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Chapitre 1

Introduction

The english version of this introduction is in the appendix.

Dans cette introduction, je m’attacherai a présenter les travaux effectués durant ces trois années
de these. Ils portent principalement sur le spectre des graphes (ou des matrices) aléatoires. Une idée
importante qui sous-tend de nombreux chantiers de la recherche moderne est que les plus grandes
valeurs propres d’une matrice sont celles qui apportent le plus d’informations sur cette matrice. 1l
est donc d’un grand intérét de disposer de descriptions fines de ces valeurs propres. J’essaierai de
présenter autant que possible cette importance a travers les travaux présentés.

Le premier travail de cette these est inspiré de la prépublication The spectral gap of sparse random
digraphs ([62]). On y étudie la deuxiéme valeur propre de la matrice de transition sur les graphes de
configurations dirigés : dans ce modele, on spécifie le degré entrant d; et sortant d;" de chaque sommet
et on prend un multi-graphe dirigé G uniformément au hasard parmi les graphes qui ont ces degrés. La
deuxieme valeur propre de la matrice de transition possede une borne elle-méme fonction des degrés ;
au passage, cela nous permet de résoudre la conjecture dirigée d’ Alon sur les graphes réguliers dirigés.

De facon générale, une question importante de la théorie des graphes consiste a relier un graphe
a sa suite des degrés ; on peut en premier lieu se demander si, étant donnés des entiers (dy,...,d,), il
est possible de construire un graphe G ayant ces degrés. Ce n’est pas toujours le cas : la question fut
entierement résolue par Erdds et Gallai dans les années 1960, et a généré tout un champ de recherches
sur la possibilité de reconstruire des graphes a partir d’informations locales comme les degrés. Dans le
deuxieme travail présenté ici, inspiré d’un article en collaboration avec Charles Bordenave ([41]), on
s’intéresse a I’existence de graphes ayant des voisinages donnés, la question ayant récemment émergé
dans le cadre de travaux sur la convergence locale des graphes.

Ces deux premieres parties sont relativement proches par leur objet, les graphes et leurs degrés.
La troisieme partie, fruit d’une collaboration avec Justin Salez ([63]), difféere un peu des deux pre-
micres ; 1’objet principal reste les grands graphes aléatoires avec peu d’arétes, mais on y étudie la
nature du spectre, et en particulier I’existence d’une partie continue, qui correspond a la notion d’états
étendus venue de la mécanique quantique. On démontre notamment un critére permettant de déter-
miner I’existence ou I’absence d’états étendus dans le spectre d’un modele tres général, les arbres de
Galton-Watson unimodulaires. Cela nous a permis de répondre entre autres a une question posée par
les physiciens Bauer et Golinelli en 2001.

Enfin, dans la derniere partie, issue d’un travail en collaboration avec Charles Bordenave et Raj
Rao Nadakuditi, je présente un résultat sur les grandes valeurs propres des matrices. On considere
un graphe d’Erd8s-Rényi dirigé sur n sommets, dans le régime dilué ou le degré moyen est d, indé-
pendant de n. On pondere chaque aréte (i, j) du graphe par un poids P, ;. L’ objectif est d’obtenir des



1.1. La convergence du spectre

informations sur la matrice P a partir de I’observation de la matrice d’adjacence pondérée A ; c’est
le probléeme de la complétion de matrice, extrémement étudié depuis une quinzaine d’années. Nous
démontrons une transition de phase spectaculaire : sous des hypotheses naturelles sur la matrice P,
il existe un seuil & = 9(P,d) tel que les plus grandes valeurs propres de (n/d)A convergent vers les
valeurs propres de P plus grandes que 9. Toutes les autres valeurs propres de (n/d)A sont contenues
dans D(0,9). Nous démontrons également que les vecteurs propres de A associés a ces valeurs propres
sont corrélés avec les vecteurs propres correspondants de P. Ce résultat est inattendu, car il montre
que la reconstruction (faible) de P ou d’une partie de P est possible méme dans le régime ou d est fixé.

Cette introduction donne une description complete de ces résultats, ainsi que des éléments de
contexte sur chacun des domaines abordés. En premier lieu (§1.1), je donne quelques généralités sur
le spectre des matrices et des graphes, avant de décrire la théorie de la convergence locale qui est
sous-jacente a tous les travaux présentés ici. Les autres chapitres (§1.2-1.5) sont chacun consacrés aux
travaux mentionnés ci-dessus et sont relativement indépendants.

Enfin, je donne en conclusion (§1.6, page 32) deux idées qui émanent de cette these : le régime
dilué (ou est d est vraiment petit) est le régime intéressant du point de vue des applications, et parfois
il vaut mieux dé-symétriser des problemes qui sont naturellement symétriques, un programme qui
semble assez prometteur au vu de certains résultats récents de la littérature.

1.1 La convergence du spectre

On rappelle quelques notions classiques d’algebre linéaire et de théorie des graphes, puis on décrit la
convergence des graphes au sens de Benjamini-Schramm.

Les valeurs propres
Toute matrice symétrique A € .#, ,(R) possede une décomposition spectrale, au sens ol elle s’écrit

A=0010f +-- 4+ 21,0,0,, (.1.1)

avec A = --- = A, ses valeurs propres, et ¢; la famille orthonormée des vecteurs propres associés.
Les valeurs propres capturent une grande quantité d’informations sur la matrice A, et disposent de
caractérisations classiques tres utiles, par exemple

Ai = in (x,A 1.12
i = max lxn%lvnl {x,Ax) (1.1.2)
xX|=

ou 7, est I’ensemble des sous-espaces vectoriels de R” de dimension i. L’étude des valeurs propres de
matrices symétriques aléatoires, initiée avec les travaux de Wigner, s’est révélée extrémement fertile
en développements venus de la combinatoire, des statistiques, de la physique ou méme de la théorie
des nombres.

Lorsque la matrice A n’est plus symétrique, elle possede tout de méme n valeurs propres com-
plexes, mais il n’y a pas forcément de décomposition de la forme (1.1.1). Une variante populaire et
utile est la décomposition en valeurs singulieres : pour toute matrice A € .#, ,(R), il existe des oy >
.-+ = 0, > 0, avec r = rang(A), et deux familles orthonormales (@i,...,¢,) dans R” et (y,...,y¥,)
dans R"”, telles que

A= GI(PIIIII* +"'+6r¢rw;k-

Des caractérisations variationnelles similaires a (1.1.2) existent pour les o;. Dans beaucoup d’applica-
tions, les valeurs singulieres des matrices se sont révélées extrémement utiles, jouant a priori le role
des valeurs propres pour les matrices symétriques. Ce n’est pourtant pas exactement le cas, et dans
plusieurs problémes naturellement non-symétriques, les valeurs singuli¢res se sont révélées moins in-
formatives que les valeurs propres. L’un des objectifs de cette these est d’étudier les valeurs propres
de certaines matrices non-hermitiennes.



1.1. La convergence du spectre

Spectre des graphes

Commencons par rappeler un peu de terminologie des graphes : un graphe G = (V,E) est la donnée
d’un ensemble de sommets V, toujours dénombrable dans cette these, et d’une partie £ de V x V. Les
éléments (u,v) dans E sont les arétes du graphe. Les graphes simples sont les graphes sans boucles
(v,v) et dont les arétes sont symétriques, au sens out (u,v) € E si et seulement si (v,u) € E ; on dit aussi
graphe non-orienté ou non-dirigé, par opposition au cas ou des arétes (u,v) peuvent exister sans que
I’aréte (v,u) ne soit dans E. Les travaux présentés dans cette thése se rapportent aux graphes dilués,
c’est-a-dire les graphes dont le nombre d’arétes est comparable au nombre de sommets.

Tout graphe G = (V, E) est entierement caractérisé par sa matrice d’adjacence A. Cette matrice est
indexée par V et se définit par

AM,V = l(u,v)eE'

La matrice A est hermitienne si et seulement si le graphe correspondant est non-orienté. La théorie
algébrique des graphes consiste a étudier G via le spectre de sa matrice d’adjacence — pour des
manuels de référence, on renvoie a [51, 64]. L'un des avantages de cette vaste idée est qu’il existe
de nombreuses procédures numériques pour approcher numériquement le spectre, en temps O(n?)
dans le pire des cas, et que la connaissance du spectre permet d’obtenir des bonnes approximations de
quantités tres difficiles a calculer, voire souvent NP-complétes, comme la constante isopérimétrique ou
le nombre chromatique — nous y reviendrons dans la section 1.2. De nombreux probleémes statistiques
ou informatiques qui se posent en termes de graphes peuvent ainsi étre résolus par des algorithmes
spectraux ; voir par exemple [134, 90, 10].

Graphes aléatoires

La théorie classique des graphes s’est attachée a étudier les propriétés de graphes particuliers : étant
donné un graphe, quelles relations peut-on donner entre, par exemple, son nombre chromatique, son
nombre d’aréte, sa planarité, etc. C’est souvent nécessaire dans les applications, oll I’on dispose d’un
graphe précis (par exemple /e graphe de Facebook) duquel on veut tirer des informations.

Pourtant, dans beaucoup d’autres applications, on ne dispose pas d’un seul graphe, mais de plu-
sieurs graphes qui vérifient certaines propriétés communes (comme les graphes des liens entre utili-
sateurs de divers réseaux sociaux). Plutdt que d’étudier ces graphes individuellement, on étudie donc
des classes entieres de graphes, et on essaie de déterminer des propriétés globalement vraies sur ces
classes. Mathématiquement, il s’ agit évidemment d’identifier une classe particuliere, par exemple I’en-
semble ¥ (n) des graphes simples sur n sommets, et d’étudier les propriétés d’une variable aléatoire
(uniforme ou non) G sur cet ensemble. Dans cette thése, on étudie plusieurs modeles classiques de
graphes aléatoires : les graphes d’Erd6s-Rényi, les arbres uniformes et les graphes avec degrés pres-
crits.

La plupart des résultats sont énoncés sous le régime asymptotique dans lequel la taille n des
graphes tend vers I’infini. On étudiera donc des suites de graphes aléatoires de plus en plus grands.
Dans ce régime, les modeles que nous étudions peuvent étre vus comme des approximations finies
d’objets-limites infinis, a ’aide de la convergence locale faible. Ce point de vue est a la fois une heu-
ristique fertile pour comprendre certains problemes (en particulier, ceux exposés dans la premiere), et
une théorie puissante pour en résoudre d’autres (comme dans la troisiéme partie).

Convergence de Benjamini-Schramm

L’idée principale de la convergence locale faible des graphes est d’étudier 1’aspect typique du graphe
autour d’un sommet quelconque. On présente dans cette section les grandes lignes et résultats de cette
théorie ; on renvoie a [8, 34] pour des introductions complétes, ainsi qu’a [27].

Pour décrire la théorie, on a besoin de définir quelques termes d’usage courant : signalons pour
commencer que tous les graphes étudi€s auront pour sommets un méme ensemble V (ou une partie



1.1. La convergence du spectre

de V), supposé dénombrable, et que tous les graphes considérés auront tous leurs degrés finis (on dit
aussi qu’ils sont localement finis).

e Un graphe enraciné est un couple (G,v) o G est un graphe connexe et v € V est un sommet
particulier de G, appelé racine.

e Lorsque (G,v) est un graphe enraciné, on notera (G, v), I’ensemble des sommets de G a distance
inférieure ou égale a r de la racine v.

e Un isomorphisme entre deux graphes enracinés (Gy,v;) et (Ga,v2) est un isomorphisme de
graphes ¢ : G| — G, qui conserve la racine, ¢’est-a-dire tel que @(v;) = v,.

e Lorsqu’il existe un tel isomorphisme entre deux graphes enracinés (Gy,v) et (Ga,v2), on écrit
(G1,v1) = (G2, ).

e On note enfin ¥, 1’ensemble des (classes d’isomorphismes) des graphes connexes enracinés
localement finis.

On peut munir %, d’une distance, dite « locale », en posant d((G,v1)(Ga,v2)) = (1+T)",ou T =
sup{t = 0: (G1,v1); ~ (G2,v2)}. Lespace métrique ainsi obtenu est polonais. Il est donc possible de
munir & (¥, ), ’ensemble des mesures de probabilités sur ¥, de la topologie de la convergence faible.
Concréetement, cela veut dire que W, — U si et seulement si pour toute fonction f : ¢, — R continue
bornée, on a § fdu, — § fdu. On dira qu’une suite de graphes enracinés aléatoires (G,,v,) converge
vers un graphe (G, vy ) si les lois de (G,,v,) convergent vers la loi de (G, vy ). En pratique, on a
G, — G si et seulement si pour tout graphe enraciné fixé (g,v), on a

VieN, P((Gy,va)r = (8:V)r) = P((Goo, v )r =~ (g,V)1)-

L’idée centrale de la convergence de Benjamini-Schramm est que n’importe quelle suite de graphes
finis (G,) donne naissance a une suite de graphes connexes enracinés aléatoires par enracinement
uniforme : il suffit de prendre la racine v, uniformément au hasard sur V,,, et de considérer le graphe
(Gyn(vn),vn), ot la notation G(v) désigne la composante connexe de G contenant v.

Cette idée tres puissante permet d’étudier des suites de graphes finis d’un point de vue purement
local : la convergence d’une suite de graphes a lieu si les voisinages de ses points ressemblent (en loi)
aux voisinages de la racine du graphe limite.

De nombreux modeles de graphes convergent presque sirement au sens de Benjamini-Schramm.
C’est le cas des modeles étudiés dans cette these, que nous présentons (entre autres) maintenant. La
littérature sur chacun de ces modeles occupe des pages entieres de bibliographies ; les trois premiers
modeles sont extensivement décrits dans [32].

(1) Erdds-Rényi. On note ER(n, p) 1a loi d’ErdGs-Rényi de paramétres d/n ; I’ensemble des som-
mets est de taille n et chacune des n(n — 1)/2 arétes possibles est indépendamment mise dans
le graphe G avec probabilité p. Si p = d/n avec d un réel positif fixé, alors G, — PGW(d),
I’arbre de Galton-Watson avec loi de reproduction poissonienne de parametre A. On renvoie a
[34] pour une démonstration.

(2) Graphes avec degrés prescrits. Soit d”) = (dy,...,d,) une suite graphique', et soit G, pris
uniformément au hasard sur ¢ (n,d(”)). On suppose que la loi empirique des degrés converge
vers une mesure 7 sur N, en loi et dans L?. Si 7({0}) < 1, alors G, — UGW(), I’arbre de
Galton-Watson unimodulaire avec loi des degrés . Cet objet sera défini rigoureusement dans la
derniere partie. Pour les démonstrations, voir [34, Chapitre 3].

'Une suite (di,...,d,) est graphique s’il existe effectivement un graphe simple & n sommets dans lequel le degré du
sommet i est d;. Toutes les suites ne sont pas graphiques : cela fait I’objet de toute la section 1.3.

4



1.1. La convergence du spectre

3)

“4)

(&)

Graphes réguliers. C’est un cas particulier du précédent : en effet, dans ce cas on a d") =
(d,...,d), le graphe G, est uniforme parmi tous les graphes d-réguliers a n sommets ; dans ce
cas, T = &, et I’arbre limite UGW/(§,) n’est autre que Ty, I’arbre infini d-régulier® (en particu-
lier, la limite est déterministe).

Arbres uniformes. Soit 7}, un arbre choisi uniformément parmi 1’ensemble des n"~2 arbres éti-
quetés sur n sommets. La suite 7;, converge au sens de Benjamini-Schramm vers I’ arbre squelette
d’Aldous, noté Tyqel, défini de la maniére suivante : on commence par le graphe de N, enraciné
en zéro, appelé colonne vertébrale ; puis, a chaque noeud i de cette colonne vertébrale, on colle
un arbre #; qui est aléatoire et de loi PGW(1) — les arbres #9,#1,,... sont indépendants ; voir
figure 1.1b. Pour la démonstration de la convergence T, — Tsquel, VOIr [85].

Arbre canopée. On note T, , = (T,,0), I'arbre infini d-régulier dont a gardé uniquement les n
premicres générations. Contrairement au cas des graphes réguliers, cet arbre possede un bord :
une proportion asymptotiquement égale a (d —2)/(d — 1) des sommets sont des feuilles. La
limite n’est donc pas Ty, mais un bel objet récursif, (C,,0), appelé arbre canopée : voir la
figure 1.1a. L’identification du bon modele limite entre T, et C,; est une question intéressante
en physique du modele d’ Anderson, ou elle reflete la prise en compte des effets de bord ([5],
[122]).

To
Mo
T2
€3
T4
(a) Arbre canopée C;
o
o — — — _ _
t2 ts
le
t1 tg
ta

(b) Arbre-squelette Tsqyel-

FIGURE 1.1 — Deux exemples d’arbres unimodulaires. Dans 1’arbre-squelette, les #; sont iid de loi
PGW(1).

2 Aussi appelé réseau de Bethe.



1.2. Valeurs propres des graphes réguliers

Continuité du spectre

Soit G, une suite de graphes finis, qui converge au sens de Benjamini-Schramm vers un graphe (G, v).
La matrice d’adjacence A, de G, a pour spectre A;(A,) = --- = A,(A,) et on notera

1 n
‘uA" = n;6li(An)

la mesure spectrale empirique de G,. Un des grands intéréts de la convergence de Benjamini-Schramm
est de garantir que 4, converge vers une mesure limite, définie a partir de (G,v) (voir [1, 126] ou
encore [34, Proposition 2.5]). Plus précisément, si G,, converge au sens de Benjamini-Schramm vers
un graphe limite (G, v) de loi p, alors

sup |F, (1) — Fp(£)] = 0 (1.1.3)
teR

ou Fy, est la fonction de répartition de U,,, et Fp est la fonction de répartition d’une mesure [, sur
9, qui est définie a partir de p. La convergence (1.1.3) équivaut en fait a la convergence de tous les
atomes (i.e. ta, ({A}) — 1y ({A}) pour tout réel 1) plus la convergence faible de 4, vers p,. Toute la
difficulté est évidemment d’identifier la mesure limite L, et ici intervient une propri€té importante :
I’'unimodularité. Nous donnerons une définition explicite de i, a la page 19, ainsi qu’une description
de 'unimodularité.

Telle quelle, la convergence (1.1.3) ne permet pas d’élucider le comportement exact de certaines
valeurs propres particulieres, comme A, (A,) par exemple, car le comportement d’un nombre fini ou
négligeable devant n de valeurs propres est perdu dans la convergence locale faible. L’étude du com-
portement asymptotique des plus grandes valeurs propres ne peut donc pas entierement se fonder sur
la continuité du spectre (méme si cette derniere permet d’obtenir quelques informations), et nécessite
des méthodes ad hoc comme la méthode de la trace. C’est ce genre de méthodes qui gouverne 1’étude
de la deuxieme valeur propre de certains graphes avec des degrés prescrits, que je présente maintenant.

1.2 Valeurs propres des graphes réguliers

On s’intéresse dans cette partie aux graphes avec une suite de degrés fixés, et a la deuxieme valeur
propre de leur matrice de transition ; les résultats et les démonstrations sont rassemblés dans le chapitre
1 de cette these, qui reprend la prépublication [62].

Pour commencer, on donne un bref apercu des motivations autour de cette question, notamment a
travers le théoreme d’Alon. Pour fixer les idées, je commence par présenter ce dernier dans le cadre
des graphes simples (non orientés, sans boucles) et d-réguliers.

Spectre des graphes réguliers et expansion

Donnons-nous un graphe d-régulier G. La marche aléatoire sur ce graphe a pour matrice de transition
P, = él(u,v)e g- Il est clair que P = éA, ou A est la matrice d’adjacence ; dans ce cadre, le spectre de
P et le spectre de A sont identiques a une dilatation pres. Les résultats de cette section sont formulés
en termes de la matrice de transition P.

Il n’est pas difficile de vérifier que la plus grande valeur propre de P est 1, et la multiplicité de 1
est égale au nombre de composantes connexes de G ; d’autre part, —1 est valeur propre si et seulement
si le graphe est biparti (voir par exemple [31, Section VIII.2]). Le comportement de la plus grande
valeur propre est donc finalement assez peu informatif. La question de connaitre le comportement de
la seconde plus grande valeur propre est autrement plus riche et difficile. Notons

A, = max{|A|: A valeur propre de P avec |A| < 1}
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le module de la plus grande valeur propre non triviale. Il existe de nombreux résultats qui relient cette
quantité a des propriétés importantes du graphe liées a son expansion : 1’idée générale est que si A,
est petite, le graphe est un bon « expanseur », au sens ol ses arétes sont tres bien distribuées dans le
graphe et ou la suppression de quelques-unes d’entre elles ne provoque pas de changement majeur
dans sa géométrie. Plusieurs outils permettent de quantifier cette intuition.

Inégalité de Cheeger. Pour tout graphe d-régulier G, on a

M<<1>(G)<d 1- A, (1.2.1)

ou ®(G) = mingcy,j4|<|v|/2 |\T est la constante isopérimétrique’ du graphe. Lorsque A, est petite, cet

encadrement entraine que ®(G) est grande : pour chaque partie A, il y a beaucoup d’arétes qui sortent
de A.

oA|
\

Expander-mixing lemma. Un autre lien entre A, et les propriétés de G est le célebre expander mixing
lemma : si G est un graphe d-régulier, alors pour tous X,Y < V,ona

ey — B g /T (122)

n

ol E(X,Y) ={(u,v) e E:uecX,veY} est le nombre d’arétes entre X et Y. Le nombre d’arétes
possibles entre X et Y est |X||Y|/2 et la densité des arétes est d/(n — 1), approximativement d /n si n
est grand. Par conséquent, si les arétes de G étaient mises au hasard dans G avec cette densité (ce qui
revient a prendre un graphe d’Erd&s-Rényi de parametres (n,d/n)), le nombre moyen d’arétes entre X
et Y devrait étre d|X||Y|/n. L’expander-mixing lemma donne donc 1’écart entre ce nombre moyen et
le nombre effectif d’arétes entre X et Y.

Ces deux inégalités sont des outils extrémement efficaces pour obtenir des informations sur G a
partir d’une simple borne sur A, ou A,. Citons par exemple des bornes sur le nombre chromatique ou
le diametre ; on renvoie a [87, Chapitre 4] pour de nombreux développements autour de ce theme.

Les deux inégalités (1.2.1) et (1.2.2) ne sont vraies stricto sensu que pour les graphes d-réguliers,
mais elles possedent une infinité de variantes dans le cadre de graphes orientés, ou encore lorsque le
graphe n’est pas régulier.

Chaines de Markov. Dans un autre cadre, A, donne la vitesse de convergence en temps long des
chaines de Markov. En régle générale, la matrice de transition P d’une chaine de Markov n’est ni
symétrique, ni méme diagonalisable. Ses valeurs propres ne sont donc pas nécessairement réelles, et
on les ordonne par module décroissant : A; = 1 > |A,| = -+ = |A,|. Lorsque la chaine est irréductible
apériodique, la théoreme de Perron-Frobenius entraine que 1 est valeur propre simple, donc on a

‘AQ‘ - A*.

PROPOSITION 1.2.1 ([104], [117]). Soit P la matrice de transition d’une chaine de Markov irréduc-
tible apériodique sur un espace d’états finis S = {1,...,n}, de loi invariante T,. Soient 1 = |A;| >
|A2| = - = |A4] les valeurs propres de P ordonnées par taille décroissante, et soit d(t) la distance a
I’équilibre au temps t, définie par d(t) = maxyes |P'(x,-) — .| Tv, ot || - | rv est la distance en variation
totale. Alors,

tlir%d(t)% = ). (1.2.3)

La encore, si [A2| = A. est petite, la chaine de Markov sur le graphe G va rapidement converger
vers son équilibre. Le calcul de |A;| en fonction des propriétés de G est donc crucial pour étudier des
propriétés fines de la marche aléatoire sur le graphe. C’est ce qui a motivé de nombreux travaux sur
I’étude de A. pour divers modeles de graphes, le plus simple — mais déja difficile — étant celui des
graphes réguliers.

3 Aussi appelée constante de Cheeger, conductivité, constante d’expansion, etc.
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Borne d’Alon-Boppana

La célebre borne d’ Alon-Boppana exprime que A, est plus grande que 2+/d — 1/d ; la formulation la
plus précise, a ma connaissance, est la suivante : si P est la matrice de transition d’un graphe d-régulier
G, alors

ao(p)>2¥9=1 ” ) (12.4)

a <diam(G) )

et en particulier A, > A,(P) est également plus grand que le terme de droite. En substance, si r =
diam(G) est grand, on a

> 2T (1o (1)),

72

La premicre démonstration est die & Alon ([120]), et cette version la est due a Mohar ([116]) ; toutes
deux utilisent les formulations variationnelles (1.1.2) propres aux matrices symétriques.

Dans le cadre de la matrice d’adjacence des graphes simples, de nombreuses généralisations
existent (voir notamment [125] et ses références). Si G, est une suite de graphes d-réguliers dont
le diametre tend vers I’infini, on a donc

24/d —1

y (1.2.5)

liminfA, (P,) >

Toute suite de graphe d-réguliers dont le diametre tend vers I’infini a un diametre qui tend aussi vers
I’infini, et vérifie donc I’inégalité (1.2.5).

Le nombre 2+v/d —1/d

L’apparition du nombre 2+/d — 1/d n’est pas fortuite, et résulte notamment de I’approximation de
la mesure spectrale empirique de G par la loi de Kesten-McKay (voir figure 1.2). Plus précisément,
soient G, = (V,,E,) des graphes réguliers dont la taille |V,,| tend vers I’infini, et dont le diametre tend
vers I’infini.

On a vu plus tot que si G, est pris uniformément au hasard sur ¢ (n,d) alors G, converge vers
Iarbre infini d-régulier T, au sens de Benjamini-Schramm, et donc la mesure spectrale* up converge
([113]) vers le spectre de 1’opérateur de transition sur Ty, connue sous le nom de loi de Kesten-
McKay. C’est une mesure absolument continue par rapport a la mesure de Lebesgue, de support
[-2v/d —1/d,2+/d —1/d], et dont la densité est donnée par

dr/4(d — 1) — (dx)?
2m(d? — (dx)?

(1.2.6)

d ' d

pd(x) :dl[_z =1 2 dfl}

4Stricto sensu, la convergence (1.1.3) s’applique a la mesure spectrale de la matrice d’adjacence de G,, mais ici la
renormalisation P = d~ ! A est triviale, donc Up, converge vers la mesure U, od, qui est bien entendu le spectre de I’ opérateur
de la marche aléatoire sur T.
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FIGURE 1.2 — Histogramme des valeurs propres de la matrice d’adjacence P d’un graphe 3-régulier
avec 10000 sommets ; la mesure limite de Kesten-McKay p3 est en rouge.

Comme nous avons déja mentionné, la convergence faible ug, — ps(x)dx ne donne aucune infor-
mation précise sur le comportement de certaines valeurs propres particulieres comme A,. Cependant,
le lemme du porte-manteau entraine que pour tout ouvert O < R fixé, on a liminf ug, (0) = §, ps. En
prenant O =]2+/d — 1/d — €,+ [, on a donc

pa(t)dt :=c(d,e) > 0.

|{valeurs propres de P, telles que A > 2\/? —¢e}| . J ©
n 2\/d—1/d—¢

La proportion de valeurs propres de G, qui sont plus grandes que 2v/d — 1/d — € est donc stricte-
ment positive (un résultat di a Jean-Pierre Serre, [130]), ce qui est beaucoup plus fort que A, >
24/d — 1/d — €. Pour autant, la convergence (1.1.3) ne permet pas d’en dire plus : on pourrait trés bien
avoir A.(P,) — 1, par exemple. On verra que ce n’est pas le cas.

Graphes de Ramanujan et théoréeme d’Alon-Friedman

Etant donnée 1’importance de la deuxiéme valeur propre sur la structure des graphes et la borne infé-
rieure d’ Alon-Boppana, il est naturel de s’intéresser aux graphes qui sont extrémaux pour A,, ceux qui
ont une deuxiéme valeur propre plus petite que 24/d — 1/d. Un graphe d-régulier connexe est appelé
graphe de Ramanujan lorsque les valeurs propres de P sont soit de module 1, soit de module inférieur
a2+/d —1/d, comme dans la figure suivante.

SOSBOOUMK X RO HBK KX SRR RO MBKASKARUXK X
—1 1
_o/d—1 0 o V/d=1
d d

FIGURE 1.3 — En rouge, le spectre d’un graphe de Ramanujan. Lorsque —1 est valeur propre, on parle
souvent de graphe de Ramanujan biparti.

Ces graphes constituent des expanseurs optimaux au vu de la section précédente, et on ne s’étendra
pas sur I’ampleur incroyable de leurs applications, pour laquelle on renvoie aux excellentes syntheses
[66] et [87], ou plus récemment [124]. Signalons cependant que la question de leur existence s’est
révélée hautement non-triviale.
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La construction de familles de graphes de Ramanujan est un probleme difficile, qui fut d’abord
résolu pour certaines valeurs de d ([111, 107], pour les cas ou d — 1 est premier) : il est possible de
construire des graphes de Ramanujan comme graphes de Cayley de PSL,(F,) a partir d’un ensemble
bien choisi de générateurs’ ; voir [66] pour une présentation accessible. L’existence de familles de
graphes de Ramanujan d-réguliers a finalement été montrée pour tous les d > 2 ([108, 109, 110],
constructions de graphes de Ramanujan bipartis) ; signalons cependant que ces derniers travaux ont
une nature purement existentielle et ne permettent pas de construire explicitement ces graphes de
Ramanujan.

Ces “constructions” représentent un tour de force, mais ici la méthode probabiliste a permis de
court-circuiter le probleme de fagon spectaculaire. En effet, vers la fin des années 1980, Alon conjec-
ture que presque tous les graphes réguliers sont presque des graphes de Ramanujan. Plus précisément,
il conjecture ([9]) que si G, est choisi uniformément au hasard sur ¢ (n,d), alors

PR Tt

n—o0 d

1.2.7)

Evidemment, (1.2.7) ne résout pas la question de la construction des graphes de Ramanujan, dans
la mesure ol on peut avoir des suites G, qui satisfont A, (G,) — 24/d — 1/d tout en n’étant pas de
Ramanujan. Cependant, du point de vue des applications, il n’y a pas tant de différence, puisqu’une
telle suite est asymptotiquement optimale au sens ou elle atteint la borne inférieure d’ Alon-Boppana.

La premiere démonstration de (1.2.7) date de 2004 ([79]), dans un article désormais célebre ;
une seconde démonstration, due a Bordenave [33], a introduit une méthode puissante pour étudier les
grandes valeurs propres de certaines matrices. C’est sur cette méthode que se fonde le premier chapitre
de cette these.

Graphes dirigés réguliers

Un graphe dirigé est dit régulier lorsque tous les sommets ont les mémes degrés, entrants et sortants :
df =d- =d.

Comme mentionné au début de cette introduction, il serait illusoire de croire que les graphes
dirigés sont simplement une variante des graphes simples. Toute la section précédente se fonde sur
deux outils : d’abord, la borne d’Alon-Boppana, et ensuite la convergence de Up,. Or, a ce jour, on
n’a pas d’équivalent satisfaisant ni de 1’'une, ni de 1’autre, dans le cadre des graphes dirigés. Une des
raisons est que la matrice de transition P, n’est plus symétrique : ses valeurs propres sont des nombres
complexes, et on n’a plus de caractérisations variationnelles. La théorie des expanseurs dirigés attire
pourtant une attention croissante dans divers domaines, comme en témoigne la récente synthese [124].

Commencons par examiner un éventuel analogue dirigé de la borne d’ Alon-Boppana. La théorie
de la convergence de Benjamini-Schramm est encore valable pour les graphes dirigés, et il n’est pas
difficile de se convaincre que si G, est un graphe d-régulier dirigé uniforme, alors G, — Td, I’arbre
d-régulier dirigé : chaque sommet posseéde d sommets entrants et d sommets entrants. Le probleme
réside dans la définition de la mesure spectrale sur 'de, puisque I’opérateur de transition sur cet arbre
n’est pas auto-adjoint. On sait malgré tout que le spectre de cet opérateur, calculé dans [67], est égal a
{|z| < 1/+/d}. En fait, la forme de la mesure spectrale limite pour 4, est encore a I’état de conjecture ;
on suppose que la mesure limite, supportée sur D(0,1/ \/3) est donnée par ([40, page 70]) :

1 d*d-1)

Cette distribution est radiale mais n’est pas la radialisée de la mesure de Kesten-Mckay (1.4).

SLa démonstration du fait que ces graphes sont de Ramanujan utilise des outils de théorie des nombres dus notamment a
Ramanujan, d’ot leur nom.

10
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FIGURE 1.4 — Un apercu de la densité de la « loi orientée de Kesten-McKay » pour d = 13. Lorsque
d — o0, cette loi converge (aprés renormalisation par v/d) vers la loi du cercle, ¢’est-a-dire la loi
uniforme sur D(0, 1). Lorsque G, est uniforme sur ¢¥(n,d,) et que d, — 0, la convergence de L,
vers la loi du cercle est démontrée ([58]).

Une telle convergence impliquerait immédiatement un analogue dirigé de la borne (1.2.5) (elle-
méme plus faible qu’Alon-Boppana), mais il y a peu de chances que cette méthode soit généralisable
a d’autres modeles — le calcul de la mesure spectrale d’opérateurs sur des arbres de Galton-Watson
orientés n’est pas évident (la bonne notion de spectre pour les opérateurs non auto-adjoint est alors la
mesure de Brown), et de méme la convergence du spectre de graphes dirigés vers la mesure de Brown
de leur limite au sens de Benjamini-Schramm semble pour 1’instant hors de portée.

Digraphes de Ramanujan

Un graphe d-régulier dirigé est appelé digraphe de Ramanujan si sa matrice de transition P vérifie
A« < 1/4/d. L analogue du théoréme de Friedman et de la convergence (1.2.7) s’énonce de la maniére
suivante (eq. 5.4 dans [124]) : pour toute suite (G,) de graphes uniformes sur ¢ (n,d) de matrice de
transition P,, on a

A(Py) — (1.2.9)

Vd
en probabilité lorsque n — o0. Noter qu’avec grande probabilité, G, est connexe, donc A, = |A;|. Le
premier chapitre de cette these démontre la borne supérieure, analogue du théoréme d’ Alon-Friedman
dans le cadre dirigé.

Théoreme 1. Soir d > 3, et soit G un graphe uniformément distribué sur ¢4 (n,d), de matrice de
transition P. Alors, pour tout € > 0 on a

+ € (1.2.10)

avec une probabilité qui tend vers 1 lorsque n — 0.

La borne inférieure, analogue dirigé d’ Alon-Boppana, reste a ce jour non démontrée. Comme ex-
pliqué dans le paragraphe précédent, un analogue probabiliste semble vrai ; en revanche, un analogue
strict de (1.2.7) ne peut pas €tre vrai : certains digraphes d-réguliers non triviaux, comme le graphe de
De Bruijn, ont toutes leurs valeurs propres non nulles de module 1 ([68]).

11
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Le résultat que j’ai démontré dans ce premier article est en réalité considérablement plus général
que le théoreme 1, car il s’applique a tous les graphes dirigés ayant une suite de degrés prescrits.

Graphes avec degrés prescrits

Les graphes réguliers ont une forme d’homogénéité tres forte, au sens ou chaque sommet a un com-
portement identique au vu des degrés. Dans de tres nombreuses applications, notamment celles qui
étudient des graphes issus de réseaux réels, les sommets ont des degrés différents, et souvent ces de-
grés sont accessibles : il est plus facile de disposer de la liste des degrés d’un réseau, que de toutes
les connections dans le réseau. Pour modéliser de tels réseaux, on utilise les modeles de graphes a
degrés prescrits ; on renvoie a [119, 60] et a leur bibliographie pour de nombreux exemples issus des
mathématiques appliquées.

Dans un tel modele, les degrés (entrants et sortants) de chaque sommet sont donnés : on connait
la liste d = (clfr ,dy ,...,d},d;) des degrés, et on choisit G uniformément au hasard sur I’ensemble
% (n,d) des digraphes qui ont cette suite de degrés. La question de savoir si ¢(n,d) n’est pas vide,
c’est-a-dire de savoir s’il existe vraiment des graphes avec cette suite de degrés®, est une question
ancienne et intéressante, sur laquelle nous reviendrons dans la deuxiéme partie de ce travail. Cette
question est en réalité secondaire en raison d’un artifice célebre, le modeéele de configurations (voir
[32], pour une présentation dans le cadre des graphes non dirigés).

Le probleme du modele uniforme sur ¢ (n,d) (mais aussi sur ¢(n,d)) est qu’on ne dispose pas
d’une méthode facile et maniable pour générer une variable uniforme sur ces ensembles’. Plutdt que de
faire cela, on préfere prendre non plus des graphes, mais des multi-graphes, au sens ot les boucles (i, )
et les arétes multiples sont autorisés. Pour n’importe quelle suite d’entiers d vérifiant a’fr +o4df =
d; +---+d, = m, un tel multigraphe existe, et il y a une fagon simple de la générer : on colle d;
demi-arétes entrantes au sommet i et d;r demi-arétes sortantes, puis pour chacune des m demi-arétes
sortantes, on la recolle au hasard a une des demi-arétes entrantes disponibles. Le digraphe G est alors
obtenu en identifiant chaque couple de demi-arétes collées a une aréte dirigée.

Or, le modele uniforme sur .# (n,d) vérifie une forme d’absolue continuité par rapport au modele
uniforme ¥ (n,d). Plus précisément, il est possible de montrer deux choses :

i) il existe une constante ¢ > 0 dépendant uniquement de maxd (et pas de n) telle que si n est
suffisamment grand, P(G € ¥ (n,d)) > c,

zZ N A

ii) laloi de G conditionné a étre dans ¢ (n,d) est la loi uniforme sur ¢4 (n,d).

Par conséquent, si I’on se donne une suite (d®)) de listes de degrés, avec d) de longueur 7, et
maxd®™ < A pour un certain entier A ne dépendant pas de n, alors on dispose de la propriété suivante :
pour tout événement E, on a

nll)ngoP‘”("vd)(G €EE)=0 = nll,n:}opg(”7d)(G €EE)=0.

Autrement dit, toutes les propriétés asymptotiquement vraies pour le modele de multigraphes seront
vraies pour le modele de digraphes correspondant. Le modele sur les multigraphes est donc beaucoup
plus général que le modele sur les graphes, au moins au vu du comportement asymptotique.

Forme générale du théoréme d’Alon

Le résultat principal du premier chapitre de cette these est le théoréme suivant, qui est I’analogue
dirigé de (1.2.7) lorsque P, est la matrice de transition d’un digraphe avec une suite de degrés fixée.

®Dans ce cas, on dit que d est une suite digraphique.
70n ne connait méme pas leur cardinal en général, et il y a peu de chances pour que celui-ci s’exprime sous une forme
fermée ou explicite.

12
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Théoréme 2 ([62]). Soit d™) = (d",...,d} d[,...,dy) une suite d’entiers avec dy +---+d, =

2 ¥n ¥
d]Jr + -+ df :=m, et soit G, le multigraphe obtenu via le modele de configuration sur .///(n,d(”)).
On suppose qu’il existe deux constantes 3 < 6 < A < oo telles que pour tout n,
§ <mind™ < maxd™ <A. (1.2.11)

Alors, pour tout € > 0,

te (1.2.12)

avec une probabilité qui tend vers 1 lorsque n — 0.

En vertu des remarques précédentes, le résultat est le méme lorsque d est digraphique et G est
pris uniformément sur ¢ (n,d). Lorsque la suite des degrés est constante, on retrouve bien le théoreme
1, puisqu’alors a';—r = d pour tout i. Notons que si d;r =d; pour tout i (le graphe est alors eulérien),
la borne obtenue est \/n/m = 1/4/dmoy, 1a racine inverse du degré moyen, un résultat a mettre en
relation avec une borne similaire dans le modele ER(n,d/n) démontrée dans [43]).

La présence d’une éventuelle valeur propre de module proche de 5! reste incertaine ; la démons-
tration ne permet pas de se passer du maximum dans (1.2.12) et les simulations numériques semblent
indiquer que dans le régime ol ce maximum est 1/6, il existe effectivement une valeur propre de
module proche de 1/ avec probabilité a priori non nulle, comme dans la figure 1.5b. La question de
savoir si la mesure limite posséde effectivement un atome en 5! reste ouverte.

1.3 Digression : la suite des degrés

Dans la partie précédente, nous avons étudié les propriétés spectrales de certains graphes ayant une
suite de degré fixée, disons dj,...,d,. La question de savoir s’il existe effectivement un graphe avec
cette suite de degré était secondaire, dans la mesure ou le modele de configuration permettait de se
passer de cette hypothese. Cependant, la question en elle-méme est intéressante : quelles sont les
conditions pour qu’une suite d’entiers soit la suite des degrés d’un graphe simple ? De telles suites
sont dites graphiques.

La caractérisation d’Erddos-Gallai

La question fut résolue par Erdds et Gallai dans un célebre article de 1960 :

Théoréme 3 (Erd6s-Gallai, [73]). Soitd = (dy,...,d,) une suite d’entiers, que ’on supposera triés
par ordre décroissant. Alors, il existe un graphe simple G dont les degrés sont donnés par cette suite
si et seulement si les deux conditions suivantes sont réunies :

dy +---+d, est pair, (1.3.1)
et si pourtoutke {1,....,n} ona
i+ +d <k(k—1)+ > min(d;k). (13.2)
i=k+1

1l existe de nombreuses démonstrations de ce théoréme, la plus courte étant due a Tripathi et Vijay
([138]); il existe aussi d’autres caractérisations des suites graphiques, toutes équivalentes a celle-ci,
dont on trouvera une liste dans [131]. Dans le cadre des graphes orientés, il existe également des
criteres semblables, que 1’on trouvera dans la synthése [28]. Le deuxieme résultat présenté dans cette
theése est une généralisation de ces résultats, et une extension de la notion de ‘suite des degrés’ a des
voisinages entiers.
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1.3. Digression : la suite des degrés

51

(a) Un exemple du cas ou p

(b) Un exemple du cas ou p

FIGURE 1.5 — Deux réalisations du spectre de P pour un graphe G issu du modele de configurations

z N\

dirigées. Le cercle rouge a pour rayon p et le cercle vert a pour rayon 1/3. Le point isolé a droite est

1, la valeur propre de Perron-Frobenius.

51=1)2
e Dans (b), on a n = 1800 sommets, dont 600 de degré (5,6), 600 de degré (3,7) et 600 de degré

(9,4). Dans ce cas

e Dans la figure (a) il y a n = 1600 sommets, dont 700 de degré (2,2) et 800 de degré (9,9), de sorte

que dans ce cas p

,onap=p.
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1.3. Digression : la suite des degrés

La couverture universelle d’un graphe

On peut voir le degré d’un sommet x comme une caractérisation de son voisinage immédiat : plus pré-
cisément, le degré de x est d si et seulement si x possede d voisins. Or, dans le cadre de la convergence
de Benjamini-Schramm, on a besoin d’étudier des voisinages d’une profondeur supérieure a 1 ([35]).
Pour cela, il est nécessaire d’introduire la notion de couverture universelle.

Soit G = (V,E) un graphe fini. Un graphe G’ = (V’,E’) est un recouvrement® de G s’il existe une
surjection p : V/ — V qui est un isomorphisme local, au sens ot pour tout sommet x, 1’application p
est une bijection entre les arétes de G incidentes a x et les arétes de G’ incidentes a p(x). Il s’agit de
I’analogue de la notion de relévement venue de la topologie.

Un graphe connexe possede un relevement particulier, qui est en un sens canonique : le recouvre-
ment universel. Il s’agit de I’unique recouvrement de G qui est un arbre ; on le note 7. Ce recouvre-
ment possede deux propriétés essentielles :

i) il est unique a isomorphisme pres,
1) c’est un recouvrement de tous les recouvrements de G.

Le recouvrement universel d’un graphe peut €tre vu comme le graphe G déplié, c’est-a-dire
dans lequel chaque cycle est oublié tout en conservant 1’adjacence des sommets. Donnons quelques
exemples pour éclaircir les idées.

FIGURE 1.6 — Un exemple de recouvrement universel : le peigne infini de droite est le recouvrement
universel du graphe de gauche.

e Le recouvrement universel de n’importe quel graphe d-régulier (avec d > 1) est Ty ;
e le recouvrement universel d’un cycle est une ligne bi-infinie ;

e le recouvrement universel du graphe a gauche de la figure 1.6 est le « peigne infini » & gauche
de 1.6.

Le recouvrement universel d’un graphe porte en lui de nombreuses informations sur ce graphe,
car il en donne une bonne approximation locale — d’autant meilleure que le graphe G ne possede
pas beaucoup de petits cycles. En informatique théorique, le recouvrement universel a donné lieu a
de nombreuses avancées sur le calcul parallele ([13], [14]). En probabilités, il est d’une importance
capitale pour étudier des processus sur des graphes qui sont localement des arbres ([84], [12]).

Les h-voisinages

Soit donc G un graphe connexe et T son recouvrement universel. Soit x un sommet de G. Son h-
voisinage universel est la (classe d’isomorphisme de) la boule By (y, /) ol y est n’importe quel antécé-
dent de x par p; on vérifiera facilement qu’elle ne dépend pas de I’antécédent choisi. Ce h-voisinage
doit étre vu comme le (vrai) voisinage de x dans G, dans lequel les cycles ont été dépliés. La donnée de
T permet donc de connaitre la liste (1, ... ,t,) des h-voisinages universels du graphe G. L’inverse est-il
possible ? Autrement dit, si I’on dispose d’une suite t = (¢,...,#,) d’arbres enracinés non étiquetés de

80n trouve parfois les termes relévement ou couverture.
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1.3. Digression : la suite des degrés

profondeur < A, comment décider si cette suite correspond effectivement a la suite des A-voisinages
d’un vrai graphe G ?

Lorsque h = 1, cette question est parfaitement équivalente au probléme d’Erd6s-Gallai. En effet,
la donnée d’un arbre enraciné de profondeur 1 est équivalente a la donnée du nombre de ses feuilles.
Si I’on note #(d) I’arbre a d + 1 sommets ayant d feuilles, alors la donnée d’un graphe G dont les
1-voisinages sont (1(d,),...,t(d,)) est parfaitement équivalente a la donnée d’un graphe dont la suite
des degrés est (dy,...,d,), comme dans la figure 1.7.

AN T ANANA AN

FIGURE 1.7 — Cette collection d’arbres de profondeur 1 est-elle la collection des 1-voisinages d’un
graphe simple a 8 sommets ? Cela revient a chercher si la suite d = (3,1,2,3,5,2,3,1) est une suite
graphique.

La donnée des h-voisinages universels d’un graphe permet de générer des graphes aléatoires ayant
ces voisinages. Par exemple, supposons que (f1,...,t,) soit une suite d’arbres. Dans [35], les au-
teurs créent une variante du modele de configurations, permettant de construire des multi-graphes
ayant cette suite comme suite des /-voisinages universels ; leur construction est similaire a celle des
graphes de configurations, avec des demi-arétes qui sont recollées ensemble. Nous avons généralisé
cette construction, afin de répondre a la question de I’existence de vrais graphes ayant cette suite de
voisinages universels.

