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Abstract. This document surveys my research work about a framework of composable
coloured Petri nets. This framework is organised around a core model of coloured Petri nets
that can be extended with various features: control flow, synchronous communication, excep-
tions, threads, functions and time. Extensions are made in such a way that the underlying
model of coloured Petri net is preserved and the usual analysis tools and techniques can still
be used. However, specific verifications issues arise from the proposed approaches; we discuss
these issues and propose solutions to enable for efficient verification. An implementation of
the framework is also presented, as well as applications to the modelling and verification of
security protocols, and to the modelling and analysis of biological regulatory networks in the
context of developmental processes.

Résumé. Ce document synthétise mes travaux de recherche concernant une famille de
modèles de réseaux de Petri colorés composables. Ces modèles sont organisés autour d’une
base de réseaux de Petri colorés qui peut être étendue par diverses fonctionnalités : con-
trôle de flot, communications synchrones, exceptions, multi-tâches, fonctions et temps. Ces
extensions sont réalisées de telle sorte que le modèle sous-jacent de réseaux de Petri colorés
est préservé, en conséquence de quoi les techniques d’analyse et les outils habituels pour ce
formalisme restent utilisables. Cependant, avec les approches proposées, des questions spéci-
fiques apparaissent concernant la vérification ; nous discutons de ces questions et proposons
des solutions pour permettre la vérification efficace. Une implantation des modèles proposés
est présentée, de même que des applications à la modélisation et la vérification de protocoles
de sécurité, et à la modélisation et l’analyse de réseaux biologiques de signalisation dans le
contexte de processus développementaux.
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1 Introduction

Formal specifications are now widely used for modelling systems and reasoning about them. In
particular, automated analysis through model-checking [24] is a successful approach that involves
different activities:

– a model of the system to analyse is defined, expressed in an adequate formalism;
– the properties to be verified against the model are specified, usually as logic formulas;
– the verification phase, or model-checking, consists in automatically determining whether the

properties hold or not for the defined model.

When the desired properties do not hold, the process often has to be started again: either the
model is correct and a flaw in the real system has been found, in which case the modelling and
verification process is likely to be restarted after the system is corrected; or the model contains
errors or is not precise enough and has to be fixed before the analysis is started again. Even when
the desired properties hold, some more details may often need to be added to the model, different
scenarios may be modelled or variants of the properties may be checked to improve confidence
in the obtained results. Modelling and verification are thus generally parts of an incremental and
cyclic process, either during the design phases of a system (used for specification), or at a later
point when the system exists (used for certification).

Among the numerous formalisms available for modelling, we concentrate here onto Petri nets
which are widely known and used in a variety of domains. Petri nets themselves exist in many
variants: from the basic model of places/transitions nets, or P/T nets [87], many extensions have
been proposed. We consider here the coloured Petri nets [58] variant that allows to cope with high-
level data types. In the field of formal modelling and verification, coloured Petri nets are probably
the most used formalism, together with timed automata [4]; as shown by the incomplete and yet
very long list of industrial case studies from the web pages of cpn tools [34]. One of the possible
reasons for this success is that coloured Petri nets offer a set of modelling devices that makes them
easily applicable to a wide range of domains. In particular:

– like other Petri net models, coloured Petri nets naturally support the modelling of resources
consumption, production and sharing, access conflicts, concurrency and causal dependence,
locality, etc.;

– the concrete form of colours is a language; the richer it is, the easier the modelling task. In
particular, using a programming language for the colour domain makes it easy to model the
features from real-life examples, like computation involving complex data structures.

This results in a formalism offering a very good expressivity on two complementary aspects that
are linked to the essence of computing: control flow and data flow.

However, the weak point of Petri nets has been for a long time their lack of structuring features:
a Petri net is usually defined as a whole, not as a hierarchical system obtained by assembling smaller
blocks. This contrasts with the formalisms of the family of process algebras [9] that exactly address
the question of formalising compositionality: processes are composed at a syntactical level and the
behaviour of the compound is derived from the behaviour of the components, depending on the
operator that is used.

This lack has inspired the development of the Petri box calculus [11, 12] with the goal to fill
the gap between Petri nets and process algebras. The result is a family of Petri nets algebras
with full support for compositionally and a common approach to this aspect: a class of Petri nets
is considered and a special labelling is defined for it to provide all the information needed for
compositions; operators are then defined as transformations on Petri nets. The benefit from this
approach is that the result of a Petri net composition is still a regular Petri net (with labels) and as
such can be analysed using existing tools. Moreover, because it has been obtained in a controlled
way, some properties of a composed Petri net can be guaranteed by construction. Not only does
this relax from the need to verify these properties, but also they can be assumed and exploited to
improve further analyses.
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The research presented in this document follows these principles. The purpose is to define
coloured Petri net formalisms with support for various features needed in practical situations;
in particular: explicit control flow, synchronous and asynchronous communication, exception and
threading mechanisms, functions (allowing recursion), and time-related capabilities. All this is
provided inside the domain of coloured Petri nets, with no extension of this base model that would
forbid to use the existing tools.

Moreover, we are concerned with the question of usability more than with the question of
expressivity: our formalisms should be easy to use and well suited for the modelling task they
were chosen for. To achieve this goal, we do not try to work toward the definition of a thoroughly
versatile formalism with all the possible features included. Instead, we prefer to offer a flexible
and modular framework allowing to easily define a suitable formalism for each specific domain.
Building a language with all included is not a difficulty in itself (see [pom6] for quite a complete
example), but the complexity of such a formalism is likely to discourage modellers from learning
it. Moreover, modelling power is almost always contradicting efficient verification: in the domain
of Petri nets for example, the complexity of many analysis problems increases when more complex
variants of Petri nets are considered, or the problems may even become undecidable [43]. So, on
the one hand, we aim at proposing formalisms that are specific to a given usage or domain and,
on the other hand, we shall exploit this specificity to accelerate verification.

When a compromise has to be found between ease of modelling and speed of verification, we try
to consider the cyclic and incremental aspect of the modelling and verification process as described
above. Indeed, the amount of time spent in each cycle is composed of modelling time spent by
a human modeller, plus computation time spent by a program running on a computer. Both
matter and it is not worth restricting the modelling expressivity to speedup verification if this is
compensated for by a comparable modelling time penalty. Moreover, considering that computation
time is comparatively cheaper than human time, especially that of a highly-qualified modeller, it
may be worth considering the trade-off the other way round: to sacrifice some computation time
for a simpler, faster and less error-prone modelling phase. Part of the work presented hereby is
directed toward this question and dedicated to propose devices to improve modelling power while
providing methods to preserve verification speed, or at least to allow for reasonable efficiency.

Finally, to improve the suitability of formalisms, we shall consider hiding the Petri nets from the
modellers’ eyes and provide them with a syntax adapted to their domain and modelling problems.
Thus, Petri nets may be considered as the target domain for a compiler. This gives an opportunity
to really match the users’ needs, but also, this allows to limit the features introduced at the Petri
net level to primitive ones on the top of which the expected high-level features can be implemented.
Indeed, the modelling discipline and tedious steps to use these primitives correctly can be hidden
in the compilation process, as it is usual with most compiled programming languages.

1.1 Outlines

In the next section, we present the core of a framework of composable Petri nets. It consists in
coloured Petri nets that can be equipped with labellings and operations to support control flow and
synchronous communication. These two aspects are presented separately but they are compatible
and may be used together. Then, we discuss the specific verification issues related to the models
presented in the section. Finally, a survey of related works is provided.

In section 3 we present the snakes toolkit that implements the presented models. Then, in
subsection 3.3, we illustrate how easily a simple yet rich syntax can be translated into Petri nets
thanks to the operations defined previously.

Section 4 defines an extension to the framework to support exceptions and threads. The former is
provided in the context of a sequential variant of the formalism defined in subsection 2.3: considering
sequential processes is crucial to define a lightweight interrupt mechanism on the top of which a
fully-featured exception mechanism can be built. Then, this formalism is extended with multi-
threading to restore the possibility to model concurrent systems (in a shape that is widely used in
programming languages). A thread is here understood as a sequential process implemented as an
identified flow of tokens in a Petri net. Threads can be started dynamically and their termination
can be awaited for. We then show how threads can be used to model function calls. Introducing
exception is harmless with respect to verification, but this is not the case with threads. Indeed,
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adding thread identifiers increases the combinatorial explosion of the state space that may even
become infinite. We show in subsection 4.4 how a suitable state equivalence relation can be defined
and efficiently computed in order to tackle this issue. We end the section with a survey of related
works.

Section 5 presents various applications of the formalisms presented in the previous sections.
In subsection 5.1 we discuss how time-related features can be modelled by causality: the idea is
to implement clocks by counters of occurrences of a tick transition; like for threads, this has an
important impact on verification and we show how this can be addressed. Then, in subsection 5.2,
we apply the syntax introduced in subsection 3.3 to the modelling and verification of security
protocols. Finally, subsection 5.3 is a presentation of another application to the domain of bio-
informatics and, more precisely, to the modelling of regulatory networks used to analyse patterning
mechanisms in developmental processes. Each part of section 5 is provided with its own survey of
related works.

This document provides a uniformed version of various published research works. As a conse-
quence, some technical aspects have been simplified to streamline the presentation, but full details
may be found in the corresponding publications:

– section 2: [kp1,pom2,ps,dkk+,pom3,dkkp1,dkkp2,pom4,btkp3,pom6,kp5];
– section 3: [pom9,pom8,pom1];
– section 4: [kp2,kp3,kp4,pom6,kkpp1,kkpp3,kkpp2]
– subsection 5.1: [pom5,pom7,pom4,pom6,pdk,bdk+];
– subsection 5.2: [pom1,spr];
– subsection 5.3: [ckp1,ckp2].
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2 A framework of composable Petri nets

2.1 Preliminary definitions

We shall use the lambda notation to denote some functions. For instance λ x : x > 0 denotes
the function that takes an argument x and returns the Boolean value x > 0. Similarly, function
λ x, y :x > y computes whether x is greater that y. If f and g are two functions on disjoint domains
F and G, we define f∪g as the function on domain F ∪G such that (f∪g)|F = f and (f∪g)|G = g.

A multiset m over a domain D is a function m : D → N (natural numbers), where, for d ∈ D,
m(d) denotes the number of occurrences of d in the multiset m. The empty multiset is denoted by
∅ and is the constant function ∅ df= (λ x : 0). We shall denote multisets like sets with repetitions, for
instance m1

df= {1, 1, 2, 3} is a multiset and so is {d + 1 | d ∈ m1}. The latter, given in extension,
is denoted by {2, 2, 3, 4}. A multiset m over D may be naturally extended to any domain D′ ⊃ D
by defining m(d) df= 0 for all d ∈ D′ \D. If m1 and m2 are two multisets over the same domain D,
we define:

– m1 ≤ m2 iff m1(d) ≤ m2(d) for all d ∈ D;
– m1 +m2 is the multiset over D defined by (m1 +m2)(d) df= m1(d) +m2(d) for all d ∈ D;
– m1−m2 is the multiset over D defined by (m1−m2)(d) df= max(0,m1(d)−m2(d)) for all d ∈ D;
– for d ∈ D, we denote by d ∈ m1 the fact that m1(d) > 0.

2.2 Petri nets

A (coloured) Petri net involves values, variables and expressions. These objects are defined by a
colour domain that provides data values, variables, operators, a syntax for expressions, possibly
typing rules, etc. For instance, one may use integer arithmetic or Boolean logic as colour domains.
Usually, more elaborated colour domains are useful to ease modelling, in particular, one may con-
sider a functional programming language or the functional fragment (expressions) of an imperative
programming language. In most of this document, we consider an abstract colour domain with the
following elements:

– D is the set of data values; it may include in particular the Petri net black token •, integer
values, Boolean values True and False, and a special “undefined” value ⊥;

– V is the set of variables, usually denoted as single letters x, y, . . . , or as subscribed letters like
x1, yk, . . . ;

– E is the set of expressions, involving values, variables and appropriate operators. Let e ∈ E, we
denote by vars(e) the set of variables from V involved in e. Moreover, variables or values may
be considered as (simple) expressions, i.e., we assume that D ∪ V ⊂ E.

We make no assumption about the typing or syntactical correctness of values or expressions;
instead, we assume that any expression can be evaluated, possibly to ⊥ (undefined). More precisely,
a binding is a partial function β : V → D. Let e ∈ E and β be a binding, we denote by β(e) the
evaluation of e under β; if the domain of β does not include vars(e) then β(e) df= ⊥. The application
of a binding to evaluate an expression is naturally extended to sets and multisets of expressions.

For instance, if β df= {x 7→ 1, y 7→ 2}, we have β(x + y) = 3. With β
df= {x 7→ 1, y 7→ "2"},

depending on the colour domain, we may have β(x + y) = ⊥ (no coercion), or β(x + y) = "12"
(coercion of integer 1 to string "1"), or β(x+ y) = 3 (coercion of string "2" to integer 2), or even
other values as defined by the concrete colour domain.

Two expressions e1, e2 ∈ E are equivalent, which is denoted by e1 ≡ e2, iff for all possible
binding β we have β(e1) = β(e2). For instance, x+ 1, 1 + x and 2 + x− 1 are pairwise equivalent
expressions for the usual integer arithmetic.

Definition 1 (Petri nets). A Petri net is a tuple (S, T, `) where:

– S is the finite set of places;
– T , disjoint from S, is the finite set of transitions;
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– ` is a labelling function such that:
• for all s ∈ S, `(s) ⊆ D is the type of s, i.e., the set of values that s is allowed to carry,
• for all t ∈ T , `(t) ∈ E is the guard of t, i.e., a condition for its execution,
• for all (x, y) ∈ (S × T ) ∪ (T × S), `(x, y) is a multiset over E and defines the arc from x

toward y. ♦

As usual, Petri nets are depicted as graphs in which places are round nodes, transitions are
square nodes, and arcs are directed edges. See figure 1 for a Petri net represented in both textual
and graphical notations. Empty arcs, i.e., arcs such that `(x, y) = ∅, are not depicted. Moreover,
to alleviate pictures, we shall omit some annotations (see figure 1): {•} for place types or arc
annotations, curly brackets { } around multisets of expressions on arcs, True guards, and node
names that are not needed for explanations. Finally, two opposite arcs may be represented by a
single double-arrowed arc, which occurs between s1 and t in the lower part of figure 1.

N
s1

t

x > 0

{•}
s2{x}

{x− 1}

{•}
S

df
= {s1, s2}

T
df
= {t}

`
df
= {s1 7→ N, s2 7→ {•}, t 7→ x > 0, (s1, t) 7→ {x},

(s2, t) 7→ ∅, (t, s1) 7→ {x− 1}, (t, s2) 7→ {•}}

N
s1

t

x > 0 s2
x 7→ x− 1

Fig. 1. A simple Petri net, with both full (top) and simplified annotations (below).

For any place or transition x ∈ S ∪ T , we define •x df= {y ∈ S ∪ T | `(y, x) 6= ∅} and, similarly,
x•

df= {y ∈ S∪T | `(x, y) 6= ∅}. For instance, considering the Petri net of figure 1, we have •t = {s1},
t• = {s1, s2}, •s2 = {t} and s2• = ∅. Finally, two Petri nets (S1, T1, `1) and (S2, T2, `2) are disjoint
iff S1 ∩ S2 = T1 ∩ T2 = ∅.

Definition 2 (Markings and sequential semantics). Let N df= (S, T, `) be a Petri net.
A marking M of N is a function on S that maps each place s to a finite multiset over `(s)

representing the tokens held by s.
A transition t ∈ T is enabled at a marking M and a binding β, which is denoted by M [t, β〉,

iff the following conditions hold:

– M has enough tokens, i.e., for all s ∈ S, β(`(s, t)) ≤M(s);
– the guard is satisfied, i.e., β(`(t)) = True;
– place types are respected, i.e., for all s ∈ S, β(`(t, s)) is a multiset over `(s).

If t ∈ T is enabled at marking M and binding β, then t may fire and yield a marking M ′ defined
for all s ∈ S as M ′(s) df= M(s)− β(`(s, t)) + β(`(t, s)). This is denoted by M [t, β〉M ′.

The marking graph G of a Petri net marked with M is the smallest labelled graph such that:

– M is a node of G;
– if M ′ is a node of G and M ′[t, β〉M ′′ then M ′′ is also an node of G and there is an arc in G

from M ′ to M ′′ labelled by (t, β). ♦

It may be noted that this definition of marking graphs allows to add infinitely many arcs between
two markings. Indeed, if M [t, β〉, there might exist infinitely many other enabling bindings that
differ from β only on variables not involved in t. So, we consider only firings M [t, β〉 such that the
domain of β is vars(t) df= vars(`(t)) ∪

⋃
s∈S(vars(`(s, t)) ∪ vars(`(t, s))).

For example, let us consider again the Petri net of figure 1 and assume it is marked by M0
df=

{s0 7→ {2}, s2 7→ ∅}, its marking graph has three nodes as depicted in figure 2. Notice that from
marking M2, no binding can enable t because, either x 67→ 0 and then M2 has not enough tokens,
or x 7→ 0 and then both the guard x > 0 is not satisfied and the type of s1 is not respected (x− 1
evaluates to −1).
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M0 = {s0 7→ {2}, s1 7→ ∅}

M1 = {s0 7→ {1}, s1 7→ {•}}

M1 = {s0 7→ {0}, s1 7→ {•, •}}

t, {x 7→ 2}

t, {x 7→ 1}

Fig. 2. The marking graph of the Petri net of figure 1.

2.3 Control flow operations

To define control flow compositions of Petri nets, we extend them with node statuses. Let S be the
set of statuses, comprising:

– e, the status for entry places, i.e., those marked in an initial state of a Petri net;
– x, the status for exit places, i.e., those marked in a final state of a Petri net;
– i, the status for internal places, i.e., those marked in intermediary states of a Petri net;
– ε, the status of anonymous places, i.e., those with no distinguished status;
– arbitrary names, like count or var , for named places.

Anonymous and named places together are called data or buffer places, whereas entry, internal
and exit places together are called control flow places.

Definition 3 (Petri nets with control flow). A Petri net with control flow is a tuple (S, T, `, σ)
where:

– (S, T, `) is a Petri net;
– σ is a function S → S that provides a status for each place;
– every place s ∈ S with σ(s) ∈ {e, i, x} is such that `(s) = {•}. ♦

Statuses are depicted as labels, except for ε that is not depicted. Moreover, we denote by N e,
resp. N x, the set of entry, resp. exit, places of N .

Let N1 and N2 be two Petri nets with control flow, we consider four control flow operations:

– sequential composition N1 #N2 allows to execute N1 followed by N2;
– choice N1 �N2 allows to execute either N1 or N2;
– iteration N1 ~N2 allows to execute N1 repeatedly (including zero time), and then N2 once;
– parallel composition N1 ‖N2 allows to execute both N1 and N2 concurrently.

These operators are defined by two successive phases given below. The first one is a gluing
phase that combines operand nets; in order to provide a unique definition of this phase for all the
operators, we use the operator nets depicted in figure 3 to guide the gluing. These operator nets
are themselves Petri nets with control flow. The second phase is a named places merging that fuses
the places sharing the same named status.

Gluing phase. The intuition behind this phase is that each transition of the involved operator
net represents one of the operands of the composition. The places in the operator net enforce the
correct control flow between the transitions. In order to reproduce this control flow between the
composed Petri nets, we have to combine their control flow places in a way that corresponds to
what specified in the operator net. For instance, let us consider N1 #N2. The corresponding operator
net is N# and let us call si its internal place. si is marked when t#1 has fired and this marking allows
t#2 to fire. At the level of composed nets, this should correspond to the fact that N1 has finished
its execution and so is in a final marking where all its exit places are marked; at the same state,
we should also have N2 in its initial marking where all its entry places are marked. This can be
obtained by combining the exit places of N1 (the net that will replace •si) with the entry places
of N2 (the net that will replace si•) through a Cartesian product. From this example we can infer
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e

i

x

t#1

t#2

e

x

t�1 t�2

e

x

t~1

t~2

e e

x x

t
‖
1 t

‖
2

Fig. 3. Operators nets N#, N�, N~ and N‖ (left to right). All the transition guards are True and all the
depicted arcs are labelled by {•}.

N1
s1e

t1

s2x s3x

N2
s4e s5e

t2 t3

s6x s7x

N1 #N2
s1e

t1

t2 t3

s6x s7x

s2,4i s2,5i s3,4i s3,5i

Fig. 4. On the left: two Petri nets with control flow N1, N2. On the right: the result of the gluing phase
of the sequential composition N1 #N2. Place names are indicated inside places. Dotted lines indicate how
control flow places are paired by the Cartesian product during the gluing phase. Notice that, because no
named place is present, the right net is exactly N1 #N2.
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the gluing algorithm that consider in turn each place s of the operator net and combine the exit
places from the operand nets corresponding to •s with the entry places from the operand nets
corresponding to s•. An example is provided in figure 4.

Let � ∈ {#,�,~, ‖} be a control flow operator and N�
df= (S�, T�, `�) the corresponding operator

net. Let N1
df= (S1, T1, `1, σ1) marked by M1 and N2

df= (S2, T2, `2, σ2) marked by M2 be two Petri
nets with control flow such that N1, N2 and N� are pairwise disjoint. In practice, nodes from N1

and N2 may be automatically renamed to enforce this condition. To simplify the definition, for
1 ≤ i ≤ 2, we shall denote Ni by Nt�i and similarly for Si, Ti, `i and Mi.

