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Titre
Reconnaissance des gestes humains basée sur la vision pour l’interaction homme-robot

Résumé
Dans la perspective des usines du futur, pour garantir une interaction productive, sure et
efficace entre l’homme et le robot, il est impératif que le robot puisse interpréter l’information
fournie par le collaborateur humain. Pour traiter cette problématique nous avons exploré
des solutions basées sur l’apprentissage profond et avons développé un framework pour la
détection de gestes humains. Le framework proposé permet une détection robuste des gestes
statiques de la main et des gestes dynamiques de la partie supérieure du corps.

Pour la détection des gestes statiques de la main, openpose est associé à la caméra Kinect
V2 afin d’obtenir un pseudo-squelette humain en 3D. Avec la participation de 10 volontaires,
nous avons constitué une base de données d’images, opensign, qui comprend les images
RGB et de profondeur de la Kinect V2 correspondant à 10 gestes alphanumériques statiques
de la main, issus de l’American Sign Language. Un réseau de neurones convolutifs de type «
Inception V3 » est adapté et entrainé à détecter des gestes statiques de la main en temps réel.

Ce framework de détection de gestes est ensuite étendu pour permettre la reconnaissance
des gestes dynamiques. Nous avons proposé une stratégie de détection de gestes dynamiques
basée sur un mécanisme d’attention spatiale. Celle-ci utilise un réseau profond de type «
Convolutional Neural Network - Long Short-Term Memory » pour l’extraction des dépen-
dances spatio-temporelles dans des séquences vidéo pur RGB. Les blocs de construction
du réseau de neurones convolutifs sont pré-entrainés sur notre base de données opensign de
gestes statiques de la main, ce qui permet une extraction efficace des caractéristiques de la
main. Un module d’attention spatiale exploite la posture 2D de la partie supérieure du corps
pour estimer, d’une part, la distance entre la personne et le capteur pour la normalisation de
l’échelle et d’autre part, les paramètres des cadres délimitant les mains du sujet sans avoir
recourt à un capteur de profondeur. Ainsi, le module d’attention spatiale se focalise sur les
grands mouvements des membres supérieurs mais également sur les images des mains, afin
de traiter les petits mouvements de la main et des doigts pour mieux distinguer les classes de
gestes. Les informations extraites d’une caméra de profondeur sont acquises de la base de
données opensign. Par conséquent, la stratégie proposée pour la reconnaissance des gestes
peut être adoptée par tout système muni d’une caméra de profondeur.

Ensuite, nous explorons brièvement les stratégies d’estimation de postures 3D à l’aide
de caméras monoculaires. Nous proposons d’estimer les postures 3D chez l’homme par une
approche hybride qui combine les avantages des estimateurs discriminants de postures 2D
avec les approches utilisant des modèles génératifs. Notre stratégie optimise une fonction de
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coût en minimisant l’écart entre la position et l’échelle normalisée de la posture 2D obtenue
à l’aide d’openpose, et la projection 2D virtuelle du modèle cinématique du sujet humain.

Pour l’interaction homme-robot en temps réel, nous avons développé un système distri-
bué asynchrone afin d’associer notre module de détection de gestes statiques à une librairie
consacrée à l’interaction physique homme-robot OpenPHRI. Nous validons la performance
de notre framework grâce à une expérimentation de type « apprentissage par démonstration »
avec un bras robotique.



Title
Vision-based Human Gestures Recognition for Human-Robot Interaction

Abstract
In the light of factories of the future, to ensure productive, safe and effective interaction
between robot and human coworkers, it is imperative that the robot extracts the essential
information of the coworker. To address this, deep learning solutions are explored and a
reliable human gesture detection framework is developed in this work. Our framework is
able to robustly detect static hand gestures plus upper-body dynamic gestures.

For static hand gestures detection, openpose is integrated with Kinect V2 to obtain a
pseudo-3D human skeleton. With the help of 10 volunteers, we recorded an image dataset
opensign, that contains Kinect V2 RGB and depth images of 10 alpha-numeric static hand
gestures taken from the American Sign Language. “Inception V3” neural network is adapted
and trained to detect static hand gestures in real-time.

Subsequently, we extend our gesture detection framework to recognize upper-body
dynamic gestures. A spatial attention based dynamic gestures detection strategy is proposed
that employs multi-modal “Convolutional Neural Network - Long Short-Term Memory” deep
network to extract spatio-temporal dependencies in pure RGB video sequences. The exploited
convolutional neural network blocks are pre-trained on our static hand gestures dataset
opensign, which allow efficient extraction of hand features. Our spatial attention module
focuses on large-scale movements of upper limbs plus on hand images for subtle hand/fingers
movements, to efficiently distinguish gestures classes. This module additionally exploits
2D upper-body pose to estimate distance of user from the sensor for scale-normalization
plus determine the parameters of hands bounding boxes without a need of depth sensor. The
information typically extracted from a depth camera in similar strategies is learned from
opensign dataset. Thus the proposed gestures recognition strategy can be implemented on
any system with a monocular camera.

Afterwards, we explore 3D human pose estimation strategies for monocular cameras.
To estimate 3D human pose, a hybrid strategy is proposed which combines the merits of
discriminative 2D pose estimators with that of model based generative approaches. Our
method optimizes an objective function, that minimizes the discrepancy between position &
scale-normalized 2D pose obtained from openpose, and a virtual 2D projection of a kinematic
human model.

For real-time human-robot interaction, an asynchronous distributed system is developed
to integrate our static hand gestures detector module with an open-source physical human-
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robot interaction library OpenPHRI. We validate performance of the proposed framework
through a teach by demonstration experiment with a robotic manipulator.
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Chapter 1

Introduction

The advent of Industry 4.0, as a modern trend of automation and data exchange in the
manufacturing industry, has proposed the concept of smart factories of the future [3]. This
evolving industry demands a more effective and involved collaboration between humans
and robots, where each partner can constructively utilize the strengths of the others to
increase productivity and work quality [4]. Safety of the human coworkers and an efficacious
interaction between humans and robots are key factors of success in such an industrial setting
[5, 6]. To ensure safety, the ability of the robot to detect an external force, differentiate
between intended and accidental forces and to adapt to the rapidity of the human coworker is
essential [7]. Nevertheless, the sense of vision is also imperative for modern collaborative
robots to monitor the behavior and actions of their human coworkers for communicating or
preventing accidents [8].

Generally, robots are designed and programmed to perform specialized tasks. Hence,
it is difficult for an unskilled worker to reprogram the robot for a new task [9]. The tradi-
tional robot teaching methods are tedious, non-intuitive and time consuming. Multi-modal
interfaces that include vision-based gesture detection frameworks, constitute instances of
natural and tangible user interfaces (NUIs and TUIs). NUIs exploit the user’s pre-existing
knowledge and actions – related to daily practices – to offer natural and realistic interactions.
This allows humans to directly interact with robots through voice, gestures, touch and motion
tracking rather than instructing them the same by typing commands [10].

In many industrial settings, it is not convenient to communicate through speech because
of interference produced by machines operations. The conventional use of teach pendants
is itself too complicated for new users to learn. Portable devices are always required to
be charged almost on daily-basis and may also have complex menu trees or networking
problems in the interaction software. A well known study [11] shows that 93% of the human
communication is non-verbal and 55% of this is accounted for elements like body posture
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and facial expressions etc. In this perspective, capabilities like gesture recognition and
human behavior understanding may be extremely useful for a robotic system in physical
human-robot interaction scenarios [12]. To unburden the human coworker from carrying any
extra device while s/he manoeuvres the robot, in physical human-robot interactions like in
teach-by-demonstration applications, gestures are considered to be natural and intuitive ways
to communicate/interact with the robot [13].

Gestures transmit key information and complement natural human conversation. Human
gestures have been classified into different categories like manipulation, semaphores, deictic,
gesticulation and sign languages [14]. Manipulative gestures are performed to mimic the
movements that control/manipulate objects or the entities being manipulated. Semaphores
define signals communicated through flags, lights or arms. Deictics are pointing gestures
while gesticulations describe the free-form arbitrary and inexplicable movements that are
accompanied by conversational speech. Sign languages are characterized by complete
grammatical and lexical specification. In between gesticulations and sign languages, there
are language-like gestures that include pantomimes and emblems. Pantomimes replace the
speech with iconic and motion replica of the referent while emblems are codified gesture
representations not driven by any formal grammar.

Gestures can also be classified into two types; static and dynamic gestures [15]. In
the perspective of human hands, static gestures are defined by hand and finger posture at
a certain moment in time [16] while dynamic gestures (in video sequences) additionally
involve movement of body parts e.g., waving of hand. The temporal dimension in dynamic
gestures causes gesture recognition to be a challenging problem due to its high-dimensional
and rich input space plus model complexity [17, 18]. Typically, local frame-level (motion)
features are aggregated into mid-level video representations or temporal sequence modeling
is performed through either traditional methods or lately with the help of deep networks.
Recently, attention-based methods [19], inspired by human perception, are proposed that
only focus selectively on parts of the scene for information acquisition at specific places and
time. The consumer depth cameras have been quite popular among the computer-vision and
robotic researchers, providing complementary depth information which helps in tasks which
were considered harder earlier [20].

The aim of this research is to develop vision-based robust gestures detection strategies
suitable for human-robot interaction tasks. In the earlier parts of this thesis, Microsoft Kinect
V2 is employed as the main vision sensor, while we steer the attention of this work towards
building strategies that can be exploited with a monocular camera in later sections of this
thesis. Figure 1.1 shows an example scenario where a user is interacting with a robot through
gestures.
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Figure 1.1 Illustration of an example human-robot interaction scenario where a user commu-
nicates with the robot through hand gestures

In the beginning, we propose a real-time robust and background independent static hand
gesture detection strategy based on transfer learning [21] with convolutional neural networks
which has already been published in [22, 23]. The intuitiveness of our system comes from
the fact that the human does not need to wear any specific suits (Motion capture suits or
inertial sensors) neither to carry a specialized remote control nor to learn complicated teach
pendant commands. Such additional burdens would make the interaction unnatural [24]. The
proposed static hand gestures detection system is integrated with a physical human-robot
interaction library OpenPHRI [25] for robot control. Primarily, it provides a natural means
for robot programming and reprogramming through hand gestures, while at the same time
ensures safety of the human coworker by complementing the standard collaborative modes
in OpenPHRI.

Subsequently, we propose a multi-stream spatial-attention based dynamic gesture recog-
nition network which is a combination of convolutional neural network and long short-term
memory network (CNN-LSTM). The proposed strategy is designed to work with RGB
images/videos from conventional/monocular camera. In the perspective of human-robot
interaction, we only assume gestures performed by a single person and no multi-person
interactions are considered. The upper-body 2D human pose is exploited as one of the
modalities/streams in the presented gesture recognition system. Our spatial-attention module,
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localizes human hands in the scene, determines the size of bounding boxes and focus on the
hand images which are exploited as another modality in our network from pure RGB im-
ages/videos. We utilize our background invariant static hand gestures detection convolutional
network [23] to extract 1024 elements deep features from the cropped hand images. The
obtained hand representations and the “augmented upper-body pose” are concatenated in the
intermediate layers of the proposed network architecture. Our network is trained on Chalearn
2016 Looking at People isolated gesture recognition dataset [26] and on Praxis cognitive
assessment dataset [2] demonstrating the state-of-the-art results on pure RGB input.

Thereupon, the task of 3D pose estimation with a monocular camera is explored. The
proposed strategy is a hybrid approach that combines the merits of a discriminative 2D
pose extractor with that of a model based generative pose estimator for physically plausible
estimations.

The main contributions of this thesis are:

• A robust static hand gestures detector with Kinect V2 RGB-D vision sensor, trained
on our opensign sign language dataset with background substitution method.

• An asynchronous distributed system which allows real-time static hand gestures detec-
tion demonstrated through a human-robot interaction experiment.

• A spatial-attention based multi-modal dynamic gestures recognition strategy em-
ploying CNN-LSTM network with the state-of-the-art performance on Chalearn 2016
isolated gesture recognition dataset [1] on pure RGB input.

• A hybrid 3D human pose extraction strategy for a monocular camera as an optimiza-
tion approach, which is validated through online human pose estimation experiments.

The rest of this thesis is organized as follows. Background and state of the art is presented
in Chapter 2. Our work on static hand gestures detection is detailed in Chapter 3. Dynamic
gestures recognition strategy is explained in Chapter 4. 3D human pose estimation is
described in Chapter 5 while we conclude in Chapter 6.



Chapter 2

Background and State of the Art

The emerging concept of cyber-physical system is a mechanism that employ extensive
automation and manage self-organization of machines and component parts in complex
manufacturing scenarios, using different sensor modalities [3]. The primary role of human
workers in such a setting will be to dictate a production strategy and to supervise its im-
plementation by the robotic systems. We hereby survey the state of art in the context of
vision-based gesture recognition for safe human-robot interaction in cyber-physical systems.

We will review the literature on safety in collaborative robotics (Section 2.1), gesture
detection in human-robot interaction (Section 2.2) and sign language detection (Section 2.3)
relevant to our research. We thereafter go through the state of the art in activity/dynamic-
gestures recognition (Section 2.4) followed by literature on 3D human pose estimation with
monocular camera (Section 2.5).

2.1 Safety in Collaborative Robotics

A recent survey on human-robot collaboration in industrial settings is presented in [10]. The
authors talk about human safety citing several ISO standards, discuss intuitive interfaces
for robot programming/collaboration and explore different industrial applications of human-
robot collaboration. With regards to safety, they recall the four collaborative modes from
ISO 10218-1/2 and ISO/TS 15066 [27–29]: “Safety-rated monitored stop”, “Hand guiding”,
“Speed and separation monitoring” and “Power and force limitation”. Since in this work we
addressed the first and third, let us now focus on works related to these modes.

In [30], the authors present a tire workshop assistant robot. SICK S300 laser sensors
are utilized for navigation, obstacle avoidance and human detection. The authors define
three areas surrounding the robot namely “Safe area”, “Collaboration area” and “Forbidden
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area”. The main disadvantage of this technology[31] is that several thousands of reflective
landmarks are required for reliable navigation of the robot in a cluttered environment.

The authors of [32] thoroughly discuss several aspects of speed and separation monitoring
in collaborative robot workcells. They analyze laser-based human tracking systems. The
human coworkers are detected through centroid estimation of the detected objects and as
the authors state, this varies based on the motion of legs, shifting of clothes, and sensor
noise. The authors emphasize the technological advancement of safety-rated cameras and
on-robot sensing hardware for enabling speed and separation monitoring in unstructured
environments. Moreover, the importance of human-specific identification and localization
methods is discussed for reliable physical human robot collaboration.

In [33], the authors present the preliminary results of their research on sensor-less radio
human localization to enable speed and separation monitoring. A wireless device-free radio
localization method is adopted with several nodes connected in mesh configuration, non-
regularly spread over a large indoor area, so that the human-operator being localized does
not need to carry an active wireless device. The concept of user tracking in wireless sensor
networks is extended in [34]. This study considers the availability of the source attached to
the human coworker’s body in the industrial scenario.

The idea of trajectory dependent safety distances is proposed in [35] to attain dynamic
speed and separation monitoring. This method avoids fixed extra safety clearances and is
optimized with respect to the functional task at hand. Alternative sensing modalities for
speed and separation monitoring include motion capture systems [36] and vision based
depth cameras [37, 38]. In this regard, [31] compares structured light depth cameras and
stereo-vision cameras for mobile robot localization in the industry.

