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Introduction

To ensure the development of French nuclear industry, the Alternative Energies and
Atomic Energy Commission or CEA (in French: Commissariat à l’Énergie Atomique et
aux Énergies alternatives), must ensure that its key research facilities are working in
the best way. The LECA-STAR is a nuclear research laboratory playing an essential
role in the CEA’s projects, since it ensures the execution of most of the post-irradiation
experiences over nuclear fuel. Given the characteristics of the activities carried out at the
LECA-STAR, an improvement on the scheduling process could be beneficial for ensuring
the best performance of the facility, and thus for facing the new economic challenges.

As the first step on this improvement process, this PhD project aims to identify
how combinatorial optimisation techniques could be applied for optimising the weekly
scheduling process at the LECA-STAR. Combinatorial optimisation techniques have
been already used to schedule nuclear-related activities such as nuclear power plant
construction, nuclear waste placement or nuclear power plants outages and maintenance.
Activities carried out at the LECA-STAR are very close to those of R&D projects, where
the order and types of activities to be carried out during the project can vary enormously
due to the results obtained in the early stages. However, in the same way that for nuclear-
related scheduling activities, most of the literature of R&D project scheduling deals with
broad scheduling horizons. Scheduling over a short scheduling horizon, as in this PhD
project, reduces the uncertainty of the activities to be scheduled, thus allowing us to use
standard scheduling methods.

In Chapter 1, we describe the industrial context of this thesis. We show the impor-
tance that a good scheduling process has for hot laboratories such as the LECA-STAR.
After describing the current scheduling process and the main characteristics of the labo-
ratory operations, we present the approach we propose to improve the weekly scheduling
process. This approach requires the implementation of a management information sys-
tem, which will support the scheduling engine that exploits the models and algorithms
developed in this dissertation. We then present the characteristics that each of these
elements must have.

After presenting the characteristics of the facility, we present in Part I of this doc-
ument a literature review related to the problem at hand. We present in Chapter 2 an
overview of Combinatorial Optimisation Problems and their solution methods. We do
later a more detailed review of the Resource-Constrained Project Scheduling Problem
(RCPSP) in Chapter 3. This literature review leads to conclude that the scheduling
problem at the LECA-STAR can be modelled as a variant of the well-known Multi-Skill
Project Scheduling Problem (MSPSP). This problem assumes that the preemption of ac-
tivities is not allowed. However, the possibility of preempting the activities is crucial for
modelling the LECA-STAR scheduling problem. We must then do some modifications
of the classical version and allow the preemption of the activities.



2 Introduction

In Part II, we describe the models and algorithms proposed to schedule the activities
at the LECA-STAR. As a first approach, we propose in Chapter 4, an MSPSP with
penalty for preemption. In this variant, preemption is allowed for some of the activities,
but a penalty is applied every time an activity is preempted. The idea behind this
penalty is to decrease the number of times an activity is stopped, thus limiting the
impact on productivity linked to the fact of resuming the activity. We present four
discrete-time based Mixed Integer/Linear Programming (MILP) models for the problem.
The first three models are original and inspired by the time-indexed formulations for
the (preemptive) RCPSP; the fourth one is an adaptation of a model proposed in the
literature for the preemptive MSPSP. Computational experiments on the performance
of the proposed MILP models are also presented in this chapter. Finally, we present a
limited theoretical analysis of the strength of the proposed models.

For some critical activities, safety constraints force us to ensure that a subset of
resources remain allocated to the activity when it is preempted (what we define as par-
tial preemption). The MSPSP with penalty for preemption does not fulfil these safety
constraints. Traditional preemptive scheduling models cannot represent this behaviour
since they assume that all resources are released during the preemption periods. The
only way to model activities having these safety constraints was to declare them as “non-
preemptive”. However, this decision can increase the project makespan, especially in
our case study, where the activities may have restrictive time-windows and the availabil-
ity/capacity of the resources vary over time. Aiming to overcome this inconvenience, and
to put the first stone for the application of the concept partial preemption that is lacking
in the scientific literature, we propose in Chapter 5 a new variant of the MSPSP that
better represents the behaviour of our laboratory: the MSPSP with partial preemption
(MSPSP-PP). We present various MILP (together with their theoretical comparison)
and Constraint programming formulations for the proposed model. Experimental tests
are also carried out to analyse the performance of each of the different models.

The industrial applications of this PhD project required that we could find good
scheduling solutions in short time. The MILP and CP models could take too long to
find good solutions for industrial-size instances. That is why we present various heuristic
methods for the MSPSP-PP in Chapter 6. First, we present a greedy algorithm that
uses priority rules for generating the schedule and a flow problem for allocating the
technicians. Then, a tree-based local search algorithm, partially inspired by the Limited
Discrepancy search, is described. A greedy randomised adaptive search procedure, com-
bining the greedy and local search algorithms, is also presented. Finally, we present a
large neighbourhood search algorithm, a hybrid procedure combining exact and heuristic
methods.

Part III is dedicated to the industrial application. Thus, in Chapter 7, we describe
a standalone graphical user interface that allows testing the accuracy of the schedules
generated by the methods proposed in Chapters 5 and 6. In this final chapter, we
also present the main issues faced during the deployment phase of the management
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information system, along with some advices that should facilitate the implementation
of the results of this thesis in the future.





Chapter 1

Industrial Context

Contents
1.1 The nuclear research facility under study . . . . . . . . . . . . . . 6
1.2 Importance of the operational schedule . . . . . . . . . . . . . . . 8
1.3 Analysis of the current scheduling process . . . . . . . . . . . . . 9

1.3.1 Scheduling characteristics . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Management of scheduling requests and schedule generation . . . . 10

1.4 Nuclear and R&D activities scheduling . . . . . . . . . . . . . . . 11
1.5 Proposed improvement approach . . . . . . . . . . . . . . . . . . . 12

1.5.1 Scheduling engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 Management information system . . . . . . . . . . . . . . . . . . . 14

1.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The Alternative Energies and Atomic Energy Commission or CEA (in French:
Commissariat à l’Énergie Atomique et aux Énergies alternatives), is a French public
government-funded research organisation created in 1945 to implement a major political
project: “To develop all applications resulting from atomic sciences”. Today, nuclear
power remains a central topic of CEA research projects. However, to accomplish its mis-
sion, the organisation has had to broaden the scope of its research in physics, chemistry
and biology, and develop new knowledge in microelectronics, materials and new energy
technologies. Since its creation, the CEA has been a significant player in research, devel-
opment and innovation, serving major strategic and industrial issues in France. As part
of this mission, the CEA develops new scientific knowledge and transfers technological
innovations to the industrial world; intervening today in different areas such as defence
and security, low carbon energies (nuclear and renewable), information technologies, and
basic research in material sciences and life sciences.

The department of nuclear fuel studies (DEC in short for French), within the CEA’s
division of nuclear energy, has as mission to acquire, integrate and capitalise the knowl-
edge relating to the design, manufacture, characterisation and study of the behaviour
(in all existing operating modes: normal, incidental and accidental mode) of nuclear
fuel, as well as those related to the downstream nuclear fuel life cycle. These activities
are carried out by combining numerical simulation and experimentation, particularly in
experimental reactors and on large instruments, which implies that the department also
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pilots the experimental fuel irradiation programs. To carry out its research programs,
the DEC operates various facilities required for executing experiments pre- and post-
irradiation. The LECA-STAR is the research facility in charge of carrying out all the
post-irradiation experiences. Because of the strategic importance of this facility for the
development of nuclear fuels, one must ensure its optimal operation. That is why the
LECA-STAR has been the object of study of this research project.

In the following of this chapter, we present first in Section 1.1 the characteristics of
the nuclear research facility under study. The operational schedule importance in such
a facility is discussed in Section 1.2. The current scheduling process, identified as the
central axis for improvement, is described in Section 1.3. In Section 1.4, we present
some applications of Operations Research scheduling techniques on nuclear and research
fields. Finally, in Section 1.5, we present the proposed improvement approach for the
scheduling process at LECA-STAR.

1.1 The nuclear research facility under study

The LECA-STAR is a nuclear research facility located on the CEA Cadarache site, in
operation since 1964 for its oldest part. It is in charge of the characterisation of irradiated
fuel from different types of nuclear plants and reconditioning of spent fuels before storing.
This laboratory plays an essential role in the support and development of the nuclear
French industry; implementing state-of-the-art characterisation techniques in a complex,
very restrictive and regulated environment in terms of safety and security. The LECA-
STAR is constituted by two joined buildings: the active fuel testing laboratory (LECA)
and the treatment, sanitation and reconditioning station (STAR).

The main activities of the LECA are post-irradiation destructive and non-destructive
inspections: non-destructive measurements, optical microscopy and macroscopy, scan-
ning electron microscopy, electron microprobe, secondary ion mass spectrometry, image
analysis, quantitative gamma spectrometry, X-ray diffraction structural studies, and
heat treatments. The STAR, on the other hand, was designed to treat and recondition
spent fuel, and to perform destructive or non-destructive examinations on PWR (Pres-
surised Water Reactor) and SFR (Sodium Fast Reactor) spent fuel. Since 2010, STAR
has been operating the Verdon laboratory, designed to carry out studies on accidental
behaviour during severe accident conditions.

The LECA-STAR is classed as a “hot laboratory” (a laboratory designed for the
use of radioactive substances). Hot laboratories are very special environments, with
many safety and security constraints. The nuclear environment and the large number
of restrictions and regulations make the scheduling process difficult, since tasks, which
are considered easy in other industries, will become complex requiring much more time
(preparation, execution) and resources. Indeed irradiated nuclear fuel must continuously
be confined to dedicated areas (hot cells) to protect workers from the radiation. The
operations carried out on the irradiated fuel are then made using teleoperation (carried
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Figure 1.1: LECA-STAR facility

out from outside the hot cell via telemanipulator arms) by trained staff. Teleoperation
makes any operation more complicated and time-consuming than whether it was done
in a traditional workshop.

To ensure the execution of the experiments, and the normal running of the facility,
an important number of maintenance (preventive and curative) activities must also be
carried out. Again, the nuclear environment adds a complexity layer to these activi-
ties, requiring important preparation works. Maintenance over the manipulator arms,
for example, require previous cleaning activities (decontamination) for reducing the ra-
dioactivity level within the hot cell. Receipt and shipment of nuclear fuel casks and
disposal of effluents also need to be done to maintain operative the LECA-STAR. More
than 100 activities are carried every week at the facility, and it welcomes around 110
employees every day among maintenance personnel, experimenters, R&D engineers, hot
cells technicians and support staff. The number of activities, and the possible interac-
tion between them, make the scheduling process in the facility have a significant impact
on the performance of the whole laboratory and consequently on the progress of the
research projects.

Because scheduling is also an important matter for nuclear safety, the LECA-STAR
has decided to optimise its planning process. This PhD thesis is the first step in this
improvement process, and it has as main focus the optimisation of the weekly sched-
ule of activities within the facility by using Operations Research and, more precisely,
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Figure 1.2: Hot cells and teleoperation zone

combinatorial optimisation techniques; see Chapter 2.

1.2 Importance of the operational schedule

Having a good schedule is crucial since it allows the decision makers in the facility to
have guidance and a pathway to better focus the effort on critical activities, and to
make better use of the limited resources. Additionally to these apparent functions, the
schedule may have other indirect impacts such as:

Employees motivation: A schedule that is not precise enough, or which requires a
large number of modifications after having been shared in its applicable version, can lead
to loss of motivation from employees. Indeed it may exist a direct relationship between
the accuracy of the planning (percentage of planning unchanged) and the commitment of
employees. Employees will be very reluctant to comply with a schedule that is far from
reality (causing even more delays); on the other hand, they may feel strongly motivated
to respect the deadlines of a realistic schedule, thus increasing productivity.

Improvement of the working environment: A good schedule helps to maintain
the harmony of employees in the workplace, removing sources of stress. By implementing
a good scheduling strategy, confusion due to schedule changes or errors can be avoided.
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Knowledge of real-time usage status of resources: Changing schedules can
lead operators to make changes in the order in which the tasks are executed, without
communicating them. This results in the impossibility of knowing in real time the actual,
or at least an approximate, state of the load rate of the employees and the availability
of the resources and the staff. Adequate scheduling should reduce the need to make
changes on scheduled activities, allowing the planner to have a more realistic view of the
current state of the facility and thus better manage the scheduling for future activities.

Improvement of the safety: Finally, but not less important, an adequate schedule
plays an essential role in the safety of hot laboratories. An exhaustive schedule allows
ensuring the respect of nuclear regulations and operational constraints, since it allows
us to understand the possible interaction that can happen between different activities.
In the nuclear environment, scheduling error could cause incidents (or accidents in the
worst case) or endanger the staff. It is then important to be systematically sure of taking
into account all constraints during the scheduling process.

1.3 Analysis of the current scheduling process

In this section, we present some of the operational characteristics of the current schedul-
ing process at the nuclear research facility. We first describe the main characteristics of
the activities and the resources that are taken into account during the schedule genera-
tion. Then we discuss how scheduling requests are treated and how the final schedule is
generated.

1.3.1 Scheduling characteristics

Every week more than 100 activities are carried out at LECA-STAR, including mainte-
nance (preventive or curative), experimental activities, nuclear transport and regulatory
controls. The laboratory runs its operations continuously from Monday morning to Fri-
day night (108 hours). However, not all activities can be scheduled at any moment due
to the absence (known in advance) of some resources and staff during specific periods.
Due to this “calendarisation” (see Chapter 3), we can not guarantee the continuous exe-
cution of activities with a duration larger than the work shifts. Additionally, sometimes
we must preempt (stop an activity in process to continue it later) non-critical activi-
ties (such as certain experimental activities) to give priority to more critical activities
(such as nuclear transports that have stringent constraints for scheduling). Allowing the
preemption is then necessary for modelling our problem. A preempted activity can be
resumed later by a set of resources different from the one used to start it. On the other
hand, there is a subset of particular activities (set NP of non-preemptive activities) that
must be executed without interruption due to safety and operational constraints.

Activities carried out at LECA-STAR require the allocation of technicians (staffs)
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with particular skills and authorisations to be executed. In other words, not all techni-
cians can execute all activities. Thus, activities are defined by their need for resources
(equipment, machines, building) and their need for skills. Each technician has a specific
set of skills it masters (we assume this mastering is done at the same level for each skill),
and its periods of presences/absences (calendarisation) are defined in advance (and are
not subject to change in this study). Technicians can be allocated to only one activity
at a time, but they can execute several skills per activity at the same time. The same
technician can, for example, be responsible for recording the movement of nuclear ma-
terial in the database (not everyone can do it), and at the same time, he performs a cut
of the sample. For operational reasons, we must, however, guarantee the allocation of a
minimal number of technicians for an activity. For instance, activities in contaminated
or isolated zones require at least two members of staff for surveillance.

The presence of time windows is also important in the nuclear facility. Nuclear
regulation, for example, requires to carry out a series of periodic tests to ensure the
proper functioning of the machines. These tests must be scheduled and executed before
a deadline. Additionally, some of the activities are carried out in partnership with other
laboratories, and they may be subject to the reception of a sample on a fixed contractual
date, and the activity cannot start before such date. In this case, we say that the activity
is subject to a release date. Sometimes an experimental or maintenance activity may
require a set of setup activities. In this case, a precedence relationship exists between
these activities (i.e. activity i cannot start before activity l is completed).

1.3.2 Management of scheduling requests and schedule generation

Today, the collection of information concerning the activity scheduling requests is made
based on an intensive exchange of e-mails. This approach is cumbersome and complex
to manage, given the large number of activities (and its respective constraints) to be
scheduled. It is clear that the use of e-mails is not the most efficient way of collecting the
information, and that it poses a significant risk of information loss, as the information is
difficult to extract from e-mails that the planners have to handle. In addition, the lack
of standardisation of e-mails further complicates the process of collecting information.
Requesters continue to prefer the use of open and informal e-mails, which most of the
time could not provide the level of information required for scheduling, including the
resources involved and prerequisites. Having clear and timely information is, therefore,
the first step in the scheduling process; that is why an improvement in the collecting
information approach must be done.

Once collected and analysed all the requests, the planning team proceeds to schedule
all the activities and to allocate the respective technicians as needed. At the start
time of the thesis, this schedule is generated “by hand”, i.e. no automatic planning
generation tool is used. The main objective of the planning team is to find a schedule
that ensures that all the activities are finished as soon as possible. Manually generating
the schedule cannot ensure that the right distribution of activities and resources has
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been chosen. The manual process becomes even more complicated when the number of
resources or activities to manage increases, along with the possibility to omit some of the
numerous constraints unintentionally, which as stated before could lead to safety issues.
Additionally, this is a time-consuming process. The use of combinatorial optimisation
techniques can help the planning team to choose the best schedule (regarding a given
objective) while ensuring that all constraints are systematically taken into account.

The scheduling of the activities for the following week must be constructed and
validated during a meeting of the heads of research, heads of maintenance and engineers
responsible for activities that take place at the end of the week. Although the planners
prepare an interim scheduling before this meeting, it is common that changes must be
made during the meeting due to new information or the status of the administrative
progress of the documentation necessary to carry out an activity. It is then crucial
to be able to have a new feasible schedule within a few minutes. Heuristic methods
(Chapter 6) are a good choice to exploit the rigorousness of combinatorial optimisation
models while obtaining good quality (not necessarily optimal) schedules in a short time.
Once generated and validated, an offline version of the schedule is then transmitted to
all employees.

1.4 Nuclear and R&D activities scheduling

A literature review allows identifying some applications of scheduling models within a
nuclear environment, all of them for broad scheduling horizons. Chen et al. [44], for
example, proposed a heuristic method to solve the nuclear power plant construction
scheduling problem, that integrates building construction scheduling and reactor instal-
lation scheduling. The PhD dissertation by Petersen [137] presents various methods
aiming to schedule the removal of spent nuclear fuel from reactor sites in the USA. His
objective was to reduce the amount of time the shutdown reactors keep the spent fuel
on site, and thus reduce the total system costs for the federal government. Johnson et
al. [88] developed a mixed integer program for scheduling the nuclear waste placement
in the Mountain repository in Nevada, USA, as a case study. Their model determines
where to place each waste package of a specific type in a given period to minimise heat
load concentration within a repository. In France, Electricité de France (EDF), the
largest European producer of electricity, has used combinatorial optimisation techniques
to schedule outages and maintenance of nuclear power plants [61, 89].

The activities carried out at the LECA-STAR are very close to the classical R&D
project. Scheduling R&D project is a complex process. This complexity lies mainly
in the fact that the order and types of activities to be carried out during the project
can vary enormously due to the results obtained in the early stages. To handle the
R&D Project Scheduling Problem [153], researchers have used different techniques to
include the uncertain in the scheduling models such as robust optimisation [81, 82, 95]
or fuzzy optimisation [72, 130, 136]. In the same way that for nuclear-related scheduling
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activities, most of the literature of R&D project scheduling deals with broad scheduling
horizons.

Working with a relatively short scheduling horizon, which is the case in this PhD
project, may reduce the subjectivity of the activities to be scheduled in a research project,
thus allowing the use of an elementary activity approach, as proposed by Mancel [116]
for the scheduling of research activities for the Mars Netlander project. In her approach,
each experiment consists of a series of basic tasks or activities that are well defined
(known duration, resource requirement, etc.). This elementary task approach allows us
to use standard scheduling methods to schedule the activities of the research laboratory.
Because of the short scheduling horizon of our problem, this is the approach we decide to
use at the LECA-STAR. Another pragmatic reason for discarding uncertain approaches
is that the required data to describe the activities uncertainty is not available.

1.5 Proposed improvement approach

The assumptions frequently made in the scientific literature when dealing with applica-
tions of combinatorial optimisation are that all the necessary information is available in
time and in level of detail. However, as we saw before, this is not always true in real
life. To be able to exploit combinatorial optimisation techniques at the LECA-STAR,
we must ensure that the models we develop will have the information needed at the right
time and detail level. For this, one can design an Integrated Scheduling Support System
(ISSS) as the one presented in Figure 1.3.

Figure 1.3: Integrated scheduling support system

This ISSS should be composed of a management information system that will cen-
tralise and standardise the information required to generate the schedule. A scheduling
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engine will then exploit this information, using combinatorial optimisation techniques,
in order to propose a valid schedule. The guideline for the development of the ISSS (see
Figure 1.4 1) was developed in parallel of the management information support system
and the scheduling engine, and integrate them later. What means that each part will be
able to work without the other, but the integration of them will allow a better perfor-
mance. However, as explained in Chapter 7, the information management system is not
totally operational at the end of this research project but its exploitation should begin
in a near future.

Figure 1.4: Project guideline

In the following of this section, we briefly describe the development process of the
research project that allowed the development of the scheduling models and algorithms
used by the scheduling engine, and presented in Part II of this manuscript. Finally, we
describe some of the expected characteristics of the management information system.

1.5.1 Scheduling engine

The scheduling engine is the main topic of this dissertation. After analysing the charac-
teristics of the scheduling process (Section 1.3.1), and contrast them against the classical
scheduling problems of scientific literature (Section 2.1.4), we conclude that the schedul-
ing problem at hand belongs to the class of Resource-Constrained Project Scheduling
Problems (Chapter 3). To be more specific, it belongs to the class of Multi-Skilled
resource-constrained Project Scheduling Problem or MSPSP (Section 3.2), where the re-
sources are multi-skilled (also known as multi-purpose), and activities require a certain
amount of staff member mastering a series of specific skills, which is one of the main
characteristics of the activities carried out at the LECA-STAR.

We must adapt the classical MSPSP, to have a better representation of the LECA-
STAR scheduling process. The main change is the fact of allowing the preemption of
some activities since in the classical MSPSP, preemption is not allowed. However, for
operational reasons, we must try to reduce the number of times an activity is preempted.
So a first approach is to propose an MSPSP with penalty for preemption (Chapter 4),
where a penalty is applied to the objective every time an activity is preempted. However,

1Of course in practice, the process for developing an application is not so linear and is very iterative
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as we explain in Chapter 5, this first variant does not fulfil correctly all the requirements
of the nuclear facility, what takes us to propose a most accurate variant: the MSPSP
with partial preemption. This new variant allows the preemption of activities, but ensure
that some of the resources remain allocated to the activity even when it is stopped. This
way of handling preemption had not been studied in the literature before to the best of
our knowledge.

The scheduling problem can be solved using a commercial solver over the Mixed-
Integer Linear Programming (Section 2.2.1) or the Constraint Programming (Sec-
tion 2.2.2) models we propose in Chapter 5, for medium-size instances. However, for
larger industrial instances, this approach becomes less appealing as the MILP solver
runs out of memory when trying to solve industrial-size problems, or MILP and CP
may just take too much time to find good solutions. In order to answer the industrial
need of having solutions quickly, we also develop some heuristic methods for the problem
proposed in Chapter 6.

1.5.2 Management information system

The main function of this module is the centralisation and standardisation of all the
scheduling requests. These requests can come from new demands, that must be trans-
mitted using a predefined electronic form, or from deferred activities indicated at the
schedule monitoring unit. Thanks to the use of an electronic form, we can ensure that
all the information needed to run the optimisation models is given.

This information system should also allow sharing with all employees the last valid
version of the schedule in real time. This ensures that in case of changes, everybody will
be informed about avoiding mistakes. This will be a significant improvement, since that
today only an offline version of the schedule is transmitted, and changes are difficult to
communicate.

For the scheduling process, it is important to know in real time the status of activities
and resources. This ensures that the scheduling engine has complete and up-to-date
information when scheduling new activities, and will be able to react quickly to new
events (breakdowns or other hazards). That is why the online schedule tracking should
also be implemented. This should allow knowing the real-time execution status of the
activities. Indirectly, one can know in real-time the status of the resources. In general,
the online schedule tracking should lead to a better reactivity to unforeseen events, since
these will be notified in a shorter time.

Having identified a time ago the need to monitor the status of execution of activities,
a tool has been developed for this purpose. This tool will allow sharing the planning
in real time, as well as to do a live follow-up of the progress of the activities and the
operational status of the resources. The idea is then to focus the efforts in making
operational this tool, and adding it the data centralisation function. The development
of this tool is ensured by the engineer, and we work collaboratively to maintain coherence
between the information system and the scheduling engine. We actively participated in
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the tests and presentation phase of the new tool as a side project.

1.6 Concluding remarks

Research facility as the LECA-STAR plays an essential role in nuclear research and
industry development. In order to guarantee that the laboratory responds to the needs of
French researchers, it has to optimise its operation. An initial stage of this optimisation
process is the improvement of the scheduling process. For the LECA-STAR, in the same
way as for every hot laboratory, a good schedule not only allows better management of
resources but also helps to improve the safety of the facility.

We focus our improvement project on scheduling the weekly activities carried out at
the facility. The short scheduling horizon allows us to ignore the inherent uncertainty
of the experimental projects, being able to apply standard scheduling techniques to the
problem at hand. The characteristics of the scheduling process at the research facility
lead us to conclude that a variant of the Multi-Skilled Project Scheduling Problem could
represent the real situation of the laboratory.

Finally, we have briefly described how an Integrated Scheduling Support System
would help to improve the scheduling process at the LECA-STAR. This system
should be composed of two parts: A management information system in charge of
the centralisation of the data required for scheduling, and the real-time monitoring of
activities and resources; A scheduling engine comes to exploit this information and
allows us to have a more robust and reliable schedule.

The scheduling engine is the main topic of this thesis and is presented in Part II, after
a bibliographic review presented in Part I. Some aspects of the industrial implementation
of the Integrated Scheduling Support System are presented in Part III.
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Let us start this chapter by defining a key concept. AnOptimisation Problem involves
maximising or minimising a function, by systematically choosing input values, taken from
an allowed set (defined by a set of constraints), and calculating the value of an objective
function to determine the “best” solution. More formally, we can define an optimisation
problem as follows:

Definition 2.1. Given a function f : A→ R, A ⊂ Rn, we must find an element x0 ∈ A
such as: f(x0) ≤ f(x) ∀x ∈ A for the minimisation problem or f(x0) ≥ f(x) ∀x ∈ A for
the maximisation problem.

