréquences
élevées sont des étapes essentielles afin d’interpréter et décoder les informations cryptées dans les mesures
expérimentales.

Dans cette thèse, des atomes sujets à des impulsions laser de fortes intensités polarisées elliptiquement
dans le régime infra-rouge sont étudiés théoriquement. Malgré leur nature fondamentalement quantique
dans les atomes, les électrons manifestent certains comportements classiques lorsqu’ils sont sujets à des
impulsions laser de fortes intensités. Nous exploitons ces traits classiques pour comprendre et illustrer, à
l’aide des trajectoires, les mécanismes physiques en jeu afin d’interpréter les résultats expérimentaux. Nous
montrons le rôle interdépendant de l’ionisation quantique par effet tunnel de l’électron et ultérieurement de
son mouvement classique pour interpréter les mesures en science attoseconde.

Après l’ionisation par effet tunnel des électrons, la conjugaison entre leurs interactions avec le laser et
leurs interactions avec leur ion parent, en rendant leurs dynamique hautement non-linéaire, donne lieu à
de riches et variés canaux d’ionisation. Changer l’ellipticité du laser, qui agit comme un simple bouton de
contrôle en expérience, change les canaux d’ionisation prioritairement empruntés par les électrons. De cette
façon, par exemple, les électrons peuvent sonder différentes caractéristiques des atomes ciblés. Le mouvement
des électrons ionisés est analysé en utilisant des techniques perturbatives et non-perturbatives issues de la
dynamique non-linéaire et des systèmes hamiltoniens. Ce travail de thèse démontre la complémentarité de la
mécanique quantique et de la dynamique non-linéaire pour comprendre et illustrer des mécanismes impliqués
lorsque des atomes sont sujets à des impulsions laser de fortes intensités polarisées elliptiquement.

Introduction

Imager des orbitales atomiques et moléculaires [115, 59, 135], traquer le mouvement des électrons en temps
réel [25, 64, 126] et mesurer leurs corrélations dans les atomes, les molécules et les solides [101, 72, 110, 141, 18]
a été au cœur de l’activité de recherche en science attoseconde, avec pour ambition de réaliser des films de la
dynamique structurelle des molécules pendant les réactions chimiques qui ont lieu dans la nature [41]. Ces
images instantanées révèleraient des mécanismes sous-jacents à l’échelle temporelle et spatiale de l’électron
(inférieure à la femtoseconde 1 fs = 10−15 s et inférieure au nanomètre 1 nm = 10−9 m, respectivement, voir
Fig. 1), le liant de la matière, et permettrait ainsi de mieux comprendre et contrôler ces processus ultra-rapides
hors équilibre. De nos jours, l’imagerie de la matière à l’échelle temporelle et spatiale des atomes (1 ps =
10−12 s et 1 Å = 10−10 m, respectivement, voir Fig. 1) est couramment réalisée en laboratoire. Zoomer sur
ces images, à des échelles de temps inférieures à la femtoseconde et à des échelles spatiales inférieures au
nanomètre, demeure un défi majeur pour les scientifiques tant sur le plan technique que théorique depuis une
trentaine d’années.

Par exemple, des images de structures atomiques dans des surfaces solides, à l’échelle spatiale des atomes,
peuvent être obtenues en déplaçant une pointe métallique de quelques angströms au-dessus de la surface
ciblée. C’est la base de la microscopie à effet tunnel [scanning tunneling microscopy (STM)]. Les premières
images ont été observées en 1982 [23] et ont mené à une nouvelle branche de la microscopie: la microscopie de
sonde à balayage [scanning probe microscopy (SPM)]. Malgré le succès du STM pour la localisation d’atomes
dans des surfaces solides à l’équilibre, les processus ultra-rapides hors équilibres dans la matière ne sont pas
mesurables par la pointe métallique du STM. Ceci illustre clairement les difficultés de mesure en temps réel du
mouvement des atomes et des électrons. Grosso modo, comme l’illustre la Fig. 2, seuls les appareils sondant
la matière à une échelle de temps beaucoup plus rapide que l’échelle de temps naturelle des atomes et des
électrons peuvent capturer des images instantanées claires de leurs configurations. Ainsi, la pointe métallique
devrait se déplacer sur des échelles de temps inférieures à la femtoseconde pour capturer le mouvement des
électrons en temps réel, ce qui est impossible.

Entre-temps, la femtochimie en était à ses débuts. En femtochimie, de courtes impulsions laser infrarouges
(IR), de l’ordre de la femtoseconde, sont utilisées en tant que caméras ultra-rapides pour photographier les
atomes en mouvement pendant des réactions moléculaires, une avancée décisive pour la technologie d’imagerie
ultra-rapide. En 1987, lorsque les impulsions laser deviennent suffisamment courtes pour obtenir des images
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instantanées claires (quelques femtosecondes), le mouvement d’atomes pendant une réaction chimique est
mesuré pour la première fois en temps réel par spectroscopie pompe-sonde [174] (pump-probe spectroscopy).
Néanmoins, les électrons dans les atomes et les molécules se déplacent sur des échelles de temps inférieures à
la femtoseconde, qui sont plus de mille fois plus rapides que celles des atomes dans les molécules et les solides.
Pour mesurer en temps réel le mouvement des électrons pendant des réactions moléculaires, les impulsions
laser de la sonde doivent être plus de mille fois plus courtes que celles utilisées en femtochimie, c’est-à-dire
qu’elles doivent être des sources lumineuses d’une durée de l’ordre de l’attoseconde (1 as = 10−18s) . À
la fin des années 90 démarre ainsi la ruée vers les impulsions laser ultra-courtes: un effort théorique et
technologique.

Les lasers à électrons libres [69] [free-electron lasers (FELs)] constituent un premier type de sources
d’impulsions laser ultra-courtes. Ils nécessitent des ressources de très haute énergie et des infrastructures à
grande échelle. À l’opposé, l’autre type de sources d’impulsions laser ultra-courtes s’installe sur des paillasses
de taille relativement petites, et peut ainsi être facilement exploité en laboratoire. La première étape menant
à la production de ces impulsions laser ultra-courtes a été découverte en 1987, lorsque la génération de photons
d’harmoniques élevées [high harmonic generation (HHG)] a été observée pour la première fois en propageant
des impulsions laser IR femtosecondes à travers un gaz d’atomes [168]. Lorsqu’une impulsion laser IR se
propage dans un milieu constitué d’atomes ou de molécules, ce dernier émet des photons dans le régime des
ultraviolets extrêmes [extreme ultraviolet (XUV)]. Le spectre d’intensité HHG correspond à la distribution
des fréquences (ou des harmoniques) des photons radiés. Des spectres d’intensité HHG typiques pour un gaz
atomique sont représentés dans la Fig. 3 pour différentes intensités du laser. Pour les gaz isotropes, tels que
les gaz d’atomes, la fréquence des photons rayonnés est un multiple impair de la fréquence du laser IR [102].
Le spectre d’intensité HHG typique est composé de trois régions distinctes. Quelle que soit l’intensité du
laser, l’intensité des harmoniques décroit de manière exponentielle jusqu’à la cinquième harmonique. C’est
ce qu’on appelle la région des harmoniques inférieures au seuil [below threshold harmonics (BTH)]. Pour
des harmoniques plus élevées, l’intensité des harmoniques est plutôt constante, on parle de la région du
plateau. Une coupure abrupte suit la région du plateau, à l’harmonique de coupure, après quoi l’intensité
des harmoniques diminue soudainement. Ensuite, l’intensité des harmoniques est extrêmement faible. Sur la
Fig. 3, nous observons que l’harmonique de coupure augmente lorsque l’intensité du laser IR augmente.

Les premières observations de la région du plateau dans les spectres d’intensité HHG [54] ont été très
prometteuses pour la production d’impulsions laser ultra-courtes. En effet, un peigne de fréquence peut
être obtenu après avoir isolé la région du plateau en filtrant le spectre d’intensité HHG. Après traitement,
le faisceau de photons résultant est un train d’impulsions laser XUV ultra-courtes. Plus l’harmonique de
coupure est grande et plus l’impulsion laser est courte. En 2001, une unique impulsion attoseconde [70] et
un train d’impulsions attosecondes [132] ont été observés pour la première fois expérimentalement. De nos
jours, les sources de lumière ultra-courtes sur paillasse [153, 35] sont couramment utilisées en laboratoires.
Les impulsions laser XUV ultra-courtes ont ouvert l’accès aux mesures de la dynamique électronique avec
une résolution de l’ordre de l’attoseconde [56, 67, 64, 155, 87, 135].

État de l’art

La productivité et les technologies de la science attoseconde ont nettement progressées depuis 1993, après
la découverte du mécanisme sous-jacent à la région du plateau dans le spectre d’intensité HHG: les recolli-
sions [92, 39, 154]. Une recollision se produit lorsqu’un électron ionisé retourne dans son ion parent. De façon
remarquable, alors que le HHG est produit en propageant une impulsion laser IR à travers un gaz atomique
ou moléculaire, le mécanisme clé du HHG peut être compris à partir de la réponse d’un unique atome avec
un seul électron actif [100, 146]. En plus du HHG, les recollisions donnent lieu à une variété de phénomènes
non linéaires et sont désormais considérées comme la clé de voûte de la science attoseconde. Dans la Fig. 4,
les courbes rouges représentent le taux de publications (panneau de gauche) et le taux de citations (panneau
de droite) depuis la base de données de Web of Science avec “recollision” comme sujet. Nous observons que,
depuis lors, l’intérêt suscité par les recollisions n’a cessé d’augmenter.

Recollisions: clé de voûte de la science attoseconde La physique du HHG est bâtie sur un scénario
de recollision en trois étapes [39, 154], qui est illustré dans la Fig. 5. Nous considérons un atome à un seul
électron actif [single-active electron (SAE)] sujet à un champs laser E(t) = exE0 cos(ωt) polarisé linéairement
[linearly polarized (LP)]. Le champ laser oscille en temps le long de l’axe de polarisation ex à une fréquence
ω. Si l’amplitude du laser E0 est suffisamment grande, un électron peut être arraché du noyau par le laser:
il s’agit de l’étape (i) du scénario de recollision. Au cours de l’étape (i), un paquet d’onde électronique ionise
par effet tunnel à travers la barrière de potentiel induite par le champ laser.
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À l’étape (ii) du scénario de recollision [39, 154], le mouvement de l’électron est traité de manière classique.
L’électron est initié sur la barrière de potentiel dans la direction opposée à celle du champ laser. Son
mouvement est le long de l’axe de polarisation. À partir du principe fondamental de la dynamique ẍ =
−E0 cos(ωt), la position de l’électron en fonction du temps est donnée par l’Éq. (1), où x(t0) = x0 et
ẋ(t0) = 0 sont respectivement la position et la vitesse de l’électron initié sur la barrière de potentiel au temps
d’ionisation t0. Les unités atomiques sont utilisées dans tout le manuscrit, sauf indication contraire. Nous
observons que le mouvement de l’électron est composé principalement de deux composantes: une dérive dans
le terme sin(ωt0)ωt et des oscillations dans le terme cos(ωt). L’électron ionise relativement près du noyau, à
x0 ∼ 1 a.u. En revanche, l’ordre de grandeur de l’amplitude des oscillations de l’électron dans le champ laser
est E0/ω

2 ∼ 10 a.u. pour les paramètres du laser utilisés dans la Fig. 3. Lors de l’excursion de l’électron
en dehors de l’ion parent, il est redirigé vers son origine après que le champ laser ait atteint son amplitude
maximale et retourne dans l’atome: ceci est une recollision.

Lors de l’étape (iii), l’électron interfère et recombine avec la partie de la fonction d’onde qui est restée
dans l’état fondamental de l’atome. Le temps de la recombinaison de l’électron de recollision, noté t0 + ∆t,
est tel que x(t0 + ∆t) ≈ 0, avec ∆t le temps d’excursion hors de l’ion parent. Lors de la recombinaison,
un photon de fréquence Ω est émis selon la loi décrite par l’Éq. (2), où Ip est le potentiel d’ionisation de
l’atome. La partie droite de l’Éq. (2) est l’énergie de l’électron lors de la recollision en fonction du temps
d’ionisation t0, du temps de recombinaison t0 + ∆t et de l’énergie pondéromotrice Up = E2

0/4ω
2. Dans

le spectre d’intensité HHG, le BTH est constitué de photons émis à une fréquence Ω < Ip. La région du
plateau est constituée de photons émis par des processus de recollision [39, 100, 146, 166, 20]. Dans l’Éq. (2),
nous observons que la fréquence des photons rayonnés dépend du temps auquel les électrons de recollision
ionisent et recombinent. Nous supposons que x0 ≈ x(t0 + ∆t) ≈ 0. En utilisant l’Éq. (1), cela implique
que sin(ωt0) = [cos(ωt0) − cos(ωt0 + ω∆t)]/ω∆t. Cette condition fixe le temps d’excursion des électrons de
recollision en fonction de leur temps d’ionisation. Nous substituons cette condition dans l’Éq. (2). Nous
maximisons la fréquence du photon radié en fonction du temps d’ionisation de l’électron ionisé t0 et de
leur temps d’excursion ∆t, et nous obtenons la fréquence maximale du photon radié par le processus de
recollision [39, 100], donnée par l’Éq. (3) pour ω∆t ≈ 4.09 et ωt0 ≈ 0.31. Par conséquent, les trajectoires
qui ramènent le plus d’énergie à l’ion parent, de l’ordre de 3.17Up, ionisent peu après que le laser ait atteint
son amplitude maximale, et recollisionnent à peu près un demi cycle laser plus tard. Pour un laser de
longueur d’onde λ = 1064 nm et des lasers d’intensité I = 3 × 1013 W · cm−2, I = 1.3 × 1013 W · cm−2,
I = 9 × 1012 W · cm−2, I = 7 × 1012 W · cm−2, I = 5 × 1012 W · cm−2 (intensités de laser utilisées dans la
Fig. 3), les harmoniques de coupure prédite par l’Éq. (3) sont (◦) Ωc/ω ≈ 19, (•) Ωc/ω ≈ 14, (�) Ωc/ω ≈ 13,
(�) Ωc/ω ≈ 12 et (

a
) Ωc/ω ≈ 12, respectivement. La loi de coupure prédite par l’Éq. (3) est en accord

avec les mesures expérimentales de la Fig. 3, en particulier pour des intensités I > 7 × 1012 W · cm−2. Le
mécanisme de recollision et le processus physique donnant lieu au HHG sont résumés dans la Fig. 6. La
Fig. 6a montre l’installation expérimentale dans laquelle un gaz d’atomes est sujet à une impulsion laser IR
intense. La Fig. 6b représente schématiquement le mouvement de l’électron dans un atome sujet au champ
laser. La Fig. 6c représente l’harmonique correspondant à l’énergie de retour de l’électron en fonction de
son temps d’ionisation (panneau du haut) et un spectre d’intensité HHG en fonction de l’harmonique des
photons radiés. À chaque fréquence de photons radiés dans la région du plateau est associée une énergie de
retour d’un électron de recollision.

En résumé, la mécanique classique a été capable de dévoiler le mécanisme physique sous-jacent HHG,
produit lorsque des atomes sont sujets à des impulsions laser intenses. En particulier, la loi de l’harmonique
de coupure prédite par le modèle de recollision (3) est en accord avec les mesures expérimentales [102]. La
durée du champ laser après traitement du signal est inversement proportionnelle à la valeur de l’harmonique
de coupure. Pour augmenter l’harmonique de coupure de manière significative, la fréquence du laser doit être
abaissée ou son amplitude doit être augmentée. Néanmoins, l’intensité et la fréquence du champ laser sont
limitées par les outils technologiques disponibles. Augmenter la fréquence de coupure n’est pas tâche facile,
et est au cœur de nombreuses études (voir Réfs. [7, 44], e.g.).

Le succès du scénario de récollision pour décrire la production de HHG démontre l’existence de carac-
téristiques classiques dans ces systèmes fondamentalement quantiques. Étant donné qu’il s’agit ici d’un point
de rencontre entre la mécanique classique et la mécanique quantique, un autre rôle important de la science
attoseconde est de tester et de remettre en question des concepts, méthodes et interprétations issus de cette
mixture de mécanique classique et quantique. Par exemple, le “temps que l’électron passe sous la barrière
de potentiel” pour ioniser pendant l’étape (i), appelé “temps de tunnel” dans les Réfs. [95, 94], demeure un
débat dans la communauté [30, 155, 10, 134, 95, 94, 124, 60, 152, 149]. Dans cette thèse, nous exploitons les
caractéristiques classiques de la dynamique électronique après ionisation afin de comprendre et d’interpréter,
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à l’aide des trajectoires, les phénomènes non linéaires observés dans des atomes sujets à des impulsions laser
intenses et polarisées elliptiquement.

Phénomènes non-linéaires Au vu du succès de la prédiction de l’harmonique de coupure par le modèle
en trois étapes, obtenue en ignorant l’interaction entre l’électron et son ion parent, nous pourrions penser que
cette dernière joue un rôle mineur dans le mécanisme de production de sources de lumière ultra-courtes. Il est
pourtant dominant lorsque l’électron revient dans l’atome. En expérimentant de fortes interactions avec l’ion
parent, l’électron sonde ses structures et sa dynamique électronique interne. Si l’électron émet des photons,
ces informations se retrouvent dans le spectre d’intensité HHG. La spectroscopie des harmoniques élevées est
une technique permettant d’extraire ces informations depuis les spectres d’intensité HHG. Par exemple, la
spectroscopie à hautes harmoniques est utilisée pour mesurer la migration de charge dans les molécules [90].

Un premier effet évident de l’interaction ion-électron à l’intérieur des atomes est la déviation de l’électron
de recollision au moment du retour (voir le panneau central de la Fig. 7). La combinaison des fortes interac-
tions de l’électron avec le laser et l’ion parent peut produire des électrons ionisés de hautes énergies [39, 133].
Il s’agit d’une ionisation au-dessus du seuil [above-threshold ionization (ATI)]. La déviation des électrons de
recollision par l’ion parent est appelée la rediffusion de l’électron. Au cours de la rediffusion, les électrons
sondent la structure interne et la dynamique à l’intérieur de l’atome et des molécules ciblées [99]. Les distri-
butions des électrons ionisés au niveau du détecteur, appelées distributions de moments photoélectroniques
[photoelectron moementum distributions (PMDs)], encodent ces informations [115, 76]. C’est la base d’une
majorité de techniques d’imagerie, par exemple en diffraction électronique induite par le laser [176, 115, 139]
[laser induced electron diffraction (LIED)] pour l’imagerie moléculaire [25] et en holographie photoélectron-
ique [76, 22]. Ces techniques sont souvent perçues comme des expériences de “demi-diffusion”, en analogie
avec les expériences de “diffusion” de Rutherford [151] en 1911, dans lesquelles des particules sont envoyées
depuis l’infini afin de sonder des atomes ciblés. Ici, les particules sondant la cible proviennent des cibles
elles-mêmes.

Un autre effet évident des interactions ion-électron est de contenir les électrons au voisinage du noyau.
En particulier, les interactions ion-électron peuvent contenir des électrons au voisinage du noyau pendant que
des électrons de recollision font une excursion hors de l’ion parent. Lorsqu’un électron de recollision retourne
dans l’atome il échange de l’énergie avec un électron lié et les deux peuvent ioniser [39, 110] (voir le panneau
inférieur dans la Fig. 7). Il s’agit d’une double ionisation non séquentielle [nonsequential double ionization
(NSDI)]. La NSDI est l’une des manifestations les plus dramatiques de la corrélation électron-électron dans
la nature [17]. Les PMDs des atomes doublement ionisés encodent des informations sur les corrélations
électron-électron [141, 18].

En résumé, les recollisions, parce qu’elles impliquent la combinaison de fortes interactions des électrons
avec le champ laser et les ions parents, donnent lieu à une variété de phénomènes hautement non linéaires [39,
16, 41, 5, 91, 17] résumés dans la Fig. 7. Des techniques d’imagerie basées sur ces phénomènes hautement non
linéaires offrent des perspectives très prometteuses. Cependant, en raison de leur inhérente technicité et de la
difficulté fondamentale à évaluer le mouvement des électrons en interaction avec un laser et leur ion parent,
elles ne sont pas encore des procédures couramment utilisées dans les laboratoires pour mesurer en temps
réel le mouvement des électrons dans la matière. En particulier, des films de dynamique électronique dans
de grandes molécules biologiques polyatomiques n’ont pas été observés jusqu’alors. La science attoseconde
en est encore à un stade relativement précoce.

Ellipticité du laser et potentiel de Coulomb La force de l’interaction ion-électron la plus fondamentale
est quantifiée par le potentiel de Coulomb. Alors que le rôle du potentiel de Coulomb est évident dans les
processus de rediffusion (en ATI) et dans le piégeage des électrons proches de leur ion parent (en NSDI), il n’en
va pas de même pour ses manifestations dans la dynamique des électrons ionisés. L’ellipticité du champ laser
qui, expérimentalement, peut être utilisé comme un simple bouton de commande, met en évidence différents
phénomènes issus de la dynamique électronique [9, 63, 156, 96, 75, 47, 68, 36, 43, 114]. La Fig. 4 montre le
taux de citations et de publications ayant pour thème “Impulsions laser à polarisation elliptique” et “Coulomb
dans les impulsions laser intenses”. Depuis 1990, l’intérêt porté à ces sujets s’est considérablement accru. En
particulier, puisqu’il a été constaté que le changement d’ellipticité du laser IR met en évidence l’impact du
potentiel de Coulomb sur le mouvement des électrons ionisés, appelés effets de Coulomb [28, 11, 62, 38, 93].
En d’autres termes, en modifiant l’ellipticité du laser, il a été constaté que le potentiel de Coulomb est en
réalité important, même après l’ionisation de l’électron.

La Fig. 8 montre les PMDs et les distributions angulaires photoélectroniques [photoelectron angular
distributions (PADs)] des atomes de He pour différentes ellipticités du laser. Les PMDs sont les distributions
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de la quantité de mouvement des électrons ionisés au niveau du détecteur, et les PADs sont les distributions
de l’angle de la quantité de mouvement des électrons ionisés par rapport à l’axe majeur de polarisation. Le
champ laser est de la forme E(t) = E0f(t)[ex cos(ωt)+eyξ sin(ωt)]/

√
ξ2 + 1, où ex et ey sont respectivement

l’axe majeur et mineur de polarisation. L’ellipticité du laser est ξ et son enveloppe est f . La durée du laser est
relativement longue, de sorte que l’enveloppe du laser est f ≈ 1 pour plusieurs cycles laser. Dans la Fig. 8,
nous observons que lorsque l’ellipticité du laser est modifiée, la forme des PMDs subit des modifications
drastiques.

Dans la Fig. 8, pour ξ = 0 (champs LP), la PMD est un lobe centré autour de l’origine de l’espace des
moments. Dans la PAD, nous observons que ce nuage est légèrement asymétrique par rapport à l’axe mineur
de polarisation. Pour ξ = 0.15, les PMDs se divisent en deux lobes symétriques par rapport à l’origine de
l’espace des moments. Pour augmenter l’ellipticité, les deux lobes s’éloignent davantage. Le cadre théorique
naturel afin d’interpréter ces mesures consiste à appliquer la même procédure que celle utilisée pour décrire
le scénario de recollision, à savoir: (i) l’électron ionise par effet tunnel, (ii) le mouvement de l’électron est
traité classiquement sans tenir compte du potentiel de Coulomb. L’électron ionise en dehors de la barrière de
potentiel induite par le champ laser, son impulsion initiale est donc p0 = 0. D’après le principe fondamental
de la dynamique, ṗ = −E(t), l’impulsion de l’électron est donnée par p = A(t) −A(t0), où t0 est le temps
d’ionisation. Le potentiel vecteur est A(t) tel que E(t) = −∂A(t)/∂t. Asymptotiquement, au niveau du
détecteur, le potentiel vecteur du champ laser est nul et donc p(t) = −A(t0). Le temps d’ionisation le plus
probable de l’électron est tel que l’amplitude du champ laser est la plus grande, c’est-à-dire que ωt0 = kπ
avec k ∈ Z. Par conséquent, en l’absence du potentiel de Coulomb, le moment asymptotique de l’électron le
plus probable est donné par l’Éq. (4). Pour ξ = 0 (champs LP), le moment asymptotique le plus probable
de l’électron est égal à zéro, conformément aux mesures expérimentales de la Fig. 8. Pour des ellipticités
plus grandes, le moment asymptotique le plus probable de l’électron s’éloigne à partir de l’origine le long de
l’axe mineur de polarisation, en accord qualitatif avec les mesures expérimentales des panneaux supérieurs
de la Fig. 8. Pour des ellipticités croissantes, l’énergie de dérive de l’électron augmente, et par conséquent,
l’électron s’éloigne de plus en plus vite de l’ion parent. L’électron ionise sans recollision.

Afin d’évaluer ces changements qualitatifs des PMDs, dans la Réf. [93], la localisation du pic du lobe
supérieur des PMDs est suivie en fonction de l’ellipticité du laser (panneau inférieur de la Fig. 8), notée
P = Pxex + Pyey. Dans le panneau inférieur de la Fig. 8, les cercles bleus et rouges sont les coordonnées
des moments du pic du lobe supérieur dans les PMDs, Px et Py, respectivement. La courbe verte continue
est la composante positive de P donnée par l’Éq. (4) le long de l’axe mineur de polarisation ey. La courbe
noire continue est la composante de P donnée par l’Éq. (4) le long de l’axe majeur de polarisation ex. Pour
ξ . 0.1, nous observons que P ≈ 0, par conséquent, la PMD est principalement constituée d’un lobe centré à
l’origine. En revanche, la courbe verte augmente linéairement dans cette plage d’ellipticités. La persistance
du lobe unique dans les PMDs, révélée par le panneau inférieur de la Fig. 8, est appelée la focalisation de
Coulomb [28, 38]. Pour ξ & 0.1, nous observons que lorsque Py devient positif, Px devient négatif. Dans
cette plage d’ellipticités, les cercles rouges correspondent bien à la courbe verte. Cependant, il y a une
différence notable entre la courbe noire horizontale et les cercles bleus. En effet, Px est négatif et non nul.
Dans les PMDs, nous observons une asymétrie par rapport à l’axe mineur de polarisation. Cette asymétrie,
révélée par le panneau inférieur de la Fig. 8, est appelée l’asymétrie de Coulomb [11, 62]. Dans les mesures
expérimentales reportées dans la Réf. [104], l’impulsion finale de l’électron présente les mêmes caractéristiques
que dans les expériences [140, 93] (voir Fig. 3.13). L’hypothèse faite dans la Réf. [93] est qu’il existe une
bifurcation lorsque varie l’ellipticité du champ laser.

En résumé, le changement d’ellipticité révèle les effets du potentiel de Coulomb et modifie le canal
d’ionisation prioritaire emprunté par les électrons. Ainsi, par exemple, les électrons peuvent sonder dif-
férentes caractéristiques des atomes ciblés. Cependant, il y a toujours eu des obstacles fondamentaux à la
compréhension et à l’évaluation de l’impact du potentiel de Coulomb sur les trajectoires des électrons ionisés.
En particulier, l’entrelacement entre l’interaction des électrons ionisés avec le laser et l’interaction des élec-
trons ionisés avec leur ion parent donne lieu à de multiples échelles temporelles et spatiales, ce qui confère à
la dynamique des électrons ionisés une très haute non linéarité.

Travail de thèse

Dans cette thèse, nous considérons des atomes d’électrons actifs simples (à l’exception de la Sec. 4.3 où une
extension de l’étude est réalisée pour les atomes à deux électrons actifs) sujets à des impulsions laser intenses
et polarisées elliptiquement. La dynamique de l’électron est étudiée dans le cadre quantique et classique.
Dans le cadre classique, des outils issus de la dynamique non linéaire et du formalisme hamiltonien sont
utilisés pour étudier le mouvement de l’électron.
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Objectifs de la thèse L’objectif général de cette thèse est de comprendre les changements de la dynamique
des électrons dans les atomes sujets à des impulsions laser intenses pour différentes ellipticités, ainsi que leur
impact sur les phénomènes hautement non linéaires observés en expériences. L’un des objectifs est de décrire
le mouvement des électrons dans le cadre classique, afin d’exploiter des outils issus de la dynamique non
linéaire, tout en tenant compte de la nature quantique des électrons dans les atomes. Un autre but consiste
ensuite à évaluer le rôle du potentiel de Coulomb dans la dynamique des électrons ionisés et dans l’excursion
des électrons de recollision. Cela consiste à identifier les manifestations du potentiel de Coulomb dans des
mesures expérimentales ou numériques et à déterminer les mécanismes sous-jacents en termes de trajectoires
d’électrons. Pour se faire, une autre visée est d’isoler la contribution du champ laser et de l’interaction
coulombienne, afin d’identifier et de décrire le rôle du potentiel de Coulomb dans les phénomènes non linéaires
observés en science attoseconde.

Méthodes Dans ce manuscrit de thèse, nous détaillons les investigations numériques et analytiques qui ont
été effectuées. Nous montrons:

• La dérivation d’une hiérarchie de modèles réduits pour décrire la dynamique de l’électron dans un
champ laser intense en termes de la dynamique de son centre guide.

• Le calcul de structures invariantes de haute dimension dans l’espace des phases (variétés invariantes
d’une famille de tores invariants unidimensionnels).

• La représentation de structures invariantes de grande dimension en deux dimensions.

• Le calcul des simulations de Monte Carlo à trajectoires classiques [classical trajectory Monte Carlo
(CTMC)].

• Les résultats des statistiques de haute résolution calculées à l’aide de cartes graphiques [graphics pro-
cessing units (GPU)].

Chapitre 1. Modèle Hamiltonien pour des atomes sujets à des impulsions laser
intenses polarisées elliptiquement

Dans ce chapitre, nous dérivons les modèles hamiltoniens pour des atomes à un électron actif sujets à des
impulsions laser intenses et polarisées elliptiquement dans le cadre de la mécanique quantique et classique. En
comparant la distribution de quasi-probabilité de Wigner [167] de l’électron et sa distribution classique dans
l’espace des phases, nous montrons que la dynamique quantique de l’électron présente des caractéristiques
classiques claires après son ionisation. Nous décrivons un modèle en deux étapes dans lequel l’électron
(i) ionise par effet tunnel à travers la barrière de potentiel induite par le champ laser et (ii) se déplace
classiquement en dehors de la région de l’ion parent. Ce modèle en deux étapes nous permet d’exploiter des
outils issus de la dynamique non linéaire tout en tenant compte de la nature fondamentalement quantique
des électrons dans les atomes.

Premièrement, le traitement classique de la dynamique des électrons après ionisation nous permet de
décrire les mécanismes sous-jacents des phénomènes non-linéaires observés expérimentalement en termes de
trajectoires électroniques. Les trajectoires, qui sont des représentations locales dans l’espace, nous permettent
de visualiser et d’interpréter plus clairement le mouvement et le comportement des électrons en fonction du
temps. Deuxièmement, le modèle en deux étapes nous permet de distinguer entre les phénomènes dus à la
fois à la population d’états initiaux de l’ionisation quantique des électrons et à leur mouvement classique
ultérieur, et les phénomènes uniquement dus au mouvement classique ultérieur à l’ionisation par effet tunnel.
En effet, dans la description classique de la dynamique, les conditions initiales de l’électron ont une importance
primordiale. C’est aussi le cas dans des phénomènes comme la bifurcation dans les PMDs (étudiée au Chap. 3)
ou l’absence de recollisions dans les champs polarisés circulairement [circularly polarized CP] pour des atomes
spécifiques (étudié au Chap. 4), qui sont dues à la fois à la population de conditions initiales par ionisation
quantique et au mouvement classique ultérieur de l’électron. En revanche, des phénomènes, tels que la
création d’états de Rydberg et les recollisions induites par l’interaction coulombienne (également étudiées au
Chap. 3), sont principalement dus au mouvement classique ultérieur de l’électron après son ionisation.

Dans le cadre de la description classique, la dynamique de l’électron est régie par le hamiltonien (1.14).
Dans ce manuscrit, deux méthodes issues de la dynamique non-linéaire sont principalement utilisées pour
étudier le hamiltonien (1.14). Au Chap. 2, nous utilisons des méthodes perturbatives pour déterminer des
modèles réduits permettant de décrire le mouvement de l’électron dans l’espace des phases. Au Chap. 5,
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nous utilisons des méthodes non perturbatives pour analyser la dynamique de l’électron dans l’espace des
phases. En particulier, nous identifions des objets invariants qui structurent l’espace des phases et guident
les recollisions.

Chapitre 2. Dynamiques réduites pour des atomes sujets à des impulsions laser
intenses polarisées elliptiquement: Le modèle du centre guide

Dans ce chapitre, nous dérivons des modèles réduits d’atomes soumis à des impulsions laser intenses et polar-
isées elliptiquement, à savoir: l’approximation à champ fort [strong field approximation (SFA)], l’approximation
à champ fort perturbé par le potentiel de Coulomb [Coulomb-corrected strong field approximation (CCSFA)]
et les modèles du centre guide [guiding center (GC)]. Le SFA néglige le potentiel de Coulomb et le CCSFA le
traite comme une perturbation de l’interaction laser. Concernant les modèles du GC, notés Gn, nous établis-
sons une hiérarchie de modèles pour la dynamique du GC. Le mouvement du GC correspond au mouvement
moyen de l’électron dans le champs laser et l’interaction coulombienne. La hiérarchie de modèles Gn est
dérivée en utilisant les transformées de Lie canoniques et prend en compte le potentiel de Coulomb.

Les modèles réduits Gn sont composés d’un hamiltonien moyen Hm régissant la dynamique du GC
[Éqs. (2.17)] et une transformation Φn qui permet de passer des coordonnées de l’électron dans l’espace
des phases à celles du GC [Éqs. (2.19)]. Grâce à la moyennisation, les hamiltoniens du GC ne dépendent pas
explicitement du temps. On peut ainsi définir une énergie pour les électrons à partir de l’énergie de leur GC.
De manière générale, ces modèles sont pertinents lorsque l’électron est relativement éloigné de l’ion parent
(lorsque la distance entre l’ion parent et l’électron est supérieure à la distance caractéristique de l’électron
dans le laser). Ces modèles ne décrivent pas les événements brefs où l’électron est diffusé par l’ion parent
lors de la recollision. Cependant, ces modèles capturent la dynamique de l’électron sur des échelles de temps
longues, et peuvent ainsi décrire les recollisions qui ont lieu sur plusieurs cycles laser ou la capture de l’électron
dans un état de Rydberg.

Nous avons distingué deux modèles G2 et G5: le premier modèle fournit le comportement principal des
électrons, il est le plus maniable en raison de sa simplicité et le plus robuste près de l’ion parent. Afin
d’améliorer l’accord quantitatif, un modèle d’ordre supérieur tel que G5 doit être utilisé. Tous ces modèles
permettent de faire la distinction entre ionisations directes et rediffusées par l’ion parent grâce au critère de
conservation d’énergie de la trajectoire du GC. Ceci peut-être particulièrement utile pour l’analyse des PMDs
pour l’imagerie atomique ou moléculaire. Les événements de rediffusion peuvent être vus comme des sauts
d’énergie du GC résultant du transfert d’énergie de l’ion parent à l’électron.

Chapitre 3. Impact du potentiel de Coulomb en ATI: Les recollisions engendrées
par l’interaction coulombienne et la création d’états de Rydberg

Dans ce chapitre, nous étudions le rôle du potentiel de Coulomb durant l’étape (ii) du processus d’ionisation
en utilisant quatre modèles, à savoir: le modèle hamiltonien de référence (1.14), le SFA [Éqs. (2.2)], le CCSFA
[Éqs. (2.3)] et le modèle GC au second ordre [G2 = (H2,Φ2), voir Tab. 2.1]. L’analyse de ces trois modèles
réduits nous permet de mettre en lumière les manifestations du potentiel de Coulomb dans divers processus
d’ionisation. Le SFA est utilisée pour cibler les contributions du potentiel de Coulomb, comme nous l’avons
fait avec l’Éq. (4) et la Fig. 8. Le CCSFA et le modèle GC de second ordre sont utilisés pour découpler les
contributions du laser et du potentiel de Coulomb.

Dans le SFA, il existe principalement deux types de trajectoires: les recollisions plus courtes qu’un cycle
laser et les ionisations directes. Cependant, même lorsque l’intensité est très grande, c’est-à-dire lorsque les
conditions du SFA sont réunies, l’interaction coulombienne se fait toujours ressentir lors des phénomènes à
longue portée. En particulier, même à de très hautes intensités, l’asymétrie de Coulomb persiste, comme
le montre la Fig. 3.3 et est discutée dans la Sec. 3.1.1. L’interaction coulombienne apporte une variété de
différents types de trajectoires supplémentaires, tels que les recollisions engendrées par l’interaction coulom-
bienne et les états de Rydberg. Nous montrons dans la Sec. 3.2 que ces deux processus sont intimement liés
et peuvent être interprétés et prédits par le modèle de GC.

Au cours de l’étape (ii) du scénario de recollision, nous avons montré que l’électron oscille autour de la
trajectoire du GC. Dans l’espace des phases, la trajectoire du GC repose sur une variété d’énergie constante
E = H2(r̄, p̄). Si E > 0, le mouvement du GC est non lié. Dans ce cas, il est probable que l’électron
recollisionne si le moment angulaire de son GC est proche de zéro et si son moment radial initial est négatif
(comme sur la Fig. 3.7b). Sinon, l’électron ionise directement sans recollisionner (comme sur la Fig. 3.7c).
Si E < 0, le mouvement du GC est lié. Dans ce cas, il existe au moins un instant lors duquel l’électron
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revient dans la direction de l’ion parent, lorsque son moment radial s’annule. Ensuite, l’électron peut ou
non retourner dans l’atome (recollisionner) avant que le champ laser ne soit éteint. Si l’électron recollisionne
avant que le champ laser soit éteint (comme sur les Figs. 3.7d et 3.8d), l’énergie du GC passe à un nouveau
niveau d’énergie. Si le champ laser est désactivé avant que l’électron recollisionne (comme sur les Figs. 3.7e
et 3.8e), l’électron finit sa route sur la trajectoire du GC et est capturé dans un état de Rydberg.

Le modèle GC ne prend pas en compte les effets de rediffusion proches de l’ion parent, mais le CCSFA
peut, car il s’agit d’un phénomène sur une échelle temporelle relativement courte [82, 84, 85, 114]. Comme
observé sur la Fig. 3.15, les variations d’énergie du modèle de référence (1.14) peuvent être bien décrites par
le CCSFA sur des échelles de temps courtes. Après rediffusion, l’électron ionise potentiellement si l’énergie
de son GC devient positive (comme dans la Fig. 3.7d). Par conséquent, les modèles CCSFA et GC sont
clairement complémentaires. Le CCSFA est adapté pour la description de processus à temps courts, tels que
la rediffusion, tandis que les modèles GC conviennent davantage à la description de processus à temps long,
tels que les recollisions induites par l’interaction coulombienne et la création d’états de Rydberg.

Enfin, nous montrons que le changement d’ellipticité modifie le rendement des différents types de tra-
jectoires après l’ionisation par effet tunnel. En particulier, pour des ellipticités croissantes, le domaine de
rediffusion pour lequel E < 0, dans lequel les recollisions induites par l’interaction coulombienne et les états
de Rydberg sont créés, se déplace vers des régions des conditions initiales à faible taux d’ionisation. Par
conséquent, le rendement de la création d’états de Rydberg diminue considérablement avec l’augmentation
de l’ellipticité, comme observé dans le panneau de gauche de la Fig 3.1. De plus, nous montrons que le com-
portement de la trajectoire-T change radicalement avec l’augmentation de l’ellipticité. De plus, le moment
asymptotique de la trajectoire-T subit une bifurcation en fonction de l’ellipticité du laser et permet ainsi
d’interpréter la bifurcation observée expérimentalement (voir le panneau inférieur de la Fig. 8). Près des
champs LP (ξ = 0), l’énergie du GC de la trajectoire-T est négative et l’électron recollisionne avec une forte
probabilité. À l’ellipticité critique ξc, l’énergie du GC de la trajectoire-T change de signe et le mouvement de
son GC devient non lié. L’électron subit probablement une ionisation directe pour ξ > ξc. Par conséquent,
à ξ = ξc, le rendement des états de Rydberg est beaucoup plus faible que celui à ξ = 0. La diminution
drastique du rendement des états de Rydberg et la bifurcation dans les PMDs sont dues à la combinaison
entre la population d’états classiques par l’ionisation par effet tunnel quantique, et le mouvement classique
ultérieur de l’électron impacté par le potentiel de Coulomb.

Chapitre 4. Mécanisme de recollision à hautes ellipticités et leur importance en
HHG et NSDI: Rôle de l’enveloppe du champ laser

Dans ce chapitre, nous identifions un canal de recollisions, dans lequel les électrons retournent dans l’atome
avec une grande énergie et une forte probabilité, quelque-soit l’ellipticité du champ laser. Ce canal de
recollision est dû aux effets de l’enveloppe du laser f(t). La compétition entre l’interaction coulombienne et
le champ laser crée un canal d’ionisation dès que le champ laser est activé. Une fois que l’électron est en
dehors de l’atome, l’amplitude du potentiel vecteur est faible et la dérive latérale de l’électron peut donc être
compensée par son moment initial. L’électron ne dérive pas, même pour de hautes ellipticités, et peut par
conséquent retourner dans son atome. Ces recollisions sont appelées les recollisions induites par l’enveloppe.
Le modèle GC dérivé dans le Chap. 2 nous permet de déterminer les conditions pour lesquelles ces recollisions
peuvent être observées dans des champs laser fortement polarisés elliptiquement. Pour des champs laser CP,
le potentiel d’ionisation de l’électron doit être tel que Ip < Ic, où Ic est le potentiel critique d’ionisation donné
par l’Éq. (4.17). Le potentiel critique dépend principalement de la longueur d’onde du laser. Par conséquent,
ces recollisions peuvent être observées et se manifester pour des atomes spécifiques et des longueur d’ondes
spécifiques. Pour les champs laser fortement polarisés elliptiquement, lors de son excursion dans le continuum,
les électrons gagnent de l’énergie principalement à partir des variations de l’enveloppe du laser. Au cours de
leur excursion en-dehors de l’ion parent, l’énergie des recollisions induites par l’enveloppe peut augmenter leur
énergie de 2Up, ce qui permet un retour d’énergie de l’électron Er supérieur à 2Up. Nous observons également
un bon accord entre l’énergie de retour de l’électron dans le SFA et l’énergie de retour du hamiltonien (1.14).

Nous montrons que ce canal de recollision peut être utilisé pour produire du HHG et du NSDI avec des
atomes sujets à des champs laser à polarisation elliptique élevée (champs à polarisation proche de CP). Les
conditions d’existence de ce canal de recollisions nous permettent de déterminer les conditions pour lesquelles
l’augmentation de la double ionisation ou le HHG peuvent être observés dans des atomes sujets à des champs
laser CP (voir la Fig. 4.4), et ceux, en accord avec les conditions pour lesquelles les manifestations des
recollisions dans des atomes soumis à des champs CP sont expérimentalement mesurées [61, 111] [55, 65, 61].
De plus, nous remarquons que, pour des conditions raisonnables, ces recollisions peuvent avoir lieu dans la
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configuration de l’Attoclock, où les recollisions sont toujours supposées inexistantes [53, 152].

Chapitre 5. Structure de l’espace des phases de l’électron de recollision durant
l’étape (ii)
Dans ce chapitre, nous étudions l’espace des phases de l’électron lors de l’étape (ii) à l’aide de méthodes non
perturbatives. Le potentiel de Coulomb et les interactions laser sont pleinement pris en compte. Les calculs
numériques sont détaillés dans l’annexe D. Nous étudions le comportement global des trajectoires à partir de
l’analyse des structures invariantes pour d = 1, 2, 3, où d est la dimension de l’espace des configurations. En
particulier, nous montrons qu’un ensemble de variétés invariantes d’une famille de tores invariants associés à
une orbite périodique issue de la compétition entre les fortes interactions coulombiennes et du laser, guide la
dynamique des électrons dans l’espace des phases. Nous montrons que les orbites périodiques de recollisions
[recolliding periodic orbits (RPOs)], une famille spécifique d’orbites périodiques introduite dans les Réfs. [81,
80], sont situées au voisinage de cette structure invariante de haute dimension. Nous étudions les symétries
des équations du mouvement de l’électron pour différentes ellipticités et leur impact sur les objets invariants.
Nous montrons que les structures invariantes clés qui dirigent les recollisions existent indépendamment de
l’ellipticité.

Conclusions
La science attoseconde utilise la dynamique connue des électrons ionisés, arrachés de leur atomes ou molécules
parents par une impulsion laser intense, pour imager la dynamique structurelle de ces cibles lors de processus
ultra-rapides hors équilibre, tels que les migrations de charges et la dynamique électronique lors de réactions
chimiques. Dans cette thèse, nous avons montré que, malgré leur nature fondamentalement quantique dans
les atomes et les molécules, les électrons manifestent certains comportements classiques lorsqu’ils sont soumis
à d’intenses impulsions laser. De manière remarquable, la mécanique classique, à l’aide de trajectoires et
d’outils issus de la dynamique non linéaire, s’est avérée très pertinente pour identifier et interpréter les
mécanismes sous-jacents des phénomènes non linéaires observés en expériences. Cependant, il existe des
obstacles fondamentaux pour interpréter avec précision ces trajectoires électroniques.

La première difficulté consistait à prendre en compte la nature quantique des électrons dans les atomes
et les molécules. En effet, dans la nature, les électrons dans les atomes et les molécules sont uniquement
décrits avec précision par la mécanique quantique et leur représentation en tant que fonction d’onde. Ce
n’est qu’après avoir ionisé, pour des intensités laser suffisamment grandes, que la dynamique quantique des
électrons présente clairement des caractéristiques classiques. Dans notre cadre, l’état des électrons avant
l’ionisation a été traité de manière quantique. Selon les paramètres, les électrons peuvent ioniser à travers
ou au-dessus de la barrière de potentiel induite par le champ laser intense. Alors que l’ionisation à travers la
barrière de potentiel est un processus purement quantique, l’ionisation au-dessus de la barrière a également
été décrite avec précision par la mécanique classique. Après l’ionisation, le mouvement de l’électron a été
traité de manière purement classique en termes de trajectoires. Dans les deux cas, l’ionisation par effet tunnel
ou au-dessus de la barrière, les caractéristiques quantiques des électrons étaient contenues dans la distribution
des conditions initiales des trajectoires.

La deuxième difficulté était de comprendre et d’analyser les trajectoires des électrons ionisés en tenant
compte de l’interaction avec leur ion parent, qui est généralement ignorée mais qui peut manifester sa présence
même après l’ionisation. Nous avons montré que l’interaction des électrons ionisés avec le laser et leur
ion parent donnent naissance à de multiples échelles temporelles et spatiales, ce qui rend leur dynamique
extrêmement non linéaire et donnent naissance à des canaux d’ionisation riches et variés. En modifiant
l’ellipticité du laser, qui est utilisé comme un simple bouton de contrôle en expériences, le canal d’ionisation
prioritairement emprunté par les électrons est aussi modifié. Afin de comprendre et d’analyser la variété
de canaux d’ionisation que peuvent emprunter les électrons ionisés, nous avons utilisé principalement deux
méthodes. La première méthode était non perturbative et consistait à comprendre la dynamique des électrons
à travers l’analyse de structures invariantes dans l’espace des phases. L’un des avantages de cette technique
est de fournir un cadre d’analyse du comportement global des trajectoires plutôt que de leurs comportements
individuels. La seconde méthode était perturbative et consistait à dériver des modèles réduits et à les
utiliser pour interpréter les trajectoires des électrons. Ces méthodes nous ont permis d’identifier l’impact de
l’interaction coulombienne dans les phénomènes non linéaires observés expérimentalement et d’inclure son
rôle dans la description des mécanismes sous-jacents.

Considérer la nature quantique des électrons avant l’ionisation et leur mouvement classique après l’ionisation,
à la lumière de la dynamique non linéaire, nous ont permis de démêler les mécanismes à l’origine des
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phénomènes non linéaires observés expérimentalement, que la dynamique linéaire ne pouvait pas prédire.
Par exemple, nous avons dévoilé le mécanisme à l’origine de la bifurcation observée dans les PMDs mesurées
expérimentalement [93]. Nous avons déterminé, et avons pu décrire avec précision, comment les électrons
peuvent retourner dans leur ion parent après plusieurs cycles laser et comment ils peuvent être piégés dans
des états de Rydberg. Nous avons déterminé les conditions pour lesquelles des manifestations expérimentales
de recollisions dans les champs CP et proches CP peuvent être observées. Ce travail de thèse démontre
la complémentarité de la mécanique quantique et de la dynamique non linéaire pour comprendre et illus-
trer les mécanismes mis en jeux lorsque les atomes sont sujets à des impulsions laser intenses et polarisées
elliptiquement.
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Summary in English

Subjecting atoms or molecules to intense laser pulses gives rise to a variety of highly nonlinear phenomena,
such as for instance the ionization of electrons and the radiation of high-frequency photons. The distributions
of the velocity of the ionized electrons or the frequency of the radiated photons measured at the detector
encode relevant informations on the target atoms and molecules at the natural time scale of the electrons,
the attosecond–that is, million, million, millionths of a second. Understanding the dynamics of the ionized
electrons and identifying the mechanisms of high-frequency radiation are essential steps toward interpreting
and decoding the informations encrypted in the experimental measurements.

In this thesis, atoms subjected to intense and elliptically polarized laser fields in the infrared regime are
theoretically studied. Despite their fundamental quantal nature in atoms, electrons display some classical
behaviors when subjected to intense laser pulses. We exploit these classical features to understand and
picture, with the help of trajectories, the physical mechanisms at play in order to interpret experimental
measurements. We show the interdependent role of the quantum tunnel ionization of the electron and its
subsequent classical motion for interpreting measurements in attosecond science.

After tunnel ionization of the electrons, the interplay between their interactions with the laser and their
parent ion, by yielding their dynamics highly nonlinear, gives rise to rich and diverse ionization channels.
Changing the ellipticity of the driving laser, which acts as a simple control knob in experiments, changes
the prioritized ionization channel taken by the electrons. In this way, for instance, the electrons can probe
different characteristics of the target atoms. The motion of the ionized electrons is analyzed using pertur-
bative and nonperturbative techniques from nonlinear dynamics and Hamiltonian systems. This thesis work
demonstrates the complementarity of quantum mechanics and nonlinear dynamics for understanding and
illustrating the mechanisms involved when atoms are subjected to intense and elliptically polarized laser
pulses.
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Introduction

Imaging atomic and molecular orbitals [115, 59, 135], tracking the motion of the electrons in real time [25,
64, 126] and measuring their correlations in atoms, molecules and solids [101, 72, 110, 141, 18] have been
the focus of attosecond science with the long term goal of making movies of structural dynamics in chemical
reactions occuring in nature [41]. These snapshots would reveal underlying mechanisms at the temporal and
spatial scales of the electrons (subfemtosecond 1 fs = 10−15 s and subnanometer 1 nm = 10−9 m, respectively,
see Fig. 1), the binder of matter, which would allow to gain a deeper understanding and control of these
ultrafast nonequilibrium processes. While, nowadays, imaging matter at the temporal and spatial scales of
atoms (1 ps = 10−12 s and 1 Å = 10−10 m, respectively, see Fig. 1) is routinely achieved in laboratories.
Zoom in these images, on subfemtosecond time scales and subnanometer spatial scales, keeps challenging
scientists in both the technical and theoretical aspects since about thirty years.

For instance, images of atomic structures in solid surfaces, at the spatial scale of atoms, can be obtained
by moving a metallic tip of a few angstroms wide above the targeting surface. This is the basis of scan-
ning tunneling microscopy (STM). The first images are observed in 1982 [23], and lead to a new branch of
microscopy: the scanning probe microscopy (SPM). Despite the success of STM for locating atoms in solid
surfaces at equilibrium, ultrafast nonequilibrium processes inside matter are not tractable by the metallic tip
of the STM. This illustrates clearly the difficulties of performing real-time measurements of the motion of
atoms and electrons. Roughly speaking, as it is illustrated in Fig. 2, devices probing matter in a time scale
much faster than the natural time scale of atoms and electrons can exclusively capture clear snapshots of
their configurations. The metallic tip should move on subfemtosecond time scales to capture in real time the

Figure 1: Comparison of the characteristic spatial and temporal scales of electrons and atoms in microscopic
structures reproduced from Ref. [91]. In comparison, the duration of the shortest laser pulse generated (June
18, 2019) is 43 as = 4.3× 10−17 s.
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motion of the electrons, which is not feasible.
Meanwhile, femtochemistry were at its early stage. The wisdom of femtochemistry is to use short infrared

(IR) laser pulses, of the order of the femtosecond, as fast photographers of atoms in molecular reactions, a
breakthrough for ultrafast imaging technology. In 1987, when laser pulses became short enough to obtain
clear snapshots (few femtoseconds duration), the first real-time measurements of the motion of atoms during
chemical reactions are performed using pump-probe spectroscopy [174]. Nonetheless, electrons in atoms and
molecules move on subfemtosecond time scales, more than a thousand times faster than the motion of atoms
in molecules and solids. In order to measure in real time the motion of electrons in molecular reactions, the
probe laser pulses must be thousand times shorter than the ones employed in femtochemistry, i.e., they must
be attosecond-duration light sources (1 as = 10−18 s). In the late nineties started the rush of ultrashort laser
pulses: a theoretical and technological endeavor.

Free-electron lasers [69] (FELs) are one type of sources of ultrashort laser pulses which necessitate very-
high-energy resources and large-scale infrastructures. The other type of sources of ultrashort laser pulses
provides table-top ultrashort light sources, which can easily be used in laboratories. The first steps which led

100 ms

2.5 s

0.1 s

Figure 2: This illustrates the difficulty of capturing clear images of electrons in atoms and molecules at their
natural time scale. These are two photographs taken from Jackson bridge in Atlanta using two different
shutter speed of the camera (displayed in the upper left corner of each panel). The typical time scale of cars
on the highway is 0.2 s (the typical speed of the cars on the highway is 100 km · h−1 and their typical spatial
scale is 5 m). In the upper panel, the shutter speed is twice smaller than their typical time scale, and their
representation is clear. In contrast, in the lower panel, the shutter speed is roughly ten times faster than
their typical time scale, and we observe luminous trails. A clear image of the cars is obtained only if the
shutter speed of the camera is faster than their natural time scale. In molecular imaging, ultrashort lasers
probe electron dynamics in atoms and molecules faster than the natural time scale of the electrons (i.e.,
subfemtosecond in molecules) and can capture clear images of their dynamics [59, 115, 64, 25, 135, 126].
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to the production of table-top ultrashort laser pulses are discovered in 1987, when high harmonic generation
(HHG) has been observed for the first time by propagating femtosecond IR laser pulses through a gas of
atoms [168]. When an IR laser pulse propagates through a medium of atoms or molecules, the target medium
radiates photons in the extreme ultraviolet (XUV) regime. The HHG intensity spectrum corresponds to the
distribution of the frequencies (or harmonics) of the radiated photons. Typical HHG intensity spectra for
an atomic gas are shown in Fig. 3 for different laser intensities. For isotropic gases, such as a gases of
atoms, the frequency of the radiated photons is an odd multiple of the frequency of the driving laser [102].
The typical HHG intensity spectrum is composed of three distinct regions. Regardless the laser intensity,
harmonic intensities exponentially decrease until the fifth harmonic order, this is referred to as the below
threshold harmonic (BTH) region. For larger harmonics, the harmonic intensities are rather constant, this is
referred to as the plateau region. An abrupt cutoff follows the plateau region, at the harmonic cutoff, after
which the harmonic intensities drop off rather suddenly. Then, the harmonic intensities are extremely small.
In Fig. 3, we observe that the harmonic cutoff increases for increasing intensities of the driving laser.

The first observations of the plateau region in HHG intensity spectra [54] were very promising for the
production of ultrashort laser pulses. Indeed, a frequency comb can be obtained after isolating the plateau
region by filtering the HHG intensity spectrum. The resulting post-processed beam of photons is a train of
ultrashort XUV laser pulses. The larger the harmonic cutoff and the shorter the laser pulse. In 2001, a single
attosecond pulse [70] and a train of attosecond pulses [132] are observed for the first time in experiments.
Nowadays, table-top ultrashort light sources [153, 35] are used routinely in laboratories. Ultrashort XUV
laser pulses have opened up access to attosecond-time resolved measurements of electron dynamics [56, 67,
64, 155, 87, 135].

State of the art

The productivity and the technologies in attosecond science have improved significantly from 1993, after the
discovery of the mechanism underlying the plateau region in HHG intensity spectra: The recollisions [92,
39, 154]. A recollision occurs when an ionized electron returns to its parent ion. Remarkably, while HHG
is produced by propagating an IR laser pulse through atomic or molecular gases, the key mechanism can
be understood from the response of a single atom with a single-active electron [100, 146]. In addition to
HHG, recollisions give rise to a variety of nonlinear phenomena, and are now considered as the keystone of
attosecond science. In Fig. 4, the red curves represent the rate of publications (left panel) and the rate of
citations (right panel) from the Web of Science database with “recollision” as a topic. We observe that, since
then, the interest triggered by the recollisions has kept increasing.

Recollisions: keystone of attosecond science
The physics of HHG is built on the three-step scenario of the recollisions [39, 154], which are illustrated
in Fig. 5. We consider a single-active electron (SAE) atom driven by linearly polarized (LP) fields E(t) =
exE0 cos(ωt). The laser field oscillates in time at a frequency ω along the polarization axis ex. If the
amplitude of the laser E0 is large enough, an electron can be teared off the core by the laser: this is step
(i) of the recollision scenario. During step (i), an electron wave packet tunnel ionizes through the potential
barrier induced by the laser field.

In step (ii) of the recollision scenario [39, 154], the motion of the electron is treated classically. The
electron is initiated on the potential barrier in the direction opposite of that of the laser field. Its motion is
along the polarization axis. Using the fundamental principle of dynamics ẍ = −E0 cos(ωt), the position of
the electron as a function of time is given by

x(t) = x0 +
E0

ω2
[sin(ωt0)ω(t− t0) + cos(ωt)− cos(ωt0)] , (1)

where x(t0) = x0 and ẋ(t0) = 0 are the position and velocity of the electron, respectively, initiated on
the potential barrier at ionization time t0. Atomic units are used throughout the manuscript unless stated
otherwise. We observe that the motion of the electron is composed of mainly two components: a drift in
the term sin(ωt0)ωt, and oscillations in the term cos(ωt). The electron ionizes relatively close to the core,
at x0 ∼ 1 a.u. In contrast, the order of magnitude of the amplitude of the oscillations of the electron in the
laser is E0/ω

2 ∼ 10 a.u. for the laser parameters used in Fig. 3. During the excursion of the electron outside
the parent ion, after the laser field has reached its peak amplitude, it pushes the electron back towards the
core, and the electron collides with the parent ion: this is a recollision.
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an open question: these processes should be studied with better resolution and at 
another detection angle (e.g. perpendicularly to the laser axis). 

In figure 3, the number of photons produced in a 15 Torr xenon vapour is plotted 
as a function of the harmonic order for several laser intensities between 5 x IO" W cm-' 
and 3 x 1013 W cm-2 (Lompr6 et a/ 1990). This result has been obtained with a 200 mm 
focal length (the confocal parameter b is estimated to be 4 mm). Only odd harmonics 
are observed, which is to be expected for harmonic generation in an isotropic gaseous 

monic signal decreases with the order. As the intensity increases, a plateau followed 
by a rather abrupt cutofi appears. Its length increases with the laser power, up to the 
intensity at which the medium becomes ionized with a probability close to unity, above 
1.3 x 10" W cm-'. Above this intensity, the signal increases much less rapidly, the 
distribution becomes smoother but the maximum observable harmonic order remains 
constant (equal to 21 for this pulse length). The vertical scale gives an order of 
magnitude estimate of the number of photons produced at each laser shot. This means 
a power efficiency of 10-8-10-9 for the plateau harmonics at the highest laser intensity. 
The brightness is estimated to be 10'' photons/s 8, mrad'. 

Another way of looking at these results is to plot the number of photons as a 
function of the laser intensity. Figure 4 shows, for example, the behaviour of the 15th 
harmonic. All the intensity dependences of the harmonics present a common feature: 
the number of photons increases first rapidly, then saturates when the medium gets 
ionized. There are two reasons why the ionization of the gas limits harmonic generation 
(Miyazaki and Kashiwagi 1978, Reintjes 1984, L'Huillier el a/ 1990). The main medium 
responsible for harmonic generation (the neutral atoms) gets depleted when the medium 
becomes ionized. Harmonics are still produced in the periphery of the interaction 
volume or at the beginning of the laser pulse. Ions could also generate harmonics, but 
their response is expected to be less efficient at these intensities. The second effec! that 
might limit harmonic conversion efficiencies is the breaking of phase matching owing 
to the presence of free electrons in the medium. These free electrons have a non- 
negligible effect on the refractive index (at the fundamental frequency and at the 

medium, with inversion symmetry. .A! the !owest in!cnsity ( 5  U 10'2 w cm?), the har- 

Harmonic order 
Figure 3. Number of photons produced in xenon a1 1064 nm as a function of the harmonic 
order. The intensities arc, from tap fa bottom, 3 X  10" Wcm-'(--(-], 1.3X IO" Wcm-' 
(--.--I, 9xI0 '2Wem- '  ( - - - - - . - )  , 7 X I O " W C ~ P  (.......), s x  
IO" W c m P  (. , -A- - .  . I .  

Figure 3: Number of radiated photons (HHG intensity spectrum) in Xe (ionization potential Ip = 12.13 eV)
as a function of the harmonic of the laser field Ω/ω measured in experiments reproduced from Ref. [102],
where Ω is the frequency of the radiated photon and ω is the frequency of the driving field. The intensities
are (◦) 3 × 1013 W · cm−2, (•) 1.3 × 1013 W · cm−2, (�) 9 × 1012 W · cm−2, (�) 7 × 1012 W · cm−2, and
(
a
) 5× 1012 W · cm−2. The wavelength is λ = 1064 nm. The typical HHG intensity spectrum is composed

of three distinct regions: harmonic intensities exponentially decrease until the fifth harmonic order, this is
referred to as the below threshold harmonic (BTH) region. For larger harmonics, the harmonic intensities
are rather constant, this is referred to as the plateau region. An abrupt cutoff follows the plateau region, at
the harmonic cutoff, after which the harmonic intensities drop off rather suddenly.

Figure 4: Number of (left panel) publications and (right panel) citations statistics from the Web of Science
database (May 9, 2019). Red, blue and green curves are “recollision”, “Elliptically polarized laser pulses” and
“Coulomb in intense laser pulses” as a topic, respectively.
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including ionization, propagation and recombination, while preserv-
ing the de Broglie-wave quantum nature of the free electron driven 
by the laser field:

x�t� = i�



0
dt��

�
d�pd*

x �p – A��t�	e–iS�p, t, t��E��t��dx �p – A��t��	  + c.c.      ���– – –– – –

where x(t) is the electron displacement, p is the momentum, AL is the 
vector potential of the driving laser field, EL(t') is the applied electric 
field and c.c. denotes the complex conjugate. In equation (2), the first 

factor corresponds to ionization of the atom; that is, a transition from 
a bound state into the continuum. The second factor, e−iS(-p,t,t'), where 
S is the action integral, takes into account how the quantum phase 
of the electron wavefunction evolves over the ~1 fs timescale during 
which the electron resides in the continuum. The final factor repre-
sents the transition from the continuum back to the ground state. 
Physically, the origin of high harmonics is the rapidly spatially and 
temporally modulated electron wavefunction that evolves as an atom 
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Figure 1 | The microscopic single-atom physics of HHG. a, Classical 
schematic of HHG. The electric field of an intense laser extracts an electron 
from an atom through tunnel ionization. The laser field then accelerates the 
electron, with a small fraction of the electron returning back to the ground 
state of the same atom, liberating its excess energy as a high-energy 
photon. b, The quantum nature of HHG. The electron’s wavefunction is 
driven by the laser field, giving rise to quantum interference between the 
bound and free portions, as well as to transverse spreading. The rapidly 
varying time-dependent dipole modulation gives rise to short-wavelength 
radiation (courtesy of I. Christov). c, The total fractional ionization of the 
medium grows stepwise with each laser cycle. The more realistic quantum 
model includes the modification in ionization due to the recolliding electron.
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Figure 2 | Macroscopic phase-matching of HHG in the spatial domain. 
a, Phase-matched signal growth ensures that harmonic emission from 
many atoms over an extended medium (of length Lmedium) adds together 
coherently. b, Tight focusing geometry with associated curved laser and 
X-ray wavefronts. The geometrical Gouy phase shift (ΔφGuoy) results in a 
dynamical phase change between the carrier wave and envelope of the 
laser pulse. In a wave vector picture, the strong intensity gradient leads 
to a radial atomic wave vector Katomic that favours non-collinear phase 
matching before the focus and collinear phase matching after the focus. 
c, Plane-wave propagation in a waveguide or cell minimizes the curvature 
of the laser and HHG wavefront. The result is a well-directed, fully phase-
matched HHG output. The carrier–envelope phase change is absent in 
vacuum. The wave vector picture is also significantly simplified in this 
geometry, in which only near-collinear phase matching is possible.
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Figure 5: Classical schematic of the three-step model and HHG reproduced from Ref. [142]. The color code
is the effective potential of the electron in interaction with the ion and the laser field. The thick red curve
shows the laser field as a function of time.

In step (iii), the electron interferes and recombines with the portion of the wave function in the ground
state which remained bounded. The recombination time of the recolliding electron, denoted t0 + ∆t, is such
that x(t0 + ∆t) ≈ 0, with ∆t the excursion time. At the recombination, a photon of frequency

Ω = Ip + 2Up [sin(ωt0 + ω∆t)− sin(ωt0)]
2
, (2)

is emitted, where Ip is the ionization potential of the atom. The right-hand side of Eq. (2) is the energy of
the electron at the recollision as a function of the ionization time t0, the recombination time t0 + ∆t and the
ponderomotive energy Up = E2

0/4ω
2.

In the HHG intensity spectrum, the BTH is built of photons emitted at a frequency Ω < Ip. The
plateau region is built of photons radiated by recollision processes [39, 100, 146, 166, 20]. In Eq. (2), we
observe that the frequency of the radiated photons depends on the times when the recolliding electrons ionize
and recombine. We assume that x0 ≈ x(t0 + ∆t) ≈ 0. Using Eq. (1), it implies sin(ωt0) = [cos(ωt0) −
cos(ωt0 + ω∆t)]/ω∆t. This condition fixes the excursion time of the recolliding electrons as a function of
their ionization time. We substitute this condition in Eq. (2). We maximize the frequency of the radiated
photons with respect to the ionization time of the recolliding electrons t0 and their excursion time ∆t, and
we obtain the maximum frequency of photon radiated by recollision processes [39, 100]

Ωc ≈ Ip + 3.17Up, (3)

for ω∆t ≈ 4.09 and ωt0 ≈ 0.31. As a consequence, the trajectories which bring back the largest amount of
energy to the core, around 3.17Up, ionize early after the laser reaches its peak amplitude, and recollide around
half of a laser cycle later. For a laser wavelength λ = 1064 nm and laser intensities I = 3 × 1013 W · cm−2,
I = 1.3 × 1013 W · cm−2, I = 9 × 1012 W · cm−2, I = 7 × 1012 W · cm−2, I = 5 × 1012 W · cm−2 (laser
intensities used in Fig. 3), the harmonic cutoffs predicted by Eq. (3) are (◦) Ωc/ω ≈ 19, (•) Ωc/ω ≈ 14, (�)
Ωc/ω ≈ 13, (�) Ωc/ω ≈ 12 and (

a
) Ωc/ω ≈ 12, respectively. The cutoff law predicted by Eq. (3) agrees

well with the experimental measurements in Fig. 3, in particular for I > 7× 1012 W · cm−2. The recollision
mechanism and the physics beyond HHG are summarized and schematically represented in Fig. 6. Figure 6a
shows the experimental setup, in which an intense IR laser pulse is sent on a gas of atoms. Figure 6b
schematically represents the electron motion in the single-atom response and the laser field. Figure 6c
represents the harmonic number corresponding to the return energy of the recolliding electrons as a function
of their ionization times (upper panel) and a HHG intensity spectrum as a function of the harmonic number
of the radiated photons (lower panel). An energy of return of the recolliding electrons is associated to each
frequency of the radiated photons in the plateau region.