Une caractérisation

La question qui se pose est donc la suivante. On note .7, I’ensemble des arbres enracinés non-étiquetés
de profondeur maximale 4.

QUESTION 1.3.1. Soitt= (t1,...,,) un n-uplet d’éléments de .7),. Est-ce le n-uplet des h-voisinages
universels d’un graphe simple G ?

Avant de répondre a la question, nous avons besoin de quelques définitions — la chose sera plus
claire si I’on se réfere a la figure 1.8.

Soit # un arbre de racine e et soit e = (e,x) une aréte adjacente a la racine. La suppression de e
sépare t en deux composantes connexes, 1’une contenant la racine notée r/, et I’autre ne la contenant
pas, notée s. On supprime de 7 les sommets a profondeur 4. L’arbre obtenu, enraciné en e, est un
élément de .7;,_; que I’on notera r. L’autre arbre, s, enraciné en x, est également un élément de .7, ;.
On dira alors que le rype de ’aréte e est le couple T = (r,s), et le type opposé de 1’aréte e est défini
comme étant (s,7) = T~ . Il est possible de décomposer I’ensemble des types des arétes de ¢ adjacentes
a la racine en trois ensembles disjoints, A,A,B :

e Aest ’ensemble des types diagonaux, c’est-a-dire de la forme (r,r) ;
e A U Best’ensemble des types non diagonaux, et les ensembles A et B sont choisis de sorte que

si le type T est dans A, alors 77! est dans B.
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1.4. Spectre des arbres

FIGURE 1.8 — Construction de 7(e) = (r,s) pour I’aréte e dans ’arbre ¢.

Si 7 est le type d’une des arétes d’un des arbres de t, on note d le nombre d’arétes e incidentes a la
racine dans #; et telles que 7(e) = 7, ¢’est-a-dire le «degré en T de 7; ». On pose enfin Ny = df +- - +dJ.
Le théoreme suivant est le principal résultat de [41], travail en collaboration avec Charles Bordenave.
Les indices entre parentheses signifient que la double suite (df, dfl) a été ordonnée dans 1’ordre
lexicographique décroissant.

Théoreme 4. Soitt = (1y,...,t,) un n-uplet d’éléments de . Il est graphique si et seulement si

(1) pour tout T € A, le nombre Ny est pair et si pour tout k on a

k n
Zld(fi) <k(k—1)+ ;lmin(d(fi),k) (1.3.3)
i= i=k+

(2) pourtout T€ A, on a Ny = N;-1, et pour tout k on a

k k
dfy < Y min(df,) k). (1.3.4)
1 i=1

i=
Problémes de reconstruction

Le théoreme 4 a été démontré dans le cas particulier # = 2 par [19, 16]. Une des motivations des
auteurs est le probleme général de la reconstruction des graphes : soit G un graphe possédant une
propriété &. Est-il possible de reconstruire G a partir de la simple donnée de & ? Plus généralement,
est-il possible de déterminer s’il existe un graphe vérifiant 2, et si oui, un tel graphe est-il unique ?

Lorsque & est la propriété d’avoir une suite de degrés donnée, le théoréme d’ErdGs-Gallai résout
la question de I’existence ; la question de ’unicité a été résolue plus tard (voir [16], théoreme 4.2 et
références).

Si la question 1.3.1 peut étre résolue, c’est notamment parce que 1’on considére uniquement des
voisinages dans le recouvrement universel, c’est-a-dire que I’on oublie les cycles. La méme ques-
tion dans laquelle on remplace ces voisinages universels par les vrais voisinages, ou les cycles sont
conservés, semble réellement hors de portée. Citons, a titre d’exemple, la céleébre conjecture de la re-
construction de Kelly-Ulam : partant d’un graphe G a n sommets, on note g; la classe d’isomorphisme
du graphe G privé de son sommet i. Est-il possible de retrouver G a partir de la donnée de (g1, ...,8,) ?
Cette question simple d’apparence a été posée par Ulam dans les années 1940 ; elle reste non résolue.

1.4 Spectre des arbres

Nous revenons dans cette derniere partie au modele le plus simple de graphes aléatoires : le graphe
d’Erd6s-Rényi non-orienté et sa matrice d’adjacence. Comme mentionné plus haut, si G, ~ ER(n,d/n),
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1.4. Spectre des arbres

alors G, converge au sens de Benjamini-Schramm vers PGW(d) et de plus la mesure spectrale em-
pirique de la matrice d’adjacence A, de G,, notée l,,, converge au sens de (1.1.3) vers une mesure
limite Upgw(a)- L objectif de cette section est d’€tudier la nature du spectre (partie continue, atomes)
de cette mesure, pour laquelle on énoncera deux résultats nouveaux et quelques questions.

Comme promis, on commence par donner une définition précise de Upgw/(q), et plus générale-
ment [, lorsque p est la mesure de certains arbres enracinés. Une notion importante pour cela est
I"unimodularité.

Unimodularité

Dans la convergence au sens de Benjamini-Schramm, 1’enracinement uniforme des graphes finis est
une idée profonde et a des conséquences importantes. En prenant une racine uniforme, on étudie
les graphes finis du point de vue de leur sommet typique, en négligeant d’éventuels sommets peu
nombreux au comportement déviant. Si une suite de graphes finis (G,) converge vers (G,v), sa limite
devra donc donner une forme d’homogénéité au comportement des sommets : en particulier, il faut
s’attendre a ce que la loi du graphe enraciné (G,v) ne change pas par réenracinement du graphe. Ce
phénomene est appelé unimodularité ([8, 7, 27, 34]).

Introduisons d’abord I’ensemble ¥ des (classes d’isomorphismes de) graphes bi-enracinés, c’est-
a-dire des triplets (G, v,w) ot v,w sont deux sommets de G. On le munit de la topologie induite par la
distance locale, comme pour %,. On dit qu’une loi de probabilité sur ¢, est unimodulaire si pour toute
fonction f : ¥4, — R mesurable,

Ep [ > f(Gvw) | =Ep [ > F(Gwy) |, (1.4.1)
weV weV

ol la notation E, signifie que la variable aléatoire (G,v) a pour loi p sous E,. Lorsque G = (V, E) est
un graphe fini, la variable aléatoire (G(v),v) avec v uniforme sur V, est unimodulaire, et les limites
de Benjamini-Schramm de lois unimodulaires sont encore unimodulaires, par passage a la limite dans
(1.4.1). Ainsi, toute loi p sur ¥, qui est limite au sens de Benjamini-Schramm d’une suite de graphes
finis® est unimodulaire. L’inverse est une question non résolue a ce jour (voir [7, 27] pour des déve-
loppements sur cette question et ses conséquences).

Un arbre de Galton-Watson unimodulaire de loi de reproduction & = (7,),>0 est un arbre
aléatoire enraciné, dans lequel le nombre d’enfants de la racine a pour loi 7, et le nombre d’enfants de
tout autre sommet a pour loi &, qui est la loi 7 biaisée par sa taille :

AL (n+1>77:n+1

Y okm

Les seules lois telle que 7 = 7 sont les lois de Poisson, et donnent naissance au prototype classique
des arbres de Galton-Watson, les arbres de Galton-Watson poissoniens PGW(d), qui apparaissent
naturellement comme limites des graphes d’ErdGs-Rényi ER(n,d/n).

Lorsque © = &4, on a # = §;_; et dans ce cas, ’arbre UGW(J,) n’est autre que I’arbre infini
d-régulier T4, limite des graphes uniformes d-réguliers.

Mesure spectrale des arbres unimodulaires

Soit G = (V,E) un graphe localement fini sur un ensemble de sommets V que 1’on prendra toujours
dénombrable. Son opérateur d’adjacence A est I’opérateur linéaire sur 1’espace de Hilbert

H=LV)={f:VoCO )P <o

veV

9De telles lois sont dites sophiques.
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défini par
(ex,Aey) =1y ek (1.4.2)

ol (eyx : x € V) est la base canonique de 7. Le domaine D4 de A est I’ensemble dense des vecteurs
a support fini : Dy = vect(e, : x € V). Lorsque le graphe G est fini, A est une matrice symétrique, et
le spectre ne pose aucun probleme de définitions. En revanche, lorsque G est infini, des difficultés
apparaissent. Si les degrés de G sont uniformément bornés par un nombre méme d, alors A est un
opérateur borné et auto-adjoint, et peut donc s’étendre en un opérateur borné et symétrique sur &
tout entier : il n’y a pas de difficultés a définir son spectre.

Cependant, beaucoup des graphes que nous étudions (en particulier les arbres de Galton-Watson
poissoniens) n’ont pas des degrés bornés ; signalons également qu’il existe des arbres qui ne sont pas
auto-adjoints ([118]).

Fort heureusement, les mesures unimodulaires sont concentrées sur les arbres qui sont essentielle-
ment auto-adjoints ([34, Prop. 2.2]), pour lesquels 1’analyse fonctionnelle classique permet de définir
efficacement le spectre. Plus précisément, le théoreme spectral montre que pour tout graphe enra-
ciné (G, o) dont I’opérateur d’adjacence est essentiellement auto-adjoint, il existe une unique mesure
borélienne de probabilité 1 o) sur R telle que

VZECR (oo (A—2)les) = JR Zl_tdu(c,o) (0). (1.4.3)

Le membre de droite, s(z), est la transformée de Stieltjes de la mesure p ¢ o) et elle caractérise cette
derniere. Il est donc possible de retrouver U o) par la formule d’inversion de Stieltjes ; méme lorsque
ce calcul inverse est impossible, on peut tout de méme obtenir des informations supplémentaires. Par
exemple, les atomes sont donnés par

1 .
HiGo)({A)) = lim—Tm 1(2 +ir).

Si (G,0) est un arbre enraciné aléatoire de loi p unimodulaire, la mesure , est alors définie par

o = Ep[l(G.0))- (1.4.4)

On renvoie a [54] pour vérifier que tous les objets se comportement bien, notamment vis-a-vis de
la mesurabilité.

Nous avons déja vu que UGW(9,) = 6, : dans ce cas, (G,0) n’est pas aléatoire, il est toujours
égal a I’arbre infini d-régulier T;. Le membre de gauche dans (1.4.3) peut alors se développer en
série de Laurent dont les coefficients sont les nombres de marches fermées a la racine de Ty, lesquels
sont calculables explicitement par des arguments combinatoires ([113]). Cela donne une expression
explicite pour la transformée de Stieltjes de L, et le calcul de la transformée inverse permet de voir
que la mesure U, est précisément la loi de Kesten-McKay déja évoquée précédemment.

On trouvera dans [29] d’autres exemples de limites de spectres d’arbres, comme 1’arbre récursif.

La mesure limite des graphes d’Erdés-Rényi dilués

On se donne un nombre réel d > 0, et on va étudier le spectre d’un graphe G de distribution ER(n,d/n).
On a vu dans la section 1.1 que G, converge au sens de Benjamini-Schramm vers PGW(d). En vertu
de la continuité du spectre (1.1.3), la loi empirique des valeurs propres de la matrice d’adjacence A,
de G,

1 n
=—> 0y,
Ha, n; i

converge vers une mesure de probabilité Upgw(g) que 1’on notera simplement (i, mesure spectrale
moyenne de 1’arbre de Galton-Watson comme définie en (1.4.4). Cette convergence peut étre établie
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sans I’aide de la convergence de Benjamini-Schramm ([143, 94]), mais c’est cette derniere qui permet
de disposer de la représentation de Upgw(q) comme en (1.4.3)-(1.4.4). Si I'on note F,, Fpgw (q) les
fonctions de répartition de Ly, , tg, alors

sup |F,(t) — Fpaw(a)(t)| — 0. (1.4.5)
teR
Comme déja observé, cette convergence implique la convergence des atomes, au sens ou pour tout
nombre réel A, on alimug,({A}) = us({A}). En particulier, comme

6, ({0}) = dimker(4,)/n,

on connait le comportement asymptotique du noyau de A,, a condition d’étre capable de calculer
Mpcw(a) ({0}).-

Les physiciens Bauer et Golinelli, en s’intéressant au noyau de G, ont formulé plusieurs conjec-
tures frappantes sur le comportement de uy autour de z€ro ([23, 21]). Grace a la méthode des répliques
symétriques, ils ont pu formuler la valeur exacte de 1’atome en zéro, a savoir

tpow(a)({0}) =e ™ +dxe ™ +x—1 (1.4.6)
ol x est la plus petite solution dans ]0, 1] de I’équation x = e~4e™"  Cette formule fut rigoureusement
démontrée plus tard dans [44], notamment & I’aide de formules de récursion sur la transformée de
Stieltjes de Upgw/(a)-

Bauer et Golinelli ont finement remarqué que le membre de droite dans (1.4.6) est analytique
en d lorsque d < e, et possede une singularité en d = e; ils ont interprété ce phénomene comme
une transition dans la nature de la mesure spectrale, remarquant sur leurs simulations numériques
I’apparition d’une partie continue non nulle autour de zéro lorsque d > e.

Décomposition spectrale et modele d’Anderson

Toute mesure borélienne u sur R se décompose en

M= Hac + Hpp + Hsc (1.4.7)

ol U, est absolument continue par rapport a la mesure de Lebesgue, U, est purement atomique et Lsc
est singuliere par rapport a la mesure de Lebesgue, mais n’a aucun atome.

Cette décomposition est centrale dans la théorie physique des opérateurs : si H est un opérateur
auto-adjoint sur un espace de Hilbert, cette décomposition porte en elle des propriétés essentielles de
H liées au comportement de la dynamique quantique ¢ — e~ ¢, notamment via le théoréme RAGE
(voir ([54, 135] ou plus spécifiquement [101]).

Les physiciens ont porté une attention considérable a ces propriétés spectrales dans le modele
d’Anderson, pour lequel I’hamiltonien est donné H = A + AV avec A est un opérateur laplacien et V
un opérateur diagonal ; lorsque A est 1’opérateur d’adjacence sur Z¢, on a le modele d’ Anderson discret
classique. L’existence d’une partie ponctuelle dans le spectre d’un tel opérateur est liée au phénomene
de localisation, et c’est la raison pour laquelle la décomposition (1.4.7) est tant étudiée, y compris
lorsque A est I’opérateur d’adjacence d’un arbre ([4], [95], [2]). Dans le langage des physiciens, on dit
qu’une mesure U ne posseéde pas d’états étendus en un réel A lorsque

i 02 =22+ ) — B({2))

=0. 1.4.8
£—0 2¢e ( )

Dans le cas contraire, on dit qu’elle possede des états étendus en A ; par exemple, si 4 = f(x)dx avec
f mesurable, la limite ci-dessus est égale a f(A) pour presque tout A.

On a déja vu que la mesure spectrale de T, était absolument continue, avec pour mesure la loi de
Kesten-McKay ; il existe cependant des arbres infinis dont la mesure spectrale est
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e purement atomique : I’arbre canopée ([5, Proposition A.2]) en particulier, sur lequel on reviendra
plus loin ;

e ou au contraire, purement singuliere continue ; on trouvera dans [49, 48] pour une construction
explicite de tels arbres a partir de T, et dans [5, section 6] des exemples d’arbres semi-infinis.
Dans le cadre du modele d’ Anderson, on renvoie aussi a [133, 132].

Lorsque I’arbre en lui-méme est aléatoire (Galton-Watson par exemple), la question est plus dé-
licate. Une condition nécessaire et suffisante pour que Hpgw/(q) @it une partie continue, et donc des
états étendus, est simplement d > 1, et plus généralement ([46]) la mesure Uygw (x) possede une par-
tie continue si et seulement si 7 est sur-critique. La raison pour cela est le fait qu’avec probabilité 1,
des sous-graphes isomorphes a Z apparaissent dans UGW (7). Cependant, ce résultat ne donne aucune
information sur le support de la partie continue lorsqu’elle existe, et encore moins sur sa forme.

La transition de Bauer-Golinelli

Les simulations numériques précises de Bauer et Golinelli [23, Section 5.1] les ont conduit a supposer
que la partie continue de PGW(d) vérifie une transitionend =e :

CONJECTURE 1. La mesure Upgw(q) posséde des états étendus en O si et seulement sid > e.

On pourra constater ce phénomene sur les figures 1.9a-1.9b-1.9¢.

Une telle transition de phase n’est pas en soi étonnante ; on sait déja que si d est suffisamment petit
(inférieur a 1), la mesure Upgwy(4) est purement atomique et qu’il n’y a donc pas d’états étendus en
zéro. Or, lorsque d — 00, les mesures Upgy (q) convergent vers la célebre loi du semi-cercle de Wigner
([89, 137], voir figure 1.10), qui est absolument continue par rapport a la mesure de Lebesgue et dont
la densité p(t) = 1<V 4 — 2 est non nulle sur tout son support. Cela ne permet pas de prouver
rigoureusement 1’apparition d’états étendus en zéro, mais cela donne tout de méme une intuition sur
le résultat. Ce qui est étonnant est plutot la localisation exacte de cette transition au point e ~ 2,718.

Dans la prépublication [63] en collaboration avec Justin Salez, nous avons démontré la conjecture
1. Ce résultat n’est pas propre a la mesure spectrale des arbres de Galton-Watson poissoniens, mais
il s’énonce dans le cadre général des arbres de Galton-Watson unimodulaires UGW () (avec 7 sur-
critique). Pour formuler les résultats, on a besoin de la fonction génératrice de 7, que I’on notera

0
() =) ma".
n=0

De fagon similaire, on note ¢ la fonction génératrice de #. Posons M (¢) = @ (1) + (1 —1) ¢’ (1) + (1 —
¢(t)) — 1, pour ¢ € [0,1]. Un élément clé dans la démonstration de (1.4.6) dans [44] était I’identité
Hpew(a)({0}) = max M et le fait qu’il existe un unique nombre z, dans 0, 1[ tel que z. = 1 — @(z4).
Les deux hypotheses sur M qui interviennent dans notre théoréme principal sont les suivantes :

(1) La fonction M posséde un unique maximum en z,.
(2) M"(z.) # 0.
Les conditions d’apparition d’états étendus en zéro sont décrites par le théoréme suivant.
Théoreme 5. Soit © une mesure sur N, avec my < 1.
e Si M ne vérifie pas la condition 1, alors Uygw(x) a des états étendus en zéro.
o Si M vérifie 1 et 2, alors Uygw(z) n'a pas d’états étendus en zéro.

L’existence d’une partie continue ou d’états étendus en zéro est donc réglée, au moins dans le cas
des arbres de Galton-Watson poissoniens. La question de I’existence de tels résultats a d’autres arbres
unimodulaires se pose.
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FIGURE 1.9 — Histogrammes des valeurs propres de G ~ ER(n,d/n) avec n = 1000 (sur 100 échan-
tillons). La partie ‘continue’ est nulle en zéro lorsque d < e, conformément a la prédiction de Bauer-

Golinelli.
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FIGURE 1.10 — Histogrammes des valeurs propres de G ~ ER(n,d/n) avec n = 1000 (100 échan-
tillons). Lorsque d — +00 on a Ly — Uwigner-

La nature du spectre dans les arbres semi-infinis

La démonstration de 1’existence d’une partie continue dans le spectre des arbres de Galton-Watson
([46]) reposait sur le fait que, lorsque la loi de reproduction 7 est sur-critique, 1’arbre contient un
bi-rayon'?, ¢’est-a-dire un sous-graphe isomorphe 2 Z. Ce n’est pas le cas pour d’autres arbres uni-
modulaires comme I’arbre squelette Tsqyel, qui sont infinis presque sirement, mais qui ne contiennent
qu’un rayon, ¢’est-a-dire un sous-graphe isomorphe a N : de tels arbres sont appelés arbres semi-infinis
(ou single-infinite trees par Aldous ([6, Section 4]). On peut identifier n’importe quel arbre semi-infini
avec une suite (7,) d’arbres enracinés finis, la racine de #, étant reliée a celle de #,+1, comme dans la
figure 1.1b.

On peut vérifier facilement que la mesure spectrale de N est précisément la loi du semi-cercle ;
on pourrait donc s’attendre a ce que la mesure spectrale des arbres semi-infinis posséde toujours une
partie continue. Ce n’est pas le cas, comme le montre I’exemple de 1’arbre canopée (Cy,0), d > 3
entier.

LEMMA 1.4.1 (Aizenman, Warzel, [5]). La mesure spectrale Elc, o) est purement atomique. Ses
atomes sont toutes les valeurs propres des arbres finis T, 4 := (T4,0),.

Les arbres semi-infinis peuvent étre vus comme des généralisations des matrices de Jacobi. Dans le
modele d’ Anderson sur N, chaque sommet n de N est doté d’un poids V (n), et on dispose de nombreux
criteres pour relier la nature du spectre de H = A +V avec les propriétés d’ergodicité de la suite (V (n))
([541, [102]). Dans le cas des arbres semi-infinis, on peut donc se poser la question suivante :

QUESTION 1.4.2. Quelle relation y a-t-il entre la nature du spectre des arbres semi-infinis et les
propriétés de croissance ou d’ergodicité de leur suite (T,,) ?

I’arbre squelette

L’arbre squelette, que 1I’on notera Tsquel, €st la limite au sens de Benjamini-Schramm des arbres uni-
formes. Plus précisément, si 7, est uniformément distribué parmi les n"~2 arbres étiquetés & n som-
mets, alors 7, — Tgquel, une convergence €tablie dans [35].

10 fuvariant line ensemble, dans la terminologie de [46].
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1.4. Spectre des arbres

FIGURE 1.11 — Histogramme des valeurs propres du spectre d’un arbre aléatoire sur 1000 sommets,
qui donne une idé€e approchée de I’allure de Usqyel-

En vertu de la continuité du spectre pour la convergence locale faible, on a bien la convergence
de la mesure spectrale empirique U7, vers la mesure Usquel. Cette mesure est aussi mal connue que
Hugw(z) ; en fait, les seules informations intéressantes sur Usquel sSONt obtenues en passant a la limite
dans ur,. Donnons deux exemples.

Atomes. Par des arguments élémentaires, il est possible de voir que foutes les valeurs propres d’arbres
finis sont des atomes de |lsquel ; cet ensemble est une partie dense de R et il est égal a I’ensemble A des
nombres algébriques totalement réels!!, un résultat de [127]. Dans les simulations (voir figure 1.11),
on voit la présence des atomes en 0, +1 (le spectre de I’arbre avec une seule aréte), ++/2 (le spectre
de I’étoile a deux branches).

La valeur précise de Usquel ({0}) est connue ; ce calcul résulte d’une analyse purement combinatoire
de 7,,. Le lien entre la dimension du noyau d’un arbre T et les feuilles de cet arbre est connu depuis
longtemps : pour tout arbre fini 7', on a dimker7 = min{k : M,_» # 0} olt M; est le nombre de
couplages parfaits dans 7' qui contiennent j arétes. Bauer et Golinelli ont exploité ce lien pour obtenir
une formule exacte de I’espérance du noyau de 7;,. Plus précisément, ils démontrent dans [21] que

m

E[dimker(T,)] = n 1—2’;(_;)"1 (%)m <”> . (1.4.9)

En utilisant des outils de combinatoire analytique, ils ont également calculé la fonction génératrice de
dimker(7,) et ont obtenu I’asymptotique de E[dimker(7;,)] sous la forme :

nli_)Hc}OHTn({o}) = .usquel({o}) =2x—1

"Un nombre est algébrique totalement réel s’il est racine d’un polynéme a coefficients entiers, dont toutes les racines
sont réelles.
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ol x, ~ 0,56714--. est I'unique solution de I’équation x = e™*. Cela réglait donc le probléme du
calcul de I’atome en zéro pour I’arbre squelette, comme (1.4.6) réglait ce probléme pour les arbres de
Galton-Watson poissonniens. Les simulations indiquent I’absence d’états étendus en z€ro pour Usqye|
(voir figure 1.11. Dans une courte section du chapitre 3, non publiée, j’ai démontré ce résultat :

Théoréme 6. La mesure spectrale squel ne possede pas d’états étendus en zéro.

Les arguments sont une adaptation des techniques déja utilisées pour démontrer la conjecture 1.
Il reste a résoudre la question de 1’existence d’une partie continue ; les simulations semblent indiquer
que Usquel possede effectivement une partie continue.

1.5 Valeurs propres de matrices aléatoires diluées

L’ objet de cette section est I’étude de certains graphes pondérés, c¢’est-a-dire de graphes dont les arétes
sont munies de poids.

Formellement, on se donne une matrice de poids W € ., ,(R), et la matrice d’adjacence M d’un
graphe quelconque, et on veut étudier la matrice P = M ©OW ou © est le produit de Hadamard terme a
terme : P, ; = M; ;W ;. De tels modeles ont ét€ tres étudi€s lorsque le graphe sous-jacent est relative-
ment peu dense (typiquement lorsque le nombre d’arétes de G est d’ordre nln(n) — on verra la raison
pour laquelle ce cadre est plus étudié) ou encore lorsque tout le probléme est hermitien, c’est-a-dire
lorsque W est hermitienne et le graphe sous-jacent G est un graphe simple non dirigé; un trés ré-
cent article de Tikhomirov et Youssef ([136]) décrit entierement le comportement des grandes valeurs
propres de P lorsque W est issue du GOE et G est un graphe d’Erd6s-Rényi de paramétre d/n avec
d — 0.

Les auteurs posent notamment les questions suivantes, que nous reprenons verbatim de [136, page
3]:

1) Y a-t-il un seuil (en fonction de d) pour I’apparition de valeurs propres détachées du spectre de
W (outliers) ?

2) Y a-t-il une expression explicite pour ce seuil ?
3) A-t-on une explication pour I’apparition de ces outliers ?
4) Quelle est I’asymptotique exacte de ces outliers ?

Dans le chapitre IV de cette these, fondé sur une collaboration avec Charles Bordenave et Raj Rao
Nadakuditi, nous répondons a ces quatre questions dans le cadre difficile des graphes dilués dirigés, 1a
principale motivation pratique venant du probleme statistique de la complétion des matrices, que nous
exposerons ci-dessous. Les résultat principal (Théoréme 7 en page 28) semble étonnant, parce qu’il
dit en substance que les valeurs propres de matrices non-symétriques sont en réalité plus intéressantes
que les valeurs singuliéres des matrices symétriques — la sagesse populaire!? voulant plutot que les
valeurs propres de matrices non-symétriques soient tres instables. Nous reviendrons dans la dernicre
section sur cette idée récente de la recherche sur les matrices aléatoires.

Reconstruction

Les problemes de reconstruction ont pour objectif de reconstruire un objet en général complexe (un
graphe, une matrice, un tenseur, une fonction périodique) a partir d’une petite quantité d’informations
sur cet objet, typiquement quelques entrées de la matrice, quelques coefficients de Fourier. Ces pro-
bleémes sont devenus extrémement populaires en mathématiques appliquées notamment via 1’essor des
systémes de recommandation.

12 . dans le monde des mathématiques numériques.
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Nous nous intéresserons plus particulierement aux problemes de reconstruction des matrices. Le
probléme est le suivant : une matrice W est cachée. On sait qu’elle posséde certaines propriétés struc-
turelles (sa taille n x m est connue, parfois des informations sur son rang ou ses entrées). Cependant,
I’observateur n’a acces qu’a I’observation de certaines entrées W; ; pour un petit ensemble d’indices
(i,j) € E < [n] x [m] et cherche a utiliser au mieux cette information pour retrouver (partiellement,
avec une faible erreur, ou méme exactement) cette matrice W.

La littérature sur le sujet est gigantesque et on renvoie a [65] et ses références pour une synthese
assez complete ; citons tout de méme les articles de Candes, Tao et Candes, Recht[53, 52], article de
Keshavan, Montanari et Oh [92] et celui de Chatterjee [55].

Obstructions au probléme et hypotheéses nécessaires

Il n’est pas toujours possible de reconstruire une matrice W a partir d’un faible nombre d’observation
de ses entrées. Les deux obstacles principaux sont le nombre trop faible de données, et la complexité
intrinseque de W.

Manque de données. Prenons un exemple de reconstruction trés simple, dans lequel la matrice a re-
trouver est de rang 1 et de norme 1, c’est-a-dire de la forme W = xy* avec x,y € R" deux vecteurs
unitaires. Retrouver W revient a retrouver x et y, a un signe ou une phase pres ; or, supposons que la
ligne i de W ne soit pas du tout observée. Il n’y alors aucune maniere d’accéder a x;. Autrement dit,
il est nécessaire que 1’observateur dispose au moins d’une observation par ligne et d’une observation
par colonne s’il veut espérer reconstruire sa matrice originale W aussi précisément que possible. Sup-
posons que les entrées révélées le soient au hasard, uniformément parmi toutes les entrées possibles
de la matrice ; par le principe du collectionneur, pour avoir au moins une entrée révélée par ligne, il
est nécessaire de disposer d’au moins Inn observations sur chaque ligne et donc nlnn observations en
tout, autrement dit toute densité d « Inn laissera nécessairement des lignes ou des colonnes enti¢res
inobservées.

La littérature sur la complétion de matrices s’est ainsi concentrée sur ce régime d = Inn. L’un des
apports de ce travail est de démontrer que tout n’est pas perdu lorsque d < Inn ou méme lorsque d est
fixé, et qu’au contraire il est possible d’obtenir un estimateur de W bien corrélé avec W.

Difficulté intrinseque du probleme. Toutes les matrices ne peuvent pas étre facilement reconstruites

a partir d’'une observation aléatoire de leurs entrées. Par exemple, supposons que la matrice W ait
toutes ses entrées non nulles, sauf éventuellement une ou deux, comme dans 1’exemple

110 -~ 00

. . 0 00 00

W =eje] +eje; = : :

0 . 0

Si les entrées révélées sont peu nombreuses et si leur localisation est suffisamment aléatoire, il n’y a
aucune chance pour que les deux seules entrées non nulles de la matrice ci-dessus soient observées.
On ne verra que des zéros. Il faut donc que les entrées de W soient suffisamment étalées dans la
matrice. Mathématiquement, cela revient par exemple a demander a ce que la plus grande entrée de W
soit d’ordre O(1/n), de sorte que la masse L? (norme de Frobenius) soit équitablement répartie entre
les entrées de la matrice. Ceci est parfaitement équivalent au fait de demander a ce que la masse des
vecteurs singuliers soit suffisamment répartie entre les entrées, une condition fréquemment appelée
condition d’incohérence.

Dans toute la suite, nous adopterons donc des hypotheses sur W qui rendent au moins le probléme
accessible. On va pour cela définir une large classe de matrices dont les parametres de complexité
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sont contrdlés. Signalons que ces hypotheses sont standard dans la littérature ; voir par exemple les
conditions AO-A1 dans [52] ou encore A1-A2 dans [92]. On renvoie a la synthese [65] sur ce sujet.

On commencera par s’intéresser exclusivement a des matrices hermitiennes positives ; ceci n’est
une restriction qu’en apparence, nous y reviendrons plus tard. Notons

W =>" o0 (1.5.1)

i=1

ou U = --- = U, sont les valeurs propres classées dans I’ordre décroissant, I’entier r est le rang, et les
@; sont des vecteurs propres unitaires orthonormaux.

(1) Le rang de W est inférieur a r.
(i) Les valeurs propres de W sont positives.

(iii) Il existe unréel b > 1 tel que

b
ma (1.5.2)

X|@iloo = —=.
ie[r] Vn
Enfin, conformément au theme général de cette theése, nos résultats sont valables a d fixé, sans
aucune restriction ; il s’agit donc des premiers et seuls résultats sur les valeurs propres de matrices

réellement diluées. Toutes nos démonstrations s’étendent au cas ou d croit lentement avec n, typique-
ment d = n°(1).

Méthodes spectrales

En regle générale, la matrice observée P est de rang élevé avec grande probabilité ; cependant, une
idée fructueuse pour reconstruire W a partir de P consiste a calculer sa décomposition en valeurs

singulieres, disons
rang(P)

ES
P= Z G,-(P)xiyi
i=1
avec les o; décroissants, et a couper toutes les valeurs singulieres et vecteurs singuliers au-dela du
véritable rang r de W, c’est-a-dire prendre

.
W =>"o:(W)xiyF.
i=1

Le théoréme d’Eckhart-Young dit que W est précisément la meilleure approximation de P par une
matrice de rang r (au sens de la norme de Frobenius) ; le probleme est qu’en regle générale, les va-
leurs singulieres des matrices non-hermitiennes et les valeurs propres des matrices hermitiennes sont
«polluées » par les plus grands degrés ([136, 24, 25, 96, 139]).

Une idée étonnante déja exploitée par Feige et Ofek ([77]) et popularisée par Keshavan, Monta-
nari et Oh dans leur célebre article [92] consiste a régulariser le spectre en supprimant les hauts de-
grés, c’est-a-dire les lignes de P avec trop d’entrées révélées, obtenant ainsi une matrice P, et ensuite
seulement 2 effectuer la troncation au rang r de la nouvelle matrice, disons 7,(P). Un des résultats
importants de [92] est que cette opération permet de retrouver les valeurs singulieres de la matrice
originale ; plus précisément, sous des hypotheses simples!?, les auteurs démontrent que

LW~ T,(P)| = O(y/r/d). (153)

13Cf infra.
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Les inégalités de Weyl permettent alors de voir que si d — 00, on retrouve la matrice W, et que les r
plus grandes valeurs singulieres de P sont alignées avec celles de W ; 1’équation (1.5.3) est valable a d
fixé, mais dans ce cas elle ne permet pas de déterminer I’asymptotique en n — oo des grandes valeurs
singuliéres de P.

L’aspect le plus intéressant de cette méthode est 1’étape d’émondage, ol I’on supprime certaines
données pour régulariser le spectre de la matrice observée et faire apparaitre certains parametres de W.
L’idée qui sous-tend les sections suivantes est qu’il ne fallait pas regarder les valeurs singulieres de
la matrice non hermitienne P, mais justement ses valeurs propres, qui sont directement alignées
avec les grandes valeurs propres de W. Cette idée neuve, selon laquelle la non-symétrie conserve
plus d’informations que la symétrie, semble prometteuse et a récemment émergé dans un article de
Chen et al ([56]). Nous reviendrons sur ce point dans la conclusion.

Asymptotique des grandes valeurs propres et détection des vecteurs propres

Le résultat principal que nous avons obtenu est une description exacte du comportement des valeurs
propres de la matrice P = (n/d)M ©®W, avec M la matrice d’adjacence d’un graphe d’Erdgs-Rényi
dirigé de parametres n et d /n — la normalisation par (n/d) est prise de sorte que E[P] = W.

Nous démontrons une transition de phase spectaculaire : il existe un seuil ¥ tel que toutes les
valeurs propres de P plus grandes que ce seuil sont asymptotiquement égales aux valeurs propres de
W plus grandes que ce seuil.

Pour expliciter ce résultat, nous introduisons la matrice X = nW © W, ou encore

Xey = nW.,. (1.5.4)

Nous notons p = | X| sa norme d’opérateurs, qui est du méme ordre de grandeur que celle de
W sous I’hypothese d’incohérence 1.5.2. On pose également L = nmax, , |Wy,|. Sous les hypotheéses
précédentes sur W, le réel L est d’ordre O(1). Le seuil dont il est question plus tot est défini par

_ p L
S—max{\/;,d}.

Notons s le nombre de valeurs propres de W plus grandes que & :
M= U >0 > Uy =00 = U (1.5.5)

Onnote |A;| = --- = |A,] les valeurs propres de la matrice A. Le premier résultat est une asympto-
tique exacte des grandes valeurs propres de P.

Théoreme 7. Soit d > 1 un réel et W une matrice réelle de taille n x n vérifiant les hypothéses
mentionnées plus haut. Si n est assez grand, pour tout i € {1,...,s} ona

i — Ai| = o(1). (1.5.6)

Par ailleurs, pour tout i > s on a
A <d+o(1). (1.5.7)

Signalons que le seuil ¥ est défini comme un maximum : c’est le méme phénomene que celui
déja noté dans la premiere partie de cette theése, ol la seconde valeur propre était asymptotiquement
inférieure 4 p v §~!. Le nombre §~! était d’ailleurs égal au maximum des entrées de la matrice de
transition, comme ici L/d est le maximum des entrées de P avec grande probabilité.

Lorsque d est suffisamment grand (plus précisément lorsque d > L?/p) c’est le premier terme
qui I’emporte dans la définition de ¥ ; on peut vérifier facilement que L?/p est une mesure de la
délocalisation de la matrice W, au sens ou pour une matrice trés délocalisée (typiquement, avec toutes
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les entrées égales) on a L?/p = 1.1l y a donc un phénomeéne de compétition entre la délocalisation de
la matrice et la densité d.

Notre second résultat est une description du comportement des vecteurs propres de P. Le résultat
n’est pour I’instant démontré que pour les matrices de rang 1 (un cadre déja tres intéressant, voir [56])
mais il sera étendu a tous les faibles rangs dans de prochains travaux.

Théoreme 8. Supposons que W = @ @* avec ¢ un vecteur localisé. Si d > n|¢@
si W est le vecteur propre de P associé a Ay, alors avec probabilité 1 —o(1),

3, alors Ay — Uy, et

nl o[}
=,

Ky, @)l = (T+o(1)4 /1 - (1.5.8)

Le seuil n| (p|i provient simplement du calcul de p dans ce cas précis. Noter que plus ¢ est déloca-
lisé, plus ce nombre est petit, autre exemple de la compétition évoquée plus haut entre délocalisation
de W et densité d.

Il est donc possible d’obtenir une corrélation strictement positive avec le véritable vecteur propre
¢ ; en ’absence totale d’informations, le meilleur estimateur possible pour ¢ consiste simplement a
prendre un vecteur uniforme u sur S"~! et la corrélation (u, @) tend alors vers 0.

Non-orthogonalité

Nos travaux ont mis en évidence un phénomene étonnant : les vecteurs propres de la matrice P associés
aux valeurs propres au-dessus du seuil ¥ posseédent une structure de covariance non-triviale. Plus
précisément, il existe une matrice I" de taille s, dépendant uniquement de W et de d, telle que si y;, ;
sont les vecteurs propres de P associés a A; ~ p; et A; ~ u;, alors (y;, y;) ~ I'; j (pour un énoncé précis,
on renvoie au dernier chapitre du manuscrit). En régle générale, la matrice I n’est pas diagonale :

k i,
Z<1X o) (1.5.9)

ol X a été définie en (1.5.4) et ¢/ := ;O @ ; est le produit terme a terme des vrais vecteurs propres.
Dans certains cas (par exemple, si la masse ¢ de chaque ligne de W est constante), on peut facilement
voir que I' est diagonale, mais il est possible de construire des exemples simples pour lesquels ce
n’est pas le cas. Une des difficultés dans la démonstration de ces résultats provient de cette non-
orthogonalité (qui disparait lorsque d — 0).

Erdos-Rényi dirigé

Une conséquence immédiate des théorémes précédents concerne le spectre du graphe d’Erd6s-Rényi
dilué, obtenu en prenant tout simplement W; j = 1/n, dont le spectre est 1 et 0 avec multiplicité n — 1.
Comme nW ®W = W, on obtient p = 1 et & = 1/\/?1

Ces graphes sont pour ’instant relativement peu étudiés du point de vue spectral, surtout compa-
rés a leurs homologues non-dirigés : pour ces derniers, trés bien connus maintenant, les résultats de
Komlos et Fiiredi [81] et Krievelevitch et Sudakov [96] complétés par les récents travaux de Benaych-
Georges, Bordenave et Knowles ([24, 25], Tikhomirov et Youssef [136] et Alt, Ducatez et Knowles
[11] élucident entierement le comportement des grandes valeurs propres pour tous les régimes de d.

Pour les graphes d’Erdds-Rényi dirigés, notre résultat est le suivant.

CONSEQUENCE 1.5.1. Soit d un nombre réel fixé et soit A la matrice d’adjacence d’un graphe
d’Erd6s-Rényi ER(n,d /n) dirigé. Les assertions suivantes sont vraies avec probabilité 1 —o(1) lorsque
n—o:

1. Sid < 1, toutes les valeurs propres de A sont de module plus petit que 1+ o(1).
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FIGURE 1.12 — Représentation (en vert) du vecteur propre Y associé a la plus grande valeur propre de
A pour un graphe d’Erd6s-Rényi sur 1000 sommets avec d = 7. Toutes les entrées de y sont positives
(théoréme de Perron) et la corrélation entre y et le véritable vecteur propre 1/4/n (en violet) est proche

de \/T—1/7 ~ 0.9258.
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FIGURE 1.13 —Représentation de |(y,1/4/n)| pour plusieurs valeurs de d, avec n = 1000. Pour chaque
d=2,...,20, on a généré 20 réalisations de ER(1000,d) et calculé |{y,1/4/n)| (petits tirets verts).
La moyenne est en rouge et la limite théorique /1 — 1/d est en noir.

2. Sinon, d > 1; dans ce cas, A;(A) — d et toutes les autres valeurs propres sont de module plus
petit que \/d +o(1).

Si y désigne le vecteur propre de A associé a A;(A), alors

1

Ky, @) =4 [1— 7 (1.5.10)

Ces points sont illustrés dans les figures 1.12-1.13.

L’énoncé précédent démontre ainsi une observation bien connue et souvent mentionnée par les
physiciens, 4 savoir que la mesure empirique spectrale a son support dans D(0,+/d) y compris dans
le cas dilué; on renvoie a I’excellente synthese [114] (venue de la physique), et en particulier aux
sections 4.2 et 4.3, qui mentionnent ces faits sans les démontrer rigoureusement toutefois.

Notons fis, la mesure empirique spectrale de la matrice d’adjacence d’un graphe d’Erd6s-Rényi
dirigé de parametre d/n ; a ce jour et 2 ma connaissance, il n’existe strictement aucun résultat rigoureux
sur ces mesures dans le cadre dilué. Seul un article de Basak et Rudelson [18] démontre que si d =
Q(In(n)?), alors la mesure empirique spectrale converge vers la loi du cercle. Il n’est a ce jour pas
démontré que iy, converge vers une mesure sur C, et une éventuelle forme limite n’est méme pas
conjecturée, au contraire de la conjecture de Kesten-McKay orientée déja mentionnée (Figure 1.4).

Reprenons enfin une remarque déja faite dans la premicre section de cette introduction : nous
ne démontrons qu’une borne supérieure. La borne inférieure correspondante, a savoir |A;| = Vd —
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FIGURE 1.14 — Trois réalisations de spectres de graphes d’Erdés-Rényi dirigés a n = 10000 sommets,
pour trois valeurs de p = d/n. On a coupé I’outlier et renormalisé par 1/+/d. Lorsque d = 1, le graphe
limite est fini presque sirement et le spectre se trouve concentré sur les valeurs propres des graphes
dirigés finis.

o(1), n’est pas démontrée, mais semble vraie (voir en particulier la figure 1.14). Les démonstrations
classiques de telles bornes inférieures (comme la démonstration de la borne d’ Alon-Boppana) ne se
transposent pas au cas dirigé.

Cas typique : vecteurs propres uniformes.

Nos résultats sont valables pour n’importe quelle matrice initiale fixée W vérifiant les hypothéses
mentionnées. On pourrait penser que ces hypotheses sont restrictives, mais ce n’est pas le cas. En
un sens, presque toutes les matrices vérifient ces hypotheses. En effet, étant donné un spectre ¥ =
diag(uy, ..., 1), on peut choisir la matrice des vecteurs propres U € .#, ,(R) distribuée selon la me-
sure de Haar sur I’ensemble des matrices orthonormales de taille n x r; la matrice

W =U*ZU

est alors uniforme parmi toutes les matrices ayant ¥ comme spectre, et il est bien connu que U vérifie
I’hypothese de délocalisation au sens ot |U |, = O(+/Inn/n) avec grande probabilité. Un tel modele
est populaire dans la littérature de la complétion de matrices, et déja utilisé dans [53, 92].

Les théoremes énoncés plus hauts seront donc valables pour « la plupart » des matrices de rang r
ayant un spectre fixé. On trouvera dans les figures 1.15 et 1.16 des illustrations du phénomene décrit
dans le théoreme 8 pour une matrice de rang 1.

Ces résultats complétent bien ceux obtenus dans [56], qui se placent toutefois dans le régime
d — oo (voir en particulier [56, Page 10]) et n’obtiennent pas la transition en ¥ ou les asymptotiques
exactes ; en effet, notre méthode n’utilise pas de théoreme de perturbation des vecteurs propres comme
Davis-Kahan ou I’identité de Neumann (voir [142, 71, 56]), qui sont souvent optimaux dans le pire
des cas mais assez mauvais dans les cas typiques.

Nos démonstrations integrent directement des approximations de vecteurs propres, et permettent
ainsi d’obtenir des informations fines sur ces derniers : un élément clé dans nos démonstrations est que
si £ = cIn(n), ol c est une constante judicieusement choisie, alors le vecteur A’ @; est asymptotiquement
aligné avec le i-eéme vecteur propre de A lorsque i € [ro].
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FIGURE 1.15 — On a pris P = @¢@* avec ¢ ~ Unif(S"~!), n = 1000. Les entrées de ¢ ont été triées
par ordre croissant. Les entrées du vecteur Y sont en vert. La corrélation théorique est proche de

/1 —nl|@|}/d ~ /1 —3/d avec grande probabilité.
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FIGURE 1.16 — Représentation de |{y;, ®)| pour différents d. On a d’abord généré W = @¢* avec
¢ uniforme sur S"~!. Ensuite, pour chaque d = 2,...,20, on a effectué 20 simulations de A avec W
comme matrice sous-jacente, puis on a calculé (yj, ). La moyenne est en rouge et la valeur limite

/1 —n|@|}/d est en noir.

1.6 Deux remarques pour finir

Cette derniere section présente deux idées nées des résultats de cette these.

‘Diluted’ is the new ‘sparse’

Dans la littérature sur les réseaux ou les matrices peu denses, on observe plusieurs interprétations sur
ce que signifie « peu dense ». Le consensus général est que le degré moyen des connections d’un agent,
disons d, doit étre négligeable devant la taille n du systeme : d = o(n). Cependant, deux régimes sont
peu denses en ce sens : le régime que nous appellerons dilué, ot d = O(1) est borné indépendamment
de n, et le régime épars ou d = o(n) mais tend vers 'infini, typiquement d = (Inn)“ ou d = n%, avec
a < 1. Signalons que cette terminologie n’est pas fermement établie, et que les deux termes ont été
rencontrés 1’un pour I’autre dans la littérature.

L’étude « moderne » des réseaux peu denses a commencé dans les années 1960 avec les travaux
sur la transition de phase dans le modele d’Erd6s-Rényi, puis elle a véritablement explosé depuis les
années 1990 avec I’émergence de réseaux informatiques ou sociaux, dans lesquels les agents possedent
un nombre relativement faible de liens avec les autres agents. Or, du point de vue des applications, les
deux régimes dilué et épars sont identiques. Les ingénieurs, statisticiens ou physiciens ne seront jamais
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confrontés a des réseaux de taille supérieure a, mettons, 1080 (le nombre d’atomes dans 1I’univers
observable), et en pratique les régimes dilués ou épars seront strictement indiscernables (on a In 1030 ~
184). Pour ces applications, on peut donc a priori se contenter de résultats sur les cas épars, out d — o0
lentement, car ces derniers se sont révélés plus simples a traiter.