We define the gluing of N1 and N2 according to � as a Petri net with control flow (S, T, `, σ)
such that:

– for 1 ≤ i ≤ 2, for all t ∈ Ti, we also have t ∈ T with `(t) df= `i(t);
– for 1 ≤ i ≤ 2, for all s ∈ Si such that σi(s) /∈ {e, x}, we also have s ∈ S with `(s) df= `i(s),
σ(s) df= σi(s) and M(s) df= Mi(s). Moreover, for all t ∈ Ti, we have `(s, t) df= `i(s, t) and
`(t, s) df= `i(t, s);

– for every s� ∈ S� with s�
• = {u1, · · · , un} and •s�

df= {v1, · · · , vm}, for every w
df= (e1, · · · , en,

x1, · · · , xm) ∈ N e
u1
× · · · ×N e

un ×N
x
v1 × · · · ×N

x
vm , there is a place sw in S such that:

• `(sw) df= `�(s�),

• σ(sw) df= σ�(s�),

• M(sw) df=
∑

1≤i≤nMui(ei) +
∑

1≤j≤mMvj (xj),

• for 1 ≤ i ≤ n, for all t ∈ Tui , `(t, sw) df= `ui(t, ei),

• for 1 ≤ j ≤ m, for all t ∈ Tvj , `(sw, t)
df= `vj (xj , t);

– there is no other node nor arc.

Merging phase. Let N df= (S, T, `, σ) be a Petri net with control flow marked by M . The merging
phase simply consists in merging together the places that have all the same named status (i.e., not
a control flow or anonymous status). This is illustrated in figure 5. This merging resulting in the
Petri net with control flow N ′

df= (S′, T ′, `′, σ′) marked by M ′ such that:

– T ′
df= T and, for all t ∈ T , `′(t) df= `(t);

– for all s ∈ S such that σ(s) ∈ {e, i, x, ε}, s is also a place in S′ with `′(s) df= `(s), σ′(s) df= σ(s)
and M ′(s) df= M(s);

– for all ς ∈ S \ {e, x, i, ε}, let Sς
df= {s ∈ S | σ(s) = ς}, if Sς 6= ∅, we add a place sς to S′

with `′(sς)
df=
⋃
s∈Sς `(s), σ

′(sς) = ς and M ′(sς)
df=
∑
s∈Sς M(s); moreover, for all t ∈ T ,

`′(sς , t)
df=
∑
s∈Sς `(s, t) and `′(t, sς)

df=
∑
s∈Sς `(t, s);

– there is no other node nor arc.

e

x x

i i i i

•buffer

•buffer other

• ε

e

x x

i i i i••buffer

other

• ε

Fig. 5. On the left, a Petri net with control flow before the merging phase. On the right, named places have
been merged.
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Definition 4 (Control flow compositions). Let � ∈ {#,�,~, ‖} be a control flow operator and N�
the corresponding operator net. Let N1 marked by M1 and N2 marked by M2 be two Petri nets with
control flow such that N1, N2 and N� are pairwise disjoint. Then, N1 �N2 is defined as the Petri
net with control flow resulting from the gluing phase followed by the merging phase. ♦

Named places are often used as buffers to support asynchronous communication, the sharing of
buffers between sub-systems is achieved by the automatic merging of places that share the same
name when the sub-systems are composed. In this context, we need a mechanism to specify that a
buffer is local to some sub-system. This is provided by the name hiding operation that replaces a
buffer name by ε thus forbidding further merges of the corresponding place. Name hiding itself is
a special case of a more general status renaming operation.

Definition 5 (Status renaming and name hiding). Let N df= (S, T, `, σ) be a Petri net with control
flow marked by M and let % be a partial function S \ {e, i, x, ε} → S \ {e, i, x} defining the renaming
of some statuses. Then, the status renaming operation, denoted N [%], results in the Petri net with
control flow defined as (S, T, `, σ′) and marked by M such that, for all s ∈ S:

σ′(s) df=

{
%(σ(s)) if % is defined on σ(s),
σ(s) otherwise.

Let ς ∈ S \ {e, i, x, ε}, the name hiding operation is defined as N/ς df= N [ς 7→ ε]. ♦

Properties. Some interesting properties of Petri nets with control flow can be established, refer
to [dkkp2,kp5] for details.

First, let us call control-safe a Petri net with control flow whose control flow places remain
marked by at most one token under any evolution. Then, if two Petri nets are control-safe, their
composition by any of the control flow operations is also control-safe. This property holds assuming
a restriction about how operators may be nested. In particular, it should be avoided to nest a
parallel composition into an iteration, which leads to 2-bounded control flow places instead of 1-
bounded. We will see later on that such a restriction can be syntactically enforced without loss of
expressivity (see section 4). Such a property is interesting for verification efficiency. In particular,
it allows to efficiently compute unfoldings of Petri nets, or to introduce optimisations at various
stages of the computation of markings successors (see section 2.5).

Moreover, algebraic properties of the control flow operations can be established. In particular,
if N1, N2 and N3 are two Petri nets with control flow and ς1, ς2 ∈ S \ {e, i, x, ε}, then we have:

N1 �N2 ' N2 �N1 commutativity of �

(N1 �N2)�N3 ' N1 � (N2 �N3) associativity of �

N1 ‖N2 ' N2 ‖N1 commutativity of ‖
(N1 ‖N2) ‖N3 ' N1 ‖ (N2 ‖N3) associativity of ‖
(N1 #N2) #N3 ' N1 # (N2 #N3) associativity of #

N1/ς1/ς1 ' N1/ς1 idempotence of /

N1/ς1/ς2 ' N1/ς2/ς1 commutativity of /

(N1 ~N2)~N3 ' (N1 �N2)~N3 equivalence of ~ and � under ~

where ' is the equality of Petri nets up to nodes identities. The last property may be surprising and
stands more like a warning for the modeller to avoid mistakes. If this property is really undesirable,
the binary iteration may be replaced by a ternary iteration [N1 ∗ N2 ∗ N3] that is equivalent to
N1 # (N2 ~N3) and introduces a guard on the iteration N2 ~N3 through N1 [kp5].

2.4 Synchronous communication

Thanks to node statuses and the automatic merging of named places from composed Petri nets, a
form of asynchronous communication is possible. In this section, we consider an explicit synchronous
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communication scheme based on transitions synchronisation, allowing to enforce a simultaneous
firing of sets of transitions with information exchange.

To specify how transitions may be synchronised, they are decorated with multi-actions, i.e.,
multisets of actions. Let A be the set of actions names, an action is a term of the form a!(e1, · · · , en)
for a send action or a?(e1, · · · , en) for a receive action, where a ∈ A and e1, . . . , en ∈ E. Intuitively,
a send and a receive action with the same name correspond to a binary synchronisation if their
parameters can be unified. An action with no parameter is denoted without parentheses, as in a!
or a?.

The operations described hereafter do not involve places and thus leave markings untouched;
so, we consider unmarked nets only, but the definitions can be trivially extended to marked nets.

Definition 6 (Petri nets with synchronisation). A Petri net with synchronisation is a tuple (S, T,
`, α) where:

– (S, T, `) is a Petri net;
– α is a function over T such that, for all t ∈ T , α(t) is a multi-action. ♦

Based on this labelling, we can define three operations:

– the synchronisation with respect to a ∈ A creates new transitions that model the simultaneous
firing a set of transitions with pairs of unifiable actions a!(· · ·) and a?(· · ·);

– the restriction with respect to a ∈ A removes all the transitions involving actions a!(· · ·) or
a?(· · ·);

– the scoping with respect to a ∈ A is the synchronisation followed by the restriction: its creates
all the possible synchronisations and removes all the unsatisfiable ones.

Synchronisation. We denote by x a tuple of parameters for a send or receive action, for instance,
action a!(1, y, z+ 1) may be denoted as a!(x) with x df= (1, y, z+ 1). Let x and y be two such tuples
of parameters, an unifier γ of x and y is a partial function V→ V ∪D ∪ E such that γ(x) ≡ γ(y),
where γ(e) denotes the substitution in e of the variables mapped by γ. A send action a!(x) and a
receive action a?(y) on the same name a are called conjugated if x and y can be unified.

In general, if one unifier exists, there exist infinitely many others that can be obtained by
augmenting the domain, mapping variables to values instead of to variables, or choosing different
variables in the co-domain. In the following, we consider only one among the possible most general
unifiers, i.e., one that has a domain as small as possible and that do not map variables to values
as much as possible. For instance, x + y and z + 1 can be unified by γ1

df= {x 7→ z, y 7→ 1}, but
also by γ2

df= {x 7→ z, y 7→ 1, w 7→ 3}, or γ3
df= {x 7→ 1, y 7→ 1, z 7→ 1}. Among γ1, γ2 and γ3, only

the former is a most general unifier. Notice that γ4
df= {z 7→ x, y 7→ 1} is another most general

unifier that could be used instead of γ1. As shown below, using any of the most general unifiers is
equivalent.

Intuitively, the synchronisation is obtained by creating new transitions from pairs of transi-
tions labelled with conjugated actions. The transition resulting from a binary synchronisation is
obtained by merging the two synchronised transitions, while unifying their variables and removing
the conjugated actions that allowed the binary synchronisation. This process of pairing transitions
is repeated until saturation. An example of a synchronisation is provided in figure 6.

Definition 7 (Synchronisation operation). Let N df= (S, T, `, α) be a Petri net with synchronisation
and a ∈ A be an action name. The synchronisation of N with respect to a, denoted N sy a, is the
Petri net with synchronisation N ′

df= (S′, T ′, `′, α′) defined as follows:

– S′
df= S and for all s ∈ S, `′(s) df= `(s);

– `′ is ` extended on S′ ∪T ′ ∪ (S′×T ′)∪ (T ′×S′) and α′ is α extended on T ′ as specified below;
– T ′ is the smallest set of transitions such that T ⊆ T ′ and, for all t1, t2 ∈ T ′ such that there is

one action a!(x1) ∈ α(t1) and one action a?(x2) ∈ α(t2), and for every unifier γ of x1 and x2,
there is a transition t′ ∈ T ′ with
• `′(t′) df= γ(`(t1) ∧ `(t2)),
• α′(t′) df= γ(α(t1)− {a!(x1)}+ α(t2)− {a?(x2)})
• for all s ∈ S, `′(s, t′) df= γ(`′(s, t1) + `′(s, t2)) and `′(t′, s) df= γ(`′(t1, s) + `′(t2, s)). ♦
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t1a!(x) x > 0 t2 a?(y), b!(y + z) t3 b?(w)

x z

y w

N0

t1a!(x) x > 0 t2 a?(y), b!(y + z) t3 b?(w)

x z

y w

t1,2

b!(x+ z)

x > 0

x z

x
N1

df
= N0 sy a

Fig. 6. Net N1 at the bottom is the result of the synchronisation with respect to a of net N0 at the top; t1
and t2 have been unified by γ

df
= {y 7→ x} and merged as t1,2.

In this definition any most general unifier is acceptable because they all lead to transitions that
differ only by a renaming of their variables. Since variables are scoped to each transition and its
arcs, this makes no difference to rename them as far as it is made consistently in the guard and the
arcs (which is the case in the definition where we use the same unifier for the new transition and
its arcs). In general, to reduce the size of Petri nets, among a set of transitions that are identical
up to the renaming of their variables, all but one may be removed without changing the behaviour
in any essential way.

It may be noted that the definition above can lead to Petri nets with infinitely many transitions.
This is the case for instance in the Petri net depicted in figure 7. In practice this situation can be
avoided by forbidding a transition to be involved more than once in a synchronisation.

t1a?, a! t2 a?, a! t1a?, a! t2 a?, a!t1,2

a?, a!

Fig. 7. A binary synchronisation of t1 and t2 from the left net results in t1,2 in the right net. Transition
t1,2 may then be paired with either t1 or t2, resulting in transitions still labelled with multi-action {a?, a!}.
So, a similar binary synchronisation may be repeated at will.

Restriction. The restriction with respect to an action name simply consists in removing all the
transitions that involve this action name. An example of a restriction is provided in figure 8.

Definition 8 (Restriction operation). Let N df= (S, T, `, α) be a Petri net with synchronisation and
a ∈ A be an action name. The restriction of N with respect to a, denoted N rs a, is the Petri net
with synchronisation N ′

df= (S′, T ′, `′, α′) defined as follows:

– S′
df= S;

– T ′
df= {t ∈ T | a!(· · ·) /∈ α(t) ∧ a?(· · ·) /∈ α(t)};

– `′ is ` restricted to S′ ∪ T ′ ∪ (S′ × T ′) ∪ (T ′ ∪ S′);
– α′ is α restricted to T ′. ♦
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t3 b?(w)

w

t1,2

b!(x+ z)

x > 0

x z

x
N2

df
= N1 rs a

Fig. 8. The result of the restriction with respect to a of the net N1 from figure 6; transitions t1 and t2
(indicated in dotted gray lines) have been removed.

Scoping. The scoping operation is simply the successive application of the synchronisation and
the restriction. An example of a scoping is provided in figure 9.

Definition 9 (Scoping operation). Let N be a Petri net with synchronisation and a ∈ A be an
action name. The scoping of N with respect to a is N sc a

df= (N sy a) rs a. ♦

t1,2,3 x > 0

x z

x x+ z
N3

df
= N2 sc b

Fig. 9. The result of the scoping with respect to b of the net N2 from figure 8; transitions t1,2 and t3
(indicated in dotted gray lines) have been unified by γ

df
= {w 7→ x+ z} and merged as t1,2,3.

Properties. An important property of Petri nets with synchronisation is that they can be
equipped for control flow (or, conversely, a Petri net with control flow can be equipped for syn-
chronisation). Indeed, control flow involves places while synchronisation involves transitions. So,
these extensions are orthogonal and perfectly compatible.

Like for control flow operations, algebraic properties of sc, sy and rs can be established. If N is
a Petri net with synchronisation and a1 , a2 ∈ A, then:

(N sy a1 ) sy a2 ' (N sy a2 ) sy a1 commutativity of sy

(N sy a1 ) sy a1 ' N sy a1 idempotence of sy

(N rs a1 ) rs a2 ' (N rs a2 ) rs a1 commutativity of rs

(N rs a1 ) rs a1 ' N rs a1 idempotence of rs

Moreover, considering Petri nets with both control flow and synchronisation, if % : S \ {e, i, x, ε} →
S \ {e, i, x}, we also have:

(N sy a1 )[%] ' (N [%]) sy a1 commutativity of sy and [·]
(N rs a1 )[%] ' (N [%]) rs a1 commutativity of rs and [·]
(N sc a1 )[%] ' (N [%]) sc a1 commutativity of sc and [·]

As a consequence, we also have the commutativity of synchronisation, restrictions and scoping with
buffer hiding.
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2.5 Verification issues

In order to verify coloured Petri nets, the traditional approach has been expansion, i.e., translation
from coloured to place/transition nets. This translation is often called unfolding but, since this
word is also used for MacMillan’s approach [69, 44], we use expansion instead. In this approach,
each possible token value in a place is converted into a p/t place and each possible enabling binding
of a transition is converted into a p/t transition, the arcs being connected consistently. An example
is provided in figure 10

{•}
s

tx 6= y

2{1, 2, 3}

s′
3 {2, 3}

s′′

•

x y

s•

tβ1 tβ2 tβ3 tβ4

s′1

•

s′2 s′3 s′′2

•

s′′3

8>>><>>>:
β1

df
= {x 7→ 1, y 7→ 2}

β2
df
= {x 7→ 1, y 7→ 3}

β3
df
= {x 7→ 2, y 7→ 3}

β1
df
= {x 7→ 3, y 7→ 2}

Fig. 10. A coloured Petri net (on the left) and its expanded equivalent (on the right). The βi’s are the
enabling bindings of t in the coloured net as defined on the right part of the picture, the indexes of the
places in the right net correspond to the values in the place types from the left net.

The main benefit from the expansion approach is that there exist many analysis techniques and
efficient tools dedicated to p/t nets. The problem in general is that the p/t net obtained through
expansion is too big and thus intractable; this net can even be infinite if there exist coloured places
with infinite types. A large or infinite type on a place does not mean that all these values will be
actually present in a reachable marking; in fact only a small subset of these value is usually really
reached. If this subset can be identified, expansion can be optimised by reducing the number of
p/t places and possible transitions enabling bindings. But very often, this subset cannot be known
in advance but only it can be discovered as the state space is explored.

Fortunately, many tools exist to directly analyse coloured Petri nets, in particular [34, 77, 83, 61,
3, 5]. The main efficiency concern with this kind of tool is related to the colour domain: the more
general is the colour domain, the more difficult it is to perform fast analysis. In particular, when
computing the successors of a marking, the discovery of enabling bindings is a time consuming
process.

Enabling bindings discovery. Two difficult problems arise when trying to compute the enabling
bindings of a transitions:

– matching token values against input arc annotations (an input arc is directed from a place
toward a transition);

– finding suitable values for free variables, i.e., those variables that cannot be bound to values
by matching tokens with input arcs. For instance, in the left of figure 10, x and y are free
variables.

The problem of binding free variables can be reduced to the problem of matching tokens by
considering that output arcs (i.e., from transitions toward places) can be matched against each of
the value in the type of the output place, and guards can be matched against the Boolean domain
{False,True}. However, this is usually not tractable because output places may have large or even
infinite domains.

A simple solution to this problem is to forbid free variables. This is not an issue in practice
since free variables usually result from either a mistake, or a need for generating a random value.
Forbidding free variables prevents the corresponding mistakes and generating random values can
be handled another way:
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– add an input place containing all the values among which a random one has to be chosen;
– add a read arc or a self loop labelled by the variable that used to be free, from this place to

the transition.

The new place introduce no additional information but increases the memory consumption of each
state. However, because its marking never changes, the information about this place can be safely
discarded from storage during the state space exploration.

The remaining problem is to match token values against arc annotations. There is in general
two solutions to this problem:

– use a restricted colour domain that allows to match any expression against any value. This is
for instance the approach in alpina [3] that uses abstract data types [40] as a colour domain;

– restrict the kind of annotations allowed on input arcs; for instance allowing only values or
variables allows for very simple matching or binding.

Restricting the colour domain is generally good for analysis capabilities and performances, but
usually bad for ease of modelling. For instance, abstract data types are expressive but not always
easy to use by an untrained modeller. On the other hand, restricting the kind of annotations, when
not done drastically, is rarely an issue in practice; in particular, we often can transform Petri nets
to remove input arcs labelled by expressions. For instance, assume an arc from a place s toward a
transition t labelled by an expression e. This arc label may be replaced by a variable x /∈ vars(t)
and the guard of t may be replaced by `(t)∧ (x = e), which usually produces the same result. This
transformation is however not possible when the evaluation of e has side effects. Fortunately, side
effects are generally avoided as an error prone programming practice; they are even impossible if
the colour domain is a pure functional programming language.

In snakes (see section 3), we have chosen to restrict annotations in a way which allowed to
have no restriction on the colour domain (full Python language). In cpn tools, annotations of the
input arcs have been restricted to what can be expressed with ml pattern-matching [58, sec. 3.7].
Both snakes and cpn tools forbid free variables.

Compiling Petri nets. Tools like [83, 5, 56] improve efficiency by compiling a Petri net into
machine code. The idea is to transform a Petri net into a library that provides all the primitives
to explore the state space of the compiled Petri net. For example, each transition can be compiled
into a function to discover enabling bindings at a given marking, plus a function to compute
the successor of a marking under a given binding. By using this approach, arc annotations and
guards are directly copied to the generated code, there is no need to interpret any of them during
analysis. In general, compilation avoids the need to continuously query complex data structures (in
particular the Petri net structure) throughout the computation. Notice that this is possible only if
the annotation language is also the target language of the compiler or can be translated to it.

The code generated by the existing tools is rather generic in that it does not exploit any
information from the compiled Petri net other than what is strictly necessary. We propose here to
improve this approach by exploiting various information in order to optimise the code generated
by the compilation of a Petri net. In particular, the marking data structure can be optimised for
speed and memory consumption, which in turn allows to optimise algorithms accordingly:

– in general, the tokens held by a place are stored in a multiset structure; but if the place has
singleton type {x} ⊂ D (in particular {•}), a counter of tokens is enough; moreover, if such a
place is known to be 1-bounded, then a Boolean is enough to record its marking; finally, the
marking of other 1-bounded places can be encoded with a single value in the place type, or
with ⊥. By compiling the Petri net, these optimisations are inlined in exploration algorithms
instead of being conditional branches of the code that handle the data structures;

– place invariants may be exploited to reduce the number of transitions examined during state
space exploration. Consider for instance a Petri net (S, T, `) and let I ⊆ S be a set of places
such that for all reachable marking M ,

∑
s∈IM(s) = {•}. If a transition t fires and puts a

token • in a place s ∈ I, then, we known that all the transitions from (I \ {s})• are disabled
because there cannot exist a token in another place in I. Moreover, transitions from •s are
also disabled since s cannot be marked by more than one token. In general, such a 1-invariant
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I allows to build a generalised exclusion relation: the firing of a transition t disables all the
transitions in •(t• ∩ I)∪ (I \ t•)•. If I can be computed statically, this conflict relation can also
be computed statically and exploited during the state space exploration to avoid considering
disabled transitions;

– token flows may be analysed to efficiently maintain a set of enabling bindings over the whole
Petri net. For instance, if a transition consumes but does not produce tokens from a place s,
then we known that this will remove enabling bindings for the transitions in s•. Similarly, if
tokens are added to s but none is removed, we known that this may add enabling binding for
the transitions in s•. Both these situations can be observed statically and the compiled code
can be optimised to take this into account.

A prototype implementation of these techniques has been developed and various examples have
been used as test cases, in particular some from the domain of security protocols (see section 5.2
for such an example). By compiling various Petri nets, we could achieve speedups ranging 6 to 10,
depending on how many optimisations the models allowed us to introduce. These speedups have
been measured by comparing compiled nets with all the optimisations disabled with respect to nets
with all the optimisations allowed.

