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Abstract

Symmetry is a fundamental principle of the visual perception to feel the equally
distributed weights within foreground objects inside an image. It is used as
a significant visual feature through various computer vision applications (i.e.
object detection and segmentation), plus as an important composition measure
in art domain (i.e. aesthetic analysis). The development of symmetry detection
has been improved rapidly since last century. In this thesis, we mainly aim to
propose new approaches to detect reflection symmetry inside real-world images
in a global scale. In particular, our main contributions concern feature extraction
and global representation of symmetry axes. First, we propose a novel approach
that detects global salient edges inside an image using Log-Gabor filter banks,
and defines symmetry oriented similarity through textural and color around these
edges. This method wins a recent symmetry competition worldwide in single
and multiple cases. Second, we introduce a weighted kernel density estimator to
represent linear and directional symmetrical candidates in a continuous way, then
propose a joint Gaussian-vonMises distance inside the mean-shift algorithm, to
select the relevant symmetry axis candidates along side with their symmetrical
densities. In addition, we introduce a new challenging dataset of single symmetry
axes inside artistic photographies extracted from the large-scale Aesthetic Visual
Analysis (AVA) dataset. The proposed contributions obtain superior results
against state-of-art algorithms among all public datasets, especially multiple
cases in a global scale. We conclude that the spatial and context information of
each candidate axis inside an image can be used as a local or global symmetry
measure for further image analysis and scene understanding purposes.



Résumé

La symétrie est une propriété géométrique importante en perception visuelle qui
traduit notre perception des correspondances entre les différents objets ou formes
présents dans une scène. Elle est utilisée comme élément caractéristique dans
de nombreuses applications de la vision par ordinateur (comme par exemple la
détection, la segmentation ou la reconnaissance d’objets) mais également comme
une caractéristique formelle en sciences de l’art (ou en analyse esthétique). D’im-
portants progrès ont été réalisés ces dernières décennies pour la détection de la
symétrie dans les images mais il reste encore de nombreux verrous à lever. Dans
cette thèse, nous nous intéressons à la détection des symétries de réflexion, dans
des images réelles, à l’échelle globale. Nos principales contributions concernent
les étapes d’extraction de caractéristiques et de représentation globale des axes
de symétrie. Nous proposons d’abord une nouvelle méthode d’extraction de
segments de contours à l’aide de bancs de filtres de Gabor logarithmiques et
une mesure de symétrie inter-segments basée sur des caractéristiques locales
de forme, de texture et de couleur. Cette méthode a remporté la première place
à la dernière compétition internationale de symétrie pour la détection mono-
et multi-axes. Notre deuxième contribution concerne une nouvelle méthode de
représentation des axes de symétrie dans un espace linéaire-directionnel. Les pro-
priétés de symétrie sont représentées sous la forme d’une densité de probabilité
qui peut être estimée, de manière non-paramétrique, par une méthode à noyaux
basée sur la distribution de Von Mises-Fisher. Nous montrons que la détection
des axes dominants peut ensuite être réalisée à partir d’un algorithme de type
"mean-shift" associé à une distance adaptée. Nous introduisons également une
nouvelle base d’images pour la détection de symétrie mono-axe dans des photo-
graphies professionnelles issue de la base à grande échelle AVA (Aestetic Visual
Analysis). Nos différentes contributions obtiennent des résultats meilleurs que
les algorithmes de l’état de l’art, évalués sur toutes les bases disponibles publi-
quement, spécialement dans le cas multi-axes. Nous concluons que les propriétés
de symétrie peuvent être utilisées comme des caractéristiques visuelles de niveau
sémantique intermédiaire pour l’analyse et la compréhension de photographies.
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Ï(.) Input Image in Fourier Domain

ψ(.) Mother Wavelet

ψs,o(.) Gabor Wavelet Family of Scale s and Orientation o

G̈s,o(.) Log-Gabor Wavelet Family of Scale s and Orientation o in Fourier Domain

Is,o(.) Wavelet Response on Input Image I(.)

J(.) Amplitude of Maximum Wavelet Response Is,o(.) across Scales and Orientations

φ(.) Orientation of Maximum Wavelet Response Is,o(.) across Scales and Orientations

SE(.) Mirror Symmetry Coefficient based on Edge Information

ST (.) Similarity Measure between Textural Histograms

SC(.) Similarity Measure between Color Histograms

R(.) Reflection Matrix

Ω(.) Clockwise Rotation Matrix

Gε(.) Gaussian Kernel

Gϑ (.) von-Mises Fisher Kernel

A(κ) Normalization Constant of von-Mises Fisher Kernel

B(.) Modified Bessel Function

B′(.) First Derivative of Modified Bessel Function B(0,κ)

U(.) Transfer Function of Low-pass Butterworth Filter

d(.) Joint Distance Function

h(.) Textural Histogram

g(.) Color Histogram in HSV Color Space

f (.) Voting Histogram using Hough Scheme



xxviii Symbols

fε,ϑ (.) Voting Histogram using KDE

f̂ε,ϑ (.) Weighted Voting Histogram using KDE

W Width of Input Image I(.)

H Height of Input Image I(.)

S Number of Wavelet Scales

O Number of Wavelet Orientations

P Number of Feature Points

N Number of Feature Pairs

L Number of Bins of Each Textural Histogram

C Number of Bins of Each Color Histogram

Di Non-interleaved Cell of Feature Point pi along a Regular 2D Grid

D∗i Non-interleaved Cell centered by Feature Point pi

κ Concentration Parameter of von-Mises Fisher Kernel

σ Bandwidth Parameter of Gaussian Kernel

s Wavelet Scale

o Wavelet Orientation Index

αo Wavelet Orientation using Gabor Filter

βo Wavelet Orientation using Log-Gabor Filter

µ Radial Component of Log-Gabor Wavelet in Log-polar Coordinate System

α Angular Component of Log-Gabor Wavelet in Log-polar Coordinate System

µs Radial Frequency Center of Log-Gabor Wavelet in Log-polar Coordinate System

αo Angular Frequency Center of Log-Gabor Wavelet in Log-polar Coordinate System

λµ Radial Bandwidth of Log-Gabor Wavelet

λα Angular Bandwidth of Log-Gabor Wavelet

ωn Symmetry Weight

c Image Origin

pi Feature Point

qn Feature Pair

τ i Direction of Feature Point pi

ρn Displacement of Feature Pair qn



xxix

θn Orientation of Feature Pair qn

θθθ n Orientation of Feature Pair qn in Unit Vector Form

x Continuous Displacement Term

y Continuous Orientation Term

y Continuous Orientation Term in Unit Vector Form

x̄ Discretized Displacement Term
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Chapter 1

Introduction

1.1 Background

1.1.1 What is symmetry?

Symmetry is one of the significant visual properties inside an image plane, to identify the
geometrically balanced structures through real-world objects. In Mathematics [99], an object
is defined of being symmetric if this object can be divided into two or more similar pieces
that are arranged in an organized way. In modern photography [168], It is also defined as the
process of organizing image-parts that balances the general viewpoint of the human mind
regarding an image. As in figure 1.1, the interior design of Westminster Abbey has shown
different symmetries inside this artistic photo (the circular details in the ceilings, the mirror
organization of the glass windows, and finally the centered column).

1.1.2 Why symmetry?

In the past years, art scientists manually interpret paintings and photographs for cultural
heritage projects. We aim to help these scientists to use a art principle (balance) based
on a visual cue (symmetry) through an automated detection system, through finding a
geometrical correlation between low-level primitives and symmetry cues, in order to refine
the understanding of semantic details inside an artistic image.

1.1.3 Types of symmetry

The contextual understanding of symmetry can be categorized, as shown in figures (1.2,
1.4), into the following:
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Figure 1.1 Symmetry example of ceiling view in Westminster Abbey, UK. Source: [51].

— Reflection: (aka mirror, or bilateral) Balanced region where local patterns are nearly
matching on each side of a straight axis. Sub-figure 1.2a shows a focused object
(Eiffel tower in Paris) in the middle with dark street and blueish sky views. The steel
structure of the middle object forms symmetric shapes outputting a single reflection
example. Another sub-figure 1.2b presented two focused object (monkey and dog
toys) with clear background of indoor scene. The correct multiple symmetries define
the intra-structural details of both toys.

— Rotation: Similar objects are radially recognized around an angular center. Sub-
figure 1.2c describes the radial details of the entertainment wheel to result a rotation
symmetry respect to the wheel center.

— Translation: Focused details are visually repeated within linear fashion. In other
words, the same objects appear more than once in different locations within the same
image. Sub-figures 1.2d,e demonstrate the repetition of the street stones and the
building windows along x-axis, y-axis or both coordinates.

— Skeleton: (aka medial) Inner curved axes are locally explored by thinning the ob-
jects. Sub-figure 1.2f highlights the intra-object connections of medial centers inside
different scene objects (tree, stones).
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(a) Reflection - Single (b) Reflection - Multiple (c) Rotation

(d) Translation - Frieze (e) Translation - Wallpaper (f) Medial

Figure 1.2 Real-world examples with primitive symmetries (highlighted in yellow color) in
2D image coordinates from published symmetry datasets. Source: (a-e) [95], (f) [152]

.

A book about symmetry (published by Liu et al. [97] in 2010) stated the first definitions
of global and local symmetries. As shown in fig 1.3, the global symmetry can be determined
through contribution of the main basic elements (i.e. points, lines, etc . . . ) inside different
scene shapes. This kind of symmetry can be modeled as mirror straight lines with a lot of
efforts to spot such these lines in terms of time. Besides that, these lines are sensitive to
any changes in shape transformations. While the local symmetry can be locally supported
by object sub-parts or shape contours. It can express not only by reflection symmetrical
segments, but also with skeleton and rotational symmetries.

This work focuses on detecting global reflection symmetries (as in figure 1.5) inside an
image plane. Note that we consider real world images with approximate symmetry. For
example, pattern located on both sides of the axis may not be perfectly symmetric but must be
similar enough. Furthermore, we deal with global symmetry which means that a significant
area around the symmetry axis must be concerned by the symmetry (see section 3.2). Two
different situations will finally be considered: the single and the multiple case. In the single
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(a) Global (b) Local

Figure 1.3 Difference between global and local symmetries. Source: [97]

case, only the main symmetry axis is searched for. In the multiple case, every significant axis
must be detected.

1.1.4 Symmetry in art

In early ages, the most ancient civilizations (i.e in Egypt, China) define a symmetrical
balance between visual elements based on stone sculpturing and natural color painting
inside different types of artwork (wallpaper paintings, statues, temple architectures, etc. . . ).
Figure 1.6 show different symmetry examples during ancient Egyptian era, in which mirror
details are arranged around vertical axis in the center of each image.

In the last two centuries, the human kind; since Louis-Jacques-Mandé Daguerre and
Nicéphore Niépce invited a camera obscura system for preliminary image recording; can
capture different environments by composing the involved components in such way to feel
the symmetry in front of location and angle of the camera view. Figure 1.7 shows two
professional photos which defines symmetry: (a) the photographer’s positioning to capture
the rotational symmetry in the circular stony ground plus reflection one in the facade and
surrounding green area. (b) the discussion grouping of old women reflecting the vertical axis
in the photo center.
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Symmetry

Reflection

Global

Local

Rotation Translation Skeleton

Figure 1.4 Symmetry tree.

(a) (b)

Figure 1.5 Two photographic examples with major (in red) and minor (in green) symmetry
axes. Source: AVA dataset [119]
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(a) (b) (c)

(d) (e) (f)

Figure 1.6 Symmetry in ancient Egyptian and Chinese civilizations: (a) Golden mask of
Tutankhamun in the Egyptian museum, Egypt. (b) Entrance of Luxor temple, Egypt. (c)
Book of the Dead in British museum, UK. (d) Qinghuaci plate in Brooklyn museum, USA. (e)
Prince Zhu Youyuan in the Palace Museum, China. (f) Wooden relic from the tang dynasty,
China. Source: Wikipedia

Art principles [75] are the visual concepts that the artist does for putting basic art elements
(line, color, shape, etc.) together and analyzing the relationships between those elements to
create composition of an artwork. Balance is one of the main art principles, in which the
basic elements are arranged symmetrically generating a weighted similarities. Zhao et al.
[171] used the statistical information of the rotational and reflectional symmetry as a balance
measure for emotion recognition.

1.1.5 Symmetry in computer vision

A lot of computer vision tasks requires some kind of symmetry detection: pattern
recognition, object detection (person, face,...), character recognition, traffic sign detection,
3D reconstruction. Atallah [10] defined a first algorithm in 1980’s to detect reflection
symmetry axes inside a figure, respect to the geometrical properties involved. Some symmetry
contributions were introduced for decades until the production of the baseline algorithm by
Loy and Eklundh [101] in 2006. Different symmetry competitions were held in the major
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(a) (b)

Figure 1.7 Two symmetry examples of symmetric photography in the following locations:
(a) Canada, and (b) Turkey. Source: [168].

computer vision conferences during 2010’s (CVPR’11 [134], CVPR’13 [95], ICCV’17 [53])
to refine the proposed algorithms among synthetic and real-world images. After the stability
of symmetry detection methods, they are recently involved in different computer vision
applications related to the art domain (Aesthetic assessment [77, 102, 135, 137, 104, 146, 20,
139, 153], Photo quality assessment [40, 41, 56, 147], Aesthetic rating [2]). A lot of modern
computer vision tasks require the symmetry detection as a middleware process to refine the
results of pattern recognition and object detection purposes.

1.2 Objectives

Figure 1.8 defines the hierarchical connections between art and computer vision domains
defining symmetry scenery to understand the involved environment context. From art
domain, the basic elements (i.e. lines, color and texture) are combined together into define art
principles (i.e. balance, contrast and pattern). Such that these principles are arranged together
to artistically interpret the involved scene. From computer vision domain, the low-level
features (i.e. edges and curves) are merged together describing the major visual cues (i.e.
existence of symmetry, repetition of patterns and localization of vanishing points), leading
to the high-level cues to estimate the involved environment based on the aesthetic measure
or scene analysis. In this thesis, we aimed (red arrow in figure 1.8) to define precisely the
transformation between low-level features and symmetry. In the beginning, we collaborated
with art scientists at CIREC Lab 1, Jean Monnet university to make a symmetrical study on

1. https://www.univ-st-etienne.fr/fr/cierec.html
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different historic photo collections 2 (Siemens, Paul Martial) of Saint-Etienne city during
the industrial era (1900-1950). Figure 1.9 shows some of these photo collections that are
actively used for public audience at museum of Modern-Art of Saint-Etienne. Then, we set
the main objective of this thesis in developing a robust algorithm to detect global symmetry
axes for single and multiple cases. In addition, we introduced a public symmetry dataset of
professional and artistic images with aesthetically details, which can be used as benchmark
to find global symmetries semantically.

Figure 1.8 Relationship between art and computer vision domains. The red arrow defines our
proposed work.

1.3 Problem definition

We firstly define a symmetry detection by matching similar but non-identical elements
along the regional sides of an image, then categorize symmetry into local and global with
focusing on the major ones respect to corresponding scores, and finally describe a symmetry
measure for art retrieval systems. We are aware about the fact that finding out global
symmetries has limited functionality in real-world images [101, 28]. For this reason, we
developed different innovative methods in retrieving the salient features and analyzing the

2. https://viva-arts.univ-st-etienne.fr/
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(a) (b)

(c) (d)

Figure 1.9 Some symmetrical historical examples of indoor industrial scenes used for artistic
analysis and digital visualization. Source: VIVA-ARTS project, UJM.

corresponding descriptors’ matching in symmetric way. We employed standard benchmark
[95, 53] to evaluate the proposed algorithm w.r.t. the state of the art.