La différence entre les régimes dilué et épars n’est pourtant pas artificielle, bien au contraire, et
révele une transition de phase profonde et a mon sens sous-estimée dans la littérature : le régime
épars se situe naturellement dans la classe d’universalité spectrale « dense », celle du semi-cercle
pour les modeles hermitiens, et celle du cercle pour les modeles non-hermitiens. Dans les principaux
modeles de graphes (d-réguliers, ErdGs-Rényi d/n) avec densité d — oo, la mesure spectrale converge
systématiquement vers Psc OU VErs Peercle, €t c€ y compris aux échelles microscopiques ([18, 57, 17,
59,75,47,75,74]). Or, une partie des réseaux réels étudiés par les ingénieurs ou les statisticiens ne fait
pas partie de la classe d’universalité de Wigner ([76, 129]), comme les graphes des réseaux sociaux,
dont le spectre ne ressemble visiblement pas a un semi-cercle (figure 1.17).

Le bon critere pour les modeles de réseaux réels ne semble donc pas étre uniquement le faible
nombre de liens entre les agents du systéme, mais aussi la structure spectrale assez éloignée des lois
de référence comme la loi du semi-cercle ou du cercle : présence d’atomes, supports non bornés,
états étendus et non étendus. Le lecteur pourra s’en convaincre en observant les quelques exemples de
spectres de réseaux réels dans la figure 1.17 page 34 (les réseaux en question sont décrits a la fin du
paragraphe). Ce sont ces aspects 1a des modeles réels que 1’on devrait retrouver dans les modeles des
mathématiques appliquées. De ce point de vue, méme des modeles de graphes dilués ne conviennent
pas forcément : les résultats obtenus pour un graphe d’Erdds-Rényi avec parametre d fixé mais grand,
par exemple d = 10%, seront certainement plus éloignés de la réalité que ceux obtenus pour tout 7 et
pour tout d < Inn.

Les données des réseaux de la figure 1.17, page 34, sont en acces libre, voir la base de donnée [99]
et 'article [140] et les références ci-dessous. Les quatre jeux de données dont j’ai représenté le spectre
sont les suivants.

(a) La Bible du roi Jacques (King James Bible, 1611) est une version anglaise de la Bible, encore
aujourd’hui référence dans I’Eglise Anglicane. Elle contient de nombreux noms (de villes ou
de personnes), qui sont les 1773 sommets du graphe. Deux noms sont reliés par une aréte s’ils
apparaissent dans le méme verset ; chaque aréte est pondérée par le nombre de versets dans
lequel apparaissent les deux noms (ce sont donc des multi-arétes). Il y a en tout 9131 arétes et
16401 multi-arétes ; le degré moyen est 18,5 et le degré maximal est 364 — il s’agit du nom
Israél. Ces données ont été compilées par Chris Harrisson.

(b) PGP (PrettyGoodPrivacy) est un algorithme populaire de cryptage, utilisé en particulier pour les
échanges de courriers. Les noeuds du réseau sont les utilisateurs (10680) dans la composante
connexe géante, et deux utilisateurs sont connectés s’ils ont échangé des informations sécurisées
par PGP. Il y a 24316 arétes, le degré moyen est 4,55 et le degré maximal est 205 (voir [30]).

(c) Le réseau électrique des Etats-Unis (un des réseaux étudiés dans le célebre article [140]) est
composé de 4941 unités (en regle générale, des transformateurs ou des centrales) ; les arétes
représentent les lignes électriques et il y en a 6594. Le degré moyen est 2,66 et le degré maximal
est 19.

(d) En 2003, le réseau de courrier électronique de I'université Rovira i Virgile a Tarragone ([86])
contenait 1133 utilisateurs (composante géante). Deux utilisateurs sont reliés s’ils se sont en-
voyés un mail. Il y a 5451 arétes, le degré moyen est 9,6 et le degré maximal est 71.
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FIGURE 1.17 — Quelques spectres de réseaux réels dilués.

Moins de symétrie, plus de valeurs propres

On trouvera dans la plupart des manuels d’algebre des descriptions de I’instabilité des valeurs propres
des matrices non symétriques. Par exemple, il est facile de construire deux matrices non symétriques
tres proches dans plusieurs normes, mais dont les valeurs propres sont parfaitement dissemblables.
Pourtant, la remarquable et omniprésente loi du cercle semble indiquer que les valeurs propres de cer-
taines matrices aléatoires non symétriques sont en fait trés stables (voir [40, Figure 2 et commentaire]),
comme si I’aléa dans la matrice régularisait suffisamment le spectre.

Des résultats récents semblent en effet montrer que les matrices non-symétriques possedent des
propriétés spectrales bien plus fines qu’on aurait pu I’imaginer, et refletent méme les statistiques des
réseaux sous-jacents mieux que leurs équivalents symétriques. Par exemple, dans le probleme de la
détection de communautés, ce n’est pas la matrice d’adjacence qu’il fallait étudier, mais une de ses va-
riantes non-symétriques, la matrice non-backtracking ([97, 43]), parce que les grandes valeurs propres
de cette derniere refletent mieux la structure interne du graphe.

Récemment, un article de Chen et al ([56]) a franchi le pas, en suggérant qu’il serait parfois
bénéfique de dé-symétriser des problémes symétriques. Les auteurs remarquent et démontrent un phé-
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nomene tout a fait similaire a celui exposé dans la derniere partie de cette these : si M est une matrice
symétrique de faible rang perturbée par un bruit H non-symétrique, il est plus efficace et plus facile de
retrouver la structure de M a partir des valeurs propres de M’ = M + H qu’a partir des valeurs singu-
lieres de M’ ; de plus, méme si la matrice sous-jacente M est symétrique, il est sous-optimal d’utiliser
cette information en symétrisant M’.

C’est également la conclusion de nos travaux : y compris lorsque la matrice sous-jacente est sy-
métrique, dé-symétriser les observations revient a les réorganiser pour mieux faire apparaitre leur
structure, et ce

e sans supprimer d’informations, contrairement a d’autres procédures déja utilisées, par exemple
I’émondage des hauts degrés dans [77] ou [92],

e sans perdre en dimension, comme c’était le cas avec la matrice non-backtracking dont le passage
de la dimension n a la dimension dn pouvait s’avérer pénalisant en pratique, méme lorsque
d=10.

Une telle dé-symétrisation peut ne pas €tre optimale ; les auteurs de [56] notent par exemple que leurs
procédures de dé-symétrisation entrainent une augmentation de la variance du bruit. Deux perspec-
tives semblent prometteuses : premierement, les résultats théoriques que nous avons exposés dans la
derniere partie de cette thése ouvrent la voie a des calculs de seuils trés précis, qui permettront souvent
de résoudre entierement des problemes statistiques malgré 1’augmentation du bruit ; et deuxiemement,
d’autres procédures de dé-symétrisation moins élémentaires permettront certainement de mieux tirer
parti de cette nouvelle philosophie.
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Chapter 2

The spectral gap of sparse random
digraphs

This chapter is drawn from the prepublication [62].

2.1 Introduction and statement of the results

2.1.1 Directed configurations

Given two n-tuples of positive integers, say (d;",...,d;) and (d; ,...,d, ), we build a sequence of
directed multigraphs G, G», ...using the configuration model: at each of the n vertices (labeled from
1 to n), we glue tails and heads. The vertex i has d;" heads and d; tails. For consistency we ask the
total number of tails to be equal to the total number of heads:

idﬁ:idi—:zM. (2.1.1)
i=1 i=1

We then choose uniformly at random a matching of the tails into the heads, that is a random
permutation o, € G). If e is a head attached to vertex x, we glue it to the tail o,(e) =f. If fis
attached to vertex y, this gives rise to an oriented edge from x to y. The whole construction leads to
a directed multigraph G, (we will often say digraph) on n vertices called the directed configuration
graph associated with the so-called degree sequence dfr,df ,-..,df d~. The permutation o, will
sometimes be called the environment.

The random graph G,, will simply be noted G, the n-dependence being implicit through all this
paper. We are interested in properties of G in the asymptotic regime n — 00: we say that an event
depending on n holds with high probability if its probability tends to 1 as n — co.

If u is a vertex, we will adopt the following notations: E™ (u) is the set of all heads attached to u,
and E~ (u) is the set of all tails attached to u. Therefore, #£ " (u) = d| and #E~ (u) = d,;. Through
all this paper, and unless specified otherwise, heads will be denoted by the bold letter e and tails by f.

2.1.2 Statement of the theorem and illustrations

The transition probability matrix P on the graph G is defined as follows:
B #ecEt(u):0(e)e E-(v)}

= e )
The matrix P is thus a random stochastic matrix. The eigenvalues of P are the n complex roots

(counted with multiplicity) of its characteristic polynomial det(P — zI). We order them by decreasing
modulus:

(2.1.2)

P(u,v)

an| < ‘ln—l‘ <0< ‘AZ‘ <)Ll =1.
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Recall that all those eigenvalues are random variables depending implicitly on n and on the degree
sequence (d;",d;")i<,. We will impose that all the degrees are bounded independently on 7, meaning
that there are two constants § > 2 and A > § such that for every n,

8 <min{d{ ., d;,....d;} . d;} and max{d; ,d,....d}.d, } <A. (H1)

yYn 2y n no»wn

Under the first assumption, the minimal degree is greater than two (which means there are no dead-
ends) and the graph G is strongly connected with high probability as shown in [61]. Let us introduce
a central parameter of this model:

(2.1.3)

Our goal is to link the modulus of the second eigenvalue with p. The main result is the following
theorem.

Theorem 1. Let P be the transition matrix (2.1.2) of the random digraph associated with the degree
sequence (di ,dy ,...,d; d;) satisfying (H1). Let p be as in (2.1.3) and define p = p v 1. Then,

9 ¥n 2™n
as n goes to infinity, we have for every € > 0:

lim P (|22] > p +€) =0. (2.1.4)

Hence, for every € > 0, with high probability as n goes to infinity, the second eigenvalue satisifies

This theorem only provides an upper bound for |A;|; knowing if the bound is optimal and having
a symmetric lower bound are questions not adressed in this paper. The following figure shows an
illustration of (2.1.4).

REMARK 2.1.1. When 8! is smaller than p, the bound of theorem 1 is equal to p. This happens
when

5p>1 (2.1.5)

and this is not always verified as shown in the following example:

df =d- =2  Vie{l,..,100}
d =d7 =8  Vie{101,...,200}.

This degree sequence satisfies p = \/ n/M = \/ 200/1000 ~ 0.45 and in this case we have dp < 1. In
fact, using Jensen’s inequality, one can give a slightly stronger form of (2.1.5). Let #~ be the so-called
in-degree distribution on vertices {1,...,n}, that is © (i) = d; /M. Let U be a random variable with
probability distribution T~ : we have
1
2
oaly]
di

Using Jensen’s inequality for the convex function x — 1/x, we get E[d;;]™! < p?. A direct conse-
quence of hypothesis (H1) is 8§ < E[d;/] < A, so (2.1.5) is fulfilled when E[d}} ] < 6. This hypothesis
can be interpreted as a concentration hypothesis in the sense that the out-degree of a w™ -distributed
random vertex has an expectation not far from the minimum out-degree.
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(b) Case with p = p.

Figure 2.1 — Two spectra of the transition matrix on a random configuration digraph. We drew in
red the circle with radius p; in green, the circle with radius & —1 The rightmost outlier is the Perron
eigenvalue 4 = 1.

e In figure (a) there are n = 1600 vertices: 700 of them have type (2,2) and 800 have type (9,9). In
this case we have p = 5! = 1/2. Notice that there are very few outliers outside the circle of radius
p: only one in this case.

e In figure (b), there are n = 1800 vertices, 600 of them have type (5,6), 600 of type (3,7) and 600 of
type (9,4). Here we have p = p.

2.1.3 Ramanujan digraphs and the Alon conjecture

A d-regular undirected graph is said to be Ramanujan if every eigenvalue A of its transition matrix
has |A| = 1 or |A| < 2+/d — 1/d. Those graphs have been very well studied, notably for their optimal
expansion properties ([66, 87]). The reason why the value 2+/d — 1/d appears here is because the
universal cover of every d-regular graph is the infinite d-regular tree T,, and its transition operator
has spectrum [—2+/d — 1/d,2+/d — 1/d], a classical result of Kesten [93]; Ramanujan graphs are the
regular graphs whose non-trivial eigenvalues are included in the spectrum of their universal cover.
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A recent line of research generalized this to digraphs, as recently! surveyed in [124]: the universal
cover of a d-regular digraph is the infinite d-regular tree T, obtained from the infinite 2d-regular tree
T, by assigning a direction for d edges at every vertex and the other direction for the d other edges
at this vertex. The spectrum of the transition operator T is precisely {z € C : |z| < 1/+/d} as proven
in [67]. By analogy, a d-regular digraph is called Ramanujan if every eigenvalue A of its adjacency
matrix has [A| = 1 or [A] < 1/V/d.

Explicit constructions of Ramanujan graphs have been a challenging problem with a rich history,
but one of the most striking phenomenon in the domain is that most regular graphs are nearly Ra-
manujan. More precisely, Alon conjectured in [9] that for every d, €, the second eigenvalue A, of the
transition matrix of a uniform d-regular graph on n vertices is smaller than 2+/d — 1/d + € with high
probability when n — co. The question remained open for two decades and was solved by Friedman
in his celebrated 2004 paper [79]. In fact, the bound was optimal due to a simple inequality already
shown by Alon, sometimes referred to as the Alon-Boppana inequality ([120]). This is now called
Friedman’s second eigenvalue theorem:

Theorem 2 ([79, 33]). Fix an integer d > 2. For every € > 0, as n — o0 we have
24/d —1
p ( V‘ > g> ~o,

d
This solved the first-order asymptotic behaviour of the second eigenvalue for regular graphs; we
refer the reader to the introductions of [9, 33, 66, 87] for further reference. When it comes to regular
digraphs, our main theorem settles the Alon conjecture for digraphs (see [124, section 5.5]). In fact,

in a d-regular digraph, we have d;" = d. = d, hence p is equal to é v ﬁ = ﬁ. We state this as a

|Az| — (2.1.6)

corollary.

COROLLARY 2.1.2. Letd > 2 be a fixed integer and P be the transition matrix of a random d-regular
digraph. Note |A,| < --- < |A2| < A1 = 1 the eigenvalues of P, ordered by decreasing modulus. Fix
€ > 0. Then, as n goes to infinity, the following holds with high probability:

1
| < e 2.1.7)

2.1.4 Motivation, background and related work
Random digraphs

In this paper, we consider random directed (multi)graphs with a specified sequence of in-degrees and
out-degrees; when all the degrees are equal to d, this model reduces to the directed d-regular case.
Our construction with half-edges is a directed variant of the classical configuration model (see [32]).
When the degrees are bounded independently of the size of the graph, such multigraphs are sparse,
meaning they have few edges. Even if digraphs are much more difficult to handle than undirected
graphs, they are also one step closer to reality when modelling real-life situtations: see [119, 60] and
references for (many) examples of graph-modelling that go beyond the Internet graph.

Eigenvalues of Markov chains

Many strong connections exist between the second eigenvalue of a transition matrix and the conver-
gence properties of the corresponding Markov chain. The following proposition is the most known
result:

IThe survey [124] appeared on the ArXiv after the first version of this paper.
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PROPOSITION 2.1.3 ([104], [117]). Let P be the transition matrix of an irreducible, aperiodic
Markov chain on the finite state space S = {1,...,n} with stationary distribution .. Let 1 = |A,| >
|A2| = --- = |A,| be the eigenvalues of P ordered by decreasing modulus and d(n) be the distance to
equilibrium at time n, defined as d(n) = maxes |P"(x,-) — 7. | v, with | - |rv the usual total variation
distance. Then,
lim d(n)" = |- (2.1.8)
n—0o0

In other words, large values of the spectral gap V. := 1 — |A,| are linked with fast convergence.
For random walks on graphs, A, is also known to be strongly linked with expansion properties of the
underlying graph (see [87] for an excellent survey). It is thus of special interest to study the spectrum
of transition matrices; however, instead of focusing on a fixed chain P, researchers now study “generic"
models of transition matrices. Most of the time, the transition matrix is chosen at random among a
certain type of matrices and its properties are studied in a probabilistic setting. In this line, random
walks on random graphs have attracted an extraordinary attention during the last decades.

Another very important aspect of Markov chains linked with |A;| is mixing, and especially the
cutoff phenomenon ([69, 104]). Proving cutoffs for large classes of random walks is an active line
of research. In the context of random graphs, cutoff had been proven with high probability in the d-
regular model ([106]), but it was recently shown by Lubetzky and Peres in their influential paper [105]
that every Ramanujan graph exhibits cutoff, suggesting that optimality of the second eigenvalue is
linked with optimal mixing. Our paper gives the first upper bound for the second eigenvalue for a non-
reversible model of Markov chains. The cutoff phenomenon for our model has been established whp
in the inspiring paper [39], with a logarithmic mixing time (see Theorems 1 and 2 in [39]). Note that
our main result (Theorem 1) immediately implies Theorem 3 in [39], as a consequence of Proposition
2.1.3.

Random transition matrices

While we are interested in the spectral gap of a special kind of those matrices, some serious advances
on global asymptotics of the spectrum have recently been made. In a series of papers [57, 58, 17],
Nicholas Cook and coauthors established convergence towards the circular law of the empirical spec-
trum of matrices related to the adjacency matrix of d-regular directed graphs, when d grows to infinity
with . In another series of papers ([37, 36, 38]), Bordenave, Caputo and Chafai considered the spectra
of a transition matrix P constructed by row-normalizing a random matrix with nonnegative iid entries
X; j, that is P(i, j) := w-p(i)_1 where p(i) := X;1 + -+ + Xi». A key result is formulated in [38]
where the authors prove the convergence towards the circular law in the sparse case where the X; ; are
heavy-tailed with index o €]0, 1[. They also conjecture ([38, Remark 1.3]) that in this case, whp the
second eigenvalue |A,| will be smaller than +/1 — . We believe that our method could be adapted to
tackle this conjecture.

Non-reversible chains

A key feature of random walks on random unoriented graphs is reversibility of the Markov chain.
When the walk is reversible, the transition matrix P has a known stationary distribution 7, and is
self-adjoint relatively to the hilbert product (-, -), defined by

<X,y>* = inyiﬂ:*(i) (-xvye Rn)

xeV

In this reversible case, all the classical tools from hermitian algebra can be used to study the
spectrum of P. When P is not reversible but when its stationary distribution 7, is known, we can
still use the reversibilization trick introduced by Fill ([78]; see also [117]): if P* denotes the time-
reversibilization of P, defined as P*(i, j) = P(j,i) 7. (j)7.(i)~"!, then PP* is self-adjoint for {-,-),. All
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the eigenvalues 1 = p; > tp > --- > p, > 0 of PP* are real and positive, and iy > |A,|?, thus giving
informations about |A,|. However, in any model where 7, is not explicitly known, those techniques
are useless.

Our method is the first one to efficiently deal with the top eigenvalue of non-hermitian matrices
with no information on the eigenvectors; we strongly believe this method could prove extremely useful
in other problems within the random matrix theory, especially in the non-hermitian setting.

In fact, after the first version of this paper was put on the ArXiv, other results on the spectral gap
of random matrix models have been proven with this method, such as the spectral gap for random
biregular bipartite graphs [50], and for sparse bistochastic matrices [45].

We finally mention some related questions and conjectures.

1. What is the link between |2, | and the cutoff phenomenon for the Markov chain ? Do all graphs
in our model having |4,| < p exibit cutoff ?

2. Is the upper bound (2.1.4) optimal ? In the Friedman theorem, the difficult part was to prove the
upper bound while the lower bound had been proven very early ([120]) using the full strength of
the symmetric nature of P. We have proven an upper bound for our model, but no lower bound
is known yet.

3. This paper deals with the second eigenvalue of random digraphs in general. In the specific
case of d-regular digraphs, it is conjectured in [40, Section 7] that the whole empirical spectral
measure of the adjacency matrix of a d-regular digraph converges almost surely in distribution
to Wokmc, a complex version of the Kesten-McKay distribution, namely

d*(d—1)
—1
Hokme (d2) =7 = aya L <vadz

2.1.5 Conventions and notations
The operator norm of a real square matrix A € ., (R) is
|Ax]
Al = sup T+
x20 X

1. . . . ..
where x| = (x? +--- +x2)2 is the standard euclidean norm. If M is any matrix, AT is its usual

transpose. We will also note 1 the column vector 1 = (1,...,1)". If (a,) and (b,) are two real
sequences, we use the classical Landau notations a, ~ by,a, = o(b,) and a, = O(b,).

We will also adopt the following notations for half-edges in our model. Formally, a half-edge will
be coded by a triple (u,i,€), where

e 11 1S a vertex,

e £€{—,+} is a sign indicating the nature of the half-edge: a + symbol denotes a head, a —
denotes a tail,

e iisanintegerin {1,...,d5}.

With this notation, we have E™ (u) = {(u,i,+) :i=1,...,d])} and also E~ (u) = {(u,i,—) : i =
1,...,d;)}. These notations will specifically be used in the combinatorial section 2.6. In general,
it will be more convenient to adopt the following conventions, much easier to read: heads will be
denoted by the bold letter e and tails will be denoted by the bold letter f. If a half-edge e is attached to
vertex u, we will write d instead of d*.
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2.2. Proof of the main theorem

For example, a 2-step path in the graph between vertices a and b is a sequence of the form
(e1,f),ep,f,) with e attached to a, f; attached to b, e, and f; attached to the same vertex and
o(e;) =f;,0(e2) =f,. We will give a complete and precise definition of paths further in the pa-
per.

In the rest of the paper, we will denote all universal constants by C > 0.

2.1.6 Acknowledgements

The author is grateful to his advisors Charles Bordenave and Justin Salez for their valuable help
and advice during the writing of this paper, from preliminary discussions about the problem and the
understanding of [33] to the final remarks on the manuscript.

2.2 Proof of the main theorem

2.2.1 Outline

We give a motivated sketch of the main difficulties in the proof of our theorem and the core ideas to
overcome them.

As mentionned in the beginning of [79] or [33], the standard trace method for bounding |A;| is
doomed to fail: the main obstruction comes from the fact that with small probability, some very small
graphs with many cycles (“tangled graphs") are present in the graph, and they drastically perturb the
expectation of the trace of P'. To tackle the problem, a powerful idea is to use a selective trace.

Recall that the coefficient (i, j) of P’ is the sum over all paths of length 7 from i to j of the
probability that the simple random walk follows this path. Instead of taking all those paths, we are
going to select only those that are not “too much tangled" and replace the matrix P* with a “tangle-
free" matrix P() — all proper definitions will be stated in Section 2.2.2 — and use the fact that with
high probability, when ¢ is not too large, there are no tangles in the original graph (Proposition 2.2.3).
This idea was introduced in [79] for the proof of the Friedman theorem and was refined in [33] and
[43].

In the models studied in these papers, it was easier to study paths that are non-backtracking, i.e.
that do not take the same edge twice in a row. In our own model of directed graphs, no edge can
be crossed twice in a row except self-loops — which are rare — hence we can concentrate on the
transition matrix P’ or its tangle-free analog P() instead of resorting to non-backtracking matrices.

The next step will be to relate the second eigenvalue of P() with the matrix norm of different other
related matrices, namely B(’) and R, defined in 2.2.2. Those matrices are easier to study, because
their components are nearly centered. Their norms are given in Propositions 2.2.6 and 2.2.7.

The key difficulty of our model, compared to the regular case studied in [33], lies in the fact that
the stationary distribution is unknown. In the regular case, the stationary distribution — i.e., the top
left-eigenvector — is known to be (1/n, ..., 1/n), which could be used in Lemma 3 of [33] for deriving
a Courant-Fisher-like variational formulation of |A,|. This is no longer the case here and we had to
perform different algebraic manipulations and to approximate the stationary distribution; this will be
done in the proof of Proposition 2.2.8 (Section 2.3).

2.2.2 Definitions: tangles and variants of P

This subsection introduces the main tools for our proof of Theorem 1.

Paths

Even though the graph G is a multigraph, its construction with half-edges described in Section 2.1.1
is extremely useful and will be of paramount importance in the paper. This is why we do not define
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2.2. Proof of the main theorem

paths as a usual path in a graph (or multigraph), but as a sequence of half-edges that could be paired
through o. Through all the sequel, r > 0 is an integer.

DEFINITION 2.2.1. A path of length t between two vertices i and j is a sequence of half-edges
(e1,f1,...,e.f) such that

1. forevery s <t, e is a head and f; is a tail,
2. foreverys <t,f; and e;, are attached to the same vertex,

3. ey is attached to i and f; is attached to j.

We note &' (i, j) the set of paths of length t connecting i to j. Usually, we will denote paths by
the bold Ietter p, meaning p = (e,f;,... e, f;).

Keep in mind that our definition of a path does not depend on o or G: it is a potential path in G.
The path itself is a purely combinatorial object and is not random; it will become a true path in the
random graph G if in addition, o (e,) = f; for every s € {1,...,¢}. In this setting we have the following
useful expression for powers of the matrix P:

P'(i, j

(2.2.1)

‘NM

PRI

where d; is in fact d; if the half-edge e is attached to the vertex u (see notation 2.1.5). When
t = 1, this expression reduces to

-3 ¥

ecET (i) feE—(j) l

Taking expectations on both sides yelds the following identity:

E[P(i,j)] = L =7 (j). (2.2.2)
The probability distribution 7~ is also called the out-degree distribution.

Tangles and cycles

In an oriented multigraph, we say that two vertices u and v are adjacent if there is an edge between
them, regardless of its orientation. A cycle is a sequence of vertices (xj,...,x,) such that for every
i # n, x; and x; 41 are adjacent and x, is adjacent with x;. Loops and multi-edges count as cycles.

If G is an oriented multigraph and x,y are two vertices, a digraph-path from x to y is a sequence
(x1,...,%x,) such that x; = x,x, =y, and for every i the vertex x; leads to the vertex x;;. Its length is
n— 1. We denote by d(x,y) the length of the shortest digraph-path from x to y. Let x be a vertex and r
a positive integer. The forward ball of center x and radius r, noted B (x,r), is the oriented multigraph
induced by G on the vertices y such that d(x,y) < r

We now give our first definition of tangles, in the context of digraphs:

e Let G be an oriented multigraph. We say that it is tangled if it has at least two cycles. If G is
not tangled, it is tangle-free.

e Let d be a positive integer. If, for every vertex x, the oriented multigraph B™ (x,d) is tangle-free,
we say that G is d-tangle free. Otherwise, it is d-tangled.
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2.2. Proof of the main theorem

e ()

Some examples of tangle-free digraphs. Some tangled digraphs.

Figure 2.2 — Examples.

We now extend this to paths, as defined in definition 2.2.1. Fix a path p. It induces an oriented
multigraph G(p) with the following construction:

e the vertices of G(p) are the vertices having an half-edge appearing in p,

e the number of edges going from vertex x to vertex y is the number of distinct couples (e,f)
appearing in p, such that e is a head attached to x and f is a tail attached to y.

If (e,f) appears more than once in the path p, then it will only account for one edge in G(p). The
definition of tangles naturally extends to paths p:

DEFINITION 2.2.2 (tangle-free paths). Let p be a path. It is tangle-free if G(p) is tangle free. The
set of all paths of lengtht going from i to j that are tangle-free will be noted 7" (i, j).

Note that a path p can be tangle-free and have a cycle crossed many times. For example, fix a head
e and a tail f attached to the same vertex x. Define the path

p = (e,f.e f ef).

The corresponding graph G(p) is the simple loop based at x, which has only one cycle, thus p is
tangle-free. However, the loop is explored three times by the path p.
Now take another tail attached to x, say f'. Consider the path

q = (e7f7e7f/)'

Then G(q) is simply the multigraph with one vertex and two distinct loops based at x, thus q is tangled.

Variants of P.
We now define:
e the centered analogue of P, which is P’ defined by
o(e)=t, — /M

= > H o : (2.2.3)

peZ(i,j)s=1

Using (2.2.2), we see that the matrix P! is centered. This is not true for P’, but an important step
in this work will be to prove that P’ is nearly centered.
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2.2. Proof of the main theorem

o the tangle-free analogue of P, defined by
PO (i, j) Z H "(;; . (2.2.4)
e

Here, we just got rid of all the tangled paths. When the underlying graph is 7-tangle free, we
obviously have P! = P().

e and finally the centered tangle-free analogue of P, defined by

S H Loe) d; . (2.2.5)

peT(i,j) s=1

The matrix P®) is the main tool of the forthcoming analysis, because it is “nearly centered" and the
sum runs over tangle-free paths. A key step in this paper will be to check if the perturbation P — P(*)
is small: to this end, first remark that the sparsity of the graph G implies that tangles are not frequent
if we choose the right scale for the path length ¢:

PROPOSITION 2.2.3. Let G be the random graph associated with the degree sequence (d;",d;")
satisfying hypothesis (H1). Define t = [atlog,(n)|. Then, as n goes to infinity, we have

lim P(G is t-tangled ) = 0. (2.2.6)

n—0o0

The proof relies on a classical breadth-first-search exploration argument and can be found in sec-
tion 3.2 of [39]. In particular, under assumption (H1), 7% = £* with high probability for every s <1,
so P* = P1%)_ Some related work on cycles in those random digraphs can be found in [61].

For the rest of the paper, we fix ¢ as in the preceding proposition with o < 1/4, that is

t = [alog, (n)]. (2.2.7)

The parameter o can be chosen arbitrarily small, as long as it is strictly smaller than 1/4. This
freedom will be used in Section 2.2.3.

Tangled remainders

We finally define our last ingredient: tangles. We first need a notation for the concatenation of two
paths.

NOTATION 2.2.4 (concatenation). Ifp = (es,f;)1<s<k IS apath of length k and if p’ = (€},f,)1<s<p’ 18
a path of length k', with £}, attached to the same vertex as €/, then the concatenation (p,p’) will be the
path of length k + k' defined by

/ /
(elafla-'-7ek7fk7e17f,l7"'7ek’af,’)'

This definition obviously extends to the concatenation of three or more paths, provided that the final
tail of each path is attached to the same vertex as the beginning head of the next path.

DEFINITION 2.2.5. %"'(i, j) is the set of all tangled paths p going from i to j, but which can be
written in the form p = (py,p2,p3) where

e the path p; belongs to 7'~ (i,g) where g is a vertex of the graph,

e p> = (e,f) is a path which goes from g to h in only one step, with h a vertex of the graph,
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2.2. Proof of the main theorem

e the path p3 belongs to 7'~(h, j).
We also define the tangled rest by
R )= > HA (s, ;) H Aley, 1)) (2.2.8)
pejlfljs 1 efs =(+1

In other words, the set %" is the set of all paths that can be obtained by gluing two tangle-free
paths with a bridge, but which in the end are tangled.

p

Figure 2.3 — An element in Z"*. The two black paths are tangle-free, but when we glue them together
with the “bridge" p, we create a tangle.

2.2.3 Proof of the main theorem

The main algebraic idea of the proof relies on the fact that one can bound |A;| using the operator norm
of matrices P") and R" for £ < t. The core of the paper will consist in bounds for |P")| and |R"‘|.
Recall that p = p v 81,

PROPOSITION 2.2.6. Lett be as in (2.2.7). For any ¢ > 1, with high probability, we have
[PV < In(n)P(cp), (2.2.9)
where D is a positive constant.
PROPOSITION 2.2.7. Lett be as in (2.2.7) and let £ be in {1,...,t}. With high probability, we have
IR < nin(n)”(cp)** (22.10)

where D is a positive constant.

The proof of those two propositions is an application of the classical trace method and is quite
technical. It will be postponed at Sections 2.4 - 2.9. We now state the central proposition for bounding
the second eigenvalue of P. Its proof is exposed in Section 2.3.

PROPOSITION 2.2.8. With high probability, the second eigenvalue A, of the matrix P satisfies the
following inequality:

[A2| < 21n(n)’ (P I+ ZIR’/|> (2.2.11)

We now conclude the proof of Theorem 1 from Propositions 2.2.8, 2.2.6 and 2.2.7. For simplicity,
note

(2.2.12)

|
K = [|PO| + —
=121+ 3
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As a direct consequence of the two preceding theorems and the fact M > 8n > n, it is clear that with
high probability, K; < In(n)(cp)’ + 6~ (cp)'In(n)P >},_, (cp)" which is equal to In(n)P(cp)’ (1 +

0 f_ . ~ . .
5 ep (Cc%)i_]l). If ¢ is close enough to 1 to ensure that cp < 1, then as n goes to infinity the term

1+87'¢p (CC%)%II is bounded by some absolute constant C. We have proven that, with high probability,

K; <In(n)’(cp)'C. (2.2.13)
We now use Proposition 2.2.8 which states that |A;|" < 21In(n)3K;, hence
1Aa| < 2CIn(n)PH3(cp). (2.2.14)

Take powers 1/t on both sides and use t = @(In(n)):
1
A2| < (2CIn(n)P*3) 7 ep = (1+0(1))cp (2.2.15)
which finally ends the proof of (2.1.4) and Theorem 1.

2.2.4 Organisation of the rest of the paper

The rest of this paper is mainly devoted to the proof of Propositions 2.2.6-2.2.7. Both are inspired
from [33].

1. Section 2.3 gives the proof of Proposition 2.2.8.

2. In Section 2.4, we state a lemma on correlation functions in the multigraph G that will be used
in the proof of Propositions 2.2.6 and 2.2.7. This section is essentially technical and the proof
of (2.4.1) is postponed to Appendix 2.11.

3. In Section 2.5, we develop the general strategy used to prove Proposition 2.2.6 which is an
adaptation of the trace method. This leads to two subproblems, one purely combinatorial and
one purely probabilistic. The combinatorial part (counting paths) is treated in Section 2.6 and
the probabilistic one (bounding expectations) in Section 2.7.

4. Finally, the asymptotic analysis is done in Section 2.8, thus concluding the proof of Proposition
2.2.6.

5. The exact same steps are adapted to the proof of Proposition 2.2.7 in the last section.

2.3 Proof of Proposition 2.2.8

The method for the bound (2.2.11) is inspired from [112] and was developped in [43] and [33]. The
main steps are as follows:

1. express P' as a weighted sum of matrix products involving the tangle-free centered matrices PO
and the tangled rest R"',
2. use this expression to make P’ appear as a perturbation of a rank 1 matrix,
3. and finally use classical results from linear algebra to link the eigenvalues of P' with those of
this perturbed matrix.
Notation. If e is a head and f is a tail, then we will adopt the following notations:
Ls(e)=t— I/M
de

Ls(e)=t
de
With these notations, the matrix P’ has the following expression:

Pli,j)= > [[Alest)

pe};s=1

Ale,f) = and  Alef) = (2.3.1)
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2.3. Proof of Proposition 2.2.8

2.3.1 Telescoping products of real numbers

Ifxy,...,x,y1,...,y are arbitrary complex numbers, we have the following “telescopic product-sum"
t (—1
qu ng S Istoe—ye Hx; (23.2)
s=1 (=1s=1 l+1

Recall Definitions 2.2.3 of P' and Definition 2.2.5 of P(*) on page 46. We apply (2.3.2) to the
matrix PO), with y, = Ales,fy) and x; = y, — (Md )~!. Note that the choice (2.2.7) for ¢ implies that
P' = P1) with high probability due to Proposition 2.2.3. Hence, with high probability,

Pr=p0= % HA (e, £,) (2.3.3)
peT(i,j) s=1
t (-1
- ) HA (ent)— > D[ [Alesk) ( (eg,£) — Aler,£) )HA (es£,). (2.3.4)
pe 7! (i,j) s=1 pe7!(i,j) l=1s=1 41

By definition (see (2.3.1)), we have A(e/,f;) —A(ey,fy) = —(Md;';)_l, so finally

- i > HA (es,f) H Ale, ;) (2.3.5)
p67’

(=1 (i,j) s=1 efstrl

2.3.2 Gluing paths and gathering the remainders

We now decompose the set 7 (i, j) appearing in the sum in the right hand side of (2.3.5). Recall that
the out-degree distribution £~ was defined in (2.2.2) on page 44.

LEMMA 2.3.1. With high probability,

t
P =p0— ZPHl TPy ZR” (2.3.6)
(=1

Proof. We start from (2.3.5): our main task will be to reorganize the sum

— Z ]_[A e, f) ]_[ A(ey.fy) (2.3.7)

peﬂ’s 1 els =(+1

We have the following decomposition when ¢ < ¢ (remind that the union over g, & is taken over all
pairs of vertices):

yt(lvj) = U{(p17p27p3) ‘P11 € <7.Eil(l.vg)7p2 € <7.l(g)h)}ap3 € ytiz(haj)}\%tl(iaj)' (238)
g.h

Therefore, we have the following symbolic identity between sums:

YN YN Y -y 239)

(i,)) & h T=ig) TV (g.h) T (hj) #(i))

In the RHS, the sum over %" will be exactly the (i, j) entry of the matrix R"* (see (2.2.8)). Note
that, if the path p = (e, f;),<, can be written in the form (p1,p>,p3) with p; in .Z*~! and so on as in
(2.3.8), then

{—1
[ JA(es 1) yr ]_[ A(ey,fy) (HA (el £]) ) ( ) (HA (e3,£) ) (2.3.10)
s=1

e; s=0+1
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2.3. Proof of Proposition 2.2.8

where we noted p; = (e%,f%,...,eé_l,fé_l) and so on. With the same notations, we plug this into the
five sums found above:

AllRtElJ Z 1_[Ae“s HAeA,s:

pe?'lj)v 1 e[S l+1

2 >, HAes’fsl > M} > HAes,fE 2.3.11)

gh \pie7'~(ig)s=1 peZl(gh) e ) \pseZ ! (h,j)s=]

This is a matrix product : the first and third parentheses are P~ (i,h) and PU~9(h, j). The
term in the middle is equal 0 > ecp+ () fer-(n) #f which simplifies to d," /M = n~(h). We define
’ 8

X(g,h) = ©~(h) — note the useful identity X = 1(7~) . The RHS of (2.3.11) then becomes

PG (8, )P (1, j) = (PUVXEE0) (i) (2312

and the whole expression (2.3.7) becomes equal to (P(K_I)XB(’%))(i,j) —M~'RY(i, j). Putting it
back in (2.3.5), we get

t

t
¢t _ p(t) (t—0) t,0
P = pW ;P XP +M;R

which is exactly the claim in the lemma because because (due to Proposition 2.2.3), with high proba-
bility we have P9 = p'=¢ and P! = P(O), 0

2.3.3 Expressing P as a perturbation of a rank 1 matrix

We first define two real vectors x,y € R" by
1
x=1, y=-(P)'x (2.3.13)

and we recall the definition of K; given in (2.2.12):
= |E9)+— Z IR

Note the presence of the important M~ factor in the right. The following lemma is crucial: it quanti-
fies the distance between the matrix P’ and a rank-1 matrix, namely xy .

LEMMA 2.3.2. With high probability,
|P—xyT| < K. (2.3.14)
Proof. Let f be a vector such that { f,1) = 0; multiply (2.3.6) to the left by f to get
t
fTP =fTPO N TP () TP — ZfTR”’ (2.3.15)
=1 M=

The matrix P*~! is a Markov matrix, therefore P*~'1 = 1 and the product f" P~ '1(z~) " P'~* van
ishes. We get the fundamental inequality

t

1
P11 = 1P < (\P@ I+ 2 Wn) 1fI =Kl 23.16)

(=1
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2.3. Proof of Proposition 2.2.8

Let us momentarily note Q = P’ —xy' so that
P =xy' +0. (2.3.17)

These choices imply the crucial following observation: x' P = x'xy" +x'Q = ny" +x" Q. But as
x"P' =ny" we get x'Q = 0. Hence, Q vanishes when multiplied on the left by 1. Let v be any
unit vector: there is a real number o and a vector f with (f,x) = 0 such that v = f + ax. The
triangle inequality implies [v Q] < | 70| + alx™ @] = | £7 Q] hence | Q] < sup|[£TQ|/| Q] where
the supremum is taken over all nonzero vectors f such that (f,x) = 0. Moreover, as {(f,x) = 0 we
have fTP' = fTxy" + f7Q = fTQ. Putting all these observations together with (2.3.16) yelds the
following:

N
10 < sup Ir ol
(=0 I

T pt
P
< sup Lf Pl
=0 If]
< K;

which is exactly the claim in the lemma. O

2.3.4 Classical algebra to link the eigenvalues of P with those of xy

The main ingredient for the proof of Proposition 2.2.8 will be the following basic algebraic lemma
(see Appendix 2.10 for a complete proof of this result).

LEMMA 2.3.3 (eigenvalue perturbation for rank 1 matrices). Let H,M be two real n x n matrices,
with M diagonalizable with rank 1. Let x,y be two vectors such that M = xy'. Define u = e, y).

1. The eigenvalues of M + H lie in the union of the two balls B(0,€) and B(u,€), with € =

205l P2 A
o\ /—\
U \:M/

2. If B(0,e) nB(u,€) = &, then there is exactly one eigenvalue of M + H inside B(,€) and all
the other eigenvalues of M + H are contained in B(0,€).

Proof of Proposition 2.2.8. Let x,y be as in (2.3.13). We apply Lemma 2.3.3 to the matrix P’ = xy' +
Q. First of all, note that u = (x,y) = (P'x,x/n) = {x,x/n) = 1. All the eigenvalues of P’ lie in the
union of the two balls B(0, €) and B({x,y), €) where € is smaller than

2||x* y]*
(x,y)?

We clearly have ||x|| = \/n. We should now have a control over the norm of y. Note that ||y|?> =
>t (mg P')? where m is the uniform measure over the vertices of the graph (i.e. 7(v) = 1/n); hence,
7T0T P' can be interpreted as the distribution of the Markov chain after ¢ steps on the directed graph G
when started from a uniform vertex. In particular, for every i the term (7' P')? is equal to P(X, =
Y, = i) when X,Y are two independant Markov chains, each one being independently started from a

K = 2|x|*y[*K:-
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uniform vertex. We will note P/, E/ the probability and expectation of the Markov chain conditionnally
on G. The overall term |y|? is thus equal to P’(X; = Y;). An elegant argument from [39, Section 4]

shows that 5 5
P(X, =Y,) = O(m(”)> :o(ln(”)) (2.3.18)

n n

where [P denotes the so-called annealed probability, that is the probability according to both the en-
vironment and the walk: P(X; = Y;) = E[P'(X; = ¥;)]. Using the Markov inequality with P, (2.3.18)
yelds that with high probability,

3

Il = VP = 7)</

Finally, with high probability we have |x|?||ly|* < In(n)?, hence € < 21n(n)*K,.
We now use the second part of Lemma 2.3.3. To this end, we have to check that the two balls
B(0,¢) and B(1,¢) are disjoint, at least when n is big. It is easy to see that

e =0 (In(n)’*(cp)"), (2.3.19)

see for instance the short computations on page 48 leading to (2.2.13). As a consequence of (H1), we
also get p < 1 so if ¢ is close enough to 1, then cp < 1 and € goes to 0 as n goes to infinity. The
two balls B(0,¢) and B(1,¢) are thus disjoint. Using the second point of Lemma 2.3.3, exactly one
eigenvalue of P’ is inside the ball B(1,¢) and this eigenvalue is obviously 1 because P’ is a transition
matrix. All the other eigenvalues, and in particular A,, are in B(0, €). O

2.4 Expectation of a product of centered random variables

In this technical section, we present a method for obtaining upper bounds on the expectations of
a product having the form [ [ (1g, — P(E;)) when the events E; are nearly independant for most
of them, and strongly dependent for a few ones. The general setting is the same as before. Such
expectations will appear in the proofs of Propositions 2.2.6 and 2.2.7.

For the sake of clarity in the following sections, we need a definition of “potential paths", i.e.
collections of half-edges that are not paths, but who could give rise to real paths in the graph. Those
are called proto-paths:

DEFINITION 2.4.1. A proto-path is a sequence p = (ey,f,...,ey,fy) with N an integer, such that
forevery sin{l,...,N}, e is a head and f; is a tail.

There is no restriction whatsoever on the half-edges of a proto-path. Indeed, a proto-path is meant
to be a path in the graph G, but it is not necessarily a path: some half-edge could appear twice of more
in p, there is no vertex-consistency statement.

We are interested in computing different probabilistic quantities depending on p, the simplest of
them being the probability of the event “for all s, the head e, is matched with the tail f".

Fix some integer p smaller than N. Recall that A and A had been defined in (2.3.1). We define a
function F}, by

p N
Fp(p) =E Hé(es,f}) H Aley, ;)
s=1

s=p+1

Most of the times, the index p will be dropped and we will just note F. We introduce several useful
definitions and notations.

o We will note B(e,f) = 15(¢)—f — 1/M and B'(e,f) = 15(e)—¢. This implies A(e,f) = B(e,f)/d, .
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2.5. General strategy and definitions for the proof of Proposition 2.2.6

e An edge of p is a couple (ey,f;) appearing in p.
e ¢ is the number of distinct edges appearing in the proto-path p:
a=#{(esf):1<s<N}.
We will denote those edges by yi,...,V,.

e Foreachie {l,...,a}, the weight w; of edge y; is the number of times edge y; is visited by the
proto-path before p and w/ is the number of times edge y; is visited after p:

W,‘Z#{Sgpi (eSafs):))i} Wg:#{s>p: (eS’fS):yi}'

o If y; = (e,f), we will note B(y;) or A(y;) instead of B(e,f) or A(e,f).

e The weight of the proto-path p is

e Call an edge y; consistent if both of its end-half-edges appear only once in the proto-path p. Call
an edge simple if its weight is 1. If an edge is not consistent, it is inconsistent. If the edge (e,f)
is inconsistent, there is another edge (¢/,f') in the proto-path such that {e,f} ~ {¢/,f'} # .

The main result of this section is the following theorem.

Theorem 3. Let p be any proto-path of length N < /M, p an integer smaller than N, and let a; be
the number of simple, consistent edges of p, before p. Also, let b be the number of inconsistent edges
of p. Then, for every c > 1, there is an integer ng such that if n is larger than ng, we have

o)l <200 () (D) @4

The proof of Theorem 3 is essentially technical and is a mere adaptation of [33]. The complete
proof can be found in Appendix 2.11.

2.5 General strategy and definitions for the proof of Proposition 2.2.6

In this section, we study the quantity |P")| for the choice of r = |tlog,(n)] as in (2.2.7). For the rest

of the paper, we set
In(n)
=|——]. 25.1
" {501n1n(n)J @5.1)

2.5.1 A simplified version of Proposition 2.2.6

In order to prove Proposition 2.2.6, we are going to prove the following lemma.

LEMMA 2.5.1. Fixt asin (2.2.7) and m as in (2.5.1). Fix c closeto 1 and p = p v §~'. When n is
large enough, we have

E[|PY]?] = o(1)n (cp)*™. (2.52)
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2.5. General strategy and definitions for the proof of Proposition 2.2.6

Proof of Proposition 2.2.6 using (2.5.2). For any constant D,

- E[||P"]>"]
(1) D t
(RO > 0()°(e)) € oy 253
o(l)n3
< (ln(l’l>D)2m 2.54)
(2.5.5)
Now, the choice of D = 50 x 3/2 yields In(n)??" ~ 3, and P(|P)| > In(n)P(cp)") = o(1). O

Before going further in the application of the trace method, we gather here some basic conse-
quences of the choice m = O(In(n)/Inln(n)) as in (2.5.1). They will be used several times in the
forthcoming analysis without necessary reference.