In sum, classical mechanics has been able to unravel some of the physics beyond HHG in atoms subjected
to intense laser pulses. In particular, the scaling law of the harmonic cutoff predicted by the recollision
model (3) agrees well with the experimental measurements [102]. The larger the harmonic cutoff and the
shorter the post-processed XUV laser pulses. To increase the harmonic cutoff significantly, the amplitude of
the laser must be increased or its frequency must be decreased. Nonetheless, the intensity and the frequency
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2.1. XUV Emission from Gases

2.1.1. Single Atom Response

The principle of asec pulse generation is illustrated in Figure 1. Briefly, by focusing an intense
(with IL ~1014–1015 W/cm2) linearly polarized multi-cycle fs laser pulse into a gas-phase medium,
an XUV frequency comb, which consist odd harmonics of the driving frequency, is emitted in the
direction of the laser field (Figure 1a). Due to the non-linearity of the harmonic generation process the
divergence of the XUV beam is smaller compared the IR driving field. In appropriate phase matching
conditions (atomic and macroscopic response) the phase locking between the harmonics leads to the
formation of an asec pulse train. A band pass XUV filter arrangement can be placed at the XUV beam
path in order to remove the IR beam and to select the wanted harmonic bandwidth.

 

Figure 1. (a) A schematic representation of High-order harmonic generation (HOHG) in gas-phase
media; (b) (upper panel) An oversimplified picture of the recollision process. ti, tr, MI, XUV, ATI
are the ionization time, recollision time, multiple ionization, generation of XUV radiation and ATI
photoelectrons, respectively. The red arrow shows the polarization direction of the driving field
and the black line the electron trajectory; (down panel) High-order-harmonic generation process in
the spirit of three-step model. L (black line), S (green line) show the “Long” and “Short” electron
trajectories contribute to the plateau harmonic emission, respectively. te

L and te
S are the corresponding

emission times. C (red line) shows the electron trajectory contribute to the cut-off harmonic emission;
(c) (upper panel) Emission times as a function of the harmonic order (calculated using the semi-classical
3-step model for IL = 2 ⇥ 1014 W/cm2 and IP = 15 eV, and l = 800 nm). te

L(IL) and te
S(IL) depict the

emission times (which depend on IL) corresponding the “Long” and “Short” trajectory harmonics.
In the spirit of semi-classical 3-step model the emission times is the real part of the recombination time
tr. (down panel) Calculated harmonic spectrum (blue filled area) with !q = (2q + 1)!L (where !L is the
frequency of the IR field). The “Long” and “Short” trajectory harmonics, which contribute in plateau
region, degenerate to a single trajectory in the cut-off region of the spectrum. The green solid line is the
spectral phase distribution of the S and L trajectory harmonics. The black solid line illustrates the XUV
continuum spectrum emitted in case of a single electron recollision. The line-shaded area illustrates the
bandwidth of the XUV radiation which passes through a band pass XUV filter.

Figure 6: HHG experiments and measurements for the production of attosecond pulse trains reproduced from
Ref. [35]. (a) Schematic of the experiments. (b) Three-step model [39, 154] and illustration of short and long
trajectories. (c) Return time as a function of the emitted harmonic number of the recolliding electron in the
SFA (upper panel). Harmonic power spectrum as a function of the harmonic number (lower panel).
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Figure 7: Left panel: Cartoon of an atom subjected to an intense infrared (IR) laser pulse. The red curve is
the trajectory of a recolliding electron. Right panels: Cartoon of the recolliding electron which (upper panel)
recombines with the ground state and produce HHG, (middle panel) rescatters with the core and induces
ATI, (lower panel) exchange energy with a bound electron and induces NSDI.

of the lasers are limited by the available technological devices. Increasing the frequency cutoff is not a
straithforward task, and is the focus of many studies (see Refs. [7, 44], e.g.).

The success of the recollision scenario for describing the production of HHG demonstrates the existence
of classical features in these fundamentally quantum systems. Since it is one of the places where classical
and quantum mechanics meet, another important role assessed by attosecond science is to test and challenge
concepts, methods and interpretations arising from this mixture of classical and quantum mechanics. For
instance, the “time the electron spends under the potential barrier” to ionize during step (i), refered to as
“tunneling time” in Refs. [95, 94], remains under debate [30, 155, 10, 134, 95, 94, 124, 60, 152, 149]. In this
thesis, we exploit the classical features of the electron dynamics after ionization in order to understand and
picture, with the help of trajectories, the nonlinear phenomena observed in atoms subjected to intense and
elliptically polarized laser pulses.

Nonlinear phenomena

By looking at the success for the prediction of the harmonic cutoff by the three-step model, which are obtained
by ignoring the interaction between the electron and its parent ion, we could think this latter plays a minor
role in the mechanism behind the production of ultrashort light sources. It is yet dominant when the electron
returns to its parent ion. The electron, by experiencing strong interactions with the core, probes its internal
structures and bound electron dynamics. If the electron radiates photons, these informations are found
in the HHG intensity spectrum. High harmonic spectroscopy are techniques to extract these informations
from the HHG spectrum. For instance, high harmonic spectroscopy is used to track the charge migration in
molecules [90].

A first obvious effect of the ion-electron interaction inside atoms is the deflection of the recolliding electron

7
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at the recollision (see middle panel of Fig. 7). The combined strong laser and ion-electron interactions can
produce ionized electrons with high energies [39, 133]. This is above-threshold ionization (ATI). The deflection
of the recolliding electrons by the ionic core is referred to as the rescattering of the electron. During the
rescattering, the electrons probe the internal structure and dynamics of target ions and molecules [99]. The
distributions of the ionized electrons at the detector, referred to as photoelectron momentum distributions
(PMDs), encode these informations [115, 76]. This is the basis for imaging techniques, e.g., laser-induced
electron diffraction [176, 115, 139] (LIED) for molecular imaging [25] and photoelectron holography [76, 22].
These techniques are often seen as “half-scattering” experiments, in analogy to the Rutherford “scattering”
experiments [151], where particles are sent from infinity to probe target atoms. Here, the particles probing
the targets come from the targets themselves.

Another obvious effect of the ion-electron interactions is to bound electrons. In particular, ion-electron
interactions can bound electrons during the excursions of recolliding electrons. When a recolliding electron
returns to the core, it exchanges energy with a bound electron and both can ionize [39, 110] (see lower panel
of Fig. 7). This is non sequential double ionization (NSDI). NSDI is one of the most dramatic manifestations
of electron-electron correlation in nature [17]. PMDs of doubly ionized atoms encode informations on the
electron-electron correlations [141, 18].

In sum, recollisions, because they involve combinations between the strong laser and ion-electron inter-
actions, give rise to a variety of highly nonlinear phenomena [39, 16, 41, 5, 91, 17] summarized in Fig. 7.
Imaging techniques based on these highly nonlinear phenomena offers very promising outlook. However,
because of their inherent technicality and the fundamental difficulty to assess the motion of the electrons in
the combined laser and ion-electron interactions, are not routine procedures employed in laboratories for the
real-time measurement of the motion of electrons in matter yet. In particular, movies of electron dynamics
in large polyatomic biological molecules have never been observed. Attosecond science is still rather at an
early stage.

Laser ellipticity and the Coulomb potential

The strength of the most fundamental ion-electron interaction is quantified by the Coulomb potential. While
the role of the Coulomb potential is obvious in the rescattering processes (in ATI) and for trapping electrons
close to their parent ion (in NSDI), this is not the case for its manifestations in the dynamics of the ionized
electrons. The ellipticity of the laser field, which acts as a simple control knob in experiments, highlights
different phenomena originating from electron dynamics [9, 63, 156, 96, 75, 47, 68, 36, 43, 114]. Figure 4
shows the rate of citations and publications with “Elliptically polarized laser pulses” and “Coulomb in intense
laser pulses” as a topic. Since 1990, the interest on these topics has drastically increased. In particular,
since it was noticed that changing the ellipticity of the driving laser highlights the impact of the Coulomb
potential on the motion of the ionized electrons, referred to as Coulomb effects [28, 11, 62, 38, 93]. Put
slightly differently, by changing the laser ellipticity, it was noticed that the Coulomb potential is significant,
even after ionization.

Figure 8 shows PMDs and photoelectron angular distributions (PADs) of He atoms for different laser
ellipticities. PMDs are distributions of the momentum of the ionized electrons at the detector, and PADs are
distributions of the angle of the momentum of the ionized electrons with respect to the major polarization
axis. The laser field is of the form E(t) = E0f(t)[ex cos(ωt) + eyξ sin(ωt)]/

√
ξ2 + 1, where ex and ey are the

major and minor polarization axes, respectively. The laser ellipticity is ξ and the laser envelope is f . The
duration of the laser is rather long, such that the laser envelope is f ≈ 1 for several laser cycles. In Fig. 8,
we observe that as laser ellipticity is varied, the shape of the PMDs undergoes drastic changes.

In Fig. 8, for ξ = 0 (LP fields), the PMD is one lobe centered around the origin of the momentum space.
In the PAD, we observe that this cloud is slightly asymmetric with respect to the minor polarization axis.
At ξ = 0.15, we observe that the PMDs splits into two lobes symmetric with respect to the origin of the
momentum space. For increasing ellipticity, the two lobes go further away from each other. In order to
understand the changes in the PMDs, the natural theoretical framework is to apply the same procedure as
used to describe the recollision scenario, namely: (i) the electron tunnel-ionizes, (ii) the motion of the electron
is treated classically without the Coulomb potential. The electron ionizes outside the potential barrier induced
by the laser field, and as a consequence, its initial momentum is p0 = 0. From the fundamental principle
of dynamics, ṗ = −E(t), the momentum of the electron is given by p = A(t) − A(t0), where t0 is the
ionization time. The vector potential is A(t) such that E(t) = −∂A(t)/∂t. Asymptotically, at the detector,
the vector potential of the laser field is turned off, and therefore p(t) = −A(t0) when time goes to infinity.
The most probable ionization time of the electron is such that the amplitude of the laser field is the largest,

8



STATE OF THE ARTSTATE OF THE ARTSTATE OF THE ARTSTATE OF THE ARTSTATE OF THE ARTSTATE OF THE ART

! ¼ !
ffiffiffiffiffiffiffi
2Ip

p

Fmax
¼

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ipð1 þ "2Þ

q

ffiffiffi
I

p ; (2)

where Fmax¼
ffiffiffi
I

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ "2

p
is the maximum electric field

along the major axis of the polarization ellipse and Ip is the
ionization potential (24.59 eV for helium). In the experi-
ment we vary the ellipticity at a constant intensity I, which
is estimated to be 0:8 PW=cm2. Thereby Fmax changes,
and the Keldysh parameter ! varies from ! ¼ 0:51 for
" ¼ 0 to ! ¼ 0:73 for " ¼ 1. We note that in our experi-
mental setup a perfect circularly polarized pulse cannot be
produced. The ellipticity is limited to about " ¼ % 0:93,
due to the specifications of the quarter-wave plate and the
optical spectrum of the laser pulses [28].

Figure 1 shows momentum distributions for various
values of the ellipticity obtained with anticlockwise rotat-
ing fields (designated by " > 0). Clockwise turning fields

were also employed (designated by " < 0; see Fig. 2).
Considering both helicities reduces systematic errors, be-
cause fields with different helicity streak the electron by
equal amounts but in opposite directions [3]. The ion
momentum distributions emerging after ionization by the
short intense laser pulse differ qualitatively for linear
(" ¼ 0) and circular polarization (j"j ¼ 1). For " ¼ 0
the distribution in the polarization plane is close to
Gaussian with a maximum at zero both along and perpen-
dicular to the field direction; in the case of close-to-circular
polarization a torus forms around the center (Fig. 1).
For the case of linear polarization (" & 0) and j"j larger

than 0.3, the momentum distribution exhibits two lobes;
that is, there are two peaks in the radially integrated mo-
mentum distribution (angular distribution). For j"j> 0:3,
the position of these peaks is shifted with respect to the
minor polarization axis by the offset angle !", defined in
Fig. 1. This angular shift is absent in the analysis based on
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FIG. 1 (color). Ion momentum distributions and angular distributions in the polarization plane for different ellipticities. The major
polarization axis is the x axis, the minor polarization axis is the y axis, and #p ¼ arctanðpy=pxÞ is the angle of the ion momentum
p ¼ ðpx; pyÞ. For each panel, the presented data (momentum or angular distribution) are integrated over an interval of 0.05 around the
ellipticity value indicated in the headline. The offset angle !", indicated in the panel for " ¼ 0:4, is defined as the angle between the
peak in the angular distributions and the minor polarization axis of the laser pulse.
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ellipticity-resolved electron momenta in the plane of polari-
zation unifies the two widely studied phenomena, showing
how Coulomb focusing begins to break down at about
the same value of ellipticity where Coulomb asymmetry
becomes significant.
The electric field of a laser is given by

F⃗ðtÞ ¼ −F0fðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 1

p ½cosðωtÞx̂ þ ϵ sinðωtÞŷ&; (1)

where ω is the frequency of the laser, ϵ is the ellipticity,
with x̂ and ŷ taken to be the major and minor axes of polari-
zation, respectively, and fðtÞ is the pulse envelope. The
center of the electron momenta distribution that is mea-
sured at the detector is then given by P⃗ ¼ Pxx̂ þ Pyŷ
(see Fig. 1) and corresponds to ionization at the peak of
the electric field, or along the x axis, with drift momentum
subsequently acquired predominantly along the y axis. A
standard technique in strong field ionization, following
Simpleman’s model [17–20], is to neglect the Coulomb field
after ionization [6,12,21,22] and treat the dynamics classi-
cally, much as it is done in plasma physics [23–25]. In par-
ticular, if the Coulomb field along the minor axis of
polarization is neglected, then the dynamics are determined
solely by the y component of Eq. (1) [6], resulting in

Py ¼ ' ϵF0

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 1

p þ Py0; (2)

wherePy0 is the initial velocity at the tunnel exit [26,27], and
the sign is determined by the direction of the electric field at
the instance of ionization (0 or 180 deg). Figure 2 plots theo-
retical Py (green curve), given by Eq. (2), taking Py0 ¼ 0, in
accordance with the most probable velocity predicted by the
Ammosov-Delone-Krainov probability distribution at the
tunnel exit [26].
Our experimental data, shown in Fig. 1 for low (ϵ ¼ 0.2)

and high (ϵ ¼ 0.7) ellipticities, were obtained by recording
electron momenta distributions in the plane of polarization

after strong field ionization of helium over a complete
scan of ellipticity ϵ of the laser field. The details of the
experiment are given elsewhere [5]. In summary, the exper-
imental setup used COLTRIMS [28] with a laser pulse
duration (full width at half maximum) of 33 fs, peak inten-
sity of 8 × 1014 Wcm−2, and central wavelength of
788 nm. An ellipticity scan was performed using a broad-
band quarter-wave plate, which was rotated continuously.
The electron momenta at the detector were recorded for dif-
ferent values of ϵ, ranging from linearly to near-circularly
polarized light. The ellipticity scan corresponded to the
range of the Keldysh parameter γ ¼ 0.5–0.7 , where γ is

given by γ ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ipðϵ2 þ 1Þ

q
=F0, and γ < 1 is considered

the tunneling regime [8,29]. We were, therefore, able to
investigate the impact of the force of the parent ion on
the tunneled electron for all laser polarizations, from linear
to circular. To extract the center of the electron momenta
distribution, elliptical integration was used [30]. This
method is robust for all values of ellipticity, resulting
in a well-defined Gaussian fit [30], without an asymmetric
double-peak structure, which occurs with radial integra-
tion at low ϵ [5,11].
We find that while the force exerted by the parent ion

along the minor axis of polarization is negligible at higher
ellipticities of laser light, it can be significant at lower val-
ues of ϵ. These experimental results are shown in Fig. 2,
where the location of the center of the electron momenta
distribution along the minor axis of polarization Py is com-
pared with the analytical prediction, given by Eq. (2). As
can be seen from Fig. 2, neglecting the Coulomb force on
electron momentum along the minor axis of polarization, or
the y axis, results in excellent agreement between theory
and experiment for ϵ ≥ 0.3. For smaller values of ϵ, the
change in momentum due to the interaction of the electron
with the parent ion is substantial. This results in significant
Coulomb focusing along the minor axis of polarization,
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FIG. 1 (color online). Experimentally measured electron mo-
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Figure 8: Experimental measurements of He for I = 8 × 1014 W · cm−2 and λ = 780 nm. Upper pan-
els: Photoelectron momentum distribution (PMDs) (colored figures) and photoelectron angular momentum
(PADs) (white figures) reproduced from Ref. [140]. For ξ . 0.2, the PMDs are mainly one lobe centered at
the origin. For ξ & 0.2, the PMDs are mainly two lobes symmetric with respect to the origin. The offset
angle is indicated by ∆θ for ellipticity ξ = 0.4. The offset angle is the angle between the minor polarization
axis ey and the maximum of the upper lobe in the PMDs. Lower panel: Maximum of the upper lobe of the
PMDs as a function of the laser ellipticity ξ reproduced from Ref. [93]. The green and horizontal black curves
are the prediction of the SFA given by Eq. (4) along the minor (ey) and the major (ex) polarization axes,
respectively.
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i.e., ωt0 = kπ with k ∈ Z. In absence of Coulomb potential, the most probable momenta of the electron at
the detector are

P = ± ξE0

ω
√
ξ2 + 1

ey. (4)

At ξ = 0 (LP fields), the most probable momentum of the electron at the detector is zero, in agreement with
the experimental measurements of Fig. 8. For increasing ellipticities, the most probable momentum of the
electron at the detector goes further away from the origin along the minor polarization axis, in qualitative
agreement with experimental measurements in the upper panels of Fig. 8. For increasing ellipticity, the drift
energy of the electron increases, and pushes it away from the core. The electron ionizes without recolliding.

In order to assess these qualitative changes, in Ref. [93], the location of the peaks of the PMDs is followed
as a function of the laser ellipticity (lower panel of Fig. 8), denoted P = Pxex + Pyey. In the lower panel
of Fig. 8, the blue and red circles are the momentum coordinates of the maximum of the upper lobe in the
PMDs, Px and Py, respectively. The solid green curve is the positive component of P given by Eq. (4)
along the minor polarization axis ey. The solid black curve is the component of P given by Eq. (4) along
the major polarization axis ex. For ξ . 0.1, we observe that P ≈ 0, and as a consequence, the PMD is
mainly one lobe centered at the origin. In contrast, the solid green curve increases linearly in this range of
ellipticities. The persistence of the single lobe in the PMDs, revealed by the lower panel of Fig. 8, is referred
to as Coulomb focusing [28, 38]. For ξ & 0.1, we observe that when Py is positive, Px is negative. The red
circles agree well with the green curve. However, there is a discrepancy between the horizontal black curve
and the blue circles. Indeed, Px is negative and non-zero. In the PMDs, we observe an asymmetry with
respect to the minor polarization axis. This asymmetry, revealed by the lower panel of Fig. 8, is referred to as
Coulomb asymmetry [11, 62]. In the experimental measurements reported in Ref. [104], the final momentum
of the electron exhibits the same features as in experiments [140, 93] (see Fig. 3.13). The hypothesis made
in Ref. [93] is that there is a bifurcation when varying the ellipticity of the laser field.

Therefore, changing ellipticity reveals effects of the Coulomb potential and changes the prioritized ioniza-
tion channel taken by the electrons. In this way, for instance, the electrons can probe different characteristics
of the target atoms. However, there have always been fundamental obstacles for understanding and assessing
the impact of the Coulomb potential on the trajectories of the ionized electrons. In particular, the interplay
between the interactions of the ionized electrons with the laser and their parent ion gives rise to multiple
temporal and spatial scales, yielding their dynamics highly nonlinear.

Thesis work

In this thesis, we consider single active electron atoms (except in Sec. 4.3 where an extension of the study
for double active electron atoms is performed) driven by intense and elliptically polarized laser pulses. The
dynamics of the electron is studied in the quantum and classical frameworks. In the classical framework,
tools from nonlinear dynamics and Hamiltonian formalism are used to investigate the motion of the electron.

Thesis objectives

The overall objective of this thesis is to understand the changes in the dynamics of electrons in atoms driven
by intense laser pulses for changing ellipticities, and their impact in the highly nonlinear phenomena observed
in experiments. One goal is to describe the motion of electrons in the classical framework, to exploit tools
from nonlinear dynamics, while taking into account the quantal nature of the electrons in atoms. In the
meantime, another goal is to assess the role of the Coulomb potential in the dynamics of the ionized electrons
and in the excursion of the recolliding electrons. This consists in identifying manifestations of the Coulomb
potential in experimental or numerical measurements and to determine the underlying mechanisms in terms
of electron trajectories. To achieve that, one targeting is to disentangle the contribution of the laser and the
Coulomb fields, in order to identify and describe the role of the Coulomb potential in nonlinear phenomena
observed in attosecond science.

Methods

In this thesis manuscript, we detail the numerical and analytical investigations which have been carried out.
In this manuscript, we show the:
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• Derivation of a hierarchy of reduced models for describing the dynamics of the electron in an intense
laser field in terms of the dynamics of its guiding center.

• Computation of high-dimensional invariant structures in phase space (invariant manifolds of a family
of one-dimensional invariant tori).

• Representation of high-dimensional invariant structures in two dimensions.

• Computation of classical trajectory Monte Carlo simulations (CTMCs).

• Results of high resolution statistics using graphics processing unit (GPU) calculations.

Summary of the manuscript

Chapter 1. Hamiltonian model for atoms subjected to intense and elliptically polarized laser
pulses In this chapter, we derive the Hamiltonian models for single-active electron atoms driven by intense
and elliptically polarized laser pulses in the quantum and classical frameworks. By comparing the Wigner
quasi-probability distribution [167] of the electron and its classical distribution in phase space, we show that
the quantum dynamics of the electron exhibits clear classical features after ionization. We describe a two-step
model in which the electron (i) tunnel-ionizes through the potential barrier induced by the laser field, and (ii)
moves classically outside the ionic core region. This two-step model allows us to exploit tools from nonlinear
dynamics while taking into account the fundamental quantal nature of the electrons in atoms. We introduce
tools from nonlinear dynamics we use throughout the manuscript for the description of the electron dynamics
in step (ii). We introduce the questions and themes which are studied in the next chapters.

Chapter 2. Reduced dynamics for atoms subjected to intense and elliptically polarized laser
pulses: The guiding center model In this chapter, we derive reduced models for atoms subjected to
intense and elliptically polarized laser pulses, namely: The strong field approximation (SFA), the Coulomb-
perturbed strong field approximation (CCSFA) and the guiding-center (GC) models. The SFA neglects the
Coulomb potential, and the CCSFA treats it as a perturbation of the laser interaction. Concerning the
GC models, we derive a hierarchy of models for the dynamics of the GC. The GC motion corresponds to
the averaged motion of the electron in the combined laser and Coulomb fields. The hierarchy of models is
derived using the canonical Lie transforms and takes into account the Coulomb potential. The GC models
are particularly efficient to approximate the electron trajectories on long time scales. As a result of averaging,
the GC Hamiltonians are conserved in time, and as a consequence, one can define an energy for the electrons
with the energy of their associated GC. We study the accuracy of each model as a function of the position of
the electron in phase space and the integration time.

Chapter 3. The impact of the Coulomb potential in ATI: Coulomb-driven recollisions and
Rydberg state creations In this chapter, we investigate the role of the Coulomb potential in step (ii) of
the ionization process using four models, namely: The reference Hamiltonian, the SFA, the CCSFA and the
second order GC model. The SFA is used to target where are the contributions of the Coulomb potential,
such as it is done with Eq. (4) and Fig. 8. The CCSFA and the second order GC model are used to decouple
the contributions of the laser and the Coulomb potential. We show that the CCSFA and the GC models are
complementary, in the sense that the CCSFA is effective on short time scale dynamics while the GC model
is effective on long time scale dynamics. Therefore, we show that the GC model is effective to describe the
Rydberg state creation and the Coulomb-driven recollisions. Finally, we use the GC model to unravel the
mechanism behind the bifurcation observed in the PMDs (see lower panel of Fig. 8). The bifurcation arises
from the complementarity between the quantum tunnel ionization of the electron and its subsequent classical
nonlinear dynamics.

Chapter 4. Recollision mechanism at high ellipticities and its significance in HHG and NSDI:
Role of the laser envelope In this chapter, we identify a highly probable recollision channel of electrons
with large return energy by taking into account the effects of the pulse envelope f(t). The competition between
the Coulomb force and the laser field creates a channel of ionization early after the laser field is turned on.
Just as the electron is outside the core region, the amplitude of the vector potential is small, and therefore the
sideways drift of the electron can be compensated by its momentum. We show that this recollision channel can
be used to produce HHG with atoms driven by high elliptically polarized laser fields [near circularly polarized
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(CP) fields], and is also responsible for the enhanced double ionization from specific target species subjected to
CP fields observed in experiments [61, 111]. The existence condition of this recollision channel agrees well with
the conditions for which the enhanced double ionization for CP fields is observed experimentally [55, 65, 61].
In addition, we notice that, under reasonable conditions, these recollisions can take place in the Attoclock
setup, where recollisions are always assumed to be nonexistent [53, 152].

Chapter 5. Structure of the phase space of the recolliding electron in step (ii) In this chapter,
we investigate the phase space of the electron in step (ii) using nonperturbative methods. The Coulomb
potential and the laser interactions are fully taken into account. The numerical computations are detailed in
Appendix D. We study the global behavior of the trajectories through the analysis of invariant structures for
d = 1, 2, 3, where d is the dimension of the configuration space. In particular, we show that a set of invariant
manifolds of a family of invariant tori associated with a periodic orbit which originates from the competition
between the strong Coulomb and laser interactions, drive the electron dynamics in phase space. We show
that RPOs, a specific family of periodic orbits introduced in Refs. [81, 80], are located in the vicinity of this
high-dimensional invariant structure. We study the symmetries of the equations of motion of the electron
for varying ellipticities, and how they impact the invariant objects. We show that key invariant structures
which drive the recollisions exist regardless of the ellipticity.
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Chapter 1

Hamiltonian model for atoms subjected
to intense and elliptically polarized laser
pulses

The goal of this manuscript is to analyze and interpret the dynamics of electrons for atoms subjected to intense
and elliptically polarized laser pulses. In this chapter, we identify the characteristic temporal and spatial scales
of the electron in intense and ultrashort laser pulses. The study of these temporal and spatial scales allows
us to formulate hypotheses on the system, and to make approximations such as the single-active electron
(SAE) approximation, the static ion approximation and the dipole approximation. As a consequence, we
derive the quantum and classical models we use throughout the manuscript. In experimental measurements,
some features are solely due to quantum effects. For instance, the patterns of interference observed in the
PMDs [76], the plateau in the HHG spectrum [166, 20], or the peaks in the ATI spectrum due to multiphoton
absorption [6, 57]. However, the dynamics of the electron also exhibits classical features [16]. Classical
mechanics has been very successful in attosecond science. For instance, for interpreting and predicting the
cutoff of the HHG spectrum [39] and its time-frequency profiles.

Questions

• What are the base models for electron dynamics for atoms driven by intense and elliptically polarized
laser pulses ?

• Under which conditions does the quantum dynamics of the electron exhibits classical features ?

Plan In Sec. 1.1, we introduce the quantum model for the description of the dynamics of the atom subjected
to intense and ultrashort laser pulses. In Sec. 1.2, we study the similarities between the classical and quantum
dynamics of the electrons, and we determine the conditions under which the quantum model exhibits classical
features. We show that, by initiating appropriately the trajectories of the electrons, they reproduce classical
patterns in the quantum wave function. We exploit the classical features of the quantum wave function
by describing the dynamics of the electron in two steps where: (i) the ionization of the electron is treated
quantum mechanically, (ii) the dynamics of the electron after ionization is treated classically. In step (i), the
ionization is described by the tunnel-ionization process [83, 8, 137, 138, 136], and provides the distribution
of the initial conditions of the electrons in phase space. Step (ii) is used to understand and analyze the
motion of the electrons and the mechanisms behind the phenomena measured in experiments in the light of
nonlinear dynamics. We define the T-trajectory, which corresponds to the most probable trajectory according
to step (i). In Sec. 1.3, we describe the qualitative behavior of the T-trajectory during step (ii). Through the
analysis of the motion of the T-trajectory, we introduce the tools from nonlinear dynamics used throughout
the manuscript.

1.1 Hamiltonian model

In this section we define the Hamiltonian model of a single-active electron atom driven by intense and
ultrashort laser pulses. We study the spatial and temporal scales of the electron in the laser fields used in
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the manuscript. First, we study the field-free atom case, and we introduce the potentials describing the
ion-electron interaction used throughout the manuscript. Second, we consider the atom driven by the intense
laser field, and introduce the shape of the laser pulses we use throughout the manuscript. The system is
described in the laboratory frame for a configuration space of dimension d = 1, 2, 3.

1.1.1 Orders of magnitude of an electron driven by intense laser fields

Figure 1.1: Map of the wavelength-intensity parameter space in strong-field ionization. The purple dotted
region is where the dipole approximation is valid (dipole oasis). The black line is the short-wavelength dipole
limit [107] where λ < 1 a.u. The magenta line is the long-wavelength dipole limit where E0/ω

2 > λ/100.
Above the red dotted line is where the radiation pressure is non negligible [107], U2

p/2c
2 > 0.5 a.u.. Above

the blue dashed line is where the relativistic effects are non negligible, 2Up/c
2 > 1 a.u. The vertical green

line indicates λ = 780 nm. The interval indicates where λ = 780 nm and I ∈ [1012, 1016] W · cm−2.

We consider an atom subjected to a very intense infrared laser field. The intensity of the laser I is related
to its amplitude E0 with E0 [a.u.] = 5.338 × 10−9(I [W · cm−2])1/2 (see Appendix B for details on atomic
units and conversions). Here, we focus on an intensity range

I ∼ 1012 − 1016 W · cm−2,

i.e., E0 ∼ 5 × 10−3 − 0.5 a.u. The wavelength of the laser λ is related to its frequency ω by ω [a.u.] =
4.555 × 10−8/λ [m]. We consider infrared laser pulses generated from a Ti:Sapphire [121] of wavelength
λ = 780 nm. This corresponds to λ ≈ 1.5×104 a.u. and frequency ω = 0.0584 a.u.When atoms are subjected
to intense laser fields, electrons can be teared off the atom by tunneling through the potential barrier induced
by the laser. Atoms are composed of inner- and outer-shell electrons. Electrons from the inner shell are
more closely bound to the nucleus than electrons from the outer shell. We consider a single electron in the
outer shell. We neglect the ionization of the electrons in the inner shell. We also neglect their influence on
the ionization of the outer-shell electron [89, 31]. We consider that the atom is composed of a single-active
electron (the outer electron) and an ionic core. The ionic core is composed of the nucleus and the electrons
of the inner shell, whose dynamics is frozen. The effective charge of the ionic core seen by the outer electron
is screened by the inner-shell electrons.

The duration of the laser field is of the order of tens to hundreds of femtoseconds (where 1 fs = 10−15 s)
which corresponds to about ten laser cycles. After ionization, using a dimensional analysis, the characteristic
velocity vchara of the electron in the laser field is

vchara ∼ E0/ω. (1.1)

During one femtosecond, according to the characteristic velocity of the electron, the electron could travel a
distance of order 4 − 400 a.u. In contrast, the characteristic velocity of the ionic core in the field is at least
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a thousand times smaller than the velocity of the electron. This is mainly due to the mass of the nucleus
which is at least a thousand times larger than the mass of the electron. In a femtosecond, the dynamics of
the ionic core is negligible compared to the characteristic size of the atom. We assume the ionic core to be
static, which leads to the static ion approximation.

The characteristic length of the electron in the laser field rchara is

rchara ∼ E0/ω
2, (1.2)

which corresponds to rchara ∼ 1.5− 150 a.u. for the laser parameters used in this manuscript. The size of the
atom, of order 1 a.u., is smaller than the characteristic length of the electron in the laser. The excursions
of the electrons during recollisions are relatively far from the core. In addition, the characteristic length
of the electron in the laser fields is at least a hundred times smaller than its wavelength, i.e., E0/ω

2 � λ.
The spatial variations of the laser field are neglected, which leads to the dipole approximation. In the dipole
approximation, the amplitude of the magnetic force |v × B| ∼ vcharaE0/c, where v is the velocity of the
electron, is much smaller than the amplitude of the electric force |E| ∼ E0. The magnetic force is negligible,
and the Lorentz force is F = −(E + v ×B) ≈ −E.

The characteristic energy of the electron in the laser field corresponds to the ponderomotive energy

Up =
E2

0

4ω2
, (1.3)

The rest energy of the electron in atomic units is c2. The relativistic effects are negligible as long as Up � c2.
For the laser wavelength considered in this manuscript, the critical intensity beyond which relativistic effects
are no longer negligible correspond to I ∼ 1018 W · cm−2. Therefore, the system with the laser intensity used
in this manuscript is in the non-relativistic regime. The different regimes of approximation are illustrated in
Fig. 1.1 as a function of the intensity and the wavelength of the laser.

1.1.2 Field-free single-active electron atom
Since the early twentieth century, a series of models for describing the atom were proposed [160]. For instance,
the solid sphere model of J. Dalton (1803), or later, the plum pudding model of J. J. Thomson [164] (1904), the
nuclear model of E. Rutherford [151] (1911) and the planetary model of N. Bohr [26] (1913) (see Appendix B
for a recall on this semi-classical approach). In 1926, quantum theory became wave mechanics, initiated by
E. Schrödinger. Nowadays, it is the most accurate approach to describe atoms in the non-relativistic regime.

The ionic core is assumed to be static (upon the static ion approximation), and the wave function de-
scribing the state of the electron in the atom at time t is denoted Ψ(r, t). The probability of presence of the
electron at position r at time t is given by |Ψ(r, t)|2. The evolution of the wave function in time is governed
by the time-dependent Schrödinger equation (TDSE)

ĤΨ(r, t) = i
∂Ψ(r, t)

∂t
, (1.4)

where Ĥ is the Hamiltonian operator. In field-free atoms, the Hamiltonian operator is composed of kinetic
energy terms and interaction potential terms governing the ion-electron interactions. The Hamiltonian op-
erator of a single-active electron atom in the non-relativistic regime and in the static ion approximation
reads

Ĥfree =
p̂2

2
+ V (r̂), (1.5)

where p̂Ψ(r, t) = −i∂Ψ(r, t)/∂r is the momentum operator and r̂Ψ(r, t) = rΨ(r, t) is the position operator in
the position representation. By substituting Hamiltonian (1.5) into the left-hand side of Eq. (1.4), we obtain
the Schrödinger wave equation. The atom is initiated in the ground state of energy −Ip, where Ip > 0 is
the ionization potential of the atom. The energy of the ground state of the atom is an eigenvalue of the
Hamiltonian operator Ĥfree, and therefore

ĤfreeΨ(r, t) = −IpΨ(r, t). (1.6)

In the field-free atom, Hamiltonian (1.5) does not depend on time. With Eq. (1.4) and Eq. (1.6), we can write
−IpΨ(r, t) = i∂Ψ(r, t)/∂t. We assume that the variables can be separated such that Ψ(r, t) = ψ(r)χ(t). We
obtain χ(t) = χ(0) exp (iIpt). Therefore, only the phase of the wave function of the electron changes in time
in the field-free atom. The probability of presence of the electron is constant in time, |Ψ(r, t)|2 = |ψ(r)|2.
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The space-dependence of the wave function of the electron is governed by the time-independent Schrödinger
equation (TISE). The TISE is obtained by substituting Hamiltonian (1.5) into the left-hand side of Eq. (1.6).
The TISE reads [

−∆

2
+ V (r)

]
ψ(r) = −Ipψ(r), (1.7)

where ∆ is the Laplacian. The Hydrogen atom, for which the interaction potential V (r) = −|r|−1 is solution
of the three-dimensional Laplace equation, is one of the rare systems for which there exists a closed form
solution for the wave function of the Schrödinger wave equation [116]. In our quantum calculations, the initial
state of the electron is computed using the split-operator method with imaginary time propagation [13, 12].

Figure 1.2: (a) The blue and shaded green surfaces are the soft Coulomb potential [see Eq. (1.8)] for a = 1
and the hard Coulomb potential [see Eq. (1.9)], respectively, for d = 2. (b) Soft Coulomb potential for
a = 1, 2, 3 and the hard Coulomb potential (a = 0) as a function of the distance between the ion and the
electron. (c) Ground state energy of the electron −Ip of Eq. (1.6) obtained using the split-operator method
with imaginary time propagation [13, 12]. In all panels, Z = 1.

In this manuscript, we use the soft Coulomb potential [78, 17] to describe the ion-electron interaction,
which is commonly used in ultrafast processes involving laser-atom interactions [72, 73, 110, 81]. The soft
Coulomb potential is defined as

V (r) = − Z√
|r|2 + a2

, (1.8)

where a is the softening parameter (see Fig. 1.2a). In Fig. 1.2b, the soft-Coulomb potential is depicted for
different values of the softening parameter. The softening parameter controls the depth of the potential well.
This parameter models the strength of the correlation between the ion and the electron. The effective charge
Z models the charge of the ion seen by the active electron, screened by the inner-shell electrons. In our
analytic predictions, we use Z to generalize our results on ionization of electrons from cations, which are
studied in Ref. [52], for instance. In our numerical calculations, we use Z = 1. The soft Coulomb potential is
not singular at the origin, which facilitates the description of the dynamics of the electron in one dimension
(for d = 1). In Fig. 1.2c, we observe that, by changing a, the ionization potential of the atom −Ip changes.
The softening parameter a can be used to model different target atoms. Close to the core, the soft-Coulomb
potential behaves like the harmonic oscillator V (r) ≈ −Z/a+Z|r|2/2a3. Far from the core, the soft-Coulomb
potential behaves like the hard Coulomb potential

V (r) = − Z|r| . (1.9)

The soft and hard Coulomb potential are the ion-electron potentials used in this manuscript. They are
rotationally invariant, as it is the case for interaction potential in atoms. In some places of the manuscript,
we use the notation V(r) = V (r) with r = |r| to generalize the results to rotationnally invariant potentials.
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1.1.3 Intense laser field perturbation
The Hamiltonian of the field-free atom used for describing the electron dynamics in ultrashort processes is
given by Eq. (1.5). We use an intense laser field elliptically polarized to perturb the atom. In the dipole
approximation, the expression of the electric field does not depend on the space variables. The characteristic
length scale of the electron is not large enough to perceive the spatial variations of the laser field. Unless
stated otherwise, the electric field is of the form

E(t) =
E0f(t)√
ξ2 + 1

[ex cos(ωt+ ϕCEP) + eyξ sin(ωt+ ϕCEP)] . (1.10)

The amplitude of the laser is E0, its frequency is ω = 0.0584 a.u. and its carrier-envelope phase (CEP) is
ϕCEP. The period of the laser field is denoted T = 2π/ω. The axes ex and ey are referred to as the major
polarization axis and the minor polarization axis, respectively. The electric field is related to the vector
potential by E(t) = −∂A(t)/∂t. The magnetic field, which is the curl of the vector potential, is zero under
the dipole approximation. The laser polarization is ξ ∈ [0, 1]. For ξ = 0, the laser is linearly polarized (LP).
For ξ > 0, the laser polarization is anticlockwise. For ξ = 1, the laser is circularly polarized (CP). We call
low (resp. high) elliptically polarized laser fields, lasers for which the polarization is close to linear (resp.
circular). The scaling (ξ2 + 1)−1/2 is there to preserve the amplitude of the Poynting vector for varying
ellipticity ξ (see Sec. B.2.1). The envelope of the laser is f(t). In experiments, the duration of the laser pulse
is usually obtained from the full width at half maximum (FWHM). The typical shape of the laser envelope
f(t) is Gaussian due to the laser beam profile in the propagation direction. Figure 1.3 shows three shapes of
laser envelope: The Gaussian envelope [175] f(t) = exp[−(t − 4T )2/2T 2], the trapezoidal envelope [110, 81]
and the cosine envelope [165, 29] f(t) = cos4[π(t− 4T )/8T ]. For the trapezoidal envelope is f(t) = t/Tu for
t ∈ [0, Tu], f(t) = 1 for t ∈ [Tu, Tu + Tp], f(t) = (Tu + Tp + Td − t)/Td for t ∈ [Tu + Tp, Tu + Tp + Td], and
f(t) = 0 otherwise. Here, Tu, Tp and Td are the duration of the ramp-up, plateau and ramp-down of the
laser pulse, respectively. During the plateau, the laser field is T -periodic. This is particularly well suited for
tools from nonlinear dynamics, as discussed in Sec. 1.3.1.

Figure 1.3: Laser field as a function of time per laser cycle for ξ = 0.5 and ϕCEP = 0. The red and blue
curves are the laser field component along the major (ex) and minor (ey) polarization axes, respectively. The
thick black curves are the laser envelope f(t) and −f(t). (a) Gaussian envelope: f(t) = exp[−(t− 4T )2/2T 2]
(used in Ref. [175] for instance). (b) Trapezoidal envelope of 2 − 4 − 2: Tu = 2, Tp = 4 and Td = 2 (used
in Refs. [110, 81] for instance). (c) Cosine envelope: f(t) = cos4[π(t − 4T )/8T ] (used in Refs. [165, 29] for
instance).

The total Hamiltonian operator of the system, in the framework where the laser field is treated classically,
is of the form

Ĥ(t) = Ĥfree + Ĥint(t). (1.11)
The interaction between the electron and the laser field is governed by Ĥint(t). The interaction between the
electron and the laser has an explicit time dependence. In principle there is no eigenvalue of Ĥ(t) associated
with the state of the electron at time t when the laser is turned on. The Hamiltonian operator between the
electron and the laser in the velocity gauge reads [135]

Ĥ(t) =
1

2
[p̂ + A(t)]

2
+ V (r̂),

where Ĥint(t) = p̂ ·A(t) + |A(t)|2/2 and A(t) is the vector potential. In the velocity gauge, the interaction
Hamiltonian is written in terms of the momentum operator. In order to determine the expression of the
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interaction potential in terms of the position operator, we consider the unitary transformation Ψ̄(r, t) =
Û(t)Ψ(r, t), with

Û(t) = exp [ir̂ ·A(t)] . (1.12)

Substituting this transformation in Eq. (1.4), and identifying with the TDSE ˆ̄HΨ̄ = i∂Ψ̄/∂t, we obtain
the expression of the new Hamiltonian ˆ̄H = ÛĤÛ† − iÛ∂Û†/∂t. The unitary transformation of Eq. (1.12)
corresponds to a translation in momentum space. The first term reads ÛĤÛ† = |p̂|2/2 + V (r̂). The second
term reads −iÛ∂Û†/∂t = r̂ ·E(t), where we have used E(t) = −∂A(t)/∂t. Therefore, the Hamiltonian in the
length gauge reads [135]

Ĥ(t) =
p̂2

2
+ V (r̂) + r̂ ·E(t), (1.13)

where bars have been removed. In the length gauge, Ĥint(t) = r̂ ·E(t). The Hamiltonian in the length gauge
highlights the effective potential of the electron. The effective potential seen by the electron oscillates with
the laser field at a frequency ω.

In the classical treatment of the dynamics, the electron is seen as a particle. The position of the electron
is r and its canonical conjugate momentum is p. The Hamiltonian governing the motion of the electron in
phase space is the classical analog of the Hamiltonian operator given by Eq. (1.13). The classical Hamiltonian
of the single-active electron in the dipole approximation reads

H(r,p, t) =
|p|2

2
+ V (r) + r ·E(t). (1.14)

The motion of the electron in phase space is determined by solving Hamilton’s equations ṙ = ∂H/∂p and
ṗ = −∂H/∂r. Hamiltonian (1.14) is studied throughout the manuscript.

1.2 Description of the electronic dynamics in two steps

In this section, we study the quantum dynamics of the electron in atoms subjected to an intense laser field.
We show that, after ionization, the quantum dynamics of the electron exhibits classical features. We use the
Wigner quasi-probability distribution [167] to highlight the quantum-classical correspondence in phase space.
The study of the quantum-classical correspondence allows us to introduce the two-step model which is used
in Chap. 3 to study PMDs.

1.2.1 Comparison between the quantum and the classical description of the
dynamics

Figure 1.4 shows the probability of presence of the electron |Ψ(x, t)|2 as a function of the position and time
per laser cycle. The wave function Ψ(x, t) is solution of the TDSE given by Eq. (1.4) for Hamiltonian (1.13)
for d = 1. The potential is the soft Coulomb potential given by Eq. (1.8). The model atom is H, for which
Ip = 0.5 a.u. and a =

√
2. We use a trapezoidal envelope 2–4–2 (Tu = 2T , Tp = 4T and Td = 2T ).

In Fig. 1.4, we observe that the maximum of the probability of presence of the electron is around the
origin x = 0 for all time. It corresponds to the ground state of the electron which remains populated during
the simulation. At time t = 8T , when the laser field is turned off, only around 95% of the wave function
is outside the core (i.e., |x| > 10 a.u.). At t = T , when the amplitude of the laser field reaches a local
maximum of E0/2, we observe that a portion of the wave packet is released from the atom. At t = 1.5T ,
when the amplitude of the laser field reaches a local maximum of 3E0/4, we observe that a larger portion of
the wave packet is released from the atom than at time t = T . This ionization channel is observed every time
the amplitude of the laser field is large. After the ionization, further away from the core, we observe white
stripes which correspond to local maxima of the probability of presence of the electron. Far from the core,
at |x| > 10 a.u., we observe that the local maxima of the probability of presence of the electron oscillates in
time.

In Fig. 1.4, we show the positions of classical trajectories of Hamiltonian (1.14) for d = 1 as a function
of time per laser cycle. The trajectories are initiated outside the potential barrier of the atom, at x0 =
−IpE(t0) · ex/|E(t0)|2 at time t = t0 with zero initial momentum (see Sec. 1.2.2.1). The magenta trajectory
ionizes without returning to the parent ion, this is a direct ionization. We observe that the magenta trajectory
exhibits the same features as the white stripes of the probability of presence of the ionized quantum wave
packets. In particular, right after ionization, the magenta trajectory overlaps with a white stripe for more
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Figure 1.4: Probability of presence of the electron in logarithmic scale solution of the TDSE (1.4) with
Hamiltonian (1.13) for d = 1 as a function of the position x and the time per laser cycles. The interaction
potential is the soft Coulomb potential (1.8) with Z = 1 and a =

√
2 and Z = 1 (Ip = 0.5 a.u., corresponding

to H atom). The laser intensity is I = 1014 W · cm−2, the wavelength is λ = 780 nm and the laser envelope
is trapezoidal 2–4–2 (Tu = 2T , Tp = 4T and Td = 2T ). The red, pink and purple trajectories are initiated
according to the ADK theory (see Eq. (1.23)). The red trajectory is a subcycle recollision, the pink trajectory
is a Coulomb-driven recollision and the magenta trajectory is a direct ionization (see Sec. 3.1.2.3 for details).

than one laser cycle. The red and pink trajectories also overlap with a white stripe for more than a laser
cycle after ionization. After ionization, the red trajectory goes far from the core, and then returns to the
core, at x = 0, in less than one laser cycle. This is a subcycle recollision. After the first recollision, the red
trajectory recollides multiple times, and then ionizes. The pink trajectory goes far from the core, at about
50 a.u. Then, the electron comes back to the core after multiple laser cycles. This is a multiple laser cycle
recollision, referred to as a Coulomb-driven recollision. The nature of the trajectories is discussed in details
in Chap. 3. Hence, far from the core, after ionization, the quantum wave function manifests similarities with
the purely classical trajectories of Hamiltonian (1.14).

In order to highlight the similarities of the classical and quantum dynamics after ionization, we con-
sider the scattering experiment [166, 20]. In the scattering experiments, the wave packet is initiated at
the peak amplitude of the laser field, at the quiver radius E0/ω

2. The initial wave function is Ψ(x, 0) =
(5π)−1/4 exp[−(x−E0/ω

2)2/10]. The laser envelope is f = 1. In order to visualize the evolution of the wave
function in phase space, we use the Wigner quasi-probability distribution [167]

W(x, px, t) =
1

2π

∫ ∞
−∞

Ψ∗
(
x− y

2
, t
)

Ψ
(
x+

y

2
, t
)

exp (−ipxy) dy, (1.15)

where Ψ(x, t) is solution of the TDSE given by Eq. (1.4) for Hamiltonian (1.13). Figure 1.5 shows snapshots
of the Wigner quasi-probability distribution and the classical trajectories of Hamiltonian (1.14). Initially, the
classical trajectories of Hamiltonian (1.14) are distributed according to the initial condition of the Wigner
quasi-probability distribution W(x, px, 0). By substituting the initial conditions of the wave function in
Eq. (1.15), we obtain W(x, px, 0) = (2/π) exp(−5p2

x) exp[−(x − E0/ω
2)2/5]. Therefore, the most probable

trajectory is initiated at the quiver radius x = E0/ω
2 with zero initial momentum.

In Fig. 1.5, we observe that the evolution of the classical distribution and the Wigner distribution in
phase space is very similar, at least qualitatively. For instance, at t = 1.3T , the classical distribution and
the Wigner distribution are both centered at x ≈ 0 and px ≈ −1. At t = 1.8T , both distributions are
centered at x ≈ 0 and px ≈ 1. The spread of the distributions of the classical trajectories and the Wigner
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Figure 1.5: Snapshots of the evolution of the Wigner quasi-probability distributions (1.15) (white panels)
and the classical electron trajectories (grey panels) in the scattering experiment. The interaction poten-
tial is the soft Coulomb potential (1.8) with Z = 1 and a =

√
2 and Z = 1 (Ip = 0.5 a.u., corre-

sponding to H atom). The laser intensity is I = 1014 W · cm−2, the wavelength is λ = 780 nm and
the laser envelope is f = 1. Initially, the wave function is Ψ(x, 0) = (5π)−1/4 exp[−(x − E0/ω

2)2/10],
and the classical trajectories are distributed according to the initial Wigner quasi-probability distribution
W(x, px, 0) = (2/π) exp(−5p2

x) exp[−(x− E0/ω
2)2/5]. The dynamics of the classical trajectories is governed

by Hamiltonian (1.14) for d = 1. The maximum of the absolute value of the Wigner quasi-probability
distribution is set to unity for each time. All quantities are in a.u.
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quasi-probability distributions is also very similar. The classical dynamics of the electron is the skeleton of
its quantum dynamics. The distributions of the classical trajectories are structured along lines. These lines
are invariant manifolds which drive the electron dynamics. How invariant manifolds drive the dynamics of
the electron is studied in details in Chap. 5. In Fig. 1.5, we observe that the main features absent in the
classical distribution of the electron are the interference patterns in the Wigner quasi-probability distribution.
These features are due to the interferences between the recolliding wave packet and parts of the wave packet
which remains trapped close to the core [166, 21]. These interferences play a central role in HHG, which is
discussed in Sec. 4.2. The interference patterns can be retrieved from the classical action in a semi-classical
approach [103].

In this manuscript, we focus on the purely classical features that the quantum dynamics of the electron
exhibits after ionization. We take advantage of the similarities between the classical and quantum dynamics
of the electron to understand, with the help of classical trajectories, the mechanisms underlying the nonlinear
phenomena observed in experiments. In this manuscript, we use the quantum theory of ionization to obtain
the initial classical distribution in phase space. This procedure is referred to as the classical trajectory Monte
Carlo (CTMC) simulations, and has two steps:

• In step (i), the electron tunnel-ionizes through the potential barrier induced by the laser. The quantum
theory of tunnel-ionization [83, 137, 138, 136, 8] is used to determine the initial distribution of the
electron in phase space.

• In step (ii), the nonlinear dynamics of the electron is treated with a purely classical model, in the
Hamiltonian formalism, in terms of trajectories in phase space.

Figure 1.6: Left panel: Two-step model of the electron. The blue surface is the effective potential V (r) + r ·
E(t0). The red arrow is the tunnel-ionization of the electron corresponding to step (i). The blue arrow is
the electron trajectory corresponding to step (ii). Right panel: Effective potential of Hamiltonian (1.13) in
the adiabatic approximation (1.17) with E(t) = E0e‖(t0), for I = 8 × 1013 W · cm−2, a = 0 (hard Coulomb
potential), Z = 1, and Ip = −0.5 a.u. The blue curve is the effective potential −1/|r‖| + E0r‖. The blue
shaded region is the classical forbidden region. The green dashed curve is the effective potential in the SFA
r‖E0. The red shaded region is the initial wavefunction of the electron. The vertical dotted line are the
boundaries between the regions I, II and III.

1.2.2 Step (i): Ionization of the electron from the ground state
When the laser field oscillates, it creates a potential barrier through which the electron can tunnel-ionize [83,
8, 137, 138, 136], as shown in the left panel of Fig. 1.6. The characteristic velocity of the electron in the
ground state is

√
2Ip. From a semi-classical point of view, the characteristic ionization time of the electron

is the time it spends under the potential barrier of length Ip/E0. The ionization frequency is therefore
ωi = E0

√
2/Ip. Typically, for an atom with Ip ∼ 1 eV and for the laser parameters considered in this

manuscript, the ionization frequency is around ωi ∼ 4×10−2−4 a.u. ≈ 10−18−10−16 rad · s−1. The Keldysh
parameter [83]

γ =
2ω

ωi
=

√
2Ipω

E0
, (1.16)
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is used to estimate the dominant ionization process. We notice that if we consider the characteristic velocity
of the electron under the potential barrier to be vchara ∼ E0/ω instead of

√
2Ip, the ionization frequency

becomes ωi = E2
0/ωIp and the ratio 2ω/ωi = 2Ipω

2/E2
0 , which corresponds to γ2. If γ � 1, the barrier

oscillates slowly compared to the ionization frequency, and the dominant ionization process is the adiabatic
tunnel ionization [83, 8]. If γ � 1, the barrier oscillates quickly compared to the ionization frequency, and
the dominant ionization process is multiphoton absorption [6, 57] . For γ ∼ 1, the process is in between tunnel
ionization and multiphoton absorption. During this so-called nonadiabatic tunnel-ionization [137, 138, 136],
the wavepacket absorbs photons during the tunneling [86, 124, 125]. For the laser parameters considered
in this manuscript and Ip ∼ 1 eV, the Keldysh parameter is around γ ∼ 3 × 10−2 − 3. Therefore, the
regime of ionization for the parameters investigated in this manuscript are the adiabatic and nonadiabatic
tunnel ionization. Many tunneling ionization rates have been derived with various techniques, see for instance
Refs. [172, 27, 104, 86]. In this section, we show the results for the two main ionization theories, namely the
Ammosov-Delone-Krainov [83, 8] (ADK) and the Perelomov-Popov-Terent’ev [137, 138, 136] (PPT) ionization
theories. We summarize the derivation of the ADK theory and we summarize the results of the PPT theory.
Then, we compare the results obtained in the adiabatic and nonadiabatic tunneling theory, and we identify
the initial conditions of the T-trajectory which corresponds to the most probable trajectory according to the
tunneling ionization rate.

1.2.2.1 Ammosov-Delone-Krainov (ADK) ionization rate

The summary of the derivation of the ADK theory of ionization follows Refs. [83, 8, 117, 123]. We consider
the adiabatic regime γ � 1, in which the frequency of oscillations of the barrier is very small compared to
the frequency of ionization. We denote t0 the time at which the electron is outside the potential barrier. We
use the adiabatic approximation in which the laser field is static

E(t) ≈ E(t0) = |E(t0)|e‖(t0), (1.17)

where e‖(t0) = E(t0)/|E(t0)| is the direction of the electric field. The polarization plane is (ex, ey) and
therefore e‖(t0) = [e‖(t0) · ex]ex + [e‖(t0) · ex]ey and e⊥(t0) = −[e‖(t0) · ey]ex + [e‖(t0) · ex]ey. The Hamil-
tonian operator governing the evolution of the wave function is given by Eq. (1.13). The ionization occurs
relatively far from the core, therefore we consider the hard Coulomb potential to describe the ion-electron
interaction V (r) = −Z/|r|. Figure 1.6 shows the effective potential of Hamiltonian (1.13) in the adiabatic
approximation along e‖(t0). In the right panel of Fig. 1.6, three regions are depicted. The saddle point
r? = −

√
Z/|E(t0)|e‖(t0) is where the Coulomb interaction and the laser interaction have the same ampli-

tude, |V (r?)| = |r? · E(t0)|. Each region corresponds to a regime of approximation. The wave function in
region I and II are denoted ΨI and ΨII, respectively.

Region I: Atom in the ground state In region I, for which |r| < |r?|, the Coulomb potential is domi-
nant. We assume that the Hamiltonian operator governing ΨI(r) corresponds to the Hamiltonian operator of
the field-free atom (1.5). The wave function in region I is described by Eq. (1.7). For rotationally invariant
potential, the wavefunction is of the form ΨI(r) = Rnl(|r|)Y ml (r/|r|), where Y ml (r/|r|) are spherical harmon-
ics [116], Rnl(|r|) is the radial wave function, n is the principal quantum number, l is the angular quantum
number and m is the magnetic quantum number. In Refs. [83, 8, 123], the asymptotic solution of the radial
wave function (in |r|) is used in the theory of ionization. For hard Coulomb potential (1.9), the asymptotic
radial wavefunction [116] is of the form

ΨI(r) ≈ Cnl|r|Z/2Ip−1 exp(−
√

2Ip|r|)Y ml (r/|r|), (1.18)

where Cnl is a constant which depends on the wavefunction of the atom near the origin (see Ref. [8, 123] for
an approximation of the expression of Cnl, and Ref. [116] for the expression of the spherical harmonics). The
probability of presence of the electron decreases exponentially with its distance from the ionic core.

Region II: Tunnel ionization and WKB approximation In region II, for which |r?| < −r‖ < |rADK|,
the laser interaction is dominant. We assume that the Coulomb potential is neglected. In the adiabatic
approximation, the Hamiltonian operator (1.13) is autonomous (no explicit time dependence), and the eigen-
value is the energy of the ground state −Ip. The wave function in region II is given by[

p̂2

2
+ r̂ ·E(t0)

]
ΨII(r) = −IpΨII(r). (1.19)
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We consider the wavefunction in terms of the position operator along the laser field direction r̂‖ = r̂ · e‖(t0),
transverse to the laser field direction r̂⊥ = r̂ · e⊥(t0) and perpendicular to the polarization plane ẑ = r̂ · ez,
with e‖(t0) × e⊥(t0) = ez. In the position representation, the momentum operators are denoted p̂‖ =
−i∂/∂r‖, p̂⊥ = −i∂/∂r⊥ and p̂z = −i∂/∂z. We perform a partial Fourier-transform [123] in the transverse
and perpendicular direction to the laser field. We denote ΥII(r‖, p⊥, pz) = F [ΨII(r‖, r⊥, z)](p⊥, pz). The
TISE (1.19) becomes [

∂2

∂r2
‖

+ k(r‖)
2

]
ΥII(r‖, p⊥, pz) = 0, (1.20)

where k(r‖) = [−2(I ′p + r‖|E(t0)|)]1/2 and 2I ′p = 2Ip + p2
⊥ + p2

z is the effective energy of the electron. In
order to determine wave function in region II from Eq. (1.20), we use the Wentzel–Kramers–Brillouin (WKB)
approximation [117]. The WKB approximation is valid if |∂k/∂r‖| � |k|2. We assume that ΥII(r‖, p⊥, pz) =
exp[iυj(r‖, p⊥, pz)]. We substitute this form of the wave function in Eq. (1.20) and rewriting the equation in
a fixed point equation, we obtain

υj(r‖, p⊥, pz) = ±
∫ r‖

[
k(s)2 + i

∂2υj(s, p⊥, pz)

∂s2

]1/2

ds. (1.21)

The solution of υj(r‖, p⊥, pz) is determined by recurrence using the Picard-Lindelöf theorem. At the ze-
roth order, we assume that |∂2υ0/∂r

2
‖| � |∂υ0/∂r‖|2, or equivalently that |∂2υ0/∂r

2
‖| � |k(r‖)|2. There-

fore, υ0(r‖, p⊥, pz) = ±
∫ r‖ k(s) ds. At the first order, we substitute the solution of υ0(r‖, p⊥, pz) in the

right-hand side of Eq. (1.21). Using a Taylor expansion with the assumption |∂2υ0/∂r
2
‖| � |k(r‖)|2, one

obtains υ1(r‖, p⊥, pz) ≈ ±
∫ r‖ k(s) ds + i log

√
k(r‖) + C, with C a constant. At the first order, ΥII ≈

exp[iυ1(r‖, p⊥, pz)]. In region II, k(r‖)
2 < 0 and therefore k(r‖) = i=k(r‖) with =k(r‖) = [2(I ′p+r‖|E(t0)|)]1/2.

The wave function for r‖ ∈ [−|rADK|,−|r?|] is given by

ΥII(r‖, p⊥, pz) ≈ ΥII(−|r?|, p⊥, pz)
√
k(−|r?|)
k(r‖)

exp

[
(2I ′p + 2r‖|E(t0)|)3/2

3|E(t0)| − (2I ′p − 2|r?||E(t0)|)3/2

3|E(t0)|

]
. (1.22)

Region III: Distribution of the initial conditions of the electron in phase space In region III, for
which r‖ < −|rADK|, we consider the dynamics to be classical. The tunnel exit of the electron is outside the
barrier in the direction of the electric field. In the adiabatic approximation, the energy of the electron after
ionization is 2I ′p = 2Ip + p2

⊥ + p2
z. In the adiabatic approximation, the initial conditions of the electron are

rADK = −e‖(t0)
I ′p

2|E(t0)|

(
1 +

√
1− 4Z|E(t0)|

I ′2p

)
≈ −e‖(t0)

Ip
|E(t0)| , (1.23a)

pADK = e⊥(t0)p⊥ + pz,0ez. (1.23b)

The initial position of the electron corresponds to |pADK|2/2+V (rADK)+rADK ·E(t0) = −Ip. In Eq. (1.23a),
we have used that the electron ionizes relatively far from the core 4Z|E(t0)|/I ′2p � 1 and with a small initial
kinetic energy compared to the ionization potential Ip � |pADK|2/2. Each trajectory is weighted by the
ionization rate associated with the initial conditions. The ADK ionization rate is given byWADK(t0,pADK) =
|ΥII(−|rADK|, p⊥, pz)|2. In Eq. (1.22), we use |r?| = 0 and the expansion (2Ip + |pADK|2)3/2 ≈ (2Ip)

3/2 +
|pADK|2

√
2Ip. The ADK ionization rate, for a given ionization time t0 and initial momentum pADK is

therefore

WADK(t0,pADK) ∝ exp

[
−2(2Ip)

3/2

3|E(t0)|

]
× exp

[
−
√

2Ip

2|E(t0)|
(
p2
⊥ + p2

z,0

)]
. (1.24)

In Eq. (1.24), the ionization rate is written in terms of proportionality for two reasons: In the CTMCs
calculations, only the relative amplitude of the ionization rate is useful (see Sec. D.1.1), and in experiments,
the constant is obtained by interpolating the ionization rate at a given intensity. Equation (1.24) is therefore a
convenient form for the CTMCs computations and for post-processing purposes. In Ref. [123], the expression
of the constant is reported and is obtained by matching the asymptotic expression of the wave function in
region I (1.18) with the wave function in region II.
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1.2.2.2 Perelomov-Popov-Terent’ev (PPT) ionization rate

In the nonadiabatic regime γ . 1, the frequency of the barrier is of the same order as the frequency of the
ionization rate. The oscillations of the barrier must be taken into account and the adiabatic approxima-
tion (1.17) no longer holds. In 1966, a series of papers [137, 138, 136] has been published, which introduced
some techniques to account for the variations of the laser field using the Green functions formalism and the
complex trajectories (saddle point method) for a short-range potential V (r) ∝ δ(r), with δ the Dirac distri-
bution function. Here, we summarize the results of the PPT theory: The initial conditions of the electron
are parametrized by the ionization time t0 and its momentum pPPT at t0,

rPPT = e‖(t0)
|E(t0)|
ω2

(1− cosh τ0), (1.25a)

pPPT = e‖(t0)p‖ + e⊥(t0)p⊥ + ezpz,0, (1.25b)

with e‖(t0) = E(t0)/|E(t0)| and e⊥(t0) = −[e‖(t0) · ey]ex + [e‖(t0) · ex]ey. In other words, p‖ is the initial
momentum of the electron along the laser field direction at ionization, p⊥ is the initial momentum transverse
to the laser field direction, and pz,0 is the initial momentum perpendicular to the polarization plane (ex, ey).
The time τ0 = τ0(γ0) is solution of the transcendental equation

sinh2 τ0 − ξ2

(
cosh τ0 −

sinh τ0
τ0

)2

= γ0(t0)2, (1.26)

where γ0(t0) = ω
√

2Ip/|E(t0)|. For τ0(γ0) � 1, we obtain τ0(γ0) ≈ γ0. The PPT ionization rate [138] for
the CTMC calculations reads

WPPT(t0,pPPT) ∝ exp

[
−2Ip
ω
g(γ0)

]
× exp

{
− 1

ω

[
c‖(γ0)p2

‖ + c⊥(γ0)
(
p⊥ − pmax

⊥,0
)2

+ cz(γ0)p2
z,0

]}
, (1.27)

where the functions g is

g(γ0) =

(
1 +

1 + ξ2

2γ2
0

)
τ0(γ0)− (1− ξ2)

sinh 2τ0(γ0)

4γ2
0

− ξ2 sinh2 τ0(γ0)

γ2
0τ0(γ0)

. (1.28)

The coefficients c‖, c⊥ and cz, which are inversely proportional to the square of the standard deviation of the
distribution along the longitudinal and transverse momentum, are given by

c‖(γ0) = τ0(γ0)− σ(γ0) tanh τ0(γ0), (1.29a)

c⊥(γ0) = τ0(γ0) + σ(γ0)ξ2 [τ0(γ0)− tanh τ0(γ0)]
2

τ0(γ0)2 tanh τ0(γ0)
, (1.29b)

cz(γ0) = τ0(γ0), (1.29c)

with the notation

σ(γ0) =

(
1− ξ2 + ξ2 tanh τ0(γ0)

τ0(γ0)

)−1

.