1.4 Contribution

The following research papers have been accepted during this thesis:

W1 Elawady, M., Ducottet, C., Alata, O., Barat, C., & Colantoni, P. (2017). Wavelet-
Based Reflection Symmetry Detection via Textural and Color Histograms: Algorithm
and Results. ICCV 2017 Workshop A Challenge: Detecting Symmetry in the Wild.
Competition Winner [45, 46]

C1 Elawady, M., Alata, O., Ducottet, C., Barat, C., & Colantoni, P. (2017). Multiple
Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation. In
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International Conference on Computer Analysis of Images and Patterns. Core Rank
B [43]

C2 Elawady, M., Barat, C., Ducottet, C., & Colantoni, P. (2016). Global Bilateral Sym-
metry Detection Using Multiscale Mirror Histograms. In International Conference on
Advanced Concepts for Intelligent Vision Systems. Core Rank B [44]

We can summarize our contribution in this thesis as follows:
— A novel symmetry detection algorithm to find global axes based on Log-Gabor feature

extraction, plus textural and color neighboring information, published in the research
papers W1 and C2.

— A weighted kernel density estimation to handle both linear and directional data to
refine the accuracy of the symmetry peaks and the selection of corresponding voting
features, published in the research paper C1.

— A continuous maxima-seeking technique using mean-shift scheme to find the sym-
metrical axes from a polar-based voting representation in a continuous way.

— A groundtruth of single symmetry axes inside artistic photographs extracted from the
large-scale Aesthetic Visual Analysis (AVA) dataset [119], published in the research
paper C2.

The proposed methods in this thesis are dataset and domain independent. We validated those
methods among all public symmetry datasets and also experiment them in the disciplines of
image processing. In summary, we believe that these methods could be utilized for different
purposes, for example to detect natural objects and man-made structures in real-world and
art images, to segment color and depth information, and to cluster linear and directional data.

1.5 Outline

The outline of this thesis is as follows:
— Chapter 2 presents the background to detect global reflection symmetries. First, we

performed a review study about the state-of-art algorithms. Secondly, we defined the
previous symmetry competitions and explained the evaluation metrics used for the
comparison of detection methods across these competitions. Finally, we describe the
public datasets and the introduction of our proposed dataset ’AvaSym’.

— Chapter 3 presents the proposed symmetry features and weights developed during
this thesis to detect the global symmetries inside real-world images. Firstly, we
provide the background related to feature extraction for symmetry detection. Secondly,
we present the methodologies to compute semi-dense Log-Gabor features plus the
textural and color metrics for introducing the symmetrical weights. Finally, we
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provide the experimental results with the public datasets, then we compare the
detailed results with state-of-art symmetry methods.

— Chapter 4 presents the symmetry voting and selection using a weighted kernel
density estimation for mixed data types and their continuous extension based on
the mean-shift algorithm, to find maxima in the linear-directional space and find its
corresponding voting feature points. We also provide a single and multiple symmetry
benchmark using the recent dataset (ICCV 2017) w.r.t. state-of-art methods.

— Chapter 5 summarizes conclusions and possible future work of the proposed frame-
work for global symmetry detection in different computer vision and art domains.





Chapter 2

Literature Review

Résumé: La détection de la symétrie de réflexion est une étape intermédiaire crutiale
dans certaines applications récentes de vision par ordinateur. En effet, les symétries globales
correspondent souvent à des caractéristiques visuelles saillantes de niveau sémantique élevé.
Dans ce chapitre, nous proposons d’abord une classification des approches existantes, puis
nous examinons les algorithmes de référence correspondants. Dans un deuxième temps, nous
mettons en évidence les principales compétitions de détection de symétrie, et enfin nous
présentons les bases publiques d’images existantes et les mesures d’évaluation que nous
utiliserons tout au long de la thèse pour comparer nos contributions à l’état de l’art.

Abstract: Detection of reflection symmetry is a crucial intermediate step in some recent
computer vision applications. Indeed, global symmetries often act as high semantic level
salient visual features. In this chapter, we will propose a classification of existing approaches
and review the corresponding key baseline algorithms. We will highlight specifically the
major competitions for symmetry detection, plus will present the public datasets and eval-
uation metrics that we will use throughout the thesis to compare our contributions against
state-of-the-art.

2.1 State of the art

In this section, we will outline the most important work in reflection symmetry detection,
and will structure them on the basis of symmetrical extraction and selection into the following
categories: intensity, feature, segmentation, and learning. Intensity-based methods induce the
symmetrical hypothesis from pixel-wise image calculations, but feature-based approaches
use local keypoints as input for symmetry discovery. Segmentation-based methods look for
object patterns inside an image, in order to separate them from the background and explore
the similarity inside these patterns. Learning-based algorithms use the supervised neural
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networks to find symmetries inside an image. The underlined methods in table 2.1 are state-
of-art which we will compare our contributions against. Other works of reflection symmetry
detection are not involved in the literature review due to out-of-scope objectives (graphical
shapes [162, 91], image segmentation [145], feature extraction [68], image matching [73],
image saliency [32], water reflection [169], object detection [63], motion estimation [64],
and object tracking [93]).

2.1.1 Intensity-based detection

In the eighties, Atallah [10] proposed the first symmetry detection method based on
the geometrical characterization of predefined primary objects (i.e. point, segment, and
circle). He defined a planar algorithm to find reflective similarities between these simple
geometrical objects in an optimal condition (very sensitive to any type of transformation).
Figure 2.1 shows symmetrical results of Atallah’s method for points, lines and circles in a
binary environment. Marola [108] improved the planar symmetry detection through finding
the maximum likelihood using pixel-wise auto-correlation transform. This method lacks
fast computation time to compute over nowadays images with high resolution. Sun and Si
[143, 144] used the distribution of gradient orientation based on Fast Fourier Transform
(FFT), to define multiple axes of a single object inside a 2D image. Symmetry axes are
then detected by computing the auto-convolution of the distribution of gradient orientation.
However, it requires first that the image objects have clear edges with a quite uniform
background and second that the symmetry is distributed over the whole image. Figure 2.2
shows Sun’s work in addressing the symmetrical cases where the images only contain one
single object in gray-scale environment. Keller and Shkolnisky [82, 83] defined an algebraic
approach using Fourier transform to detect symmetry peaks inside an image. They firstly
used polar-based Fast Fourier Transform (FFT) to generate frequency-based representation
of an image (translation invariance), and secondly apply peak selection algorithm called
MUSIC [133] estimating high-order symmetries. The proposed work needs global periodic
patterns in order to discover the existence of significant symmetry axes. Figure 2.3 shows the
single and multiple symmetrical cases (red lines) of natural images with central objects.

In recent years, Cicconet et al. [29, 31, 30] enlightened back the intensity-based methods,
using RANSAC [50] in selecting candidate features and Normalized Cross-Correlation [89]
technique in symmetry finding. They validated the proposed work against different public
datasets. The result gives competitive accuracy but still lacks an efficient performance of the
time complexity. Figure 2.4 shows some symmetrical results (yellow lines) of Cicconet’s
work for different scenes: 1) landscape across main building and its towers, 2) mirror
reflection of standing people over water, 3) macro view of an animal. Nagar and Raman [120]
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Figure 2.1 Illustration of the first symmetry detection method. Source: [10]
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Ž . Ž . Ž . Ž .Figure 12. Symmetry detection results for several real images. a Welcome gate; b slice of CT x-ray image; c ceramic; d
Ž . Ž .human face; e square pattern; and f fluctuating crosses.

Figure 2.2 Results of Sun’s detection method using gradient histograms in Fourier domain.
Source: [144]
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Figure 2.3 Results of Keller and Shkolnisky’s approach in single and multiple symmetry
detection. Source: [83]

determined the reflection symmetries inside an image through solving a linear correspondence
problem using Riemannian Manifold Optimization algorithm. This work lacks a proper
sampling method to downsize the image size into a reasonable symmetry representation.
Figure 2.5 shows real-world and synthetic cases of Nagar’s approach in extracting the feature
points (green dots) and matching them (blue lines) in such way to find the major symmetry
axis (red line). Gnutti et al. [61, 62, 67] decomposed the image into even and odd fundamental
parts by analyzing their perspective energy, to investigate 2D spatial correlation properties
inside an image, and use a saliency map identifying the major symmetries axes. In the end,
Gnutti et al. [67] divided the detection process into three stages: (1) compute symmetry value
for each position and direction of the input image using similar PRST symmetry measure
[132], in such way that patch-based auto-convolution of an image is applied in direction
perpendicular to the reflection axis with changes in the patching orientation, (2) store these
symmetry values in a 3D stack in order to identify the candidate axes, (3) refine and reorder
these candidates in descending order. This recent work of Gnutti lacks the proper way to
measure the correct symmetries over the false segments. Figure 2.6 shows top axis candidates
(red, blue and green lines) for Gnutti’s detection method to detect symmetries in local and
global scale.

In summary, all proposed work conducted pixel-wise analysis to find mirror similarities
among 2D image space, but this deep analysis needs a huge computation time for proper
symmetrical results. In addition, this type of detection is too sensitive to any degree of
textural background resulting false positive symmetries.
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Figure 2.4 Some examples of Cicconet’s approach using Normalized Cross-Correlation.
Source: [30]

Figure 2.5 Explanation of Nagar and Raman’ work in finding symmetrical correspondences
inside images. Source: [120]
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Figure 2.6 Some results of Gnutti approach in detecting multiple symmetry axes. Source:
[62]

2.1.2 Feature-based detection

In 1993, Masuda et al. [110] extracted feature keypoints upon the application of the
convolution process on the gradient information resulting from the Gaussian filter over an
image, and selected the best similarities using the correlation process between the original and
rotated versions. This work was a first attempt to use local features in detecting symmetrical
axes, but still too sensitive to any background clutter noise. Figure 2.7 shows symmetrical
cases where a single object exists on a quasi uniform background. Kirayati and Gofman [84]
tired to combine intensity-level features as in Marola [108] plus local-features using circular
Gaussian functions parameterized by its spatial coordinates, scale and orientation. They
apply a genetic algorithm on these features to detect multiple symmetries. Figure 2.8 shows
the symmetrical examples of Kirayati and Gofman method in closeup natural scenes, in
which the symmetry axis corresponds to the white line delimited by the white circle defining
the symmetrical area.

The first baseline algorithm was firstly proposed in mid 2000’s by Loy and Eklundh [101].
They analyzed the bilateral symmetry from image features’ constellation by introducing
the general scheme (as shown in figure 2.9): (1) detection of local feature points using
well-known SIFT [100] algorithm, associated with local geometrical properties (location,
orientation, scale) and descriptor vectors. (2) pairwise matching and evaluation of a local
symmetry magnitude of their descriptors, to generate axis candidates. (3) accumulation
of their symmetry magnitude in a Hough-like voting space parameterized with orientation
and displacement, to identify the dominant reflection axes inside an image. It lacks finding
enough feature points leading to lose the meaningful symmetry axes of natural scenes with
smooth objects with noisy background (see figure 2.11), due to mainly dependence on the
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Figure 2.7 Orientation cases of Masuda approach in detecting single symmetries. Source:
[110]

Figure 2.8 Symmetry examples of Kirayati and Gofman approach in selection of single
symmetries with endpoints alignment. Source: [84]
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Figure 2.9 Loy’s symmetry framework.

Figure 2.10 Loy’s symmetry results. Source: [101]

hand-crafted properties of SIFT features. Figure 2.10 shows the symmetrical results of the
baseline algorithm (Loy) in single and multiple cases in natural scenes. Symmetry axes are
highlighted in white & grey lines, and their corresponding involved feature key-points in
white & grey dots.
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Figure 2.11 Loy’s fail cases.

Since then, the following algorithms proposed some improvements and refinements of
Loy’s method. Cho and Lee [26] split and merged local symmetry regions of an image by
investigating both photometric and geometrical properties using multi-layer Region Growing
(RG) algorithm. This work can’t determine the precise angle of symmetry axes. Figure 2.12
explains how RG algorithm leads in having feature blobs (the key-points in colored dots
and the blob boundaries in colored convex-hulls), which allows Cho and Lee method to
identify the different symmetrical axes (colored lines) inside the sample image. Mo and
Draper [118] presented simple improvements to Loy algorithm [101] by pairing all feature
points instead top closest matches for each point, and using a non-weighted frequency-based
voting space for symmetrical peak selection. These improvements produced more particles
for the symmetry axis, to elongate the output axis defining the global texture information of
an image, but at the same time they introduced some matching noise resulting in detecting
wrong symmetry axes. Kondra et al. [86] defined multi-scale correlation measures between
SIFT feature points to identify the symmetrical regions based on orientation-based matches.
Patraucean et al. [130] validated the mirror-symmetric candidates using statistical procedure
called Contario Theory. Michaelsen et al. [114] used the SIFT descriptors to describe
high-detailed symmetric patterns of the image plane using Gestalt Algebra concept. Cai et al.
[17] focused on introducing an adaptive SIFT feature detection over Loy2006 method [101]
to refine the total number of keypoints required to guarantee well-defined symmetry results.
Figure 2.13 shows top 3 symmetrical candidates (red lines with red font order numbers) for
focused objects inside outdoor scenes.

Since 2013, the following methods deployed the local edge information instead of SIFT,
to redefine the localization of symmetry axes inside an image. Ming et al. [116] extracted
the symmetric pairs of edgelets based on the contour information, and then established
star-shaped graph using these pairs, to estimate the symmetric axes. Figure 2.14 shows
multiple symmetry candidates over natural images (in such decreasing order: red, yellow
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Figure 2.12 Illustration of obtaining symmetry axes using Cho and Lee approach, based on
Region Growing algorithm. Source: [26]

Figure 2.13 Symmetry examples of obtaining multiple axes and their importance order using
Cai approach. Source: [17]
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and green). Cicconet et al. [28] introduced the second baseline framework (as shown in
figure 2.15) in 2014, it consists of: (1) Extraction of a regular set of wavelet-based feature
points with local edge amplitude and orientation. (2) given any pair of points, definition of
an axis candidate within symmetry coefficients. (3) construction of a voting histogram as
the sum of the contribution of all pairs of the feature points for a given axis. (4) extraction
of the best candidates representing the voting maxima over the mirror symmetry histogram.
This framework misses the neighborhood’s information inside the feature representation,
plus it depends mainly on the scale parameter of the wavelet-based edge detector. Any
photographic environment with highly-detailed texture objects with non-blurred background
results incorrect global symmetry. The same authors [27] presented a new parameter-based
algorithm based on direct product of complex wavelet filtering outputs, plus they developed
a convolution-based technique to find precisely the endpoints of symmetry axes instead of
using the traditional convex hull method [101]. This proposed algorithm is computationally
expensive and outputs incorrect symmetry according to the definition of the wrong properties
of the image shapes as in figure 2.16. Wang et. al [161] defined an edge descriptor with
respect to the diagonals of the orthogonal projection matrices (DOPM) after Canny detector
to define locally affine invariant features, to use them in a matching step based on K-
Nearest Neighbor (KNN) clustering method. This work lacks a standard dataset validation to
understand its deficiencies. Figure 2.17 displays the symmetrical results of Wang’s algorithm
in detecting multiple axes (red lines) among the scenes of different objects or a single
object. Atadjanov and Lee firstly proposed scale-invariant curvature-based histograms [7]
for symmetry computation, and refined the feature detection and extraction scheme [8]
for high-dimensional histogram comparison. Figure 2.18 presents the axis candidates in
colored lines defining symmetry inside single object scenes, in which the results has to be
clustered and aligned together in order to strength up the major axis candidates. Finally,
Nagar and Raman [122, 121] used SIFT features to compute a symmetrical map using an
energy minimization approach firstly and then after a randomized algorithm called Patch
Match [14].

In summary, feature-based methods are very fast to extract important keypoints around
an image, in order to easily find reflective symmetries among them. They are mainly
concentrated to find local symmetry axes instead of global ones.