LEMMA 2.5.2. For any m = © (™_) and an ¢, > 0 such that In(c,) = o(Inln(n)) we have
y Inln(n) y

(¢,)™ = n°Y). In particular, for any constant ¢ > 0 we have ¢ = n°(!).

{?111?1((71)) and any t,, = O(In(n)) we have (t,)" < nTo(1),

Forany A >0 and m = f:lll?l((':l)) and any t,, = O(In(n)?) we have (1,,)" < nAB+o(1),

ForanyA >0 andm =

2.5.2 Using the classical trace method

The proof of (2.5.2) relies on the trace method. To somewhat lighten the notations, we will note X =
P in this paragraph. From now on we will choose an even integer r = 2m, so that | X |>" = | X*X ™.
As X*X is symmetric, we have

P <e(x)m) = > ] [(X*X)ii,, (2.5.6)

l'174..~l'm s=1

- Z H I25— 1,025 12¢+1123 (257)

1502500 si2m 5=1

where we adopted the cyclic notation i, = i; in the first line and i,,.-; = i1 in the second line. With
P this becomes

[P < 2 HP() ins—1,i25) PO (ing 11, ). (2.5.8)

Developping according to the definition of P, we get

m

2m t
HX,-ZS_IJZSX,.;‘M_J&: > oo ) ]‘[Hé(e,,s,f,,s) (2.5.9)

s=1 PI€T (i1,i2) 267" (i3,02)  Pam€ T (i1 iam) i=15=1

where we noted p; = (e, fi ;) s</ the i-th path in the “path of paths" p = (pi,...,p2n) (remember the
concatenation notation 2.2.4). We define 4, as the set of “paths of paths" corresponding to the sum,
that is 2m-tuples (py,...,p2m) such that p; and p, have the same endpoint, p, and p3 have the same
beginning point, and so on. For the following analysis, it will be easier to “reverse" all odd paths in p,
leading to the following central definition:
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2.5. General strategy and definitions for the proof of Proposition 2.2.6

i

g

3
Figure 2.4 — A path in %4. The red paths are the "odd" paths, corresponding to "reversed tangle-free
paths". The black ones are "even" paths.
DEFINITION 2.5.3. %, is the set of 2m-tuples p = (p1,...,P2m) such that
e for every i, the path py;—; is in 7" and the “reversed path"
P2 = (F2ir,€2ip,. ., F2i1, €00 1)
isin T,
e For every i, the last half-edge of p; and the first half-edge of p;+ are attached to the same vertex
(boundary condition).

Note that there is a little lack of consistency with our convention that e denotes heads and f denotes
tails, for in this case ey; ; denotes a tail and f; ; denotes a head. For every element p € ¢;,, we note

m t t
f(p)=E [1—[ [ [A(e2i-15:B2i15) | [AlEaiss€2i) | - (2.5.10)
i=1s=1 s=1
We have obtained the following fundamental inequality:
E[JA9P"] < 3 £l 25.11)
PEGH

In the last expression, the probabilistic part, which is contained in the function f, is entirely de-
coupled from the combinatoric part, which is contained in the set 4,. Both parts will be separately
treated in the forthcoming analysis.

2.5.3 Geometry of paths in %,

We now introduce some definitions that will be commonly used in the sequel. Let p be any element in
%m- It induces a walk on the vertices of the graph G. We will note V (p) (or generally V if there is no
ambiguity) the set of all visited vertices, and v = v(p) = #V (p). Any p € ,, is composed of 2m path
of length ¢, hence we have v < 2tm.
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2.6. Combinatorics of %,

DEFINITION 2.5.4. We had already defined an edge of p as any pair of a head followed by a tail
appearing in one of the p;’s (for example (e; s, f; ;) or (f25,€25)) A graph edge is the corresponding
(oriented) edge between vertices.

EXAMPLE 2.5.5. Let (e,f) be an edge of p, with e a head and f a tail. If e is attached to vertex u
and f to vertex u/, then the corresponding graph edge will be (u,u’). Thus, each graph-edge (u,v)
corresponds to at most d,; d_, distinct edges.

We will note E(p) the set of edges. The total number of distinct edges will be noted a = a(p) =
#E(p). Any p € %, induces an oriented multigraph on the set of vertices V(p): its edges are just
the graph edges of p, counted with multiplicities. Let us call é(p) this oriented multigraph; the
corresponding unoriented multigraph G(p) is connected. We will note ¥ = x(p) = a—v + 1 the tree
excess of G(p). This quantity will be used many times in the sequel.

2.6 Combinatorics of %,

We split 6, in various disjoints subsets, taking into account the number of visited vertices and also
the number of edges. The counting argument is inspired from [33] which itself stems from the seminal

paper [81].
DEFINITION 2.6.1. Leta,v be integers and leti = (i, ...,i,) be a v-tuple of vertices. We define
X, (1) = X (i)

as the set of all the elements in 6,, whose vertex set is precisely (iy,...,i,) (visited in this order) and
who have a edges.

The aim of this section is to prove the following result on the number of elements in X,,;“ (i).

PROPOSITION 2.6.2. Fix v,i and a. Recall that ¥ = a— v+ 1. Then, there is a constant C > 0 and an
integer ny such that for every n > n;, we have

#XV4 (i <1_[d+d )c%niﬁﬂé%. 2.6.1)

1€1

The core tool for the proof of (2.6.1) will be a simple partition of the elements of #X,,“ (i) with the
following notion of equivalence:

DEFINITION 2.6.3. Letp and p’ be two elements in 6,,; we note e; s, fi s the half-edges of p and
f, those of p’. They are said equivalent if

lS’ [2%)

e they both belong to X,;" (i) and they visit the same vertices at the same time,

o for every vertex u € i, there are two permutations 0, € S+ and 7, € & - such that for every i
and s, if e; s is a head attached to u and f; s a tail attached to u, then

s = G"’(eiJ) and fi,s = Tu(f?,s)'

In other words, two elements of 6, are equivalent if they only differ by a permutation of their
half-edges.

The proof is organized as follows:
e In 2.6.1, we prove an upper bound for the number of elements within each equivalence class.
e In 2.6.2, we prove an upper bound for the number of equivalence classes.

e In 2.6.3 we prove Proposition 2.6.2.
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2.6. Combinatorics of %,

2.6.1 Cardinal of equivalence classes

Let p be an element of X,;“(i). How many elements of %), are equivalent to p ? The vertices are fixed
so there is no choice from this part. We have to chose the half-edges. If there is exactly one tail and
one head attached to each of these vertices, we would have d;lr choices for the first head, then d; for
the first tail, and so on until the last head with d;vr choices and the last tail with d,” choices. Thus,
we have at most [ [ dl.+ d;" paths equivalent with p in this case. In the general case, there are some
vertices with more than one half-edge visited by p attached to these vertices.

LEMMA 2.6.4. Letp be in X,;"(i). Note o the number of heads visited by p attached to the vertex
is, and let B be the same with tails. Then, we have at most

ct] [dtd; (2.6.2)
iei

elements in 6, equivalents to p, where C > 0 is a constant.

is/—\

Figure 2.5 — Here, we have d; = 4, but o; = 2 and 3; = 2.

In the proof we will make use of the Pocchammer symbol: if a is a real number and k and integer,
then (a)y =a(a—1)...(a—k+1).

Proof. Fix p. When choosing equivalent elements to p, we have at most
H(d;r)ai<d;)ﬁi = Hdlfdii I_I(di+ - I)Oli—l(d; - I)Bﬁl
iei iei iei

choices, with the convention that a product over an empty set is equal to 1. We also have (d;" —
Dg-1 < (A—1D%Tand (d] —1)g_; < (A—1PL soif weset K" =#{ici: oy =1} and K, =
#{iei: B =1t} we have

[ @ =Darldr =Dpa =[] ]A-D"[[a-1)""

i€l 1=1jekt ek~

< H(A_ 1)(1*1)(Kt++1<7)
=1

< (A_ 1)2;;1(1_1)Kt++(1_1)1(;'

~

Counting edges going out of every vertex yields ), tK;" = a and counting vertices according
to the number of edges going out this vertex gives >, K;" = v (the same holds for K; ), so we get

s t—DKY =3, (t—1)K, =a—v,and

[ (@ = Doi(d —1)gr < (a-1 <

i€i
where C = (A — 1)2, thus closing the proof of (2.6.2). O
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2.6. Combinatorics of %,

2.6.2 Number of equivalence classes

Now, we count the number of equivalence classes in X,;" (i). The result of this paragraph is:

LEMMA 2.6.5. There is an integer ny such that for every n > ny, the total number of equivalence
classes of paths in 6,, visiting vertices (iy,...,i,) and having a edges is bounded by

n3 X, (2.6.3)

We now prove this lemma. The explored vertices are i = (iy, ..., i), in this order. Recall Notation
2.1.5: half-edges are noted (u,i,€) with € € {—,+} and i < d5. We first describe a coding pattern for
the equivalence classes (in Paragraphs 2.6.2-2.6.2) and then prove (2.6.3) in Paragraph 2.6.2.

Choice of the path.

In any equivalence class, we choose a p visiting heads and tails in the “alternating lexicographic
order", that is

e vertex u before vertex v > u,
e head (u,s,+) before head (u,s’,+) with s’ > s and the same for tails,
e and such that

— ifiiseven, e;is a head and f; ; is a tail,

- if iis odd, e; is a tail and f; ; is a head.

The chosen p will be called the representative path of the class Xy’ (i). We will note p =
(eis,fis)is. The edge (e; . f; ) will be noted y;;. We see p as a walk on the vertices i. The index
(i,s) in p is seen as a time parameter. At time (i,s), the walk is located on the vertex u attached to e; ,
and then moves along the edge y; s to go to the vertex v to which is attached f; .

Creating the spanning tree.

We build a marked graph T on the vertex-set i by adding the graph-edge? (u,v) with mark vi.s when
vertex v is explored for the first time at time (i,s). The edge y; ; is called a tree edge. The (unmarked)
graph T is clearly a tree on the vertex set i. The mark over every edge of T keeps track of the half-edges
used to discover for the first time the endvertex of this edge.

Suppose that we are at time (i,) and the edge we are currently exploring is y;; = (e;;,f;;) and
leads to vertex u. If the vertex u is already part of the tree T then the edge y;, is called an excess edge
and time (i,7) is called a cycling time for obvious reasons.

Due to the very specific structure of p (a sequence of tangle-free paths with boundary conditions),
such times can easily be understood: either they count as cycling times inside a tangle-free path p;
(which can happen only once for every i < 2m), or they are cycling times between different p;.

We are now going to give an encoding of p: the idea is roughly that if there were no cycling times,
p would perfectly be uncoded without needing anything, due to the choice of lexicographic ordering
of half-edges. Therefore, by noting the different cycling times and giving them a minimal amount of
information on how to decode them, we will be able to explore the non-cycling times as usual and
create the tree T in the process, and when stepping on a cycling time we will use all the previous
information (mainly, 7') and the mark to determine where to go.

ZRecall notations from section 2.5. Edges are pairs of half-edges seen in p while graph-edges are pairs of vertices
corresponding to some edge.
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2.6. Combinatorics of %,

Short cycling times.

Each sub-path p; is tangle-free. Let r; denotes the first time when f; ,, is attached to a vertex already
visited by p;: this time is called a short cycling time. If this cycling time does not exist, we artificially
set it to be the symbol ®; thus, r; = @ means that p; has no cycles. Also, let o; be the first time when
the path left this vertex after its first visit in p;. If r; = ®, we set 6; = 0. If r; # ®, the cycle &; in p; is
precisely given by the edges €; = {yis,,Yi.6,+1;---,)i,,} and it might be visited more than once. Note
¢; the “total time spent in the loop”, that is the number of times (i,7) such that y;, is in €;. Then, the
knowledge of

1. the cycling time (i,r;)

2. the half-edges €; ,, and f; ,,

3. the total time spent “in the loop" ¢; and the half-edge e; ;; where we’re leaving the cycle,
4. the next vertex u; where we will leave the edges of the tree T,

are sufficient to reconstruct the path p; up to the visit of vertex u;. Note that in the second step, if
€., = (v, jr,T), the vertex v,, is already known, and whether e; ,, is a head or a tail is also known
according to the parity of i, so we only need to know j,,. Thus, if r; # &, the mark for the i-th short
cycling time (i,r;) will be

(Jiri-Kiris Ui @iz, 1) (2.6.4)

and if r; = & this mark is set to be 7.

We have at most one short cycling time per p; which is a path of length ¢. Fix i: if there is no
cycling time, r; = (& (one possibility). If there is a cycling time, there are ¢ choices for its location.
Once this time has been chosen, there are at most A(Av)t(Av)v = A3v3t possible marks as (2.6.4) for
the short cycling time. This bound is extremely crude but will be sufficient for our purpose. Thus, the
total number of possible marks for the short cycling time of p; is 1+ A3v3z.

REMARK 2.6.6. Suppose we are decoding a short cycling time. The last part of the mark is u;; as T
is a tree, this means that the path to follow is perfectly known up to u;. Arriving at u; at a certain time,
say (i',1"), we know that we are going to leave the tree T constructed so far, and this can lead to two
situations.

e The time (i',t") can be another cycling time. In this case, the procedure defined on this paragraph
(if the cycling time is short) or the next paragraph (if it is long) will tell us where to go next.

e The time (i',¢') is not a cycling time. If we note v the next vertex after u;, this means that the
edge (u;,v) is not in the tree T constructed so far, and thatv is not already discovered. Therefore,
the path is just going to explore this new vertex v and we are going to add the edge (u;,v) to T.
Note that the use of the lexicographic order clearly tells us which half-edges to use.

Long cycling times.

There are also cycling times that are not “short cycling times": basically, it is when a path p; collides
with another path p; with j < i. More precisely, let (i,7) be a cycling time leading to the (already
known) vertex u. If u is not one of the vertices discovered by p;, then (i,7) is called a long cycling
time: in this case, u had already been visited by some p; with j < i. Here again, we are going to
mark long cycling times with different items, so they could be easily deduced from the marks. When
arriving at a long cycling time, we need to know:

1. the head e;; and the tail f;;,
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2.6. Combinatorics of %,

2. the next vertex u; where we will leave the edges of the tree T (no extra information is needed:
see Remark 2.6.6).

The mark obtained has the form
(i B i) (2.6.5)
For every long cycling time, there are at most AZv?> marks like (2.6.5).

b2

b1

o = long cycling times

m = short cycling times

Figure 2.6 — Some examples of vertices generating long and short cycling times.

Superfluous times.

There is another kind of cycling times we have not yet coded: those times are the cycling times
“embedded in the loop" of a short cycling time, that is all the times except for the first one when (i,t)
when f;; is attached to a vertex already visited by p;. Those times need no special treatment as they
are decoded with the mark of the short cycling time associated with i. For this reason, they will be
called superfluous cycling times and play no role in the coding procedure.

— T~

superfluous cycling time

short ‘cycling time

Proof of Lemma 2.6.5.

We now gather the number of different types of marks to get a bound on the number of equivalence
classes in %;,. Recall the definitions given in Subsection 2.5.3 (page 55) and the difference between
edges of p and graph-edges of p. Consider the undirected multi-graph spanned by the unoriented
graph-edges of p on vertices i = (iy, ..., i,). This graph is connected. Its total number of edges is at most
a (if no edge is visited two times in opposite directions’. Therefore, there are at most y :=a—v + 1
excess edges. For each i < 2m, there are at most y cycling times, a fortiori there are at most y long
cycling times. Therefore, we have at most 12"X choices for the positions for the long cycling times
and we have already seen that we have #>" choices for the positions of the short cycling times. Now
the total count amounts to 2"+ ((Av)2)2"X((Av)3t)*" possible codings. Organizing termes leads
to t2mxF4m(Ay)#mx+6m which (using v < 2tm) is bounded by

(2Alm)8m%+l2m.

30bserve that it is also at least a/2 if all edges are visited twice, in opposite directions. This will not be used in the proof.
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2.7. Upper bound for f

Using the asymptotic properties exposed in Lemma 2.5.2, this expression can be simplified. Note
for example that there is an integer n; only depending on A such that for every n > n;, we have
(2Atm)®" < n%, and the same argument gives (2Atm)!?" < n%. Hence, when 7 is larger than ny, we
have

(2Atm)8ma+12m o nHTHx

which ends the proof of (2.6.3)

2.6.3 Proof of Proposition 2.6.2

Let us note .4 (a,v,i) the set of equivalence classes & inside X, (i). We have

#Xi) = > #E.
EeN (avi)

Using Lemmas 2.6.4 and 2.6.5, when n is larger than n; we get

#xe)y< Y [ [dfdm <nBrsxcr[dfd;
EeN (avi) iei iei

which is the conclusion of Proposition 2.6.2.

2.7 Upper bound for f

Our aim in the next paragraphs will be to bound f(p) (which was defined in (2.5.10)) with an ex-
pression that depends on the variables a,v,m,¢,i. We recall a definition from Section 2.4: if p is a
proto-path of length N, then

w(p) = Hd}-

s=1

Every path is itself a proto-path, so we can extend the definition of the weight @ in a natural way to
PE Gu:

o(p) = [ [ @(p)op).
i=1

The result of this section is the following proposition which gives upper bounds for | f(p)| depend-
ingona,x.

PROPOSITION 2.7.1. Let p be any path with v vertices and a edges. Note ¥y = a—v+ 1. Then, there
is a constant C > 0 and an integer n, such that for every n > n;, we have the following inequalities:

o Ify>v—tm—1, then

no(l)

o= st 11 () () )™

e Else x <v—tm—1 and we have

n°() 1\2/C\* /et [ 6tm\2—m=1=%)
|f(p)|<52(,m_v>l;[([,l+> <M> (M) <m> -

The rest of the section is devoted to the proof of this proposition.

61



2.7. Upper bound for f

2.7.1 Expressing the weight o(p) with graph-dependant variables

Fix p in X;;" (i). For every s > 0, let V; be the set of vertices that are visited by p exactly s times and
note vy = #V;, sothat Y, _ vs = vand >, _svs = 2tm. A vertex is called a boundary vertex if it is the
endpoint or beginning point of a sub-path of p: if p = (p;)i<2m (With each of the p;’s being tangle-free
paths of length 7) then boundary vertices are those attached to half-edges e; o or f; ;. We also recall that
a; is the number of consistent edges of p visited exactly once: this quantity was introduced in Section
2.4 and appears in the statement of Theorem 3. Also, recall that b is the number of inconsistent edges.

LEMMA 2.7.2. There is a constant C > 0 such that for every p € X,,” (i) we have

1> crta
w(p)énO(l)H(Cﬁ) o=t (2.7.1)

i€i
Proof. As a consequence of the definition of the sets V;, we have
1 N
ow -T1IT () -
s>0ieV, \i

with the usual convention that a product over an empty set is equal to 1. All the products are in fact
finite. Isolating (d;")? for each i, we get the following:

2 52
op)=]] <dl+> [Ta 1111 <d]+> . (2.7.2)
ici i/ ey, s>2iev, N\
Using hypothesis (H1), this can be bounded by
I <1+> A (é) morenl?) 273)
i€i d;

We also have

DD s=2) =D v =2 v

s>21eVy §s>2 §>2
=2tm—v] —2vy —2v+2v; + 2
=2(tm—v)+vy.

Thus, we have @ (p) < [ [,;(d;") 2A" §2m=v) g,

We are now going to give a bound on vy, the number of vertices visited once. At most 2m of them
belong to the boundary vertices of p. If i is in V| but is not a boundary vertex, there are exactly two
simple edges adjacent with i, one entering in i and one going out of i. One simple edge is adjacent
to at most two vertices, so two distinct vertices in V| can be adjacent to at most one common simple
edge, and we have an injection from the set of non-boundary vertices in V| into the set of simple
edges, whose cardinal will be denoted by «/: as there are no more than 2m boundary vertices, we have
vi < 2m+d). Those d} edges might however be inconsistent: if ¢ = a; +z’ with 2’ the simple and
inconsistent edges, we have 7’ < b.

LEMMA 2.7.3. With the preceding notations, b < 4.
This yelds vi <2m+4x +aj. As A/ > 1, we have (A/8)"' < (A/8)*" 42+ and finally
_ 1
(D(p) < H(dl+> Z(A/6)2m+4x+a1 W

iei

Asymptotics 2.5.2 give A" = n°(1)_ Taking C = (A/8)* ends the proof of (2.7.1). O
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Proof of lemma 2.7.3. Fix some inconsistent edge y = (e,f). Without loss of generality we can sup-
pose that there is another edge with e as its beginning half-edge (say, (e,f’) with f' # f) in p. If e is
attached to vertex v, then there are at most 4 excess edges caused by the fact that y is not consistent.
Therefore, the total number of inconsistent edges is at most 4. O

2.7.2 Expressing f with graph-dependant variables

Let p be in X" (i). In order to apply Theorem 3 to p, we need a finer knowledge on the number
of consistent or simple edges depending on a and v. The general idea is the following: the more
excess edges, the lesser simple and consistent edges. To apply Theorem 3, we define p to be the
proto-path naturally given by p. All the quantities a,a; and b appearing in (2.4.1) depend on p. A
plain application of Theorem 3 and (2.7.1) with any »n greater than ng, N = 2tm and p = 2tm yields the
following inequality:

(1 1\?> CF3" /evaf6tm\™
£ < 24n°O ] <d+ e (M) i) (2.7.4)
i€i l

We now simplify this expression. The term 24rn°(!) is still of order n°(1). Let a} be the number of
simple edges (not necessarily consistent) and a5 be the number of other edges. It is clear that

ay+a,=a
a) +2ah, < 2mt

so d] = 2(a—mt). If b is the number of inconsistent edges we have a; > a} —b so a; = (2(a —tm) —
b)+. Using Lemma 2.7.3, we get a; > (2(a —tm) — 4)() .- We use again Lemma 2.7.3:

1 2 34C x a/6 (2((17tm)74}()+
@l <n®T] <d.+) 5(2(,”,)@ () <\/t%> . 2.7.5)

Proposition 2.7.1 now follows from (2.7.5) by noting that (2(a —tm) — 4y )+ = 0 if and only if y >
v—tm—1.

2.8 Asymptotic analysis

We finally gather all the results from Sections 2.6-2.7 and study their limit as n grows to infinity. More
precisely, we will pick only integers n greater than max{ng,n; }. We first decompose the sum (2.5.11)
according to v, ¥ and i:

2mt 2tm—v+1
[HP ‘zm] DY Z Y )| = A+t + & (2.8.1)
V=2 i= (i) peXxs’ (i)

where
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2.8. Asymptotic analysis

mt+1 2tm—v+1

M = Z Z Z >, If(e)l (2.8.2)

1l peXi (i)

2mt 2tm—v+1
)P >, Ifm) (2.8.3)
v=mi+2 ii,..i, x=v—tm—1 \ peXy" (i)
2mt v—tm—2

L= 3 X Z > @I (2.8.4)
v=mt+2 if,...0 x=0 peX’ (i)

Each term will be separately bounded by o(1)n?(cp)?™ as claimed in (2.5.2).

2.8.1 Bound for 74

In this sum we sum over v < tm + 1. We use Proposition 2.7.1 and (2.6.1) with n greater than n.

no) 1\?/C\* /c\v!
PRV IEEY WH(éﬁ) <M> (M) (2.8.5)
peXy” (i) peX;y” (i) iei N
o(1) 1\2/C\* y—1
+ = 2j+ﬂ n C
< (Hdi d; )CX”SO wx §20m—) H <d+> <M> (M) (2.8.6)
1€1 i

iei
» 17\ X
di \ no W) [ Cnsw e\ -1
<<1ie_i[di+>52(tmv) “on (M) (2.8.7)

d;- n3 _ 1y

i€i

where we noted y = 1 — 17/50 €]0, 1] and we chose n large enough to ensure that the term o(1) is
smaller than 1/50. Putting (2.8.8) into (2.8.2) yelds

mt+1 1’13 d- 2tm—v+1
- —1yv i -7z
=3, gt e (114 ) 7% e
v=2 i iei i x=0
The sum in ) (between braces) is a geometric sum started at 2 and the ratio goes to 0 as n goes to
infinity, so the whole term in braces is of order o(1). Recall the definition of p: we have

Diem1y (Hj) < (cM 12 ) ). (2.8.9)
i iei i i=1 t
Now

et 1

< 52tm Z (c6p)* (2.8.10)

Here again, the sum is indeed geometric with ratio c§p < c¢8p where we recall that p = p v § 1.
As 8p = 6!, we have ¢6p > 1, and

mt+1

D (c8p)* < (c8p)™™ 2. (2.8.11)

v=2

After simplifications, we get .74 < o(1)n’(cp)>™ which is the desired bound.
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2.8. Asymptotic analysis

2.8.2 Bound for 75

In this sum, v > tm+ 1 and ¥ > v—tm — 1. The computations are extremely similar to what was done
in the preceding section, so we omit the details. As in the preceding section we have

d; nstl NI T\
peXy” (i) iei i
The sum in J is now started at v —tm — 1. We have

2mt

M 50 — 2tm—v+1 C x

xX=v—tm—

X
A

The sum between braces is geometric and the ratio is o(1), hence it is bounded by the first term
times some constant close to 1. The first term is (Cn~7)"~""~1, We also have (2.8.9) and the fact
Mn>/3 J¢ < n? when n is large enough. Putting it all together, we get

2mt 2v —y\v—tm—1
) (ep)™(Cn7Y)
fp<n® D 62 — . (2.8.14)
v=mt+2

This is indeed a geometric sum and the ratio is of order O(n~7). After quick simplifications left to
the reader, we get ), < n?(cp)*™Cn~" which is also generously bounded by o(1)n?(cp)*™ when n
is large.

2.8.3 Bound for .¥

In this sum, v > tm+ 1 and ¥ < v—tm— 1. The main difference with the two other regions is the extra
term in the bound for f(p). We use Proposition 2.7.1 and (2.6.1).

D lfp)l <

peXy” (i)
Hd+d7 cx By no() 1_[ i 2 g X (i)‘,_] 6t7m 2(v—tm—1-Y%)
| i % n : 52(tm—v) 1 | d;r M M \/M

1€1

This can be simplified when » is large enough to

— 27 2(v—tm—1)
c\V d. nso 6tm
— - Cn' x| == 2.8.15
(M) lie—i[d,.* 52— () <\/M> (2815

We plug (2.8.15) into the definition of . and we use (2.8.9):

2mt v—tm—2 d- I’l% ) 2 [ 6tm 2(v—tm—1)
Z Z Z ( ) Hd* 52(m—) (Cn'77) <\/A7[> (2.8.16)

v=mi+2 i
2mt ~\2yp_ 2 2(v—tm—1) | v—tm—2
(cp)nl <6rm) .
Y = Mo(en)* R (2.8.17)
v=mt+2 62(1771 i \/M x=0

As for other regions, the term between braces is a geometric with ratio greater than 1 so it is bounded
by (Cn'=7)"="m=1_ We are now left with a sum in v

g Zth n% (6[m)2(Vtm1) (C l_y)v—tm—l (2 8 18)
2 m—v) 8 a
v=mt+2 52 \/M

and this is generously bounded by o(1)n?(cp)*™; note that . is negligible in front of 4, /4.
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2.9. Proof of Proposition 2.2.7

2.9 Proof of Proposition 2.2.7

We now prove Proposition 2.2.7. The strategy is exactly the same as for Proposition 2.2.6 and runs
along the lines of its proof. We omit the details. First, we recall (2.2.8):

{—1
REYG )= 3 [[AGf)+ H Ales.fy)
pe (i,j) s=1 e[ s=0+1

where %' (i, j) had been defined in Definition 2.2.5 on page 46.

2.9.1 Trace method

We note Y (p) = Hf;{A(es,fs) ()~ IHS +14A(eg,£;) when p is in 2. Using the classical trace
method as in Subsection 2.5.2, we find

m
[RAP™ < 3T T TR (251, i2) R (i1, ) 2.9.1)
i1yeesiom =1
m
Z H Z Y(p) Y (p) (2.9.2)
{yensiom S=1\ peR* (ins—1,is) PEZ" (iny11,i5)

SV () (29.3)

iyeesiom (P1eesP2m) $=1

where the sum is over all 2m-tuples (pi,...,pan) such that py is in 2" (iss_1,iz) and pasyq is in
' (izs11,1as); note that we used the cyclic convention i, = i;. Now, going back to the definition
of R, we have

E[|RYP"] < > g(p (2.9.4)
IS

where ‘Krﬁl ;, and g are now defined in the same fashion as ), and f in Section 2.5.
DEFINITION 2.9.1. ‘K,;j is the set of 2m-tuples (1, ..., P2m) such that

e p, isin R"! for every s odd,

e P, is in R"* for every s even, where p; denotes path p, “reversed”,

e the beginning vertex of pys is the beginning vertex of pPos+1

e the endvertex vertex of pys—1 is the endvertex of po;.

Finally, for every p = (p1,...,pP2m) in €, .0 We set

g(p) = HY(pZifl)Y(pZi)- (2.9.5)
s=1

REMARK 2.9.2. Ifp; is in %", then it has at least two cycles. This fact has two consequences: the
number of vertices visited by p; is smaller thant — 2, and the tree excess X (p;) is greater than 2. When
this is applied to p, we get the following facts:

e p visits no more than 2tm —2m = 2m(t — 1) vertices.

e x(p) is greater than 4m.
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2.9. Proof of Proposition 2.2.7

Our task is to prove Proposition 2.2.7. To this end, we are going to prove the following lemma:

LEMMA 2.9.3. Ifn is large enough, then
E[HRI,EHZm] _ 0(1)n2m+3( p)Zm(t+/) (296)

with D > 0 a constant (we can take D = 100).

Proof of Proposition 2.2.7 using (2.9.6). By the Markov inequality, we have

[ ]
n2m1n(n)2Dm(cﬁ)2m(t+€)
0(1)n3n2m(cﬁ)2m(t+f) 5
= n2m1n(n)2Dm(Cﬁ)2m(t+€) = )

P(|R™| > nln(n)?(cp)™") <

If D is chosen great enough (D = 100 is sufficient), then the last term goes to zero and we get
P(|R"| > nln(n)P(cp)'**) = o(1), which is the desired result. O

We are now going to prove (2.9.6), first studying the combinatorics of €’

.+ then bounding g(p)
and finally doing the asymptotic analysis.

2.9.2 Combinatorics of ¢ ,
We split ¢ ¢ Into disjoints subsets.

DEFINITION 2.9.4. Leta,v be integers and leti = (iy,...,i,) a v-tuple of vertices. We define

X4 (0) = X (i, i)

as the set of all the paths in €, , whose vertex set is precisely (i1,...,i,) (in this order) and who have a
edges. 7

Letp and p’ be two paths in 6, ,; we note e; 5, f; s the half-edges of p and €] . f;  those of p’. Those
paths are said equivalent if /

e they both belong to X", (i) and they visit the same vertices at the same time,

e for every vertex u € i, there are two permutations 6, € & 4+ and t, € 6, such that for every i
and s, if ; s is a head attached to u and f; s a tail attached to u, then

s=oy(e,) and fi;=1,(f).
Indeed, two paths are equivalent if they only differ by a permutation of their half-edges. We state
again Lemma 2.6.4. Its proof remains unchanged, and Lemma 2.7.3 is also true in this case.

LEMMA 2.9.5. Letp be a path in X, (i). Then, we have at most

ct] [dd; (2.9.7)

iei
paths equivalents to p, where C is a constant.
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2.9. Proof of Proposition 2.2.7

2.9.3 Number of equivalence classes

Now, we count the number of equivalence classes in X, (i). The explored vertices are i = (i, ..., i,),
in this order.

In any equivalence class, we choose a path p visiting heads and tails in the “alternating lexico-
graphic order" in the same fashion as in 2.6.2. The chosen path p will be called the representative
path of the class X", (i). We build the tree T in the exact same way.

Cycling times are defined in the same way, but now another phenomenon can occur: there can be
more than one cycle inside one subpath p;. However, the path p; is composed of two subpaths, say p!
and p’, linked by a single edge?, and inside one of the two paths p/, p/, there can be no more than one
cycle. Thus, a small variation of the code for %), will be sufficient for our purpose. To this end, define
the bridging time

/e ¢—11ifiiseven
)t —felse.

Short cycling times.

Each sub-path p;, p;’ is tangle-free. Let r; denotes the first time when f; ., is attached to a vertex already
visited by p}, and similarly r/ for p?. Those are short cycling times.

If these cycling times does not exist, we artificially set them to be the symbol ®. Let o/, 0! be
the first time when the path p/, p/ left this vertex after its first visit. Finally, note &}, 2 the “total time
spent in the loop".

We mark the cycling times 7/, 7/ as follows:

IR

./ / / -// " /"
(]i,r{7fi,r{7hi’ei7fl-/’”i) and (Jivrl{l,fhrl{/?hi ,eiyrt_//,l/li ) (298)

and if r,r! = ® this mark is set to be (.

We also have to deal with what happens at the bridge between p; and p/. To this end, we simply
mark the bridging time ¢; with the whole bridge, that is we set

ﬁi = (ei7£,->f£,~+1 )

All those informations are enough to reconstruct the short cycling times and the bridge. Note that
we did not fully exploit the R"‘-structure of the paths p;: in particular, we did not use the fact that in
the end, p; is tangled. This will be used further.

Let us count those codes. We have at most two short cycling time per p’ or p/. There are ¢; choices
for the first short cycling time and at most A(vA)t(vA)v = tA%v? choices for its mark, then there are at
most Av choices for the bridge, and finally there are at most ¢ — ¢; choices for the second short cycling
time and A%V choices for its mark.

Long cycling times.

Let (i,¢) be a cycling time leading to the (already known) vertex u. If (i,¢) is not a short cycling time,
then

1. either u belongs to the verties discovered by some p; with j < i,

2. either t > ¢; and u belongs to the vertices discovered by p!.

4Which can also be considered as a tangle-free path of length 1.
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2.9. Proof of Proposition 2.2.7

In either cases, we say (i,7) is a long cycling time. We mark long cycling times with a triple
(JigKig,ui). (2.9.9)

where j;; is the index of the head 3 by which we’re leaving the current vertex, f;; is the tail we are
going to, and u; is the next vertex when we will be leaving the tree T. For every long cycling time,
there are at most A”v> marks like (2.9.9).

Superfluous times.

Superfluous cycling times are defined as in 2.6.2 and play no role in the sequel.

Total number.

We now gather the number of different types of marks to get a bound on the number of equivalence
classes in €, ,.

PROPOSITION 2.9.6. The total number of equivalence classes of paths in €, , visiting vertices
i=(i1,...,i,) and having a edges is at most

47 (2 AL m) A 22m (2.9.10)

Proof. Recall the definitions of section 2.5 and the difference between edges of p and graph-edges
of p. Consider the undirected multi-graph spanned by the unoriented graph-edges of p on vertices
i = (i1,...,i,). This graph is connected. Its total number of edges is at most a (if no edge is visited
two times in opposite directions®. Therefore, there are at most y := a — v+ 1 excess edges. For each
i < 2m, there are at most y cycling times, a fortiori there are at most ) long cycling times. Therefore,
we have at most #>"% choices for the positions of the long cycling times. For each i, there are at most
two cycling times, one before ¢; and one after. The total number of choices for these short cycling
times is thus [ [77, £i(k — £;) = 2™ (t — £)>" < 4772,

For each one of these choices, we have the following number of possibilities for the marks:
(tA%v3)2*2™ for short cyclings, (Av)*" for bridges, (A%v?)*™* for long cyclings. The total number
of codings is at most 4 "o A12m+4mx16m+4my which (using v < 2tm) is largely bounded by (2.9.10).

O

Using the asymptotic properties exposed in lemma 2.5.2, the reader can check that (2.9.10) is
bounded by n$*50% when n is large enough. Using Lemma 2.9.5, we get the following variant of
Proposition (2.6.2):

PROPOSITION 2.9.7. Fix £,v,i and a. Then, when n is big enough we have

#X,0 (1) < (Hdﬁd;) Cins+8x (2.9.11)

iei
2.9.4 Analysis of g

We now bound g(p) when p is in 4, ,, following the ideas in Section 2.7. Recall the definition of g as
in (2.9.5). When developping the terms in Y, if we note p; = (e; s, f; ;) s<; for i odd and p; = (e; s, fi 5)s<s
for i even, then we have

2m1

2m
g =] ik [ 1] [ACeisfi) [ [Aleis £is). (2.9.12)

i=1 i=1s</ s>/

50r the head, depending on the parity of i.
6Observe that it is also at least a/2 if all edges are visited twice, in opposite directions. This will not be used in the proof.
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2.9. Proof of Proposition 2.2.7

Fix a path p in X, (i). Lemma 2.7.2 remains exactly the same.

LEMMA 2.9.8. There is a constant C such that for every p € X", (i) we have

1\? cxta
w(p)<no<1>1—[<cﬁ> e (2.9.13)

i€i

Now comes the application of Theorem 3 to the second factor in the right of (2.9.12). Let p be a
path in XZ;(l) In order to apply Theorem 3, we need to define an auxiliary path, say p, by deleting
each ¢-th edge in a subpath p;. We plug (2.9.13) into the bound given by Theorem 3 to get

. 1\*> cr3b sena/Cm(t—1)\"
s <20 T (e ) s () (T3 )

iei

where d is the total number of edges of P, so @ = a — 2m with a the total number of edges of p. Also,
a; is now the number of simple, consistent edges that appear in the path p:

e in p;, after £ if i is odd,
e in p;, before r — ¢ if i is even.

Such edges will be called good edges just for this paragraph. Note a; the total number of simple,
consistent edges in p; as there are no more than 2m/¢ edges that are not good, we have a; > (a; —
2ml) ;.

Let @) be the number of simple edges (not necessarily consistent) of p and @, be the number of
other edges. It is clear that @) +a, = a and @} +2a5 < 2mt so @, = 2(a —mt). If b is the number
of inconsistent edges we have a; > @) —b so a; = 2(a —tm) — b, and using Lemma 2.7.3, we get
a, = 2(a—tm) — 4y and finally a; > (2(a —tm) — 4y — 2¢m) .. We also have 24n°(1) = n°()_ Note
that 2(a —tm) —4x —2m = 2((v— 1) — (t + £)m — x). Using once again Lemma 2.7.3, we get

1\*> c* c\a2m (Ctm 2((V—1)—(f+5)'n—%)+
sl <O (5) s () (50) '

i€i 1

The 2((v—1)—(t+)m—x) . term is zero if and only if ¥ > v —tm—t{—1, hence the following
result.

PROPOSITION 2.9.9. Let p be any path in 6,, , with v vertices and a edges. Note ¥ =a—v+ 1.
There is a constant C such that when n is large enough, we have

o Ify>v—(t+{)m—1, then

e Else, x <v—(t+{¢)m—1 and in this case,

no() 1N2/7CN\Y /eNv—1 /o 20v—tm—tm=1=Y)
o= i 1 () () G (S) '
i€i i M
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2.9.5 Asymptotic analysis

All the computations in this section have already been done in Section 2.8, se we do not write the
details. Go back to (2.9.4) and decompose the sum according to a, v, i:

2mt 2tm—v+1
<2 2 x| X lwl)=ArE L
v=2 i=(i],...,iy) X=4m PEX:v]l(l)
where
m(t+0)+1 2tm—v+1

A = Z 2 2 | X s (29.14)

sedy x=4m  \ peX® (i)

2m(1—2) 2tm—v+1
A = Z > > > led)] (2.9.15)
v=m(t+0)+2 ieby y=v—(+)m—1 \peX; (i)
2mt v—tm—~_{m—2
L= ) Z 2 >, lsol |- (29.16)
v=m(t+0)+2 i1, x=4m peX,’, (i)

Each one of those terms can be bounded by the appropriate quantity as requested in Proposition
2.2.7, that is o(1)n2"+3 (¢p) >t +0),
For example, in .7¢]', we sum over indices such that v < (t + ¢)m + 1. We then have

5 e I (6 6

peXm é(l) peX

(1) 1 2 c\* v—1-2m
- crp i V(=) (&
< (Hdl dl )C 750 50 52(zm*") 1;[ (d;r> <M> (M>

i€i

d;” n% _ _pyv—1-2m
< (Hcﬁ) Samy (O (eM ™)

iei 1

with y=1—17/50 €]0, 1. As noted in Remark 2.9.2, if p is in € .0+ then x cannot be less than 4m.
We thus have

mt+ml+1 M 2m+1 n% o d- 2tm—v+1 p
A< ), <C) Sy 2 (M) (Hd+> >, (o)

v=2 i iei i xX=4m
mt+ml+1 nSO d- A 2m(t—1)—v+1
2m+140(1) "7 “i —y\4m AV
< 22 n S2(tm—v) 2 CM <H d+> (Cl’l ) ZO (Cn )
v= i€i l xX=

The sum in } (between braces) is a bounded by 2 if n is large enough and the sum in i is bounded by
(cp)?, hence

mt+ml+1 2y
Vi <2n2+2m+0(1) 4my Z ( p)
v=2

sy (€OPPIM
§2m—) <" S o1 (0P

< n2m+374m762€m (cﬁ)th+2m€.
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To conclude, note that §2™ = p2me/In(4)

= ; when a is chosen to be strictly smaller than 2In(A)7y, the
term n~*"7§>™ becomes o(1).

We bound .7 and ¢’ in the same way, adapting the computations already done in the preceding
sections.

* k%

2.10 Algebraic tools

In this section, we prove Lemma 2.3.3. We begin with a classical theorem ([20]) connecting the
eigenvalues of any diagonalizable matrix A with the eigenvalues of any perturbation of A. If M is a
matrix, we note (M) the set of its eigenvalues.

Theorem 4 (Bauer-Fike). Let A be a diagonalizable matrix, A = PDP~" with P invertible and D
diagonal, and let H be any matrix.

1. Define € = ||P|-|P~|-||H|. Then,

c(A+H)= | ] B(r.e). (2.10.1)

2. IfLis a subset of {1,...,n} such that

|JB(i.e) n | JB(Ni,e) = &

iel igl
then the number of eigenvalues of A + H lying in | J;.; B(Ai, €) is exactly #1.

Hence, the spectrum of the perturbed matrix A + H is entirely contained in the €-blowup around
the spectrum of A (see also Figure 2.7). Note that whenever A is hermitian, the matrix P is unitary
and |P|| = |P~!|| = 1. Therefore, the “eigenvalue maximal perturbation", namely €, depends on the
amplitude of the perturbation matrix (i.e. the term ||H|) and on the “lack of hermitian-ness" of the
matrix A (since we always have |P||-|[P~'| > 1).

Here is the entertaining proof of the Bauer-Fike theorem.

Proof of the first point. Let [ be an eigenvalue of the perturbed matrix A + H; then A + H — uld is
singular. Suppose that it ¢ 6(A); in this case, D — ul is nonsingular, and we have

A+H—ul=P(D—ul)(I+(D—ul)~'P'HP)P".
This shows that I+ (D — uI)~'P~'HP is singular, so —1 is an eigenvalue of M := (D — ul)~'P~'HP;
in particular, 1 < [M| < ||(D—ul)7Y|- [P~ -||H|- |P|. Itis easy to see that the norm of the diagonal
matrix (D —uI)~!is |4 — | !, where k is such that | Ay — tt| = min |A; — u|. This proves the inequality
|A —u| < ||P~Y - |H| - |P| which is the claim (2.10.1). O
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D
'4'

Figure 2.7 — Black dots denote the spectrum of A = Ag. All the eigenvalues of A + H are inside the
circles and the number of eigenvalues of A + H inside the grey zone is equal to exactly 3.

Proof of the second point. Let s be in [0, 1]. Note A; = A + sH and p,(z) = det(A; — zId). The eigen-
values of A are the roots of py and those of A + H are the roots of pj. Let y be a simple Jordan curve in
the complex plane and let U be the bounded connected component of C\y and V the other component;
suppose that U;eiB(4;,€) < U and u;gB(A;,€) < V (see figure 2.7). Then, the argument principle
yelds that the number n(s) of roots of p, in U is equal to

1 [pi(8)

2ir J py(§)
Y

de.

The polynomial p; depends continuously on the coefficients of A, so the application s — n(s) is
continuous from [0, 1] into N, so by connectedness it is constant. We thus have n(0) = n(1) and it is
clear that n(0) = #1.

O]

In order to use the Bauer-Fike theorem, we need a control on the condition number of P, that is
c(P) = |P||-|P~!|. When A has rank 1 this can be easily done; note that every rank 1 matrix can be
written xy " with x, y two nonzero vectors.

PROPOSITION 2.10.1. Let A be a diagonalizable matrix with rank 1, A = PDP~! with P invertible
and D diagonal, say D = diag(u,0,...,0) with u the unique non-zero eigenvalue of A. Let x,y be two
vectors such that A = xy'. Then, u is equal to (x,y) and

2 2
< 2"

o(P) < e (2.10.2)

Proof. First, note thatif A=xy ", then by Sylvester’s determinant formula, for every z we have det(zI —
xy") =21 —z7'yTx) = 2"~ 1(z— {x,y)), so the eigenvalues of A are 0 and {x,y); indeed, if A is
diagonalizable and has rank 1, then necessarily (x,y) # 0 and u = {x,y).

We first suppose that |x|| = |y| = 1. The right-eigenvector associated with p is x, the left-
eigenvector is y'. Every basis of vect(y)" provides a family of right-eigenvectors for the eigenvalue
0 and every basis of vect(x)® provides a family of left-eigenvectors for the eigenvalue 0. For every
orthonormal basis of vect(y)=*, say (e, ...,e,), define a matrix by P = (x,ey,...,e,). Then P is a di-
agonalization matrix for A. Now, define X = (y,e,...,e,): this matrix is unitary and we can check
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that
L 00 0
{x,ea) 1 0 0
x,ezy 0 1 0
X*P = ¢ , ’ .
1 0
(xyeny 0 ... 0 1

We can also choose the basis (e;) so that x belongs to vect(y,e;). Let b be a real number such that
x = Uy+ber. As |x| =1and u # 0, we have b €] — 1,1[ we must have b*> = 1 —u? and be| —1,1].
Then,
u 0
X*P=|b 1
| )

u 0
=)

then ¢(P) = ¢(X*P) = ¢(R), and the condition number ¢(R) can be computed; indeed, we find
c(R) = A/(1+1b])/(1—1b|). Remember that |b| = 4/1—pu2 < 1—pu?/2. Let f be the increasing
function defined on [0,1[ by f: ¢+ +/(1+¢)/(1—1t). Then c¢(R) = f(|b]) < f(1 — u?/2) and it
can be quickly checked, using v/s — 1 < s/2, that f(1 — u?/2) < 2/u®. We thus have proven that

c(P) <2/u.

Now, suppose that |x| or ||y| are not equal to 1 and deﬁne X= x/||xH and 5 = y/|y|. Set A = 5"
SO that |x||ly|A = A. Note r = |x||ly|l. We have A = PDP~! with D = diag(u/r,0,...,0) and c(P) <
272 /u? by the preceding arguments. As we also have A = PDP~!, this yelds the ﬁnal conclusion

We thus have proven that if

2 x| y11>

c(P) < E

We now conclude the proof of Lemma 2.3.3 on Theorem 4 and Proposition 2.10.1.