Exploiting structural information. Providing structural information about the Petri nets to
analyse is usually either left to the user of a tool, or obtained by static analysis (e.g., place invariants
may be computed automatically). However, in our framework, Petri nets are usually constructed by
composing smaller parts instead of being provided as a whole. This is the case in particular when
the Petri net is obtained as the semantics of a syntax. In such a case, we can derive automatically
many structural information about the Petri nets.

For instance, when considering the modelling and verification of security protocols (see sec-
tion 5.2), systems mainly consist of a set of sequential processes composed in parallel and commu-
nicating through a shared buffer that models the network. In such a system, we known that, by
construction, the set of control flow places of each parallel component forms a 1-invariant. This
property comes from the fact that the process is sequential and that the Petri net is control-safe by
construction. Moreover, we also know that control flow places are 1-bounded, so we can implement
their marking with a Boolean instead of an integer to count the tokens as explained above. It is
also possible to analyse buffer accesses at a syntactical level and discover buffers that are actually
1-bounded, for instance if any access is always composed either of a put and a get, or of a test, in
the same atomic action.

Parallel computation. The particular application to security protocols verification is also the
context of an ongoing PhD: the goal is to exploit the structure of these models to compute efficiently
the reachable states of a Petri net on a parallel computer. In order to guarantee performances, the
bulk synchronous parallel model of computation, BSP [102], is used. A bsp program execution is
composed of a succession of super-steps separated by synchronisation barriers. This model of data
parallelism enforces a strict separation of communication and computation: during a super-step,
no communication between the processors is allowed, only at the synchronisation barrier they are
able to exchange information. This execution policy has two main advantages: first, it removes
non-determinism and guarantees the absence of deadlocks; second, it allows for an accurate model
of performance prediction based on the throughput and latency of the interconnection network,
and on the speed of processors. This performance prediction model can even be used online to
dynamically make decisions, for instance choose whether to communicate in order to re-balance
data, or to continue an unbalanced computation.

In this context, the current work investigate the use of a fine tuned placement function to
distribute computed markings to the processors. Let h be a placement function to map any marking
to a processor number: for a marking M , h(M) is the number of the processor in charge to compute
the successors of M . Let G be the marking graph of the analysed Petri net and B the spanning tree
on G obtained from a breadth-first traversal. For two markings M1 and M2, we define M1 < M2

iff M1 is an ancestor of M2 in B, and depth(M1) df= |{M ′ s.t. M ′ < M1}| is the depth of M1 in B.
We then define an equivalence relation over markings: M1 ∼ M2 iff there exist M ′1 and M ′2 such
that the following hold:
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– h(M1) = h(M2);
– depth(M ′1) = depth(M ′2);
– M ′1 ≤M1 and M ′2 ≤M2;
– for 1 ≤ i ≤ 2, for all M such that M ′i ≤M ≤Mi we have h(M) = h(Mi).

Using this equivalence relation, we obtain G/∼ to coincide with the computation graph: each class
in G/∼ is a set of markings in G that can be computed during a super-step on a given processor,
without requiring a communication. For instance, we can use the following algorithm, executed on
each processor in parallel:

1

∣∣ todo ← {M0} if h(M0) = cpuid else {} # ‘‘cpuid’’ is the local CPU number
2

∣∣ seen ← {}
3

∣∣ wait ← {}
4

∣∣ total ← 1
5

∣∣ while total > 0 :
6

∣∣ while todo 6= ∅ :
7

∣∣ choose M in todo
8

∣∣ todo ← todo \ {M}
9

∣∣ seen ← seen ∪ {M}
10

∣∣ for M ′ in successors(M) :
11

∣∣ if M ′ ∈ seen :
12

∣∣ continue # start next iteration of the for loop
13

∣∣ elif h(M ′) = cpuid :
14

∣∣ todo ← todo ∪ {M ′}
15

∣∣ else :
16

∣∣ wait ← wait ∪ {M ′}
17

∣∣ todo, total ← exchange(wait)

The algorithm starts by defining variables, locally to each processor. Line 1, each processor
defines a set of markings it has to proceed in the current super-step; initially, only one processors
has the initial marking M0, all the other are idle. Line 2, each processor defines the set of states
it knows, i.e., all those it has encountered during the computation. Line 3, variable wait is defined
to store all the states that have been computed by the processor but whose successors have to
be computed by another processor; these are the states waiting to be exchanged during the next
synchronisation barrier. Line 4, variable total is defined to store the total number of markings
exchanged at the last barrier. It is initially 1 because there is only one known marking M0 (it was
not exchanged however).

Then comes the main loop on line 5, that repeats until there is no more state to compute on
any processor, which is captured by variable total. Line 6, an inner loop allows each processor to
compute all it can without communicating with others. The computation is quite straightforward:
each element in todo is proceeded in turn until exhaustion of todo; its successors are computed
(line 9) and added to todo if they must be proceeded locally (line 14), or to wait if another processor
should proceed them (line 16).

After this loop, line 17, all the awaiting data is exchanged during the synchronisation barrier
(triggered by the presence of a communication). Each state in wait is sent to the corresponding
processor according to h, and each processor receives a set of states to proceed and the number of
states exchanged during the barrier. If this number is zero, then the main loop has to be stopped
because all the processors are now idle.

So, a super-step corresponds to one execution of the main loop (except for the first super-step
that also executes lines 1–4). The set of markings computed by one processor during a super-step
corresponds exactly to one or several classes in G/∼ as illustrated in figure 11.

From this formalisation follow several observations, in particular:

1. The initial class of G/∼ should be as small as possible because the first super-step is highly
unbalanced.

2. Each class should be large enough to allow for many local computation.
3. In a breadth-first traversal of G/∼, each layer should have enough successors that should be

well distributed to ensure that the processors have a comparable amount of computation to
do.
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super-step 1

super-step 2
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Fig. 11. A possible computation graph of the parallel algorithm, assuming three processors {0, 1, 2} and
h(M0) = 0. The depicted boxes denote classes in G/∼ (M0 is an element of the initial class). By definition
of the algorithm, in super-step 1, processor 0 is idle (it does not send work to itself).

To satisfy these expectations as much as possible, we can exploit the structure of the analysed
model to modify the placement function. In particular, h can be defined has a classical hash on
a subset H of places instead of on the whole marking. Consider a model consisting of n sequen-
tial processes composed in parallel and communicating through shared places in a set S0. Each
sequential process i (for 1 ≤ i ≤ n) is defined by set of places Si in such a way that the sets Sj
(0 ≤ j ≤ n) form a partition of the places of the Petri net.

The ongoing work is about finding more criteria like those above and trying to derive rules to
ensure they can be fulfilled or at least not contradicted. For instance, from the items above, we
can derive:

1. H should contain the entry places of the sequential processes. Doing so, each transition fired
from M0 is likely to consume a token from one entry place and so to change class.

2. From the second item, it is clear that we should have H ∩ S0 = ∅: indeed, each time one
of the sequential process sends or receives a message, it produces or consumes a token on a
place from S0; if this place is in H then the new marking is in a new class. In communication
protocol, almost each transition involves sending or receiving a message, so, choosing H∩S0 6= ∅
contradicts the second criteria.

3. H should be large enough or contain places with enough possible markings to allow for enough
hash values and thus to distribute work on all the processors.

Moreover, we investigate different algorithms following the same methodology but using adapted
definitions of ∼.

2.6 Related works

Coloured Petri nets are widely used in numerous variants: almost every tool that deals with coloured
Petri nets defines its own colour domain and its own restrictions on annotations. Probably the most
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well known tool is cpn tools [34] and its model of ml-coloured Petri nets [58]. Another example of
using a functional language is the model of Haskell-coloured Petri nets [95]. In general however, the
colour domain is not an existing programming language but is defined together with the analysis
tool. For instance, Maria [77] and Helena [83] use a dedicated colour domain that corresponds to
data structures that they handle efficiently.

Supporting compositions of Petri nets is generally made by allowing to split a Petri net into pages
and hierarchies of modules, the union of which defining the whole system that is obtained by fusion
of the nodes present in several pages. This is more related to decomposition than to composition of
Petri nets, in an approach inspired from the splitting of programs into separate files, modules and
sub-programs. This approach is a practical requirement for a modeller to be able to work directly
at the Petri net level. Moreover it can be exploited for modular verification [29, 70].

On the other hand, defining algebras of Petri nets is the domain of the Petri box calculus family,
pbc [11]. Unlike the previous one, this approach directly addresses compositions of Petri nets and
so is also applicable to define compositional Petri nets semantics of various formalisms. The pbc is
an algebra of p/t nets equipped with a process algebra syntax and two fully consistent semantics:
one is a denotational semantics given in terms of Petri nets, the other is an operational semantics
given in terms rewriting rules. The operators defined in the pbc are those presented above: control
flow and synchronous communication. The pbc has been generalised later as the Petri net algebra,
pna [12]. In parallel, the Petri net compositions have been ported to coloured Petri nets, resulting
in a model called M-nets [13], and a syntax have been proposed for the M-nets [64]. M-nets rely
for the definition of control flow on a very general refinement operator that allows to substitute
an arbitrary transition with an arbitrary net [37]. This operation is well defined and really flexi-
ble but in practice leads to nets with complex tree-shaped annotations and tokens, which cannot
be handled efficiently during the verification phase. This led to a series of models introducing
in pbc the various high-level features that exist in the M-nets. The asynchronous box calculus,
abc [dkkp1,dkk+,dkkp2], introduced named places to support explicit asynchronous communi-
cation. Then, a variant with coloured buffer places and parametrised synchronous communication
have been introduced in [btkp1,btkp3]. The abcd language presented in section 3.3 is a con-
crete implementation of the asynchronous fragment of this last model. Numerous other variants of
the pbc exist, in particular to model timed systems, tasks and exceptions (see the related works
surveyed in sections 4 and 5.1).

It is worth noting that not all the variants of the pbc are provided with an operational semantics.
This is indeed a features that used to exist to fill a gap between process algebras and Petri nets
but has never been really exploited: to the best of our knowledge, no analysis method from the
process algebra domain [9] has ever been ported to exploit pbc-like algebras. This aspect has thus
been left out of the present document that is focused toward providing models that can be used
for systems analysis, which still relies on the Petri net part of those models.

There is a huge amount of literature about the questions around efficient verification of Petri
nets, this is partly due to the fact that there exist many variants of Petri nets. But this is definitely
a very active topic so we survey her only the works the most directly related to our presentation. As
already explained, the traditional verification approach through full expansion is usually deprecated
in favour of techniques that directly analyse coloured models. However, Alpina [3] relies on partial
expansion to perform structural analysis, and a tool like punf [61] offers a smart alternative
to expansion: punf can compute finite prefixes of coloured Petri nets unfoldings, by producing
just the p/t places that correspond to actually reached markings. So, the result is much smaller
than a full expansion. Moreover, the obtained unfoldings are symbolic representations of the state
space that can be directly analysed, usually achieving very good compression in the presence of
concurrency [69, 44, 62]. Moreover, if the model being unfolded does not have auto-concurrency of
transitions (this is the case with our models thanks to the restrictions on the control flow), the
so-called token swapping phenomenon [10] is avoided, allowing a more efficient computation of the
unfolding.

At the coloured level, the question of computing the reachable markings efficiently has been
addressed through various works about Maria [77], Helena [83] and cpn tools [34], and more recently
about asap [5]. Various techniques have been developed regarding various aspects of the problem:

– efficient data structures in the colour domain with dedicated implementation on the verification
side allow to achieve both fast computation and low memory consumption [81, 80];
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– the stubborn sets technique to reduce the state space by exploiting concurrency has been ported
to coloured Petri nets [49];

– modular verification and incremental state space construction allow generally to reduce both
memory usage and computation time by avoiding part of the combinatorial explosion that
arises in the whole system [70, 68, 63];

– techniques exist to lower memory requirement for the state space, either by storing it explic-
itly [79, 48], by keeping only required fragments [28, 66], by loosing information about it [55],
or by representing it symbolically using unfoldings [69, 44, 62] or decision diagrams [33, 52];

– the model itself may be reduced before to be analysed, while preserving its properties observable
through verification [45, 46];

– compilation techniques have been used also in [78, 47], but without considering optimisations
of the generated code with respect to the compiled model.

Distributed computation has been used as well either to reduce computation time or to increase
storage capabilities. For instance, modular verification [84, 19] and unfolding [53] can be distributed,
and the technique to select a subset of place for hashing has been first introduced in Spin model-
checker [67]. However, these are distributed more than parallel algorithms. The difference resides
in that parallel computation relies on a model of parallelism, e.g., bsp as presented above. This
generally allows to achieve better scalability of algorithms when using hundreds or thousands of
processors, or to predict an optimal number of processors for a given computation. Indeed, increas-
ing the number of processors for distributed algorithms usually dramatically increase the amount
of communication, which can quickly lead to amortised speedup. Still, distributed algorithms are
worth using on small clusters or local networks of workstations, which are widely available and
cheap configurations compared to specialised parallel computers.
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3 SNAKES toolkit and syntactic layers

snakes is a software library to define, manipulate and execute Petri nets [pom1]. A large part of
the work presented in this document have been implemented within snakes or using it.

snakes is a Python library that implements Python-coloured Petri nets. Python is a mature,
well established, interpreted language. According to its web site [91]:

Python is a dynamic object-oriented programming language that can be used for many
kinds of software development. It offers strong support for integration with other
languages and tools, comes with extensive standard libraries, and can be learned in a few
days. Many Python programmers report substantial productivity gains and feel the
language encourages the development of higher quality, more maintainable code.

It may be added that Python is free software and runs on a very wide range of platforms.
Python has been chosen as the development language for snakes because its high-level features
and library allows for quick development and easy maintenance, which is important considering
that snakes is maintained by only one person.1 The choice of Python as a colour domain then
became natural since Python programs can evaluate Python code dynamically. Moreover, if Python
is suitable to develop a Petri net library, it is likely that it is also suitable for Petri net annotations.

3.1 Architecture

snakes is centred on a core library that defines classes related to Petri nets. Then, a set of extension
modules, i.e., plugins, allow to add features to the core library or to change its behaviour. snakes
is organised as a hierarchy of modules:

– snakes is the top-level module and defines exceptions used throughout the library;
– snakes.data defines basic data types (e.g., multisets and substitutions) and data manipulation

functions (e.g., Cartesian product);
– snakes.typing defines a typing system used to restrict the tokens allowed in a place;
– snakes.nets defines all the classes directly related to Petri nets: places, transitions, arcs, nets,

markings, reachability graphs, etc. It also exposes all the api from the modules above;
– snakes.plugins is the root for all the extension modules of snakes.

The first four modules above (plus additional internal ones not listed here) form the core library.
snakes is designed so that it can represent Petri nets in a very general fashion:

– each transition has a guard that can be any Python Boolean expression;
– each place has a type that can be an arbitrary Python Boolean function that is used to accept

or refuse tokens;
– tokens may be arbitrary Python objects;
– input arcs (i.e., from places to transitions) can be labelled by values that can be arbitrary

Python object (to consume a known value), variables (to bind a token to a variable name),
tuples of such objects (to match structured tokens, with nesting allowed), or multisets of all
these objects (to consume several tokens). New kind of arcs may be added (e.g., read and flush
arcs are provided as simple extensions of existing arcs);

– output arcs (i.e., from transitions to places) can be labelled the same way as input arcs,
moreover, they can be labelled by arbitrary Python expressions to compute new values to be
produced;

– a Petri net with these annotations is fully executable, the transition rule being that of coloured
Petri nets: all the possible enabling bindings of a transition can be computed by snakes and
used for firing.

1 snakes is quite a large system, in its version 0.9.10 (July 2009), we could count in snakes around 100
classes and 14000 lines of code, api documentation and unit tests.
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3.2 Main features and use cases

Apart from the possibility to handle Python-coloured Petri nets, the most noticeable other features
of snakes are:

– flexible typing system for places: a type is understood as a set defined by comprehension; so,
each place is equipped with a type checker to test whether a given value can be stored or not in
the place. Using module snakes.typing, basic types may be defined and complex types may be
obtained using various type operations (like union, intersection, difference, complement, etc.).
User-defined Boolean functions can also be used as type checkers;

– variety of arc kinds can be used, in particular: regular arcs, read arcs and flush arcs;
– support for the Petri net markup language (pnml) [89]: Petri nets may be stored to or loaded

from pnml files. In version 0.9.10 of snakes, only version 2.0 of pnml is supported: snakes
can export any net as xml, but this is valid pnml only for p/t nets;

– fine control of the execution environment of the Python code embedded in a Petri net;
– flexible plugin system allowing to extend or replace any part of snakes;
– snakes is shipped with a compiler that reads abcd specifications (see section 3.3) to produce

pnml files or pictures;
– plugin gv allows to layout and draw Petri nets and marking graphs using GraphViz tool [42];
– plugin ops implements Petri nets with control flow as defined in section 2.3;
– plugin synchro implements Petri nets with synchronisation as defined in section 2.4;
– plugin query allows a program to invoke snakes remotely over a network connection by ex-

changing pnml, this makes it possible for a non-Python program to use snakes;
– having Python-coloured Petri nets in a Python-programmed library makes it possible to im-

plemented the various features of the nets-within-nets paradigm [107] as shown in [pom10].

Finally, snakes has been used to implement various Petri nets related problems:

– the causal time calculus [pom4] is a timed pbc-like process algebra with a Petri net semantics
that has been implemented using snakes in less than 200 straightforward lines of code;

– boon [23] is an object-oriented programming notation with a Petri net semantics that has been
implemented using snakes from a Java program (over a network socket);

– a Petri net semantics of mins interconnection networks has been implemented and used for
simulation [86];

– a Petri net semantics of the security protocol language [35] has required also about 200 lines
of code;

– the compressed state space construction for Petri nets with causal time (presented in sec-
tion 5.1) have been implemented by combining snakes and Lash [17];

– security protocols have been specified and analysed using the abcd compiler and snakes (see
sections 5.2);

– the Petri net semantics of a formalism to model biological regulatory networks has been im-
plemented and examples have been studied using snakes (see section 5.3).

3.3 A syntactical layer for Petri nets with control flow

Considering our Petri nets as a semantics domain, it is possible to define languages adapted to
specific usages, with a well defined semantics given in terms of Petri nets. In order to show how
our framework makes this easy, we present now a syntax for Petri nets with control flow that
embeds Python programming language as colour domain. This language, called the asynchronous
box calculus with data, or ABCD, is a syntax for Petri nets with control flow where:

– the elementary (i.e., not composite) Petri nets are limited to simple ones like those depicted
in figure 12;

– the colour domain is the Python language.

abcd is a compromise between simplicity and expressiveness: not all the features available in
the framework are implemented (e.g., there is no synchronisation) but yet the language is useful
for many practical situations. In particular, abcd is well suited to specify modular systems with
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basic control flow (including concurrency), and possibly complex data handling. This is the case for
many examples from the domain of computing; for instance, security protocols will be addressed
in section 5.2 while this section shows a simple railroad example.

An abcd specification is composed of the following elements:

1. A possibly empty series of declarations, each can be:
– a Python function declaration or module import: this corresponds to extensions of the

colour domain;
– a buffer declaration: a buffer corresponds to a named place in the semantics, thus buffers

are typed, unordered and unbounded;
– a sub-net declaration: this allows to declare a parametrised sub-system that can be instan-

tiated inside an abcd term.
2. A process term that plays the role of the “main” process: the semantics of the full specification

is that of this term (built in the context of the provided declarations). Process terms are
composed of atomic actions or sub-nets instantiations composed with the usual control flow
operators (but replaced with symbols available on a keyboard: ; for sequence, ∗ for iteration,
+ for choice and | for parallel). An atomic term is composed of a list of buffer accesses and a
guard. For instance:
– [True] is the silent action that can always be executed and performs no buffer access;
– [False] is the deadlocked action that can never be executed;
– [count−(x), count+(x+1), shift?(j), buf+(j+x) if x<10] is an atomic action that consumes

a token from a buffer count binding its value to variable x, produces a token computed as
x+1 in the same buffer, binds one token in a buffer shift to variable y without consuming
it, and produces the result of j+x in a buffer buf. All this is performed atomically and only
if x<10 evaluates to True.

The Petri net semantics of these three actions is depicted in figure 12.
A sub-net instantiation is provided as the name of the declared net block followed by the
list of effective parameters inside parentheses. The semantics of this instantiation is obtained
by substituting the parameters inside the definition of the sub-net and building its semantics
recursively. Then, the buffers declared locally to the sub-net are made anonymous using the
buffer hiding operator.
The semantics of a term is obtained by composing the semantics of its sub-terms using the
specified control flow operators. Finally, the semantics of a full specification also includes the
initial marking of entry and buffer places.

Like in Python, blocks nesting is defined through source code indentation only, and comments
start with character “#” and end with the line. Like in most compiled programming languages (and
unlike in Python), abcd has lexical scoping of the declared elements: an element is visible from
the line that follows its declaration until the end of the block in which it is declared. As usual,
declaring again an element results in masking the previous declaration.

[True]

e

True

x

[False]

e

False

x

[count−(x), count+(x+1), shift?(j), buf+(j+x) if x<10]

e

x < 10
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int
x 7→ x+ 1
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int

j

buf

int

j + x

Fig. 12. The Petri net semantics of various abcd atomic actions. The undirected arc attached to place shift

is a read arc that binds j to a token but does not consume it upon firing.
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Example. As an illustration, let us consider a simple railroad crossing involving:

– one track on which trains can arrive repeatedly;
– one road crossing the track;
– a pair of gates to prevent cars to go on the track when a train is approaching;
– a red light to prevent the train to cross the road before the gates completely close.

When a train is approaching, a sensor on the track turns light to red and commands the gates to
go down. When they arrive down, the light is reset to green. When the train leaves the gates, they
are commanded to go up.