Usually, optimisation problems are modelled using a set of decision variables with
a well-defined domain. According to the domain of these variables, we can classify the
optimisation problems into three categories: (1) those using only discrete variables (that
is, the domain of each variable consists of a finite set of values), (2) those that are
modelled exclusively by continuous variables, and (3) those using both types of variables
(mixed optimisation problems). Optimisation problems belonging to the first category,
called Combinatorial Optimisation Problems (COP), lie at the heart of this chapter. We
will also include in the category of COP the problems of the third category such that
fixing all the discrete variables yields a linear program. Indeed a linear program can be



20 Chapter 2. Combinatorial Optimisation Problems

seen itself as a polynomially-solvable COP where the search space is limited to the finite
discrete set of the polyhedron vertices.

Combinatorial optimisation, also known as discrete optimisation, is a branch of opti-
misation in applied mathematics, strongly related to operations research and computer
science. This discipline works with problems whose decision variables have a discrete
and finite domain. As a result, a combinatorial problem has a finite number of solutions,
hence the term combinatorial, although typically exponential in the number of variables.
Neumann and Witt [128] formally defined a combinatorial problem as follows:

Definition 2.2. A combinatorial problem can be defined as a triple (S, f,Ω), where S
is a given search space (set of all possibles values the decision variables can take), f is
the objective function, and Ω is the set of constraints that must be respected to obtain
feasible solutions. The objective is to find a globally optimal solution (s∗) with the highest
objective value for the maximisation problem or with the lowest objective value for the
minimisation problem.

Modelling real problems as combinatorial problems is, most of the time, easy; how-
ever, solving efficiently combinatorial problems represents a great challenge for re-
searchers. One might think that a simple solution for this type of problem is to enu-
merate all the solutions of the search space; however, most of the time this approach
is not feasible due to the combinatorial explosion (search space too vast to be explored
entirely) of the problem. This difficulty in solving combinatorial problems has attracted
the attention of researchers, who aim at the development of new solution techniques.

Combinatorial optimisation is maybe one of the youngest and most active areas of
discrete mathematics, becoming a major research subject in the fifties [101]. There were
two major changes that have stimulated combinatorial optimisation research: (1) the
continuous increase in computing power that has enabled the development of more effi-
cient algorithms, and (2) a growing confidence in the practical potential of combinatorial
optimisation techniques. Combinatorial optimisation problems can be easily found in
almost all fields of management and engineering such as: marketing [34, 117], supply
chain [66, 162], scheduling [139], integrated circuit design [83], cryptography [91] and
many others. A survey of some industrial applications of combinatorial optimisation is
presented in [134].

2.1 Some classical combinatorial optimisation models

In this section, we present an overview of some classical combinatorial optimisation
models and theirs application to real-life problems.

2.1.1 Knapsack problems

The easiest way to explain the concept of this problem is by making an analogy to a
traveller that must pack the objects to be taken for a trip. The traveller must select,
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from a set of possibles choices, the objects that maximise her/his comfort during the
travel while respecting the maximum capacity of the knapsack. The knapsack problem
(KP) can be formally defined as follows [93]:

Definition 2.3. Given a set of items J , consisting of n items j with profit pj and weight
wj, we must select a subset of J such that that the total profit of the selected items is
maximised, and the sum of the weights of selected items does not exceed a fixed capacity
C.

If we associate a binary decision variable xj to every item j ∈ J , taking the value
of 1 if the item is included in the knapsack (0 otherwise), we can formulate an integer
linear programming model for the KP as follows:

maximise
n∑

j=1
pjxj (2.1)

subject to
n∑

j=1
wjxj ≤ C, (2.2)

xj ∈ {0, 1}, j = 1, ..., n (2.3)

Even if the KP might seem easy, being one of the simplest non-trivial integer pro-
gramming model with binary variables [93], adding the integrality constraint (equation
2.3) puts the KP into the class of NP-hard, i.e. “difficult to solve” problems. The KP is
important because it arises as a “sub-structure” for many other combinatorial optimisa-
tion problems [85]. For example, we find the so-called “knapsack constraint” (equation
2.2) in various resource-constrained scheduling problems as a constraint to respect the
capacity of the resources (in addition to other constraints).

This is one of the most studied combinatorial optimisation problems, and several
variants and extensions have been proposed in the literature to address optimisation
problems coming from diverse fields. The subset sum problem (SSP) is a simpler variant
of the KP where the objective is to fill as much as possible the knapsack, that means to
maximise the total weight of the selected items while respecting the knapsack capacity.
It has been largely used to develop cryptosystems, where an instance of the problem
must be solved to decrypt the information [91].

Other variants propose to determine the number of similar items j to be included in
the knapsack, instead of deciding whether each item is included or not (still respecting
the maximum knapsack capacity). If we have limited availability of each item, the
problem is called bounded knapsack problem (BKP). However, if the availability of each
item is very large or infinite, we call it an unbounded knapsack problem (UKP). These
variants are useful for problems where we have a given number of identical copies (same
weight and profit) of each item j to be packed [93].

Baseline KP assumes that there is only one knapsack. However, sometimes we may
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need to fill various knapsack in parallel, each of them with a given capacity. We face
then a multi knapsack problem (MKP). In this problem, additionally to decide which
objects will be included, we must also decide in which knapsack they will be included
(always respecting the knapsack capacity). This extension has numerous applications,
including task allocation among autonomous agents, multiprocessor scheduling and ve-
hicle/container loading [71].

Suppose there is someone in the supermarket with a list of products he must buy, for
each product on the list he has multiple brands from which he can choose. Each brand
gives him a certain satisfaction level (profit) and has a specific price (weight). At the
end, he must be sure of getting all the products in the list, regardless of their brand,
while maximising his satisfaction and respecting his limited budget (knapsack capacity).
This problem is an example of the multiple-choice knapsack problem, in which there is
a fixed list of articles to put in the knapsack, we can choose between different choices
(with different weight and profit) for each item, and the objective is to maximise the
profit while respecting the capacity constraint. This problem can be useful in finance to
decide between substitute inversion plans and capital budgeting.

Until now, the profit of every item is independent of the position in the knapsack.
However, some real-life applications, such as choosing the location of products on the
supermarket shelf (products on the middle have more chance to be bought) or scheduling
commercials on broadcast television (advertisements aired at the start and end of a
commercial break have more impact on customers), require that the profit of every item
changes according to its position in the knapsack. This can be modelled using a position-
dependent knapsack as proposed in [34, 59, 62]. Other variant modifying the behaviour
of the objective function is the quadratic knapsack problem (QKP), where the profit of
each item varies according to the presence (or absence) of other items in the knapsack
[140]. A most recent variant is the product knapsack problem (PKP) [63], where the
objective is to maximise the product of the profits of the selected items. PKP gains
importance in the context of Computational Social Choices.

The collapsing knapsack problem (CKP) modifies the behaviours of the knapsack’s
capacity. In the CKP the capacity is no longer a scalar but a non-increasing function
of the number of included items (inversely related to the number of items within the
knapsack) [54]. Some applications of the CKP are satellite communications and time-
sharing computer systems.

For a detailed review of the KP, its variants, applications and solution methods, we
recommend the book by Kellerer et al. [93].

2.1.2 Network and graph problems

A network or graph can represent a wide variety of combinatorial problems. A network
is defined by a set of nodes and a set of arcs (unidirectional connections) or edges (bi-
directional connections) connecting those nodes, along with some information such as
cost and capacity of arcs (if we do not have this information, we call it a graph) [85].
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In a network flow problem, we must determine an optimal strategy for “routing”
a flow through the network, always respecting the limited capacity of the connecting
arcs (or the node according to the modelling approach). Flow problems can be used to
represent applications with physical networks where commodities (or flow) must circulate
through routes with limited capacity such as the distribution of commodities (i.e. gas,
petroleum, water) [113, 166], or managing communication bus on computer systems [75].

Not all network flow problems are based on physical networks. The assignment
problem, where one must minimise the cost of assign people to jobs, can be modelled as
a network flow problem. For this, we create a network having two set of nodes (bipartite
graph): a set of nodes representing the people to be assigned and the other other set
representing the jobs. Each arc is connecting a person to a job that this person can
execute [85]. In the classical assignment problem, one must assign one person to one
job. A more general assignment problem, assigning more than one person to an activity,
is used in the heuristic method presented in Chapter 6, to solve the technician allocation
problem within the Multi-Skill Project Scheduling Problem with partial preemption
(MSPSP-PP).

There are also many graph-based combinatorial optimisation problems that do not
involve a flow, and they consider different properties of the analysed graph or network.
The vertex colouring problem [115], requires to assign a colour to each vertex, in a
given graph G = (V,E), ensuring that colours on adjacent vertices (i.e. connected by
an edge) are different, while minimising the number of used colours. This problem is
useful, for example, for minimising the number of required frequencies needed to ensure
wireless communication without interference [1]. Other graph-based problems are the
maximum clique problem, where the objective is to identify the biggest subgraph, within
the original graph, for which every node is linked to the other nodes in the subgraph;
and the minimum cut problem, the objective of which is to find the smallest number of
edges that, if removed from the graph, will divide the graph in two subgraphs. These
problems have many applications in the fields of social network and communications
networks [85].

Recently, Martins et al. [117] use a mixture of the maximum clique and minimum cut
problems, known asmaximum cut-clique problem, for an application to the market basket
analysis. The problem is used for finding the products that are the most important in
the market basket and then adapt marketing strategies. More application of graph-based
optimisation problems can be found in [69].

2.1.3 Location and routing problems

Other network-based combinatorial problems require to find an optimal route through a
graph while satisfying a set of requirements. The well known travelling salesman problem
(TSP) is one of them. In TSP, the objective is to find the shortest walk through the
network such that the walk starts and ends at the same node and visits every node of
the graph exactly once [13]. This problem has application in very diverse fields such as
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logistics, microchips manufacturing and DNA sequencing.
The TSP can be seen as a specific case of the vehicle routing problem (VRP), in

which we must find a collection of k circuits, each of them corresponding to a capacity
limited vehicle route, that minimise the total cost of visiting all nodes [65]. This problem
is of high interest for researchers, as shown by the exponential growth of the number of
publications on the subject in the last years [37], playing an essential role in logistics,
supply chain management and delivering. A lot of VRP variants have been studied such
as the VRP with time windows, where each customer (node) has an associate period
(time window) in which he can be visited; the VRP with pick up and delivery, in which
a number of products can be delivered or picked up to/from a customer (what affects
the way vehicle capacity is modelled); and the VRP with multiple depots, where the
deliveries can be done from multiple departs nodes.

Braekers et al. [37] highlighted in their work three relative new variants that include
real-life constraints and assumptions (making the VRP more realistic): the open VRP,
where vehicles are not forced to return to the initial depot after visiting the customer
(useful for modelling third-party logistic deliveries); the dynamic VRP, in which the
input data is updated continuously, and routes are adapted dynamically; and the time
dependent VRP, in which time travel is a deterministic function of the current time. For
a deeper lecture over VRP description, variants and solutions methods, we recommend
[37, 46, 65].

Facility location problems represent also common combinatorial optimisation prob-
lems. The objective is to choose the optimal subset of locations, from a set of candidates,
satisfying certain requirements and restrictions [85]. Within these problems, we found
the p-median location problem, in which the objective is to find the location P in such a
way that the total demand-weighted costs (distance or travel time) are minimised [118].
Sometimes, a client (node) cannot be served (covered) if it is located farther than an
acceptable distance; these problems fall in the category of covering problem. The loca-
tion set covering problem aims to reduce the number of required facilities to ensure a
fixed level of coverage. The maximal covering problem, on the other hand, consists in
maximising the level of coverage for a fixed number of facilities. Finally, the minimax
location problem, also known as p-centre location problem, which seeks to minimise the
maximum distance between any customer node and its nearest facility. Facility loca-
tion problems have big importance in supply chain management [118] and emergency
humanitarian logistics [35].

Problems mentioned before focus on locating the facilities as close as possible to
customers. However, some real-life applications require locating some facilities that are
undesirable to the nearby population such as waste disposal, recycling facilities, or even
nuclear reactors. These applications can be modelled, for example, using the antimedian
location problem, where we seek to maximise the average distance between the nodes and
the facility; the minimum covering location problem, which aims to minimise the covered
area (nodes within a fixed distance), subject to the condition that no two facilities are
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allowed to be closer than a specific distance [29]; or the anticentre location problem, that
maximises the minimum distance between the nodes and the facility. More details about
location problem model, solution methods and applications can be found in [52].

For real-life applications, it is common to find models integrating the location and
routing problems. Some applications of the location/routing integration problems can
be found in [60, 148, 155].

2.1.4 Scheduling problems

Scheduling problems are concerned with the optimal allocation of limited resources to
activities over time [84], taking into account the temporal constraints (delays, precedence
relationship,...) and the capacity/availability of resources. A schedule should indicate
the periods on which an activity is executed and the resources allocation.

In the machine scheduling problems, we must schedule a set of jobs that must be
executed on a disjunctive resource (i.e. that can handle only one activity at a time),
often called machine, aiming to optimise an objective function (minimise the maximum
or average job tardiness or earliness, minimise the average time expended by the jobs
in the system, ...). The single-machine scheduling problem is the simplest machine
scheduling model, in which we are given a set of n jobs j = 1, ..., n, each of them with a
specific duration pj , to be processed on a single machine [40]. The single-machine models
are crucial for developing decomposition solving methods for more complex scheduling
problem, where the complex problem is decomposed into many smaller single-machine
scheduling problems [138]. Sometimes a setup time for configuring the machine can be
needed; if this setup time depends on the sequence (which activity is executed before a
specific activity), we talk about a machine scheduling problem with sequence-dependent
setup times.

If instead of having only one machine, we have a set of m machines M1, ...,Mm on
which the jobs can be processed, we face a parallel machine scheduling problem. The jobs
duration can be the same for all machines (identical machines) or can vary according to
the machine. In the multi-purpose machine scheduling problem [41] we are given a set of
n jobs j = 1, ..., n, and a setM ofm parallel machinesM1, ...,Mm. Each job j has a set of
machines Mcj ⊆M to which it can be assigned. The objective is to find a schedule such
that each job j is assigned to one of the machines in Mcj and such that the makespan
is minimised [107]. This problem combines the traditional machine scheduling problem
and an allocation problem. It can be found in the literature under different names such
as scheduling with eligibility constraints [107], scheduling with processing set restriction
[107] or scheduling with flexible resources [53].

Usually, a job must require to go through more than one machine (stage) to be
done; this is the case of the shop scheduling problems. In shop scheduling problems
the jobs are divided into several operations, which have to be processed on different
machines. The operations of the same job cannot be processed at the same time, and
machines are disjunctive [40]. According to the order (route) on which the operations of
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each job can be done, we can classify the shop scheduling problem in three categories:
flow-shop scheduling problem, if the route of all jobs are identical; job-shop scheduling
problem, in which each job may has a specific route; and open-shop scheduling problem,
if the operations of jobs have not a fixed route to follow [139]. A generalisation of these
problems is the flexible shop scheduling problem, for which, instead of having single
machines at each stage, we have a set of parallel machines [138].

Models presented above, assume that each job requires only one machine (resource)
at a time for its execution. However, a job may require the simultaneous use of various
machines; themultiprocessor scheduling problem, also known asmulti-resource scheduling
problem [53], represents this case. In this problem, each job is associated with a subset of
machines that are occupied simultaneously during the whole job execution. Furthermore,
precedence constraints may be given between certain jobs [40]. A multi-resource shop
scheduling with resource flexibility problem, mixing the characteristics of multi-resource
and multipurpose machine scheduling problem, is presented by Dauzère-Pérès et al. [53].
In this problem, each job may need several resources to be performed, and furthermore,
a resource may be selected in a given set of candidate resources. This scheduling problem
is related to the Multi-Skill Scheduling Problem studied in Section 3.2.

Scheduling problems can also work over cumulative resources, i.e. they can handle
more than one activity simultaneously. In cumulative resource scheduling, each job
requires a specific amount of a resource, which has a fixed maximum capacity, during its
whole duration. We must ensure that the sum of resource requirements in every period
is always lower than or equal to the maximum capacity of the resources. The cumulative
nature of resources makes it even harder to solve the scheduling problem.

The resource-constrained project scheduling problem (RCPSP), takes into account the
characteristics of the multiprocessor scheduling problem and the cumulative resources
scheduling problem, besides with a more general representation of the precedence rela-
tionships between the jobs (usually represented by a precedence graph). The RCPSP is a
combinatorial optimisation problem that covers a large number of “classical” scheduling
situations. The problem consists in scheduling tasks or activities on renewable resources
with limited capacities. These tasks are linked together by precedence relationships
(task i cannot start until task l is finished). The most common objective function is to
minimise the makespan of the project (Cmax) [51].

Even if the RCPSP is easy to define, it is one of the most intractable scheduling
problem [14]. It has shown to be a powerful tool to model a vast amount of real-life
problems, having an important number of variants aimed to better represent the reality.
A more in-depth analysis of the RCPSP characteristics, variants and solution methods
will be given in Chapter 3.
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2.2 Classical solution methods

2.2.1 Mixed-Integer Linear Programming

A lot of combinatorial optimisation problems require the optimisation of a linear objec-
tive function, having constraints that, in most cases, can be expressed as linear com-
binations of decisions variables. Furthermore, some optimisation problems with non-
linear objective function can be “linearised” by approximating the nonlinear function
by piece-wise linear functions [73]. Thus, these problems can be easily modelled using
(Mixed-)Integer Linear Programming (ILP).

In general, integer optimisation is harder than linear (continuous) optimisation, and
polynomial-time algorithms are unlikely to exist unless P = NP [101]. In traditional
linear programming (continuous) the feasible region is convex, while in integer optimi-
sation is either a discrete set of points (for pure ILP) or, a union of possibly disjoint
polyhedra (for MILP). In a convex region, we can ensure that any locally optimal so-
lution is a global optimum. However, in integer optimisation, we must prove that a
solution dominates all the others using other arguments than the approach of convex
optimisation [85].

The equations of the MILP model do not provide a useful geometric description of the
feasible region, and we must obtain a better description using polyhedral theory. Weyl’s
theorem implies that, if rational numbers describe the original problem formulation,
there is a finite system of linear inequalities describing the convex hull of the feasible
region (conv(S)). Optimising over the convex hull conv(S) is equivalent to optimise over
the search space S. We can then use classical convex optimisation approaches to solve
the MILP over the convex hull conv(S). The main idea is to identify a set of linear
inequalities describing the convex hull conv(S), which is called the ideal formulation,
and then optimise over this convex region. However, in practice, the number of required
linear inequalities is too large to be explicitly constructed [85].

Cutting plane algorithms, initially proposed by Gomory [74], use a partial description
of conv(S), generating the “strongest” inequalities (called facets). The algorithm first
solves the linear relaxation of the problem (integer constraints have been relaxed). If
the relaxed problem is unbound or infeasible, then the MILP also is. If we get an
integer solution, we have solved the MILP to optimality. However, if we get a fractional
solution, we must find a valid inequality (cut) that separates the fractional point from the
polyhedron conv(S) (the problem of finding such cut is called separation problem or facet
identification problem). This inequality is added, and the problem’s relaxation is solved
again. Theoretically, this algorithm could finish in two ways: either an integer solution of
the relaxed problem has been found (what means the MILP has been optimally solved)
or the relaxed problem is infeasible (thus the MILP is also infeasible). In practice, the
algorithm can finish in two additional ways: a) the algorithm is not able to find another
cut (because a full description of the convex hull is not known, or because of accumulated
round-off errors) [73]; b) the algorithm must be interrupted since it takes too much time
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to converge.
Even if one of the last two option happen, the results of the algorithm are still useful,

since it provides better bounds for the problem that can be used later by other solution
methods such as Branch-and-Bound. Although the cutting plane methods are in general
not polynomial in time, they are largely used due to their success in practice for pruning
the search tree (see below) [106].

Branch-and-Bound (B&B) methods imply the implicit enumeration of all possible
solutions of the problem, by storing partial solutions in a tree structure. In each node, we
generate “child” nodes, partitioning the solution space into smaller regions (branching),
and we use some rules to prune regions that are suboptimal (bounding). After visiting
the whole search tree, the best solution found is returned and can be considered as
optimal [122].

There are three components of Branch & Bound methods that have a significant
impact over the performance of the algorithm: the way of separating the problem into
subproblems (branching strategy), the order in which the subproblems will be explored
(search strategy), and how to limit the exploration of suboptimal solutions (pruning
rules). Morrison et al. [122] present a description on how these components influence
the algorithm performance.

A usual pruning rule is to solve a linear relaxation of the integer problem on the
nodes to get bounds. If the obtained bound is worst than the best current solution, the
branch is pruned. The bounds obtained by the LP-relaxation are often weak [73], leading
the algorithm to visit too many suboptimal branches. As stated before, adding cutting
planes to the problem can improve the quality of the bounds. We can then combine
the cutting planes and Branch-and-Bound algorithms to get a more powerful class of
algorithms known as Branch-and-Cut. The main idea of the Branch-and-Cut is to add
cuts to the subproblems on the nodes, to improve the bounds obtained from the linear
relaxation [85].

Another possible way to solve MILP models involves the decomposition of the prob-
lem into multiple sub-problems that are in theory easy-to-solve, and that must be solved
iteratively. The Lagrangian decomposition [67], for example, consists of isolating the
set of difficult constraints to obtain separate subproblems that are solved over each
constraint subset. Linking variables are created to link the subsets. Most of the de-
composition strategies in the literature involve decomposition based on constraints [85].
However, for problems having an exponentially growing number of variables, it is more
interesting to use a decomposition method based on variables such as the Benders de-
composition [150]. In this approach, we fix the value of the “complicating variables”,
and the resulting subproblem is solved iteratively. Exploiting the associated dual of the
problem, the algorithm must find a cutting plane for the current solution and add it
to the problem before solving it again [73]. The Dantzig-Wolfe decomposition aims to
replace any integer solution of a set of constraints by a convex combination of the ex-
treme points of the convex hull. The original problem is then reformulated into a master
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problem and n smaller subproblems. Most of the time, Dantzig-Wolfe decomposition
results in a master problem with a huge number of variables, and column generation is
used to solve it [149]. In general, decomposition methods provide bounds for the MILP
problem that are tighter than the bounds obtained by simple linear relaxation. They
can then be used to improve the pruning rules in a B&B algorithm.

The Branch-and-Price is another improved method derived from the B&B, using
Dantzig-Wolfe decomposition. In this approach, we start with a restricted version of the
master problem, obtained by Dantzig-Wolfe decomposition, and start adding variables
(column generation) with the potential of improving the value of the objective function.
To select the column to be included, we solve one or various pricing problems over the
dual of the Dantzig-Wolfe subproblems, to find the columns with negative reduced cost.
The main inconvenience of this technique is that the pricing problems are usually hard
to solve (NP-Hard). Additionally, branching strategies can interfere with the structure
of the pricing problems; the use of alternative branching strategies are then necessary
[122]. Recent research efforts have been made to mix the Branch-and-Cut and Branch-
and-Price algorithms into a new method known as Branch-and-Cut-and-Price [57].

The time required to solve a combinatorial optimisation problem to optimality de-
pends strongly on the way the problem is formulated. Since the same problem can be
formulated in various ways, a variety of challenging problems have been solved by refor-
mulating them, and a lot of research works study the way of better formulate classical
optimisation problems [85]. Artigues [15], for example, presents a deep analysis of the
strength of time-indexed formulations for the RCPSP. Indeed, different MILP formula-
tions of the same problem can be theoretically compared in terms of their tightness, i.e.
their proximity with the ideal formulation. Roughly and for pure 0–1 problems, to show
that a formulation Ax ≤ b, x ∈ {0, 1}n is tighter than a formulation By ≤ c, y ∈ {0, 1}p
it suffices to show that, given a linear transformation y = Ex + f , constraints Bt ≤ c,
y ∈ [0, 1]p are implied by constraints Ax ≤ b, y = Ex + f , x ∈ [0, 1]n, y ∈ [0, 1]p. This
shows that the first formulation is at least as good as the second one. Then a single
example were the LP relaxation value of the first formulation is strictly better than that
of the second formulation suffices to show that the first formulation is strictly tighter.
In this thesis, we use this technique to make (limited) theoretical comparisons of the
proposed MILP formulations for the studied problems in Chapters 4 and 5.

A better formulation allows us to get better bounds, and thus it should allow a
faster computational solution. It is important to say that in integer optimisation the
number of variables and constraints may not be an indicator of the difficulty of the
problem [85]. Sometimes, it may be interesting to add some variables or constraints to
have a better formulation. However, this has to be mitigated by the fact that when a
tighter formulation has a large number of variables and/or constraints, the solving time
of its LP relaxation may be slower than that of a less tight formulation involving fewer
variables and constraints. Consequently, solving to optimality a problem by branch and
bound may sometimes take more time with the tighter formulation even if the number



30 Chapter 2. Combinatorial Optimisation Problems

of nodes is reduced. This phenomenon occurs frequently in modern branch and bound
solvers, in which even two MILP formulations that are theoretically equivalent in terms
of relaxation tightness may obtain significantly different performances due to internal
preprocessing, cut generation and heuristic procedures behaving differently. We observe
this phenomenon for our problem in Chapter 5.

2.2.2 Constraint Programming

Constraint programming (CP) is a more emergent, easy-to-model, technique to solve
complex combinatorial problems using a declarative description; it comes from logic
programming and artificial intelligence. The idea is to separate the constraint declaration
using a rich constraint language from the solution finding process based on an active
use of constraints to reduce the search space (constraint propagation). CP is based
on constraint satisfaction problems (CSPs), in which one needs to solve a constraint
network, assigning values to variables in such a way that all constraints are satisfied
[30].

The philosophy of CP is to allow users to use a more natural language to describe
the constraints of the problem and then use a general-purpose constraint solver to tackle
the problem [154]. One of the most important advantages of CP is that it allows using
very diverse types of variables and constraints. Unlike MILP, CP models are not limited
to use numerical variables. To model scheduling problems, for example, it is common to
use interval variables that indicate the interval time over which an activity is executed
(as we do for modelling the MSPSP-PP in Section 5.3). Using this kind of variables, we
can define compactly and easily the constraints of the problem that will be difficult to
model on MILP, such as: not overlapping of interval variables for disjunctive resources,
for which commercial solvers have already excellent propagation algorithms.

The constraint propagation is a critical aspect of CP, since it allows reducing the
search space by the iterative use of algorithms identifying the values of the variables
to be deleted from the search space (filtering algorithm). To remove these values, the
filtering algorithm should prove that they are inconsistent. We say that a value v of
a variable is inconsistent with respect to a constraint C if, after fixing such value for
the variable, it is not possible to assign values from their domains to the remaining
variables that satisfy the constraint [160]. Lots of research works have been done to
develop efficient filtering algorithms, allowing a better constraint propagation. However,
more complex algorithms will require more time to propagate the constraints. It implies
to search for a tradeoff between the complexity of the filtering algorithm and its ability
to reduce the search space.