The coefficients satisfy c‖ < c⊥ ≤ cz, implying that the distributions are more spread out along the longitu-
dinal direction than along the transverse or perpendicular directions. The most probable initial transverse
momentum pmax

⊥,0 is

pmax
⊥,0 =

ξE0

ω
√
ξ2 + 1

(
1− sinh τ0(γ0)

τ0(γ0)

)
. (1.30)

1.2.2.3 T-trajectory and comparison of adiabatic and nonadiabatic theories

The ionization rate in the ADK adiabatic theory and the PPT nonadiabatic theory are given in Eq. (1.24)
and Eq. (1.27), respectively. In the adiabatic (ADK) theory of ionization, the electric field is assumed to be
static during the ionization of the electron. The associated Keldysh parameter (1.16) is very small, γ � 1. In
other terms, the potential barrier under which the electron ionizes is very thin, and the ionization is almost
instantaneous. In the PPT ionization rate, the “time spent by the electron under the potential barrier” [152]
is given by τ0, solution of Eq. (1.26). In the adiabatic limit for which γ0 → 0, we obtain τ0 ≈ γ0 by
Taylor expanding the left-hand side of Eq. (1.26) to the second order in τ0. Therefore, in the semi-classical

24



1.2. DESCRIPTION OF THE ELECTRONIC DYNAMICS IN TWO STEPS1.2. DESCRIPTION OF THE ELECTRONIC DYNAMICS IN TWO STEPS1.2. DESCRIPTION OF THE ELECTRONIC DYNAMICS IN TWO STEPS1.2. DESCRIPTION OF THE ELECTRONIC DYNAMICS IN TWO STEPS1.2. DESCRIPTION OF THE ELECTRONIC DYNAMICS IN TWO STEPS1.2. DESCRIPTION OF THE ELECTRONIC DYNAMICS IN TWO STEPS

representation, tunnel-ionization is “instantaneous” in the adiabatic limit. The first order Taylor expansion
in γ0 of Eq. (1.28) is g(γ0) ≈ (2/3)γ0, and therefore exp(−2Ipg(γ0)/ω) ≈ exp[−2(2Ip)

2/3/3|E(t0)|] in the
adiabatic limit. The first order Taylor expansion in γ0 of the coefficients given in Eqs. (1.29) are c‖ ≈ 0 and
c⊥ ≈ cz ≈ γ0. The first order Taylor expansion in γ0 of the most probable transverse momentum given in
Eq. (1.30) is pmax

⊥,0 ≈ 0. Therefore, exp{−[c‖p
2
‖ + c⊥(p⊥ − pmax

⊥,0 )2 + czp
2
z]/ω} ≈ exp[−

√
2Ip(p

2
⊥ + p2

z,0)], and
WPPT ≈ WADK in the adiabatic limit. In addition, the first order expansion initial position of the electron
in the PPT theory given in Eq. (1.25) is rPPT ≈ rADK in the adiabatic limit. Therefore, the nonadiabatic
(PPT) theory provides the same results as the adiabatic (ADK) theory in the adiabatic limit.

In both theories, the maximum of the ionization rate is reached when the electron ionizes at the peak
amplitude of the laser field. In other terms, the most probable time at which the electron is outside the
potential barrier is such that the laser field is at the peak amplitude. For a laser field as given in Eq. (1.10)
and f = 1, the peak amplitude of the laser E0/

√
ξ2 + 1 is reached at time ωt0 + ϕCEP = kπ, with k ∈ Z. In

the adiabatic theory, the most probable initial position and momentum of the electron are

rT
ADK = −e‖(t0)

Ip
√
ξ2 + 1

E0
, (1.31a)

pT
ADK = 0, (1.31b)

where we have used Eqs. (1.23) and (1.24). The most probable trajectory according to the ionization rate is
referred to as the T-trajectory. In the ADK theory, the initial position and momentum of the T-trajectory
are given by Eqs. (1.31) with t0 which maximizes the amplitude of the laser field. The T-trajectory ionizes
in the opposite direction of the laser field direction. In the nonadiabatic theory, the most probable initial
position and momentum of the electron are

rT
PPT = e‖(t0)

E0

ω2
√
ξ2 + 1

(1− cosh τ) , (1.32a)

pT
PPT = e⊥(t0)

ξE0

ω
√
ξ2 + 1

(
1− sinh τ

τ

)
, (1.32b)

where τ is the solution of Eq. (1.26) for γ0 = γ
√
ξ2 + 1. We have used Eqs. (1.25) and (1.27). In the PPT

theory, the initial position and momentum of the T-trajectory are given by Eqs. (1.32) with t0 maximizing
the amplitude of the laser field. The T-trajectory in the PPT theory ionizes closer to the core than in the
ADK theory. Hence, the ionization rate associated with the T-trajectory is the maximum ionization rate,
and the T-trajectory captures the dominant behavior of the ionized electrons.

1.2.3 Step (ii): Classical motion of the ionized electron
After ionization, the dynamics of the electron is described purely classically. The Hamiltonian governing the
motion of the electron in phase space is given by Eq. (1.14). It corresponds to the classical analog of the
Hamiltonian operator given by Eq. (1.13). Figure 1.6 depicts step (ii).

Close to the core, the ion-electron interaction in Hamiltonian (1.14) is dominant compared to the laser
interaction. If there is no laser field, E(t) = 0, Hamiltonian (1.14) is autonomous. There are d degrees of
freedom in the system (d is the dimension of the configuration space). The potential is rotationally invariant
(i.e., the force is central), and as a consequence the angular momentum of the electron is conserved, which
corresponds to d − 1 constants of the motion in involution. The system is integrable in the Liouville sense
and cannot exhibit chaos. As a consequence, there is no sensitivity with respect to the initial conditions.

Far from the core, the laser interaction in Hamiltonian (1.14) is dominant compared to the ion-electron
interaction. If there is no ion-electron interaction, V (r) = 0, Hamiltonian (1.14) is explicitly time-dependent
and the equations of motion of the electron are linear. In particular, the momentum of the electron is

p(t) = p0 −A(t0) + A(t), (1.33)

where p0 = p(t0) is the initial momentum after ionization, t0 is its ionization time and the vector potential
is such that E(t) = −∂A(t)/∂t. This case is referred to as the strong field approximation (SFA). In the SFA,
the drift momentum of the electron p(t) −A(t) = p0 −A(t0) is conserved in time. Therefore, there are d
constants of the motion in involution in the SFA. The Hamiltonian system in the SFA is also integrable.

Figure 1.7a, Fig. 1.7c and Fig. 1.7e show the position of the ADK T-trajectory as a function of time per
laser cycle t/T for different values of the ionization potential for d = 1. The dotted line is the SFA trajectory
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Figure 1.7: The dimension of the configuration space is d = 1, the laser intensity is I = 1014 W · cm−2,
the softening parameter is a = 1, the effective charge is Z = 1, the laser field is given by Eq. (1.10) with
ϕCEP = 0 and f = 1. Upper panels (a), (c), (e): Position of the ADK T-trajectory as a function of time t
per laser cycle T . The horizontal line indicates the position of the ionic core at x = 0. The dotted line is
the SFA trajectory. Middle panels (b), (d), (f): T-trajectory in the ADK theory in phase space (x, px). The
ionization potential is (a–b) Ip = 0.5 a.u., (c–d) Ip = 0.2 a.u., (e–f) Ip = 0.1 a.u. (g) Poincaré section of the
electron dynamics given in Eq. (5.2). The squares are the initial conditions of the ADK T-trajectory. The
triangles are the T-trajectory in phase space under the Poincaré map (5.2).

and the solid line is the trajectory of Hamiltonian (1.14) for a laser field of the form (1.10) and f = 1. The
electron ionizes at t0 = 0, at the peak amplitude of the laser field. In the SFA, the trajectory of the electron is
x(t) = −E0/ω

2[1+γ2/2−cos(ωt)], with γ given by Eq. (1.16). In the SFA, the T-trajectory oscillates in time
without recolliding, i.e., without crossing x = 0. In contrast, the T-trajectory of Hamiltonian (1.14) exhibits
different qualitative behaviors. In Fig. 1.7a, the T-trajectory of Hamiltonian (1.14) recollides with the core
multiple times. In Fig. 1.7c, the T-trajectory of Hamiltonian (1.14) is trapped close to the core for half of
a laser cycle before ionizing and recolliding. In Fig. 1.7e, the T-trajectory of Hamiltonian (1.14) is bounded
and does not ionize. Therefore, the T-trajectory with and without taking into account the Coulomb potential
are qualitatively very different. Even when the laser interaction is dominant compared to the ion-electron
interaction after ionization [see Fig. 1.7a for instance], the ion-electron interaction acts significantly on the
dynamics of the electron after ionization. In Chap. 3, we study the impact of the Coulomb potential on the
motion of the electron using the comparison between the trajectories in the SFA and of Hamiltonian (1.14).

The difficulty in the analyses of the dynamics of the electron arises when the combined Coulomb and
strong laser field must be both taken into account, i.e., E(t) 6= 0 and V (r) 6= 0. In this case, the angular
momentum and the drift momentum of the electron are no longer conserved, and Hamiltonian (1.14) depends
explicitly on time. The number of conserved quantities in the system is always smaller than the number of
degrees of freedom. The system is not integrable in the Liouville sense, making the combined Coulomb and
laser fields a fully nonlinear and chaotic system. In this manuscript, we study the classical motion of the
electron after ionization given by the reference Hamiltonian (1.14) by taking into account the Coulomb and
laser fields. In Chap. 2, we derive reduced models to describe the electron dynamics of Hamiltonian (1.14).
In Chap. 5, we investigate qualitatively the phase space of the electron using nonperturbative methods.
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1.3 Qualitative analysis of the T-trajectory in phase space

The T-trajectory of the electron is the most weighted trajectory according to the ionization rate of the
quantum theory. The T-trajectory captures the dominant behavior of the ionized electrons. Understanding
its behavior allows one to understand the global behavior of the ionized electrons. In this section, we describe
qualitatively the dynamics of the T-trajectory in phase space, and we introduce the tools we use throughout
the manuscript.

1.3.1 Dynamics of the electron for d = 1: Poincaré section

We first focus on LP fields (ξ = 0). For LP fields, the dynamics of the electron can be reduced to one
dimensions (for d = 1) for y = z = py = pz = 0. For the laser field of the form (1.10) with f = 1 and for the
soft Coulomb potential (1.8), Hamiltonian (1.14) for d = 1 reads

H(x, px, t) =
p2
x

2
− 1√

x2 + 1
+ xE0 cos (ωt) . (1.34)

In absence of laser envelope, the CEP is chosen as ϕCEP = 0 without loss of generality. Figures 1.7b,
1.7d and 1.7f show the T-trajectory of Hamiltonian (1.34) in phase space, in the plane (x, px), for different
ionization potentials. The ionization time of the T-trajectory is chosen at t0 = 0 (peak amplitude of the laser
field). The initial condition of the electron is depicted with a square, at xTADK = −Ip/E0 and pTx,ADK = 0
[see Eqs. (1.23)].

In Fig. 1.7b, the T-trajectory goes far from the core, its momentum changes sign, and then comes back
to the core and recollides with an energy approaching 2Up. At the recollision, there is a sudden peak of
momentum around x = 0 due to the ion-electron interaction. Then, the T-trajectory recollides multiple
times and ionizes. We observe that the shape of the T-trajectory during the multiple recollisions looks like
the shape of the black curve. The black curve is a periodic orbit of Hamiltonian (1.34) of period T . One
piece of the periodic orbit is far from the core, and another piece is close to the core. It is referred to as a
recolliding periodic orbit [81, 80, 109, 3] (RPO). After ionization, the electron is driven by the stable manifold
of the RPO, mimics the shape of the RPO, and then ionizes through its unstable manifold, as it is shown
in Fig. 1.8a. Invariant objects in phase space, such as for instance the periodic orbits, play an instrumental
role in driving the electron dynamics. Analyzing the shape of the invariant objects in phase space allows us
to understand and predict the motion of the electron. In Chap. 5, we study the invariant objects structuring
the phase space and driving the recollisions of the electron for d = 1, 2, 3.

One way to analyze and represent invariant objects in phase space is to use Poincaré sections. For d = 1,
there are 1 + 1/2 degrees of freedom: One degree of freedom for the position and momentum of the electron
(x, px), and a half degree of freedom for time t. Therefore, the phase space is three-dimensional: One
dimension for the position, one dimension for momentum and one dimension for time. Hamiltonian (1.34) is
T -periodic, H(x, p, t + T ) = H(x, p, t) for all x, p and t. As a consequence, the Hamiltonian flow ϕt0(x, px),
which maps the point (x, px) at time t = 0 to the point ϕt0(x, px) at time t following Hamilton’s equations,
is also T -periodic. We consider the Poincaré map

P : (x, px) 7→ ϕT0 (x, px), (1.35)

also referred to as the stroboscopic map. The Poincaré map (1.35) maps the phase-space variables (x, px) to
a two-dimensional subspace through a stroboscopic plot of the dynamics. Therefore, the dynamics in phase
space can be represented in two dimensions. The Poincaré section depicted in Fig. 1.7g is the stroboscopic
plot obtained by applying multiple times the Poincaré map (1.35) on a set of initial conditions at time t = 0.
The Poincaré section highlights the structure of the phase space. Under the Poincaré map (1.35), periodic
orbits of period T , such as for instance the one depicted in Figs. 1.7b, 1.7d and 1.7f, become fixed points.
For instance, around the origin, there is a fixed point corresponding to a periodic orbit of period T which is
around the bottom of the ion-electron potential. Around the fixed point, we observe one-dimensional curves,
which are invariant tori of the Poincaré map (1.35). The representation and the computation of invariant
tori is performed in Sec. D.2.4.

In Figs. 1.7f, the T-trajectory populates the region close to the core, where we observe invariant curves.
The motion of the T-trajectory is quasi-periodic, i.e., the electron almost comes back to its initial position
in a given interval of time, as shown by the position of the triangles and the squares. As a consequence, the
T-trajectory in light blue is bounded and cannot ionize. Notice that this is inconsistent with the quantum
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theory of ionization, since the initial conditions correspond to ionized trajectories. This discrepancy can
be overcome by including the Coulomb potential in the derivation of the quantum tunneling theory. For
Ip = 0.1 a.u., the electron ionizes over the barrier for I = 1014 W · cm−2, and not by tunnel-ionization as it
is assumed in Sec. 1.2.2. Still, we use the case Ip = 0.1 a.u. to highlight the role of the population of states
of the T-trajectory by the quantum theory of ionization. The population of classical states by the quantum
ionization plays an instrumental role, for instance, in the mechanism behind the bifurcation in the PMDs
(see Fig. 8). This is studied in Chap. 3.

Further away from the origin, surrounding the last invariant torus, we observe a region of phase space in
which there are no invariant curves, but a large density of points. In Fig. 1.7g, the pink trajectory populates
this region. We observe that the T-trajectory is trapped close to the ionic core for a half of a laser cycle
after ionization. Therefore, the region surrounding the last invariant curve is referred to as a chaotic region.
Notice that the chaotic region is responsible for the resonant-excitation with subsequent ionization [113, 112].
The finite time Lyapunov exponent log |λ|/t, where λ is the largest eigenvalue of the tangent flow (see
Appendix C.1), measures the sensitivity with respect to the initial conditions by quantifying the degrees of
exponential growth of the distance between two trajectories initiated close to each other. The finite time
Lyapunov exponent of the pink trajectory, half of a laser cycle after ionization, is about 0.08. Therefore, in
the chaotic region, two trajectories initiated close to each other leave quickly far apart each other. Usually,
perturbative methods fail for predicting the dynamics of the electron in the chaotic region. Further away from
the chaotic region, the density of points is smaller. We expect the dynamics of the T-trajectory populating
this region to be accurately described by perturbative methods. In Chap. 2, we derive reduced models for
the electron dynamics for arbitrary ellipticity and d = 1, 2, 3. The reduced models are used in Chap. 3 to
highlight the impact of the Coulomb potential in the PMDs.

Therefore, despite the invariant objects driving the electron in phase space are identical in panels (b,d,f)
of Fig. 1.7, the nature of the T-trajectory depends strongly on the state it populates after ionization. In
Chap. 3, the states populated by the T-trajectory and its impact in photoelectron momentum distributions
(PMDs) measured in experiments [93, 104] is studied for arbitrary ellipticities and d = 1, 2, 3.

1.3.2 Dynamics of the electron in higher dimensions

For arbitrary ellipticities, due to the form of the laser field given by Eq. (1.10) and Hamiltonian (1.14), the
configuration space must be at least two dimensional (d > 1). For a d-dimensional configuration space, there
are d+ 1/2 degrees of freedom, and therefore the dimension of the phase space is 2d+ 1. The dimension of
the Poincaré section is therefore 2d, and cannot be represented in a straightforward way in two dimensions
for d > 1. The dimension of the invariant objects is also larger, and therefore their analysis and their
representation is computationally challenging. This makes the analysis of the phase space more delicate.

In Chap. 2, we derive a hierarchy of reduced models for describing the motion of the electrons in the
framework of their guiding center (GC). The Hamiltonian of the guiding center is autonomous, and therefore
it allows us to define an energy for the electron in the combined Coulomb and laser field. The energy of the
guiding center is an adiabatic invariant of the dynamics of the electron. This energy is of particular interest
for identifying the nature of the T-trajectory, as shown in Chap. 3. In addition, for d = 2, the number of
degrees of freedom in the guiding center models is two, and their energy is conserved. Therefore, we can plot
Poincaré sections of the Hamiltonian of the guiding center. It becomes possible to describe the dynamics of
the electron with Poincaré sections as it has been done in Sec. 1.3.1 for the T-trajectory in Fig. 1.7.

In Chap. 4, we investigate the recollision mechanism in atoms driven by circularly polarized (CP) and
highly elliptically polarized laser fields. The existence of recollisions in CP fields is still under debate [39, 61,
111, 58]. In particular, the three-step model, cartooned in Fig. 5, predicts that “For circularly polarized light,
[...] the electron trajectory never returns to the vicinity of the ion.”. However, experimental measurements [55,
61], supported by theoretical measurements [111, 81], show the existence of recollisions driven by CP fields
for certain target species. For CP fields and f = 1, when mapping the phase-space coordinates of the electron
in the laboratory frame to the rotating frame, in which the laser field is static, the laser interaction does
no longer depend on time. As a consequence, the Hamiltonian is autonomous, and the dimension of the
phase space is decreased to 2d. The rotating frame reveals a variety of invariant objects in phase space, such
as for instance fixed points and periodic orbits. In particular, it reveals the existence of RPOs capable of
driving the electron back to the core [81], depicted in red in Fig. 1.8c. These periodic orbits are located in
high energy regions, and exist regardless the target species. Just as the electron is outside the core region,
the initial phase-space coordinates of the T-trajectory are close to the energy of the blue dot depicted in
Fig. 1.8c. However, in the rotating frame and for f = 1, the energy of the electron is constant in time,
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frame). They each consist of an interior loop, occurring in
the down-field direction of the laser, which passes close to
the nucleus (where the Coulomb attraction dominates the
dynamics) and a farther reaching exterior loop which
encloses the nucleus (where the laser field predominates).
Comparing the RPO in Fig. 2 for Hamiltonian (1) (left
panel) and the same RPO for C60 (right panel), we observe
striking similarities, despite the strong differences in the
potentials. The only common feature between the two
potentials is the Coulomb tail far from the core (! 1=r
for r " 1) which results in a one-electron model, which
we examine next.

In the rotating frame, the Hamiltonian modeling a
one-electron dynamics reads

K ¼p2
x þp2

y

2
! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þy2

p þE0x!!ðxpy ! ypxÞ; (1)

whereK is referred to as the Jacobi constant for its link to
celestial mechanics [21]. The variables (x, y) and (px, py)
are the position and canonically conjugate momentum of
the electron. E0 is the amplitude of the field and ! its
frequency. For C60, we use a continuous approximation
of the potential given in Ref. [22]. The phase space of
Hamiltonian (1) is unbounded, but not all electrons
can leave the core region and ionize. In particular, if the
Jacobi constant of the electron is smaller than the one
corresponding to a specific Stark saddle point [23–25], the
electron is stuck in the core region with no possibility for
ionization. In Fig. 3, we display the limits of the domain
accessible to the electron [in the configuration space of
Hamiltonian (1)], where the saddle point is indicated by a
sphere.

As illustrated by Figs. 1 and 2, recollisions with CP are
organized by certain types of periodic orbits. Only those
periodic orbits which contain segments both close to and
far away from the core play a role in recollisions, and these
are RPOs. The topologically simplest RPO consists of an
off-centered circle, and we found such an orbit for high
values of the Jacobi constant (top orbit in Fig. 3). When
followed by continuity as the Jacobi value is decreased,

this orbit bifurcates into a family of periodic orbits which
consist of an interior loop, in the down-field direction of
the laser, and one or several exterior loops, leading to an
excursion far from the core (like the highlighted regions of
Fig. 1). We label these RPOs On, where n corresponds to
the number of loops in the periodic orbit (see Fig. 3). The
interior loop is responsible for the exchange of energy
between the already ionized electron and the core (or
second) electron while the exterior loop is where the
ionized electron gains energy from the laser field. Not all
RPOs are equally important for recollision: Relevant orbits
have a period which is much smaller than the pulse dura-
tion (so as to influence the motion of the already ionized
electron) and are weakly hyperbolic, so that an electron can
stay close to them long enough to imitate their dynamics.
We found a handful of such RPOs, and their influence
waxes and wanes with the choice of Jacobi value and
intensity. For instance, the influence of O4 (middle curve
in Fig. 3) can be seen on Fig. 2 of Ref. [18].
The main outcome of the recollision is the modification

of the core structure, leading to, e.g., NSDI. Recollisions
exhibited by the two-electron Hamiltonian follow the
organizing structures of the one-electron Hamiltonian (as
seen in Fig. 1), and indeed it will be shown that these
structures dictate the properties of the NSDI channel. The
two-electron dynamics can be expressed by [26]

H ¼kp1k2 þkp2k2
2

þVðkr1kÞ þVðkr2kÞ

þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr1 ! r2k2 þb2

p þE0fðtÞðr1 þr2Þ '
sin!t

cos!t

 !
:

(2)

Here, r1;2 and p1;2 are the canonically conjugate positions
and momenta of the two electrons in the lab frame.

FIG. 2 (color online). RPO corresponding to the highlighted
trajectory portions in Fig. 1. The left panel corresponds to
Hamiltonian (1) and the right panel to a one-electron
Hamiltonian model for C60 [22].

FIG. 3 (color online). Limits of the accessible domain for an
electron modeled with Hamiltonian (1). We display three RPOs
of the family On. The saddle point is marked by a sphere. The
laser parameters are the same as in Fig. 1.
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corresponds to the number of recollisions (regardless of the
direction, right to left or left to right) undergone by the traj-
ectory started with the given initial conditions. Remarkably,
all these initial conditions are located around the stable
manifoldWs and the higher the number of recollisions, the
closer the initial conditions are to this manifold. This is a
firm indication that O organizes the recollision dynamics
through its stable manifold. The maximum return energy
can also be found from an examination of the manifold:
The largest momentum available to an electron moving
along Wu before leaving the core corresponds to the
maximum return energy, e.g., 4.31Up at 1014 W · cm−2

and 3.32Up at 1015 W · cm−2. These energies fall on the
solid blue curve of Fig. 1 which gives the maximum return
energy allowed by the dynamics.
The three-step model relies on tunneling to release the

photoelectron near the core with zero momentum [5,13].
With those initial conditions—and under the influence of
the laser field alone—there is a single special trajectory
which gives the maximal return kinetic energy of κ0Up.
The notion of zero-initial momentum after tunneling loses
its significance if the recollision is not artificially broken up
into steps (one with the ionic core potential and another
without, as in the three-step model), but rather regarded as
one continuous process with the ionic core potential always
“on” as in our recollision scenario. More importantly, the
maximum energy a recolliding electron can bring back to

the core depends on the duration of the pulse. The analysis
of the dynamics shows that the most energetic recollisions
do not happen within the next half laser cycle after
preionization but take much longer, and the longer the
delay to return, the more energy they are likely to bring
back. For instance, at the intensity of 1014 W · cm−2, the
maximum return energy is 3.86Up for recollisions lasting
less than one laser cycle, and 4.24Up when allowing up
to 25 laser cycles to return. The area highlighted by the
bounding box in Fig. 2 (and also shown in an expanded
view in the inset) shows the initial condition (circular red
marker) which ultimately returns with maximum energy for
a 10 laser cycle pulse. Overall, the highest return energy for
recollision corresponds to the limit of a pulse with infinite
length—an impractical scenario. Nevertheless, the differ-
ences between these maxima are not significant enough to
be observed in HHG spectra.
As an application of our recollision model, we provide

an interpretation of the HHG spectra in a scattering
simulation [22,23] (see Fig. 3) in which the quantum wave
packet is initially launched at the quiver radius and the
initial laser phase is chosen so that the wave packet returns
to the ionic core in the next quarter laser cycle (see right
panel of Fig. 3). The spectra have been computed by
solving the one-dimensional Schrödinger equation with a

FIG. 2 (color online). Stable (Ws, in black) and unstable (Wu,
in gray) manifolds of the periodic orbit O visualized on the
Poincaré section x ¼ 0. The intensity is I ¼ 1014 W · cm−2. The
red square marker corresponds to the location of the periodic orbit
O on the section. The colored areas correspond to regions in
phase space (on the section) leading to recollision and the color
scale denotes the number of returns. The trajectories initiated in
the white region ionize without returning to the core, or remain
bound by the ionic core potential indefinitely. The bounding box
on the top left of the figure is the region shown in the inset. The
red circular marker denotes the initial condition which results in
an electron returning with maximum energy.

FIG. 3 (color online). Left side: HHG spectra for a one-
dimensional soft-Coulomb potential and an electric field
EðtÞ ¼ E0 sinðωtþ ϕ0Þ with an intensity I ¼ 1015 W · cm−2

and a wavelength of 780 nm. A generic atom is modeled with
an ionization potential of Ip ¼ 0.67 a.u. The dashed lines
correspond to 2Up þ Ip (left) and 3.17Up þ Ip (right). The wave
packet is launched at the quiver radius E0=ω2 with the laser
phased so that the wave packet immediately returns to the core
region. The red curve is the HHG spectrum after one laser cycle,
while the blue curve is after one and a half laser cycles. Right
side: Density (color scale) of the wave packet as a function of
time (increasing in the downward direction) and position of the
electron. The red and blue lines show the wave packet at the times
corresponding to the same colored curves on the left.
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κ0Up is expected, because at very high laser intensity
(1016 W · cm−2 and above) the ionic core potential is so
much smaller than the laser field that it can be neglected, as is
done in the SFA. To measure the influence of the ionic core
potential, the maximum return energy Emax (defined as sum
of kinetic and potential energies at the core [20]) is plotted in
Fig. 1 (continuous blue line). It appears that the convergence,
as intensity is increased, is faster for the maximum return
energy Emax than it is for the maximum return kinetic energy
Kmax. This sounds paradoxical since the convergence of
Emax is faster thanKmax, towards a result which does not take
into account the ionic core potential (e.g., by comparing the
blue and dashed blue curves in Fig. 1). In the experimentally
relevant intermediate range of intensities (from 1014 to
1015 W · cm−2), there are some significant deviations from
the κ0 prediction.Anapproximatevalueof κðI;ωÞ is obtained
by fitting the curve in Fig. 1

κðI;ωÞ ≈ κ0 þ κ1
ω2

I
;

with some constant κ1. This quantifies, approximately, the
effect of the ionic core potential on the maximum return
energy at recollision as a function of the laser parameters.
This correction is small for intensities above 1015 W · cm−2

where the ionic core can be treated as a perturbation. If the
intensity is below 1014 W · cm−2, the ponderomotive energy
is low compared to Ip and differences in return energies
cannot be spotted easily on HHG cutoffs. In the intermediate
range of intensities from 1014 to 1015 W · cm−2, there is a

need for a recollision scenario which fully incorporates
the effect of the ionic core nonperturbatively, and we present
that next by investigating how almost-ionized electrons
return to the core.
We use nonlinear dynamics to answer this question.

Classical trajectories in the combined Coulomb and laser
fields show two dominating behaviors: Either the electron
remains close to the core (where the ionic core potential
dominates), or the electron leaves the core region quickly
(if the interaction with the laser field dominates). However,
there is a small fraction of ionizing trajectories, which,
although they ultimately ionize, do return to the core, and in
some cases do so several times (we call them “recolliding”
trajectories). Identifying the dynamical mechanism which
guides the electrons away and back to the core reveals the
organization of this special class of trajectories. For these
recolliding trajectories (which correspond to a particular
region in phase space), the ionic core potential and the laser
field are of equal strength, so traditional perturbation
analysis based on the ionic core potential as a perturbation
cannot be sustained.
Each recolliding trajectory looks very different when

visualized in configuration space, and they seem to have
nothing in common other than shuttling between the core
and the far-field regions. However, we find that they do so
by tracking a specific periodic orbit which has the same
period as the laser field and represents the prototype of a
recollision (see insets of Fig. 1): A trajectory started close
to this periodic orbit (which we call O) experiences large
excursions from the core (beyond the quiver radius E0=ω2)
and returns to the core periodically, twice per laser period
(with a momentum of order E0=ω for large intensities,
i.e., a maximum return energy of about 2Up; see continu-
ous red loop in Fig. 1). Linear stability analysis [21] shows
that O is only weakly unstable which means that trajecto-
ries can follow this periodic orbit long enough to be
influenced by it and its stable and unstable manifolds,
which channel ionizations and returns to the core. Electrons
move away from O following its unstable manifold, Wu,
and return to this orbit following its stable manifold Ws

[21]. The two manifolds are linked by the symmetry
ðx; p;ϕÞ↦ð−x; p; 2π − ϕÞ under time reversal. Both mani-
folds Wu and Ws are visualized in Fig. 2 in the Poincaré
section x ¼ 0 in the plane (ϕ, p) in the lower half plane
p < 0. The chosen Poincaré section is the natural one
for recollisions since, by definition, they occur at the
core, x ¼ 0. We note that there are two types of recol-
lisions: ones which recollide with a positive momentum
(from left to right) and others with a negative momentum
(from right to left). The upper half plane (left to right
recollisions) is related to the lower half by the symmetry
ðx; p;ϕÞ↦ðx;−p; π − ϕÞ upon time reversal.
In Fig. 2, we show the set of initial conditions on the

surface x ¼ 0 (and lower half plane p < 0) leading to a
finite number of subsequent recollisions. The color scale

FIG. 1 (color online). Maximum return energy (solid lines) and
maximum return kinetic energy (dashed lines) accessible to the
dynamics (blue) and on the periodic orbitO (red). Insets: Periodic
orbit O (red curves) and the SFA counterpart (black curves).
The left panel corresponds to I ¼ 1014 and the right panel to
I ¼ 1015 W · cm−2. The ~x and ~p axes are scaled in units of E0=ω2

and E0=ω, respectively.
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(a)

(b)

(c)

Figure 1.8: (a)–(b) Calculation for LP fields and d = 1 reproduced from Ref. [80]. The wavelength of the
laser is λ = 780 nm, the ion-electron interaction is a soft Coulomb potential (1.8). (b) Recolliding periodic
orbits for (left panel) I = 1014 W · cm−2 and (right panel) I = 1015 W · cm−2. The red and black curves are
the RPOs of Hamiltonian (1.34) and in the SFA, respectively. (a) The color code is the number of recollisions
with initial condition x0 = 0 in the plane of the momentum and the laser phase for I = 1014 W · cm−2. The
black curves are the stable manifolds Ws and the grey curves are the unstable manifolds Wu of the fixed
point associated with the periodic orbit under the Poincaré section x = 0 and dx/dt < 0. (c) RPOs for
d = 2 and CP fields in the rotating frame reproduced from Ref. [81]. The grey surface is the zero-velocity
surface [71] given by Eq. (4.10). The blue dot is the saddle point of the zero-velocity surface. The red curves
are the RPOs.

and the T-trajectory cannot reach the high energy states. Hence, the rotating frame, besides decreasing the
phase-space dimension, clearly illustrates the difficulty of obtaining recollisions in CP fields. In Chap. 4, we
investigate the way the electron populates high energy states in atoms driven by CP fields and the conditions
for which it recollides.

1.4 Conclusions

In sum, we have studied the dynamics of the electron in the quantum framework. We have highlighted the
classical features of the wave function using, among others, the Wigner quasi-probability distribution. In
particular, we have shown that after ionization, the dynamics of the electron is mainly classical. We have
introduced a two-step model in which the ionization of the electron is treated quantum mechanically, and
its subsequent dynamics is treated classically. First, treating the dynamics of the electrons after ionization
classically, instead of quantum mechanically, allows us to describe the underlying mechanisms in terms of
electron trajectories. Trajectories, which are local paths in space, allows us to visualize and interpret more
clearly the motion and the behaviors of electrons in time. Second, the two-step model allows us to distinguish
phenomena due to both the population of initial conditions by quantum ionization and the subsequent classical
motion, and phenomena solely due to the subsequent classical motion after ionization. Indeed, in the classical
description of the dynamics, the initial conditions of the electron is of prime importance, and phenomena,
such as for instance the bifurcation in the PMDs (studied in Chap. 3) or the absence of recollisions in CP
fields for specific target species (studied in Chap. 4), are due to both the population of initial conditions by
quantum ionization and the subsequent classical motion of the electron. In contrast, phenomena, such as for
instance the Rydberg states creations and Coulomb-driven recollisions (also studied in Chap. 3), are mainly
due to the subsequent classical motion of the electron after ionization.
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In the classical framework, the dynamics of the electron is governed by Hamiltonian (1.14). In this
manuscript, two main methods are used for studying Hamiltonian (1.14). In Chap. 2, we use perturbative
methods to determine reduced models for describing the motion of the electron in phase space. In Chap. 5,
we use non perturbative methods to analyze the dynamics of the electron in phase space. In particular, we
identify invariant objects which structure phase space and drive recollisions.
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Chapter 2

Reduced dynamics for atoms subjected
to intense and elliptically polarized laser
pulses: The guiding center model

The laser-atom interaction gives rise to complex phenomena, involving multiple temporal and spatial scales.
The phenomena arising from short time-scale and long time-scale processes manifest themselves in different
aspects of the measurements, for different values of the parameters, and also at distinct times along the same
trajectory. The multiple temporal and spatial scales arise from the competition between the strong laser and
Coulomb forces. The co-existence of short vs long time-scale processes in Hamiltonian (1.14) is illustrated in
the upper panel of Fig. 2.1, which shows the excursion time per laser cycle ∆t/T of the electron as a function
of the PPT initial conditions given by Eqs. (1.25) with p‖ = pz,0 = 0. The excursion time ∆t is the time when
the electron returns to the core, i.e., the smallest positive time such that |r(t+ ∆t)| = R, with R = 5 a.u. For
Hamiltonian (1.14), we observe the four main features of the electron dynamics: The electron ionizes directly
after ionization without return to the core (white region), the electron is trapped in a Rydberg state (grey
regions), the electron returns to the core on a subcycle time scale (light purple region for which ∆t/T ≤ 1)
and the electron returns to the core after multiple laser cycles (colored layers in the grey regions for which
∆t/T > 1).

For instance, the red trajectory in Fig. 1.4 (case d = 1) is a typical trajectory which returns to the core
on a subcycle time scale (for which ∆t/T ≤ 1). In this case, the electron leaves relatively far from the core,
and comes back mainly due to the oscillations of the laser field. This is referred to as a subcycle recollision.
During the excursion of the electron outside the core, the laser field is dominant, and the Coulomb potential
acts perturbatively compared to the laser interaction on short time scales. In Sec. 2.1, we derive the strong
field approximation (SFA) and the Coulomb-corrected strong field approximation (CCSFA) based on the
treatment of the Coulomb potential as a perturbation of the laser interaction. The middle panels of Fig. 2.1
show the excursion time of the electron ∆t/T in the SFA and CCSFA. We observe that the region with
subcycle recollisions (for which ∆t/T ≤ 1) is well described by the SFA and the CCSFA. In these regions,
hard recollisions [84] (the electron returns on the core) and soft recollisions [82] (the electron returns in the
vicinity of the core) coexist, depending on the initial conditions.

The pink trajectory in Fig. 1.4 (case d = 1) and the trajectories in Fig. 2.2a, Fig. 2.2c and Fig. 2.2f are
typical trajectories which return to the core after multiple laser cycles (for which ∆t/T > 1). In this case, the
electron displays fast oscillations due to its interaction with the laser, and its drift momentum changes slowly
in time due to its interaction with the ion. Then, the electron returns to the core. This is referred to as a
Coulomb-driven recollision. However, we observe on the middle panels of Fig. 2.1 that the long time-scale
processes, such as the Rydberg state creation and the return of the electron after multiple laser cycles, which
are the processes the most probable according to the PPT ionization rate as seen in Fig. 2.1, are not captured
by the SFA and the CCSFA.

Questions

• How can we analyze the motion of the electron in the combined Coulomb and laser fields on long time
scales ?

• Can we distinguish short- and long time-scale processes ?
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Figure 2.1: Excursion time of the electron ∆t per laser cycle T as a function of the initial conditions
(t0, p⊥, p‖ = pz,0 = 0) for I = 8 × 1013 W · cm−2, Z = 1, a = 1 and ξ = 0.4 of the reference Hamilto-
nian (1.14) with the soft Coulomb potential, the SFA [39], the CCSFA [62] and the GC model G2 = (H2,Φ2).
The time ∆t is the smallest positive time such that |r(t + ∆t)| = 5 a.u. The grey regions are where the
electron final energy is negative after the end of the pulse (at t = 10T ). The white regions are where the
electron undergoes a direct ionization, i.e., an ionization without returning to the core. The black dashed
lines are contours of constant ionization rate WPPT(t0, p⊥e⊥(t0)) for WPPT/max(WPPT) = 10−1, 10−5 and
10−15, from bottom to top. The momentum p⊥ is scaled by E0/ω.
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Plan Reduced dynamics for atoms subjected to intense and elliptically polarized laser pulses depends on the
type of trajectories and phenomena to assess. Figure 2.1 reflects the complementarity of the CCSFA and the
GC models on short vs long time-scale processes. In this chapter, we derive reduced models to describe the
motion of the electron after ionization. In Sec. (2.1), we recall the two models used in the community for the
description of the fast time-scale dynamics of the electron, namely the SFA and the CCSFA. In Sec. 2.2, we
describe the procedure we use for deriving the hierarchy of reduced models for the GC dynamics in strong laser
fields based on averaging over the fast motion of the electron using Lie transforms. In Sec. 2.3, we first compare
these reduced models with the dynamics associated with Hamiltonian (1.14). The comparison between these
models highlights the models which are best suited for a qualitative and quantitative agreement with the
parent dynamics. In particular, we show the relevance of two models in the hierarchy. The model G2 (second
order in the hierarchy of models) provides the leading behavior of the trajectories and is the most robust close
to the core. The model G5 (fifth order of the hierarchy of models) improves the quantitative agreement with
trajectories relatively far from the core. Then we analyze the dynamics of the GC models in phase space,
highlighting regular and chaotic regions and their relation with the trajectories of Hamiltonian (1.14).

Publication

• [50] J. Dubois, S. A. Berman, C. Chandre, T. Uzer, Guiding-center motion for electrons in strong laser
fields, Phys. Rev. E 98, 052219 (2018).

2.1 The Coulomb potential seen as a perturbation of the laser in-
teraction: The SFA and the CCSFA

The reference Hamiltonian is defined in Eq. (1.14). Figure 2.1 shows that the dynamics of the electron is
particularly well described by the SFA and the CCSFA for trajectories which recollide early after ionization.
This suggests that such approximations are well suited for describing the motion of the electron on short time
scales. We consider the Coulomb potential as a perturbation of the laser interaction. Under this assumption,
we write Hamiltonian (1.14) as

H(r,p, t) =
|p|2

2
+ r ·E(t) + εV (r),

where we have introduced an ordering parameter ε for bookkeeping purposes. The equations of motion of
the electron are

ṙ = p,

ṗ = −E(t)− ε∂V (r)

∂r
.

We consider the correction due to the Coulomb interaction on short time scales, hence r = rSFA +ε∆r+O(ε2)
and p = pSFA + ε∆p +O(ε2). We substitute these equations in the equations of motion (2.1) and we identify
each term by order of ε.

2.1.1 Strong field approximation (SFA)
The lowest order in ε provides the SFA electron phase-space trajectory

rSFA(t) = r0 + [p0 −A(t0)] (t− t0) + [Σ(t)−Σ(t0)] /ω2, (2.2a)
pSFA(t) = p0 −A(t0) + A(t), (2.2b)

where ω2A(t) = ∂Σ/∂t. The initial conditions are r(t0) = r0 and p(t0) = p0.
In the SFA, the motion of the electron is composed of a drift momentum pSFA(t) −A(t) = p0 −A(t0)

which is conserved in time. When the laser field is turned off, the vector potential is zero and the momentum
of the electron is the initial drift momentum of the electron, p = p0−A(t0). We consider the laser field given
by Eq. (1.10) with f(0) = 1 and ϕCEP = 0. According to the ADK theory [see Sec. 1.2.2.1], the electron
ionizes most probably at the peak amplitude of the laser field (t0 = 0) and with zero initial momentum
p0 = 0. As a consequence, for LP fields (ξ = 0), the most probable final energy of the electron is |p|2/2 = 0.
For CP fields (ξ = 1), the most probable final energy of the electron is |p|2/2 = 2Up/(ξ

2 + 1). Therefore,
the distributions of the energy of the ionized electrons subjected to LP (ξ = 0) and CP (ξ = 1) fields is 0
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and Up/(ξ
2 + 1), respectively, in agreement with experimental measurements [40]. Revealing the mechanism

behind the differences between the distributions of the energy of the ionized electrons subjected to LP and
CP fields was the first success of the SFA.

Later, in Ref. [39], the classical motion of the electron in the SFA succeeded in describing the mechanics
of the recollision. In the SFA, in addition to the drift momentum of the electron pSFA(t)−A(t) = p0−A(t0)
which is conserved in time, the motion of the electron is also composed of fast oscillations Σ(t)/ω2 of
amplitude E0/ω

2. The electron leaves far from the core, then returns to the core when the laser field changes
direction and recollides. The maximum return kinetic energy of the recolliding electron, 3.17Up, explained
the HHG cutoff observed in experiments [102, 39]. In addition, the trajectories and the return time of the
electron in the SFA were successful to predict the time-frequency profile of the HHG spectrum [147]. The
trajectories which contribute the most to HHG recollide in a subcycle after ionization. Therefore, physics of
HHG is built on short-time scale processes which are well described by the SFA.

In Chap. 3, the SFA is used to highlight the contributions of the Coulomb potential in ATI experiments.
In Chap. 4, the SFA is used to describe the conditions for which the electron returns and gains energy in
high elliptically polarized laser fields.

2.1.2 Coulomb-corrected strong field approximation (CCSFA)

The first order in ε provides the correction due to the Coulomb interaction on the SFA trajectory, which
reads

∆r(t) =

∫ t

t0

∆p(s) ds, (2.3a)

∆p(t) = −
∫ t

t0

∂V
(
rSFA(s)

)
∂r

ds. (2.3b)

The CCSFA is also used in a semiclassical framework in Refs. [136, 143, 145, 144] and in a classical framework
in Refs. [62, 82, 93, 80, 84, 85].

The CCSFA in the purely classical approach was successful to describe the asymmetry with respect the
minor polarization axis in the distribution of the momentum of the ionized electrons [62] (see Figs. 8). A
good agreement is observed between the predictions of this model and the experimental measurements for
relatively large ellipticity. In Ref. [93], we observe a disagreement between the predictions of the CCSFA and
the experimental measurements. As mentioned above, the CCSFA is valid to determine the correction of the
Coulomb interaction for short times (e.g., t− t0 ∼ T ) regardless of the ellipticity. Looking at Eqs. (2.2a), if
the initial drift momentum of the electron p0 −A(t0) is sufficiently large, the Coulomb correction (2.3b) is
significant only for a short time after ionization. According to the PPT theory, the initial drift momentum
is of order |p0 −A(t0)| ∼ ξE0/ω, hence, we expect the CCSFA to be valid in ATI only for large ellipticity.

2.2 Derivation of the hierarchy of models for the guiding center
(GC)

Figure 2.2 displays six typical trajectories of Hamiltonian (1.14) involving long time-scale dynamics. We notice
that these trajectories display fast oscillations around a mean trajectory, which we call the GC trajectory.
What is the dynamics of these GC trajectories ? We use this clear separation of scales to derive models for the
GC dynamics. Specifically, we average Hamiltonian (1.14) over the fast motion using canonical transforms
in order to simplify the electron dynamics and clearly distinguish the different ionization channels for the
electron. As a consequence, we derive a hierarchy of averaged models which fully take into account the
Coulomb potential. In these models, the electron in the combined strong laser and Coulomb fields follows a
GC trajectory. Actually, there are several possible GCs, depending on the order up to which the averaging
is performed.

2.2.1 Canonical Lie transforms

In this section, we recall some basic features on canonical transformations in the framework of canonical Lie
transforms [33, 34]. We consider a Hamiltonian system with phase-space variables z, a Hamiltonian H(z)
and a Poisson bracket {·, ·} (either a canonical or non-canonical bracket. See Sec. C.2 for details). Canonical
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Lie transforms are near-identity change of coordinates z 7→ z̄(z), generated by a scalar function S(z), called
the generating function, and given by

z̄ = exp (−LS) z =

∞∑
k=0

(−1)k

k!
LkSz, (2.4)

= z− {S, z}+
1

2
{S, {S, z}}+ . . . ,

where LS is the Liouville operator defined by LSF = {S, F}. Canonical Lie transforms have several properties:

Figure 2.2: Typical electron trajectories for I = 1014 W · cm−2, d = 2, Z = 1, a = 1 and ω = 0.05 a.u. in
the polarization plane (x, y). The ellipticities are: (a) ξ = 0, (b–e) ξ = 0.5, (f) ξ = 1. The dark blue curve
is the electron trajectory of Hamiltonian (1.14) with the soft Coulomb potential. The cyan and red curves
are the trajectories of the models G2 and G5, respectively, with initial conditions far from the ionic core.
For each model, the solid and dashed curves are the GC and the approximate trajectories, respectively. The
lightly shaded circle is the position of the ionic core at the origin, and the black circle surrounding the origin
is |r| = 15 a.u. All quantities are in atomic units.
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• F (exp(LS)z) = exp(LS)F (z), which comes from the Leibniz rule,

• {exp(LS)F, exp(LS)G} = exp(LS){F,G}, which comes from the Jacobi identity and the antisymmetry
of the Poisson bracket,

for any scalar functions F (z) and G(z). As a consequence of the first Property and of the scalar invariance
F̄ (z̄) = F (z), these changes of variables modify any observable F (z), for instance the Hamiltonian H(z), into

F̄ (z) = exp (LS)F (z). (2.5)

In particular, the generating function is an observable, and S̄(z̄) = S(z). Using Eq. (2.5), one obtains
S̄(z) = exp(LS)S(z). Since exp(LS)S(z) = S(z), one has S̄(z) = S(z), i.e., the generating function does not
change form with respect to the canonical Lie transforms. The second Property ensures that these changes
of coordinates do not affect the expression of the Poisson bracket, i.e., they are canonical transformations.
One significant advantage of these transformations is that they are explicit functions and they can be easily
inverted: z = exp(LS)z̄. This way, we can recover all the information on the particle dynamics from the
transformed (averaged) system.

These canonical Lie transforms are particularly well suited for perturbation theory. If the Hamiltonian is
of the form H = H0 + εW , where H0 is the Hamiltonian of the unperturbed system, W is the perturbation
and ε is an ordering (small) parameter, a canonical Lie transform generated by a generating function S(z̄)

(of order ε), applied to H is able to remove the unwanted part of the perturbation, called W̃ , and move its
influence to higher orders in ε. More explicitly, at the lowest order, the expression of the new Hamiltonian
expressed in the new variables z̄ is

H̄ = exp (LS)H (2.6)

= H0 + εW + {S,H0}+ ε{S,W}+
1

2
{S, {S,H0}}+ . . . .

Choosing appropriately the generating function S such that {S,H0} = −εW̃ , unwanted terms in the per-
turbation W can be pushed from order ε to order ε2, meaning that the order ε in the Hamiltonian becomes
W −W̃ . For instance, one can suppress fast oscillating terms contained inW . Then, the associated canonical
change of coordinates is determined using Eq. (2.4). The advantage of canonical Lie transforms vs other types
of canonical transforms is that they are easily manipulable algebraically, which is well suited, for instance,
for the numerical implementation of iterative procedures.

2.2.2 Averaging the electron dynamics
We notice that these transformations are defined for autonomous systems. Hamiltonian (1.14) has an explicit
time dependence through the electric field. Therefore, we first increase phase space to include time t, and
consider its canonically conjugate variable k. The extended Hamiltonian (1.14) becomes

H(r,p, t, k) = k +
|p|2

2
+ V (r) + r ·E(t). (2.7)

The extended Poisson bracket is

{F,G} =
∂F

∂r
· ∂G
∂p
− ∂F

∂p
· ∂G
∂r

+
∂F

∂t

∂G

∂k
− ∂F

∂k

∂G

∂t
, (2.8)

where the operators ∂/∂r = (∂/∂x, ∂/∂y, ∂/∂z) and ∂/∂p = (∂/∂px, ∂/∂py, ∂/∂pz). The hypothesis we make
for the derivation of our hierarchy of reduced models is that the characteristic time of the ionized electron
trajectory is large compared to a laser cycle T = 2π/ω, i.e., ω 7→ ω/ε where ε is an ordering parameter which
is explicitly introduced for bookkeeping purposes. Performing the canonical change of coordinates t̄ = t/ε
and k̄ = εk, and re-scaling the energy, Hamiltonian (2.7) becomes

H(0)(r,p, t, k; ε) = k + ε

[ |p|2
2

+ V (r) + r ·E(t)

]
, (2.9)

where we have removed the bars in the new variables. We apply canonical Lie transforms as described above
in order to perform the averaging of Hamiltonian (2.9) over the fast time scale, by pushing time-dependent
terms in the Hamiltonian to higher order terms in ε.
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2.2.2.1 Gauge velocity transformation

As an example, we consider the transformation from the length gauge to the velocity gauge [135] in Hamil-
tonian (2.9). It is given by the following change of coordinates

r̄ = r,

p̄ = p− εA(t),

where A(t) is the vector potential defined by E(t) = −∂A(t)/∂t. This transformation is a canonical change
of coordinates which can be formulated as a canonical Lie transform generated by

S(1) = ε r ·A(t). (2.10)

The Hamiltonian in the velocity-gauge coordinates becomes

H(1) = exp(LS(1))H(0) (2.11)

= k̄ + ε

[
1

2
(p̄ + εA(t))

2
+ V (r̄)

]
= k̄ + ε

[ |p̄|2
2

+ V (r̄)

]
+ ε2p̄ ·A(t) + ε3

A2(t)

2
.

We observe that the time-dependence in Hamiltonian (2.9), present in E(t), is of order ε, while in Hamilto-
nian (2.11) this time-dependence is moved to order ε2.

2.2.2.2 Iterative procedure

We iterate the above-procedure to higher order in ε. We assume that after the N -th step of the procedure,
all the time-dependent terms in the present averaged Hamiltonian are removed up to order εN , that is, the
time-dependence of the averaged Hamiltonian is of order εN+1. We assume that the total generating function
up to order εN is known. The total generating function at this step is

S(N)(r,p, t; ε) =

N∑
n=1

εnSn(r,p, t), (2.12)

and the corresponding averaged Hamiltonian is denoted

H(N) = exp(LS(N))H(0)

= k +

N∑
n=1

εnhn(r,p) + εN+1RN+1(r,p, t; ε),

where hn(r,p) are the coefficients in the series expansion of the Hamiltonian that no longer depends on time,
while RN+1(r,p, t; ε) is the remainder of the Hamiltonian which still depends on time. The objective of
the iterative method is to find the modified generating function S(N+1) [which amounts to finding the extra
function SN+1 in Eq. (2.12)] to remove the time-dependence in the term RN+1 at the lowest order.

The averaged Hamiltonian H(N+1) whose time-dependence is of order εN+2 is

H(N+1) = exp(LS(N+1))H(0),

= exp(εN+1LSN+1
) exp (LS(N))H(0) +O(εN+2),

= exp(εN+1LSN+1
)H(N) +O(εN+2),

= H(N) + εN+1

(
RN+1 +

∂SN+1

∂t

)
+O(εN+2).

The time-fluctuating terms in RN+1 are denoted
︷ ︸
RN+1, and are defined by︷ ︸

RN+1 = RN+1 −
1

T

∫ T

0

dt RN+1. (2.13)

In order to eliminate the time-fluctuating terms at order εN+1, the component SN+1 of the generating function
S(N+1) is chosen as

SN+1 = −
∫

dt
︷ ︸
RN+1(r,p, t; 0), (2.14)

where the primitive is chosen such that the mean value of SN+1 with respect to t ∈ [0, T ] is zero. At each
step the functions Rn have to be computed up to order M where M is the last order for which the averaged
Hamiltonian will be computed analytically. We perform these computations using a symbolic computation
software.
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2.2.2.3 Averaged Hamiltonians

We apply the above-described procedure to push the time-dependence in Hamiltonian (2.9) to order ε8 using
H(7) = exp(LS(7))H(0). Below we provide the explicit expression for S(6). The higher-order components are
too lengthy to report and their expressions are not particularly enlightening.

S(6) = ε r ·A(t)− ε2

ω2
p ·E(t) +

ε3

ω2
A(t) ·

(
E(t)

4
+
∂V

∂r

)
− ε4

ω4
p · ∂

∂r

(
E(t) · ∂V

∂r

)

+
ε5

ω4

[(
E(t)

4
+
∂V

∂r

)
· ∂
∂r
−
(

p · ∂
∂r

)2
](

A(t) · ∂V
∂r

)
− 5ε6

8ω6
p · ∂

∂r

︷ ︸(
E(t) · ∂

∂r

)2

V

− ε6

ω6

[(
p · ∂

∂r

)(
∂V

∂r
· ∂
∂r

)
−
(

p · ∂
∂r

)3

+ 2

(
∂V

∂r
· ∂
∂r

)(
p · ∂

∂r

)](
E(t) · ∂V

∂r

)
. (2.15)

Here, we have used the fact that the electric field is monochromatic and satisfies ω2E(t) = −∂2E/∂t2. The
averaged Hamiltonian H(7) is

H(7) = k̄ + ε

[ |p̄|2
2

+ V (r̄)

]
+ ε3Up + ε5

Up

ω2(ξ2 + 1)

(
∂2V

∂x2
+ ξ2 ∂

2V

∂y2

)
+ε7

Up

ω4(ξ2 + 1)

[∣∣∣∣ ∂∂r

(
∂V

∂x

)∣∣∣∣2 + ξ2

∣∣∣∣ ∂∂r

(
∂V

∂y

)∣∣∣∣2
]

+O(ε8), (2.16)

where all the derivatives are evaluated at r̄. By truncating the Hamiltonian at a given order, we notice that
the reduced (time-independent) Hamiltonians up to order ε7 are of the form

H(r̄, p̄) =
|p̄|2

2
+ Veff(r̄),

with an effective potential Veff . In particular, this highlights a particular property in the reduction process
that the reduction procedure does not generate p̄-dependent terms in the Hamiltonian other than the kinetic
energy, up to order ε7. At order ε8, the term which is generated in H(8) is linear in the momenta; therefore,
it can easily be eliminated by a translation in p̄ (which is a canonical transformation). At order ε9, the terms
which are generated are quadratic in the momenta p̄, and we do not consider these terms in what follows.
Therefore, our analysis is valid up to order ε8. In such a way, it is particularly convenient to define effective
potentials. Depending on the order of truncation, we obtain three reduced Hamiltonians

H2(r̄, p̄) =
|p̄|2

2
+ V (r̄), (2.17a)

H5(r̄, p̄) =
|p̄|2

2
+ V (r̄) +

Up

ω2(ξ2 + 1)

(
∂2V

∂x2
+ ξ2 ∂

2V

∂y2

)
, (2.17b)

H7(r̄, p̄) =
|p̄|2

2
+ V (r̄) +

Up

ω2(ξ2 + 1)

(
∂2V

∂x2
+ ξ2 ∂

2V

∂y2

)
+

Up

ω4(ξ2 + 1)

[∣∣∣∣ ∂∂r

(
∂V

∂x

)∣∣∣∣2 + ξ2

∣∣∣∣ ∂∂r

(
∂V

∂y

)∣∣∣∣2
]
, (2.17c)

where we have removed the small parameter ε which was originally introduced for bookkeeping purposes.
Each of these Hamiltonians describes the dynamics of the GC at a different level of approximation. As a
result of averaging, the Hamiltonians (2.17) are conserved, in contrast to Hamiltonian (1.14). We notice that
the effective potentials depend on the main parameters of the electric field, its amplitude and its ellipticity,
with the exception of H2.

The corresponding change of coordinates which maps H(0)(r,p, t, k; ε) to H(7) is given by Eq. (2.4) and
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Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

H2 G2 G3 G4 ◦ ◦ ◦
H5 ◦ ◦ ◦ G5 G6 ◦
H7 ◦ ◦ ◦ ◦ ◦ G7

Table 2.1: The GC models Gn = (Hm,Φn), where n ≥ m. The Hamiltonians Hm are given by Eqs. (2.17),
and the mapping from the electron to the GC coordinates are given by Eqs. (2.18).

its series expansion up to order ε6 is given by

r̄ = r− ε2

ω2
E(t)− ε4

ω4

∂

∂r

(
E(t) · ∂

∂r

)
V − 2ε5

ω4

∂

∂r

(
p · ∂

∂r

)(
A(t) · ∂

∂r

)
V

− ε6

8ω6

∂

∂r

︷ ︸(
E(t) · ∂

∂r

)2

V − ε6

ω6

∂

∂r

[
∂V

∂r
· ∂
∂r
− 3

(
p · ∂

∂r

)2
](

E(t) · ∂
∂r

)
V

−2ε6

ω6

(
∂V

∂r
· ∂
∂r

)(
E(t) · ∂

∂r

)
∂V

∂r
+O(ε7), (2.18a)

p̄ = p− εA(t)− ε3

ω2

∂

∂r

(
A(t) · ∂

∂r

)
V +

ε4

ω4

∂

∂r

(
p · ∂

∂r

)(
E(t) · ∂

∂r

)
V

− ε
5

ω4

∂

∂r

[(
E(t)

4
+
∂V

∂r

)
· ∂
∂r
−
(

p · ∂
∂r

)2
](

A(t) · ∂
∂r

)
V +

ε6

8ω6

(
p · ∂

∂r

)︷ ︸(
E(t) · ∂

∂r

)2
∂V

∂r

+
ε6

ω6

∂

∂r

[(
p · ∂

∂r

)(
∂V

∂r
· ∂
∂r

)
−
(

p · ∂
∂r

)3

+ 2

(
∂V

∂r
· ∂
∂r

)(
p · ∂

∂r

)](
E(t) · ∂

∂r

)
V

+O(ε7). (2.18b)

If one needs to know the averaged Hamiltonian and/or the system of coordinates at the order εN , one needs
to truncate the O(εN+1) terms of Eqs. (2.16) and/or (2.18), respectively. The expressions (2.18) are used
below to reconstruct the trajectories of the electrons from the trajectories of the GCs.

The hierarchy of models for the GC is composed of a time-independent Hamiltonian Hm [see
Eqs. (2.17)] and a transformation from the electron coordinates to the GC coordinates:

Φn : (r,p) 7→ (r̄, p̄), (2.19)

whose truncated expressions are given by the truncations of Eqs. (2.18). The orders m and n
refer to the order of the Hamiltonian and the transformation, respectively, after truncation of
the perturbative expansion. We refer to the model

Gn = (Hm,Φn),

as the n-th order GC model, where n ≥ m, and we show the set of (m,n) in Table 2.1.

Result 1: Hierarchy of guiding-center (GC) models

2.2.2.4 Links with the Kramers-Henneberger potential

At order ε5, our model is linked to the Kramers-Henneberger (KH) treatment of the motion of a charged
particle in an external time-periodic electric field [42, 161, 120]. In a nutshell, the classical KH theory amounts
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to performing a canonical Lie transform generated by

S(2) = ε r ·A(t)− ε2

ω2
p ·E(t),

on Hamiltonian (2.9), where the first term is used for moving into the velocity gauge. The corresponding
change of coordinates is given by p̄ = p − εA(t) and r̄ = r − ε2E(t). The resulting Hamiltonian becomes
exactly

HKH = k̄ + ε

[ |p̄|2
2

+ V

(
r̄ +

ε2

ω2
E(t)

)]
+ ε3

E2(t)

2ω2
.

The term of order ε3 in the Hamiltonian HKH can be easily removed by performing an additional transfor-
mation. In KH theory, the remaining time-dependence in the potential is removed by an integral over time
of the effective potential. For instance, if we expand the KH effective potential up to order ε7 and we average
over t ∈ [0, T ], it becomes

VKH = V + ε4
Up

ω2(ξ2 + 1)

(
∂2V

∂x2
+ ξ2 ∂

2V

∂y2

)
+O(ε8).

In this framework, the effective potential always only depends on the position variables (and not on the
momenta), and there is no contribution at order ε6, contrary to our derivations. The origin of this discrepancy
is that performing an averaging using an integral over the fast timescales is only correct to the lowest order
(here ε4), but it fails at higher orders. In particular, it does not include additional drift velocities at order ε7
(as opposed to H7 which includes an additional term of order ε7), which drive the charged particles at longer
time scales. In addition, the reconstructed trajectories do not include corrections on orders higher than ε2.
One needs to perform canonical changes of coordinates to properly average the fast motions. Expressions
beyond order ε4 and results obtained using these higher orders are therefore incorrect.

We hereby take the opportunity to reiterate the advantage of using canonical Lie transforms in the reduc-
tion procedure: Since these transformations are invertible and their inverse can be algebraically computed,
information on the original system [as described by Hamiltonian (1.14)] can be fully recovered using the
dynamics of the reduced Hamiltonians. The model G5 contains more information than what is provided by
KH theory. In particular, the KH theory does not provide Φ5, and as a consequence, we are not able to
reconstruct consistently the trajectory from HKH.

2.2.2.5 Influence of a slowly varying laser envelope

We consider a slowly varying envelope f(εt) compared to the frequency of the laser, such that |∂kf(εt)/∂tk| �
ωk. The kth derivative of the envelope is of order εk. We perform a similar derivation as in Sec. 2.2.2.2.
The difference is that in Eqs. (2.13) and (2.14), we use an integration by parts to determine the expression
of the generating function at order n. In this section, the electric field and the vector potential for f = 1 are
denoted E1(t) = E0/

√
ξ2 + 1[ex cos(ωt) + eyξ sin(ωt)] and A1(t) = E0/ω

√
ξ2 + 1[−ex sin(ωt) + eyξ cos(ωt)],

respectively. With these notations, the electric field and the vector potential read E(t) = f(εt)E1(t) and
A(t) = f(εt)A1(t), respectively. The generating function reads

S(6) = ε f(εt)r ·A1(t)− ε2

ω2
(f(εt)p + ωf ′(εt)r) ·E1(t)

+
ε3

ω2
A1(t) ·

(
E1(t)

4
+
∂V

∂r
− ω2f ′′(εt)r− 2f ′(εt)p

)
− ε

4

ω4

[
p · ∂

∂r

(
E1(t) · ∂

∂r

)
V − 3ω2f ′′(εt)p ·E1(t)− ω3f ′′′(εt)r ·E1(t) + 3f ′(εt)E1(t) · ∂V

∂r

+
3ω

8
f(εt)f ′(εt)

(
|E1(t)|2 − ω2|A1(t)|2

)]
+
ε5

ω4

{[(
f(εt)2 − 1

) E1(t)

4
+ (f(εt)− 1)

∂V

∂r

]
· ∂
∂r
− (f(εt)− 1)

(
p · ∂

∂r

)2
}(

A1(t) · ∂
∂r

)
V

+
ε5

ω4

[
4f ′′′(εt)p ·A1(t) + ω4f ′′′′(εt)r ·A1(t)− 4ωf ′(εt)p · ∂

∂r

(
A1(t) · ∂V

∂r

)
− 3ω2

8

(
f ′(εt)2 + 3f(εt)f ′′(εt)

)
E1(t) ·A1(t)

]
.
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The Hamiltonian reads

H(5) = k̄ + ε

[ |p̄|2
2

+ V (r̄)

]
+ ε3f(εt)2Up + ε5

f(εt)Up

ω2(ξ2 + 1)

[
f(εt)

(
∂2V

∂x2
+ ξ2 ∂

2V

∂y2

)
− 3(1 + ξ2)ω2f ′′(εt)

]
.

Up to the fifth order, the Hamiltonian does not depend on the derivatives of the laser envelope. Hence, at
the fifth order, the drift velocities of the electron depend on the variations of the laser envelope. At the first
orders, the change of coordinates is given by

r̄ = r− ε2

ω2
f(εt)E1(t)− 2

ε3

ω
f ′(εt)A1(t) +O(ε4), (2.20a)

p̄ = p− εf(εt)A1(t) +
ε2

ω
f ′(εt)E1(t)− ε3

ω2

[
f(εt)

∂

∂r

(
A1(t) · ∂

∂r

)
V − ωf ′′(εt)A1(t)

]
+O(ε4). (2.20b)

When the laser field is turned off, the envelope of the laser becomes f(εt) = 0. In Eqs. (2.20), we observe
that when the laser field is turned off, r̄ = r and p̄ = p. As a consequence, when the laser field is turned off,
the guiding-center trajectory and the electron trajectory are the same.

2.3 Analysis of the guiding-center (GC) models

In this section, we analyze the different GC models, composed of a time-independent Hamiltonian Hm and a
canonical transformation Φn. In what follows, we restrict the analysis to the soft-Coulomb potential [78, 17]
[see Eq. (1.8)] with softening parameter a = 1.

2.3.1 Comparison between Hamiltonian (1.14) and the reduced models
Figure 2.2 shows typical electron trajectories (dark blue curve) of Hamiltonian (1.14), the GC trajectories of
G2 (solid cyan curve) and G5 (solid red curve) and the associated reconstructed trajectories (dashed curves),
for d = 2, I = 1014 W · cm−2, ω = 0.05 a.u. Different ellipticities are considered: ξ = 0, ξ = 0.5 and ξ = 1.
The GC trajectories (r̄(t), p̄(t)) are computed by solving the forward and backward equations of motion of
the corresponding GC Hamiltonians (2.17) with initial conditions Φn(r(t0),p(t0)), where t0 is chosen such
that |r(t0)| > 50 a.u. (∼ 2E0/ω

2). We observe that the cyan and red solid curves guide the oscillating dark
blue curves. Therefore, the electron oscillates around a GC. For instance, in Figs. 2.2c–d, we see that the
trajectory ionizes if the GC motion is unbounded, and it returns to the ionic core if the GC returns to the
core. Moreover, we observe a qualitative agreement between the electron trajectory and the reconstructed
trajectory using the models G2 and G5. In addition, we observe an overlap almost everywhere between the
dark blue curve and the red dashed curve, a signature of a very good quantitative agreement between the
electron trajectory and the reconstructed trajectory of the model G5. For the G2, the overlap is mainly
observed far from the ionic core, i.e., for shorter integration times (less than 10T ). Below, we provide more
thorough analyses to see if and when this agreement between the reduced models and the true trajectories
holds. We consider the case d = 1 for clarity. In what follows, the parameters are ξ = 0, I = 1014 W · cm−2,
and ω = 0.05.

As a consequence of d = 1, the electron and GC phase-space coordinates are reduced to (r,p) = (xex, pex)
and (r̄, p̄) = (x̄ex, p̄ex), respectively. Looking at longer trajectories as it is done in Fig. 2.3, we observe
multiple returns of the electron to the ionic core. The upper panel of Fig. 2.3 shows a typical trajectory
(dark blue curve) of Hamiltonian (1.14), and the GC trajectory for G5 (red curve) for every interval of time
when the electron is far from the ionic core. The GC trajectory is solution of the forward and backward
equations of motion of Hamiltonian (2.17b), with initial conditions Φ5(x(t0), p(t0)), such that |x(t0)| > 50 a.u.
In the lower panel of Fig. 2.3, the dark blue curve is the GC energy H5(Φ5(x(t), p(t))), i.e., at each time,
the transformation Φ5 is performed on the electron phase-space coordinates, and its associated energy H5 is
computed. The red curves are the GC energy of Hamiltonian (2.17b) for initial conditions Φ5(x(t0), p(t0)),
i.e., the energy of the GC of G5, which is conserved. In Fig. 2.3, we observe that the GC reproduces well the
mean trajectory of the electron for several time intervals when the electron is far from the ionic core, in a
similar way as it was observed in Fig. 2.2. As a consequence, the GC energy of the electron H5(Φ5(x(t), p(t)))
is approximately conserved in a piece-wise manner in time. However, we notice that the energy strongly varies
during close encounters between the electron and its ionic core. In addition, once the electron has undergone
a close encounter, the GC energy of the electron jumps to another energy level.
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Figure 2.3: Typical electron trajectory of Hamiltonian (1.14) for I = 1014 W · cm−2, d = 1, ξ = 0, Z = 1 and
ω = 0.05, and the GC trajectory of the model G5, for multiple initial conditions Φ(x(t0), p(t0)) such that
|x(t0)| > 50 a.u., with forward and backward integration of the equations of motion of H5. The grey areas
are where the GC position is |x̄| < 35 a.u. Upper panel: Dark blue and red curves are the electron and the
GC trajectory, respectively. In the grey regions, the red curves would typically look like the red curve in the
top panel of Fig. 2.6. Lower panel: The dark blue curve is the GC energy H5(Φ5(x(t), p(t))). The red curves
are the GC energy of G5, given by H5(Φ5(x(t0), p(t0))), respectively. The horizontal black line is E = 0. Here
x and E are in atomic units.