2.1.3 Segmentation-based detection

In mid 1990’s, Zabrodsky et al. [166, 167] defined a symmetrical measure to find a
similar objects inside an image, but it needs the symmetry centers as initial points for the
correct segmentation process. Figure 2.19 presents the symmetrical examples of similar
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Figure 2.14 Some symmetry results of Ming’s detection work based on contour key-points.
Source: [116]

Figure 2.15 General framework of Cicconet’s symmetry detection approach [28].

Figure 2.16 Ambiguous distribution of the edge segments, from Cicconet et al. [28].
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Figure 2.17 Results of Wang’s symmetry detection algorithm, presenting possible multiple
axis candidates. Source: [161]

Figure 2.18 Symmetrical results of Atadjanov’s detection method in finding multiple axes
inside images. Source: [8]
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Figure 2.19 A segmentation example of human faces through obtaining multiple symmetry
axes using Zabrodsky approach. Source: [167]

circular regions (defined by white dots with middle axes in white lines) helping in segmenting
the human faces out of the scene. After long years, Widynski et al. [163] proposed a ribbon
detection algorithm using Particle filter method to find skeleton symmetries inside local
objects. This methods needs to work with predefined structures, in order to detect the correct
centroids inside. Figure 2.20 shows semi-reflection and discontinued symmetries (in red
irregular lines) of scenes’ elements (i.e. humans, statues, houses) along side with some dual
symmetrical axes between the similar objects. Recently Nagar and Raman [123] simply
computed a feature map using a recent edge detection [39] and then apply SLIC algorithm
[1] based on the maximum likelihood of the edge map as initial centers. This work mainly
depends on the magnitude values of detection method and lacks neighborhood information. In
summary, this type of methods targets segmenting the important objects inside an image, and
then find symmetries within. Figure 2.21 defines the symmetry detection pipeline of Nagar’s
method in which the butterfly image is segmented using the SLIC technique into super-pixel
regions (defined by red boundaries), followed by selection of symmetrical keypoints (color
dots) in these regions and matching them (color lines connecting color dots) in such way to
find proper symmetry axes.
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Figure 2.20 Examples of inner symmetries inside image’s objects using Widynski approach.
Source: [163]

Figure 2.21 Explanation of object symmetry extraction using Nagar approach based on
super-pixel segmentation technique. Source: [123]
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Figure 2.22 Examples of finding local symmetries inside image’s objects using Tsogkas
approach. Source: [152]

2.1.4 Learning-based detection

In early 2010’s, Tsogkas and Kokkinos [152] firstly introduced the learning-based detec-
tion method based on the brightness, color and textural information. They used histogram-
based region discrepancy, and spectral clustering features as latent variables for Multiple
Instance Learning (MIL), in order to output symmetry probability maps. Figure 2.22 shows
detection of reflection and skewed symmetries (yellow lines) defining the skeleton version
of scenes’ objects. Funk and Liu [54] recently developed the first deep neural network to
detect local and global reflection symmetries according to the human perception system. In
summary, the supervised learning methods implicitly find symmetrical information inside
images for image segmentation applications including the medial axes of the focused objects,
but they couldn’t retrieve the main symmetrical axes based on the global mirror contribution
of the image parts. Figure 2.23 shows the heat maps (gradient colors from maximum in red
into minimum in blue) where the possible symmetries should exist (i.e. cat face in left image,
tower in right one).
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Figure 2.23 Results of multiple symmetry detection using Funk approach based on Deep
CNN models. Source: [54]

2.2 Symmetry competitions

Three different competitions were organized by PSU vision group at major computer
conferences:

— First symmetry competition [134] conducted in CVPR workshop 2011 with following
participants (Mo and Draper [118], Kondra et al. [86]) with Loy and Eklundh [101]
as a baseline. As shown in figure 2.24, the competition categorized preliminary
results in two groups (single/multiple, synthetic/real) and output the results in terms
of the best recall and precision values among each participant. In nutshell, the
baseline outperformed all participants with strong competence from Kondra in the
real/multiple cases.

— Second symmetry competition [95] conducted in CVPR workshop 2013 with follow-
ing participants (Patraucean et al. [130], Michaelsen et al. [114], Petrosino et al.) with
the same baseline algorithm (Loy and Eklundh [101]). The baseline algorithm [101]
outperforms all participants of both competitions to find well-defined symmetry axes
inside synthetic and real-world images. Figure 2.25 shows the competition results in
terms of precision-recall curves with varying the symmetry scores among the axis
candidates of each participating algorithm. In single case, the baseline algorithm
[101] has better recall rates at lower precision levels but in general has overall best
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performance over precision and recall rates. Patraucean et al. [130] has small recall
advantage at some precision levels. In multiple case, the baseline algorithm [101] has
the best recall results among all precision performance except at middle rates where
Patraucean et al. [130] gives better results at minor scale. In general, Michaelsen et
al. [114] has the worst performance among single and multiple cases.

— Third symmetry competition [53] conducted in ICCV workshop 2017 with following
participants (Nagar and Raman [122], Guerrini et al. [67], Cicconet et al. [31],
Michaelsen and Arens [113], Elawady et al. [46]) with two baseline algorithms (Loy
and Eklundh [101], Atadjanov and Lee [8]). The classic algorithm [101] outper-
forms all participants of both competitions for single and multiple symmetry, plus the
extra performance of the modern baseline [8] among the single symmetry competi-
tion. Figure 2.26 represents the competition results as in the previous competition
(precision-recall curves) along side with a evaluation metric value (maximum F1
score). In single case, Guerrini et al. [67] has the worst performance without having
the score threshold to vary, which results only one candidate to compare with. A new
benchmark algorithm (Atadjanov and Lee [8]) overcomes the well-known baseline
algorithm (Loy and Eklundh [101]). In multiple case, the baseline algorithm still has
the best performance results over the new competent (Elawady et al. [46] as 2nd, and
new benchmark algorithm [8] as 3rd).

In summary, these competitions lacks clarity about evaluation metrics to measure each
detection method in the aspect of single and multiple cases. The following subsection will
explain in-details how to evaluate all candidate axes for each method with respect to their
corresponding symmetry scores.

2.2.1 Evaluation metrics

Assuming a symmetry line defined by two endpoints (a = [ax,by]
T , b = [bx,by]

T ), quan-
titative comparisons are fundamentally performed by considering a detected symmetry
candidate SC = [aSC,bSC]T as a true positive (TP) respect to the corresponding groundtruth
GT = [aGT ,bGT ]T if satisfying the following two conditions: the angle between the two axes
γ must be lower than some threshold γT , and the distance between axis centers ζ must be
lower than other threshold ζT . The computation of γ and ζ is as follows:

γ = E(atan(

abs(

∣∣∣∣∣vSC
x vGT

x

vSC
y vGT

y

∣∣∣∣∣)
< vSC,vGT >

)); γ < γT , (2.1)
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Figure 2.24 Results of 1st symmetry competition 2011. Source: [134]

Figure 2.25 Results of 2nd symmetry competition 2013. Source: [95]
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Figure 2.26 Results of 3rd symmetry competition 2017. Source: [54]

ζ =
√

(tSC
x − tGT

x )2 +(tSC
y − tGT

y )2; ζ < ζT , (2.2)

vSC = (aSC−bSC), vGT = (aGT −bGT ) ,

tSC =
(aSC +bSC)

2
, tGT =

(aGT +bGT )

2
,

E(Γ) =

π−Γ, if Γ > π

2

Γ, otherwise

Figure 2.27 represents visually angular and distance constraints between the detected
and groundtruth axes, in which these constraints are upper-bounded by the corresponding
thresholds γT and ζT . The values of these thresholds are defined in table 2.2 across different
symmetry competitions. Given, each algorithm outputs multiple detection results representing
the axis candidates ranked by their corresponding confidence scores. Furthermore, the
precision PR and recall RC rates are defined by selecting the symmetry peaks according to
the candidates’ symmetrical scores, which are normalized by the highest detection score, to
show the performance curve over all dataset images for each algorithm:

PR =
T P

T P+FP
, RC =

T P
T P+FN

(2.3)

where FP is a false positive (non-matched detection), and FN is a false negative (non-
matched groundtruth). In case of single symmetries, one axis candidate can be only matched
with a single groundtruth. While in case of multiple symmetries, a region containing axis
candidates can be be grouped to match one groundtruth. Plus the false positive detection
should be eliminated for correct performance computation.
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Figure 2.27 Evaluation metrics: A comparison between the groundtruth GT (red) the detected
reflection symmetry candidates SC (blue) by measuring the distance ζ between the axes’
centers and the angle γ between them.

max{F1}= max{2PR×RC
PR+RC

} (2.4)

Table 2.2 Threshold values of evaluation metrics across different reflection symmetry compe-
titions.

Competition γT ζT

CVPR2011 [134] 10◦ 20%× len(GT )

CVPR2013 [95] 10◦ 20%×min{len(MT ), len(GT )}
ICCV2017 - Training 6 3◦ 2.5%×min{W,H}

ICCV2017 - Testing [53] 10◦ 20%×min{len(MT ), len(GT )}

Toy example

Figure 2.28, table 2.3 show a dummy evaluation example for multiple symmetrical
case. In the beginning, false positive should be ignored as in case of candidates (SC5, SC6)
with considering only the high-ranked one (SC5) if the the following conditions both met:
γSC5,SC6 < γT and ζ SC5,SC6 < ζT . The matching process between groundtruth and candidates
is defined as follows:

— GT1 <–> SC1 as γGT1,SC1 < γT and ζ GT1,SC1 < ζT

6. https://sites.google.com/view/symcomp17/challenges/2d-symmetry

https://sites.google.com/view/symcomp17/challenges/2d-symmetry
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GT1
GT2SC1

SC2

SC4

SC3

SC5

SC6

Figure 2.28 Toy example of multiple symmetry evaluation with two groundtruth (highlighted
in red lines) and six axis candidates (highlighted in blue lines) produced and ranked by
dummy detection algorithm.

— GT1 <–> SC2 as γGT1,SC2 < γT and ζ GT1,SC2 < ζT

— GT2 <–> SC4 as γGT2,SC4 < γT and ζ GT2,SC4 < ζT

As the performance measure of a candidate is defined (as defined in right-side of table 2.3)
through the precision (index of true positive / rank index) and recall (index of true positive /
number of groundtruth) rates. The precision-recall curves can be drawn through the values
of the computed precision and recall rates, and we easily derive the value of max{F1} which
is a excellent global measure to qualify a detection method.

Table 2.3 Numerical information of axis candidates for toy example.

Candidate Score Normalized Score Rank precision recall F1

SC1 0.8 1 1 1/1 1/2 0.667

SC2 0.7 0.875 2 1/2 1/2 0.5

SC3 0.6 0.749 3 - - -

SC4 0.3 0.375 4 2/4 2/2 0.667

SC5 0.1 0.125 5 - - -

SC6 0.05 0.063 6 x x x
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2.3 Datasets

Public datasets of reflection symmetry detection are:

1. PSU (single, multiple): Liu’s vision group [134, 95]proposed symmetry groundtruth
for Flickr images (# images = # symmetries = 157 for single case, # images =
142 and # symmetries = 479 for multiple case) in ECCV2010 1, CVPR2011 2 and
CVPR2013 3. Figure 2.29 shows different images of symmetrical cases with legend
(r, c) representing row and column indexes. (1,4) case represents real and multiple
example with similar objects defining inter and intra symmetries. (2,6) and (3,5) cases
display real and single example with non-centered objects. (3,2) case shows multiple
and real example defining inter symmetries. (5,2) case displays rotated and non-color
example. (5,3) case shows an example of repetition of patterns with intra-symmetries.
(6,5) case shows real and multiple example with non-similar objects.

2. NY datasets (single, multiple): Cicconet et al. [27] introduced a symmetry database (#
images = # symmetries = 176 for single case, # images = 63 and # symmetries = 188
for multiple case) in 2016 4, providing more stable groundtruth. Figure 2.30 shows
single symmetrical cases (highlighting in white lines) under illumination conditions.

3. ICCV17 training datasets (single, multiple): Seungkyu Lee [53] delivered a challenge
database associated with reflection groundtruth 5 (# images = # symmetries = 100 for
single case, # images = 100 and # symmetries = 384 for multiple case). Figure 2.31
shows single and multiple symmetries (highlighted in blue lines) with indoor and
close-up views.

Table 2.4 A summary of the proposed datasets for symmetry detection

Dataset Single Multiple

PSU 157 142 (479)

NY 176 63 (188)

ICCV17 100 100 (384)

All these public datasets have synthetic and natural images with focused and centered
objects along side with clear background. There are other public datasets used by some works
in limited way (BioID [78] for face detection, BSDS [109] for image segmentation, and

1. http://vision.cse.psu.edu/research/symmetryCompetition/index.shtml
2. http://vision.cse.psu.edu/research/symmComp/index.shtml
3. http://vision.cse.psu.edu/research/symComp13/content.html
4. http://symmetry.cs.nyu.edu/
5. https://sites.google.com/view/symcomp17/challenges/2d-symmetry
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Figure 2.29 Sample images of PSU dataset. source: [134]

Figure 2.30 Sample groundtruth outputs from NY dataset. source: [27]

Figure 2.31 Sample groundtruth outputs from ICCV2017 dataset. source: [53]
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Figure 2.32 Examples of AvaSym images with single symmetry groundtruth.

COCO [94] for object detection). In the following subsection, we propose more challenging
images with complex scenes, captured by amateur and professional photographers.

2.3.1 AvaSym dataset

From DPChallenge photo contest website, Murray et al. [119] introduced different
annotations (aesthetic, semantic and photographic style) for more than 250,000 images for
Aesthetic Visual Analysis “AVA”. From the following photography challenges, we labeled
global-axis symmetry groundtruth ’AvaSym’ for 253 out of 878 images: (1) five challenges
of “Reflections Without Mirrors”: images containing bilateral representation without using
mirror, (2) three challenges of “Symmetry”: photographs composing symmetrical balance.
These images are selected to neglect unclear instances of ambiguity symmetry, and to
represent many comparison cases (non-centering viewpoint, perspective view, blurring
reflection, etc.) for detection algorithms. Figure 2.32 shows some examples of single
symmetries inside the proposed dataset (for more details, see appendix A).

2.4 Summary

In this chapter, we reviewed different categories of reflection symmetry detection (inten-
sity, feature, segmentation and learning). Intensity-based needs a lot of time to compute mirror
similarities in pixel-wise domain, plus prior knowledge about image objects. Feature-based
is focusing on local keypoints instead of pixels for symmetry matching. Segmentation-based
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splits an images into well-separated regions in order to define symmetries inside, this cat-
egory provides skeletonized and non-connected axis candidates. Learning-based uses the
advantages of recent machine learning algorithms (i.e. SVM, CNN) to implicitly discover
symmetries inside well-annotated predefined scenes, which leads long training time to adapt
the algorithms for desired outcome. In photographic analysis, our constraints are: (1) detec-
tion of the main symmetry axis and detection of several secondary ones. (2) address images
encountered in photography (i.e. human made and natural scenes). (3) propose an efficient
algorithm without requiring large annotated datasets. So we tackled these constraints through
defining a detection pipeline combining local feature extraction and unsupervised learning.
Moreover, the evaluation metrics of all previous competitions are unclear in the detailed
evaluation of true and false positives and negative and how to compute the corresponding
precision recall curves. The proposed work contains more challenging dataset (AvaSym) with
global-wise symmetries to deduce among the participating algorithms through comparing
the axis candidates with groundtruth in a single case.





Chapter 3

Symmetry Features and Metrics

Résumé: Dans ce chapitre, nous proposons une méthode pour détecter les axes globaux
de symétrie par réflexion qui améliore la sélection des points-clés à partir des caractéristiques
considérées ainsi que le calcul de leur pondération. Les ondelettes de Log-Gabor ont été
introduites afin de détecter et extraire des caractéristiques d’image globales et efficaces. Nous
combinons des histogrammes de couleurs et des histogrammes texturaux calculés dans un
voisinage d’un point afin d’extraire des informations pertinentes de l’image permettant par la
suite d’obtenir les axes de symétrie par réflexion. Nous montrons expérimentalement que
la méthode proposée permet d’obtenir des résultats pertinents par rapport à l’état de l’art
pour identifier les axes de symétries globaux dans des images comportant différentes scènes
naturelles, que ce soit pour la recherche de l’axe de symétrie principal ou pour la recherche
de plusieurs axes de symétries.