As all these works highlight, an advantage of vision over other sensors is that it does not
require structuring the environment and/or operator. Furthermore, it is generally more rich,
portable (a fundamental feature for mobile robots) and low-cost, even when depth is also
measured by the sensor (as with Microsoft Kinect). While at present Kinect is far from being
certifiable for safety, we are confident that in the near future similar RGB-D sensors will. For
all these reasons, we decided to use RGB-D vision for addressing safety-rated monitored
stops and speed and separation monitoring. As in [32], we adopt the idea of human-specific
localization to effectively identify the presence of humans in cluttered environments. Our
contributions on safety will be detailed in the subsequent section after reviewing literature on
gesture detection in human-robot interaction.
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2.2 Gestures Detection in Human-Robot Interaction

Once safety is guaranteed, collaboration is possible. To this end, researchers have proposed
to use body gestures for communicating with a robot. The literature on gesture detection in
human-robot interaction scenarios is enormous. Here, we focus on works that rely mainly on
RGB-D sensing.

A task-oriented intuitive programming procedure is presented in [39] to demonstrate
human-like behavior of a dual-arm robot. The authors decompose complex activities in
simpler tasks that are performed through task-oriented programming where the focus is
given to “what to be done, rather than how to do it”. Moreover, through the development
of intuitive human interfaces, high level commands are transferred to a sequence of robot
motion and actions. For human-robot interaction, the authors use Kinect V1 [40] to extract
human skeletal coordinates for gesture detection, and the built-in microphone array of Kinect
V1 to detect the oral commands. Whole body gestures (extended arms) are used to achieve
robot motion in a dashboard assembly case. Although the idea of task decomposition and
controlling the robot through human gestures is beneficial, the considered gestures, as in
[41], are counterintuitive and tiring.

The authors of [42] present methods for obtaining human worker posture in a human-
robot collaboration task of abrasive blasting. They compare the performance of three depth
cameras, namely Microsoft Kinect V1, Microsoft Kinect V2 [43] and Intel RealSense R200
[44]. Kinect V1 uses a structured light approach to estimate the depth map, Kinect V2
is a time-of-flight sensor, while RealSense R200 has a stereoscopic infra-red setting to
produce depth. In the blasting process, the abrasives are suspended in the air or fill the
surrounding environment, and significantly decrease scene visibility. The use of image-based
methods to extract human worker pose is challenging in such environments. The experimental
observations suggest that Kinect V1 performs best in the real blasting environment, although
no concrete reason could explain this. They also present a novel camera rig with an array
of four Kinect V1 to cover a 180◦ horizontal field of view. The use of Kinect V1, to extract
human pose for a marker-less robot control method is also presented in [45].

In [46], the authors present an online robot teaching method that fuses speech and gesture
information using text. Kinect V2 localizes the position of hands in the scene, while their
orientation is measured by an inertial measurement unit. The gesture and speech data are
first converted into a description text, then a text understanding method converts the text to
robot commands. The proposed method is validated by performing a peg-in-hole experiment,
placing wire-cut shapes, and an irregular trajectory following task.

To ensure safe interaction, [47, 48] proposes a virtual reality training system for human-
robot collaboration. A virtual game simulation is developed for real-time collaboration
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between industrial robotic manipulators and humans. A realistic virtual human body, includ-
ing a simple first person shooter view, simulates the user’s vision. A head mount display and
a Kinect V1 track the human head and skeleton pose respectively. Several interaction tasks
are accomplished. These include selection of objects, manipulation, navigation and robot
control. This technique is useful to establish the acceptability of a collaborative robot among
humans in a shared workspace, as well as to tackle mental safety issues.

In [9], the authors present a strategy to use speech and a Wii controller to program a
Motoman HP6 industrial robot. This helps workers, with no knowledge of typical program-
ming languages, in teaching different activities to the robot. A neural network is trained
to recognize hand gestures using features extracted from the accelerometer output of the
Wii-controller. In [49], the authors train artificial neural networks to classify 25 static and 10
dynamic gestures to control an industrial 5 degrees-of-freedom robotic arm. A data glove,
CyberGlove II, and a magnetic tracker, Polhemus Liberty, are used to extract a total of 26
degrees-of-freedom.

The authors of [7] present a study for measuring trust of human coworkers in fence-less
human-robot collaboration for industrial robotic applications. To ensure safety of the human
coworkers, it is essential to equip the robot with vision sensors, so that it can understand the
environment and adapt to worker’s behavior. The paper also discusses the use of RGB-D
cameras to detect pointing gestures and proximity monitoring for safety using the depth
information. In [12], authors use human gesticulations to navigate a wheeled robot through
pointing gestures directed on floor. The interaction scheme also includes detection of facial
gestures which often fails, as stated by the authors, because the untrained users make those
gestures subtly.

In [50], the authors propose object recognition through 3D gestures using Kinect V1.
They exploit the depth information from Kinect V1 to subtract the object background.
This strategy often fails if predefined environmental assumptions are not met. Moreover,
a histogram matching algorithm is used to recognize the objects placed on a white color
table. Such techniques have recently been outperformed by modern deep learning ones like
convolutional neural networks [51]. The authors of [52] propose a human-robot interaction
system for the navigation of a mobile robot using Kinect V1. The point cloud acquired
from Kinect V1 is fit on a skeleton topology with multiple nodes, to extract the human
operator pose. This technique is not reliable to obtain the skeletal pose unless the human
body non-linear anatomical constraints are modeled in the design of the skeleton topology.

According to [53], sign language is among the most structured set of gestures. Hence, in
our work, we proposed the use of American Sign Language (ASL) for communicating with
the robot. In the following section, we discuss previous works on sign language detection.
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2.3 Sign Language Detection

Hand gesture detection techniques can be mainly divided into two categories: electronic/glove-
based systems and vision-based methods. Some researchers prefer the use of wearable sensors
to deal with occlusions or varying light conditions [54]. These sensors are expensive, coun-
terintuitive and limit the operator’s dexterity in his/her routine tasks. The vision-based
methods can be further divided into two categories; a) methods that use markers and b) pure
vision-based methods [55]. Since pure vision-based methods do not require the users to
wear any data-gloves or markers, they offer ease-of-use for the operators to interact with
the robots/machines. Furthermore, in Sect. 2.1 we have highlighted the advantage of using
vision for safety monitoring. In this thesis, we therefore opt for a pure vision-based method
and review only works on vision-based sign language detection.

Early research on purely vision-based methods for ASL recognition dates back to 1992
[56]. In this work, the authors use motion detection to capture start/stop instances of the
sign/gesture, hand location tracking to record trajectory of the gesture, trajectory shape (using
curve eccentricity) and detection of hand shapes at each stop position. The hand shapes are
classified using the Hough Transform method described in [57]. The authors in [55] utilize a
similar method as in [56]. It consists of a Canny filter that detects the hand edges in the scene,
followed by a Hough Transform that extracts the feature vector of size 200. A neural network
is then devised to classify hand gestures. The dataset used to train the neural network is
extremely small and it is assumed that the image background is uniform. The authors do
not mention the hands’ localization in the scene during the recognition phase. Thus, it is
assumed that the system only works if the hand appears in a specific region of the image.

One of the initial works in detecting ASL gestures through Hidden Markov models
is discussed in [53]. The authors propose two settings in this research i.e., the second
person view (desk based recognizer) and the first person view (wearable based recognizer).
The proposed system recognizes sentences of the form “personal pronoun, verb, noun and
adjective, pronoun” generated through 40 randomly chosen words. In both systems, videos
were recorded and analyzed offline for ASL translation. An a priori model of the skin color is
used to segment hands in the scene, while the absolute positions of the detected blobs in the
image are used to distinguish left and right hand. The use of absolute positions of the hands
in addition to a cumbersome wearable camera and computer system on the head significantly
constrain the movement of the “signer” in the scene.

Recently in [58], researchers proposed an ASL translation system using binary hand
images by keeping the edge information in the image intact. They use an image cross-
correlation method to identify the signs by comparison with gesture images in a database. A
similar hand gesture detector based on binary images is proposed in [59]. The author proposes
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a color-independent (using preprocessed binary hand images) hand gesture detector that
relies on a convolutional neural network (CNN), inspired by LeNet [60]. The classification
accuracy of such system depends largely on the preprocessing steps of image segmentation
performed with color or intensity thresholding, while CNNs are inherently able of learning
color features robustly, as shown in [61]. Such systems also normally require a plain or
white background for hand segmentation, which is hard to obtain in realistic human-robot
interaction scenarios.

The use of depth cameras is becoming increasingly popular in applications like hand
gestures detection or sign language translation. A thorough survey on 3D hand gesture
recognition is presented in [62]. The depth information from such sensors can be used
to segment the hands in cluttered backgrounds, by setting a depth threshold, while the
normalized depth image of the hand adds the information for correct classification of the
hand gestures [63]. The accuracy of such techniques depends on range and resolution of the
depth sensors. Nevertheless, the use of depth sensors is beneficial, since it aids the detection
of fine-grained hand gestures [64]. Latest works in deep learning have allowed the extraction
of 2D hand skeletons from conventional RGB images [65, 66]. This can be used as a basis to
fit a 3D kinematic hand model through an appropriate optimization technique as described in
[67], thus eliminating the need of depth sensors for this purpose.

In recent years, the idea of deep learning has made a concrete impact on computer
vision research and has been reported to even surpass human-level performance in image
classification [61]. Hence, in our work on static hand gestures detection detailed in Chapter 3,
we chose to exploit convolutional neural networks for gestures classification. We propose the
strategy of hand images background substitution to increase data variance, which allows the
network to learn robust hand features independent of the backgrounds. Thus permit real-time
hand gestures detection by avoiding time-consuming rigid image processing methods during
the recognition phase. This work is described in Chapter 3 while our detailed contributions
in static hand gestures recognition problem is presented in Section 3.1.

2.4 Dynamic Gestures Detection

2.4.1 Traditional Strategies

Traditional activity/dynamic gestures detection approaches aggregate local spatio-temporal
information using hand crafted features. These visual representations include Harris3D
detector [68], the Cuboid detector [69], dense sampling of video blocks [70], dense traject-
ories [71] and improved trajectories [72]. Visual representations obtained through optical
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flow like Histogram of Oriented Gradients (HOG), Histogram of Optical Flow (HOF) and
Motion Boundary Histogram (MBH) have shown excellent results for video classification
on a variety of datasets [70, 73]. In these approaches, global descriptors of the videos are
obtained through encoding the hand crafted features using bag of words (BoW) and Fischer
vector encodings [74], which typically assigns descriptors to one or several nearest elements
in a vocabulary [75], while classification is performed through support vector machines
(SVM).

2.4.2 3D Convolutional Neural Networks

The considerable success of deep neural networks on image classification tasks [76–78]
instigated exploitation of the same in activity detection domain. The strategy to adapt CNNs
for 3D volumes (3D-CNNs) obtained through stacking a few video frames to learn spatio-
temporal features presented in [79] for action recognition is among the pioneering works in
its category. The authors in [80] proposed a significant approach of learning the evolution of
temporal information through Long Short-Term Memory (LSTM) recurrent neural networks
[81] from features extracted through 3D-CNNs applied on short video clips of approximately
9 successive frames. The authors in [82] presented several CNN architectures operating on
individual frames as well as with stacked-frames input. It was found that the stacked-frames
architectures performed similar to the single-frame model. This demonstrated that the learned
spatio-temporal features from short video clips were local thus unable to extract motion
information well in the full video sequences.

2.4.3 Multi-Modal Approaches

The authors in [83] proposed a multi-modal gesture recognition strategy utilizing information
from raw video data, articulated pose and audio stream. The proposed model function at two
spatial scales to represent large-scale upper-body motions plus subtle hand articulation, and
at two temporal scales to describe short momentary motions and longer sequences (gestures)
as well. The hand images are cropped from the depth frames keeping the size of hands
approximately constant through the estimation of bounding boxes size which is normalized
by distance between the sensor and hands. No differentiation among the left and right
hands is performed, instead the left hand images are mirrored horizontally to eliminate the
differences in hand orientation. A four-layered CNN architecture is proposed for each hand
to encode short spatio-temporal blocks. The first pair of layers perform 3D-convolutions
followed by spatio-temporal max-pooling operations while the second pair of layers execute
2D-convolutions and spatial max-pooling. This is followed by a multi-layered perceptron
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(MLP) with softmax activation to classify N +1 gestures. The upper-body skeleton data is
augmented to form a 139-dimensional pose descriptor. The pose descriptors are then stacked
to represent a feature vector for the corresponding momentary motion. This is then fed into
a fully-connected MLP with sigmoid units to classify N +1 gestures with softmax units in
the last layer. Similarly, the output of an automated speech recognition module for the audio
stream is arranged in the form of bag-of-words, formulating the appearance frequencies of
N +1 classes. This multi-modal output is then fused through a RNN which is trained in two
stages to compensate for vanishing gradient problems associated with RNNs.

The extension of this work is presented in [84] with the proposal of a multi-modal
multi-scale detection of dynamic poses of varying temporal scales. The employed modalities
include intensity and depth videos, plus articulated pose information obtained through
depth map. The authors termed a 3D volume of stacked video frames, synchronized across
modalities, at a given temporal scale/step s as a dynamic pose. Three different values of s (2, 3
and 4) are chosen to capture multi-scale temporal evolution of the information to compensate
for different tempos and styles of articulation by the users. A progressive learning method is
proposed that includes pre-training of individual classifiers on separate channels and iterative
fusion of all modalities on shared hidden and output layers. Moreover, a binary classifier is
trained for gesture localization. This approach won the Chalearn 2014 Looking at People
Challenge (track 3) [85] that involved recognizing 20 categories from Italian conversational
gestures performed by different people and recorded with a RGB-D sensor.

2.4.4 Optical-Flow Based Deep Methods

The authors in [86], proposed a convolutional network based activity detection scheme
along the same lines of [82]. The authors presented the idea of decoupling spatial and
temporal nets. The proposed architecture in [86] is related to two-stream hypothesis of
the human visual cortex [87]. The spatial nets corresponds to the ventral stream, which
performs object recognition and the temporal nets are homologous to the dorsal stream,
which detects motion. The spatial stream in this work operates on individual video frames
while input to the temporal stream is formed by stacking optical flow displacement fields
between multiple consecutive frames. In [88], authors presented improved results in action
recognition task by employing trajectory-pooled two-stream CNN inspired by [86]. The
authors exploited the concept of improved trajectories [72] as low level trajectory extractor.
This allows characterization of the background motion in two consecutive frames through
the estimation of homography matrix by taking camera motion into account.
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2.4.5 CNN-LSTM Strategies

The authors in [89] proposed aggregation of frame-level CNN activations through 1) Feature-
pooling method and 2) LSTM neural network for longer sequences. The authors argued
that predictions on individual frames of video sequences or on shorter clips as in [82] may
only contain local information of the video description and may confuse classes if there are
fine-grained distinctions. Explicit motion information in terms of optical-flow images is also
incorporated in this method to compensate for 1 fps processing rate.

The authors in [90] proposed a Long-term Recurrent Convolutional Network (LRCN) for
three situations i.e., 1) Sequential input and static output for cases like activity recognition 2)
Static input and sequential output for applications like image captioning and 3) Sequential
input and output for video description purposes. The visual features from RGB images
are extracted through a deep CNN, which are then fed into stacked LSTM in distinctive
configurations corresponding to the task at hand. The parameters are learned in an “end-to-
end" fashion, such that the visual features which are relevant to the sequential classification
problem are extracted.