These observations on the reconstructed trajectories and on the GC energy lead us to consider two
different methods for comparing in a more systematic way Hamiltonian (1.14) with the n-th order GC model
Gn = (Hm,Φn). They consist of:

(i) Computing trajectories of Hamiltonian Hm(r̄, p̄) for t ∈ [t0, tf ] with initial conditions Φn(r(t0),p(t0)),
and then performing the inverse change of coordinates Φ−1

n (r̄(t), p̄(t)) to obtain the reconstructed
trajectories.

(ii) Computing GC energies Hm(Φn(r(t),p(t))) with (r(t),p(t)) the trajectory of Hamiltonian (1.14) for
t ∈ [t0, tf ].

In what follows, we use these two methods to test the validity and the benefits of the reduced models.
Using method (i), the reconstructed trajectories of the model must be close to the true electron trajectory
for the models to be relevant. This method is employed in Fig. 2.4. Using method (ii), by definition, the
GC energy of the electron Hm(Φn(r(t),p(t))) must be conserved up to some order for the reduced models
to be relevant. This method is employed in Figs. 2.5 and 2.6. In addition, we use these tests to compare the
reduced models and to provide some guidelines on which models should be used for practical purposes.

2.3.1.1 Reconstructed trajectories

Figure 2.4 shows the most probable distance error δxn(t) between the reconstructed trajectories of the model
Gn and the electron trajectory, such that

δxn(t) = |Πx(Φ−1
n (x̄(t), p̄(t)))− x(t)|, (2.21)

where x(t) is the trajectory of Hamiltonian (1.14), x̄(t) is the GC trajectory of Hamiltonian Hm with ini-
tial condition Φn(x(0), p(0)), and Πx is the projection from phase space onto the position component, i.e.,
Πx(x, p) = x. The most probable distance error is determined using the maximum of the kernel density
estimation [157] of the distance error as a function of t/T . Specifically, it is determined in two steps for a
fixed t/T : First, we compute the kernel density estimation of our data, then, we locate its maximum. The
equations of motion for x̄ and p̄ for the models G2 = (H2,Φ2), G3 = (H2,Φ3) and G4 = (H2,Φ4) are the
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Figure 2.4: Most probable distance error δxn [see Eq. (2.21)] as a function of time t per laser cycle T (in
log-log scale) for I = 1014 W · cm−2, d = 1, ξ = 0, Z = 1 and ω = 0.05 a.u. The electrons are initialized such
that the initial velocity of the GC of G2 is zero, and its initial position is normally distributed, with a mean
value 1000 a.u. and a standard deviation 5 a.u. The initial laser phase is uniformly distributed ϕCEP ∈ [0, 2π].
The dashed lines are the linear fit curves. Inset: Mean value of the position of the electron 〈x〉 as a function
of t/T . Here δxn is in atomic units.

same, given that the Hamiltonians are the same. The differences between these models come from the change
of coordinates, as taken into account in the determination of the initial conditions of the GC trajectory and
in the reconstruction of the trajectory from the GC phase-space coordinates. This is also the case when
comparing the models G5 = (H5,Φ5) and G6 = (H5,Φ6).

The distance error between the electron trajectories and the reconstructed trajectories is increasing for
increasing time. Moreover, the distance error is increasing faster for n = {2, 3, 4} than for n = {5, 6, 7}. As a
consequence, at t ≈ 100T , the distance errors δxn for n = {2, 3, 4} are two orders of magnitude greater than
the ones for n = {5, 6, 7}. More quantitatively, the most probable distance error δxn scales as

δxn ∝ |t|αn .

We observe that αn ≈ 2.1 for n = {2, 3, 4}, and αn ≈ 1.1 for n = {5, 6, 7}.
Counter-intuitively, we observe no significant quantitative improvements, neither between the models G2,

G3 and G4, nor between the models G5, G6 and G7. Hence, far from the ionic core, the corrective terms in
the change of coordinates Φ3 and Φ4, are negligible (at least for the chosen parameters), and the models G2,
G3 and G4 provide similar results. In the same way, the corrective terms in Hamiltonian H7, compared with
H5, are negligible, as well as the corrective terms in the change of coordinates Φ6 and Φ7.

2.3.1.2 Guiding-center (GC) energy

We complement the analysis of the trajectories by looking at a specific property of the reduced models,
namely the conservation of energy. In Fig. 2.5, an ensemble of trajectories is initiated such that the initial
velocity of the GC G5 is zero, and the initial position of the GC G5 is normally distributed with a mean value
100 a.u. and a standard deviation 5 a.u. The initial laser phase is uniformly distributed ϕCEP ∈ [0, 2π]. The
distribution in the lower panel of Fig. 2.5 represents the distribution of the GC energy H5(Φ5(x(t), p(t))) as
a function of t/T . In the upper panel, the dark blue curve is a typical electron trajectory in the ensemble.
The red curve is the GC energy H5(Φ5(x(t), p(t))) of the electron trajectory corresponding to the dark blue
curve in the upper panel.

For t < 7T , we observe in the lower panel that the distribution is peaked around the initial GC energy of
the electron. During this time, the electrons are far from the ionic core. At t ∼ 8T , the electrons get close to
the ionic core, and the GC energy distribution starts to spread out. When the electrons are close to the ionic
core, their dynamics is highly nonlinear due to the competition between the strong laser and Coulomb fields,
and the energy curve of a single trajectory in the lower panel starts varying significantly. In the meantime,
the inset in the upper panel shows that the approximate trajectory of the reduced model no longer reproduces
the electron trajectory. For t > 9T , the electron is far from the ionic core, and the red curve in the lower
panel stops varying. It means that the model G5 is again relevant, but for a different energy level than the
initial energy. The arrow indicates the jump of the GC energy after the close encounter with the ionic core.
Close encounters with the ionic core are short time processes, and therefore cannot be averaged in time. It

43



CHAPTER 2. GUIDING CENTER MODELCHAPTER 2. GUIDING CENTER MODELCHAPTER 2. GUIDING CENTER MODELCHAPTER 2. GUIDING CENTER MODELCHAPTER 2. GUIDING CENTER MODELCHAPTER 2. GUIDING CENTER MODEL

is expected that the fast-time average we perform fails to describe the various energy exchanges happening
on these short time scales.

Figure 2.6 shows the most probable relative energy error δen(t) for the models Gn as a function of the
distance between the electron and the ionic core |x(t)|, such that

δen(t) =

∣∣∣∣Hm(Φn(x(t), p(t)))−Hm(Φn(x(0), p(0)))

Hm(Φn(x(0), p(0)))

∣∣∣∣ , (2.22)

where (x(t), p(t)) are the electron phase-space coordinates at time t. The most probable energy error is the
maximum of the kernel density estimation [157] of the energy error. It is determined using the same technique
as for computing the most probable distance error (see Fig. 2.4). The initial conditions are the same as in
Fig. 2.4, and the integration is stopped when the electron reaches x = 1 a.u.

As expected, we observe that the energy error δen increases when |x| decreases, i.e., as the electron
approaches the ionic core. Far away from the ionic core, we observe that the most probable energy error δen
scales as

δen ∝ |x|−βn ,

with βn ≈ 3.0 for n = {2, 3, 4}, and βn ≈ 6.5 for n = {5, 6, 7}. As in Sec. 2.3.1.1, for we observe no significant
quantitative improvements, neither between the models G2, G3 and G4, nor between the models G5, G6 and
G7.

A cross-over is observed between all the models when the electron reaches ∼ 35 a.u. In particular, from
Fig. 2.6, we observe that G2 = (H2,Φ2) gives the smallest energy errors among the reduced models close to
the ionic core. The main reason is that H2 and Φ2 do no contain derivatives of the potential. As such, G2

constitutes the most robust model among the hierarchy. Far from the ionic core (> 35 a.u.), the higher order
models provide a better quantitative agreement with the electron trajectories as shown in Figs. 2.4 and 2.6.
The efficiency of the higher-order models appears far from the ionic core, around 35 a.u.

2.3.1.3 Discussion

The relative failure of the higher order models close to the ionic core can be understood by looking at the
magnitude of the corrective terms in the Hamiltonians Hm and in the changes of coordinates Φn. Figure 2.7
shows h1 = V (x̄), h5 = (Up/ω

2)V ′′(x̄) and h7 = (Up/ω
4)V ′′(x̄)2 as a function of the distance between the

GC and the ionic core. The term hn corresponds to the time-independent term in Hamiltonian (2.16) of
order εn. We observe an overlap between these terms, where h1 ∼ h5 for |x̄| ≈ xc. Far from the ionic core,
we approximate the soft-Coulomb potential by a hard-Coulomb potential V (x̄) ≈ −1/|x̄| and we compute hn
explicitly. We deduce that h1 ∼ h5 for x̄ ≈ xc with

xc ∼ E0/ω
2,

which is approximately equal to 21 a.u. for I = 1014 W · cm−2 and ω = 0.05 a.u. Therefore, for |x̄| � xc,
the terms are ordered such that h1 > h5 > h7. In this case, the series in the perturbative expansion of
Hamiltonian (2.16) and the change of coordinates (2.18) are likely converging, and the models Gn for n > 2
are relevant for the GC dynamics. For |x̄| � xc, the terms are ordered such that h1 < h5 < h7. In this case,
the series in the perturbative expansion of Hamiltonian (2.16) and the change of coordinates (2.18) becomes
very far from the true trajectory, and the models Gn for n > 2 are no longer relevant for the dynamics of
Hamiltonian (1.14).

For parameters which push the electron far from the ionic core, the higher order models become more
relevant and precise. For instance, in the Perelomov-Popov-Terent’ev [137, 138, 136] (PPT) theory of ion-
ization, initially the electron is at a distance |r| ∼ (E0/ω

2)γ from the ionic core, where γ = ω
√

2Ip/E0 is
the Keldysh parameter with Ip the ionization potential. For small or intermediate Keldysh parameter (i.e.,
the tunneling regime), the electron ionizes close to the ionic core compared to the quiver radius. Here, we
expect the model G2 to be more relevant because of its robustness close to the ionic core. However, for large
Keldysh parameter (γ � 1), the electron ionizes far from the ionic core compared to the quiver radius. In
particular, in a recent experiment [170] in which photoelectron momentum distributions were measured, the
parameters –laser intensity I0 = 6× 1013 W · cm−2, laser wavelength λ = 400 nm and atom Ar– correspond
to a Keldysh parameter of γ ∼ 3. Therefore, in the multiphoton regime (γ � 1) and in particular for the set
of parameters used in this experiment, we expect the higher orders models G5 or G7 to be more relevant.
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Figure 2.5: Electron trajectory for I = 1014 W · cm−2, d = 1, Z = 1 and ω = 0.05 a.u. The grey areas
are where the GC position is |x̄| < 35 a.u. Upper panel: The dark blue curve is the electron trajectory of
Hamiltonian (1.14) as a function of time t per laser cycle T . The solid and dashed red curves are the GC
and the approximate trajectory for G5, respectively, with initial condition t0 = 0. The inset is a zoom of the
region around the grey area. Lower panel: Logarithm of the distribution of the GC energy H5(Φ5(x(t), p(t)))
as a function of t/T . The GCs are initialized with a normal distribution with mean value 100 a.u. and
standard deviation 5a.u., with zero-velocity and a uniformly distributed initial laser phase ϕCEP ∈ [0, 2π].
The red curve is the GC energy H5(Φ5(x(t), p(t))) of the dark blue curve in the upper panel. Here x and E
are in atomic units.

Figure 2.6: Most probable energy error δen [see Eq. (2.22)] as a function of the distance between the electron
and the ionic core |x| (in log-log scale), for I = 1014 W · cm−2, d = 1, Z = 1 and ω = 0.05 a.u. The initial
conditions are the same as in Fig. 2.4. The dashed lines are the linear approximation for |x| ∈ [1, 35] a.u.
The inset shows a zoom of the curves. Here |x| is in atomic units.

Figure 2.7: Representation of hn as a function of the distance between the GC and the ionic core |x̄| (in
log-log scale) for I = 1014 W · cm−2, d = 1, Z = 1 and ω = 0.05. The term hn corresponds to the term of
order O(εn) in the Hamiltonian (2.16), which are: h1 = V (x̄), h5 = (Up/ω

2)V ′′(x̄), and h7 = (Up/ω
4)V ′′(x̄)2.

The dashed lines are the asymptotic behaviors of these terms for soft-Coulomb potential (1.8), which are for
|x| � 1: |h1| ∝ |x̄|−1, |h5| ∝ |x̄|−3 and |h7| ∝ |x̄|−6. The vertical line is xc = E0/ω

2. Here hn and |x̄| are in
atomic units.
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Figure 2.8: Cartoon of scenario of step (ii) for d = 1 using the second order GC model G2 = (H2,Φ2). The
thin lines are constant energy surfaces H2(r̄, p̄) = E , and the yellow thick line is the separatrix of the GC
energy E = 0. The parameters are I = 1014 W · cm−2, Z = 1 and ξ = 0. The thick cyan line is the GC
trajectory. The thick blue lines are the reconstructed trajectory Φ−1

2 (r̄(t), p̄(t)).

2.3.2 Guiding-center (GC) phase-space dynamics

In this section, we compare the dynamics of the GC given by the three main Hamiltonians H2, H5 and H7

in Eqs. (2.17). In the case of Hamiltonian H2, the final momentum of the GC is computed as a function of
its initial conditions.

2.3.2.1 For Hamiltonian H2

The first (non-trivial) element of the hierarchy is G2 = (H2,Φ2) and the phase space of the electron is
depicted in Fig. 2.8. This model was identified above as the most robust one in the hierarchy for the analysis
of the GC dynamics, since its GC energy error is lower than for any other models close to the ionic core. We
notice that this is the only reduced Hamiltonian which does not depend on the parameters of the laser field.
The dependence on the laser field is in the change of variables Φ2. Moreover, if the potential is rotationally
invariant, as is the case for atoms, the resulting Hamiltonian is integrable since the angular momentum is
conserved in addition to the Hamiltonian.

The change of variables is exactly given by

r̄ = r− ε2E(t)/ω2,

p̄ = p− εA(t).

What is particularly convenient with this GC model is that the potential is taken into account in the Hamil-
tonian and the electric field in the change of variables.

Ionization occurs if and only if the energy of the GC E = H2(r̄(t), p̄(t)) is positive. Otherwise the motion
of the electron is bounded since the GC moves on a quasi-periodic orbit. The laser parameters have no
influence on the motion of the GCs (and this holds up to the fourth-order model). They only influence
how the electron swirls around the quasi-periodic orbit. We consider potentials invariant under rotations
V (r) = V(|r|). The Hamiltonian reads

H2(r̄, p̄) =
|p̄|2

2
+ V(|r|).

The guiding-center motion is planar due to the conservation of the angular momentum. We perform the
polar-nodal canonical transformation [66], (r̄, p̄) 7→ (r, θ, ν, pr, pθ, pν),

r̄ = rQex, p̄ = Q(expr + eypθ/r),
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where the total rotation matrix is Q = Rz(ν)Rx(i)Rz(θ), where Rx and Rz are given in Appendix A,
cos i = pν/pθ and sin i = [1− (pν/pθ)

2]1/2. The GC Hamiltonian for the hard Coulomb potential becomes

H2(r, θ, ν, pr, pθ, pν) =
p2
r

2
+

p2
θ

2r2
+ V(r). (2.23)

For rotationnally invariant potentials, the Hamiltonian is autonomous and pθ, ν and pν are conserved. Three
quantities in involution are conserved and the system has three degrees of freedom. Therefore the system
is integrable in the Liousville sense. In analogy with the quantum case, the angular quantum numbers l
and m are associated with the conservation of pθ and pν , respectively. In order to compute the asymptotic
configuration of the guiding center with Hamiltonian (2.23), one needs to determine the initial conditions in
the polar-nodal coordinates as a function of the initial conditions in the Cartesian coordinates. The momenta
are given by pr = p̄ · r̄/|r̄|, pθ = |L| and pν = L · ez, with L = r̄× p̄. The distance from the origin is r = |r̄|.
Concerning the angles, we first introduce the unitary vectors

e1 =

{
ex if ez × L = 0,
ez × L/|ez × L| otherwise,

and e2 = L/|L| × e1. The angles θ and ν as a function of the Cartesian coordinates are given by

cos θ = e1 · r̄/|r̄|, sin θ = e2 · r̄/|r̄|,

and
cos ν = e1 · ex, sin ν = e1 · ey.

If ez × L = 0, sin i = 0 and as a consequence the angle of rotation is θ + ν. By fixing e1 = ex in this
case, we choose arbitrary ν = 0 in order to be consistent with the definition of θ and ν. The energy
E = H2(r, θ, ν, pr, pθ, pν), the angular momentum pθ, ν and pν are clearly constants of the motion.

If E > 0, the GC trajectory is unbounded and the electron reaches the detector. We consider the case
when the GC is far from the ionic core, and as a consequence, we can approximate V(r) ≈ −Z/r. The
asymptotic configuration (when r goes to infinity) is given by pr =

√
2E . Concerning the final scattering

angle θ, if pθ = 0, θ = θ0 (if pr,0 > 0) and θ0 + π (if pr,0 < 0). If pθ 6= 0, the final scattering angle is given by

θ =


θ0 + sin−1 u0 + sin−1 β if pr,0 > 0,
θ0 + π/2 + sin−1 β if pr,0 = 0,
θ0 + π − sin−1 u0 + sin−1 β if pr,0 < 0,

(2.24)

with u0 = β[p2
θ/(Zr0)− 1], β = (2Ep2

θ/Z
2 + 1)−1/2 and r0 = |r̄0|. Finally, the final momentum of the GC in

the Cartesian coordinates is given by
p̄ = prQex.

We notice that in the two-dimensional case where the dynamics is in the polarization plane (ex, ey), we have
L× ez = 0. Therefore, |pθ| = |pν |, sin i = 0 and Rν is the identity matrix. Therefore, in this case, the final
momentum reads p̄ = pr(ex cos θ + ey sin θ cos i), where cos i = +1 (resp. −1) for pν > 0 (resp. < 0).

If E < 0, the typical GC trajectory is on a Kepler orbit, where E is the energy of the orbit, as it is
the case for the GC trajectories in Figs. 2.2a–c and Fig. 2.2f. One of the particularities of these orbits is
that the radial momentum p̄ · r̄/|r̄| vanishes twice in a revolution cycle: Once when the GC trajectory is at
the perihelion r− (minimum distance from the ionic core) and d(p̄ · r̄/|r̄|)/dt > 0, and once when the GC
trajectory is at the aphelion r+ (maximum distance from the ionic core) and d(p̄ · r̄/|r̄|)/dt < 0 such that

r± =
Z

2|E|

(
1±

√
1− 2p2

θ|E|/Z2

)
, (2.25)

The aphelion and the perihelion are such that r+ + r− = Z/|E|, imposing that for a given energy, the larger
the aphelion, the smaller the perihelion, i.e., the closer the electron gets to the ionic core.

2.3.2.2 For Hamiltonians H5 and H7

When going to higher-order models, the Hamiltonian H2 gets perturbed by h5 (and h7). As a consequence,
since the perturbation mainly affects the trajectories that pass close to the ionic core, i.e., r− < xc ∼ E0/ω

2,
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Figure 2.9: Poincaré sections r̄·p̄ = 0 and d(p̄·r̄/|r̄|)/dt < 0 in the polarization plane (x̄, ȳ), for potential (1.8),
I = 1014 W · cm−2, Z = 1 and E = −0.01 a.u. The cyan, red and cyan thick lines are the boundaries of
the Poincaré sections. The grey shaded areas are |r̄| < E0/ω

2. The Hamiltonians are: (a) H2, (b–e) H5,
and (f–i) H7. The ellipiticities are: (b,f) ξ = 0, (c,e,g,i) ξ = 0.5, (d,h) ξ = 1. The frequencies are ω = 0.05
except for (d,h) ω = 0.025 (larger quiver radius). All axes are the same as for (a) unless stated otherwise.
All quantities are in atomic units.

we shall see that the most perturbed trajectories in the higher-order models are the ones with a large aphelion
Z/|E| − E0/ω

2 < r+ < Z/|E|.
The fact that the energy of the GCs is conserved is a property which is preserved by construction of the

reduction procedure: E = H5(r̄(t), p̄(t)) or E = H7(r̄(t), p̄(t)) is conserved in time. Consequently, for d = 2,
the dimension of phase space is reduced from 5 to 3 + 1. Here 3 + 1 means that phase space is foliated by
constant energy surfaces of dimension 3. The advantage is that one can visualize the dynamics using Poincaré
sections. Figure 2.9 shows the Poincaré sections r̄ · p̄ = 0 and d(p̄ · r̄/|r̄|)/dt < 0 for E = −0.01 a.u. and the
soft-Coulomb potential (1.8), where p̄ · r̄/|r̄| = d|r̄|/dt is the radial momentum of the electron. This Poincaré
section corresponds to the position of the GC when it turns back towards the ionic core. The region close
to the ionic core, i.e., around |r̄| ∼ E0/ω

2 (grey areas), is not relevant since the reduction procedure is only
valid far away from the ionic core.

For linear polarization (ξ = 0), in Fig. 2.9b and Fig. 2.9f, we observe two distinct dynamical behaviors of
the GC trajectories. These figures display a chaotic layer far from the ionic core around Z/|E| − E0/ω

2 <
|r̄| < Z/|E|. This ring corresponds to trajectories with a small perihelion and a large aphelion, that come
close to the ionic core |r̄| < E0/ω

2. These trajectories are the most affected by the perturbation h5 in the
Hamiltonian H5 according to our discussion in Sec. 2.3.1.3, and typically correspond to the trajectories for
which the electron comes back to the ionic core, as it is depicted in Fig. 2.2a, Fig. 2.2c and Fig. 2.2f. The
width of this ring is of order E0/ω

2. Secondly, we observe a regular region for Z/2|E| < |r̄| < Z/|E| −E0/ω
2.

This region corresponds to trajectories with a perihelion greater than E0/ω
2, of the same order of their

aphelion. These are the trajectories least affected by the perturbations h5 and h7. As a consequence, we
observe orbits that are mostly preserved from the unperturbed Hamiltonian H2, and typically correspond to
the trajectories for which the electron stays far from the ionic core, as it is depicted in Fig. 2.2b. Also, we
observe two elliptic islands for (x̄, ȳ) ∼ (±1/2|E|, 0). These islands correspond to mainly circular GC orbits,
which become stable with the coupling with the electric field encapsulated in the effective potential of H5 or
H7. Finally, the Poincaré sections for H5 and H7 look similar. This is consistent with our earlier observation
that h7 does not significantly affect the electron trajectories for these parameters and far from the ionic core.

For elliptical polarization (ξ = 0.5), in Fig. 2.9c and Fig. 2.9g, the observations are similar to the linear
case, which reinforces the generality of the discussion above. However, for circular polarization (ξ = 1), in
Fig. 2.9d and Fig. 2.9h, we no longer observe chaotic behavior in the GC dynamics. Indeed, Hamiltonians H5

and H7 are rotationally invariant, and as a consequence, the GC angular momentum is conserved. Therefore,
the dimension of phase space is reduced from 3 + 1 to 2 + 2 and the system is integrable. We observe that
the elliptic islands we observed for ξ = 0 and 0.5 around (x̄, ȳ) ∼ (±Z/2|E|, 0) are no longer present in the
circular polarization case, as a consequence of the rotational invariance.
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Figure 2.10: Poincaré sections r̄ · p̄ = 0 and d(p̄ · r̄/|r̄|)/dt < 0 of H5 in the polarization plane (x̄, ȳ), for
potential (1.8), I = 1014 W ·cm−2 and Z = 1. The red thick lines are the boundaries of the Poincaré sections.
The grey shaded areas are |r̄| < E0/ω

2. The ellipiticities are (left panel) ξ = 0 and (right panel) ξ = 0.5.
The frequencies are ω = 0.05. All quantities are in atomic units.

In the previous sections we have seen that for the parameters I = 1014 W · cm−2 and ω = 0.05 a.u.,
the models H5 and H7 are almost equivalent since h5 is several order of magnitude higher than h7 in the
region where the higher order models are relevant, |r̄| > E0/ω

2 (see Fig. 2.7). This is verified by comparing
the Poincaré sections of Figs. 2.9b–d and Figs. 2.9f–h. However, in Figs. 2.9e–i, we observe that when
ω = 0.025 a.u. so that the quiver radius is of the same order as the distance between the GC and the ionic
core (E0/ω

2 ∼ 85 a.u.), the dynamics between Hamiltonians H5 and H7 differs significantly. The reduced
models are not relevant in these regions. Hence, the reduced models G5 and G7 are significantly different
when the characteristic distance between the GC and the ionic core is the same as the quiver radius (at least
for this range of parameters). Similar observations would have been made for ω = 0.05 a.u. by lowering the
GC energy E as observed in Fig. 2.10.

2.4 Conclusions

In sum, we have derived a hierarchy of reduced models Gn for the GC dynamics of the electron interacting
with the combined strong laser and Coulomb fields. The reduced models Gn are composed of an averaged
Hamiltonian Hm governing the GC dynamics [Eqs. (2.17)] and a transformation Φn which maps the electron
phase-space coordinates onto the GC phase-space coordinates [Eqs. (2.19)]. As a rule of thumb, these models
are relevant when the electron is relatively far away from the ionic core (typically when its distance from the
core exceeds one quiver radius), which happens in a piece-wise manner in time. The models do not describe
the short events when the electron recollides with the ionic core. However, the models capture the dynamics
of the electron on long time scales.

We have singled out two models G2 and G5: The first model provides the leading behavior of the tra-
jectories, is the most tractable one due to its simplicity and the most robust close to the core. In order to
improve the quantitative agreement, a higher-order model such as G5 has to be used.

All these models allow the distinction between direct ionizations and rescattering with the ionic core
by looking at the GC energy of the trajectory. This is in particular very useful when the photoelectron
momentum distributions are analyzed for imaging the target. Also, we were able to define an energy of the
electron far away from the core for this time-dependent system. The rescattering events can be seen as jumps
in energy as a result of the transfer of energy from the ionic core to the electron.

49





Chapter 3

The impact of the Coulomb potential in
ATI: Coulomb-driven recollisions and
Rydberg state creations

After electrons tunnel ionize, the interplay between their interactions with the laser and their parent ion yields
their dynamics highly nonlinear. These nonlinearities give rise to rich and diverse paths the electrons can
take towards the detectors. In Ref. [127], it is shown experimentally that electrons, after tunnel ionization,
can also be trapped in Rydberg states. The Rydberg states of atoms are excited states in which the energy of
the bound electrons in the field-free atom is close to zero, and as a consequence, they can be several atomic
units far from the core. The left panel of Fig. 3.1 shows the yield of Rydberg states created from He subjected
to an intense laser field as a function of the laser intensity. While the yield of ionization slowly decreases
for increasing ellipticity, we observe that the yield of Rydberg states drastically decreases for increasing
ellipticities.

When electrons reach the detector with or without recolliding, their final momentum can be measured,
and photoelectron momentum distributions (PMDs) can be drawn. Typical PMDs for He are shown in Fig. 8.
In Ref. [93], the location of the maximum of the upper lobe in the PMDs measured in experiments (upper
panel of Fig. 8), denoted P = Pxex + Pyey, is tracked for varying ellipticities. In the right panel of Fig. 3.1,
the blue and red circles are the momentum coordinates of the maximum of upper lobe in the PMDs Px
and Py, respectively. The horizontal black and green curves are the predicitions of Px and Py in absence
of Coulomb potential, i.e., in the SFA, given by Eq. (4). For ξ . 0.1, we observe that P ≈ 0, and as a
consequence, the PMD is mainly one lobe centered at the origin. In contrast, the solid green curve increases

measured in earlier experiments [4,5]. An effusive beam of
He atoms from a nozzle is crossed by a focused Ti:sapphire
fs laser with a pulse duration of 30 fs (FWHM), repetition
rate of 10 Hz or 700 Hz and a maximum pulse energy of
2 mJ. 0.38 m downstream, which corresponds to a mean
time-of flight of !300 !s for neutral He atoms, a position
sensitive MCP in the counting mode measures neutral
atoms as explained before. Rejection of spurious residual
background ions hitting the detector at the same time as the
neutrals is facilitated, since the ions are randomly distrib-
uted over the MCP, while the excited neutrals are well
located on the detector. This results in a negligible ionic
background contribution. A pair of field plates allows for
the application of electric fields in the interaction zone
which serve different purposes. By applying an electric
field pulse 100 ns after the strong laser pulse we typically
field ionize excited neutral atoms with a principal quantum
number n > 30 in order to compare with the theoretical
calculations as detailed later on. Furthermore, charged ions
can be pushed towards or away from the detector. Thus, in
addition to the neutral signal, which is distributed over a
large time interval (0.1 to 0.6 ms), we can simultaneously
measure the number of singly or doubly charged ions
arriving much earlier at the detector.

In Fig. 1 we show the results of measurements where we
have recorded Heþ ions and excited neutral He# atoms
with n < 30 simultaneously as a function of the laser
intensity of a linearly polarized laser beam. The ion yield
serves as an additional intensity calibration (using rate
equations [15] based on tunneling ionization rates [16]
and considering the intensity distribution in the laser
beam) and as a reference signal for the production of
neutrals over a range of roughly 4 orders of magnitude.
In Fig. 2 we present the results of a measurement of He#

and Heþ yields as function of the ellipticity " of the laser
field. While the He# signal drastically decreases for small
deviation from linear polarization (" ¼ 0) the Heþ signal
varies only slowly in that range as expected. This behavior
is typical for a rescattering process as it has also been
measured for HHG and NSMI [17].

To explain the experimental results a fully nonperturba-
tive quantum mechanical treatment of He exposed to a
laser field is achieved by solving the corresponding time-
dependent Schrödinger equation in the nonrelativistic di-
pole approximation. As is discussed for the example of H2

in [18] the time-dependent wave function is expanded in
terms of field-free eigenstates that are obtained from a
configuration interaction (CI) calculation. Configurations
built from ionic Heþ orbitals are used as a basis for the CI.
The orbitals result from a diagonalization of the one-
electron Hamiltonian in a basis ofB-spline functions times
spherical harmonics. The shown results were obtained with
1000Bsplines of order 9 covering a spherical box of radius
Rmax ¼ 1000a0 for each angular momentum 0 % l % 20.
Between 1700 and 2300 configurations are used in the CI
for angular momenta 0 % L % 10 and about 1100 configu-
rations for 11 % L % 20. Including only states up to an

energy 7 a.u. above the ionization threshold the time
propagation involved about 29 000 CI states.
Alternatively, an approximate single-active-electron

(SAE) calculation was performed using the same orbitals,
but building only configurations in which one of the elec-
trons is always remaining in the ionic 1s or 2s orbital.
Adopting a long orbital series for the second electron in the

FIG. 1 (color online). Experimental data for total ion yield (h)
and for excited neutral atom yield with (n < 30) (& ). Equal
MCP detection efficiency for both species has been assumed.
Also shown are the total ion yield (j) and total yield of excited
states (m) with (n < 30) from full two-electron CI calculations.
The open triangles (4) denote the theoretical excited neutral
atom yield corrected for the radiative decay as explained in the
text. The experimental laser intensity was divided by a factor 1.8,
see text. The red dots (d) indicate the captured tunneling
electrons from classical calculations normalized on the total
ion yield from the CI calculations. Shown also is an estimated
representative error bar for the corrected theoretical curve, which
is due to the uncertainty in the correction of the radiative decay
process.

FIG. 2 (color online). Dependence of the Heþ (j) and He#

(& ) yield on ellipticity at fixed pulse energy corresponding to a
laser intensity of about 1015 W=cm2 for " ¼ 0. For better
comparison both measurements have been set equal at " ¼ 0.
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ellipticity-resolved electron momenta in the plane of polari-
zation unifies the two widely studied phenomena, showing
how Coulomb focusing begins to break down at about
the same value of ellipticity where Coulomb asymmetry
becomes significant.
The electric field of a laser is given by

F⃗ðtÞ ¼ −F0fðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 1

p ½cosðωtÞx̂ þ ϵ sinðωtÞŷ&; (1)

where ω is the frequency of the laser, ϵ is the ellipticity,
with x̂ and ŷ taken to be the major and minor axes of polari-
zation, respectively, and fðtÞ is the pulse envelope. The
center of the electron momenta distribution that is mea-
sured at the detector is then given by P⃗ ¼ Pxx̂ þ Pyŷ
(see Fig. 1) and corresponds to ionization at the peak of
the electric field, or along the x axis, with drift momentum
subsequently acquired predominantly along the y axis. A
standard technique in strong field ionization, following
Simpleman’s model [17–20], is to neglect the Coulomb field
after ionization [6,12,21,22] and treat the dynamics classi-
cally, much as it is done in plasma physics [23–25]. In par-
ticular, if the Coulomb field along the minor axis of
polarization is neglected, then the dynamics are determined
solely by the y component of Eq. (1) [6], resulting in

Py ¼ ' ϵF0

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 1

p þ Py0; (2)

wherePy0 is the initial velocity at the tunnel exit [26,27], and
the sign is determined by the direction of the electric field at
the instance of ionization (0 or 180 deg). Figure 2 plots theo-
retical Py (green curve), given by Eq. (2), taking Py0 ¼ 0, in
accordance with the most probable velocity predicted by the
Ammosov-Delone-Krainov probability distribution at the
tunnel exit [26].
Our experimental data, shown in Fig. 1 for low (ϵ ¼ 0.2)

and high (ϵ ¼ 0.7) ellipticities, were obtained by recording
electron momenta distributions in the plane of polarization

after strong field ionization of helium over a complete
scan of ellipticity ϵ of the laser field. The details of the
experiment are given elsewhere [5]. In summary, the exper-
imental setup used COLTRIMS [28] with a laser pulse
duration (full width at half maximum) of 33 fs, peak inten-
sity of 8 × 1014 Wcm−2, and central wavelength of
788 nm. An ellipticity scan was performed using a broad-
band quarter-wave plate, which was rotated continuously.
The electron momenta at the detector were recorded for dif-
ferent values of ϵ, ranging from linearly to near-circularly
polarized light. The ellipticity scan corresponded to the
range of the Keldysh parameter γ ¼ 0.5–0.7 , where γ is

given by γ ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ipðϵ2 þ 1Þ

q
=F0, and γ < 1 is considered

the tunneling regime [8,29]. We were, therefore, able to
investigate the impact of the force of the parent ion on
the tunneled electron for all laser polarizations, from linear
to circular. To extract the center of the electron momenta
distribution, elliptical integration was used [30]. This
method is robust for all values of ellipticity, resulting
in a well-defined Gaussian fit [30], without an asymmetric
double-peak structure, which occurs with radial integra-
tion at low ϵ [5,11].
We find that while the force exerted by the parent ion

along the minor axis of polarization is negligible at higher
ellipticities of laser light, it can be significant at lower val-
ues of ϵ. These experimental results are shown in Fig. 2,
where the location of the center of the electron momenta
distribution along the minor axis of polarization Py is com-
pared with the analytical prediction, given by Eq. (2). As
can be seen from Fig. 2, neglecting the Coulomb force on
electron momentum along the minor axis of polarization, or
the y axis, results in excellent agreement between theory
and experiment for ϵ ≥ 0.3. For smaller values of ϵ, the
change in momentum due to the interaction of the electron
with the parent ion is substantial. This results in significant
Coulomb focusing along the minor axis of polarization,
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FIG. 1 (color online). Experimentally measured electron mo-
menta distributions in the plane of laser polarization at lower
(ϵ ¼ 0.2) and higher (ϵ ¼ 0.7) values of ellipticity. The coordi-
nates of the center are labeled in the right panel with Px and Py.
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Figure 3.1: Left panel: Experimental measurements for I = 1015 W · cm−2 reproduced from Ref. [127]. The
black squares (�) and circles (◦) are the yield of He+ and He∗ as a function of the ellipticity, respectively.
Both measurements have been set equal at ξ = 0. Right panel: Experimental measurements of the PMD of
He for I = 8× 1014 W · cm−2 and ξ = 0.4 reproduced from Ref. [140] (zoom of Fig. 8 of this manuscript).
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linearly in this range of ellipticities. The persistence of the single lobe in the PMDs, revealed by the right
panel of Fig. 8, is referred to as Coulomb focusing [28, 38]. For ξ & 0.1, we observe that when Py is positive,
Px is negative and non-zero. The red circles agree well with the green curve. However, there is a discrepancy
between the horizontal black curve and the blue circles. In the PMDs, we observe an asymmetry with respect
to the minor polarization axis. This asymmetry, revealed by the right panel of Fig. 8, is referred to as
Coulomb asymmetry [11, 62]. In the experimental measurements reported in Ref. [104], the final momentum
of the electron exhibits the same features as in experiments [140, 93] (see Fig. 3.13). The hypothesis made
in Ref. [93] is that there is a bifurcation when varying the ellipticity of the laser field. We observe that the
ellipticity for which there is a bifurcation in the right panel of Fig. 3.1, the yield of Rydberg states decreases
drastically in the left panel of Fig. 3.1.

Questions

• What are the dynamical mechanisms inducing Coulomb asymmetry and Coulomb focusing observed in
the PMDs ?

• What are the mechanisms behind the drastic changes triggered by varying ellipticity measured in
experiments, such as for instance, the drastic decrease of the yield of Rydberg states for increasing
ellipticities and the bifurcation in the PMDs as observed in Fig. 3.1 ?

Plan In this chapter, we use the two-step model described in Sec. 1.2 to investigate the interplay between the
tunnel ionization and the Coulomb interaction in above-threshold ionization (ATI). We find that the Coulomb
field of the ion makes its presence known even in highly intense laser fields, in contrast to the assumptions of
the SFA. The dynamics of the electron after ionization is analyzed with the reference Hamiltonian (1.14) and
three reduced models for an arbitrary laser polarization: the SFA, the CCSFA, and the second order guiding
center model G2 = (H2,Φ2) (see Tab. 2.1). These models illustrate clearly the Coulomb effects, in particular
Coulomb focusing and Coulomb asymmetry. We show that the CCSFA and the GC are complementary, in the
sense that the CCSFA describes well short time-scale phenomena (shorter than a laser cycle) for which the
Coulomb interaction is significant on short time scales, such as in subcycle recollisions, while the GC is well
suited for describing long time-scale phenomena (longer than a laser cycle) for which the Coulomb interaction
is significant on long time scales, such as in Coulomb-driven recollisions and Rydberg state creation.

The chapter is organized as follows: In Sec. 3.1, we analyze the PMDs and the initial conditions of the
trajectories leading to the PMDs with the four models. In particular, we identify the set of initial conditions
leading to Rydberg state creation and Coulomb-driven recollisions. We show that these processes are only
well described by the GC model. In Sec. 3.2, we use the GC model to describe the mechanisms behind
Rydberg state creation and Coulomb-driven recollisions. In particular, the GC model allows us to define a
domain of initial conditions, which we refer to as the rescattering domain, leading to Rydberg state creations
and Coulomb-driven recollisions. Finally in Sec. 3.3, we investigate the shape of the rescattering domain
using the GC model. We show how the shape and location of the rescattering domain manifest themselves
in experiments, in particular, in the bifurcation of the PMDs (see Fig. 8).

Unless stated otherwise, we use the PPT initial conditions (r0,p0, t0) = (rPPT,pPPT, t0) given by
Eq. (1.25). We consider the electric field given by Eq. (1.10), with ϕCEP = 0, and a trapezoidal enve-
lope Tu = 0, Tp = 8T and Td = 2. At time Tf = Tu + Tp + Td, the laser field is turned off. Here,
we mainly focus on the analyses of the electron dynamics during the plateau, and we consider A(t) ≈
−f(t)E0[ex sin(ωt) − ξey cos(ωt)]/ω

√
ξ2 + 1 and Σ(t) ≈ E(t) [E(t) = −∂A(t)/∂t, ω2A(t) = ∂Σ(t)/∂t, see

Eqs. (2.2) and Eqs. (2.3)].

Publications

• [51] J. Dubois, S. A. Berman, C. Chandre, T. Uzer, Phys. Rev. A 99, 053405 (2019).

• [49] J. Dubois, S. A. Berman, C. Chandre, T. Uzer, Phys. Rev. Lett. 121, 113202 (2018).

3.1 Photoelectron momentum distributions (PMDs)

In this section, we analyze the influence of short vs. long time-scale microscopic phenomena on macroscopic
measurements like the photoelectron momentum distributions in light of the reduced models described in
Chap. 2, in particular the CCSFA and the GC models, and their complementarity.
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Figure 3.2: PMD for I = 8×1013 W ·cm−2 and A(t) = (E0/ω) cos4(ωt/2T )[ex cos(ωt)+ey sin(ωt)] computed
with the TDSE for d = 2. The softening parameter is a = 0.7, the ionization potential is Ip ≈ 0.5 a.u. (close
to H), and Z = 1. The offset angle Θ corresponds to the angle between the minor polarization axis (ex in
this case) and the location of the momentum at the maximum of the PMD. In the SFA, the offset angle is
ΘSFA = 0. Momenta are in a.u.

3.1.1 Short time-scale dynamics
In this section, we consider the electron dynamics for which the Coulomb potential acts significantly on
a short time scale after ionization. In particular, we study the scattering of the electron during a direct
ionization in a CP field (ξ = 1) using the four models. In Fig. 3.2, we show the PMD of H solution of the
TDSE. We observe the PMD is shifted with respect to the minor polarization axis ex of an angle Θ, referred
to as the scattering angle or the offset angle. In this section, we study the scattering angle Θ as a function
of the parameters, a signature of the Coulomb effect.

3.1.1.1 Scattering after ionization

First, we consider a circularly polarized (CP) field (ξ = 1), used for attoclock measurements [165, 106]. For
ellipticity close to circular, the initial drift momentum is large and the electron moves away from the ionic
core quickly. Therefore, the corrections due to the Coulomb potential on the electron trajectories occur on a
short time scale, and we expect the CCSFA to be accurate. In attoclock measurements, the observable is the
offset angle Θ. We assume that it corresponds to the scattering angle of the T-trajectory (see Sec. 1.2.2.3)

Θ = tan−1(Py/Px),

where P = Pxex + Pyey + Pzez is the final momentum of the T-trajectory. In order to see the Coulomb
asymmetry in a PMD from a CP field, a short laser pulse has to be used [165, 106] (see Fig. 3.2 for the PMD in
CP fields for short laser pulses). Otherwise, the PMD would resemble to a ring around the origin. Figure 3.3
shows the T-trajectory final momentum as a function of the intensity I for ξ = 1. For Py (upper panel), we
notice that the dashed black curves (CCSFA), the solid black curves (GC model) and the crosses [reference
Hamiltonian (1.14)] overlap for I ∈ [1012, 1016] W · cm−2, and hence a good agreement between these three
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Figure 3.3: T-trajectory final momentum P = Pxex + Pyey as function of the laser intensity I for ξ = 1 and
Z = 1. The crosses are the T-trajectory final momentum of the reference Hamiltonian (1.14), where Px and
Py are in blue and red, respectively. The dotted, dashed and solid black curves are the T-trajectory final
momentum of the SFA, the CCSFA and the GC model, respectively. The dashed and solid green lines are
the approximated and the asymptotic T-trajectory final momentum using Eqs. (3.1) and (3.2), respectively.
Momenta are scaled by E0/ω.

models is observed. In addition, we notice that the value of Py predicted by these three models is lower
compared to the SFA model. This is a microscopic (at the level of the trajectory) signature of the Coulomb
focusing. The green dashed curves are approximations of the CCSFA given by Eq. (3.1). By considering that
the initial drift momentum of the T-trajectory is large, the integrand in Eq. (2.3b) is large for a very short
time after ionization, so we make the approximation Σ(t) ≈ E(t0) + ω2(t − t0)A(t0) − ω2(t − t0)2E(t0)/2.
As a consequence, the SFA trajectory (2.2a) is quadratic in time. Taking V (r) ≈ −Z/|r| and the initial
conditions of the T-trajectory in the PPT ionization theory (1.32) to be such that (pTPPT · e⊥)(t − t0) �
|rTPPT| + (t − t0)2|E(t0)|/2 (which becomes valid at high intensity) the correction of the asymptotic drift
momentum is given by

∆p ≈ πZ e‖(t0)

(2|rTPPT|)3/2
√
|E(t0)|

− Z(pTPPT · e⊥) e⊥(t0)

2|rTPPT|2|E(t0)| . (3.1)

The unitary vectors are e‖(t0) = E(t0)/|E(t0)| and e⊥(t0) = −[e‖(t0) · ey]ex + [e‖(t0) · ex]ey. In Ref. [62], a
similar result is derived for pTADK · e⊥(t0) = 0. We observe that the approximation of the CCSFA [Eq. (3.1)]
becomes good only at high intensity I & 1015 W · cm−2, where the drift momentum |p0 −A(t0)| ∼ E0/ω is
very large and where the electron spends a very short time close to the ionic core. At a very high intensity
I ∼ 1016 W · cm−2, all models converge to the same value predicted by the SFA P SFA

y = (E0/ω)/
√

2.
For Px (lower panel), we observe that the dashed black curves (CCSFA) and the crosses [Hamilto-

nian (1.14)] overlap for I ∈ [1012, 1016] W · cm−2. The solid black curve (GC model) agrees well with
the crosses [reference Hamiltonian (1.14)] only for intensities such that I . 8× 1013 W · cm−2. This intensity
range corresponds to a Keldysh parameter γ & 1.6 for which the electron initial position is |rPPT| & E0/ω

2,
i.e., for which the GC model is quantitatively accurate. When the electron ionizes close to the ionic core, there
is a large contribution of the Coulomb potential. Mapping the electron coordinates to its GC coordinates
[Eqs. (2.18)], and evaluating the Coulomb interaction on its GC only [G2 = (H2,Φ2), see Tab. 2.1] leads to
a significant underestimate of the Coulomb effect if the electron is initially close to the ionic core. In the
CCSFA, the evaluation of the Coulomb potential is performed on the approximate solution of the SFA. As a
consequence, on a short time scale after ionization, the evaluation of the Coulomb interaction is performed
on a position which is close to the real trajectory [Hamiltonian (1.14)] and therefore close to the core.
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We also observe that the dotted curve (SFA, P SFA
x = 0) never agrees with the crosses [reference Hamil-

tonian (1.14)], even at very high intensity. This is a microscopic signature of the Coulomb asymmetry. In
particular, we observe that the Coulomb asymmetry persists even for high intensity. For I & 1015 W · cm−2,
we observe that the dashed green curve [Eq. (3.1)] agrees well with the dashed black curve (CCSFA) and the
crosses [reference Hamiltonian (1.14)].

In Eq. (3.1), for very high intensities, or equivalently for very small Keldysh parameter, the
correction to the T-trajectory final momentum in the CCSFA becomes

lim
E0→∞

∆p

(E0/ω)
= − ωπZ ex

(2Ip)3/2
√
ξ2 + 1

, (3.2)

which is valid for high ellipticity. The offset angle measured in an attoclock experiments is for
high intensity

lim
E0→∞

Θ = π − tan−1 ξ(2Ip)
3/2

ωπZ
.

The larger the intensity, the closer to the core the electron is initiated, and thus the T-trajectory
remains deflected by the ionic core. In addition, in the reference Hamiltonian (1.14), the larger
the intensity, the larger the laser-atom interaction r·E(t) and the Coulomb potential contribution
V (r) at the tunnel exit. Therefore, the competition between the Coulomb potential and laser
interaction is always present even at high intensity, as shown in Ref. [19]. Consequently, the
Coulomb asymmetry persists even at very high intensity. Notice that these results do not depend
on the shape of the laser pulse, and are still true for ultra short pulses.

Result 2: Persistence of the Coulomb asymmetry

In summary, as expected for large ellipticities (i.e., close to CP), there is a very good agreement between
the CCSFA [Eqs. (2.3)] and the reference model [Hamiltonian (1.14)] for all intensities. Indeed, for large
ellipticities, the electron initial drift momentum is also large, and the Coulomb potential acts significantly
on the electron trajectory for a short time after ionization. The Coulomb interaction causes the deflection
of the T-trajectory after ionization. For intensities I & 8× 1013 W · cm−2, the GC model also captures this
effect well.

3.1.1.2 Links with the Keldysh-Rutherford model

In Ref. [29], the Keldysh-Rutherford (KR) model [29] is introduced for the offset angle of the PMD when
the intensity of the laser is weak and the Coulomb potential is short (see Θ in Fig 3.2). The KR model
is based and derived on the intuition that the electron is scattered by the Coulomb potential after the
ionization according to the Rutherford formula [151]. In Ref. [29], the potential vector is given by A(t) =
(E0/ω) cos4(ωt/2T )[ex cos(ωt) +ey sin(ωt)] and the laser field is given by E(t) ≈ E0 cos4(ωt/2T )[ex sin(ωt)−
ey cos(ωt)]. The peak amplitude of the laser field is reached at time t = 0. Here, we show that the KR
provides similar results than the GC model, while only the GC model is based on first principles.

We compute the scattering angle Θ (also referred to as the offset angle) of the T-trajectory for V (r) =
−Z/|r| (hard Coulomb potential). In the KR model, the scattering angle is given by [29]

ΘKR ≈
ω2

E0

Z

Ip
.

In Ref. [29], the ADK theory is considered for determining the initial conditions of the electron after tunneling.
In the ADK theory, the T-trajectory is given by rTADK ≈ −(Ip/E0)ex, pTADK = 0 [see Eq. (1.23)] and ionizes
at time t = 0, at the peak amplitude of the laser field. At t = 0, the laser field and the vector potential are
E(0) = eyE0 and A(0) = −exE0/ω, respectively. We perform the second order GC change of coordinates
G2 = (H2,Φ2) (see Tab. 2.1). The initial conditions of the GC of the T-trajectory are

r̄TADK = −(E0/ω
2)(1 + γ2/2)ey,

p̄TADK = (E0/ω)ex,
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Figure 3.4: Projection of the photoelectron momentum distributions (PMDs) along pz for I = 8 × 1013 W ·
cm−2, Z = 1 and ξ = 0.4 of the reference Hamiltonian (1.14), the SFA [39, 154], the CCSFA [62] and the
GC model. The CCSFA and the GC curves overlap. The shaded region corresponds to |pz| < 0.05 a.u. The
momentum pz is scaled by E0/ω.

where γ =
√

2Ipω/E0 is the Keldysh parameter. The energy of the GC is ET = |p̄TADK|2/2−Z/|r̄TADK| and its
angular momentum perpendicular to the polarization plane is `T = r̄TADK × p̄TADK · ez (`T > 0). We now use
the polar-nodal coordinates in order to determine the asymptotic configuration of the GC, corresponding to
the asymptotic configuration of the electron. The initial angle in the polar-nodal coordinates is θ0 = −π/2,
the initial radius is r0 = (E0/ω

2)(1 + γ2/2), the initial radial momentum is pr,0 = 0, and the constants of
motion are pθ = |`T |, pν = `T and ν = 0. The offset angle corresponds to the asymptotic angle in the
polar-nodal coordinates, i.e., Θ = θ when r → ∞. Therefore, using Eq. (2.24), one obtains the offset angle
Θ = sin−1(1 + 2ET p2

θ/Z
2)−1/2 = sin−1[E3

0(1 + γ2/2)/(ω4Z) − 1]−1. In the limit of a weak laser field and a
strong ion-electron interaction, one has γ2/2� 1 and therefore Θ ≈ sin−1[ω2Z/(E0Ip)]. In the limit of small
offset angle

Θ ≈ ω2

E0

Z

Ip
,

which is the same as the one obtained with the KR theory. We find indeed a close relation between the KR
model and the GC model since the “half-scattering” angle is built into the GC model, and corresponds to the
particular case for which pr,0 = 0. In the KR model, the initial position is evaluated directly at the position
of the electron instead of the GC position, and therefore is more similar to the GC model at the first order.

3.1.2 Long time-scale dynamics

For lower ellipticities, we show that important properties of the system arising from long time-scale processes,
in particular Coulomb-driven recollisions and Rydberg state creation, are well described by the GC model.
To illustrate this, we consider an intensity I = 8× 1013 W · cm−2 (γ ∼ 1.6) and an ellipticity ξ = 0.4.

3.1.2.1 Analysis of the ionized electron momentum

Figure 3.4 shows the projection of the photoelectron momentum distribution on the perpendicular momentum
pz. For the reference Hamiltonian (1.14), the distribution presents a cusp-like peak at zero perpendicular
momentum. In Ref. [150], a similar shape of the distribution along the perpendicular momentum measured in
experiments and with CTMC calculations has been reported. In the SFA, the drift momentum is conserved,
and therefore the distribution does not change with time. As a result, the asymptotic distribution is Gaussian,
in contrast with the results with the reference Hamiltonian (1.14) and in experiments [150]. The distribution
of the CCSFA and the GC models overlap. In agreement with the observations of Ref. [150], this cusp is due
to the long-range Coulomb interaction between the ionized electron and the core

Next, we focus on the part of the PMDs for which |pz| < 0.05 a.u. represented in grey in Fig. 3.4.
Figure 3.5 shows the PMDs computed with CTMC simulations of the reference Hamiltonian (1.14), the SFA
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Figure 3.5: Photoelectron momentum distributions (PMDs) for |pz| < 0.05 in logarithmic scale for I =
8× 1013 W · cm−2, Z = 1 and ξ = 0.4 of the reference Hamiltonian (1.14), the SFA [39, 154], the CCSFA [62]
and the GC model. The upper (resp. lower) black dot is the T-trajectory final momentum for each model
(resp. its symmetric momentum with respect to the origin). The momenta are scaled by E0/ω.

[Eqs. (2.2)] [39, 154], the CCSFA [Eqs. (2.3)] [62] and the GC model [G2 = (H2,Φ2), see Tab. 2.1]. The T-
trajectory final momentum is shown with a black dot for each model. The PMDs are mainly composed of two
clouds centered around the T-trajectory final momentum. The two clouds are roughly symmetric with respect
to the origin according to the symmetry (r,p, t) 7→ (−r,−p, t+ T/2) of the reference Hamiltonian (1.14) for
a constant laser envelope (f = 1) which is also preserved by the initial conditions [see Eq. (1.25)] and the
reduced models.

For the reference Hamiltonian (1.14), the PMD in the leftmost panel of Fig. 3.5 exhibits three significant
features: The asymmetry with respect to the ey-axis, the relatively high density of electrons with near-
zero momentum –corresponding to near-zero energy photoelectrons [169]–, and the tails for high momentum
(regions for |px| > 1). In order to interpret these features, we compare this PMD with those of the three
reduced models. The CTMC approach we use does not take into account any effects due to the absorption
of photons or interference after ionization, which lead for example to the rings in ATI [122]. These would of
course be included in a time-dependent Schrödinger equation (TDSE) calculation, but also in other kinds of
semiclassical calculations.

In the PMD of the SFA [39, 154] (second panel of Fig. 3.5 from the left), the two clouds are symmetric
with respect to the ey-axis, there is a lack of near-zero energy photoelectrons, and there are no tails for high
momentum. Therefore, the asymmetry of the clouds, the presence of near-zero energy photoelectrons and
the tails for high momentum observed in the PMD of Hamiltonian (1.14) are a consequence of the Coulomb
potential, which is expected to be significant here since the characteristic time of the ionized trajectories is
long compared to one laser cycle.

In the PMD of the CCSFA [62] (third panel of Fig. 3.5 from the left), the two clouds are asymmetric with
respect to the ey-axis. As discussed in the previous section, after ionizing, the electron trajectories deviate
because of the Coulomb interaction: This asymmetry is the Coulomb asymmetry. With the CCSFA, however,
we observe that the distribution is very low around the origin of momentum space, i.e., there is still a lack
of near-zero energy photoelectrons. Indeed, the drift momentum of the near-zero energy photoelectrons is
low and the conditions on the validity of the CCSFA are not met. We notice that the integrals we compute
numerically for determining the correction to the final momentum of the electron [Eqs. (2.3)] do not always
converge. Obviously, the integrals diverge if for instance p0 −A(t0) = 0. Also, for small drift momentum, it
is challenging to obtain numerically converged integrals. Finally, we observe tails for |px| > 1 in the PMD of
the CCSFA like in the PMD of Hamiltonian (1.14).

In the PMD of the GC model (rightmost panel of Fig. 3.5), the clouds are asymmetric with respect to
the ey-axis. After ionizing, the electron trajectories are deflected by the Coulomb force exerted on their
GC. One advantage of this model is that the final momentum of the electron has an explicit expression for
V (r̄) ≈ −1/|r̄|, and as a consequence the computations of the CTMCs are as fast as the computation of
the CTMCs of the SFA. Moreover, this model does not rely on computing integrals that may or may not
converge. In addition, we observe that the asymmetric clouds are connected to the origin of the momentum
space, showing that the near-zero energy photoelectrons which ionize directly are well captured by this
model. We distinguish the near-zero energy photoelectrons which ionize directly from the near-zero energy
electrons induced by rescattering; the latter are the cause of the low-energy structure (LES) [24, 84] in the
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photoelectron energy spectra. However, the absence of tails in the GC model suggests that the tails observed
in the reference model and the CCSFA are the contributions of rescattered electrons [82, 114].

Hence, the asymmetry observed in the PMD of the reference Hamiltonian (1.14) is also captured by the
reduced models of the CCSFA and the GC. This asymmetry is due to the deviation of the electrons or their
GC originating from the Coulomb interaction. In addition, near-zero-energy photoelectrons are captured
by the GC model. The tails in the PMDs are due to the rescattering of electrons that have experienced a
recollision [82], in which the electron comes close to the ionic core and is rescattered due to the competitive
forces between the laser and the Coulomb interaction. This short time-scale process is well known and well
described by the CCSFA (see, e.g., Refs. [82, 84, 85, 114]).

3.1.2.2 Analysis of the initial conditions

We investigate the initial conditions of the electron after tunnel-ionization to interpret and understand the
origin of the near-zero energy photoelectrons. Figure 3.6 shows the final energy of the electron as a function of
its initial conditions after tunneling for I = 8×1013 W·cm−2 and ξ = 0.4 for the reference Hamiltonian (1.14),
the SFA [Eqs. (2.2)] [39, 154], the CCSFA [Eqs. (2.3)] [62] and the GC model [G2 = (H2,Φ2), see Tab. 2.1].
The space of initial conditions is restricted to p‖ = pz,0 = 0, which is the most probable initial longitudinal
and perpendicular momentum.

For the reference Hamiltonian (1.14) (upper panel of Fig. 3.6), we observe two grey regions of initial
conditions where the electron final energy is negative, i.e., in which the electron is trapped in Rydberg
states [127]. The color corresponds to the final energy of photoelectrons which have reached the detector.
Enclosed by the grey regions, we observe that there are ionized electrons whose energy depends extremely
sensitively on the initial conditions, as a signature of the rescattering process (see also the uppermost panel
of Fig. 2.1). The boundaries of the grey regions are surrounded by regions of near-zero energy photoelectrons
which ionize directly. The part of the grey region with small p⊥ (lower part of the left grey regions) is in
a region where the ionization rate is high. As a consequence, a significant number of electrons which ionize
directly reach the detector with near-zero energy, as observed in the leftmost panel of Fig. 3.5.

For the SFA [39, 154], the final momentum of the electron is given by its initial drift momentum p0−A(t0)
since it is constant in time. As a consequence, the electron final energy is

ESFA =
1

2
|p0 −A(t0)|2 . (3.3)

In the SFA (second panel from the top of Fig. 3.6), only two initial conditions lead to near zero-energy
electrons, located at p⊥ = −(E0/ω)ξ/

√
ξ2 + 1 and ωt0 = π, and at p⊥ = −(E0/ω)/

√
ξ2 + 1 and ωt0 = 3π/2,

represented by red dots in Fig 3.6. These initial conditions are located where the ionization rate is one or
several orders of magnitude lower than the maximum ionization rate. The consequence is a lack of near-zero
energy photoelectrons in the PMD for the SFA observed in Fig. 3.5.

For the CCSFA [62] (third panel from the top of Fig. 3.6), we observe the same patterns as for the SFA.
The initial conditions of the near-zero energy photoelectrons which ionize directly for the CCSFA are located
in the same region of low ionization rate as for the SFA. Here again, the consequence is the lack of near-zero
energy electrons for the CCSFA observed in Fig. 3.5. However, we observe in the CCSFA a region with an
abrupt change of energy with initial conditions across the dark colored path connecting the two red dots,
absent in the SFA. This path is also present in the reference Hamiltonian (1.14). It is due to the rescattering
process, i.e., the correction of the momentum of the CCSFA due to a recollision in the SFA (see second
panel from the top of Fig. 2.1). Furthermore, this path separates near-zero energy photoelectrons induced
by rescattering –responsible for the LES in the photoelectron energy spectra [24, 84]– from high energy
photoelectrons. The CCSFA has been used to describe these short time-scale processes (see for instance
Refs. [82, 84, 85, 114]).

The final energy of the electron using the GC model is given by

E =
1

2
|p0 −A(t0)|2 + V

(
r0 −E(t0)/ω2

)
. (3.4)

The GC energy allows us to clearly distinguish two types of trajectories: Trajectories with E > 0 and E < 0.
The set of initial conditions for which E < 0 is referred to as the rescattering domain. Comparing the
lowest panels of Fig. 2.1 and Fig. 3.6, this definition of the rescattering domain includes the Rydberg state
creations, the Coulomb-driven recollisions and the subcycle recollisions most weighted by the PPT ionization
rate. Notice that this definition misses a piece of the light purple band between the two rescattering domains
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in Fig. 2.1, which carries a lower weight according to the PPT ionization rate for all ellipticities. In the top
panel of Fig. 3.6, we observe that the condition E < 0 determines well the grey region of initial conditions in the
reference Hamiltonian (1.14). The initial conditions for which the electron final energy is zero in the SFA are
contained inside this region. The Coulomb potential creates this region in which the GC motion is bounded,
which allows the electron to come back to the ionic core and to rescatter after multiple laser cycles, or to

Figure 3.6: Electron final energy as a function of the initial conditions (t0, p⊥, p‖ = pz,0 = 0) for I =
8× 1013 W · cm−2, Z = 1 and ξ = 0.4 of the reference Hamiltonian (1.14), the SFA [39, 154], the CCSFA [62]
and the GC model G2 = (H2,Φ2) (see Tab. 2.1). In grey-colored regions, the electron final energy is negative.
The white dashed lines are contours of constant ionization rateWPPT(t0, p⊥e⊥(t0)) forWPPT/max(WPPT) =
10−1, 10−5 and 10−15, from bottom to top. The red dots correspond to the initial conditions for which the
electron final energy in the SFA is zero, i.e., ESFA = 0 [see Eq. (3.3)]. The solid black lines correspond to the
initial conditions for which the GC energy is zero, i.e., E = 0 [see Eq. (3.4)]. The black dashed line corresponds
to the initial conditions for which the GC angular momentum is zero and the initial radial momentum is
negative, i.e., L = 0 and pr(t0) < 0, where L = r̄× p̄ and pr = p̄ · r̄/|r̄|. The momentum and the energy are
scaled by E0/ω and Up = E2

0/4ω
2, respectively.
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be trapped into Rydberg states, scenarios analyzed in Sec. 3.2. The boundaries of this rescattering domain
correspond to the initial conditions for which the electron final energy is zero, i.e., E = 0. We observe that the
inclusion of the Coulomb potential pushes down the near-zero-energy photoelectrons to regions in momentum
space for which the ionization rate is higher. As a consequence, we observe a significant number of near-zero
energy photoelectrons in the PMD of the GC model. Moreover, we notice that E = ESFA +V (r0−E(t0)/ω2),
and since the Coulomb potential is strictly negative, it is evident that electrons lose energy because of the
Coulomb interaction, i.e., that electrons are subjected to Coulomb focusing.

3.1.2.3 Types of trajectories

In order to understand the origin of the sensitivity to initial conditions observed in the rescattering domain,
we analyze the different types of trajectories. Figure 3.7a shows the scattering angle of the electron, whose
trajectory is obtained from the reference Hamiltonian (1.14), as a function of the initial conditions (t0, p⊥)
for ξ = 0.4. The scattering angle corresponds to the angle between momentum of the ionized electron p at
infinity and the major polarization axis (ex-axis). In Figs. 3.7b–e, the dark blue curves are the trajectories of
the electron of Hamiltonian (1.14), with initial conditions indicated by the corresponding markers in Fig. 3.7a.
The light blue curves are the GC trajectories of Hamiltonian G2 = (H2,Φ2) (see Tab. 2.1). For Figs. 3.7c–e
(as well for Fig. 3.8d–e and Fig. 3.10d), the GC is initialized far from the ionic core (for |r| & 2E0/ω

2),
during the plateau, in the domain of validity of the GC model (see Sec. 3.3.2.4 for a study of the discrepancy
between the GC and the electron trajectory).

Figure 3.7b shows a subcycle recollision. The initial condition of this trajectory is near the condition for
which the GC angular momentum is L = r̄ × p̄ ≈ 0 and the initial GC radial momentum is negative, and
corresponds to the light purple region in the uppermost panel of Fig. 2.1. Right after ionization, the GC
trajectory is (mostly) straight, brings the electron to the core, and the electron recollides. The recollision
occurs in a time scale shorter than one laser cycle, referred to as a subcycle recollision. We notice that
if the electron tunnel-ionizes further away from the ionic core, the same conditions (near zero GC angular
momentum and negative initial radial momentum) could lead to a multiple laser-cycle recollision. Looking
at the third panel from the top of Fig. 2.1, we observe that this type of recollisions, for which r̄(t0) · p̄(t0) < 0
and r̄(t0)× p̄(t0) ≈ 0, are well predicted by the CCSFA.

Figure 3.7c shows a direct ionization. The initial condition of this trajectory is in a regular region, for
which the GC energy is positive E > 0. The GC trajectory is unbounded, and leaves the ionic core region.
The electron also leaves the ionic core region, driven by its GC.

Figure 3.7d shows a Coulomb-driven recollision. The initial condition of this trajectory is in one of the
main chaotic regions, for which the GC energy is negative E < 0, corresponding to the colored layers in the
uppermost panel of Fig. 2.1. The GC trajectory is bounded. As a consequence, the electron returns to the
ionic core, driven by its GC, and recollides with the ionic core. After rescattering, the GC energy jumps to
another energy level (see Fig. 2.5), and the electron could ionize.

Figure 3.7e shows a Rydberg state creation. The initial condition of this trajectory is in the grey area, for
which the GC energy is negative E < 0. The GC trajectory is bounded. However, contrary to the Coulomb-
driven recollision (Fig. 3.7d), the laser pulse ends before the occurrence of the recollision. The Rydberg state
creation corresponds to a frustrated Coulomb-driven recollision. The laser pulse duration plays an important
role in determining the ratio between Coulomb-driven recollisions and Rydberg state trapping (see Sec. 3.2.1).

We observe that, in the four types of trajectories, two of them cannot be predicted by the SFA. While
direct ionization and one-laser-cycle rescattering (Figs. 3.7c and 3.7b, respectively) are, at least qualitatively,
predictable by the SFA, Coulomb-driven recollisions and Rydberg state creation (Figs. 3.7d and 3.7e, re-
spectively) are predictable only when the Coulomb potential is taken into account. In the next section, we
analyze Coulomb-driven recollisions and Rydberg state creation in more detail.