Abstract: We propose a method to detect reflection symmetries inside natural images in
a global scale, through a novel selection of feature-of-interest keypoints and an enhanced
computation of symmetric weights. We propose the use of Log-Gabor wavelets to detect
and extract global and efficient image features. Moreover, combination of color and textural
neighboring histograms exploits advantageous information regarding the image content,
that can be used for an effective exploration of reflection axes inside an image. We show
experimentally that the proposed work significantly recognize the global symmetries inside
various image scenes of single and multiple cases.

3.1 Introduction

To detect symmetry inside an image, we need to explore objects’ details which are
symmetrically involved and evaluate how similar their structural information are in mir-
ror way. For these reasons, we have to study the geometrical, textural, color properties
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of distinguishable feature-of-interest patterns (i.e. edges, corners) that define the locally
symmetric components. After that, we need to determine the balanced region based on
symmetric metrics to match these patterns locally on each side of a symmetry axis candidate.
In this chapter, we present the grid-based feature extraction using Log-Gabor wavelets in
comparison with Gabor edge filters as in [28]. Then, we propose the application of these
features to evaluate the symmetry contribution upon the construction of textural and color
histograms, within computation of reflection symmetry axes. The provided evaluations
confirm that the proposed work performs significantly better than the state-of-the-art methods
[101, 28]. Moreover, on natural images it can detect global symmetries for better context
analysis.

The rest of the chapter is organized as follows: the next section discuss the background of
current symmetry detection methods and their limitations, plus defines the general steps of the
proposed the framework. Section 3.3 describes our method to enhance the feature detection
and extraction using Log-Gabor wavelets. Section 3.4 presents how to incorporate spatial
and color representation into symmetrical weights using local textural and color histograms.
Section 3.5 describes the implementation details and the results on different benchmark
datasets along side with comparisons with state-of-the-art to be corrected alongside the
document. Section 3.6 summarizes the proposed work with highlighting the future works.

3.2 Background and limitations of existing symmetry de-
tection methods

State of the art symmetry detection methods use an approach based on the triptych: local
feature extraction, symmetry measure, symmetry voting. The purpose of this section is to
present the general algorithm used by theses methods together with their limitations.

3.2.1 General framework for symmetry detection

The main steps of general framework to detect globally the symmetry axes inside an
image plane are:

1. Feature extraction: visual-based significant points p are detected and selected using
some window-based derivative operation G from an image I, presenting consistent
region-of-interest points over variant images of the same environment scene, plus
invariant toward certain transformation and insensitive to noise.
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pi← I ∗G (3.1)

pi = [pi
x, pi

y]
T , i = 1 . . .P (3.2)

2. Feature triangulation: each pair of extracted points qn are matched based on its
feature characteristics, producing polar-based axis candidates (ρ for displacement,θ
for angle) with respect to image origin OI with reflection-based symmetrical weights
ωn.

qn = (pi, p j,OI), i ̸= j, n = 1 . . .
P(P−1)

2
(3.3)

qn→ (ρn,θn,ωn) (3.4)

3. Symmetry representation: polar-based axis candidates (ρ , θ ) are accumulated with
respect the corresponding symmetrical weights ωn, to construct a voting-based space
with local maxima representing the best symmetrical axis candidates:

H(ρ,θ ,ω)← (ρn,θn,ωn);∀n (3.5)

4. Symmetry selection: given the Hough-like voting space H(ρ,θ ,ω), the local maxima
peaks SCm are selected defining the major symmetry axes with well-defined endpoints
(aSCm

,bSCm
)

SCm← H(ρ,θ ,ω) (3.6)

SCm = [aSCm
,bSCm

]T , m = 1 . . .M (3.7)

3.2.2 Limitations of current methods

In feature extraction, the baseline (Loy and Eklundh [101]) used sparse features based
on SIFT methodology [100], while the state-of-art (Cicconet et al. [28]) used semi-dense
features within the application of Gabor wavelet filters over grid-based image patches [55]
and their applications in edge/contour extraction [74, 65, 79]. In section 3.3, we propose to
use Log-Gabor function instead of Gabor ones, to extracts more accurate feature (edge/corner)
information from an image, plus ensuring the robustness of these features with respect to
linear illumination variations. In feature triangulation, the first baseline [101] uses SIFT
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[100] descriptors as symmetrical weights, while the recent state-of-art [28] uses only the
edge information for feature representation. In section 3.4, we propose to combine an edge
based descriptors with color and textural information of local neighborhood. In voting-based
symmetrical selection, both works [101, 28] use sparse-based voting scheme for hough-
like weighting representation and conventional peak selection using classical non-maximal
suppression method. In chapter 4 , we propose a continuous kernel estimation to represent
the density of candidate pairs in polar coordinates of the symmetrical weights, and adapt
mean-shift algorithm to find precisely the candidate axis.

3.3 Log-Gabor based feature detection and extraction

In this section, we present our feature detection method based on Log-Gabor filters.
Log-Gabor filter was introduced by Field [49] in late 1980’s, as an alternative to the Gabor
filter, to suppress the effect of DC component through the computation of the multi-scale
logarithmic function in the frequency domain. Feature extraction methods based on Log-
Gabor filters have been successfully used in different computer vision applications (biometric
authentication [81, 3], image retrieval [156], face recognition [92], image enhancement [160],
vehicle detection [6], character segmentation [105], and edge detection [57]).

The reason of selecting Log-Gabor wavelets over Gabor ones is shown inside figure 3.1,
in which Log-Gabor minimizes the DC component (enhancing the contrast ridges and edges
of images) through the natural behavior of logarithmic function, and separates the frequency
bands through splitting the common coverage areas between them at cut-off frequency
10log10(

1
2)≃−3dB. While the Gabor over-represents the high frequencies components and

under-represents the low frequencies. In addition, figure 3.2 presents that even scales in
Log-Gabor are rotated by half distance between the filter centers of the prior odd scales, to
cover the Fourier space better than Gabor. Figure 3.3 shows Gabor and Log-Gabor wavelet
filter bank with 4 scales and 5 orientations, which the elongation scheme of Log-Gabor
wavelets appears in the real and imaginary components in the spatial domain. Figure 3.4
shows the difference in wavelet response between Gabor and Log-Gabor on some natural
image with a different illuminated foreground leaf along side with a blurring background.
The amplitude maps illustrate that Log-Gabor filters are not sensitive to linear background
variations by highlighting the details of the focused object only, unlike Gabor filters. We can
summerize that the Log-Gabor functions are better analyzed in natural images than Gabor
ones.
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ππ/2π/4π/8

(a) Gabor

ππ/2π/4π/8

(b) Log-Gabor

Figure 3.1 Frequency responses of (a) Gabor and (b) Log-Gabor wavelets at 4 angular
frequency bands. Source: [124].

(a) Gabor (b) Log-Gabor

Figure 3.2 Multiscale complex filter banks of (a) Gabor and (b) Log-Gabor with 8 orientations
and 6 scales. Note that Log-Gabor covers the response space in better way by rotating half
distance between filter centers at each scale, see equation 3.17. Source: [124].
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(a) Real - Gabor (b) Imaginary - Gabor

(c) Real - LogGabor (d) Imaginary - LogGabor

Figure 3.3 Multi-resolution Gabor and Log-Gabor arrangements with S = 4 scales (in rows)
and O= 5 orientations (in columns). Real (a,c) and imaginary (b,d) components are displayed
in the spatial domain.

Gabor filters

The Gabor (as known as Morlet) wavelet parameters can be specifically tunned to detect
edges. For that, the reference angular frequency is ω0 = π/2, and the elongation along the
main orientation is half value of its orthogonal. Formally, the mother wavelet ψ(x,y) is
defined as:

ψ(x,y) = exp(ω0 jx) exp(−1
2
|diag(1,

1
2
)× [x,y]T |2) (3.8)

where × denotes the matrix product operator, and its Fourier transform is given by:

ψ̂(ωx,ωy) =
1√
2π

exp
(
−
|[ωx,ωy]−ω0|2

2

)
(3.9)
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Figure 3.4 Comparison of amplitude and its corresponding orientation responses between
Gabor (b,d) and Log-Gabor (c,e) filters for some input (a). Note that Log-Gabor is less
sensitive to linear background variations.

The Gabor wavelet family of functions ψs,o(x,y) of scale s ∈ {1, . . . ,S} and orientation
αo =

oπ

O with o ∈ {0, . . . ,O−1} is:

ψs,o(x,y) =
1
s

ψ(
Ωo× [x,y]T

s
) (3.10)

Ωo =

[
cos(αo) sin(αo)

−sin(αo) cos(αo)

]
(3.11)

The corresponding Fourier transform of ψs,o is given by:

ψ̂s,o(ωx,ωy) = s
1√
2π

exp
(
−

s2|Ωo× [ωx,ωy]
T −ω0/s|2

2

)
(3.12)

In this last equation, the two properties of Gabor wavelets are expressed in the frequency
domain as in figures (3.1 and 3.2). At first, for αo = 0, the Fourier transform of wavelets
have a Gaussian shape whose center is located at ω0/s and their bandwidth are proportional
to 1/s which explains figure3.1. Second, at a fixed scale s, the Gaussian centers are located
on a circle whose size is inversely proportional to s and they are radially located over angles
αo as seen on figure 3.2.
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The response of wavelet coefficients Is,o(x,y) are computed on an image I (width W and
height H), up on application of Gabor filters ψs,o in the spatial domain over multiple scales
and orientations as follows:

Is,o(x,y) = |I ⊛ψs,o| (3.13)

where ⊛ denotes the 2D convolution operation.

Log-Gabor filters

Inspired from Kovesi’s work [87, 88] in computing phase congruency, the key idea of
Log-Gabor filters is to define them in the Fourier space. The 2D frequency vector [ωx,ωy] is
represented in polar coordinates by a radial variable denoted µ and an angle denoted β . The
Fourier transform of this filter is then the product of a radial component which is a Gaussian
function of the logarithm of the radial frequency µ and an angular term which is a Gaussian
function of the angle frequency β . Formally, given the scales s ∈ {1, . . . ,S} and orientations
βo with o ∈ {0, . . . ,O−1}, the Fourier transform of Log-Gabor filters is given by:

G̈(µ,β ;s,o) = G̈s(µ) G̈o(β ) (3.14)

G̈s(µ) = exp(−
(log( µ

µs
))2

2(log(λµ))2 )U(µ) (3.15)

G̈o(β ) = exp(−|β −βo|2

2λ 2
β

) (3.16)

βo =

oπ

O + π

2O , S = odd
oπ

O , S = even
(3.17)

µs =
1

Γ Λs−1 (3.18)

where Γ is the wavelength of the smallest scale filter, and Λ is the scaling factor between
successive filters. (µs,βo) are the frequency centers and their bandwidths (λµ ,λβ ). G̈s(µ)

is multiplied by low-pass Butterworth filter U(µ) [126] (order 15, and radial frequency
0.45×2π), to eliminate any extra frequencies at Fourier corners.

The modulus of complex wavelet coefficients Is,o(x,y) are computed on an image I (width
W and height H) as follows:

I →
GS

IGS
FT→ ÏGS→ |ÏGS G̈)|FT−1

→ Is,o (3.19)
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Is,o(x,y) = |(IGS ⊛G) (x,y)| (3.20)

where IGS is the gray-scale version of the image I in frequency domain, and FT (.), FT−1(.)

are the Fourier transform and its inverse.

Edge characteristics

At each image location, amplitude J(x,y) and its corresponding orientation φ(x,y) maps
are deduced by seeking for the maximum response Is,o(x,y) across scales and orientations:

J(x,y) = max
s,o

Is,o(x,y) (3.21)

φ(x,y) = arg(max
s,o

Is,o(x,y)) (3.22)

Either using Gabor or Log-Gabor filters in figure 3.4, these maps highlight the edge
details of the foreground object in a sharp way.

Feature extraction

Upon a spatial sampling of the input image I (see figure 3.5) using non-interleaved cells
along a regular grid (stride and cell size are proportional to the maximum image dimension
max(W,H)). Each feature point pi is extracted (as presented in figure 3.6) within each cell
Di as the point in that cell where the wavelet response is maximum. The maximum wavelet
response is denoted Ji = J(pi) along side with the corresponding orientation φi and color
information υi in HSV color space.

(a) Input (b) Amplitude with Cell Di (c) Orientation φ with Cell Di

Figure 3.5 An illustration of grid-based sampling process. (a) input image I. (b,c) amplitude
J and orientation φ maps with non-interleaved griding presentation (using green dashed lines)
plus highlighted cell Di (inside red square).
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Figure 3.6 An example of feature extraction with different scales, accompanied with edge and
textural characteristics (for better display, only features with high magnitude are displayed
over the gray-scale version of the input image).

3.4 Local symmetry measure

Once the local features are extracted, we need to define descriptors for each feature and
combine them in such way to have well-defined symmetrical representation. The first baseline
[101] used the neighboring information through SIFT [100] descriptors, while the recent
state-of-art [28] used the magnitudes of the edge segments only for feature representation.
Our idea is combining edge magnitudes along side with local neighborhood information.
The principle of the proposed symmetrical representation relies in the following three steps:

1. Local description of textural and color information around each feature points.

2. Computation of symmetry similarity to find out how the given pairs of the feature
points are mirror matched.

3. The voting comprises the accumulation of the contribution of each pair to a given
axis in a Hough-like space, to select the symmetrical peaks. It will be explained in
details in section 4.2 of the next chapter.

Local description

Textural and color descriptors are one of the most significant visual features, and have
been used efficiently in different applications of computer vision (object recognition [154],
and image retrieval [131, 106]). The textural and color information around an edge segment
are prominent similarity characteristics for natural images, describing the symmetrical be-
havior of local edge orientation, and the balanced distribution of luminance and chrominance
components. Hence, we introduce two histograms: Firstly as shown in figure 3.7, neighboring
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(a) (b) (c)

Figure 3.7 The process of computing local orientation histogram: (a) Edge segments arrange-
ment within a cell, (b) angular distribution of edge segments for 16 main orientations over
180 degrees, (c) normalized neighboring orientation histogram.
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(c) Shifted Histogram

Figure 3.8 An illustration of histogram circular shift process. (a) Zoom-in details of amplitude
and orientation information of cell Di from sub-figure 3.5c, highlighting the maximum
magnitude Ji with white circle in the left map (amplitude) and its corresponding angle φi with
white triangle in the right map (orientation). (b,c) textural histogram hi is circular shifted
respect to the orientation φi of the maximum magnitude Ji, highlighting this orientation as
red rectangular box.

textural histogram hi of size L:

hi(l) = ∑
r∈Di

Jr 1Φl(φr), (3.23)

Φl = [
lπ
L
,
(l +1)π

L
[, l = 0, . . . ,L−1

where 1 is the indicator function. For the sake of a rotation-invariant representation, hi is
circular shifted with respect to the orientation φi of the maximum magnitude Ji among the
neighborhood cell Di, as shown in figure 3.8. The proposed textural histogram hi is similar
to HOG method [37] giving edge amplitude over each orientation bin Φl .
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Secondly, the local HSV histogram gi of size C with sub-sampling rate (Chu : Csa : Cva) is
computed based on the previous work in MPEG-7 standard [106]. The HSV color space is a
well-known choice for color descriptors to represent color details in an image, by simulating
how humans perceive color information. The HSV histogram gi is as follows:

gi(c) = ∑
r∈D∗i

1ϒc(υr), (3.24)

c = (chu,csa,cva),

chu ∈ {0, . . . ,Chu−1},
csa ∈ {0, . . . ,Csa−1},
cva ∈ {0, . . . ,Cva−1},

ϒc = [
2chuπ

Chu ,
2(chu +1)π

Chu [× [
csa

Csa ,
csa +1

Csa [× [
cva

Cva ,
cva +1

Cva [

where D∗i is the neighborhood window around feature point pi, υc is a sub-sampled set
of HSV space, in terms of three components: hue (hu), saturation (sa) and value (va). l1
normalization is applied to gi(.) and hi(.), to prevent the effect of contrast and illumination
variations in bin-wise histogram comparisons.