The authors in [91] proposed a CNN-LSTM for skeleton-based human action recognition.
Instead of applying convolutional operation on raw images, the input is arranged in a three-
dimensional volume of skeletal information i.e., (x, y, z) of each joint, for a fixed number of
consecutive frames. The CNN is first attached to a two-layer MLP and pre-trained which
then is replaced by a LSTM network for learning temporal features for activity recognition.

2.4.6 Attention Based Methods

The application of convolutional operations on entire input images tends to be computationally
complex and expensive. The authors in [92] discussed the idea of visual representation which
implies that humans does not form detailed depiction of all objects in the scene instead, the
human perception is focused selectively on the objects needed immediately. This additionally
is supported by the concept of visual attention presented in [93] which is later improvised for
deep methods as in [19]. The authors proposed an idea of a glimpse sensor which extracts
a retina-like representation with high-resolution region at a certain location progressively
surrounded by lower dimensional description of the original image. This model is built
around a recurrent neural network which aggregates the information over time to predict a
new sensor focus location. The parameters of glimpse sensor are learned as a reinforcement
learning problem.
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2.4.7 Pose-Driven Attention Mechanisms

A spatio-temporal attention mechanism conditioned on pose is proposed in [94]. A topo-
logical ordering of skeletal joints is defined as a non-Hamiltonion connected cyclic path.
This property of the path ensures that the neighborhood relationships are preserved. The
articulated pose data is encoded into 3D tensors over time by concatenating pose vectors.
A convolutional network then learns pose feature representations from these 3D tensors
as it extract relationships along its depth between joint coordinates, neighboring joints,
features which are further away from the human body and between poses corresponding
to two different people. A spatial-attention mechanism inspired by [19] is also proposed
except that it is pose-conditioned over 4 attention points i.e., hand locations of two people in
the scene. A spatial attention distribution is learned conjointly through the hidden state of
the LSTM network which is responsible of learning the temporal evolution of information,
and the learned pose feature representations. This spatial attention distribution determines
dynamically, through learned weights, which hand crop deserves more attention for gesture
recognition. The same spatial attention distribution is stacked for a sub-sequence combined
with learned feature representation from the hidden states of LSTM, and is exploited to
formulate an adaptive temporal pooling mechanism. This operation assigns higher weights
to the more discriminative hidden states, provided that it has seen full sequence before the
prediction is offered. The proposed architecture is trained on NTU RGB+D dataset [95] and
the knowledge transfer is demonstrated to MSR Daily Activity 3D dataset [96].

The authors in [17] present a slightly different approach to their previous work in [94].
Instead of learning spatial attention distribution through the hidden states of a LSTM network
and pose feature representations, it is learned through an augmented pose vector, which is
defined by the concatenation of current pose, velocity and accelerations for each joint over
time. The LSTM network exploited in the previous work is replaced by a Gated Recurrent
Unit (GRU), originally introduced in [97], as a recurrent function. The authors propose a
statistic named augmented motion, which is obtained by the sum of absolute velocity and
accelerations of all body joints at the current time step to perform temporal pooling on hidden
states at the end of a sequence.

2.4.8 Multi-Label Video Classification

A multi-label action recognition scheme is presented in [98]. The authors extended the labels
of THUMOS action recognition dataset [99] to fine-grained dense multi-label annotations
and named it Multi-THUMOS. A novel Multi-LSTM network is proposed to tackle multiple
inputs and outputs. The authors fine-tuned VGG-16 CNN which is already trained on
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ImageNet [76], on Multi-THUMOS dataset on an individual frame level. A fixed length
window of 4096-dimensional fc7 features of the fine-tuned VGG-16, is passed as input to the
LSTM through an attention mechanism that weights the contribution of individual frames
in the window. The final class(es) labels are obtained with a weighted average of multiple
outputs through learned weights. The network is also trained with shifted labels to predict
actions in the videos.

2.4.9 Chalearn 2016 Gesture Recognition Challenge Strategies

In this thesis, we present the state-of-the-art results on Chalearn 2016 Looking at People
isolated gestures recognition dataset, which was released for “large-scale” learning and
“user independent” gesture recognition from RGB or RGB-D videos. The details of this
dataset will be discussed in Section 4.2.1. Here we briefly explore the literature on strategies
employed in reported state of the art for this dataset.

In [100] authors proposed a multi-modal large-scale gesture recognition scheme on
Chalearn 2016 Looking at People isolated gestures recognition dataset [26]. ResC3D
network [101] is exploited for feature extraction, while late fusion strategy is opted for
combining features from multi-modal inputs in terms of canonical correlation analysis. The
authors used linear SVM to classify final gestures. ResC3D network allows to exploit spatial
features extraction strength of ResNet [77] with temporal features extraction capability of
3D-CNNs. A key frame attention mechanism is also proposed for weighted frame unification
which exploits movement intensity in the form of optical flow, as an indicator for frame
selection. Retinex filter [102] is applied on RGB images to normalize illumination changes
while median filter is applied on depth images for noise reduction. This team (ASU) obtained
first place in the second phase of the challenge.

The team (SYSU-ISEE) [1] that obtained second place, learned discriminative motion
features through RGB-D videos, optical flow sequences and skeleton. The skeleton is
obtained via Regional Multi-person Pose Estimation algorithm [103]. The team employed
LSTM network to learn the temporal evolution of skeleton information. Rank pooling
algorithm [104] is applied on optical flow and depth frames to extract static cues, which are
then passed through VGG-16 network independently. The output of VGG-16 and LSTM
is combined through late-fusion strategy. The team (Lostoy) [1] that obtained third place
proposed a masked 3D-CNN on portions of RGB-D images occupied by hand bounding
boxes obtained through a pose-estimation method.

Lately authors in [105] present the state-of-the-art results on Chalearn 2016 Looking
at People isolated gestures recognition dataset. A novel multi-channel architecture namely
FOANet, built upon spatial focus of attention (FOA) concept is proposed. Inspired by [106],
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the authors crop region of interest occupied by hands in the RGB and depth images through
region proposal network and Faster R-CNN method as described in [107]. To distinguish left
and right hands, openpose skeleton extractor presented in [66, 65] is utilized. The proposed
architecture comprises of 12 channels in total with 1 global (full-sized image) and 2 focus
(left and right hand crops) channels for 4 modalities (RGB, depth and optical flow fields
extracted from RGB and depth images) each. The softmax scores of each modality is fused
through the proposed sparse fusion network.

In this thesis, we propose a spatial attention-based CNN-LSTM architecture which models
the evolution of spatial and temporal information in video sequences through augmented
pose and hand images. The proposed strategy is described in Chapter 4 while we present our
detailed contributions in Section 4.1.

2.5 3D Human Pose Estimation

Current 3D human pose estimation approaches can be roughly categorized into buttom-up
discriminative, top-down generative and hybrid methods [108–110]. Discriminative strategies
[111–115] directly regress 3D pose from image data. Generative ones [116–122] search for
a plausible body configuration in the pose space that matches the image data, while hybrid
methods [110, 123–125] make the most out of both approaches.

3D human pose estimation methods can also be categorized into two groups; one-stage
approaches [114, 126, 127] which directly regress 3D pose from images and two-stage
methods [122, 128–130] that first estimate 2D pose in the form of joint location confidence
maps and then lift this 2D prediction to 3D pose either by a constraint deep regression
strategy [131, 132] or by matching the predictions with 2D projections of existing 3D poses
from a database [129] or by fitting a 3D model on this 2D prediction [122, 128]. With the
availability of larger datasets [126], the state-of-the-art approaches rely on deep networks
[115, 133]. However, the basic work-flow as mentioned here, largely remains unchanged.

2.5.1 Discriminative Approaches

As mentioned above, discriminative methods tend to predict 3D pose directly from image
data, which can either be monocular images [113, 134, 114, 135, 127, 136], depth images
[112, 125, 137] or short image sequences [115]. Earlier works on human pose estimation
from a single image relied on discriminatively trained models to learn a direct mapping
from image features such as silhouettes, HOG, or SIFT, to 3D human poses [111, 138–143].
Recent methods [114, 136] tend to exploit deep architectures for 3D pose estimation relying
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on pre-trained reliable 2D pose extractors. Lately in [144], the authors exploit a convolutional
neural network to yield 2D and 3D joint locations simultaneously and fit a model-based
kinematic skeleton against these predictions. The authors in [145] propose an end-to-end
architecture for direct regression of multi-person joint 2D and 3D pose in RGB images. The
ground truth full-body 3D poses are estimated through a data driven retrieval method from a
motion capture dataset given 2D pose as input.

Discriminative approaches often include time consuming offline training phase relying on
large annotated datasets to learn a mapping from image input to 2D/3D human pose output.
Nonetheless, these approaches are computationally efficient during run-time, perform single
frame pose estimation and do not require initialization [109, 110, 146].

2.5.2 Generative Approaches

Generative methods use a 3D human model and find a 3D pose iteratively by estimating its
position, orientation and joint angles that brings appearance of the model or its projection
in concordance to the image input [108–110]. In early works, this was achieved through
optimization of an energy function through hand-crafted features extracted from the input im-
ages such as silhouettes [119, 147, 116, 148, 149], trajectories [150] and manually extracted
features [120, 151].

Generative methods often provide physically plausible solutions with high accuracy, and
do not require training. However, because of online feature generation and comparison to the
input observations, they are computationally expensive during run-time, suffer from drift and
track loss plus require initialization [109, 110, 146].

2.5.3 Hybrid Approaches

Estimation of 2D joint locations in an image is easier than directly predicting 3D human pose
[108]. Moreover, with the advent of deep networks accompanied by large datasets, reliable
2D pose estimators have been released to the community [65, 66, 152, 153]. Moreover,
discriminative 3D pose detectors are often less accurate while the process of 3D pose tracking
in the generative methods normally require manual initialization [154]. This approach is
also often prone to local minima because it initializes the current pose with the previously
detected pose. This lays the foundation of hybrid methods which combines the discriminative
2D pose regressors (or rough frame-by-frame 3D human pose through RGB-D sensors) with
refined 3D pose estimation and model tracking approach of generative methods.

The authors in [154] introduce a hybrid motion capture scheme that automatically com-
bines a discriminative 3D pose detector of low accuracy with a generative 3D pose tracker
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that provides refined 3D pose estimations. The authors in [125] exploit nearest neighbor
matching strategy to construct 3D human skeleton models from depth imagery. In [122],
the authors utilize 2D joint proposals obtained through a convolutional network and fit a
statistical 3D body model to recover the entire shape of the human body. Nevertheless, this
approach is not real-time as the optimization process requires 20-60 seconds per image. The
authors in [155] adopt a non-parametric approach and utilize the predicted 2D pose to look
up the nearest 3D pose in a motion capture dataset. In [110], the authors employ openpose
[65, 66] and depth information from a RGB-D sensor to extract a pseudo-3D human skeleton,
as also performed by [22], and propose an energy optimization framework based on particle
swarm optimization [156] with 2D and 3D joint hypothesis for accurate 3D human pose
estimation.

In this thesis, we propose a hybrid method for 3D human skeleton estimation as an
optimization problem which minimizes the discrepancy between 2D skeletal joint coordinates
obtained from a discriminative 2D pose extractor, and virtual 2D camera projection of a 3D
kinematic model of a human-body. The proposed method is presented in Chapter 5 while the
detailed contributions are listed in Section 5.1.



Chapter 3

Static Hand Gestures Detection

We developed an elementary framework for static hand gestures in [22] which presented
a tool handover task between robot and human coworker through static hand gestures. A
convolutional neural network, inspired mainly by LeNet [60] was developed, to classify four
hand gestures. However, the dataset exploited in [22] was small, and the hand images were
recorded only by one individual. This could not guarantee correct detection of hand gestures
made by other individuals and with backgrounds having rich textures.

In this chapter, the extension of [22] is detailed. A hand gesture detector is trained on
ten gestures instead of only four utilized earlier. Moreover, the backgrounds are replaced
with random pattern/indoor-architecture images to make the detection robust and background
invariant. The vision pipeline is then integrated with OpenPHRI [25] to complement the
library with two collaborative modes of the ISO/TS 15066 safety standards. This integration
is detailed in Section 3.4 of this chapter. We propose an interaction setting where a human
coworker can safely instruct commands to the robot via gestures.

3.1 Our Contributions

• Development of a real-time hand gesture detection framework which localizes hands
through asynchronous integration with a discriminative 2D skeleton detector and
classifies hand gestures at frame-rate of approximately 20fps.

• Integration of Kinect V2 depth map with the obtained 2D skeleton to get a pseudo 3D
skeleton, which is used for speed and separation monitoring to ensure the safety of the
human coworker.

• Training a background-invariant hand gestures detection system through transfer
learning from Inception V3 convolutional neural network.
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• On-line release of hand gestures database of Kinect V2 recordings for benchmarking
and comparison.

• Integration of the developed hand gesture detection module with safe physical human
robot interaction framework, namely OpenPHRI.

• Validation of the proposed framework for robot teaching and control of Kuka LWR 4+
arm with the detected hand-gestures.

The overall pipeline of the proposed framework is illustrated in Fig. 3.1. Each named
box is a cyclic process and dotted arrows represent asynchronous communications between
these processes. Each process is described in the following sections in detail.

3.2 Skeleton Extraction and Hand Localization

For safe Human-Robot Interaction, it is essential for the robot to understand its environment,
particularly the human coworker. In this research, we opted for Microsoft Kinect V2 as
the main sensor to capture the visual information of the human coworker. Kinect V2 is a
time-of-flight sensor and provides a larger field-of-view and higher resolution RGB and
depth images than its predecessor Kinect V1. This allows the robot to extract functional
information from the scene, like human(s) presence or object/obstacle detection, including
depth perception.

3.2.1 Skeleton Extraction Module

In this work, we utilize openpose [66, 65], to extract skeletal joint coordinates, as in [157,
158]. This library returns 2D skeletal coordinates (xi,yi,ci), for i = 1, ...,18, from a RGB
image, using confidence maps and parts affinity fields in a multi-person scene; xi and yi are
the abscissas and ordinates respectively of 18 COCO body parts [159], while ci represent
their confidence measure. Openpose works on the principle of convolutional pose machines
described in [65].

Openpose is a discriminative 2D pose extractor and is not trained on pre-defined body
poses. Hence, it is preferred over libraries like OpenNI and Microsoft SDK as they are
often not accurate in skeleton extraction, require initialization pose and constraint the user
to face the sensor. For real-time skeleton extraction, this method requires a multi-GPU
hardware with the output frame-rate mainly dependent on the number of persons in image.
The average frame rate that is achievable with two Nvidia GeForce GTX 1080 for Kinect V2
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Figure 3.1 The overall pipeline of our framework for pHRI using hand gestures

is approximately 14 fps. Since we employ only one GPU in our framework, we obtain 6 fps
with 1 person in the scene.
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3.2.2 Image Acquisition and Hand Localization Module

The strategy to localize human body and its sub-parts (i.e., hands or face) depends mainly
on the output of utilized sensor. In [160] the authors use skin color for hand segmentation
using a conventional RGB camera, as in [59]. Human body localization is performed using
laser sensors in [161], and its sub-parts are obtained through Kinect with the OpenNI library
as in [162]. In [52], the authors localize human body, inspired by [163], through merging
clusters of the point cloud obtained from the Kinect V1 after voxel filtering and ground plane
removal. Lately, infrared based sensors e.g., Leap Motion, are developed to track fingers of a
hand in the near proximity (within 25 to 600 millimeters) of the sensor. However this range
is too close for our application. In [67], authors adapt a state-of-the-art object detection deep
learning technique namely YOLO V2, adapted to localize hands and head/face of a person
in a scene. The authors have utilized openpose to first extract hands and face images from
recorded videos with human activity, and then used these images to train YOLO V2 to detect
hands and the face of the person in the scene in real-time. The face is detected to differentiate
left hand from the right one. This is an efficient method to detect hands in the scene in
real-time but requires a separate training/adaptation of YOLO V2 for hands and faces.