3.2 Coulomb-driven recollisions and Rydberg state creation

3.2.1 Ionization time dependence

Figures 3.8b and 3.8c show the final scattering angle of the ionized electron as a function of its initial
conditions (ωt0, p⊥), for an ionization that takes place at the beginning of the pulse and at the end of
the pulse, respectively (see Fig. 3.8a). Figures 3.8d and 3.8e show two trajectories with the same initial
momentum and the same laser phase, but with two distinct ionization times (separated by six laser cycles).
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Figure 3.7: (a) Scattering angle of the electron as a function of the initial conditions after tunneling
(t0, p⊥, p‖ = pz,0 = 0) for I = 8 × 1013W · cm−2, Z = 1, and ξ = 0.4. The white dashed lines are the
contours of constant ionization rate WPPT(t0, p⊥e⊥(t0)) for WPPT/max(WPPT) = 10−1, 10−5 and 10−15,
from bottom to top. The red dots correspond to the initial conditions for which ESFA = 0 [see Eq. (3.3)]. The
solid black line corresponds to the initial conditions for which E = 0 [boundaries of the rescattering domain
for the GC model, see Eq. (3.4)]. The black dashed line corresponds to the initial conditions for which the
GC angular momentum is zero and the initial radial momentum is negative, i.e., L = 0 and pr(t0) < 0, where
L = r̄× p̄ and pr = p̄ · r̄/|r̄|. Grey areas show the conditions for which the electron is trapped into Rydberg
states. (b–e) Dark and light blue curves are the electron and its GC trajectory, respectively. The initial
condition of each trajectory is associated with a marker represented in (a). These trajectories represent a
typical: (b) subcycle recollision, (c) direct ionization, (d) Coulomb-driven recollision, and (e) Rydberg state
creation. Panels (b) and (c) have positive GC energy, while (d) and (e) have negative GC energy. Blue
shaded panels indicate the cases with recollisions. The momentum and position are scaled by E0/ω and
E0/ω

2, respectively.
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Since the phase is the same, the GC trajectories (light blue curves) in Figs. 3.8d and 3.8e are the same. Since
the GC energy of these trajectories is negative, the GC trajectory is bounded.

In Fig. 3.8d, for which the electron ionizes at the beginning of the plateau, we observe that the electron
oscillates around the bounded GC trajectory, which drives the electron back to the ionic core. After about

Figure 3.8: (a) Electric field components and amplitude as a function of ωt. The grey regions indicate the
ionization time for which the final scattering angle is computed in (b) and (c). (b–c) Final scattering angle of
the ionized electron as a function of the initial conditions (ωt0, p⊥, p‖ = pz,0 = 0) for I = 8× 1013 W · cm−2,
Z = 1, and ξ = 0.4 for the reference Hamiltonian (1.14). The white dashed lines are the contour plot of the
ionization rate WPPT(t0, p⊥e⊥(t0)) for WPPT/max(WPPT) = 10−1, 10−5 and 10−15, from bottom to top.
The solid black line corresponds to the initial conditions for which E = 0 [boundaries of the rescattering
domain for the GC model, see Eq. (3.4)]. The dark grey region corresponds to the initial conditions for which
the electron is trapped into a Rydberg state at the end of the pulse. (d–e) Dark and light blue curves are
the electron and its GC trajectory, respectively. The initial conditions of the trajectories in (d) and (e) are
indicated by circles in (b) and (c), respectively. The trajectories in (d) and (e) are initialized at the same
laser phase, but (d) is a Coulomb-driven recollision and (e) is a Rydberg state creation. The momentum and
the position are scaled by E0/ω and E0/ω

2, respectively.
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four oscillations around the GC trajectory, the electron comes back to the ionic core. At this time, the GC
energy jumps to another energy level due to the combined Coulomb and laser interaction, and the electron
ionizes. This is a Coulomb-driven recollision.

In Fig. 3.8e, we observe that the electron oscillates as well around the bounded GC trajectory, which
drives the electron back towards the core. However, when the electron is still far from the ionic core, the
electric field is turned off, and the electron is trapped into a Rydberg state. The Rydberg state in which the
electron is trapped corresponds almost to the Rydberg state of its GC.

In other words, for both trajectories of Fig. 3.8d and 3.8e, the electron oscillates around the same GC
trajectory. The difference between these two trajectories is the remaining time 10T − t0 before the laser
field is turned off. In Fig. 3.8d, the electron has enough time to undergo a close encounter with the ionic
core (|r| < E0/ω

2) before the electric field is turned off, when in Fig. 3.8e, the electric field turns off sooner,
while the electron is still far from the ionic core (|r| > E0/ω

2). The close encounter with the ionic core
distinguishes the Coulomb-driven recollision from the Rydberg state creation. The scenarios of Coulomb-
driven recollision and Rydberg state creation are closely related, since in both cases, the electron oscillates
around a negative-energy GC.

Looking at the excursion time per laser cycle ∆t/T of the GC model depicted in the lowest panel of Fig. 2.1
and Fig. 3.9a, we observe similar layered patterns as for the reference Hamiltonian (1.14) (see uppermost
panel of Fig. 2.1, Figs. 3.6a, 3.7a and 3.8b–c). These layered patterns correspond to trajectories which
spend multiple laser cycles far from the origin before returning to the ionic core, such as the one depicted
in Fig. 3.7d (Coulomb-driven recollision). Each layer is associated with a range of ∆t/T around an integer
number, where, for decreasing ionization time for ωt0 < π, ∆t/T associated with each layer increases.

In order to picture roughly the conditions for which the Coulomb-driven recollisions occur, we first approx-
imate the potential by a hard-Coulomb potential, i.e., V (r̄) ≈ −Z/|r̄|, reducting this GC model to a Kepler
problem (see also Appendix B). Then, we consider the period of the orbit per laser cycle Tg/T = Zω/(2|E|)3/2

(using V (r̄) ≈ −1/|r̄|), where Tg is referred to as the GC orbit period in what follows. Figure 3.9b shows
the period of the GC orbit per laser cycle Tg/T = Zω/(2|E|)3/2 as a function of the initial conditions in
the largest rescattering domain. The grey regions correspond to the regions where the GC perihelion [see
Eq. (2.25)] —the closest distance between the GC orbit and the ionic core– is greater than E0/ω

2 or where
t0 + Tg > Tf . Figure 3.9c shows the GC distance from the ionic core |r̄(t)| as a function of time per laser
cycle of a sample of initial conditions indicated with the markers in Fig. 3.9b, and the distance from the
ionic core |Π(Φ−1

2 (r̄(t), p̄(t)))| of the corresponding reconstructed trajectories. We see that the color levels
associated with the GC orbit period Tg agree well with the color levels associated with the excursion time
∆t in Fig. 3.9a. Indeed, in Fig. 3.9c, we observe that the larger the period of the GC orbit followed by the
electron, the larger its excursion time. As a consequence, the GC orbit period Tg is a good observable to
estimate the excursion time of the electron ∆t. In addition, the GC orbit period of the trajectory associated
with the leftmost marker in Fig. 3.9b is such that t0 + Tg > Tf . The electron does not undergo recollision
and ends up trapped in a Rydberg state since it comes back to the ionic core after the end of the laser
pulse. Therefore, electrons undergoing Coulomb-driven recollisions are typically driven by GC orbits such
that Tg < Tf − t0.
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Figure 3.9: Recollisions in the GC model for I = 8 × 1013 W · cm−2, ξ = 0.4 and Z = 1. (a) ∆t/T as a
function of the initial conditions (t0, p⊥, p‖ = pz,0 = 0) (Zoom of the lowest panel of Fig. 2.1 on the largest
rescattering domain), where ∆t is the smallest time interval such that |Φ−1

2 (r̄(t0 + ∆t), p̄(t0 + ∆t))| = 5 a.u.,
with t0 + ∆t < Tf (laser pulse duration Tf = 10T ). The white and dark grey regions are where this
condition is never met, and where the GC energy is positive (white region) and negative (grey region). (b)
Tg/T = ω/(2|E|)3/2 (see text). The dark grey region is where the GC perihelion [see Eq. (2.25)] is greater
than the quiver radius E0/ω

2 ≈ 14 a.u., or where t0 + Tg ≥ Tf . The inset is a zoom. The crosses are the
location of the GC circular orbits (see Sec. 3.2.2). (a–b) The red dots and the black thick dashed curves are
the same as in Fig. 3.6a. The dark dashed lines are contours of constant ionization rate WPPT(t0, p⊥e⊥(t0))
for WPPT/max(WPPT) = 10−1, 10−5 and 10−15, from bottom to top. (c) The lines with markers are the GC
trajectories |r̄(t)| with initial conditions plotted in panel (b) with the corresponding marker and color, and
the light grey lines are the reconstructed trajectories Φ−1

2 (r̄(t), p̄(t)). In the light grey region, the laser field
is turned off. Momenta are scaled by E0/ω.
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Coulomb-driven recollisions and the Rydberg state creations are observed when the electron is
driven by a GC with a negative energy E < 0. The Coulomb-driven recollisions and the Rydberg
state creation are in the rescattering domain.

Coulomb-driven recollision The electron is likely to undergo a Coulomb-driven recol-
lision if it oscillates around a GC with a positive initial GC radial momentum pr(t0) =
p̄(t0) · r̄(t0)/|r̄(t0)| > 0, a GC orbital period such that Tg = 2πZ/(2|E|)3/2 < Tf − t0 and a
GC perihelion smaller than the quiver radius. Notice that the condition that the perihelion
of the GC orbit is smaller than the quiver radius is similar to L ≈ 0. As a consequence, all
recollisions are likely driven by small absolute values of the GC angular momentum.

Rydberg state creation The electron is likely to be trapped in a Rydberg state if it oscillates
around a GC with either an orbital period greater than the laser pulse duration Tg > Tf − t0 or
a perihelion greater than the quiver radius, i.e., a large GC angular momentum. Section 3.2.2
shows that the latter process is robust due to the existence of center-saddle periodic orbits which
are weakly unstable.

Result 3: Coulomb-driven recollision and Rydberg state creation

3.2.2 Long plateau durations

In the lowest panel of Fig. 2.1 and Fig. 3.9a, we notice some grey regions in the upper and lower part of the
rescattering domain for which the GC orbit period is such that Tg < Tf − t0. However, in these regions, the
electron does not recollide because the GC perihelion is large (greater than E0/ω

2 ≈ 14 a.u.), as it is shown
in Fig. 3.10a. As a consequence, there exists no time ∆t such that |Π(Φ(r̄(t0 + ∆t), p̄(t0 + ∆t)))| is small,
i.e., it is unlikely the electron recollides. This is also a scenario we observe in the reference model (1.14), in
which the electron spins around the core for multiple laser cycles without recolliding.

For long plateau durations (Tp = 100T , Tf = Tp + 2T ) and an ionization time at the beginning of the
laser pulse (t0 � Tp), we expect that electrons oscillating around a negative near-zero energy GC (for which
the GC orbit period is such that Tg > Tf − t0) and electrons with a large GC perihelion [see Eq. (2.25)]
(GC perihelion greater than E0/ω

2 that prevents the electron from rescattering) create Rydberg states. In
Fig. 3.10b, we observe indeed a pink thin layer of electrons creating Rydberg states, with a near-zero-energy
GC such as the dark blue trajectory depicted in Fig. 3.10d. In addition, we observe two regions of initial
conditions with smaller values of final energy for which the electrons are trapped in Rydberg states after
having remained in the vicinity of the ionic core, for which the GC perihelion is larger than the quiver radius,
as shown for the dark blue trajectory of the reference Hamiltonian in Fig. 3.10e. However, by comparing
Fig. 3.10a and Fig. 3.10b, we observe that not all the electrons with a GC perihelion larger than the quiver
radius are captured into Rydberg states. Here, we show how some electrons remain trapped while others do
not.

As observed in Fig. 3.10c, the filled region of initial conditions leading to electrons trapped in Rydberg
states with a large GC perihelion is roughly regular. Figure 3.10e shows in dark blue a typical trajectory of
Hamiltonian (1.14) initiated inside this regular region. We observe that this trajectory turns around the core
multiple times without being rescattered by the ionic core. As a consequence, the GC energy of this electron
remains negative and roughly constant throughout the laser pulse duration. When the laser field is turned
off, its GC energy is still negative and the electron is trapped in a Rydberg state. Near the initial conditions
of this trajectory, there is a center-saddle periodic orbit of the reference model (1.14) which exhibits the same
pattern as this trajectory. This center-saddle periodic orbit is depicted in thick dark blue in Fig. 3.10e. In
its neighborhood, the periodic orbit is center in one plane and saddle in a transverse plane defined by the
eigenvectors of the monodromy matrix associated with the complex and real eigenvalues, respectively. Hence,
there are two-dimensional invariant tori surrounding the periodic orbit in the center direction. The saddle
direction is weakly unstable (its eigenvalue is ∼ 1.4) and the orbit period is large (period of 30T ), which
implies that the unstable direction pushes slowly the electron away from each invariant torus. Consequently,
trajectories in the vicinity of this periodic orbit remain close to it for relatively long times, even for long laser
pulses.
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Figure 3.10: The parameters are I = 8× 1013 W · cm−2, ξ = 0.4, Z = 1 and plateau duration Tp = 100T . (a)
GC perihelion [see Eq. (2.25)] in the rescattering domain depicted in the space of initial conditions (t0, p⊥, p‖ =
pz,0 = 0). (b) Final negative energies of the electron trajectories of the reference Hamiltonian (1.14), where
(c) is a zoom around the trapping region. The white color in (a–c) denotes an electron not trapped at the
end of the laser pulse. (d),(e) Trajectories for the initial conditions indicated with a diamond in (c) and
a triangle in (b), respectively. The dark blue and cyan curves are the electron trajectory of the reference
Hamiltonian (1.14) and the GC trajectory, respectively. The thick dark blue curve in (e) is a center-saddle
periodic orbit very close to the region depicted in (c). The cyan crosses in (a) and (b) are the initial conditions
of the clockwise (upper cross) and anticlockwise (lower cross) circular GC orbits. The cyan curve in (e) is
the GC clockwise circular orbit, whose initial conditions are very close to the trapping region depicted in (c).
Momenta and distance are scaled by E0/ω and E0/ω

2, respectively.
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Figure 3.11: Rydberg state creation (RSC) probability as a function of the laser ellipticity ξ for I = 8× 1013,
3 × 1014, and 8 × 1014 W · cm−2, and Z = 1. The RSC probability is defined as the ratio of the RSC yield
Y to the ionized electron yield N =

∫ Tf

0
dt0
∫∞
−∞ d3pADK WPPT(t0,pPPT). The thick solid and dotted curves

are our prediction with the GC model YGC/N [Eq. (3.7)], and the SFA YSFA/N , respectively. The thin
curves with stars and crosses are the CTMC simulations of the reference Hamiltonian (1.14) using Tp = T
and Tp = 8T , respectively. The filled areas show the estimate of the Coulomb-driven recollision probability
for Tp = 8T . Red circles show the probability of RSC at the critical ellipticity ξc given by Eq. (3.13). Left
panel: Only YSFA is normalized such that it agrees at ξ = 0 with the CTMC simulations of the reference
Hamiltonian (1.14) for Tp = T (thin lines with star markers). Right panel: All predictions are normalized
such that it is one at ξ = 0.

In Fig. 3.10a, we observe that when the GC perihelion is large (greater than E0/ω
2), the recollisions are

unlikely to happen as mentioned earlier. In these two regions of large GC perihelion, there are two cyan
crosses indicating the initial conditions for which the GC orbit is circular. The initial conditions of these
circular orbits are p⊥ = A(t0) · e⊥(t0) ± Zω2/|E(t0)| cosh τ0(t0) with ωt0 = nπ and n ∈ N. They are close
to the regular region in Figs. 3.10b–c. The circular orbit of the GC is depicted in cyan in Fig. 3.10e. We
observe that the cyan curve provides the leading behavior of the averaged trajectory of the center-saddle
periodic orbit in thick dark blue. The energy of the GC circular orbits (clockwise and anticlockwise) is given
by E = −Zω2

√
ξ2 + 1/(2E0 cosh τ) and their perihelion by Z/(2|E|).

In summary, there is a region of initial conditions for which the GC perihelion is larger than the quiver
radius E0/ω

2, preventing the electron to recollide with the core. Instead, the electron is trapped in a Rydberg
state. We showed that this process is robust because in the neighborhood of these initial conditions, there
are center-saddle periodic orbits with weakly unstable directions that keep the electron in the vicinity of the
core.

3.2.3 Rate of Rydberg state creation

Next, we investigate the rate of Rydberg state creation as a function of the laser ellipticity. A Rydberg
state is created if the electron energy is negative at the end of the laser pulse. In the SFA, the condition of
Rydberg state creation ESFA = 0 [see Eq. (3.3)] is a one-dimensional curve (t0,p

?
0(t0)) in a four-dimensional

space (t0,pPPT), with p?PPT(t0) = A(t0). As a consequence, the probability of Rydberg state creation is in
fact zero. In Refs. [127, 96], the yield of Rydberg state creation is given by YSFA =

∫ Tf

0
dt0 WPPT(t0,p

?
0(t0)).

Figure 3.11 shows the Rydberg state creation probability as a function of the laser ellipticity from CTMC
simulations of the reference Hamiltonian (1.14) (thin solid curves with markers) and the SFA prediction
(dotted curves) YSFA/N with N =

∫ Tf

0
dt0
∫∞
−∞ d3pPPT WPPT(t0,pPPT) the yield of ionized electrons. In

Ref. [96], The SFA prediction is normalized such that it agrees at ξ = 0 with the CTMC simulations of the
reference Hamiltonian (1.14) for Tp = T (thin lines with star markers). Notice that only the prediction of the
SFA is artificially normalized. For the SFA prediction (dotted curves), we observe a good agreement with the
reference model at high ellipticity for all intensities and at low ellipticity for high intensity. However, there is
a large discrepancy at low ellipticity for low and intermediate intensities, i.e., for I . 5× 1014 W · cm−2. For
such intensities, the rescattering domain where Rydberg states arise is wide compared to the gradient of the
ionization rate as observed in the top panel of Fig. 3.6 and Fig. 3.7a. As a consequence, the SFA prediction
that Rydberg states arise from the center of the rescattering domain is not accurate.

On the contrary, in Fig. 3.6, we see that the GC model is a good approximation for evaluating the size
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of the rescattering domain where the Rydberg states are created. In the GC model, a Rydberg state can be
created only if the GC energy is negative E < 0. As an approximation, we neglect the cases for which the
electron undergoes a Coulomb-driven recollision according to the GC model.

The GC prediction of the yield of Rydberg state creation is given by

YGC =

∫
ΩR

W (t0,p0) dt0d3p0, (3.5)

where ΩR = {t0 ∈ [0, Tf ],p0 ∈ R3 | E < 0} is the set of initial conditions such that the GC
energy E is negative [see Eq. (3.4)], and W (t0,p0) is the ionization rate as a function of the
initial conditions.

Result 4: Rate of Rydberg state creation

According to Sec. 3.2.1, an electron populating the rescattering domain either undergoes a Coulomb-driven
recollision or is trapped in a Rydberg state. In order to minimize Coulomb-driven recollisions, we compare
the GC prediction with CTMC simulations of the reference model for Tp = T . Figure 3.11 shows the GC
prediction of Rydberg state creation probability (solid curves) YGC/N . We observe an excellent agreement
between the results of the simulation of the reference model (1.14) for Tp = T and the GC prediction for all
ellipticities and intensities plotted here. In particular, on the right panel of Fig. 3.11, where all the predictions
are normalized to one at ξ = 0, we observe that the solid curves and the stars overlap. For increasing intensity,
the volume of the rescattering domain decreases, as shown in the next section. Hence, at high intensity, the
ionization rate varies on large scales compared to the size of the rescattering domain, and the ionization rate
is almost constant in the rescattering domain. Therefore, for high intensity, YSFA ∝ YGC as we observe in
Fig. 3.11 for I = 8× 1014 W · cm−2.

3.3 The shape of the rescattering domain and its experimental im-
plications

3.3.1 Analysis of the shape of the rescattering domain

After ionization, the GC energy of the electron is given by Eq. (3.4). Substituting A(t0) = [A(t0) ·
e‖(t0)]e‖(t0) + [A(t0) · e⊥(t0)]e⊥(t0) in Eq. (3.4), the rescattering domain defined by E < 0 is the ensemble
of initial conditions (t0,pPPT) such that[

p‖ − p?‖(t0)
]2

+ [p⊥ − p?⊥(t0)]
2

+ p2
z,0 < ∆p(t0)2, (3.6)

where ∆p(t0) =
√

2|V (r̄(t0))|, p?0(t0) = p?‖(t0)e‖(t0) + p?⊥(t0)e⊥(t0), hence p?‖(t0) = A(t0) · e‖(t0) and
p?⊥(t0) = A(t0) · e⊥(t0). Here, r̄(t0) = −E(t0) cosh τ0(t0)/ω2 [see Eqs. (2.18) and (1.25)]. For a given
ionization time t0, the rescattering domain is a sphere centered at p?(t0) and of radius ∆p(t0) in momentum
space. The yield of Rydberg state creation in the GC model [see Eq. (3.5)] becomes

YGC =

∫ Tf

0

dt0 ∆p(t0)3

∫ 1

0

dρ ρ2

∫ 2π

0

dϑ

∫ π

0

dθ WPPT(t0,p
?
0(t0) + ρ∆p(t0)e(t0, ϑ, θ)) sin θ, (3.7)

where e(t0, ϑ, θ) = e‖(t0) cosϑ sin θ+ e⊥(t0) sinϑ sin θ+ ez cos θ. Equation (3.7) is used to compute the yield
of Rydberg state creation of Fig. 3.11, and the integrals are performed numerically.

Figures 3.12a and 3.12b show the boundaries of the rescattering domain in the space (t0, p‖, p⊥, pz,0 = 0)
for ξ = 0.2 and ξ = 0.7. To see how the shape of the rescattering domain evolves as a function of the
parameters, we focus on the conditions p‖ = pz,0 = 0 for which the ionization rate is maximum. For low
ellipticity, the surface p‖ = pz,0 = 0 and the rescattering domain intersect in approximately ellipsoidal
subdomains, while for high ellipticity, they intersect in a band.
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3.3.1.1 Close to LP

First, we consider the second order Taylor expansion of the shape of the rescattering domain for p‖ = pz,0 = 0
as a function of the ellipticity in the plane (t0, p⊥) close to LP (ξ � 1). For low ellipticity, the rescattering
domain is approximately a set of ellipses, with two subsets: ellipses at the peak laser amplitude [around

Figure 3.12: Shape of the rescattering domain for I = 8× 1013 W · cm−2, Z = 1 and ξ = 0.2 [close to LP, (a)
and (c)], and ξ = 0.7 [close to CP, (b) and (d)]. (a), (b) Boundary of the rescattering domain as a function of
the initial conditions (t0, p‖, p⊥, pz,0 = 0). The color is the logarithm of the PPT ionization rate normalized
by its maximum. The black lines are the boundaries of the rescattering domain for p‖ = pz,0 = 0. (c),(d)
Slice of the initial conditions p‖ = pz,0 = 0 [shaded blue planes in (a) and (b)]. Only the dominant orders in
ξ are depicted. Momenta are scaled by E0/ω.
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ωt0 = nπ, with n ∈ N], and ellipses at the lowest laser amplitude [around ωt0 = (n+ 1/2)π].
For p‖ = pz,0 = 0, the local minima of the final electron energy [see Eq. (3.4)] are located at ωt?0 = nπ/2

and p?⊥ = p?⊥(t?0) for n ∈ N. The local minima of the GC energy are the red dots depicted in Fig. 3.12c. In
Eq. (3.6), we fix p‖ = pz,0 = 0 and we Taylor expand with respect to t0− t?0. We obtain that the rescattering
domain for p‖ = pz,0 = 0 can be written in the form

(p⊥ − p?⊥)2

∆p2
⊥

+
(t0 − t?0)2

∆t20
< 1, (3.8)

where terms of order (t0 − t?0)4 and higher are neglected. Consequently, the subsets of rescattering domain
in the plane (t0, p⊥) defined by p‖ = pz,0 = 0 are approximately ellipses and are centered around the local
minima of the GC energy (t?0, p

?
⊥). The expressions for p?⊥, ∆p⊥ and ∆t0 depend on whether the ellipse is at

the peak laser amplitude or at the lowest laser amplitude.

Rescattering domains at the lowest laser amplitude: After Taylor expanding Eq. (3.6) with respect
to t0 and ξ around the local minima ωt?0 = (n + 1/2)π and ξ = 0, respectively, one gets (at the third order
in the Taylor expansion) p?⊥ ≈ (E0/ω)(1− ξ2/2),

∆p⊥ ≈ (E0/ω)ξccγ

(
1− ξ2

4γ2

)
,

ω∆t0 ≈ ξ ξccγ ,

where cγ =
√
γ(1+γ2)1/4/ sinh−1 γ, ξc is defined in Eq. (3.13), and we have used τ ≈ sinh−1 γ. Hence, at low

ellipticities, the area of these ellipses is proportional to ξ and consequently very small. For LP, the area of
these ellipses is zero. In addition, at low ellipticities, these ellipses have a low weight given by the ionization
rate, so their influence is negligible.

Rescattering domains at the peak laser amplitude: After Taylor expanding Eq. (3.6) with respect
to t0 and ξ around the local minima ωt?0 = nπ and ξ = 0, respectively, one gets (at the third order in the
Taylor expansion) p?⊥ ≈ ξ(E0/ω)(1− ξ2/2),

∆p⊥ ≈ (E0/ω)ξcCγ

[
1 +

ξ2

4(1 + γ2)

]
, (3.9a)

ω∆t0 ≈ ξcCγ

[
1 + ξ2 7 + 6γ2

4(1 + γ2)

]
, (3.9b)

where Cγ = γ/ sinh−1 γ and we have used τ ≈ sinh−1 γ. Here, the area of the ellipses is non-zero for LP,
and because these ellipses are highly weighted by the ionization rate, they have a strong influence in the
phenomena related to the rescattering domain such as, for instance, Rydberg state creation. We observe
that for increasing intensity, these elliptical domains shrink towards their centers for which the GC energy
is minimal (red dots in Fig. 3.12), which correspond also to the SFA conditions for which the electron final
energy is zero [see Eq. (3.3)]. The Z-dependence in ∆p⊥ and ω∆t0 is in ξc only, at first orders in the ellipticity.
The area of the ellipse increases linearly for increasing Z.

3.3.1.2 Close to CP

Next, we consider the second order Taylor expansion of the shape of the rescattering domain for p‖ = pz,0 = 0
as a function of the ellipticity in the plane (t0, p⊥) close to CP (1 − |ξ| � 1). For ellipticity close to 1, the
rescattering domain is approximately a band between two lines. We write Eq. (3.6) in the form

p−⊥(t0) < p⊥ < p+
⊥(t0),

with p±⊥(t0) = p?⊥(t0) ± [p?‖(t0)2 + ∆p(t0)2]1/2. By Taylor expanding this expression to the first order (the
second and third order expansions are too lengthy and do not provide additional relevant information to the
discussion) with respect to 1− |ξ| around ξ = 1, one gets that the lines surrounding the rescattering domain
are

p±⊥(t0) ≈ E0√
2ω

[
cos(2ωt0)

ξ − 1

2
+ 1± ξ1

]
, (3.10)
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Figure 3.13: Photoelectron momentum distribution along the minor polarization axis ey as a function of
the ellipticity for I = 1.2 × 1014 W · cm−2 and Ar (Ip = 0.58 a.u. and Z = 1) and γ ∼ 1. The color scale
is the experimental data of Ref. [104]. The dotted and dashed black lines are the T-trajectory of the SFA
and the CCSFA, respectively. The cross markers and red solid lines are the T-trajectory of the reference
Hamiltonian (1.14) and the GC model G2 = (H2,Φ2) (see Tab. 2.1), respectively. Momenta are scaled by
E0/ω.

where ξ1 = (
√
Zω2/E

3/2
0 )(γ2 + 1/2)−1/4 and we have used τ ≈ sinh−1

√
2γ. Hence, Coulomb-driven recol-

lisions and Rydberg state creation after tunneling are likely when the lowest boundary line of the rescat-
tering domain (see Fig. 3.12) approaches the regions of initial conditions with high ionization rate, i.e.,
p−⊥(t0) . pTADK · e⊥(t0). Fixing ξ = 1 and using Eq. (3.10), one gets

E
3/2
0 .

√
Zω2 sinh−1(

√
2γ)√

2γ(γ2 + 1/2)1/4
.

The term on the right-hand side of the inequality decreases for increasing γ. For γ � 1, the inequality
becomes I . 2

√
Z × 1013 W · cm−2. However, the condition γ � 1 implies that Ip � 0.1 a.u. in order for the

electron to undergo a Coulomb-driven recollisions or be trapped in a Rydberg state at this frequency. We
observe it is unlikely that the electron undergoes a Coulomb-driven recollision or is trapped in a Rydberg
state for nearly-CP pulses, if the ionization takes place during the plateau. Most probably, this electron
undergoes direct ionization.

3.3.2 Implication of the shape of the rescattering domain
In this section, we investigate the physical phenomena related to the shape of the rescattering domain, and we
compare the results with experimental data. For instance, when the laser ellipiticity ξ varies, the rescattering
domain moves in phase space and as a consequence the PMDs change shape. In Fig. 3.13, we show the
experimental measurements from Ref. [104], of the final momentum distribution of the electron along the
minor polarization axis ey as a function of the ellipticity ξ for I = 1.2 × 1014 W · cm−2, Ar (Ip = 0.58 a.u.)
and γ ∼ 1. The experimental measurements of the final momentum along the minor polarization axis (color
scale) show a distribution peaked around zero for small ellipticity. As the ellipticity increases, we observe
a bifurcation of the peak of the distribution at a critical ellipticity ξc ≈ 0.25, for which the distribution is
no longer peaked around zero. After the bifurcation (for ξ > ξc), the peaks of the distribution move further
apart for increasing ellipticity. In Ref. [104], a semiclassical theory is developed and is in agreement with the
experimental measurements. It is also shown that the initial conditions of the most probable trajectory of
the theory in Ref. [104] are relatively close to the initial conditions of the most probable trajectory in PPT.
Here, we show that this bifurcation can be reproduced and understood by the analysis of the T-trajectory
only.

In Fig. 3.13, we also show the ey-component of the T-trajectory final momentum Py computed using
the SFA PSFA = eyξ(E0/ω) sinh τ/(τ

√
ξ2 + 1) (dotted lines), the CCSFA from Eq. (2.3) (dashed lines), the
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reference Hamiltonian (1.14) (crosses) and the GC prediction [see Eq. (3.12)] (solid lines). The prediction
of the reference Hamiltonian (1.14) is depicted only if the ionization is direct, i.e., if it has not undergone
any recollisions and has not been trapped in Rydberg states. The GC prediction is depicted only when the
GC energy is positive. Otherwise, the GC energy is negative and the electron does not reach the detector
according to the GC model. We observe an excellent agreement between the experimental results from
Ref. [104], the reference Hamiltonian [Hamiltonian (1.14)] and the GC prediction.

In a nutshell, for ξ < ξc, the T-trajectory is inside the rescattering domain. The GC motion is most often
bounded, and as a consequence the electron undergoes recollisions or is trapped in a Rydberg state. When
the ellipticity increases, the rescattering domain and the initial conditions of the T-trajectory change. At the
critical ellipticity ξc, the T-trajectory is on the boundary of the rescattering domain, i.e., its GC energy is zero.
For ξ > ξc, the GC motion is unbounded, and the electron ionizes without recollision. Therefore, the bunches
in the PMDs after the bifurcation (as observed in Fig. 3.5) are mainly composed of direct ionizations. Right
after the bifurcation, a ridge structure can be seen for a certain range of laser parameters and atoms [114, 114].
The ridge structure is composed of near-zero-energy electrons induced by rescattering, and the bifurcation
with ellipticity can be used to isolate these electrons from the electrons ionized directly [114, 43].

3.3.2.1 Critical ionization time

In LP fields, for p⊥ = pz,0 = 0 which reduces to a one-dimensional (d = 1) model, the SFA predicts that
if an electron ionizes after a peak laser amplitude, i.e., at t0 > t?0 (ωt?0 = nπ where n ∈ N), it undergoes
a recollision [39], while if it ionizes before this peak, i.e., at t0 < t?0, it ionizes directly. In the top panel
of Fig. 3.6 and in Figs. 3.7a and 3.8a–b, we observe that this critical time ωt0 = nπ predicted by the SFA
is lower if the Coulomb potential is taken into account, and according to the discussion in Sec. 3.2.1, the
electron potentially comes back to the ionic core even if it ionizes before the peak of the laser field.

According to the GC model, using Eqs. (3.8) and (3.9) for p⊥ = pz,0 = 0, the left boundaries of the
rescattering domain are given by ωtc = nπ − ξcCγ . If the electron ionizes at t0 < tc, the electron ionizes
directly. If the electron ionizes at t0 > tc, the electron is in the rescattering domain. According to the
discussion in Sec. 3.2, the electron either populates Rydberg states or undergoes a recollision. In particular,
if an electron ionizes before the peak of the laser field and recollides, it is mainly because of the Coulomb
interaction and the bounded motion of its GC that brings the electron back to the core. If the electron ionizes
after the peak of the laser field, its GC initial radial momentum is negative (and its angular momentum is
zero for d = 1), and as a consequence the electron recollides.

The same arguments are extended to estimate tc for low ellipticity and ξ ≤ ξc. We fix the initial momentum
at its most probable value given by (p‖ = pTADK · e‖(t0), p⊥ = pTADK · e⊥(t0), pz,0 = pTADK · ez) and we let the
ionization time t0 free. At low ellipticity pTADK ≈ 0, and if ωt0 = ωt?0 the trajectory is approximately at the
center of the rescattering domain (see Fig. 3.12c). As a consequence, there exist intervals of ionization time
t0 for which the initial conditions are inside the rescattering domain, but also because of the shape of the
rescattering domain (see Fig. 3.12c), there are intervals of ionization times t0 for which the initial conditions
are outside the rescattering domain. The critical time tc is the ionization time for which (tc,p

T
ADK) is on the

left boundary of the rescattering domain. In Eq. (3.8), we transform the inequality into an equality and we
fix p⊥ = pTADK · e⊥(t0) ≈ ξ(E0/ω)(1− γ/ sinh−1 γ) [see Eq. (1.32)]. Then, using Eqs. (3.9) up to the second
order in ξ, the critical time tc is given by

ωtc ≈ ωt?0 − Cγ
√
ξ2
c − ξ2,

with Cγ = γ/ sinh−1 γ and ξc defined Eq. (3.13). Also, we have seen in Sec. 3.2 that if the ionization takes
place after the peak of the laser field, the GC radial momentum is negative and the electron tends to recollide
with the ionic core. Hence, the ionization time t0 for direct ionization is ωt0 ∈ ωtc − [0, π/2]. This is in
agreement with the CTMC simulations of Ref. [105].

3.3.2.2 Critical ellipticity

Next, we consider the bifurcation with respect to the laser parameters. We consider the T-trajectory given
by the initial conditions (1.32) and ωt0 = π. For LP (ξ = 0), the T-trajectory is inside the rescattering
domain. As a consequence, the GC energy of the T-trajectory is negative, and the electron is either trapped
in a Rydberg state, or undergoes a recollision. For increasing ellipticity, p?⊥(t0) increases and pTADK · e⊥(t0)
decreases. At ellipticity ξ = ξc, the initial condition of the T-trajectory (ωt0 = π,pTADK) crosses the boundary
of the rescattering domain. For ξ > ξc, the T-trajectory is outside the rescattering domain, and the electron
ionizes without recolliding.
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The initial condition of the GC of the T-trajectory is determined by combining Eqs. (2.18) and Eqs. (1.32),
and reads

r̄TPPT = ex
E0

ω2
√
ξ2 + 1

cosh τ, p̄TPPT = ey
ξE0

ω
√
ξ2 + 1

sinh τ

τ
.

Since Hamiltonian H2 is time-independent and rotationally invariant, the GC energy ET and angular mo-
mentum `T = ez · r̄TPPT × p̄TPPT of the T-trajectory are conserved and given by

ET =
ξ2E2

0

2ω2(ξ2 + 1)

sinh2 τ

τ2
− Zω2

√
ξ2 + 1

E0 cosh τ
, `T =

ξE2
0

ω3(ξ2 + 1)

sinh 2τ

2τ
, (3.11)

with V (r̄TPPT) ≈ −Z/|r̄TPPT|. When the electric field is turned off, we assume that the final momentum of
the T-trajectory and the final momentum of its GC are equal, with Px =

√
2ET cos Θ and Py =

√
2ET sin Θ,

where its scattering angle is given by [see Eq. (2.24)]

Θ = π/2 + sin−1
(
2ET `2T /Z2 + 1

)−1/2
.

As a consequence,

Px = −
√

2ET
(
2ET `2T /Z2 + 1

)−1/2
, (3.12a)

Py =
√

2ET
[
1−

(
2ET `2T /Z2 + 1

)−1
]1/2

. (3.12b)

Equations (3.12) are used to compute Px and Py of the GC.

The energy of the GC of the electron after ionization is given in Eq. (3.11). There exists a
bifurcation at ξ = ξc such that ET = 0. Assuming that ξc � 1, the critical ellipticity is

ξc ≈
√

2Zω2

E
3/2
0

sinh−1 γ

γ(1 + γ2)1/4
. (3.13)

The critical ellipticity ξc indicates the drop-off of the recollision probability as a function of the
ellipticity.

• If ξ < ξc, the energy of the GC of the T-trajectory is negative, the GC motion is bounded,
and the electron is trapped in a Rydberg states or undergoes recollision.

• If ξ > ξc, the energy of the GC of the T-trajectory is positive, the GC motion is unbounded,
and the electron ionizes without recolliding.

Close to the bifurcation, for ξ ≈ ξc and using τ ≈ sinh−1 γ,

ET ≈ (ξ − ξc)4Upξcγ
2/(sinh−1 γ)2, (3.14a)

Px ≈ −(ξ − ξc)1/2
√

2ξc(E0/ω)(γ/ sinh−1 γ), (3.14b)

Py ≈ (ξ − ξc)2
√

2(E0/ω)(γ/ sinh−1 γ). (3.14c)

The critical exponents of the bifurcation predicted by the GC model for Px and Py are 0.5 and 1,
respectively, i.e., Px ∼ (ξ− ξc)1/2 and Py ∼ (ξ− ξc). In the PMDs, the bifurcation in Px signals
the appearance of Coulomb asymmetry as a function of the ellipticity, while the bifurcation in
Py shows the breakdown of Coulomb focusing as a function of the ellipticity. We observe that
Coulomb asymmetry appears at the same time as Coulomb focusing begins to recede.

Result 5: Bifurcation in the PMDs
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3.3.2.3 Comparison with experiments

In Fig. 3.14, we show the final momentum of the T-trajectory P as a function of the ellipticity ξ computed
using the SFA (dotted lines), the CCSFA from Eq. (2.3) (dashed lines), the reference Hamiltonian (1.14)
(crosses) and the GC from Eqs. (3.12) (solid lines). The T-trajectory final momentum of the reference
Hamiltonian (1.14) is not depicted if it is trapped in a Rydberg state or undergoes rescattering. In the
lower-left panel, the hexagrams are the experimental data of P reproduced from Ref. [93].

For I = 8 × 1013 W · cm−2, He (Ip = 0.9 a.u.) and γ ∼ 0.6 (top panels of Fig. 3.14), the T-trajectory
of the reference Hamiltonian (1.14) corresponds to a direct ionization at the critical ellipticity ξc ≈ 0.25,
and reaches the detector without undergoing rescattering for ξ > ξc. The critical ellipticity is in agreement
with the prediction ξc ≈ 0.26 of Eq. (3.13). On the left panel, we observe a good agreement between the
T-trajectory final momentum P of the reference Hamiltonian (1.14) (thin curves with crosses) and that of
the GC model (thick solid curves) for the entire range of ellipticities ξ > ξc.

Figure 3.14: Final momentum of the T-trajectory P = Pxex+Pyey as a function of the ellipticity ξ for Z = 1.
Top panels: I = 8× 1013 W · cm−2, He (Ip = 0.9 a.u.) and γ ∼ 1.6. Middle panels: I = 1.2× 1014 W · cm−2,
Ar (Ip = 0.58 a.u.) and γ ∼ 1. Bottom panels: I = 8× 1014 W · cm−2, He (Ip = 0.9 a.u.) and γ ∼ 0.6. The
hexagrams are the experimental data reproduced from Ref. [93]. In all panels: the dotted and dashed black
lines are the T-trajectory of the SFA and the CCSFA, respectively. The thin (with crosses) and solid curves
are the T-trajectory of the reference Hamiltonian (1.14) and the GC model G2 = (H2,Φ2) (see Tab. 2.1),
respectively. The components of the final momentum of the T-trajectory Px and Py are depicted in blue
and red, respectively. The critical ellipticity ξc is at the intersection between the grey and white regions
and corresponds to the largest ellipticity for which the T-trajectory of the reference Hamiltonian (1.14) is
negative. The right panels are zooms of the left panels in the neighborhood of the critical ellipticity. We
indicate the scaling of P of the reference model (1.14) in the neighborhood of the bifurcation. Momenta are
scaled by E0/ω.
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For I = 1.2 × 1014 W · cm−2, Ar (Ip = 0.58) and γ ∼ 1 (middle panels of Fig. 3.14), the T-trajectory
of the reference Hamiltonian (1.14) becomes a direct ionization at ξc ≈ 0.19 while the GC prediction [see
Eq. (3.13)] is ξc ≈ 0.24. There is a small disagreement between the critical ellipticity of the reference model
and the prediction of Eq. (3.13). However, there is a good agreement of the GC critical ellipticity with the
experimental measurements of Ref. [104] of ξc ≈ 0.24 as observed in Fig. 3.13. Furthermore, there is a good
agreement between the T-trajectory final momentum P of the reference Hamiltonian (1.14) (thin curves with
crosses) and that of the GC model (thick solid curves) for ξ & 0.3. However, we observe a small disagreement
between Px of the reference Hamiltonian (1.14) (thin curves with crosses) and the GC prediction for all
ellipticities. This discrepancy is related to the observations made in Fig. 3.3 and whose origin is discussed
below.

For I = 8 × 1014 W · cm−2, He (Ip = 0.9) and γ ∼ 0.6 (lower panels of Fig. 3.14), the T-trajectory
of the reference Hamiltonian (1.14) becomes a direct electron at ξc ≈ 0.05. The critical ellipticity is in
agreement with the prediction ξc ≈ 0.07 of Eq. (3.13). In addition, these values agree well with the critical
ellipticity ξc ≈ 0.08 of the experiments [93] (hexagrams). There is again a good agreement between the T-
trajectory final momentum P of the reference Hamiltonian (1.14) (thin curves with crosses) and that of the
GC model (thick solid curves) for ξ & 0.1. However, we observe a disagreement between Px of the reference
Hamiltonian (1.14) (thin curves with crosses) and the GC prediction in the entire ellipticity range. We notice
that for decreasing Keldysh parameters, the disagreement between Px of the reference Hamiltonian (1.14)
and the GC model increases, as observed in the lower panel of Fig. 3.3.

On the right panels of Fig. 3.14, we observe a good agreement between the exponents of Px of the reference
Hamiltonian (1.14) at the bifurcation and the prediction 0.5 of Eq. (3.14). However, the exponent of Py at
the bifurcation is much smaller than the exponent 1 predicted by Eq. (3.14).

In the left panels of Fig. 3.14, we observe excellent agreement between the T-trajectory final momentum
of the reference Hamiltonian (1.14) (thin curves with crosses) and that of the CCSFA (dashed curves) after
the bifurcation when the electron final energy is large.

3.3.2.4 T-trajectory analysis

Here, we show that the origin of the disagreements between the T-trajectory of the reference Hamilto-
nian (1.14) and the GC T-trajectory –the disagreement of Px for small Keldysh parameters, or the disagree-
ment with the critical exponents of Py in the neighborhood of the bifurcation– are related to an underestimate
of the Coulomb interaction by the GC model for a short time after ionization. In contrast, we show that the
CCSFA agrees well with the solution of the reference Hamiltonian (1.14) for ξ � ξc while it cannot capture
correctly the phenomena related to the bifurcation.

In Fig. 3.15, the red dash-dotted, cyan solid and black dashed curves are the T-trajectory of Hamilto-
nian (1.14) after the change of coordinates, i.e., Φ2(r(t),p(t)), the GC model G2 = (H2,Φ2) (see Tab. 2.1),
and the CCSFA given by Eqs. (2.3), respectively. The thick dark blue curves are the T-trajectory of the ref-
erence Hamiltonian (1.14). Associated with each trajectory, we also show the GC energy, for each model, as a
function of time per laser cycle t/T . The GC energy for each model consists in computing H2(Φ2(r(t),p(t))).
Where the GC energy of the reference model is conserved, the GC model (whose GC energy is conserved) is
valid.

For γ ∼ 1.6 (see Fig. 3.15a–d), the electron ionizes far from the ionic core (|rTPPT| ∼ E0/ω
2). For ξ = 0.25

and ξ = 0.7, respectively, we see the variations of the GC energy of the T-trajectory of Hamiltonian (1.14)
(dash-dotted curve) are small, a signature of the validity of the GC model and an absence of rescattering.
When the GC energy of Hamiltonian (1.14) becomes constant, it is only about 0.02 a.u. above the GC model
prediction. As a consequence, we observe a good agreement between the trajectories of Hamiltonian (1.14)
and the GC model trajectories in Fig. 3.15a and Fig. 3.15b. In particular, at ξ = 0.25, we observe the
T-trajectory of Hamiltonian (1.14) is trapped in a Rydberg state, a feature which is reproduced by the
GC model (cyan solid curve), but not well reproduced by the CCSFA (dashed black curve). Indeed, the
Coulomb interaction remains significant for a long time after ionization during Rydberg state creation, and
the conditions for the validity of the CCSFA are not met.

For γ ∼ 1 (see Fig. 3.15e–h), the electron ionizes closer to the ionic core (|rTPPT| ∼ 0.4E0/ω
2). For

ξ = 0.15, the electron T-trajectory of Hamiltonian (1.14) (dash-dotted curve) and the GC model are trapped
in Rydberg states. However, there is a large discrepancy between the trajectories. Indeed, in Fig. 3.15g, we
observe that the dash-dotted red curve varies after ionization, indicating that the electron rescatters for a
short time after ionization. For ξ = 0.7, the same happens in terms of energy (see Fig. 3.15h), and we see that
the GC trajectory does not agree well with the T-trajectory of Hamiltonian (1.14) (see Fig. 3.15f). When
the energy of Hamiltonian (1.14) becomes constant at t ≈ T/2, it is larger than the GC energy prediction of
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Figure 3.15: (a,b,e,f,i,j) T-trajectory in the polarization plane (x, y) for Z = 1. The thick dark blue curves
are the T-trajectory of the reference Hamiltonian (1.14). The red dash-dotted, cyan solid and dashed black
curves are the T-trajectory of Hamiltonian (1.14) with the change of coordinates Φ2(r(t),p(t)), the GC model
G2 = (H2,Φ2) (see Tab. 2.1) and the CCSFA (2.3), respectively. (c,d,g,h,k,l) Energy H2 as a function of
(t − t0)/T , with t0 = T/2, associated with each model. Right panels: ξ = 0.7. (a,c), (e,g) and (i,k) (the
grey background panels are those for ξ < ξc) ξ = 0.25, ξ = 0.15 and ξ = 0.05, respectively. (a–d) are for
I = 8 × 1013 W · cm−2, He (Ip = 0.9 a.u.) and γ ∼ 1.6 (same parameters as the top panels of Fig. 3.14).
(e–h) are for I = 1.2× 1014 W · cm−2, Ar (Ip = 0.58 a.u.) and γ ∼ 1 (same parameters as the middle panels
of Fig. 3.14). (i–l) are for I = 8 × 1014 W · cm−2, He (Ip = 0.9 a.u.) and γ ∼ 0.6 (same parameters as the
lower panels of Fig. 3.14). The dots indicate the origin, and the circles |r| = E0/ω

2. The distances are scaled
by E0/ω

2.
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0.15 a.u. In Fig. 3.15e or Fig. 3.15f, we observe that after ionization, the initial electron distance from the
core is |rPPT| ∼ 0.4E0/ω

2, while the GC initially at a distance |r̄(t0)| ∼ 1.4E0/ω
2 from core. Since in the

GC model, the Coulomb interaction is evaluated at the GC position only, when the electron is closer to the
core than predicted by the GC model, as is the case after ionization for γ . 1.6, the Coulomb interaction
is underestimated in the GC model: the closer the electron to the ionic core, the more underestimated the
Coulomb interaction.

For γ ∼ 0.6 (see Figs. 3.15i–l), the electron ionizes even closer to the ionic core (|rPPT| ∼ 0.15E0/ω
2).

For ξ = 0.05 and ξ = 0.07, there are also discrepancies between the cyan and red curves. We observe that
the energy of the T-trajectory of Hamiltonian (1.14) (red dash-dotted curve in Figs. 3.15k and 3.15l) varies
a lot for a short time after ionization (about 0.2T ). Here again, the electron rescatters after ionization. In
Fig. 3.15l, when the red dash-dotted curve becomes constant, the energy is above the GC prediction only by
0.02 a.u. However, this agreement is only coincidental since the T-trajectories of Hamiltonian (1.14) and of
the GC disagree significantly due to the increase in energy of the rescattering. We observe that this increase
in energy after ionization is well captured by the CCSFA.

In each panel, we observe an excellent agreement between the CCSFA and the T-trajectory of Hamilto-
nian (1.14) for a short time after ionization, i.e., 0 < t− t0 . T , when the hypotheses of the CCSFA are met.
This method is effective for short time-scale dynamics or phenomena [80, 82, 114]. This agreement persists
for longer times if the electron leaves quickly the ionic core region like in Ref. [62] or for large ellipticity (see
Sec. 3.1.1), i.e., if its drift momentum is initially large.

3.4 Conclusions

In sum, we have investigated the role of the Coulomb potential in atoms subjected to strong laser fields, in
particular, on its influence on short and long time scales. To do so, we have considered three reduced models
of the reference Hamiltonian (1.14), namely the SFA [Eqs. (2.2)], the CCSFA [Eqs. (2.3)], and the GC model
[G2 = (H2,Φ2), see Tab. 2.1]. The analysis of these three reduced models allowed us to shed light on the
manifestations of the Coulomb potential in various ionization processes. In the SFA, there are two types of
trajectories: subcycle recollisions and direct ionizations. However, even when the intensity is very large, i.e.,
when the conditions of the SFA are met, the Coulomb interaction still makes its presence known for long
time-scale phenomena. In particular, even at very high intensities, the Coulomb asymmetry persists as seen
in Fig. 3.3 and discussed in Sec. 3.1.1. The Coulomb interaction brings with it a variety of additional types of
trajectories, such as Coulomb-driven recollisions and Rydberg states. We have shown in Sec. 3.2 that these
two processes are intimately related, and can be interpreted and predicted by the GC model.

During step (ii) of the recollision scenario, we have shown that the electron oscillates around the GC
trajectory. In phase space, the GC trajectory lies on a curve of constant energy E = H2(r̄, p̄). If E > 0,
the GC motion is unbounded. In this case, it is likely the electron recollides if its GC angular momentum
is near zero and its initial radial momentum is negative (like in Fig. 3.7b). Otherwise, the electron ionizes
directly without recollision (like in Fig. 3.7c). If E < 0, the GC motion is bounded. In this case, there exists
at least one time at which the electron turns back towards the ionic core. Then, the electron may or may
not recollide before the laser field is turned on. If the electron does recollide (like in Figs. 3.7d and 3.8d),
the GC energy jumps to a new energy level. If the laser field is turned off before the electron recollides (as
in Figs. 3.7e and 3.8e), the electron ends up in a Rydberg state.

The GC model does not capture the rescattering effects close to the ionic core but the CCSFA can since
it is a rather short time-scale phenomenon [82, 84, 85, 114]. As observed in Fig. 3.15, the variations of energy
of the reference model (1.14) can be well described by the CCSFA for short time scales. After rescattering,
the electron potentially ionizes if its GC energy becomes positive (such as in Fig. 3.7d). Therefore, the
CCSFA and the GC models are clearly complementary. The CCSFA is adapted for describing short time-
scale processes such as rescattering while the GC model is more suited for describing long time-scale processes
such as Coulomb-driven recollisions and the creation of Rydberg states.

Finally, we have shown that changing ellipticity changes the yield of the different type of trajectories after
quantum tunneling. In particular, for increasing ellipticities, the rescattering domain for which E < 0, in
which Coulomb-driven recollisions and Rydberg states are created, moves to regions with low ionization rate.
Therefore, the yield of Rydberg state creation decreases drastically for increasing ellipticity, as observed in
the left panel of Fig. 3.1. Also, we have shown that the behavior of the T-trajectory changes drastically
for increasing ellipticities. Close to LP fields (ξ = 0), the GC energy of the T-trajectory is negative and
the electron likely recollides with the core. At the critical ellipticity ξc, the GC energy of the T-trajectory
changes sign, and its GC motion becomes unbounded. The electron likely undergoes direct ionization for
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ξ > ξc. Therefore, at ξ = ξc, the yield of Rydberg states is much smaller than the rate of Rydberg states at
ξ = 0. Hence, the drastic decrease of the yield of Rydberg states and the bifurcation in the PMDs are due
to the interplay between the population of classical states by the quantum tunneling, and the subsequent
classical motion of the electron impacted by the Coulomb potential.
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Chapter 4

Recollision mechanism at high
ellipticities and its significance in HHG
and NSDI: Role of the laser envelope

In absence of laser envelope, for f = 1, the laser field in Eq. (1.10) is E(t) = E0[ex cos(ωt + ϕCEP) +
eyξ sin(ωt+ ϕCEP)], and the vector potential is A(t) = E0[−ex sin(ωt+ ϕCEP) + eyξ cos(ωt+ ϕCEP)]. For a
given ionization time t0, in the SFA, the motion of the electron is given by

r(t) = r(t0) + [p(t0)−A(t0)] (t− t0) + [E(t)−E(t0)]/ω2. (4.1)

At ionization, the electron exits the potential barrier with a very low initial momentum [see Sec. 1.2.2]. If
p(t0) = 0, for ξ = 0, the electron leaves the ionic core with a drift momentum −A(t0) = x̂(E0/ω) sin(ωt0),
and returns close to the core at time tr, i.e., r(tr) ≈ r(t0), due to the laser oscillations E(t)/ω2. For ξ > 0,
strictly speaking the electron never comes back to the core, i.e., there are no times t0 and tr such that
r(tr) = r(t0) in Eq. (4.1) because of the non vanishing drift momentum −A(ti) in the direction transverse

Figure 4.1: Single and double ionization probability curves as a function of the laser intensity in CP fields
(ξ = 1) from experimental measurements reproduced from (left panel) Ref. [55] and (right panel) Ref. [61].
Left panel: Target atoms He and Ne, the wavelength of the laser is λ = 614 nm. The curves are the
normalized prediction of SDI given by the ADK ionization rare [see Eq. (1.24)]. Right panel: Target atom
Mg, the wavelength of the laser is λ = 800 nm.
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to the electric field, which pushes the electron away from the core [39]. In this framework, the electron can
only recollide when the laser field is linearly polarized (LP).

The recollision picture can, however, be extended to near LP-fields by taking into account that after
ionization, the initial momentum along the transverse direction to the laser field p⊥ is distributed [8, 10] as
∝ exp(−p2

⊥
√

2Ip/E0) [see Sec. 1.2.2], i.e., the initial momentum is not exactly non-zero. The initial transverse
momentum compensates the initial drift momentum of the electron after ionization and recollisions become
possible [119, 97]. At the critical ellipticity ξc given in Eq. (3.13), the recollision probability drops by a factor
3 compared to its value for ξ = 0. For ellipticities ξ > ξc, the initial momentum p⊥ ≈ ξE0/ω necessary
to compensate the drift momentum is poorly weighted by the ionization rate and the probability that the
electron returns to the core drops off. In Sec. 3.3.1.2, it is shown that even the ion-electron interaction is
not sufficient to bring back the electron to the core after ionizing in CP fields with f = 1. Moreover, If the
electron returns to the core in an elliptically polarized laser field, its difference of energy in the SFA is given
by

∆E = κUp
1− ξ2

ξ2 + 1
. (4.2)

with 0 ≤ κ ≤ 3.17. Hence, the recolliding electrons, if any, do not bring back enough energy from the laser
field at high ellipticities to trigger HHG or NSDI. The three-step model predicts that the high frequency part
of the HHG spectra or the double ionization induced by recollisions is suppressed with elliptically polarized
lights. It is noted in Ref. [39] that

“For circularly polarized light, [Eq. (4.1)] indicates that the electron trajectory never returns to
the vicinity of the ion. Consequently, electron-ion interactions will not be important”.

The double ionization of atoms can occur sequentially or non-sequentially. The sequential double ioniza-
tion (SDI) is the most intuitive mechanism for double ionization. It occurs when two electrons are teared off
the core in sequence, independently of each other. In contrast, the nonsequential double ionization (NSDI),
occurs when the double ionization of the atom is induced or impacted by electron-electron correlations. For
instance, NSDI can be induced by recollisions [39, 73, 110]. Intuitively, the SDI probability is the product
between the probability the first electron ionizes, and the probability the second electron ionizes [154]. The
probability a single electron ionizes is given by the ADK ionization rate [see Eq. (1.24)]. The resulting SDI
probability are smoothly increasing for increasing laser intensity. It corresponds to the curves in the left panel
of Fig. 4.1. In the left panel of Fig. 4.1, the experimental measurements of the double ionization probability
of He (�) and Ne (

a
) subjected to CP fields rather follow the SDI probabilities. Hence, in CP fields of

wavelength λ = 614 nm, the double ionization of He and Ne is likely sequential, i.e., it does not involves
recollisions. This is in agreement with the absence of recollisions in CP fields predicted by the three-step
model [39]. However, in the right panel of Fig. 4.1, the experimental measurements of the double ioniza-
tion probability of Mg (◦) subjected to CP fields exhibits a knee structure for increasing laser intensity, in
contrast with the SDI probability curves. In Ref. [61], it is mentioned that “The persistence of enhanced
double ionization for circular polarization contradicts simple rescattering theories and opens the possibility
for studying other ionization mechanisms”. The hypothesis is

“[...] it is possible for the rapid departure of the first electron to create a change in the potential
for the remaining electron that is sufficient to shake it into excited ionic states. [...] Shakeup
exhibits no strong ellipticity dependence and hence does not preclude the production of enhanced
double ionization for circular polarization”.

However, the enhanced double ionization, i.e., the knee structure, is theoretically identified to be induced by
recollisions in Ref. [111], in conflict with the prediction of the three-step model [39].

Questions

• Under which conditions experimental manifestations of recollisions in CP and near-CP fields can be
observed ?

• How can the electron gain a significant amount of energy compared to Up in CP fields in order to trigger
HHG and NSDI ?
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Figure 4.2: Typical recollision with a high return energy: From the ground state to the return for a 2-4-2 laser
envelope. Left panel: Trajectory in the rotating frame (x̃, ỹ). The white and red circles are the position of the
electron at the ionization and return time, respectively. The color shows the value of the zero-velocity surface
during the plateau. Right panels: The trajectory projected along the position and energy of Hamiltonian (4.9)
at time t0 ≈ 0.3T , Tu = 2T (ramp-up duration) and tr ≈ 2.7T (from left to right). The grey surface is the
classical forbidden region for ỹ = 0 [H̃(r̃, p̃, t) < Z(r̃, t)]. The light blue curve is the zero-velocity surface at
time t = 0. The saddle point is the local maximum of the zero-velocity surface for negative x̃. Distances and
energies are in a.u.

Plan All the analysis in the three-step model in the SFA is done in absence of pulse envelope. We find
that the presence of an envelope drastically affects the conclusions of the three-step model. In this chapter,
we identify a highly probable recollision channel with large return energy by accounting for the effects of the
pulse envelope f(t). The recollisions taking this channel are referred to as envelope-driven recollisions. This
recollision channel is particularly effective for nearly circular polarizations, since the conventional recollision
channel disappears. Figure 4.2 shows the three steps of a typical recollision in CP fields following this channel,
and seen in the rotating frame. The competition between the Coulomb force and the laser field makes this
recollision channel highly probable by creating a channel of ionization early after the laser field is turned on.
Just as the electron is outside the core region, the amplitude of the vector potential is small, and therefore the
sideways drift of the electron can be compensated by its momentum. We show that this recollision channel
and the return of the electron can be understood using the SFA, in opposition with the conventional three-
step model for which the laser envelope is constant. Finally, we show this recollision channel can be used
to produce HHG with atoms driven by high elliptically polarized laser fields, and is also responsible for the
enhanced double ionization observed in experimental and theoretical measurements for CP fields [61, 111].
The existence conditions of this recollision channel agrees well with the enhanced double ionization for CP
fields observed experimentally for specific target atoms and laser wavelengths. In addition, we notice that,
under reasonable conditions, recollisions can take place in the Attoclock setup, where recollisions are always
assumed to be nonexistent [53, 152].

Publication

• [48] J. Dubois, C. Chandre, T. Uzer, High harmonic generation with nearly circular polarized pulses,
arXiv:1905.05989 (2019).

4.1 Scenario of envelope-driven recollisions

In this section, we describe the ionization mechanism of the envelope-driven recollisions. In particular, we
show how the Coulomb potential induces highly probable ionizations early after the laser field is turned on.
We describe quantum mechanically the field-free atom in the rotating frame (RF), in which the laser field is
unidirectional. We consider the laser field given by Eq. (1.10). We show that, while the energy of the ground
state of the electron is degenerate with respect to the quantum magnetic number in the laboratory frame, it
is non-degenerate in the rotating frame. Then, we determine the time the electron over-the-barrier ionizes
as a function of the initial energy of the electron in the ground state by treating classically the dynamics of
the electron. The time when the electron ionizes allows us to draw conditions for which the electron does or
does not return to the core. The return energy of the recolliding electrons is analyzed in the SFA. We find
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that, for highly elliptically polarized laser fields, the envelope-driven recollisions mainly gain energy from the
variations of the envelope.

4.1.1 Field-free atom in the rotating frame (RF)

We consider the atom in the ground state of energy −Ip. In Sec. 1.1.2, we describe the field-free atom in
the LF. The Hamiltonian Ĥ of the field free atom is given by Eq. (1.5) and the energy of the ground state
energy of the atom Ψ(r) is given by Eq. (1.6). The potential is rotationally invariant, and therefore the wave
function of the electron can be written in terms of the radial wave function Rn(|r|) and spherical harmonics
Y ml (r/|r|) such that Ψ(r) = Rn(|r|)Y ml (r/|r|). The principal, angular and magnetic quantum numbers are
n, l and m, respectively. The angular and magnetic quantum numbers are such that l = 0, . . . , n − 1 and
m = −l, . . . , l, respectively. We consider the unitary transformation Ψ̃(r) = Û(t)Ψ(r) from the LF to the RF.
The transformation is such that Ψ̃(r̃) = Ψ(r) where r̃ = Rz(ωt+ ϕCEP)r and Rz(ωt+ ϕCEP) is the rotation
matrix along ez (see Appendix A). The unitary operator associated to this transformation is

Û(t) = exp
[
i (ωt+ ϕCEP) L̂z

]
, (4.3)

where L̂z = r̂×p̂ ·ez is the angular momentum along ez. We substitute the transformation in the Schrödinger
equation ĤΨ = i∂Ψ/∂t and we identify the Hamiltonian in the RF such that ˆ̃HΨ̃ = i∂Ψ̃/∂t. The relation
between the Hamiltonian in the RF and LF is

ˆ̃H = ÛĤÛ† − iÛ ∂Û
†

∂t
. (4.4)

We apply the left- and right-hand side of Eq. (4.4) on Ψ̃. We use the relation Û∂Û†/∂t = −(∂Û/∂t)Û†. The
energy of the electron in the RF is denoted −Ĩp, and is given by the eigenvalue problem

ˆ̃HΨ̃(r̃) = −ĨpΨ̃(r̃). (4.5)

We substitute the relation Ψ̃ = ÛΨ, and the eigenvalue problems given by Eq. (1.6) and (4.5) in Eq. (4.4).
Using (∂Û/∂t)Û†Ψ̃ = iωÛL̂zΨ = iωmΨ̃ where L̂zΨ = mΨ. Finally, we obtain

Ĩp = Ip + ωm. (4.6)

Therefore, the energy of the electron in the RF depends on the magnetic quantum number m ∈ Z. If m = 0,
the wave function of the electron is invariant under rotations along ez, and as a consequence, the wave
function is unchanged with respect to the unitary transformation (4.3). If m 6= 0, the wave function of the
electron is no longer invariant under rotations along ez, and as a consequence, the energy of the electron in
the RF might be larger than in the LF. The difference of energy of the ground state of the electron in the
RF and in the LF is given by mω.

4.1.2 Over-the-barrier ionization: Role of the target species and the laser wave-
length

We subject the field-free atom, described in the previous section, to an intense laser field elliptically polarized.
The dynamics of the electron is treated classically in the RF. The initial energy of the electron in the RF is
Ĩp = Ip +mω. We study the over-the-barrier ionization of the electron. We show that the ionization time of
the electron strongly depends on the target species and the laser wavelength. In addition, we show that the
ionization time of the electron is crucial for the conditions under which it comes back to the parent ion.

4.1.2.1 Classical Hamiltonian of the electron subjected to a strong laser field in the RF

We consider a single-active electron atom driven by a strong laser field elliptically polarized in the laboratory
frame (LF) E(t) = E0f(t)/

√
ξ2 + 1 [ex cos(ωt+ ϕCEP) + eyξ sin(ωt+ ϕCEP)]. In the LF, the Hamiltonian

is given by Eq. (1.14). We use the soft-Coulomb potential [78] to describe the ion-electron interaction
V (r) = −Z(|r|2 + a2)−1/2. We perform the canonical change of coordinates (r̃, p̃) = Rz(ωt+ ϕCEP)(r,p) to
map the phase-space coordinates of the electron from the LF to the RF, where Rz(ωt+ϕCEP) is the rotation
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matrix along ez [see Appendix A]. The absolute value of the position of the electron and its canonical
conjugate momentum are conserved, i.e., |r| = |r̃| and |p| = |p̃|. In the RF, the Hamiltonian reads

H̃(r̃, p̃, t) =
|p̃|2

2
− ωr̃× p̃ · ẽz + V (r̃) + r̃ · Ẽ(t). (4.7)

The ion-electron potential in the RF V (r̃) does not depends on time since V is rotationally invariant, which
is in general the case for atoms. The term −ωr̃ × p̃ · ẽz is the Coriolis force. In analogy with the quantum
mechanical treatment, this term comes from the term iÛ∂Û†/∂t in Eq. (4.4), and appears due to the inertial
force acting on the electron when moving to the RF. In the RF, the elliptically polarized laser field reads

Ẽ(t) =
E0f(t)√
ξ2 + 1

{
ẽx + (ξ2 − 1)

[
ẽx sin2(ωt+ ϕCEP) + ẽy sin(ωt+ ϕCEP) cos(ωt+ ϕCEP)

]}
. (4.8)

We substitute the expression of the laser field (4.8) in Hamiltonian (4.7). For high elliptically polarized laser
fields, 1− ξ2 � 1, and therefore the term proportional to (1− ξ2) acts as a perturbation of the CP case for
which ξ = 1. The unperturbed Hamiltonian, corresponding to the CP case for which ξ = 1, reads

H̃(r̃, p̃, t) =
|p̃|2

2
− ωr̃× p̃ · ẽz + V (r̃) + r̃ · ẽx

E0f(t)√
2

. (4.9)

The direction of the electric field is along ẽx for all time. Hamiltonian (4.9) does not depend explicitely
on the CEP. As a consequence, for instance, the double ionization probability computed using rotationally
invariant distribution of the initial conditions (or rotationally invariant initial wave function in quantum
mechanical computations) does not depend on the CEP, as observed in Ref. [171]. If the laser envelope is
f = 1, Hamiltonian (4.9) does not depend on time H̃(r̃, p̃, t) = K, and K is the Jacobi constant [77]. Next,
we consider the CP case and Hamiltonian (4.9).