Symmetry similarity

As shown in figure 3.9, a set of feature pairs {qn = (pi, p j) | n = 1, . . . ,N} are elected
such that i ̸= j, P is the number of feature points, N = P(P−1)

2 is the number of feature pairs,
Ti j is the line passing through pi and p j, ci j = (ci j

x ,c
i j
y ) denotes the center of (pi, p j) segment,

and −→o is the reference unit vector of x-axis of the Cartesian plane. Then, we compute
the symmetry candidate axis T⊥i j (line perpendicular to (pi, p j) segment passing through
ci j) based on a triangulation process with respect to the image origin cW,H = (W

2 ,
H
2 ). This

candidate axis is parametrized by angle θi, j (orientation of the bisector of the pair segment
(pi, p j)), and displacement ρi, j = ci j

x cos(θi, j)+ ci j
y sin(θi, j) (distance of the image origin to

this bisector) and has a symmetry weight ωn = ωi, j defined as follows:

ωi, j = ω(pi, p j) = SE(i, j) ST (i, j) SC(i, j) (3.25)
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SE(i, j) = Ji J j|τ iR(T⊥i j )τ
j| (3.26)

ST (i, j) =
N

∑
n=1

min(hi(n), h̃ j(n)) (3.27)

SC(i, j) =
C

∑
c=1

min(gi(c),g j(c)) (3.28)

R(T⊥i j ) =

(
−cos(2θi, j) −sin(2θi, j)

−sin(2θi, j) cos(2θi, j)

)

where τ i = [cos(φi),sin(φi)]
T , R(T⊥i j ) is the reflection matrix with respect to the perpendicular

of the line connecting (pi, p j) [28, 44], and h̃ j is the mirror version of h j histogram for
element-wise orientation-based comparison. l1 normalization is applied to symmetry weights
ω . SE(i, j) is firstly defined in [28] and represents mirror symmetry coefficient based on
how close are the global orientations of the pair edges, multiplied by the magnitudes of
these edges. While we preserve the neighborhood contents around the pair edges by defining
ST (i, j) and SC(i, j) to be similarity measures between local texture and color histograms
respectively.

(a) (b)

Figure 3.9 Pairwise symmetry triangulation: (a) Simplified illustration within an image, (b)
geometrical explanation.

Symmetry voting

Up on the computation of symmetrical similarity for each axis candidate, the major
symmetry peaks are selected through a weighted accumulation of the involved candidates,
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followed by a refinement process of the spatial boundaries of each symmetry axis. The next
chapter will discuss this step in details.

3.5 Results

In this section, we will explain the configuration settings and parameters selection
to conduct the detection experiments, followed by the performance study (visually and
statistically) of the proposed work against state-of-art algorithms.

3.5.1 Experimental settings

State-of-the-art approaches: Loy and Eklundh (Loy) [101] and Cicconet et al. (Cic)
[28] are compared in table 3.1, against the different variants of the proposed work: GbT,
LgT, and LgTC. GbT uses Gabor filters for feature extraction and the global orientation
information along side with textural similarity measure to represent the symmetrical weights.
LgT updates only feature extraction by using Log-Gabor filters instead of Gabor ones. LgTC
enhances LgT by adding the color similarity measure into the symmetrical weights. The
source codes of state-of-the-art algorithms are used with default parameter values and are
compared at most first 50 axis candidates for fair performance evaluation. In Gabor and
Log-Gabor edge detections, we set the number of scales S and number of orientations O
to 12 and 32. We also set the radial bandwidth λµ to 0.55, the angular bandwidth λβ to
0.2, the minimum wavelength Γ to 6, and the scaling factor Λ to 1.2. In textural and color
histogram calculations, we define the number of bins for textural L and color C to 32 and 32
(sampling rate Chu : Csa : Cva = 8 : 2 : 2) respectively. We choose those parameters on the
basis of extensive experiments. In case of gray-scale images, contrast values are used instead
of color information in HSV color space.

3.5.2 Performance analysis

In our experimental evaluation, the algorithms are executed to detect and compare the
global symmetries inside synthetic and real-world images. Tables 3.2 shows the true positive
rates for the proposed methods (GbT, LgT, and LgTC) against Loy and Eklundh (Loy) [101],
and Cicconet et al. (Cic) [28]. LgTC performs the best result among most cases in single and
multiple symmetry, due to the importance of color information for the voting computations
in colorful images. At the same time, LgT has the top 2nd result, and sometimes the top 1st
results in gray-scale or low-saturated images, thanks for the use of the bank of Log-Gabor
filters in the feature extraction step. GbT ranked as the top 3rd result, due to the utilization of
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Table 3.1 Implementation details of the state-of-art algorithms along side with the proposed
work, showing the main contributions of each algorithm in two aspect: feature detection &
extraction, and symmetrical weights.

Algorithms
Detection & Extraction Weights

SIFT Gabor Log-Gabor Edge Textural Color
Loy [101] ✓ ✓

Cic[28] ✓ ✓

GbT ✓ ✓ ✓

LgT ✓ ✓ ✓

LgTC ✓ ✓ ✓ ✓

Table 3.2 Using evaluation metrics CVPR2013 [95] (table 2.2), comparison of the true
positive rates based on top detection for the proposed methods against the state-of-art
algorithms. Symmetry datasets are presented as: single-case (first 4 rows) and multiple-case
(last 3 rows), highlighted between (parenthesis) the number of images for each dataset. The
last row represents sum of true positive rates among all datasets. Top 3 results are in Bold
with red, blue and green colors respectively.

Datasets Loy [101] Cic [28] GbT LgT LgTC

PSU (157) 81 90 97 104 113
AVA (253) 174 124 170 188 182
NY (176) 98 92 109 124 135

ICCV17 (100) 52 53 52 70 70
PSUm (142) 69 68 67 72 75
NYm (63) 32 36 36 38 40

ICCV17m (100) 54 39 52 52 57
Total (991) 560 502 583 648 672

small grids to compute window-based features as textural weights. Thanks for the advantage
of SIFT features, Loy [101] is still strong competent to be ranked as the top 4th result in
general. Cic [28] has the lowest performance.

Figure 3.10 presents performance results in terms of precision and recall curves for
single-case and multiple-case symmetry datasets, plus the values of the maximum F1 scores
in table 3.3 to measure the performance of the proposed algorithms (El, LgT, and LgTC)
against Loy and Eklundh (Loy) [101], and Cicconet et al. (Cic) [28]. In single-case symmetry,
our method LgT outperforms the other concurrent algorithms (Loy, and Cic) in the context of
using only gray-scale version of involved images. Furthermore, color version of our method
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Figure 3.10 Using evaluation metrics CVPR2013 [95] (table 2.2), Precision-Recall curves
on: (1) four single-case symmetry (a,b,c,d) datasets, and (2) three multiple-case symmetry
(e,f,g) datasets to show the overall superior performance of our proposed methods: GbT
(black), LgT (blue), and LgTC (cyan); against the prior algorithms: Loy (red) [101], and
Cic (magenta) [28]. The maximum F1 scores are qualitatively presented as square symbols
along the curves, and quantitatively indicated between parentheses in table 3.3. (x-axis:
Recall, y-axis: Precision).

LgTC exploits slightly improvement over gray-scale one LgT. On the other hand, Only LgTC
has better precision performance among others in (PSUm and NYm) datasets, due to many
local groundtruth presenting inside multiple-case symmetry. In ICCV2017m dataset, Loy has
better precision performance at some intermediate recall rates, for the purpose of detecting
minor or skeleton axes defined as symmetry groundtruth inside some image objects. In
average summary, LgTC has the best efficiency results to handle symmetries with all dataset
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.11 Some single-case results from PSU [134, 95], NY [27], AVA [44], and ICCV [53]
datasets, with groundtruth (orange), state-of-art methods: Loy (red), and Cic (magenta)
axes against the proposed methods: GbT (black), LgT (blue), and LgTC (cyan). Each
symmetry axis is shown in a straight line with circular and squared endpoints for groundtruth
and methods respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 3.12 Some multiple-case results from PSUm [134, 95], NYm [27], and ICCVm
[53] datasets, with groundtruth (blue) in 1st column (a-p). Thanks to textural weights, the
proposed methods: GbT in 3rd column (c-r), LgT in 4th column (d-s), and LgTC in 5th
column (e-t); produce higher accuracy results against the baseline Loy in 2nd column (b-q).
For each algorithm, the top five symmetry results is presented in such order: red, yellow,
green, blue, and magenta. Each symmetry axis is shown in a straight line with squared
endpoints.



3.5 Results 59
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Figure 3.13 Some multiple-case results from NYm [27], and ICCVm [53] datasets, with
groundtruth (blue) in 1st column (a-u). Thanks to Log-Gabor feature extraction and color
weights, the proposed methods: GbT in 3rd column (c-w), LgT in 4th column (d-x), and
LgTC in 5th column (e-y); produce higher accuracy results against the baseline Loy in 2nd
column (b-v). For each algorithm, the top five symmetry results is presented in such order:
red, yellow, green, blue, and magenta. Each symmetry axis is shown in a straight line with
squared endpoints.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.14 Qualitative comparison between the proposed method LgTC and the recent
state-of-art Atadjanov and Lee Ata, ECCV 2016 [8] using PSU [134, 95] dataset. First
column: groundtruth (blue), second column: state-of-art Ata axis candidates with colored
line segments (images from [8], third column: LgTC results with top five symmetry axes
in such order: red, yellow, green, blue, and magenta. Each symmetry axis in 1st and 3rd
columns is shown in a straight line with squared endpoints.
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Table 3.3 Using evaluation metrics CVPR2013 [95] (table 2.2), comparison of the maximum
F1 scores based on all detections for the proposed methods against the state-of-art algorithms.
Symmetry datasets are presented as: single-case (first 4 rows) and multiple-case (last 3 rows).
The last row represents average of the maximum F1 scores among all datasets. Top 3 results
are in Bold with red, blue and green colors respectively.

Datasets Loy [101] Cic [28] GbT LgT LgTC

PSU 0.514 0.569 0.613 0.669 0.724
AVA 0.690 0.493 0.667 0.736 0.729
NY 0.528 0.526 0.627 0.698 0.766

ICCV17 0.507 0.536 0.514 0.707 0.713
PSUm 0.292 0.159 0.277 0.313 0.338
NYm 0.337 0.237 0.388 0.417 0.411

ICCV17m 0.273 0.207 0.236 0.263 0.285
Average 0.449 0.390 0.475 0.543 0.567

images of single and multiple cases, with big difference in performance from the state-of-art
algorithms (Loy, and Cic).

As a summary of the previous quantitative evaluations, figures (3.11-3.14) compare
qualitatively top performing algorithms showing different examples of reflection symmetry
detection. Despite the single-case images in figure 3.11 have strong edge information in
foreground objects, the color version of the proposed method LgTC easily finds the correct
symmetry axes in all presented examples as a first candidate. On the other hand, the non-color
proposed method LgT satisfies the single-symmetry groundtruth in the half examples. In
contrast, GTb mismatches the provided groundtruth with most examples of less edge detail,
and Loy [101] mis-detects the symmetry axes as short segments or horizontal lines having
same contrast values. In multiple-case images, The importance of textural weight in all
proposed methods (GTb, LgT, LgTC) is presented in figure 3.12. However, the introduction
of Log-Gabor feature representation (LgT) along side with color weight (LgTC) clearly
detects the global and most of local symmetries in precise way as shown in figure 3.13. In the
opposite side, Loy [101] struggles determining global groundtruth with incomplete endpoints.
The recent algorithm Ata [8] (defined as the second baseline after Loy et Eklundh [101]
in the recent symmetry competition [53]) is visually compared with the proposed method
LgTC in figure 3.14, in terms of multiple symmetries inside natural, man-made and synthetic
images. LgTC easily outperforms Ata[8] to find well-defined axes in a global scale. In
natural example, Ata outputs incomplete axes to define symmetry inside the focused scene
objects (flower, leave), while LgTC is able to fully represent symmetries in the same objects.
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In two lamp examples, Ata focuses in defining local symmetries in the image parts (light
holders), while LgTC displays the global symmetry in the middle column equalizing the sides
of the entire scene. In the artificial image (puzzle game), Ata only manages in getting one
global symmetry and cluttered local symmetries in the rest, while LgTC finds most global
symmetrical axes except in the top right object.

3.6 Conclusion

In this chapter, we proposed a novel method to detect symmetry axes inside natural
images using multi-scale Log-Gabor wavelets to extract symmetrical keypoints, followed
by feature triangulation based on textural (neighboring orientation histograms) and color
(local HSV descriptors) weights. This method preserves the neighboring spatial information
around the content details of the focused objects inside an image. The evaluation was
conducted on symmetry detection task on single and multiple cases, using all public dataset
with standard evaluation measures. Experiments conclude that our method outperforms the
state-of-art algorithms [101, 28]. The future direction could be extending our method to
fuse different curve/edge detection approaches to refine the feature extraction process. In
additions, different color descriptors (i.e. Opponent, rg) with better invariance properties
[154] can be used instead of local HSV descriptors.



Chapter 4

Symmetry Representation and Selection

Résumé: Dans ce chapitre, nous étendons les méthodes proposées dans le chapitre
précédent, afin d’estimer et de trouver des maxima dans un schéma continu. Par conséquent,
nous proposons une méthode à noyau pour décrire des distributions comportant des données
linéaires (noyau gaussien) et des données directionnelles (noyau de von-Mises). Puis, une
méthode de type "mean-shift" de détection des pics de la distribution est développée. Dans
un premier temps, nous validons les méthodes proposées sur des ensembles de données
publics comportant des images réelles et des images synthétiques. Une étude comparative est
menée pour la détection des axes de symétrie globaux lorsqu’un axe ou plusieurs axes sont
recherchés. Les résultats obtenus indiquent que les méthodes proposées permettent d’obtenir
des scores de symétrie élevés pour les axes présents dans les images.

Abstract: In this chapter, we extend the proposed methods in the previous chapter, in
order to estimate and find linear-directional symmetrical peaks in a continuous scheme.
Therefore, we propose a voting representation model and an algorithm for peak detections
using joint linear-directional distributions respectively. Given data extracted from continuous
statistical mixture model, we use Gaussian and von-Mises kernels for linear and directional
distributions. First, we validate the proposed methods among real-world and synthetic images
in public datasets to detect precisely global symmetrical axes for single and multiple cases.
The final results summarized that the proposed framework can produce effective symmetry
scores for correct axis candidates inside an image.

4.1 Introduction

In the baseline approaches [101, 28], a set of feature points are detected in the image,
axis candidates are discretely sampled across the voting space. These sparse symmetry
candidates further need to be grouped through a smoothing kernel to define relevant mono-
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Figure 4.1 Symmetry voting process: (a) Input image with major (in red) and minor (in
green) symmetry axes. (b) Smoothed output of the symmetry histogram with displacement
(x-axis) and orientation (y-axis) coordinates, highlighting the corresponding axes.

or multi- axis hypothesis. Our idea (see figure 4.1) is to formulate the voting problem as a
density estimation scheme, by computing the probability of detecting symmetry axis at every
position and orientation inside the image plane. Kernel density estimation (KDE) is one of
the most popular techniques in nonparametric statistics, which enables to perform continuous
optimization finding precise maxima. Density estimates are controlled by a single kernel
parameter (smoothing bandwidth in Gaussian or concentration term in von-Mises), and a
weighting kernel function. Density estimates with linear kernels have been introduced in
1950s [4, 136] and have been represented in 1960s [129] as Parzen’s windows, and then have
been adapted to deal with directional data since the mid 1980s [70]. Many computer vision
applications used kernel density estimation for linear data [47, 117, 36, 158, 150, 98], and
fewer recently used it for directional data [155, 127]. Garcia-Portugues et al. [58] derived
the general principle of joint kernel density estimator for linear-directional data.