This system can be specified in abcd as follows. We first specify global buffers to model the
red light and a communication channel between the track and the gates:

1

∣∣ # light is initially ”green”
2

∣∣ buffer light : in("red", "green") = "green"
3

∣∣ # no command is available initially
4

∣∣ buffer command : in("up", "down") = ()

Keyword in used in the context of a buffer type definition specifies that this is an enumerated type
whose values are those provided inside parentheses as Python values. So, for instance, buffer light
can only hold the two strings "red" and "green" and initially contains "green".

Then we specify the behavior of the gates and provide for them an internal buffer allowing to
easily observe their current state.

5

∣∣ net gates () :
6

∣∣ # gates are initially ”open”
7

∣∣ buffer state : in("open", "move", "closed") = "open"
8

∣∣ # a sequence of actions
9

∣∣ (# receive command ”down” and start moving
10

∣∣ [command−("down"), state−("open"), state+("move")] ;
11

∣∣ # finish to close and reset light to ”green”
12

∣∣ [state−("move"), state+("closed"), light−("red"), light+("green")] ;
13

∣∣ # receive command ”up” and start moving
14

∣∣ [command−("up"), state−("closed"), state+("move")] ;
15

∣∣ # finish to open
16

∣∣ [state−("move"), state+("open")])
17

∣∣ # this sequence is infinitely repeated because the loop exit cannot be executed
18

∣∣ ∗ [False]

Then we specify the track on which trains can repeatedly arrive:

19

∣∣ net track () :
20

∣∣ # we also need to observe if a train is crossing the road
21

∣∣ buffer crossing : bool = False
22

∣∣ # here also a sequence is infinitely repeated
23

∣∣ (# a train is approaching: light is turned red and gates are commanded to close
24

∣∣ [command+("down"), light−("green"), light+("red")] ;
25

∣∣ # the train must wait for green light before to go further and cross the road
26

∣∣ [ light?("green"), crossing−(False), crossing+(True)] ;
27

∣∣ # when the train leaves, gates are commanded to open
28

∣∣ [crossing−(True), crossing+(False), command+("up")])
29

∣∣ ∗ [False]

The full system is specified by running in parallel one instance of the gates and one of the track.

30

∣∣ gates() | track()

The semantics of this system is depicted in figure 13. We can notice that the buffers state and
crossing declared in sub-nets result each in an anonymous place: indeed, each has been hidden
during net instantiation, which takes place before the parallel composition, so the composition
could not merge these buffers. On the contrary, buffers command and light are globally declared
and thus result each in one merged named place.
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= ("green" 7→ "red"). The unlabelled places are internal ones. The anonymous place marked by

op implements buffer state of net gates. The anonymous place marked by False implements buffer crossing
of net track. Transition names correspond to the line numbers of the atomic actions they implement.

This Petri net may be model-checked, for instance by searching a reachable state such that the
right-most anonymous place (i.e., buffer crossing from sub-net track) is marked by True while the
left-most anonymous place (i.e., buffer state from sub-net gates) is not marked by "closed". Such
a state would violate the basic safety condition: gates are closed whenever a train is crossing the
road. It can be checked that no such state is reachable with the current model.

3.4 Related works

Several existing tools may be related in particular to snakes. The first one is the Petri net kernel,
pnk [96], that shares with snakes the aim to provide a general framework for building Petri nets
applications. The pnk provides a graphical user interface for editing and simulating Petri nets.
With respect to snakes, the basic model of the pnk is a less general model of coloured Petri nets;
however, this may be extended by writing Java code. Another difference is that the pnk does not
provide any of the operations to manage models from the pbc family, which is of course not its
aim. The development of the pnk does not appear to be active anymore, the last release being
dated of March 2002. The pnk is free software distributed under the terms of the gnu gpl, which
forces tools that use the pnk to be released under the same licence. snakes uses gnu lgpl, which
is less restrictive and allows to produce non-free software that uses snakes, but forces to release
under the gnu lgpl any change made to snakes.

Another tool with which snakes shares some goals is the Programming environment based on
Petri nets, pep [85]. The main similarity between the two tools is that both deal with pbc and
M-nets models. The main difference is that pep is oriented toward model-checking, proposing a
graphical user interface to define Petri net models through various ways. The Petri nets variants in
pep are fixed, mainly variants of pbc and a restricted version of M-nets; this cannot be changed by
users. pep also appears to be not maintained anymore, the last release being dated of September
2004. pep was the tool we used before to decide to develop snakes. The main reason for this decision
was the impossibility to update pep quickly enough with respect to theoretical developments in
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the pbc family, which is not surprising since pep was never designed with this goal in mind. Like
the pnk, pep is released under the gnu gpl.

Compared with cpn tools [34], snakes shares the ability to use a programming language for
nets inscriptions: a variant of ml for cpn tools, and Python for snakes. This makes it possible to
extend a lot the features of cpn tools. However, it does not provide support to introduce another
variant of Petri nets, for instance by changing the transition rule. So, there might be new models
of Petri nets that cannot be represented using one of those provided by cpn tools, and thus for
which the tools cannot be used. Another important difference is that cpn tools is a end-user tool
with an advanced graphical user interface while snakes is a programming library. Finally, cpn
tools is not open source.

More generally, since any Petri net modelled in snakes may be executed, it could be compared
with any Petri net tool that can simulate nets or compute their reachability graph. However,
executing nets is not the main purpose of snakes and it is not designed to do it efficiently (even
if it turns out to be satisfactory in many practical situations).

There exit many works dedicated to the translation of various syntax to Petri nets among
which essentially one can be directly related to abcd: the basic Petri net programming notation,
b(pn)2 [14, pom2,ps,kp4], aims at providing a syntax that is close to programming languages,
unlike abcd that is rather inspired by process algebra. b(pn)2 can be considered as more complete
than abcd with respect to its features, indeed, its latest extensions propose constructions for
procedures, tasks, exceptions and preemption. However, only procedures are implemented in pep.
On the other hand, abcd can be considered as a lightweight alternative whose semantics produces
more compact Petri nets. Both languages use the notion of atomic actions as the most basic
execution element. However, data in b(pn)2 is stored into variables instead of buffers; this makes
necessary to distinguish the value of a variable before the execution of an atomic action from the
value after its execution, denoted respectively by ′x and x′.
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4 Multi-threaded extension

In this section, we present an extension to Petri nets with control flow to introduce two modelling
features: threads and exceptions. The former is modelled as the capability to execute concurrently
several instances of a sub-net, each being a sequential process. By restricting parallelism to sequen-
tial threads running concurrently, it becomes possible to introduce in a simple way an exception
mechanism. Notice that this extension is compatible with Petri nets with synchronisation. Notice
also that exchanging parallel composition with threads does not limit expressivity. Indeed, instead
of a parallel composition N1 ‖N2, it is possible to specify a sequence like start(N2) #N1 # wait(N2)
where start(N2) and wait(N2) are appropriate nets to respectively start a new thread as an instance
of N2 and wait for its termination. This results in essentially the same behaviour.

To start with, we introduce the sequential fragment of the extension, defining Petri nets with
exceptions. On the top of this model, a new construct is added to support threading, leading to
define Petri nets with threads. In most of this section, we deal with unmarked Petri nets; this will
be justified when the elements to understand the reasons for this choice will be available. At the
end, we will see how to introduced markings again.

4.1 Sequential fragment and exceptions

We consider a model of Petri nets with exceptions, similar to Petri nets with control flow. The main
differences are that there is no parallel composition and that control flow places are now coloured
by two kind of tokens:

– black tokens • are used for regular control flow;
– white tokens ◦ are used for exception control flow.

As a consequence of this change, we will need to redefine the control flow operations.

Definition 10 (Petri nets with exceptions). A Petri net with exceptions is a tuple (S, T, `, σ)
where:

– (S, T, `) is a Petri net;
– σ is a function S → S that provides a status for each place;
– every place s ∈ S with σ(s) ∈ {e, i, x} is such that `(s) = {•, ◦};
– there is exactly one entry place and one exit place in S.

Moreover, every marked Petri net with exception is assumed to be control-safe, i.e., its initial
marking and any marking reachable from it are such that exactly one control flow place is marked
and this marking is either {•} or {◦}. ♦

Notice that the control-safe requirement on Petri nets with exceptions does not really imply
that they are sequential. However, this is enough since we ensure that exactly one control flow
token resides in a net and so we can guarantee its correct transmission from one net to another
through the control flow compositions.

Operator nets. By discarding the parallel composition, we consider only three of the previously
defined control flow operations. Their behaviour is adapted to the possibility of an exception
occurrence. Moreover, we define a new trap operator to capture exceptions. Let N1 and N2 be two
Petri nets with exceptions:

– sequential composition N1 # N2 is executed as usual, but if an exception occurs during the
execution of N1, then N2 is not executed and the exception is propagated outside of the
composition (i.e., a token ◦ is produced in the exit place of the sequence);

– choice N1�N2 is as usual (but exceptions may occur during the execution of either N1 or N2);
– iteration N1 ~N2 is executed as usual, but if an exception occurs during an execution of N1,

then N2 is not executed and the exception is propagated outside of the composition;
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– trap N1 .N2 starts its execution as N1, and if an exception occurs during the execution of N1,
then N2 is executed once; otherwise N2 is not executed at all. So, N2 can be considered as an
exception handler.

These operators are defined as previously using operator nets and a two-phases algorithm
(gluing and merging). The gluing phase has to be redefined but the merging phase is exactly the
same as defined for Petri nets with control flow. The new operator nets are depicted in figure 14.
As previously, they can be understood as if each transition t�i , for � ∈ {#,�,~, .}, is to be replaced
by the i-th operand net, the labels on the arcs meaning:

– if •, only black tokens are allowed to flow on this arc;
– if ◦, only white tokens are allowed;
– it ?, both black and white tokens are allowed.

e

i

x

t#1

t#2

•

?

•

?

t◦1

t◦2

◦

◦

◦

◦

e

x

t�1 t�2

• •

? ?

t◦0

◦

◦

e

x

t~1

t~2

•
?

t◦0

◦

◦

e

i

x

t.1

t.2

•

?

◦

?

t◦1

t◦2

◦

◦

•

•

Fig. 14. Operators nets N#, N�, N~ and N. (left to right). All transition guards are True.

Consider for instance the left most net, that specifies the sequence operator, and take N1 #N2

the sequential composition of N1 and N2. N# is started by putting one token in its entry place,
if this is •, transition t#1 and thus net N1 is executed. When it terminates, it produces a token
in the internal place. Again, if this is •, t#2 and thus N2 is executed until it puts a token in the
exit place. But, if N1 terminates with a token ◦, indicating an exception during the execution of
N1, transition t◦2 is executed instead of t#2, which results in skipping N2 and propagating the error
until a trap. Similarly, if the net is started with ◦ in the entry place, this is directly propagated to
the exit place through transition t◦1. The situation is similar for the choice and iteration operators.
Consider now the trap operator net N.. It has the same structure as N# but different tokens on
the arcs after the internal place: here, if N1 terminates with •, this token is directly propagated
to the exit place; but if N1 produces ◦, this token allows to execute t.2 and thus N2, which is how
the trap actually allows to capture exceptions. Notice that the arcs going out of the transitions t�i
allow any token to be produced as the result of the execution of Ni.

In order to know how the labelling of arcs in an operator net influences the labelling of arcs in
the resulting nets, we define a function θ that maps a pair of arcs labels (in operator and operand
nets) to the label that has to be used in the resulting net. This function is defined by the array
depicted in figure 15.

Consider for instance transition t.1 in operator net N. and assume an operand net N1 that has
an entry places e with outgoing arcs to two transitions:

e
{•}−−−−−−−−−→ t1 and e

{◦}−−−−−−−−−→ t2 .

When N1 is substituted to t.1, its place e becomes the entry place of the resulting net that also
includes t1 as well as t2. But the operator net allows only • to enter t.1 and thus to enter N1. To
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operator label

operand label

m

∅

{◦}

{•}

{⊥}

∅

{⊥}

{•}

{•}

{⊥}

∅

{⊥}

{◦}

{◦}

m

∅

{◦}

{•}

{?}

∅

∅

∅

∅

∅

Fig. 15. The definition of θ, where m is a multiset over E that is neither {•}, {◦} nor ∅.

enforce this, the labels of the arcs outgoing from e in the resulting net are computed using θ and
we have:

e
θ({•},{•})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t1 =⇒ e

{•}−−−−−−−−−→ t1 ,

e
θ({•},{◦})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t2 =⇒ e

{⊥}−−−−−−−−−−−→ t2 .

So the arc to t1 is preserved because it is allowed while the arc to t2 is relabelled with {⊥}. As a
result, t2 becomes a dead transition because ⊥ is not in the type of control flow places. So, tokens ◦
introduced in e flow through the transition t◦1 (from N.) in the resulting net, which is the expected
behaviour. Because any token is allowed to flow out of t.1, the arcs to the exit place of N1 is not
changed (see the {?} column in figure 15). Consider now transition t.2, substituted with the same
net N1. The result of applying θ is now:

e
θ({◦},{•})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t1 =⇒ e

{◦}−−−−−−−−−→ t1 ,

e
θ({◦},{◦})−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t2 =⇒ e

{⊥}−−−−−−−−−−−→ t2 .

So, the precise meaning of the arc to t.2 is actually “take one token ◦ in the internal place and start
the net substituted to t.2”. So, a token ◦ is directly consumed by t1, i.e., by the transition that
corresponds to the regular starting of N1.

Gluing phase. We can now define the new gluing phase. Compared with the previous definition,
the new one does not involve Cartesian products of entry or exit places because there is exactly
one of each in every Petri net with exceptions. Instead, a simple merging of the combined places
is enough to enforce the desired control flow. On the other hand, the definition takes into account
the use of θ and the presence of the additional transitions t◦j from the operator nets.

Let N1
df= (S1, T1, `1) and N2

df= (S2, T2, `2) be two disjoint Petri nets with exceptions. Take
� ∈ {#,�,~, .} and the corresponding operator net N�

df= (S�, T�, `�) assumed disjoint from both
N1 and N2. Composition N1 �N2 is N df= (S, T, `) defined as follows.

First, the nodes from N1 and N2 are copied to N , together with the arcs connecting them. So,
for 1 ≤ i ≤ 2, for all si ∈ Si and all ti ∈ Ti

– si is also a place in S with `(si)
df= `i(si) and σ(si)

df= σi(si);
– ti is also a transition in T with `(ti)

df= `i(ti);
– `(si, ti)

df= `i(si, ti) and `(ti, si)
df= `i(ti, si).

The transitions of the operator net that are not replaced by a Ni are also copied to the resulting
net: for all t ∈ T� \ {t�1, t�2}, we also have t ∈ T with `(t) df= `�(t).

Finally, entry and exit places are combined to enforce the desired control flow. To do so, we
rely on the operator net N�: we consider in turn all the places s� of N� and collect in a set P
the places originated from each Ni that should be merged and become the realisation of s� in the
resulting net. So, for 1 ≤ i ≤ 2:

– if `�(s�, t�i ) 6= ∅ then the entry place ei from Ni is added to P ;
– if `�(t�i , s�) 6= ∅ then the exit place xi from Ni is added to P .
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The places in P are merged, yielding a new place s whose label and status are that of s�. The last
operation related to s� is to adjust through θ the labelling of the arcs between s and the transitions
originated from each Ni; moreover, s has to be connected to the transitions originated from N�:

– for 1 ≤ i ≤ 2, for all ti ∈ Ti, and for all c ∈ N e
i ∪ N x

i : `(s, ti)
df= θ(`�(s�, t�i ), `i(c, ti)) and

`(ti, s)
df= θ(`�(t�i , s�), `i(ti, c));

– for all t ∈ T� \ {t�1, t�2}, `(s, t)
df= `�(s�, t) and `(t, s) df= `�(t, s�).

Optionally, the transitions in the resulting net having an incoming arc labelled by {⊥} can be
removed because they are dead transitions.

An exception mechanism. What we have defined so far is a way to separate a regular control
flow from an exception control flow. However, this is not really an exception mechanism since we
cannot yet associate information to the occurrences of exceptions.

Usually, an exception is given a class (i.e., the exception type) and a value (e.g., a message);
however we can consider that this is just one arbitrary value. To store this information, each Petri
net with exception can be equipped with a data place named except whose type Err allows to store
the desired values. Using a single place is possible since a Petri net with exception is sequential so
there cannot occur more than one exception at the same time.

Then, to raise an exception associated with a value e ∈ Err , we can use the Petri net Re
depicted in figure 16. Its behaviour is very simple: when the transition fires, it changes the regular
control flow to exception control flow (i.e., consumes a black token in the entry place and produces
a white token in the exit place), while storing the exception value in place except.

e x

except Err

• ◦

e

e

g(x)

x

except Err

• •

x

e

g(x)

x

except Err

• ◦

x

Fig. 16. Left: net Re that raises an exception with value e ∈ Err . Middle: net Cg that catches an exception
value according to a Boolean function g. Right: net Pg that catches and propagates an exception value
according to a Boolean function g.

The exception value stored in except is intended to be retrieved by an exception handler. Most
programming languages allow to select the exception to catch, usually according to its type. Let
us consider a Petri net N from which we want to catch exceptions e1 or e2 to trigger handlers H1

and H2 respectively, while we want to let the other exceptions propagate to an outer handler. This
is possible by combining a trap to capture the error and a choice to select the handler. Consider
the Petri nets Cg and Pg depicted in figure 16, they are parametrised by a Boolean function g that
is used in the guards to accept or refuse an exception value. Using these nets, our situation may
then be modelled as:

N .
(
(Cλx:x=e1 #H1)� (Cλx:x=e2 #H2)� Pλx:x/∈{e1,e2}

)
We can treat in a similar way the case where, instead of propagating an unknown exception, we
want to handle it using a net H:

N .
(
(Cλx:x=e1 #H1)� (Cλx:x=e2 #H2)� (Cλx:x/∈{e1,e2} #H)

)
4.2 Threading mechanism

We now define a model of Petri nets with threads that introduces various features allowing to:

– run concurrently multiple instances (threads) of a Petri net with exceptions;
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– create (or spawn) threads dynamically;
– wait for threads termination;
– setup communication between threads through shared buffer places;
– check relationship between threads (parenthood, siblinghood, etc.);
– test whether a thread as terminated with an exception or not;
– implement function calls on the top of threads.

We call task a Petri that supports threads, i.e., a task is a Petri net from which separate
concurrent executions may be obtained. Each of this execution is a sequential process called a
thread. A task is thus a static object that is implemented as a Petri net (or part of a Petri net),
whereas a thread is a dynamic object that corresponds to tokens in the Petri net implementation
of a task. To distinguish tasks, each is assigned a task name from a set T. Similarly, to distinguish
threads, each is assigned a process identifier (or pid) from a set P.

A task is created from a Petri net with exceptions N and a task name task using a dedicated
operation denoted by Ltask : NM. This result in a Petri net with two distinguished places named
task .start and task .stop. A thread is created by putting a token into the place named task .start;
when it terminates its execution, it creates a token in the place named task .stop, this token may be
collected by another thread that is waiting for this termination. The two places named task .start
and task .stop play the same role for the task that the entry and exit places for the corresponding
Petri net with exceptions.

Finally, tasks may be combined using parallel composition, resulting in Petri nets with threads.
The relations between these various classes of Petri nets is illustrated in figure 17.

Lone : N1M Ltwo : N1M Lthree : N2M

N1 N2

e

x

e

x

one.start

one.stop

two.start

two.stop

three.start

three.stop

‚‚‚‚‚‚
‚‚‚‚‚‚

Fig. 17. The structure of the Petri net with threads framework. Boxes with plain line at the top represent
Petri nets with exceptions N1 and N2, each depicted with its entry and exit place. Boxes with dashed lines
at the bottom represent tasks build from N1 and N2. Plain arcs show which task derives from which Petri
net with exception. Dotted arcs indicate how entry (resp. exit) places in the Petri nets with exceptions
are transformed into start (resp. stop) places in the tasks. Finally, the large box with double line at the
bottom represents the Petri net with threads obtained as Lone : N1M ‖ Ltwo : N1M ‖ Lthree : N2M.
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Petri nets with threads. Tasks are named from the elements of T, these names are used to build
place names in order to be able to start a thread or wait for its termination. So, we assume that,
for all task ∈ T, we have {task .start, task .stop} ⊂ S \ {e, i, x, ε}.

Running several instances of a Petri net could not be obtained by just putting several tokens in
its entry place because they would be all identical. Instead, we build the task so that every place s
of the original Petri net is copied to the task with the type P× `(s) in order to associate each token
to a pid. The arcs connected to these places are changed accordingly to pairs (π, x) where π ∈ V
is a reserved variable that can be interpreted as “my pid”. Some places should not be changed:
these are the non-anonymous data places that may be merged later on with those from other tasks
composed in parallel. These named places can be thought as external shared resources used from
within the task and, as such, not modified by the operation.

More precisely, let N df= (S, T, `, σ) be a Petri net with exceptions, Ltask : NM df= (S′, T ′, `′, σ′) is
defined as follows:

– T ′
df= T and, for all t ∈ T ′, `′(t) df= `(t);

– for every place s ∈ S such that σ(s) ∈ S \ {e, i, x, ε}, s is also a place in S′ with `′(s) df= `(s)
and σ′(s) df= σ(s); moreover, for all t ∈ T ′, `′(s, t) df= `(s, t) and `′(t, s) df= `(t, s);

– for every place s ∈ S such that σ(s) ∈ {e, x, i, ε}, there is a place s′ in S′ with `′(s′) df= P× `(s)
and

σ′(s′) df=


task .start if σ(s) = e,
task .stop if σ(s) = x,
σ(s) otherwise;

moreover, for all t ∈ T ′, `′(s′, t) df= {(π, x) | x ∈ `(s, t))} and `′(t, s′) df= {(π, x) | x ∈ `(t, s))}.