4.1.2.2 Zero-velocity surface

Using r̃× p̃ · ẽz = ẽz × r̃ · p̃, Hamiltonian (4.9) can be written in the form

H̃(r̃, p̃, t) =
1

2
|p̃ + ωr̃× ẽz|2 −

ω2

2
|r̃× ẽz|2 + V (r̃) + r̃ · ẽx

E0f(t)√
2

.

As a consequence, the phase-space variables are such that H̃(r̃, p̃, t) ≥ Z(r̃, t) for all time t. The surface
H̃(r̃, p̃, t) = Z(r̃, t) is obtained for ˙̃r = p̃ + ωr̃ × ẽz = 0 and is called the zero-velocity surface [71]. The
expression of the zero-velocity surface reads

Z(r̃, t) = −ω
2

2
|r̃× ẽz|2 + V (r̃) + r̃ · ẽx

E0f(t)√
2

. (4.10)

Figure 4.3 shows the zero-velocity surface for I = 3×1014 W ·cm−2, f = 1 and z = pz = 0 in the plane (x̃, ỹ).
The zero-velocity surface Z(r̃, t) is composed of a well near the origin due to the ion-electron interaction
V (r̃), a dome around ẽxE0/

√
2ω2 which corresponds to the global maximum of the zero-velocity surface,

and a saddle point (indicated by a red dot). In the adiabatic approximation, in which the laser envelope
is constant, these three points correspond to three fixed points of the dynamics for which ˙̃r = ˙̃p = 0 (see
Sec. 5.3.3). The coordinates of the saddle point are denoted r̃? = x̃?ẽx and p̃? = ωx̃?ẽy, where x̃? is the
negative solution of the equation

−ω2x̃? + ∂V/∂x̃|r̃? + E0f(t)/
√

2 = 0. (4.11)

The energy of the saddle point is denoted Z?(t) = Z(r̃?, t). The zero-velocity surface corresponds to the
classical forbidden region of the electron, and acts as a barrier on the electron dynamics as observed in the
inset of Fig. 4.3. If the laser envelope is f = 1 and the electron is inside the well near the origin with K < Z?,
the electron is topologically bounded by the zero-velocity surface, i.e., it is trapped and cannot ionize.

4.1.2.3 Ionization time of the electron

We consider that the laser field is turned on at time t = 0. For t ≤ 0, the location of the maximum of the
zero-velocity surface is denoted r̃?. We assume that V (r̃) ≈ −Z/|r̃| (hard-Coulomb potential approximation).
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Figure 4.3: Zero-velocity surface Z(r̃, t) given by Eq. (4.10) for I = 3 × 1014 W · cm−2, f = 1 and V (r̃) =
−1/|r̃|. The circle shows the location of the saddle point (x̃?, 0,Z?(t)). The plane corresponds to a surface
H̃(r̃, p̃, t) = −0.7a.u. in the plane (x̃, ỹ). The colored areas correspond to the allowed positions of the electron.
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Substituting this assumption in Eq. (4.10) and looking for the location of the maximum of the zero-velocity
surface, we obtain |r̃?| = (Z/ω2)1/3. The maximum of the zero-velocity surface before the laser field is turned
on is

Z?(0) = Z(r?, 0) = −3

2
(Zω)2/3. (4.12)

Therefore, the zero-velocity surface, which bounds topologically the electron motion, is under the zero-energy
surface before the laser field is turned on. In addition, before the laser field is turned on, i.e., for f(0) = 0,
the energy of the electron in the RF is H̃(r̃, p̃, 0) = −Ĩp with Ĩp given by Eq. (4.6). We distinguish two cases:

• If Ĩp < −Z?(0), the electron is not topologically bounded by the zero-velocity surface. However, it is
dynamically bounded by invariant tori.

• If Ĩp > −Z?(0), the electron is topologically bounded by the zero-velocity surface and dynamically
bounded by invariant tori.

We denote t0 the ionization time of the electron. For 0 ≤ t ≤ t0, the electron is near the origin and
|r| ∼ 1. As a consequence, the time-dependent term in Hamiltonian (4.9) is small and the energy of the
electron varies slowly compared to the duration of the pulse. Therefore, we assume that H̃(r̃, p̃, t) ≈ −Ĩp
for 0 ≤ t ≤ t0. For increasing time, the envelope increases and the energy of the saddle point decreases as
Z?(t) ≈ Z?(0) − f(t)E0ω

−2/3 for f(t) � 1. When the saddle point comes below the electron, the electron
is no longer topologically bounded (in the adiabatic picture), and it can ionize. Likely, the electron ionizes
through the saddle point. We assume that the breakdown of the invariant tori, which bound the electron
dynamically, occurs right after the energy of the electron is above the energy of the saddle point of the
zero-velocity surface. Under this approximation, the ionization time is:

• If Ĩp < −Z?(0), the electron is below the top of the zero-velocity surface before the laser is turned on.
The electron ionizes right after the laser is turned on, and t0 = 0.

• If Ĩp > −Z?(0), the electron is above the top of the zero-velocity surface before the laser is turned on.
The ionization occurs when the energy of the saddle point is the same as the energy of the electron,
and t0 is solution of Z?(t0) = −Ĩp.

We notice that the electron can ionize earlier by tunneling through the classical forbidden region. However,
we expect the rate of electrons ionizing through the barrier to be negligible compared to the rate of electrons
ionizing over the barrier. In the second case, when Ĩp > −Z?(0), the ionization time is defined by Z?(t0) =

−Ĩp. This condition occurs when the laser field reaches a specific effective amplitude E? = E0f(t0)/
√

2. At
time t0, such that Z?(t0) = −Ĩp, the saddle point of the zero-velocity surface is located at

x? =

(
2Z

ω2

)1/3

ρ(µ), (4.13)

with ρ(µ) = (−1 +
√
µ+ 1)1/3 − (1 +

√
µ+ 1)1/3 and µ = 2Ĩ3

p(Zω)−2/27, and where we have considered
V (r̃) ≈ −Z/|r̃|. Notice that the location of the saddle point when its energy is the same as the energy of the
electron does not depend on the intensity of the laser. The effective amplitude of the laser when the electron
ionizes, E? = E0f(t0)/

√
2, is solution of the equation −Ĩp = −ω2x?2/2 + Z/x? + x?E? (where we have used

x? < 0).
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The time when the electron of energy Ĩp = Ip +mω (with m the magnetic quantum number of
the electron) over-the-barrier ionizes from atoms driven by CP fields is given by

t0 = f−1
(√

2E?/E0

)
, (4.14)

where f−1 is the inverse function of the laser envelope. The effective amplitude of the laser
when the electron ionizes is E? = E0f(t0)/

√
2. If E? > E0/

√
2, the electron cannot ionize over

the barrier. The expression of the effective amplitude of the laser is given by

E? = max

{
0,

(
Zω4

4

)1/3
1 + 2ρ(µ)3

ρ(µ)2

}
, (4.15)

with ρ(µ) = (−1+
√
µ+ 1)1/3−(1+

√
µ+ 1)1/3 and µ = 2Ĩ3

p(Zω)−2/27. The effective amplitude
of the laser when the electron ionizes is the same for all intensities. In contrast, the ionization
time of the electron varies for varying intensity. If the energy of the electron is above the top of
the zero-velocity surface before the laser field is turned on, E? = 0.

Result 6: Ionization time of the electron in a CP field

4.1.2.4 Breakdown of recollisions in CP fields

Just as the electron is outside the core region, around the saddle point of the zero-velocity surface, the
effective amplitude of the laser field E? = E0f(t0)/

√
2 is given by Eq. (4.15) as a function of the parameters

of the atom and the laser. At time t0, the vector potential of the laser is such that |A(t0)| ≈ E?/ω. The
larger f(t0), the larger the vector potential at ionization. Therefore, the larger f(t0), the larger the necessary
initial momentum |p(t0)| to compensate the sideways drift of the electron [see Eq. (4.1)]. However, at time
t0, the electron is close to the zero-velocity surface, and as a consequence, its initial momentum is small
compared to E0/ω. To be able to compensate the sideways drift of the electron, the ionization must take
place for small effective amplitude, i.e., early after the laser field is turned on. The ionization time t0 plays
a crucial role in the condition for which the electron can come back to the core.

We assume that the electron ionizes through the saddle point. Under this hypothesis, at time t0, the
position and the momentum of the electron are r̃(t0) = x̃?ẽx and p̃(ti) = ωx̃?ẽy, respectively, where x̃? is
given in Eq. (4.13). In Sec. 3.2, we show that the energy of the GC of the electron E can be used to distinguish
electrons which do and do not come back to the core by taking into account the ion-electron interaction.
If E < 0, the GC motion is bounded, and the electron comes back to the core. If E > 0, the GC motion
is unbounded, and the electron ionizes directly. In order to determine the configuration of the GC of the
electron at time t0, we use the second order GC model G2 = (H2,Φ2). In the RF, the coordinates of the GC
at time t0 are related to the electron coordinates with

˜̄r(t0) = r̃(t0)− ẽxE
?/ω2 =

[
x̃? − E?/ω2

]
ẽx,

˜̄p(t0) = p̃(t0)− ẽyE
?/ω = ω

[
x̃? − E?/ω2

]
ẽy.

The energy of the GC is conserved in time until the electron returns to the core. The energy of the GC is
given by E = |˜̄p(t0)|2/2−Z/|˜̄r(t0)|, where we have used the conservation of the norm of the GC coordinates
when moving from the LF to the RF. By using the definition of the saddle point along ẽx given by Eq. (4.11),
we obtain ω2x̃? − E? = −Z/x̃?2. We substitute the later equation in the energy of the GC, and we obtain

E =

(
ω2

2

)1/3
1− 8ρ(µ)6

4ρ(µ)4
, (4.16)

with ρ(µ) = (−1 +
√
µ+ 1)1/3 − (1 +

√
µ+ 1)1/3 and µ = 2Ĩ3

p(Zω)−2/27. If E > 0, the trajectory of the GC
is unbounded and the electron goes away from the core without recolliding. If E < 0, the trajectory of the
guiding center is bounded and the electron can come back to the core, driven by its GC. Using Eq. (4.16),
the condition for the electron returns E < 0 implies that 8ρ(µ)6 > 1. Since ρ(µ) is negative, ρ(µ) < −1/

√
2.
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Figure 4.4: Phase diagram of the recollisions in CP as a function of the ionization potential of the atom Ip and
the wavelength of the laser λ. The solid curves are the critical ionization potential given in Eq. (4.17). The
lower and upper solid curves correspond to atoms with outer shell electrons of angular quantum numbers l = 0
and l = 1, respectively. The dashed grey curve corresponds to the critical ionization potential of Ref. [58].
The white and yellow markers show parameters for experimental measurements of double ionization. The
white symbols are where a knee structure is absent in the double ionization probability as a function of the
laser intensity. The yellow symbol is where a knee structure is seen in the double ionization probability as a
function of the laser intensity. The experimental measurements for He (�) and Ne (

a
) at λ = 614 nm are

reported in Ref. [55], and shown in the left panel of Fig. 4.1. The experimental measurements for Ar (�) and
Xe (?) at λ = 800 nm are reported in Ref. [65]. The experimental measurements for Mg (◦) at λ = 780 nm
are reported in Ref. [61], and shown in the right panel of Fig. 4.1.

Thus, the parameter µ satisfies µ < µ? with ρ(µ?) = −1/
√

2. The solution of ρ(µ?) = −1/
√

2 is given by
µ? = (−97 + 140

√
2)/216 ≈ 0.47. Using the definition µ = 2Ĩ3

p(Zω)−2/27, we obtain Ĩ3
p < µ?(27/2)(Zω)2.
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Recollisions in CP fields manifest for specific conditions [65, 61, 111, 81]. The energy of the
initial state of the electron is denoted −Ip. We obtain that:

• If Ip < Ic, the electron can recollide in CP fields. The electron ionizes early enough after
the laser field is turned on, and the sideways drift of the electron can be compensated by
its momentum when it is outside the core region.

• If Ip > Ic, the electron cannot recollide in CP fields. The effective amplitude of the laser
when the electron ionizes E? [see Eq. (4.15)] is too large, and the sideways drift of the
electron cannot be compensated by its momentum when it is outside the core region.

The critical ionization potential separating the recolliding from the non-recolliding electronic
states in CP fields is given by

Ic = η(Zω)2/3 + ωl, (4.17)

where all quantities are in atomic units, η ≈ 1.85 and l ∈ N is the angular quantum number of
the initial state of the electron. For instance, for a laser wavelength λ = 780 nm, the critical
ionization potential is Ic ≈ 7.4 eV. As a consequence, all electrons initiated in an excited state
of Hydrogen can recollide when subjected to CP fields of wavelength λ = 780 nm.

Result 7: Critical ionization potential for recollisions in CP fields

Figure 4.4 shows the phase diagram of the electron in the plane (λ, Ip). The solid lines are the critical
ionization potential given by Eq. (4.17) for l = 0 (lower curve) and l = 1 (upper curve). For instance, we
observe that for λ > 780 nm, recollisions are likely to be observed only for Mg (◦) and Li, in agreement with
the enhanced double ionization probability observed in the experimental measurements reported in Ref. [61],
depicted in the right panel of Fig. 4.1. In addition, the energy of all excited states of H (the energy of the
first excited state of H is −3.4 eV) are above the critical ionization potential Ic given by Eq. (4.17). In the
Attoclock setup with H, recollisions can manifest if there are excited H atoms in the sample [152]. If the
laser wavelength is decreased, recollisions can be observed for other target species. This is in agreement with
the numerical measurements of Ref. [36]. For λ = 614 nm, we observe that recollisions are unlikely in He (�)
and Ne (

a
), in agreement with the absence of enhanced double ionization in the experimental measurements

reported in Ref. [55], and depicted in the right panel of Fig. 4.1. For λ = 800 nm, we observe that recollisions
are unlikely in Xe (?) and Ar (�), in agreement with the absence of enhanced double ionization in the
experimental measurements reported in Ref. [65].

4.1.3 Return energy of the recolliding electron

We consider the excursion of recolliding electrons ionizing at time t0 and returning at time tr in intense laser
fields. We show that for a constant laser envelope f = 1, the electron does not bring back energy to the core
during its excursion in the continuum, even when the ion-electron interaction is taken into account. Then,
we consider a slowly varying laser envelope to study the conditions under which the electron gains energy
in highly elliptically polarized laser fields using the SFA. We find that for highly elliptically polarized laser
pulses, the recolliding electrons mainly gain energy from the variations of the laser envelope, in contrast to
low elliptically polarized laser pulses where the recolliding electrons mainly gain energy from the oscillations
of the laser field induced by the carrier-envelope frequency.

4.1.3.1 Constant laser envelope

We consider the case for which the envelope of the laser is constant, f = 1. The electron ionizes close to the
core at time t0 and returns close to the core at time tr. That means

r(t0) ≈ r(tr) ≈ 0. (4.18)

Hamiltonian (4.9) is conserved in time, K = H̃(r̃, p̃), and as a consequence, H̃(r̃(t0), p̃(t0)) = H̃(r̃(tr), p̃(tr)),
i.e., the energy of the electron in the RF is the same when it ionizes outside the ionic core region and when
it returns to the core. We substitute Eq. (4.18) in H̃(r̃(t0), p̃(t0)) = H̃(r̃(tr), p̃(tr)). After simplification, we
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obtain

∆E =
|p(tr)|2

2
− |p(t0)|2

2
≈ 0, (4.19)

where we have used |p| = |p̃|. We denote ∆E the difference of energy of the recolliding electron when it
returns to the core and when it ionizes. Therefore, even if the ion-electron interaction is taken into account,
the recolliding electron does not bring back energy to the core from its excursion in CP fields with constant
laser envelope due to the Jacobi constant. We notice that the SFA prediction given by Eq. (4.2) is consistent
with Eq. (4.19).

4.1.3.2 Energy boost of the electron

If the laser envelope is taken into account, Hamiltonian (4.9) depends explicitely on time, and it is no
longer conserved. As a consequence, the energy of the recolliding electron in the RF can also vary during
its excursion, as observed in Fig. 4.2. In order to assess the energy difference ∆E of the envelope-driven
recollisions, we consider a slowly varying laser envelope such that |∂jf/∂tj | � ωj for j ∈ N∗. In the SFA, at
first order, the difference of return energy of the electron is given by

∆E ≈ 2Up

ξ2 + 1

[
f(tr)

2 − f(t0)2
]
. (4.20)

If the electron ionizes and returns when the laser field is f = 1, we observe that the electron does not gain
energy, in agreement with Eq. (4.2) and (4.19). In contrast, if the electron ionizes at time t0 and returns at
time tr such that f(t0)2 < f(tr)

2, the electron gains energy. For instance, this is the case if the electron ionizes
during the ramp-up of the laser field and returns at the peak amplitude of the laser field. The maximum
energy the electron can bring back to the core, in the slowly varying envelope approximation, is 2Up/(ξ

2 +1).
This is the energy boost of an electron ionizing at t0 = 0 (when f(t0) = 0) and returning to the core at the
peak amplitude of the laser, when f(tr) = 1. In sum, in order to bring back a large amount of energy to the
core from the laser field, electrons must ionize early after the laser field is turned on. The conditions under
which the energy of the electron is boosted by CP fields is compatible with the conditions under which the
sideways drifts of the electron can be compensated by its momentum when it ionizes. As a consequence,
electrons which ionize early after the laser field is turned on can recollide in atoms subjected to intense and
CP laser fields with high return energy.

Figure 4.5: Distribution of the return energy of the electron for I = 1.4 × 1015 W · cm−2, ξ = 1 and a
2-4-2 trapezoidal laser envelope. We use a microcanonical generation of the initial conditions such that
H(r,p) = −0.1 a.u. before the laser field is turned on. The return energy is computed with Er = |p(tr)|2/2
at time tr such that |r(tr)| = 5 a.u. The solid and dashed black lines overlap and correspond to the return
energy and the difference energy of the recolliding electron in the SFA for t0 = 0.

Figure 4.5 shows the distribution of return energy of the electron initiated with an energy H(r,p) =
−0.1 a.u. (see Appendix D.1.2 for detail) as a function of the return time tr, for a trapezoidal envelope 2–4–2,
i.e., Tu = 2T , Tp = 4T and Td = 2T . The recolliding trajectories are detected using distance criteria with
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thresholds Rmin and Rmax. The electron ionizes at time at time t0 such that |r(t0)| < Rmin, travels outside
the core at a distance |r(t)| > Rmax, and then returns at time tr such that |r(tr)| < Rmin. The parameter
Rmin corresponds roughly to the core region. The parameter Rmax ensures the electron goes far enough from
the core to be considered as a recollision. We choose Rmin = 5 a.u. and Rmax = 6 a.u.. The ionization time
t0 and the return time tr could be defined such as |r(t0)| = Rmin and |r(tr)| = Rmin. Here, we choose to
define them as the time the electron has changed direction, i.e., the time its radial momentum changes sign.
The ionization time t0 (resp. return time tr) is the last time (resp. first time) when |r(t0)| < Rmin (resp.
|r(tr)| < Rmin) such that

r(t0) · p(t0) = 0, r(tr) · p(tr) = 0. (4.21)

In this way, we ensure to identify the ionization and return times as the time when the electron is the closest
from the ionic core before and after ionization, respectively. If the electron does not return to the core, ti is
the ionization time of the electron.

In Fig. 4.5, the return energy of Hamiltonian (1.14) with initial conditionsH(r,p) = −0.1 a.u. is compared
with the return energy Er (solid line) and the difference energy ∆E (dashed line) of the electron in the SFA
for t0 = 0 and a trapezoidal envelope 2–4–2 [see Eq. (4.22) and (4.23)]. For each return time, we observe an
excellent agreement between the maximum of the distribution of Hamiltonian (1.14) and the SFA prediction.
As a consequence, the SFA can be used to determine the return energy of these electrons. In addition, we
observe that the solid and dashed black lines overlap. Therefore, the initial energy E0 = Er −∆E (energy at
time t0) of the electrons which return to the core is very small compared to Up. Because the electrons ionize
early after the laser field is turned on, their energy is sufficient to compensate their sideways drifts.

4.1.3.3 Extension to EP laser fields

For ξ 6= 1, the recollision picture is not so clear since the saddle point of the zero-velocity surface moves in
time even for fixed laser envelope. However, the scenario works in the same way: The electron initiated with
a sufficiently small ionization potential ionizes early after the laser field is turned on, with a small initial
momentum, which compensates the initial vector potential in Eq. (4.1), such that p(ti)−A(ti) ≈ 0. Then,
the electron travels in the continuum. In the SFA, using the conditions r(t0) = r(tr) for an electric field given
by Eq. (1.10) and for an arbitrary laser envelope, the return energy of the electron is

Er(t0, tr) =
E2

0

2

∫ tr

t0

dt1

∫ tr

t0

dt2

{
f(t1)f(t2) cos[ω(t1 − t2)]− 2

∫ t2

t0

dt3 f(t1)f(t3)
cos[ω(t1 − t3)]

tr − t0

+

∫ t1

t0

dt3

∫ t2

t0

dt4 f(t3)f(t4)
cos[ω(t3 − t4)]

(t0 − tr)2

}
+

E2
0(ξ2 − 1)

2(ξ2 + 1)

[∫ tr

t0

dt1 f(t1) sin(ωt1 + ϕ)−
∫ tr

t0

dt1

∫ t1

t0

dt2 f(t2)
sin(ωt2 + ϕ)

tr − t0

]2

. (4.22)

One can verify that if f = 1, the maximum return energy of the electron is the well-known 3.17Up/(ξ
2 + 1).

The difference of energy of the electron during its excursion outside the core region is

∆E(t0, tr) =
E2

0

2

∫ tr

t0

dt1

∫ tr

t0

dt2

∫ t2

t0

dt3 f(t1)

{
f(t2)

cos [ω(t1 − t2)]

t2 − t0
− 2f(t3)

cos [ω(t1 − t3)]

tr − t0

}
+

E2
0(ξ2 − 1)

2(ξ2 + 1)

∫ tr

t0

dt1 f(t1) sin(ωt1 + ϕ)

×
∫ tr

t0

dt2

∫ t2

t0

dt3

[
f(t2)

sin(ωt2 + ϕ)

t2 − t0
− 2f(t3)

sin(ωt3 + ϕ)

tr − t0

]
. (4.23)

For slowly varying laser envelope, the laser envelope is such that |∂jf(t)/∂tj | � ωj , where j ∈ N∗. We use
the small parameter ε for bookkeeping purposes, such that f(t) = f(εt) and such as it is used in Sec. 2.2.2.5.
In Eq. (4.23), we perform integration by parts to obtain a Taylor series in ε. At the lowest order, the energy
gained by the electron is

∆E ≈ 2Up

[
f(tr)

2 − f(ti)
2
]

+ 2Up(1− ξ2) [g(tr, ti)− g(ti, tr)] , (4.24)
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Figure 4.6: HHG spectrum for ξ = 0, 0.25, 0.5, 0.75 and 1 and I = 8(ξ2 + 1)× 1014 W · cm−2. The vertical
lines correspond to the radiated frequencies 2.3Up/(ξ

2 + 1) + Ip (left) and 3.17Up/(ξ
2 + 1) + Ip (right).

Upper left: Initial state initiated as Ψ(r, 0) = [ψ0(r) + ψ1(r)]/
√

2. Upper right: Initial state initiated as
Ψ(r, 0) = [3ψ0(r) + c1ψ1(r)]/

√
10. Lower panel: Comparison of the spectrum in LP and CP for an initial

state with a small and large portion of excited state.

with

g(t1, t2) = f(t1)2 cos(ωt1 + ϕ)

[
cos(ωt1 + ϕ)− 2

sin(ωt1 + ϕ)

ω(t1 − t2)

]
+2f(t1)f(t2)

sin(ωt2 + ϕCEP) cos(ωt1 + ϕCEP)

ω(t1 − t2)
.

For slowly varying envelope, in Eq. (4.24), we observe two main terms contributing to the energy boost of
the electron during its excursion outside the core. The first term in the right-hand side of Eq. (4.24) is
2Up

[
f(tr)

2 − f(ti)
2
]
, and depends on the laser envelope only. In contrast, the last term in the right-hand

side of Eq. (4.24) is proportional to 2Up(1− ξ2) [g(tr, ti)− g(ti, tr)], and depends on the CEP ϕCEP and the
carrier-envelope frequency ω. At high ellipticities, 1 − ξ2 � 1, and the last term in the right-hand side of
Eq. (4.24) is very small compared to the first term. In this case, the electron mostly gains energy through
the variations of the laser envelope. In contrast, at low ellipticities, 1− ξ2 ≈ 1, and the magnitude of the last
term in the right-hand side of Eq. (4.24) is very small compared to the magnitude of the first term. In this
case, the electron mostly gains energy through the oscillations of the laser.

4.2 Applications to HHG

The high harmonic generation (HHG) of atomic or molecular gases subjected to intense infra-red laser fields
heralded a new era in science and technology due to its ability to unravel the electron dynamics on its own
spatial and temporal scales [59, 162, 4] and its role in realizing table-top ultrashort light sources [132, 153, 35].
Controlling HHG from the parameters of the driving laser represents a formidable challenge both on the
experimental [15] and theoretical [44] sides with considerable amount of research efforts for the past decades.
In this section, we use envelope-induced recollisions to produce HHG with an atom subjected to a highly
elliptically polarized laser pulse.

4.2.1 Production of HHG with high EP laser fields
The radiation of the electron is induced by its dipole acceleration

〈a(t)〉 = −
∫

dr |Ψ(r, t)|2 ∂V (r)

∂r
, (4.25)
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where Ψ(r, t) is the total wave function of the electron. According to the semi-classical scenario of recolli-
sions [100, 9], harmonic emission occurs for a linear combination of two eigenstates: One portion of the wave
function is in the ground state ψ0(r) and another portion is in the recolliding state ψ1(r, t). The total wave
function is of the form [100] Ψ(r, t) = c0ψ0(r) + c1ψ1(r, t). Roughly speaking, following Ref. [88], we assume
that the energy of the ground state −Ip and the return energy of the recolliding electron Er are eigenvalues
of the Hamiltonian operator in the eigenstates ψ0 and ψ1, respectively. In this case, the wave function reads
Ψ(r, t) ≈ c0 exp(iIpt)ψ0(r) + c1 exp(−iErt)ψ1(r). We substitute the latter equation in Eq. (4.25), and we
obtain

〈a(t)〉 = −c∗0c1 exp [−i(Er + Ip)]

∫
drψ∗0(r)ψ1(r)

∂V (r)

∂r
+ c.c.. (4.26)

Therefore, the dipole acceleration oscillates at a frequency Ip + Er. When the recolliding wave packet of
energy Er interferes with the portion of the wave function in the ground state, the electron recombines in the
ground state of energy −Ip. Due to energy conservation, a photon of frequency

Ω = Ip + Er,

is emitted. The production of high harmonics is observed if Er ∼ Up. The simplified expression for the
dipole acceleration derived in Ref. [88] and given by Eq. (4.26) highlights the important ingredients for the
production of HHG. The production of HHG is possible only if:

• A portion of the ionized wave packet returns to the core, i.e., c1 6= 0.

• The ground state of the electron is populated when the recolliding wave packet returns to the core, i.e.,
c0 6= 0.

• The recolliding electrons gain energy from the laser field in order that Er ∼ Up.

We recall that envelope-induced recollisions are observed for electrons with ionization potential such that
Ip < Ic. When this condition is fulfilled, a portion of the ionized wave packet can return to the core. For
high ellipticities, the electron gains energy from the laser field only if it ionizes early after the laser field is
turned on. In this case, according to Eq. (4.24), for highly elliptically polarized laser fields, the electron can
gain a large amount of energy (of order 2Up) through the variations of the laser envelope. However, this
also implies that the electrons of high return energy depopulate completely the core region early after the
laser field is turned on, and therefore the ground state of the electron is depopulated when the recolliding
electrons return to the core. In order to overcome this difficulty, the atom is initiated in a superposition of
states [109, 131].

We consider the initial wave function in a superposition of states computed using the imaginary time
propagation and the Gram-Schmidt orthonormalization. The initial wave function is Ψ(r, 0) = c0ψ0(r) +
c1ψ1(r), where ψ0(r) and ψ1(r) are the ground state and the first excited state of the atom, respectively,
c0 and c1 are constants. We use the soft Coulomb potential given by Eq. (1.8) for a = 0.26 and Z = 1.
The energy of the ground state is −I0 ≈ −24.6 eV and the energy of the excited state is −Ip ≈ −5.7 eV
(softening parameter a = 0.26, close to He). The ionization potential of the excited state is such that Ip < Ic
[Ic = 7.4 eV with Eq. (4.17)], and therefore we expect the electrons in the excited state to undergo envelope-
induced recollisions after ionization. Figure 4.6 shows the intensity spectrum of the dipole acceleration 〈a(t)〉
given by Eq. (4.25). The HHG intensity spectrum |RHHG(Ω)|2 is computed with

RHHG(Ω) = F [〈a(t)〉WHHG(t)] (Ω),

where F is the Fourier transform (see Appendix A). We use a Hanning window WHHG(t) = sin(πt/Tf )2 for
the HHG intensity spectrum, where Tf = 10 × 2π/ω (ω the laser frequency) is the total integration time.
The wave function of the electron Ψ(r, t) at time t is obtained from the two-dimensional TDSE

i
∂

∂t
Ψ(r, t) =

[
−∆

2
+ V (r) + r ·E(t)

]
Ψ(r, t). (4.27)

The electric field in the LF is E(t) = E0f(t)/
√
ξ2 + 1[x̂ cos(ωt)+ŷξ sin(ωt)]. The laser envelope is trapezoidal

2–4–2. The wave function at time t is obtained using the real time propagation and the splitting operator
method [11]. In Fig. 4.6, the intensity of the laser is such that Up/(ξ

2 + 1) is at the same harmonic for all
ellipticities, i.e., I = 8(ξ2 + 1)× 1014 W · cm−2.
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In the upper panels of Fig. 4.6, we observe a cutoff at the 100th harmonic which corresponds to the
electrons with return energy about 3.17Up/(ξ

2 + 1) for ξ = 0, 0.25 and 0.5. For larger ellipticities, the
strength of the 80−160th harmonics decreases significantly, and a second cutoff appears at the 80th harmonic
corresponding to a return energy about 2.3Up. We notice that this second cutoff is also observed at lower
ellipticities. We observe that the peak intensity in the plateau region of the HHG spectrum does not change
with respect to the ellipticity, in contrast to the predictions of the conventional three-step model [39]. This
is observed regardless the portion of excited states in the initial wave function. In the lower panel of Fig. 4.6,
we observe that the influence of the portion of excited states in the initial wave function influences weakly
the peak intensity in the plateau region of the HHG spectrum.

4.2.2 Time-frequency analysis: Dominance of the envelope-driven recollisions
for highly elliptic laser polarizations

Figure 4.7 shows the time-frequency analysis of a(t) used for computing the HHG spectra of Fig. 4.6. The
time-frequency analysis |RTFA(Ω)|2 of the dipole acceleration is computed with

RTFA(Ω, τ) = F [〈a(t)〉WTGA(t− τ)] (Ω),

Figure 4.7: Time-frequency analysis of the dipole acceleration a(t) at different ellipticities for a trapezoidal
envelope 2-4-2. The parameters are the same as in the upper left panel of Fig. 4.6. The solid and dashed
curves overlap and correspond to the return energy and energy difference of the electron ionizing at time
ti = 0 and returning at time tr in the SFA.
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Figure 4.8: HHG spectrum as a function of the ramp-up duration Tu/T in logarithmic scale for LP (top
panel) and CP (lower panel). The laser envelope is trapezoidal of ramp-up duration Tu, plateau duration
6T − Tu, and ramp-down duration 2T . The dashed and solid red lines are the SFA prediction of the energy
difference and return energy, respectively.

where F is the Fourier transform (see Appendix A). We use a window function WTFA(t) = cos(πt/T )4

for −T/2 < t < T/2 and zero otherwise, with T = 0.25 × 2π/ω. In Fig. 4.7, we depict the return energy
(solid grey curves) and the energy difference (dashed grey curves) of an electron ionizing at time t0 = 0 as a
function of the return time computed in the SFA. We tested numerically that the depicted curves are robust
with respect to the ionization time. No qualitative difference is observed on the dashed and solid curves for
t0 . 0.6T . There is an excellent agreement between the grey curve and the maximum of the distribution
of the time-frequency analysis. For ξ = 0, we observe that the time frequency analysis is dominated by the
conventional recollision channel in which the electrons ionizes and return during the plateau [39, 100, 147, 163]
with a maximum return energy around 3Up. We observe a minor contribution of the envelope-induced
recollision channel, described in this chapter, with a maximum return around 2Up. For ξ = 0.5, we observe a
major contribution of the envelope-induced recollision channel and a minor contribution of the conventional
recollision channel [39, 100, 147, 163]. Around ξ = 0.25, the conventional recollision channel disappears [119]
because of the large drift momentum of the electron at ionization [39]. Only the envelope-induced recollision
channel, described in this chapter, persists for larger ellipticities. Also, the solid and dashed grey curves
overlap almost completely for all return time and for all ellipticities, implying that the electron energy at
ionization is very small.

In addition, we observe that the classical calculations of the distribution of the return energy as a function
of the return time in Fig. 4.5 and the quantum calculation of the time-frequency analysis of the dipole
acceleration in the upper panel of Fig. 4.7 exhibit the same patterns. The classical calculation in Fig. 4.5
is performed using a microcanonical distribution of the initial conditions with H(r,p, 0) = −0.1 a.u. The
electrons ionize over the barrier early after the laser field is turned on. The agreement between the full
classical and quantum calculations show that the nature of the envelope-induced recollisions is essentially
classical.

4.2.3 Influence of the duration of the ramp-up: Control of the HHG cutoff
The importance of the small electron energy at ionization (or small initial velocity) is demonstrated in Fig. 4.8
which shows the HHG spectrum as a function of the harmonic number and the ramp-up duration Tu. The
envelope is trapezoidal, the ramp-up is at t ∈ [0, Tu], the plateau at t ∈ [Tu, 6T ] and the ramp-down at
t ∈ [6T, 8T ]. The solid and dashed red curves in the lower panel are the maximum return energy and energy
difference in CP in the SFA, respectively, of the electron ionizing at time t0 = 0. For LP, the conventional
recollision scenario is dominant, the spectrum follows the well-known cutoff law Ω ≈ 3.17Up + Ip, and we
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observe no significant influence of the ramp-up duration Tu. For CP, first, we observe that the HHG spectrum
is very low for Tu . T . At the same time, we observe that Ei = E −∆E is large. It implies that the energy
of the electron at ionization necessary to compensate its sideways drift must be large. However, the initial
energy of the electron after ionization is small, and therefore the drift momentum of the electron pushes it
away from the core without recolliding. For Tu > T , we observe that the HHG cutoff oscillates as a function
of the ramp-up duration. We observe a good agreement between the SFA prediction and the HHG cutoff.
Hence, for highly elliptically polarized laser fields, the HHG cutoff depends drastically on the laser envelope.

4.3 Applications to NSDI

Manifestations of recollisions in CP fields have been first observed experimentally in the enhancement of
double ionization [61] [see the right panel of Fig. 4.1]. In Ref. [61], it is noticed that

“[...] all ionization should proceed above the Coulomb barrier and hence there exists no barrier
for a tunneling mechanism”

In this section, we show that the envelope-induced recollisions, whose first step is over-the-barrier ionization,
correspond to the recollisions responsible of the enhanced double ionization in CP [61, 111].

4.3.1 Double ionization probability curves
We consider an atom with two active electrons labeled by k = 1, 2, with phase space variables (rk,pk). The
classical Hamiltonian of the system [111] in the dipole approximation in the LF reads

H({rk,pk}2k=1, t) =

2∑
k=1

[
|pk|2

2
− 2√

|rk|2 + a2
+ rk ·E(t)

]
+

1√
|r1 − r2|2 + 1

. (4.28)

The term (|r1−r2|2+1)−1/2 corresponds to the electron-electron interaction, and is the fundamental ingredient
of NSDI [110, 111]. Here, we use purely classical calculations [see Ref. [130] for a comparison between purely
classical and purely quantum numerical measurements on double ionization with Hamiltonian (4.28) for LP
fields for d = 1]. The atom is initiated with H({rk,pk}2k=1, 0) = Eg using microcanonical generation of
the initial conditions [2] (see Appendix D.1.2 for detail), with Eg the ground state energy of the two-active
electron atom. The softening parameter of the ion-electron potential a is chosen to avoid self-ionization and
non-emptiness of the ground state [108]. The softening parameters used for each atom are shown in Tab. 4.1.

He Ne Mg Ar Xe
E1 (in a.u.) −0.90 −0.79 −0.28 −0.58 −0.45
E2 (in a.u.) −2.00 −1.51 −0.55 −1.02 −0.77
Eg (in a.u.) −2.90 −2.30 −0.83 −1.60 −1.22
a (in a.u.) 0.8 1 3 1.5 1.8

Table 4.1: Energy of the ground state
and softening parameters used in the
manuscript for Hamiltonian (4.28) to
model Mg, He, Xe, Ar and Ne.

The upper panel of Fig. 4.9 shows the double ionization probability curves for the Mg atom subjected to a
CP laser field. The envelope of the laser is trapezoidal with Tu the duration of the ramp-up, Tp = 6T −Tu the
duration of the plateau duration and Td = 2T the duration of the ramp-down. The solid curves are the double
ionization probability as a function of the intensity I computed using a distance criterion |rk| > 100 a.u. for
k = 1, 2. The dash-dotted curves are the NSDI probability curves as a function of the intensity I. The NSDI
occurs when one electron recollides and the other electron is bounded at the return of the recolliding electron.
The dashed curves are the SDI probability curves as a function of the intensity I. The SDI occurs when both
electrons ionize without recollisions. For Tu = 0 (grey curves), we observe that the NSDI probability is zero,
and therefore the conventional recollision channel is absent, in agreement with Ref. [39]. For Tu ≥ 2T (colored
curves), we observe a knee structure in the double ionization probability curves as a function of the laser
intensity, in agreement with the experimental measurements in the right panel of Fig. 4.1. The contribution
of the knee structure is mainly due to NSDI, as observed with the comparison with the dash-dotted curves.
The knee structure is a signature of the recollisions [72, 111].

The lower panels of Fig. 4.9 show the photoelectron momentum distribution of the electron for Tu = 2T ,
and I = 1014 W · cm−2 (left panel) and I = 5 × 1014 W · cm−2 (right panel). In the left panel, the NSDI
is dominant. We observe that the distribution of radial final momentum is peaked around pr,1 = pr,2. The
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Figure 4.9: Double ionization probability of Mg (Eg = −0.85 a.u., a = 3) as a function of the laser intensity
I (solid thick curves) solution of Hamiltonian (4.28) for a trapezoidal envelope with ramp-up duration Tu,
plateau duration Tp = 6T − Tu, and ramp-down duration Td = 2T . The grey, blue, pink and purple curves
are for Tu = 0, 2T , 3T and 4T , respectively. The thin dashed-dotted and dashed curves are the probability of
NSDI and SDI, respectively. Notice that the NSDI probability for Tu = 0 (dashed-dotted grey curve) is below
10−4. The lower panels are the correlated photoelectron radial momentum distributions with pr,j = rj ·pj/|rj |
for j = 1, 2. Left and right panels are for I = 1014 W · cm−2 and I = 5 × 1014 W · cm−2 (indicated by the
black vertical lines in the top panel), respectively. The dashed white lines indicate the equal energy sharing
between electrons pr,1 = pr,2. Intensity is in W · cm−2 and momenta are scaled by E0/ω.

96



4.3. APPLICATIONS TO NSDI4.3. APPLICATIONS TO NSDI4.3. APPLICATIONS TO NSDI4.3. APPLICATIONS TO NSDI4.3. APPLICATIONS TO NSDI4.3. APPLICATIONS TO NSDI

Figure 4.10: Typical NSDI of Hamiltonian (4.28): From the ground state to the return for a 2-4-2 laser
envelope. Left panel: Trajectories in the RF (x̃, ỹ). The grey levels show the value of the zero-velocity
surface of the outer electron during the plateau. Right panels: Red and blue dots are the two electrons. The
trajectories projected along the position and energy at the ionization time of the recolliding electron t0, at
Tu = 2T (ramp-up duration) and at the return time of the recolliding electron tr. The grey surface is the
classical forbidden region for ỹ = 0 [H̃(r̃, p̃, t) < Z(r̃, t)]. The light blue curve is the zero-velocity surface at
time t = 0. The saddle point is the local maximum of the zero-velocity surface for negative x̃. Distances and
energies are in a.u.

electrons likely share equally their energy [110]. In the right panel, the SDI is dominant. We observe that the
distribution of the final radial momentum is composed of two peaks. The energy of each electron is E , given in
Eq. (4.16), with effective charge Z = 1 for the first ionized electron and Z = 2 for the second ionized electron.
A typical SDI of Hamiltonian (4.28) is depicted in Fig. 4.11. Notice that the effective laser amplitude when
the first electron is ionized is smaller than the effective laser amplitude when the second electron is ionized.
Therefore, the energy of the second ionized electron is larger than the energy of the first ionized electron.

Figure 4.11: Typical SDI of Hamiltonian (4.28): From the ground state to the return for a 2-4-2 laser envelope.
Left panel: Trajectories in the RF (x̃, ỹ). The grey levels shows the value of the zero-velocity surface of the
outer electron during the plateau. Right panels: The trajectories projected along the position and energy at
the first ionization, at the second ionization and at Tu = 2T (end of the ramp-up). The grey surface is the
classical forbidden region for ỹ = 0 [H̃(r̃, p̃, t) < Z(r̃, t)]. The light blue curve is the zero-velocity surface at
time t = 0. The saddle point is the local maximum of the zero-velocity surface for negative x̃. Distances and
energies are in a.u.

4.3.1.1 Inner-outer electrons approximation

In Fig. 4.10, at t0 < t < tr, the red (recolliding) electron leaves the ionic core region, while the blue electron
stays at the bottom of its zero-velocity surface. We label the recolliding (outer, red) electron k = 1, and the
bound (inner, blue) electron k = 2. During its excursion outside the ionic core region, the nucleus charge
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seen by the outer electron is screened by the inner electron. There is |r1 − r2|2 ≈ |r1|2 � a2 and

− 2√
|r1|2 + a2

+
1√

|r1 − r2|2 + 1
≈ − 1√

|r1|2 + a2
.

As a consequence, during the excursion of the recolliding electron in the continuum, Hamiltonian (4.28) can
be written in terms of the sum of two Hamiltonians independent of each other

H({rk,pk}2k=1, t) ≈ H1(r1,p1, t) +H2(r2,p2, t).

Hamiltonian H1 and H2 are the Hamiltonian of the outer (recolliding) and inner (bond) electron, respectively.
The expression of Hamiltonians H1 and H2 are given by Eq. (1.14) with the effective charge of the soft-
Coulomb potential given by Z = 1 for the outer electron and Z = 2 for the inner electron. The inner-outer
electrons approximation allows us to analyze the dynamics of each electron independently, i.e., in the SAE
approximation. The energy H1 and H2 in the RF (H̃1 and H̃2) correspond to the energy of each electrons
depicted in Figs. 4.10 and 4.11.

4.3.2 Ionization and return times of the recolliding electron
Figure 4.12 shows the distribution of ionization and return times of the outer electron (r1,p1) for two
different ramp-up envelopes: f(t) = t/Tu (upper panel), and f(t) = sin(πt/2Tu)2 (lower panel) for Tu = 3T .

Figure 4.12: Distribution of ionization times t0 of the recolliding electron leading to NSDI of Hamilto-
nian (4.28) for Mg (a = 3). The inset is the distribution of return times tr of the recolliding electron leading
to NSDI. The red dashed curve is the theoretical prediction Eq. (4.14) for Ip = 0.3 a.u. (corresponding to
Mg). Upper panel and lower panels are for linear f(t) = t/Tu and sinusoidal f(t) = sin(πt/2Tu)2 ramp-up,
respectively, with Tu = 3T , Tp = 6T and Td = 8T .
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We assume that the energy of the recolliding electron is initially H1(r1,p1, 0) = −0.3 a.u. (corresponding to
Mg) and therefore Ip = 0.3 a.u. The red dashed curves in Fig. 4.12 are the prediction of the ionization time
of the recolliding electron given by Eq. (4.14). We observe that there is an excellent agreement between the
prediction of Eq. (4.14) and the distribution of Fig. 4.12. Therefore, the recollisions inducing the enhancement
in the double ionization probability of Mg are due to trajectories which ionize over the barrier, before the
laser field reaches its peak amplitude. They correspond to envelope-induced recollisions described in this
chapter.

In the insets of Fig. 4.12, we show the distribution of return times of the recollisions leading to NSDI as a
function of the intensity of the laser field. We observe that the local maxima of the distribution depend on the
intensity of the laser. Figure 4.13 shows the distribution of return times of the recollisions leading to NSDI
for different envelope shapes and ramp-up durations. The ramp-up duration Tu = 3T corresponds to the
distributions in the inset of Fig. 4.12 summed over the intensity. The vertical lines indicates tr = (j + 1/4)T
with j ∈ N. We observe that the local maxima of the distribution depend on the shape of the laser envelope
and on the ramp-up duration of the field. This local maxima depend on the distribution of the electron
coordinates at ionization.

4.3.3 Breakdown of NSDI as a function of the laser frequency and the target
species

Figure 4.14 shows the maximum of the NSDI probability Pmax as a function of ω − ωc for Mg, Ar, Ne and
He, where ωc is the critical frequency. The maximum of the NSDI probability Pmax corresponds to the
maximum of the dash-dotted curves in Fig. 4.9. Practically, the critical frequency ωc is the frequency for
which Pmax ≈ 10−5. From the prediction of Eq. (4.17), the critical frequency for Mg is ωc ≈ 0.06, Ar is
ωc ≈ 0.18, Ne is ωc ≈ 0.28, and He is ωc ≈ 0.34. The quantitative discrepancy between the numerical
results and Eq. (4.17) may be due to our purely classical calculations, for which the energy sharing before
ionization, where we assume that Hk(rk,pk, t) ≈ Ek before ionization, is not fulfilled. However, Eq. (4.17)
and the purely classical calculations agree qualitatively. For increasing first ionization potential, the NSDI
probability decreases.

4.4 Conclusions

In sum, we have demonstrated the conditions under which a large portion of electrons are both ionized and
later return to their parent ion regardless of the ellipticity of the laser field. The recollisions taking this
recollision channel are referred to as envelope-driven recollisions. To recollide with a high return energy, the
electron needs to ionize early after the laser field is turned on to benefit from the energy boost generated by
the CP field, and not to drift away from the core. The GC model derived in Chap. 2 allowed us to determine
under which conditions the envelope-driven recollisions can be observed in highly elliptically polarized laser
fields. We have shown that, to undergo envelope-driven recollisions in highly elliptically polarized laser fields,
the ionization potential of the electron must be such that Ip < Ic, where Ic is the critical ionization potential
given by Eq. (4.17). For highly elliptically polarized laser fields, during its excursion in the continuum, the
electrons gain energy mostly from the variations of the envelope of the driving laser. During their excursion,
the energy of the envelope-driven recollisions can increase of 2Up, allowing for a return energy Er = E0 + ∆E
in excess of 2Up. Also, we observe a good agreement between the return energy of the electron in the SFA
and the return energy of Hamiltonian (1.14).

We have shown that the envelope-driven recollisions can be used to produce HHG with atoms subjected
to highly elliptically polarized laser fields. The atom must be initiated in a superposition of ground and
excited states. The time-frequency analysis revealed that the envelope-driven recollisions persist for high
ellipticities, while the conventional recollision channel disappears. In addition, we have shown that the
envelope-driven recollisions are responsible for the enhanced double ionization probability of Mg subjected to
CP fields observed in experiments [61]. The existence conditions of the envelope-driven recollisions allowed
us to determine the conditions under which enhanced double ionization can be observed in atoms subjected
to CP fields (see Fig. 4.4).
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Figure 4.13: Probability density function of the return time of the recollisions leading to NSDI, summed over
the intensity range I ∈ [1013, 1015] W · cm−2 (i.e., insets of Fig. 4.12 projected along the return time axis),
for a ramp-up duration τ = 2T (blue), 3T (pink) and 4T (purple). Upper and lower panel are with linear
and sinusoidal ramp-up, respectively. The vertical lines indicate tr = (j + 1/4)T with j ∈ N.

Figure 4.14: Maximum of the non-sequential double ionization probability (PNSDI) as a function of ω − ωc
and a trapezoidal laser envelope 2–4–2, i.e., Tu = 2T , Tp = 4T and Td = 2T . The results of the simulation
for the critical laser frequency ωc are: ωc ≈ 0.04 (Mg), ωc ≈ 0.09 (Ar), ωc ≈ 0.14 (Ne), and ωc ≈ 0.26 (He).
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Chapter 5

Structure of the phase space of the
recolliding electron in step (ii)

When atoms are subjected to intense and elliptically polarized laser fields, multiple temporal and spatial scales
arise from the competition between the strong laser and Coulomb forces. As seen throughout this manuscript,
the same electron trajectory can involve multiple spatial and temporal scales. For instance, in Fig. 2.3 which
shows a typical trajectory of Hamiltonian (1.14) for d = 1, we observe that the electron goes relatively far
from the core (see white regions in Fig. 2.3), involving long-time and large-spatial scales dynamics. Also,
the electron comes close to the core for short times (see grey regions in Fig. 2.3), involving short-time and
small-spatial scales dynamics. When a unique spatial and a unique temporal scale is involved, we have shown
in the previous chapters that reduced models derived from perturbative methods can approximate, relatively
accurately, the motion of the electron. However, for trajectories involving multiple temporal and spatial
scales, such as for instance the trajectory depicted in Fig. 2.3, perturbative methods have great difficulty
to approximate accurately their motion in one piece. In particular, the presence of multiple temporal and
spatial scales in the system makes the dynamics chaotic.

An intuitive way for analyzing the trajectories of the electron involving multiple temporal and spatial
scales consists in reconstructing the trajectories of the electron using an appropriate reduced model for each
interval of time interval during which a unique temporal and a unique spatial scale is involved. This procedure,

Figure 5.1: Illustration of the Poincaré section Σ of Hamiltonian (5.14) (2D case) corresponding to the
stroboscopic map P : (r,p) 7→ ϕT0 (r,p) in 2D. The black line is the periodic orbit O2 projected in the plane
(y, py). The black dots are the fixed point of the periodic orbit under the mapping P. The blue surface is an
invariant torus of O2 of frequency ν as a function of time. The red and blue thick lines are two invariant tori
under the mapping P. The thin red and blue lines are trajectories along the red and blue torus, respectively.
The inset is a zoom around the invariant tori projected on the plane (y, py).
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for instance, is used in Refs. [133, 37, 98] to describe the rescattering of the electrons. In these models, the
collisions between the ion and the electron are considered as hard-sphere collisions. Between two collisions,
the motion of the electron is described by the SFA. However, these procedures allow to analyze the behavior
of individual trajectories only. Another way for analyzing the trajectories of the electron involving multiple
temporal and spatial scales consists in nonperturbative methods. In this chapter, we study the invariant
structures in phase space, such as for instance fixed points and periodic orbits, from a purely classical
and nonlinear dynamical analysis. Electrons follow paths in phase space drawn by invariant structures.
Computing and representing the invariant structures in phase space allows us to understand and predict the
global dynamical behavior of the electrons.

Questions

• Which are the relevant and important invariant structures in phase space driving the electrons in two
and three dimensions ?

• How can we compute numerically and represent these high-dimensional structures in high-dimensional
phase space ?

Plan In this chapter, we study the structure of the phase space of Hamiltonian (1.14) using nonperturbative
methods. The envelope of the laser is chosen as f = 1. The ion-electron interaction is the soft-Coulomb
potential (1.8), V (r) = −Z(|r|2 + a2)−1/2. Hamiltonian is given by Eq. (1.14) and the electric field reads

E(t) =
E0√
ξ2 + 1

[ex cos(ωt) + eyξ sin(ωt)] . (5.1)

The CEP is set to zero without loss of generality. The dimension of the phase space is 2d+1, due to the time
dependence of the system. Since the laser envelope is f = 1, Hamiltonian (1.8) is T -periodic, with T = 2π/ω
the period of the laser field. We take advantage of the periodicity of the Hamiltonian to analyze the electron
dynamics under the Poincaré map (also called stroboscopic map)

P : (r,p) 7→ ϕT0 (r,p), (5.2)

where ϕT0 (r,p) is the Hamiltonian flow from time t = 0 to time t = T . Under Poincaré maps, the dimension of
the phase space is decreased. In particular, under the stroboscopic map (5.2), the dimension of the phase space
of Hamiltonian (1.14) is 2d. In addition, under Poincaré maps, the dimension of the invariant structures in
phase space is decreased. Figure 5.1 illustrates the dimension reduction of the invariant structures under the
stroboscopic map (5.2). The dimension is d = 2, and the phase space is projected on (y, py, t). The Poincaré
sections Σ associated with the stroboscopic map (5.2) are the white planes at t/T = {0, 1, 2}. The black
curve shows the periodic orbit OS (see Fig. 5.2b) as a function of time. Under the stroboscopic map (5.2),
the periodic orbit OS is a fixed point, as shown in the inset of Fig. 5.1. The blue surface represents a two-
dimensional invariant torus as a function of time. Clearly, we observe it is T -periodic. Under the Poincaré
map (5.2), the T -periodic two-dimensional invariant torus becomes a one-dimensional invariant torus (closed
curve), as shown in the inset of Fig. 5.1. Hence, using Poincaré maps, such as for instance the stroboscopic
map (5.2), allows us to reduce the dimension of the phase space and invariant structures, and in the meantime,
we keep all the relevant information on the electron dynamics.

In Sec. 5.1, we study the LP fields case for d = 1. We take advantage of the existence of the invariant
subspace in LP fields along the polarization axis to analyze the dynamics for d = 1. This allows us to identify
two periodic orbits candidates for driving the recollisions in higher dimensions, namely OS and OA. In
Sec. 5.2, we study the LP fields for d = 2 and d = 3. We identify another set of relevant periodic orbits OF .
We find that the invariant structures associated to OS drive the electron dynamics, while the dimension of
the invariant structure associated with OA and OF is too small to drive the electron dynamics. We compute
and represent the invariant structure associated with OS : The stable and unstable manifolds of a family of
invariant tori. In Sec. 5.3, we study the EP fields case. In particular, we study the evolution of the periodic
orbits OA and OF under the variation of the ellipticity. Finally, we show that for CP fields, the periodic
orbit OF corresponds to a fixed point in the RF.

Publication

• J. Dubois, M. Jorba-Cuscó, C. Chandre, A. Jorba, T. Uzer, Recollisions in higher dimensions: A family
of invariant tori drives the electron dynamics (in preparation).
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Figure 5.2: Periodic orbits and associate stable and unstable manifolds of Hamiltonian (5.3) (case d = 1) for
I = 3× 1014 W · cm−2, a = 1 and Z = 1. (a) RPOs and the associate fixed point in the Poincaré map P . (b)
SPO OS and the associate fixed point in the Poincaré map P . (c) Final distance as a function of the initial
conditions (x0, px,0) for an integration t = 100T , i.e., |Πϕ100T

0 (x0, px,0)| with Π the projector along ex. The
red and grey lines are the stable and unstable manifolds of the fixed point of OS under P , respectively. The
black and light grey lines are the stable and unstable manifolds of the RPOs, respectively.

5.1 Linearly polarized fields for d = 1

In this section, we investigate the structure of the phase space of an electron in an atom driven by a LP laser
field for d = 1 (case d = 1). The Hamiltonian of the electron reads

H(x, px, t) =
p2
x

2
− Z√

x2 + a2
+ xE0 cos(ωt). (5.3)

Figure 5.2b shows a periodic orbit of Hamiltonian (5.3) denoted OS . Figure 5.2c shows the final distance
of the electron (at time t = 100T ) as a function of the initial conditions x0 and px,0 at time t = 0. The
final distance of the electron from the core highlights the nonlinearities due to the strong ion-electron and
laser-electron interaction. In particular, the blue regions and the paths with sensitivity with respect to the
initial conditions correspond to configurations in phase space which lead to recollisions. The dark blue region,
near the origin of phase space, is a region where the electron motion is bounded, and does not ionize.

In Fig. 5.2c, the orange dot indicates the location of the fixed point of OS under the Poincaré map P .
The red and grey curves are the stable and unstable manifolds of the SPO. Stable and unstable manifolds
are invariant structures in phase space. Trajectories on the stable (resp. unstable) manifold come to (resp.
go away from) OS . We observe that the stable manifold of the RPOs (red curves) reproduces the pattern
of recollisions highlighted by the blue levels. In addition, these curves surround the dark blue region, where
electrons are bounded. In phase space, the stable and unstable manifolds structure the phase space, by acting
as barriers of the dynamics, and guide the electrons.

In this section, we identify relevant and important periodic orbits of Hamiltonian (5.3). In particular, we
identify a family of recolliding periodic orbits (RPOs) OA (see Fig. 5.2a) and a saddle periodic orbit OS (see
Fig. 5.2b). We show how to determine these periodic orbits from the integrable systems (i.e., the SFA and
the field-free atom). We show how, from OA, the periodic orbits O±A , also depicted in Fig. 5.2a, are created.
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Under the Poincaré map (5.2), the periodic orbits OA, O±A and OS are fixed points. We define the stable
and unstable manifolds of fixed points. We show how the stable and unstable manifolds of OA, O±A and OS
structure the phase space and drive the electron.

5.1.1 One-dimensional recolliding periodic orbits (RPOs): OA

Recolliding periodic orbits [81, 80] (RPOs) are a class of periodic orbits which exhibit the same shape as
typical recollisions (see Fig. 1.8 and Fig. 5.2): One piece of the periodic orbit is close to the ionic core
(|r| ∼ 1 a.u.), another piece is far from the ionic core (|r| ∼ E0/ω

2). The electron can mimic the shape of the
weakly unstable RPOs (i.e., the largest eigenvalue of the monodromy matrix is not too large). In the theory
of Ref. [81, 80], recolliding electrons follow RPOs in phase space to go far from the core and come back.

In Ref. [80], the simplest RPO is determined from the SFA. In the SFA, the equations of motion of the
electron are given by Eq. (2.2). The position and momentum of the electron are

x(t) = x0 + px,0t+
E0

ω2
[cos(ωt)− 1] , (5.4a)

px(t) = px,0 −
E0

ω
sin(ωt), (5.4b)

where (x(0), px(0)) = (x0, px,0) is the initial condition of the electron. Under the Poincaré map (5.2) P , the
initial position and momentum are P(x0, px,0) = (x(T ), px(T )). The periodicity of the electric field implies
P(x0, px,0) = (x0 + px,0T, px,0). The momentum of the electron is constant under the mapping P . The
position of the electron is constant under the mapping P only if

px,0 = 0. (5.5)

Therefore, (x0, 0) is a fixed point of the mapping P in the SFA. There exists an infinity of fixed points of
P labeled by x0. By substituting Eq. (5.5) into Eq. (5.4), we observe that these fixed points are associated
with periodic orbits which are ellipses in phase space. Periodic orbits in the SFA for x0 = E0/ω

2 are shown
in Fig. 1.8b.

However, when the ion-electron interaction is fully taken into account, Hamiltonian (5.3) is not integrable.
In this case, periodic orbits must be computed numerically. The trajectory with initial condition (x?, p?x) is
a T-periodic orbit of Hamiltonian (5.3) if and only if

P(x?, p?x) = (x?, p?x).

The fixed point (x?, p?x) is computed using Newton’s method (see Appendix D.2.2.2 for details on the numerical
computation). We use the fixed point of the mapping P in the SFA as initial guess for the Newton’s method,
i.e., (x0, px,0) = (E0/ω, 0). In Fig. 5.2a, we show OA computed numerically. We observe that, in contrast to
its associated periodic orbit in the SFA, OA is not exactly an ellipse in phase space. In particular, we observe
that the absolute value of its momentum increases drastically when it crosses x = 0 due to the ion-electron
interaction.

5.1.1.1 Creation of RPOs through a bifurcation

The linear stability of the periodic orbit OA is given by the eigenvalues λj and the eigenvectors vj of the
monodromy matrix MT . The fixed point of OA under P is (x?, p?x), and the monodromy matrix is

MT (x?, p?x) = J T
0 (x?, p?x), (5.6)

with j = 1, 2, where J T
0 (z) = ∂ϕT0 (z)/∂z is the tangent flow (see Appendix C.1 for details) and z = [x, px]>.

For Hamiltonian systems, the eigenvalues of the monodromy matrix are conjugated, such that λ1 = 1/λ2 and
λ1 = λ∗2 (see Appendix C.1). In the SFA, the evolution of the tangent flow is given by J̇ t

0(x0, px,0) = AJ t
0

with A = [0, 1; 0, 0], and the monodromy matrix is given by MT (x0, px,0) = exp(AT ). The eigenvalues
of the monodromy matrix are unity. Hence, in the SFA, all periodic orbits are parabolic. For decreasing
intensity, OA changes shapes, and also stability. In the lower panel of Fig. 5.3, the orange curve is the largest
absolute eigenvalue of the monodromy matrix of OA as a function of the laser intensity (for relatively low
intensities). The upper panels of Fig. 5.3 show Poincaré sections of Hamiltonian (5.3) under P for (left
panel) I = 1013 W · cm−2 and (right panel) I = 2 × 1013 W · cm−2. For I = 1013 W · cm−2, in the upper
left panel of Fig. 5.3, the orange dot is the fixed point of OA under under P . We observe that the orange
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Figure 5.3: Upper panels: Stroboscopic plot for LP of Hamiltonian (5.3) under the Poincaré map P defined
by Eq. (5.2) for a = 1 and Z = 1. In the left panel at I = 1013 W.cm−2, right panel at I = 2× 1013 W.cm−2.
The crosses shows the position of OA on the plots. Lower panel: Largest absolute eigenvalue of OA as a
function of the laser intensity I.

dot is surrounded by invariant curves (black curves). The invariant curves create a stable region in phase
space. Outside this region, we observe dots, where the dynamics is rather chaotic. Hence, periodic orbits
can structure regions in phase space. Their linear stability encodes the structure of the phase space in their
neighborhood.

In order to understand how the linear stability of the periodic orbits encodes the structure of the phase
space in their neighborhood, we consider a trajectory (x(t), px(t)) initiated close to the periodic orbit OA, at
(x(0), px(0)) = (x? + δx, p?x + δpx), and such that |δx| � 1 and |δpx| � 1. At k iterations of the Poincaré
map, the trajectory is Pk(x? + δx, p?x + δpx) ≈ Pk(x?, p?x) + MT (x?, p?x)k[δx, δpx]>. Hence, after k laser
cycles, the deviation between the trajectory and the periodic orbit is given by [x(T ), px(T )]> − [x?, p?x] ≈
MT (x?, p?x)k[δx, δpx]>. For simplicity, we assume the monodromy matrix MT to be diagonal. The deviation
of the electron and the periodic orbit after k laser cycles is given by x(T ) − x? ≈ λk1δx along the position
component, and px(T ) − p?x ≈ λk2δpx along the momentum component. We observe that, depending on the
eigenvalues, the behavior of the trajectory (x(t), px(t)) is different.

• If λ1 = λ2 = ±1, the electron stays at the same distance from the periodic orbit, and in the same
direction as it was initially. The stability of the periodic orbit is referred to as parabolic. Such periodic
orbit corresponds to the RPO in the SFA with initial condition (x0, 0). In order to determine if the
orbit is stable or unstable, one needs to compute the nonlinear stability of the periodic orbit.

• If |λ1| = |λ2| = 1 and λ1 6= ±1 (i.e., the eigenvalues are complex and λ1 = λ∗2), the electron stays at
the same distance from the periodic orbit, and turns around it. The stability of the periodic orbit is
referred to as center. The dynamics of the electron close to the periodic orbit is stable. For instance,
OA is center for I = 1013 W · cm−2. It corresponds to the orange marker in the upper left panel of
Fig. 5.3. The invariant curves surrounding the orange marker are trajectories which turn around the
periodic orbit between two iterations of the Poincaré map P . On the invariant curves, the motion of
the electron is quasi-periodic.

• If |λj | 6= 1 (i.e., the eigenvalues are reals and λ1 = 1/λ2), the electron goes away from the periodic
orbit along one direction, and gets closer to the periodic orbit along the other direction. The stability
of the periodic orbit is referred to as saddle. The dynamics of the electron close to the periodic orbit is
unstable. In this case, there exist a stable and an unstable manifold associated with the periodic orbit.
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In the lower panel of Fig. 5.3, we observe that OA is saddle at I ∼ 2 × 1013 W · cm−2. For I ∼
1.8 × 1013 W · cm−2, there is a bifurcation. In the upper right panel of Fig. 5.3, we observe that the stable
region still exists. However, here, the invariant curves form a “8” shape. At the node of the eight, there is
the fixed point of OA indicated by an orange cross. OA is saddle, and trajectories go away from OA along
branches of the eight-shaped invariant curves, and come closer to OA in other branches of the eight-shaped
invariant curves. Around the center of the loops of the eight-shaped invariant curves, there are two periodic
orbits created when the stability of OA bifurcates. These periodic orbits are indicated by blue dots in the
upper right panel of Fig. 5.3, and are referred to as O−A (left blue dot) and O+

A (right blue dot). The blue
markers are surrounded by elliptical invariant curves, so we expect their stability to be center. Indeed, in
the lower panel of Fig. 5.3, we observe that the largest eigenvalue of these orbits is unity, and therefore these
orbits are center at this intensity. The periodic orbits O±A are shown in Fig. 5.2a for I = 3× 1014 W · cm−2.
We observe they are asymmetric with respect to x = 0, and symmetric with one another with respect to the
symmetry (x, px, t) 7→ (−x,−px, t + T/2). At t = 0, O−A is closer to the core than O+

A . At t = T/2, O−A is
further away from the core than O+

A .
In sum, we have identified a family of RPOs for d = 1, referred to as OA. The mother periodic orbit

OA originates from the SFA. When the intensity of the laser changes, the linear stability of OA changes, and
affects the structure of the phase space in its neighborhood. In particular, when the stability of OA goes by
saddle to center, for I ∼ 1.8× 1013 W · cm−2, two auxiliary RPOs are created, namely O+

A and O−A .

5.1.2 Saddle periodic orbits (SPOs): OS

Figure 5.4: Poincaré section x = 0 and ẋ > 0 of Hamiltonian (5.3) (case d = 1) for I = 3 × 1014 W · cm−2,
a = 1 and Z = 1. Right panel: Zoom of the left panel. Crosses (resp. dots) are the intersection of the saddle
(resp. center) SPOs with the Poincaré surface x = 0 and ẋ > 0. The red and blue markers are for periodic
orbits of resonance 1 : 7 and 1 : 9, respectively.