In our research, since we obtain the skeletal joint coordinates from openpose, training a
separate hand detector to localize hands is not required. To estimate the hands position, we
fit a line between the elbow joint and the wrist joint returned by openpose (with added depth
information from Kinect V2) and extend this line to one-third of its original length (empirical
value) in the direction of hand to approximately reach the center of hand. A bounding box
is then centered at the approximated hand center at an angle which the forearm makes with
the horizontal. This makes the hand image acquisition rotation invariant. The size of each
bounding box is determined by the mean depth value of a 6 × 6 matrix centered at the wrist
joint, obtained through Kinect V2 depth map as shown in Fig. 3.2. The hand images are
cropped with reference to the tilted bounding box, re-scaled to size 224×224 pixels and
rotated again such that the cropped image becomes vertical.

3.2.3 Asynchronous Integration of the Modules

In our work published in [22], we integrated openpose with gesture recognition sequentially
to obtain an overall temporal resolution of approximately 4 fps. Here we propose an inter-
process distributed system, designed through nanomsg socket library1 which has drastically
increased the frame rate of our vision pipeline. The afore-mentioned inter-process distributed
system works using a “request-reply" communication pattern, known as scalability protocol.

1https://nanomsg.org

https://nanomsg.org
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Figure 3.2 Localization of hand through openpose is illustrated. The bounding box is titled
with an angle that the forearm makes with horizontal, while the size of bounding box is
determined by the mean depth value of the wrist joint. The mean depth value is computed by
averaging the depth pixel values of a 6 × 6 matrix centered at the wrist joint.

Furthermore, it ensures that no frames are lost during communication. Figure 3.1 illustrates
this asynchronous communication between the proposed framework modules via dotted lines.
The image acquisition and hand localization module retrieves the image stream from Kinect
V2 and checks if a frame request has arrived from the skeleton extraction module. When
a frame request is received, the current RGB and depth image are first serialized through
flatbuffers2 and then passed to the skeleton extraction module. The skeleton extraction module
unserializes the received frames with flatbuffers and then pass the RGB image through the
forward-pass of openpose which returns a vector of 2D skeleton coordinates (xi,yi,ci). The
calculated mean depth values, as described in the previous section, are concatenated with the
2D skeleton coordinates and this 3D vector (xi,yi,di) is then sent to the image acquisition
and hand localization module. The integration of Kinect V2 depth map with the 2D skeleton
coordinates from openpose however does not represent the actual 3D coordinates of the
joints and represents only the surface depth value of the joints. There is a possibility that
a joint is occluded in the scene by an object or the body itself. To prevent false detection

2https://google.github.io/flatbuffers.

https://google.github.io/flatbuffers
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of depth hence preventing potential accident, we use the confidence measure for each joint
returned by openpose. The depth value of each joint is only updated if ci > 0.5 (this is an
empirical value), otherwise the previous depth value is kept. The image acquisition and
hand localization module expects to receive coordinates from skeleton extraction module in
each execution cycle. Once the coordinates are received, the hand is segmented and cropped
image (described in Section 3.2.2) runs through the forward-pass of trained convolutional
neural network for hand gesture detection. The detected hand gesture label is sent to the
robot controller running OpenPHRI to pilot the experiment. The overall frame rate of our
gesture detection pipeline is approximately 20 fps while the skeleton is extracted and the hand
location is updated at around 5 fps. This significantly improves the execution performance of
the vision system as compared to that in [22], which finally leads to a system which better
reacts to human commands.

3.3 Convolutional Neural Network for Hand Gestures De-
tection

In [22], we designed the CNN architecture for hand images with relatively plain backgrounds,
while the number of gestures were set to 4 and the gestures were recorded by a single person.
Here we employ 10 static hand gestures recorded by 10 volunteers (8 males and 2 females)
of age 22 to 35 and the backgrounds of hand images are substituted with random pattern
and indoor architecture images (explained in Section 3.3.2). This makes the recognition
problem more complex as compared to the one presented in [22], where only 1 volunteer and 4
gestures had been considered. Therefore we opted for transfer learning for gesture recognition,
exploiting state-of-the-art CNNs pre-trained on large image data from the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [164]. In particular, Inception V3 [165] which
is state-of-the-art in image classification for 1000 classes, is adapted for our background-
independent hand-gesture recognition task. Inception V3 is available in Keras python library
[166] with pre-trained weights. Figure. 3.3 shows samples of the static gestures we trained
our framework on. The gestures include 9 letters/numbers taken from ASL [167] and a None
gesture that is not among these nine. The letters/numbers are chosen such that they resemble
with each other (like F, 7 and W; A, L and Y) so as to challenge the training and ensuring
robustness of the CNN. The None gesture is important to determine if the person does not
intend to interact with the robot. Our system also generates this label when the line joining
the elbow and wrist joint (forearm) of the user is too low (in the lower two quadrants of the
axes centered at the elbow joint). In this case, the robot controller ignores this command
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and does not initiate any action (which is likely undesired, since the user’s hand is low). We
could have excluded the None gesture from the trained network, by applying a predefined
threshold to the nine (one per class) network scores. However, since the relative scores of the
ten classes vary a lot according to the operating conditions, it is not possible to fix a priori
such threshold.

Figure 3.3 Samples of the gestures considered for training. The labels represent the letters
and the numbers taken from American Sign Language. The last gesture is one of the several
None gestures included in the training set.

3.3.1 Preparation of Dataset/Dataset recordings

To create a dataset for gesture recognition and off-line development, RGB and depth image
streams from Kinect V2 are saved in the local workstation. The frames are saved with an
approximate frame rate of 20 fps. Each gesture is recorded by each volunteer for around
12 seconds with both hands (see Fig. 3.4), at three distances of 5, 3 and 1.5 meters away
from Kinect V2. The depth information near Kinect V2 is rich and accurate, thus the images
recorded at the distance of 1.5 meters are used for the fine-tuning of Inception V3 (discussed
in Section 3.3.3). However, since the network is trained only on RGB images, the hand
gestures can also be recognized at other distances. We are releasing our dataset opensign 3

online. Opensign contains RGB and depth (registered) frames of volunteers recording 10
gestures. The RGB images are saved in png format, while the float data of the depth images
are saved in bin files. The total number of samples in our dataset is 20950. These include
8646 original images, and 12304 synthetic images obtained by substituting backgrounds with
the technique that we will explain in Sect. 3.3.2.

3http://bit.do/OpenSign

http://bit.do/OpenSign
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Figure 3.4 A volunteer recording ’7’ gesture in the laboratory

We divide the dataset of 20950 images with a ratio of 3:1:1, i.e., 12570 train images and
mutually exclusive 4190 samples for cross validation and test sets. Train images go through
extensive pre-processing (explained in Section 3.3.2), while only selective pre-processing
operations are applied to cross-validation images so as to keep them near those obtained
during recognition in the robotic interaction experiments.

3.3.2 Background substitution and Preprocessing of the Hand Images

Background substitution is performed so the network is trained to detect hand gestures
independently from the background. We use nearly 1100 images of random pattern and
indoor architectures which are freely available on the internet4. The background substitution
process is illustrated in Fig. 3.5. A binary mask for background substitution is created using
the depth information from Kinect V2. All the pixels that lie at distance within ±18 %
(empirical value) of the mean depth value computed at the wrist joint (obtained through
openpose) are set to 1, while the rest are zeroed. This binary mask is broadcasted into three
channels and then multiplied by the cropped RGB hand image to get a background subtracted
hand. An inverted mask is also created by simply applying a “NOT" operation on the mask
originally computed. The background pattern images are cropped to multiple 224×224 sized
images (as it is the set size of hand images) which are subsequently multiplied by the inverted
hand mask. The hand image with subtracted background and the pattern images multiplied
with the inverted binary mask are then added in the final step of background substitution.

4https://pixabay.com/

https://pixabay.com/
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Figure 3.5 The process of background substitution.

Figure 3.6 shows the samples of gestures with original and substituted backgrounds. As
discussed in Section 3.3.1, all the training images (images with substituted and original
backgrounds) go through several pre-processing steps. Image processing operations of
histogram equalization and introduction of Gaussian and salt and pepper noise are applied
on 30% of training images each while the remaining 10% are left unprocessed. Figure 3.7
shows random samples of original and processed images after the addition of Gaussian noise
and histogram equalization.

For robust gesture detection, we also use the real-time data augmentation feature of Keras
library. Keras real-time data augmentation is designed to be iterated by the model fitting
process, creating augmented image data in defined batch size during training. This reduces
the memory overhead of the computer but adds additional time cost during model training.
The image processing operations that are applied on all training images (after the addition of
noise and histogram equalization as discussed above) using the Keras library include channel
shift, zoom, shearing, rotation, axes flip and position shift.

The batch size for model fitting is set to 100 samples. These transformations are applied
in real-time during model training. So the number of train images remains the same while
each batch for training is applied with selected – yet randomly chosen – transforms. In
Fig. 3.8, we show samples of processed training images with Keras being passed to the CNN.
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Figure 3.6 Samples of hand gesture images with original (labeled images) and substituted
backgrounds (below originals). Note the remnants of the original backgrounds. This phe-
nomenon is due to dilation of the binary masks. While it could be avoided by using techniques
like chroma key, we do not intend to use a uniform background, to avoid bringing any extra
apparatus in operation. In the experimental results (Sect. 3.3.4), we show that despite these
remnants, gesture detection is highly accurate.

3.3.3 Adapting Inception V3 to Gesture Recognition

In image classification problems, the input data i.e., an image, is formed by low-level edges,
curves and color combinations irrespective of the type of object that the image represents. It
is therefore assumed that the early layers in the pre-trained state-of-the-art networks have
learned to efficiently extract those features from the images thus they need to be preserved.
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(a) Samples of training images after histogram equalization

(b) Samples of training images after the introduction of Gaussian noise

(c) Samples of training images after the introduction of salt and pepper noise.

Figure 3.7 Image processing operations of histogram equalization, introduction of Gaussian
and salt and pepper noise are performed on the training images. First row in each sub-image
shows unprocessed image while the processed images are shown in the second rows.

Inception V3 is trained to recognize 1000 classes of objects as explained in Section
3.3. To adapt Inception V3 to classify only 10 gestures, the last softmax activation layer
of this network with 1000 neurons should be replaced with a new layer of 10 neurons. As
implemented in Keras, the Inception V3 has 10 trainable inception blocks. We perform
training in three phases. In the first phase all the layers (hence inception blocks) in the
network are frozen with the exception of the new layer added and the CNN is trained for
10 epochs only. This fine-tune the weights of the new layer exploiting the knowledge of
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all pre-trained inception blocks. Then we unfreeze last two inception blocks and trained
the CNN for 10 epochs, and then we trained top four inception blocks so the network is
fine-tuned properly on our dataset. This gradual unfreezing of inception blocks prevents
damaging the pre-trained weights and thus avert over-fitting.

Figure 3.8 Image processing operations applied to the training images include color-shift,
zoom, shear, rotation, axes flip and position shift processes.

The validation set is used to chose the best performing weights and then the network is
tested on the unseen test set to quantify/estimate accuracy of the selected weights. Figure 3.9
illustrates the training curve of validation accuracy and loss of our dataset. Each epoch took
approximately 130 seconds to pass and the network was able to achieve validation accuracy
of 99.12% at 745th epoch taking around 27 hours of training.

3.3.4 Quantification of the Trained CNN

To validate and quantify the results even further, the accuracy of the trained CNN is tested
with a test set of 4190 new images. The overall test accuracy of the trained CNN is found to
be 98.9% on test set. The normalized confusion matrix in Fig. 3.10 shows the accuracy of
each gestures and misinterpretation of one gesture against the others. It can be observed that
despite 94.3% accuracy of the None gesture, it was misinterpreted the most among all. The
reason for this lower accuracy is that the None gesture defines all gestures that do not appear
like the other 9 as well as all transitional gestures.
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Figure 3.9 Plot of validation accuracy (top) and validation loss (bottom)

It is difficult to include all the transitional gesture possible to be classified as None
gesture. Moreover, it can be observed from a close inspection of the test results that the CNN
is very accurate in identifying a gesture as None when a person is holding an object in his
hand. It is inferred that if the CNN is additionally trained on a gesture like "an object in
hand", this class label will be easily distinguished. Meanwhile, this misinterpretation can be
dealt by adding a software constraint, as explained in Section 3.3, of not invoking gesture
detector until the arm is in the upper two quadrants of the axes centered at the elbow joint of
the person, as we did in [22]. We release the source code of our hand gesture detection

3.4 OpenPHRI Integration

To control the robot and to remain safe during human-robot collaboration, we have used
OpenPHRI open-source control library. This library allows to describe the task to perform
using force and velocity inputs in both the joint and task spaces while enforcing safety
constraints such as velocity limitations, speed and separation monitoring or safety-rated
monitored stops.

As discussed in Section 2.1, ISO 10218-1/2 and ISO/TS 15066 have imposed safety
requirements for industrial robot systems. Moreover, these ISO standards have identified
four collaborative modes which are briefly explained as follows:
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Figure 3.10 Normalized Confusion Matrix Quantified on Test-Set

• Safety-rated monitored stop - This states that the human and robot can operate in a
shared space but not at the same time. As soon as the human operator occupies the
shared space, the robot must stop until the human exits the shared space.

• Hand guiding - In this mode, the human coworker can teach the robot positions/waypoints
by physically moving the robot without any means of an intermediate interface.

• Speed and separation monitoring - This defines three zones of the shared space say
red, yellow and green. The operation of robot depends on the presence of human in
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each zone. If human coworker is in the green zone the robot operates at its full speed,
at reduced speed in yellow zone and it should stop in the red zone.

• Power and force limiting - This mode prescribes the limitation of power and force to
allow humans to work side-by-side with the robot. The robot should be able to handle
collisions with the human to prevent any harmful consequences.

OpenPHRI inherently is able to adopt all four collaborative modes efficiently. The first
and the third modes however, require safety-rated monitoring sensors. As described in the
previous sections, our proposed framework obtains a pseudo 3D human skeleton, which is
used to determine the distance of the closest body part of the human coworker to the robot.
This is integrated with OpenPHRI to complement the two collaborative modes.

Kinect V2

BAZAR Dual Arm 
Mobile Robot

Workspace

Human 
Operator

Figure 3.11 Safe Physical Human Robot Interaction Setup
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3.5 Example Industrial Application of the Proposed Frame-
work

To demonstrate the effectiveness of the proposed approached, we set up an industrial-like
experiment where multiple operators can safely interact sequentially with the robot using
both hand gestures and physical contact. The experiment is decomposed into two phases:
1) a teaching by demonstration phase, where the user manually guides the robot to a set
of waypoints and 2) a replay phase, where the robot autonomously goes to every recorded
waypoint to perform a given task, here force control.
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initialization

 - Joint space trajectory
+ Vel. limit (0.25 m/s)
+ External force

Manual guidanceRecord waypoint

Teach 
end

- Vel. limit (0.25 m/s)
- External force

Replay 
initialization

+ Virtual stiffness
+ Soft stop
+ Acc. limit (0.15 m/s²)

Go to waypoint
 - Force control
+ Emergency stop
+ Separation distance 
    monitoring

Task performed at

waypoint ? 