Proof of Lemma 2.3.3. Apply the first point of the Bauer-Fike theorem to the matrix M + H: all the
eigenvalues of M + H lie in the union of the balls B(A,¢€) with € = ¢(P)|H|. As M has rank 1, apply
Proposition 2.10.1: ¢(P) < 2|x|?||y||>tt=2. Now, apply the second part of the Bauer-Fike theorem and
suppose that B(u, €) and B(0, €) are disjoint. There is exactly one eigenvalue of M in B(u, €) which is
U, so there is exactly one eigenvalue of M + H in B(u, €) and all other eigenvalues are in B(0,€). [

2.11 Proof of Theorem 3

In this appendix, we prove Theorem 3 by adapting the arguments of the proof of Proposition 8 of [33]
to our setting. All the required definitions and notations have already been introduced in Section 2.4
(page 52). The proof begins with the simple case where all edges of p are consistent and then goes on
to the general case. We start with a preliminary remark.

REMARK 2.11.1. Remember that c¢ is a constant arbitrarily close to 1. Asa < N < VM, we have

(M—a)™' < (M—N)~' <(M—+/M)~" and when n is large, this is smaller than cM~". This inequality
will be used multiple times in the proof of Theorem 3.
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2.11.1 Proof, part I: all edges are consistent
Definitions of some useful sets

This section deals with the general case, where some edges might not be simple in the proto-path.
However, we suppose for the moment that no edge is inconsistent. First, define sets 7', T; as follows:

e T is the set of all edges such that w} > 0. Those edges appear after p; they can appear both
before and after p. We note d = #T.

e T, is the set of all edges such that w; = g (with g > 0).

The sets T, are distinct, but 7" and 7, might have a nonempty intersection. However, we still have

F(p) = omE | [[] ]800 [ [B 00

q>0ieT; ieT

We note 1g = [ [,y B'(yi). Some of the edges y; with i € T might also appear in the proto-path
before p, and in this case B(y;)B'(y;) = (1 — 1/M)B’(y;); we must keep track of these edges. We
define:

o T, ={i:w;=q,w;>0}andd; =#T,
o Tr={i:w = q,w: = 0} so that Tq’ uTS =T, and Tq’,Tq* are disjoint.

Through the definition of 7%, we see that |T}*| = a;, the number of simple (and consistent) edges
of the proto-path, before p. Noting § = 3’ _( qd, this yelds

F(p) = o(p)(1—1/M)E [ 1o [ [ [ BG»? |- (2.11.1)

g>0ieT*
The greatest contribution to the expectation (2.11.1) is due to the g = 1 factor, so we are going to

split the edges into two parts, those matched with another edge in some 7" and those who are not.

o Tiisthesetofallie T} such that there is a j in 7,° for some g > 0, such that if y; = (e,f) and
yj = (€/,f), then either o(e) = f' or 6(e’) = f (or maybe both).

e Forevery g > 1, T, is the setof all i € T, such that there is a j in 77", such that if y; = (e,f) and
y;j = (¢/,f'), then either o(e) = f' or o(e’) = f (or maybe both).

e Finally, note S, = Tq*\f"q. If i isin S; and y; = (e,f), then either o(e) =f, or o(e) is some tail f
which does not belong to any other edge of the proto-path p.

Those sets are random as they depend on the environment . Finally, note X, = [ [, s, B(y;)? and
¢ = Zq>l q\f"q|. Then, we have

_1\¢
191_[ H B(y,)1 = (Ml> 1QHXq. (2.11.2)

q>0ieT/* >0
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First conditionning
Let % be the sigma-algebra generated by
e the event Q,
e the matchings o(e) and 6! (f) for every y; = (e,f) with i not in .

LEMMA 2.11.2. With the notations given above, if n is large enough we have

3eN N\
E 71| < . 2.11.
i) <8 () @113)

The proof of this lemma relies on the following remark: |S;| is measurable with respect to .%, so
if H is the number of i € S| such that 5 (e) # f, then

E[X,|.Z] =E[<1A14>|S1|H (;)H] (2.11.4)

We first give the law of H conditionnally on .%. For simplicity we note r = |S}|.

LEMMA 2.11.3. Given .%, for every k, we have

(i) (M — )
Zk 0( )( a)k.

Proof. Let us count the favorable cases for the event {H = k} (again, reasonning conditionnally on
). We have to choose those k edges among the r that haven’t been matched yet. Once they have
been chosen, all the » — k remaining ones have to be matched with one tail not belonging to any edge
in the proto-path p, and those edges are exactly M — a. Thus there are (1:) (M — a),, favorable cases.
The sum in the denominator is the sum of all cases. 0

P(H = k|.7) =

(2.11.5)

The reader can check that if @ < /M, then if n is large enough, for every k < a, we have (M —a); >
(M —a)*/2, so if we note Z = Z(a,r,M) = Y ;_ (1) (M — a) then we have

1 r k_l _ r l AT
Z>2I§)<k>(M—a) =5(M—a+1)' > (M~a)" (2.11.6)
On the other hand,
E[X|fi]=1i r>(M—a)k<1—1>k<_l>r_k. 2.11.7)
Z = \k M) \M
= (_Zl rE[(M—a)Q(—l)Q] (2.11.8)

3
Il
=]

We now use ([33], Lemma 9):
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LEMMA 2.114. ILetz> 1,re N* and 0 < p < g < 1. Let B a binomial random variable with
parameters r,p. If 8(1 — p/q))* < 2zqr* < 1, then

e[{] (2]

e g=1/(M—a)and p = 1/M (they satisfy p < q),

< 4(r+/8zq)". (2.11.9)

We apply the lemma with

e the random variable Q as B,
e 7z =1 (we can check that the condition of the lemma is verified).

Then, the lemma yelds

E[(-1)2(M —a)o]| <4<r M8_a> : (2.11.10)

We now plug this into |E[X;|.#]|. Using this and the preliminary remark on n large and using
inequality (2.11.6), we get

P 4 3r '
IE[X1|J]|<Z<m> (2.11.11)
8 3r "
< (M—a)r< T—a> (2.11.12)
3cN \"
<8<M M> (2.11.13)

This ends the proof of Lemma 2.11.2. As a consequence, we get

N\ sl ¢
E|1o[ [ ] B0 ggE[([\j\/]\]%[) (;4) 191_[qu]. (2.11.14)

g>0ieT* g>1

Second conditionning

Let ¥; be the o-algebra generated by
e the event Q,
e the matchings o(e) and o~ ! (f) for every y; = (e,f) with i # j.
The random variables {’,|S,| are %;-measurable. Fix i in some S,. Then, as ¢ > 1 we have
E[|B(y)|"|9] < E[|B()|4]

1)? 1
_ (1 _ M) P(o(e) = f1%) + > P(o(e) # 11%)

Conditionnally on %, the head e cannot be matched with a tail belonging to y; for j # i (recall
the definition of §,). Hence, if M; is the total number of unmatched tails after the matching of all the
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heads belonging to some y;, we have P(c(e) = f|%;) = 1/M;. Remember that if n is large enough, we
have 1/(M — a) < ¢/M (see the preliminary remark). Hence, we have

E[|B(y:)|"|%] < E[|B(yi)|*|%]
cof i YLt
SNV M) M M
1 1 c
<c—[(1—-—) < —.
M( M> M

By conditionning repeatedly on all the ¢; for every i in some S, for g > 1, we get

E|1o][[][B0:)” | <SE [(Aji’/]%) . (;)CI%NM m] .

p>0ieT*
As§' =3 oalTyl, wehave &'+ 3y alSq| = |Til + X ymy a(IT ] +18,]) = 111 + 2o 4l T -

Third conditionning

We now condition on the sigma-algebra ¢ generated by the matchings o(e) and o~ !(f) for every
yj = (e,f) with i ¢ T. Note Q the event “no half-edge belonging to y; for some i ¢ T has been matched
with a half-edge y; with j in T". This event is ¢-measurable, and when n is large enough,

E[10|¥] <14 (i)m < (i)m.

M M
Hence,
3eN \ Bt/ e \ 1T+ S,m a4
E|1o[]]] B0 <8E[(> (—) . (2.11.15)
4>OieTq* M\/M M
Endstep

Recall (2.11.1); we have

F(p)=o(@)(1-1/M)°E | 1] [ [ BOW* (2.11.16)
q>0ieT*
[S1] A *
Y 3cN €\ ST 1 +T]
<8w(p)(1—1/M) E[(Mm) (M) 2.11.17)
3N\ 3eN \ T/ o\ TS gl T
<80(p) <W> E[(W) (M) ] (2.11.18)
3N\ 3N\ T e\ S alT T
<80(p) (Mm> E[<m> <M> ] (2.11.19)

where in the third line we used a; = |Tj¥| = |S1| + |Ti|. By construction, we have 20T +|T|=a,
therefore
DT +IT| =a—|TF |+ Y (g= DT} | 2 a—a (2.11.20)
g>1 g>1
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and we have (¢/M)2a=19T5 1+ 1T < (¢ /Ar)a=a1 This finally yields

oo ) ) o ()

In the next lemma, we bound the expectation on the right side.

|71
E[(j%) ]<3. (2.11.21)

|G "] Sro-o()

Using the pigeonhole principle, on the event {|7}| = ¢}, at least |£/2| couples of edges (y,y’) are
“mismatched", which means that o(e) = f or o(e’) =f. A (very) crude bound for the choice of those
|£/2] couples is (a*)!%/?]. For each choice of those |¢/2] couples, the probability that they are indeed
mismatched is at most (1/(M — a))l/?! which is smaller than (2/+/M)" if n is large enough. In the
end, we get

LEMMA 2.11.5. Ifn is large enough,

Proof. We have

P17 =) <d (jM)Z

(50) <5 (&) <56)

which ends the proof of the lemma. O

Finally, as a < N, we have

We finally get the desired bound, that is

IF(p)| <24-o(p) (%) (\7]‘7)1 (2.11.22)

2.11.2 Proof, part II: some edges are not consistent

We now suppose some edges are not consistent: for example, there might be in p two edges having
the form y = (e,f) and y’ = (e,f’) with f # f’. Without loss of generality we can suppose y = y; and
y' = y4. The contributions of those two edges in the product has the form B(y)"B'(y)*B(y')"' B'(y')? .
Note that B'(y)B'(y') is always zero. From this, we see that we can’t have z and 7’ be both non zero.
Without loss of generality, we suppose that 7/ = 0.

First case: z # 0.

Here, we immediately have

B(y)"B'(y)*B(y')" =B (y)B(y)" (—) " (2.11.23)

This expression does not longer rely upon y’. Hence, in this case, we have

F(p) = (d;)w/ (—L) F(q) (2.11.24)
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where the proto-path q is the proto-path p without all the w' instances of the y’ edge. This new proto-
path q has length N —w’, has @’ = a — 1 distinct edges before p, and its number of simple, consistent

edges before p is greater than a;.

Second case: z = 0.

The product is now reduced to B(y)”B(y')"'. After a short development we find that

s <o () = () = ()

Hence, F(p) splits into three parts:

ro = () PO (k) P () Ee

All the three new proto-paths q,q’,q” now have

e length N—w' . r—wand N —w' —w,
e at most a — 1 distinct edges,

e less inconsistent edges than p.

Iteration of the procedure.

(2.11.25)

(2.11.26)

We repeat the procedure as many times as needed to get rid of every inconsistent edge. Each step gives

rise to at most 3 terms having the form

01 a—1
= (37) owm| [T500"50)

or

a

= (37) owm| [ [0 50

or

o a—1
e () owE| T80 500

L i=2

where « is either w,, w; or w, + wy.

Now, we repeat the procedure for each term. Each step removes one inconsistent edge, so there
are no more than 3” steps, and in the end we get at most 3” terms. In each one of the final 3” terms, all
edges are consistent so we can apply (2.11.22). The number of simple, consistent edges of those new
proto-paths is greater than a; but still smaller than N. Hence, applying (2.11.22) to each term, we can

bound |F (p)| with at most 3” terms having the form

o 3 ()

which yields the final desired result (2.4.1).
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Chapter 3

An Erdos-Gallai generalization

This chapter is drawn from the published paper [41], a joint work with Charles Bordenave.

3.1 Reconstruction of a graph with its universal covering

Let G = (V,E) be a finite graph. A graph G’ = (V',E’) is a covering of G if there is a surjective map
p: V' — V which is a local isomorphism: for every x € V/, the map p induces a bijection between the
edges incident to x and the edges incident to p(x). This is the graph-theoretic analog of the notion of
covering space in topology; note that some authors tend to use the words [ift instead of covering. A
comprehensive presentation on graph coverings can be found in [100].

3.1.1 The universal covering of a graph

A universal covering of G is a covering of G which is a tree. When the graph G is a tree, then it is
a covering of itself. However, if the graph G contains a cycle, then any universal covering of G’ is
infinite: starting from a cycle (xi,...,x;) in G, one can easily find an infinite path in G’ by taking
Y1 € ;f1 (x1), then y, € ]fl (x1) the only antecedent of x; adjacent to y;, and so on until one reaches
yr € p~!(x¢); then pick yxy 1 € p~'(x;) which is adjacent to y;. This last y;,; is distinct from y,
because the covering G’ is a tree. We can continue this construction forever and we end with an
infinite path in G'.

If Gy, G, are two universal coverings of G with maps p1, p», then one might pick a vertex x of G
and a vertex y of G such that p;(x) = p2(y) and define a morphism ¢ : G; — G, by setting ¢ (x) =y,
and then mapping every neighbor x’ of x to the unique vertex y’ in G, which is adjacent to y and has
p2(y') = p1(¥'), then do the same thing for the neighbors of x’, and so on. If G is connected, then
G1, G, are also connected, and the resulting map ¢ can easily be seen to be an isomorphism between
G and Gy: up to isomorphism, there is only one universal cover of any connected graph, and it is
denoted by 7.

Figure 3.1 — On the right, the rooted product K3 o K, and on the left, its universal covering.

Let us give three examples:

e the universal cover of any d-regular graph with d > 2 is the d-regular tree Ty;
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3.1. Reconstruction of a graph with its universal covering

e the universal cover of the complete bipartite graph K, ,, is the biregular tree T, , where each ver-
tex of degree m has only neighbors of degree n, and each vertex of degree n has only neighbors
of degree m;

e the universal covering of the graph depicted on the left of Figure 3.1 is the infinite comb in the
right of Figure 3.1.

Universal coverings of graphs can be seen as trees which are good local approximations of G.
They have widely been used in the context of distributed computing ([13], [14]). In the context of
random graphs, where many models of graphs are locally tree-like, the universal cover is a good
approximation of the local structure of the graph, which conveys information on crucial quantities
such as the spectrum ([84], [12]).

3.1.2 Neighborhoods in the universal covering and the reconstruction problem

Let & be a positive integer. Given any vertex x of G, its h-depth universal covering neighborhood is the
unlabeled ball of radius 4 in Ti; around any antecedent of x by p. One can easily see that this ball does
not depend — up to isomorphism — on the chosen antecedent x. Informally, this is the neighborhood
of x in G, but where cycles have been forgotten.

G (‘/(\ 3-depth neighborhhod of @

Figure 3.2 — The graph G is on the left ; the 3-depth neighborhood of the red vertex is drawn on the
right. Two vertex having the same color in T are antecedents of the vertex with the corresponding
color in G.

Our main goal in this paper will be to give a characterization of the collections of trees which
correspond to s-depth neighborhoods of vertices in the universal covering of the graph.

QUESTION 3.1.1. Lett= (11,...,t,) be a collection of n unlabeled rooted trees with maximal depth
h. Is it the collection of h-depth universal covering neighborhoods of some graph G ?

If this is the case, we say that the n-tuple t is graphical and we say that G is a realization of t. In
the sequel, we will sometimes say “a n-tuple t" instead of “a n-tuple of unlabeled rooted trees with
maximal depth i"; the height £ is fixed once for all.

3.1.3 Notation

From now on, we will adopt the term “tree" instead of “unlabeled, rooted tree", unless explicitly stated
otherwise. The set of all trees with depth 4 will be noted .7,.

If x is a vertex of a graph G, we will note deg;(x) the number of neighbors of x in G.

We will frequently refer to directed graphs as digraphs. In a digraph G, we will note degz;—r the in
and out degree of the vertices.

Generally, the root of a (rooted) graph will be noted e and if k is an integer and g a rooted graph,
(8)« denotes the ball B, (e, k) of radius k around the root of g.

We will frequently use the notation x A y to denote the minimum of two numbers x and y.
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3.2. Related work

3.2 Related work

Graph reconstruction problems ask the following question : given any property &7 about graphs, how
can we ensure that there is a graph (or digraph, or multigraph) having this property &2 ? What is the
number of graphs that have this property ? Can we determine the properties &7 that have a single
graph realization ?

Reconstructing a graph (or bipartite graph, or digraph) only by the list of its degree has been
a well-known and studied problem since the seminal works of Erd&s, Gallai and many others. In
fact, question 3.1.1 had been settled long time ago for 7 = 1 by the celebrated Erdds-Gallai theorem.
Suppose that t = (11,...,t,) is an n-tuple of 1-depth trees. A 1-depth tree #; is just a root with some
leaves, say d; leaves ; thus t can be identified with a n-tuple of integers (dj,...,d,).

AN TN AN

Figure 3.3 — Is there a graph on 8 vertices with this 1-depth neighborhood ? The associated degree
sequence ifd = (3,1,2,3,5,2,3,1). According to Theorem 5, yes.

Finding a graph G with t as 1-depth neighborhood boils down to finding a graph G with degree
sequence d — such sequences are called graphical. Not all integer sequences are graphical; the Erdds-
Gallai theorem gives two conditions which are altogether necessary and sufficient for a sequence to be
graphical.

Theorem 5 (Erdés, Gallai, [73]). Let d = (dy,...,d,) be a n-tuple of integers. Rearrange them in
decreasing order d(|y = -+ = d,). Then, d is graphical if and only if it satisfies the two following
conditions :

di+---+d, is even, 3.2.1)

and the “Erdds-Gallai condition”

ke [n], dyy+-tdg <k(k—1)+ > dg k. (3.2.2)
i=k+1

A short and constructive proof is available at [138]. In fact, the Erdés-Gallai condition is not the
only sufficient and necessary condition for an integer sequence to be graphical ; there are some other
equivalent conditions, notably listed in [131]. The corresponding realization problem for digraphs had
also been solved quite early; see the interesting note [28] for a complete history and presentation of
the many variants. When a double sequence d* = (d,*,di_ )ie[n] is the sequence of in and out degrees
of a digraph, we say that d¥ is digraphical.

107

Theorem 6. Let d* = (d; df)ie[n] be a 2n-tuple of integers. We order the first component by de-
creasing lexicographic order: d(l) > = d(t;) and ifd(Jlf) = d(+j) with i < j, then d(:) > d(_j). Then, d*
is digraphical if and only if it satisfies the two following conditions :

iwziw, (3.2.3)
i=1 i=1

and the “directed Erdds-Gallai condition” :

Vk e [n Zd <Zd A(k—1) ikw45 (3.2.4)

i=k+1
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This settled our question for # = 1. The case & = 2 had recently been solved by [19, 16]; in those
papers, a 2-depth neighborhood is called a neighborhood degree list (NDL). In [16], the authors not
only settle Question 3.1.1 and give a sufficient and necessary condition for a NDL to be graphical, but
they also characterize those NDL that are “unigraphical”, meaning that they have a unique graphical
realization — we do not adress this problem, but we solve Question 3.1.1 for arbitrary depths 4.

For h = 1, the number of labeled graphs with a given degree sequence is asymptotically known in
many asymptotic regimes, see notably [88], [32, Theorem 2.16] and references therein. For general 4,
this question has been recently adressed in [35] in the regime where the maximal degree is uniformly
bounded. The motivation came from the Benjamini-Schramm topology of rooted graphs.

In this paper, we only deal with neighborhoods in the universal covering, thus ignoring the even-
tual cycles in the A-neighborhood of a vertex. If some n-tuple t is graphical, then it might as well
have very different realizations, for instance ones that are A-locally tree-like, or others having many
short cycles. When the same question is adressed with the h-neighborhoods in the graph, Question
3.1.1 becomes much more arduous; a similar problem in graph reconstruction, the famous Kelly-Ulam
reconstruction problem, was asked during the 1940s and still remains opened.

3.3 Definitions and statement of the main result

Fix some n-tuple t = (11,...,t,) where t; € .7,. The associated degree sequence d = (dy,...,d,) is the
sequence of degrees of the root e of the tree #;, that is d; = deg, (). An obvious necessary condition
for t to be graphical is that d is itself a graphical sequence, hence satisfying (3.2.1)-(3.2.2). From now
on, we will assume that d + - - - + d, = 2m where m is an integer.

Let ¢ be a tree with depth at most /4 and root . Let e be an edge incident with the root, say
e = (e,x). The tree t\e has exactly two connected components. The connected component containing
the root is ' and the other one is s ; we root s at x. We erase from / all the vertices at depth exactly &
in ¢, and we keep the same root; this yields a new rooted tree r — see Figure 3.4. The type of the edge
e is defined as the couple of rooted trees (r,s) and we will denote it by 7(e).

®
T s

Figure 3.4 — Construction of the type t(e) = (r,s) of edge e in some tree ¢.

If T = (r,s) is a type, its opposite type T~ is defined as (s, r). A type is an element of .7, 1 x .F,_1.

The set of all types induced by the edges in the elements of t is noted types(t). It can be decomposed
into the disjoint union of three sets
types(t) =AUAUB

where
e A is the set of “diagonal" types T = (r,r) for some r € .7,_1;
e AU B is the set of types T = (r,s) with r # s, and the sets A, B are chosen such that if 7 € A, then

tleB.
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If 7 € types(t), we define

e the 7-degree of any index i € [n] as the number of edges in #; incident to the root and whose type
is 7. We will denote it by df ;

e the T-number N; as the total number of edges in elements of t with type 7, that is

Ne= > df.
i€[n]

It should be clear that for every i € [n], we have 3 (oo dF = di.

Theorem 7. Lett = (11,...,t,) be a n-tuple of elements of F,; it is graphical if and only if it satisfies
the following conditions:

e for every T € A, the integer sequence (d}) ic[n] IS graphical;

e for every T € A, the integer double sequence (df dr ) ic[n] is digraphical.

%0

Using classical characterizations of graphical and digraphical sequences given earlier in Theorems
5 and 6, this result can be detailed:

Theorem 8. Lett = (11,...,t,) be a n-tuple of elements of Fy,; it is graphical if and only if it satisfies
the following conditions:

e for every T € A, the integer N is even and for every k € [n]| we have

Mdfy <k(k—1)+ Y dg Ak, (3.3.1)
i=1 i=k+1

e forevery T€ A, we have Ny = N1 and for every k € [n], we have

Ddfy < Ddfy + Z diy' nk (33.2)

k k
i=1 i=k+1

i=1 i

oo . . . ; —1
where indices correspond to decreasing lexicographic ordering of the sequence (d},df )ie[n]

as in Theorem 6.

Note that those conditions together imply that (dy,...,d,) is itself a graphical sequence (sum over
all the types 7), which is a necessary, but clearly non sufficient condition.

3.4 Proof of Theorem 7

We assume without loss of generality 4 > 2. The conditions are easily seen to be necessary, for if t is
graphical and 7 is a type, then

e cither T € A and the graph induced in G by keeping only the edges e such that 7(e¢) = T has
(d] )ie[n) has its degree sequence,

e cither T ¢ A ; in this case either 7 € A or 7! € A, so without loss of generality we can assume

that T € A. The graph induced by edges such that T(e) = 7 can be oriented : if e = (i, j) € Gy,
then one vertex k € {i, j} satisfies T(e) = 7 in 7. We orient the edge (i, j) from k to the other
vertex. This yields a digraph G+ with oriented bi-degree sequence (df,d} - ) ic[n]> SO the second
condition of Theorem 7 is met.
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We now prove the sufficiency. We suppose that t = (#,...,1,) is a n-tuple satisfying the assump-
tions in Theorem 7 and we build a graph G which is a realization of t. We first fix some type 7.

e We suppose in the first time that T € A, in particular T = (r,s) with r # 5. As (df ,dl-rl )ieln] 18
digraphical, there is some digraph G on n vertices such that dega (i) = df and degéT (i) = dlrl
for every vertex i € [n]. Vze now define a (non-directed) multigraph G by simply forgetting
the directions of edges in G; — indeed, this multigraph will be proven to be simple in Lemma
3.4.1.

e Else, if 7€ A, then by assumption (d} )c[,) is graphical and there is a simple graph G such that
degg, (i) =df.

We now “glue together" the graphs G to get our realization of t, namely G. Formally, if E(G;)
denotes the set of edges in G, then G = ([n],E) with the edge set E being defined as

E:= U E(G:). (3.4.1)

TeAUA

The following lemma is the crucial ingredient of the proof of Theorem 7.
LEMMA 3.4.1. G is a simple graph.

Proof. Suppose that G; contains a double edge, for instance (x,y). We are going to prove the two
following facts :

1. first, this double edge can not arise from two distinct G;. In other words, if (x,y) € G, then
(x,y) ¢ Gy for every 7 # T ;

2. then we check that for every 7 € A, the multi-graph G contains no double edge.

Together, those two facts imply that G is simple : indeed, if there is a double edge, then it can only
belong to a single G ; but if T € A, G cannot contain any double edge, and if 7 € A then G is simple
by construction, hence the conclusion.

Suppose that there is a double edge between vertices i and j, one belonging to G(7) and the other
to G(1’) for two types T = (r,s) and 7/ = (+/,s"). We prove that T = 7/. As manipulating unlabeled
rooted trees is quite inconvenient, we will work with two labeled rooted trees T;, 7 in the equivalence
classes of #;,7;, and the same with R,R',S,S’ which are representatives of the equivalence classes of
r,r',s,s'. We are going to prove that R ~ R’ and S ~ §’ (as rooted labeled trees) , hence proving r = r/
and s = 5’ as needed. The following arguments are illustrated in Figure 3.5.

e The presence of an edge between i and j in G has the following consequence : there is an edge e
in T;, adjacent with the root, such that T;\e has two connected components, one isomorphic with
S and the other having its ball of radius 4 isomorphic with R. On the other hand, as (i, j) € G(7'),
there is an edge ¢’ such that 7;\¢’ has one component isomorphic with §’ and the ball of radius
h — 1 of the other is isomorphic with R'.

e The same holds with 7.

It is clear that degg(e) + 1 = degr.(e) = d; and also degg () + 1 = d;, hence degg(e) = degg (o).
The same is true with S, S’ ; we have just proven that (R); ~ (R’); and (S); ~ (§');. We are now going
to prove that if (S); ~ (') and (R); ~ (5), for some k < h— 1, then this is also true with k + 1.

First, the ball (7;)+ can be decomposed in two ways shown in Figure 3.5 :

(T =ev (S U(R)ir1 and  (Trg1 =€ U ()i (R)is
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but as (S); ~ ('), we can erase both branches pending at e and €', to get (R)41 =~ (R)x+1. The same
idea applies to T, to show that (S);41 >~ (8’)k+1, hence closing the recurrence. We have proven that
($)p—1~(8)p—1 and (R)p—1 ~ (R')j—1, thus r = ¥/ and s = 5" as needed. We thus have proven the first
point exposed earlier.

(k41 (T)k+1

(TH)k (T

Figure 3.5 — An illustration of the proof of Lemma 3.4.1. The green parts represent (S); and (S'),
which are isomorphic (as recurrence hypothesis) and the dark red parts are representing (R); and (R'),

which are isomorphic too ; hence, the light pink parts are also isomorphic, thus proving (R)g+; ~
(R)k41. A similar procedure applies to 7.

We now check the second point, i.e. that for every T € A, the multi-graph G is indeed a simple
graph. The proof runs along the same lines : suppose that there is a double directed edge between i
and j in G;. This can only happen if (i, /) and (j,i) are both directed edges in G;. We suppose that
T = (r,s), and with a recurrence we prove that r = s, hence 7 € A which had been discarded since
AnA=.

To do this, first check that deg, () = deg, (), then suppose that for some k < h, we have (r); = (s)
and prove that (r)g+1 = (5)k+1. This step uses the exact same procedure as before. O

We now check that G solves our problem.
LEMMA 3.4.2. G is arealization of t.

Proof. We want to show that the /#-neighborhood of any vertex i in the universal cover of G matches ¢;.
We show by strong recurrence that for k < &, if 7; denotes the A-neighborhood of i in the universal cover,
then for every i € [n] we have (#;)x = (7;)x. Itis clear by our construction of G that deg; (i) = >, d} =d;,
hence (#;)1 = (7). Now suppose that (¢;); = (%), for some k < h. If Ng(i) is the set of neighbors of i
in G, then for every j € N (i) we have (¢;)x = ()i by the recurrence hypothesis. This readily implies
that (#;)g+1 = (fi)x+1, hence the lemma is proven. O
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Chapter 4

Extended states in the spectrum of
random trees

This chapter is drawn from the prepublication [63], a joint work with Justin Salez.

4.1 Introduction

This paper deals with the general question of existence of a non-trivial absolutely continuous part at
zero in the adjacency spectrum of unimodular Galton-Watson trees. To motivate our work, let us first
briefly describe its implications for the Erd6s-Renyi random graph.

4.1.1 The Bauer-Golinelli prediction

Let G, be an ErdGs-Renyi random graph with size n and density p € (0, 1). Its adjacency matrix A, is
a random symmetric n X n matrix with zero entries along the diagonal and independent Bernoulli(p)
entries above the diagonal. The associated empirical eigenvalue distribution is

l n
UG, = nkzl%, 4.1.1)

where A; > ... > A, are the eigenvalues of A,. When n — oo while p is kept fixed, a celebrated result
of Wigner [141] asserts that a suitably rescaled version of li;, converges weakly in probability to the
semi-circle law. This remains true if p = p, tends to 0 as n — oo, as long as np, — oo (see, e.g. [137]).
The situation changes significantly, however, when instead,

npn, —— c € (0,00). 4.1.2)
n—o
In this sparse regime, the semi-circle law gives place to a non-explicit, densely-discontinuous measure
U, discovered in [143, 94] and later identified in [42] as the expected spectral measure of the Poisson-
Galton-Watson tree with mean offspring ¢ (see below). The latter has attracted a considerable attention
[44,46,127,72,89], as it captures the asymptotics of many properties of G,. One emblematic example
is the nullity dimker(A,), which is known to satisfy

! dimker(4,) %OO» 1.({0}). 4.1.3)

n

In a remarkable work [22], physicists Bauer and Golinelli used the so-called replica-symmetric ansatz
to predict the following intriguing formula for the limit in (4.1.3).
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-4 -z -2 -1 0 1 2 2 4 -4 -3 -2 -1 0 1 2 3 4

Figure 4.1 — Logarithmic plots of the adjacency spectrum of an Erdds-Renyi random graph of size
n = 10000 and average degree ¢ = 2 (left) or ¢ = 3 (right). The presence or absence of an absolutely
continuous part at zero in the n — o0 limit is already manifest on these finitary plots.

CONJECTURE 2 (Atomic mass at zero). For any ¢ € (0,00),
1e({0}) = g(c) + e=1) 4+ ¢q(c)e1(©) —1, (4.1.4)
where g(c) denotes the smallest point g € (0, 1) satisfying the fixed-point equation
g=e". (4.1.5)

A quick analysis of (4.1.5) — or an even quicker look at Figure 4.2 — reveals that the right-hand
side of (4.1.4) undergoes a rupture of analyticity as c reaches the value e ~ 2.718. Bauer and Golinelli
proposed an interpretation of this anomaly as a phase transition in the asymptotic structure of the kernel
of A,,. Guided by numerical simulations, they further predicted the point ¢ = e to be the threshold for
the emergence of a continuous part at zero in the limiting measure (. [22, 23]. To be more precise, we
will say that a measure u has no extended states at a location E € R if

u(E—¢E+e]) —pu({E})
E e—0+

0, (4.1.6)

and has extended states at E otherwise. This terminology is borrowed from the theory of random
Schrodinger operators (see, e.g., [4] for a recent treatment).

CONJECTURE 3 (Emergence of extended states at zero). The following phase transition occurs:

1. Ifc < e, then U, has no extended states at 0.

2. If ¢ > e, then U, has extended states at 0.

Conjecture 2 was established almost a decade ago [44] by a detailed first-order analysis of the
random operator (A —z)~! near the singular point z = 0, where A is the adjacency operator of the
Poisson-Galton-Watson tree with mean offspring c. To the best of our knowledge however, Conjecture
3 —reiterated in [44] — had so far remained open. In the present work, we establish this long-predicted
phase transition, illustrated on Figure 4.1. This is achieved by investigating the second-order behavior
of the random operator (A —z)~! near z = 0. As already mentioned, our result is not limited to the
Erdés-Renyi model: we provide general, explicit criteria for the presence or absence of extended states
at zero in the limiting spectral measure of any graph sequence whose local weak limit is a unimodular
Galton-Watson tree, as defined next.
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08

06

0.4

02

Figure 4.2 — The set of pairs (c,q) satisfying the equation (4.1.5). The branch point (e,e!) causes a
rupture of analyticity in the spectral mass at zero U.({0}), as ¢ reaches e.

4.1.2 General framework

The purpose of this section is to introduce our main objects of study, namely spectral measures of
unimodular Galton-Watson trees. We only recall the necessary notions, and refer to the comprehensive
survey [34] for more details on graph limits and their spectral theory.

Spectral measures. Let G = (V,E) be a countable, locally finite graph. Its adjacency operator A
is a symmetric linear operator on the Hilbert space Eé (V). The domain of A consists of all finitely-
supported vectors, and the action of A on the canonical basis (e,: x € V) is given by

(edie) - |

1 if{x,y}eE

0 otherwise. 4.1.7)

As long as A is essentially self-adjoint, the Spectral Theorem applies: the resolvent (A —z)~! is a
well-defined bounded operator for all z € C\R, and for every o € V, we have the representation

VZeC\R,  {eo|(A—2) leo) = f T (G (dA), (4.1.8)

for a unique probability measure LG ) on R, called the spectral measure of the rooted graph (G, o).
This fundamental object will be central to our work. It may be thought of as the local contribution of o
to the spectrum of G. Indeed, when G is finite, there is an orthonormal basis of n = |V| eigenfunctions
01, ..., ¢, of A with respective eigenvalues Ay, ..., 4,, and we have the expression

H(Go) = Z |01(0) >, (4.1.9)

In particular, the empirical eigenvalue distribution L := % D1 6z, can be recovered from the spectral
measures (L) : 0 € V) by averaging over the choice of the root:

Z H(G.0)- (4.1.10)

oeV

He =
v

Of course, neither side of this identity makes sense when G is infinite. However, the framework of
local weak convergence enables us to pass to the “infinite-volume limit”, in an appropriate sense.
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Local weak convergence. Write ¢, for the space of locally finite, connected rooted graphs, con-
sidered up to root-preserving isomorphism. Make it complete and separable by letting the distance
between two rooted graphs be 1/(1 + r), where r is the largest integer such that the balls of radius
r around the root in the two graphs are isomorphic. Any finite graph naturally induces a probability
measure on %,, via choosing a root uniformly at random and restricting to its connected component.
If (G,)n>1 is a sequence of finite graphs, and if the sequence of probability measures thus induced
admits a weak limit .Z, then .Z is called the local weak limit of (G,),>1 [8]. In words, .Z is the law
of a random rooted graph (G,o0) that describes what G, asymptotically looks like when seen from a
uniformly chosen vertex.

This limiting object has been shown to capture a number of asymptotic properties of (G, )n>1,
including the empirical eigenvalue distribution itself. More precisely, we always have

iup!HGn ((=00,4]) = e ((—00,A])[ — 0, (4.1.11)
eR n—0o0

where Ly (-) :=E [,LL(G’O) ()] denotes the expected spectral measure under £, This remarkable con-
tinuity principle has a long history [42, 1, 34]. In short, it allows one to replace the spectral analysis
of sparse graphs by that of their local weak limits. Luckily, the latter turn out to be much more con-
venient to work with than the finite graphs that they approximate. For example, although they have
many cycles, most sparse random graphs admit a local weak limit that is supported on trees. More-
over, in many cases of interest, including the Erdés-Renyi and configuration models, the limit has a
particularly simple recursive structure, which we now describe.

Unimodular Galton-Watson trees. Let = = (7;);>0 be a probability distribution on N with finite,
non-zero mean. A unimodular Galton-Watson tree with degree distribution 7 is a random rooted tree
obtained by a Galton-Watson branching process in which the root has offspring distribution 7z and all
descendants have the size-biased offspring distribution 7 = (7 )x>0 given by

7/.[\ . (k+ 1)71:k+1 .

k= :
2

The law of this random rooted tree plays a distinguished role in the theory and will be denoted by
UGW(r). It arises as the local weak limit of uniform random graphs with prescribed degrees, when
the number of vertices tends to infinity while the empirical degree distribution tends to 7.

A simple example is random d—regular graphs, for which 7 is just a Dirac mass at d: the resulting
tree is then the infinite d—regular rooted tree, whose spectral measure is the well-known Kesten-
McKay distribution [113], see Figure 4.3. Another important example is the Erd6s-Renyi model with
parameters as in (4.1.2), for which 7 is the Poisson distribution with mean c. In that case, we have
T = 7, so that UGW(7) is the law of the standard Poisson-Galton-Watson tree with mean offspring
c. Its expected spectral measure Uygw(r) 18 precisely the limit (. mentioned in Section 4.1.1. The
striking difference in the spectra of these two models (see Figures 4.1 and 4.3) motivates the following
research program, to which the present paper is intended to contribute.

(4.1.12)

PROBLEM 9. Understand the regularity of lygw(x) — in particular, the supports of its pure-point,
absolutely-continuous, and singular-continuous parts — as a function of the degree distribution 7.

State of the art. This relatively young line of research has already witnessed notable progress. A
comprehensive account, as well as a list of exciting conjectures, can be found in the introductory
survey [34]. The pure-point part of the spectrum is now reasonably well understood. In particular,
the work [44] provides an explicit formula for the mass at zero, while [127, 128] investigate the

IThis definition implicitly relies on the (non-trivial) fact that the adjacency operator of a unimodular random graph is
essentially self-adjoint with probability 1, see [34, Proposition 2.2] for a proof.
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Figure 4.3 — Histogram of the eigenvalues of a uniform 3—regular random graph on 10* vertices (in
gray), and the limiting Kesten McKay density (in red).

locations of other atoms. Rigorous results on the support of the continuous part are more limited.
A remarkably general criterion by Bordenave, Sen and Virag [46] guarantees the presence of a non-
trivial continuous part as soon as the Galton-Watson tree is super-critical. Unfortunately, the result is
existential in nature and can not be used to ensure the presence of extended states at a given location.
More precise information is available when 7 is sufficiently close to a Dirac mass, thanks to Keller
[91]. However, the method used there is intrinsically perturbative and does not yield information for
explicit choices of 7 such as the Poisson distribution involved in Conjecture 3. In the present paper, we
provide explicit criteria for the presence or absence of extended states at zero in the spectral measure
Hucw(x) for a general degree distribution 7.

4.1.3 Results

Throughout this section, we fix a probability measure & on N with finite, non-zero mean, and we let
M = Uygw(r) denote the expected spectral measure of the unimodular Galton-Watson tree with degree
distribution 7. In the degenerate case where 7y + 7; = 1, our random tree is just an isolated vertex with
probability 7y and an isolated edge with probability 7y, so its expected spectral measure is Uygw (z) =
o + %5,1 + %61, which trivially has no extended states anywhere. To avoid degeneracies, we will
henceforth always assume that

T+ m < 1. (4.1.13)

All our results will be expressed in terms of the degree generating series

0):= > m,  P):= ) WM = (P,/((Z) . (4.1.14)

k=0 k=0 ¢ 1)

It was shown in [44, Theorem 2] that 1 ({0}) = max M, where the function M: [0, 1] — R is given by

M(z):=0()+(1-2)9"(z) + o (1 -9(z)) — 1. (4.1.15)
Our main finding is that the presence or absence of extended states at zero depends on the set

argmaxM := {z€[0,1]: M(z) = maxM}. (4.1.16)
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A quick differentiation shows that any z € argmax M must satisfy

=1-0(1-0(2). 4.1.17)

Among the (possibly many) solutions to this fixed-point equation, the following one will play a crucial
role: we let z, € (0, 1) denote the unique point satisfying

Ze=1—0(z.). (4.1.18)

It is easily checked that M’(z,) = 0, and that M”(z,) has the same sign as ¢’(z.) — 1. The presence or
absence of extended states at zero in U turns out to be dictated by the following two conditions:

1. M achieves its maximum uniquely at z,, i.e. argmaxM = {z.}.
2. M"(z.) # 0 (or equivalently, ¢'(z.) # 1).

More precisely, our first main result states that (i) and (ii) characterize a strong square-integrability
property which, in particular, implies the absence of extended states at zero.

Theorem 10 (No extended states at zero). The square-integrability property
1
J 5 H(dA) <o (4.1.19)
®\{0} A

holds if and only if (i) and (ii) are both satisfied. In particular, when this is the case, | satisfies

u([—e,€]) = u({0}) +o(&?), (4.1.20)
as € — 0, which is much stronger than the absence of extended states at zero.

Conversely, our second main result guarantees the existence of extended states at zero as soon as
(1) fails. Note that this only leaves aside the critical situation where (i) holds but (ii) fails, in which case
we do not know whether the measure u has extended states at zero. We emphasize that this situation
is not generic, as it forces z — @(z) +z and z — @’(z) to reach 1 at the same point.

Theorem 11 (Extended states at zero). If condition (i) fails, then U has extended states at zero.

We end this section by applying our results to the special case where 7 is the Poisson distribution
with mean ¢, i.e. @(z) = @(z) = ¢ . Under the change of variable ¢ = 1 — z, the fixed-point
equation (4.1.17) reduces to (4.1.5), whose solutions were represented on Figure 4.2. When ¢ < e, the
solution is unique, so condition (i) trivially holds. When ¢ > e, there are three solutions, and condition
(i) must fail because M”(z,) > 0. In fact, the double equality ¢’ (z.) = ce“@ 1) = ¢(1 —z,) shows that
M (z,) is negative, null or positive according to whether c is less than, equal to, or more than e. Thus,
Theorem 10 applies if and only if ¢ < e, and Theorem 11 applies if and only if ¢ > e. This establishes
Conjecture 3 and leaves aside the critical case ¢ = e, which remains open.

4.2 Main ingredients

In this section, we introduce the main ingredients of our proof. We start by reformulating the problem
of extended states at zero in terms of Stieltjes transforms, and then recall the well-known recursion
satisfied by the latter on rooted trees. We then combine this recursion with the Mass Transport Prin-
ciple to establish a new identity that will be crucial to our proof. We emphasize that all results in this
section apply to general trees. The special structure of unimodular Galton-Watson trees will only enter
the play in Section 4.3 below.
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4.2.1 Stieltjes transform

The integral appearing in the definition (4.1.8) is known as the Stieltjes transform of the measure
H(G,0)- Here we will focus on the imaginary part of its restriction to the imaginary axis. More precisely,
given a finite Borel measure y on R, we consider the observable s: (0,00) — R defined by

t

The leading-order asymptotics of s(¢) as t — 0 are directly related to the behavior of y around 0. In
particular, the following two limits emerge naturally:

) . 1
a=tim Lis() = p((0)),  Bi=timp 2 - fwu«m 422)

Note that we can not simultaneously have & > 0 and 8 < c0. To investigate the presence or absence
of extended states at zero, we first need to subtract the atom at zero from y, i.e. consider the measure
U* := U — ady and its associated transform,

t
N J]R\{O} A2 412 H

We then have the following exact characterization of the absence of extended states at zero.

5 (1) = s(1) —%

(dA). 4.2.3)

LEMMA 4.2.1 (Characterization). p has no extended states at zero if and only if s*(t) — 0 ast — 0.

Proof. Fixt >0 and setI; := [—#,¢]\{0}. Since ;7' > 2% for all A €I,, we have

5*(1‘) > .uz(jl‘) .

Thus, u has no extended states at zero whenever s*(¢) — 0. Conversely, observe that for any €,z > 0,
we have by Fubini’s Theorem

t © 2tu
Jlgwﬂ(dl)zfo m#(lsm)d”-

On the other hand, the same identity with the measure u replaced by Lebesgue’s measure gives

arctan (§> = Joozm(e Au)du
t) Jo (2+u?)? '

Comparing these two lines, we deduce that

4 (L) €
££A2+t2u(dk)<u:(lz)%)e){ ” }arctan(t>.

Since arctan (-) < 7, and since 537 <  forall A ¢ I, we conclude that

Sending t — 0 and then € — 0 shows that s*(¢) — 0 whenever u has no extended states at zero.  [J

This lemma reduces the absence of extended states at zero to the condition s* () = o(1) as t — 0.
Moreover, the square-integrability property (4.1.19) can be rephrased as * < o0, where

* 1
B* = lim1° (1) _ jR\{o}/P“(dM' (4.2.4)

t—0 t

Thus, our two main theorems will follow from a careful analysis of s*(¢) as r — 0, when u is the
expected spectral measure of a unimodular Galton-Watson tree. The starting point of this analysis is a
well-known local recursion satisfied by spectral measures of rooted trees.
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4.2.2 Local recursion

As many graph-theoretical quantities, spectral measures admit a recursive structure when evaluated
on trees. Fix a tree T = (V,E) whose adjacency operator is self-adjoint, and let o € V be an arbitrary
vertex. We write 0o = {x €V : {x,0} € E} for the set of its neighbours, and deg(o) = |do| for its degree.
Deleting o splits 7 into deg(o) disjoint subtrees which will naturally be denoted by (Tx—o: x € 00).
We let s,,5%, 06, Bo, By be the objects s,5*, o, B, * defined above when the general measure y is
taken to be the spectral measure ((r ). Similarly, we let 5, 0,554, %0, Bx—0, By_,, correspond to
the choice u = pr,_,, ). We then have the following elementary but fundamental relation (see, e.g.,
[44] for a proof): for all 7 € (0,0),

1

So(t) = . 4.2.5)
LIRS NSERN Ty
In particular, multiplying or dividing both sides by ¢ and sending t — 0 yields
o — 1 : (4.2.6)
T YegoBeo” B
1
Bo = . 4.2.7)
° er@o Ox—o

In view of these identities, it is natural to decompose the degree as deg(0) = At + A~ + A.* where

A= Y20 (4.2.8)
X€00

N =) (g <on) (4.2.9)
X€00

VARSI ) Ty s (4.2.10)
xedo

It then readily follows from (4.2.6) and (4.2.7) that

o >0= Nt =4"=0 (4.2.11)
Bo <00 = At >1 (4.2.12)
(o =0,Bo = 0) = (AT =0,4">1). (4.2.13)

Of course, the recursion (4.2.5) also applies to the tree T;,_,, (for any y € o), yielding

1

Soyll) = ; 4.2.14
o) t 4 2 vedo fy} Sr—o(t) ( )
1
Oly—sy = ; (4.2.15)
T Yooy Broo
1
ﬁoay = (4.2.16)

er(?o\{y} Ox—o .

These recursions will play a crucial role in our analysis.