Another important family of periodic orbits of Hamiltonian (5.3) are the saddle periodic orbits (SPOs).
The location of the SPOs in phase space is revealed by the Poincaré section x = 0. In Fig. 5.4, we show the
Poincaré section of Hamiltonian (5.3) for x = 0 and ẋ > 0. For px . 1, we observe invariant curves where
the motion of the electron is quasi-periodic. The invariant curves in this representation correspond to the
invariant curves observed near the origin of phase space in the upper panels of Fig. 5.3. In the right panel
of Fig. 5.4, for px . 1, we observe regions where invariant curves are closed, such as the invariant curves
surrounding the blue dots. The blue dots corresponds to the fixed points of one center SPO of resonance 1 : 9.
There are nine dots, i.e., during one laser cycle, the periodic orbit crosses the Poincaré section x = 0 and
ẋ > 0 nine times. Between two adjacent blue dots, we observe eight-shaped invariant curves. At the node of
the eight-shaped invariant curves, there are blue crosses corresponding to the fixed points of one saddle SPO
of resonance 1 : 9. For px & 1, electrons are unbounded and ionize. For px ∼ 1, we observe regular islands.
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In these islands, the red circles are the fixed points of one center periodic orbit of resonance 1 : 7. Outside
the last invariant curve of each regular island, there are dense chaotic regions. In these regions, the electrons
spend several laser cycles before ionizing. In NSDI, these regions have been identified to be responsible for
the recollision excitation with subsequent ionization [113, 112] (RESI). Near the chaotic regions, there are
the fixed points of one saddle SPO indicated by the red crosses. This periodic orbit is referred to as OS , and
is depicted in Fig. 5.2b for I = 3× 1014 W · cm−2. The chaotic regions are induced by the intersection of the
stable and unstable manifolds of OS .

Here, we follow the procedure described in Refs. [113, 112] to approximate the location of the SPOs of
resonance 1 : m in Fig 5.4. Close to the core, the laser interaction is small compared to the ion-electron
interaction. We neglect the laser interaction. In action angle variables, in absence of electric field, Hamil-
tonian (5.3) reads [113, 112] Hfree(A) = E0 + ω0[exp(γA) − 1]/γ, where ω0 =

√
Z/a3, γ = −9/(8

√
Za) and

E0 = −Z/a. The action is defined by A = (1/2π)
∮
pxdx and its canonically conjugate angle is θ. The

frequency of the angle is given by νf = θ̇ = ∂Hfree/∂A. Hence, νf = γ(E −E0) +ω0. The resonance condition
1 : m reads mνf = ω, with m ∈ Z. In Fig. 5.4, we also observe minor resonances k : m with k > 1. Here, we
focus on the dominant resonances for which k = 1. Using Cartesian coordinates for the energy of the electron
E in the field-free atom, one obtains an approximation for the resonance condition of the SPOs

ω ≈ mγ
[
p2
x

2
− Z√

x2 + a2
− E0

]
+ ω0. (5.7)

This provides a family of periodic orbits in the neighborhood of the ionic core, labeled by the integer m. The
cases m = 7 and m = 9 correspond to the red and blue markers in the right panel of Fig. 5.4. We notice that
the resonance 1 : 1 corresponds to the periodic orbit OA. From Eq. (5.7), for x = 0, we obtain

px ≈ ±
√

2
ω − ω0

mγ
.

5.1.3 Invariant manifolds structuring the phase space of the recolliding electron
For d = 1, the phase space of Hamiltonian (5.3) is three-dimensional and periodic orbits are one-dimensional.
Periodic orbits are codimension two with the phase space, and as a consequence, they do not partition the
phase space. However, as we have shown in the previous sections, there are invariant structures associated
with the periodic orbits, such as for instance invariant curves. In particular, stable and unstable manifolds
of unstable periodic orbits are two-dimensional and partition the phase space of the electron for d = 1. We
denote (x?, p?x) the fixed points of the periodic orbits OA, O±A and OS under P , indicated by crosses in the
lower panel of Fig. 5.2. The invariant manifolds of (x?, p?x) correspond to a set of coordinates such that

• The points in the stable manifold converge to the fixed point (x?, p?x) if one iterated P infinitely forward
in time, i.e.,

Ws(x?, p?x) =

{
(x, px) ∈ RN | lim

k→∞
Pk(x, px) = (x?, p?x)

}
. (5.8)

• The points in the unstable manifold converge to the fixed point (x?, p?x) if one integrates infinitely
backward in time, i.e.,

Wu(x?, p?x) =

{
(x, px) ∈ RN | lim

k→∞
P−k(x, px) = (x?, p?x)

}
. (5.9)

The existence of invariant manifolds of fixed points is demonstrated in Ref. [32]. In the lower panel of
Fig. 5.2, the black and light grey curves are the stable and unstable manifolds of OA and O±A . The stable
and unstable manifolds are computed numerically with Hobson’s method [74] (see Appendix D.2.3 for details
on the numerical computations). The invariant manifolds of OA and O±A are connected since O±A originate
from OA. The black curve is of codimension one with the reduced phase space. As a consequence, it creates
boundaries for the trajectories of the electron. The electrons are guided by the black curve, and cross the
axis x = 0. It drives the electrons away from the core, and brings them back to recollide. In the lower
panel of Fig. 5.2, we observe that the black curve reproduces the pattern of recollisions. Therefore, the stable
manifold of OA and O±A structures the phase space, and drives the recollisions.

The stable manifold of OS also structures the phase space, and drives the recollisions. In Fig. 5.2c, the
red and dark grey curves are the stable and the unstable manifolds of the fixed point of OS under P . We
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Figure 5.5: Final distance of the electron of Hamiltonian (5.14) (case d = 2) as a function of the initial
conditions (x0, py,0, y0 = px,0 = 0) for I = 3 × 1014 W · cm−2, a = 1 and Z = 1. The orange marker is the
fixed point of OS under the Poincaré map P . The black crosses are the fixed points of OA and O±A under
P . The green crosses are the fixed points of OF , O±F clockwise (lower markers) and OF , O±F anticlockwise
(upper markers) under P . The red dots show pieces of the intersection between the plane of initial conditions
and the stable manifolds of the family of invariant tori of OS .

observe that it also reproduces the pattern of recollisions corresponding to the blue levels. In addition, we
observe that the red and dark grey curves surround the dark blue region where electrons are bounded. The
invariant manifolds of OS separate electrons which are bounded from electrons which ionize.

Therefore, for d = 1, the stable and unstable manifolds of the RPOs OA and the SPO OS partition
the phase space and drive the electron dynamics, and in particular, the recollisions. Their stable manifolds
are very similar. The periodic orbits OA and OS are, as a consequence, relevant candidates for driving the
electron dynamics in higher dimensions, for d > 1.

5.2 Linearly polarized fields in higher dimensions

In this section, we study the phase space of an electron in an atom driven by a LP laser field for d > 1. In
the SFA, for LP fields, the dynamics of the electron transverse to the polarization axis is

y(t) = y0 + py,0t. (5.10)

If the electron ionizes with a small momentum py,0, it drifts away from the core without recolliding. A
first difficulty when the dimension of the phase space is increased is that Poincaré sections can no longer be
represented in two dimensions for d > 1. As a consequence, it is more delicate to draw a global picture of the
electron dynamics. One way to roughly draw the global dynamics of the electron is to perform analyses of
observables with respect to the initial conditions in a slice of phase space. Figure 5.5 shows the final distance
of the electron from the core for Hamiltonian (1.14) as a function of the initial conditions (x0, py,0) for
y0 = px,0 = 0. Like for d = 1, we observe paths with a sensitivity with respect to the initial conditions which
lead to recollisions. In particular, we observe paths for relatively large py,0, in contrast with the prediction of
the SFA given by Eq. (5.10). The electron can come back to the core, even if py,0 is relatively large, due to
the contribution of the Coulomb potential. We examine its role through the invariant structures associated
with the periodic orbits.

The second difficulty arising, when the dimension of the phase space is increased, is the increase of the
dimension of the relevant and important invariant structures. In particular, for d = 2, in order to partition
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the phase space, the invariant structures must be at least four-dimensional. Under the Poincaré map, they
must be at least three-dimensional. Computing and representing three-dimensional objects is numerically
challenging. In this section, we determine another family of RPOs which exist exclusively for d > 1, referred
to as OF . We show that, for d = 2 (five-dimensional phase space), the invariant structures associated with
OA and OF are three-dimensional, and as a consequence, they cannot partition the phase space. In contrast,
we show that the four-dimensional invariant structure associated with OS partitions the phase space and
drives the recollisions.

5.2.1 Two-dimensional recolliding periodic orbits (RPOs): OF

In order to determine the family of RPOs OF , first, we consider the field-free atom where E0 = 0. We
consider d = 2 for which the electron evolves on the polarization plane (ex, ey). In polar coordinates, where
r = exr cos θ + eyr sin θ and p = ex[pr cos θ − (pθ/r) sin θ] + ey[pr sin θ + (pθ/r) cos θ], Hamiltonian (1.14)
reads

Hfree(r, θ, pr, pθ) =
p2
r

2
+

p2
θ

2r2
− Z√

r2 + a2
. (5.11)

Hamiltonian (5.11) is invariant under time translation and rotation θ 7→ θ + ϑ, and as a consequence, the
energy E = Hfree(r, θ, pr, pθ) and the angular momentum ` = pθ are conserved. The goal is to determine a
purely two-dimensional periodic orbit which persists when the laser field is turned on. The simplest periodic
orbits of Hamiltonian (5.11) are circular periodic orbits, such that ṙ = ṗr = 0. The radius of the circular
periodic orbits, denoted r0, is related to the angular momentum by

`2 =
Zr4

0

(r2
0 + a2)3/2

. (5.12)

In addition, we assume that the periodic orbits of Hamiltonian (5.11), which can persist once the laser field
is turned on, have the same period than the laser field. The circular periodic orbits of angular frequency ω
are such that θ̇ = `/r2

0 = ±ω. This implies that ` = ±ωr2
0. By substituting this condition in Eq. (5.12), we

obtain that the radius of the circular periodic orbits with angular frequency θ̇ = ±ω is

r2
0 =

(
Z

ω2

)2/3

− a2. (5.13)

The condition (Z/ω2)1/3 ≥ a is always fulfilled for the parameters we use in this manuscript. The initial
conditions r = r0(ex cos θ0 + ey sin θ0) and p = (pθ/r)(−ex sin θ0 + ey cos θ0) correspond to a fixed point
under P such that P(r,p) = (r,p). There exists an infinity of fixed points of P labeled by θ0. This family
of orbits is referred to as OF .

For d = 2, like for d = 1 (see Sec. 5.1.1), periodic orbits are created when periodic orbits bifurcate for
varying parameters. For d = 1, this phenomenon is illustrated for varying intensity in Fig. 5.3. The upper
panel of Fig. 5.6 shows the bifurcation diagram of the RPOs of the families OA and OF . The periodic orbit
OF originates from the field-free atom approximation, for which I → 0. In this approximation, OF is circular
in configuration space and is parabolic. For increasing intensity, OF changes shape, it shrinks along ey, as
observed in the lower right panel of Fig. 5.6. For all intensities, OF stays outside the invariant subspace.

For I . 1011 W · cm−2, OF is center-center. At I ∼ 1011 W · cm−2, there is a first bifurcation of
OF and the periodic orbits O↑↓F are created. Right after, there is a second bifurcation of OF and the
periodic orbits O±F are created. The periodic orbits {OF ,O±F ,O↑↓F } are degenerate twice due to the symmetry
(x, y, px, py, t) 7→ (x,−y, px,−py, t), specific to the LP case. Hence, for each of these periodic orbits, there is a
clockwise and an anticlockwise periodic orbit, as observed in Fig. 5.5, for instance. At I ∼ 1016 W ·cm−2, O±F
join the RPOs O±A due to the strong laser interaction which shrinks the orbits along ey. At I ∼ 1017 W ·cm−2,
O↑↓F and OF join the RPO OA.

For I ∼ [1013, 1016]W · cm−2, we observe that the family of RPOs OA and the family of RPOs OF are
real saddle. Therefore, all eigenvalues of the RPOs are reals, and in particular λ1, λ2 ∈ R2. Therefore, the
invariant structures associated with the RPOs of the families OA and OF are two-dimensional stable and
unstable manifolds under the Poincaré map P . In the extended five-dimensional phase space, these invariant
structures correspond to three-dimensional stable and unstable manifolds. They are of codimension two with
the phase space. Therefore, the invariant structures associated with these RPOs cannot partition the phase
space and cannot drive the electrons for d > 1.
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Figure 5.6: The laser ellipticity is ξ = 0 (LP case), a = 3, Z = 1 and d = 2. Upper panel: Bifurcation diagram
as a function of the laser intensity (two largest absolute eigenvalues |λ1| and |λ2|, such that |λ1| > |λ2|) of
the RPOs of Hamiltonian (5.14) depicted in the lower panels. Lower panels: RPOs for I = 1015 W · cm−2.
Left and right panels are the RPOs of the family OA (RPOs belonging to the invariant subspace for ξ = 0)
and OF , respectively. All quantities are in a.u.

5.2.2 Recollisions in higher dimensions: A family of invariant tori drives the
electron dynamics

We consider d = 2 and I = 3×1014 W ·cm−2. At I = 3×1014 W ·cm−2, the eigenvalues of OA are the largest
(λ1 ∼ 1000, see Fig. 5.6). The phase-space variables of the electron in Cartesian coordinates are (x, y, px, py).
The Hamiltonian reads

H(x, y, px, py) =
p2
x

2
+
p2
y

2
− Z√

x2 + y2 + a2
+ xE0 cos(ωt). (5.14)

For d = 2 and I = 3 × 1014 W · cm−2, as mentioned in Sec. 5.2.1, the invariant structures associated with
the RPOs OA and OF (two-dimensional stable and unstable manifolds) is two-dimensional under P . These
invariant structures are of codimension two with the four-dimensional reduced phase space (phase space under
P), and as a consequence, they cannot partition the phase space and cannot drive the electrons. In contrast,
for I = 3× 1014 W · cm−2, the stability of OS is center-saddle: The eigenvalues of the monodromy matrix of
OS are λ1 ∼ 7 (largest absolute eigenvalue) and |λ2| = 1 (second largest absolute eigenvalue). The invariant
structure associated with OS is three-dimensional under P . The invariant structure associated with OS is a
set of stable and unstable manifolds of a family of invariant curves, denoted Ws

F and Wu
F , respectively.

In Fig. 5.7, the orange dot is the fixed point of OS under P , denoted (x?, p?x). Due to the center component
of OS , there is a family of invariant curves associated with OS . In the neighborhood of (x?, p?x), these
invariant curves are close to the plane defined by the eigenvectors associated with the complex eigenvalues of
the monodromy matrix of OS . In Fig. 5.7, the black curves are invariant curves of this family. The invariant
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curves of OS are denoted x(θ) and parametrized by θ ∈ T (T corresponds to R/2πZ). If the curve is invariant
under P , there exists ν ∈ R \ 2πQ such that

P(x(θ)) = x(θ + ν). (5.15)

The numerical computation of the invariant curves x(θ) is performed using the Fourier representation
method [79], and is detailed in Appendix D.2.4. Under P , the invariant curves associated with OS are
one-dimensional. The dimension of the family of invariant curves is fractal. However, numerically, the family
of invariant curves is two-dimensional. Due to the saddle component of OS , there are stable and unstable
manifolds associated with each invariant curve of OS . In Fig. 5.7, the red and grey surfaces are the stable
and unstable manifolds of the black invariant curves, respectively. For each invariant curve, the stable and
unstable manifolds are two-dimensional. As a consequence, the set of stable and unstable manifolds of the
family of invariant curves associated with OS (Ws

F and Wu
F , respectively) is three-dimensional. Hence, Ws

F

and Wu
F are codimension one with the phase space, and are relevant candidates to drive the electrons. In

order to determine if Ws
F and Wu

F drive the dynamics of the electron, we must show that Ws
F and Wu

F

reproduce the recollision patterns in Fig. 5.5, highlighted by the blue levels.

Figure 5.7: The orange marker is the fixed point of the OS of Hamiltonian (5.14) (case d = 2) under P for
I = 3× 1014 W · cm−2, ξ = 0 (LP case), a = 1 and Z = 1. The black curves are four invariant tori. The grey
and red surfaces are the unstable Wu

F and stable Ws
F manifolds of the invariant tori, respectively. The dark

grey and dark red curves are trajectories along the unstable and stable manifolds, respectively.

In order to clearly show that Ws
F and Wu

F reproduce the recollision patterns in Fig. 5.5, we compute the
intersection between these invariant structures and the plane of initial conditions (x0, py,0, y0 = px,0 = 0).
We label each invariant curve of the family by σ such that one invariant curve is denoted xσ(θ). We focus
on the computation of Ws

F . First, we consider the stable manifold of one invariant curve xσ(θ). The real
eigenvalue of the normal behavior of the invariant curve smaller than unity is denoted λ, and its associated
eigenvector is denoted Ψs

σ(θ) (see Appendix D.2.4 for detail on the computation of the normal behavior of
invariant curves). The eigenvector Ψs

σ(θ) corresponds to the linear approximation of the stable manifold close
to the invariant curve. The initial condition of a trajectory initiated in the fundamental domain of the stable
manifold associated with the invariant curve xσ(θ) reads

zσ(s, θ) = xσ(θ) + shΨs
σ(θ), (5.16)

where s ∈ [1, 1/λ] and z = (x, y, px, py). The parameter h is small enough such that the invariance equation
|P−1(zσ(1, θ)) − zσ(1/λ, θ − ν)| < ε for all θ ∈ T, where ε is infinitesimal. The stable manifold associated
with the invariant curve xσ(θ) intersects the plane (x, py, y = px = 0) in one point for s = s? and θ = θ?.
This condition reads Πr(P−m(zσ(s?, θ?))) · ey = 0 and Πp(P−m(zσ(s?, θ?))) · ex = 0, where Πr and Πp are
the projection from phase space onto positions and momentum component, respectively. The parameter m
corresponds to the number of iterations required for the trajectory to reach the plane y = px = 0. In order
to compute s? and θ?, we use Newton’s method. However, this event is rare, and it is difficult to have a good
initial guess. We use the following technique to compute s? and θ?:

1. We compute a finite set of invariant curves xσ(θ) associated with OS such that σ = 1, . . . , N . Then,
we compute the eigenvectors Ψs

σ(θ) associated with the real eigenvalue smaller than unity λ.
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2. We initiate a mesh of points zσ(sl, θj) given by Eq. (5.16) for all σ, and for l = 0, . . . , Ns and j =
0, . . . , Nθ. We obtain an ensemble of initial conditions zσ(sl, θj) labeled by σ, l and j. Notice that
Ns ∼ 100 and Nθ ∼ 100, and as a consequence, there are approximately 104 initial conditions for the
invariant curve xσ(θ).

3. We compute Pm(zσ(sl, θj)) for m = 1, . . . , Nm (Nm = 100 in our numerical computations). We store
the points which are close to the plane y = px = 0 and their labels: m, s, θ and σ. Close to the plane
y = px = 0 means that |Πr(Pm(zσ(s?, θ?))) · ey| < ε and |Πp(Pm(zσ(s?, θ?))) · ex| < ε, where ε ∼ 10−2

(the value of ε depends on the discretization of the parameters s and θ and on the eigenvalue λ).

4. The points which are stored are refined using Newton’s method. We compute an approximation of s?
and θ? for given m and σ such that

Πr(P−m(zσ(s∗, θ∗))) · ey = 0, (5.17a)
Πp(P−m(zσ(s∗, θ∗))) · ex = 0. (5.17b)

The two parameters to adjust in order to fulfill this condition are s and θ. The initial guess of the
Newton’s method are the points which have been stored in the third step, i.e., sl and θj . At each
iteration of the Newton’s method, the derivatives of Eqs. (5.17) with respect to s and θ must be
computed (see Sec. D.2.1). They read

∂

∂s
P−m(zσ(s, θ)) = hJ −mT0 (zσ(s, θ))Ψ(θ),

∂

∂θ
P−m(zσ(s, θ)) = J −mT0 (zσ(s, θ))

N∑
k=1

k [(bk + hsBk) cos(kθ)− (ak + hsAk) sin(kθ)] ,

where J −mT0 (zσ(s, θ)) is the tangent flow with initial condition zσ(s, θ) integrated backward over m
laser cycles. The Fourier coefficients of the invariant curve and its eigenvector are denoted {a0, · · · ,aN ,b1, · · · ,bN}
and {A0, · · · ,AN ,B1, · · · ,BN}, respectively. The maximum harmonic of the Fourier representation
is N . At the kth iteration of the Newton’s method, the parameters are [sk; θk] and we compute
[sk+1; θk+1] = [sk; θk] + [∆s; ∆θ], where [∆s; ∆θ] is solution ofΠr

(
∂

∂s
P−m(zσ(s, θ))

)
· ey Πr

(
∂

∂θ
P−m(zσ(sk, θk))

)
· ey

Πp

(
∂

∂s
P−m(zσ(s, θ))

)
· ex Πp

(
∂

∂θ
P−m(zσ(s, θ))

)
· ex


(s=sk,θ=θk)

[
∆s
∆θ

]

= −
[

Πr(P−m(zσ(sk, θk))) · ey
Πp(P−m(zσ(sk, θk))) · ex

]
.

In this way, we obtain an approximation of s? and θ?. The images of the points initiated on the stable
manifold, which belong to the stable manifold, also belong to the plane y = px = 0. The points such
that s > 1/λ are not kept. The points which are kept are the red markers in Fig. 5.5. Hence, we observe
that the red markers are in good agreement with the location of the dark blue paths. The invariant
manifolds Ws

F drive the recollisions.

5. (This part is a work in progress) In order to show thatWs
F partition the phase space, we need to compute

the one-dimensional curves corresponding to the intersection between Ws
F and the plane y = px = 0.

We use a continuation method to track the initial conditions in the fundamental domain of the invariant
curves given by Eq. (5.16) which lead to a point in the plane y = px = 0. For a given σ and for known
parameters s? and θ?, we compute a new torus σ + 1. We control the distance between two adjacent
invariant curves with a parameter δ. Using s? and θ? as initial guess, we use the Newton’s method of
the fourth point to compute s? and θ? associated with σ. If the Newton’s method converge, we reiterate
the same procedure for σ+ 2. Otherwise, we decrease δ, and we recompute σ+ 1. With the parameter
δ, we can also control the distance between two successive points in the plane y = px = 0. In this way,
we compute curves in the plane y = px = 0 which belong to the stable manifold Ws

F .

The same scheme can be used to compute the unstable manifold Wu
F by changing λ → 1/λ, ν → −ν,

P−1 → P and J −T0 → J T
0 .
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For d = 3, in cylindrical coordinates along ex, Hamiltonian (1.14) reads

H(x, ρ, θ, px, pρ, pθ) =
p2
x

2
+
p2
ρ

2
+

p2
θ

2r2
− Z√

x2 + ρ2 + a2
+ xE0 cos(ωt). (5.18)

We observe that Hamiltonian (5.18) does not depend on θ, and therefore pθ is conserved. In general, pθ is
conserved if the ion-electron potential is rotationnally invariant, which is the case for atoms. Since pθ is a
conserved quantity, the phase space is foliated by surfaces of constant pθ. In particular, pθ = 0 corresponds
to the case d = 2 studied above. Along the transverse direction to the surface of constant pθ, the eigenvalues
of the linear stability of invariant objects are unitary due to the foliation of constant pθ. Therefore, for d = 3,
one component of the linear stability of the invariant objects is parabolic. In particular, for d = 3, OS is
center-saddle-parabolic for I = 3 × 1014 W · cm−2. For d = 3, the stable manifold Ws

F also partitions the
phase space and drive the electrons.

Using a dimension analysis and numerical evidence depicted in Figs. 5.2 and 5.5, we have shown
that the invariant manifolds of the family of invariant tori associated with OS , denoted Ws

F

and Wu
F and represented in Fig. 5.7, drive the electrons for d = 1, 2, 3. The codimension of this

invariant structure with the phase space is one, and as a consequence, it can partition the phase
space between recolliding and non-recolliding trajectories. A clear partition of the phase space
is observed in Fig. 5.2 for d = 1. The electron cannot cross Ws

F , and as a consequence, the
invariant manifolds Ws

F act as fences in the phase space of the electron. The electron is guided
by Ws

F .

Near the intersection of the stable Ws
F and unstable Wu

F manifolds, there are an infinity of
periodic orbits with a large period. In particular, in Fig. 5.2, we observe that RPOs are in
these regions. The invariant objects associated with the RPOs are two-dimensional, and as a
consequence, they cannot partition the phase space and cannot drive the electrons for d > 1.
However, the RPOs can be used to probe the highly dimensional invariant structures Ws

F and
Wu
F , and as a consequence, to probe the location of recollisions in phase space.

Result 8: OS driving recollisions for LP

5.3 From linearly to circularly polarized fields: Consequences of the
symmetry breaking on the periodic orbits

In this section, we study the symmetries of the system for varying ellipticity ξ. We track the RPOs as a
function of the intensity and the ellipticity of the laser field using continuation methods. Some RPOs are
observed only in a specific range of ellipticities. We determine the mechanism behind the disappearance of
these periodic orbits. In contrast, the RPO OF exists for all ellipticities. We study the connection between
OF and the fixed points in the RF for CP fields (ξ = 1).

5.3.1 Symmetries in phase space

We denote V(r) = V (r), with r = |r|, the rotationnally invariant potential of the ion-electron interaction.
The equations of motion are

ṙ = p, (5.19a)
ṗ = −(r/r)V ′(r)−E(t), (5.19b)

with V ′(r) = ∂V(r)/∂r. Two discrete symmetries of the monochromatic laser field given by Eq. (5.1) are
E(t + T ) = E(t) and E(t + T/2) = −E(t) for all time t and all ellipticities. In the equations of motion,
symmetries with forward propagation time are:
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• For all ellipticities, the equations of motion (5.19) are invariant under the transformation

(r,p, t) 7→ (−r,−p, T/2 + t) . (5.20)

The orbits in phase space are symmetric with respect to the origin. For instance, the central symmetry
observed in the PMDs for rather long laser pulses (see the left panel of Fig. 3.5 and Fig. 8) is a
consequence of the invariance of the equations of motion and the distribution of the initial conditions
(see Sec. 1.2.2) under the transformation given by Eq. (5.20).

• For all ellipticities, the equations of motion (5.19) are invariant under the transformation

(x, y, z, px, py, pz, t) 7→ (x, y,−z, px, py,−pz, t) . (5.21)

The orbits in phase space are symmetric with respect to the polarization plane (ex, ey). For instance,
the axial symmetry observed in the PMDs along the perpendicular momentum of the electron (see
Fig. 3.4) is a consequence of the invariance of the equations of motion and the distribution of the initial
conditions (see Sec. 1.2.2) under the transformation given by Eq. (5.21). Also, as a consequence, the
subspace z = pz = 0 is invariant and the analysis of the dynamics can be reduced from d = 3 to d = 2.

• If ξ = 0 (LP fields), the equations of motion (5.19) are invariant under the transformations

(r,p, t) 7→ (Rx(θ)r,Rx(θ)p, t) , (5.22)

for all θ and all time t, where Rx(θ) is the rotation matrix along ex (see Appendix A). The orbits in
phase space are symmetric with respect to the rotation around ex. Also, as a consequence, the subspace
y = py = z = pz = 0 is invariant and the analysis of the dynamics can be reduced from d = 3 to d = 1.

• If ξ = 1 (CP fields), the equations of motion (5.19) are invariant under the transformation

(r,p, t) 7→ (Rz(ωτ)r,Rz(ωτ)p, t+ τ) , (5.23)

where Rz(ωτ) is the rotation matrix along ez (see Appendix A). Therefore, the orbits in phase space
are symmetric with respect to the rotation around ez and the translation in time.

We observe that the axial symmetries with respect to the axis ex and the axis ez are exclusive to the LP and
CP cases, respectively. In LP, due to this symmetry, each periodic orbit exists clockwise and anticlockwise.
For instance, this is the case for the RPOs of the family OF , as observed in Fig. 5.5. When the ellipticity of
the laser is changed, this symmetry is broken and the periodic orbits are no longer symmetric.

5.3.2 Evolution of recolliding periodic orbits (RPOs) with respect to the laser
ellipticity

The left panels of Fig. 5.8 show the linear stability of the RPOs OF clockwise and anticlockwise, and OA
as a function of the intensity I and the ellipticity ξ of the laser. The linear stability is identified from the
two largest absolute eigenvalues of the monodromy matrix λ1 and λ2 such that |λ1| > |λ2| (see Fig. C.2 for
detail). If |λ1| = |λ2| = 1, the periodic orbit is center-center. If |λ1| > 1, |λ2| > 1 and |λ1| 6= |λ2|, it is real
saddle. If |λ1| > 1 and |λ2| = 1, it is center-saddle. If |λ1| = |λ2| > 1, it is degenerate saddle. For each case,
in the left panels of Fig. 5.8, the color scale is for log |λ1|. For ξ = 0, OF clockwise and OF anticlockwise are
degenerate, and as a consequence, their linear stability is the same. We observe that OF anticlockwise exists
regardless of the ellipticities and the intensities. The laser field given by Eq. (5.1) is also anticlockwise, and
preserves the shape of the periodic orbit. In contrast, OF clockwise and OA exist only for a specific range of
ellipticities and intensities. Similar scenarii are observed for O±A and O±F .

In order to determine the mechanism of the disappearance of the periodic orbit OA and OF clockwise,
we fix the ellipticity at ξ = 0.1 (close to LP). The middle panel of Fig. 5.8 shows the RPOs of the family OA
and OF for I = 2× 1013 W · cm−2 in the plane (x, px). We use a continuation method to track these periodic
orbits as a function of the intensity. The continuation method is described in Appendix D.2.2.3. The right
panel of Fig. 5.8 shows the component py of the RPOs OA, O±A , OF and O±F clockwise as a function of the
laser intensity. The upper piece of the black curve is associated with OA, and the lower piece of the black
curve is associated with OF clockwise. Similarly, the upper piece of the red (resp. blue) curve is associated
with O+

A (resp. O−A), and the lower piece of the blue (resp. red) curve is associated O+
F clockwise (resp.

O−F ). Clearly, we observe that OA is connected to OF clockwise, O+
A is connected to O+

F clockwise, and O−A
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Figure 5.8: Left panels: Stability map (maximum absolute eigenvalue in logarithmic scale) of the RPOs OA,
OF clockwise and anticlockwise of Hamiltonian (5.14) (case d = 2) as a function of the intensity and the
ellipticity, for a = 3 and Z = 1. Middle panels: Projection of the RPOs (upper panel) OA and O±A , (lower
panel) OF and O±F clockwise, on the plane (x, px) for I = 2 × 1013 W · cm−2 and ξ = 0.1. Right panel:
Component py of the RPOs depicted in the middle panel as a function of the laser intensity, tracked using
the continuation method described in Appendix D.2.2.3. The lower piece of each curve is associated with the
periodic orbits of the family OF clockwise and the upper piece of each curve is associated with the periodic
orbits of the family OA. Therefore, the red curve is associated with the periodic orbits O+

A/O+
F clockwise,

the black curve is associated with the periodic orbits OA/OF clockwise, and the blue curve is associated with
the periodic orbits O−A/O−F clockwise.

is connected to O−F clockwise. For ξ = 0 (LP case), due to the symmetry of the orbits with respect to the
polarization axis, both OF clockwise and OF anticlockwise join OA at high intensities (see the bifurcation
occurring for I ∼ 1016 W · cm−2 in Fig. 5.6). In contrast, for ξ 6= 0, only OF clockwise joins OA, while OF
anticlockwise persists regardless of the intensities.

In Fig. 5.9, we show the final distance of the electron as a function of the initial conditions (x0, py,0, y0 =
px,0 = 0) at time t = 0, for an integration time 100T and for varying ellipticities. Notice that this is the
same plane of initial conditions as in Fig. 5.5. The final distance of the electrons from the core highlights the
nonlinearities due to the strong ion-electron and laser-electron interactions. In particular, the light colored
regions and the paths which exhibit a sensitivity with respect to the initial conditions correspond to the
initial conditions leading to recollisions. The white squares indicate the location of the fixed points of the
RPOs under P . The panel ξ = 0 is discussed in Sec. 5.2.2. We observe that the region of initial conditions
leading to recollisions moves to larger values of py,0 when the ellipticity is increased. We observe that the
region of initial conditions leading to recollisions is followed by the fixed point of the RPO OF anticlockwise.
In the SFA, the initial conditions of the periodic orbit centered around the origin are given by

r0 = ex
E0

ω2
√
ξ2 + 1

, p0 = ey
ξE0

ω
√
ξ2 + 1

, (5.24)

and correspond approximately to the location of the fixed point of OF anticlockwise under P . Hence, the
region of initial conditions leading to recollisions is approximately around (r0,p0). We observe the distance in
phase space between the fixed points of the family OA and OF clockwise decreases for increasing ellipticities.
These orbits join each other for ξ ∈ [0.11, 0.22]. In the same way, The orbits O±A and O±F join each other for
ξ ∈ [0.22, 0.33]. For ξ > 0.55, only OF anticlockwise persists.

5.3.3 Connection between OF and a fixed point in the rotating frame (RF): Case
of circularly polarized laser fields

We consider the CP case (ξ = 1), and the dynamics of the electron in the RF. The RF is the frame in
which the laser field does not depend on time for CP and f = 1 (see Sec. 4.1.2.1). We use the canonical
transformation r̃ = Rz(ωt)r and p̃ = Rz(ωt)p, with Rz the rotation matrix around ez. The Hamiltonian
is given by Eq. (4.9). In the RF and for rotationnally invariant potential, as it is the case for atoms, the
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Figure 5.9: Final distance of the electron in logarithmic scale of Hamiltonian (5.14) (case d = 2) as a function
of the initial conditions (x0, 0, 0, py,0) for I = 3 × 1014 W · cm−2, a = 1 and Z = 1. White squares indicate
the location of the fixed point of the RPOs under the Poincaré map P . The upper squares are the location
of the fixed points of (from left to right) O−F , OF and O+

F anticlockwise under P . The middle squares are the
location of the fixed points of (from left to right) O−A , OA and O+

A anticlockwise under P . The lower squares
are the location of the fixed points of (from left to right) O−F , OF and O+

F clockwise under P . The insets
are zooms around the periodic orbits O+

A (middle squares), O+
F clockwise (lower squares) and anticlockwise

(upper squares). Positions and momenta are scaled by E0/ω
2 and E0/ω, respectively.
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Hamiltonian does no longer depend on time. The energy is conserved H̃(r̃, p̃) = K and known as the Jacobi
constant [77]. We use the notation V (r̃) = V(r̃) with r̃ = |r̃|. In the RF, the equations of motion are given
by

˙̃r = p̃− ωẽz × r̃, (5.25a)
˙̃p = −(r̃/r̃)V ′(r̃) + ωp̃× ẽz − ẽxE0/

√
2. (5.25b)

The fixed points (r?,p?) are such that ˙̃r = ˙̃p = 0. Using Eq. (5.25a), p̃? = ωẽz × r̃?. Substituting this
solution in Eq. (5.25b), we obtain

−(r̃?/r̃?)∂V ′(r̃?) + ω2 [r̃? − (r · ẽz)ẽz]− ẽxE0/
√

2 = 0. (5.26)

Projecting Eq. (5.26) along ẽz, we get r̃? · ẽz = 0. Projecting Eq. (5.26) along ẽy, we get r̃? · ẽy = 0 or
V ′(r̃) = ω2r̃. Projecting Eq. (5.26) along ẽy, we get r̃? · ẽx[ω2 − V ′(r̃)/r̃] = E0. If V ′(r̃) = ω2r̃, the laser
amplitude is E0 = 0. For E0 > 0, the fixed points are given by r̃? = x̃?ex, where x̃? is solution of the equation

x̃?
[
ω2 − V

′(|x̃?|)
|x̃?|

]
=
E0√

2
. (5.27)

For soft Coulomb potential V(|x̃?|) = −Z(|x̃?|2 +a2)−1/2, there are three fixed points. In particular, one fixed
point is located far from the core, where |V ′(|x̃?|)/x̃?| � ω2. By substituting this condition in Eq. (5.27),
we obtain that the fixed point is located at x̃? ≈ E0/

√
2ω2. It corresponds to the top of the zero-velocity

surface depicted in Fig. 4.3. In the LF and under the Poincaré map P , the coordinates of this fixed point
are approximately r?0 = exE0/ω

2
√

2 and p?0 = eyE0/ω
√

2, which corresponds to the initial conditions given
by Eq. 5.24. These initial conditions are close to the fixed point of OF . Numerically, we have seen that the
top of the zero-velocity surface corresponds to OF anticlockwise in the RF.

In Ref. [81], the scenario is that RPOs in the RF drive the recollisions (see Fig. 5.2.2). In contrast, in
Refs. [14, 129], the recollisions are driven by the invariant manifolds of the saddle point of the zero-velocity
surface (fixed point indicated by a blue dot in Fig. 5.2.2). This latter scenario is in accordance with our
Result 5.2.2, which shows that in LP, the periodic orbit driving the electron dynamics is close to the ionic
core. Here, we have shown that OF anticlockwise is a fixed point in the RF for the CP case. In addition,
this periodic orbit is center-saddle for most of the intensities and ellipticities, as observed in the left panel
of Fig. 5.8. Therefore, it is a good candidate for driving the recollisions and structuring the dynamics. In
Fig. 5.9, we have shown that this periodic orbit is in the region of initial conditions leading to recollisions
for all ellipticities. However, one piece of the periodic orbit OF anticlockwise is close to the core only for
small ellipticities. For large ellipticities, the minimum distance of this periodic orbit from the core is at least
ξE0/ω

2
√
ξ2 + 1. Therefore, OF anticlockwise is not a RPO in the sense it is defined in Refs. [81, 80, 109, 3].

5.4 Conclusions

In sum, we have shown that the electron dynamics for atoms subjected to intense laser fields is driven by
invariant structures in phase space. For LP fields, the relevant invariant structure is associated with the
SPO OS . For d = 2, this invariant structure is four-dimensional, and correspond to a set of stable Ws

F and
unstable Wu

F manifolds of the family of invariant curves associated with OS . Ws
F and Wu

F are shown in
Fig. 5.7. In Sec. 5.2.2, we have described a procedure to obtain a planar representation ofWs

F andWu
F . This

planar representation allowed us to show that Ws
F and Wu

F structure the phase space of the electrons, and
as a consequence, drive their motion.

In general, we have seen that the relevant and important invariant structures for driving the electrons are
of codimension one with the manifolds on which the electrons evolve. For instance, for LP fields and d = 2,
invariant structures of codimension two (or larger) with the phase space, such as the invariant structures
associated with the RPOs OA and OF , do not play a role for driving the electrons. However, we have
observed that the RPOs are located near the intersections of Ws

F and Wu
F . In Sec. 5.3, we have used these

RPOs to probe the high-dimensional invariant structure driving the electrons for varying ellipticity and
intensity. In particular, the RPO OF anticlockwise persists for all ellipticities. For CP fields, OF corresponds
to the fixed point at the top of the zero-velocity surface in the RF.
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Conclusions

Attosecond science makes use of the known dynamics of the ionized electrons, teared off their parent atom or
molecule by an intense laser pulse, to image structural dynamics during ultrafast nonequilibrium processes,
such as for instance, charge migrations and electronic dynamics during chemical reactions. In this thesis, we
have shown that, despite their fundamental quantal nature in atoms and molecules, electrons display some
classical behaviors when subjected to intense laser pulses. Remarkably, classical mechanics, with the help of
trajectories and nonlinear dynamics, turned out to be very insightful to identify and interpret mechanisms
behind the nonlinear phenomena observed in experiments. However, there have always been fundamental
obstacles to accurately interpret the electron trajectories underlying the experimental measurements.

The first difficulty was to account for the quantal nature of the electrons in atoms and molecules. Indeed,
in nature, electrons in atoms and molecules are accurately described by quantum mechanics and their wave
representation. It is only after ionizing, for sufficiently large laser intensities, that the quantum dynamics of
the electrons clearly exhibits classical features. In our framework, the state of the electrons before ionization
was treated quantum mechanically. According to the parameters, the electrons were able to ionize through
or over the potential barrier induced by the intense laser field. While the ionization through the potential
barrier is a purely quantum mechanical process, over-the-barrier ionization was also accurately described by
classical mechanics. After ionization, the motion of the electron was treated purely classically in terms of
trajectories. In both cases, tunnel or over-the-barrier ionization, quantum characteristics of the electrons
were contained in the distribution of the initial conditions of their trajectory.

The second difficulty was to understand and analyze the trajectories of the ionized electrons by taking into
account the interaction with their parent ion, which is commonly ignored but can make its presence known
even after ionization. We have shown that the interplay between the interactions of the ionized electrons with
the laser and their parent ion gives rise to multiple temporal and spatial scales, yielding their dynamics highly
nonlinear, and giving rise to rich and diverse ionization channels. By changing the ellipticity of the driving
laser, which acts as a simple control knob in experiments, we changed the prioritized ionization channel
taken by the electrons. In order to understand and analyze the variety of ionization channels the ionized
electrons can take, we have used two main methods. The first method was nonperturbative and consisted
in understanding the electron dynamics through the analysis of invariant structures in phase space. One
advantage of this technique was to provide a framework to analyze the global behavior of the trajectories,
rather than their individual behavior. The second method was perturbative and consisted in deriving reduced
models, and using them interpret the electron trajectories. These methods allowed us to identify the impact
of the ion-electron interaction in the nonlinear phenomena observed in experiments, and to include its role
in the description of the underlying mechanisms.

Considering the quantum nature of the electrons before ionization and their classical motion after ion-
ization, in the light of nonlinear dynamics, allowed us to unravel mechanisms behind nonlinear phenomena
observed in experiments, that linear dynamics was unable to predict. For instance, we have unraveled the
mechanism behind the bifurcation observed in the PMDs measured in experiments [93]. We have determined,
and been able to describe accurately, how electrons can return to the core after multiple laser cycles and
how they can be trapped in Rydberg states. We have determined the conditions under which experimental
manifestations of recollisions in CP and near-CP fields can be observed. This thesis work demonstrates
the complementarity of quantum mechanics and nonlinear dynamics for understanding and illustrating the
mechanisms involved when atoms are subjected to intense and elliptically polarized laser pulses.

Summary

In Chap. 1, we have derived the quantum and classical models for electrons in atoms driven by intense and
elliptically polarized laser pulses. We have shown that the quantum dynamics of the electron clearly exhibits
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classical features after ionization. We took advantage of the classical features of the electron to describe and
analyze its dynamics, after ionization, in terms of trajectories. In particular, we have studied qualitatively
the most probable trajectory according to the tunneling ionization theory, referred to as the T-trajectory.
The qualitative analysis of the T-trajectory allowed us to introduce the tools from nonlinear dynamics we
have used throughout the manuscript.

In Chap. 2, we have derived reduced models for approximating the electron dynamics. On the one hand,
there are the strong field approximation (SFA) [39] and the Coulomb-corrected strong field approximation
(CCSFA) [62]. These models are particularly efficient for the description of short time scale processes, i.e.,
which involve significantly the Coulomb potential on a short time scale. For instance, these models can
qualitatively reproduce recolliding trajectories for a few laser cycles after ionization, which are particularly
important for understanding the characteristics of the HHG intensity spectra. On the other hand, we have
derived a hierarchy of reduced models for the guiding-center (GC) motion of electrons in intense laser fields [49,
50]. The GC motion corresponds to the averaged trajectory of the ionized electrons. In Fig. 5.10, the dark
red curve represents the GC trajectory of an electron (light red curve) recolliding after multiple laser cycles.
The light red electron undergoes a Coulomb-driven recollision. When it returns to the core, its energy is
exchanged with a bound electron (light blue curve) and both ionize. In order to return to the core after
multiple laser cycles, the contribution of the Coulomb potential on the motion of the electron during its
excursion far from the core is significant for long time scales. The GC models are able to describe and
reproduce accurately the motion of the ionized electrons on these long time scales. The second order model
of this hierarchy of models (see Sec. 2.3.2.1) provides an intuitive view of the motion of the electron in the
combined laser and Coulomb field, where the motion of the electron has two components: a slow component
corresponding to the motion of the GC and a fast component due to the interaction with the laser. After
ionization, the electron oscillates around its guiding center at the frequency of the laser field. The energy of
the GC is conserved, which allowed us to define an energy for the ionized electrons.

Figure 5.10: Typical non-sequential double ionization (NSDI) induced by a Coulomb-driven recollision in Mg
atoms subjected to an intense laser field of ellipticity ξ = 0.5 in 3D. The light red and light blue curves are
the recolliding and bound electrons, respectively. The dark red curve is the guiding-center (GC) trajectory
of the recolliding electron at the fifth order model G5 = (H5,Φ5). We observe that the motion of the GC is
bounded, its energy is negative. The GC drives the red electron back to the core.
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In Chap. 3, we have studied the impact of the Coulomb potential in ATI using the reference Hamiltonian
and the reduced models derived in Chap. 2. In particular, we have analyzed the Coulomb effects in the PMDs
measured experimentally, namely Coulomb focusing and Coulomb asymmetry. We have shown that Coulomb
focusing is a consequence of the decrease of the energy of the electron by the Coulomb potential compared
to what it would be at the detector if the ion-electron interaction was ignored. Coulomb asymmetry is a
consequence of the deviation of the drift velocity of the electrons by the Coulomb potential compared to what
it would be at the detector if the ion-electron interaction was ignored. We have shown that including the
Coulomb potential gives rise to a variety of trajectories such as the subcycle recollisions, direct ionizations,
Coulomb-driven recollisions and Rydberg state creations, while only the subcycle recollisions and the direct
ionizations are well described by the SFA which ignores the ion-electron interaction. The GC energy of the
electron allowed us to clearly distinguish and describe this variety of ionization channels. The ellipticity of
the laser highlights the contribution of the laser field in the PMDs. In particular, we have unraveled the
mechanism behind the bifurcation observed in the PMDs for increasing ellipticity: At the critical ellipticity,
the Coulomb asymmetry appears at the same time as Coulomb focusing begins to recede. Our numerical
prediction of the critical ellipticity is in agreement with experiments [93, 104]. We have shown that, for large
ellipticities, the rates of Rydberg state creations and Coulomb-driven recollisions decreases drastically. For
CP fields, if the electron ionizes when the laser field reaches its peak amplitude, the probability the electron
recollides is almost zero. This chapter shows particularly well the complementarity of quantum mechanics
and nonlinear dynamics in the description and interpretation of nonlinear phenomena in attosecond science.

In Chap. 4, we have investigated the impact of the Coulomb potential and the laser envelope in the
existence of recollisions for CP and near-CP fields [61, 111]. We have identified a highly probable recollision
channel with large return energy by accounting for the effects of the pulse envelope f(t) and the Coulomb
potential. The recollisions taking this channel are referred to as envelope-driven recollisions. This recollision
channel is particularly effective for nearly-CP fields, since the conventional recollision channel disappears. The
competition between the Coulomb force and the laser field makes this recollision channel highly probable by
creating a channel of ionization early after the laser field is turned on. Just as the electron is outside the core
region, the amplitude of the vector potential is small, and therefore the sideways drift of the electron can be
compensated by its momentum. We have shown that this recollision channel and the return of the electron
can be understood using the SFA. Then, we have shown that this recollision channel can be used to produce
HHG with atoms driven by highly elliptically polarized laser fields, and is also responsible for the enhanced
double ionization from specific target species subjected to CP fields observed in experiments and numerical
simulations [61, 111]. The existence condition of this recollision channel has been derived using the GC
model, and agrees well with the conditions for which the enhanced double ionization for CP fields is observed
experimentally [55, 65, 61]. In addition, we have noticed that, under reasonable conditions, recollisions can
take place in the Attoclock setup, where recollisions are always assumed to be nonexistent [53, 152].

In Chap. 5, we have used nonperturbative methods to understand and analyze the global behavior of the
electron trajectories. In particular, we have studied relevant and important invariant structures to assess
the motion of the electrons. We have identified a high-dimensional invariant structure which partitions the
phase space and drives the electrons. This four-dimensional invariant structure corresponds to a set of stable
and unstable manifolds of a family of invariant tori associated with a center-saddle periodic orbit. We have
described a procedure to represent this high-dimensional structure on a plane, and we have compared it with
the global behavior of the electrons. This structure originates near the core due to the competition between
the laser and Coulomb interactions, and as a consequence, demonstrates the importance of the interplay
between these two interactions in the dynamics of the ionized electrons. We have shown that the dynamics of
the ionized electrons can exhibits chaos, in particular when the electrons return to the core with a relatively
small momentum. In this case, they can be trapped for several laser cycles near the core due to chaotic
regions in phase space. The analysis of the invariant structures in phase space allowed us to understand the
origin of these chaotic regions.

Perspectives

In this manuscript, we have shown that the combination of the quantum description of the electron before
ionization and the purely classical treatment of its dynamics after ionization, in the light of nonlinear dynam-
ics, provides an interesting and promising framework for studying the mechanisms involved in the nonlinear
phenomena observed in experiments. In particular, using perturbative and nonperturbative techniques, we
have shown that the Coulomb potential and the variations of the laser envelope, which are commonly ignored,
can manifest in different ways in the experimental measurements.
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• The hierarchy of models for the GC dynamics has been derived purely classically. An analogue quan-
tum mechanical derivation, by using unitary transformations at appropriate orders in analogy of the
canonical transformations, could lead to additional terms in the quantum Hamiltonians for the GC
compared to the classical Hamiltonians for the GC. This could reveal features specific to the quantum
characteristics of the electrons [128].

• The study of the role of the laser envelope in the GC dynamics has been very limited, and derived only
for slowly varying laser envelopes (see Sec. 2.2.2.5). The effects of the laser envelope on the dynamics
of the GC could highlight particular effects of the laser envelope on the outcome of the electrons. In
addition, the study of the influence of the laser envelope on the invariant structures could also highlight
its effects on the dynamics of the electrons.

• In LP, we have shown that invariant structures partitioning the phase space and driving the recollisions
for d = 2 and d = 3 are associated with an SPO. In contrast, it was shown in Ref. [81] that RPOs
drive the recollisions in CP. In Ref. [14], it was shown that SPOs drive the recollisions in CP. Which
invariant structures drive the recollisions in phase space regardless the dimension and the ellipticity is
still under debate.

• We have found that the Coulomb potential plays a significant role on the motion of the electrons after
ionization, and can even make their dynamics chaotic. Certainly, the Coulomb potential affects the
dynamics of the electrons during the ionization process, when the electron is very close to the core,
in particular during quantum tunneling. A nonperturbative analysis of these processes could reveal
interesting features on tunneling processes in atoms.

• The motion of an electron in an isolated laser field and its motion in an Hydrogen-like atom are two
fundamental and very well-known systems in physics. However, this work shows that the motion of
the electron becomes very complex and sophisticated when these two fundamental forces are combined.
It makes wonder if nonlinear dynamics could push the limits of the knowledge and understanding of
ultrafast nonequilibrium phenomena in attosecond science.
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Appendix A

Glossary

A.1 Acronyms

• ADK: Ammosov-Delone-Krainov.

• ATI: above threshold ionization.

• CCSFA: Coulomb-corrected strong field approx-
imation.

• CEP: carrier envelope phase.

• CTMC: Classical trajectory Monte Carlo.

• FWHM: full width at half maximum.

• GC: guiding center.

• HHG: high horder harmonic generation.

• KH: Kramers-Henneberger.

• LF: laboratory frame

• NSDI: nonsequential double ionization.

• NSMI: nonsequential multiple ionization.

• PAD: photoelectron angular distribution.

• PMD: photoelectron momentum distribution.

• PPT: Perelomov-Popov-Terent’ev.

• RF: rotating frame.

• RPO: recolliding periodic orbit.

• SAE: single-active electron.

• SFA: strong field approximation.

• SPO: saddle periodic orbit.

• TDSE: Time-dependent Schrödinger equation.

• TISE: Time-independent Schrödinger equation.

• T-trajectory: Most probable trajectory accord-
ing to the ADK or PPT ionization rate.

• XUV: Extreme ultraviolet.

A.2 Notations

• [x]j = xj The jth element of a vector x.

• [A]jk = Ajk The coefficient of the jth row and
kth column of the matrix A.

• [AB]jk = AjlBlk Multiplication between two
matrices.

• IN Identity matrix of size N ×N .

• 0N Zero matrix of size N ×N .

• e· Unitary vector in the LF.

• ẽ· Unitary vector in the RF.

• ·> Transpose matrix.

• ·̂ Quantum operator.

• i =
√
−1 Imaginary number.

• ∇ = ∂/∂r = ex∂/∂x + ey∂/∂y + ez∂/∂z The
gradient operator.

• ∂y(x0)/∂x Derivative of y(x) with respect to x
evaluated at x = x0.

• ∆ = ∇ ·∇ Laplacian operator.

• · Scalar product between two vectors.

• 〈·〉 Average or mean value.

• · × · For scalars: Multiplication. For vectors:
Cross product.
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• | · | Euclidean norm.

• ·? Coordinates of a fixed point of a dynamical
system or a mapping.

• <· Real part.

• =· Imaginary part.

• Πr· Projection into the position components in
phase space.

• Πp· Projection into the momentum components
in phase space.

• Sp Spectrum of a matrix.

• det Determinant of a matrix.

• R· Rotation matrix around the axis e·:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
• F [f(x)](y) Fourier transform of f(x) as a function of y:

F [f(x)](y) =
1

(2π)d/2

∫ ∞
−∞

f(x) exp(−ix · y) ddx,

F−1[F (y)](x) =
1

(2π)d/2

∫ ∞
−∞

F (y) exp(ix · y) ddy.

A.2.1 Numerator layout convention
For vectors and matrices, we use the numerator layout convention, also known as the Jacobian formulation.
Let x and y be vectors of size n and m, with elements such that x = [x1, · · · , xn]> and y = [y1, · · · , ym]>,
respectively.

• The derivatives ∂y/∂x layout according to y
and x>, and as a consequence

[
∂y

∂x

]
ij

=
∂yi
∂xj

.

The differentiation of a vector y(x) with respect
to a scalar x is dh(z) = (∂h/∂z)dz using the
chain rule. The transpose of the derivatives is
the derivative of the transposes (∂y(x)/∂x)> =
∂y>/∂x>.

• The gradient of a scalar y(x) with respect to the
variables x is a row vector of size n (size n× 1)
such that

∂y(x)

∂x
=

[
∂y

∂x1
· · · ∂y

∂xn

]
.

The Hessian matrix of y(x) with respect to x is

Hij = ∂2y/∂xi∂xj , and in compact notation

H =
∂2y(x)

∂x>∂x
=


∂2y(x)

∂x1∂x1
· · · ∂2y(x)

∂x1∂xn
...

. . .
...

∂2y(x)

∂xn∂x1
· · · ∂2y(x)

∂xn∂xn

 .

• The derivative of a vector y(x) with respect to
a scalar x is a column vector

∂y(x)

∂x
=


∂y1

∂x
...

∂ym
∂x

 .

• The identity is ∂x/∂x = In, with In the identity
matrix of size n× n.

• If u = u(x), then

∂g(u(x))

∂x
=
∂g(u)

∂u

∂u(x)

x

A.2.2 Laser
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• I Intensity of the laser field.

• λ Wavelength of the laser field.

• ω Frequency of the laser field.

• T Period of the laser field.

• E0 Amplitude of the laser field.

• f Envelope of the laser field.

• Tf Time when the laser field is turned off.

• ξ Ellipticity of the laser field.

• Ω Frequency of the radiated photon.

• E(t) Electric field as a function of time in the
LF.

• A(t) Vector potential as a function of time in
the LF.

• Ẽ(t) Electric field as a function of time in the
RF.

• Ã(t) Vector potential as a function of time in
the RF.

• e‖(t0) = E(t0)/|E(t0)| Unitary vector along the
laser field direction at ionization time t0.

• e⊥(t0) = −[e‖(t0)·ey]ex+[e‖(t0)·ex]ey Unitary
vector transverse to the laser field direction at
ionization time t0.

A.2.3 Atomic model

• Ψ Wavefunction in the position representation.

• W Wigner quasi-probability distribution.

• Ip Ionization potential of the electron in the
atom.

• Eg Ground state energy of the atom.

• a Softening parameter of the soft Coulomb po-
tential.

• (r,p) Position and canonical conjugate momen-
tum of the electron in the laboratory frame
(LF).

• (r0,p0) Initial position and momentum of the
electron.

• (r̃, p̃) Position and canonical conjugate momen-
tum of the electron in the rotating frame (RF).

• Φn The nth order transformation from the elec-
tron to the guiding-center coordinates.

• H Total Hamiltonian of the system.

• Hfree Hamiltonian of the field-free atom.

• Hn Hamiltonian of the guiding center.

• V Ion-electron interaction potential.

• V Rotationally invariant ion-electron interac-
tion potential.

• Gn = (Hm,Φn) (with m ≤ n) The nth order
guiding-center model.

• (r̄, p̄) Position and canonical conjugate momen-
tum of the guiding center in the LF.

• (˜̄r, ˜̄p) Position and canonical conjugate momen-
tum of the guiding center in the RF.

• t0 Ionization time of the electron.

• WADK, WPPT Ionization rate in the ADK and
PPT theory, respectively.

• (rADK,pADK), (rPPT,pPPT) Initial position
and momentum of the electron after tunneling
in the ADK and PPT theory, respectively.

• (rT
ADK,p

T
ADK), (rT

PPT,p
T
PPT) Initial position

and momentum after tunneling of the T-
trajectory in the ADK and PPT theory, respec-
tively.

• P = Pxex + Pyey + Pzez Final momentum of
the T-trajectory.

• Rmin, Rmax Distance threshold for detecting the
recolliding trajectories.

A.2.4 Dynamical systems and Hamiltonian formalism

• d Dimension of the configuration space.

• ẋ = dx/dt Derivative of x with respect to time.

• ẍ = d2x/dt2 Double derivative of x with respect
to time.

• ϕt2t1 Flow from time t1 to time t2.

• J t2t1 Tangent flow from time t1 to t2.

• P Poincaré map.

• {·, ·} Poisson bracket.
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• K Jacobi constant in the RF.

• O· periodic orbits.

• W ·F Invariant manifold of the family of invariant
tori of the SPO OS .
• W · Invariant manifold of a fixed point.

• F · Fundamental domain of the invariant mani-
fold of a fixed point.

• ν Frequency of the invariant curve.

• x(θ) Representation of the invariant curve.
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Appendix B

Atomic scales

The general results on the Bohr semi-classical approach of the Hydrogen atom [26] are presented. These
results are used to define the atomic units and the system of conversion used in this manuscript, and the
atomic scales involved in these systems.

B.1 Hydrogen atom: The Bohr semi-classical approach

We consider a proton of mass mp and an electron of mass me. The position and the momentum of the proton
is denoted (rp,pp) and that of the electron is denoted (re,pe). In ISU, the Hamiltonian of the system reads

H(re, rp,pe,pp) =
|pe|2
2me

+
|pp|2
2mp

− e2

4πε0|re − rp|
,

with ε0 the permittivity of the vacuum and e the charge of one electron. We perform the canonical change of
coordinates r = re−rp, p = µ(pe/me−pp/mp), the coordinates of the center of mass R = µ(re/mp+rp/me),
P = pe + pp, where the reduced mass is µ = memp/(me + mp). Therefore, the Hamiltonian in the new
coordinates is

H(r,R,p,P) =
|P|2

2(me +mp)
+
|p|2
2µ
− e2

4πε0|r|
.

The motion of the center of mass is uniform. We choose the center of mass to be static at the origin, i.e.,
R = P = 0. Then, we use the polar-nodal coordinates (see Sec. 2.3.2.1). In polar-nodal coordinates and for
static center of mass, the latter Hamiltonian becomes

H(r, θ, ν, pr, pθ, pν) =
p2
r

2µ
+

p2
θ

2µr2
− e2

4πε0r
.

In these variables, the angle ν and its conjugate momentum pν are conserved, which is related to the degen-
eracy of the magnetic number m. The angular momentum pθ = ` is also conserved. The reduced dynamics
of the electron is therefore

H(r, pr) =
p2
r

2µ
+

`

2µ r2
− e2

4πε0r
. (B.1)

Therefore, the proton and the electron are balanced between attraction, due to the proton-electron interaction,
and repulsion, due to the inertial force `2/2µr. Bohr’s assumption for the quantification of the angular
momentum is

` = n~, (B.2)

where n ∈ N∗ corresponds to the principal quantum number and ~ is the reduced Plank constant or infinites-
imal action. In 1924, in his thesis on the theory of quanta [45], de Broglie provides an interpretation of
the Bohr’s assumption based on the wave-particle duality: “it can be seen as a resonance condition of the
electronic wave written in the system related to the nucleus of the atom”, where the wavelength of the wave
function of the electron h/pr is a multiple integer of the circumference |r| of the circular orbit described by
the electron. The energy of the atom is E = H(r, pr), and substituting Eq. (B.2) in Eq. (B.1), one obtains

E =
p2
r

2µ
+
n2~2

2µr2
− e2

4πε0r
.
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For a given principal quantum number n, the minimum energy of the electron is reached for a radius rn which
minimizes the energy, for which the orbit is circular, i.e., pr = 0. The energy is given by

En = − 1

2n2

me

~2

(
e2

4πε0

)2

, (B.3)

where µ ≈ me. The energy E1 is the ground state energy of the Hydrogen atom, and therefore n = 1 labels
the ground state of the Hydrogen atom. The Bohr radius a0 is defined as the smallest radius of the ground
state of the Hydrogen atom r1, hence,

a0 ≡
~2 4π ε0

me e2
. (B.4)

B.2 Atomic units

The Bohr radius a0 in Eq. (B.4) and the first ionization potential of the Hydrogen atom E1 in Eq. (B.3)
correspond to the characteristic length and the characteristic energy of the electron in atom. First, the
dimensions are written in terms of the physical quantities of the Hydrogen atom

L =

[
~2 4π ε0

me e2

]
, M = [me], T =

[
~3

me

(
4π ε0

e2

)2
]
.

Second, we use the Gaussian units, where 4π ε0 = 1. Then, we define a non-dimensional system of units by
setting

~ = me = −e = 4π ε0 = 1.

By performing this transformation, the Bohr radius becomes unity. Therefore, 1 a.u. corresponds to the
characteristic length of the electron in the atom. In order to determine A = A(~,me, e) in atomic units from
the international system of units (I.S.U.), the following relation

A (1, 1,−1) (a.u.) = A
(
1.055× 10−34, 9.109× 10−31,−1.602× 10−19

)
(I.S.U.).

B.2.1 Laser parameters
We consider a laser electric field E and magnetic field B. The intensity of the laser field I is defined as the
time-averaged magnitude of the Poynting vector, i.e.,

I =
1

T

∫ T

0

E×B

µ0
dt, (B.5)

where µ0 is the vacuum permeability and T is the laser period. We consider an elliptically polarized laser
field of the form E(r, t) = E0/

√
ξ2 + 1[ex cos(ωt − kz) + eyξ sin(ωt − kz)], where k is the absolute value

of the vector propagation of the electromagnetic wave. Substituting the expression of the laser field and
the associated magnetic field in Eq. (B.5), we obtain the relation between the intensity of the laser and its
amplitude

I (W ·m−2) =
ε0c

2

(
E0 [V ·m−1]

)2
,

where ε0 ≈ 8.85× 10−12 F ·m−1 is the permittivity of vacuum. The scaling 1/
√
ξ2 + 1 in the laser field [see

for instance Eq. (1.10)] is used to conserve the intensity of the laser with respect to the polarization of the
field. In the literature, the properties of the laser can be given by its energy Elaser = PmaxTFWHM, where
Pmax = πR2I/2 is the peak amplitude of the power of the laser beam, R is the radius of the laser beam and
TFWHM is the time of the full width at half maximum of the laser beam. The wavelength λ is related to the
frequency of the laser with

λ [m] =
2πc

ω [rad · s−1]
.
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Physical quantities and conversions I.S.U. a.u.
Electron charge e −1.602× 10−19 C −1
Reduced Planck constant ~ 6.625× 10−34 J.s 1
Electron mass me 9.109× 10−31 kg 1
Bohr radius a0 5.292× 10−11 m 1
Electric potential in H at the Bohr radius 27.219 V 1
Ground state energy of H −13.6 eV −1/2
Proton mass mp 1.673× 10−27 kg 1836.15
Neutron mass mn 1.673× 10−27 kg 1836.15
Orbit period at the Bohr radius T0 15.198× 10−17 s 2π
Electron velocity at the Bohr radius 2.187× 106 m.s−1 1
Celerity 3.000× 108 m.s−1 137.037
Temperature kB T T × 1.3806× 10−23 J T × 3.16× 10−6

Laser intensity I 3.510× 1016 W · cm−2 1
Laser wavelength λ 0.05292 nm 1
Laser frequency ω 4.134× 1016 rad · s−1 1
Distance r 5.292× 10−11 m 1
Velocity v 2.187× 106 m · s−1 1
Time t 2.419× 10−17 s 1

Table B.1: Value of different physical quantities in the International System of Units (I.S.U) and in the
atomic units (a.u.) The quantity r denotes the distance between the proton and the electron.
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Appendix C

Dynamical systems

C.1 Continuous flow

A dynamical system is associated with an evolution in time. We consider a dynamical system described by
the first order ordinary differential equation

ż = f(z, t), (C.1)

where ż = dz/dt, z ∈ Rn is the set of dynamical variables with n ∈ N∗, and t is the evolution parameter. For
a given initial condition z(t0) = ζ, the solution is unique, and as a consequence the system is deterministic.
The function

ϕtt0 : ζ 7→ ϕtt0(ζ) = z(t), (C.2)

is the flow function of the vector field f such that ϕt0t0(ζ) = ζ (i.e., ϕtt is the identity function), and
ϕtt1(ϕt1t0(ζ)) = ϕtt0(ζ) (i.e., ϕtt1 ◦ ϕ

t1
t0 is the group law). The flow of the vector field f maps an initial

condition (ζ, t0) to the corresponding solution of Eq. (C.1). The derivatives of the flow function with respect
to the initial conditions ζ, denoted J t

t0(ζ) = ∂ϕtt0(ζ)/∂ζ and called the tangent flow, is solution of the
equation

J̇ t

t0(ζ) = A
(
ϕtt0(ζ), t

)
J t
t0(ζ), (C.3)

with initial condition J t0
t0(ζ) = In. The matrix A(z(t), t) = ∂f(z, t)/∂z|z=z(t) is the Jacobian matrix of the

mapping f or the matrix of variations. Using the group law of the flow and the chain rule, the tangent flow
matrix is such that J t

t0(ζ) = J t
t1(ϕt1t0(ζ))J t1

t0(ζ).

C.1.1 Invariant objects

The linear stability assesses the stability of a trajectory under a small perturbation with respect to the initial
conditions δζ. Under a small perturbation, the flow becomes ϕtt0(ζ + δζ) = ϕtt0(ζ) + J t

t0(ζ)δζ + O(|δζ|2).
The normal behavior of a trajectory z(t) corresponds to the evolution of the perturbation δz(t) = ϕtt0(ζ +
δζ)−ϕtt0(ζ) at the first order in δz(t0) = δζ. The normal behavior of z(t) is

δz(t) = J t
t0(ζ)δz(t0). (C.4)

We observe that the perturbation evolves with respect to time as J t
t0(ζ)δz(t0). If J t

t0(ζ) is diagonalizable,
i.e., if there exists S an invertible matrix such that Dt

t0(ζ) = S−1J t
t0(ζ)S is diagonal, we use the change of

coordinates δy(t) = S−1δz(t) for all time t. The small perturbation expressed in the basis of the eigenvectors
of the tangent flows J t

t0(ζ) [see Eq. (C.4)] becomes

δy(t) = Dt
t0(ζ)δy(t0), (C.5)

Therefore, the spectrum of the tangent flow and their associated eigenvectors provide information on the
local stability of a trajectory. We denote {λi(ζ)}ni=0 = Sp(J t

t0(ζ)) the eigenvalues of the tangent flow
matrix J t

t0(ζ). If the real part of λi, <(λi) < 1, the small perturbation shrinks to zero along the associated
eigenvector. In contrast, if <(λi) > 1, the small perturbation enlarges along the associated eigenvector.
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C.1.1.1 Lyapunov characteristic exponents

According to the Lyapunov theorem, if the matrix A(z, t) is bounded, then for each nontrivial solution of
Eq. (C.1) ϕtt0(ζ), the finite time Lyapunov exponent is the real number defined by

Λ(t) = max
i

log |λi(t)|
t

, (C.6)

with {λi}ni=0 = Sp(J t
t0(ζ)) are the eigenvalues of the tangent flow matrix J t

t0(ζ). The Lyapunov exponent
is given by the limit when time goes to infinity Λ = limt→∞ Λ(t). The Lyapunov exponents estimates the
strength of the sensitivity of a trajectory with respect to the initial conditions. Along one trajectory, the
stability can change, going from stable to unstable.