Execute task
+ Force control
 - Emergency stop
 - Separation distance 
    monitoring

More tasks to

perform ?

Replay 
end

- Virtual stiffness
- Soft stop
- Acc. limit

End

Go to initial 
joint

configuration
+ Joint space trajectory

Start

Record Replay

Reteach Repeat

End

Configuration reached

Waypoint reached

Force applied for 2 seconds

Figure 3.12 The FSM used for the experiment. A plus sign indicates an addition to the
controller (a new constraint or new input) while a minus indicates a removal.

BAZAR robot used for the experiments is composed of two Kuka LWR 4+ arms with two
Shadow Dexterous Hands attached at the end-effectors and a Kinect V2 mounted on top of it
[168]. The arms are attached to a Neobotix MP700 omnidirectional mobile platform. In our
scenario, shown in Figure 3.11 the mobile base is kept fixed and only the left arm, without the
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hand, is used. The communication with the embedded arm controller is done using the FRI
library 5. The external force applied to the arm’s end-effector is estimated by the embedded
controller (based on joint torque sensing and on knowledge of the robot’s dynamic model)
and retrieved by FRI. The control rate is set to 5ms. To orchestrate the experiment, we have
designed a finite state machine (FSM), depicted in Figure 3.12. The transitions between the
states are either automatic (no text), depending on sensory information (arrow with text) or
triggered by gestures (hand sign with text).

Figure 3.13 Screenshots from the robotic experiment by operators Op1 and Op2 (a) Op1
manually guiding the robot to a waypoint in the workspace. (b) Op1 records the way-points
using Record gesture. (c) Op1 replay the taught waypoints by Replay gesture. (d) Op2
stands far from the robot so it moves with full speed. (e) Op2 stops the robot by applying
external force (or accidental touch). (f) Op2 stands near the robot, so it moves slowly
ensuring operator’s safety. (g) Op2 gives Reteach command to the robot. (h) Op2 sets the
new waypoints manually. (i) Op2 gives Record command. (j) Op2 stops the robot by Stop
gesture. (k) Op2 resumes the robot operation by Resume gesture. (l) Op1 ends the robot
operation by giving End command.

5https://cs.stanford.edu/people/tkr/fri/html/

https://cs.stanford.edu/people/tkr/fri/html/


36 Static Hand Gestures Detection

A video of the experiment is available online6 and snapshots are given in Figure 3.13.
The experiment goes as follow. First, the robot goes to a predefined initial joint configuration
before initializing the Teach phase. Once this initialization is performed, the robot is ready
to be manually guided and taught the waypoints where the tasks have to be performed
during the Replay phase. Each time a Record gesture (L letter sign) is detected, the current
end-effector pose is recorded. When a Replay gesture (A letter sign) comes in, the Teach
phase is ended and the Replay phase is initialized. Then, the robot goes to the first recorded
waypoint while limiting its velocity thus ensuring safety of the human worker (speed and
separation monitoring in the FSM) according to the distance of the closest detected body
part. This distance corresponds to the depth value given by Kinect V2 at the joint image
coordinates obtained from openpose as explained in Section 3.2.3. If the closest body part is
occluded by the robotic arm, the depth value (that will then correspond to the depth value of
the robot itself) is discarded while the next closest body part visible in the scene is considered
a reference for depth.

This estimation of body parts distance is not available with the default output of OpenPose
but it is possible, thanks to our integration, of Kinect V2 depth map. This amplifies the
usefulness of OpenPose skeleton extraction while assuring a safe interaction of a human
coworker with the robot. While in autonomous motion, the robot can be stopped at any time
(Soft Stop constraint in the FSM) using a Stop gesture (number 5 sign). Making this gesture
will slow down the robot until a full stop is reached. This is useful if an operator must enter
the robot workspace without fearing any injury. The Resume gesture (Y letter sign) can be
made to resume normal operation. When the robot reaches the waypoint, it switches to the
task execution. In this scenario the task is to apply a 30N force for 2s along the vertical axis.
Once the task has been executed, the robot goes back to its waypoint and moves to the next
ones to repeat the same operations. If the task has been performed at all the waypoints, the
Replay phase ends and the next action is determined by the operator. A Reteach gesture
(number 7 sign) will move the FSM to the Teach phase while a Repeat gesture (F letter sign)
will repeat all the tasks at the recorded waypoints. If no other operation is needed, an End
gesture (number 2 sign) will end the experiment.

Experimental results are show in Fig. 3.14. The time axis has been limited to the 132-185s
range for better readability. The top graph displays the result of the hand gesture detection
where each vertical dashed line corresponds to the detection of a gesture. To filter out false
positives, a gesture is considered valid if it appears in five consecutive frames. Considering
the hand-gesture detection frame rate of 20Hz, this gives a 250ms delay between the making
of the gesture and its detection. This delay should not impact human-robot interaction since

6https://www.youtube.com/watch?v=lB5vXc8LMnk

https://www.youtube.com/watch?v=lB5vXc8LMnk
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the average human reaction time usually lies within the 200-250ms range7. Once the same
gesture has been detected five times in a row, the corresponding signal is activated. False
positives can be observed, e.g. at t=139 s when the first record signal ends, but thanks to
the filtering systems no incorrect signal activation is made. The two following graphs in
Fig. 3.14 show the end-effector translational velocity and force.
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Figure 3.14 Experimental results. From top to bottom: hand gesture detection (dashed
lines correspond to detection instants and plain line to the activation signals), control point
translational velocity, external force at the end-effector, distance between the camera and the
closest human body part and velocity scaling factor computed by OpenPHRI to slow down
the motion.

It can be seen that through the Teach phase, i.e. until t=135 s, the velocity simply follows
the force applied to the robot. Then, the Replay phase starts and the end-effector velocity is
now the result of the motion made to reach the waypoints and also by the force regulation

7http://humanbenchmark.com/tests/reactiontime

http://humanbenchmark.com/tests/reactiontime
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applied at these locations. Between the two task executions (t=153 s and t=170s), one can
observe some force applied to the robot at t=162 s. A safety feature is programmed to
prevent accidents due to unexpected contact between the operator and the robot, leading to
a monitored stop. In this situation, the robot stays still until the contact disappear and then
resumes its motion to the second waypoints. The fourth graph displays the distance to the
closest body part. The values are the raw ones provided by the Kinect V2 and are unitless. As
mentioned previously, this distance is used to adapt the velocity limitation so that the robot
can move quickly when nobody is around but slows down when an operator is approaching.
The velocity limit is at a minimum of 0.02m/s at a distance of 300 and at a maximum of
0.3m/s at a distance of 600. The effect of this limitation can be observed multiple times,
including after the beginning of the Replay phase where the distance suddenly drops below
300, enforcing a very slow motion of the robot. The last graph shows the evolution of
the scaling factor computed by OpenPHRI. A value equals to one means that no velocity
reduction has to be performed to comply with the constraints (velocity and acceleration
limits, speed and separation monitoring and safety-rated monitored or soft stop). When at
least one constraint would not be respected considering the current inputs, the scaling factor
decreases below one to make sure that all constraints are satisfied. When the value reaches
zero, the robot is at a complete stop. Using this technique allows to easily slow down the
robot only when it is necessary.

3.6 Conclusion

In the perspective of smart factories – also known as factories of the future – we have
introduced a real-time human-robot interaction framework for robot teaching using hand
gestures. The proposed framework relies on our novel rotation and background invariant
robust hand gesture detector. This is achieved by adapting a pre-trained state-of-the-art
convolutional neural network, namely Inception V3, to the classification of 10 hand gestures.
The CNN is trained on an image dataset of 10 hand gestures, recorded with the help of 10
volunteers. The dataset opensign, is open and available to the computer vision community
for benchmarking. We also release the source code of our hand gesture detector8.

The accuracy of the trained CNN is validated with a set of test images and is found to be
98.9%. To reaffirm the quality of the hand gesture detector and to validate it on a mock-up
example industrial scenario, we perform a robotic experiment. Safety and effectiveness of
the experiment are guaranteed by our physical human-robot interaction library, OpenPHRI.
Besides, real-time operation is established by asynchronous integration of the different

8https://github.com/OsamaMazhar/openhandgesture

https://github.com/OsamaMazhar/openhandgesture
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modules present in our framework. The experiment proves the efficiency of the proposed
framework, that ensures a natural means for robot programming. The robot is also aware of
its distance from the human worker thanks to the integration of Kinect V2 and openpose. To
guarantee the safety of the human coworker in close vicinity, the robot slows down using the
velocity scaling feature of OpenPHRI.

The presented approach requires the user to know the gestures the robot can perceive.
However, once s/he has memorized these gestures, it will be more natural for her/him to
communicate with the robot. Integrating face identification algorithms in this framework,
could also be a security feature. It will allow only selected people to interact with the robot
without entering any passwords or fingerprints scanning which might require the users to
come in close proximity to the robot.

Despite the quantified accuracy and experimental results, the capabilities of our system
are limited by the depth range of the vision sensor. Moreover, the system is trained and tested
in indoor settings and may fail in bright light due to the resulting contrast in RGB images.
Backgrounds with intense texture may also compromise detection. To handle this, distinct
background images should be substituted in the hand images to train the proposed network.
Nevertheless, we believe that the results presented in this chapter are a very promising step
towards the development of vision-based robot programming framework.





Chapter 4

Dynamic Gestures Detection

Activity recognition or dynamic gestures detection is a problem that has been widely studied
for mainly two objectives; to develop an alternative to traditional input devices in human-
computer/machine interfaces like mouse, keyboard, teach pendants and even touch interfaces
[169], plus to analyze video content to deal with the recent explosion of data and information
on internet [170] and for applications such as automatic video surveillance [171]. In the
context of human-computer interaction, gestures driven applications include interactive
games [172, 173], sign language recognition [174, 84] and robot control [175, 176, 22].

Inspired by the long-term recurrent convolutional network (LRCN) model proposed
in [90], we develop our CNN-LSTM network to model spatio-temporal dependencies to
recognize dynamic gestures. We adopt the idea of fine-tuning CNN as proposed in [98], to
model frame-level spatial appearance of input image(s). Our CNN model is an Inception-V3
network, which is fine-tuned on our background substituted static hand gesture dataset, thus
able to extract subtle hand movements efficiently. We are also convinced by the idea of
visual attention presented in [92] which is inspired by the human perception of selective
focus. In particular, we implement the conception of pose-driven spatial attention mechanism
as proposed in [94], in a manner that the hand images are cropped from full RGB frames
guided by the hand position and pose obtained through the 2D skeleton extractor. We also
use augmented pose as an additional modality to the hand images in our work inspired by
[84]. The augmented pose allows our network to learn large-scale upper-body motions, while
subtle hand movements that distinguish several inter-class dependencies are learned by the
spatial-attention module.
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4.1 Our Contributions

• We propose a dynamic gestures classification strategy based on CNN-LSTM network
with the state-of-the-art performance on Chalearn 2016 isolated gesture recognition
dataset [26].

• Gesture recognition is performed on pure RGB images without the need of any spe-
cialized sensor.

• We train three separate neural networks with augmented selective 2D upper-body joints
as input, to determine the sizes of hands bounding boxes and to scale-normalize the
2D skeleton.

• Hand deep features are extracted through a pre-trained CNN on background augmented
static hand gestures dataset for effective feature extraction.

• A multi-stage learning pipeline is proposed for training large-scale video dataset on
machines with less computational power.

• We also present the state-of-the-art performance on Praxis cognitive assessment dataset
[2] on correctly performed gestures.

4.2 Datasets Description

The proposed work exploits two dynamic gestures datasets i.e., large-scale Chalearn 2016
Looking at People isolated gesture recognition dataset [26] which is actually created from
Chalearn 2011 gestures dataset [177], and Praxis cognitive assessment dataset [2].

4.2.1 Chalearn 2016 Isolated Gesture Recognition Dataset

The gesture vocabulary in this dataset is taken mainly from nine categories corresponding
to different application domains including body language gestures (like scratching head
or crossing arms), gesticulations, illustrators (like Italian gestures), emblems (like Indian
Mudras), sign language, semaphores (like referee signals, guiding machinery or a vehicle),
pantomimes, actions/activities (like drinking or writing) and dance postures. The gestures
recordings are performed through Microsoft Kinect [178, 179], which was fixed at approx-
imately 4 feet away from the head of a volunteer. The volunteers were requested to stand
approximately 1 foot away from the wall to get depth contrast against the background. The
frame size of images/videos is 320×240 pixels while the camera is set such that the upper
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body including head, shoulders and waists are visible in most videos. The dataset also con-
tains videos with full-body frames as well as those with volunteers sitting while performing
gestures. This dataset has 47,930 RGB and depth videos in total while each video represents
only one gesture. Total number of gestures are 249 which are performed by 21 different
individuals. The dataset has been divided into three mutually exclusive subsets namely
training, validation and test sets. Training set has 35,876 videos with gestures performed by
17 volunteers. Validation and test sets have 5,783 and 6,271 videos respectively performed
by 2 volunteers each.

In our work, we first arranged the gestures with respect to the number of videos available
in the training dataset. We realized that videos are not uniformly distributed among all
gestures. Some labels contain up to 851 videos while others only have around 64 with mean
number of videos equal to 144 and 36 average frames in each video for all 249 gestures. This
arrangement is beneficial if a network is to be trained on selective gestures. In that case,
the gestures with higher number of videos can be the preferred choice to start training the
network with. This distribution of train, valid and test data in our work is slightly different
than the proposed approach in the challenge. We combine and shuffle the provided train,
valid and test sets together which brings the total number of videos to 47,930. The network
is trained on 35,930 videos while hyper-parameters are optimized on the validation data of
6,000 videos. The trained model is evaluated and a confusion matrix/heat-map is generated
on the test data of 6,000 videos.

4.2.2 Praxis Cognitive Assessment Dataset

Praxis gesture dataset [2] is designed to diagnose apraxia, which is a motor disorder caused
by brain damage. Apraxia is a neurodegenerative disorder in which the patient has a difficulty
to plan and perform motor tasks despite his/her willingness and the fact that request to
execute the task has been fully understood [180]. This dataset contains RGB (960×540
resolution) and depth (512×424 resolution) images recorded by 60 subjects plus 4 clinicians
with Kinect V2. From the volunteers, 29 were elderly with normal cognitive functionality
while others had medical conditions which include amnestic mild cognitive impairment
(MCI), unspecified MCI, mixed dementia, Alzheimer’s disease, posterior cortical atrophy,
corticobasal degeneration and severe cognitive impairment (SCI). For this dataset, 29 gestures
were performed by the volunteers in total (15 static and 14 dynamic gestures). These gestures
are divided into three categories: abstract, symbolic and pantomimes. Gestures image
sequences in the dataset are additionally labeled as “correct" or “incorrect" depending on the
execution of gestures by the volunteers which is based on the clinicians opinion.
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In our work, only dynamic gestures i.e., 14 classes are considered while their pathological
aspect is not taken into account i.e., only gestures labeled “correct" are selected. Thus, the
total number of considered videos in this dataset is 1247 with mean length of all samples
equal to 54 frames.

Figure 4.1 Our proposed spatial attention module extracts upper-body pose, localize hands
and estimate the size of hands bounding boxes without requiring a depth sensor.

4.3 Spatial Attention Module

We can divide spatial attention section into two parts: pose extraction module and focus on
hands module. Figure 4.1 illustrates the information our spatial attention module extracts
from a video/frame sequence.