4.2.3 Mass Transport Principle

The second-order quantity B is a priori much harder to analyze than its first-order counterpart f3,, as
we have to remove the singularity caused by the atom at zero. To overcome this difficulty, we will
exploit a powerful identity known as the Mass Transport Principle (see, e.g., [7]): any random rooted
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graph (G, 0) whose law is the local weak limit of some sequence of finite graphs is unimodular, in the
sense that it satisfies the distributional symmetry

E ZfGox) =E Zfoo , (4.2.17)

x€V(G x€V(G

for any Borel-measurable function f: %,, — [0,00], where %., denotes the natural analogue of ¥, for
doubly-rooted graphs. At an intuitive level, this identity expresses the fact that the root is “equally
likely” to be any vertex (even though the underlying graph is possibly infinite). Here we use this
spatial stationarity to prove the following key formula, which expresses E[B;] in terms of 3, only.

PROPOSITION 4.2.2 (Getting rid of the atom at zero). For any unimodular random tree (T,0),

EIB:] = E[1e=0)Bo] +E[1( 1020 Bo| +E [1( s %xeao gxﬁoimﬁo—o) } L 4218)
xedo Yx—0(04—0>0)
Proof. Fixt € (0,00) and y € do. Combining (4.2.5) and (4.2.14), we have
1 ~1
50(t) = <W +syﬂo(t)> : (4.2.19)
Multiplying by s,_,,(t) clearly makes the right-hand side symmetric in o and y, and hence
So(1)5y—0(t) = 8y(1)S0—y(1). (4.2.20)
Summing over all y € do and using again (4.2.5), we obtain
1 —t50(t) = ) 5y(t)80y (1) (4.2.21)

yedo

On the other hand, it easily follows from (4.2.6),(4.2.15) and (4.2.16) that for any y € do, we have
0 >0 < (0 >0and AT >2). (4.2.22)
Combining this with (4.2.21), we deduce that

(1=150(1) L0y = 2 53(1)S0—y() (g, 500 Aty (4.2.23)
yEOO

We may now take expectation and use unimodularity to obtain

E[(1—150(1)) Ligyo0)] = E [ 14+ 22150(1) X Sys0(1) ey p0) | - (4.2.24)
yedo

Letting ¢ — 0 and using {4, > 2} < {B, < oo} for the right-hand side, we obtain

E[(1- ) 1(a0)] =B | 1 2080 X) %o
yedo

=P (A" =2)

[}

—E |1 ,+255(0) t+ > s0(t) ||
yedo
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4.3. Unimodular Galton-Watson trees

where the second line follows from (4.2.7) and the third from (4.2.5). Substracting (4.2.24), we arrive
at

E[(150(t) = @) Lgy20)] = E [ 1 v 20)80(1) [ 1+ D] 50-0()1(gy_0=0) | | - (4.2.25)
yEDO

Dividing through by #* and sending t — 0 yields

E[Bi1(4,-0)] =E [1( tsn)B (1 + ] Bxﬁol(aﬁo_o)ﬂ (4.2.26)
xe0o
On the other hand, on the event {¢, = 0}, we have B = f3,, which concludes the proof. O

4.3 Unimodular Galton-Watson trees

The above results were valid for any unimodular random tree. We now consider the special case of
unimodular Galton-Watson trees, and exploit their self-similar nature to turn the above recursions into
distributional fixed-point equations that will be amenable to analysis.

4.3.1 Distributional fixed-point equations

From now on, we fix a degree distribution 7 as in Section 4.1.3, and we equip the space of rooted
trees (7,0) with two different probability measures: we reserve the letter P for the unimodular law
UGW(x), and use P to denote the homogeneous Galton-Watson law with offspring distribution 7. We
naturally use E and E to denote the corresponding expectations. Thus, the distribution of the root-
degree deg(o) is 7 under P and 7 under P and in both cases, conditionally on deg(o ) the subtrees
(Ty—o,x € 00) are i.i.d. homogeneous Galton-Watson trees with offspring distribution 7. In particular,
the recursion (4.2.5) takes the following simple distributional form.

COROLLARY 4.3.1 (Distributional structure). Under both P and lA’ the conditional distribution of
(AT, A, M) given deg(o) is Multinomial with size parameter deg(o) and probability parame-

ters (f’(ao > 0),P(By < 0),P(cty = 0, By = oo)) Moreover, conditionally on (N,*, N7, A.*), the
random sums

Z Sy—o0 (t) 1(ocx_m>0)

X€00

Z 5XH0(I)1(aX_,O<oo)

X€00

Z Sxoo(t) l(aHo:O,ﬁHO:oo)

XEOO

are independent, the first (resp. second, resp. third) being distributed as a sum of N T (resp. Ay,
resp. Ag*) i.i.d. random variables with law P (s,(t) € |0ty > 0) (resp. P (s,(t) € -|Bo < 0), resp.
P(go(t) € '|a0 = Oaﬁo = OO))

We shall use this fact (and its # — O counterparts) repeatedly below, without notice. For example,
an immediate consequence of this and (4.2.11)-(4.2.12) is that

P> 0)= ¢ (P(Bo<x)),  P(Bo=20) = (Ple=0)), 3.1)
Play>0)=¢ (P(Bo <)),  PB(By=o0) = (Pla=0)), 432)
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4.3. Unimodular Galton-Watson trees

where we recall that ¢ and ¢ are the generating series of 7 and 7T respectively. In particular, the
number z = P(Oc0 = 0) must solve the fixed-point equation (4.1.17). In fact, P(Oc0 = 0) was shown in
[44] to coincide with the last point at which the function M achieves its maximum, i.e.

P(0, = 0) = max (argmaxM). (4.3.3)

With this characterization in hands, we may reformulate our main assumption (i) as follows.
LEMMA 4.3.2 (Reformulation of assumption (i)). The following conditions are equivalent.

1. argmaxM = {z,};

2. Plag =0) =z,;

3. P(0=0,B,=0)=0;

4. P(ay =0,B, = 0) = 0.
Proof. Setz:=P(a, = 0). Since {@, > 0} < {B, = o0}, we always have

P(cty =0,B,=0) =P (B, =0) —P(0, >0)
=¢(2)—¢(1-9()).
where the second line follows from (4.3.1). Similarly,
P =0,0 =) = §(z) —$(1-(2)).

From these equalities and the fact that @, ¢ are increasing, we immediately deduce that the conditions
(2),(3) and (4) are equivalent. Moreover, it is clear from (4.3.3) that (1) implies (2). To see that (2)
implies (1), recall that any point z € argmax M must satisfy the fixed-point equation (4.1.17), and that
the latter implies M (1 — @(z)) = M(z). Thus, the set argmax M is stable under the map z — 1 — ¢(z),
and so it can not intersect (z., 1] without also intersecting [0,z ). O

4.3.2 Proof of Theorem 10

In this section, we prove Theorem 10, namely, that (i) and (ii) are necessary and sufficient for E[B]] <
o0. The necessity of (i) is easy: if (i) fails, then P (o, = 0,8, = ) > 0 by Lemma 4.3.2, and so the
first term on the right-hand side of (4.2.18) is already infinite. We will thus henceforth assume that (i)
holds. By Lemma 4.3.2, this ensures that

P(0ty = 0) = P(By < ) = z,. (4.3.4)
Let us note here for future use that, in view of Corollary 4.3.1, we now have

P =1)= > nmzl ' (1-z) = (1-2)¢'(z) = (1-2)°¢'(1)  (43.5)

n=1
Pt =1) =Y nmi ' (1-2) = (1-2)9(z4) (4.3.6)
n=1
~ _ X . 1 & ~ n Z*@%Z*)
E[ A7 AT = A5 =0] = 1_Z*r§)nnnz*= — 4.3.7)

Our first task consists in reducing the finiteness of E [/ ] to that of E [%’ O > O].

LEMMA 4.3.3 (Reduction). Under (i), we have E [B}] < oo if and only if E [i‘ O > O] < o0.
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4.3. Unimodular Galton-Watson trees

Proof of the “only if” part. Since { A/t =1} < {a, =0} < {BZ = Bo}, we have

N 1
E [BO] > E [ﬁol({/ﬁfﬁ—:l)] = E [Z){e&)%%l(%-‘—_l)]

1
- E - }
[er&o ax%ol(ax_’o>0) (Mt =1)

~[1
+
P (A, 1)E[a

0

o > 0] :
This is enough to conclude, since P (4,7 = 1) > 0, by (4.3.5). O

Proof of the “if ” part. Let us now assume that E [i‘ o, > O] < o0, and verify that each term on the
right-hand side of Formula (4.2.18) is finite. For the first term, we write

E[1(4,-0)Bo] = E [1(5,<c0) Bo]

1
=E[1 . ]
(A721) erao Ox—o

where the first line follows from Lemma 4.3.2, and the second from (4.2.7) and (4.2.12). Now, condi-
tionally on .47 ", the random variable 3 5, 0o = 2 co %ol (a,_,>0) is distributed as the sum of

A¢T i.i.d. random variables with law P (o, € -|at > 0). Keeping only one of them yields

(0]

E[1q—0)Bo] <P(A" > 1)ﬁ [1

0 > O] ; (4.3.8)

which is finite. The second term is less than the first because {#,* > 2} < {®, = 0}. For the third
one, we observe the following: conditionally on .4, and .4, + .4.*, the two random variables

Z ax—»ol(axﬂo>0) and Z Bx—»ol(tx)Ho:O) )

XEDO XEDO

are independent, the first being distributed as a sum of .4, i.i.d. random variables with distribu-
tion P(a, € -|a, > 0), and the second as a sum of 4" + .4, i.i.d. random variables with law
P(fB, € -| ot = 0). Keeping only one of the .4, i.i.d. random variables in the first sum, we obtain

Z)C 0 Bx—’ 1 x~>0:0
E|:1(%+>2)Z€0 O(a ):|<

IXEQ0 ax—>01(axa<,>0)
~1 1
B
%o
The product on the right-hand side consists of three terms. The first is finite by assumption. The

second is less than the expected degree at the root of our unimodular Galton-Watson tree, which is
also finite. Finally, the inequality (4.3.8) with P replaced by P shows that the third term is finite. [

O > 0} E [1((%+22)(%7 + J‘{;)] ﬁ[ﬁo’ O = O] .

Since our running assumption (i) forces M”(z.) < 0, the condition (ii) becomes M”(z,) < 0 or
equivalently, ¢’(z.) < 1. To complete the proof of Theorem 10, it therefore only remains to show that

B[ &|a>0] <ooif and only if §'(z.) < 1, which we now do.

LEMMA 4.3.4. Under assumption (i), E [a%,

0 > 0] < o0 if and only if §' (z.) < 1.
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4.3. Unimodular Galton-Watson trees

Proof of the “only if ” part. On the one hand, using (4.2.6) and (4.2.11), we have

~T1 ~

XE00

= [ D Beol(p <)

xe0o

oc0>O]

=/Vo+==/Vo*=0]
= 1+E[ A7 A" = A = 0] E[Bo| Bo < 0]
g [t o)

1 — 2z

=14
where the last line uses (4.3.7) and (4.3.4). On the other hand, using (4.2.7), we have

~ ~ 1
1

1 ]
|:er60 ax—>01(a)c4,0>0) (% _1)

~ NN 4}7
P (A _1)E[a0

[
=9

a0>0]

- (1-2)7 8| 5

0

oc0>0],

where the third line uses Corollary 4.3.1 and the last line uses (4.3.6). Since {4, =1} < {B, < 0},
we deduce from these two facts that

R
%o

The desired conclusion now clearly follows. O

o > O] > 1+ (¢'(z))°E [1

(0]

a0>0].

Proof of the “if ” part. Fixt > 0, and observe that by (4.2.5) and (4.2.11),

- 1 5x4»0
E % >0 1+ e >0 (43.9)
[0 -2 1 £ 25=o)
—1+E| ) sy = =0 (4.3.10)
x€00 !
= 1+E[ 7| A4 = JV*—O]IAE[ Solt) [30<oo] (4.3.11)
-~/
— 1+ Z*l‘p (Z*)E[ B < oo} 43.12)
—Zx

where the last line uses (4.3.7). On the other hand, using (4.2.5) and (4.2.12), we have

[ —1
E[ﬁo(t) ﬁ0<oo] -E (Ztﬁx—»O(f)> %+ >1
! | XE00
[ ~1
< ﬁ (Z tgxﬁo(t)l(ax_,o>0)> e/‘{)+ =>1]. (4313)
XEOO
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4.3. Unimodular Galton-Watson trees

Conditionally on .4, ", the integrand on the right-hand side is distributed as the reciprocal of the sum
of A;" ii.d. random variables with law P (zs,(r) € -| 0, > 0). To exploit this i.i.d. structure, we
transform the reciprocal (-)~! into a power via the trivial identity

1
I”_l :J Zr—ldZ7
0

valid for any r > 0. With r = 3 5 #5:0(t)1(¢,_,,>0), We obtain

—1 :
E (Z tﬁxqo(l)l(ak‘m>0)> %+ = 1 = f I/‘i [Zerantﬁxﬂo(f)l(aX_,o>0) %+ > 1:| %
Xe00 0 <
o 1 n dz
= Z P(A" =n|At > 1)f E [zf%(” a > 0] <
n=1 0

We now fix some € € (0,1) and n > 1, and estimate the integral on the right-hand side by splitting it
into two parts: for z € (g,1), we use the crude bound E [zm"(t)‘ o > 0] < 1 to obtain

JI (E [Ztso(l) o > O])ndj <In <i> .
€

For z € (0,€), we use the observation that z/%() < g% to write

€ n N EA
J (E |:Zl5()(l) ao > 0:|) % < E[ga(y| a() > O]n_lj E |:Zt5(y(t) ao > O] %
0 < 0 ¥4
~ ~ 1
<E[e* 0" 'E 0f.

Inserting these estimates into the above series and recalling (4.3.9)-(4.3.13), we arrive at

oco>0}<

. 20’ (z4) <1og <;) + & <ﬁ[eao]ao > O]) 173{ 1

11—z,

Oy > OD , (4.3.14)

where we have introduced the short-hand
e}
D (u) :E[MW—I‘JV; > 1] = MR (AT =145 = 1),

Now, observe that

— A( - ) — (P/(Z*),
P(AF=>1)

where we have used (4.2.12), (4.3.4) and (4.3.6). By continuity of ®, we deduce that

®(0)

Feo ofet - 0) o (1)

If ¢’(z.) < 1, we can choose € > 0 so that %@ (ﬁ [e%| oty > 0]) < 1 and rewrite (4.3.14) as

T 14 200 60 (1
E[%>O]< Rt ==y ee)
150(1) |- 22C) g (E[e%|aq > 0]
1—z4 0
The right-hand side is finite and independent of ¢, so letting + — 0 concludes the proof. O
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4.4. The skeleton tree

4.3.3 Proof of Theorem 11

We use the following Lemma, whose proof is trivial once we observe that a sequence of non-negative
random variables (X, ),>1 tends to oo in probability if and only if E[exp(—X,)] — 0.
n—

LEMMA 4.3.5. Letk > 1 be a fixed integer, and let (X,Sl))nzh. . (X,Sk))nzl be k i.i.d. copies of an
arbitrary sequence (X,),>1 of non-negative random variables. Then the sequence (Y,),> defined by

Y, = X+ + % tends to oo in probability if and only if (X,),>1 does.

Proof of Theorem 11. Assume that condition (i) fails. By Lemma 4.3.2, this means that the event
E:={0,=0,fo =0} ={AT"=0,4">1}

has positive probability under P and P. On this event, the recursion (4.2.5) can be rewritten as
-1
ﬁg(t) = (l + Z 5x—>0(t)1(ﬁxﬂa<oc) + Z ﬁ;ao(t)l(axﬂoo,ﬁxﬂooo)> .
X€00 X€00

The first sum on the right-hand side tends to 0 as # — 0 by definition of B,_.,. On the other hand, by
Corollary 4.3.1, conditionally on ./4;*, the second sum is distributed as the sum of .#_* i.i.d. variables
with law P (s5 € -|&). We emphasize that this statement is valid under both P and P (only the distribu-
tion of .4_* differ). Applying Lemma 4.3.5 to both situations, we deduce that along any deterministic
sequence (1, ),>1 of positive numbers with #, — 0 as n — o, the following conditions are equivalent:

(a) s;(t,) — 0 in probability under P(-|&);
n—o0

(b) s%(t,) ——> o0 in probability under P (-|&);
n—o0

(©) s3(ta) — 0 in probability under P (|&).
n—

Of course, (b) and (c) are incompatible, and so (a) can never hold. In particular, this rules out the
possibility that E[s?(#,)] — 0 as n — 0, and since (#,),> is arbitrary, we conclude that

limiEfE [s5(¢)] > 0. (4.3.15)
1—0
By Lemma 4.2.1, this is more than enough to ensure that tygw(r) has extended states at zero. O

4.4 The skeleton tree

We end this chapter by an extension of the preceding result to another infinite unimodular tree, namely
the skeleton tree. This semi-infinite tree naturally arises as the Benjamini-Schramm limit of uniform
rooted trees ([85]). It is defined as follows: let (7;) be an iid sequence of random rooted trees, with
distribution PGW(1), and let P be the ‘semi-infinite spine’, whose vertex set is N = {0,1,2,...} and
where the edges are (x,x+ 1). The Skeleton tree Tyqyel is obtained by gluing the root of the tree 7, on
the n-th vertex of P. The obtained tree Tyq,el is then rooted at the first vertex of the spine.

103



4.4. The skeleton tree

te

ta

Figure 4.4 — Illustration for one construction of the skeleton tree Tquel. The trees (¢;) are realization
of an iid sequence PGW(1) trees.

This tree is unimodular as a limite of finite connected graphs, hence its adjacency operator is as
self-adjoint, and we can define its spectral measure at the root squel through its Stieltjes transform
(4.1.8).

Let G, be a uniform tree over the n~2 trees on n vertices. As shown in [85], this sequence
convergences to Tgquel in the Benjamini-Schramm topology, hence the spectral continuity (4.1.11)
directly applies; if i, is the spectral measure of the adjacency matrix of G,, then

16, 2 B[ tequel] (4.4.1)

where dgs denotes the Kolmogorov-Smirnoff distance on finite measures, as in (4.1.11). Numerical
simulations seem to show the absence of extended states in the origin of this measure, as in Figure 4.5.
Using the same tools as for unimodular Galton-Watson trees, we prove this observation.

Theorem 12. The expected spectral measure Ellsq,el has no extended states at zero.

Figure 4.5 — Histogram of the eigenvalues of large uniform random trees on n = 1000 vertices.
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Our proof strategy uses the Stieltjes transform and especially the characterization lemma 4.2.1.
Let us recall some notations. If (7,0) is a rooted essentially self-adjoint tree, with spectral measure at
the root denoted by (7 ), we consider the observable

t
s(t) = JR 2t (dA)
and the two corresponding quantities

i ., 8(1) 1
a:=lim|1s(r) = tro (10}),  p:=lim? (t = fR 73 Hir.o) (d2) 4.4.2)

and finally, we set
o
5*(t) = ﬁ(t) - 7
Following Lemma 4.2.1, our goal is to prove that when (7,0) is distributed as Tyqyel, then

limE[s*(1)] = 0 (4.4.3)

thus showing that E[tlsque1] has no extended states at the origin.

4.4.1 Proof of Theorem 11

Tree notations and cavity equations. Let us introduce some notations. The vertices of the spine of
Tsquel are noted with integers; the root is 0. If n is one of those spine vertices, we note V), the set of its
children which are not on the spine; they correspond to the children of the root in 7;,.

If n is an integer, we will denote by (Tiquel)» the tree which is formally defined as (Tsquel)n—sn—1;
it is the tree obtained from Tgq.el by deleting the vertices 0,1,...,n — 1 and their attached trees
Ty, ..., Ty—1, and setting the root at n. It is clear that (Tiquel)» has the same distribution as Tiqyel-
Quantities such as @, or By_,,, etc., are defined similarly as in Section 4.2.2.

The cavity equations applied at the root of the skeleton tree now take the form:

1
oy = 4.4.4)
1+ ZXEV() Br—o+ Bi
and |
Bo = 4.4.5)

ZXEV() 0 + O

The alternative holds true on the skeleton tree. We will now note p = Ppgy(1)(@ > 0) and g =
PPGW(I)([% < ). As noted in the end of Section 4.1.3, on a Poisson-GW tree with parameter ¢ =
1 < e, condition (i) trivially holds, and from the equivalences listed in Lemma 4.3.2, this is equivalent
to Ppgw(1)(@ =0, = o0) = 0, or more simply p + g = 1; in this paragraph, we show that the same
alternative holds for Tiqyel, namely that P(ag > 0) + P(By < o0) = 1.

From the preceding equations we have {ap > 0} = {B1 < o0} n {Vx € V), B0 < o0}, hence by
independence,

P(0p > 0) = P(By < 0)p. (4.4.6)
On the other hand, {y = 0} = {0y = 0} N {Vx e Vy: ox—0 = 0}, hence by the same argument
P(By = o0) =P(a; = 0)p 4.4.7)
and so we get
P(fy <o) =1—-P(a; =0)p=q+ pP(ap > 0). (4.4.8)
and this finally gives P(ap > 0) = pq/(1 — p?), and P(By < «0) = q/(1 — p?). Adding both, we get
pPq q Pq+q
Plag>0)+P(fy<0) = g5+ 7= 5 =7 5 =1 (4.4.9)

because pg+q=p(l—p)+1—p=p—p*+1—p=1-p>
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No extended states: the proof. We are now going to show that E[3]] < co. The Skeleton tree is a
unimodular random graph, hence it satisfies the identity (4.2.18) from Proposition 4.2.2, namely

y Zx Bx—>01axﬂ -0+ [31 1o, —0

(4.4.10)
xeVy O—0lg, o>0+ 0ilg >0

where ,/16+ =1g,>0+ erVo 14, >0 is the number of children of the root having & > 0 ; similarly,
we define .4, as the number of children of the root having B < co.

In (4.4.10), there are three terms. As {.#;" > 2} < {a@ = 0}, we have E[By14,—0] > E[ﬁol%+>2],
hence we only have to prove that E[Bo14,—0] < o0 (first claim) and I < oo, where I is the last expecta-
tion in (4.4.10) (second claim).

Proof of the first claim. We have {By < oo} = {a; > 0} U {Bo1 < o0}, hence we have 1g ., <
1o >0+ 1[30H1<oo’ and

[ 1
E|Bp1 =E 1
[BO ﬁo<00] i a + ZXEV() o ﬁ0<oo]

- ) 1
<E oy >0 I E Bo—1<0
o+ ZXEV() 0x—0 o+ ZXGV() 00

<]E_lt)61>0:|_"_13 1[30*,1<OO
L (o} Z)CEV() Ox—0

1
<E| 20| B[ty o]

The second term is precisely the quantity 3 applied to the dangling tree Ty, which is distributed as
a PGW(1) tree, and it has been already proven that Epgw 1)[1<x ] is finite; more precisely, the
combination of (4.3.8), assumptions (i)-(ii) (which are true for PGW(1)) and Lemma 4.3.4 clearly
shows that this expectation is finite.

We now repeat the argument for o :

Pl dfonz0)

xeVy

~ ElBi L] +E | )

—1

1
<E[filp < ]P(a01 > 0)+E [ZC{:ITO}

where in the last line, we used {@y > 0} = {; < 0} n {1 > 0} and independence of these two
events. Again, Lemma 4.3.4 yields that E [M] is finite. Gathering the preceding inequalities, we

0p—1
get
E[ﬁolﬁo<oo] < pE[ﬁ01ﬁ0<oo] +c (4.4.11)
where p = Ppcw (1) (0 > 0) had been defined earlier and c is the real constant
1a0>0
¢ :=Epew(1)[Bolgy<w] +Epcw(i) w |

As p > 0, this automatically ensures that E[ o1 <] < ﬁ < oo as needed. Note that, in the course
of the proof, the equation

E [1“&?’} <o (4.4.12)
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has been shown to be true.
O

Proof of the second claim. We now treat the last term in (4.4.10), dubbed I, and prove its finiteness.
We can split the event {_4" > 2} in two disjoint events {a; > 0,.4;" > 1} U {oy = 0,4, =2},
where

N
:/1{) = Z 1ax~>0>0’

xeVy

Splitting I on these two events yields

2 xev Br—0oley_o=0 + Bile =0
Z)CEVQ ax*)()lax_>0>()

ervo ﬁx—>0106x40=0
0 1g >0

J%+>l,a1>0

I<E [1 ] +E [11/’1{)“+>2,a1 =0
(4.4.13)
By independence, the first term is equal to

14,0
E{ o ]E[l,%wzliholaﬁo_o]

xeVp

The first term has already be proven finite in (4.4.12), and the second one is smaller than
0
E [Z 5xa01a.Ho—0] = Z nTEpew(n) [Blg<wo] = Epew(n)[Blp<c] < 0.
xeVy n=0

We finally treat the second expectation in (4.4.13). Let us note Sy the sum on the denominator and S
the sum on the numerator. The term is equal to

S 1
P(oy =0)E [1(;1/?2255] +E [1'/70+>25a] E[B11¢,-0]

and every term in this expression is finite by the preceding results.
O

To conclude, every term in the RHS of (4.4.10) is finite, hence E[] is itself finite, which directly
proves by Lemma 4.2.1 that E[squei] has no extended states at the origin. In fact, it also proves that
By is as finite, hence on an event with probability one, the random measure Usq,el has no extended
states at the origin — a much stronger result than Theorem 12.
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Chapter 5

Matrix reconstruction from sparse
observations

This chapter is based on a joint work with Charles Bordenave and Raj Rao Nadakuditi; the
prepublication is in preparation at the time of submission of this dissertation .

5.1 Introduction and statement of the results.

5.1.1 Setting.

Let n > 1 be an integer and let P = (P, ); je[s] € #n(R) be a real hermitian matrix with spectral
decomposition

P= mpof (5.1.1)
k=1
where r is the rank of P, the p are the eigenvalues of P, and ¢y,...,®, is an orthonormal basis of

eigenvectors. By simplicity, we will consider matrices with positive, distinct eigenvalues in decreasing
order: t; > --- > u, > 0.

Each one of the n? entries of the matrix P is observed with equal and independent probability d /n.
The observation is thus a matrix A defined as

A ZP.y if entry (x,y) is observed
Xy
0 else.

The normalization is chosen so that E[A] = P. The main point of this paper is that A is not hermitian.
The eigenvalues are complex numbers, ordered by decreasing magnitude |A;| = --- > |A,|. Even
though it seems tenting to symmetrize the matrix A because P is hermitian, our point is that this might
not be the best thing to do, and that indeed A captures more information about P than its symmetrized
version.

This paper answers the following question:

What part of P can be recovered from the observation of A ?

The literature around this problem — the so-called matrix completion problem — is gigantic,
see Section 5.2. The general philosophy is that under natural assumptions on P (low-rank with no
extravagant structure), we can recover P with arbitrary precision as soon as d has order logn. This
paper gives a much more detailed and complete description of the phenomenon, by describing the
exact relation between d and the parts of P which can be recovered from A. More precisely, given any
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5.1. Introduction and statement of the results.

fixed d, there is a threshold ¥, intrinsic to the matrix P and to d, such that all the eigenvalues above
this threshold can be recovered, while the others cannot, being “lost in the bulk" of uninformative
eigenvalues of A. The eigenvectors can also be recovered (weakly).

Those results are linked with the non-symmetry of the problem and are part of a new and promising
philosophy, namely that in many problems eigenvalues of non-symmetric matrices can perform better
than eigenvalues of symmetric matrices.

We hereby state this result without caring too much on hypothesis and definitions. We note L =

nmax, y |P | and we define a matrix Q by Q,, = nPﬁy; we note p its operator norm.

Theorem 13. Let P be a matrix with rank r = O(In(n)) and which is sufficiently incoherent. We note

9=+/p/d and dy=LJd. (5.1.2)

Let ro be the number of eigenvalues of P which are greater than
max {9,9} .

Then, with high probability when n is large, the top rq eigenvalues of A are asymptotically equal to the
Wi, while all the other eigenvalues of A are asymptotically smaller than max {9,d}.

By ‘incoherent’, we mean that the eigenvectors are delocalized, ie with entries O(+/n), a universal
assumption in the litterature. This notion is going to be precisely described in the next section, and a
very detailed description of this result will be the object of Theorem 15.

In general, 9 is bigger than ¥ but there is a regime where d is very small and as a consequence,
the real threshold is ¥¢. This is the same phenomenon as what discovered in [62] — see the definition
of p in Theorem 1.

5.1.2 Weak recovery is doable for d fixed

One of our most striking result states that weak recovery is feasible even on the diluted case where d
is fixed. This is in very sharp contrast with what would happen if the revealed entries were symmetric.
As known in the litterature, the top eigenvalues would then be aligned with the high-degree vertices,
but also the top eigenvectors would be localized on those vertices, losing all the signal information.

Theorem 14 (phase transition for rank-one matrices). Suppose that P = @™ with ¢ a delocalized
unit vector.

1. Ifd < n|@|}, then all the eigenvalues of A have modulus smaller than [ /n|@|%/d.

2. Ifd > nlo

% then A1(A) — W and all the other eigenvalues of A have modulus smaller than

4
U/ n\dih +0(1). Moreover, if y is the normalized eigenvector of A associated with Ay, then

4
Ky, )] ~ W. (5.1.3)

Here again, “sufficiently delocalized" will be defined later, but the reader can replace it by ||, =
O(1) or O(In(n)).

The proof is done in Subsection 5.4.3. We insist on the fact that this result is valid for any regime
of d such that the ¢ subsequently defined in the statement of Theorem 15 goes to infinity: this en-
compasses d = polylog(n), a regime in which we can achieve full recovery because in this case, the
threshold tends to zero and the vectors Y, @ are aligned. This is a deep improvement of the novel
results in [56].
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5.1. Introduction and statement of the results.

Illustration: Erdds-Rényi

As an immediate consequence, in the Erd6s-Rényi graph model with d > 1, we find that the eigenvec-
tor ¥ associated with the outlier A; ~ d satisfies |[{y,1/4/n)| ~ 4/1—1/d. Some experiments for the
Erd6s-Rényi graphs are depicted in Figures 5.1-5.2.

0.08

0.06

0.04

0.02

0.00

—0.02

Spectrum of ER(1000,7) first eigenvector Y

Figure 5.1 — In the left, the spectrum of a directed ER graph with d = 7. The outlier A; ~ 7 is clearly
visible. On the right, a plot of the eigenvector of A associated with A; ~ 7. All entries are positive
(Perron’s theorem) and seem stacked close to the real eigenvector ¢ which is in violet; however, their
scalar product is close to 4/1 — 1/7 &~ 0.9258 which is strictly smaller than 1.

This is quite a striking contrast with the (diluted) Erd6s-Rényi graphs, where the high eigenvalues
are aligned with the high-degree vertices, and the associated eigenvectors are very localized on those
vertices.

1.00

0.95

0.90

0.85 4

0.80

ors —s— average of |(¢1, ¢)|
— J/1-1/d
realizations of {11, ¢)|

0.70 4

0.65

Figure 5.2 — A plot of [{y, ¢)| for different mean degrees d. For each d = 2,...,20, we made 20
simulations of ER(1000,d) and computed {y;, @) (little green dashes). The mean is plotted in red and

the prediction 4/1 — 1/d is in black.

Illustration: uniform rank-one matrix

We also include illustrations of the phenomenon when ¢ is itself chosen at random on the unit sphere.
It is well known in this case that with very high probability, the vector ¢ is delocalized in the sense
that |@| < C+/In(n)/+/n. We then fixed P = p@@*. The fourth moment of a standard gaussian is 3,
hence one can easily check that n|@|} ~ 3.
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5.1. Introduction and statement of the results.

The top eigenvector of A, for n = 1000,d = 10, is depicted in Figure 5.3. For more readibility the
entries of the signal ¢ have been sorted by increasing order.

0.20
0.151 A
0.10
0.05 1
0.00 1

—0.05 1

—0.101
A Py

—0.151 . . .
*  psorted by increasing entries

—0.20

Figure 5.3 — The eigenvector associated with the outlier eigenvalue of the matrix A, where the matrix
P is simply u@@* with ¢ ~ Haar(S"~!). Here n = 1000 and d = 10.

1.0

0.9 1

0.8 4

0.7 4

0.6

—s— average of |(¢1, ¢)|

_ nleld
1k

realizations of [{11, @)|

0.5 4

0.4 4

0.3

2 é -1 % é "7 é é) 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1'7 lé 1‘9
Figure 5.4 — A plot of |[{y1, @)| for different mean degrees d. We first generated one matrix P = @ @*

with ¢ uniform over S"~! (the vector ¢ is the one depicted in the preceding figure). Then, for each
d=2,...,20, we made 20 simulations of A with P as common underlying matrix, and we computed

{y1, @) (little green dashes). The mean is plotted in red and the prediction 4 /1 —n|@|}/d is in black.

Notations
e When £ is an integer, [n] denotes the set {1,...,n}.

e We identify R” with the set £2([n]). Elements in R” will be noted u = (u(x)),c [n]- We will note |- |o0, [ [, the usual
norms on R”, namely

1/p
oo = max u(0)]Jul, =| 3 lutor?] "
x€[n] xe[n]

The euclidean norm (p = 2) will simply be noted | - |.
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5.1. Introduction and statement of the results.

e The operator norm of the matrix X is noted ||X|; it is the greatest singular value of the matrix. The frobenius norm
is noted ||X|| and is defined by |X |z = 1/tr(X*X). It is also the L?-norm of the singular values.

e We will use the Landau notations. a, = O(b,) means that there is a constant ¢ > 0 such that a,, < cb, and a,, = o(b,,)
means a, /b, — 0.

e When ¢ is a real number, (¢)+ is equal to max{z,0}.

e The letter ¢ denotes any constant which does not depend on anything in this paper. It migh be used from line to line
to denote different constants.

5.1.3 Detailed statements

Let M € .#,(R) be a random matrix whose entries are iid Bernoulli with parameter d/n:

P(M;;=1)=1-P(M;;=0) = 4
' n

The matrix M is the adjacency matrix of a directed Erdés-Rényi graph (with self-loops allowed) in the
sparse regime, where each vertex has a mean of d out-neighbors and d in-neighbors. We will note G
this random digraph. It corresponds to the entries of the matrix P that will be observed, the remaining
ones will be hidden. The observed matrix is

- (3)rom

where ® denotes the Hadamard entrywise product of two matrices. Our goal is to infer information
on P from the observation of A.
We define a real n x n matrix Q and its norm p by

Q.y =nP;, p=]0]. (5.1.4)

The detection threshold ¥ depends on P and d and is defined as
D=4/=. (5.1.5)

We also introduce &9 = L/d.
We denote by r( the number of eigenvalues of P which are larger than 3 v Jy:

L
“1>...>/.Lr0>max{\/g,d}>uro+1>...>ur, (5.1.6)

Our result will hold uniformly over a wide class of matrices that match the usual hypothesis from
the litterature: low-rank with incoherence conditions. The goal is is not really to restrict the range
of applications, but to track the dependence of the error terms with respect to the parameters at stake
(such as rank, measure of incoherence or spectral separations).

First of all, we raise the fact that the whole problem is homogeneous, hence we can assume without
loss of generality that y; = 1.

The class we are interested in is the set of all the real square matrices

A =K (b,r,7,d)
that have the following properties.
1. The rank of P is r.

2. The eigenvectors of P are b-delocalized, in the sense that for every k in [r], we have

sup | (x)| < —=. (H:incoherent)

x€[n] \/;l
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3. The eigenvalues of P are positive, smaller than 1, and the number 7 < 1 satisfies

2
> <8V‘9°> . (5.1.7)
Hr

We can now state our result in full generality.

Theorem 15. Let b, r, T be positive parameters, the only retriction being that r is an integer. We define
¢ =10.5xlog,,(n)|, where x is the constant defined by

24
3+ In(2d)

Then, there is a Cy = Cy(b,r,7,In(n)) and an integer ng = no(b,r,7,In(n)) such that, with probability
greater than 1 —41n(n), the following holds true for any matrix P in the class J (b,r,T,d) with size
n > ny:

Foranyke{l,...,r},

M = ,uk(l +Yk) (5.1.9)
and for any k > ry,
A <[9v](1+Y) (5.1.10)
where the real numbers Y, X satisfy
v\
m|<clf’< ; °> and |Y| < (Co)T. (5.1.11)
k

Moreover, the numbers Cy and ng are smaller than

with ¢ a universal constant depending on nothing.

We stated this theorem for any matrix P in a wide class J# with parameters b, r, T,d without
mentioning any dependence on 7. In fact, all those parameters can indeed depend on #; for the result
to be non-trivial (eg, error terms going to zero), one only needs the following conditions:

e n > ny if n is sufficiently large.

1
e C; — 0, which implies that £ — o0.

Those two conditions are met in a variety of cases. If the parameters are independent of 7, then any
regime of d such that ¢ — oo is sufficient and this encompasses d = O(n°(!)). We can also allow the
parameters to go to infinity slowly, for instance b, r ~ n°()_ In this case we will need to take d growing
with equivalent speed.

5.2 Related work

Completion and sparsification

The problem of sparse completion consists in observing a very sparse sample of elements of a general
object (a matrix, a subspace) carrying some structure (low-rank, delocalized), and trying to reconstruct
it. The problem of matrix completion has attracted a gigantic amount of attention from researchers in
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applied mathematics since the last 15 years; the general philosophy can be grasped by a handful of
seminal papers from Candes and Tao [53] and Candes and Recht ([52]), Keshavan Montanari and Oh
[92] and Chatterjee ([55]).The survey [65] gives a global view of the field.

The dual problem of completion is sparsification, where given a matrix P, one seeks a procedure
to keep only a handful of entries of P without altering too much its properties ([3, 70, 98, 121]).

Those papers, although different in their methods, show that completing a matrix from the ob-
servation of nd of its entries can only be done if the underlying matrix P is not too complicated (ie
low-rank and sufficiently incoherent), and in that case P can efficiently be recovered only if d is of or-
der In(n) — the so-called information-theoretic threshold for completion. In [92], there are results for
d fixed, but they are not sharp at all and do not allow any precise asymptotics on specific eigenvalues
as we do. To our knowledge, the few works on completion from d = O(n) entries (see for instance
Gamarnik, Li and Zhang [82] and references therein) is focused on €-approximating the whole hidden
matrix P, and never on exact estimation of a specific part of the matrix.

Random matrices and Erdds-Rényi graphs

From the random matrix point of view, this is all about the spectrum of (sparse) random matrices, or on
the eigenvalues of weighted (sparse) random graphs. Estimating the spectral properties of the simplest
of random graphs, such as Erd6s-Rényi, is already quite difficult ([96]). The complete description
of the behavior of the greatest eigenvalues of Erd&s-Rényi graphs have been totally explained, in the
d = o(n) sparse setting, only recently by different works: Benaych-Georges, Bordenave, Knowles
([24, 25]) and Alt, Ducatez and Knowles ([11]). Recently, Tikhomirov and Youssef gave similar
results for eigenvalues of Erdés-Rényi graphs with iid gaussian weights on the edges ([136]); here,
the underlying matrix P is thus drawn from GOE, and does not meet the usual assumptions of matrix
completion.

In those works, it turns out that the behaviour of the (suitably normalized) high eigenvalues of
ErdGs-Rényi graphs is governed by the high degrees of the graph when d < In(n), and stick to the
edge +2 of the limiting semi-circle law in hen d — c0. The exact threshold for the disappearance of
outliers happens at d, = In(4/e)~'In(n) ([11, 136]). Those results only hold for undirected Erds-
Rényi graphs, and we are not aware of any similar results for directed ER graphs, and even less in the
really sparse regime where d is fixed. Indeed, only the convergence of the global spectrum towards
the circle law is now proven (when d > In(n)?) by Basak and Rudelson ([18]). Many questions and
intuitions are given in the physicist survey [114]. Among them is listed (but not proved) our results on
eigenvalues of Erd6s-Rényi graphs proved in Paragraph 5.1.2 on page 111. Our results on eigenvectors
completes the picture.

Phase transitions

Our main result is a phase transition for the top eigenvalues of sparse non-hermitian matrices: the
whole bulk is confined in a circle of radius O(1/ V/d), and depending on the strength of the noise d, a
few outliers appear and they are aligned with the corresponding eigenvalues of the original matrix P,

and their eigenvectors have a nontrivial correlation with the original eigenvector!.

This is of course similar to the celebrated BBP transition ([15]), and many similar transitions are
already available in the litterature of PCA or low-rank matrix estimation ([26, 103] and references
therein). Apart from [115], which has a very different setting than ours, there are no results for phase
transitions in low-rank non-symmetric matrix estimations, or in sparse settings.

T At least in the rank-1 case; the general case is now under work.

115



5.2. Related work

‘Asymmetry helps’

One of the key features of this paper is that it deals with top eigenvalues of non-symmetric matrices.
While the global behaviour of the spectrum of random matrices is now well understood (see the survey
[40] on the circular law, or [83, 114] for physicist’s point of views), finer properties are less known.

Generally speaking, it is easier to deal with eigenvalues of hermitian matrices, notably thanks to
the variational characterizations of the eigenvalues. However, in many problems from applied mathe-
matics, it turns out that the spectrum of hermitian matrices can sometimes be less informative than the
spectrum of other choices of non-hermitian matrices. A striking instance of this fact was the so-called
‘spectral redemption conjecture’ in community detection ([97] and [43]), where the interesting prop-
erties were not captured by the spectrum of the adjacency matrix, but of a non-hermitian matrix, the
non-backtracking matrix.

In the setting of matrix perturbation, this insight was remarkably exposed in a very recent and
inspiring paper by Chen, Cheng and Fan ([56]). Their setting is more or less the same as ours: an
underlying hermitian matrix P, which is unsymmetrically perturbed into an observed non-hermitian
matrix A = P+ H, the entries of H being all iid. One might favor a singular value decomposition be-
cause of the conventional wisdom that SVD is more stable than eigendecomposition when it comes to
non-hermitian matrices; but this in fact not true, as shown in their Figure 1, and indeed the eigenvalues
are more accurate than the singular values; verbatim,

“When it comes to spectral estimation for low-rank matrices, arranging the observed matrix samples
in an asymmetric manner and invoking eign-decomposition properly (as opposed to SVD) could
sometimes be quite beneficial.” [56, page 2]

This is the philosophy we would like to convey here; however, their result hold only on the not-
so-sparse regime where d > In(n). We extend all their results to the fixed d regime, with an explicit
threshold for the detection of P and exact asymptotics for perturbation of linear forms, at least when
the rank is 1.

Eigenvalues of perturbed matrices

Many works on completion or sparsification rely on a perturbation analysis of the eigenvalues/singular
values of perturbed matrices.

For example, one of the key points in many papers is that the sparsification procedure (from P to
A) alters the spectral properties of P, but not too much; indeed the top singular values or eigenvalues
do not differ too much, hence keeping only the ‘greater’ items in the SVD or the eigendecomposition
of A is sufficient to weakly recover P; that was the idea of [92, 55, 70] (and many of their heirs). The
proofs usually rely on estimates on eigenvalues/singular values of the random matrix A, by combining
concentration inequalities and eigenvalues inequalities (such as Weyl’s one). but no sharp asymptotics
can be obtained with those methods, a limitation already visible in the seminal paper from Friedman,
Kahn, Szemeredi ([80] and Feige and Ofek ([77]). This problem becomes unassailable when d is
really smaller than In(n) or fixed, due to the fact that the underlying graphs are highly non-regular.

Our proof techniques rely on methods introduced by Massoulié and refined by Bordenave, Lelarge
and Massoulié ([112, 43]). This powerful and versatile trace method has now been used in various
problems for estimating high eigenvalues of sparse random matrices, such as random regular graphs
([33]), biregular bipartite graphs ([50]), digraphs with fixed degree sequence ([62]), bistochastic sparse
matrices ([45]), multigraph stochastic blockmodels ([123]).

Eigenvectors of perturbed matrices

Eigenvector perturbation has also attracted a lot of attention, mainly around variants of the Davis-
Kahan theorem or the Neumann trick ([142, 71, 56]). As mentioned in [71], many algebraic bounds
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(such as Weyl’s inequality or the Davis-Kahan theorems) are tight in the worst case, but wasteful in
typical cases. Our proof method does not rely on those general bounds, and naturally integrates the
perturbation of eigenvectors; for the moment, the eigenvector perturbation results (Theorem 14) are
formulated in the rank-one case, but subsequent work will extend it to the general case.

5.3 An algebraic perturbation lemma

We present an eigenvalue perturbation theorem, which extends some the results from [43, Section 4]
by taking into account the lack of normality of the structures at stake. We formulate this tool in a
separate section because it can be of independent interest.

Let us first give a simple description of the result: if u;,v; are vectors such that {u;,v;) ~ & j, then
every matrix close to S = > 6;u;v] has eigenvalues close to the 6;, provided the u; are sufficiently
well-conditioned. Theorem 17 quantifies this. The novelty here is that the vectors u; need not form
an orthonormal family for the result to hold, and the same for the v;’s.

Let us first recollect the Bauer-Fike theorem:

Theorem 16 (Bauer-Fike, [20], [43] thm 6). Let D be a diagonalizable matrix, D = PEP~ Y with
Y =diag(0y,...,06,). Let H be a matrix. Then, all the eigenvalues of D + H lie inside the union of the
balls B(6;,€) where € = |H||P|||P~'|. Moreover, if ] < [n] is such that

(UjesB(6),€)) N (VjesB(6;.€)) = 2,
then the number of eigenvalues of D + H inside U jc;B(60;,€) is exactly |J|.
Letuy,...,uy,vi,...,v, be two families of nonzero vectors in R”. Let us note U = (uy,...,u,) and

V = (vi,...,v,); those are real matrices with n lines and r columns. Our nearly diagonalizable’ matrix
will be § = UXV* with ¥ = diag(64,..., 6,), the 6; being real positive numbers in decreasing order:

0<6, <61 <---<80.

The center of our investigations will be some real square matrix A € .7, ,(R), not necessarily diago-
nalizable, but close to S in operator norm. We make the following assumptions.

1. There is some small 1 such that
|A=S|<n. (5.3.1)

2. The matrices U and V are well-conditionned, in the following sense:

They have full rank.
For some N > 1 we have |[U| < N and ||V|| < N.

There is a constant # > 0 such that

IV*V|>h  and  |U*U|=h. (5.3.2)

There is a small 8 > 0 such that

|U*V —1,|| < 8. (5.3.3)
For mainly aesthetic reasons we will assume that § is smaller than A.

3. The 6; are well-separated from zero, in the sense that

(5.3.4)

460,N*
9,>§:=30N7<n+ ! )

h
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Some light will be shed upon the definition of € in (5.3.4) in the statement of Theorem 17; however,
in € one can see 8 /h as a measure of the ill-conditioned nature of the matrices U and V.

Theorem 17. Under the preceding assumptions, the r eigenvalues of A with greater modulus, namely
|A1| = -+ = |A|, are close to the 6; in the following sense:

(5.3.5)

480,N*
‘li—9i|<}"XSZ=I’X6ON7<T]+ ! >

Moreover, all the other n — r eigenvalues of A have modulus smaller than €.

Proof. We begin by defining one alternative to U, named U, which is ‘really orthonormal’ to V. To
do this, we define the vector space
H; = vect(vj: j #1).