In symmetry detection, state-of-art methods [101, 8] in the recent competition [53] uses
a classical approach (Non-maximal Suppression) of a fixed window size to select symmetry
maxima inside any voting representation. Our idea is to adapt mean-shift clustering technique
to find precise locations of symmetry axes in continuous scheme, using weighted linear-
directional distributions. mean-shift is widely-used mode-seeking method which clusters
data and finds their centers iteratively by maximizing the embedded kernel density estimator.
Thanks for nonparametric property, a prior knowledge of the number of clusters is not
required for its internal processing. it was early introduced by Fukunaga and Hostetler
[52] in 1970’s. Cheng [25] presented the idea of using mean-shift in clustering linear
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data, and this idea got generalized later using Gaussian kernel by Fashing and Tomasi [48],
followed by Wu and Yang [164]. Linear mean-shift had been applied to many computer
vision research areas (object tracking [35, 69, 33, 140, 172, 42, 170], image segmentation
[34, 157, 19, 148, 80], texture classification [60], medical analysis [112, 103], line detection
[12]). Recently for directional data, Kobayashi and Otsu [85] firstly proposed mean-shift
algorithm using von-Mises distribution for hyper-spherical data based on Euclidean space.
Afterwards, Chang-Chien et al. [23, 22] extended Wu and Yang’s linear mean-shift method
[164] and presented different versions of mean-shift approach (non-blurring and blurring) to
handle circular data (directional information on 2D plane). The latter was extended by Yang
et al. [165] to cluster directional data on a hypersphere space.

Our contribution in this chapter is twofold. First, we introduce a weighted Gaussian von-
Mises (GvM) kernel-based voting representation for reflection symmetry detection, based
on orientation and displacement information. Second, we propose a robust convergence
method based on linear-directional mean-shift approach to select global symmetry peaks
and find the corresponding feature pairs for each peak. The rest of the chapter is organized
as follows: section 4.2 describes our method to represent symmetry voting scheme using a
weighted linear-directional kernel density estimator. Section 4.3 presents detection of major
symmetry peaks based on the proposed 2D mean-shift approach for linear and directional
data. Section 4.4 describes the implementation details and the results on different benchmark
datasets along side with comparisons with state-of-art algorithms. Section 4.5 summarizes
the proposed work with highlighting the future works.

4.2 Symmetry representation

Let {ρn,θn; ρn ∈ R,θn ∈ [−π,π[} be a set of realizations of linear and directional
continuous random variables representing the displacement and orientation parts of the
candidate axis {qn| n = 1, . . . ,N} (defined in section 3.4), associated with the symmetry
weight ωn. N is the number of the candidate axes. Let θθθ n = [cos(θn),sin(θn)] describes the
vector-based directional variable, as a circular data corresponding to θn.

4.2.1 Hough-like histogram

In order to detect symmetry axes, standard methods use an Hough transform like his-
togram defined as follows. Up on the introduction of symmetry voting in the previous chapter
(see section 3.4), an accumulation histogram f̂ (x̄, ȳ) is defined as the sum of the symmetry
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weights of all discretized pairs of feature points such as:

f̂ (x̄, ȳ) =
N

∑
n=1

ωn δx̄−ρ̄n δȳ−θ̄n
(4.1)

where δ is the Kronecker delta, and (ρ̄n, θ̄n) is the discrete version of (ρ,θ) space. The
voting histogram f̂ (x̄, ȳ) is extended along the vertical axis ȳ in a circular way to solve
the orientation discontinuity problem, and then is smoothed using a symmetric Gaussian
low-pass filter of standard deviation σH to output a proper density representation.

This approach has three major drawbacks. First, the voting space is discretized and the
discretization parameters have to be previously defined. Second, a smoothing function has to
be used to define symmetry peaks properly. The standard deviation of this function has to
be fixed and is also depending on the discretization of the accumulation space. Third, the
vertical axis has to be extended in a circular way to avoid discontinuity problems. All these
steps are defined in an empirical way.

4.2.2 Weighted kernel density estimator

Our proposition is to formulate the problem as a density estimation problem. Given the
data samples, the voting space can be seen as a density function. Thus, standard density
estimation tools can be used to estimate it namely the weighted kernel density estimation.
In this context, we introduce our framework to define a linear-directional kernel density
estimation for weighted data samples in the context of symmetry detection. To the best of
our knowledge, this formulation has never been proposed before.

Inspired by [129], the linear kernel density estimator fε(.) is defined as

fε(x;σ) =
1
N

N

∑
n=1

Gε(
x−ρn

σ
), x ∈ R (4.2)

Gε(u) =
1√

2πσ
e−

1
2 |u|

2
, (4.3)

where Gε(.) is a Gaussian kernel with bandwidth parameter σ . Inspired by [70], The
directional kernel density estimator fϑ (.) is defined as:

fϑ (y;κ) =
1
N

N

∑
n=1

Gϑ (θθθ
T
n y;κ), y ∈Ω2 (4.4)

Gϑ (x;κ) = A(κ) eκx, A(κ) =
1

2πB(0,κ)
, (4.5)
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y = [cos(θ),sin(θ)]T , θθθ n = [cos(θn),sin(θn)]
T , (4.6)

where Gϑ (.) is a von-Mises kernel [107] with concentration parameter κ , and normalization
constant A(κ). B(.) is the modified Bessel function of the first kind. y is remarked as
directional unit-vector of angle θ , such that ||y||= 1. Ω2 is a circular directional space. The
motivation to use von-Mises kernel is the periodic nature of the angle parameter. This choice
allows to formulate this problem in a rigorous way.

In order to combine linear and directional information in 2D space, the axis candidate
samples (ρ1,θ1), . . . ,(ρN ,θN) are associated with symmetry weights ω = ω1,ω2, · · · ,ωN ,
and use of the linear-directional density estimator fε,ϑ (.) in [58]. We define the extended
weighted version f̂ε,ϑ (.) as:

f̂ε,ϑ (x,y;σ ,κ) =
1
N

N

∑
n=1

ωnGε(
x−ρn

σ
)Gϑ (θθθ

T
n y;κ) (4.7)

For sake of simplicity [58], the 2D kernel Gε,ϑ (.) is splitted in a product of two kernels
Gε(.)Gϑ (.), which doesn’t mean that x and y are considered as independent. Assuming the
previous sum of the weights (see equation 3.25) is normalized to 1, they have to be multiplied
by N. In the case, we need the computation of the density over a discrete set, the density
estimator can be expressed in a matrix form:

εεεm =


Gε(

xm−ρ1
σ

)
...

Gε(
xm−ρN

σ
)

 , ϑϑϑ l =


Gϑ (θθθ

T
1 yl;κ)
...

Gϑ (θθθ
T
Nyl;κ)

 (4.8)

Gε =
[
εεε1 · · · εεεm · · · εεεM

]
, Gϑ =

[
ϑϑϑ 1 · · · ϑϑϑ l · · · ϑϑϑ L

]
(4.9)

F̂ε,ϑ =
1
N

GT
ε diag(ω)Gϑ (4.10)

where M and L are number of sampling bins for linear and directional data respectively.

Figure 4.2 presents an example of multiple symmetry detection, using 1D and 2D kernel-
based voting maps. Three vertical symmetry axes are shown in the weighted linear kernel
density f̂ε(x;σ) (figure 4.2b). Two major directional axes appear in the weighted directional
kernel density f̂ϑ (y;κ) at angles (90◦,180◦) (figure 4.2c). All global symmetry axes are
clearly recognized through the combination version of the previous weighted densities
f̂ε,ϑ (x,y;σ ,κ) (figure 4.2d). To obtain such representation, as θ originally belongs to [0,π),
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Figure 4.2 Symmetry voting process: (a) Some input image with global symmetry axis
candidates (three vertical axes in red and one horizontal axis in green). (b) the output
of weighted linear kernel density f̂ε(x;σ) over 800 bins. (c) The output of the weighted
directional kernel density f̂ϑ (y;κ) over 180 bins. (d) The output of the weighted linear-
directional kernel density f̂ε,ϑ (x,y;σ ,κ) over 800×180 bins. The default values of σ and κ

are used, see subsection 4.4.1. Maximal peaks are associated with global symmetry axes.

each angle value is multiplied by 2 in order to obtain an appropriate periodicity with the
directional kernel.

Figure 4.3 shows in-process voting comparison of linear data ρ between Hough-like
histograms f̂ (x̄) and weighted KDE f̂ε(x;σ). The discrete linear representation x̄ of Hough-
like histogram f̂ (x̄) (figure 4.3a) takes a sampling effect on the smoothed output (figure 4.3c)
to determine the precise center location of the symmetrical peak. However, the computation
of the weighted KDE f̂ε(x;σ) applies on continuous data x with less sampling effect, resulting
the symmetrical peaks in clear way especially the top peak at the center displacement x≃ 0.
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Figure 4.3 an example of symmetry voting between Hough-like Histogram (1st two rows)
and Weighted KDE (last row) to find the reflection axes over linear data ρ , inside the input
image used in figure 4.2. 1st column represents (a,c) Hough Histogram f̂ (x̄) before and
after Gaussian smoothing, (e) Weighted linear kernel density f̂ε(x;σ). 2nd column displays
zoom-in details of top peaks that appear as red rectangles in 1st column. The default value of
σ is used, see subsection 4.4.1.
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4.3 Dominant axes selection

In standard existing methods, upon providing the voting representation (figure 4.4a),
the symmetrical peaks are selected through some maxima-finding techniques to output the
segments of different axis candidates. The spatial boundaries of each symmetry candidate
segment are computed as shown in figure 4.4b through the convex hull of the associated
voting pairs [101].

(a) Voting Space (b) Image with Top Symmetry Segment

Figure 4.4 Process of symmetry axes selection. (a) Input: finding the line parameters of
the maxima (white square box) from the voting representation. (b) Output: symmetry axis
(green line) with defined endpoints (two green square boxes) through intersection of the
maxima line parameters with the convex hull (red segments) of points (blue dots) voting for
this maxima.

Thanks to the continuous nature of our density estimation, we can then formulate the problem
of maxima determination as a functional analysis problem: how to find the local maxima
of a continuous function. Moreover, our continuous function is defined by kernel density
estimation. Hopefully, this problem benefits from a well known solution through the mean
shift algorithm. In this section, after recalling the principal of non maximal suppression, we
introduce the symmetry peak selection based on the mean shift algorithm.

4.3.1 Non-maximal suppression

Major symmetry peaks are selected as in [101, 28] among the voting representation by
reaching-out clear extreme spots using well-known non-maximal suppression technique
[18]. The basic steps are explained in algorithm 1: (1) wrap angular axis using a predefined
extension parameter to solve the periodic discontinuity of directional θ data, (2) blur the
voting representation using smoothing kernel of Gaussian distribution to remove the small
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texture details and noise inside an image, (3) unwrap angular axis to reshape the processed
image back into the original size, (4) keep only local maxima points that are maximum
with respect to their neighbors inside a region located around the point (i.e. rectangular
window). Figure 4.5 shows a 1D example of different normal distributions and illustrates how
Non-Maximal Suppression (NMS) technique can be effective to select the maxima points
among the different peaks.

Algorithm 1 Maxima selection using Non-Maximal Suppression (NMS) algorithm
Input: Weighted voting representation f̂ (x,y) in terms of linear ρ and directional θ data
Output: Peak positions of ρ,θ

1: Wrap along angular θ axis
2: Blur using Gaussian kernel
3: Unwrap along angular θ axis
4: Select well-separated maxima peaks using NMS

(a) Before NMS (b) After NMS

Figure 4.5 An example showing the effectiveness of Non-Maximal Suppression (NMS)
technique on selecting maxima over three Gaussian peaks (1st in red, 2nd in cyan, 3rd in
green). (a) all top 3 maxima are concentrated over the highest peak. (b) with predefined
elimination window size, the top 3 maxima are well distributed across the different peaks.

4.3.2 Mean-shift

Mean-shift is a non-parametric density gradient estimation technique that doesn’t need
prior knowledge about number and shape of peak regions [38]. Now, we will explain the
general principle of mean-shift algorithm.
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Given samples x of size N and kernel K, a simple kernel density estimator is as follows:

f (x) =
1
N

N

∑
n=1

K(x− xn) (4.11)

The general formula of gradient ascent from generation i to generation i+1 is:

xi+1 = xi +m(xi) (4.12)

Such that for any generation i, the mean shift vector m(xi) is defined as follows:

m(xi) =
∑

N
n=1 xi

n g(xi− xi
n)

∑
N
n=1 g(xi− xi

n)
− xi (4.13)

where g(.) =−K′(.). So the general procedure can be explained according for each sample
point xi

n of size N at generation i:

— Compute mean shift vector m(xi).
— Shift each sample point xi

n by this vector m(xi).
— Repeat the previous steps till convergence m(xi)≃ 0.

The main purpose of mean-shift as shown in figure 4.6 is converging the data samples in
continuous feature space into the dense regions corresponding to the local maxima peaks
of the underlying kernel distribution. The rest of this section explains the extension of the
general definition of mean shift principle to deal with two different types of kernels: linear
and directional.

In algorithms (2,3), the proposed mean-shift technique handles weighted linear and
directional data to find precise locations of symmetry peaks in 2D voting representation
with respect to the underlying kernel density estimators (in our case, linear: Gaussian and
directional: von-Mises).
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Figure 4.6 Visual explanation of mean-shift algorithm. Source: Mean Shift Clustering,
Konstantinos G. Derpanis, August 15, 2005, Lecture Notes in Computer Vision.