4.3.1 Pose Extraction Module

The strategies found in the literature that employ skeleton information, normally exploit 3D-
pose already provided in the datasets, which is obtained through sensors like Microsoft Kinect
as in the case of Chalearn 2014 Looking at People Challenge. This makes these strategies
device dependent, even if they operate on RGB images in case of multi-modal methods like
[94], and will not be applicable to the systems which lack these (or similar depth) sensors
until a reliable 3D-pose estimator from only RGB images is developed. Lately, effective
2D skeleton extractors based on deep methods like openpose [66, 65] have been released to
the open-source community. For this reason, we opted to devise our algorithm such that it
operates only in RGB image domain, thus can be implemented on applications/robots that
lack depth sensors. For skeleton extraction, as mentioned above, we employ openpose to
extract 2D full body skeleton plus hands skeleton (optionally, depending on the availability of
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computational power) to localize hands in the scene accurately. Any other skeleton extractor
like [152] can be employed in place of openpose. We first resize the dataset videos to
1080×C pixels where C is corresponding value of resized image columns obtained with
respect to new row value i.e., 1080, while maintaining the aspect ratio of the original image;
1440 in this case. Then all the resized videos are fed into openpose skeleton extractor, one at
a time, with hand key-point extraction flag raised and the output raw skeleton coordinates are
saved on the disk as .json files for offline processing.

Figure 4.2 An illustration of proposed skeleton filtering in function. The frames are arranged
from left to right with respect to their appearance in time. It can be observed that the output
(frame with blue boundary) of our filtering strategy copes with the missing joint coordinates
in the window. Gaussian smoothing is also applied on the joints which absorbs jitter in the
raw output skeleton from openpose. The opted size of window is 7 frames, while only 5
frames are shown for clarity. The bounding boxes on the hands are extracted as a part of
proposed spatial attention module detailed in Section 4.3.2

.

Filtering Skeleton

Openpose is a discriminative 2D pose estimation approach which extracts N skeleton coordin-
ates frame-by-frame and doesn’t employ pose tracking as already mentioned in Chapter 3.
The occasional jitter in the skeleton output or absence of joint coordinates within successive
frames may cause problems in gesture learning/modeling. Thus we develop a pose filter-
ing strategy that rectify random disappearance of the joint(s) coordinates plus smooths the
skeleton output. We work on a window of frames with adjustable size K of odd numbers
(selected value is 7) and first perform coordinates replacement for the missing joints. This
procedure is driven by the following two equations:

pnK = pnK−1, if (pnk)
K−1
k=1 ̸= 0∧ pnK = 0∧

K+1

∑
in=0

1 ≤ K (4.1)
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(pnk)
K
k=1 =

0, if pnK = 0∧
K+1
∑

in=0
1 > K

pnK, if pnK ̸= 0∧ (pnk)
K−1
k=1 = 0

(4.2)

where pnk are coordinate values of the nth joint in the output pose vector of openpose in frame
k of the selected window, pnK are the coordinate values of the same joint in the last frame of
the window and in is coordinate replacement counter for the skeleton joint in question.
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Figure 4.3 Illustration of the proposed coordinate replacement strategy. All variables are
assumed non-zero unless stated otherwise. (a) If a joint coordinate, say p2K in the new frame
K is zero, while (p2k)

k=K−1
k=1 ̸= 0, then p2K is replaced by the immediate previous non-zero

value i.e., p2K−1 and coordinate replacement counter for this joint i2 is incremented by 1.
This process may be repeated consecutively if same conditions persist until i2 equals to K. If
a non-zero value of p2K reappears before i2 equals to K, i2 is reset. (b) If same conditions
continue as in a, while the value of i2 reach limit K, all values corresponding to considered
joint i.e., (p2k)

k=K
k=1 in this case, are replaced with 0 and coordinate replacement counter is

reset. (c) If all previous values corresponding to a joint e.g., (p2k)
k=K−1
k=1 are zero, while

p2K ̸= 0, then all values in the window corresponding to the considered joint are replaced by
non-zero p2K in this case.
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The missing joint coordinate values are replaced with the immediate previous i.e., pnK−1

(non-zero) values in the pose vector. Only K consecutive replacements are allowed for each
joint and this is monitored by the coordinate replacement counter in. If a joint was absent
in the entire window of K frames, and non-zero coordinate values appears in new frame of
the window, all the corresponding joint values in the pose vector are replaced with the new
non-zero value. This procedure is explained with an example in Figure 4.3.

In the second step of skeleton filtering, we apply Gaussian smoothing to the individual
joint pose vectors. The application of this filter remarkably solves the jitter problem in the
skeleton pose and smooths out the joint movements in the frame positioned at the center of
selected images window. The output of proposed filtering strategy is shown in Figure 4.2.

Figure 4.4 (a) original skeleton, (b) scale and position normalized skeleton.

Scale and position Normalization of the pose

Monocular (2D or even 3D) pose estimations, as obtained through openpose, are scale
ambiguous [144, 146]. The information about depth/distance of the user from camera, or
pose output in true metric space, can help to determine the size of hand bounding box, or to
eliminate undesired influence of variable user distance from our gesture detection algorithm.
One approach to obtain approximate 2D pose in metric space is to map/calibrate the height of
predicted skeleton from image pixels domain to distance of the person from camera provided
height of the user in metric space is known. Another approach to acquire a calibrated
skeleton output (specifically 3D), given height of the user in true metric space, is through
design of a predictor (e.g., a deep network) that returns height-normalized skeletons, as
presented in [144]. We present a novel learning-based strategy to approximate user distance
from a monocular camera and to estimate the scale-factor in 2D pose predictions obtained



48 Dynamic Gestures Detection

through openpose, without an obligation of known user height. Figure 4.4 presents a simple
illustration of our desired goal of scale and position normalization of the obtained pose.

Figure 4.5 Manual features extraction/pose augmentation from upper body skeleton for scale-
normalization is presented. In the left image, we show 8 upper-body joint coordinates (red
circles), vectors joining these joints (black lines) and angles between these vectors (shown
in green). From all non-zero upper-body coordinates, we compute a line of best fit (in blue)
which can clearly be seen in the left image. In the right, we show all the augmented vectors
(in purple) between unique pairs of all upper-body joints. The angles between augmented
vectors and the line of best fit are also computed which are not visible in this image. The
reference neck depth coordinate (blue circle), obtained through Kinect V2 depth map, is also
shown in the right figure against which the 97 components augmented pose vector is mapped
to estimate approximate depth of the person.

Our gestures detection work is based on 8 upper-body joint 2D coordinates as shown
in Fig. 4.5, denoted as p(i)(xi,yi), i = 0 . . .7 (i = 0 corresponds to the Neck joint, which is
considered as a root node) where xi and yi are image coordinates of skeletal joint i. The
proposed concept of estimating user depth from the selected upper-body coordinates is to
exploit a RGB-D sensor dataset, devise a neural network and learn its parameters which
maps information from 8 upper-body skeleton coordinates to the ground-truth depth of Neck
joint. Inspired by the work in [84], which demonstrated that augmenting pose coordinates
may improve performance, we develop a 97 components pose vector xn from 8 upper-body
joint coordinates.

To eliminate the influence of user position in image, the coordinates of Neck joint are
subtracted from rest of the vectors p(i). Non-zero coordinates of the joints are exploited to
obtain a line of best fit through least square method. In addition to 7 vectors from anatomically
connected joints, 21 vectors between unique pairs of all upper-body coordinates are also
obtained while their abscissas and ordinates are saved. The lengths of individual augmented
vectors are also computed. Then 6 angles formed by all triplets of anatomically connected
joints (in image plane) are calculated. 28 more angles are estimated between 28 (anatomically
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connected plus augmented) vectors and the previously obtained line of best fit. The resultant
97 components augmented pose vector include 42 elements from abscissas and ordinates
of the augmented vectors, their 21 estimated lengths and 34 computed angles concatenated
together.

To obtain the ground-truth depth/distance information of Neck joint, we utilize opensign
static hand gestures dataset [181]. This dataset include recordings of RGB and depth image
streams from Kinect V2 acquired at approximate frame rate of 20 fps for 10 static hand
gestures. Each gesture is recorded for around 12 seconds by 10 volunteers each, with
both hands at three distances of 5, 3, and 1.5 meters away from the sensor. We execute
our augmented pose extractor on all video files in the dataset and save corresponding
raw distances of Neck joint against each 97 component feature vector. A 9 layers neural
network fn is then realized that optimizes parameters θn given an augmented pose vector xn

and ground-truth dn to regress approximate distance value d̃n with mean squared error of
8.34×10−4. This relationship can be formalized by the following equation:

d̃n = fn(xn,dn;θn) (4.3)

Thus the estimated 2D pose from openpose is scale-normalized by multiplying with a
computed scale-factor which is obtained by dividing the predicted distance d̃n, given the
augmented pose xn for each frame, with an empirical integer value without a need of depth
sensor or known user height. Our scale normalization strategy may not be able to estimate
actual distance of a person in true metric space from camera in the absence of known user
height specifically in extreme cases (e.g., an extra-ordinary tall user or a child). However, the
intended operation of our proposed strategy in this work i.e., to scale-normalize 2D skeleton
for gesture detection, functions properly for all users irrespective of their heights.

4.3.2 Focus on Hands Module

We focus the attention of our dynamic gesture detector on hands in two steps. First step is
to localize hands in the scene and second step is to determine size of the bounding box of
detected hands and cropping the hand images.

Hand Localization

One possibility to localize hands in the image is to utilize object detectors like [182–184],
trained on hand images as presented in [185]. Exploitation of such strategies also brings
along problems of distinguishing left and right hands as their detection is performed in a
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local manner thus lack contextual information. This problem has also been addressed in
[185] by training the detector with two classes "hands" and "head". This extra information
about the location of head in the scene aids in distinguishing left and right hands. However,
such a solution can also fail to solve this ambiguity, without extra information known, if the
arms are crossed.

To avoid these complexities, we chose to employ openpose for hand localization in the
scene. We perform this operation in two ways. The preferred way is to exploit the hand
key-points detection of openpose for hand localization. The library outputs 21 key-points
for a single hand image. From our observations, the extraction of hand key-points from
openpose is more susceptible to the problems of jitter and misdetections of the keypoints
than in the skeleton extraction, specifically on low resolution images/videos as in Chalearn
2016 Looking at People isolated gesture recognition dataset. Consequently, we apply the
same filtering operations driven by equations 4.1 and 4.2 described in Section 4.3.1 on the
raw hand key-points obtained from openpose. Once the filtered hand key-points are obtained,
we estimate the mean of all non-zero coordinates as presented in the following equation:

pc(x,y) =
1

N∗

N∗

∑
i=1

pi(x,y) (4.4)

where pc(x,y) is the obtained hand center coordinates in the image, N∗ is the number of
non-zero hand key-points, while pi(x,y) are found (thus non-zero) hand key-points. This
hand localization method is precise and does not posses ambiguity in distinguishing left and
right hands. If, openpose fails to detect hand key-points at all, hand localization module
switch to the second method we have developed, similar to the one presented in [23]. The
second approach to localize hands operates by fitting a line between elbow and wrist joints
2D image coordinates similar to what has been presented in Section 3.2.2. This line is
extended by one-third of its length (empirical value) along the same direction towards hands.
The end point of the extended line is considered hand center coordinates. The inclination
angle of this line is also utilized to determine rotation of the bounding box, which we will
discuss in next section.

It has to be noted that opting to extract hand key-points through openpose is a computa-
tionally expensive approach. We optionally can skip this methodology in its entirety and may
adopt the second approach of exploiting only elbow and wrist joints (obtained by extracting
full body pose) if available computational power is limited (e.g., in laptops). In our case, we
run openpose on 1080×1440 sized videos with two Nvidia’s GeForce GTX 1080 desktop
GPUs and obtain around 10 frames per second with hand key-point extraction enabled. On a
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laptop with Nvidia’s GeForce GTX 1060 Max-Q GPU, we are able to obtain only about 3
frames per second with the same openpose configuration and input videos.

Figure 4.6 Illustration of augmented pose vector features for hands bounding boxes size
estimation.

Bounding-box Size Estimation

Once the hands are located in the image, it needs to be cropped at parts held by hands. To crop
input image pixels occupied by hands, we need to determine the size of hand(s) bounding
box(es). Since our gestures detection system relies only on RGB images in run-time, we
develop two additional neural networks which learn to estimate the size of hands bounding
boxes analogous to that described in Section 4.3.1, Equation 4.3. Following the approach
detailed for scale-normalization of the pose, we formulate 54 components augmented pose
vector separately for each hand as shown in Figure 4.6. These augmented pose vectors are
mapped against ground-truth hands raw depth values obtained from opensign dataset, through
two separate neural networks described by following two representations:

d̃l = fl(xl,dl;θl) (4.5)

d̃r = fr(xr,dr;θr) (4.6)

where fl and fr represent 9 layers neural networks that optimize parameters θl and θr given
augmented poses xl and xr for left and right hands respectively while ground-truth raw
depth values of left and right hands dl and dr are obtained from Kinect V2 to estimate
approximate depths d̃l and d̃r. Mean squared error for fl and fr are 4.50×10−4 and 6.83×
10−4 respectively. Thus our proposed system can detect size of hand bounding boxes
formulated from the estimated depths only from pure RGB images.
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4.4 Video Data Processing

Our proposed spatial attention module conceptually allow end-to-end training of the gestures.
However, we train our network in multiple stages to speed-up training process, the details
of which will be discussed in Section 4.6. This however, requires videos to be processed
step-by-step beforehand. This procedure is executed in four steps i.e, (1) 2D pose-estimation,
(2) features extraction, (3) label-wise sorting and zero-padding and (4) train-ready data
formulation. Prior 2D-pose estimation may be considered a compulsory step even if the
network is trained in an end-to-end fashion while other steps can be integrated into the
algorithm. 2D pose-estimation, skeleton filtering and scale-normalization has already been
explained in Section 4.3.1 while we explain rest of the steps in the following subsections.

4.4.1 Features Extraction

As described in Section 4.3, our main features of interest for gestures detection are pose and
hand images. The concept of augmented pose for scale-normalization has been detailed in
Section 4.3.1. For dynamic gestures detection, velocity and acceleration vectors from 8 upper-
body joints, which contain information about the dynamics of motion, are also appended
to the pose vector xn to form a new 129 components augmented pose xdyn. Inspired by
[84], joint velocities and accelerations are computed as first and second derivatives of scale-
normalized joint positions respectively:

δp(i)(t)≈ p(i)(t +1)−p(i)(t −1) (4.7)

δ
2p(i)(t)≈ p(i)(t +2)+p(i)(t −2)−2p(i)(t) (4.8)

The obtained velocity and acceleration values are normalized by the frame-rate at which
videos are recorded to scale the values with respect to time before being appended in the
augmented pose vector.

For every center frame of the selected window, scale-normalized augmented pose vectors
xdyn (as explained in 4.3.1) plus extracted left il and right ir hands cropped image vectors
respectively (as explained in Section 4.3.2) are appended in three individual arrays. Once
features from all frames of a video are extracted, these arrays are written in a .h5 file on the
disk.
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4.4.2 Label-wise Sorting and Zero-Padding

The videos in Chalearn 2016 Looking at People isolated gesture recognition are randomly
distributed. Once the features of interest are extracted and saved in .h5 files, we sort them
with respect to their labels. Meanwhile, it is natural to expect videos (frames sequences,
now features arrays) in the dataset to be of discrete frame lengths. Thus we propose to
symmetrically pad sequences with zeros, or trim longer ones in the same manner, to limit
their size across all gestures depending on their original length. The average video length in
this dataset is 32 frames while we fix the length of each sequence to 40 frames in our work.
If length of a sequence is less than 40, we pad zeros symmetrically in start and end of the
sequence. Alternatively, if the length is greater than 40, symmetric trimming of the sequence
is performed. Once the lengths of sequences are rectified (padded or trimmed), we append
all corresponding sequences of a gesture label into a single array and save it in another .h5
file on the disk. Therefore, at the end of this procedure, we will be left only with 249 .h5
files corresponding to 249 gestures in Chalearn 2016 Looking at People isolated gesture
recognition dataset.