The parallel composition of two disjoint nets N1
df= (S1, T1, `1, σ1) and N2

df= (S2, T2, `2, σ2) is
denoted as usual by N1 ‖N2 and defined by applying the merging phase to net (S1∪S2, T1∪T2, `1∪
`2, σ1 ∪ σ2).

Definition 11 (Petri nets with threads). The class of Petri nets with threads is the smallest class
of Petri nets such that:

– if N is a Petri net with exceptions and task ∈ T, then Ltask : NM is a Petri net with threads;
– if N1 and N2 are Petri nets with threads then so is N1 ‖N2. ♦

As noted above, we are working with unmarked nets. Indeed, applying the task construction to
a marked net would raise the problem of choosing a thread to associate to the tokens. We generally
cannot know this in advance. Another choice would be to multiply the tokens so that each possible
thread can use its own copy. But this immediately produce large or infinite markings: for each
token value v, we would create the set of tokens P×{v} in the task. Since none of these solution is
satisfactory, we feel it is more reasonable to keep with unmarked net. However, when a system is
completely constructed, it consists in tasks in parallel. We can choose one of the tasks as the main
one and put a token in its start place: assuming that this task is called main, the initial marking
just has one token (π0, •) in the place named main.start, where π0 is the pid of the initial thread.

Process identifiers. Each thread is identified by a process identifier, or pid, from set P. We
assume that it is possible to check whether two pids are equal or not, since different threads must
be distinguished. Other operations may be applied to thread identifiers, in particular:

– π ^1 π
′ holds iff π is the parent of π′ (i.e., thread π spawned thread π′ at some point of its

execution);
– π ^ π′ holds iff π is an ancestor of π′ (i.e., ^ is ^+

1 );
– π t1 π

′ holds iff π is a sibling of π′ and π was spawned immediately before π′ (i.e., after
spawning π, the parent of π and π′ did not spawn any other thread before spawning π′);

– π t π′ holds iff π is an elder sibling of π′ (i.e., t is t+
1 ).

Throughout this section, we denote by Ωpid the set of the four relations introduced, as yet
informally, above together with the equality. (Note that other useful relations may be derived
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from those in Ωpid .) In particular, only the operators in Ωpid can be used to compare pids in
the annotations used in Petri nets. Crucially, it is not allowed to decompose a pid (to extract,
for example, the parent pid of a given pid) which is considered as an opaque value (or a black
box). This implies, in particular, that no literals nor concrete pid values are allowed in Petri net
annotations (i.e., in guards and arc labels) involving the pids.

This formalism is very expressive while still decidable. Indeed, it can be shown that the monadic
second order theory of P equipped with ^1 and t1 can be reduced to a theory of binary trees
equipped with the left-child and right-child relation, which has been shown exactly as expres-
sive as tree automata [92]. However, many simple extensions of this formalism based on pids
(de)composition are undecidable.

We assume that there exists a function ν(π) that generates the next child of the thread identified
by a pid π. There is no other way to create a thread’s pid. A possible way of implementing dynamic
pids creation—adopted here—is to consider them as finite sequences of positive integers: for all
π, let i be the count of threads already spawned by π, set ν(π) df= π.(i + 1) (i.e., we write down
the pids as dot-separated sequences). To be able to correctly implement ν, each thread is assumed
to maintain a count of the threads it has already spawned. Then the relations in Ωpid other than
equality are given by:

π ^1 π
′ ⇐⇒ ∃i ∈ N+ : π.i = π′

π ^ π′ ⇐⇒ ∃n ≥ 1,∃i1, . . . , in ∈ N+ : π.i1. · · · .in = π′

π t1 π
′ ⇐⇒ ∃π′′ ∈ P,∃i ∈ N+ : π = π′′.i ∧ π′ = π′′.(i+ 1)

π t π′ ⇐⇒ ∃π′′ ∈ P,∃i < j ∈ N+ : π = π′′.i ∧ π′ = π′′.j

Such a scheme has several advantages: (1) it is deterministic and allows for distributed genera-
tion of pids; (2) it is simple and easy to implement and there is no reuse of pids; and (3) it may be
bounded by restricting, e.g., the length of the pids, or the maximum number of children spawned
by each thread. To implement ν, each thread has to maintain a counter of its children. This can be
made in a global place named pidcount and typed by P×N+: each token (π, i) in this place records
that the thread identified by π has spawned i children so far. The next child spawned by π will
thus receive pid π.(i+1). Here again, we have a convention that implies a discipline: when a thread
identified by π is created, a token (π, 0) has to be produced in place pidcount; when the thread is
terminated and its control flow token removed from the stop place, it is important to remove also
its token from place pidcount. Notice that it is possible to automatically enforce this discipline by
providing high-level operations to encapsulate those defined here or by defining a syntactical layer.
Notice also that having place pidcount requires to define an initial marking with token (1, 0) in it,
additionally to the token (1, •) in the start place of the main task.

4.3 Use cases

To illustrate how Petri nets with threads may be used in practice, we now show three simple
examples:

– how a thread can spawn a child;
– how a thread can wait for another to terminate;
– how to emulate function calls with threads.

We assume that the implementation of pids presented above is used, as well as the place named
pidcount to store for each thread the number of children it has spawned already.

Starting threads. Spawning a child as an instance of a task task is possible with a net having
a single transition as depicted in the left of figure 18; it does the following:

– get the current count i of children from place pidcount;
– increment it and store it again;
– put a token (ν(π), •) = (π.(i+ 1), •) in place task .start;
– store a token (π.(i+ 1), 0) in place pidcount to allow the new thread to spawn children.
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It is worth noting that we use the special variable π to capture the identity of the thread that is
executing the transition. We have to remember that this net will be embedded into a larger Petri
net with exceptions that itself will be transformed into a task. During this transformation, the
control flow part (and only it here) will be transformed: entry and exit places will receive type
P×{•, ◦} instead of {•, ◦} and the attached arcs will receive labels {(π, •)} instead of {•}. So, the
presence of π on the arc from the entry place to the transition will ensure the consistency of the
execution with respect to the tokens consumed and produced in places pidcount and task .start.

e x

P× Npidcount

P× {•, ◦}task .start

• •

{(π, i)} 7→ {(π, i+ 1), (π.(i+ 1), 0)}

(π.(i+ 1), •)

e x

P× Npidcount

P× {•, ◦}task .stop

• •

{(π′, i)}

(π′, r)

Fig. 18. Left: spawning a child thread. Right: waiting for another thread.

Terminating threads. Waiting for a thread to terminate can be achieved similarly using a net
like the one depicted on the right of figure 18. When it fires, the transition does the following:

– get the token (π′, r) from place task .stop, which is possible only when thread π′ has terminated;
– remove the corresponding token from place pidcount.

Variable r is bound to either • or ◦. This could be used to check in the guard the return status
of the terminated thread: r = • means that the thread terminated normally, but r = ◦ means
that it has been terminated by an exception. In the guard, we could also test the value of π′. For
instance, by specifying π ^ π′, we could restrict the behaviour so that only children of the thread
that executes the transition are awaited for.

Calling functions. To emulate a function call, a thread can spawn a child as an instance of a
task fun and immediately wait for its termination. The main difficulty is to pass parameters to the
called function and get a result back. This can be solved by using two places named fun.call and
fun.return to store respectively the tuple of call arguments and the returned value. The spawned
thread has to be designed so that it uses these places to correctly get its arguments and to set a
return value, i.e., it has to be designed as a function. As previously, this discipline could be best
enforced using a syntactic layer.

A possible termination of a function is also through an exception. We already know how to
check the return status of a thread, and thus of a function. But in the case of function calls, we
have to propagate an exception raised in the function. Assume that we use a named place except
to store exception values as proposed before. We see now that the parent thread needs to access
this place so it can retrieve the exception value from the called function and properly propagate
the exception. This is possible by choosing to define except as a global buffer place (i.e., never
hidden) with type P× Err . To summarise, emulating a function call using threads requires:

– two transitions, one to spawn a thread and one to wait for it;
– two global places named fun.call and fun.return to pass the arguments and retrieve the return

value;
– the global place named except with type P × Err to correctly propagate exceptions from the

function;
– a specially crafted task fun that properly reads its argument and sets its return value.
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◦

Fig. 19. Top left: the implementation of function fact, where err is a suitable error value. Top right: a
sub-net Nc that calls fact(n) where n ∈ Z. Bottom left: a sub-net Nr that waits for fact to return. Bottom-
right: a sub-net Ne that waits and propagate an exception from fact. As usual, labels {•} on arcs have
been omitted.

This is illustrated in the top left of figure 19 where a Petri net with exceptions is defined to
implement function fact (i.e., λ n : n!).2 The behaviour of this net is as follows:

– when the function is called, t0 can consume the value of the parameter n in place fact.call and
produce the result of n! in the anonymous place on the right;

– if n! is not defined (i.e., if n < 0), the undefined value ⊥ is produced in this place. In such a
case, t2 can fire, and produce both a token ◦ in the exit place and an exception value err in
place except;

– if n! is well-defined (i.e., if n ≥ 0), t1 gets its value and puts it in place fact.return, as well as
a token • in the exit place.

Calling this function can be divided into three activities, implemented by three nets as depicted
in figure 19:

– Nc performs the call and passes the argument n ∈ Z. It is very similar to the thread spawning
depicted in figure 18 with only two differences: it produces a token in place fact.call to pass
the argument; and it stores the identity of the new thread in place child so it will be possible
to wait for exactly this thread;

– Nr handles a regular return from the function. It is very similar to the thread waiting depicted
in figure 18 with three differences: it only waits for a regular termination and so gets (π′, •)
from fact.stop; it retrieves the return value from place fact.return (and discard it, but it could
be used); and it gets the identity of the thread to wait for from place child ;

2 Notice that we have not implemented an algorithm to compute factorial: this is of course possible, even
with a recursive algorithm since we now have functions; but our purpose is to illustrate complex control
flow involving a function call, and exceptions propagation, not algorithmic aspects.
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– Ne catches any exception raised in fact and propagate it. Unlike Nr, Ne consumes a token
(π′, ◦) from fact.stop, which ensures that an exception has been raised. In order to propagate
it, two actions are necessary: change the exception value associated with π′ in place except so
that it is now associated with π; and put a token ◦ in the exit place to switch the caller thread
to exception control flow.

The complete net that performs the call to fact can be obtained by composing these sub-nets as:

(Nc # (Nr �Ne)) /child

4.4 Verification issues

Using exception has no significant impact on verification and the techniques discussed in section 2.5
can be reused with a slight adaptation. In particular, we cannot rely anymore on the notion of place
invariant for the control flow part since its now coloured. However, our technique of generalised
exclusion remains usable: in the control flow of a Petri net with exceptions, only one place can be
marked, which allows to exclude from the exploration of successor states all the transitions with
an input from another control flow place than the marked one (or an output to the marked one).

On the other hand, using threads yields more problems. Indeed, the chosen scheme to generate
pids can accelerate state explosion or lead to infinite state spaces. This is the case for instance in
the system depicted in figure 20. It models a typical architecture for an Internet server (client part
is not modelled):

– a main thread starts a bunch of server threads to wait for incoming connections. This is
modelled by transition init in task main;

– each server thread executes a loop to either start a handler thread to process an incoming
connection, or collect a terminated handlers. This is respectively modelled by transitions spawn
and wait in task server ;

– the server threads may terminate through transition quit , for instance if the program receives
the signal to shutdown (which is not modelled here);

– a handler thread may perform computation (here modelled by transition comp) or call auxiliary
functions (here modelled by transitions call and ret). For simplicity, this example assumes a
sequence of these two behaviours with no possibility of exceptions;

– the auxiliary function is modelled by task fun with one single transition body ;
– in order to control resources consumption, N server threads are initially started and each one

may not spawn more than M handler;
– to simplify the picture, we have omitted the machinery involving place pidcount since it follows

exactly the same principle as in the previous examples.

Assume N = M = 1, which constrains the system to be purely sequential, and let us execute
some transitions. We show for each state the list of active threads, each provided as a term π:i@task
where π is the pid, i is the number of children thread π has spawn so far as stored in place pidcount,
and task is the name of the task that supports the thread:

1:0@main init−−−−−−−−−−−−−−−−−−−−−−−−−→ 1:1@main, 1.1:0@server
spawn−−−−−−−−−−−−−−−−−−−−−−−−−→ 1:1@main, 1.1:1@server , 1.1.1:0@handler
comp−−−−−−−−−−−−−−−−−−−−−−−−−→ 1:1@main, 1.1:1@server , 1.1.1:0@handler
call−−−−−−−−−−−−−−−−−−−−−−−−−→ 1:1@main, 1.1:1@server , 1.1.1:1@handler , 1.1.1.1:0@fun
ret−−−−−−−−−−−−−−−−−−−−−−−−−→ 1:1@main, 1.1:1@server , 1.1.1:1@handler
wait−−−−−−−−−−−−−−−−−−−−−−−−−→ 1:1@main, 1.1:1@server

From the last state, the server thread is allowed to spawn a new handler that gets the new pid 1.1.2,
which leads to a similar but completely new sequence of states. This may be repeated infinitely,
leading to an infinite state space.

The reason for that is the use of counters of already spawned children: on the one hand, it
guarantees that every generated pid is not in use, but on the other hand, these counters may be
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Fig. 20. A model of a multi-threaded server program composed of four tasks, where L
df
= {(π.i, •) | 1 ≤

i ≤ N} and C
df
= {(π.i, 0) | 1 ≤ i ≤ N} for two chosen integers M,N ∈ N+. Omitted arc labels are here

{(π, •)}.

infinitely incremented. To solve this problem, we propose a method that allows to identify states
that differ only by the value of pids, but have the same future (up to pids values). Notice that
another solution would have been to change our implementation of pids, for instance by using
a finite pool of pid values from which new pids are picked at spawning time and returned at
termination time. However, our solution probably remains more interesting. Indeed:

– collecting pids of terminated threads is really complicated in a Petri net framework: each thread
has a unique control flow token that is easy to collect from the stop place of a task; but it
may also have data tokens stored in many places in the net and left here when the thread
terminates. So, before to reuse any collected pid, we should ensure that no data token for it
still exists in the net. This is a test to zero, which requires an extension of our base model with
inhibitor arcs, possibly to the price of decidability [88, 94];

– our method is designed to recognise equivalent states when pid values are abstracted. As such,
it handles the lack of pid reuse but also other kind of equivalences, in particular symmetric
executions (this is explained below), but not only. To achieve similar results, another method
should be complemented by an equivalence reduction technique [60][58, sec. 8.4];

– the proposed implementation of pids allows to easily define relations between them, like ^
or t. To achieve this, another method may need to maintain explicitly the relations between
allocated pids;

– our method takes pids relationship into account to achieve more reduction. For instance, if
π1^π2 is observable by the system, then these two pids should not be considered as equivalent.
However, if the system cannot observe this property, we may consider swapping those pids to
obtain equivalent states. This aspect is automatically handled by our method.

Marking equivalence. Checking marking equivalence is achieved in two phases: first, markings
are mapped to three-layered labelled directed graphs, and second the obtained graphs are checked
for isomorphism.

The three-layered graphs are constructed as follows (see figure 21 for such a graph). The first
layer is labelled by places, the second layer by (abstracted) tokens and the third one by (abstracted)
pids. The arcs are of two sorts: those going from the container object toward the contained object
(places contain tokens which contain pids), and those between the vertexes of the third layer
reflecting the relationship between the corresponding pids through the comparisons in Ωpid \ {=},
denoted below as /j . To simplify figures, we do not consider ^ and t in Ωpid but only ^1 and
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t1 (the former add no information since they are transitive closures of the latter). In this process,
place pidcount is considered in a special way: it is not part of the first layer but allows to add nodes
at the third layers (next child of each pid). This is required to ensure that equivalent markings
lead to equivalent executions (see below).

To simplify the presentation and without loss of generality, we assume that the only data
structures of the colour domain are non-nested tuples. The method presented below can be extended
in a straightforward way to handle arbitrary data structure. The abstraction mapping b·c : D∪P→
D∪ {†} is defined as the identity on D and as a constant mapping † on P, canonically extended to
tuples: b(v1, . . . , vn)c df= (bv1c, . . . , bvnc).

Definition 12 (Graph representation of a marking). Let M be a reachable marking of a Petri net
with threads N , the corresponding graph representation R(M) df= (V ;A,A/1 , . . . , A/k ;Λ), where V
is the set of vertexes, A, A/1 , . . . , A/k are sets of arcs and Λ is a labelling on vertexes and arcs,
is defined as follows:

1. First layer: for each place s in N such that M(s) 6= ∅ and σ(s) 6= pidcount, s is a vertex in V
labelled by s.

2. Second layer: for each place s added to the first layer, and for each token v ∈ M(s), v is a
vertex in V labelled by bvc and there is a non labelled arc s −−−−−−−−→ v in A.

3. Third layer:
(a) for each vertex v added at the second layer, for each pid π in v at the position n (in the

tuple), π is a vertex labelled by † in V and there is an arc v n−−−−−−−−→ π in A;
(b) for each token (π, i) in place pidcount, π.(i + 1), the potential next child of π, is a vertex

in V labelled by †;
(c) moreover, for all vertexes π, π′ added at this layer, for all 1 ≤ j ≤ k, there is an arc

π
/j−−−−−−−−→ π′ in A/j iff π /j π

′, i.e., A/j defines the graph of relation /j on V ∩ P.
4. There is no other vertex nor arc in R(M). ♦

It is important to understand why at point 3.(b) we need to add the next child of each pid in
the third layer. Consider two states s and s′ such that the pids in s are {1, 1.1} and the next child
of 1 is 1.2, whereas the pids in s′ are {5, 5.1} and the next child of 5 is 5.4. This is possible if 5 has
spawned 5.2 and 5.3 and both are terminated and have been collected. Then consider a bijection
h

df= {1 7→ 5, 1.1 7→ 5.1}. Everything is fine as far as preserving the parenthood/siblinghood of the
corresponding pids is concerned. Let us now imagine that the two corresponding active threads,
1 and 5, created new pids, leading respectively to new states r and r′ with pids {1, 1.1, 1.2} and
{5, 5.1, 5.4}. Then the two new states are no longer equivalent, because 1.1 t1 1.2 yet 5.1 6t1 5.4.

Definition 13 (Marking equivalence). Two markings M1 and M2 of a Petri net with threads
are equivalent, which is denoted M1 ∼ M2, iff their graph representation R(M1) and R(M2) are
isomorphic.

If h is the bijection that relates the pids in the isomorphism between R(M1) and R(M2), we
may write M1 ∼h M2. ♦

Properties. Important properties can then be proved [kkpp2], in particular the two following
ones. Let M1 and M2 be two markings of a Petri net with threads. Then:

1. ∼ is an equivalent relation.
2. If M1 ∼h M2 and M1[t, β〉M ′1, then M2[t, h ◦ β〉M ′2 and M ′1 ∼h′ M ′2 with h and h′ coinciding

on the intersection of their domains.

The second property is crucial because it states that two equivalent markings produce equivalent
executions and that the pids are consistently swapped along the executions.

Reducing infinite behaviours. In the Internet server example presented above, our approach
allows to produce a finite state space of the system by detecting loops in the behaviour, i.e., parts
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of the execution that are repeated with new pids. Consider again the run of the system with
N = M = 1 as given above:

1:0@main init−−−−−−−−−−−−−−−−−−−−−−−−−→ 1:1@main, 1.1:0@server
spawn−−−−−−−−−−−−−−−−−−−−−−−−−→ · · · comp−−−−−−−−−−−−−−−−−−−−−−−−−→ · · · call−−−−−−−−−−−−−−−−−−−−−−−−−→ · · · ret−−−−−−−−−−−−−−−−−−−−−−−−−→ · · ·
wait−−−−−−−−−−−−−−−−−−−−−−−−−→ 1:1@main, 1.1:1@server

The two states on the right are equivalent as shown by their graph representations depicted in
figure 21. So, applying the marking equivalence here allows to reduce an infinite state space to a
finite cyclic one.

main.stop

main.stop

(1, •)(†, •)

1†

1.2†

server .start

server .start

(1.1, •)(†, •)

1.1 †

1.1.1 †

count

count

(1.1, 0)(†, 0)

0

^1

0

^1

^1

t1

0

first layer

second layer

third layer

Fig. 21. The graph representations of state {1:1@main, 1.1:0@server}. For {1:1@main, 1.1:1@server}, the
only difference is that node 1.1.1 has to be replaced by 1.1.2 (with the same label). For simplicity, we use
place names instead of their identities.

Handling symmetric executions. Let us now consider the same example with N = 2 and M = 1:
two server threads are started and each can have at most one active handler child. This system
exhibits symmetric executions since the behaviours of both threads are equivalent and completely
independent. Both threads execute concurrently so their behaviours are interleaved in the marking
graph. For instance, the state space has a diamond when the two threads spawn concurrently a
child as shown in figure 22. The graph representations of the markings for states 2 and 3 are
depicted in figure 23.

Because relation t1 has been taken into account (see the dotted edges in the graph represen-
tations), the two markings are not equivalent. However, it should be considered that nowhere in
the system t1 is used. So, the fact that two states are siblings or not cannot have any influence on
the behaviour of the system. As a consequence, we can remove t1 from Ωpid . Doing so, the graph
representation of both states 1 and 2 becomes that depicted at the bottom of figure 23 and the two
graphs are now isomorphic. Indeed: let us first notice that the bottom graph perfectly overlaps the
middle graph; then, let us imagine that we flip the bottom graph horizontally except its top row,
then it would now perfectly overlap the top graph.

As a consequence, symmetric executions can now be identified, which results in a reduced graphs
where, in particular, only one interleaving of concurrent executions is considered.