The most common way to solve CP problems is by using a combination of constraint
propagation and a search method (similar to B&B framework) [160]. Usually, we use a
backtracking search with a depth-first search strategy: it starts at the root of the tree
and proceeds by descending to its first descendant until a leaf is encountered (a complete
solution of the problem); the search then moves back to the parent node of the leaf and
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explores another not yet visited branch. In each node, an uninstantiated variable (x) is
selected, and a branching strategy is applied to generate the new branches. The most
common strategies are to generate a branch for each possible value of the variable domain
or to generate two branches: one for a forbidden value in the domain (x 6= a) and the
other allocating the value to the variable (x = a) [154]. Constraint propagation is then
executed. Removing inconsistencies allows pruning dead-end branches and reducing the
variable domains. We can say that the constraint propagation mechanism in CP plays
a similar role than linear relaxation for MILP [105].

Different approaches can be used to improve the performance of the algorithm. One
can, for example, add some particular constraints (called nogood constraints). These
constraints can be added using three main techniques: to add them during the mod-
elling phase of the problem; to automatically add them using constraint propagation
algorithms; or add them when an inconsistency or dead-end is found [154]. This third op-
tion has some similarities with cutting planes techniques for the MILP, since constraints
are added after infeasibilities are found. One can also modify the way the backtracking
is done or change the order in which variables are considered for generating the search
tree.

Although this paradigm has been conceived to allow easy and fast modelling, a deeper
analysis of the factors affecting the model performance (compactness of the model, elim-
ination of symmetries, efficiency of propagation and search algorithms, ...) is necessary
to take maximum advantage of the capabilities of the method. This analysis requires a
good understanding of the problem characteristics and CP techniques. In this thesis, we
propose a CP formulation of the considered problem in Chapter 5.

2.2.3 (Meta)Heuristic methods

Heuristic methods are handy for hard-to-solve problems or when problem instances are
too big. A heuristic is a problem-dependent algorithm aiming to get good solutions (not
necessarily optimal), in a reasonable time, for hard optimisation problems; this is done
by exploiting the characteristics of the problem. A metaheuristic, on the other hand, is a
problem-independent framework, consisting of a set of fundamental concepts and guiding
subordinate heuristics (problem-dependent) to produce good solutions for a problem
[133]. Thus, metaheuristics are easily adaptable and exploitable for an important number
of problems.

To make a (non-exhaustive) classification of metaheuristics, we can divide them into
two categories:
• single solution based (improvement is made using one solution at the time), and

• population-based (using a set of initial solutions).
Single solution based metaheuristics can be also subdivided into two categories: con-

struction methods and neighbourhood search methods (also called trajectory methods)
[36].
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Figure 2.1: A non-exhaustive metaheuristics classification.

Construction methods. The construction methods are one of the oldest techniques
in combinatorial optimisation. The main idea is to build step by step a solution. Starting
from an initially empty partial solution, it seeks to extend at each step the partial
solution of the previous step. The most common constructive heuristics are the greedy
algorithms, in which we construct a solution by making the locally optimal choice at each
stage, without questioning the choices made in previous steps. The principal drawback of
constructive algorithms is they may accept some myopic choices leading to local optima
that may be far away from a global optimum [161]. Chapter 6 proposes and compares
experimentally different greedy algorithms.

Neighbourhood search methods. One way to improve the solutions obtained by
constructive methods is to apply neighbourhood search. A typical neighbourhood search
based method starts with a single initial solution and executes an iterative process to
modify the initial solution, taking into account the objective function, to find a better
neighbour of the initial solution. This process is repeated until the stop condition is met
(a time limit, a maximal number of iterations). The neighbourhood of each solution s

is defined by the subset of solutions (N(s) ⊆ S), which can be reached from s in the
next step. Larger neighbourhoods lead to a better quality of the locally optimal solution
[7]. Very large-scale neighbourhood search techniques, such as the Large Neighbourhood
Search, aim to exploit this characteristic. A neighbourhood is considered to be very
large-scale when it grows exponentially with the instance size of the instance or when it
is too large to be searched explicitly in practice [141]. Some examples of neighbourhood
search methods are simulated annealing (SA) and taboo search (TS).

Simulated annealing is an analogy of particles behaviour during metal annealing.
At high temperatures, the particles can move easier, and they go to a static state as
the temperature goes down. The algorithm starts with an initial solution s (generated
randomly or by a construction method). At each iteration, a neighbour of s is selected



2.2. Classical solution methods 33

randomly. The algorithm always accepts improving solutions. Worsening solutions are
accepted probabilistically according to the deterioration level and a parameter called
“temperature”. The temperature parameter decreases over time, and thus the probability
of accepting worsening solutions. The algorithm can be stopped according to different
conditions: after a limit time, after a fixed number of iterations, after a fixed number
of iterations without solution changes, or after reaching the final temperature. Many
variants of SA have been proposed, modifying the way the temperature decreases or the
acceptance conditions, for example. Franzin and Stützle [70] present a good analysis of
SA variants and parameters.

SA is not able to learn from past solutions, which means that a solution could
be visited several times. Tabu search (TS) tackles this problem by using an adaptive
memory of visited solutions (tabu list) to guide the search process [133]. The memory
helps avoiding possible cyclic search and escaping from local minima (unlike SA that
uses randomisation). At each iteration, starting from an initial solution s, the algorithm
generates a set of neighbours of s (avoiding the solutions in the tabu list) and keeps the
best solution (s′) within the set (even if s′ is not better than s). The new solution is
then added to the tabu list. At the end, the algorithm returns the best-found solution
during all the iterations [12]. Storing a complete solution can be memory prohibitive,
and inefficient as different solutions may share the same critical component that should
be avoided. Usually, the tabu list is restricted to a fixed number of solutions and only
some characteristics of the visited solution are stored. How the set of neighbours is
generated in each iteration and the tabu list management are critical components of
TS.

Greedy Randomised Adaptive Search Procedure (GRASP) is an iterative multi-start
algorithm, that combines the characteristics of both constructive and neighbourhood-
based algorithms. Each iteration of GRASP consists of two phases: construction and
local search. In the construction phase, a feasible solution is generated using a greedy
randomised algorithm. During the execution of the greedy algorithm, instead of always
choosing the best local candidate, we choose a candidate randomly from a restricted
candidate list (RCL). In the original GRASP, the probability of choosing each candidate
is uniformly distributed. One can, however, use a memory component to bias the
probability function and give priority to the intensification (generation of solutions
with similar characteristics to the best solutions) or diversification (avoid solutions
with similar characteristics) of solutions [152]. Once a solution is constructed, the local
search algorithm explores its neighbourhood until a local optimum is found. The best
solution found overall GRASP iterations is kept as the final result. A GRASP method
is described in Chapter 6.

Population-based metaheuristics, also known as nature-inspired, can be divided into
two main groups: evolutionary algorithms and swarm intelligence algorithms.
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Evolutionary algorithms. The Darwinian evolution theory inspires these algo-
rithms. They all share the idea of simulating the evolution of individuals (solutions)
through selection, recombination, mutation and reproduction processes. Every evolu-
tionary algorithm is constituted by three main components: a “population” of potential
solutions (individuals); a fitness indicator of the adaptation of individuals; and an evolu-
tion mechanism allowing the creation and deletion of individuals [36]. Genetic algorithms
(GA) are the most well-known evolutionary algorithms. GA starts with a population of
initial solutions called “chromosomes” and uses a set of “genetic operators” randomly
over one or two individuals (mutation and crossover) to make the population evolve. The
crossover operator generates two children from two individuals (parents) by combining
somehow its characteristics. The mutation operator generates a new individual by mod-
ifying the characteristics of one parent. To maintain a fixed number of individuals in
the population, at the end of the iteration, only individuals (parents and children) with
the best fitness indicators are kept [56].

Even if evolutionary algorithms decrease the chances of being stagnated in a local
optimum, they are not able of improving a solution that could lead to a local optimum
in their neighbourhood. Memetic algorithms (MA) try to achieve a synergy between
the ability of evolutionary algorithms to avoid being blocked in a local optimum and
the fine tuning ability of neighbourhood based algorithms. An MA is usually formed
by a modified GA improved with a neighbourhood search algorithm. At each iteration,
after the reproduction phase (crossover or mutation), the individuals are improved by
executing a neighbourhood search algorithm on them [50].

Swarm intelligence algorithms These algorithms are inspired by the collective
behaviour of a group of individuals or “collective intelligence”. This intelligence is built
up using a population of homogeneous individuals that interact with each other and
with their environment [126]. These agents usually have minimal individual capability,
but jointly can perform very well. Ant colony optimisation (ACO) is the most known
in this category. ACO is inspired by the way real ants determine the optimal path from
the nest to their food source. At first, ants choose randomly the path to follow and
pheromones are left for guiding other ants. After some time, the optimal path should
have a higher concentration of pheromones. ACO is useful for solving optimisation
problems involving some sort of graph, e.g., TSP and VRP. At each iteration of an
ACO, one constructs a solution step by step, at each step a partial path is randomly
selected based on a probability function (pheromones). Once completed, the candidate
solution is used to modify the probability function of each partial path in such a way
that future sampling is biased toward high-quality solutions.

In the last years, the number of research works proposing the use of algorithms
combining the characteristics of several metaheuristics has increased. These methods
are known as hybrid metaheuristics. The main idea of hybrid metaheuristics is to exploit
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the complementary features of different methods. Choosing an adequate combination of
algorithms can significantly improve its performance. More general hybrid approaches
look to integrate metaheuristics with other optimisation techniques such as constraint
programming, mixed-integer linear programming or dynamic programming. Various
surveys about hybridization can be found in [21, 135, 151]. In particular, the large
neighbourhood search (LNS) framework hybridises local search with an exact method.
Indeed, due to the large neighbourhood size, the search for the best neighbour is itself
an optimisation sub-problem solved with dedicated algorithms or general techniques
such as CP and MILP [86]. We use LNS in Chapter 6.

After this overview of the Combinatorial Optimisation methods and applications, we
focus our literature review to the project scheduling problems in the following chapter.
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Project scheduling is an essential aspect of project management since it allows to have
guidance and a pathway for the project. A project schedule must indicate a timescale
and a sequence for the activities within the project; along with the allocation of people
and materials at each stage of the project [18].

In the late 50s, the first techniques to schedule projects with deterministic activities
duration, like the Critical Path Method (CPM) [90], were proposed [18]. Almost at the
same time, the Program Evaluation and Review Technique (PERT) was developed by
the United States Navy. PERT incorporates uncertainty by making it possible to sched-
ule a project while not knowing precisely the duration of all the activities. For this, one
uses different estimations of the activities duration: the optimistic time estimate, the
most likely or typical time estimate, and the pessimistic time estimate. More sophisti-
cated techniques have been developed to have a better representation of the project’s
uncertainty such as the Graphical Evaluation and Review Technique (GERT). Unlike
the CPM and the PERT, the GERT allows the representation of probabilistic branching
of the project. This is particularly useful for projects where the path to follow depends
on the results of early stages (e.g. R&D or research projects). Recently, fuzzy project
scheduling approaches have been largely used when the statistical information is hard
to find, like in the Fuzzy GERT (FGERT) [72, 111] and, the more recent, Parallel and
Reversible-Fuzzy GERT (PR-FGERT) [130].

Nevertheless, the aforementioned techniques are helpful only when resources are not
constrained [157] and when uncertainty matters. Most of the time, during the project
scheduling process, we must take into account some technological (machines or people
availability) or financial (budget) constraints. Furthermore, as mentioned in Chapter 1,
the uncertainty is reduced in our context due to the short term planning horizon. This
leads us to work over a deterministic Resource-Constrained Project Scheduling Problem
(RCPSP), which is the subject of this chapter.
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3.1 Resource-Constrained Project Scheduling Problem
(RCPSP)

The resources constraining the project execution can be classified into four categories
[98]:

• Renewable resources are constrained on a period-by-period basis, i.e. the available
capacity is renewed from period to period. Examples of this kind of resources are
machines, equipment and people.

• Nonrenewable resources, also known as consumable resources, impose a constraint
over its global utilisation for the entire duration of the project. Typical examples
are the raw materials and the capital budget allocated to the project.

• Doubly constrained resources are constrained on a period-by-period basis and also
on the global utilisation for the total project duration. We can take the example of
the budget of the project again and add a constraint stating a restriction over the
amount of money used at each period. Each doubly constrained resource can be
represented by a pair made of a renewable resource and a nonrenewable resource.

• Partially renewable resources are a generalisation of both renewable and non-
renewable resources. Each partially renewable resource have a limit utilisation
within a subset of periods of the planning horizon. Partially renewable resources
are largely used to model labour regulations. A typical example, for a project
with a scheduling horizon of a month, is the workers for which the maximal weekly
working time is fixed by law.

Hartmann and Briskorn [79] present a classification of less common resource types
such as continuous resources, dedicated resources or resources with time-varying capacity.
The last kind of resources will be useful to model the scheduling problem of the nuclear
facility, and they will be part of our discussion later in this chapter.

In the most current version of the RCPSP, we must schedule “non-preemptive” tasks
or activities (i.e. once started, an activity must run continuously until its completeness)
on renewable resources. The idea is to find a solution (a schedule) that minimise or
maximise a given objective function, while respecting both the constraints of precedence
relationships among the activities and the resource constraints (the sum of the resource
needs of the activities in execution must not exceed the capacity of resources in each
period of time) [14]. The main characteristics of the traditional RCPSP are presented
in Figure 3.1.

More formally, the RCPSP is defined by a 7-tuple (V, p, E,R,B, b,H) where V is a
set of activities, p is a vector of activity durations, E is a set of precedence relationships,
R is a set of resources, B is a vector of resource capacities, b is a matrix of resource
demands or consumption per activity, and H is the set of scheduling periods [14].
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Figure 3.1: Characteristics of the classical RCPSP

Many objective functions have been used for the RCPSP. Most of them can be classi-
fied into three categories: time-based objectives (within which we found the most studied
in the scientific literature: the minimisation of the makespan (Cmax) [76]), cash flow or
cost-based objectives (such as Net Present Value maximisation [108]) and robustness-
based objectives (used for scheduling under uncertainty [38]). Since this research project
does not consider any cash-flow and uncertainty is not taken into account, we limit our
research to time-based objective functions, especially the Cmax minimisation (our main
objective).

3.1.1 Some variants and extensions

Although the classical version of the RCPSP is very powerful, being able to model a
large number of scheduling problems, it can not cover all the situations that can happen
in real life problems. That is why researchers have developed more general versions of
the RCPSP using the classical version as starting point [79]. For a more exhaustive
lecture about the variants and extensions of the resource-constrained project scheduling
problem, we recommend to read the surveys on this topic published by Harmann and
Briskorn [79], Orji and Wei [131], and Habibi et al. [76]. Among all these variants, we
distinguish a few ones that are of great interest for the modelling the problem at hand;
they are described below.

Typically, time windows (i.e. the interval within an activity can be scheduled) are
not taken into account in basic RCPSP. In real life project, the earliest starting time
of an activity may be conditioned by an external constraint (e.g. wait for the arrival
of raw material). This constraint is known as release date (ri), and it states that an
activity cannot start before this date. Sometimes, one must also respect some milestone
of the project, i.e. activities must be ended before a specific date. This is known as a
deadline. This constraint is called due date when the date fixed for the milestone of the
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project can be violated. Some applications of time windows for the RCPSP, and its
variants are presented in [4, 22, 79].

The classical version of the RCPSP assumes that, once started, an activity must run
continuously until its completeness. However, in practice, it may happen that an activity
can (or must) be preempted to be finished later. The inclusion of preemption may lead
to reductions in the total duration of the project, especially when resource availability
is very limited [23]. On the other hand, including the preemption of activities increases
the number of possible solutions and consequently the computational complexity of the
problem.

Most of the time, preemptive scheduling problems assume that activities can be
interrupted and resumed later without any consequence [23]. This assumption does not
represent industrial reality [24, 159], because of the presence of setup costs or times
needed for resuming the activity or also because of the reduction in the production rate.
To address this issue, different approaches have been proposed. Afsnar-Nadjafi [4] pro-
posed a Preemptive RCPSP with penalty for preemption. In this problem, preemption
is allowed, but a penalty is incurred every time an activity is preempted. Afsnar-Nadjafi
and Mejlesi [5] also considered the inclusion of an indivisible setup-time for resuming a
preempted activity. Another approach consists of limiting the number of times an activ-
ity can be preempted. Zhu et al. [167] presented a genetic algorithm for a preemptive
RCPSP where each activity could be interrupted at mostM times. Ballestín et al. [167]
proposed a more general approach where each activity has its own preemption policy:
if it can be preempted or not, the maximum number of times it can be preempted,
and the minimal duration of each “part” of the activity. The work presented in [103]
considers together: (1) a maximal number of preemptions, (2) a minimal duration of
each part of the activity and (3) a minimal setup time for resuming a preempted activity.

A concept related with activities preemption is the calendarisation or calendar
constraints. Calendar constraints make some resources unavailable during certain
periods (e.g. unavailability of staff during the weekend). The RCPSP with calen-
darisation allows the preemption of activities only during the calendar breaks (i.e.
when resources are not available). Some applications of this variant can be found in
[45, 102]. Calendar constraints can be seen as a specific case of time-varying resource
constraints. The main difference is that calendarisation assumes that the capacity of the
resources for all periods, different to calendar breaks, is constant, while in time-varying
resource constraints the capacity can change (not necessarily to zero) at each period.
Applications of the RCPSP with time-varying resources capacities are presented by
Hartmann [78] and Habibi et al. [77].

The basic RCPSP hypothesises that activities can only be performed using one
method, which is determined by a fixed duration and fixed resource requirement. In
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the Multi-mode RCPSP, an extension of the classical problem, an activity can be exe-
cuted in several alternative modes. Each of these modes implies specific durations and
resource requirements [129]. According to the survey of Habibi [76], the multi-mode
characteristic is the most common in the literature. Most of the time the multi-mode
characteristic is found together with other variants (the same is true for all the variants
presented in this chapter). Buddhakulsomsiri and Kim [42], for example, mixed the
multi-mode RCPSP with the calendarisation. Azimi and Azouji [20] propose a solution
approach, using simulation, for the preemptive version of the multi-mode RCPSP. Na-
jid and Arroub [125] added to the multi-mode RCPCP some time windows constraints.
More examples and applications of the multi-mode RCPSP are presented in the survey
of Noori and Taghizadeh [129].

Another variant, related to the multi-mode RCPSP, that also allows assigning
resources according to different ways is the Multi-Skill Project Scheduling Problem
(MSPSP) where resources can be assigned to different kinds of resource requirements of
activities [28]. This variant is the basis for developing the models proposed in this thesis
and is analysed later in this chapter.

3.1.2 Modelling and solution approaches

The most common technique for modelling the RCPSP and its variants is the integer
(ILP) or mixed-integer (MILP) linear programming since it allows us to have a formal
description of the problem’s constraints easily. However, as stated in Section 2.2.1, the
way of modelling the problem has a significant impact on the effort required to solve it.
We can distinguish two families of formulations for the RCPSP [100]:

• Discrete-time formulations divide the planning horizon into uniform time intervals,
and events can only occur at predefined time points. These formulations make
use of time-indexed binary variables [15], so they are highly sensitive to the time
horizon.

• Continuous-time formulations suppose that events can happen at any point of the
scheduling horizon. They rely mainly in the use of precedence-based (like the flow-
based formulation presented in [16]) or event-based decision variables (such as the
event-based MILP formulations proposed by Koné et al. [99]). Some continuous-
time formulations also made use of the concept of valid antichains, i.e. all feasible
subsets of activities that can be simultaneously executed without violating resource
or precedence constraints [119].

Looking at the characteristics of our study case, we conclude that a discrete-time
formulation could be the most accurate approach to model the problem at hand (espe-
cially for modelling the time-varying resource availability and activity preemption). We
can identify three well-known time-indexed formulations:



42 Chapter 3. Project Scheduling Problems

• Pulse formulation: uses the binary pulse variables Xi,t, i ∈ V , t ∈ H, are such that
Xi,t = 1 if activity i begins at period t, zero otherwise. An activity that begins at
t is to be interpreted as the fact that the activity is ongoing during the interval
[t, t+ 1] while it was not in progress at the time interval [t− 1, t] if t > 0.

• Step formulation: uses the binary step variables Zi,t such that Zi,t = 1 if the
activity i begins at time t or before. For a given activity i, the variables Zi,t with
t < starting time of the activity are all equal to 0, whereas the variables with t ≥
starting time are all equal to 1.

• On/Off formulation: uses binary variables Yi,t, where Yi,t = 1 if activity i is being
executed at time t and Yi,t = 0 otherwise.

Artigues [15] proved that this three time-indexed formulations are equivalent in terms
of their linear relaxation strength, and that their disaggregated versions are stronger than
their aggregated versions. However, in practice, the performance of formulations is not
necessarily related to the LP relaxation. The time-indexed formulation proposed by
Bianco and Caramia [31, 32], that introduces a new decision variable indicating the frac-
tion of the activity that has been processed at each time period, generally outperforms
other time-indexed formulations in terms of solution time. Artigues [15] proved that the
theoretical linear relaxation strength of Bianco and Caramia’s formulation is equivalent
to the classical disaggregated time-indexed formulations.

The MILP models presented in Chapter 4 and Chapter 5 are inspired on the
time-indexed formulations, more precisely on the On/Off formulation and the Step
formulation.

Constraint programming has also been successfully applied to solve RCPSP like
in [55], where a combination of linear programming and CP is used to calculate lower
bounds for the RCPSP. The authors use constraint propagation to derive new valid
inequalities (cuts, see Section 2.2.1) that are added to the LP relaxation of the problem
to improve the quality of the lower bound. Liess and Michelon [110] proposed a
filtering algorithm that does not use the commonly used approach called “resource
timetable” (where each of the resources is associated to a timetable indicating the
amount of the resource still available at each time t ∈ [0, T ]). The authors substituted
the resources constraint by a set of sub-constraints, each of them corresponding to a
set of tasks that cannot be executed together without violating the resource capacity
constraints. Schnell and Hartl [156] propose a more recent application of constraint
programming for the multi-mode RCPSP. Their approach combines techniques of CP
and Boolean satisfiability problem (SAT) principles. Computational experiments showed
that the proposed method outperforms the state-of-the-art exact algorithms, being the
first to close an important number of open instances from the literature. Kreter et
al. [102] proposed and tested six different CP models for the RCPSP with calendar
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constraint, and they showed that CP solutions are highly competitive with existing
MILP formulations of the problem (average runtime required by CP models is lower).
These results have motivated us to propose a CP model for our study case in Chapter
5.

RCPSP is NP-Hard [33], and the exact state-of-the-art methods can only solve in-
stances with at most 60 activities [135]. Since a real-life project can quickly exceed this
size, a large number of (meta-)heuristic methods have been proposed for the RCPSP
and its variants. Surveys about this topic are presented in [3, 97, 135].

Priority-rule-based heuristics, also known as list schedule generation heuristics, seem
to be the most used for the RCPSP [17]. These heuristics are made up of two components:
a Schedule Generation Scheme (SGS) and a priority rule indicating the order in which
activities are treated during the scheduling process. We distinguish two types of SGS:
serial and parallel. Both methods generate a feasible solution by extending a partial
schedule in each iteration. In the serial SGS, at each iteration, the first activity in the
priority list is selected to be scheduled (inserted to the partial schedule) as soon possible
(respecting precedences, resource constraints and release dates). Once a starting time is
assigned to the activity, this time is permanent and cannot be changed by the subsequent
iterations of the method (the same is true for parallel SGS). The parallel SGS, on the
other hand, works chronologically. At each period t, the set of activities that can be
scheduled at that period (schedulable activities), regarding the resource availability and
the precedence relationships, is generated. Activities within the set are selected one
by one to be scheduled at time t following the priority rule; this is executed until the
capacity of the resources precludes scheduling more activities; when this happens one
must repeat the process in the next t period with a nonempty set of schedulable activities.
The parallel SGS seems to be one of the most popular constructive heuristics for the
RCPSP [10].

According to the number of times the heuristic is executed, and hence the number
of generated schedules, one can distinguish single- and multi-pass approaches. In single-
pass heuristics, only one priority rule is used to select the activities to be scheduled.
Multi-pass versions aim to improve the results by executing the procedure using different
priority rules and keeping the best solution [39]. Priority-rule-based heuristics are very
useful since they allow to have initial solutions that can be used later for starting most
complex meta-heuristics. They can also be part of other meta-heuristics (like in the
heuristic methods proposed in Chapter 6). Some applications of priority-based heuristics
for the RCPSP can be found in [10, 39, 42].

Over the last few years, an important number of hybrid metaheuristics, combining
exact methods with heuristics, for the RCPSP have been proposed [135]. Yoosefzadeh
and Tareghian [164], for example, proposed a hybrid method based on Branch-and-
Bound coupled with a genetic algorithm (the GA allows to calculate better upper bounds
at the nodes of the tree search). Morillo-Torres et al. [121] also proposed a hybrid method



44 Chapter 3. Project Scheduling Problems

based on Branch-and-Bound, but this time the authors use four heuristic methods (with
dominance rules) to guide the search process. A search algorithm with subproblem
exact resolution, based on the large neighbourhood search, was proposed by Palpant et
al. [132]. At each iteration of the algorithm, a subpart of a current solution is fixed
while the rest defines a subproblem that is solved by an external method (e.g. CP or
MILP). The solution of the subproblem is included in the main solution, and a heuristic
method is used to update the current solution. The authors tested different ways to
choose the subproblem, and the size of the problem is self-adaptive (to limit the time
required for the exact method). Their work inspired the Large Neighbourhood Search
algorithm proposed in Section 6.5 for the MSPSP-PP.

3.2 Multi-Skill Project Scheduling Problem (MSPSP)

One of the assumptions of the RCPSP is that each resource has a specific function,
or in other words, the resources are mono-skilled [14]. This hypothesis can quickly
become false when we are also interested in the allocation of human resources working
in the project. In real life, a resource could perform several functions leading us to a
Multi-Skill Project Scheduling Problem (MSPSP). In our research project, for example,
to model human resources as multi-skilled resources is essential. This is because, in the
nuclear environment, the execution of the activities requires authorisations and training
that each technician may or not have.