It was assumed earlier that V*V was nonsingular, which is equivalent to V having full rank, hence H;
has dimension r — 1. The orthogonal projection on H; is given by the formula

P, (w) = Vi(V* V)~ 'Vi*w

where V; is V whose i-th column v; has been deleted. Note that V;*V; is a principal minor of V*V, hence
it is nonsingular itself; moreover, its eigenvalues interlace those of V*V and in particular, its smallest
eigenvalue is greater than ¢ through (5.3.2); when taking the inverse, we get ||(V*V;)~!| = 1/h.

We now take a look at the vectors defined by i; := u; — P, (u;) and

_ i; i — P, (u;)
= = : . 5.3.6
YT Gy P (un) vy 30
One feels that u; is close to #;, and more generally if U = (iiy, ... ,ii,), we want to prove that U is

close to U. This is achieved in (5.3.7). Here and after, e; denotes the j-th element of the canonical
basis.
By (5.3.3), we have |V*u; —e;| = |[V*Ue; —Lie;| < ||[V*U —1,|| = |[U*V —1,|| < 8, thus we also
have |Vl*l/l,| = Zﬁéi |<vj,u,->|2 < |V*u,-—e,-|2 < 62, and
Ve

[P ()| = ViV Vi)~ Vil < VI (VVi) ~H6 < ==

and by definition, |u; — iI;| < |V|d/h. Moreover, we have |(u;,viy — 1| < |[U*V —1,| < 6, so

|<diz, vi) — 1|

When € is a real number smaller than 1/2 we have |(1+&)~! — 1] < 2€, thus when § is small enough,

we have
1

(i viy

—

<28(1+|V|nh).

We now write

Ui
S Ui
Gy viy

8VA! + &l 6(1+ [V ]r~")
IV IR+ (luil + 8|V A=) 8(1+ [V [A7).

|it; — ui| =

< ‘IZ,‘—M,‘| +

<
<
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5.3. An algebraic perturbation lemma

When § is small, this is generously bounded by 82~ (1 + |U|)(1 + |V|), which is itself smaller than
48N3 /h, so we get

1U-U] <

(5.3.7)

Finally, we have (U*V); j = (i;,vjy = 0if i # j, and {ii;,v;) = 1, a crucial fact which can also be
written as

U*V =V*U =1,. (5.3.8)
We now set & = diag(6;) and § = ULV*;

IS=SI<[VIIZ[IT-U]|

_ 400Nt

S—, = n'.
Moreover, S is exactly diagonalizable with eigenvalues 6y,...,6,. We note S = P~'Y'P with ¥’ =
diag(0y,...,6,,0,...,0) and P a whole diagonalization matrix. The matrices A and S are close:

[A=SI<[S=S|+|A-S|<n+n"

By the Bauer-Fike theorem, the eigenvalues of A are entirely included in the union of the balls B(6;, €)
and B(0, ¢), where € = (n +1')||P||P~"||. We now compute P and |P||P~!|.

Let K = span(vy,...,v,)* = im(V) = ker(V*); the dimension of K is n — r. Let us choose any
orthonormal basis (W, 41,...,w,) of K and setup P = (U,W) where W is the n x (n— r) matrix whose
columns are the wy’s. Then, the family (i, ..., &, wyi1,...,Ww,) is a diagonalization basis for the
matrix S: more precisely, we have Sii; = ULV *ii; = 6;ii;, and Sw j = 0. We now claim that the inverse
of P is given by

Pl = v (5.3.9)
A\ =WHEOVE+WE ) o

We can directly check this using the relations (5.3.8), the orthonormality relation W*W =1I,,_, and
V*W = 0, which stems from the choice of W as a basis for ker(V*). Indeed,

V* v* -
<—W*UV*+W*>P: <—W*UV*+W*> @ w)

_ v*U V*W

T\ =-WFOVFO +W*U —W*OV*W +W*W
B I, 0

C\-W*U+W*U W*W

I, O
0 L

=1,

To compute the condition number of P we use the elementary Lemma 5.3.1, stated hereafter. Clearly,
[W] < 1 and we also supposed that |[U| > 1 and ||V|| = 1, hence

1Pl < v2|0].

For P~! we note that —-W*UV* + W* = W*(I, — UV*), hence | - W*UV* + W*| < |[W||L, - TV*|,
hence
[P~ < V21 + T IV]).

We thus get
[PIP~H < 20T+ [TV
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5.4. Proof of Theorem 15

We had proven that |U — U | < 48N?3/h, hence ||[U| < N3(1+48/h) < 5N?, an extremely crude bound
where we used 0 < h. Finally, we get

|PIP~"] < 60N".
To conclude, the spectrum of A is entirely included in
B(0,€) UB(6,,€) U---UB(6,,€)

where € = 60N’ (1 +n') = 60N’ (1 +486;N*/h). Under (5.3.4), the ball B(0, €) is separated from the
r other balls, hence there are r eigenvalues of A such that 4; is &-close to some 6;. When the balls do
not overlap (which happens as soon as |6,+1 — 6;| < €/2), we directly get that |A; — 6;| < €. However,
in general we could very well have multiple values in the 6; or overlapping balls. Anyways, the reader
will quickly check on picture 5.5 that the distance between A; and 6; can never be greater than r times
E. O

A6(4) As(A4)  Aa(4) A3(4) A2(4) A1(A)

W 66\/95 "

Figure 5.5 — The eigenvalue A;(A) need not be in B(6;,€) because there might be some overlap with
the closest balls, such as for the green or yellow ones in the drawing. However, A4;(A) will always be
within distance re of 6;. Note that if A is real and if A;,A; are two eigenvalues outside B(0, €) with
distinct modulus, then they must be real, for the eigenvalues of real matrices are real or come into
complex conjugate pairs.

As promised, here is a simple lemma used in the preceding proof.

LEMMA 5.3.1. Let M, € #,,(R) and M, € M, ,—,(R) be two matrices; we set M = (M;,M,) €
Mpn(R). Then

|M]| < V2max{|M; |, M}
Proof. For any x,y and z = (x,y)* we have

[Mz| = [Myx + May| < My ||x] + [|M2]]y]
< max{[[My ], |M2]}v24 /[ + [y
= max{[[ M, M2 }v2lz]

which is valid for any z € R". O

5.4 Proof of Theorem 15

We now prove Theorem 15. We introduce an important parameter, namely the depth at which we will
study the neighborhoods in the graph G. It is defined as

(= BxlogZd(n)J (54.1)
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5.4. Proof of Theorem 15

where K is the positive constant defined in (5.1.8), namely

0.249
B In(b) *
3+ meay

From now on, we pick a matrix P in the class J# (b, r,T,d) described before Theorem 15. We define
® = (¢i,...,0,) and D = diag(Ui,...,Uy). The columns of ® form an orthonormal family, hence
o] <.

The ‘candidate eigenvectors’ are u; = A‘g;/u! and v; = (A*)’@;/uf, or to put it in matrix form
they are the columns of

U=A'®D™" and V = (A")'eD~". (5.4.2)

We now set
S=UDV*. (54.3)

The matrix S can also be written as
S =A@D'D'Dd*A"
= AleD~fo*A"
= UD*AL. (5.4.4)

We finally introduce the vector space

H = vect(vy,...,vy,) =im(V).

5.4.1 Complete algebraic structure of A,U,V with respect to H

The behaviour of the matrices U, V is dictated by a theoretical covariance matrix T'Y), which is a good
approximation of the Gram matrices of the columns of U and V. It is defined as follows: let i, j be in
[ro] and £ be an integer. We will note @/ for the Hadamard product between @; and @;:

0" (x) = ¢i(x) @5 (x).

Then, we define the matrix ') € .4, ,, (R):

. -
() {1,0°9")

r) ==/, (5.4.5)
LA (wpyd)

LEMMA 5.4.1. For any ¢, the matrix Fl(tj) is a semi-definite positive matrix with eigenvalues greater
than 1, and with

b10r3

1-7

1<) <

having noted that 1 — 7t > 1— (9 v o/, ).

This lemma will be proved in Section 5.5. The main tool for the subsequent analysis of U and V
is the following theorem, which could also be of independent interest.

Theorem 18 (complete algebraic structure of U and V). There is an event with probability greater
than 1 —4/In(n) and a universal constant ¢ > 0 such that the following holds for every matrix P in

A (byr,T,d):
|[®*A‘® —D| < rob®* x v (5.4.6)

|U*V —1,| < rob* x v (5.4.7)
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5.4. Proof of Theorem 15

|U*U —TO| < rgb? x v (5.4.8)

[V*V —TO <rob? x v (5.4.9)

|A‘U —UD| < C[® v d)* (5.4.10)
JAP L] < C[9 v 9ol (5.4.11)

where C = c(brgIn(n))'°, and where v satisfies

1
v<min{——-,0",9}. 5.4.12
mln{n0'257 70} ( )

On this event we also have the rough bound:
|A"[| < cIn(n)n®<9} (5.4.13)
foranyt < /.

The proof of this theorem occupies the next sections of this paper. We now use this theorem to
prove all the results mentioned before.

5.4.2 Proof of the eigenvalue perturbation bounds

Our goal is to apply Theorem 17 to A’ and S.
Let us begin by checking that U,V satisfy the good behaviour in Condition 2:

Ul = Voeu] < 220 4 o (5.4.14)
ST 05 -

and the same for |V|. Upon adjusting the constant ¢, the RHS is smaller than N := ¢b'%r3 /(1 — 7).
For the conditioning properties of U, V, one only has to note that by Weyl’s perturbation principle, the
smallest eigenvalue of |[U*U| or |[V*V| is greater than

cb?

4 2
Aanin (T) — rob?v = -5

(5.4.15)

which automatically ensures that U*U or V*V are nonsingular, at least as soon as roh?/n%?> < 1
— from now on we suppose that rob?/n%2 < 0.5, which happens as soon as n > 16r3b8. As a
consequence, with the 4 from Theorem 17 being i = 0.5, we get

lU*U|,[IV*V| = h. (5.4.16)

Moreover, we also have
|U*V —1,,| < rob?v := 8. (5.4.17)

This settles the good-behaviour conditions for U, V. Note that (5.4.15) gives us for free that the norm
of (V*V)~!or (U*U)~!, which is also the inverse of its smallest eigenvalue, is greater than 1/h = 2,
a bound to be evoked later:

I(v*v)~ ' <2. (5.4.18)

We can now define the orthogonal projection Py onto the subspace
H = span(vy,...,v,) =im(V),
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5.4. Proof of Theorem 15

and we have Py = V(V*V)~!V*. We also note P, = I, — Py the projection matrix on H*. Note
that SPy 1 = 0, and that SP;; = S. As a consequence,

|A° =S| < |A"Py — SPy|| + |SPH| + |AP - | (5419
< IIAéPH S|+ AP |
<AV V)T —UD|[VF| + APy |- (5.4.20)

We now perform a little trick: we first decompose U = PyU + Py .U. We note W = Py U. The
rough idea here is that V*U ~ 1,,,, hence Py (U) ~ V(V*V)~!. More precisely,
PyU =V (V*V)"lv*U
=V(V*V) '+ H

where Hy :=V(V*V)~{(V*U — I,,) has very small norm. In fact, from the norm bounds in (5.4.14)-
(5.4.17)-(5.4.18), we find that |H| < 28N. We thus have

U=VV*V) '+ H +W.
But now, we get the following:

|V (v*V)~' —UD| < |A'U ~UD| + |A"H; | + |A'W |

<|
¢ ¢ ¢

< |A°U - UD| + AT Hi] + APy |[U]

and everything here is either going to zero or is dominated (up to logn terms and constants) by §'.

More precisely, going back to (5.4.20) yields (with C defined in the theorem):

|A” =S| < |AU —UD|| + |A"[|H: || + [APyo [[U] + [A P |
< CH + ||AY|2NS + CO2N S + Cd°
< C[® v 9]  + cIn(n)n®* (L/d) 2NS + C[D v 9] 2NS + C[D v D]*

and thanks to (5.4.12) everything here is of order [0 v 190] more precisely, there is a C’ such that
JAY =8| < C'[®vdo]" :=7.
The number C’ depends on b,r,(1 —7)~! and In(n) polynomially and can indeed be taken to be as

follows:
c(broIn(n))®

C =
1—7

(5.4.21)

with ¢ some universal constant.

We are now ready to cast Theorem 17 to A® and S. The two first conditions listed before the
theorem are met. We still have to check the last one, (5.3.4). Remember that p; < 1 (see the definition
of the class .#"). The error term in Theorem 17 is going to be smaller than

£ = 60N (C'[¥ v Do]'N + 85N*) = [0 v D0]* (60C'N® + 8> YN 5 /([9 v Ho]"))
= C"[® v 9]

where C” depends on b, 7, (1 — 1)~

Due to the last item in the definition of %, we know that i > 772 [1‘} v 9]¢ where 7€ (0,1)
is a fixed number, so the separation condition (5.3.4) is always fulfiled when # is larger than some
constant.

and In(n) polynomially.
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5.4. Proof of Theorem 15

Theorem 17 now yields a Cy = Cy(b,r, T,In(n)) such that
‘li(A)f — ,uf\ < rp€ = C()[ﬁ \Y 190]5

for any i € [ro], and |A;(A)|* < € for i > rg.
In the first case, using |(1+&)7 — 1| < &/¢, we have A;(A) = w;(1 +Y) where

Co[® v Do)
tuf

_Co(9vdn)"
¢ i
broln(n)\*

U=«

which is an extremely prodigal bound, but will nevertheless match all our needs. This closes the proof
of Theorem 15.

T <

We can check that Cj is smaller than

5.4.3 Proof of Theorem 14

Suppose that the rank of P is r = 1, so that P = w@@*. Let us note ¢ = ¢2, so that Q = nu’¢¢*. We
have

p? =n'pt max 9o*w|* = n* 9] max Ko, wy|> = n*u([*

hence we have p = nu?||3.
In our case one can quickly check that Q*¢ = (nu?)*|¢|*¢ so (1,0°¢) = (nu?|¢|*)*. By defini-
tion, we have

4 s ¢ 21412)\* 2/ 1
0 _ L0 o (ne?eF)) (¢l -1 1+0o(1)
I I R e I Tz
It can easily be seen that we have
Pu(w) = y+o(l). (5.4.23)

Proof. Suppose that A is a eigenvalue of 1 with |A| > ¥ and note v its associated left-eigenvector.
Then, v = Py (y) + Py (y). But we also have

A'PyL|  Cd
P _ L p any < APl OO
| HL(III)| |l|/| Hl( ) | |7L|(/ VLV 0

where we used (5.4.11). ]

We suppose that we are above the threshold (ie d > n[(p\j{), and we note y the eigenvector associ-
ated with A; (A). Equation (5.4.23) also means that if 7 = v /|v| | (Where we recall that v = (A*) @ /u’)
then |y — V| — 0 and [y, @) — (¥, )| — 0. Finally, we have proven in (5.4.6) that [{vi,®)| — 1 and

in (5.4.9) that [v;| ~ 1/T'\"). From all this and (5.4.22) it is clear that

1 n|o|

W] ~ e~y [1— 1P
F(e) d

11
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5.5. Consequences of algebraic incoherence

5.5 Consequences of algebraic incoherence

Our goal in this section is to prove several useful estimates on Q and P, mainly linked with the incoher-
ence property (H:incoherent). Through all the section, P is a matrix in 2 (b, r,7,d) and in particular

up =1

5.5.1 The incoherence hypothesis for P

For any i, we supposed that |@;|, < b/+/n, therefore the entries of P are of order O(1/n). More
precisely,

|Pey| = Z e @i (x) 91 (y)
k=1
<, @R | D o)
k=1 k=1
2
< bf (5.5.1)
n
If we define
L = nmax |Py,|, (5.5.2)
x7y

the preceding inequality ensures that L is bounded away infinity; more precisely,

L<b. (5.5.3)

5.5.2 The threshold matrix

It is clear for its definition that the entries of Q are positive, hence by the Perron-Frobenius theorem
its operator norm p is also an eigenvalue of Q with higher modulus.

In this section, we will note s the rank of Q. It is well known that the rank is submultiplicative for
the Hadamard product, hence we have s = rank(P®P) < rank(P)? = 2.

Now, let us briefly mention an elementary bound on the operator norm p = |Q|. By variational
principles, we have p = max,,(w, Qw)/|w|? for any nonzero w € R". Taking w = 1 yields

1,01

Y
X,y

and we hereby recognize the Frobenius norm of the matrix P, which is itself equal to u? +--- + 2. In

addition, using (5.5.3), we get

L2

p=|Pl}= s

(5.5.4)

The important fact here is that p does not go to zero, or equivalently Q still carries information, a
normal consequence of (H:incoherent).

We now prove that Q is delocalized, in the sense that its eigenvectors have entries of order 1/4/n.
We write the spectral decomposition of Q as

O =Viyiyy + -+ Wy (5.5.5)
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5.5. Consequences of algebraic incoherence

with v; = p the Perron eigenvalue and v, ..., v, the other eigenvalues of O, which are real, nonzero,
and with absolute value smaller than p. We have

x = 2 Q;%,y =n’ Z ’Px,y‘4
ye[n] ye
n? Z

ye[n

L4

n

X

However, we also have (Q?),. = V3 yq (x)? + - -- + v2y;(x). We thus have proven that the delocaliza-
tion property for P implies delocalization for Q: for any x and £,

L2
Vv (x)] < N (5.5.6)

For any vector w, we note w? the vector defined as w?(x) = |w(x)|>. The following proposition
will be crucial; the idea it conveys is that (1, Q'w?) is essentially bounded by p’, a result in the flavour
of Perron-Frobenius theory.

PROPOSITION 5.5.1. For anyt > 2 and any unit vector w € R?,

1,0'w?*) < bSrp! (5.5.7)

Proof. For any k, we have | Wi | < L2/+/n, hence (1, y;) < L*y/n and if w is a unit vector, (w?, y;) <
(L)) S w(x)? = L/, hence

<17 QIW2> = Z vltc<1’ Wk><wzv lI/k>
k=

S LZ\/7 L2
<Y vi—— .
k=1 ko Vevn

k=1
=L 2 (1+(va/p) 2+ + (vy/p) 7).

When ¢ is greater than 2, the last line is smaller than L*p’~2s, and s is itself smaller than 2. Finally,
we use (5.5.4), which implies p~2 < b%/L*. O

Peeling through the details above, we could also get the bound

2
1 zz\L4< r) t
GO SE ) P

We will not use this.
Let us end this section by the proof of Lemma 5.4.1. We start by recalling the definition of the
theoretical covariance T'") € ., ,,(R):

1,0°¢"
Z< (P>

(5.5.8)
s=0 l‘uj

For the convenience of the reader we restate the lemma here.
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5.5. Consequences of algebraic incoherence

LEMMA 5.5.2. For any ¢, the matrix Fft]) is a semi-definite positive matrix with eigenvalues greater

than 1, and with

b10r3

-7

1<V <

having noted 1 — 7 =1 — (8/p,,)* > 0.

Proof. Weuse |[T®)| < [T0 |z < r|T®]||,. We use the same bounds as for the preceding proof, except
in the second line where we use

QM WL < 11l e Viloe = n(b/Vn (L vi/n) = DL ().

The same reasonning yields

(L,Q'0%) = vidL yi )™, yiy
k=1

d Lz\szbz
\kZ:l Vi Vin/n

_ Z VT2

:ijzp’_z 2
<b'02p!,
()

Going back to the sum defining I'; 7,

we get
1
\F ] S A —
1—(p/uip;d)
and as a consequenoe,
r3b10 b10r3
-2  1-¢

On the other hand, if we note
o _ (1,00
i,j —
' (.ut.ujd)
then it is not difficult to see that C**) is indeed a semi-definite positive matrix; more precisely, if we
introduce 7, (x) = 4/Q*1(x) = 0 and I1; = diag(7;), then

CY) =4~ . DTP*1,dD "

which is clearly SDP. The matrix T'¥) is thus a sum of C(©) = I, and r — 1 SDP matrices, hence
it is itself an SDP matrix and its eigenvalues are greater than the eigenvalues of I, hence the first

statement.
O

5.5.3 Bounds on the entries of Q

We will also need an analog of L but for the matrix Q. The inequalities proved in this section are more
or less the same as in the preceding section.
We define K as
K= nn;z;x Ox/p- (5.5.9)
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5.6. Coupling graphs and trees

‘We have
L = nmax |Py| = \/Kp.
'x7y

We have 1 < K < r?b*. The scalar K is a delocalization parameter: it is scale invariant.
For any x, we find

ZQ"Y = nZ(ny)2 = n(P?) < rb* < rb’p.
y

y
It follows that for any x,y,

Krb?
(Qz)x)' = Zszsz < %pz

Let () be an ON basis of eigenvectors of Q with eigenvalues (V). Lett > 2, we write for any x,y,

(0 = D Vi (W (y) < 72 Y Vi)W ()] < P24/ (02 [ (@),
k k

where the last step follows from Cauchy-Schwarz inequality. In particular, for any ¢ > 2 and x,y

(5.5.10)

It follows from (5.5.9) that Equation (5.5.10) also holds for ¢ = 1.

5.6 Coupling graphs and trees

The basic ingredients for the proofs of Theorem 15 and related statements are directed Galton-Watson
trees and martingales defined on them. We start to introduce the notations and vocabulary for this.

5.6.1 Galton-Watson trees and Erdos-Rényi graphs
Graph-theoretic definitions

A marked graph with mark space N is a digraph (V, E), loops allowed, endowed with a mark function
1:V — N which is finitely supported. This definition might seems strange, but it really is a convenient
setting for studying all the different kinds of graphs and trees that we are going to use. We are going
to note ¥, the set of all the rooted directed graphs on a common countable set V and with mark space
N. Formally, the elements of ¥, are triples (g,0,1), with o the root, but in general we will drop the
mark function : and simply write (g,0).

Let (g,0,1) €9, and g = (V,E). If W < V is a subset of V containing the root, then the induced
subgraph (g,0,1)w is defined as follows: the underlying graph is gw := (V, Ew) where (i, j) € Ew if
and only if (i, j) € E and both i and j are in W, and the mark function uyy is given by 1y (v) = 1(v)1,ew.

The elements in ¢, are digraphs, and therefore we need to make a distinction between directed
paths and undirected paths. Let g = (V, E) be any directed graph.

e If (x,y) € E we note x — y,
e if x — y or y — x or both, we note x ~ y.

Every directed graph g can be transformed into an undirected graph § = (V, E) by simply forgetting
the direction of the edges: (x,y) € E iff x ~ y in G.

If u,v € V, a directed path or dipath from x to y is a sequence of vertices xg = x,X1,..., X, =y
such that for every s we have u; — u;1 1. A path is the same except that we only ask x; ~ x,41.

e The length of the shortest directed path between x and y is denoted by d ™ (x,y).
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5.6. Coupling graphs and trees

e The length of the shortest directed path between y and x is also denoted by d~ (x,y) = d™ (y,x).
e The length of the shortest path is denoted by d(x,y).

e When (g,0) is arooted graph, &, (o,t) is the set of paths in g starting from the root o and having
t steps.

The set of all y such that d*(x,y) <t is the forward ball Bj (x,r) and the set of all y such that
d(x,y) <t is the ball B;(x,t). When no confusion can arise, we write B* or B instead of Bg, B.

A cycle in the graph g is a sequence of distinct vertices xi,...,x; such that x; ~ x;41 for every
s < k and x; ~ x;. The number & is the length of the cycle.

A tangle-free subgraph of g is a subgraph of G that contains at most one cycle. The graph g is
t-tangle free if for every vertex x, the ball B, (x,?) is tangle-free.

If # is an integer and (g, x) € ¥, then (g, x), is the subgraph of (g,x) induced by B,(x,?), as defined
several lines earlier, and similarly (g,x)," is the subgraph of (g,x) induced by BT (x,1).

Definition of the graph G and the GW tree

We recall that G is the directed Erd6s-Rényi graph (with loops) whose adjacency matrix is given by
M. Let x be an arbitrary element of [n]. We root the graph G at x, and we mark every vertex with
itself: the mark of vertex x € [n] is simply the integer ¢(x) = x and the mark of every vertex in N\[n] is
set to zero. The resulted marked graph (G, x) is an element of ¥.

We now define the directed Galton-Watson tree 7 in the following way. Starting from its root o,
every vertex has a Poi(2d) number of children. Every edge (u,v) is independently given a unique
direction u — v or v — u with probability 1/2. This yields a random directed tree. Equivalently, each
vertex has a Poi(d) number of ‘out-children’ and a Poi(d) number of ‘in-children’.

Finally, every non-root vertex o’ is independently given a random mark ¢(0o’) which is uniform on
[1]. The root is given a special mark :(0) = &. The resulting element of ¢, will be noted (7, &). We
shall say that the tree (T, &) is grown from the seed O

5.6.2 Growth properties: trees

Let us first state several properties on the growth of the tree T first, then on the graph G. They are
directly drawn from [43], see Section 8 for the tree, and Sections 9.1-9.2 for the graph.

Clearly, the underlying undirected tree obtained from 7 by deleting the marks and orientations is
simply a Poi(2d) Galton-Watson tree, which allows us to use without any further efforts all the growth
properties of GW trees. For more readable statements, we note here and after

D :=2d.

LEMMA 5.6.1. Let us note S; the number of vertices at distance t from the root o of T. There are two
constants cy,cy > 0 such that for all A > 0,

P(S; < AD' forallt) > 1—coe 1%, (5.6.1)

Moreover, for every p > 2, there is a constant c,, > 0 such that

E [max <;’l)p} < (cpIn(n))?. (5.6.2)

=1

We take A = ¢, "In(c1n?) in the first inequality of the lemma; for any n > 3, we get

1
P(S; < Cln(n)D' forall 1) > 1 — — (5.6.3)

n2
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5.6. Coupling graphs and trees

where C is the constant ¢ ' (2 +1n(cp)). On this event, we have
(T,0)|=1+S1+...+5;
<Cln(n)(1+D+---+ D)
<CDIn(n)D'.
The most important consequence for us is the following: suppose that {(7,x) : x € [r]} is a family of
random rooted marked trees, the tree (7, x) having the distribution of (7,x), but the whole family is

not necessarily independent. Then, by sub-additivity, on an event with probability greater than 1 —1/n,
the following holds for any integer ¢ and any (7, x) in the family:

|(Ty,x);| < CDIn(n)D'. (5.6.4)
Another easy consequence of (5.6.2) is the following: for any ¢,
E[[(T,0) ] =E[[1+S + -+ 5]
< (D)’E[1+D7'S; +---+D7'S, %]
< D*?E[max(D*S;)?]
s=0
< D*1*31n(n)>.
As a consequence, we have
E[|(T,0)|?] < cD'tIn(n) < cln(n)*n® (5.6.5)

for some ¢ > 0, where we used t < ¢ < In(n) and D' < n*.

5.6.3 Growth properties: graphs

We now establish the same properties as before, but for the directed graph G whose adjacency matrix
is M. We start by proving that up to a depth of order In(n), the graph G has few cycles. We recall the
definition of ¢

1
0= El’d‘)gzd(”)J (5.6.6)
where k €]0,0.25] is the constant defined in (5.1.8). We will often go to depths such as 2¢ so we’ll

use the notation

All the results in this sections flow effortlessly from their undirected counterpart. In fact, note G the
graph G in which the directions have been erased. Pick any vertices x,y. Then,
P({x,y} € E(G)) = P((x,y) € E(G) or (y,x) € E(G))
=Px—>yy—»x)+PQy—x,x»y)+P(xoy)

2
n n n

£6-4

2d
<=,
n

This shows that the edge distribution of G is stochastically dominated by the edge distribution of an
undirected (n,2d/n) Erd6s-Rényi graph. Events which are monotone for the deletion of edges (such
has having a few number of cycles) are thus of smaller probability in G than in ER(n,2d/n). As a
consequence, Lemmas 29 and 30 in [43] directly transfer to our setting. We hereagain use the notation
D =2d.
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5.6. Coupling graphs and trees

LEMMA 5.6.2 (sub-exponential growth). Let us note S;(x) be the number of vertices in G that are
exactly at (unoriented) distance t from vertex x. There are two constants cy,c; > 0 such that for every
positive A and every vertex x € [n], we have

P(S;(x) S AD' forallt) = 1—cje . (5.6.7)

Moreover, for every p > 2, there is a constant c,, such that

p
E Q%Cgf)) < (cpIn(n))? (5.6.8)
=1

Let us apply this result to [(G,x),| = 1 +S;(x) + -+ +S,(x) with A := ¢y ' In(c;n?). With proba-
bility greater than 1 — 1/n, for any ¢ and for any x,

S;(x) < Cln(n)D’
where C := ¢, ! (2+1n(cp)). On this event, one also has

(G, x) | =1+81(x)+ -+ S(x)
<Cln(n)(1+D+---+D")
< CDIn(n)D'.

Similarly, with p = 2 or 4, we have

max |(G,x), |’ < D'Pt” max |S(x)D~*|P
x€[n] x€[n]
S<t

and from there we get the two following inequalities:

2

E [rrelz[v]d(G,x),\z} < cln(n)?n® (5.6.9)
1

E [rréz[v]d(G,x),\q < cln(n)?n® (5.6.10)

for some ¢ > 0, where we used t < ¢ < In(n) and D' < n*.
By the same comparison trick between G and undirected Erdds-Rényi, the following holds:

LEMMA 5.6.3 (tangle-free). Let k be a constant smaller than 1/2. Set ¢/ = 20 = | klog,,(n)].
1. With probability going to zero, the graph G is ¢'-tangle free.
2. For any vertex x, the graph (G, x)y has no cycles with probability greater than 1 — cD" /n.
3. With probability greater than 1 — 1/1n(n), there are no more than ¢In(n)D" vertices x such that
(G,x)y has a cycle.
5.6.4 Total-variation distance between the graph and the tree

We quantify the distance between neighborhoods of G and T up to the logarithmic depth ¢/ := 2/.
Let us recall some definitions. If P, [P, are two probability measures on the space (€,.%), their total
variation distance is defined as

dTv(Pl,Pz) = min P(Xl # Xz)
(X1,%2)en(P1,IP2)
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5.6. Coupling graphs and trees

where (P, [P;) denotes the set of couplings between Py and P,: pairs of random variables (X;,X>)
such that X is distributed as Py and X5 is distributed as IP;. It is a well-known fact (see [104]) that the
total variation distance is also given by

dTV (P] ,Pz) = maxIP’l (A) — Pz (A)
AeF

We note .Z’(X) the probability distribution of a random variable X.

PROPOSITION 5.6.4 (GW-tree approximation). Let ¢’ = |klog,,;(n)| = 2¢, with k < 1/2. There is a
constant ¢ > 0 such that for every vertex x,

In(n)n

dry (Z((G.x)). L(Tx)e))) < (5.6.11)

The proof of this fact is classical; one can adapt the arguments in [43] to our setting. The difference
is that our graphs are directed and now have [n] possible labels, but this only brings shallow difficulties.
We sketch the main ideas.

Coupling between graphs

Let us recall the following total variation distance:

dry (Bin(n,A/n),Poi(1)) < (5.6.12)

S| >

Proof. For the proof, we keep using the notation D = 2d. As a consequence of Lemma 5.6.3, with a
probability than 1 — ¢D’ /n, the graph (G,x) is a directed tree and contains no more than ¢In(n)D"
vertices. Let us note Ey this event and perform a breadth-first exploration starting from x. This
explorations finishes at a time 7 < cIn(n)D’. At each step, we reveal a set of Poi(d) out-vertices
and Poi(d) in-vertices, thus making a total-variation error smaller than d/n + d/n. By repeatedly
conditionning, the total variation error made on Ey is not greater than 7 x 2d/n < cDIn(n)D" /n.

This gives a coupling between the unlabelled versions of (G,x), and (7,x)» which fails with
probability at most (¢’ + 2cd) In(n)n* /n = ¢” In(n)n* /n. We now bring the labels in.

Suppose that you have drawn your coupling between the unlabelled versions of (G, x), and (7', x).
With probability greater than ¢” In(n)n* /n, they agree and have size smaller than k := cIn(n)n*. We
then put the labels in the Erdés-Rényi graph by drawing a uniform ordered k-set from [n], while we
put the labels on the Galton-Watson tree by simply drawing k iid uniform samples from [n]. The total
variation distance between these two random multi-sets is proven above to be smaller than k/n, hence
the labels agree up to an extra error term of cIn(n)n* /n.

In the end, the coupling created this way fails with probability at most (¢ + ¢’ + 2dc)In(n)n*/n
which is exactly what is needed, up to adjusting the constants.

Sampling with and without replacement

Let m be an integer. We define two random multisets in the following way. Put m identical balls with
labels from 1 to m in a big urn. Draw the first ball and set p; and g; to be its label. Put the ball back
in the urn. Then, suppose that one has constructed (py,...,p;) and (¢1,...,q;). Do the following :

e Draw a ball from the urn and set p,,; to be the label of this ball.

e If this label is not already one of the ¢;, set it onto ¢,+1. Else, put the ball back in the urn and
draw as many balls as need to get a label which is not already one of the g;. Define g, to be
this label.
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5.7. Graph functionals

It is clear that for every k < m, O := (q1,.-.,qx) is a uniform ordered k-set from [m], while Py :=
(p1,...,pk) is distributed as k iid uniform elements in [m]. The random variable (P, Q) is thus a
coupling between those two distributions. This coupling is successful if and only if P has exactly k
distinct elements, which happens with probability

(m—l)...(]:n—k—l) N <1_1>k>l_k‘

The coupling thus fails with probability smaller than k/m, an upper bound for the total-variation dis-
tance between P, and Q.
O

Proposition (5.6.4) tells us that for every fixed x, there exists a random rooted marked tree (7, x)
defined on the same probabilistic space as (G,x) and such that

P((To)s # (G, 1)) < 2007

n

We consider the family (7},x) for x € [n]. Let us note &(x) the event ‘the coupling between (G, x)p
and (7,x)y fails’, so that P(&(x)) < cIn(n)n* /n. By the Markov inequality and the union bound, with
probability greater than 1 — 1/1In(n)* there are no more than cIn(n)*n* elements x € [n] such that the
coupling fails. We now gather all the high-probability results from the preceding sections in a general
theorem.

PROPOSITION 5.6.5. On an event with probability greater than 1 — 1/1n(n), the following holds, for
a constant ¢ > 0.

1. For every x € [n] and for every t smaller than 2/,

|(G,x),| < cIn(n)D’ |(Ty,x):| < cln(n)D'. (5.6.13)

2. There are no more than cIn(n)*n* elements x in [n] such that the coupling between (Ty,x), and
(G,x)p fails.

3. The graph G is {'-tangle free.

Note that on this event, there is exactly zero or one cycle in (G,x),, hence for any y at distance ¢
from x, there is at most two paths of length 7 from x to y; to put it another way, for any x € [n], we have

| Pa(x,1)| < 2/(G,x) (5.6.14)

where & (x,t) denotes the set of directed paths x — x; — --- — x; of length 7 started at x.

5.7 Graph functionals

5.7.1 Functionals on trees: computations

We now introduce a family of functionals on ¥, that will be used several times in the sequel. Remem-
ber that when (g,0) is a rooted marked graph, we note %%, (0,¢) the number of paths in g starting from
the root o and having 7 steps, that is, (f + 1)-uples x = (xo,x1,...,%) with xo = 0 and x; — x;41.

In this section, y, ¢ represent two vectors in R" and ¢ is an integer. We define

fo,pi(g,0) = <g>t¢(l(0)) Z Poyat)  Pre_ 1)) X W((xr)). (5.7.1)

Py(0,1)
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5.7. Graph functionals

We clearly have
fows(G,x) = ¢(x)(A"y)(x).
We will also need another functional:
Fuy(8:0) = fiy(80) — 1" fiyr1(g,0). (5.7.2)
We have

1
Fuy:(G,x) = A'y(x) — EAHI y(x).

Before moving to several computations on those observables, we state general regularity facts. We
say that a function is 7-local if f(g,0) only depends on (g,0);.

LEMMA 5.7.1. The function fy v, is t-local and satisfies

L t
Fowls.o) <10Lolvlel Z4(00)] (5 ) 573

The function Fy is (t + 1)-local and satisfies

L t+1
Fasleo) <21l Zs(or 101 () (574

Proof. The locality property is obvious from the definition, while for the bound it suffices to write

foweo = (5) ol 3 (5) wie
)

Py(o,t

L t
< (%) BlelviclZeo0l
It is the same thing for Fy ;. O

The following crucial theorem gathers all the computations linked with expectations or variances
of those functionals when specialized on a tree (7},x) with the distribution described before.

Theorem 19. Let y be any vector in R" and t be an integer. For any i, j € [r] and for any ¢ € ker(P),
the following identities are true.

E[fy.0,4 (T, 0)] = w(x) @, (x) ] (5.7.5)

E[fy.94(T,x)] =0 (5.7.6)

E[fy.g0t (T %) fy. 9,4 (Terx)] = ity (x)°T) (5.7.7)
t H2

Ly (T0?] = w201 578)

E[Fy 0.4(Tex)*] = M (5.7.9)

dt

The proof consists in using the eigenvector equation to identify specific martingales and take
advantage of their properties to compute those expectations and variances. It is postponed to Section
5.9.
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5.7. Graph functionals

5.7.2 Functionals on graphs: concentration

This section describes concentration of sum functionals on the graph G, having the form ) ] f(G,o0)
where f: 4, — R is any measurable function. The tools and spirit of this section are identical to [43,
Section 9], but slightly adapted to our needs.

The first proposition deeply exploits the fact that G is in fact a function of iid random variables
M; ;; the Efron-Stein inequality is of great help here.

PROPOSITION 5.7.2 (Variance bound for graph functionals). Let f,y: % — R be two t-local func-
tions for some t < 2/, and such that |f(g,0)| < y(g,0) and y is non-decreasing by the addition of
edges. Then,

Var [ Y7 f(G,0) <(C41n(n)2n'<)2\/1«:[max|y(c,o)y4] (5.7.10)

oc[1] o€|[n]

Proof. For any x, let E; be the set of edges going out of x. The vector (E,)e[, is an iid vector.
Moreover, there is a measurable function F such that

> f(G,0) = F(E\,....Ey).
o€(n]

Let us note Y = F(Ey,...,E,) this sum, and for any x let us note Y, the same sum where E, has been
emptied:
YX = F(Ela . '7Ex—17®7Ex+17' . 7En)

Equivalently, if G indicates the graph G where all the edges flowing out of x have been deleted, we
have

Yo=Y f(Gy0).
o€(n]

The Efron-Stein inequality tells us that

Var | Y7 f(G,0) | < D E[lY —¥i|*]. (5.7.11)
o€|(n]

x€(n)

Fix o and x in [n]. The fuction f is ¢-local, hence f(G,0) — f(Gy,0) is always zero, except maybe if x
is (G,0);, or equivalently if o is in (G,x),. As a consequence, we have

¥ - Y| < )] 1f(G,0) = £(Gy,0)]
o€(n]

< D) [7(G,0)[+¥(Gy,0)]
0e(Gx),

< ‘(va)t|2n;"[u§ ’Y(Gv O)‘

where in the last line we used the fact that v is non-decreasing by the addition of edges. By the
Cauchy-Schwarz inequality,

Elly 1)< \/E[!(G,x)zl“]E [ 16max 7G.0) |
oE|n
Finally, by (5.6.10) we have a constant c4 such that
E[|(G,x);|*] < ciD*t*In(n)*. (5.7.12)
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5.7. Graph functionals

Consequently, using (2d)" < n* and ¢ < In(n)/2, we get

o€(n]

E[lY — %] < (cs 1n<n>2n'<>2\/E |max (G0l
which closes the proof of the proposition. O

We now turn to a general comparison principle between graph functionals and the same functional
specified on trees.

Theorem 20. Let f,y: 9. — R be two t-local functions for some t < 2(, and such that |f(g,0)| <
v(g,0) and y is non-decreasing by the addition of edges. Then, with probability greater than 1 —
1/1n(n)?, the following inequality is valid:

Y HG0-E| Y £ || < chamnvally] 5.1
x€[n] x€[n]

where ||Y|| is defined as

1

7= (| maxytG.00*| ) max (0P 5714

x€[n]

Proof. By the Chebyshev inequality and the variance bound in the preceding proposition, we have

Y F(Gx)—E| ] £(G.x) || < caln(n)’n®|yl| (5.7.15)
x€(n] x€(n]

with probability greater than 1 — 1/In(n)2.

counterpart on the trees.

We now compare the expectation in the LHS with its
Let &(x) denote the event “the coupling between (G, x)y¢ and (T, x)y fails"; as our functionals

are r-local, we have f(G,x) = f(T,x) on &(x). We had proven in Proposition 5.6.4 that P(& (x)) <
cIn(n)n® /n. Consequently, by the Cauchy-Schwarz inequality,

E Y A(Gx) = f(Tx)| < 3 EIIF(G0)[Leg] +Ellf (T2) Lo ]

xE|[n] x€[n]

< X VP (\EIHG0R + BT
x€[n)

<\ RIHG0R] + Bl T o)
x€[n]

< Ventn(an g (E[v(G,xW N «/E[m,xm)
< JenTn(@ ]

which is generously bounded by the RHS in the claim, upon adjusting the constant.
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5.8 Near eigenvectors: proofs

In this Section we prove Theorem 18, using the tools introduced earlier. Here is the route taken: first,
we prove different propositions related with precise bounds for the entries of the matrices U,V or
d*A'D. Often, the error terms look like

s 1n£;/z%6n3'< <2>”

or small variants; the reader might from now consider that all those terms are negligible in front of all
the quantities of interest. In fact, we will make sure that this is precisely true in the last section, as a
consequence of our choice for k.

For functionals such as {@,A’@), the plan is simple: we justify why those functionals can be well-
approximated using the toolbox from the preceding section and then we use the computations done in
Theorem 19.

Bounding ||A‘P,. | is however much more difficult and will be done through a tangle-free decom-
position, in Subsection 5.8.4. Performing the high-trace method is long, so we postponed this part to
Section 5.10.

5.8.1 Entry-wise bounds for Theorem 18

PROPOSITION 5.8.1. On an event with probability greater than 1 — 1/In(n), there is a constant c
such that for any i, j € [r]| and t < 2¢, the following holds.

P> In(n)*n?** (L'
i Ay — W36, 5| Se—— <d> : (5.8.1)

Proof. Fix i,j € [r] and t < 2¢. Using the notation already introduced in Definition 5.7.1, we define a
function f by
f(g7 0) = l(g,o), has no cycles fQD;-,‘P_iJ (g, 0)'

This function is clearly 7-local — see Lemma 5.7.1 — and if (g,0), has no cycles and is tangle-free,
then from (5.7.3), (H:incoherent), and (5.6.14),

L t
|f(g,0) < |@ilo| @jleo <d> | P,(0,1)] (5.8.2)
26% (L'
S - (d) (8,0):] := 7(g,0). (5.8.3)

It is clear that this function ¥ is non-decreasing by the addition of edges.

Let us we note ¥;, the set of vertices such that (G,x); is not tree like; in particular, if x is in %;, then
the coupling between (G, x)p and (7, x)p described in Section 5.6.4 fails. On the event of Proposition
5.6.5, we have |#;,| < cIn(n)*n* and the graph is ¢-tangle free, hence

20%c (L'
< nc <d> In(n)*n*.

We now apply the concentration result in Theorem 20 to the function f. By the definition of y and by
the growth bounds (5.6.5)-(5.6.10) we have

> Pl (A9 (x)

XEVp

(@ A9y — > f(Gx)| =

x€[n]

2% (L' 4l 9l
7l === = ) (E[max[(G,x),["]* v maxE[|(T,x),|"]*)
n d x€(n] x€(n]
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for some constant ¢. The error bound in Theorem 20 is thus

cbzln\(/nﬁ)SnZ" <2>"

Moreover, as computed in Theorem 19-(5.7.5), we have
E Z f(];c,-x) =E Z f(P,'7([)_,',t(7;C7'x) = nult5l,]
x€[n] x€[n]

When gathering all the preceding bounds and adjusting ¢, we get

b*In(n)>n** (L\'
(ot < LU (1)

O]

PROPOSITION 5.8.2. On an event with probability greater than 1 —2/In(n), there is a constant ¢
such that for any i, j € [r] and t < 2/, the following holds.

2t
to Al — )| < LI (L
‘<A 0, A Q) — T | < NG v (5.8.4)
2t
oA — )| < P (L
‘<A<P1,A<Pj> w5 < T 7) - (5.8.5)

Note that the second inequality is exactly the same as the first, except that we now look at A*.
However, since A* and A are identical in distribution, one only has to prove the first one.

Proof. The proof is the same as for the proposition just before so we do not linger on details. Fix
i,j € [r] and t < 2¢. The right function here is f defined by

f(g7 0) = l(g,o), has no cycles fl,(p,-,t (g, O)fl,(pj,t (gu O)'

This function is clearly z-local and if (g,0), has no cycles and is tangle-free,

L t
|f(g,0)] < |9i|o]@jloo <d> | Py (0,1))? (5.8.6)
202 (L\*
<n<d> (g,0)|* := ¥(g,0). (5.8.7)

Let us we note 7, the set of vertices such that (G, x), is not tree like. With probability greater than
1 —1/1In(n) we have | #,| < cIn(n)*n* and the graph is ¢-tangle free, hence

2b%c (L'
<=~ <d> In(n)’n*~.

n

D, (AT (x)(A'9))(x)

X€EY,

Ao Aopy— > f(Gx)| =

x€[n]

We now apply Theorem 20. By the definition of ¥ and by (5.6.5)-(5.6.10) we have

(ST

)

2% (L\* |
7= 2 (L) el (G 1 a0,

b (LN
<c; <d> In(n)?n**
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for some c. The error bound in Theorem 20 is thus

cb*In(n)’n’% L A
Vn d) -

Moreover, as computed in Theorem 19-(5.7.7), we have

Z f(rhx) =E Z fl @it flv‘P/ ( )C) = ‘LL:‘U;FZ(;)

When gathering all the preceding bounds we get

<

ch?In(n)3n3* (L%
]<¢1,A’<p]> [T ()< ) :

N ol

d

5.8.2 Rough bound on ||A’|

We prove (5.4.13). We pick any unit vector w € R" and we place ourselves on the good event described
in Subsection 5.6.3 and Proposition 5.6.5. Using |P| . < L/n and the Cauchy-Schwarz inequality, we
get

|Afw|? = (g)h Z ( Z ﬁAxwalw(x,)>

x€[n] \Xo=x—x1—-—x; s=0

2

OE S = wel

xe[n] \x€0B* (x,t)

L 2t .
<<d> ermaB WOl S )

X €0Bt (x,t)

On the event described in Proposition 5.6.5, |0BT (x,t)| < |G(x,?)| is smaller than cIn(n)n* for every
x € [n]. As a consequence we get

AP < cln(n) ()2 > P

€[n] x,€0Bt (x,t)

<cln(n 22'<<> Z|wx, o1

x€ln XEOB™ (x1,1)
2t
L
< cln(n)*n** (d)

which clearly shows that |A’| < cIn(n)?n**(L/d)* for some adjusted constant c, the requested bound
in (5.4.13).