Efficiency of graph isomorphism. The complexity of checking graph isomorphism is, in general,
not known. In order to evaluate how efficient in practice it turns out to be in our case, we generated
random states and measured the time spent in checking isomorphism of the corresponding graphs.
We only considered pairs of markings where the same places are non-empty. Indeed, pairs that do
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init

spawn spawn

spawn spawn

Fig. 22. An initial fragment of the state space for N = 2 and M = 1. In the left branch of the diamond,
thread 1.1 spawns first a handler, then thread 1.2 does; this is the reverse in the right branch.

not match this way can be checked for non-equivalence in linear time with respect to the number
of places, without even converting them to graphs.

Our methodology has been to generate random states and compare each with similar ones
obtained through all possible transformations based on:

– pids swapping preserving isomorphism;
– shuffling of tokens throughout places;
– shuffling of tokens components (remember that tokens are tuples here);
– exchange of components between tuples (pids, data or both);
– data replacement;
– pids replacement;
– shifting of integers that compose pids.

To check graph isomorphism, we used NetworkX [51] that implements the VF2 [31] algorithm that
is considered as one of the fastest algorithms for graph isomorphism. We carried out more than
two millions of comparisons, on the basis of which it may be observed that:

– computation time is growing with the size of the markings and with the percentage of pids in
tokens (with respect to data);

– computation time improves when more distinct data values are involved in markings.

None of these observations should really be surprising. In particular, the presence of data leads to
labelled nodes that can be quickly matched when comparing two graphs.

Moreover, we observed that the general evolution of computation time is linear with respect
to p3/2 where p is the number of distinct pids in the compared states. With respect to p2, the
evolution of time is clearly sublinear. Hence it is justifiable to estimate that computation time is
in mean polynomial (around p3/2) with respect to the number of threads in the observed system.
Finally, we determined that the computation time looks slightly less than quadratic with respect
to the number of tokens in compared markings.

It is worth noting that we observed similar results when, instead of considering random states,
we used states from the Internet server example presented above.
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Fig. 23. Top: the graph representation of state 2 from figure 22. Middle: the graph representation of state 3.
Bottom: the graph representation of both states when t1 /∈ Ωpid , where nodes identities have been replaced
by nodes labels.
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As a result, we conclude that the cost of checking state equivalence is very low for states that are
clearly different (most of the compared pairs) and stays good for states that are similar. Moreover,
it should be noted that discovering equivalent states allows to limit the state space exploration.
Thus the time spent in computing equivalences is likely to be often lower than the time required
to computed the whole state space, which obviously holds for infinite state spaces reduced to
finite ones. This reduction may also allow to analyze systems whose complete state space would
simply not fit into the computer’s memory, and thus would have been intractable regardless of the
computation time.

4.5 Related works

Petri nets with threads have been initially defined with a syntax that extends the pbc syntax
with task construction and trap operator [pom6], as well as with time-related operations inspired
from [pom4] (see also section 5.1).

A modelling of multi-tasking systems in the context of M-nets has been proposed in [kp4], based
on a Petri net model developed in [kp2,kp3]. However, it relied on general preemption operators
allowing to suspend, resume or abort arbitrary M-nets, including with nested parallel compositions.
To achieve this level of generality, the coloured Petri net model has been extended with priorities
between transitions. The setting proposed above is much simpler and, at the same time, it is just
as expressive. Indeed, every task can be constructed in a way that allows to suspend, resume or
abort the corresponding threads, as depicted in figure 24. The idea is to add three places for a task
named task :

– when a thread is started as an instance of task , its pid is added to place task .run;
– every transition in the task is added a side loop or a read arc labelled by π to this place so it

can progress only if its pid is present here (a side loop does not reduce concurrency because a
thread is already sequential);

– place task .suspend is the complementary place of task .run; so, to suspend a thread, its pid has
to be moved from place task .run to task .suspend ;

– to resume the execution of a suspended thread, its pid has to be moved back from place
task .suspend to task .run;

– finally, to abort a thread, its pid is removed from task .run and added to task .suspend and
task .abort. This enables transition ta that directly terminates the thread by putting the ap-
propriate token in the stop place of the task;

– to be correct, the input control flow places of ta must be exactly the same as for t, but the arcs
to ta must be labelled with (π, x) so the thread may be aborted in both regular and exception
control flow.

t
...

t
...

ta

(π, x)

P
task .abort

P
task .suspend

P
task .run

π

π

π

P× {•, ◦}
task .stop

(π, ◦)

Fig. 24. Left: a transition in its context within a task; the depicted places are control flow places. Right:
the same transition with additional context to support preemption.

The transformation proposed above to enable for external preemption leads to increase the
size of Petri nets. In particular, the number of transitions is multiplied by two whereas three
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places per task are added. However, it should be noted that this is comparable with the solution
adopted for preemptible M-nets from [kp2,kp3,kp4]. Moreover, transitions priorities used in this
model can be removed by transforming the nets, but to the price of a huge blow-up which is far
more than doubling the number of transitions and leads to intractable nets. On the other hand,
using priorities makes it possible to implement efficient garbage collection: tokens corresponding to
terminated threads, in particular tokens in data places, can be removed from the Petri net using
prioritised transitions, which can be achieved before any other transition in the net is allowed
to fire. In the context of Petri nets with threads, collecting garbage tokens cannot be prioritised
and thus we cannot guarantee that a token from a terminated thread if ever removed from the
corresponding task. However, because pids are never reused, these tokens cannot be confused with
tokens owned by another thread executed later on. They can be considered as garbage, which may
be collected in the background if one wants to model a garbage collector; they could be ignored
by the model-checker to reduce combinatorial explosion; or it may even be the purpose of such an
analysis to decide whether garbage tokens exist or not.

The marking equivalence technique presented to reduce state spaces of Petri nets with threads
is actually an instance of a more general equivalence reduction method defined for coloured Petri
nets in [60]. This method requires an equivalence specification to be consistent [60, def. 1], i.e.,
preserved along the executions of a system, which in our case is a corollary of the properties of ∼h.
As noted in [58, sec. 8.4], proving the consistency is often a complex prerequisite to use equivalence
reduction. And indeed, establishing the properties of ∼h required quite an involved proof [kkpp2].
But this has been done in a general setting and can then be reused in many contexts with a
reasonable effort.

Verification of multi-threaded systems is a very active topic, possibly because threading is the
major paradigm of concurrency in nowadays programming languages. A variety of methods such as
those in [27, 57, 59] (see, e.g., [75] for a survey) address the state explosion problem by exploiting,
in particular, symmetries in the system in order to avoid searching parts of the state space which
are equivalent to those that have already been explored. Some methods, such as [18, 54, 69], have
been implemented in widely used verification tools and proved to be successful in the analysis of
numerous communication protocols and distributed systems. The method proposed in this paper
actually focuses on abstracting thread identifiers and symmetries are addressed only indirectly. So,
not only it reduces symmetric executions but also it can cope with infinite repetitive behaviours.
Moreover, it should be noted that symmetry reduction techniques rely on the computation of a
canonical representation of each state. It has been shown in [30] that this is as hard as computing
a graph isomorphism. So, our method, while being more general than symmetry reduction, is not
computationally more complex.

Our approach appears to be closely related to that developed in [59] (which, incidentally, covers
those in [57, 27]) where a general framework was proposed aiming at reduced state space exploration
through the utilisation of symmetries in data types. More precisely, [59] defines three classes of
primitive data types. Two of these, ordered (for which symmetries are not considered) and cyclic
(which are finite) cannot lead to reductions based on pids. The remaining one, unordered, can in
principle be used for reduction even for an infinite domain [59, section 7.5]. However, the approach
proposed in [59] does not cover the case of dynamic process creation as considered here. Moreover,
when comparing two states for equivalence, the approach of [59] considers only data actually present
in the states. In our case, however, we have to look at additional data (potential children of the
pids present in the states) to ensure the preservation of equivalence over possible behaviours. We
believe that approaches like [59] are insufficient for dealing with dynamic process creation and
checking relationships between pids such as the siblinghood.
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5 Applications

5.1 Modelling time by causality

Starting from [pom3], we have introduced the modelling of time through explicit representation of
clocks in a model. Basically, a clock is composed of a tick transition that increments or decrements
counters stored in places typed by Nω

df= N∪{ω}, where ω is an integer-like value such that ω+i df= ω
and ω > i for all i ∈ Z. Incrementing counters allows to measure the passing of time, decrementing
counters allows to specify structural timing constraints that the system cannot overcome. This is
illustrated in figure 25:

– at the initial state, ticks can occur without changing the marking;
– when t1 fires, it replaces the counters so that min = 0 and max = 10;
– because of its guard, t2 is now disabled until min reaches at least 3;
– each tick occurrence increments the value of min and decrement the value of max . The former

can be incremented infinitely but the latter cannot decrease below zero;
– so t2 becomes enabled after three tick occurrences, but no more than ten ticks can occur because

of the minimal value allowed for max ;
– when t2 fires, it replaces counter max with ω so that ticks can occur again if max had already

reached zero.

Assigning a non-ω value to a decreasing counter can be considered as setting a structural deadline;
conversely, assigning ω to such a counter can be seen as releasing the deadline constraint because
this counter cannot block anymore the occurrence of ticks.

• t1

ωmin

Nω

√

ωmax

Nω

t2x ≥ 3

x 7→ 0

y 7→ 10

x

y 7→ ω

x 7→ x+ 1

y 7→ y − 1

Fig. 25. A simple causally timed system with two counters min and max and a tick transition
√

. Transition
t2 must fire when at least 3 and at most 10 ticks have occurred since t1 has fired.

Such a system models time but actually only involves causality relations between transitions.
That is why we say that time is modelled by causality. Several interesting characteristics of this
approach have been shown, in particular:

– it is usable for practical system modelling and verification, it can even be more efficient than
timed-automata based approaches [btkp2];

– several ticks may be used, they can be kept independent or synchronised [pom3];
– timing features can be introduced in syntactic layers, avoiding to the user the task to deal with

clock modelling [pom4,pom6];
– under reasonable assumption, a causally timed Petri net can be executed in a real time en-

vironment in such a way that ticks occur evenly with respect to environment’s time (this is
detailed below);

– the extra state explosion introduced by tick counters can be compensated for by using appro-
priate abstraction, even allowing in some cases to compute infinite state spaces (see below).
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Real-time execution. When considering a causally timed system, the question arises whether
this system is realistic or not: if we consider an external observer, equipped with a watch, who
looks at tick occurrences, can we arrange any execution of the system so that ticks occur evenly
from the observer’s point of view?

It turns out that this is not possible in general. For instance, consider the system depicted in
figure 25. If we add a transition t3 connected to the bottom place with a side loop, then, the number
of firings of t3 between t1 and t2 is unbounded. But we cannot in a finite amount of observer’s
time execute arbitrarily many firings of t3, except if firing transitions takes no computation time
which is not realistic at all. The problem with t3 is that it can be repeated arbitrarily with no
requirement that time progresses. This is sometimes called a Zeno execution.

In [pom5,pom7], we define a notion of tractable Petri nets with causal time. Such a Petri net is
tractable if there exists a constant δ such that any sequence of at least δ transition firings contains
at least two ticks. This is to say that only bounded execution can occur between two ticks. So, by
choosing a large enough duration in observer’s time, any execution can be scheduled in such a way
that ticks occurrences are even from the observer’s point of view.

Moreover, since we are considering an observer, we can address the question of communication
between the Petri net and its observer. It is easy to produce output to the environment: the observer
simply looks at more than just the tick transition. But it is more complicated to take into account
at the Petri net side inputs from the environment. Indeed, the observer should not be allowed to
modify the Petri net states nor to force events to occur (this would violate the semantics) but may
just ask for some specific events to take place, if they are possible. This can be formalised as a
notion of input ports, each consisting of a transition t and a subset of variables from vars(t). An
input from the environment to the Petri nets becomes a request that a specific transition is executed
with a chosen binding of the selected variables. Then, we can define a notion reactive transitions
to ensure that such a request is always handled within at most one tick. Reactive transitions are
easy to implement using side loops while keeping the Petri net tractable; an example is shown in
figure 26.

1
2

3N t

x > 0

ω

Nω

delay
√y x 7→ 0 x 7→ ω

Fig. 26. A Petri net with causal time where transition t is reactive with respect to input port (t, {y}).
The connection of t with the clock ensures that the net is tractable because t cannot fire more than once
between two ticks.

Verification issues. Causal time approach is convenient because it allows to verify systems
including timing aspects using any tool that supports coloured Petri nets. However, explicitly
counting ticks increases the state explosion problem. Consider for example the Petri net given in
figure 25, it has three“logical” states: (1) before t1, (2) between t1 and t2, and (3) after t2. However,
when considering its concrete states, we have to take into account all the possible values of the
counters. For instance, in (2) we may have any valuation (min,max) ∈ {(i, 10 − i) | 0 ≤ i ≤ 10};
i.e., 11 different states. Worst, in (3) we have (min,max) ∈ {(i, ω) | i ≥ 3}; i.e., infinitely many
equivalent states.

The second problem, i.e., counting up to ω, can be fixed by replacing ω with the largest constant
to which a counter is compared to, plus 1. For instance, in the system of figure 25, we can set ω df= 4.
Then, expression like x + 1 that label output arcs from the tick transition can be replaced with
expressions like min(ω, x+ 1). This way, the behaviour of the system remains essentially the same
but its state space is finite.

The first problem remains: tick counters introduce many equivalent markings in the state space.
The problem is worst when several independent counters are used. In the previous example, min
and max are not independent since we have max = 10−min in (2). In this case, the possible values
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of these counters do not combine in a way that increases the state space size. But consider two
identical systems, just sharing the same tick transition, and distinguish them by putting primes in
the second copy. There exists a kind of synchronisation through time between these two systems;
but, since the firing of t1 and t′1 are not related, the whole Petri net may reach 9 logical states as
shown in figure 27. Considering that we have set ω df= 4 as explained before, (3) and (3′) correspond
to 2 concrete states (min ∈ {3, 4}). Then, the total number of concrete state is 196. In general, we
can observe that independent timed subsystems contribute in a multiplicative way to the number
of states, which leads to an exponential combinatorial explosion.

(1, 1′)

(1, 2′)

(1, 3′)

(2, 1′)

(2, 2′)

(2, 3′)

(3, 1′)

(3, 2′)

(3, 3′)

⇒ (1× 1) = 1

⇒ (1× 11) + (11× 1) = 22

⇒ (1× 2) + (11× 11) + (2× 1) = 125

⇒ (11× 2) + (2× 11) = 44

⇒ (2× 2) = 4

Fig. 27. The logical states corresponding to the interleaving of (1)
t1−−−−−−−−−→ (2)

t2−−−−−−−−−→ (3) and (1′)
t′1−−−−−−−−−→ (2′)

t′2−−−−−−−−−→
(3′). On the right is indicated the number of concrete states in each row of logical states.

This problem is addressed in [pdk] by proposing a model of Petri nets equipped with counters
that are no more modelled has places. Instead, their values are stored in vectors of integers kept
aside each marking: a state becomes a pair (M, v) where M is a marking and v is a vector that
provides the valuation of counters. Each transition t is allowed to test a condition Ct on the
counters and to update them using a transformation Ut. Then, we use a library [17] to represent
efficiently large or infinite sets of such vectors, and to perform computation on these sets, like
shifting by ±1 all the components of all the vectors in a set. More interesting, it is possible to
compute the accumulated effect of arbitrarily many repetitions of such a shifting. This allows to
define an abstract state space construction in which an abstract state is a pair (M,V ) where M is
a marking and V is a set of vectors. When a transition fires, we have (M,V )[t〉(M ′, V ′) with M ′

computed from M as usual and V ′
df= {Ut(v) | Ct(v) ∧ (v ∈ V )}. If V ′ = ∅ then t is not enabled

(no concrete state passes condition Ct).
The idea to achieve compression is based on the detection of cycles in the state space with

respect to the marking. Let (M ′, V ′) be a newly computed abstract state, several situations are
possible:

– no abstract state of the form (M ′, V ′′) has been reached before, then we can add (M ′, V ′) to
the abstract state space;

– there exists already an abstract state (M ′, V ′′) such that V ′′ ⊇ V ′, then we have reached
already known states;

– there exists already an abstract state (M ′, V ′′) such that V ′′ ⊂ V ′, then we have found a
cycle in the behaviour that loops through M ′ while reaching new valuation of counters. So,
it is likely that from (M ′, V ′′) we can repeat again and again the same sequence t1, . . . , tk
of transitions. This sequence corresponds to a transformation Ut1,...,tk that can be computed
and we can also compute the repeated effect of Ut1,...,tk on V ′′, denoted by U∗t1,...,tk(V ′′). This
corresponds to simulate in a finite computation the (possibly) infinite repetition of the same
sequence of transitions. So, (M ′, V ′′) is replaced by (M ′, U∗t1,...,tk(V ′′)) in the state space (and
its future is recomputed);

– finally if we observe a firing (M ′, V )[t〉(M ′, V ′), we can expect t to be repeatable at M ′. So
we store (M ′, U∗t (V )) instead of (M ′, V ) in the state space (and its future is recomputed).
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This allows to compress sequences of transitions that update counters but do not change the
marking, which is typically the behaviour of a tick transition (but not only).

In general, this method cannot be guaranteed to terminate when the concrete state space is
infinite. But, on practical examples, it allows for efficient computation of large and even infinite
state spaces. Typically, infinity that comes from the repeated incrementation of some counters is
successfully tackled by the method. Moreover, we can show a behavioural equivalence between a
Petri net equipped with external counters and its translation into a coloured Petri net in which
counters are explicitly implemented as integer-valued places. More precisely, if N is a Petri net
with counters and N ′ is its coloured implementation, we can show that:

– the set of reachable states of N and N ′ are essentially the same (we just have to translate
between vector-based and place-based implementation of counters);

– any trace of N ′ is a path in the abstract state graph of N ;
– for any path in the abstract state graph of N , it can be checked whether it is a trace of N ′ or

not by using only N .

The first point shows that the approach is exact with respect to reachability: no information
is loosed not added. The second and third points show that the abstract state space is an over-
approximation of the concrete state space in that it includes paths that are not realisable sequences
of transitions. However, checking the realisability of such a path does not require to compute the
concrete state spaces nor the coloured implementation of the Petri net with counters.

Related works. The causal time calculus as been proposed in [pom4] has an extension of the pbc
to provide a syntax for causally timed systems, together with an operational semantics. Extended
syntactical features have been later proposed in the context of multi-threaded systems [pom6].
Other timed extensions of the pbc have been proposed, however they are not based on the causal
time approach but rather on various extensions of Petri nets with time; in particular, [65] and [2]
introduce the features of time Petri nets [72] and timed Petri nets [93] respectively.

The question of efficiently verifying counter systems is addressed by numerous tools among
which: fast [7], mona [41], Omega [90] and sataf/PresTaf [32]. In [pdk], we used Lash library [17]
to carry out experiments. These tools use various techniques and theories to efficiently deal with
counter systems. However, it is likely that our approach may be adapted to use any of these tools
since it treats in a separate way the aspects related to Petri nets on the one hand, and counters on
the other hand, the latter being fully delegated to the library. A more drastic approach is proposed
in [8] where Petri nets are completely translated to counter machines which are then verified with
fast. This is possible since p/t nets are considered so the marking of each place can be encoded
as a counter; however, this would not apply to our model that is based on coloured Petri net.

5.2 Specification and verification of security protocols

In this section, we show how the abcd language introduced in section 3.3 can be used to specify and
verify security protocols. As an illustration, we model Needham&Schroeder’s protocol for mutual
authentication [82]. This is quite a small example, but abcd is also used in the context of project
spreads that aims at building a secure platform for distributed network storage with peer-to-peer
architecture (see [spr] for more information). These protocols are still under development and are
anyway too big to be shown here. Fortunately, Needham&Schroeder’s protocol allows to show the
most important aspects about applying abcd to security protocols.

Needham&Schroeder’s protocol for mutual authentication. The protocol ns involves two
agents Alice (A) and Bob (B) who want to mutually authenticate. This is performed through the
exchange of three messages as illustrated in figure 28. In this specification, a message m is denoted
by 〈m〉 and a message encrypted by a key k is denoted by 〈m〉k (we use the same notation for secret
key and public key encryption). The three steps of the protocol can be understood as follows:

1. Alice sends her identity A to Bob, together with a nonce Na. The message is encrypted with
Bob’s public key Kb so that only Bob can read it. Na thus constitutes a challenge that allows
Bob to prove his identity: he is the only one who can read the nonce and send it back to Alice.
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2. Bob solves the challenge by sending Na to Alice, together with another nonce Nb that is a new
challenge to authenticate Alice.

3. Alice solves Bob’s challenge, which results in mutual authentication.

Alice Bob

〈A,Na〉Kb

〈Na, Nb〉Ka

〈Nb〉Kb

Fig. 28. An informal specification of ns protocol, where Na and Nb are nonces and Ka, Kb are the public
keys of respectively Alice and Bob.

This protocol is well known for being flawed when initiated with a malicious third party Mallory
(M). Let us consider the run depicted in figure 29. It involves two parallel sessions, with Mallory
participating in both of them.

– when Mallory receives Alice’s first message, she decrypts it and forwards to Bob the same
message (but encrypted with Bob’s key) thus impersonating Alice;

– Bob has no way to know that this message is from Mallory instead of Alice, so he answers
exactly as in the previous run;

– Mallory cannot decrypt this message because it is encrypted with Alice’s key, but she might
use Alice has an oracle and forward the message to her

– when Alice receives 〈Na, Nb〉Ka , she cannot know that this message has been generated by Bob
instead of Mallory, and so she believes that this is Mallory’s answer to her first message;

– so, Alice sends the last message of her session with Mallory who is now able to retrieve Nb and
authenticate with Bob.