The MSPSP, presented by the first time in Néron [127], combines characteristics of
both the classical RCPSP for the project description, and the Multi-Purpose Machine
model with the addition of new resource constraints. In this variant a resource is there-
fore characterised by the set of skills it possesses; a task is now defined by the number
of required resources with a specific skill. The MSPSP consists in determining a feasi-
ble schedule, respecting the precedence constraints between activities and the resource
constraints: a resource cannot execute a skill it does not master, cannot be assigned to
more than one competence requirement at a given time, and must be assigned to the
corresponding activity during its whole processing time. The aim is to minimise the total
duration of the project [9, 27]. The MSPSP can be seen as a Multi-mode RCPSP where
each execution mode is defined for a valid resource allocation. However, most of the
time, the number of resulting modes can be prohibitive for using the classical algorithms
used for solving the multi-mode RCPSP [26]. Figure 3.2 summarises the characteristics
of the MSPSP.

The MSPSP, initially proposed to schedule IT development projects [127], acquires
great importance for scheduling activities in particular fields, such as pharmaceuti-
cal, chemical and nuclear, where the regulation requires the presence of a group of
technicians having a set of well-defined skills for the execution of an activity [87].
This problem shows to be more challenging than traditional RCPSP, due to the
extra decision we need to make: we need to decide not only which resources will be
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Figure 3.2: Characteristics of the MSPSP

assigned to each activity, but also the skills with which they will contribute [48]. As
indicated by Bellenguez-Morineau [26] in her thesis, for each instance of the RCPSP
we can match an instance of the MSPSP with resources mastering only one skill;
what means the MSPSP extend the RCPSP. Since the RCPSP has been proved to be
strongly NP-hard [33], we can, therefore, infer that the MSPSP is also strongly NP-hard.

In the same way as for the RCPSP, it is common to find variants of the MSPSP in
the scientific literature. Javanmard et al. [87], for example, present a preemptive multi-
skilled resource investment project scheduling where the objective is to minimise the
total recruitment cost of the project. Maghsoudlou et al. [114] also present a preemptive
MSPSP, but this time the authors include the presence of hard/soft due dates, and the
objective if the minimisation of the total cost of staff allocation and the penalties for
the earliness/tardiness and preemption. Li and Womer [109] worked over an MSPSP
including the concept of minimal and maximal time lags (a minimal (maximal) time
lag is defined as the minimal (maximal) time interval between the start or finish of an
activity Ai and the start or finish of another activity Aj [163]).

Almeida [8] classifies the resources used in the MSPSP into two categories: ho-
mogeneous and heterogeneous. Problems with homogeneous resources assume that all
resources can perform a given skill with the same efficiency level (like in the basic
MSPSP proposed by Néron [127]). In the heterogeneous case, the efficiency level at
which a skill is performed may vary across the resources. Examples using heterogeneous
resources are the ones presented by Bellenguez and Néron [25] and Kia et al. [96]. In
their problem, each activity required a given amount of each skill with a minimum
level of mastering. One must assign, for each skill need, a resource who masters at
least the required level of the skill during the whole processing time of the activity;
this while minimising the makespan. The previous problem assumes that the mastering
levels are constant over time. However, in real life, it may be interesting to include the
possible evolution of mastering levels (improvement due to learning or worsening due to
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forgetfulness). Problems dealing with this issue are presented by Chen et al. [43] and
Attia et al. [19].

Various MILP formulations, continuous and discrete-time based, have been proposed
in the literature for the MSPSP. For the continuous-time based models, most of the
time authors have used precedence-based variables. Correia et al. [47] proposed a
continuous-time based MILP for the standard version of the MSPSP, using precedence-
based variables. They also propose various additional inequalities aiming to enhance the
model. A precedence-based non-linear model for the MSPSP is presented Kazemipoor
et al. [92]. The authors show later how the model can be linearized through a series
of variable conversions. A MILP formulation, having some similitude with the model
proposed by Correia et al. [47], was proposed before by Li and Womer [109] for the
MSPSP with minimal and maximal time lags. Discrete-time based formulations have
been proposed by Bellenguez-Morineau [26], Montoya et al. [120] (Correia and Saldanha-
da-Gama [49] proposed minor corrections to this model) and Almeida et al. [11]. All of
them using binary time-indexed step variables.

Almeida et al. [11] did a theoretical and empirical comparison of the models proposed
by Correia et al. [47], Montoya et al. [120] and two new formulations proposed in the
article. They proved that the continuous-time based model of Correia et al. [47] has
theoretically the worst linear relaxation. However, for the computational experiments,
this model performed the best in terms of the number of optimal solutions and the time
required to prove their optimality. What proves again the fact a better linear relaxation
does not necessarily mean a better performance in practice. They also proved that the
disaggregated versions of the three discrete models have equal linear relaxation and that
they are never worst than their aggregated version. A conclusion similar to the one done
by Artigues [15] for the time-indexed formulations of the RCPSP.

MILP formulations for the preemptive MSPSP are very scant in the scientific
literature. Moreover, the few ones we could find use time-indexed on/off variables.
Maghsoudlou et al. [114] proposed a MILP formulation for the preemptive MSPSP with
due dates. They used an On/Off variable Zi,k,t, taking the value of 1 if the part k of the
activity i is executed at time t, together with other on/off variable (Xi,m,k,t) indicating
the periods t at which each technician m works over each part k of the activity i.
An allocation binary variable (Yi,m,k,s) is also used to indicate the skill s that every
technician m performs over each part k of each activity i. Continuous variables are used
to determine the earliness, tardiness and completion time of each activity. Dhib et al.
[58] also formulated a MILP for a preemptive variant of the MSPSP where all parts of
one activity, each corresponding to one skill requirement, must start simultaneously but
can be preempted at different times. The authors used an on/off variable Xi,k,l,t taking
the value of 1 if resource k performs the skill l for activity i during time t. Continuous
auxiliary variables are used to calculate the starting and completion time of activities
and the completion time of each skill for every activity.
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Young et al. [165] used pure Constraint Programming to solve the MSPSP. In
their work, the authors proposed and tested different configurations of CP models,
together with different search and propagation techniques. Using the best of their
configurations, the authors were able to close an important number of open instances
of the literature, showing a better performance than the Branch-and-Price algorithm
proposed by Montoya et al. [120], thus proving the interest of using CP for solving
the MSPSP. Li and Womer [109] presented a hybrid MILP/CP benders decomposition
algorithm (with various configurations), where the problem is decomposed into a relaxed
master problem having only assignment variables and constraints, and a feasibility
subproblem only with the scheduling variables and constraints. CP is used to solve the
subproblem to infer cuts that are added into the master problem for excluding infeasible
assignments. The authors conclude that their decomposition algorithms are faster than
their pure MILP or CP algorithms.

Solving industrial-size instances of the MSPSP is time-consuming due to the com-
plexity of the problem. Heuristic methods are then necessary to tackle this type of
instances in small times. Most of the heuristics for the MSPSP in the literature are
based on the use of priority rules. In her thesis work, Bellenguez-Morineau [26] pre-
sented various greedy algorithms: one based on the Serial Generation Scheme (SGS)
and two using the Parallel Generation Scheme (PGS). All of them using priority rules
for determining the order in which activities are considered at each iteration of the
heuristics. The technician allocation subproblem is modelled as a Minimum Cost Max
Flow (MCMF) problem, where the cost of assigning a resource is related to the degree
on which unscheduled activities may need the skills it masters. This way to model the
allocation subproblem is used in the heuristic method proposed in Chapter 6. Based on
these greedy algorithms, Bellenguez-Morineau also proposed a tabu search that gives an
average optimality gap of 4% (on instances up to 90 activities). Two genetic algorithms
are also presented in her thesis.

Almeida et al. [10] also presented a greedy algorithm using the PGS. However,
this time, the authors proposed a “multi-pass” version of the algorithm, where different
priority lists for activities and the weight (criticality) of resources (for its assignments)
are tested and the best solution found is kept. Almeida [8] proposed a biased random-key
genetic algorithm that allowed him to get an average optimality gaps of 1.1% for mean
computation times lower than one minute.

Myszkowski et al. [124] tested different priority rules, the traditional ones and some
more complex ones, with an SGS algorithm. They concluded that more complex rules
not always lead to better results. Because of their ease of development and the quality
of the results obtained, the authors propose using algorithms based on priority rule as
an element of more elaborate metaheuristics. Later on, Myszkowski and Siemieński
[123] presented a basic GRASP for the MSPSP. At each iteration of the algorithm, a
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feasible priority list (sequence) for activities is randomly generated, then a randomised
greedy-based algorithm, based on an SGS, is used to process the resource allocation.
For the local search phase, a series of swapping moves are done over the initial sequence,
and the randomised greedy-based algorithm is used again to assign the resources. The
GRASP of Myszkowski and Siemieński [123] does not learn from the results of past
iterations. The inclusion of learning from past iterations is indeed one of the aspects we
test on the GRASP algorithm proposed in Section 6.4.

In this chapter, we presented the main characteristics and methods for the project
scheduling problem. In Part II, we will introduce the methods proposed to handle the
scheduling problem at the LECA-STAR.
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After studying the scheduling process at the LECA-STAR (Chapter 1), and compar-
ing its characteristics with the scheduling models in Chapter 3, we get a partial match
between our scheduling problem and the well-known Multi-Skill Project Scheduling Prob-
lem. However, this theoretical problem assumes that activities cannot be preempted. As
we saw in Chapter 1, the preemption of a subset of activities is required for modelling
the real behaviour at the facility. We must then adapt the classical problem and al-
lows the preemption of these activities. A first attempt for modelling the LECA-STAR
scheduling problem is to use a Multi-Skill Project Scheduling Problem with penalty for
preemption. This new variant allows the preemption of some activities. However, in
order to limit the number of times each activity is preempted, one can apply a penalty
every time the activity is stopped.

This chapter is structured as follows: First, we present the problem description in
Section 4.1. Once defined the characteristics of our variant, we present, in Section 4.2,
four MILP formulations for the MSPSP with penalty for preemption. Computational
experiments on the performance of the proposed MILP models are presented in Sec-
tion 4.3. Finally, Section 4.4 presents a brief theoretical analysis of the strength of the
proposed models. A part of the results presented in this chapter has been published in
[142].
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4.1 Problem description

The characteristics of the scheduling process in the nuclear laboratory, presented in
Section 1.3.1, take us to conclude that the facility scheduling problem could be modelled
as an extension of the Multi-Skill Project Scheduling Problem (MSPSP). To do so, we
must undergo some changes over the baseline version of the MSPSP. This will allow us
to get a more accurate representation of the industrial scheduling problem.

The most significant change is related to the possibility of interrupting an activity
once it has started. The non-preemption constraints (activities execution must be with-
out interruption) is one of the main characteristics of the MSPSP [127]. In our study, it
is necessary to allow the preemption of a set of activities, while still forbidding this pre-
emption for the remainder. Nuclear regulation requires that, for some critical activities,
the workspace must be put in a safe configuration whenever an activity is interrupted,
which means a loss of time and a decrease of the productivity. We must then try to
limit the number of times these activities are preempted. At first, a suitable approach
is to use an MSPSP with penalty for preemption where we apply a penalty (Mi) ev-
ery time an activity i, for which we want to limit the preemption, is preempted. This
penalty is then minimised in the objective function. We can classify the activities into
three sets: Non-preemptive activities (NP ), preemptive activities (P ) and preemptive
activities with penalty (PP ).

The second set of changes is related to the characteristics of the resources we model.
The MSPSP, as defined by [127], works only with disjunctive resources, which means they
have a unitary capacity. In our industrial variant, we must work with both disjunctive
multi-skilled resources (technicians) and cumulative (i.e. capacity higher than 1 activity
at a time) mono-skilled resources (compound machines and buildings). Unlike what
happens in the classical MSPSP, our technicians can execute several skills at a time per
activity. However, we must ensure that a minimal number of technicians is allocated to
comply with safety and operational constraints. Additionally, since some activities have
a duration larger than technicians work shifts, the technicians can partially execute the
activities, except for non-preemptive activities (i ∈ NP ), which duration is smaller than
work shifts. Finally, to represent the absences/presences of technicians over time, we
must work with time-varying resource capacity.

Traditional MSPSP does not take into account time windows for scheduling the
activities. As stated in Section 1.3.1, some of the activities may be subject to time
windows. These activities must be scheduled after a fixed release date (ri) and/or
before a deadline (dli). All other characteristics are similar to the classical MSPSP.
Once defined the characteristics of the problem, we can now begin the description of its
mathematical formulation.
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4.2 MILP formulations

In this section, we present four discrete-time based MILP models for the MSPSP with
penalty for preemption. The first three models are original and inspired by the time-
indexed formulations for the (preemptive) RCPSP (see Chapter 3); the fourth one is an
adaptation of the models proposed by Afshar-Nadjafi [4] for the RCPSP with penalty for
preemption, and by Maghsoudlou et al. [114] for the preemptive MSPSP. A first version
of these formulations was presented in [142]. The parameters used for the models are
shown in Table 4.1.

4.2.1 Model MSWP1

4.2.1.1 Decision variables

The first model uses two types of time-indexed binary variables (Section 3.1.2), together
with some auxiliary variables :

• on/off variables to indicate the periods of execution of each activity and the tech-
nicians allocation;

• pulse variables to indicate when each part of an activity starts.

Activity executions: These binary variables indicate the periods over which each
activity is executed.

Yi,t =

1 if activity i ∈ I is executed during time t ∈ H
0 otherwise

Technician allocations: This second set of binary variables indicate which techni-
cians are allocated to each activity at each time.

Oj,i,t =

1 if technician j ∈ J is allocated to activity i ∈ I during time t ∈ H
0 otherwise

Auxiliary allocation variables: These auxiliary binary variables are used to ensure
that all technicians allocated to a non-preemptive activity must execute it until its
completeness. They exist only for non-preemptive activities.

Sj,i =

1 if technician j ∈ J is assigned to execute activity i ∈ NP
0 otherwise
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Notations for parameters

I Set of activities to be scheduled

NP ⊆ I Set of non-preemptive activities

P ⊆ I Set of preemptive activities

PP ⊆ I Set of preemptive activities with penalty

E
Set of precedence relationships. (i, l) ∈ E
states that activity l ∈ I cannot start before
activity i ∈ I is completed

K Set of mono-skilled resources

C Set of skills

J Set of available technicians

T Last period of the scheduling horizon

H = {1, 2, ..., T} Set of scheduling periods

DRk,t ∈ Z+
Amount of resource k ∈ K available at time
t ∈ H

Bri,k ∈ Z+
Amount of resource k ∈ K required for
executing activity i ∈ I

DOj,t ∈ {0, 1}
Presence/absence of technician j ∈ J at time
t ∈ H. Equal to 1 if present, 0 otherwise

COj,c ∈ {0, 1}
Indicates whether a technician j ∈ J masters
skill c ∈ C or not. Equal to 1 if mastered, 0
otherwise

Bci,c ∈ Z+
Amount of technicians mastering the skill
c ∈ C required for executing activity i ∈ I

Nti ∈ Z+
Minimal number of technicians required to
execute activity i ∈ I

Di ∈ Z+ Duration of activity i ∈ I

ri ∈ H Release date for activity i ∈ I

dli ∈ H Deadline for activity i ∈ I

Mi ∈ Z+
Penalty for preempting activity i ∈ PP
(expressed in time units)

Table 4.1: Parameters for the MSPSP with penalty for preemption
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Start of each part of the activities: These binary variables allow to know the
periods where an activity is started or resumed after preemption. Note that this
variable is not necessary for preemptive activities without penalty (i ∈ P ).

Xi,t =

1 if a part of activity i 6∈ P starts at time t ∈ H
0 otherwise

Project makespan: Indicates the total duration of the project.

Cmax ∈ R+: project makespan

4.2.1.2 Formulation

Objective function: To ensure the normal progress of research projects, we must
be sure that the set of weekly activities is executed in the shortest possible time. This
can be translated as the minimisation of the project makespan:

min(Cmax)

We must also ensure that the penalties due to the preemption (Mi) of those activities
for which we want to limit the preemption (i ∈ PP ) are minimised. The value of Mi

can be seen as the minimal improvement over the Cmax expected after allowing the
preemption of activity i. The minimisation of penalties can be modelled as:

min

 ∑
i∈P P

Mi ∗

 min(dli,T )∑
t=max(1,ri)

Xi,t

− 1


Even if an activity i is not preempted, the constraints of the problem that stipulate

that an activity has to be started (see below) yield
∑

t∈H Xi,t = 1. That is why we
must subtract 1 before multiplying by the penalty Mi. The formulation is consequently
defined as follows:

min

Cmax +
∑

i∈P P

Mi ∗

 min(dli,T )∑
t=max(1,ri)

Xi,t

− 1

 (4.1)

Subject to: ∑
i∈I

(Yi,t ∗Bri,k) ≤ DRk,t ∀t ∈ H, ∀k ∈ K (4.2)

∑
i∈I

Oj,i,t ≤ DOj,t ∀j ∈ J, ∀t ∈ H (4.3)
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Yi,t ∗Bci,c ≤
∑
j∈J

(Oj,i,t ∗ COj,c) ∀i ∈ I, ∀t ∈ H, ∀c ∈ C (4.4)

∑
j∈J

Oj,i,t ≥ Yi,t ∗Nti ∀t ∈ H, ∀i ∈ I (4.5)

min(dli,T )∑
t=max(1,ri)

Yi,t = Di ∀i ∈ I (4.6)

Di ∗ (1− Yl,t) ≥
T∑

t′=t

Yi,t′ ∀(i, l) ∈ E,∀t ∈ H (4.7)

Xi,t ≥ Yi,t − Yi,t−1 ∀i 6∈ P ,∀t ≥ 2 (4.8)
Xi,1 = Yi,1 ∀i 6∈ P (4.9)

T∑
t=1

Xi,t = 1 ∀i ∈ NP (4.10)

Oj,i,t ≥ Sj,i + Yi,t − 1 ∀j ∈ J, ∀t ∈ H, ∀i ∈ NP (4.11)
Oj,i,t ≤ Sj,i ∀j ∈ J, ∀t ∈ H, ∀i ∈ NP (4.12)
Oj,i,t ≤ Yi,t ∀j ∈ J, ∀t ∈ H, ∀i ∈ NP (4.13)
Cmax ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (4.14)

Constraints (4.2) guarantee that the total demand of each resource during all pe-
riods t ∈ H is always lower than the resource capacity. Constraints (4.3) ensure that
technicians are allocated in period t only if they are available. They also ensure that
the technicians can be allocated to at most one activity during period t (since DOj,t

is a Boolean). Skills requirements and minimal number of technicians are ensured by
constraints (4.4) and (4.5) respectively. The respect of the activities duration is ensured
by constraints (4.6); these constraints also limit the activity executions between their
release dates (ri) and deadlines (dli) when there exist. Constraints (4.7) ensure that
activity l does not start before activity i is finished (precedence relationships). The
start time of each part of an activity is determined by constraints (4.8) and (4.9). With
inequalities (4.10) we ensure that preemption is not allowed for non-preemptive activities
(i ∈ NP ). Constraints (4.11), (4.12) and (4.13) ensure that if a technician is allocated to
a non-preemptive activity it must execute it until completeness. Finally, the makespan
of the project is calculated using constraints (4.14).

4.2.2 Model MSWP2

4.2.2.1 Decision variables

This model is similar to Model MSWP1. The difference is that now, additionally to the
variables used for Model MSWP1, we use continuous variables for determining the start
and finish time of activities. These new variables will allow us to write the constraints
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for precedence relationships and non-preemption differently. Moreover, binary variables
indicating the start of each part of an activity (Xi,t) will only exist for preemptive
activities with penalty (i ∈ PP ).

Start time of activities: This set of continuous variables gives the start time of
activity i ∈ I.

Gi ∈ R+: start time of activity i ∈ I

Finish time of activities: This second set of continuous variables indicate the finish
time of activity i ∈ I.

Fi ∈ R+: finish time of activity i ∈ I

4.2.2.2 Formulation

Objective function: We keep using the objective function (4.1)

Subject to: Constraints (4.2–4.6), (4.8), (4.9) and (4.11–4.14) remain unchanged.
Constraints (4.7), stating the precedence relationships, are changed by:

Fi + 1 ≤ Gl ∀(i, l) ∈ E (4.15)

The non-preemption constraints for activities within NP are now defined as follows:

Fi −Gi + 1 = Di ∀i ∈ NP (4.16)

Additional constraints must be added to determine the start and finish time of the
activities:

Gi ≤ t ∗ Yi,t + (1− Yi,t) ∗ T ∀i ∈ I, ∀t ∈ H (4.17)
Fi ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (4.18)

Note that the Gi can start way before the start of the first part of the activity. It
is clear that it is not really a problem for the correctness of the formulation, but could
the formulation be made more efficient by adding additional constraints to enforce this
tightness.

4.2.3 Model MSWP3

4.2.3.1 Decision variables

This model also uses Model MSWP1 as a basis. This time, we use additional binary
variables to know the finish time of activities. The new variables allow us to reformulate
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the constraints related to the precedence relationship.

Finish time of activities: The binary variables Fi,t will be equal to 1 for all periods
t lower than or equal to the finish time of activity i ∈ I, they will be 0 for the other
periods. The sum on t ∈ H of these variables indicate the finish time of each activity
i ∈ I.

Fi,t =

1 if activity i ∈ I finishes at period t ∈ H or after
0 otherwise

4.2.3.2 Formulation

Objective function: We use the same objective function as for Model MSWP1:
(4.1)

Subject to: We keep most of the constraints of Model 1. We substitute the precedence
relationship constraints (4.7) with the new constraints (4.19).

Yl,t ≤ (1− Fi,t) ∀(i, l) ∈ E,∀t ∈ H (4.19)

We must add constraints for getting the values of the Fi,t variables:

Fi,t ≥ Yi,t′ ∀t ∈ H, ∀t′ ≥ t (4.20)

4.2.4 Model MSWP4

4.2.4.1 Decision variables

Activities execution periods: This binary variable indicate the periods on which
each unit of duration v ∈ Vi (Vi = {1, .., Di}) of activity i ∈ I is executed. In other
words, each activity i ∈ I is divided into Di parts with unitary duration.

Yi,v,t =

1 if v-th unit of duration of activity i ∈ I is executed at time t ∈ H
0 otherwise

Technician allocations: This binary variable indicates the technicians allocation
over time.

Oj,i,t =

1 if technician j ∈ J is allocated to activity i ∈ I during time t ∈ H
0 otherwise
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Auxiliary allocation variables: This auxiliary variable has the same function than
in Model 1.

Sj,i =

1 if technician j ∈ J is assigned to execute activity i ∈ NP
0 otherwise

Activities preemption: These variables indicate whether an activity is preempted
or not.

Xi,v,t =

1 if the v-th unit of duration of activity i ∈ PP preempts at time t ∈ H
0 otherwise

Project makespan: This continuous variable gives the makespan of the project.

Cmax ∈ R+: project makespan

4.2.4.2 Formulation

Objective function: The minimisation of the Cmax and the penalties for preemption
can be formulated as:

min

Cmax +
∑

i∈P P

∑
v∈Vi

∑
t∈H

Mi ∗Xi,v,t

 (4.21)

Subject to:∑
i∈I

Oj,i,t ≤ DOj,t ∀j ∈ J, ∀t ∈ H (4.22)

∑
i∈I

∑
v∈Vi

(Yi,v,t ∗Bri,k) ≤ DRk,t ∀t ∈ H, ∀k ∈ K (4.23)

Yi,v,t ∗Bci,c ≤
∑
j∈J

(Oj,i,t ∗ COj,c) ∀i ∈ I, ∀v ∈ Vi, ∀t ∈ H, ∀c ∈ C (4.24)

∑
j∈J

Oj,i,t ≥ Yi,v,t ∗Nti ∀t ∈ H, ∀i ∈ I, ∀v ∈ Vi (4.25)

min(dli,T )∑
t=max(1,ri)

Yi,v,t = 1 ∀i ∈ I, ∀v ∈ Vi (4.26)

∑
t∈H

t ∗ Yi,Di,t + 1 ≤
∑
t∈H

t ∗ Yl,1,t ∀(i, l) ∈ E (4.27)

Yi,v,t ≤ Yi,v+1,t+1 −Xi,v,t ∀i ∈ PP ,∀v ∈ Vi,∀t ∈ H (4.28)



60 Chapter 4. MSPSP with penalty for preemption

Yi,v,t ≤ Yi,v+1,t+1 ∀i ∈ NP,∀v ∈ Vi, ∀t ∈ H (4.29)∑
t∈H

t ∗ Yi,v−1,t + 1 ≤
∑
t∈H

t ∗ Yi,v,t ∀i ∈ I, ∀v ∈ Vi (4.30)

Oj,i,t ≥ Sj,i + Yi,v,t − 1 ∀j ∈ J, ∀i ∈ NP,∀v ∈ Vi,∀t ∈ H (4.31)
Oj,i,t ≤ Sj,i ∀j ∈ J, ∀t ∈ H, ∀i ∈ NP (4.32)
Cmax ≥ t ∗ Yi,Di,t ∀i ∈ I, ∀t ∈ H (4.33)

Constraints (4.22) ensure that technicians are allocated to at most one activity in
period t and only if they are available. The demand of resources are guaranteed by con-
straints (4.23). Skills requirements and minimal number of technicians are ensured by
constraints (4.24) and (4.25) respectively. Constraints (4.26) specify that only execution
time is permitted for every unit of duration of an activity. These constraints also guar-
antee that the activity is executed between their release date and deadline. Constraints
(4.27) represent the precedence relationships. Constraints (4.28) guarantee that, if two
successive units of duration of an activity i ∈ PP (i.e., units v and v+1) are interrupted
at time t the corresponding decision variable Xi,v,t must be set to 1. Constraints (4.29)
state that, for non-preemptive activities, the execution time of all parts of the activity
must be contiguous (non-preemption constraints). Constraints (4.30) specify that the
execution time for each unit of duration of an activity has to be at least one time unit
later than the finish time for the previous one. Constraints (4.31) together with con-
straints (4.32) ensure that if a technician is allocated to a non-preemptive activity it
must execute it until completeness. Finally, the makespan of the project is calculated
using constraints (4.33).