Label-wise sorting operation, as presented in this section, is only necessary if we want to
train a network on selected gestures (as we will explain in Section 4.6). Otherwise, creating
only a ground-truth label array should suffice at this stage.

4.4.3 Train-Ready Data Formulation

To obtain train-ready data, arrays in all gestures .h5 files are concatenated and normalized
either (1) by scaling each feature between zero and one with respect to its range in the dataset
or (2) through standardization of each feature to zero mean and unit variance.. Meanwhile,
a ground-truth label array is composed by sequentially appending a shared array with the
number of elements and gesture class label corresponding to the .h5 file being processed.
Normalization of hand images is accomplished by performing element-wise division of
images with maximum pixel intensity value i.e., 255.

In this research, both methods are utilized and the respective use cases will be detailed in
Section 4.6. It has to be noted that if features are normalized to zero mean and unit variance,
Rectified Linear Unit (ReLU) activation function should be avoided in the immediate next
layer to the input and sigmoid activation should be preferred. Nevertheless, standardization
with zero mean and unit variance is a preferred choice as it handles the outliers in the dataset
properly.
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4.5 CNN-LSTM Model

In this section, we briefly describe the functionality of convolutional neural networks (CNNs)
followed by a concise description of long short-term memory (LSTM) networks. Later in
this section we present the details of our proposed CNN-LSTM for gesture recognition.

4.5.1 Convolutional Neural Networks

Convolutional neural networks have lately been successful in static image recognition prob-
lems such as MNIST, CIFAR and ImageNet large-scale visual recognition challenges (ILS-
VRC) [82] with the state-of-the-art results even surpassing human-level performance [186].
Contrary to the traditional feed-forward neural networks, convolutional methods are robust
against shift, scale and distortions in image classification problems due to their inherent prop-
erties of having local receptive fields, shared weights and spatial or temporal sub-sampling
[60].

Local receptive fields allow extraction of elementary visual features such as oriented
edges, end-points and corners from a small neighborhood of each element in the previous
layer through convolutions of fixed sized kernels. Shared weights ensure that a learned
elementary feature detector, which is important in a spatial location (x1,y1), is used to extract
similar features in another location (x2,y2) in an image. Units in a layer are grouped in planes
within which each of them shares the same set of weights. The set of outputs of the units
in such a plane is known as a feature map. The relative locations of detected features are
more important than their exact positions. Thus the spatial resolution of the feature maps are
reduced to curtail the precision with which the position of distinctive features are encoded.
This is achieved by sub-sampling the feature maps which is performed by local averaging or
max pooling of the layers hereby reducing sensitivity of the output to shifts or distortions. A
“bi-pyramid" is formed by successively alternating convolutional and sub-sampling layers
such that in each layer, number of feature maps are increased while their spatial resolution is
decreased. The feature maps in the later layers are then connected to fully-connected layers
followed by an output layer with neurons corresponding to the number of output classes and
a squashing activation function like sigmoid or softmax. The weights are learned through
back-propagation strategy in an “end-to-end" fashion.

4.5.2 Long Short-Term Memory Networks

A standard recurrent neural network (RNN) model the evolution of information in a given
input sequence x = (x1,x2, . . . ,xT ) by computing hidden vector sequence h = (h1,h2, . . . ,hT )
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where ht ∈ RN is the hidden state with N hidden units, and the output vector sequence
y = (y1,y2, . . . ,yT ) through the following recurrent equations [81, 90]:

ht = f (Wihxt +Whhht−1 +bh)

yt = g(Whoht +bo)
(4.9)

where the terms W denote the weight matrices (e.g., Wih connects inputs to the current hidden
layers, while Whh represents the connections between previous and the current hidden layers).
The terms b denote bias vectors (e.g., bh is the hidden bias vector) while f and g are element-
wise non-linear activation functions, such as sigmoid or hyperbolic tangent. Lately, RNNs
have demonstrated success in speech recognition [187], language modeling [188] and text
generation [189] tasks. However, it can be difficult to train ordinary RNNs for problems that
require learning of long-term temporal dynamics likely due to the vanishing and exploding
gradient problems [81, 90]. These complications emerge while propagating gradients down
through multiple layers of the recurrent network corresponding to the sequence length.

LSTMs [81] on the contrary, exploit memory cells incorporating different gates that en-
able the network to maintain, forget or update the hidden states given new context information
through learned weights. The hidden layer of LSTM is computed as follows [81, 90]:

it = σ(Wxixt +Whiht−1 +bi)

ft = σ(Wx f xt +Wh f ht−1 +b f )

ot = σ(Wxoxt +Whoht−1 +bo)

gt = tanh(Wxcxt +Whcht−1 +bc)

ct = ft ⊙ ct−1 + it ⊙gt

ht = ot ⊙ tanh(ct)

(4.10)

where σ represents logistic sigmoid function, operator ⊙ denotes Hadamard product, it ∈RN

is input gate, ft ∈RN is forget gate, ot ∈RN is output gate, gt ∈RN is input modulation gate,
ct ∈ RN is memory cell and ht ∈ RN is a hidden unit. These additional components enables
LSTM to learn complex and long-term temporal dependencies in a wide variety of sequence
learning tasks. Improved performance has been reported [90] by stacking LSTM blocks such
that the hidden state h(l−1)

t of the LSTM in layer l −1 is given input to the LSTM in layer l.

4.5.3 CNN-LSTM for Gesture Recognition

As mentioned in Section 4.1, a CNN-LSTM network is devised to model spatio-temporal
dependencies inspired by [90], for the recognition/classification of dynamic gestures. An
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overall representation of the proposed network is illustrated in Figure 4.7. As explained in
Section 4.3, our spatial attention module extracts augmented pose and hands of the user.
This multi-modal input is fed into the proposed CNN-LSTM network which functions as a
many-to-one classifier. The weights of time-distributed fully-connected layer are unique for
each time-step. The hidden and memory (cell) states of the LSTM blocks are aggregated in
time step-by-step until the last input frame is processed. The output of last LSTM block is
then sent to a fully-connected dense layer followed by a softmax layer to provide gestures
class labels probabilities.
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Figure 4.7 Illustration of the proposed CNN-LSTM network for dynamic gestures recognition

The hand images are first passed through CNN blocks which actually are Inception V3
networks pre-trained on ImageNet dataset, and fine-tuned on opensign static hand gestures
dataset [23]. Prior fine-tuning of Inception V3 on augmented backgrounds hand gestures
dataset allows efficient and robust extraction of distinctive hands features. Image embeddings
of size 1024 elements are provided as output by the CNN-block. Multiple modalities i.e.,
129-components standardized augmented pose and image embeddings of 1024 elements for
each hand, are fused in intermediate layers of the network.
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Dropout strategy [190] is employed between successive layers to prevent over-fitting and
improved generalization of the network. Moreover, batch-normalization technique [191] is
exploited that accelerates training of the deep networks.

4.6 Training

The proposed network is trained on a computer with Intel© Core i7-6800K (3.4 GHz) CPU,
dual Nvidia GeForce GTX 1080 GPUs and 64 GB system memory. Rest of the details are
explained in the following subsections.

4.6.1 Multi-Stage Training

A multi-stage training strategy is proposed that may facilitate to train multi-modal networks
faster on large-scale video activity detection datasets on systems with limited GPU memory.
With an assumption that the CNN blocks are pre-trained and their weights are no longer
expected to adapt to the input frame sequence, the network training can be performed
separately in two stages.

First, hands images are passed only through the CNN blocks and embeddings arrays are
stored on the disk. Then augmented pose and hand image embeddings are fed into rest of the
network, which performs early concatenation of the inputs before passing it to the stacked
LSTM blocks. This two stage strategy requires less GPU memory in each step, thus a larger
batch-size can be utilized for quicker processing of the data. This strategy however, does not
allow end-to-end training of our network.

4.6.2 Training Chalearn Dataset

As mentioned in Section 4.2.1, Chalearn 2016 isolated gestures recognition dataset has
35,876 videos in the provided train set while only top 47 gesture labels (arranged with respect
to number of samples in descending order) contain 34% of all videos in this set. Average
number of samples in top 47 gestures is 260 contrary to 144 for all 249 labels. Thus, 12210
videos of 47 gestures are utilized to pre-train our CNN-LSTM with a validation split of 0.2.
The learned parameters of this network are exploited to initialize weights for model training
to classify all 249 gestures with 35,930 train samples and mutually exclusive set of 6000
validation videos. Adam optimizer [192] is exploited for training our CNN-LSTM network.
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Figure 4.8 Illustration of the training curves for 47 top gestures from Chalearn 2016 isolated
gestures recognition dataset. The obtained model is utilized for weights initialization of the
network for classification of all 249 gestures.

Figure 4.9 Training curves of Praxis gesture dataset.
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4.6.3 Training Praxis Dataset

Training our CNN-LSTM network on Praxis cognitive assessment dataset is rather a straight
forward procedure. As mentioned in Section 4.2.2, this dataset has 1247 videos in total
for 14 correctly performed dynamic gestures. The samples are augmented by applying
horizontal mirror operation (1) to double the sample size and (2) to subdue the influence of
dominant hand ambiguity. 501 videos are randomly extracted as test set while 1993 samples
are utilized for training with a validation split of 0.2. Taking the small size of this dataset
into consideration, hyper-parameters of the network are adapted to avoid over-fitting.

Figure 4.10 Training curves of the proposed CNN-LSTM network for all 249 gestures of
Chalearn 2016 isolated gestures recognition dataset. The network is trained in four phases
which can be distinguished by the vertical lines in the plot.

4.7 Results

For Chalearn 2016 isolated gestures recognition dataset, the proposed network is initially
trained on 47 gestures with a low learning rate of 10−5. After approximately 66,000 itera-
tions, validation accuracy of 95.45% is obtained as illustrated in the training curves plot in
Figure 4.8. The learned parameters for 47 gestures are employed to initialize weights for
complete data training with 35,930 train videos and 6000 validation samples for 249 gestures
as detailed in Section 4.2.1. The network is trained in four phases. Weights initialization
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is performed, inspired by transfer learning concept of deep networks, by replacing the
classification layer (with softmax activation function) by the same with output number of
neurons corresponding to the number of class labels in the dataset. In our case, we replace
the softmax layer in the trained network for 47 gestures plus the fully-connected (FC) layer
immediately preceding it. The proposed model is trained for 249 gestures classes with a
learning rate of 1×10−3 and a decay value of 1×10−3 by Adam optimizer.

Figure 4.11 Illustration of the confusion matrix/heat-map of the proposed model evaluated
on test set of Chalearn 2016 isolated gestures recognition dataset. It is evident that most
samples in the test set are recognized with high accuracy for all 249 gestures (diagonal
entries, 86.75% overall).
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With the weights initialized, the early iterations are performed with all layers of the
network locked except the newly added FC and softmax layers. As the number of epochs
increases, we successively unlock the network layers from the bottom (deep layers). In the
second phase, network layers until the last LSTM block are unlocked. All LSTM blocks and
consequently complete model is unlocked in the third and fourth phase of training respectively.
By approximately 2700 epochs, our CNN-LSTM achieves 86.69% validation accuracy for
all 249 gestures and 86.75% test accuracy on a set of 6000 test samples, which are the state-
of-the-art performances on this dataset. The prediction time for each video sample is 57.17
ms excluding pre-processing of the video frames, thus continuous online dynamic gesture
detection for a human-robot interaction experiment is expected to be real-time. The training
curve of the complete model is shown in Figure 4.10 while the confusion matrix/heat-map
with evaluations on test set is shown in Figure 4.11. Our results are compared with the
reported state-of-the-art in Table 4.1.

System Valid % Test %
Mazhar et al. (ours) 86.69 86.75

FOANet [105] 80.96 82.07
Miao et al. [100] (ASU) 64.40 67.71

SYSU_IEEE 59.70 67.02
Lostoy 62.02 65.97

Wang et al. [193] (AMRL) 60.81 65.59
Table 4.1 Comparison of the reported results with ours on Chalearn 2016 isolated gestures
recognition dataset. The challenge results are published in [1]. Order of the entries is set
with respect to the test results.

Inspecting the training curves, we observe that the network is progressing towards slight
over-fitting in the fourth phase when all network layers are unlocked. Specifically the first
time-distributed FC layer is considered the culprit for this phenomenon. Although, we
already have a dropout layer immediately after this layer with dropout rate equaling 0.85,
we skip to further dive deeper to rectify this. However, it is assumed that substitution of
this layer with the strategy of pose-driven temporal attention presented in [17] or with the
adaptive hidden layer proposed in [194], may help to reduce this undesirable phenomenon
and ultimately may improve results further.

For Praxis dataset, the optimizer and values of learning rate and decay, are same as that
for Chalearn dataset. The hyper-parameters including number of neurons in FC layers plus
hidden and cell states of LSTM blocks are (reduced) adapted to avoid over-fitting. The model
has obtained 99.6% test accuracy on 501 samples.
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Figure 4.12 Illustration of the confusion matrix for Praxis gestures dataset evaluated on 501
(original and mirrored) test samples. The diagonal values represents number/contribution
of videos of the corresponding class in the dataset. Accuracy values for individual gesture
labels are displayed on the bottom row and the last column.

The training curves of this dataset are presented in Figure 4.9 while the confusion
matrix for test data is shown in Figure 4.12. Results comparison on this dataset with the
state-of-the-art is shown in Table 4.2.
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System Accuracy % (dynamic gestures)
Mazhar et al. (ours) 99.60

Negin et al. [2] 76.61
Table 4.2 Comparison of reported dynamic gestures detection results on Praxis gestures
dataset. The author in [2] also achieved best results with a CNN-LSTM network.

4.8 Conclusion

The proposed strategy to recognize dynamic gestures provides state-of-the-art results on
large-scale Chalearn 2016 isolated gestures recognition dataset and a small Praxis gesture
dataset. Our spatial attention mechanism, which focuses on upper-body pose for large-scale
body movements of the limbs plus on hand images for subtle hand/fingers movements has
out-scored the existing approaches on the datasets which utilize full image frames or only
single modality like pose or hands. The parameters that estimate the scale-factor of user and
the size of bounding boxes of his/her hands are learned from a static hand gestures dataset
recorded with Kinect V2. This enables to exploit only RGB images for gestures recognition
tasks thus the proposed strategy can be implemented with systems that only contains single
RGB cameras.

The presented weight initialization strategy facilitated parameters optimization for all 249
gestures when the number of samples among the classes varied substantially in the dataset.
Class recognition is performed on isolated gestures videos executed by a single individual
in the scene. However, we plan to extend this work on continuous gestures recognition to
complement our previous work on human-robot interaction which worked through static
hand gestures recognition. This can be achieved in one way by developing a binary motion
detector to detect start and end instances of the gestures. Although a multi-stage training
strategy is presented, it is desired to develop an end-to-end training approach for potential
online learning of new gestures in the system.





Chapter 5

3D Human Pose Estimation

Optical skeleton motion capture has been extremely beneficial in applications such as charac-
ter animations for movies and games, sports, biomechanics and medicine. Lately, marker-less
motion capture methods are explored by the computer-vision community to overcome usab-
ility constraints of the commercial systems. Introduction of depth cameras like Microsoft
Kinect, brought in novel real-time full-body pose estimation strategies for applications
like motion guided game character control, self immersion in virtual reality and human-
computer/robot interaction.