In this attack, both sessions (on the left and on the right) are perfectly valid according to the
specification of the protocol. The flaw is thus really in the protocol itself, which is called a logical
attack. This can be easily fixed by adding the identity of the sender to each message (like in
the first one), in which case Alice can detect that the message forwarded by Mallory (now it is
〈B,Na, Nb〉Ka) is originated from Bob.

Modelling communication and cryptography. Using abcd, a simple model of a network is a
globally shared buffer: to send a message we put its value on the buffer and to receive a message,
we get it from the buffer.

Messages can be modelled by tuples and cryptography can be treated symbolically, i.e., by
writing terms instead of by performing the actual computation. For instance, the first message in
ns protocol may be written as a nest of tuples ("crypt", ("pub", B), A, Na):

– string "crypt" denotes that the message is a cryptogram, the encryption key is thus expected
as the second component of the tuple and the following components form the payload;

– tuple ("pub", B) indicates that this is a public key owned by B (we will see later on how to
model agents’ identities);

– the payload is the message (A, Na) (we will see later on how to model nonces).

Using this modelling, messages actually travel in plain text over the network. But if we adopt the
Dolev&Yao model [39] and correctly implement it, this is a perfectly valid approach. In Dolev&Yao’s
model, the attacker is considered to reside on the network. So, Mallory can read, remove or even
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Alice Mallory Bob

〈A,Na〉Km

〈A,Na〉Kb

〈Na, Nb〉Ka

〈Na, Nb〉Ka

〈Nb〉Km

〈Nb〉Kb

Fig. 29. An attack on ns protocol where Mallory authenticates as Alice with Bob.

replace any message on the network. Moreover, she can learn from the read messages by decompos-
ing them and looking at their content. However, cryptography is considered to be perfect and so,
Mallory cannot decrypt a message if she does not know the key to do so. For instance, if she reads
("crypt", ("pub", B), A, Na) on the network, she is allowed to learn A and Na only if she already
knows Bob’s private key ("priv", B). To correctly implement Dolev&Yao’s model, we shall ensure
that no agent can perform any action on an encrypted content knowing the key to do so.

Then we need to model agents’ identities. In this protocol, we can just use positive integers
because no such value is used somewhere else so there is no risk of confusion with another message
fragment.

To model nonces, we cannot rely on a random generator unlike in implementations: this would
lead to undesired non-determinism and possibly to a quick combinatorial explosion. To correctly
model perfect cryptography while limiting state explosion, we must find an encoding such that:

– each nonce is unique;
– a nonce cannot be confused with another value;
– nonces can be generated in a deterministic way.

In our case, a simple solution is to program them a Python class Nonce. The constructor expects
an agent’s identity; for instance, Nonce(1) denotes the nonce for the agent whose identity is 1.
Equality of two nonces is then implemented as the equality of the agents who own these nonces.
To respect Dolev&Yao’s model, we must forbid an agent to generate a nonce using another agent’s
identity.

So, let us call nw (for “network”) the buffer that supports network communication and allow it
to store any token (type object); moreover, let us import the content of a module dolev yao that
defines class Nonce:

1

∣∣ buffer nw : object = ()
2

∣∣ from dolev yao import ∗

Modelling Alice and Bob. Each agent can be modelled as a sub-net. For instance, Alice can be
modelled as follows:

4

∣∣ net Alice (this , agents) :
5

∣∣ buffer peer : int = ()
6

∣∣ buffer peer nonce : Nonce = ()
7

∣∣ [agents?(B), peer+(B), nw+("crypt", ("pub", B), this, Nonce(this))]
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8

∣∣ ; [nw−("crypt", ("pub", this), Na, Nb), peer nonce+(Nb) if Na == Nonce(this)]
9

∣∣ ; [peer?(B), peer nonce?(Nb), nw+("crypt", ("pub", B), Nb)]

Parameter this provides the agent’s identity, which is concretely provided when the sub-net is
instantiated. This allows us to create several differentiated instances of Alice if needed. Parameter
agents is expected to be a global buffer containing the identities of all the agents that Alice is
allowed to contact. Line 5, a local buffer is declared to store the identity of the peer initially
contacted by Alice. Line 6, another local buffer is declared to store peer’s nonce received by Alice
in the second message, in order to be able to forward it in the third message. Line 7, Alice gets
one value from buffer agents (i.e., chooses one peer to contact) and puts it into her buffer peer; she
also sends the first message by producing the appropriate token in the global buffer nw. Line 8,
Alice receives a message by consuming a token on nw, the received message is specified as a nest
of tuples that forms a pattern to match the received message. Doing so, variables Na and Nb are
bound to actual values from the message. In the same action, it is checked that Na has the correct
value. Notice that this action respects Dolev&Yao’s model: the content of the message is examined
but the action is allowed to take place only if the received message is encrypted with Alice’s key.
Then, line 9, Alice sends the last message as expected by Bob whose nonce is fetched from the
local buffer peer nonce (without consuming it since the interrogation mark denotes a read arc).
Lines 7–9 define one atomic action each and these three actions are composed sequentially.

The model for Bob is similar with two main differences: messages are specified from the receiver’s
point of view, and peer’s identity is discovered from the first message instead of being chosen from
a buffer. Apart from these changes, the specification is really similar:

11

∣∣ net Bob (this) :
12

∣∣ buffer peer : int = ()
13

∣∣ buffer peer nonce : Nonce = ()
14

∣∣ [nw−("crypt", ("pub", this), A, Na), peer+(A), peer nonce+(Na)]
15

∣∣ ; [peer?(A), peer nonce?(Na), nw+("crypt", ("pub", A), Na, Nonce(this))]
16

∣∣ ; [nw−("crypt", ("pub", this), Nb) if Nb == Nonce(this)]

Modelling Mallory. To model Mallory, we need to implement Dolev&Yao’s attacker. She main-
tains a knowledge base k containing all the information learnt so far and repeatedly executes the
following algorithm:

1. Get one message m from the network.
2. Learn from m by decomposition or decryption using a key already in k. Whenever a new piece

of information is discovered, add it to k and recursively learn from it.
3. Optionally, compose a message from the information available in k and send it on the network.

The last action is optional, which means that a message may be removed from the network with
nothing to replace it. This corresponds to a message destruction, which the attacker is allowed to
do. Notice also that, when composing a new message, Mallory may rebuild the message she has
just stolen. This corresponds to a message eavesdropping, which the attacker is also allowed to do.

The hard part in modelling this attacker is the message decomposition and composition ma-
chinery. This is feasible with just Petri nets (and has been done in [bdk+]) but is really complicated
and leads to many intermediate states that quickly make the state space intractable. Fortunately,
using abcd, we can implement this part in Python. So, module dolev yao also provides a class
Spy that implements Dolev&Yao’s attacker. Only the algorithmic part is implemented, taking into
account our conventions about symbolic cryptography. For instance, tuples like ("crypt", · · ·) or
("pub", · · ·) are correctly recognised as special terms.

To reduce combinatorial explosion in the state spaces, an instance of Spy is given a signature
of the protocol. This consists in a series of nested tuples in which the elements are either values or
types. Each such tuple specifies a set of messages that the protocol can exhibit. For instance, ns
protocol has three types of message:

– ("crypt", ("pub", int), int, Nonce) corresponding to the first message;
– ("crypt", ("pub", int), Nonce, Nonce) corresponding to the second message;
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– ("crypt", ("pub", int), Nonce) corresponding to the third message.

This information is exploited by the attacker to avoid composing pieces of information in a way
that does not match any possible message (or message part) in the attacked protocol. Without this
mechanism, learning just one message m would lead the attacker to build an infinite knowledge
containing, e.g., (m,m), (m,m,m), (m, (m,m)), etc. However, this would be completely useless
unless such values would be parts of the protocol and may be accepted as a message by an agent if
these values were sent on the network. So, the attacker uses the protocol signature to restrict the
knowledge to valid messages or message parts.

The knowledge part of the attacker is modelled by a Petri net place, i.e., by an abcd buffer.
This allows to observe in the state space what the attacker has learnt, for instance to check for
leaking secrets. This knowledge has to be initialised, in our case, we would like Mallory to be able
to initiate a communication with another agent. So we shall provide her with an identity, and the
corresponding nonce and private key. We shall also provide the list of other agents and their public
keys. So, Mallory is specified as follows:

18

∣∣ net Mallory (this, init ) :
19

∣∣ buffer knowledge : object = (this, Nonce(this), ("priv", this)) + init
20

∣∣ buffer spy : object = Spy(("crypt", ("pub", int), int, Nonce),
21

∣∣ ("crypt", ("pub", int), Nonce, Nonce),
22

∣∣ ("crypt", ("pub", int), Nonce))
23

∣∣ ([spy?(s), nw−(m), knowledge>>(k), knowledge<<(s.learn(m, k))]
24

∣∣ ; ([True] + [spy?(s), knowledge?(x), nw+(x) if s.message(x)]))
25

∣∣ ∗ [False]

Parameter this is like for the other agents, parameter init is intended to be a tuple of initially
known pieces of information. Line 19, Mallory’s knowledge is declared and initialised: it contains
her identity, nonce and private key, plus all the information from init. Line 20, an instance of Spy
is created in a buffer spy, with the signature of the protocol. Then comes the infinite loop (because
of the impossible exit line 25) to execute the attacker’s algorithm:

– line 23, a message m is removed from the network with nw−(m), the content of buffer knowledge
is flushed to variable k with knowledge>>(k) and replaced with all that can be learnt from m
and k, thanks to knowledge<<(s.learn(m, k));

– line 24, either [True] is executed (do nothing), or a value x is fetched from knowledge and put
on the network, but only if it is a valid message, which is checked in the guard.

Notice that this model of attacker is generic (except possibly for its initial knowledge) and one
may safely copy/paste its code to another specification.

Defining and verifying a scenario. To create a complete abcd specification, we need to provide
a main term. This consists in a composition of instances of the defined agents. By providing this,
we create a scenario, i.e., a particular situation that can then be analysed. Let us consider a simple
scenario with one instance of Alice, one of Bob and one of Mallory; a buffer agents will store the
identities of Bob and Mallory so that Alice will contact one or the other at the beginning. This
scenario includes the possibility for Mallory to try to authenticate with Bob since we gave to her
enough knowledge to play the protocol. So, this simple scenario involves all kind of communications
between honest and dishonest agents. Notice that including more than one attacker would result in
a quick state explosion; fortunately, this is rarely needed and if so, may be simulated by providing
more than one identity to the same and only attacker. Our scenario is thus specified as:

27

∣∣ buffer agents : int = 2, 3
28

∣∣ Alice(1, agents) | Bob(2) | Mallory(3, (1, ("pub", 1), 2, ("pub", 2)))

Using the abcd compiler, we can create a pnml file from this system. This file can be loaded
from a Python program using snakes to build the state space and search for a faulty one where
Alice and Bob are in a final state (i.e., their exit places are marked) and mutual authentication is
violated (i.e., data in buffers peer and peer nonce of each agent are not consistent).

The state space has 2048 states among which one shows that Alice authenticated Bob but
Bob authenticated Mallory, which corresponds to the known attack. There are also states showing
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that both Alice and Bob may authenticate Mallory, but these are just regular runs of two parallel
sessions (Alice with Mallory and Bob with Mallory). When looking closer to the states, we can
see that Mallory is able to use someone else’s nonce for authentication: for instance she may use
Alice’s nonce as a challenge for Alice. This is not an error in the protocol and is fully consistent
with the fact that nonces freshness is never tested.

Related works. In order to specify security protocols, formal description languages have been
proposed, like the spi-calculus [1] or the security protocol language, spl [35]. The latter is an
economical process language inspired from process algebras like the asynchronous π-calculus [76]:
each process is defined by a term of a specialised algebra which allows to represent sequences and
parallel compositions of input and output actions that may handle messages. Thus, in contrast to
frequently used notations like the message sequence chart of figure 28 or textual variants (so called
“Alice/Bob notations”), sending and receiving messages have to be specified separately.

Previous experiences with spl [21, bdk+] showed that it only has a limited expressivity that
restrict its possible usages: a protocol in spl can only be specified using parallel and sequential com-
positions of send or receive actions, and no initial knowledge can be specified. Many useful features
are not provided by spl, in particular: looping or recursion, choice (with conditional execution),
explicit data storage and manipulation, local computation (i.e., actions with no communication),
and of course initial knowledge. This last point has motivated extensions of spl in [20, 21, bdk+].
As shown above, this feature is provided by abcd as well as the other desired features. This is
particularly important in the context of project spreads [spr]: parts of the studied peer-to-peer
protocols involve exchanging lists of peers identities, the length of which being not known in ad-
vance, and then communicate with a chosen subset of peers from the lists. Here, the capability of
abcd to express data structures (e.g., lists) and complex control flow (e.g., iterating over a list) is
a crucial aspect.

One more aspect of spl is arguably a drawback or an advantage: when a message is received, it
can be matched against a pattern, doing so, the variables in the pattern are bound to the received
values and this is recorded for the whole future of the process (as usual in process algebras). This
feature is very convenient for the ease of specification, but on the other hand, it hides important
aspects of information management in the agents. In comparison, using abcd, one has to explicitly
specify data storage. This might be considered as tedious but it has at least three advantages:

– the model is closer to an implementation in that not only it specifies how communication takes
place, but also it shows which piece of information should be stored by each agent;

– parts of this information may be security critical, for instance cryptographic keys. Explicitly
modelling their storage makes it possible to analyse these aspects, for instance information
leak;

– using an explicit modelling of the spy allows to use any general purpose model checker to verify
the modelled protocols, instead of being forced to use a model-checker that implements the
spy.

Looking at the spore or avispa protocols collections [103, 6] we can observe that most of the
analysed protocols listed on the page do not need loop or choice. This could be an argument against
our claim that such features are needed. However, other protocols involve complex control flow and
have been verified, but not using tools dedicated to protocols; see for instance the industrial case
studies from the web pages of cpn tools [34]. It is worth noting that we advocate for tools with rich
control flow and extensive data domain, not for abcd in particular. Indeed, not every aspect of
protocols verification can be addressed using a symbolic treatment of cryptography. For example,
approaches like [15, 16] can represent aspects of protocols like algebraic properties of cryptographic
primitives. For some protocols, like Diffie&Helman’s key exchange [38], these are required features
in order to correctly address the security concern. It is likely that this case can be handled in abcd
by implementing dedicated classes in Python, like we did for the treatment of nonces. This shows
that an expressive data model is very much required and, thanks to a mixture of modelling and
implementation, lacks in the analysis tool may be compensated for by user-defined extensions of
the data model.
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5.3 Modelling biological regulatory networks

Great advances in molecular biology, genomics and functional genomics open the way to the un-
derstanding of regulatory mechanisms controlling essential biological processes. These mechanisms
interplay and operate at diverse levels (transcription and translation of the genetic material, protein
modifications, etc.). They define large and complex networks, which in turn constitute a relevant
functional integrative framework to study the regulation of cellular processes. To assess the be-
haviours induced by such networks, dedicated mathematical and computational tools are very much
required. In general, mathematical models for concrete regulatory networks are defined as a unique
whole, considering networks of a limited size (up to few dozens of components). This approach is
not scalable and has to be modified as networks are increasing in size and complexity.

We rely on a qualitative discrete framework for the modelling of regulatory networks, namely
the generalised logical formalism, initially proposed by R. Thomas [105, 106]. This formalism is now
applied to the modelling of regulatory networks encompassing hundreds of nodes or interacting cells
within a population. In particular, in the case of patterning in developmental processes, one has to
consider patches of communicating cells. In such processes, modularity clearly arises, each intra-
cellular network defining a module. To address this scalability problem, we propose a framework
to extend the logical formalism with explicit modules. It is equipped with a Petri net semantics
allowing to analyse the modelled systems. This section briefly presents the logical framework before
to concentrate on its Petri net semantics and an application on patterning.

Logical regulatory graphs. Regulation refers to the molecular mechanisms responsible for the
changes in the concentration or activity of a functional product. Such mechanisms range from
dna-rna transcription to post-translational protein modifications. In regulatory networks, details
on the precise molecular mechanisms that drive the regulation are often abstracted, the semantics
associated to the interactions being reduced to activatory versus inhibitory effects.

A logical regulatory graph is a graph, where each node represents a regulatory component, asso-
ciated with a range of discrete functional levels (of expression or of activity). In most of the cases,
the Boolean abstraction (e.g., a gene is expressed or not, a protein is active or not) is sufficient,
but there are situations where more than two levels are necessary to convey the functional role of a
regulator that varies when the concentration of the product crosses different thresholds. In partic-
ular, this is the case when a product regulates several targets, these regulations possibly occurring
at distinct thresholds. This leads to the arcs of the graph that represent regulatory interactions.
Finally, one needs to define the behaviours of the components submitted to regulatory interactions.
This is done by setting up a logical function that defines the target level of the component (within
the admissible range of levels) for each possible combination of incoming interactions.

Definition 14 (Logical regulatory graph). A logical regulatory graph, or lrg, is defined as a
labelled directed multi-graph R = (G, E ,K) where,

– G = {g1, . . . , gn} is the set of nodes, representing regulatory components. Each gi ∈ G is
associated to its maximum level Max i ∈ N+, its current level being represented by the variable
xi ∈ {0, . . . ,Max i}. We define x df= (x1, . . . , xn) the current state, and S df=

∏
gi∈G{0, . . . ,Max i}

the set of all possible states.
– K = (K1, . . . ,Kn) defines the logical functions attached to the nodes and specifying their be-

haviours: Kj is a multi-valued logical function that gives the target level of gj, depending on
the state of the system: Kj : S → {0, . . . ,Max j}.

– E is the set of oriented edges (or arcs) representing regulatory interactions. An arc (gi, gj)
specifies that gi regulates gj (when there is no possible confusion, i stands for gi), i.e., Kj
varies with xi.

For each gj ∈ G, Reg(j) denotes the set of its regulators: i ∈ Reg(j) if and only if (i, j) ∈ E. ♦

An example of a lrg is depicted in figure 32, notice that two kind of arcs are used to distinguish
activatory effects ( ) from inhibitory effects ( ).

It is worth noting that a set of logical functions Ki (1 ≤ i ≤ n), fully defines an lrg encom-
passing n regulatory components. In particular, for each i ∈ {1, . . . , n}, its maximum level is given
by the maximum value of Ki.

The dynamics of an lrg is represented by a state transition graph as defined hereafter.
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Definition 15 (State transition graph of a LRG). Given an LRG R df= (G, E ,K), its full state
transition graph is an oriented graph (S, T ) such that:

– the set of nodes is the set of states S as defined above;
– T ⊆ S × S defines the set of transitions (arcs) as follows. For all (x, y) ∈ S × S:

(x, y) ∈ T ⇐⇒ ∃gi ∈ G :

Ki(x) 6= xi,
yi = δi(xi)

df= xi + sign(Ki(x)− xi),
yj = xj ∀j 6= i.

Given an initial state x0, we further define the state transition graph (S|x0 , T|x0) as follows:

– x0 ∈ S|x0 ;
– ∀x ∈ S|x0 , ∀y ∈ S, if (x, y) ∈ T then y ∈ S|x0 and (x, y) ∈ T|x0 ;
– there is no other node in S|x0 nor other arc in T|x0 . ♦

Introducing modules. In what follows, a logical regulatory module is defined as a uniquely iden-
tified logical regulatory network associated with a set of input components that regulate internal
ones. Notice that no output components are defined because any internal component may generate
an external signal towards other modules; moreover, input components are not effective regulatory
components in that they do not introduce any intermediary step in the signalling. These inputs are
meant to combine external signals from other modules. Functions ϕ in the definition below perform
such combinations by calculating the levels of the integrated signals, depending on the levels of the
corresponding individual incoming signals and on their attributed weights. These weights, defined
as real numbers on the interval [0; 1], encode neighbouring relations, which in turn are defined when
connecting the modules (see below). Hence, at this stage, to define a logical regulatory module,
one has to specify the components that are likely to signal the module, and how input signals are
combined through the functions ϕ.

Definition 16 (Logical regulatory modules). Given Γ a domain of regulatory components, a Log-
ical Regulatory Module, or lrm, M is a tuple (G, E ,V, ϕ,K), where

– G ⊆ Γ is the set of internal components;
– E ⊆ G × G is the set of internal interactions between internal components;
– V ⊆ Γ is the set of input components;
– ϕ = {ϕv,g | (v, g) ∈ E ⊆ V × G} is a set of integration functions,

ϕv,g : ({0, . . . ,Max v}×]0; 1])∗ → {0, . . . ,Max g}

computing the combined level for all inputs v regulating g. Their arguments are pairs (xv, dv)
where each xv is the level of v in one neighbour, weighted by dv > 0;

– K is a set of logical functions defined on G giving, for each component g ∈ G, its target level
in {0, . . . ,Max g}, depending on the levels of its regulators. For an internal regulator r ∈ G the
level used to evaluate Kg is xr as usual, while for an input regulator v ∈ V, the level used to
evaluate Kg is the current value of ϕv,g. We denote by Args(Kg) the set of arguments of Kg.♦

Figure 30 provides a simple example of an lrm. If ϕv,g ∈ Args(Kg) then, v is an input regulator
of g; in the pictures, this is denoted by an v-labelled arc toward the node g.

An lrm can be viewed as an encapsulated regulatory network with input components behaving
as integrators of external signals of the components from other modules. For example, for the lrm
depicted in figure 30, the level of external signal corresponding to B is calculated as a weighted
maximum over all the levels of B in neighbouring modules (i.e., having a non-zero weight). Hence,
this level can be evaluated only when the module is connected to other modules (see below).
Nevertheless, at this stage, it is possible to recover a fully defined lrg, by setting the integration
functions and specifying the behaviours of the input components (for example as having constant
levels).