4.3 Computational experiments

For computational tests, we use CPLEX 12.7 on a computer equipped with an Intel Xeon
E5-2695 processor at 2.3 GHz. The solver was set in its default configuration, limiting
the number of threads at 8, and computation time limited to 15 min. We generated
sets of instances using a random generation algorithm that allows fixing aspects such
as proportions of preemption type, percentage of activities with time windows, density
of precedence relationships, skill number per technician, etc. To test the behaviour of
our models regarding the proportion of each activity type (preemptive, preemptive with
penalty, and non-preemptive) in an instance, we generated four sets (A, B, C and D) of
50 instances. Table 4.2 presents the specific distribution of the preemption type for each
set. All instances have 30 activities with a duration between 5 to 10 time units, up to 15
skills, 8 cumulative resources, 8 technicians (multi-skilled resources), 20% of activities
with time windows, the penalty for the activities within PP (Mi) have been set to 1.
The remaining characteristics are randomly generated.

Table 4.3 shows the number of feasible solutions (by preemption type) that each
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Set A Set B Set C Set D
Non-preemptive 10% 10% 80% 33.3%

Preemptive with penalty 10% 80% 10% 33.3%
Preemptive 80% 10% 10% 33.3%

Table 4.2: Distribution of preemption types per set of instances

model was able to found within the time limit. It also shows the number of instances for
which the models proved the optimality. Model MSWP4 gets the worst results being able
only to find feasible solutions for 45 out of 200 instances. Model MSWP2 seems to have
a poor performance when the percentage of non-preemptive activities is high (Set C).
Models MSWP1 and MSWP3 get the best results obtaining a higher number of feasible
solutions for all instance types. A high density of non-preemptive activities seems to
also have a negative impact on the performance of Models MSWP1 and MSWP3. In
general, Models MSWP1, MSWP2 and MSWP3 perform better when the proportion of
preemptive activities (without penalty) is high, since the optimality was proved only for
instances of set A.

Model MSWP1 Model MSWP2 Model MSWP3 Model MSWP4
Feasible solutions Feasible solutions Feasible solutions Feasible solutions
(Solved to opt.) (Solved to opt.) (Solved to opt.) (Solved to opt.)

Set A 50 (10) 50 (9) 50 (12) 1 (0)
Set B 50 (0) 50 (0) 50 (0) 29 (0)
Set C 42 (0) 9 (0) 43 (0) 0 (0)
Set D 50 (0) 45 (0) 50 (0) 15 (0)
All 192 (10) 154 (9) 193 (12) 45 (0)

Table 4.3: Feasible solutions after 15 minutes

A more in-depth analysis of results for Models MSWP1 and MSWP3 suggests that
the two models have the same performance in terms of the objective function value after
15 minutes. To test this hypothesis, we use theWilcoxon Signed-Ranks Test [112] (a non-
parametric test designed to evaluate the difference between the mean of two correlated
samples). The null hypothesis of this test asserts that the medians of the two samples
are identical. For all p-val greater than 0.05 one can conclude that there is not enough
statistical evidence to reject the null hypothesis. From the results presented in Table 4.4,
we can conclude that there is not statistical difference between the performance of the
two models regardless of the distribution of preemption type within the instances. A
similar test was done for comparing the values of the lower bounds obtained by CPLEX
after the time limit for these two models. We found enough statistical evidence to
conclude that Model MSWP1 gives better lower bounds. However, the quality of the
lower bound obtained by CPLEX is not good enough, generating gaps between the
best-found solution and the lower bound of more than 90%.
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p-val ConclusionMSWP1 = MSWP3
Set A 0.4417

Same performance
Set B 0.3616
Set C 0.063
Set D 0.856
All 0.4093

Table 4.4: Wilcoxon signed-ranks test

4.4 Limited theoretical analysis

One can notice that models MSWP1, MSWP2 and MSWP3 all use variables Oi,j,t and
Yi,t for representing the solution, and their only difference is to be found in the way we
represent the precedence constraints, all of them being equivalent in Z.

We could try to analytically prove if one of the formulations is tighter than the others
in the sense that the constraints of the tighter formulation imply the ones of the other
formulation in the continuous domains, while the reverse would not hold (see Section
2.2.1). From constraints (4.19) and (4.20) used in Model MSWP3 for indicating the
precedence relationships, for example, one can derive the following expression:

Yi,t′ ≤ (1− Yl,t) ∀(i, l) ∈ E,∀t ∈ H, ∀t′ ≥ t (4.34)

Doing a sum over t′ in both sides of constraint (4.34) we get:

T∑
t′=t

Yi,t′ ≤
T∑

t′=t

(1− Yl,t) ∀t ∈ H

≤ (1− Yl,t) ∗ (T − t+ 1) ∀t ∈ H
(4.35)

One can see that the resulting constraints (4.35) have a similar structure than
constraints (4.7), used in Model MSWP1 to represent the precedence relationships.
However, we can not infer whether MSWP1 (Constraints 4.7) is tighter than Model
MSWP3 (Constraints 4.35) or vice versa. For t > T + 1−Di constraints 4.35 is tighter.
If t < T + 1−Di then constraints (4.7) is the tightest one.

Theorem 1. Formulation MSWP3 is at least as tight as Formulation MSWP2.

Proof. In the same way, from constraints (4.15),(4.17) and (4.18), used in
Model MSWP2, we can infer the following expression:

t ∗ Yi,t′ ≤ t ∗ Yl,t + (1− Yl,t) ∗ T − 1 ∀(i, l) ∈ E,∀t ∈ H, ∀t′ ≥ t (4.36)
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One can multiply constraints (4.34), derived from Model MSWP3, by t:

t ∗ Yi,t′ ≤ t ∗ (1− Yl,t) ∀(i, l) ∈ E,∀t ∈ H, ∀t′ ≥ t (4.37)

Constraints (4.36) and (4.37) have a similar structure. Now if we had for all Yl,t ∈
[0, 1] that

t ∗ (1− Yl,t) ≤ t ∗ Yl,t + (1− Yl,t) ∗ T − 1, ∀t ∈ H, ∀t′ ≥ t

we could conclude that Model MSWP3 is tighter than Model MSWP2. The latter
statement is equivalent to:

(2t− T )Yl,t + T − 1− t ≥ 0, ∀t ∈ H, ∀t′ ≥ t

The different cases for the left-hand side (denoted by expression A) are enumerated
as follows. If t = T

2 , A = T
2 − 1, the expression hold if T ≥ 2. t > T

2 , then A ≥ 0 holds
for all Yl,t ∈ [0, 1] if and only if it holds for Yl,t = 0 and T − 1 − t ≥ 0, i.e. t ≤ T − 1.
Note that the case t = T need not be considered since (i, l) is a precedence constraint
we must have Yi,T = 0. If t < T

2 , then A ≥ 0 holds for all Yl,t ∈ [0, 1] if and only if it
holds for Yl,t = 1, which gives t− 1 ≥ 0.

We tested the quality of the lower bound obtained by releasing the integrity con-
straints of models MSWP1, MSWP2 and MSWP3, using the same set of instances
presented in Section 4.3. Computational tests showed that Model MSWP1 gives always
better (or equal in the worst case) lower bounds than models MSWP2 and MSWP3.
We also observed that Model MSWP3 always gave better or equal lower bounds than
the ones obtained by Model MSWP2. This shows with Theorem 1 that Model MSWP3
is strictly tighter than Model MSWP2. About Model MSWP4, the experiments show
that the lower bound is often dominated by our formulations. However, we conjecture
about a disaggregated variant of the precedence constraints for Model MSWP4, which
could give a stronger lower bound. We did not explore this direction, as this would,
even more, enlarge the model size, which is already impracticable. Beyond this result, a
deeper theoretical analysis should be done as future research to better understand the
theoretical strength of the proposed models.

4.5 Concluding remarks

In this chapter, we described a new variant of the Multi-Skill Project Scheduling Problem.
In order to better represent the reality of the laboratory, we allow the preemption of some
activities. However, we can apply a penalty every time that an activity is preempted to
reduce the number of time each activity is stopped.

We presented four different MILP formulations of the problem, three of them are
original and inspired by the time-indexed formulations for the (preemptive) RCPSP,
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and the fourth one is an adaptation of a model proposed in the literature for the pre-
emptive MSPSP. A quick theoretical analysis of the strength of the formulations allowed
identifying that our Model MSWP3 is tighter than our Model MSWP2. A more exten-
sive analysis of the theoretical strength of the proposed formulations needs to be done
as future research.

Computational experiments on a set of 200 instances showed that our proposed
models could find more initial solutions (even some time prove the optimality) than
the adapted version of the preemptive MSPSP found in the literature. Regarding
our original formulations, models MSWP1 and MSWP3 outperform the results of
Model MSWP2. A statistical test showed that the results obtained by models
MSWP1 and MSWP3 are statistically equal. An analysis over the lower bounds, af-
ter a limited computation time, suggested that Model MSWP1 gave better lower bounds.

Even if the proposed variant of the MSPSP allows to model an important number of
the activities carried out at the LECA-STAR, it does not fulfil all the safety constraints
for a subset of activities. That is why we propose in the following chapter a more
accurate problem that takes into account these additional safety constraints.
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Typically, preemptive scheduling problems assume that all resources are released
during preemption periods, and that they can be used to perform other activities. Nev-
ertheless, at the LECA-STAR, safety constraints requires that a subset of resources
remains allocated to the activity when it has been preempted. The possibility of only
releasing a subset of resources during the preemption periods, what we call partial pre-
emption, has not been studied yet in the scientific literature. To comply with this safety
requirement, and to fill the gap in the literature, we present in this chapter a new variant
of the MSPSP that uses the concept of partial preemption.

We describe in Section 5.1 the main characteristics of the new scheduling problem.
Then, we formalise the problem by presenting various Mixed Integer/Linear Program-
ming models, and their theoretical comparison in Section 5.2. Later, a Constraint Pro-
gramming model is presented Section 5.3. We test the computational performance of
the different MILP and CP formulations in Section 5.4. Early version of the models
described in this chapter have been published in [143] and [144].

5.1 Problem description

Suppose one must execute an experimental activity that requires an inert atmosphere for
its execution. In practice, one can stop (preempt) this activity and allow the technicians
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and some of the equipment to be used in other activities. However, safety and operational
constraints force us to preserve the inert atmosphere even when the activity is stopped
(before its end). In other words, one cannot release the equipment that ensures the inert
atmosphere during the preemption periods. Traditional preemptive schedule models
cannot represent this behaviour since they assume that all resources are released during
the preemption periods. Until now, the only way to model this activity, while respecting
safety requirements, was to declare it as “non-preemptive”. However, this decision can
increase the project makespan, especially in our case-study where the activities may have
restrictive time-windows and the availability/capacity of the resources vary over time.
Aiming to overcome this inconvenience, we propose a new variant of the MSPSP that
better represents the behaviour of our laboratory: the MSPSP with partial preemption
(MSPSP-PP).

In the MSPSP-PP, if an activity is preempted, we release only a subset of resources
while seizing the remainder (partial preemption). We can then classify the activities in
three types according to the possibility of releasing the resources during the preemption
periods: 1) Non-preemptive activities (NP ), if none of the resources can be released;
2) Partially preemptive activities (PP ), if a subset of resources can be released; and
3) Preemptive activities (P ), if all resources can be set free. In our study case, the
partial preemption is only related to mono-skilled resources, and we made the hypothesis
that technicians can always be released during preemption periods. This is because, in
practice, we are not interested in allocating staff to an activity that is not in progress.
All other characteristics are the same as those presented in Section 4.1 (page 52) and
are summarised in Figure 5.1.

Figure 5.1: Characteristics of the Multi-Skill Project Scheduling Problem with Partial
Preemption (MSPSP-PP).
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The objective in the MSPSP with partial preemption is to find a feasible schedule
that minimises the total duration of the project (Cmax). Finding a solution consists in
determining the periods during which each activity is executed and also which resources
will execute the activity in every period; all this, while respecting the resources capacity
and the activities characteristics. We must schedule these activities on renewable re-
sources with limited capacity; they can be cumulative mono-skilled resources (machines
or equipment) or disjunctive multi-skilled resources (technicians) mastering Nbj skills.
Multi-skilled resources can respond to more than one skill requirement per activity and
may execute it partially (except for non-preemptive activities where technicians must
perform the whole activity). An activity is defined by its duration (Di), its precedence
relationships, its requirements of resources (Bri,k), its requirements of skills (Bci,c), the
minimum number of technicians needed to perform it (Nti) and the subset of preemp-
tive resources. Activities might or not have either a deadline (dli) or a release date (ri).
Figure 5.2 illustrates an example of an MSPSP-PP instance and a possible solution.

Figure 5.2: Example of an MSPSP-PP instance.

Using the concept of partial preemption, we can model not only the non-preemption
constraints linked to safety but also we can use it to model resources having complex
setup operations. Even if the setup times are not significant enough to be included in the
model, due to process complexity and safety, it is not desirable to frequently change the
configuration of these resources. Most of the time, the complexity of the resuming setup
time is related only to a subset of resources, while the others can be easily preempted and
resumed without significant impact. We can then declare the resources with a significant
setup as non-preemptive, and those with an insignificant setup as preemptive. In this
way, we can better manage the preemption over activities with significant setup, at the
same time we delete the subjectivity of choosing the penalty (Mi) needed in our previous
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approach (MSPSP with penalty for preemption, see Chapter 4). Indeed, choosing the
right penalty (Mi) is a tricky job. If Mi is too big, there is no interest in allowing the
preemption of the activity, what may increase the Cmax of the project. However, if Mi

is too small, this could cause activities to be preempted too many times disturbing the
correct development of activities.

Including the concept of partial preemption in traditional scheduling problems may
allow a reduction in the Cmax. In fact, for almost every scheduling problem studied in the
scientific literature, if an activity requires a non-preemptive resource then this activity
must be handled as non-preemptive, which produces an increase in the Cmax. Partial
preemption acquires prominent importance when we schedule activities having a narrow
time-window or when resource availability varies over time. Knowing that preemptive
versions give better values of Cmax, we can then establish the following relation for
makespan value:

Cmax(Preemptive) ≤ Cmax(Partially preemptive) ≤ Cmax(Non-preemptive)

The complexity of the MSPSP with partial preemption can be established using the
classical RCPSP as a starting point. For each instance of the RCPSP, we can match an
instance of the MSPSP with partial preemption, where all resources are mono-skilled, and
none of the resources can be preempted. Thus, we can define the RCPSP as a particular
case of the MSPSP with partial preemption. Since the RCPSP has been proved to be
strongly NP-hard [33], we can, therefore, infer that the MSPSP with partial preemption
is also strongly NP-hard.

We present below various formulations for the MSPSP-PP using Mixed-
Integer/Linear Programming (MILP) and Constraint Programming (CP). Early versions
of these formulations have been presented in [143, 144].

5.2 MILP formulations

For modelling the MSPSP-PP, we use time-indexed formulations again. Most of the
constraints are similar to those proposed for the MSPSP with penalty for preemption
(Chapter 4). The main difference resides in the way we handle the preemption. Before,
we wanted to know how many times an activity was preempted. For the MSPSP-PP
we must identify all periods over which the activity remains stopped. Additionally to
the parameters described in Table 4.1 (page 54), we also use an additional parameter
PRi,k ∈ {0, 1} that indicates whether the activity i ∈ PP allows the release of resource
k ∈ K during the preemption periods or not. The parameter is equal to 0 if the resource
can be released, 1 otherwise.

5.2.1 Model MSPP1

This model is an adaptation of Model MSWP1 of Section 4.2.1 for the MSPSP with
partial preemption. We have decided to present the complete model again to facilitate
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the reading of the document.

5.2.1.1 Decision variables

We reuse most of the variables presented for Model MSWP1 of the MSPSP with penalty
for preemption; except for the variables related to the preemption (Xi,t) that are replaced
by a set of three new binary variables.

Activity executions: .

Yi,t =

1 if activity i ∈ I is executed during time t ∈ H
0 otherwise

Technician allocations: .

Oj,i,t =

1 if technician j ∈ J is allocated to activity i ∈ I during time t ∈ H
0 otherwise

Auxiliary allocation variables: .

Sj,i =

1 if technician j ∈ J is assigned to execute activity i ∈ NP
0 otherwise

Start time of the activities: These step variables will take the value of 1 for all
t ∈ H higher than or equal to the start time of activity i 6∈ P .

Zi,t =

1 if activity i 6∈ P begins at time t ∈ H or before.
0 otherwise

End time of the activities: These step variables will take the value of 1 for all
t ∈ H lower than or equal to the end time of activity i 6∈ P . Together with variables
Zi,t, these variables allow us to know the execution interval (start and end) of each
activity i 6∈ P .

Wi,t =

1 if activity i 6∈ P ends at time t ∈ H or after
0 otherwise

Preemption periods: These on/off variables indicate the periods over which an
activity is being preempted. They will allow ensuring the continuous allocation of
non-preemptive resources within the execution interval (start, finish) of the activity.
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These variables are only defined for partially preemptive activities (i ∈ PP ).

Ppi,t =

1 if the activity i ∈ PP is being preempted at time t ∈ H
0 otherwise

Project makespan: .

Cmax ∈ R+: project makespan

5.2.1.2 Constraints

Objective function: Minimisation of the project makespan:

min(Cmax) (5.1)

Subject to:∑
i∈I

Yi,t +
∑

i∈P P

PRi,k ∗ Ppi,t

 ∗Bri,k ≤ DRk,t ∀k ∈ K, ∀t ∈ H (5.2)

∑
i∈I

Oj,i,t ≤ DOj,t ∀j ∈ J, ∀t ∈ H (5.3)

Yi,t ∗Bci,c ≤
∑
j∈J

(Oj,i,t ∗ COj,c) ∀i ∈ I, ∀c ∈ C,∀t ∈ H (5.4)

∑
j∈J

Oj,i,t ≥ Yi,t ∗Nti ∀i ∈ I, ∀t ∈ H (5.5)

min(dli,T )∑
t=max(1,ri)

Yi,t ≥ Di ∀i ∈ I (5.6)

Di ∗ (1− Yl,t) ≥
T∑

t′=t

Yi,t′ ∀(i, l) ∈ E,∀t ∈ H (5.7)

Zi,t ≥ Yi,t′ ∀i /∈ P ,∀t ∈ H, ∀t′ ≤ t (5.8)
Wi,t ≥ Yi,t′ ∀i /∈ P ,∀t ∈ H, ∀t′ ≥ t (5.9)
Ppi,t = Zi,t +Wi,t − Yi,t − 1 ∀i ∈ PP ,∀t ∈ H (5.10)
Zi,t +Wi,t − Yi,t = 1 ∀i ∈ NP,∀t ∈ H (5.11)
Oj,i,t ≥ Sj,i + Yi,t − 1 ∀i ∈ NP,∀j ∈ J, ∀t ∈ H (5.12)
Oj,i,t ≤ Sj,i ∀i ∈ NP,∀j ∈ J, ∀t ∈ H (5.13)
Cmax ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (5.14)
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Constraints (5.2) ensure the satisfaction of resources needs during the execution peri-
ods (Yi,t = 1) and also the satisfaction of needs for non-preemptive resources (PRi,k = 1)
during the preemption periods (Ppi,t = 1). Constraints (5.3) guarantee the respect of
technicians availability, and disjunctive constraint. With constraints (5.4) and (5.5) we
ensure that the needs of resources, skills and minimal number of technicians are satisfied
during the execution periods. Constraints (5.6) enforce each activity to be in process ac-
cording to its duration and within its time window. Precedence relationships constraints
are given in (5.7). Constraints (5.8) force the auxiliary binary variable Zi,t to be equal
to 1 for all periods equal or greater than the start date of the activity. Constraints (5.9),
on the other hand, force the auxiliary binary variableWi,t to be equal to 1 for all periods
equal to or lower than the completion time of the activity. Using constraints (5.10) we
determine the periods during which an activity has been preempted (or not) for partially
preemptive activities. These constraints state that activities within their execution in-
terval (Zi,t = 1 and Wi,t = 1 simultaneously) must be either in execution (Yi,t = 1) or
preempted (Ppi,t = 1). Constraints (5.11) ensure that there is no preemption for non-
preemptive activities. Constraints (5.12) and (5.13) state that all technicians allocated
to a non-preemptive activity must execute it until its completeness. Finally, constraints
(5.14) express the project total duration.

One could add some redundant constraints to the model seeking faster convergence.
Constraints (5.15) force variables (Yi,t) to be equal to 0 before the release date and after
the deadline. ∑

t∈[1,...,ri−1]∪[dli+1,...,T ]
Yi,t = 0 ∀i ∈ I (5.15)

Given the variables Wi,t and Zi,t, one could replace the precedence constraints (5.7)
by a disaggregated version:

Zl,t +Wi,t ≤ 1 ∀(i, l) ∈ E,∀t ∈ H (5.16)

In the following of this document, Model MSPP1a will be the MILP model using (5.7)
as precedence constraints, and MSPP1b the model where constraint (5.7) is replaced by
(5.16).

5.2.2 Model MSPP2

5.2.2.1 Decision variables

This second formulation does not use anymore the binary auxiliary variables Wi,t and
Zi,t. This time, we use two continuous variables Gi and Fi indicating the start and finish
time of activity i (as for Model MSWP2 for the MSPSP with penalty for preemption).
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Start time of activities: Indicate the start time of activity i ∈ I.

Gi ∈ R+: start time of activity i ∈ I

Finish time of activities: Indicate the finish time of activity i ∈ I.

Fi ∈ R+: finish time of activity i ∈ I

5.2.2.2 Constraints

Objective function: Minimise the makespan of the project (5.1).

Subject to: Most of the constraints are the same than those of Model MSPP1. Equa-
tions (5.2) to (5.6) and (5.12) to (5.14) remain unchanged. Constraints (5.7) to (5.11)
are changed by:

Fi + 1 ≤ Gl ∀(i, l) ∈ E (5.17)
Ppi,t ≤ 1− Yi,t ∀i ∈ PP ,∀t ∈ H (5.18)

Fi −Gi + 1 ≤ Di +
∑
t∈H

Ppi,t ∀i ∈ PP (5.19)

Fi −Gi + 1 ≤ Di ∀i ∈ NP (5.20)
Fi ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (5.21)
Gi ≤ t ∗ Yi,t + (1− Yi,t) ∗ T ∀i ∈ I, ∀t ∈ H (5.22)

Precedence relationships are given by constraints (5.17). With constraints (5.18)
we indicate that Ppi,t must be zero if activity i is in execution at time t. Constraints
(5.19) ensure that Ppi,t takes value 1 for periods where activity i has been preempted.
Constraints (5.20) guarantee that activities within NP are not preempted. The finish
time of each activity is calculated with constraints (5.21). Constraints (5.22) calculate
the start time of each activity.

We still must ensure that variables Ppi,t is equal to zero for all time t outside the
activity execution (t) lower than start time, and t higher than finish time. We can model
these constraints in two different ways. The first one using the continuous variables Fi

and Gi (this configuration will be presented as Model MSPP2a during the computational
experiments):

Fi ≥ t ∗ Ppi,t ∀i ∈ PP ,∀t ∈ H (5.23)
Gi ≤ t ∗ Ppi,t + (1− Ppi,t) ∗ T ∀i ∈ PP ,∀t ∈ H (5.24)

The second way to express theses constraints (Model MSPP2b) is using only Yi,t
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variables:

Ppi,t ≤
t∑

t′=1
Yi,t′ ∀i ∈ PP ,∀t ∈ H (5.25)

Ppi,t ≤
T∑

t′=t

Yi,t′ ∀i ∈ PP ,∀t ∈ H (5.26)

5.2.3 Theoretical comparison

Theorem 2. Formulation MSPP1 is at least as tight as Formulation MSPP2.

Proof. To show that Model MSPP1 dominates Model MSPP2, we define the following
transformation.

Gi = T −
T∑

t=1
Zi,t + 1 and Fi =

T∑
t=1

Wi,t

(Reminder: Gi is the start time and Fi is the end time.)
We can show that the constraints of Model MSPP2 involving the Fi variables are

implied by Model MSPP1 constraints and the transformation (we can restrict to activi-
ties in PP without loss of generality) taking the continuous domain [0, 1] for all binary
variables.

For Constraints (5.19), we have

Fi −Gi + 1 =
∑T

t=1Wi,t +
∑T

t=1 Zi,t − T

=
∑T

t=1 Ppi,t +
∑T

t=1 Yi,t from Constraints (5.10)

=
∑T

t=1 Ppi,t +Di (5.19)

For the precedence constraints (5.17) we have Gl = T −
∑T

t=1 Zl,t + 1 and Fi + 1 =∑T
t=1Wi,t + 1. To obtain (5.17) we must show that Gl − Fi − 1 ≥ 0. We have

Gl − Fi − 1 = T −
∑T

t=1 Zl,t −
∑T

t=1Wi,t

(5.17) is satisfied if and only if

T∑
t=1

Zl,t +
T∑

t=1
Wi,t <= T

This is a consequence of precedence constraints (5.16)

Zl,t +Wi,t ≤ 1 ∀t = 1, . . . , T
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By using Constraints (5.9) and Fi =
∑T

t=1Wi,t we can also obtain constraints (5.21).
Constraints (5.22) are implied by constraints (5.9) and Gi = T −

∑T
t=1 Zi,t + 1.

Computational tests of the lower bound obtained by releasing the integrity con-
straints of models MSPP1 and MSPP2, using the same set of 200 instances presented
in Section 5.4, proved that all configurations of Model MSPP1 always generated tighter
lower bounds than both configurations of Model MSPP2. This, together with Theorem 2,
suggest that the formulation MSPSP1 is, in fact, stronger than formulation MSPSP2.

We also tried to compare the theoretical tightness of Models MSPP1a, that uses (5.7)
as precedence constraints, and MSPP1b, that uses constraints (5.16) instead. We could
not analytically prove that one model is better than the other. Computational tests of
the lower bound suggest that there is no total dominance by any of the models. In fact,
Model MSPP1a gives better results for 45 instances, Model MSPP1b gives better results
for 6 instances, and both models give the same values for the remaining 149 instances.
In regard of these results, one could construct a new formulation of MSPP1 using both
constraints (5.7 and 5.16) that should always give better lower bounds. We call this new
formulation MSPP1c in the computational tests in Section 5.4.1.

5.3 CP formulation

As discussed in Chapter 2 and Chapter 3, constraint programming has attracted high
attention among experts from many areas of computer science in the last decades due to
its potential for solving hard real-life problems. The increasing interest for this technique
led us to use it and evaluate its performance over the studied problem. We then propose
to use CP for modelling the MSPSP with partial preemption. To model the MSPSP-PP,
we use the software IBM CP Optimizer (CPO), making use of the concept of interval
variables, a constrained object tailored to scheduling problems, and also other specific
scheduling constraints already defined in CPO [104]1.