C.1.1.2 Fixed point

We consider that ζ is a fixed point of the flow if and only if f(ζ, t) = ζ for all t, or equivalently

ϕtt0(ζ) = ζ, (C.7)

for all time t. As a consequence, the Jacobian matrix of the fixed point ζ is constant and A(ζ, t) = A(ζ).
The solution of the tangent flow [see Eq. (C.3)] is

J t
t0(ζ) = exp [A(ζ)(t− t0)] . (C.8)

Figure C.1: (a) Poincaré diagram of a two-dimensional linear system ż = Az with z = [x, y]> in the space
(trA,detA) of solution z(t) = exp[A(t− t0)]z(t0). The fixed point of the mapping is ζ = 0. It is depicted by
a black dot in (b–m). If det A = 0, the fixed point is a line passing by ζ = 0, see (g) and (l). The constant
matrix A is the Jacobian of the mapping with eigenvalues λ± = trA/2± [(trA)2−4 det A]1/2/2. The system
is Hamiltonian if trA = 0 (implying |detJ t

t0(ζ)| = 1, see Sec. C.2). The fixed point is: (b) center (here
trA = 0 and det A = 1), (c) saddle (here trA = 0 and det A = −1), (d) spiral sink, (e) degenerate sink,
(f) sink, (g) line (thick black line) of stable fixed points, (h) saddle with |λ−| > |λ+|, (i) spiral source, (j)
degenerate source, (k) source, (l) line (thick black line) of unstable fixed points, (m) saddle with |λ+| > |λ−|.
The fixed point is represented ζ. For trA = det A = 0, the fixed point is parabolic (see legend). (b–m) The
thin lines with arrows are the trajectories around in (x, y), the blue and red curves are the stable manifold
Ws and the unstable manifold Wu if any, respectively.
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Let DA(ζ) = S−1A(ζ)S be the diagonal matrix of A(ζ), then Dt
t0(ζ) = S−1J t

t0(ζ)S since Ak(ζ) =

SDk
A(ζ)S−1 and Dk

A(ζ) is a diagonal matrix for all k ∈ N, where we recall that Dt
t0(ζ) is the diago-

nal matrix similar to the tangent flow. Therefore, on the one hand, the spectrum of the tangent flow
{λk(ζ)}nk=0 = Sp(J t

t0(ζ)) is related to the spectrum of the Jacobian matrix {µk(ζ)}nk=0 = Sp(A(ζ)) through

λk(ζ) = exp[µk(ζ)(t− t0)].

In particular, λk(ζ) = exp[<(µk(ζ))(t − t0)] exp[i=(µk(ζ))(t − t0)]. As a consequence, the real part of µk
increases or decreases the perturbation with respect to time, while the imaginary part is the frequency of the
rotation of the perturbation [see Eq. (C.5) and Fig. C.1 for an example with a two-dimensional map linearized
in the neighborhood of the fixed point]. On the other hand, since detDt

t0(ζ) = detJ t
t0(ζ) =

∏n
k=1 λk(ζ)

and trDA(ζ) = trA(ζ) =
∑n
k=1 µk(ζ), one has

detJ t
t0(ζ) = exp [(t− t0)trA(ζ)] . (C.9)

C.1.1.3 Periodic trajectory

The trajectory {z(t)}t with initial condition z(t0) = ζ is a periodic orbit with period T if and only if

ϕt+Tt (z(t)) = z(t), (C.10)

for all time t. The stability of the periodic orbit is given by Sp(MT (ζ)), where MT (ζ) = J t0+T
t0 (ζ) is

the monodromy matrix. In addition, if the mapping is periodic f(z, t + T ) = f(z, t) for all time t, then by
uniqueness of the solution of Eq. (C.1), the trajectory {z(t)}t with initial condition z(t0) = ζ is a periodic
orbit with period T if and only if

ϕt0+T
t0 (ζ) = ζ. (C.11)

C.1.2 T -periodic change of coordinates

We consider a change of coordinates z̃ = h(z, t), T -periodic h(z, t + T ) = h(z, t), of class C1 and bijective,
such that z̃ = h(h−1(z̃, t), t) for all z̃. We notice that the inverse function h−1 is also T -periodic because
of the bijectivity. We denote ϕ̃tt0(z̃) and ϕtt0(z) the flow functions in the new and old set of coordinates,
respectively. The flow function in the new variables is also T -periodic such that ϕ̃t0+mT

t0+(m−1)T (z̃) = ϕ̃t0+T
t0 (z̃)

for all m ∈ N∗, while the flow function in the old set of coordinates is invariant under time translation such
that ϕtt0(z) = ϕt−t00 (z) for all t. Typically, the old system of coordinates corresponds to the position and
momentum of the electron in the rotating frame (resp. the guiding-center model), while the new system of
coordinates corresponds to the electron motion in the laboratory frame (resp. the electron motion in the dipole
approximation up to the order for which the guiding-center model is time-independent). We consider the
trajectories z̃(t) = ϕ̃tt0(ζ̃) with initial condition z̃(t0) = ζ, and z(t) = ϕtt0(ζ) with initial condition z(t0) = ζ,
such that ζ̃ = h(ζ, t0). For all time t, the flows are related through ϕtt0(ζ) = h−1(ϕ̃tt0(h(ζ, t0)), t), and
respectively, ϕ̃tt0(ζ̃) = h(ϕtt0(h−1(ζ̃, t0)), t). Using the periodicity of the change of coordinates h(z, t+mT ) =
h(z, t) and h−1(z, t+mT ) = h−1(z, t) with m ∈ N∗, one gets

ϕ̃t0+mT
t0 (ζ̃) = h

(
ϕt0+mT
t0

(
h−1(ζ̃, t0)

)
, t0

)
, (C.12)

and respectively, ϕt0+mT
t0 (ζ) = h−1(ϕ̃t0+mT

t0 (h(ζ, t0)), t0). Therefore, ϕ̃t0+mT
t0 = h◦ϕt0+mT

t0 ◦h−1, i.e., ϕ̃t0+mT
t0

and ϕt0+mT
t0 are topologically conjugate [148, 1]. We denote J̃ t

t0(ζ̃) = ∂ϕ̃tt0(ζ̃)/∂ζ̃ and J t
t0(ζ) = ∂ϕtt0(ζ)/∂ζ

the tangent flow functions in the new and the old set of coordinates, respectively. We differentiate the left-
and right-hand side of Eq. (C.12) with respect to ζ. Using the chain rule, one gets

J̃ t0+mT

t0 (h(ζ, t0)) =
∂h(z, t0)

∂z

∣∣∣∣
z=ϕ

t0+mT
t0

(ζ)

J t0+mT
t0 (ζ)

(
∂h(z, t0)

∂z

∣∣∣∣
z=ζ

)−1

, (C.13)

where we have used ∂h−1(z̃)/∂z̃ = (∂h(z)/∂z|z̃=h−1(z̃))
−1 which comes from z̃ = h(h−1(z̃)), and where we

have substituted ζ̃ = h(ζ, t0).
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Remark 1 (Invariance of the structural stability with a regular change of coordinates) We con-
sider a T -periodic change of coordinates h of class C1 and bijective, such that h : z 7→ z̃ = h(z) with z and
z̃ the old and the new set of coordinates, respectively. The flow in the old set of coordinates is ϕtt0(z) and
such that ϕtt0(z) = ϕt−t00 (z). The flow in the new set of coordinates is ϕ̃tt0(z̃) and T -periodic such that
ϕ̃t0+T
t0 (z̃) = ϕ̃t+2T

t0+T (z̃).

• If {z(t)}t with initial condition z(t0) = ζ is a fixed point, i.e., ϕtt0(ζ) = ζ for all t [see Eq. (C.7)], then,
using Eq. (C.12) with m = 1, it implies that ϕ̃t0+T

t0 (ζ̃) = ζ̃, i.e., ζ̃ is a periodic orbit of period T [see
Eq. (C.11)]. Therefore, the fixed points in the old set of coordinates z̃ are transformed in periodic orbits
of period T in the new set of coordinates z̃. Moreover, using Eq. (C.13), the tangent flows are related
through the J̃ t0+T

t0 (h(ζ)) = (∂h/∂z) ◦J t0+T
t0 (ζ) ◦ (∂h/∂z)−1. Therefore, they have the same spectrum.

• If {z(t)}t with initial condition z(t0) = ζ is a periodic orbit of period TO, i.e., ϕt0+TO
t0 (ζ) = ζ [see

Eq. (C.11)]:

– If there exists m, q ∈ N∗ such that mT = nTO, i.e., if T/TO ∈ Q, it implies that ϕ̃t0+mT
t0 (ζ̃) = ζ̃,

i.e., ζ̃ is a periodic orbit of period mT = nTO [see Eq. (C.11)]. Moreover, using Eq. (C.13), the
tangent flow are related through the J̃ t0+mT

t0 (h(ζ)) = (∂h/∂z)◦J t0+mT
t0 (ζ)◦(∂h/∂z)1. Therefore,

they have the same spectrum.

– If T/TO ∈ R \ Q, the periodic orbit in the old set of coordinates z̃ is transformed in an invariant
curve in the new set of coordinates z.

• A periodic orbit of period T in the new set of coordinates z becomes either a fixed point, or a periodic
orbit of period T , in the old set of coordinates z̃.

C.2 Hamiltonian systems

A Hamiltonian system is a dynamical system whose dynamics is given by a scalar function H(z), with z ∈ Rn
the set of phase-space variables, the Hamiltonian, and a Poisson bracket {·, ·} such that the evolution of an
observable F (z) is determined by

dF (z)

dt
= {F (z), H(z)}, (C.14)

where t is the evolution parameter. Here, all the properties hold for a time dependent or time independent
Hamiltonian system, since in any case, the phase-space can be extended and time can be considered as a
dynamical variable. The Poisson bracket is a bilinear operator, satisfying for any observable F , G and K:

• The anti-symmetry property {F,G} = −{G,F} ,

• The Leibniz rule {F,GK} = {F,G}K +G{F,K} ,

• The Jacobi identity {{F,G},K}+ {{K,F}, G}+ {{G,K}, F} = 0 .

Due to the anti-symmetry of the Poisson bracket dH(z)/dt = {H(z), H(z)} = 0. Hence, the value of the
Hamiltonian is a constant of motion. The Hamiltonian system, with the Poisson bracket, defines a Poisson
algebra. In a set of dynamical variables z, the Poisson bracket is defined as

{F (z), G(z)} =
∂F (z)

∂z
J(z)

∂G(z)

∂z>
, (C.15)

where J(z) is the Poisson matrix. The elements of the Poisson matrix are given by Jij(z) = {zi, zj}.
According to the properties of the Poisson bracket, namely the anti-symmetry and the Jacobi identity, the
Poisson matrix is anti-symmetric J(z) + J>(z) = 0 and satisfies the Jacobiator

Sijk(z) = Jil(z)
∂Jjk(z)

∂zl
+ Jkl(z)

∂Jij(z)

∂zl
+ Jjl(z)

∂Jki(z)

∂zl
= 0, or Jil(z)

∂Jjk(z)

∂zl
+ �ijk= 0, (C.16)

for all i, j and k. Hence, if the Poisson matrix is independent of the dynamical variables z, the Jacobi
identity is satisfied. We assume that the Poisson matrix is invertible, which is possible only if det J(z) =
(−1)n det J(z) 6= 0, and therefore only if n = 2N , where N is the number of degrees of freedom. The
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inverse of the Poisson matrix is the Lagrange matrix ω(z) = J−1(z), and its derivative with respect
to the dynamical variables z is ∂ωij(z)/∂zk = ωim(z)(∂Jml(z)/∂zk)ωlj(z) and conversely ∂Jij(z)/∂zk =
Jil(z)(∂ωlm(z)/∂zk)Jmj(z) using ωik(z)Jkj(z) = δij (with δij the Kronecker symbol). Substituting the
derivatives of the Poisson matrix in terms of the derivatives of the derivatives of the Lagrange matrix in
Eq. (C.16), one gets the Jacobi identity in terms of the Lagrange matrix

∂ωij(z)

∂zk
+
∂ωki(z)

∂zj
+
∂ωjk(z)

∂zi
= 0, or

∂ωij(z)

∂zk
+ �ijk= 0, (C.17)

for all i, j and k. The evolution of the set of phase-space variables z is given by the Hamilton’s equations.
The Hamilton’s equations are obtained after substituting F (z) = z in Eq. (C.14), and read

ż = J(z)
∂H(z)

∂z>
, (C.18)

with initial conditions z(t0) = ζ. We notice that Hamilton’s equations have the same form of Eq. (C.1) with
f(z, t) = J(z)∂H(z)/∂z>. Hence, the Hamiltonian flow, or phase flow, is ϕtt0(ζ) = z(t) solution of Eq. (C.18).

C.2.1 Change of coordinates
We consider the change of coordinates z̃ = h(z). According to the scalar invariance, any observable in the
old and new system of coordinates remains the same F̃ (z̃) = F (z), i.e., the value of the observable does not
depends on the set of coordinates. In particular, the Hamiltonian is mapped into H̃(z̃) = H(z). In addition,
the Poisson bracket which is an algebra structure is also invariant under change of coordinates, and therefore

{F (z), G(z)} = {F̃ (z̃), G̃(z̃)}∼, (C.19)

where {F,G} is the Poisson bracket in the old set of coordinates, and {F̃ (z̃), G̃(z̃)}∼ the Poisson bracket in
the new set of coordinates, such that

{F̃ , G̃}∼ =
∂F̃

∂z̃
J̃(z̃)

∂G̃

∂z̃>
, (C.20)

with J̃(z̃) the Poisson matrix in the new system of coordinates. Due to the scalar invariance F (z) =
F̃ (h(z)), and using the chain rule ∂F (z)/∂z = (∂F̃ (z̃)/∂z̃|z̃=h(z))(∂h(z)/∂z). Substituting this expression
in Eq. (C.19), the relation between the new and the old Poisson matrix is J̃ij(z̃) = {z̃i, z̃j}. In compact
notation, it reads

J̃(h(z)) =

(
∂h(z)

∂z

)
J(z)

(
∂h(z)

∂z

)>
. (C.21)

Substituting Eq. (C.21) in Eq. (C.16) and using a permutation an indexes permutation, one can show that the
Jacobi identity is conserved under a change of coordinates. In terms of the Lagrange matrix ω(z) = J−1(z)
and ω̃(z̃) = J̃−1(z̃), Eq. (C.21) becomes(

∂h(z)

∂z

)>
ω̃(h(z))

(
∂h(z)

∂z

)
= ω(z). (C.22)

Substituting Eq. (C.22) in Eq. (C.17) and using an indexes permutation, one can show that the Jacobi
identity in terms of the Lagrange matrix is also conserved under a change of coordinates.

C.2.1.1 Canonical transformation

If the expression of the Poisson bracket is unchanged, i.e., if the expression of the coefficients of the Poisson
matrix is unchanged in Eq. (C.20), which implies J̃(z̃) = J(z̃), the transformation is a canonical transfor-
mation. Otherwise, the transformation is a noncanonical transformation. If the expression of the Poisson
matrix is unchanged and the Poisson matrix is invertible, then the expression of the Lagrange matrix is also
unchanged ω̃(z̃) = ω(z̃). Equation (C.22) reads(

∂h(z)

∂z

)>
ω (h(z))

(
∂h(z)

∂z

)
= ω(z). (C.23)

Therefore h(z) is a canonical transformation if and only if ∂h(z)/∂z is symplectic.
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Remark 2 (Properties of the Hamiltonian flow) We consider a trajectory {z(t)}t with initial condition
z(t0) = ζ and the change of coordinates h(ζ) = ϕtt0(ζ), where z(t) = ϕtt0(ζ) is the Hamiltonian flow. Clearly,
the Hamiltonian flow let the expression of the Poisson matrix and the Lagrange matrix unchanged, i.e., the
phase flow is a canonical transformation. Using Eq. (C.22), the Hamiltonian flow and the tangent flow
J t
t0(ζ) = ∂ϕtt0(ζ)/∂ζ are such that(

J t
t0(ζ)

)>
ω
(
ϕtt0(ζ)

)
J t
t0(ζ) = ω(ζ), (C.24)

for all time t. Therefore, the tangent flow is symplectic and the Hamiltonian flow is said to be a one-parameter
group of ω-symplectic transformation.

Remark 3 (Spectrum of fixed points and periodic orbits in Hamiltonian systems) We consider a
trajectory {z(t)}t with initial condition z(t0) = ζ, Hamiltonian flow ϕtt0(ζ) = z(t) and tangent flow J t

t0(ζ) =
∂ϕtt0(ζ)/∂ζ. The invertible Poisson matrix is J(z) and the Lagrange matrix is ω(z) = J−1(z) for all z. Using
Eq. (C.24):

• If ζ is a fixed point, then ϕtt0(ζ) = ζ for all time t [see Eq. (C.7)], and Eq. (C.24) is (J t
t0(ζ))>ω(ζ)J t

t0(ζ) =

ω(ζ). Therefore, the tangent flow of a fixed point is such that |detJ t
t0(ζ)| = 1, and using Eq. (C.9),

the Jacobian matrix is trA(ζ) = 0, as depicted in Fig. C.1 for a one degree of freedom system. In
addition, it implies that

det
(
J t
t0(ζ)− λkIn

)
= λ2N

k det
(
J t
t0(ζ)

)−1
det
(
J t
t0(ζ)− λ−1

k In
)
,

and its characteristic polynomial is reflexive. As a consequence, since J t
t0 is real, if λk is an eigenvalue

of J t
t0(ζ), then λ∗k, 1/λk and 1/λ∗k are also eigenvalues.

• If ζ is a periodic orbit of period T , then ϕt0+T
t0 (ζ) = ζ [see Eq. (C.11)]. Using Eq. (C.24), the mon-

odromy matrix MT (ζ) = J t0+T
t0 (ζ) is such that (MT (ζ))>ω(ζ)MT (ζ) = ω(ζ). Hence, |det MT (ζ)| =

1 and the characteristic polynomial of the monodromy matrix is

det (MT (ζ)− λkI2N ) = λ2N
k det (MT (ζ))

−1
det
(
MT (ζ)− λ−1

k I2N

)
.

Therefore, since MT is real, if λk is an eigenvalue of MT (ζ), then λ∗k, 1/λk and 1/λ∗k are also eigen-
values.

Therefore, the spectrum of the tangent flow of a fixed point, or the spectrum of the monodromy matrix
of a periodic orbit, in Hamiltonian systems, is composed of eigenvalues coupled with each other with λ, 1/λ,
λ∗ and 1/λ∗ (see Fig. C.2). Therefore, the stable (resp. unstable) manifold of a fixed point always comes
with its unstable (resp. stable) manifold. In addition, the dynamics contracts along the unstable manifold
while it enlarges along the stable manifold, such that the volume in phase space is preserved.

C.2.2 Canonical Poisson bracket
The canonical coordinates are a class of phase-space variables in which the phase-space variables are coupled
by pairs. The number of phase space variables is n = 2N with: N positions ri and N canonically conjugate
momentum pi, for i = 1, . . . , N . The phase space variables are such that {ri, pj} = δij , {ri, rj} = 0 and
{pi, pj} = 0, ri and pi are said to be canonically conjugate variables. We denote z = [r1, . . . , rN , p1, . . . , pN ]>.
The Poisson bracket is a canonical Poisson bracket if and only if the Poisson matrix is the symplectic form

Jc =

[
0 IN
−IN 0

]
. (C.25)

Some properties of the symplectic Poisson matrix are J−1
c = J>c = −Jc, which implies in particular that

J2
c = −I2N and Jc = −ωc.

C.2.2.1 Properties of the tangent flow

We consider a trajectory {z(t)}t with initial condition z(t0) = ζ. The phase flow is ϕtt0(ζ) = z(t) and the
tangent flow is J t

t0(ζ). Substituting ω(ϕtt0(ζ)) = ω(ζ) = ωc in Eq. (C.24), for all t0, t and ζ, one has
(J t

t0(ζ))>ωcJ t
t0(ζ) = ωc, and therefore

J >ωcJ = ωc. (C.26)
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Therefore, the tangent flow J is symplectic. Considering the infinitesimal transformation of the phase flow
ϕt0+δt
t0 (z) with δt� 1, the tangent flow matrix writes J t0+δt

t0 (z) = I2N +δtA(z, t0)+O(δt2). In the first order
in δt, Eq. (C.26) becomes ωcA+A>ωc = 0. Therefore, A is a symplectic transformation, or an infinitesimal
generator. In addition, applying the determinant on the left- and right-hand side of the previous equation,
it immediately follows that

|detJ | = 1,

for all time t0 and t and for all z. Therefore, the Hamiltonian flow is phase space volume preserving, which
is an elementary property for canonical Hamiltonian systems. Among other things, there are no dissipation
in Hamiltonian systems, and in particular no attractors. The dynamics stretch out along some direction,
and compress along other directions such that the phase-space volume is preserved. This has obviously
consequences on the linear stability of a trajectory. We denote {λk(ζ, t)}2Nk=1 = Sp(J t

t0(ζ)) the eigenvalues
of the tangent flow at time t associated with the initial condition z(t0) = ζ. Since J is symplectic, it implies
that J −1 = −ωcJ >ωc so the characteristic polynomial is reflexive, i.e.,

det (J − λkI2N ) = λ2N
k det

(
J t
t0(ζ)

)−1
det
(
J − λ−1

k I2N

)
, (C.27)

for all k = 1, . . . , 2N , for all t and for all ζ. Therefore, if λk is eigenvalue of J , then 1/λk, λ∗k, 1/λ∗k are also
eigenvalues. Real eigenvalues always come paired as λk, 1/λk, which is a direct consequence of the phase
space volume preservation: The dynamics stretch along some directions and extends along others such that
the volume preserves. The possibilities of the stability are illustrated in Fig. C.2.

Figure C.2: Eigenvalues of the monodromy matrix of periodic orbits (or eigenvalues of the tangent flow of a
fixed point) of a two degrees of freedom Hamiltonian system (N = 2). Let ρ, µ, θ, φ ∈ R4. The eigenvalues
are: (a) Complex saddle {ρ exp(iθ), ρ−1 exp(iθ), ρ exp(−iθ), ρ−1 exp(−iθ)}, (b) real saddle {ρ, ρ−1, µ, µ−1},
(c) degenerate saddle: {ρ, ρ, ρ−1, ρ−1}, (d) saddle-center {ρ, ρ−1, exp(iθ), exp(−iθ)}, (e) generic center
{exp(iθ), exp(−iθ), exp(iφ), exp(−iφ)}, and (f) degenerate center {exp(iθ), exp(iθ), exp(−iθ), exp(−iθ)}.
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Appendix D

Computational methods

In this appendix, we show the numerical methods and we detail the algorithms we have used throughout the
manuscript for the numerical calculations. In Sec. D.1, we detail the methods used to generate the initial
conditions of the electron. In particular, we show the algorithms for computing classical trajectory Monte
Carlo (CTMC) simulations and the microcanonical generation of the initial conditions. In Sec. D.2, we detail
the methods to compute invariant objects of a dynamical system. In particular, the methods to compute
fixed points, periodic orbits, invariant tori, their linear stability and their stable and unstable manifolds.

D.1 Statistical analysis

In this section, we show the computational methods we use to generate the initial distribution of the electrons
in phase space. In this manuscript, two types of methods are used to generate the initial conditions of the
electrons for the statistical analysis: The CTMC simulations and the microcanonical generation of the initial
conditions.

D.1.1 Classical trajectory Monte Carlo (CTMCs) simulations
The classical trajectory Monte Carlo simulations (CTMCs) consists in computing the distribution of an
observable, such as for instance the distribution of the momentum of the ionized electrons, given an initial
distribution of the electron in phase space W . In our simulations, the initial distribution of the electron in
phase space is given by the quantum theory of ionization described in Sec. 1.2.2. In order to make a general
description of the method, we consider the N -dimensional integral

I =

∫
D dNz f(z)W (z)∫

D dNz W (z)
, (D.1)

with D ⊂ RN a connected domain and z ∈ RN . For instance, for computing the PMD of Fig. 3.4, we have
used f(z) = δ(pz − ez · p(rPPT,pPPT, t0; t → ∞)), where W (z) = WPPT(t0,pPPT) is given in Eq. (1.27),
z = (t0,pPPT) and δ is the Dirac distribution. The quantity p(rPPT,pPPT, t0; t → ∞) is the asymptotic
momentum of the ionized trajectories (trajectories with positive energy) initiated at time t0 with position
rPPT and momentum pPPT given by Eqs. (1.25). In this case, the integral I corresponds to the normal-
ized distribution of the asymptotic momentum of the ionized electron along ez. The Monte Carlo method
for approximating multidimensional integrals consists in integrating fW by sampling f with non-uniform
probability density W (z)dNz. We consider the set of points zk ∈ D, with k = 1, . . . ,M , distributed with a
probability density W (z). If M is large, then

I ≈ 1

M

M∑
k=1

f(zk), (D.2)

where terms of order O(1/
√
M) are neglected. If the density probability function W (z) and D have trivial

forms, the generation of the set of sample points {zk}Mk=1 can be performed using a transformation method.
For instance, if W (z) = (2π)−N/2 exp(−|z|2/2) (normal distribution) and D = RN , the Box-Muller algorithm
provides a normally distributed set of sample points (see Ref. [46]). However, if the density probability
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functionW (z) does not allow the use of a transformation method, the set of sample points must be generated
using an alternative algorithm. In this section, we show the random walk Metropolis (RMW) algorithm we
use to generate a set of sample points distributed with an arbitrary probability density function W (z) which
allows us to find the approximation of I with Eq. (D.2).

The RWM algorithm [118], also referred to as the rejection method, consists in generating the sample
points with nonuniform probability density W (z)dNz using a biased random walk. The sample points we
generate are a Markov chain [158, 159], for which the probability of being at z is W (z) and the transition
kernel of the chain is P(z, ·). Figure D.3 shows the organigram of the RWM algorithm. For a given point
z ∈ D, a point z? is generated randomly, with z? − z uniformly and symmetrically distributed around the
origin. For instance, in Ref. [118], z? − z is picked randomly in a square of length δ centered at the origin.
The adjustable parameter δ is the jump parameter. We choose to pick z? − z in the ball of dimension N of
radius δ and centered at the origin. In order to generate z?−z uniformly in the ball of dimension N centered
at the origin, we notice that:

• The vector z? − z = δ × u1/Ny is uniformly distributed over the ball of dimension N of radius δ if and
only if the vector y is uniformly distributed over the sphere of dimension N of unitary radius and u is
uniformly distributed, i.e., u ∼ U(0, 1).

• The vector y = x/|x| is uniformly distributed over the sphere of dimension N of unitary radius if and
only if the components of the vector x = (x1, . . . , xN ) are normally distributed, i.e., xk ∼ N (0, 1) for
k = 1, . . . , N . The generation of normally distributed random variables is achieved with the Box-Muller
algorithm [46].

Then, the point z? is accepted with a probability min{1,W (z?)/W (z)}. IfW (z?) > W (z), z? is accepted and
the sampling point z takes the value of z?, i.e., z← z?. If W (z?) < W (z), z? is accepted with a probability
W (z?)/W (z), otherwise, it is rejected. If the point is rejected, z keeps its value. The nonzero acceptance
probability if W (z?) < W (z) ensures we probe ergodically the domain D. With zero acceptance probability,

Initial guess z ∈ D,
k ← 0, I ← 0, α← 0,

c← 0

Generation of random variables
xi ∼ N (0, 1) with i = 1, ..., n,
u ∼ U(0, 1) and r ∼ U(0, 1).

Display α.

z? ← z + δ × u1/n x

|x|

r < min

{
1,
π(z?)

π(z)

}
? k ≥ Nth ?

z← z?

c← 1

I ← I + f(z)

I ← I/N

α← kα+ c

k + 1
k ← k + 1
c← 0

k + 1 ≥ Nth +N ?

no

yes

yes

yes

no

no

Figure D.1: Random walk Metropolis (RWM) algorithm. Initially, δ is fixed. The variable x = (x1, ..., xN ).
The Nth iterations of thermalization are used for mixing the initial conditions, and the integral I is not
computed during these steps.
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Figure D.2: Left panel: Schematic of the RWM for the ADK ionization rate given in Eq. (1.24) in the plane
of initial conditions (t0, p⊥). Middle panel: Histogram of the ADK ionization rate using the RWM for 5×104

iterations in logarithmic scale. Right panel: ADK ionization rate (1.24) in logarithmic scale.

there would exists δ such that z would converge to a point in configuration space with a local minimum of
probability W (z). The probability of acceptance is chosen so that the equilibrium equation of the Markov
chain is stationary

W (z?)P(z?, z) = W (z)P(z, z?).

In the algorithm, this equilibrium is reached after several iteration of the random walk. As a consequence,
it is important to let a number of thermalization steps Nth in which there are no calculation of I. The
thermlization steps are used to reach the stationary density probability. A schematic of the method and a
resulting distribution for a low number of iterations is shown in Fig. D.2.

In the expressions of ionization rate of laser atom-interaction, for low ellipticities, the amplitude of the
electric field (i.e., the ionization rate) is very low between two peaks. As a consequence, for low ellipticities,
the probability that the the ionization time of the electron goes from one peak of the laser to another is very
low using the RWM. In order to overcome this difficulty, we initiate multiple RWM around each peak of the
electric field (i.e., ionization rate). In our simulations, the envelope of electric field is trapezoidal. We neglect
the ionization during the ramp-up and the ramp-down. The initialization on each peak of the laser is done
randomly and uniformly, i.e., there is the same probability for the RWM to be initiated on each of the peak
amplitude of the electric field.

The parameter δ is the jump of the RWM algorithm. It is clear that δ plays a crucial role in the
computation: If δ is small compared to the gradient of the probability functionW (z), the number of iterations
required to probe the entire domain Ω is large, and as a consequence, the convergence of the approximation in
Eq. (D.2) is slow with respect to M . If δ is large compared to the gradient of the probability function W (z),
the probability of acceptance is small, the point stays in the same region and the domain of integration is
poorly probed, and as a consequence, the convergence of the integral is also slow. We denote α the acceptance
probability of the method, i.e., the number of points in the Markov chain that transits over the number of
points that have been generated. The acceptance probability α is computed in parallel of the test point z?.
At the kth iteration of the algorithm, the acceptance probability is given by αk =

∑k
j=1 cj/k, with cj = 1 if

the point z? is accepted at the jth iteration and cj = 0 otherwise. The recurrence between the acceptance
probability at the kth and the (k + 1)th iteration is αk+1 = (kαk + ck+1)/(k + 1). The jump parameter δ is
optimal if and only if

lim
k→∞

αk ≈ 1/4.

Notice that for k → ∞, αk+1 = αk. There are no rigorous demonstration for this optimal value 1/4, but
many problems show that this value optimizes the convergence of the approximation of I [158]. Given α0 = 0,
the acceptance probability is computed according to αk = (1 − 1/k)αk−1 + ck/k and is displayed at each
iteration k in order to check its convergence.

D.1.2 Microcanonical generation of the initial conditions

We consider an atom of M electrons, whose positions and momenta are denoted rj ∈ Rd and pj ∈ Rd,
respectively, with j = 1, . . . ,M and d is the dimension of the configuration space. We consider a time-
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independent Hamiltonian of the form

H
(
{rj ,pj}Mj=1

)
=

M∑
j=1

|pj |2
2

+ V (r1, . . . , rM ) , (D.3)

where
∑M
j=1 |pj |2/2 is the total kinetic energy and V (r1, . . . , rM ) is the total potential energy. For computing

statistics, such as for instance the ionization probability curves (see Fig. 4.9) or the ionization time of the
recolliding electron (see Fig. 4.12), the initial conditions of the electrons are generated randomly such that

Eg = H
(
{rj ,pj}Mj=1

)
, (D.4)

where Eg is the energy of the ground state of the atom. The initial conditions of the atom are generated
randomly in two steps:

• The positions are generated uniformly in Rd while Eg − V (r1, . . . , rM ) < 0.

• The momenta are generated uniformly on the sphere of dimension dM of radius [2(Eg−V (r1, . . . , rM )]1/2

centered at the origin of the momentum space.

D.2 Dynamical systems

We consider a dynamical system
ż(t) = f(z, t), (D.5)

where z ∈ RN is the set of dynamical variables and ż = dz/dt, where t is the evolution parameter. The flow
is given by ϕtt0(ζ), and we consider ϕt0+2T

t0+T (z) = ϕt0+T
t0 (z) for all t0 and z. We define the stroboscopic map

P such that
P : z→ ϕT0 (z),

RN 7→ RN , (D.6)

where we chose P with initial time t0 = 0 without loss of generality. Poincaré map (D.6) corresponds to the
Poincaré map given by Eq. (5.2) in the manuscript. We notice that the derivative of P with respect to the
set of coordinates z is the tangent flow over one period J T

0 (z) = ∂ϕT0 (z)/∂z. Such map is particularly well
suited for T -periodic dynamical systems, since T -periodic orbits solution of Eq. (D.5) are fixed points under
the Poincaré map P .

D.2.1 Newton’s method

We consider the function F of class C1 such that

F : CN → CN ,
q 7→ F(q).

Newton’s method is an iterative procedure to determine an approximation of the zero of the function F,
denoted q? ∈ CN , and such that F(q?) = 0. The algorithm of the Newton’s method is shown in Fig. D.3.
We assume that an initial guess q0 is known. For a given point qk, a new point qk+1 = qk + ∆q is computed
in order to get closer to the true solution q?. We assume that the increment is small (i.e., |∆q| � 1) and
that the new point is close to the true solution [i.e., F(qk + ∆q) ≈ 0]. One obtains

F(qk + ∆q) = F(qk) +
∂F(q)

∂q

∣∣∣∣
q=qk

∆q +O(∆q2) ≈ 0.

By neglecting the terms of order ∆q2 and higher orders, one obtains a recurrence between the point qk and
the new point qk+1 = qk + ∆q. The increment ∆q = qk+1 − qk corresponds to the solution of the equation

∂F(q)

∂q

∣∣∣∣
q=qk

∆q = −F(qk), (D.7)

This equation can be solved in multiple ways: For instance, by multiplying the left- and right-hand side of
the equation by the inverse matrix of ∂F(q)/∂q|q=qk

, by using the Cramer rule or the Gauss elimination.
The recurrence process of Newton’s method is iterated until |F(qk)| < ε, where ε is infinitesimal.
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D.2.2 Periodic orbits and fixed points
Initial conditions z? of trajectories leading to fixed points and periodic orbits can be written in the form
F(z?) = 0. Hence, Newton’s method can be used to find z?. In this section, we identify the form of the
function F and the recurrence equation (D.7) of the Newton’s method for computing fixed points and periodic
orbits of the dynamical system (D.5).

D.2.2.1 Fixed points of the continuous system

Fixed points of the dynamical system (D.5), denoted z?, are such that ϕtt0(z?) = z?. Hence, determining
fixed points of the continuous dynamical system (D.5) consists in finding the zeros of the function f(z, t).
One can use the Newton’s method to determine z? such that f(z?, t) = 0 for all t (see Sec. D.2.1 with F→ f
and q→ z).

D.2.2.2 Fixed points of the Poincaré map (D.6)

We consider a T -periodic orbit of the dynamical system (D.5). Under the Poincaré map P , T -periodic
orbits are fixed points. As a consequence, the initial point z? leading to a periodic orbit of the dynamical
system (D.5) is such that P(z?) = z?. Computing a periodic orbit of period T of the dynamical system (D.5)
consists in computing the zero of the function

F(z) = P(z)− z. (D.8)

To compute z? such that F(z?) = 0, we use Newton’s method (see Sec. D.2.1). First, Newton’s method needs
an initial guess z0. For instance, the initial guess can be chosen as a fixed point of the map of an integrable
system using perturbative theory. Then, one has ∂P(z)/∂z = J T

0 (z), where J T
0 (z) = ∂ϕT0 (z)/∂z is the

tangent flow. The increment in the Newton’s method ∆z is solution of the recurrence equation [equivalent
of Eq. (D.7) with F given by Eq. (D.8)][

J T
0 (zk)− IN

]
∆z = zk −P(zk). (D.9)

We recall that the evolution of the tangent flow is given by J t
0(z) = A(ϕt0(z), t)J t

0(z), where A(z(t), t) =
∂f(z, t)/∂z|z=z(t) is the Jacobian matrix of the map. The initial conditions of the tangent flow areJ 0

0(z) = IN .
In total, an ordinary differential equation of N(N + 1) variables (N quantities for the flow ϕT0 and N2 for

Initial guess q← q0, k ← 0

Computation of F(q) and
∂F(q)/∂q. |F(q)| < ε ?

Find ∆q
solution of the

linear
system (D.7).

q← q + ∆q
k ← k + 1

k ≥ kmax ?

not converged

q? ≈ q

no

no

yes

yes

Figure D.3: Newton’s method algorithm for finding q? such that F(q?) = 0. The solution of Eq. (D.7) is
found using Gauss elimination with maximum pivoting. The tolerance ε is infinitesimal and adjustable. The
maximum of iteration kmax is used to quit the algorithm in case that it does not converge.
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the tangent flow J T
0 ) is integrated at each iteration of the Newton’s method. For sufficiently large k, the

point zk converges to the fixed point z?, i.e., zk ≈ z?.

D.2.2.3 Continuation methods: Evolution of the fixed point as a function of a parameter

We consider the dynamical system (D.5) depends explicitly in a parameter µ such that f(z, µ, t). As a
consequence, the flow solution of the ordinary differential equation (D.5) also depends on µ. We denote
ϕtt0(z, µ). We assume that there exists a curve in the extended coordinates-parameter space for which z? is
a fixed point of the dynamical system (D.5) for a given parameter µ. The set of fixed points z? as a function
of the parameter µ is a curve in the extended coordinates-parameter space defined by

g(z?, µ) = 0, (D.10)

as depicted in Figs. D.4a and D.4b. The objective is to track the fixed points z? as a function of the parameter
µ along this curve. We consider a discrete set of points and parameters {z(j)}j and {µ(j)}j belonging to this
curve, such that g(z(j), µ(j)) = 0. The intuitive way for tracking z? as a function of µ consists in using the
mesh of points µ = µ(0), . . . , µ(m) with µ(j) < µ(j+1) and to assume that there exists a fixed point z(j) such
that g(z(j), µ(j)) = 0 for all j. We assume that the fixed point z(0) is known for µ(0). For a given µ(j+1),
we compute the associated fixed point z(j+1). In Sec. D.2.2.2, we show the method to compute a fixed point
z(j+1) for a given set of parameters, even if the parameters are not mentioned explicitly. For a given µ(j+1),
the fixed point z(j+1) is solution of the equation

F?
(
z(j+1), µ(j+1)

)
= 0, (D.11)

where F?(z, µ) = f(z, µ, t) if z? is the fixed point of the flow (see Sec. D.2.2.1), and F?(z, µ) = P(z, µ) − z
if z? it the fixed of the Poincaré map (D.6) [see Eq. (D.8)]. In both cases, Newton’s method is employed
with the initial guess z

(j+1)
0 = z(j), where we denote z

(j)
k the kth iteration of the Newton’s method for the

computation of the fixed point z(j) associated with µ(j). However most of the time, the fixed point does not
vary monotonically with respect to the parameter, as it is the case, for instance, in the right panel of Fig. 5.8
and Fig. D.4a. In particular, the method fails at the bifurcation of the fixed point z? with respect to µ, for
instance, when the period of the periodic orbit double, and this method stops. Instead, we use a continuation
method which let µ free.

Given a point (z(j), µ(j)) on the red curve depicted in Fig. D.4, the objective is to move along this curve
by an increment δ. If δ is too small, the method requires a large amount of points to reproduce the curve. If
δ is too large, the curve is not necessary smooth, and the algorithm does not necessarily converges to fixed
points associated with the previous fixed point. Hence, δ is controlled during the computation. The relation
between two successive points on the curve is

Fδ

(
z(j), z(j+1), µ(j), µ(j+1)

)
=
∣∣∣z(j+1) − z(j)

∣∣∣2 +
∣∣∣µ(j+1) − µ(j)

∣∣∣2 − δ2 = 0. (D.12)

To conclude, given a point (z(j), µ(j)), the point (z(j+1), µ(j+1)) is solution of Eqs. (D.11) and (D.12). In
other words, the method requires that for each sample points on the red curve of Fig. D.4, we use Newton’s
method to determine the zeros (z(j+1), µ(j+1)) of the function

F
(
z(j+1), z(j), µ(j+1), µ(j)

)
=

[
F?
(
z(j+1), µ(j+1)

)
Fδ
(
z(j), z(j+1), µ(j), µ(j+1)

)] . (D.13)

The method is two steps, as shown in Fig. D.4b. We assume that a fixed point z(j) is known for a given
parameter µ(j), the point (z(j+1), µ(j+1)) is determined with Newton’s method as follow:

(i) The initial guess is determined with

z
(j+1)
0 = z(j) + δ

[
z(j) − z(j−1)

]
,

µ
(j+1)
0 = µ(j) + δ

[
µ(j) − µ(j−1)

]
.

If j = 0, z
(1)
0 = z(0) and µ(1)

0 = µ(0) ± δ. The sign of µ(1)
0 − µ(0) determines the direction in which the

curve g(z?, µ) is traveled. When j > 1, the curve is automatically traveled in the direction set at j = 1.
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(b)

δ
(i)

(z
(j+1)
0 , µ

(j+1)
0 )

(
z(j−1), µ(j−1)

)

(
z(j), µ(j)

)

(
z(j+1), µ(j+1)

)
≈(

z
(j+1)
k , µ

(j+1)
k

)
(ii)

(c)

Known fixed point (z?, µ)
∆z = 0 and ∆µ = ±1.

z(0) ← z?

µ(0) ← µ

z? ← z(0) + δ ×∆z
µ← µ(0) + δ ×∆µ

Newton method for
F(z?, z(0), µ, µ(0)) = 0 [see Eq. (D.13)]:

Integration of the trajectory
ϕT0 (z?, µ), the Jacobian J T

0 (z?, µ),
and ∂ϕT0 (z?, µ)/∂µ. Convergence in kc

iterations.
kc < kmax ?

δ is decreased

∆z← z? − z(0)

∆µ← µ− µ(0)

kc > kmin ?

δ is increased

µ ∈ [µmin, µmax] ?

end

no

yes

yes

no

yes

no

Figure D.4: (a) Position of the fixed point projected along ex of the periodic OA (see Chap. 5) for ξ = 0.5
as a function of the intensity µ = I. (b) Illustration of the step (i) and (ii) of the continuation method for
tracking a fixed point z? as a function of a parameter µ. The thick red curve g(z?, µ) = 0 is the location
of the fixed point as a function the parameter µ. (b) is a zoom of (a). (c) Continuous method algorithm.
The objective of this algorithm is to track the fixed point z? as a function of the parameter µ. The value
of the parameter δ is changed along the method to improve the convergence of the Newton’s method. The
threshold kmin and kmax are the criteria for the convergence of the Newton’s method. The method stops
when the parameter µ(j) is out of the bounds [µmin, µmax] or when the point (z(j), µ(j)) is close to the first
point (z(0), µ(0)). In the latter case, g(z?, µ) describes a closed curve in the extended coordinates-parameter
space.
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(ii) The initial guess (z
(j+1)
0 , µ

(j+1)
0 ) is refined using Newton’s method. Given the point at the kth iteration

of the Newton’s method (z
(j+1)
k , µ

(j+1)
k ), we increment the guess with (z

(j+1)
k+1 , µ

(j+1)
k+1 ) = (z

(j+1)
k , µ

(j+1)
k )+

(∆z,∆µ). The increment is solution of the equation
∂F? (z, µ)

∂z

∣∣∣∣(
z=z

(j+1)
k ,µ=µ

(j+1)
k

) ∂F?(z, µ)

∂µ

∣∣∣∣(
z=z

(j+1)
k ,µ=µ

(j+1)
k

)
2
(
z

(j+1)
k − z(j)

)>
2
(
µ

(j+1)
k − µ(j)

)
[∆z

∆µ

]

=

[
F?
(
z(j+1), µ(j+1)

)∣∣zk − z(j)
∣∣2 +

∣∣µk − µ(j)
∣∣2 − δ2

]
, (D.14)

If δ is sufficiently small and the curve g sufficiently smooth, there exists only two solutions for the
system. The parameter δ is adjusted during the continuation method. The number of iteration in
which the Newton’s method converges for a given j is denoted kc: If kc < kmin, δ increases, and if
kc > kmax, δ decreases, where kmin and kmax are two adjustable parameters.

In step (ii) of the continuation method, we use Newton’s method. The derivatives of the function F? has to be
computed with respect to z and µ. If F?(z, µ) = f(z, µ, t) (i.e., if z? is the fixed point of the flow) we compute
∂f(z, µ, t)/∂z and ∂f(z, µ, t)/∂µ. However, if F?(z, µ) = P(z, µ) − z [i.e., if z? is the fixed of the Poincaré
map (D.6)] the computation of the derivatives is more complex. First, ∂F?(z, µ)/∂z = J T

0 (z, µ)− IN , such
as it is done in Sec. D.2.2.2 for P which does not dependent on µ. Concerning the derivative of P with
respect to µ, we substitute z(t) = ϕt0(z, µ) in Eq. (D.5), and we derive the left- and right-hand side of the
equation with respect to µ. Using the regularity of the flow function and the chain rule, the evolution of the
derivative of the flow with respect to µ is given by

d

dt

[
∂ϕt0(z, µ)

∂µ

]
= A

(
ϕT0 (z, µ), t

) [∂ϕt0(z, µ)

∂µ

]
+
∂f (z, µ, t)

∂µ

∣∣∣∣
z=ϕt

0(z,µ)

. (D.15)

The initial condition of the derivative of the flow with respect to µ is ∂ϕ0
0(z, µ)/∂µ = 0. In Eq. (D.14),

∂F?(z, µ)/∂µ = ∂P(z, µ)/∂µ = ∂ϕT0 (z, µ)/∂µ. At each step of the Newton’s method, N(N + 2) variables
are integrated: N variables for the flow ϕT0 , N2 variables for the tangent flow J T

0 = ∂ϕT0 , and N variables
for the derivative of the flow with respect to the parameter ∂ϕT0 /∂µ. The evolution of the latter is given by
Eq. (D.15).

D.2.3 Computation of one-dimensional invariant manifolds of fixed points: Hob-
son’s method

We consider a fixed point z? under the Poincaré map P defined in Eq. (D.6). We consider MT to be
the monodromy matrix of the fixed point. The eigenvalues and associated eigenvectors of the monodromy
matrix are denoted λj and vj , respectively. We consider a small displacement h from the fixed point z?

along one eigendirection vj , i.e., z = z? + hvj . We consider h small enough, such that h|vj | � 1, Pk(z? +

hvj) ≈ z? + hJ kT
0 (z?)vj and P−k(z? + hvj) ≈ z? + hJ 0

kT (z?)vj . Since z? is a fixed point of the map
P : z 7→ ϕT0 (z), J kT

0 (z?) = [J T
0 (z?)]k and J 0

kT (z?) = [J 0
T (z?)]k. Using the chain rule, one can show that

MT (z?) = J T
0 (z?) = [J 0

T (z?)]−1. Therefore,

Pk(z? + hvj) ≈ z? + hMT (z?)kvj = z? + hλkjvj , (D.16a)

P−k(z? + hvj) ≈ z? + hMT (z?)−kvj = z? + hλ−kj vj , (D.16b)

where we have used MT (z?)vj = λjvj . According to Eqs. (5.8) and (5.9), the set of points which converge
to the fixed point for infinite forward (resp. backward) integration time is on the stable (resp. unstable)
manifold. In Eq. (D.16a), for k →∞, Pk(z? + hvj) = z? if and only if λj < 1. We denote λs this eigenvalue
and vs its associated eigenvector. Therefore, the eigenvector vs associated with the eigenvalue λs is the linear
approximation of the stable manifold of z?. In Eq. (D.16b), for k → ∞, P−k(z? + hvj) = z? if and only if
λj > 1. We denote λu this eigenvalue and vu its associated eigenvector. Therefore, the eigenvector vu is the
linear approximation of the unstable manifold of z?.

The fundamental domain of the invariant manifolds is the interval parametrized by s in which the linear
approximation of the manifolds is valid. The fundamental domain of the stable and unstable manifolds is
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Given a fixed point z? of the map P .

Computation of the monodromy
matrix MT (z?) and its
spectrum. Let vu be the

eigenvector associated to the
largest eigenvalue.

U ← {z? + hvu,P(z? + hvu)}
L← |z? + hvu −P(z? + hvu)|

2ds ≤∑#U−1
k=1 |zk+1 − zk| ?ds← 1

2

∑#U−1
k=1 |zk+1 − zk|

Interpolation of u1 and u2 over the
skeleton U such that

|u1 − zn| = ds−∑n−1
k=1 |zk+1 − zk|,

|u2 − zm| = 2ds−∑m−1
k=1 |zk+1 − zk|.

u′0 ← z#U , u′1 ← P(u1), u′2 ← P(u2)

u′0 ← u′1 +
u′1 − u′2
|u′1 − u′2|

|u′1 − u′0|

α← 2 sin−1

(
u′0 − u′0

2|u′1 − u′0|

)

|u′1 − u′0| < dsmin ?
α|u′0 − u′1| <
dαmax and
α < αmax ?

• {z1, . . . , zn} are removed from U .

• u1 is added at the beginning of U (be-
comes the new z1).

• u′1 is added at the end of U (becomes
the new z#U ).

L← L+ |u′1 − u′0|

ds decreases

α < αmin ? L ≥ Lmax ?

ds increases

end

no

yes

no

yes

yes

no

yes

no

no

yes

Figure D.5: Hobson’s method [74] algorithm to compute the one-dimensional unstable manifold of the fixed
point z? of the mapping P . The parameter ds ∈ [dsmin,dsmax] is the key parameter of the method and has to
be initiated small. Threshold parameters are dsmax, dsmin, αmin, αmax and dαmax. The quantity L is the total
length of the computed manifold, while Lmax is the total length of the manifold to compute. The ensemble
U = {z1, . . . , z#U} is a mesh points on a piece of the unstable manifold, such that z#U = P(z1). Each point of
U is ordered along the manifold and such that |zj−zj−1| < dsmin, or α = cos−1(zj ·zj−1/(|zj ||zj−1|)) < αmax

and α|zj − zj−1| < dαmax.
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the set of points such that

Fs(z?; s) =
{
z ∈ RN , s ∈ [0, 1] | z = (1− s) (z? + hvs) + sP−1(z? + hvs)

}
,

Fu(z?; s) =
{
z ∈ RN , s ∈ [0, 1] | z = (1− s) (z? + hvu) + sP(z? + hvu)

}
,

where h is the largest possible value such that |P−1(z? + hvs)− (z? + hλ−1
s vs)| < ε for the stable manifold,

and |P(z? + hvu)− (z? + hλuv
u)| < ε for the unstable manifold, where ε is infinitesimal. Each point of the

grown invariant manifold is an image of one point in the fundamental domain. Therefore, the fundamental
domain contains the information on the grown invariant manifolds. In order to compute the grown manifolds,
we use the Hobson’s method [74] which is shown in Fig. D.5. Figure D.5 shows algorithm for computing the
unstable manifold. The algorithm for computing the stable manifold is the same, except that vu is replaced
by vs and P is replaced by P−1. The idea of the algorithm of the Hobson’s method is to consider a sample
of points U = {z1, . . . , z#U} which approximate locally the invariant manifold, and such that z#U = P(z1).
In other words, the points zj are the skeleton of the invariant manifold, for j = 1, . . . ,#U . The points zj
are used to compute new points of the invariant manifolds. By interpolating the set of points, we find two
points at a distance ds and 2ds from z1, denoted u1 and u2, respectively. The point u′1 = P(u1) is possibly
included in the set of sample points U , while u′2 = P(u2) is a test point for anticipating the sudden variations
of the invariant manifolds. We also denote u0 = z#U = P(z1).

The graphics representation of the stable and unstable manifolds are a set of points of the stable and
unstable manifolds, respectively. In order to have a smooth two-dimensional representation of the invariant
manifolds, the angle between three successive sampled points of the representation must be small enough.
We use a threshold parameter αmax to control the smoothness of the representation. Let α be the angle
between u1 − u0 and u2 − u1. The sampled point must be such that α < αmax. Otherwise, the point u′1 is
rejected and ds is decreased. Also, the quantitative resolution of the invariant manifold is ensured by keeping
α|u′0 − u′1| small enough. The sampled point must be such that α|u′0 − u′1| < dαmax. Otherwise, the point
u′1 is rejected and ds is decreased.

D.2.4 Computation of invariant curves and their stability
We denote x(θ) an invariant curve under P parametrized by θ ∈ T (which corresponds to R/2πZ). If the
curve is invariant, there exists ν ∈ R \ 2πQ such that

P(x(θ)) = x(θ + ν). (D.17)

Figure D.6a illustrates the invariant curve under the map P . The invariant curves x(θ) are defined on a
Cantor set. We describe the method for two cases are studied: The case for which P depends explicitly
on the parameter of the invariant curve θ is referred to as the non-autonomous case. The case for which
P does not depend explicitly on the parameter of the invariant curve θ is referred to as the autonomous
case. The autonomous case is an extension of the non-autonomous case. In both cases, we use the Fourier
representation method [79] for computing invariant curves of the map P and their linear stability. The
Fourier representation of the invariant curve is

x(θ;α) = a0 +

M∑
k=1

[ak cos(kθ) + bk sin(kθ)] , (D.18)

where 2M + 1 is the number of coefficients and α = [a0, . . . ,aM ,b1, . . . ,bM ]>. In theory, M goes to infinity,
but numerically, M must be finite. The function x(θ;α) is analytic and therefore the Fourier coefficients
decrease exponentially as k increases, as observed in Fig. D.6b. Numerically, M must be large enough for
the series of coefficients to converge, i.e., |aM | + |bM | < ε with ε infinitesimal. The objective is, as well in
the autonomous as in the non-autonomous case, to determine the set of coefficients α such that x(θ;α) is
solution of Eq. (D.17). Then, we compute the linear stability of the invariant curves surrounding the fixed
point of OS . The linear stability of these curves is used to compute their associated one-dimensional invariant
manifolds along the saddle direction. The invariant manifolds of the invariant curves of OS are compared
with the dynamics of the electron.

D.2.4.1 Non-autonomous map

We consider a map P which depends explicitly in θ, a skew-product

z = P(z, θ),

θ = θ + ν,

148



D.2. DYNAMICAL SYSTEMSD.2. DYNAMICAL SYSTEMSD.2. DYNAMICAL SYSTEMSD.2. DYNAMICAL SYSTEMSD.2. DYNAMICAL SYSTEMSD.2. DYNAMICAL SYSTEMS

Figure D.6: Non-autonomous map P : (x, y) 7→ (x(2 +y) + ε cos(θ), y(1/2−x) + ε sin(θ)). (a) Invariant curve
x(θ) of frequency ν =

√
2, the mesh of points xj(α) = x(θj ;α), the unstable and stable eigenvectors for

each angle parameter Ψu
j (α) = Ψu(θj ;α) (red vectors) and Ψs

j(α) = Ψs(θj ;α) (blue vectors), respectively.
Notice that the eigenvectors −Ψu

j (α) and −Ψs
j(α) are not shown but are also eigenvectors. (b) Norm of

the coefficients of the Fourier representation of the invariant curve and the eigenvectors as a function of the
harmonic order k. (c) Spectrum λ of the matrix of stability of the invariant curve in the complex plane.

with P : RN → RN and z ∈ RN . In Eq. (D.17), we use the Fourier representation of the invariant curve given
by Eq. (D.18). There are 2M + 1 coefficients, and as a consequence, (2M + 1)N unknowns. We consider a
mesh of parameters θ = {θj}2Mj=0. We define

θj = j
2π

2M + 1
, (D.19)

with 0 ≤ j ≤ 2M . Each point associated with each angle x(θj ;α) is a solution of the Eq. (D.17). Hence, the
zero function of the 2M + 1 points solution of the invariance equation (D.17) reads

F(α) =

 P (x(θ0;α), θ0)− (x(θ0;α))
...

P (x(θ2M ;α), θ2M )− (x(θ2M ;α))

 = 0. (D.20)

We use Newton’s method described in Sec. D.2.1 to compute α, the zero of F(α). The initial guess of
the Newton’s method are given by a0 = z? and aj = bj = 0 for j = 2, . . . ,M . Also, a1 = h<(vc) and
b1 = h=(vc), or a1 = h=(vc) and b1 = h<(vc), depending on the running direction of the electrons along
the invariant curve. The complex vector vc is the eigenvector associated with the center component of
the fixed point (complex eigenvalue of the fixed point). In order to compute the derivatives of the func-
tion F with respect to the coefficients α, it is rewritten in the form F(α) = PX(X(α)) − Y(α), where
X(α) = [x0(α), . . . ,x2M (α)]>, Y(α) = [y0(α), . . . ,y2M (α)]>, PX(X(α)) = [P(x0, θ0), . . . ,P(x2M , θ2M )]>,
xj(α) = x(θj ;α) and yj(α) = x(θj + ν;α). Hence,

∂X(α)

∂α
=

IN · · · IN cos(Mθ0) IN sin(θ0) · · · IN sin(Mθ0)
...

. . .
...

...
. . .

...
IN · · · IN cos(Nθ2M ) IN sin(θ2M ) · · · IN sin(Mθ2M )

 , (D.21)

where IN the identity matrix of size N . Similarly,

∂Y(α)

∂α
=

IN · · · IN cos(M(θ0 + ν)) IN sin(θ0 + ν) · · · IN sin(M(θ0 + ν))
...

. . .
...

...
. . .

...
IN · · · IN cos(M(θ2M + ν)) IN sin(θ2M + ν) · · · IN sin(M(θ2M + ν))

 . (D.22)
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The derivative of the function PX(X(α)) with respect to the coefficients is computed using the chain rule
∂PX(X(α))/∂α = (∂PX(X(α))/∂X(α))(∂X(α)/∂α), where

∂PX(X(α))

∂X(α)
=


∂P(z, θ)

∂z

∣∣∣∣
(z=x0(α),θ=θ0)

· · · 0N

...
. . .

...

0N · · · ∂P(z, θ)

∂z

∣∣∣∣
(z=x2M (α),θ=θ2M )

 , (D.23)

which is a block diagonal matrix. If P is given by Eq. (D.6), one has ∂P(z)/∂z = J T
0 (z), where J is the

tangent flow. At the kth iteration of the Newton’s method, αk is known, and the next set of coefficients is
given by αk+1 = αk + ∆α, where ∆α is solution of[

∂PX(X(α))

∂X(α)

∂X(α)

∂α
− ∂Y(α)

∂α

]
α=αk

∆α = Y(αk)−PX(X(αk)). (D.24)

Notice that the dimension of the matrix [∂PX(X(α))/∂X(α)][∂X(α)/∂α] − [∂Y(α)/∂α] is (2M + 1)N ×
(2M+1)N . At each iteration of the Newton’s method, a (2M+1)N dimensional linear system must be solved.
Notice that the matrices ∂X(α)/∂α and ∂Y(α)/∂α are constant matrices with respect to the coefficients α.
In the algorithm of the Newton’s method, they are constant matrices in this case.

D.2.4.2 Autonomous map

We consider the map P given by Eq. (D.6) does not depend explicitly in the parameter θ of the invariant
curve, which is the case for the map (5.2) we consider in Chap. 5. This case is an extension of the non-
autonomous case, i.e., additional conditions are required to compute the Fourier coefficients of the invariant
curves. We consider

z = P(z), (D.25)

where P : RN 7→ RN and z ∈ RN . In this case, the Fourier representation of the invariant curve is not
unique. Indeed, let x(θ;α) = y(θ + φ;α) with φ ∈ T. the invariant curves parametrized by θ have different
Fourier series but represent the same curve, only the origin θ = 0 is shifted in the θ-space. As a consequence,
an infinite number of Fourier series represents the same curve. This implies some numerical difficulty to solve
Eq. (D.24) at each iteration of the Newton’s method. In order to overcome this difficulty, we fix arbitrarily
one component of the origin of the invariant curve x0(α) = x(0;α) =

∑M
k=0 ak. For instance, if the invariant

curve surrounds a fixed point z?, we consider

Fe(α) = e>(x0(α)− z?) = 0, (D.26)

where e is a unitary vector which depends on the considered dynamical system. In the autonomous case, the
coefficients of the Fourier series of the invariant curves are also zeros of the function Fe. The derivatives of
this function with respect to the coefficients of the invariant curve α are

∂Fe(α)

∂α
= [e>, . . . , e>︸ ︷︷ ︸

M+1 times

, 0>,0>︸ ︷︷ ︸
M times

].

This condition is added as an extra equation in the linear system for the computation of the invariant curve
in the non-autonomous case [see Eq. (D.24)]. Adding an extra condition in the linear system implies the
system becomes non-square, i.e., there are more conditions than unknowns. In order to solve the non-square
linear system, we use a Gaussian elimination with maximal pivoting. In this way, the redundant equation is
sent to the last row, and reads “0 = 0”.

In addition, in the autonomous case, invariant curves come in family of invariant curves, labeled by
different irrational frequencies ν. We consider a family of invariant curves surrounding a fixed point z?. For
instance, in Chap. 5 this is the case for the fixed point of OS under the Poincaré map (5.2) (see Fig. 5.7). We
use a continuation method to compute the invariant curves of the family. The frequency of each invariant curve
ν is let free in the continuation method. Hence, Y(α) in the non-autonomous case becomes Y(α, ν) in the
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autonomous case, and as a consequence, F(α) becomes F(α, ν), and one has ∂F(α, ν)/∂ν = −∂Y(α, ν)/∂ν.
The derivative of F(α, ν) with respect to ν reads

∂F(α, ν)

∂ν
=

M∑
k=1

k

 ak sin[k(θ0 + ν)]− bk cos[k(θ0 + ν)]
...

ak sin[k(θ2M + ν)]− bk cos[k(θ2M + ν)]

 . (D.27)

The continuation method consists in computing the invariant curves one after the others. A parameter δ
controls the distance between two invariant curves. We distinguish two cases. One case for which no invariant
curves are computed yet. Only the fixed point is known. The other case for which at least one invariant curve
of the family is known. The Fourier representation of the last invariant curve which has been computed is
denoted x̃(θ; α̃), and its Fourier coefficients are denoted α̃. The coefficients of the new invariant curve α are
such that

Fδ(α) =

{
|a1|2 + |b1|2 − δ2 = 0, if no torus is known yet,
|α− α̃|2 − δ2 = 0, if at least one torus is known. (D.28)

The condition to compute the first invariant curve of the family is different than the condition to compute
the other invariant curves of the family. The condition for computing the first invariant torus ensures the
curves to converge far away from the fixed point. The derivatives of the function Fδ(α) with respect to the
Fourier coefficients is given by

∂Fδ(α)

∂α
=


[0>, 2a>1 ,0

>, . . . ,0>︸ ︷︷ ︸
M−1 times

, 2b>1 ,0
>, . . . ,0>︸ ︷︷ ︸
M−1 times

], if no torus is known yet,

2(α− α̃)>, if at least one torus is known.

In sum, in the autonomous case, to compute the family of invariant curves of a fixed point z?, a linear
system of N(2M +1)+2 equations and N(2M +1)+1 unknowns must be solved. Among the N(2M +1)+2
equations, N(2M + 1) equations correspond to the non-autonomous case given by Eq. (D.24), with the zero
function F(α, ν) given by Eq. (D.20). The frequency of the invariant curve ν is considered as an unknown at
each iteration, and Eq. (D.28) is used to maneuver along the family of invariant tori. One extra equation is
used to fix the non-uniqueness of the Fourier representation of the invariant curve, and is given by Eq. (D.26).
At the kth iteration of the Newton’s method, for a given set of Fourier coefficients and frequency [αk; νk], the
new set of Fourier coefficients and frequency is given by [αk+1; νk+1] = [∆α; ∆ν] + [αk, νk], where [∆α; ∆ν]
is solution of 

∂F(α, ν)

∂α

∂F(α, ν)

∂ν
∂Fδ(α)

∂α
0

∂Fe(α)

∂α
0


(α=αk,ν=νk)

[
∆α
∆ν

]
= −

F(αk, νk)
Fδ(αk)
Fe(αk)

 .

D.2.4.3 Stability of the invariant curve

the method for computing the stability of an invariant curve is the same in the autonomous and the non-
autonomous case. We denote Ψ(θ) the eigenvector and λ the associated eigenvalue of the invariant curve
x(θ). We consider a small displacement along the invariant curve δx(θ). The invariance equation (D.17)
becomes P(x(θ) + δx(θ)) = x(θ + ν) + δx(θ + ν). We perform a Taylor expansion on the left-hand side of
the invariance equation, we obtain P(x(θ) + δx(θ)) ≈ P(x(θ)) + C(θ)δx(θ), where C(θ) = ∂P(z)/∂z|z=x(θ).
The eigenvalue problem is (see Ref. [79])

C(θ)Ψ(θ) = λΨ(θ + ν). (D.29)

We consider the discrete value problem for 2M + 1 angles θj defined in Eq. (D.19). The Fourier repre-
sentation of the eigenvectors is denoted

Ψ(θ;α) = A0 +

M∑
k=1

[Ak cos(kθ) + Bk sin(kθ)] ,

where the coefficients of the eigenvector are α = [A0, . . . ,AM ,B1, . . . ,BM ]>. The rotation matrix of an angle
ν is denoted Hν and is such that HνΨ(θ;α) = Ψ(θ+ν;α) = A0 +

∑M
k=1{[Ak cos(kν)+Bk sin(kν)] cos(kθ)+
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[−Ak sin(kν) + Bk cos(kν)] sin(kθ)}. Therefore,

Hν =



IN 0N . . . 0N 0N . . . 0N
0N IN cos ν . . . 0N IN sin ν . . . 0N
...

...
. . .

...
...

. . .
...

0N 0N . . . IN cos(Mν) 0N . . . IN cos(Mν)
0N −IN sin ν . . . 0N IN cos ν . . . 0N
...

...
. . .

...
...

. . .
...

0N 0N . . . −IN sin(Mν) 0N . . . IN cos(Mν)


.

The matrix Hν is of dimension (2M + 1)N × (2M + 1)N . In Fourier representation, the matrix C(θ) reads

C =
∂Z(P(X(α)))

∂P(X(α))

∂P(X(α))

∂X(α)

∂X(α)

∂α
. (D.30)

The two last terms on the right-hand side of the latter equation are given by Eq. (D.21) and Eq. (D.23). The
first term on the right-hand side of the latter equation corresponds to the derivatives of the inverse Fourier
transform with respect to the points in the Cartesian frame. They read

∂Z(X)

∂X
=

1

2M + 1



IN . . . IN
2IN cos(θ0) . . . 2IN cos(θ2M+1)

...
. . .

...
2IN cos(Mθ0) . . . 2IN cos(Mθ2M+1)

2IN sin(θ0) . . . 2IN sin(θ2M+1)
...

. . .
...

2IN sin(Mθ0) . . . 2IN sin(Mθ2M+1)


. (D.31)

The latter matrix is of dimension (2M+1)N× (2M+1)N . Finally, in Fourier representation, the eigenvalues
λ and eigenvectors Ψ(θ;α) of the invariant curve x(θ;α) are solution of the eigenvalue problem

H>ν CΨ(θ;α) = λΨ(θ;α). (D.32)

An example is shown in Fig. D.6 for a non-autonomous map. There are 2M + 1 eigenvalues. For invariant
curves of Hamiltonian systems and M = 4, there are only two real eigenvalues. These two real eigenvalues
correspond to the eigenvalues of the invariant curve. One is smaller than unity and corresponds to the
eigenvalue associated with the stable direction of the invariant curve, and the other is greater than unity and
corresponds to the unstable direction of the invariant curve.
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