Algorithm 2 GvM mean-shift algorithm
Input: (ρn,θn,ωn); n = 1 . . .N samples
Output: Peak positions of ρ,θ = {x̃ j, ỹ j, ω̃ j}; j = 1 . . .J, J ≤ N

1: Initialization: x(0)n = ρn, y(0)n = [cos(θn),sin(θn)]; n = 0 . . .N
2: t=0
3: while not converged do
4: for i = 1 to N do
5: Update y(t+1)

i ← (x(t)i ,y(t)i ) using Eq. (4.22)
6: Update x(t+1)

i ← (x(t)i ,y(t+1)
i ) using Eq. (4.23)

7: stop: ∑i d((x(t+1)
i ,y(t+1)

i ),(x(t)i ,y(t)i ))≤ ∆C; using Eq. (4.24)
8: t=t+1
9: merge: Alg. 3 with Inputs {xt+1

n ,yt+1
n ,ωn}



74 Symmetry Representation and Selection

Algorithm 3 Joint merge algorithm
Input: X = {(xn,yn,ωn)}; n = 1 . . .N samples
Output: X̃ = {(x̃ j, ỹ j, ω̃ j)}; j = 1 . . .J, J ≤ N merged samples

1: Initialization: X̃ = X
2: m = 1, J = N
3: while m ̸= J do
4: Compute dm, j = d(xm,ym,x j,y j); j = 0 . . .J, j ̸= k using eq. (4.24)
5: Compute I = { j|dm, j ≤ ∆M}∪{m}
6: J = J+1
7: x̃J =

∑ωn xn
∑ωn

; n ∈ I

8: ỹJ =
∑ωn yn
||∑ωn yn|| ; n ∈ I

9: ω̃J = ∑ωn; n ∈ I
10: Delete X̃ →{(xn,yn,ωn)}; n ∈ I
11: Add X̃ ← (x̃J, ỹJ, ω̃J)
12: J = J−|I|
13: m = m+1

In 1D case, mean-shift iteratively convergences through the computation of linear x(t+1)
i

and directional y(t+1)
i samples:

x(t+1)
i = x(t)i +mε(x

(t)
i ) (4.14)

= x(t)i +

∑
N
n=1 ρnG′ε(

x(t)i −ρn
σ

)

∑
N
n=1 G′ε(

x(t)i −ρn
σ

)

− x(t)i

 (4.15)

=
∑

N
n=1 ρnG′ε(

x(t)i −ρn
σ

)

∑
N
n=1 G′ε(

x(t)i −ρn
σ

)

(4.16)

=
∑

N
n=1 ρn exp(− (x(t)i −ρn)

2

2σ2 )

∑
N
n=1 exp(− (x(t)i −ρn)2

2σ2 )

(4.17)
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y(t+1)
i = y(t)i +mϑ (y

(t)
i ) (4.18)

= y(t)i +

[
∑

N
n=1θθθ n G′ϑ (θθθ T

n y(t)i ;κ)

||∑N
n=1θθθ n G′ϑ (θθθ T

n y(t)i ;κ)||
−y(t)i

]
(4.19)

=
∑

N
n=1θθθ n G′ϑ (θθθ T

n y(t)i ;κ)

||∑N
n=1θθθ n G′ϑ (θθθ T

n y(t)i ;κ)||
(4.20)

=
κ ∑

N
n=1θθθ n exp(κ(θθθ n,1 .y

(t)
i,1 +θθθ n,2 .y

(t)
i,2))

||κ ∑
N
n=1θθθ n exp(κ(θθθ n,1 .y

(t)
i,1 +θθθ n,2 .y

(t)
i,2))||

(4.21)

with initialization x(0)i = ρi, y(0)i = θθθ i where i = 1, . . . ,N represents samples index,
mε(.), mϑ (.) are linear and directional mean-shift vectors, G′ε , G′ϑ are first derivatives
of Gε , Gϑ kernels, and yi,θθθ i are directional unit-vectors.

As in [58], we simplify and consider the joint case of linear-directional data as a kernel
product Gε,ϑ (x,y) = Gε(x)×Gϑ (y). So that the joint convergence of mean-shift with
weighted linear-directional data is defined as follows:

y(t+1)
i =

∑
N
n=1 ωn θθθ n G′ϑ (θθθ T

n y(t)i ;k) Gε(
x(t)i −ρn

σ
)

||∑N
n=1 ωn θθθ n G′ϑ (θθθ T

n y(t)i ;k) Gε(
x(t)i −ρn

σ
)||

(4.22)

x(t+1)
i =

∑
N
n=1 ωn ρn G′ε(

x(t)i −ρn
σ

) Gϑ (θθθ
T
n y(t+1)

i ;k)

∑
N
n=1 ωn G′ε(

x(t)i −ρn
σ

) Gϑ (θθθ T
n y(t+1)

i ;k)
(4.23)

The convergence constraint of mean-shift algorithm is computed based on the similarity
criteria between data samples of upcoming (x(t+1)

i ,y(t+1)
i ) and current iterations (x(t)i ,y(t)i ),

such that we introduce the joint linear-directional distance function d(.) to handle the
termination condition required to limit the unnecessary mean-shift convergence after some
iterations. We define this distance in terms of linear and directional data in continuous and
periodic way (see ap. B: eq. B.29):

d((x(t+1)
i ,y(t+1)

i ),(x(t)i ,y(t)i )) =
(x(t+1)

i − x(t)i )2

2σ2 +κ
B′(0,κ)
B(0,κ)

(1− cos(y(t+1)
i − y(t)i )); ∀i

(4.24)
where B′(.) is the first derivative of B(0,κ). The same distance function d(.) is also used
to merge between final data samples after mean-shift convergence as shown in algorithm 3.



76 Symmetry Representation and Selection

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

(a) Joint Distance

0 5 10 15 20
0

50

100

150

200

250

(b) MS Vector Norm

Figure 4.7 Validation of mean-shift convergence for the input image shown in figure 4.2
using (1) sum of joint linear-directional distance function ∑d(.) (equation 4.24), (2) sum of
linear-directional mean-shift vector norm ∑ ||mε,ϑ(.)|| with α = 0.5 (equation 4.26). Number
of iterations is 20. (x-axis: iteration number, y-axis: error).

Figure 4.7 numerically shows that the distance function d(.) have same convergence behavior
as joint mean-shift mean vector norm defined as:

||mε,ϑ (x
(t)
i ,y(t)i )||= α ||mε(x

(t)
i ;y(t)i ,ωi)||2 +(1−α) ||mϑ (y

(t)
i ;x(t)i ,ωi)||2; ∀i (4.25)

= α (x(t+1)
i − x(t)i )2 +(1−α) (1− cos(y(t+1)

i − y(t)i ))2 (4.26)

where α ∈ [0,1] is a weighting term. The norm equation is in its simple form without handling
kernel parameters, such that the first term is euclidean distance between displacement samples
and the second term is cosine distance between directional ones.

Figure 4.8 shows the step-by-step results of the proposed mean-shift algorithm, based
on the same image used in figure 4.2. Sub-figure 4.8a presents initial state of linear ρ

(x-axis) and directional θ (y-axis) data, with four symmetric centroids (three at θ ≃ 90◦ and
one at θ ≃ 0◦). An extra optional merging step (sub-figure 4.8b) is applied into the initial
data, to reduce the input size for MS convergence step through combining the samples with
exact or very close locations. In the iterations of MS convergence (sub-figures 4.8c- 4.8g),
the non-centric samples move fast into the corresponding nearest centroids and collapse
into them. A final merging step in sub-figure 4.8h and its zoom-in version in figure 4.9 is
employed on the last MS version of the samples to refine the densities of the symmetric
centroids.
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(a) Initial (b) 1st Merging

(c) Itr = 1 (d) Itr = 2

(e) Itr = 5 (f) Itr = 10

(g) Itr = 20 (h) 2nd Merging

Figure 4.8 Sequence of linear ρ and directional θ data obtained by the proposed mean-
shift algorithm for the input image shown in figure 4.2. Each image is presented using 2D
projection on the polar system (ρ: x-axis, θ : y-axis), colored by its density ω .
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Figure 4.9 Zoom-in version of merging post-processing after last MS step, which is presented
using 2D projection on the polar system (ρ: x-axis, θ : y-axis), colored by its density ω .
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4.4 Results

In this section, we present experimental results on both synthetic and real-world images
of the benchmark symmetry detection datasets [95, 27, 44, 53], respect to standard metrics
[95, 53]. Firstly, we compare the improvement of symmetrical voting representation using
weighted linear-directional kernel density estimator, instead using a smoothed hough-like
histogram space. Then we also compare the enhancement of finding the symmetrical
axes through the convergence of the weighted linear-directional mean-shift algorithm using
Gaussian and von-Mises kernels, rather than application of classical non-maximal suppression
selection method.

4.4.1 Experimental settings

In our experiments, State-of-the-art approaches (Loy [101] and Cic [28]) with different
variants of the proposed methods from the previous chapter (GbT, LgT, and LgTC) are com-
pared with the proposed work in this chapter (LgTC-KDE, LgTC-MS). Table 4.1 illustrates
the strategy selection for each method in two aspects: symmetry voting (Hough: Hough-like
histogram, KDE: weighted GvM Kernel Density Estimator) and symmetry selection (NMS:
Non-Maximal Suppression, MS: weighted GvM Mean-Shift). For fair comparison, we con-
sider at most first 50 axis candidates to evaluate each algorithm. In Hough-like Histogram,
we set the number of bins for linear x̄ and directional ȳ discrete variables to

√
H2 +W 2 and

360 respectively, we set standard deviation σH of Gaussian filter to 5 and its kernel size 4 σH .
For the computation of the weighted kernel density estimator, we set the Gaussian bandwidth
parameter σ to 2/max(W,H), and the concentration parameter κ of von-Mises kernel to
max(W,H)/5. In the proposed mean-shift algorithm, we set the maximum number of iter-
ations to 20, the convergence threshold ∆C to 2.2204e−16, the merging distance threshold
∆M to 0.1. For the sake of fast mean-shift computation, we firstly sort the axis candidate
pairs respect to its symmetry weights in descend way. Then we applied an extra merging
step inside the mean-shift algorithm (before the convergence step).

4.4.2 Performance analysis

We tested the performance of our proposed methods to detect global symmetries inside
images precisely, and separate the correct axis candidates from the incorrect ones. We verified
these methods with the state-of-art algorithms in terms of voting representation and maximal
selection.
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Table 4.1 Implementation details of the state-of-art algorithms along side with the proposed
work, showing the main contributions of each algorithm in two aspect: symmetry voting and
selection of maximal peaks along side with corresponding contributing pairs.

Algorithms
Voting Selection

Hough KDE NMS MS
Loy [101] ✓ ✓

Cic [28] ✓ ✓

GbT ✓ ✓

LgT ✓ ✓

LgTC ✓ ✓

LgTC-KDE ✓ ✓

LgTC-MS ✓ ✓

Table 4.2 Using evaluation metrics CVPR2013 [95] (table 2.2), comparison of the true
positive rates based on top detection for the proposed methods (especially LgTC-KDE)
against the state-of-art algorithms. Symmetry datasets are presented as: single-case (first
4 rows) and multiple-case (last 3 rows), highlighted between (parenthesis) the number of
images for each dataset. The last row represents sum of true positive rates among all datasets.
Top 3 results are in Bold with red, blue and green colors respectively.

Datasets Loy [101] Cic [28] GbT LgT LgTC LgTC-KDE

PSU (157) 81 90 97 104 113 118
AVA (253) 174 124 170 188 182 188
NY (176) 98 92 109 124 135 135

ICCV17 (100) 52 53 52 70 70 74
PSUm (142) 69 68 67 72 75 78
NYm (63) 32 36 36 38 40 38

ICCV17m (100) 54 39 52 52 57 56
Total (991) 560 502 583 648 672 687

In first experiment through the statistical tables (4.3, 4.2) and visual comparison in
figure 4.10, we evaluated the proposed method LgTC-KDE, using GvM kernel density
estimator for voting representation against the previous proposed methods (GbT, LgT, and
LgTC) and state-of-art (Loy [101] and Cic[28]). Table 4.3 presents performance results
in terms of maximum F1 scores. In single-case, the proposed work LgTC-KDE shows a
noticeable improvement especially in the recent symmetry dataset (ICCV17). While in
multiple case, LgTC-KDE has a slightly performance increase over the concurrent methods.
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Table 4.3 Using evaluation metrics CVPR2013 [95] (table 2.2), comparison of the maximum
F1 scores based on all detections for the proposed methods (especially LgTC-KDE) against
the state-of-art algorithms. Symmetry datasets are presented as: single-case (first 4 rows)
and multiple-case (last 3 rows). The last row represents average of the maximum F1 scores
among all datasets. Top 3 results are in Bold with red, blue and green colors respectively.

Datasets Loy [101] Cic [28] GbT LgT LgTC LgTC-KDE

PSU 0.514 0.569 0.613 0.669 0.724 0.757
AVA 0.690 0.493 0.667 0.736 0.729 0.737
NY 0.528 0.526 0.627 0.698 0.766 0.771

ICCV17 0.507 0.536 0.514 0.707 0.713 0.753
PSUm 0.292 0.159 0.277 0.313 0.338 0.341
NYm 0.337 0.237 0.388 0.417 0.411 0.413

ICCV17m 0.273 0.207 0.236 0.263 0.285 0.287
Average 0.449 0.390 0.475 0.543 0.567 0.580

The baseline Loy [101] is still best competent in the recent multiple symmetry dataset
(ICCV17m). In table 4.2, LgTC-KDE has the best true positive results based on the first axis
candidate with maximum score, especially in (PSU and ICCV17) for single-case and (PSUm)
for multiple-case datasets. Some results of the top axis candidates of each method is proving
in figure 4.10 the significant effect of the proposed method LgTC-KDE in terms of symmetry
orientation and spatial location. LgTC-KDE identifies the correct axis orientation in 1st
row with improper shifted displacement and finds in 2nd row the false angular information
inside visual scenes of different environments (landscape, street, aerial, and indoor). Loy
[101] concentrates in finding either correct local axes or incorrect short segments defining
intra-object symmetry details.

Table 4.4 Using evaluation metrics ICCV2017-Training [53] (table 2.2), comparison of the
maximum F1 scores based on all detections for the proposed methods (especially LgTC-MS)
against the state-of-art algorithms. Symmetry datasets are presented in multiple-case (first 3
rows). The last row represents average of the maximum F1 scores among all datasets. Top 3
results are in Bold with red, blue and green colors respectively.

Datasets Loy [101] Cic [28] GbT LgT LgTC LgTC-KDE LgTC-MS

PSUm 0.125 0.052 0.145 0.142 0.147 0.160 0.171
NYm 0.136 0.092 0.231 0.189 0.202 0.197 0.256

ICCV17m 0.113 0.059 0.118 0.106 0.117 0.121 0.129
Average 0.125 0.068 0.165 0.146 0.155 0.159 0.185
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10 Some single-case results from PSU [134, 95], NY [27], AVA [44], and ICCV
[53] datasets, with groundtruth (orange), state-of-art methods: Loy (red) [101], and Cic
(magenta) [28] axes. The rest are our recent method LgTC-KDE (yellow) plus the previous
proposed methods: GbT (black), LgT (blue), and LgTC (cyan). Each symmetry axis is
shown in a straight line with circular and squared endpoints for groundtruth and methods
respectively.

Table 4.5 Using evaluation metrics ICCV2017-Training [53] (table 2.2), comparison of the
true positive rates based on top detection for the proposed methods (especially LgTC-MS)
against the state-of-art algorithms. Symmetry datasets are presented in multiple-case (first 3
rows), highlighted between (parenthesis) the number of images for each dataset. The last
row represents sum of true positive rates among all datasets. Top 3 results are in Bold with
red, blue and green colors respectively.

Datasets Loy [101] Cic [28] GbT LgT LgTC LgTC-KDE LgTC-MS

PSUm (142) 27 10 38 34 33 38 43
NYm (63) 14 10 23 20 20 21 20

ICCV17m (100) 24 12 26 22 23 26 28
Total (305) 65 32 87 76 76 85 91

In second experiment through the statistical tables (4.4, 4.5), precision-recall curves in
figure 4.11, and visual comparison in figures (4.12, 4.13), we evaluated the proposed method
LgTC-MS, using GvM mean-shift algorithm for maximal selection in multiple symmetry
case, against the previous proposed methods (GbT, LgT, LgTC, and LgTC-KDE) and state-
of-art (Loy [101] and Cic[28]). For the sake of precise symmetrical comparison, all methods
were assessed using restricted evaluation metrics ICCV2017-Training [53]. Tables (4.4,
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(c) ICCV17m

Figure 4.11 Using evaluation metrics ICCV2017-Training [53] (table 2.2), Zoom-in version
of Precision-Recall curves presented in three multiple-case symmetry (a,b,c) datasets to show
the overall superior performance of our proposed methods: GbT (black), LgT (blue), LgTC
(cyan), LgTC-KDE (yellow), and LgTC-MS (green); against the prior algorithms: Loy
(red) [101], and Cic (magenta) [28]. The maximum F1 scores are qualitatively presented
as square symbols along the curves, and quantitatively indicated between parentheses in
table 4.4. (x-axis: Recall, y-axis: Precision).

4.5) verifies that LgTC-MS improves detection performance of LgTC-KDE to find multiple
symmetries, due to the weighted property of the continuous convergence scheme. Figure
4.11 proves the superior performance of LgTC-MS especially in PSUm, NYm datasets. In
visual analysis of multiple symmetry results, figure 4.12 shows the effect of ranking correct
candidate axes over incorrect ones while figure 4.13 presents the importance of ordering the
global symmetries over the local ones, respect to the values of the normalized axis scores.