We now proceed with collections of lrms, which contain all the information needed to connect
lrms through their input components. It simply consists in defining a set of lrms and a neigh-
bouring relation between these lrms that establishes the actual connexions between modules and
allows the evaluation of the levels of input components.
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A

B

C

B

KA(xB)
df
= 1 if (xB = 1), else 0

KB(xC)
df
= 1 if (xC = 1), else 0

KC(xA, ϕB,C)
df
= 1 if (xA = 1 ∧ ϕB,C = 0), else 0

Fig. 30. A “toy” lrm M with: G df
= {A,B,C}, E df

= {(A,C), (C,B), (B,A)}, V df
= {B}, K df

= {KA,KB ,Kc}
as defined on the right part of the figure and ϕ

df
= {ϕB,C : (yj , dj)j≥0 7→ round(maxj(yj · dj))}. We have

Args(KC) = {xA, ϕB,C}.

Definition 17 (Collection of connected LRMs). A collection of connected logical regulatory mod-
ules, or clrm, is defined as a triplet (I,M,T), where:

– I ⊂ N is a finite set of integers (module identifiers);
– M = {(m,M) | m ∈ I} is a set of lrms, each being associated to an identifier in I;
– T : I × I \ {(m,m) | m ∈ I} → [0; 1], is a neighbouring relation between modules in M; the

values of T can be interpreted as weights associated to external signals. ♦

In a clrm, one can define several copies of the same lrm (these copies are differentiated by
their identifiers). This is the case in figure 31 that shows a clrm encompassing three times the lrm
of figure 30. Notice the dashed arcs that represent how each lrm signals its neighbours according
to the neighbouring relation.

(0,M) (1,M) (2,M)

T(0,1)=T(1,0)=1 T(1,2)=T(2,1)=1

T(0,2)=T(2,0)=0

A

B

C

B

A

B

C

B

A

B

C

B

Fig. 31. A clrm (I,M,T) encompassing three copies of the lrm M from figure 30, where: I
df
= {0, 1, 2},

M
df
= {(0,M), (1,M), (2,M)}, and T

df
= {(0, 1) 7→ 1; (1, 2) 7→ 1; (2, 0) 7→ 0} completed symmetrically.

Functions ϕB,C in modules 0 and 1 depend on the level of B in module 1 (the sole connected module
containing B) whereas ϕB,C in module 1 depends on the levels of B in both modules 0 and 2.

Given a clrm, the integration functions are expressible as logical terms. Indeed, the neigh-
bouring relations are fixed and the values of the ϕ functions depend on discrete bounded variables
and take discrete bounded values. Hence, it is possible to recover an lrg (a logical model for the
whole set of modules). For example, consider the clrm in figure 31, its associated lrg is shown in
figure 32.

Petri nets semantics. Let Kg be the logical function of g. As previously, we define the updating
function δg(xgm) df= xgm+sign(Kg(· · ·)−xgm) where Kg is computed with the appropriate arguments
(including integration functions calls) as defined above.

Each internal regulatory component g ∈ G is modelled by a Petri net place sg that stores the
numeric value of the corresponding level for each module m. In order to model several modules
(each having a unique identifier), each place holds tokens of the form (m,xg), where m ∈ I and xg
is the level of g in module m. The evolution of each regulatory component g ∈ G is implemented
by a unique transition tg that consumes the value of g in m (token (m,xg) from place sg), reads
the values of the regulators of g, and produces the new level δg(xgm) of g in m. Thus, transition
tg has all the necessary arcs to the places modelling g and its regulators. In the definition below,
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A0

B0

C0 A1

B1

C1 A2

B2

C2
ϕ0
B,C

df
= ϕB,C((xB1 , 1))

ϕ1
B,C

df
= ϕB,C((xB0 , 1), (xB2 , 1))

ϕ2
B,C

df
= ϕB,C((xB1 , 1))

KC0(xA0 , xB1)
df
= 1 if (xA0 = 1 ∧ xB1 = 0), else 0

KC1(xA1 , xB0 , xB2)
df
= 1 if (xA1 = 1 ∧ xB0 = 0 ∧ xB2 = 0), else 0

K′C1(xA1 , xB0 , xB2)
df
= 1 if (xA1 = 1 ∧ (xB0 = 0 ∨ xB2 = 0)), else 0

KC2(xA2 , xB1)
df
= 1 if (xA2 = 1 ∧ xB1 = 0), else 0

Fig. 32. The lrg obtained from the clrm given in figure 31 with integration functions defined on the right
and logical functions at the bottom. If we choose ϕmB,C as the maximal value of its argument levels, i.e.,
ϕmB,C

df
= round(maxn(xBn · T(n,m))) as proposed in the caption of figure 30, then, the logical function of

C0 (resp. C2) is KC0 (resp. KC2), and the logical function of C1 is KC1 . Now, if ϕmB,C
df
= round(minn(xBn ·

T(n,m))), then, KC0 and KC0 remain the same, but KC1 is replaced by K′C1 .

each update transition tg is constructed in a separate Petri net with control flow and all these
nets are then composed to form the semantics of a clrm. Surprisingly enough, we use Petri nets
with control flow without control flow places: automatic merging of named places is here the only
needed feature.

Definition 18 (Petri net semantics of CLRMs). Let (I,M,T) be a CLRM . We define G df=
⋃
m∈I Gm

the set of components involved in the CLRM . We assume that G ⊆ S\{e, i, x, ε}, i.e., that components
are valid names for places. For every g ∈ G, let m be the identifier of the LRM such that g ∈ Gm,
and define a Petri net with control flow Ng

df= (Sg, Tg, `g, σg):

– Sg
df= {sg} ∪ {sv | xv ∈ Args(Kg) ∨ ϕv,g ∈ Args(Kg)} and, for every sh ∈ Sg, `g(sh) df=

I× {0, . . . ,Maxh} and σg(sh) df= h;
– Tg

df= {tg} with `g(tg)
df= True;

– a first pair of arcs allows to read and update the current level of g for module m, whose identifier
is captured by a net variable µ:

• if ϕg,g /∈ Args(Kg), there is one arc (sg, tg) labelled by {(µ, xgµ)} and one arc (tg, sg)
labelled by {(µ, δg(xgµ))};
• otherwise, there is one arc (sg, tg) labelled by {(µ, xgµ)} ∪ {(η, xgη ) | T(µ, η) > 0} and one

arc (tg, sg) labelled by {(µ, δg(xgµ))} ∪ {(η, xgη ) | T(µ, η) > 0}; it means that the levels of g
in all modules η in the neighbouring of m are read and only the level of g in m is updated;

– then, for each g′ ∈ Gm \ {g}, a test arc (sg′ , tg) is added to bind the parameters of the logical
and integration functions, with net variable µ capturing as above the identity of module m:

• if (g′, g) ∈ Em and ϕg′,g /∈ Args(Kg), `g(sg′ , tg)
df= {(µ, xg′µ)},

• if (g′, g) ∈ Em and ϕg′,g ∈ Args(Kg), `g(sg′ , tg)
df= {(µ, xg′µ)} ∪ {(η, xg′η ) | T(µ, η) > 0},

• if (g′, g) /∈ Em and ϕg′,g ∈ Args(Kg), `g(sg′ , tg)
df= {(η, xg′η ) | T(µ, η) > 0}.

The Petri net associated to (I,M,T) is N , defined as the parallel composition of all the Ng’s
for g ∈ G as defined above. In N as well as in all the Ng’s, T is considered as a global function
( i.e., available from the annotations but not stored as a token). ♦

For the collection in figure 31, we obtain the Petri net depicted in figure 33. A possible initial
marking may be M0:

M0(sA) df= {(0, 1), (1, 0), (2, 1)}
M0(sB) df= {(0, 1), (1, 1), (2, 0)}
M0(sC) df= {(0, 0), (1, 1), (2, 0)}
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A

B

C

tA

tB

tC
{(µ, xBµ)}∪{(µj , xBj ) | T(µ, µj) > 0}

(µ, xBµ)

(µ, xAµ)

(µ, δA(xAµ))

(µ, xCµ)

(µ, δB(xBµ))

(µ, xBµ)

(µ, xAµ)

(µ, δC(xCµ))

(µ, xCµ)

Fig. 33. The Petri net representation of the clrm from figure 31. In order to show how places have been
merged during the parallel composition of NA, NB and NC , they are depicted by several overlapping copies
with arcs consistently connected to the copies from the corresponding sub-nets.

Application. The formalism of clrm and its Petri nets semantics can be applied in particular
to the study of patterning in tissues through cells differentiation. Consider the toy lrmM defined
in figure 30, we now analyse the behaviours of a series of collections encompassing a number of
occurrences of M. All the considered collections are based on tapes of modules, of width 2, and
various lengths and neighbouring relations as depicted in figure 34. Each Tk is so called because a
module may have neighbours in k directions. Moreover, we denote Toy(n, k) the clrm containing
2 · n copies of M arranged using Tk on a tape, as illustrated in figure 34.

T4(i, j)
df
= T4(j, i)

df
=


1 if j = i+ 2 ∨ (i mod 2 = 0 ∧ j = i+ 1)
0 otherwise

0

1

2

3

4 · · ·

5 · · ·

T8(i, j)
df
= T8(j, i)

df
=


1 if j = i+ 1 ∨ j = i+ 2 ∨ (i mod 2 = 0 ∧ j = i+ 3)
0 otherwise

0

1

2

3

4 · · ·

5 · · ·

T6(i, j)
df
= T6(j, i)

df
=


1 if j = i+ 1 ∨ j = i+ 2
0 otherwise

0

1

2

3

4 · · ·

5 · · ·

Fig. 34. The various neighbouring relations considered for 2-width tapes. On the left, the graphical view
showing the organisation of the connexions. Definitions of the corresponding neighbouring relations on the
right side rely on the assumption that modules on the top line of the tape are numbered with consecu-
tive even numbers, while modules on the bottom line are numbered (following the same direction) with
consecutive odd numbers.

Stable states of systems Toy(n, k) turn out to be all such that the levels of all the components in
each module are equal (all 0 or all 1). So, to depict such a module stable state, we shall print a black
and white pattern, where black (resp. white) positions correspond to modules whose components
are all 1 (resp. all 0), these positions respecting the neighbouring relations of the modules. To
simplify the presentation, we have also considered initial states that can be represented this way.

Figure 35 shows the stable states that can be reached from chosen initial states. We can observe
variations in the number of reachable states and reachable stable states; moreover, the stable states
themselves are different depending on the neighbouring relation.
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All these examples have been obtained using integration function ϕB,C defined as (vi, di)i 7→
round(maxi(vi · di)). We may consider instead a function that returns 1 if at least two levels in
the environment equal 1, and return 0 otherwise. In this case, all the initial states considered in
figure 35 for Toy(2, 4), Toy(3, 4) and Toy(4, 4) become stable states. This shows that the choice
of integration functions have an influence on the systems as well as the choice of neighbouring
relations.

Toy(2, 4) 1 reachable state (1 stable)

Toy(2, 8) 64 reachable states (3 stable)

Toy(2, 6) 64 reachable states (3 stable)

Toy(3, 4) 54 reachable states (3 stable)

Toy(3, 8) 512 reachable states (5 stable)

Toy(3, 6) 512 reachable states (5 stable)

Toy(4, 4) 64 reachable states (3 stable)

Toy(4, 8) 4096 reachable states (8 stable)

Toy(4, 6) 512 reachable states (5 stable)

Fig. 35. The reachable stable states for the considered Toy(n, k). Each row indicates on the left the con-
sidered model and its initial state; on the right are indicated the total number of reachable states among
which the stable ones are depicted. The top-left module of each state is decorated with links showing the
directions of its potential neighbours.

Related works. Among the diversity of modelling frameworks used to model regulatory net-
works (see [36, 101] for surveys), the logical approach, initially developed by R. Thomas and co-
workers [105, 106], is a successful qualitative formalism. It has been applied to model and analyse
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regulatory networks controlling a variety of cellular processes from pattern formation and cell dif-
ferentiation [99, 100, 71] to cell cycle [50], including regulatory networks comprising relatively large
numbers of components [97, 98].

Various Petri net semantics of logical regulatory graphs have been defined, using either p/t
nets or coloured Petri nets [25, 26]. The global idea of these semantics is to represent the value
of a regulatory component by an integer-valued token in a place (or by several black tokens in
one place and its complementary place in the case of p/t nets). Then, the possible evolutions
of each component are encoded as transitions that update the encoded value of the component
while testing the value of other components in order to ensure that evolutions are actually allowed
at a given state. The approach proposed in [104] is quite similar but additional constructs are
used to enforce a synchronous semantics of the modelled networks, i.e., a simultaneous update of
all the regulation components. In terms of Petri nets, this amount to implement a maximal step
semantics, which is done in [104] through a two-phases update process: the first phase identifies
all the components that are called to change their value, the second phase performs this update
synchronously.

With respect to these Petri nets semantics, our approach follows the same principles but pro-
duces more compact Petri nets by folding into a unique place and a unique transition all the
information and logic for each regulatory component. Moreover, this Petri net is obtained in a
structured way which is much easier to implement (and less error prone). In our snakes-based
implementation, each lrm is defined as a Python class whose methods implement the logical func-
tions from K; a clrm is obtained by instantiating such classes and providing the neighbouring
information. This way, the Petri net needed for the analysis is derived from a textual specification
in a fully automated way, without any requirement to manipulate regulatory graphs.
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6 Conclusion

We have presented a modular framework of coloured Petri nets with various modelling features
(see also figure 36):

– the core of the framework is a general class of coloured Petri nets that is not tied to any specific
colour domain;

– by adding statuses to the places, we have defined Petri nets with control flow that introduce
explicit asynchronous communication through named places and four control flow compositions
(sequence, parallel, iteration and choice);

– by adding multi-actions to the transitions, we have defined Petri nets with synchronisation that
provide with an explicit mechanism of multi-way transitions synchronisation with argument
passing;

– by removing parallel composition from Petri nets with control flow and adding an exception
control flow as white tokens in addition to black tokens, we have defined Petri nets with
exceptions allowing to model a full-featured exception mechanism;

– finally, by defining a task construction operator and a distributed scheme for process identifier
generation, we have defined Petri nets with threads allowing to define dynamic thread creations
and function calls.

implemented
in snakes

coloured Petri nets

Petri nets with control flowabcd Petri nets with synchronisation

Petri nets with exceptions

Petri nets with threads

Fig. 36. The structure of our framework.

The snakes toolkit that implement part of this framework has been presented. snakes itself
is designed to be flexible and modular thanks to a built-in plugin system.

Models based on this framework have been applied to various domains. We have presented
an approach to the modelling of timed systems by implementing clocks as counters of a tick
transition occurrences. Then we have illustrated how the abcd syntax, defined on the top of Petri
nets with control flow, can be used to specify and verify security protocols with a mixture of
symbolic treatment and Python implementation of the cryptographic features. A third application
has been to define a modular formalism for modelling regulation between biological entities (e.g.,
cells), taking into account their neighbouring relations. This has been used to study patterning
mechanisms in the context of developmental processes.

On the way, we have identified specific verification issues and proposed solutions to improve
the efficiency of verification:

– using a compilation approach, a coloured Petri nets can be implemented as a software library
that can be used for model-checking the Petri net of interest. Doing so, it is possible to introduce
specific optimisations at many levels by taking advantage of the structure and properties of
the compiled Petri net;

– moreover, when a Petri net is constructed by compositions, structural information can be
derived automatically and used to improve the verification or to introduce more optimisation
in the compilation. This kind of information can also be exploited to improve the parallel
computation of the reachability graph of a Petri net;
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– the generation scheme proposed for threads identifiers allows to define a method to deal with
symmetric executions of a multi-threaded system, or infinite repetitions with varying thread
identifiers. This method is based on a general behaviour-preserving marking equivalence that
can be implemented has a graph isomorphism check, and we could show that this test is efficient
in practice;

– the modelling of time by causality introduces counters of ticks that accelerate the state ex-
plosion problem and possibly lead to infinite state space. We have shown how counters can
be implemented aside the Petri net using a dedicated library. By using a detection of cycles
in the behaviour, large or infinite state spaces can be compressed to a storage-efficient over-
approximation that is suitable for reachability analysis.

6.1 Ongoing and future works

The framework presented in this document is still under active development, several tasks have
been already started and others are planned. In the following, we use one to three stars to denote:
ongoing and short-term tasks (?), medium-term tasks (??), or long-term projects (???).

First, a Master thesis has just finished (?) about improving the modelling of topological as-
pects in the bio-informatics application, including the possibility of cells migration, replication and
apoptosis (death). The idea is to maintain, aside the Petri net that encode the logic of regulatory
components, a structure to encode the neighbourhood relationship; this is made in such a way that
the topology can be queried from the Petri net, for instance to retrieve information or require a
topological change. For this purpose, we use the tool mgs that can model in a flexible way very
general topological collections [74, 73]. Finally, approach to model patterning mechanism described
above for a toy example is being applied to study the segment-polarity module involved in the
segmentation of the Drosophilia embryo (?).

Next, work is planned to implement the full framework in snakes, in particular Petri nets
with exceptions and Petri nets with threads (??). This should lead to extend the abcd language
to support these features (??). snakes will also be extended to support version 3 of the pnml
standard [89] that defines the representation of coloured Petri nets (?). The compilation approach
for faster verification presented in section 2.5 has been developed by a Master student who has
implemented a prototype. It is planned to integrate this work into snakes to improve simulation
performances (?). On the long term, snakes may be extended to support colour domains others
than the Python language, in particular compiled languages (???). Indeed, by using the compilation
approach, Petri nets can be compiled to native libraries that in turn may be loaded from Python
and thus used by snakes.

This work will also help to support an industrial thesis that will start in December 2009 (???)
in the context of project spreads [spr] and, among other questions, will address the problem of
interfacing a Petri net with an execution context. The issue here is to formalise the link between
a specification and the corresponding implementation, which is envisaged in two ways: parts of
an existing implementation can be embedded as annotations in a Petri net model to be verified;
conversely, a Petri net model may be integrated to an existing application as a component. The
goal of this approach is to improve the confidence about the implementation by tightening its
relationship with a verified specification.

Several case studies are in progress and more are envisaged to apply our approaches. First,
project spreads [spr] will continue until the end of 2010. Currently, a first version of the protocol
involving a central directory server has been modelled and verified using abcd (?). The next version
uses a directory service that is distributed over the network of peers (??). This is currently being
designed, both through the implementation of prototypes and through abcd modelling, verification
and simulation. Another case study in progress is about a non-repudiation protocol that involves
complex control-flow to model alternative and repetitive behaviours of a server, and the possibility
of timeouts on the clients side. This protocol is being modelled using abcd to verify its properties.
This work is in its early stages but a paper is planned on the subject (?). It is also planned to run
several case studies concerning causal time to consolidate our results and extend the approach if
necessary (??).

Concerning verification, the PhD thesis about parallel computing is still in progress. We expect
results by the end of the PhD that is planned in October 2010. On the short term, several algorithms
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have been designed and benchmarked, the resulting raw measures are being analysed in order to
draw conclusions about their comparative performances (?). Moreover, we envisage to study how
the verification methods we proposed can be combined. In particular, combining the compact state
space abstraction of Petri nets with counters with the marking equivalence for Petri nets with
threads seems particularly challenging and in the same time interesting for many applications
(???). On the other hand, combining the compilation approach with other techniques is expected
to be quite straightforward (??).

Several other ways are envisaged to improve the verification of our models. First, a work has
been started to adapt the sweep-line method [28, 66] in the context of security protocol models
(?). Indeed, this method relies on a measure of progression in the analysed system: each computed
state s is associated a measure ψ(s) from an ordered set in a way that is compatible with the
reachability relation (i.e., if state s′ is reachable from state s then we should have ψ(s′) ≥ ψ(s)).
The principle of the sweep-line method is to process states in growing order and dispose from
memory the states that cannot be reached again according to the measure. The difficulty with
this method is usually to define a non-trivial measure that is fine enough to really lower memory
consumption. In the context of security protocols where agents have sequential behaviours, we can
observe their control-flow state to measure their progression. A very fine-grain measure can thus
be automatically derived from the model and used to save memory, allowing to analyse complex
scenarios with huge state spaces.

Other ways of exploiting the structure of the analysed models are envisaged as future works.
In particular, modular verification [29, 70] relies on a decomposition of the model into a hierarchy
of sub-models. Such a decomposition is usually not available and has to be defined by the user
of the tool. But since our models are build by compositions, we have natural knowledge about
their structure, which should be exploitable to derive automatically a sensible decomposition that
is suitable for modular verification (???). A similar approach should be applicable to encode ef-
ficiently the state spaces of our models into hierarchical decision diagrams as defined in [52, 22]
and implemented in alpina [3] (???). Indeed, a good ordering of variables is known to be a key
issue to achieve good compression using decision diagrams, and this question is even more crucial
and more complex at the same time when hierarchical diagrams are considered. Here also, our
knowledge of the structure of the analysed model should be exploitable to derive automatically
sensible ordering and hierarchy of the variables needed to encode states. We expect to achieved
very good compression on systems with many regularities, in particular systems with duplicated
components (like models of protocols with several instances of an agent), multi-threaded systems
(with several instances of a task), or systems with many similar tokens like models of biological
regulatory networks.
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24. Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure Petrucci,
and Philippe Schnoebelen. Systems and software verification: model-checking techniques and tools.
Springer, 2001.
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80. Marko Mäkelä. Optimising enabling tests and unfoldings of algebraic system nets. In ICATPN’01,
volume 2075 of LNCS. Springer, 2001.
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107. Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm. In Advanced course on Petri
nets, volume 3098 of LNCS, pages 819–848. Springer, 2003.