Variables

Activities execution intervals: The itvsi interval variables will indicate the interval
between the start and the end of each activity i ∈ I. For non-preemptive activities, the
size of the interval must be equal to the duration of the activity (Di). For preemptive
and partially preemptive activities, the size of the intervals varies from Di to T (the
solver must decide the final size of the interval variable).

Intervals for each part of activities : In this model, each preemptive (i ∈ P )
and partially preemptive activity (i ∈ PP ) is divided in Di parts of unitary duration.
The pari,v interval variable indicates the interval during which each unit of duration

1We thank Dr. Philippe Laborie, who helped us to improve the CP formulation.
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v ∈ Vi (Vi = {1, .., Di}) of activity i 6∈ NP is executed. For non-preemptive activities
we generate only one part (Vi = {1}) with size equal to the activity duration.

Technicians allocation: We made use of the optional interval variables proposed
in CPO. Optional interval variables may or may not be present in the solution, so as
to satisfy the constraints. The interval variable InTechj,i,v indicates the period when
technician j ∈ J , if present, is working in the part v ∈ Vi of activity i ∈ I.

Number of technicians allocated to each part: The integer variables nTechi,v

indicate the number of technicians that are allocated to execute the part v ∈ Vi of
activity i ∈ I.

Number of technicians per skill allocated to each part: The integer variables
nSkc,i,v indicate the number of technicians mastering skill c ∈ C allocated to part v ∈ Vi

of activity i ∈ I.

Objective function

The objective in the MSPSP-PP is to minimise the project makespan. This can be
expressed in CPO as follows:

minimise

(
max
∀i∈I
{itvsi.end}

)
(5.27)

Starting from the idea of trying to allocate always a minimum number of technicians
to the activities, one can add a secondary criterion (lexicographic, using staticLex
of CPO) that minimises the total number of technician allocations. The function
staticLex defines a multi-criteria policy, ordering the different criteria and performing
lexicographic optimisation. The first criterion is considered to be the most important,
and any improvement of this criterion is worth any loss on the other criteria. The solver
should be able to found better solutions faster when using the minimisation of the total
number of technician allocations as secondary objective. The objective function can then
be defined as:

minimise

staticLex
max
∀i∈I
{itvsi.end},

∑
i∈I

∑
v∈V

nTechi,v

 (5.28)

Constraints

Span(a, {b1, .., bn}) constraint states that the interval variable a (if present) spans over
all present interval variables from the set {b1, .., bn}. In other words, interval variable
a starts together with the first present interval from {b1, .., bn} and ends together with
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the last present interval. We use this kind of constraint to span the pari,v variables
within the itvsi variables.

span(itvsi, pari,v : ∀v ∈ Vi) ∀i ∈ I (5.29)

We also need to ensure that there is no overlap for the parts of each activity. The pre-
defined constraint endBeforeStart(a,b) indicates that the interval variable a must end
before the interval variable b begins. These constraints are only necessary for preemptive
and partially preemptive activities, and can be stated as follows:

endBeforeStart(pari,v, pari,s) ∀i 6∈ NP,∀v ∈ Vi,∀s ∈ Vi : s > p (5.30)

Let us define rUsagek as a cumulative function indicating the usage of resource k
over time, and let DRk be a cumulative function indicating the resource capacity over
time. Also let pulse(IN, h) be an elementary pulse function taking the value of h over the
interval IN . Preemptive resources (PRi,k = 0) are used during the execution intervals
of the parts (pari,v). Non-preemptive resources (PRi,k = 1), on the other hand, must be
allocated during the whole execution interval of the activity (itvsi). We can state the
resource constraint as follows:

rUsagek =
∑

i∈I:P Ri,k=0

∑
p

pulse(parp,i, Bri,k) +

∑
i∈I:P Ri,k=1

pulse(itvsi, Bri,k) ∀k ∈ K

rUsagek ≤ DRk ∀k (5.31)

We must guarantee that each technician is allocated to at most one activity at a
time. For this, we use the predefined noOverlap({b1, .., bn}) constraint that states
that none of the interval variables within the set {b1, .., bn} overlaps over time. Note
that we could use this expression for establishing the no overlap constraint of Pari,v

variables (5.30). However, the way we declare it allows us to break some symmetries on
the model. The disjunctive constraint over the technicians is then defined as:

noOverlap(InTechj,i,v : ∀i ∈ I, ∀v ∈ Vi) ∀j ∈ J (5.32)

Technicians cannot be assigned during their absence periods. To model these con-
straints, we define a step function describing the present and absent periods of each
technician (PreTechj). We must also use the predefined constraint forbidExtent(a,F).
This expression states that whenever the interval variable a is present, it cannot overlap
a point t where the step function F (t) = 0. We ensure that absence/presence periods
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are respected as follows:

forbidExtent(InTechj,i,p, P reTechj) ∀j,∀i,∀p (5.33)

For ensuring the skills requirements we use the expression
alternative(a, {b1, .., bn}, c). The alternative constraint will enforce that if a is
present, then c and only c of the interval variable within {b1, .., bn} will be present, and
synchronised with a. In other words, c interval variables will be selected among the set
and those c selected intervals will have to start and end together with interval variable
a. We can use this constraint to select the technicians that will fulfil each skill for every
part of an activity. It can be defined as:

alternative(pari,v, InTechj,i,v : ∀j ∈ J : COj,c = 1, nSkc,i,v)
∀i ∈ I, ∀v ∈ Vi, ∀c ∈ C

(5.34)

The number of selected technicians for each skill and part goes from the skill re-
quirement of the activity (Bci,c) up to the maximum between the minimal number of
required technicians (Nti) and the sum of all the skill needs of the activity. Constraints
(5.34) and (5.35) ensure the respect of skill requirements.

Bci,c ≤ nSkc,i,v ≤ max

Nti, ∑
c′∈C

Bci,c′

 ∀i ∈ I, ∀v ∈ Vi,∀c ∈ C (5.35)

We use the alternative constraint again to ensure the satisfaction of the minimal
number of technicians:

alternative(pari,v, InTechj,i,v : ∀j ∈ J, nTechi,v) ∀i ∈ I, ∀v ∈ Vi (5.36)

The number of technicians allocated to each part of an activity will vary from the
maximum between Nt and the highest skill requirement, up to the maximum between
Nti and the sum of all skill requirements. Together with constraints (5.36), these con-
straints ensure the allocation of the minimal number of technicians.

max
{
Nti,max

∀c∈C
{Bci,c}

}
≤ nTechi,v ≤ max

Nti,∑
c∈C

Bci,c

 ∀i ∈ I, ∀v ∈ Vi (5.37)

The precedence relationships can be stated as:

endBeforeStart(itvsi, itvsl) ∀(i, l) ∈ E (5.38)

The satisfaction of the deadlines and release dates are guaranteed by:

itvsi.end ≤ dli ∀i ∈ I (5.39)



78 Chapter 5. MSPSP with Partial Preemption

ri ≤ itvsi.start ∀i ∈ I (5.40)

Since not all the technicians are available at the same time, we can add some re-
dundant constraints to improve the lower bounds as well as the constraint propagation.
Let the parameters avTecht be the amount of available technicians during period t, and
avSkc,t the number of available technicians at time t mastering skill c. We define two
cumulative functions TechUsage and SkUsagec indicating the number of technicians
allocated over time, and the number of technicians mastering skill c allocated over time,
respectively. We get the value for these functions as follows:

TechUsage =
∑
i∈I

∑
v∈Vi

pulse

(
pari,v,max

{
Nti,max

∀c∈C
{Bci,c}

})

SkUsagec =
∑
i∈I

∑
v∈Vi

pulse(Bci,c) ∀c ∈ C

The alwaysIn(Cum,B,min,max) constraint is used to confine the values of a cu-
mulative function Cum during an interval [u, v) inside interval [min,max]. We can then
limit the number of technicians allocated at each period t as follows:

alwaysIn(TechUsage, t, t+ 1, 0, avTecht) ∀t ∈ H (5.41)

alwaysIn(SkUsagec, t, t+ 1, 0, avSkc,t) ∀t ∈ H, ∀c ∈ C (5.42)

5.4 Computational Experiments

For computational tests, we use again a computer equipped with an Intel Xeon E5-2695
processor at 2.3 GHz running Ubuntu 16.04. We use CPLEX 12.7 and CP Optimizer
12.7 for solving the MILP models and the CP model, respectively (using the default
configuration and limiting the number of threads used by the solvers at 8). The compu-
tation time was limited to 10 minutes. We generated four sets, each of them having 50
instances, varying the proportion of preemption type present in the instance (as shown
in Table 5.1) using a random generation algorithm. All instances have 30 activities
with a duration between 5 to 10 time units, up to 15 skills, 8 cumulative resources, 8
technicians (multi-skilled resources) divided into two teams, 20% of activities with time
windows, the density of precedence relationships is low, and an average optimum Cmax
between 70 and 90 time units.

5.4.1 Testing MILP formulations

We test first the performance of different configurations of Model MSPP1. Since time-
indexed formulations require an initial estimation of the scheduling horizon, we initially
tested the two configurations using the sum of activity durations as the scheduling hori-
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Set A1 Set B1 Set C1 Set D1
Non-preemptive 10% 10% 80% 33.3%

Partially preemptive 10% 80% 10% 33.3%
Preemptive 80% 10% 10% 33.3%

Table 5.1: Distribution of preemption types for instances of the MSPSP-PP

zon. Table 5.2 presents the number of instances for which each configuration was able
to found initial solutions within the time limit. Configuration MSPP1a was able to find
a larger number of initial solutions. Results for models MSPP1b and MSPP1c suggest
that the use of constraint (5.16) reduces the capacity of the MILP solver to find initial
solutions. All MSPP1 configurations seem to perform better when the proportion of
preemptive activities is high (Set A1). This performance decreases when the proportion
decreases, obtaining the worst results for Set C1 (none of the configurations was able to
find initial solutions for any of the instances within this set).

Model MSPP1a Model MSPP1b Model MSPP1c
Number of Number of Average Number of Number of Average Number of Number of Average

instances with instances solved time to instances with instances solved time to instances with instances solved time to
initial solution to optimality optimality initial solution to optimality optimality initial solution to optimality optimality

Set A1 47 14 312.54 s 46 14 260.39 s 46 11 333.03 s
Set B1 32 0 - 16 0 - 14 0 -
Set C1 0 0 - 0 0 - 0 0 -
Set D1 7 0 - 8 1 537.09 s 10 0 -

All 86 14 312.54 s 70 15 278.84 s 70 11 333.03 s

Table 5.2: Results for all configurations of Model MSPP1 without warm start

A second test was carried out using the warm start option of CPLEX. We used an
initial solution obtained by the greedy algorithm presented in Section 6.2. Table 5.3
presents the number of instances for which optimality was proved, the average time re-
quired to prove the optimality and the average optimality gap (the perceptual difference
between the optimal solution or best known lower bound and the solution obtained)
for each configuration of Model MSPP1. From results on Tables 5.2 and 5.3, one can
conclude that the use of the constraints (5.7) and (5.16) simultaneously does not im-
prove the practical performance of the formulation MSPP1. In fact, it may even have
a negative impact since it reduces the number of instances with initial solution and the
number of instances for which the optimality was proven. Configurations MSPP1a and
MSPP1b have similar behaviour, and statistical tests do not allow to prove any difference
in the average time to optimality or in the average optimality gap. Again, all MSPP1
configurations performs very well when the percentage of preemptive activities is high,
while they gave the worst results for highly non-preemptive instances.

A similar analysis was done for testing both configurations of Model MSPP2. Ta-
ble 5.4 presents the results for the two configurations without warm start. The model
configuration with constraints (5.25) and (5.26), Model MSPP2b, shows a better per-
formance, being able to find a more significant number of initial and optimal solutions.
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Model MSPP1a Model MSPP1b Model MSPP1c
Number of Average Average Number of Average Average Number of Average Average

instances solved time to gap instances solved time to gap instances solved time to gap
to optimality optimality to optimality optimality to optimality optimality

Set A1 44 122.64 s 0.12 % 47 110.85 s 0.01% 47 123.28 s 0.05 %
Set B1 20 240.37 s 1.59 % 19 262.99 s 1.68 % 15 204.79 s 2.16 %
Set C1 0 - 9.37 % 0 - 9.43 % 0 - 9.43%
Set D1 16 286.36 s 2.23 % 18 289.35 s 1.85 % 16 267.32 s 2.30 %

All 80 184.81 s 3.33 % 84 183.51 s 3.24 % 78 168.50 s 3.48 %

Table 5.3: Results for all configurations of Model MSPP1 with warm start

Both configurations have a bad performance when the proportion of non-preemptive
activities increases, and have better results when the proportion of preemptive activities
is high. When tested using warm start (see Table 5.5), we have not enough statistical
evidence to conclude that one configuration outperforms the other one for all the in-
stances. However, if we look only the instances from the set A1 (with a high proportion
of preemptive activities), one can say that configuration MSPP2b is faster, and allows to
get a lower average gap. For all the other sets, the performances seem to be statistically
equal.

Model MSPP2a MSPP2b
Number of instances Number of instances Average time Number of instances Number of instances Average time
with initial solution solved to optimality to optimality with initial solution solved to optimality to optimality

Set A1 43 10 332.47 s 48 16 335.2 s
Set B1 3 - - 25 - -
Set C1 2 - - 4 - -
Set D1 14 - - 29 - -
All 62 10 332.47 s 106 16 335.2 s

Table 5.4: Results for Model MSPP2 without warm start

Model MSPP2a Model MSPP2b
Number of instances Average time Average Number of instances Average time Average
solved to optimality to optimality gap solved to optimality to optimality gap

Set A1 45 124.23 s 0.09% 46 87.39 s 0.05%
Set B1 14 119.19 s 2.79% 15 154.12 s 2.69%
Set C1 0 - 9.45% 0 - 9.45%
Set D1 19 194.22 s 2.12% 19 216.12 s 1.99%
All 78 140.37 s 3.61% 80 130.48 s 3.55%

Table 5.5: Results for Model MSPP2 using warm start

If we compare the results for the best configurations of Model MSPP1 and Model



5.4. Computational Experiments 81

MSPP2, we can conclude that Model MSPP2 (configuration b) outperforms Model
MSPP1 when warm start is not used, finding a larger number of feasible solutions.
When using warm start, Model MSPP1b is able to prove the optimality for a bigger
number of instances, and give a lower average gap for all sets of instances. However,
Model MSPSP2b seems to be faster for instances from the sets A1 (when the proportion
of preemptive activities is high). Both models have difficulties for finding initial solutions
or proving the optimality when the instances have a high proportion of non-preemptive
activities. The computational results confirm one more time that a theoretically stronger
formulation does not imply better practical performance.

5.4.2 Testing CP formulation

For the CP formulation, we wanted to know whether using a lexicographic objective
could improve the performance of the model. Table 5.6 presents the results for the two
configurations after 10 minutes of computation. Unlike what happened for the MILP
models, both CP model configurations were able to find initial solutions for all the
instances. One sees that the use of lexicographic objective function leads to an increase
in the number of instances solved to optimality, and therefore, a decrease in the average
gap. CP configuration with lexicographic objective function beats the single objective
configuration for all sets of instances. One can then conclude that the use of lexicographic
objective function improves the performance of the CP model. Both CP configurations
perform better when the proportion of non-preemptive activities is high, being able to
prove the optimality of a more significant number of instances in a shorter average time.
We could not find enough statistical evidence to conclude about the impact of partially
preemptive and preemptive activities.

Single objective Lexicographic objective
Number of instances Average time Average Number of instances Average time Average
solved to optimality to optimality gap solved to optimality to optimality gap

Set A1 0 - 4.42% 37 180.32 s 0.16%
Set B1 0 - 4.41% 33 141.92 s 0.43%
Set C1 35 133.16 s 1.10% 37 107.58 s 0.72%
Set D1 3 249.28 s 3.80% 33 161.43 s 0.44%
All 38 142.32 s 3.43% 140 147.59 s 0.44%

Table 5.6: Results for the CP formulation

When using warm start on the lexicographic model (Table 5.7), the average gap and
the average time required to prove the optimality are reduced in almost a half, compared
with the results without warm start. For instances within the set A1, the average gap
was not reduced, but the time required to prove the optimality of the instances was
reduced. For instances in set C1, on the other hand, the average time to optimality did
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not change, while the average gap was reduced to a half. For sets B1 and D1, both the
average time to optimality and the average gap were reduced.

Number of instances Average time Average
solved to optimality to optimality gap

Set A1 39 67.17 s 0.18%
Set B1 40 88.01 s 0.15%
Set C1 41 108.73 s 0.39%
Set D1 40 76.14 s 0.21%
All 160 85.27 s 0.23%

Table 5.7: Results for CP model with warm start

Analysing results from Tables 5.3, 5.5, and 5.7, one can see that all MILP models
outperform CP when the percentage of preemptive activities is high (set A1), proving
the optimality of a higher number of instances, and giving a lower average gap. CP, on
the other hand, gives better results when this percentage is low. One could then say
that the two methods are complementary. Future research should be done in order to
develop a hybrid method that better exploit the characteristics of each instance.

5.5 Concluding remarks

In this chapter, we presented a new variant of the MSPSP that made use of the
concept of partial preemption. This concept leads to a limited release of the resources
during the preemption periods. We used two different techniques (MILP and CP) to
formalise the problem. Various possible formulations have been presented for each
technique. A theoretical analysis allows concluding that the MSPP1 formulation, using
binary variables to express the precedence relationships, is stronger than the MSPP2
formulation, that uses continuous variables. Computational experiments allowed us
to study the performance of all MILP and CP formulations. The MILP formulations
showed an outstanding performance in the presence of a high proportion of preemptive
or partially preemptive activities. However, they start having troubles to find initial
solutions and prove the optimality when the proportion of non-preemptive activities
increases. The CP formulation, on the other hand, presented an opposite behaviour; it
performs better when the instances are highly non-preemptive. This behaviour leads
us to think that the two modelling techniques could be complementary. As future
research, we must then study better ways to combine and exploit the advantages of
both techniques.

Even if CP with seems to find very good solutions (all average gaps lower than 0.72%
on table 5.6) at the time limit for small instances, the MILP and CP models presented
in this chapter could be not fast enough to generate good quality solutions in short time
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for large instances. Having good solutions in reduced time is essential for the industrial
application of this problem. That is why, in the following chapter, we present various
heuristic methods aiming to answer the industrial need.
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As indicated in Chapter 1, we must be able to propose good solutions in short
times to answer the industrial needs. The mathematical and logic models presented
in Chapter 5 may not answer to this requirement for industrial-size instances (more
than 100 activities for the LECA-STAR). In fact, when trying to solve such instances
with the MILP models, the solver run out of memory (15 GB of RAM). The CP model
scales better but the solver have some issues to prove optimality, so the question arise
whether better feasible solutions could be obtained faster. This chapter aims precisely
at developing efficient heuristic methods for finding good quality solutions in reasonably
fast computational times.

First, we present how the subproblem of technicians allocation can be modelled as
a flow problem; this approach is the basis for the proposed methods. A serial greedy
algorithm, using priority rules, is then proposed. Aiming to improve the solutions of the
greedy algorithm, we present a binary-tree-based search algorithm (published in [145])
and a greedy randomised adaptive search procedure developed in collaboration with
Prof. Lars Mönch (published in [146]). Finally, we present a large neighbourhood search
algorithm, a hybrid procedure combining exact and heuristic methods. All the proposed
heuristics and the CP model are compared on a new set of instances.



86 Chapter 6. Heuristic Methods for the MSPSP-PP

6.1 Flow problem for technicians allocation

The MSPSP-PP can be seen as a problem consisting of two coupled subproblems: an
activity scheduling problem combined with an allocation problem of the technicians
performing each activity. In a heuristic approach, once the order in which the activities
will be executed is defined, we still have the problem of choosing the technicians who
will perform them. To achieve this allocation in the best way, we must first allocate the
technicians with the least chances of being necessary to the activities not yet scheduled,
that is to say, the less critical technicians.

Bellenguez-Morineau [26] proposed to model the allocation problem of technicians
with the lowest criticality as a Minimum-Cost Maximum Flow (MCMF) problem [6] for
the (non preemptive) MSPSP. Her model works on a graph Gi,t = (X,F ), X = Si ∪Pt,i

(Figure 6.1), where Si represents the set of skills required by activity i and Pt,i is the
subset of technicians available during period t and who master at least one of the skills
required by activity i. F is the set of arcs connecting the nodes. The MCMF problem
aims at minimising the cost required to deliver the maximum amount of flow possible in
the network.

Figure 6.1: Flow graph for the MSPSP

In this graph, there is an edge between the source vertex and each vertex sc ∈ Si

whose maximum capacity is equal to Bci,c (need of the skill c for executing the activity i).
There is also an edge between a vertex sc and a vertex pj ∈ Pt,i, if and only if the
technician j masters the skill c. The maximum capacity of this arc is fixed to 1 because,
in the MSPSP as defined by Néron [127], a technician can only respond to one unit of
need per skill. Similarly, there is an edge between each vertex pj and the sink of the
graph, with a maximum capacity equal to 1 (a technician can only answer one skill per
activity). One associates a cost (CPj) related to the criticality of the technician j to
these last arcs. Let C = |Si| and J = |Pt,i|. The graph contains C + J + 2 nodes and at
most C + J + CJ arcs.

Using one of the existing polynomial algorithms (the Edmonds-Karp algorithm [64],
for example), one can solve the problem of maximum flow at minimum cost for the
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proposed graph. To determine the technicians to allocate, we look at the vertices pj ∈ Pt,i

through which the flow passes.
If the maximum flow going through the graph is less than the sum of the skill needs,

we can conclude that there is no possible assignment for this activity at time t.
The graph presented in Figure 6.1 was designed under the hypothesis that each tech-

nician can only respond to one skill requirement per activity. However, this constraint
has been relaxed for the MSPSP-PP under study because it is not realistic in the in-
dustrial problem where technicians can respond to several skills per activity. We then
redefine the graph to take this change into account. More precisely, the capacities of
the arcs connecting all vertices pj and the sink are now of at least the number of skills
mastered by the technician j plus one (Nbj + 1). On the other hand, as indicated be-
fore, in our industrial problem we must allocate a minimal global number of technicians
(Nti) for the activity execution independently of the required skills; in order to take
this constraint into account, we add an additional vertex s∗ linked to the source vertex
with a capacity equal to Nti and connected to all vertices pj ∈ Pt,i with a capacity of 1.
Concerning the unit cost of the arcs connecting technicians vertices to the sink, we use
a cost function CTi,j (Definition 2), which varies according to the technician j and the
activity i being scheduled. The new graph is shown in Figure 6.2. There are C + J + 3
nodes and at most C + J + 1 + (C + 1)J arcs.

Figure 6.2: Flow graph for the MSPSP-PP

Theorem 3. There exists a feasible solution to the technician allocation problem if and
only if there exists a flow of value

∑C
c=1Bci,c +Nti in network Gi,t.

Proof. Consider a feasible flow of value Φ =
∑C

c=1Bci,c + Nti in Gi,t. Since the cut
between the source and the sk nodes has capacity Φ, the flow is maximal in the network
and all these arcs are saturated. Consider the solution of the technician allocation
problem that selects all technicians j who have a non-zero flow on one of the incoming
arc of node Pj . For each skill c 6= ∗, due to saturation of the arc from the source to sc,
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there are Bci,c selected technicians. Due to saturation of arc from the source to node
s∗, there are NTi saturated outgoing arcs from s∗, so at least Nti selected technicians.
Furthermore since the capacity of the outgoing arc of each node Pj , the number of skills
mastered by a technician is not exceeded. Hence the technician allocation solution is
feasible. Consider now a feasible technician allocation. We create a flow of value NTi

from the source to s∗ and of value 1 from s∗ to each selected technician node Pj as well as
from each such node Pj to the sink. Then we take the selected technicians in a random
order and we update for each of them the flow as follows: If the technician j masters a
required skill c, we add one to the flows from the source to node sc, from sc to Pj and
from Pj to the sink only if the flow from the source to sc is not already equal to Bci,c.
This operation always give a feasible flow and as the number of allocated technicians for
each skill is at least Bci,c, this lead to saturating all arcs issued from the source.

Definition 1. The correlation indicator Cri,j expresses the correlation of the technician
j and the activity i. It indicates the degree to which activity i might require technician
j for its execution. Let us define STj as the skill set a technician j masters, and let
SAi be the skill set needed to execute activity i. The correlation indicator is calculated
as follows:

Cri,j = Cardinality(STj ∩ SAi) (6.1)

Definition 2. The criticality cost CTi,j of a technician j is an indicator of the degree
to which a technician could be requested by the set of not yet scheduled activities (set L).
It is directly proportional to the sum of duration (Dl) of every activity l ∈ L multiplied
by the correlation indicator between the technician j and every activity l ∈ L. This cost
is inversely proportional to the correlation with the studied activity. This indicator is
calculated as follows:

CTi,j =
∑
∀l∈L(Dl ∗ Crl,j)

Cri,j
(6.2)

In case of an equality of such a cost for different technicians, we break the ties to
ensure that the flow algorithm always minimises the number of technicians allocated to
each activity.

6.2 Greedy Algorithm: Serial Generation Scheme

For this heuristic method, we propose to use a serial schedule generation scheme with
priority rules. Given a set I containing the activities to be scheduled and sorted accord-
ing to a priority rule, we take one by one the activities in I and perform their scheduling
and technicians allocation (using the proposed method in Section 6.1) sequentially as
early as possible. For every activity i ∈ I, we check each time t, beginning with t = r˜i

(earliest start time, see Definition 3 below), the ability to schedule the activity during
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the period t depending on the type of preemption it has. It is important to remind
that, as indicated in Section 5.1, if the technicians are declared as non-preemptive, the
activity automatically become non-preemptive and all its cumulative resources are then
non-preemptive, what means no interruption of any resource (cumulative or technicians)
is allowed. For preemptive activities, on the other hand, all cumulative resources and
technicians are preemptive. For partially preemptive activities, technicians are preemp-
tive, and a nonempty subset of cumulative resources is declared as non-preemptive (an
empty subset will mean that the activity is preemptive), the remainder can be released
during preemption periods. With this in mind, we can check the possibility of scheduling
an activity at t as follows:

• For non-preemptive activities, we check the possibility of continuous execution from
t to t+Di − 1 (taking into account the availability of resources and technicians),
where Di is the duration of the activity. If the answer is positive, we schedule
the whole activity, we update the remaining capacity of resources and technicians
from t to t + Di − 1, and move on to the next activity. If continuous execution
is not possible, we check for the next t (a period where an event happens: end
of an activity, the new availability of technicians, etc.) until the activity can be
scheduled.