In this chapter, a hybrid method for 3D human pose estimation is proposed, which
minimizes the distance between joint coordinates obtained from a discriminative 2D pose
extractor, and virtual 2D camera projection of a 3D kinematic model of a human-body,
through optimization of an objective function.

Figure 5.1 An illustration of our proposed 3D pose estimation strategy in operation.
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5.1 Our Contributions

• A novel strategy to estimate 3D human pose from a monocular camera is proposed.

• Joint angles of a 3D human kinematic model are optimized such that its 2D projection
from a virtual camera matches with joint coordinates on image plane obtained from a
discriminative 2D pose estimator i.e., openpose.

• Our pose estimation module is integrated with openpose through nanomsg socket
library which allows online 3D human pose estimation.

• The proposed system is also integrated with a robot simulator V-REP for visualization
and interaction experiments.

The proposed strategy to estimate 3D human pose from a monocular camera is described
in the following sections.

Joints
X Y Z

min max min max min max
Trunk -0.3491 0.3491 -0.1745 0.3491 -1.5708 1.5708
Neck -1.0472 1.0472 -0.1745 0.7854 - -
LS -2.3562 2.3562 0.0 2.3562 -2.3562 0.7854
LE 0.0 1.5708 - - - -
RS -2.3562 2.3562 0.0 2.3562 -0.7854 2.3562
RE 0.0 1.5708 - - - -
LH -1.0472 1.0472 0.0 2.7925 - -
LK - - 0.0 2.3562 - -
RH -1.0472 1.0472 0.0 1.5708 - -
RK - - 0.0 2.3562 - -

Table 5.1 Joint limits in radians along X, Y and Z axes. Longer joint names are abbreviated
such as LS for Left Shoulder. Same applies for Elbow, Hip and Knee joints.

5.2 Human Kinematic Model

A human kinematic model is formulated which possesses 10 body parts with 14 joints key-
points (with distinct degrees of freedom) while the overall posture/orientation of the model
is determined by a set of 19 angles vector denoted by m. The names and assumed limits
of these joints are presented in Table 5.1. 3D positions of these joints are represented by a
vector p3D, which can be deduced through forward kinematics computations given lengths of
the bones/model-parts and joints angles.
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5.3 2D Projection of Human Model

As stated in Section 5.1, the general scheme of the proposed method is to estimate a set of
angles m that represents minimum discrepancy between joint coordinates obtained from
openpose and 2D projection of the kinematic model from a virtual camera through the
proposed objective function.

To obtain p3D, we exploit a rigid-body dynamics library RBDyn1 which performs forward
kinematics operations given the bone lengths and current state of vector m. The key-points
in 3D are then projected onto a virtual image plane by the following camera projection
equations:

p2D = Cp3D

C = K[R|t]

K =

 fx s px

0 fy py

0 0 1

 (5.1)

where C is camera matrix, which can be decomposed into camera intrinsic and extrinsic
parameters matrices K and [R|t] respectively and p2D is a 14 points vector representing
2D projection of human kinematic model 3D key-points (p3D) from a virtual camera on its
image plane. The intrinsic parameters from the camera which is used to acquire images
of the user can be substituted/replicated in the K matrix. Extrinsic parameters R and t are
manually tuned such that the 2D obtained projection of human model lies upright and the
virtual camera is located at the neck level of the human model. Moreover the distance of
the virtual camera is set such that the 2D projection of the model lies well inside the virtual
image frame even when all the limbs are stretched to their extremes.

5.4 Scale and Position Normalization of the Skeleton

It is imperative to normalize the obtained 2D skeleton from openpose to subdue the influence
of scale (distance) and position of the user in the image. Position normalization can be
performed by subtracting the coordinates of root joint (Hip Center in this case) from rest
of the coordinates. Openpose provides a 25 joints output with BODY_25 model. Facial
coordinates i.e., ears and eyes plus feet joint coordinates are ignored thus only 15 jointsx 2D
coordinates, stored in a vector po, are selected in this work. As mentioned earlier, p2D is a 14
points vector with Hip Center point absent. Thus a line is drawn between Left Hip and Right

1https://github.com/jrl-umi3218/RBDyn.git

https://github.com/jrl-umi3218/RBDyn.git
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Hip joints of p2D and mid-point of this line is extracted, which is assumed as Hip Center
point (root joint). Accordingly, position normalization of po is performed as stated, and root
joint coordinates of the model projection p2D are added to the normalized po key-points.
This super-impose the obtained skeleton over p2D anchored at their Hip Centers.

2D coordinates obtained 
from openpose po

2D projection of human
kinematic model p2D

Position normalization of 
po is performed by 

subtracting the coordinates 
of Hip-Center from rest of 

the joint coordinates

Position normalized po is 
superimposed on p2D by 
adding p2D Hip-Center

coordinates in all 
coordinates of position 

normalized po

Hip-Center coordinates of p2D

Hip-Center to 
Neck distance 

(trunk size) of p2D

Calculation of
trunks ratio

Hip-Center to Neck
distance (trunk size) of 

super-imposed po

Scale normalization of super-imposed 
po is performed by dividing all its 

coordinate with estimated trunks ratio
𝐩𝐧𝐨

Scale normalization

Position normalization

Figure 5.2 Illustration of position & scale-normalization procedure.

For scale-normalization, distance between Hip Centers and Neck coordinates (approx-
imate trunks sizes) of both skeletons (p2D and position normalized po) are estimated. The
coordinates of position normalized po are multiplied with a scale-factor, which is obtained by
calculating the ratio of estimated trunks sizes to get position and scale normalized skeleton
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po
n. This however enforces a strong assumption that the user always stays upright while his

pose is being estimated which nevertheless can be true for many human-robot interaction
tasks. The overall scale and position normalization procedure is shown in Figure 5.2.

5.5 Formulation of Objective Function

The objective function that our optimization algorithm minimizes is given as follows:

m∗ := argmin
m

E(m)

E(m) =

∥∥∥∥C

[
0 0
0 1

]
FK(m)− (u,v)T

∥∥∥∥
2

(5.2)

where operator FK represents forward kinematics operation which returns rotation and posi-
tion output of the body links. However, only 3D position coordinates in the return values
are of our interest, so the rotation parameters are zeroed. (u,v) represents position and
scale normalized 2D joint coordinates po

n as described in the previous section. Our optim-
ization function searches for optimal model parameters m∗ that minimizes the discrepancy
E(m) between 2D projections of the human kinematic model p2D, and normalized 2D joint
coordinates obtained from openpose po

n.

5.6 Experimental Setup

The proposed pose-estimation module is integrated with openpose in a configuration of
inter-process distributed network through a socket library nanomsg. This allows online
frame-by-frame pose-estimation which can be extended to work in real-time for human-robot
interaction tasks. Our experimental setup is also connected to a robotic simulator i.e., V-REP
via its remote API. Thus the 3D model can be visualized as it acquires new poses in real-time
from optimized parameters.

5.7 Results

As soon as openpose extracts 2D human pose po, it transfers pose array to the proposed
pose estimation module. Each optimization cycle that estimates model parameters m∗ takes
approximately 14 ms of computational time to converge for each input po

n on Intel© Core
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i7-7700HQ CPU. Qualitative analysis of the output reveals that the proposed pose estimation
approach delivers promising results.

Figure 5.3 Illustrations of 3D pose estimations with movements mainly on upper-limbs. The
skeletons in the second row with green lines (red dots) are 2D projections of the kinematic
human model, while yellow dots in the same images are position and scale normalized 2D
pose obtained from openpose. The optimization problem solves to minimize the discrepancy
between these two skeletons to estimate 3D human pose.

A pose-initialization step may be required to initiate convergence. The estimator reaches
its minimum within 5 iterations on a gesture with arms stretched horizontally. However, due
to total lack of depth information either from the sensor or through learning from 3D pose
datasets, the proposed pose-estimator occasionally falls into local minima specially when
limbs move in sagittal plane. This phenomenon however is less evident in upper-limbs while
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lower limbs are affected largely by this issue. Figure 5.3 illustrates the results of our pose
estimation strategy with movements mainly on upper-limbs.

Figure 5.4 3D pose estimations with full-body articulations. It can be seen that proposed
strategy fails to solve depth ambiguity for (lower) limbs movements in saggital plane. Also
the optimization falls into local minima in some cases as shown.

Since depth ambiguity in the lower-limbs is more noticeable, this can corrupt proper
estimation of upper-limbs pose as well if a combined objective function is used. Therefore 3
individual modes of operation are devised in our work with individual objective functions
(1) upper-body pose estimation, (2) lower-body pose estimation and (3) full-body pose-
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estimation. This helps to segregate the estimation tasks hence the problems can be dealt
individually to improve results.

5.8 Conclusion

The proposed strategy for 3D human pose estimation from a monocular camera demonstrate
promising results. It is suspected that the errors related to lower-limb pose estimation are due
to (1) proposed scale-normalization strategy based on trunk sizes ratio and (2) lack of learned
depth perception. A learning based method as described in Section 4.4 can be employed
to address both of these issues, however these potential solutions are not implemented to
compare results with the strategy we presented in this chapter. Moreover, quantitative analysis
of the results with a ground-truth pose from systems like MoCap is not performed and is
intended to be done in the future work.



Chapter 6

Discussion and Conclusion

In this thesis, we explored deep learning solutions for vision-based human gestures detection
problem intended for human-robot interaction scenarios. We proposed novel solutions to
detect static hand gestures robustly as well as to recognize dynamic gestures with the state-
of-the-art results. Moreover, the problem of 3D human pose estimation from monocular
cameras is also addressed in this thesis.

Achievements

We started with static hand gestures recognition problem. Kinect V2 was opted as the main
sensor for static hand gestures problem. Initially, a simple CNN architecture was designed
to recognize four static hand gestures. One of the novelties in this part of our research i.e.,
background substitution, actually originated from this early design of our detector. Previously,
hands were segmented with the help of Kinect V2 depth map and hand image background
were replaced with gray shades. Moreover, the gestures were performed only by a single user.
Later in this work, we presented the idea of background substitution with random pattern
and indoor architecture images. Thus a new dataset was developed named opensign with
10 static hand gestures taken from American Sign Language performed by 10 volunteers.
However, such a method made gesture recognition a complex problem for a simple CNN
architecture. Thus, the concept of transfer learning was opted. We fine-tuned Inception V3
CNN, which is already trained on ImageNet, on background substituted hand images created
through our dataset opensign. We trained this network and obtained validation accuracy of
96.4% on 10 static hand gestures. Thus a robust background invariant static hand gestures
algorithm has been developed.

To extend our work on systems with monocular cameras, we subsequently focused on
strategies which rely only on pure RGB images. We delved deeper into dynamic gestures
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detection problem and proposed a spatial attention-based multi-modal CNN-LSTM strategy
which recognizes upper-body dynamic gestures from pure RGB inputs. Three separate neural
networks were developed and trained to estimate depth of user’s neck (for scale normalization
of the skeleton) as well as sizes of hands bounding boxes through position-normalized upper-
body 2D pose. These networks were trained on depth data obtained from our static hand
gestures dataset opensign. Once the pose is “position and scale normalized”, an augmented
pose vector is formalized with estimated velocity and acceleration parameters (in pixel
domain) from a window of input frames. Moreover, the spatial attention mechanism, takes
raw pose information to localize hands in the scene. Extracted hand locations combined with
the estimated size of bounding boxes, spatial attention module focuses on augmented pose
and hand cropped images for dynamic gestures detection. We trained our network with the
proposed attention strategy on Chalearn 2016 isolated gestures recognition dataset and ob-
tained the state-of-the-art performance with test accuracy equals to 86.75% outperforming all
reported results on this dataset. We also trained our network on Praxis cognitive assessment
dataset on correctly performed dynamic gestures and obtained the state-of-the-art results on
this dataset with 99.6% test accuracy.

Afterwards, we briefly explored the problem of 3D pose estimation from monocular
cameras in this research. A hybrid strategy is proposed that optimizes an objective function
to minimize the discrepancy between scale and position normalized 2D skeleton originally
obtained from openpose, and virtual 2D projection of a human kinematic model. Although,
the qualitative analysis of results from the proposed strategy demonstrated issues due to
complete lack of depth perception either from the sensor or learned from any 3D dataset, the
overall results were very promising.

To validate our (static) gestures detection algorithm, we developed an asynchronous
inter-process distributed system for a real-time integration of openpose, OpenPHRI and our
static hand gestures detection module. We mocked-up an industrial scenario and performed a
robotic experiment with a Kuka LWR 4+ arm. OpenPHRI was used to control the robotic
arm with embedded safety features complemented by the depth information obtained through
Kinect V2 exploited in our static hand gesture detector. Asynchronous integration of different
modules guaranteed real-time operation with overall frame-rate of 20 fps.

Limitations and Future Work

Our static hand gestures module has a limited vocabulary of gestures. Although we have
developed scale normalization and hand bounding boxes estimation strategy from pure RGB
images, it is yet to be implemented in our static hand gestures module. It also lacks the
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capability to model/detect transitional gestures which will be among the features we would
like to implement in the future.

The dynamic gesture detector we proposed, only classifies gestures performed by a single
person in the camera frame. However the proposed method can be extended to recognize
multi-person activities with fixed number of people expected to appear in the scene. In the
future work, we plan to develop a real-time dynamic gesture detector which will allow us
to integrate it into our proposed human-robot interaction framework shown in Figure 3.1.
Moreover, temporal-attention mechanism is planned to be developed and combined with our
spatial-attention strategy for more accurate results in dynamic gestures classification. An
end-to-end network training strategy will be opted in the future work.

In our 3D human pose estimation work, two technical issues were suspected to be the
reason of optimization falling in local minima, or inaccurate estimations which were: (1)
scale normalization strategy driven by the ratio between 2D (pixel) lengths of trunks and (2)
absence of depth perception from a specialized sensor or learned. The learning-based strategy
to perform scale normalization proposed in Section 4.4 appears more suitable to be used
instead of the one proposed in Section 5.4. This can also be extended to estimate approximate
depth of each skeletal joint. Thus its implementation in 3D pose estimation algorithm is
necessary before we quantify our results and expect it to work in real experiments. The
integration of our proposed human pose estimation strategy with V-REP allows human-robot
interaction simulations in a virtual environment. However accurate localization of user in the
scene is needed to be performed for such experiments in simulations.

Conclusion

We conclude this thesis by reiterating the significance of employing vision sensors in modern
robotic systems where close/physical human-robot collaboration is expected. The technolo-
gical development, specially in the domain of portable devices, allows manufacturers to equip
specialized and miniaturized vision sensors in modern robotic systems as well. Thus the
choice of sensors should not be limited to conventional RGB cameras or even to recent infra-
red based (or time-of-flight) depth sensors only, but it can also be extended to polydioptric
camera rigs as presented in [195]. However, we believe that core vision strategies should be
designed to work with monocular systems so as to work even at the time of crises i.e., in the
case of unexpected malfunctioning of specialized sensors. Moreover, learning-based methods
have demonstrated the state-of-the-art performances in the field of object detection, face
identification and in our case gestures recognition also. It is observed that humans are able to
approximate depth perception quite well even if they loose one of their eyes in an accident.
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Taking inspiration from human cognitive capabilities, it is imperative to complement the
vision algorithms with these (deep) learning-based methods for greater accuracy and for
tasks which were near impossible before the advent of these approaches.
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