4.5 Conclusion

We proposed a supervised symmetry detection method for multiple reflection axes inside
an image in a global scale, in terms of voting representation and selection. Our method is
based on a weighted kernel density estimator to handle linear and directional distributions,
followed by the extended version of mean-shift algorithm to identify the correct symmetry
locations precisely from the incorrect ones. We evaluated the proposed work with public
benchmark datasets in single and multiple cases, and using two standard evaluation metrics
(normal and restricted). We concluded that the proposed work outperforms the state-of-the-art
methods in selecting major symmetries inside 2D images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.12 Some multiple-case results from PSUm [134, 95], and NYm [27] datasets, with
groundtruth (blue) in 1st column (a-j). Thanks to continuous maximal-seeking, the proposed
method LgTC-MS in 3rd column (c-l) produces higher accuracy results against LgTC-KDE
in 2nd column (b-k). For each algorithm, the top five symmetry results is presented in such
order: red, yellow, green, blue, and magenta. Each symmetry axis is shown in a straight
line with squared endpoints.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.13 Some multiple-case results from ICCV17m [53] dataset, with groundtruth (blue)
in 1st column (a-j). Thanks to continuous maximal-seeking, the proposed method LgTC-MS
in 3rd column (b-k) produces better performance results against LgTC-KDE in 2nd column
(c-l). For each algorithm, the top five symmetry results is presented in such order: red, yellow,
green, blue, and magenta. Each symmetry axis is shown in a straight line with squared
endpoints.





Chapter 5

Conclusion and Future Works

This chapter presents a summary of our main contributions in reflection symmetry
detection. Future perspectives are also provided to improve the limitations of the proposed
framework and to discuss its possible impact in different research topics.

5.1 Main contributions

In this thesis, we focused on exploring, proposing, and evaluating the whole pipeline
of reflection symmetry detection in a global scale inside synthetic and real-world images
(especially in artistic photographs). The contributions of this thesis are:

— A new feature extraction and local description based on Log-Gabor filters: in-
stead of using black-box SIFT scheme [101] or unreliable edge extraction using Gabor
wavelets [28], we use Log-Gabor wavelets finding correct features over focused ob-
jects inside an image scene with ignoring the cluttered background. In chapter 3,
Log-Gabor results a superior performance over Gabor and SIFT significantly in single
symmetry datasets (especially the one used in the recent competition: ICCV17).

— A new symmetry measure using local histogram of edge orientation and color
descriptors using HSV space: as the edge information [28] is not enough to find dual
similarities between the corresponding features, we defined two local symmetrical
metrics in terms of textural and color information around each features. In chapter 3,
these new metrics show better symmetrical results (especially in PSU datasets for
single and multiple cases) for objects of non-similar appearances or different colors.
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— A new representation space for symmetry axis voting based on kernel density
estimation: While the state-of-the-art methods [101, 28] used sparse Hough-like vot-
ing space for symmetrical representation, we proposed continuous density estimation
for joint linear and periodic kernels weighted by the symmetry metrics. In chapter 4,
the overall performance across all public datasets has improved in terms of single and
multiple symmetrical cases.

— A new unsupervised algorithm to select relevant axis in the previous representa-
tion space: in literature review, a classical approach based on non-maximal suppres-
sion is used to find approximately the maxima peaks representing the symmetrical
candidate axes, which lacks handling the periodic data. We defined mean-shift conver-
gence algorithm for linear and directional data for the sake of precision peak selection.
In chapter 4, the comparison study shows better results in multiple cases (especially
in NYm dataset) under the highly-restricted evaluation metrics.

— A new dataset for global symmetry evaluation in professional photographs: un-
like the previous public datasets [134, 95, 27, 53] focused on the simple scenarios
of centered objects with smooth background, we proposed a challenging dataset
of aesthetic photos with high-detailed environments, which can be benchmark for
detecting global symmetries in such complex scenarios. In chapter 2, we provided
a detailed description about the proposed dataset plus a set of symmetrical samples
appendix A.

5.2 Future perspectives

Besides the advances made by the proposed work inside this thesis among the reflection
symmetry detection, different research directions can be introduced in the near future. We
briefly present some of these directions:

Parameter selection of KDE bandwidths: in chapter 4, we proposed to use Kernel Density
Estimation to estimate the symmetry voting density. For that, we introduce a linear-directional
kernel which combines a Gaussian kernel and a von Misses kernel depending respectively on
a bandwidth parameter σ and a concentration parameter κ . In our experiments, these two
parameters were determined empirically and there automatic estimation would be an interest-
ing improvement. There are different ways to automatically estimate Gaussian parameter σ

(Improved Sheather-Jones [15], iterative [76], smooth cross validation [21], Scott’s rule of
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thumb [138] and Silverman’s rule of thumb [141]), and also to find a proper value for the
concentration parameter κ in von-Mises distribution (Taylor [151], Kobayashi and Otsu [85],
Chang-Chien et al. [23] and Garcia-Portugues [59]).

Applications of weighted linear-directional model: in chapter 4, we defined kernel density
estimation and mean-shift methods for symmetry detection application only. It can be also
applied to other schemes of geometrical detection algorithms: repetition of patterns and
vanishing points. In the latter scheme, the baseline algorithm [149] used a simultaneous
estimation of multiple models called J-Linkage, which defines a well-presented transforma-
tion between a vanishing point and an edge in closed form under Manhattan assumptions.
Our work can integrate with J-Linkage algorithm through substitute the conventional Max-
imal Likelihood Estimator for the identification process of the edges’ intersection. The
state-of-the-art [90] a conventional Hough algorithm for line detection and introduced a
novel alignment algorithm based on duality space between the grouped line segments and its
corresponding points. Our work can improve these proposed algorithms in a continuous and
periodic way.

Usage of symmetrical axes’ density: in chapters (3, 4), we showed the voting score for
each candidate axis in visual comparison between concurrent methods. These scores are
normalized and ordered decently, but we didn’t introduce a image-wise symmetry measure
which highlights the connection with photography analysis and computer graphics. This
work can be extended through the idea of combining a voting score and the area of the
corresponding symmetry region.

Mean-shift improvements: in chapter 4, we introduced the converging algorithm using
mean-shift scheme, in which it doesn’t ignore the outliers cases while shifting into local
maxima points. The MS convergence with noise data can be improved though Manifold
Blurring mean-shift (MBMS) [159]. Plus, we can generalize the proposed mean-shift scheme
to handle multi-dimensional linear-directional data, and substitute the state-of-art [71, 72]
(Bregman Soft Clustering Method) for indoor scene segmentation applications.

Evaluation metrics: in chapter 2, we presented the previous competitions [134, 95, 53]
in reflection symmetry detection, in which we found out that they provided insufficient
explanation to compare the method’s axis candidates against the ground-truth in single and
multiple cases. The computer vision community expects to have open-source code for such
evaluations in fair and unbiased way.
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Link between symmetry and balance: in chapter 1, we defined the relationship between
computer vision and art domains. Currently the researchers didn’t investigate well the bridge
to define a symmetry as an art principle (mainly balance), such that the definition of symmet-
rical categories could be investigated and well-studied for public use (i.e. museums).

Symmetry assessment through human perception metrics: based on a recent study [9],
the detection methods are evaluated through different noise transformation (i.e. blurriness,
brightness, additive noise, smear) and studied how these methods can preserve the symmetri-
cal outcome in such way that the human can sense. Our work (LgTC [45]) is highlighted in
this study as a strong competent among the state-of-the-art algorithms, in which opens new
areas of improvements through the mains steps of the proposed detection framework (see
section 3.2.1).
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AVA Symmetry Dataset

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1 Some examples with mirror symmetric objects.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A.2 Some examples with centric symmetric objects.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A.3 Some examples with perspective scenes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A.4 Some examples with inter symmetric objects.
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Derivation of Joint GvM Distance

B.1 Exponential families of distributions and Bregman di-
vergence

A probability density function f (x|β ) is considered one of multivariate family of expo-
nential in the following decomposition [71, 125, 13]:

f (x |β ) = exp{⟨β , t (x)⟩−F (β )+ k (x)} , x ∈ΩXs (B.1)

with

— Sufficient statistics: t (x)
— Natural parameter: β

— Log-normalizer: F(β ) = log
∫

ΩXs
exp(⟨β , t (x)⟩+ k (x))dx

— Carrier measure: k(.)
— Expectation parameter: η = η(β ) = ∇F(β )

Where the log normalizer F(β ) is strictly convex and differentiable [96], and η expresses the
expectation of the sufficient statistics t(x). Examples of f (x|β ) can be represented among
the following distributions: Gaussian, Wishart, Poisson, Rayleigh, etc.

Given a strictly convex function F(.), Then the Bregman divergence dF(β1,β2) can be
expressed on natural parameters (β1,β2 ∈ N) [13] as follows:

dF(β1,β2) = F(β1)−F(β2)−⟨β1−β2,∇F(β2)⟩ (B.2)

where ∇F is gradient of F . The Bregman divergence describes the difference between the
value of the convex function at β1 and its first order Taylor expansion at β2.
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Let F∗ be a conjugate function (Legendre dual) of F , which is strictly convex function.
Bregman divergence can be expressed on expectation parameters η :

f (x |η ) = exp{−dF∗ (t(x),η)}bF∗(t(x)), x ∈ΩXs (B.3)

with
dF∗(η1,η2) = F∗(η1)−F∗(η2)−⟨η1−η2,∇F∗(η2)⟩= dF(β2,β1) (B.4)

F∗(η) = sup
t∈Pβ

{⟨η , t⟩−F(t)} (B.5)

bF∗(t(x)) = exp(F∗(t(x))+g(x)) (B.6)

where dF∗ is the Bregman divergence associated with F∗, and the expectation parameter is as
follows: β = β (η) = ∇F∗(η).

B.2 Univariate Gaussian distribution with fixed σ

For a random value x over linear data ρ , the Gaussian distribution with bandwidth
parameter σ is defined as [125]:

f (x |β ) =
1√

2πσ
exp−(x−ρ)2

2σ2 , x ∈ R (B.7)

— Sufficient statistics: t(x) = x
— Natural parameter: β = ρ

σ2

— Log-normalizer: F(β ) =
σ2β 2+log(2πσ2)

2
— Carrier measure: g(x) = 0
— Expectation parameter: η = ρ

— Legendre dual of F : F∗(η) = η2

2σ2 +C = ρ2

2σ2 +C, where C is a constant.
Bregman divergence expressed on expectation parameters

— first distribution:
— N (ρ1,σ) and η1 = ρ1.

— F∗(η1) =
ρ2

1
2σ2 +C.

— second distribution:
— N (ρ2,σ) and η2 = ρ2.

— F∗(η2) =
ρ2

2
2σ2 +C.

dF∗(η1,η2) = F∗(η1)−F∗(η2)−⟨η1−η2,∇F∗(η2)⟩= dF(β2,β1) (B.8)
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Then,

F∗(η1)−F∗(η2) =
ρ2

1
2σ2 −

ρ2
2

2σ2 (B.9)

Given ρ1,ρ2 are scalars, then

⟨η1−η2,∇F∗(η2)⟩= (ρ1−ρ2)
dF∗

dρ
(ρ2) (B.10)

As dF∗
dρ

(ρ2) =
ρ2
σ2

dF∗(ρ1,ρ2) =
ρ2

1 −ρ2
2

2σ2 − (ρ1−ρ2)ρ2

σ2 (B.11)

=
ρ2

1 −ρ2
2 −2ρ1ρ2 +2ρ2

2
2σ2 (B.12)

=
(ρ1−ρ2)

2

2σ2 (B.13)

B.3 Von Mises distribution with fixed κ

For p-dimensional random unit vector y over directional data θθθ , the general case of Von
Mises-Fisher distribution with κ concentration parameter is defined as:

f (y|β ) = A(κ) exp(κyT
θθθ), y ∈ Rp, ||y||2 = 1 (B.14)

where θθθ is the mean direction as a unit vector: ||θθθ ||2 = 1.
The values of the normalization constant A(κ) are computed respect to the number of

dimension p:
— Von Mises distribution for p = 2: A(κ) = 1

2πB(0,κ) and yTθθθ = cos(y−θ). such that
y and θ are the angles associated to unit vectors y and θθθ respectively.

— p = 3: A(κ) = κ

4π sinhκ
using polar coordinates, A(κ) = κ

sinhκ
otherwise.

— p > 3: A(κ) = κ p/2−1

(2π)p/2B(p/2−1,κ)
where B(p,x) is the modified Bessel function of the first kind at order p.

Then, the elements of Von Mises distribution are defined as:
— Sufficient statistics: t(x) = y
— Natural parameter: β = κθθθ = ∇ηF∗(η) and thus κ = ∥β∥2 as ||θθθ ||2 = 1
— Log-normalizer: F(β ) =− logA(κ)
— Carrier measure: g(x) = 0
— Expectation parameter: η = ∇β F(β )
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— Legendre dual of F [72]: F∗(η) = κ ∥η∥2 + logA(κ)

We derive the expectation parameter η with respect to β :

η = ∇β F(β ) (B.15)

=−∇β (logA(κ)) (B.16)

=−d logA
dκ

(κ)∇β κ (B.17)

=−A′(κ)
A(κ)

× β

∥β∥2
(B.18)

=−A′(κ)
A(κ)

× β

κ
(B.19)

= ∥η∥2θθθ (B.20)

In Von Mises distribution, we derive the first derivative of A(κ):

A(κ) =
1

2πB(0,κ)

A′(κ) =− B′ (0,κ)

2πB(0,κ)2

A′(κ)
A(κ)

=−B′ (0,κ)
B(0,κ)

Bregman divergence expressed on expectation parameters with p = 2 and κ fixed

— first distribution: V M (θθθ 1,κ) with ∥θθθ 1∥2 = 1 and θθθ 1 is associated with θ1 ∈ [0,2π[.
— second distribution: V M (θθθ 2,κ) with ∥θθθ 2∥2 = 1 and θθθ 2 is associated with θ2 ∈

[0,2π[.

If κ fixed, ∥η1∥2 = ∥η2∥2 =
B′(0,κ)
B(0,κ) .

dF∗(η1,η2) = F∗(η1)−F∗(η2)−⟨η1−η2,∇F∗(η2)⟩ (B.21)

= κ(∥η1∥2−∥η2∥2)−⟨∥η1∥2θθθ 1−∥η2∥2θθθ 2,κθθθ 2⟩ (B.22)

=−κ
B′ (0,κ)
B(0,κ)

(⟨θθθ 1,θθθ 2⟩−∥θθθ 2∥2) (B.23)

= κ
B′ (0,κ)
B(0,κ)

(1−⟨θθθ 1,θθθ 2⟩) (B.24)

= κ
B′ (0,κ)
B(0,κ)

(1− cos(θ1−θ2)) (B.25)
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B.4 Mixture of Gaussian and Von Mises distributions with
fixed σ , κ

Based on independence assumption, Bregman divergence can combine two distributions,
representing different types of samples:

f (x,y|β ) = f (x|βρ) f (y|βθ ) (B.26)

f (x,y|η) = exp{−(dF∗(t(x),ηρ)+dF∗(t(y),ηθ ))} bF∗(t(x)) bF∗(t(y)) (B.27)

Bregman divergence expressed on expectation parameters with p = 2 and σ , κ fixed
The global Bregman divergence is obtained with the sum of the Bregman divergences. Then,
for two distributions defined by η1 = (ρ1,θ1) and η2 = (ρ2,θ2), we can write the following:

dF∗(η1,η2) = dF∗((ρ1,θ1),(ρ2,θ2)) (B.28)

=
(ρ1−ρ2)

2

2σ2 +κ
B′(0,κ)
B(0,κ)

(1− cos(θ1−θ2)) (B.29)

During mean-shift algorithm, a point coordinate (ρ,θ) will be considered as a distribution,
and the distance between two points will be computed with the Bregman divergence.
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