• For partially preemptive activities, we will first determine the minimum end date
(starting from the analysed t period) depending on the availability of preemp-
tive resources and technicians. We will then check the continuous availability of
non-preemptive resources. If non-preemptive resources are available without in-
terruption, we allocate them to the activity from t until the end date (we also
update their remaining capacity during this periods). Preemptive resources are
allocated for periods t′ ∈ t..end date where all preemptive resources are available
(its remaining capacity is also updated). If continuity for non-preemptive resources
is not verified, we go to the next t and repeat until getting an affirmative answer.

• For preemptive activities, the availability of resources and technicians during the t
period is checked. If they are available, we allocate them for the period t (updat-
ing also its remaining capacity); then increase t and repeat the process until the
duration of the activity is complete.

The steps of the serial generation scheme are presented in Algorithm 1.

Definition 3. “Earliest start time” (r˜i) indicates the date before which activity i can-
not begin. It is calculated using the precedence constraints and is equal to the longest
path from the source vertex (A0, beginning of the project) to the activity vertex (Ai) in
the precedence graph (taking into account the release date, the possible end date of the
predecessors, and the availability of resources and technicians).
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Algorithm 1: Greedy Serial Generation Scheme

1. Select an activity from the list (I)

2. Find the earliest periods when this activity can be scheduled according to: its
preemption type, and resources and technicians availability

3. Allocate the technicians following the method proposed in Section 6.1:

• For non-preemptive activities the flow problem is solved only once (same
technicians must execute the whole activity)
• For preemptive and partially preemptive activities, we must solve the flow
problem for each unit of duration of the activity

4. Return to Step 1 if there are still activities to be scheduled. Stop otherwise

The presence of deadlines is one of the critical constraints for generating feasible
solutions using heuristic methods. In order to maximise the chance of finding feasible
solutions, we propose to use a 2-step approach to generate the schedule. As a first step,
activities with a deadline and its predecessor activities (set DL) are scheduled following
a slack time-based priority list. Then, the rest of the activities (set L) are scheduled
using different priority rules.

Scheduling Activities With Deadline

For this first part of the heuristic, we use a serial schedule generation scheme using a
priority list based on the “slack time” of activities with a deadline (dli). Giving priority
to activities with the smallest slack time.

Definition 4. “Slack time” (Slacki) refers to the margin that an activity i has in its
planning window. It is a function of the deadline (dli), the earliest start time (r˜i), and
the activity duration (Di). We calculate it as follows:

Slacki = dli − r˜i −Di (6.3)

We define the set Preci as the set containing all the predecessors of activity i and
which is sorted according to the number of predecessors of each element in the subset.
Items with the lowest number of predecessors will be at the beginning. The set DL is
thus constituted as follows: DL = {Prec1, P rec2, ..., P recn} where Slack1 ≤ Slack2 ≤
... ≤ Slackn. We perform the serial scheduling of the activities contained inDL following
Algorithm 1.
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Scheduling Other Activities

Once planned activities with a deadline and its predecessors, we must perform the
scheduling of the remaining activities (L). To choose the order in which activities will be
scheduled, we propose to use the most common priority rules in the scheduling literature:

• Longest Duration (LD): prioritises the activity i with the greatest duration (Di).

• Most Successors (MS): prioritises the activity i with the highest number of succes-
sors.

• Earliest Start Time (EST): prioritises the activity i with the lowest earliest start
date (r˜i).

• Earliest Finish Time (EFT): prioritises the activity i with the smallest “earliest
finish time”. This date is calculated by adding the duration of the activity (Di) to
the earliest start date (r˜i), ie: r˜i +Di.

• Greatest Rank (GR): prioritises the activity Ai for which the sum of the duration
of its successors is the largest.

• Greatest Resource Demand (GRD): prioritises the activity i with the highest re-
source consumption.

In order to increase the chances of finding a feasible solution from the beginning,
and even improve the solution, we propose to build the set of activities to schedule L as
follows: L = {NP,PP , P} where NP is the subset of non-preemptive activities, PP is
the subset of partially preemptive activities and P is the subset of preemptive activities.
NP , PP and P are sorted according to the priority rule. With this approach, we exploit
the ability of preemptive and partially preemptive activities to fill the unused spaces left
after scheduling the non-preemptive activities.

The heuristic presented before is a single-pass heuristic because only one priority
rule is used to select the activities to be scheduled. In order to improve the results we
get, we can execute the procedure using all the activity priority rules presented before
and keeping the minimum makespan, as proposed by Almeida et al. [10]. This process
originates a so-called multi-pass heuristic.

6.3 Binary-Tree-based Local Search Algorithm

Greedy construction algorithms, like the one proposed in Section 6.2, may accept some
myopic choices that lead us to local optimum, needing an additional phase were changes
can be performed to ameliorate the current solution [161]. In order to improve our
results, we propose to use a binary-tree-based local search algorithm partially inspired
by the Limited Discrepancy Search [80].
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For each sequence (priority rule) used in the greedy algorithm, there is a significant
amount of possible schedules that are defined by the technician allocations we made at
each step. In fact, for each period we choose to schedule an activity, there could be a large
number of possible technicians allocation. The fact of choosing a specific technician may
change the earliest start time of future activities since this decision modifies technician
availability. Because of the combinatorial explosion, enumerate all possible solutions for
the same priority rule can be prohibitive. An incomplete binary search tree maybe then
interesting.

For generating this tree, we use a similar approach than in the greedy algorithm
(Algorithm 1). However, now, every time we must effectuate the technician allocation
(Step 3 in Algorithm 1), we generate as the left-hand branch a node representing the
best allocation we get solving the MCMF with the method in Section 6.1, while as the
right-hand branch we have a node representing the second best solution (this solution
should not change the start time of the activity), if such solution exists. For identifying
the second best solution, we solve the flow problem several times, suppressing one at a
time the technicians who were selected in the initial flow solution. The solution with the
lowest technician cost is kept. For non-preemptive activities, only one branching will
be performed (since the flow problem must be solved only once to ensure that the same
technicians execute the whole activity), while for preemptive and partially preemptive
activities we must generate as many nodes as time units of duration the activity has.
Figure 6.3 presents an example of a binary tree for an instance having three activities:
two non-preemptive activities (A1 and A3), and a (partially) preemptive activity (A2)
with a duration of two time units.

Figure 6.3: Example of a binary tree

Visiting the whole binary search tree can be still prohibitive for industrial instances
(especially for instances having an important amount of preemptive and partially pre-
emptive activities). We must limit even more the number of visited branches. From the
way the solution is constructed in our greedy algorithm, we can infer that the probabil-
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ity for a heuristic to make an error decreases as we add more activities to the partial
schedule (going deep in the search tree); if there are fewer activities to be scheduled the
criticality cost of a technician (Definition 2) is more accurate. We can then decrease the
number of branches examined by giving each node a probability, decreasing according to
the depth in the tree, to examine the right branch (second best answer for the MCMF).
In this first version of the algorithm, we propose to use a constant gradual decrease (∆),
calculated as follows:

∆ = Pmax

Depthmax
(6.4)

In Equation 6.4, Pmax represents the maximum probability of analysing the right
branch at the top of the search tree. Depthmax is the maximum depth of the tree.
Once can reduce, even more, the number of visited branches by limiting the number of
discrepancies (number of times we decide to visit the right branch) that can happen on
a branch.

For exploring the search tree, we use a depth-first search approach (for avoiding
memory issues), going from the left side to the right side (exploring first the answer
we get using the greedy algorithm). In order to accelerate the search process, we cut
all solutions (or partial solutions) that do not improve the Cmax. Every time a better
Cmax is found, the upper bound is updated. The tree-based local search procedure is
presented in Algorithm 2.

Again, the proposed algorithm can be seen as a single-pass algorithm. To improve the
results, we can develop its multi-pass version executing the algorithm for all the priority
rules proposed in Section 6.2. To get faster results, we propose first to determinate
the Cmax for every priority list using the greedy algorithm; and after to execute the
local search algorithm starting from the list with the lowest Cmax to the one having the
biggest, keeping always the best Cmax as upper bound for cutting branches.

6.4 Greedy Randomised Adaptive Search Procedure

As stated in Chapter 2, GRASP is an iterative multi-start algorithm, in which each
iteration consists of two phases: generation and local search. In the construction phase,
a feasible solution is generated; then its neighbourhood is explored by the local search
algorithm until a local optimum is found. The best solution found overall GRASP
iterations is kept as the results. An extensive survey of GRASP and its applications are
presented in [152]. In the following of this section, we describe the GRASP algorithm
we propose to solve the MSPSP-PP. This heuristic was developed in collaboration with
Prof. Lars Mönch.

Generation and local search phase

For the generation phase, we use a modified version of our greedy algorithm
(Algorithm 1). Now instead of following a fixed priority list at each greedy iteration, we



94 Chapter 6. Heuristic Methods for the MSPSP-PP

Algorithm 2: Tree-based local search algorithm
Define: P(Node) is the probability of visiting the right branch at the Node;
Initialize Node to the first activity from the list and set current time to its
release date;
while Node 6= root do

Identify the periods where the activity can be scheduled;
if periods exit then

if Left Branch Not Visited (Node) then
Solve MCMF;
Assign the technicians for the current activity at current time
according to the best solution and update CurrentCmax;
Go to next node;
// This next time unit of duration if preemptive or

partially preemptive, next activity if non-preemptive
else

p← random(0, 1);
if (Right Branch Not Visited (Node)) & (p ≤ P (Node)) &
(Alternative solution exists) & (Number of discrepancies <
discrepancy limit) then

Assign the technicians for the current activity at current time
according to the second best solution and update
CurrentCmax;
Go to next node;

else
Backtrack;

end
if CurrentCmax ≥ BestCmax then

Backtrack;
end
if (Node is a leaf) & (CurrentCmax < BestCmax) then

Update BestCmax;
Backtrack;

end
end

else
Backtrack;

end
end
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select an activity randomly from a restricted candidate list (RCL), we then identify the
earliest periods when this activity can be scheduled (according to its preemption type
and resources and technicians availability), and we finally allocate the technicians to the
activity solving a Minimum-Cost Maximum-Flow (MCMF) problem.

Let F (i) be an adaptive evaluation function, which indicates the degree of relevance
of planning activity i in the current greedy iteration. Let also define M as the number
of not yet scheduled activities after the current greedy iteration. The RCL is made up
of the 1 + α ∗M , α ∈ [0, 1], activities having the best F values. Note that the RCL can
only contain activities such that all their predecessors has already been scheduled.Each
element within the RCL has a probability of being chosen (πi) defined as follows:

πi = F (i)∑
j∈RCL F (j) . (6.5)

For choosing the value of α, we propose to use the reactive strategy proposed by
Praias and Ribeiro [147], where the value of α is randomly selected from a discrete
set Ψ = {α1, ..., αn} of possible α values. The probabilities associated with the choice
of each value are all initially uniformly distributed. After a few iterations, they are
periodically reevaluated, taking into consideration the quality of the obtained solution
for each αk ∈ Ψ. In our case, we use the Cmax as a quality indicator.

Once a valid initial solution is found (because of the presence of time windows, not
all GRASP iterations will found a valid solution), one explores its neighbourhood using
the tree-based local search algorithm proposed in Section 6.3 (Algorithm 2).

Adaptive greedy evaluation function

The proposed adaptive greedy evaluation function has three components: priority rule
(L(i)), intensification (I(i)) and feasibility (G(i)). It is defined as follows:

F (i) = β ∗ L(i) + δ ∗ I(i) + γ ∗G(i) . (6.6)

Priority due to a priority rule (L(i)): Computational experiments, presented in [145],
suggest that using the greedy algorithm with priority rules “Most Successors”, “Greatest
Rank” and “Longest Duration” provides smaller optimality gaps. Let Sci be the set of
successors of activity i. We can then define a priority function mixing these rules as
follows:

L(i) = Di +
∑

j∈Sci

Dj . (6.7)

Intensification component (I(i)): The idea is to use the characteristics of a set ε
of q elite solutions to influence the construction phase. In our algorithm, the quality
of the solution is highly dependent on the order (Seqk) in which activities have been
treated by the greedy algorithm to obtain the solution k. Let define Bef(k, i, l) as a
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binary function taking the value of 1 is activity i was treated before activity l in the
Seqk, 0 otherwise. Let NS be the set of not yet scheduled activities. The intensification
component is defined as follows:

I(i) =
∑
k∈ε

∑
l∈NS

Bef(k, i, l) . (6.8)

Feasibility factor (G(i)): As it has been made clear from the beginning of this chapter,
time windows make it difficult to find feasible solutions with the greedy algorithm. We
propose then to introduce a component giving priority to activities with a short slack
time, this will allow us to increase our chances of finding valid initial solutions faster.
Slack time (Slacki) refers to the margin that an activity i has in its planning window
(Definition 4). The feasibility factor is defined as follows:

G(i) = 1
dli − r˜i − di

. (6.9)

Note that L(i), I(i) and G(i) must be normalised before taking the weighted sum.
Moreover, we have β, δ, γ ∈ [0, 1] and β+δ+γ = 1. Parameters δ and γ are self-adaptive,
they are equal initially, and their values are periodically updated. If after N GRASP
iterations the number of infeasible solutions increases, we must increase the value of γ;
on the contrary, if this number decreases, we decrease γ (to try more diverse solutions).
On the other hand, the parameter δ decreases when the diversity of obtained solutions
is too low and increases when the variability is high.

For measuring the variability (diversity) of the solutions, we keep using the sequences
used to generate them as reference. Let us define LSe as the set of the last sequences
that generated valid solutions during the last GRASP iterations, and Nb(i, j, LSe) as
the number of sequences k ∈ LSe where activity i was handled before activity j by
the greedy algorithm. Seqk,v represents the v−th element (activity) of the sequence k.
For each sequence, we can define a similarity index (Sim(k, LSe)), very close to the
Kendall tau distance [94], indicating the degree on which a sequence k shares the same
characteristics of the other sequence ∈ LSe, as follows:

Sim(k, LSe) =
card(Seqk)−1∑

v=1

card(Seqk)∑
u=v

Nb(Seqk,v, Seqk,u, LSe) (6.10)

A decrease on the average value of Sim(k, LSe) after N iterations indicates a better
diversity on the solutions.

Updating the elite solutions set

A warm-up phase is necessary to be able to constitute the initial set of elite solutions (i.e.
the sequences that generate these solutions). During this warming phase, all sequences,
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regardless of the quality of the solutions they generate, will be included in the elite
solution set until complete the number of elite solutions; the only condition to include
sequences in ε is that all sequences must be different. Note that during this warming
phase F (i) = β ∗ L(i) + γ ∗ G(i) (β + γ = 1). α and γ will self-adapt according to the
solution quality and the number of infeasible solutions respectively.

Once the warming phase is ended, the set of elite solution is updated following the
quality of solutions and their similarity indicator. If a new sequence generates a solution
with a Cmax lower than the worst Cmax in the elite solutions, this new sequence is
included in ε. The sequence with the worst Cmax is then deleted from the elite set. In
case several sequences have the worst Cmax, we delete the sequence with the highest
Sim(k, ε) value (to improve the diversity within the elite solution). If the new solution
generates a solution with a Cmax equal to the worst Cmax in ε, we will include the new
sequence only if it has a lower Sim(k, ε) value than the sequences with the worst Cmax
in the elite set (the sequence with the highest similarity indicator value is deleted).

Algorithm 3 summarises the proposed greedy randomised adaptive search procedure
for the MSPSP-PP.

6.5 Large neighbourhood search

In this section, we present a Large Neighbourhood Search (LNS) algorithm with sub-
problem exact resolution inspired by the work proposed by Palpant et al. [132] for the
RCPSP. At each iteration, starting from a feasible initial solution, the method fixes a
subpart of the current solution, while the other part is solved using an exact method.

In our algorithm, we start with an initial solution obtained by the greedy algorithm
(Section 6.2). For generating the subproblem to be solved, we define a sliding time
window with a fixed length, that is a function of the average duration of the activities
(various length are tested for the computational experiments), and will be shifted to the
right at each iteration of the method (the first time window starts at t = 0. For the
following, it starts in the middle of the previous one, see Figure 6.4). At each iteration
of the algorithm, all the activities within this time window are selected (according to
their preemption type) to be rescheduled solving a MILP or CP model (models presented
in Chapter 5). If, after solving the subproblem, we obtain a solution that can lead to
improvement (at least the finish time of one of the activities within the time window
has decreased), we keep the subproblem solution and insert it to the global problem
solution. Using the greedy algorithm, we try to improve the scheduling of activities to
the right of the time windows. Once these operations are performed, the time window
is shifted to the right, and the process is repeated. The heuristic stops when the time
window reaches the Cmax of the current solution.

As a modification, a multi-sweep version of the algorithm can be done. After reaching
the Cmax of the current solution, the sliding time window is returned to the period t

where the first change between the initial solution and the new one occurs. The time
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Algorithm 3: GRASP for the MSPSP-PP
Gite← 0 // Valid GRASP iteration counter parameters
MaxIterations// Maximum number of iterations
while Gite ≤MaxIterations do

n← n+ 1 // Iterations counter for parameters
// Generate initial solution
Chose randomly α value;
while (Not all activities are scheduled)&(Schedule is still feasible) do

Generate RCL;
Randomly choose an activity from RCL;
Schedule activity as early as possible;

end
if Feasible solution then

Execute local search (Algorithm 2);
Update ε;
Gite← Gite+ 1 // Valid GRASP iterations counter

else
fail← fail + 1 // Fails counter

end
// Update α, β, δ and γ
if n = N then

Update the probability of each α;
Calculate average Sim(k, LSe);
if average Sim(k, LSe) < previous one then

Increase δ // We propose to use 0.1 steps
else

Decrease δ ;
end
if fail < previous one then

Decrease γ;
else

Increase γ ;
end
Adjust β value // Ensure that β + δ + γ = 1
fail← 0;
n← 0

end
end
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Figure 6.4: Time window right shift

window starts to slide again until it reaches the Cmax. The multi-sweep version stops
after two iterations without improving the Cmax. Algorithm 4 summarises the proposed
method.

Algorithm 4: LNS for the MSPSP-PP
Generate initial solution;
Improvement← True;
while Improvement do

Select activities for the subproblem;
Construct subproblem;
Solve subproblem // using MILP or CP
if Subproblem solution is improved then

Include subproblem solution in the global solution;
Improve the schedule to the right of the current time window // using

greedy algorithm
end
if Cmax is inside the current time window then

if Current Cmax is equal than previous want then
Improvement← False;

else
Return time window to t where first change happened

end
else

Shift time window to the right;
end

end

Selection of activities

To select the activities to include in the subproblem, we must look at their preemption
type:
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• For non-preemptive and partially preemptive activities, we include all activities for
which the interval [start, end] of the activity overlaps the time window.

• For preemptive activities, we only include the time units of the activity that are
executed within the time window.

Solving the subproblem

The scheduling horizon of the subproblem goes from the earliest start time to the latest
end time of selected activities. The fixed activities will be reflected in the resources
and technicians availability. We use the models presented in Chapter 5. However, a
modification must be done over the objective function. Now, we must try to minimise
the average end time of activities (except when time windows reach the Cmax of the
current solution, in this case, the objective function is still the minimisation of Cmax).
The new objective function is:

minimise :
∑

i

endi (6.11)

6.6 Computational experiments

For testing the performance of the heuristic methods, we generated new sets of instances
(A2, B2, C2, D2). For each instance on a set, there is an instance on the other sets
having the same characteristics, except for the distribution of preemption type for the
activities (see Table 6.1). Each of the four sets has a total of 50 instances, each of them
with 50 activities to be scheduled, and an expected Cmax going from 130 to 170 time
units. The average duration of the activities goes from 5 up to 15 time units; they
may require up to 15 skills and up to 8 cumulative resources. 20% of the activities are
subject to time windows. A total of 8 technicians (multi-skilled resources) are available
in 2 teams (out of 4 each) doing work-shifts of 12 hours. All other characteristics were
generated randomly. We decide to use instances with only 50 activities, instead of 100
activities that is in average the number of activities scheduled at the LECA-STAR every
week, to have better lower bounds for evaluating the optimality gap of the proposed
heuristics. Indeed the solvers (MILP and CP) may have some issues for finding good
lower bounds for larger instances.

Set A2 Set B2 Set C2 Set D2
Non-preemptive 10% 10% 80% 33.3%

Partially preemptive 10% 80% 10% 33.3%
Preemptive 80% 10% 10% 33.3%

Table 6.1: Distribution of preemption types for instances of the MSPSP-PP
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The proposed heuristics has been coded in C++. To solve the flow problems, we
used the adapted C++ version of the Edmonds-Karp algorithm proposed by Ababei [2].
To obtain the lower bound or, in some cases, the optimal solutions, we use the MILP
and CP models proposed in Chapter 5, which were solved using CPLEX 12.7.1 and
CP Optimizer 12.7.1. All computational tests have been carried out using a machine
under Ubuntu 16.04.6 operating system, equipped with an Intel Xeon E5-2695 processor
running at 2.3 GHz.

Greedy algorithm

Table 6.2 shows the average gap values (percentage difference between the obtained
solution an the best known lower bound) for the greedy algorithm using the priority
rules presented in Section 6.2. It also shows the average gap for the CP model after
5 minutes of computation using CP Optimizer with only one thread. Results obtained
with the MILP model are not given since the solver run out of memory before giving
any initial solution. We observe that the heuristic using Greatest Resource Demand
(GRD) as priority rule seems to give the lower average gap, followed by the priority
rules Longest Duration (LD) and Most Successors (MS). The worst results are obtained
using the Earliest Start Time (EST) and Earliest Finish Time (EFT).

Gap for the greedy algorithm
Set A2 Set B2 Set C2 Set D2 All

LD 7.33% 7.78% 15.65% 9.28% 10.01%
MS 8.44% 8.26% 16.85% 9.27% 10.70%
EST 9.61% 9.99% 18.98% 10.00% 12.14%
EFT 10.68% 10.79% 22.72% 10.48% 13.67%
GR 8.69% 8.49% 16.66% 9.28% 10.78%

GRD 7.33% 7.88% 15.90% 8.02% 9.78%
Multi-pass 5.51% 6.14% 12.79% 6.51% 7.74%

CP (after 5 min) 6.01% 6.65% 7.65% 5.56% 6.47%

Table 6.2: Average gap for the greedy algorithm per priority rule

The results of the Wilcoxon signed-rank test [112] for the equality of gap by priority
list are presented in Table 6.3. Any p-val higher or equal than 0.05 indicates that the
average gaps are statistically equal. We observe that LD and GRD priority rules have
a statistically equal average gap, and are statistically better than all the other priority
rules. MS and GR priority rules also have statistically equal average gap and outperform
EST and EFT priority rules. Statistical tests prove that EFT is the worst priority rule
in these numerical tests.

If we compare the results of the multi-pass version of the greedy algorithm against the
results obtained after 5 minutes of computing of the CP model, we see that the average
gap obtained by CP is slightly lower than the one obtained by the greedy algorithm.
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p-values for gap equality test
MS EST EFT GR GRD

LD 0.015 0.000 0.000 0.012 0.263
MS - 0.002 0.000 0.257 0.001
EST - - 0.000 0.003 0.000
EFT - - - 0.000 0.000
GR - - - - 0.001

Table 6.3: Wilcoxon signed-rank test for gap equality by priority list

However, if we analyse the results for each set of instances, we observe that the greedy
algorithm gets a lower average gap for instances with a low proportion of non-preemptive
activities (Sets A2 and B2). Statistical tests (Table 6.4) indicate that the CP model (after
5 min) outperforms the greedy algorithm only when the proportion of non-preemptive
activity is high (Set C2). Note that the computation time for obtaining the greedy
solution is lower than one second, which proves the interest of the greedy algorithm.

p-values for gap equality test
Set A2 Set B2 Set C2 Set D2 All

p-val 0.255 0.421 0.000 0.08 0.000

Table 6.4: Wilcoxon test for equality between greedy algorithm and CP

Tree-based local search

The probability of visiting the right-hand branch (Pmax) is the main parameter of the
proposed algorithm since it plays a role over the number of visited branches, and thus over
the execution time (time required to visit the generated tree) and the solution quality. We
tested the tree-based local search algorithm (multi-pass version) with different values of
Pmax (5%, 10% and 15%) to study the behaviour of the execution time and the quality
solution (measured by the average gap). We arbitrarily set the maximum number of
discrepancies by branches to 5. Results are presented in Figure 6.5 for all instances, and
in Figure 6.6 for each set of instances.

The gap and time evolution charts (Figure 6.5 and Figure 6.6) show an exponential
increase of the average execution time when the value of Pmax increases. The average
gap, on the other hand, seems to decrease following a linear evolution. If we take the
results for Pmax = 10% (the best compromise between solving time and average gap) as
a reference, we observe that the local search algorithm beats CP results for sets A2, B2
and D2. The worst average gap is still for the set C2. We observe, however, that average
execution time required for instances of set C2 is significantly low. This is normal since
few nodes (and thus few branches) are generated for instances with a high proportion of
non-preemptive activities. One could improve the results for set C2 by giving a higher
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Figure 6.5: Gap and time evolution in function of Pmax for all instances

value of Pmax. That is why we propose to adapt the value of this parameter using a
function that depends on the number of non-preemptive activities:

Pmax = problow ∗ exp
(

ln(probhigh)− ln(problow)
cardinality(I)

∗ cardinality(NP )
)

(6.12)

In equation 6.12, problow and probhigh indicates the minimum and the maximum value
that the initial probability can get. We tested this self-adaptive version set the values
of problow and probhigh to 10% and 80% respectively. Table 6.5 presents the results. We
observe that this configuration allows obtaining less variable average execution times for
all sets of instances. The results for sets A2, B2 and D2, outperform those obtained by
the CP solver after five minutes. Increasing the value of Pmax for the instances of set C2
improve the average gap; however, this improvement is not enough to outperform CP.

Average Average
gap execution time

Set A2 4.03% 89.89 s
Set B2 4.78% 160.35 s
Set C2 8.77% 115.10 s
Set D2 4.30% 193.88 s

All 5.46% 139.80 s

Table 6.5: Results for local search algorithm with self-adaptive Pmax
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Figure 6.6: Gap and time evolution in function of Pmax by preemption type
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GRASP

The grasp algorithm was tested over the set of 200 instances. We fixed the size of the
elite solution set to 20 solutions, and the maximum number of valid GRASP iteration to
550. To analyse the impact of the intensification component, we tested a basic GRASP
version where this component is not taken into account, and let it run also for a maximum
of 550 valid GRASP iteration. For the local search phase, we used the self-adaptive
version presented in the previous section, fixing problow and probhigh to 5% and 60%,
respectively. The number of discrepancies by branch was limited to 1. Results are
presented in Table 6.6.

Complete GRASP Basic GRASP
Average Average Average Average
gap execution time gap execution time

Set A2 2.21% 77.76 s 2.32% 73.31 s
Set B2 2.51% 88.75 s 2.77% 91.34 s
Set C2 8.26% 37.53 s 8.63% 35.94 s
Set D2 2.98% 71.22 s 3.30% 68.02 s

All 3.99% 68.81 s 4.26% 67.15 s

Table 6.6: Results for GRASP algorithm

We observe that the GRASP with intensification component (complete GRASP)
gives a lower average gap for all sets of instances. Statistical tests (Table 6.7) show that
there is enough evidence to say that the intensification component improved the results
obtained for sets B2 and D2. For sets A2 and C2, the GRASP with intensification is
in the worst case equal to its version without intensification. We can conclude then
that the intensification component helps to improve the quality of final solutions. Both
configurations outperform the CP results for sets A2, B2 and D2. CP remains better
when the proportion of non-preemptive activities is high (set C2).

Means equality test
p-val Conclusion

Set A2 0.246 Equal
Set B2 0.026 Different
Set C2 0.1129 Equal
Set D2 0.017 Different
All 0.001 Different

Table 6.7: Statistical test for improvement due to the intensification component
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LNS

We tested our algorithm using different fixed lengths for the sliding time window, all of
them in function of the average duration (D) of activities within the instances: 0.5 ∗D,
D and 1.5 ∗D. The first issue we want to study is the interest of using CP or MILP to
solve the optimisation subproblem; we then tested the single-pass version of the heuristic
using both techniques. Note that we limited the number of threads used by CPLEX and
CP Optimizer to 1, and the maximum time expended on each optimisation subproblem
is 30 s. The maximum computation time allowed to the whole heuristic is 5 min. We use
as an initial solution the best solution obtained by the multi-pass version of the greedy
algorithm. Results are presented in Table 6.8.

MILP CP
0.5 ∗D D 1.5 ∗D 0.5 ∗D D 1.5 ∗D

Average Average Average Average Average Average Average Average Average Average Average Average
gap time gap time gap time gap time gap time gap time

Set A2 2.34% 23.36 s 2.18% 49.69 s 1.97% 164.9 s 3.47% 234.08 s 3.39% 311.09 s 3.45% 310.46 s
Set B2 2.62% 231.77 s 3.05% 286.28 s 3.56% 312.54 s 4.69% 310.95 s 4.55% 308.33 s 4.60% 305.13 s
Set C2 7.93% 56.95 s 7.85% 80.92 s 7.53% 173.17 s 8.20% 88.42 s 8.17% 80.48 s 7.95% 109.59 s
Set D2 2.96% 102.12 s 2.87% 179.40 s 3.28% 281.73 s 4.32% 311.03 s 3.95% 312.93 s 3.94% 311.65 s

All 3.97% 103.56 s 3.99 % 149.07 s 4.09% 233.14 s 5.18% 236.12 s 5.02% 253.21 s 4.99% 259.21 s

Table 6.8: Results for single sweep LNS using MILP and CP

We observe that the heuristic using MILP always gives a smaller average gap. It is
also, most of the time, faster than the heuristic using CP. The analysis of results of all
instances does not allow to determine whether the length of the sliding time windows
has an impact over the quality of the final solution. However, if we analyse the results
for each set of instances, we observe that for sets A2 and C2 (i.e. instances with a
low proportion of partially preemptive activities) a bigger length of the sliding time
window reduces the final average gap for the MILP heuristic. On the other hand, if the
proportion of partially preemptive activities is high (set B2), the MILP heuristic gives
better results when the length of the time window is smaller.

Table 6.9 presents the results for the multi-sweep version of the heuristic. As ex-
pected, there is a small reduction of the average gap for all sets of instances and all time
windows length. For set A2, we observe a similar behaviour to the one observed during
the single-sweep version: larger time windows generate lower gaps. Instances from set
B2 have lower average gaps when time windows are small.

A multi-start version of the algorithm was also tested. This time, we process the
LNS (using the single-sweep MILP heuristic) over six initial solutions generated by using
the greedy algorithm and priority rules proposed in Section 6.2. The best solution over
all LNS iterations is kept. We used the fixed length of the time windows equal to 0.5∗D
(since it gives the faster results), and limited the maximum time expanded to solve the
optimisation subproblem to 15 s. Each iteration of the LNS is limited to 1 minute.
The results presented in Table 6.10 show that the proposed multi-start algorithm is not
better than the complete execution over the best greedy solution (see Table 6.8), since
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MILP
0.5 ∗D D 1.5 ∗D

Average Average Average Average Average Average
gap time gap time gap time

Set A2 2.13% 47.59 s 1.83% 151.43 s 1.78% 296.94 s
Set B2 2.44% 287.51 s 3.01% 312.89 s 3.56% 312.93 s
Set C2 7.34% 99.26 s 7.67% 159.04 s 7.16 % 279.21 s
Set D2 2.39% 191.59 s 2.64% 270.46 s 3.24% 310.87 s

All 3.58% 156.65 s 3.79% 223.46 s 3.94% 299.99 s

Table 6.9: Results for multi-sweep LNS using MILP

the average gaps are statistically equal, and the multi-start version requires a higher
average execution time.

Average Average
gap time

Set A2 2.23% 129.09 s
Set B2 3.51% 395.24 s
Set C2 7.41% 233.01 s
Set D2 3.12% 345.83 s

All 4.07% 275.79 s

Table 6.10: Results for multi-start LNS

From the results of the multi-start version, one can see that it is better to use a
complete LNS over a solution of good quality (rather than executing limited multi-
start). We can then improve the results obtained by the GRASP algorithm by executing
an LNS iteration over the best solution. We execute first the complete version of the
GRASP algorithm using the configuration described before. The LNS algorithm (its
MILP version) then improves the obtained solution on a single sweep. We use a fixed
time window length of 0.5 ∗ D. Results are presented in Table 6.11. We observe that
combining GRASP and LNS improves the quality of the obtained solutions significantly.
This combination outperforms the solutions obtained by the CP solver within a limited
time (5 min). Similar to the other proposed heuristics, this algorithm performs better
when the proportion of non-preemptive activities is low.

6.7 Concluding remarks

In this chapter, we presented various heuristic methods for solving the MSPSP-PP.
Initially, a greedy algorithm is proposed. At each iteration, the greedy algorithm de-
composes the MSPSP-PP into two subproblems: scheduling and technician allocation.
For the scheduling part, a priority rule is used. The allocation subproblem is solved
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Average Average
gap time

Set A2 1.56% 87.29 s
Set B2 1.79% 279.56 s
Set C2 6.68% 82.65 s
Set D2 2.06% 147.97 s

All 3.02% 149.37 s

Table 6.11: Results for LNS after GRASP

using a Minimum-Cost Maximum Flow (MCMF) problem. Computational tests show
that the greedy algorithm allows obtaining solutions (in time lower than 1 second) that
are near to the ones obtained by the CP solver after 5 min of computing.

A tree-based local search algorithm, partially inspired by the Limited Discrepancy
Search, was also proposed to improve the solutions obtained by the greedy algorithm.
A self-adaptive version of the local search algorithm allows obtaining solutions with an
average gap of 5.46%.

Then, a greedy randomised adaptive search procedure (GRASP), combining the
greedy and local search algorithms, has been introduced. The proposed GRASP in-
cludes some components looking for an improvement of the solution feasibility, and the
use of characteristics of best-found solutions to bias the generation of new solutions (in-
tensification). The GRASP got good results during the computational test, being able
to obtain solutions with an average gap of only 3.99%. The use of intensification in
the GRASP showed an improvement of the quality of solutions when the proportion of
partially preemptive activities is high. The GRASP method is the one giving the best
tradeoff between execution time and solution quality.

Finally, a Large Neighbourhood Search algorithm was also proposed. The LNS al-
gorithm mixes the greedy algorithm with the exact resolution of an optimisation sub-
problem. Computational tests showed that the use of MILP for solving the optimisation
sub-problem allows obtaining better solutions faster (compared with the use of CP for
the subproblem exact resolution). The LNS method allows getting solutions with an
average gap of 3.58%. Executing LNS after GRASP allows to get the better results
(average gap of 3.02%), largely beating the results of the CP solver (with time limited
to 5 min).

All proposed methods are negatively affected by the presence of a high proportion
of non-preemptive activities (obtained the higher average gaps). Further research needs
to be done in order to improve the quality of solutions when this proportion is high.
Special attention must be given to the study of a better local search algorithm since it
has an important role in all the proposed methods. The local search algorithm proposed
in this chapter has an exponential time complexity. Additionally, we can not guarantee
that it always find the local optimum of the neighbour.
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We now have the models and solution methods to process the scheduling of activities
within the LECA-STAR laboratory. We will discuss in Chapter 7 about their implanta-
tion in the facility.





Part III

Industrial Experience





Chapter 7

Industrial application
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After proposing the models, developing the algorithms and validating them on rep-
resentative but limited data sets of the case study, the objective is now to develop a
prototype of a decision support system in line with the LECA-STAR real operations
activities. In this chapter, we present the first tests of the scheduling engine and the
management information system. In Section 7.1, we describe a prototype Graphic User
Interface (GUI) for the scheduling engine, and we also briefly discuss the results after
testing the engine with a subset of activities at the LECA-STAR. The analysis of the
feedback from the first test of the management information system is presented in Sec-
tion 7.2. We also present in this section some ways of improvement to facilitate the
implementation of the information system in the near future.

7.1 Scheduling engine – GUI

A Graphic User Interface (GUI) was developed in order to confirm the interest and
validity of the models presented in Part II for scheduling the real activities at the LECA-
STAR. The idea was to develop a standalone version of the scheduling engine. This
engine should allow the entry of scheduling requests, translate this information into the
format used by the scheduling algorithms, and finally present the obtained schedules
on Gantt charts. In other words, this GUI should allow the planning team, who are
not familiar with combinatorial optimisation methods, to communicate easily with the
scheduling algorithms of Part II.
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Figure 7.1: Scheduling engine GUI - main window

7.1.1 Data entry

To work, the scheduling models and algorithms proposed in this dissertation require
at least the information presented in Sections 4.2 and 5.2. The GUI allows the user
to interactively enter all the required information: technicians availability and skills,
resources capacity, and activities to be scheduled. For each technician (Figure 7.2), one
can indicate the set of skills it masters and also select its availability periods, hour by
hour. In the same way, for each resource, one can indicate the evolution of the available
capacity over time (Figure 7.3). Note that for uncountable resources, such as electricity
and general ventilation system, the user must indicate a capacity huge enough to handle
all the activities at the same time during the presence of these resources, and zero during
their absence.

To enter the activity scheduling requests, the user must indicate in the activities
edition window (Figure 7.4) all the characteristics of the activity: name, duration (in
hours), resources and skills needs, set of preemptive resources, precedence relationships,
release times and deadlines. Since all the methods presented in this dissertation work
with discrete time, we decide to use the hour as the discrete time unit.

Note that, additionally to the release time and deadline, the GUI allows the user to
indicate some forbidden/allowed scheduling periods for the activities (e.g. an activity
that can only be scheduled in the morning, see Figure 7.5). The models proposed in
Chapter 5 and Chapter 6 do not take into account directly this kind of constraints. To
answer this industrial need, every time an activity requires to be scheduled at particular
periods, the GUI automatically generates a fictitious resource having an availability
profile corresponding to the scheduling periods (i.e. the resources will be available only
during the indicated scheduling periods). The fictitious resource requirement is also
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Figure 7.2: Technicians data management

Figure 7.3: Resources data management
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automatically generated. The GUI handles all these operations without showing the
fictitious resources to the user. A verification phase is processed to ensure that a fictitious
resource with the same availability profile is not generated twice. We decide to use this
approach since it did not require modifications over the already existing scheduling
algorithms. However, another way to handle this constraint is by allowing the GUI to
automatically add the constraints to the models, by fixing the value for the forbidden
periods.

Figure 7.4: Activities requests

Figure 7.5: Indicating forbidden/allowed scheduling periods

7.1.2 Schedule generation

For generating the schedule, we use the models and methods proposed in Chapter 5 and
Chapter 6 for the MSPSP-PP. Thus, after indicating all the required information, the
user can choose the algorithm he wants to use for generating the schedule. To simplify
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the choice, we limit the number of options. The user must first indicate if he wants to
use an exact or a heuristic method.

If the user decided to use an exact method, he must then choose between using
MILP or CP for generating the schedule. For the MILP model, we decided to use Model
MSPP2b from Chapter 5.1 since it seemed to be a little faster to prove the optimality
during computational tests in Section 5.4. Regardless of the selected technique (MILP
or CP), the user must also indicate a maximum computation time. After validating
his selection, the GUI will first generate an initial solution using the multi-pass greedy
algorithm presented in Section 6.2. This initial solution will be used as a warm start for
the MILP or CP solver.

On the other hand, if the user wants to use a heuristic method, he must select
between two options: “basic heuristic” or “heuristic + refinement”. The first option will
launch the GRASP algorithm (Section 6.4). The second choice will execute a sweep of
the LNS algorithm (Section 6.5) over a solution generated by the GRASP algorithm.

Even if the objective to schedule all the activities during the week (the equivalent
of 108 working hours at the LECA-STAR), this is not always possible. That is why we
give an additional slack to the scheduling horizon, allowing the scheduling algorithms to
schedule activities even after the end of the week. If an activity is scheduled or partially
scheduled after the end of the week, the GUI informs this situation to the user and then
shows the schedule.

7.1.3 Schedule display

Once the scheduled is generated, the GUI shows the corresponding Gantt chart of the
obtained solution (Figure 7.6). This chart indicates the periods of execution of each
activity, as well as the name of the technicians that must execute each part of the
activity.

Additionally, to have a better view of the work of each technician, the GUI also gives
the user the option of generating a Gantt chart showing the schedule of each of them.
Finally, in order to facilitate the exploitation of the resulting schedule, the GUI allows
its exportation to the Microsoft Excel format used currently at the research facility.

7.1.4 GUI tests

For testing the scheduling engine, we decided to use the historical information of the
schedules corresponding to five weeks of a subset of activities at the LECA-STAR (ac-
tivities carried out by one of the five research teams in the facility, the LEPC). The
LEPC team is the larger team at the LECA-STAR (in the number of technicians and
activities carried out), and it conducts activities such as spent fuel processing and recon-
ditioning, fuel rod re-manufacturing, fuel element puncturing, and other non-destructive
examination activities for irradiated fuels and materials.
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Figure 7.6: Gantt chart for a generated schedule

The LEPC has a total of 16 technicians, who are divided into four teams of 4 techni-
cians each. Only one team is available at a time, and they do work shifts of twelve hours,
what allows to work continuously from 06:00 a.m. on Monday until 18:00 on Friday (a
total of 108 working hours). The LEPC executes its activities on seven hot cells. Taking
into account the hot cells, we could identify a total of 12 resources required for executing
the LEPC activities. Note that the list of resources is not exhaustive since we only listed
the resources required during the five weeks we analysed. For the skills requirements, we
have identified a total of 13 skills. Again, this is not an exhaustive list, and it is limited
to the skills required by the activities executed during the studied five weeks. Table 7.1
presents the number of activities to be scheduled, the number of activities according to
the preemption type, the sum of the duration of all the activities, and the improvement
obtained by the scheduling engine.

Number of Activities declared Activities declared Activities declared Sum of activities Makespan
Week activities as non-preemptive as partially preemptive as preemptive duration improvement
1 35 11 19 5 414 h 4 h
2 26 12 11 3 370 h 1 h
3 28 12 13 3 330 h 2 h
4 27 12 10 5 382 h 1 h
5 30 10 16 4 378 h 0 h

Table 7.1: Characteristics of instances for GUI test

The interactions and restrictions caused by the other activities carried out in the
installation are expressed by modifying the availability of resources and technicians. For
example, during week 5, some maintenance activities (not carried by the LEPC) required
to stop the general ventilation, which is needed for executing activities in the hot cells.
So, during the periods where the facility scheduled these maintenances, the capacity of
the resource “general ventilation” was set to zero in the scheduling engine. If an LEPC
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technician was required to execute an activity outside the LEPC, we just indicate his
absence during the periods where such activity was scheduled.

The resulting schedules were presented to the planning team, which validated the
consistency of the results. When we compared the total duration of the schedules pro-
posed by the GUI and those generated with the current approach, we observed only a
minimal reduction of a few hours (two hours on average). However, what the planning
team appreciated most was the possibility of having a new valid schedule after some
changes in a short time.

The most criticised issue regarding the solutions generated by the scheduling engine
is that sometimes, for preemptive activities, the engine proposed to allocate technicians
during intervals that the planning team considered too short, in relation to the total
duration of the activity. An evolution of the scheduling models and algorithms should
include additional constraints limiting the smaller size of technicians allocation intervals.

7.2 Implementation of the management information sys-
tem

Once proved the accuracy of our models in a subset of activities, the next step is to test
them with all the activities at the LECA-STAR. To achieve this test, it is necessary to
have available and operational the management information system for collecting and
centralising all the required information. However, at the time of writing this disserta-
tion, the management information system was not totally implemented and operational.

An initial test phase of the new management information system was carried out
with a selected group of laboratory employees. This group was asked to transfer their
activity scheduling request via a digital form (see Figure 7.7). For this initial test, we
use “open” form, i.e., all fields were free. It was decided to initially use this form to
imitate as close as possible to the process performed by e-mail. The electronic form
required that all fields were filled before sending the request. This is to ensure that all
the required information was completed.

Even if the form was not very strict, during the first feedbacks some of the requesters
indicated that they were having troubles to complete all the information, since before
the planning team always completed the missing information. They also said that filling
the new form required more time than completing an e-mail. This is because most of
the time, they could reuse old e-mails to transfer their requests.

To overcome this ergonomic problem, as future evolution, one can do an exhaustive
characterisation of the most common activities at the facility, and then construct a
database with all this information. One can use then this database to auto-complete
the request form. This should significantly decrease the time required to fulfil the form.
Additionally, this database will allow us to have a better and more accurate description
of the activities. It can also improve safety since it ensures that all constraints are always
added to everyday activities; what eliminates the risk of forgetting essential constraints
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Figure 7.7: Form used for testing the management information system

during the form fulfilling.
Additionally, one can adopt some communication strategies to ensure the adhesion

of the employees to the new management system. One must be sure of clearly communi-
cating the objectives and benefits of the new system to all the staff. For this, conferences
can be organised in which the advances and results of the new tool are presented. In
these conferences, one can resolve doubts and listen to suggestions from employees. An
active listening attitude is necessary to guarantee the adherence of all the staff. When
the end user participates actively in the development of the tool, the possibility of accep-
tance increases significantly. One could also organise working groups in which employees
make improvement proposals or changes to the management system. All these strategies
should facilitate the implementation of the management information system in the near
future.

7.3 Concluding remarks

In this chapter, we presented a GUI test for the scheduling engine. This GUI allows
the use of the models and algorithms presented in Part II for scheduling the activities
of the nuclear research facility. After presenting the obtained schedules for a subset
of activities to the planning team, one concludes that the proposed schedules are, in
general, consistent and allow a small reduction in the total duration of the schedule.
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The possibility of having a new schedule after some changes was the most interesting
aspect for the planning team. However, some adjustment need still to be done to ensure
more acceptable schedules.

After a first test of the management information system, we identified that some
ergonomic problems are the main cause for the delay of new system implementation.
To solve the ergonomic issues, one can construct a database with the information of
most relevant activities, and use this information to auto-complete the form used for
transferring the schedule requests. Conferences and working groups could be used as
communication tools for sharing the interest and benefices of the new information sys-
tem, what could help facilitate the acceptance and implementation of the management
information system in the near future.
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The French Alternative Energies and Atomic Energy Commission or CEA (French: Com-
missariat à l’Énergie Atomique et aux Énergies alternatives), plays an essential role in
the development of the French nuclear industry and research. Its department of nuclear
fuel studies (DEC) has as main objective to develop knowledge on different aspects of
the nuclear fuels pre- and post-irradiation. The LECA-STAR, a hot laboratory, is the
research facility in charge of carrying most of the post-irradiation experiences over nu-
clear fuel. Because of the strategic importance of this facility for the development of
nuclear fuels, one must ensure its optimal operation. The complexity and diversity of
the activities carried out at the LECA-STAR makes the scheduling process be a critical
optimisation axis.

In this PhD research project, we focused our effort on the development of scheduling
models and algorithms, from the combinatorial optimisation theory, allowing the optimi-
sation of the scheduling process at the LECA-STAR. Aware of the importance of having
the correct information for the use of our methods, we proposed the development and
implementation of a management information system as a side project. This system, in
addition to centralising and standardising the scheduling requests, must allow monitor-
ing in real time the state of progress of the activities and utilisation of the resources.
These functions should allow being more reactive in front of the unexpected.

After doing a bibliographic review of some combinatorial methods and scheduling
problems (Part I of this dissertation) and analysing the characteristics of the facility,
we concluded that the problem at hand could be modelled as a preemptive variant of
the classical Multi-Skill Project Scheduling Problem (MSPSP). Initially, for limiting the
number of times an activity is preempted, we proposed to include a penalty over objec-
tive function whenever every activity is stopped, leading to the MSPSP with penalty for
preemption presented in Chapter 4. We presented different Mixed Integer/Linear Pro-
gramming (MILP) formulations for this new variant and achieved some computational
experiments to test the performance of each formulation, identifying the two models that
gave the best results during the numerical tests. In general, the models we proposed
outperformed the results of an adapted version of an already existing MILP formulation
for the preemptive MSPSP. A quick theoretical analysis was done to study the strength
of our formulations, and we concluded that one of our model (Model 3) has a tighter
formulation than another of the propositions (Model 2). However, a more in-depth the-
oretical analysis should be done as future research to understand better the theoretical
strength of our models.

Even if the MSPSP with penalty for preemption allows modelling an important
number of the activities carried out at the LECA-STAR, it does not fulfil all the safety
requirement for a subset of critical activities. For some activities, we must ensure that
a subset of resources remain allocated to the activity when it is preempted. Tradition-
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ally, preemptive scheduling models assume that all resources are released during the
preemption periods, and this approach of only releasing a subset of resources (partial
preemption) had not been considered before. We then proposed a most accurate is-
sue including the concept of partial preemption in Chapter 5: the MSPSP with partial
preemption (MSPSP-PP). After describing the characteristics of the new problem, we
presented two MILP formulations, along with their theoretical analysis, followed by a
Constraint Programming (CP) formulation based on the IBM CP Optimizer interval
variables. Computational tests showed that the MILP models perform better when the
percentage of preemptive activities in the instances is high. However, they have some
troubles when the proportion of non-preemptive activities increases. CP model gave
interesting results since it allowed to found initial solutions for all instances (what was
not the case for the MILP without warm start). CP model performs better when the
instances are highly non-preemptive; and, most of the time, it can prove the optimality
faster than MILP models. Nonetheless, if an initial solution is given, the MILP models
can prove faster the optimality of instances with a high proportion of preemptive activ-
ities. This two techniques can then been considered as complementary, and additional
research should be done to try to combine and exploit the characteristics of both.

To comply with the industrial need of having good scheduling solutions in reduced
time, we proposed in Chapter 6 various heuristic methods for the MSPSP-PP. A greedy
algorithm, based on a serial generation scheme and a flow problem for technician al-
location, allows obtaining solutions (in time lower than 1 second) that are near to the
ones obtained by the CP solver after 5 min of computing, having an average optimality
gap of 7.74%. These results are later improved by a local search algorithm, inspired by
the Limited Discrepancy Search, to an average gap of 5.46%. A Greedy Randomised
Adaptive Search Procedure (GRASP), that uses the structure of the best solutions to
bias the random generation of solutions, allowed to get an average gap of 3.99%. A Large
Neighbourhood Search (LNS) with exact subproblems solution was also presented, and
allowed to obtain an optimality gap of 3.58%. Finally, executing LNS after GRASP
allows getting better results (average gap of 3.02%), largely beating the results of the
CP solver (with time limited to 5 min). All proposed methods are negatively affected by
the presence of a high proportion of non-preemptive activities (they obtained the higher
average gaps). Further research needs to be done in order to improve the quality of
solutions when this proportion is high. Special attention must be given to the study of a
better local search algorithm since it has an important role in all the proposed methods.

Once developed the models and algorithms for the MSPSP-PP, we presented, in
Chapter 7, a GUI test for the scheduling engine, that exploits our previous works for
scheduling the activities of the nuclear research facility. The feedback of the planning
team is that the proposed schedules are consistent and allow a reduction in the total
duration of the schedule. However, some adjustments still need to be done over the
scheduling models to better answer the industrial requirements. In the same chapter,
we also analyse the main reasons why the implementation process of the management
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information system was delayed, identifying some ergonomic problems as the primary
cause. To face the ergonomic issues, we proposed the construction of a database with
the information of most relevant activities, and use this information to auto-complete
the form proposed for transferring the schedule requests. Some communications tools
could be also useful for facilitating the acceptance and future implementation of the
information system.

The methods and models presented in this dissertation could be extended to other
close academic problems such as (partially) preemptive RCPSP [68] and preemptive
multi-mode RCPSP [158]. In particular, the alternative representations of the precedence
constraints in the MILP formulations could be adapted and tested for these problems
as well as for the preemptive version never studied, to the best of our knowledge, of the
RCPSP/max (the RCPSP with generalised precedence constraints) [102].

The concept of partial preemption could be useful in other industrial problems where
the release of some resources poses operational issues such as in the pharmaceutical
and chemical industries. It could also be useful for modelling preemptive scheduling
problems where the setup time of activities is only related to a small part of the required
resources. Finally, the work presented in this dissertation could be extended to other
research laboratories, in particular for CEA facilities but more generally for all projects
requiring the scheduling of R&D activities (software development, design activities, etc.).
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