5.8.3 Control over the growth of a process

PROPOSITION 5.8.3. On an event with probability greater than 1 — 1/In(n), one has for any t < ¢,

for any w e H* and for any i € [ry] the following bound:

2 6,3k 4
[((A*) @i, w)| < cb*rin(n) ~|—cbln$%n (2) ¥ (5.8.8)
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Proof. We follow the usual strategy. First, we note that by the mere definition of H, when w € H* we
have {(A*)‘@;,w) = 0. Consequently,

1 AR @ wy = T (A @ w) — (A i w)

and from a telescopic sum we get

7 (AR @iy wh| = Zu, (A" i wy — 1 CTV(AF ) g w)
< 3 iy - <<A*>V“q>”w>]
s=t Ui
/—1 1
<) Mt (A*)S(Pi_M(A*)S+1(Pi‘ (5.8.9)
s=t 1

where in the last line we used the Cauchy-Schwarz inequality. Let us fix s € [¢]. We have

2

1
A*Si**A S-‘rl
e

Z Fii.9.5(G,x)?
x€[n]

where Fy, ¢, s was the functional defined in (5.7.2). By the computation (5.7.9) from Theorem 19, we
have for any x € [n]

Q* @i (x)
E[Fyg.5(Tox)] = == ==
so summing over x yields
<17 Qs(Pi"i>
Z Fupps(Tex)? | = i

We are going to use the concentration bound from Theorem 20. In preparation, we need a majorant ;
it is given by (5.7.4) from Lemma 5.7.1. More precisely, we have

Fui9:.5(8:0) < |@iloo| Zg (0,5 + D|(L/d)* := 7(g,0)-

Applying Theorem 20 yields

l(A*)S'H o

PA,0et)
‘Lll dS

< cIn(n)*n*v/n|| 7). (5.8.10)

@y

The upper bound on ||| y|| is done as usual from the growth bounds in (5.6.5)-(5.6.10), and they yield a
constant ¢ such that

b2 In(n)2n2< [L\**!
I <20 (2)
n d
From this and (5.8.10) we find that on a high-probability event, for any s, we have
2 S i 2 5 3k s+1
(A*)s(pi_i(A*)s-i-l(Pi _<17Q ¢ > Scb ln(n) n é
i ds \/ﬁ d

and summing over all s between ¢ and / as in (5.8.9) yields

. 1,004  b2In(n)n3* [L\"
B <pl,>\2< e (2
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5.8. Near eigenvectors: proofs

where we used v/1 +u < 1+ 0.54 and we adjusted the constant c. Then, we use (5.5.7) which tells
that (1, 0@y < b3r?p*. We get

L pArs 2 6,3k ¢
[{(A*) @i, w)| g‘ui’Zb rf —i—cb In(n)°n <2>

s=t H; \/ﬁ
21 6,3« /I\?!
< brin(n)d + CM -
N d
where we used the fact that y; > 9, hence every term in the sum is dominated by the first term, and
there are less than ¢ < In(n) terms inside the sum. O

5.8.4 Norm of the remainder matrix: proof of (5.4.11)

Let us recall that H = span(vy, ..., v, ) = im(V). Our goal in this section is to prove the last inequality
(5.4.11) in Theorem 17, namely that with high probability,

JA*Pp. | = max |A‘w| < €O
WEHL7
w=1

with C some constant depending polynomially on the parameters.

The tangle-free decomposition

We notice that if the graph G is (-tangle free then A’ = A() where

( ) Z HPX, 1X¢ x, 1%

xeFf, 1=1

and the sum runs over the set Fx{y of all paths (xo,...,x,) such that xo = x, x, = y and the graph of the
path is tangle-free — we recall that tangle-free means that there are no more than one cycle, see the
definitions in Subsection 5.6.1 on page 128. More generally, F' denotes the set of all tangle-free paths
of length #, whatever their endpoints. We also define the matrices M and A(f) by A0 = A(O) =1, and

d

Mx,y = Mxvy_i

AY) ( ) ZHPX, WM, (5.8.11)

F/zl

We use the convention that the product over an emptyset is 1. Then we may write for any a,b € R’

Hat Hbﬂrz (m,) ax — by) ( I )

t=k+1

We thus get
/ (17 N
A + Z ( ) ZHPX’ 1Xt Xt 1% < X— lxk> H th 1 x, 1%
k=1 Ffy =1 1=k+1
This can then be rewritten as the following identity in .4, ,(R):
l l
k=1 k=1
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5.8. Near eigenvectors: proofs

where
-1 k—1 ¢
R, = (2 Py M, P Py oM
k /Xy — d X —1 X 225 1" Xk—1Xk X — 1 X 25X — 1 X
(%0,...,x¢)ee T 1=1 t=k+1

where the sum is over all ‘paths’ (xo,...,x;) such that (xo,...,x_1) € F*71, (xt,...,x¢) € F* % but
(x0,...,x¢) is not in F’.
We now use the spectral decomposition P = ;@1 ¢y + --- + U,@,¢;. For any unit vector w, we
have
,
A=) pp(=k) A1) Z ,uj(Pj<(PjaA(£_k)W>-
j=1

Hence, from the orthogonality of the @;’s,

D ueie; AW

j=1

‘A(k—l)PA(Z—k)W| < Hé(k_l)H

= AN u2 e, AW, (5.8.12)
=

We have proven in (5.8.8) that on a high-probability event, the following holds for any ¢ smaller
than £ and i € [ro] and w e H:
(@i, A'w)| < cb*rIn(n)d'.

On the other hand, for i > rg, we had proven in (5.8.5) that |(A*)'¢;|*> < p? Fl(fi). However, when

U; > 9, the sum defining Fgfi) is smaller than th3r2p’ /(u?d)!, so we have |(A*) @;|> < cb®r?In(n)d".
As a consequence,
K@i, A'w)| < [WI|(A*) @i < cb*rin(n)d'.

On the union of those events, the whole square root is thus bounded as follows (the constant c is
adjusted):

r ro
3 g A2 < bt Y p2(941)2
j=1 j=1

< cln(n)b?rd' ="
We can redefine the constant ¢ and we get the following proposition.
LEMMA 5.8.4. On an event with probability at least 1 — 1/In(n), one has
4 4
AP < JAY |+ en(mpr YL ANV + 3R (5.8.13)
k=1 k=1
We now need bounds on A%, HR,(f) [

PROPOSITION 5.8.5. There exists a universal constant C such that if n > C v (Krb?)®, with proba-
bility at least 1 — 1/n, the following holds for any k € {1,...,¢}:

|AW] < 21n(n)"* (L2 /p)* (3 v B0) . (5.8.14)
IRV < 2% In(n)**L". (5.8.15)
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5.8. Near eigenvectors: proofs

The proof of this proposition relies on a high-trace method. It is postponed to Section 5.10. We
can now conclude: with high probability, for some constant ¢ > 0, we have

l l
_ _ 14
[APy | < [AD] + cn(m)p?r 3 A D[t 1+ ST IRV
k=1 k=1

¢ 24
2d/1
<In(n)>C Y [0 v 9] + 2dtn(m)7
n
k=0

2d/In(n)* Y

n
< Cln(n)'*[9 v 9y (5.8.16)

< In(n)BCol[d v o]’ +

with Co := cb?r(rb?L?/p)? in the third line. To get the last line, all we have to do is to note that
L'/n= (L/d)d"/n < 9)d’/n <. The constant C in this last line is taken to be

C =C(d,L,b,r) = cb*r(rb*L?/p)? (5.8.17)

with ¢ some absolute constant.

5.8.5 Proof of Theorem 18

We gather the events and bounds from the last propositions in a fashionable and easy-to-read summary,
working out the error terms and presenting them in a way which keeps track of dependencies with the
parameters in the class .. The union of the three events in each of the three preceding propositions
has probability greater than 1 —4/1In(n). The proof mainly relies on checking that the error terms are
as claimed in the statement of Theorem 18 and this is more or less the same thing for all the entries,
so we only do the first one.

For any o > 0 we have In(x) < x%, hence for every n we have the lavish domination In(n)?° <
0.001
n? ot

We recall that k¥ had been defined in (5.1.8) by

0.249

B 1
3+ e

The (i, j)-entry of the matrix ®*A‘® is precisely (¢;,A’;), hence by (5.8.1) we have (with high
probability):

|®*A‘D — D || < ro|®@*A‘D — D[, < c

robzln(n)SnZK L 14 crob2n2K+0'001 ,
—_— < ———.

\/n d \/n
We write this two error term in the form 79b*>8. Our goal is to prove that & is smaller than n=0-2,
9 and 1‘}6, as in (5.4.12). Note that by the choice of k¥ we have 2k +0.001 — 0.5 < 0, so if n is large
enough it is clear that cn?*+0001=0:5 < | hence § < 86 as requested. On the other hand (we omit
integer parts):
9 — nmlﬂ(P/d) < nmln(b“/d)

where we used p < L? < b*. Simple rearrangements using our choice of k now show that § < 9 and
similar computations show that J is also smaller than n 0% as requested.
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5.9. Eigenwaves on Galton-Watson trees

5.9 Eigenwaves on Galton-Watson trees

This section carries out the details of the expectation and variance computation in Theorem 19. Let us
recall the notation, and especially the definition (5.7.1) of the functionals: if y, ¢ are two vectors in
R" and ¢ is an integer, then

fo,vi(g,0) = (g)lﬂl(o)) Z Poyatr)  Pre 1)) X W((xr)).

Pg(0,1)

5.9.1 An elementary computation on Poisson sums.

Let N be a Poi(d) random variable, and let (X;), (¥;) two iid sequences of random variables, both being
independent from N ; we suppose that X; is independent of Y; for i # j, but there might be a nontrivial
dependance between X; and Y;. Let us note

N
A=ZX,- BzZYi
i=1

The following (classical) identity will be crucial in the next sections. For convenience, we provide a
proof.

Cov(A,B) = dE[XY]. (5.9.1)

Proof of (5.9.1). Primary computations shows that E[A] = dE[X] and E[B] = dE[Y ], hence Cov (A, B)
E[AB] — E[A]E[B] = E[AB] — d*E[X]E[Y]. The first term E[AB] is thus equal to

_ i ¢ % (KE[XY]+k(k— DE[X]E[Y])

We have E[N(N — 1)] = d?, hence (5.9.1) holds true. O

Identity (5.9.1) will be used many times in the following context. Fix one vertex x € [n] and
suppose that X = P, y@;(U) and Y = P,y @;(U) with U ~ Unif[n]. By the eigenvector equation P =
Wi @x, we have E[X] = (u;d@;(x))/n and E[Y] = (u;jd@;(x))/n, hence in this case

1 s
Z L 00)0 () = (09" (x). (5.92)
" yeln

These identities will be used later in variance computations.

5.9.2 Proof of a martingale property

Let x be a fixed element in [n] and let (7;,x) be the random rooted marked tree described in Section
(5.6.1) and let .%; be the sigma-algebra generated by (7,x),; from now on we will use the filtration
F = (J,)t>0 The key observation for this whole section is that the process ¢ — "fo. 00t (Tx,x) is
indeed an .% -martingale.
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5.9. Eigenwaves on Galton-Watson trees

LEMMA 5.9.1. Let ¢ be any vector and let ¢; be an eigenvector of P associated with the nonzero
eigenvalue ;. Then, the discrete-time stochastic process

1
= Efdwm(nax)

is an .% -martingale.

From now on, the conditional expectation with respect to the sigma-algebra .%;, will be noted E;
instead of E[-|.%].

Proof. 1t is clear that fy o, /(Ty,x) = ¢(x)f1,9,:(Tx,x), hence it is sufficient to prove the martingale
property for Z; = p;”" f1,¢,4(Tx, x).
Let us fix an integer ¢. Then, upon factorizing up to depth r we have

Zt+1 _Zt =

(de Z [P e (ZPW ()~ P >>).

dt(ox)=ts=1 X =y

Let us note A; = Z, 1 — Z, the martingale increment. Then,

E/[A] =

(dl;.>t+ 2 HPW D [Z (O ))*d,f" ‘(l(xt))]-

d*t(ox)=ts=1 X =y
Let X1,X5,... be iid random variables with the following distribution (conditionally on .%;):
1
P/(X = Py .0i(2)) = . for each z € [n].
In other words, conditionnally on .%,, the rv’s X; are iid samples with distribution P,y ;¢:(U) with
U ~ Unif[n], just as in the end of the preceding paragraph.

It is clear that for every children y of x;, the random variable P,(,) () @i(¢(y)) has this distribution,
and as already noted,

Z Piay (@) = (P 15) = gian).

The number N of children of x; has a Poi(d) distribution, and is independent of .%;, hence

D Py @) — H ] E, [ZX]

Xt =y

@i(1(x:))

— aB[X] - i g1 (x,))

n

=0.

We have E,[A;] = 0 and the martingale property for Z; is true.
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5.9. Eigenwaves on Galton-Watson trees

5.9.3 Proof of (5.7.5)-(5.7.6)

The proof of these two identities is straightfoward. Indeed, the martingale property for Z, = i, fy g« (Tx, )

shows that
E[fy.g (T, x)]
u;
which is exactly (5.7.5). For (5.7.6), one only has to note that the computations in the last section also
show that if P¢ = u¢ for any u (possibly zero), then for any ¢ > 0 we have

— E[Z] = E[Z)] = () (%)

t

E[fy.0:(Tx) = y(x)@(x)1

hence (5.7.6), when U is zero.

5.9.4 Proofof (5.7.7)-(5.7.9)

We fix i, j in [r] and x in [n] for the rest of the proof. Clearly, it is enough to do the computations with
v =1. We set
f17(p1 (7}7)(:)

Z = m

and .
A =El[(Z,, - Zl)(zt—i-l zl).

The Z' are martingales, hence
E[ZZ/] = E[Ao+---+A1]. = E[Ag] + -+ E[A,_].

Our goal is to compute those A;. First, we have

n2 t+1
A= <d2> 2 HP“% aGe ) P a0, ) X E G xp) (5.9.3)
Nzli/ d‘*’ (0,x)=t 5= -0
d*(ox)=t

where the sum runs over all the couples of paths of length ¢ started at the root: 0 =xp — x; — ---x;
and x{, = 0 — x| — --- — x/, and where E (x;,x}) is given by

b [(2 P 9i(1(y)) — W) "

Xt—y

DT Py aon 917) —ﬂfpk( (x7))

X'y

We have already computed those expectations in (5.9.1). More precisely, when x; # x], the content
of the two parentheses inside the expectation are totally independent and centered, hence the only
contributions to (5.9.3) correspond to the summands where x, = x,. In this case, (5.9.1) and (5.9.2)
yields

Elrx) = 1500 (x).

We thus have

d 2 t+1 —
A:z<d2> 2 H e @9 1(x). (5.9.4)

d+ (0.x)=1 5=0
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5.10. Proof of Proposition 5.8.5

Since our goal is to compute E[A,] for any s, we now apply repeated conditioning: E[A,] = E[Eo[E;[...Es[A]...].

By the computations done earlier, it is easy to see that
d s+1 n2 s+1 . Qs i,j x
Bl (%) (o) @00 - 200D
n ipd (Hip;d)
This directly gives identity (5.7.9). Identity (5.7.7) also readily follows:
E[fd),(PiJ (me)f(b.,(pj,t(];mx) = ,u,’,uj(p (X)ZE[ZII.ZIJ]

el (@9)000)
= 1} o (x) ZO (st

_ 21-(1)
= H,{H}(P(x) ri,j'

5.9.5 Proof of (5.7.8)

We do the same thing as before, but instead of looking at ;" f ¢ ,(Tx,x) we directly do the computa-
tions on fy ¢, (7, x). The rest is identical.

5.10 Proof of Proposition 5.8.5

In this section, we prove Proposition 5.8.5. The proof relies on the expected high trace method intro-
duced in random matrix theory by Fiiredi and Komlos [81] and on techniques developed in [43] for
sparse random matrices.

5.10.1 Norm of A(k)

In this subsection, we prove the following lemma. We set

L
190=3 and Sz\/g.

LEMMA 5.10.1. There exists a universal constant ¢y > 3 such that for all integers 1 < k < In(n) and
n=coVv (Kbr2)6,

(E{JAD ") ™ < n(m (kb0 v 90"
where m = In(n/(Krb*)3)/(121n(In(n))).

From Markov inequality, Lemma 5.10.1 implies Equation (5.8.14). We start the proof of Lemma
5.10.1 by the norm identities

JA P = A0A®" | — | (40407

From the trace formula, we get

JADPr < f(a®a07)")
m
= Z H (A(k) )erf 1%2 (A(k) )x2t+1x2t )
(X[ 7'-~~,X2m) r=1
where the product if over all (xy,...,xz,) in [n]zm and we have set x,,+1 = x1. From the definition of

A® in (5.8.11), taking expectation, we get

2m k

m n\ 2km
EA0)n < (3) SETI]PhnMy, e (5.10.1)
Y

i=1t=1
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5.10. Proof of Proposition 5.8.5

where the sum is over all Y = (¥i,...,%m) With % = (%0, ..., %) € F* and the boundary conditions:
for all i € [m],
Yi0 = Yir10 and Y1k = Yik

with Yem+1 =N

We associate to an element ¥ as above, a directed graph G, = (Vy, E) with vertices Vy = {y;; : 1 <
i <2m,0 <t <k} andedgeset E, = {(¥—1,%,): 1 <i<2m,1 <t <k}. This graph may have loops
(edges of Ey of the form (x,x)) and inverse edges (pair of edges (x,y) and (y,x) in Ey). From the above
boundary conditions, the graph G, is simply connected. In particular, the genus of G, is non-negative:

[Ey|—|Vy|+1=0. (5.10.2)

Each oriented edge e € Ey has a multiplicity m, defined as the number of times it is visited by y:

Me = Z H(?’i,t7}’i7t+1)=e'
(i,)e[2m] x [k—1]

By construction,
> m, = 2km. (5.10.3)
ecky
We may now estimate the expectation on the right-hand side of (5.10.1). Recall that the random
variables M, = (My, —d/n), x,y, are iid, centered, bounded by 1 and with variance (d/n) — (d /n)?. Tt
follows that for any p > 1, |[E[M%]| < d/n. We deduce that

2m k d |Ey|
EH HP%‘,FMJM%J,%, = H PéneE[Mrln]e] < (n) H |Pe’me~
i=1t=1 ecky ecky

Moreover, the above expectation is zero unless all edges have multiplicity at least 2. From (5.10.1),
we thus obtain that

Ea®P < 3 (5) TR (5.10.4)

YeEWkm eeky

where Wy, is the set of paths y as above such that each edge of Ey is visited at least twice.

We now organize the sum (5.10.4) in terms of the topological properties of the paths. We introduce
the equivalence class in Wy ,,, we write y ~ 7 if there exists a permutation o € S, such that Y = 60y,
where o acts on ¥ by mapping ¥;, to o(7i,). We denote by #; ,, the set of equivalence classes. Obvi-
ously, |V,| and |Ey| are invariant in each equivalence class. For a,s integers, we denote by #j (s, a)
the equivalence classes such that |Vy| = s and |Ey| = a. From (5.10.2), #j (s,a) is empty unless
a—s+1>0. Our first lemma is a rough estimate on #4 , (s, a).

LEMMA 5.10.2. Leta,s > 1 be integers such thata—s+1 > 0. We have
Wi n(s5,@)| < (2km)Om(a—s+1)+2m,

Proof. This lemma is contained in the proof of [43, Lemma 17]. We reproduce the proof for the reader
convenience. Let Y= (1, ,%m) € Wim. Weorderthe set T = {(i,7) : 1 <i<2m,0 <t <k—1} with
the lexicographic order. We think of T as time. For 0 <t <k —1 and i odd, we define ¢;; = (Yis, ¥%ir+1)s
Vit = Yis+1, while for i even, we set ¢;; = (Yik—s—1,Yik—t) Yig = Yik—t—1 (in words: we reverse ¥; for
even i). A vertex x € Vy\{71,1} is visited for the first time at 7 € T if y; = x and for all smaller 6 € T,
Yo # X.

We pick a distinguished path in each equivalence class by saying that y € Wy ,, is canonical if
Vy={1,...,[Vy|}, 71,1 = 1 and vertices are first visited in order. There exactly one canonical path in
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5.10. Proof of Proposition 5.8.5

each equivalence class. We thus aim for an upper bound on the number of canonical paths in Wy,
with |Vy| = s and |Ey| = a by designing an injective map (or encoding) on such canonical paths.

Our goal is to retrieve unambiguously the values of y;, T € T', from minimal information. For te T,
we say that T is a first time, if y; has not been seen before. If 7 is a first time the edge e; is called
a tree edge. By construction, the set of tree edges is a sub-graph of Gy with no weak cycle (without
orientation) and vertex set V). We call the other edges of G, the excess edges. Any vertex different
from 1 has its associated tree edge. It follows that the number of excess edges is

g=a—s+1.

If e; is an excess edge, we say that 7T is an important time. Other times are tree times (visit of a tree
edge which has been seen before).

The set 7; = {(i,¢) : 0 <t < k— 1} is composed by the successive repetitions of (i) a sequence of
the tree times (possibly empty), (i) a sequence of first times (possibly empty), (iif) an important time.

We build a first encoding of canonical paths. We mark the important times (i,7) by the vector
(Vigsyz—1), where T € T; U {(i,k)} is the next time that e; will not be a tree edge (by convention
T = (i,k) if 7 remains on the tree after (i,#)). We can reconstruct a canonical path y € W ,,, from the
positions of the important times and their marks. Indeed, this follows from two observations (1) there
is at most one path between two vertices in an oriented tree, and (2) if v vertices has been seen so far
and 7 is a first time then y; = v+ 1. It is our first encoding.

We refine this encoding by using the assumption that for each i, ¥; is tangle-free. We partition
important times into three categories, short cycling, long cycling and superfluous times as follows.
Assume that % contains a cycle. Consider the smallest time (i,7;) such that y;, € {yi_1,..., iz}
where y; | = ¥;o forodd i and y; _| = ¥« foreveni. Let —1 <1y <1 be such that y;,, = y;,. By the
assumption of ¥ being tangle-free, C = (i, - ,Vis, ) is the only directed cycle visited by 7. The last
important time, say (i,;), before (i,#) is called the short cycling time. We denote by #, the next time
after (i,71) that is not an edge of C (¥ circles around C between times (i,) and (i,z,)). We modify the
mark of the short cycling time as (y;,, iy, ,yz—1) Where T € T; U {(i, k)} is the next time after (i,7,) that
e; will not be a tree edge (by convention T = (i, k) if % remains on the tree). Important times (i,#) with
0<t<tjorty <t <k—1 are called long cycling times. The other important times are superfluous.
The key observation is that for each 1 < i < 2m, the number of long cycling times (i,#) is bounded by
g — 1 (since there is at most one cycle, no edge of ¥; can be seen twice outside those of C, —1 coming
from the fact that the short cycling time is an important time). Now consider the case where the i-th
path does not contain a cycle, then all important times are called long cycling times and their number
is bounded by g.

We can reconstruct a canonical path y € Wy, from the sole positions of the short and long cycling
times and their marks. This our second encoding. For each i, there are at most (k + 1) ways to
position the short and long cycling times of T;, s> possibilities for the mark of a long cycling time and
s possibilities for the mark of a short cycling time. We deduce that

| Wem(s,a)| < (k+ 1)2"8(s2) 2= (53)2m,
Since s < 2km, the conclusion follows. O

Our second lemma bounds the contributions of paths in each equivalence class. This lemma is the
new main technical difference with [43].

LEMMA 5.10.3. Lety€ Wy, such that |V,| = s and |Ey| = a. We have

Z H ‘Pe|me < n72km+szmfa(KrbZ)S(afs)+4mpkm.
y’:y'wyeeEy/
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Proof. We first express the product of entries of P in terms of the matrix Q:

. - \/p? 2km—2a Q
[T = TTie < (V25) 112

ecky ecky ecky
where we have used (5.10.3), m, > 2 and max |P,| = v/pK/n.
The statement of the lemma immediately follows from the claim:
Z H Qe < pan‘v—a(Krb2)3(a—Av)+4m (5105)

Yy ~veeEy,

Indeed, let us check (5.10.5). Let us define the degree of a vertex x in Vy as the sum of in-degrees and
out-degrees: Zw(llmf =x+ Il;;,—x). Let s and s> be the set of vertices of degree k and at least k. We
have
S| +sy+s=3=s5 and s;+25+35>3 < stk = 2a.
k
Subtracting the right-hand side to twice the left-hand side, we find

s>3<2(a—s)+s1 <2(a—s)+2m.

The bound s1 < 2m comes from the fact that only the vertices ¥;o and ¥;, with i € [2m], can be of
degree 1. Indeed, other vertices are of degree at least 2: for 1 <t <k, ¥;, has in-degree at least 1 and
out-degree at least 1.

Consider the set \77 of vertices Vy which are of degree 1 or of degree at least 3. In other words,
Vy\f/y is the set of vertices of degree 2. From what precedes

§=|Vy| <2(a—s)+4m. (5.10.6)
We may partition the edges of Ey into @ sequences of edges of the form, for 1 < j < d, é; = (ej1,..-,€j4;),

with e, = (xj/—1,Xj;) € Ey, Xj0,Xj 4 in Vyand x;, ¢ V, for | <t < g;— 1. By construction
a
Ygj=a. (5.10.7)
j=1

We consider the directed graph Gy on the vertex set V, whose @ edges are, for 1 < j < d, (x;0,x ;)
(this is a multi-graph: if two sequences é; and &;, i # j, have the same extreme vertices, it creates two
edges). It is straightforward to check that this operation preserves the genus:

a—s=a—>$. (5.10.8)

For ease of notation, let yj,---,y; be the elements of Vy. Let a; and b; the indices such that
Xj0 = Ya; and x; 4. = y,;. Summing over all possible vertices, we get

S o< 3 [1e%.,
j=1

vy ~yecEy, O15ys)En]$

where we have used that

qj
_ N4
2 L2uw = o

(15 X —1) =1

We apply (5.5.10) and find

> [e< 3 [1(*22)

vy ~yeeEy 15 ys)eln) =1

Using (5.10.6)-(5.10.8), we have @ < 3(a —s) + 4m and, from (5.10.7), Equation (5.10.5) follows. [J
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We are ready for the proof of Lemma 5.10.1.

Proof of Lemma 5.10.1. Note that #j ,,(s,a) is empty unless 0 < s — 1 < a < km (since each edge has
multiplicity at least 2, we have 2|Ey| < 2km from (5.10.3)) From (5.10.4), we get

km a+1 2km— a
EjAW 2 < Z Z( ) |Wim(s,a)] max Z 1_[ 1P|
a=1s=1 YE%m $,a) Yy ~veeEy,
Using Lemma 5.10.2 and Lemma 5.10.3, we arrive at
km o0
E[a®" < nz Zd”_ka(2km)6mg+2mn_gl(km_“(Krb2)3g+4m_3pkm
a=1g=0
km km—a o0 273 6m\ &
K (Krb~)>(2km)
_ Ska 2%k 2m K b2 4m—3
nd=" (2km) ™" (Kr azzl gz_;) . ’

where we have performed the change of s > g =a—s+ 1 and used ¥ = /p/d.
Recall k < In(n). We take m = [In(n/(Krb*)?)/(121n(In(n)))]. If n = C(Krb*)? for some universal
constant C, we find that
(Krb?)3 (2km)®m _ 1

S

N |

n
‘We deduce that

K km
E|A® |2 < pyhm (1 v d) (2km)>" (K rb?)*" (2km).
For our choice of m, 2km < In(n)?/In(In(n)) and, if \/n > (Krb?)?, then n'/") < In(n)'2. The

conclusion follows easily. O

5.10.2 Norm of R,(f)

In this subsection, we prove (5.8.15).

LEMMA 5.10.4. There exists a universal constant ¢; > 3 such that for all integers 1 < k < ¢ < In(n)

andn > cy, 1
Opm\ 2 _ d
(B{IR1"})™ < Sin(ny®L,
where m = In(n)/(241n(In(n))).

The proof follows from the same line than the proof of Lemma 5.10.1. It is also essentially
contained in [43]. To avoid repetitions, we only focus on the main differences with the proof of
Lemma 5.10.1. The computation leading to (5.10.1) gives

2m /L
/ n
yeW(‘ i=1t=1

where Wém isthesetof Y= (Y1,...,%m) With Y = (Yi0,..., %) ¢ F', (Yi0y s Yike1) EFFY (Yiki 15, Yid) €
F'~* and the boundary conditions: for all i € [m],

Yio = Vir1o and P10 =Pis

with Y541 = 1.
We associate to an element y € W/, the directed graph Gy, = (Vy,E}) with vertices Vy = {¥, : 1 <
<2m,0 <t </} and edge set £}, = {(Yr—1,%2) : 1 2m 1 <t </{,t# k}. The graph Gy is not
necessarily weakly connected (since E/ does not contain the edges (%;x—1,%x)). However, we have
the following observation.
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LEMMA 5.10.5. If v is as above then each connected component of of G;, contains a cycle. In
particular, |Ey| > [Vy].

Proof. By recursion, it is then enough to check that each connected component of Gg,l_ contains a cycle.
By assumption, ¥; = (%.0,.--,%.) ¢ F ¢ contains two distinct cycles. Up to recomposing a new cycle,
we may assume without loss of generality that the edge (% x—1, %) is in zero or one of the two cycles.
If it is in one of them, then the graph G{Yi is weakly connected and it contains the other cycle. Assume
now that (% x—1,%x) is in none of the two cycles. If Gg,i is weakly connected, there is nothing to prove.

If Gg,t_ is not weakly connected, then the two connected components are the vertices of (%0, ..., Y1)
and (¥ k,...,%.). Since these two paths are tangle-free, each must contain exactly one of the two
cycles and the statement follows. O

Using the independence of the entries of M and |P,,| < L/n,

!

2m L d |E;] L 2Um
EHHPyiJflyi,t(1][<kM7i‘¢71Y[,1+1|t:k+1]t>kM’yi.t71Yi‘t> < <n> (n) :

i=1r=1
2m 2lm
(©) 2m d L
E|R < - -
IR (n) (d) >

Ye Wf/,m

We thus obtain that

|E3|
(d> , (5.10.10)

n

We introduce the equivalence class in Wy, , we write y ~ ' if there exists a permutation o € S,
such that ¥/ = 6 o, where o acts on y by mapping ¥, to 6(7,). We denote by #;, (s,a) the set of
equivalence classes such that |[Vy| = s and |E)| = a. From Lemma 5.10.5, %} (s,a) is empty unless
a = s. We have the following estimate on %/, (s,a).

LEMMA 5.10.6. Leta > s > 1 be integers. We have
[ (s5,a@)| < (26m)12miams)+22m,

Proof. A proof is contained in [43, Lemma 18]. We give a proof for the reader convenience. We order
thesets 7/ = {(i,r) : 1 <i<2m,1 <t <l{— 1t #k}and T = {(i,t) : 1 <i<2m,1 <t <{—1} with
the lexicographic order. We think of 7 and 7" as times. If T € T’, we denote T~ the largest element
in 7" smaller than 7. By convention (1,0)” = (1,—1). For 7 € T, we define ¢; and y; as in Lemma
5.10.2 and we say y€ Wy, is canonical if Vy, = {1,...,|Vy[}, 711 = | and vertices are first visited in
order. We aim for an upper bound on the number of canonical paths in W; ,, with |Vy| = s and |E}| = a
by designing an injective map.

We define a sequence of growing sub-forests (F;),c7s of G;, as follows. We start with F{; _y), the
trivial graph with no edge and a 7 ; = 1 as unique vertex. For 7 € 7', we say that 7 is a first time, if
adding e; to F;— does not create a weak cycle. If 7 is a first time the edge e; is called a tree edge and
we define F7 as the union of e; and F;-. Otherwise, F; = F;—. We set F' = F,,, ;. By construction,
the set of tree edges is a sub-graph of Gg, with no weak cycle and vertex set Vjﬁ. Moreover, the weak
connected components of G;, and F are equal. We call the other edges of Gg, the excess edges. In each
weak connected component of Gg, there are at most g = a — s + 1 excess edges. Indeed, if @', s" are
the numbers of directed edges and vertices of a connected component, then there are a’ — s’ + 1 excess
edges in this connected component. However by Lemma 5.10.5, @’ —s' < a—s. If e; is an excess
edge, we say that T € T’ is an important time. Other times in T’ are tree times (visit of a tree edge
which has been seen before).

Letk; = k for odd i and k; = k— ¢ + 1 for even i. We define the sets T, = {(i,¢): 0 <t <k;—1} and
T? = {(i,t) : k <t < {}. For each i, there could be a special first time (i,t) € T2, called the merging
time, such that a connected component of F{; - merges into a connected component of F; 4, by the
addition of e;;.
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5.10. Proof of Proposition 5.8.5

The sets T/ are composed by the successive repetitions of (i) a sequence of the tree times (possibly
empty), (ii) a sequence of first times (possibly empty), (iii) an important time or the merging time.
We mark the important and merging times (for € = 2) (i,¢) € T by the vector (y;s,yz—1), Where
e TF U{(i,k;)} is the next time that e; will not be a tree edge (by convention T = (i, k;) if . only
contains tree times after (i,7)). We can reconstruct a canonical path y€ W, from the positions of the
merging and important times and their marks. 7

We refine this encoding by partitioning important times into three categories, short cycling, long
cycling and superfluous times exactly as done in Lemma 5.10.2, except that there are short and long
cycling times for each i and € € {1,2} in the sequence 7;*. There are either O short cycling times and
at most g long cycling times, or 1 short cycling time and at most g — 1 long cycling time (because in
each connected component of Gg, there are at most g excess edges).

We can reconstruct a canonical path y e WZ/m’ from the positions of the merging, short and long
cycling times and their marks. There are at most £2” ways to position the merging times. For each
i, €, there are at most £% ways to position the short and long cycling times of T, 5% possibilities for the
marks of a merging or long cycling time and s> possibilities for the marks of a short cycling time. We
deduce that

|%fm (s,a)\ < €4mg+2m(s2)4m(gfl)+2m(s3)4m.

Since s < 2¢m, the conclusion follows. O
We are ready for the proof of Lemma 5.10.4.

Proof of Lemma 5.10.4. There are n(n—1)---(n—s+ 1) elements of W/, in an equivalence class in
W} ,,(s,a). From (5.10.10) and Lemma 5.10.6 we get

00 d 2m L 20m 2lm a " ’ d\*
plRl P < (4)(5) S X wemymen (4]

a=1s=1
We perform the change of variable s —» p = a —s:
d 2m L 20m 20m 0 2/ 12m\ P
EHRI(CZ)H2m < <> <d> (2€m)22m2da2 <( m) > .
n a=1 p=0 n

Recall £ < In(n) and d > 1. We take m = [In(n)/(24In(In(n)))]. If n = ¢, for some universal
constant ¢, we find that

(2km)12m 1
L -
n 2
We deduce that
0 d 2m
E|R" | < () L2 (20m) 2™ (24m).
n

For our choice of m, 2¢m < In(n)?. The conclusion follows easily. O
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Appendix A

Introduction: english version

In this introduction, I will focus on presenting the works done during these three years of PhD. They
mainly focus on the spectra of random graphs or matrices. An important idea underlying a conse-
quential part of modern research in applied mathematics is that the greatest eigenvalues of a matrix
are those that provide the best information about this matrix. It is therefore of great interest to have
detailed descriptions of these eigenvalues. I will try to present this importance as much as possible
through this dissertation.

The first work of this thesis is inspired by the prepublication The spectral gap of sparse random di-
graphs ([62]). I study the second eigenvalue of the transition matrix on directed configuration graphs:
in this model, the incoming and outcoming degrees d; and cl;r of each vertex is specified, then one
takes a directed multigraph G uniformly at random among the graphs that have these degrees. The sec-
ond eigenvalue of the transition matrix is then upper bounded, the bound being explicit and depending
only on the degrees; this allows us to solve Alon’s directed conjecture, on regular directed graphs.

In general, an important question in graph theory is to link a graph to its degree sequence; one can
first ask whether, given integers (dj,...,d,), it is possible to construct a graph G with these degrees.
This is not always the case: the question was entirely solved by Erdés and Gallai in the 1960s, and
generated a whole field of research on the possibility of reconstructing graphs from local information
such as degrees. In the second work presented here, inspired by a paper in collaboration with Charles
Bordenave ([41]), we are interested in the existence of graphs with given neighborhoods, the question
having recently emerged in the context of local graph convergence.

These first two parts are relatively akin by their object, graphs and degrees. The third part, the
result of a collaboration with Justin Salez ([63]), slightly differs from them; the main object remains
the large random graphs with few edges, but we study the nature of the spectrum, and in particular
the existence of a continuous part, which corresponds to the notion of extended states from quantum
mechanics. In particular, we prove a criterion for the existence or absence of extended states in the
spectrum of a very general model, unimodular Galton-Watson trees. This allowed us to answer a
question asked by physicists Bauer and Golinelli in 2001.

Finally, in the last part, resulting from a collaboration with Charles Bordenave and Raj Rao
Nadakuditi, I present some results on the large eigenvalues of diluted matrices. We consider a directed
Erd6s-Rényi graph on n vertices, in the diluted regime where the average degree is d, independent of
n. Each edge (i, ) of the graph is weighted by a weight P, ;. The goal is to obtain information on
the matrix P from the observation of the weighted adjacency matrix A; this is the problem of matrix
completion, which has been extensively studied for about fifteen years. We show a spectacular phase
transition: under natural assumptions on P, there is a threshold ¥ = 9(P,d) such that the largest eigen-
values of (n/d)A converge as n — oo towards eigenvalues of P greater than 9. All other eigenvalues
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of (n/d)A are contained in D(0,d). We also show that the eigenvectors of A associated with these
eigenvalues are correlated with the corresponding eigenvectors of P. This result is unexpected, as it
shows that (weak) reconstruction of P or part of P is feasible even in the regime where d is fixed.

This introduction provides a full description of these results, as well as background information
on each of the covered areas. First (§A.1), I give some generalities about the spectra of matrices
and graphs, before describing the theory of local convergence that underlies all the works presented
here. The other chapters (§A.2-A.5) are devoted to the work mentioned above and are relatively
independent.

Finally and most importantly, I give in conclusion (§A.6, page 185) two ideas that stem from this
thesis: the diluted regime (where d is really small) is the interesting regime from the point of view of
applications, and sometimes it is better to un-symmetrize problems that are naturally symmetrical, a
promising program considering recent works in statistics.

A.1 Convergence of the spectrum

We begin by recalling some classical notions of linear algebra and graph theory, then we describe the
convergence of graphs in the sense of Benjamini-Schramm.

Eigenvalues
Any symmetric matrix A € .4, ,(R) has a spectral decomposition, in the sense that it is written
A=010] + -+ X Pu @y, (A.1.1)

with A; > --- > A, its eigenvalues, and ¢; an orthonormal family of associated eigenvectors. Eigen-
values capture a large amount of information about the matrix A, and have very useful classical char-
acterizations, for example

Ai = in (x,A A12
i = max \"r?&ll (x,Ax) (A.1.2)
X|=

where 7, is the set of subspaces of R” with dimension i. The study of the eigenvalues of random
symmetric matrices, initiated with Wigner’s work, has proved to be extremely fertile in developments
from combinatorics, statistics, physics or even number theory.

When the matrix A is no longer hermitian, it still has n complex eigenvalues, but does not neces-
sarily have a decomposition like (A.1.1). A popular and useful variant is the singular value decom-
position: for any A € .#,, ,(R), there are o] > --- > o, > 0, with r = rank(A), and two orthonormal
families (¢y,...,¢,) in R” and (y1,...,y,) in R", such that

A:61¢1WT+."+G}’¢VW;'

Variational characterizations similar to (A.1.2) exist for ;. In many applications, singular values of
matrices have proven extremely useful, playing a priori the role of eigenvalues for symmetric matrices.
However, this is not exactly the case, and in several naturally unsymmetrical problems, singular values
have proved to be less informative than eigenvalues'. One of the goals of this thesis is to study the
eigenvalues of certain non-Hermitian matrices, in particular the adjacency matrices of directed graphs.

Spectra of graphs

Let’s start by recalling some graph terminology: a graph G = (V,E) is a set of vertices V, always
countable in this thesis, and a subset E of V x V. The elements (u,v) in E are the edges of the graph.

ISee in particular the concluding remarks of this introduction.
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Simple graphs are graphs without loops (v,v) and whose edges are symmetrical, in the sense that
(u,v) € E if and only if (v,u) € E; such graphs are also called unoriented or undirected graphs, as
opposed to the case where edges (u,v) can exist without the edge (v,u) being in E.

The works presented in this thesis refer to diluted graphs, i.e. graphs whose number of edges |E|
is comparable to the number of vertices |V|.

Any graph G = (V,E) is entirely characterized by its adjacency matrix A. This matrix is indexed
by V and defined by

Au,v = 1(u7v)€E'

It is Hermitian if and only if the corresponding graph is undirected. The algebraic graph theory consists
in studying G via the spectrum of its adjacency matrix — for classical books on the topic, we refer
to [51, 64]. One of the advantages of this vast idea is that there are many numerical procedures for
approaching the spectrum with arbitrary precision, in time O(n?) in the worst case, and that knowledge
of the spectrum makes it possible to obtain good approximations of quantities that are very difficult
to calculate, or even often NP-complete, such as the isoperimetric constant or the chromatic number
— we will return to this in Section A.2. Many problems in statistics or computer science that arise in
terms of graphs can thus be solved by spectral algorithms; see for example [134, 90, 10].

Random graphs

Classical graph theory has focused on studying the properties of particular graphs: given one graph,
what relationships can be found between, for example, its chromatic number, its edge number, its
planarity, etc. This is often necessary in applications, where you have a specific graph (for example,
the Facebook graph) from which you want to get information.

However, in many other applications, there is not one single graph, but several graphs that share
some common features (such as the graphs of links between the users of different social networks).
Rather than studying these graphs individually, we study entire classes of graphs, and we try to de-
termine properties that are generally true on these classes. Mathematically, we have to identify a
particular class, for example the set ¢ (n) of simple graphs on n vertices, and study the properties of a
random variable (uniform or not) G on this class. In this thesis, we study several classical models of
random graphs: Erdés-Rényi graphs, uniform trees and graphs with prescribed degrees.

Most of the results are stated under the asymptotic regime in which the size n of the graphs tends
to infinity. We will therefore study increasingly large random graph sequences. In this regime, the
models we are studying can be seen as finite approximations of infinite limiting objects, using the
local weak convergence theory. This point of view is both a fertile heuristic to understand some
problems (in particular, those presented in the first part), and a powerful theory to solve others (as in
the third and fourth parts).

Benjamini-Shramm convergence

The main idea of local local convergence is to study the typical aspect of a graph around any ver-
tex. This section presents the main lines and results of this theory; we refer to [8, 34] for complete
introductions, as well as [27].

To describe the theory, we need to define some commonly used terms: first of all, let us state that
all the graphs we will study will have the same vertex set V or a subset of V, supposedly countable,
and that all the graphs considered will have all their degrees finite (we also say that they are locally
finite).

e A rooted graph is a pair (G,v) where G is a connected graph and v € V is a particular vertex of
G, called root.

e When (G, v) is arooted graph, we will note (G, v), the set of vertices of G at a distance less than
or equal than ¢ from the root v.
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e An isomorphism between two rooted graphs (Gy,v;) and (G3,v;) is an isomorphism of graphs
¢ : G; — G, which preserves the root, i.e. such that ¢(v;) = v,.

e When there is such an isomorphism between two rooted graphs (Gy,v;) and (Ga,v,), we write
(G1,v1) =~ (G2,2).

e Finally, we note ¥, the set of (isomorphism classes of) locally finite connected rooted graphs.

We can endow ¥, with a distance, called the “local distance”, by putting
d((Gi,1)(Ga,v)) = (1+T) 7,

where T = sup{t > 0: (G1,v1); ~ (G2,v2)}. The metric space thus obtained is Polish. It is therefore
possible to endow Z?(¥,), the set of all probability measures on ¥, with the weak topology. Con-
cretely, this means that u, — p if and only if for any continuous bounded function f: ¥4, — R, we
have { fdu, — § fdu. We will say that a sequence of random rooted graphs (G,,v,) converges to a
graph (Go, Vo) if the distributions of (G,,v,) converge to the distribution of (G, v ). In practice,
we have G, — G, if and only if for any fixed rooted graph (g,v), we have

VieN, P((Gp,vn)r =~ (8,v)1) = P((Goo,veo)r = (8,V)1)-

The central idea of the Benjamini-Schramm convergence is that any finite graph sequence (G,) gives
rise to a sequence of random connected rooted graphs by uniform rooting: just take the root v,
uniformly at random on V,,, and consider the graph (G,(v,),v,), where the notation G(v) refers to the
connected component of G containing v.

This very powerful idea allows to study finite graph sequences from a purely local point of view:
the convergence of a graph sequence happens if the neighbourhoods of its vertices resemble (in distri-
bution) to the neighbourhood of the root of the limiting graph.

Many graph models converge almost surely in the Benjamini-Schramm sense. This is the case
with the models studied in this thesis, which we now present (among others). The literature on each
of these models spans entire pages of bibliographies; the first three models are extensively described
in [32].

1. Erdés-Rényi. Note ER(n, p) the ErdGs-Rényi distribution of parameter d/n; the set of vertices
is n and each of the possible n(n — 1) /2 edges is independently put in the graph with probability
p. If p =d/n with d a fixed positive real, then G, — PGW(d), the Galton-Watson tree with a
Poisson progeny of parameter d. We refer to [34] for a proof.

2. Graphs with prescribed degrees. Let d”) = (dy,...,d,) be a graphical sequence?, and G,
is uniformly chosen from ¢ (n,d(™). Tt is assumed that the empirical distribution of degrees
converges towards a measure 7 on N, in distribution and in L?. If 7({0}) < 1, then G, —
UGW(x), the unimodular Galton-Watson tree with degree distirbution 7. This object will be
strictly defined in the last part. For proofs, see [34, Chapter 3].

3. Regular graphs. This is a special case of the previous one: when d(®) = (d,...,d), the graph
G,, is uniform among all d-regular graphs on n vertices; in this case, T = J; and the limiting tree
UGW(&,) is precisely Ty, the infinite d-regular tree ® (in particular, the limit is deterministic).

ZA sequence (dy,...,d,) is graphical if there is indeed a simple graph with n vertices in which the degree of the vertex i
is d;. Not all sequences are graphical: this is the subject of Section A.3.
3 Also called Bethe lattice.
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4. Uniform Trees. Let 7;, be a tree uniformly chosen from the set of the n"~2 labelled trees on n
vertices. The sequence (7,,) converges in the Benjamini-Schramm sense towards the skeleton
tree, noted Tyquel, defined as follows: we start with the graph of N, rooted at zero, called spine;
then, at each node i of this spine, we glue a tree #; which is random and distributed as PGW(1)
— the trees fg,t1,t,... are independent; see Figure A.1b. For the proof of the convergence
T, — quuele see [85].

5. Canopy tree. We note Ty, = (T,,0), the infinite d-regular tree from which we kept only the
first n generations. Unlike regular graphs, this tree has a boundary: a proportion asymptotically
equal to (d —2)/(d — 1) of the vertices are leaves. The limit is therefore not Ty, but a beautiful
recursive object, (Cy,0), called canopy tree: see Figure A.la. The identification of the right
model between T; and C; is an interesting question in the physics of the Anderson model,
where it reflects the treatment of boundary conditions ([5], [122]).

Continuity of the spectrum

Let G, be a sequence of finite graphs converging to (G,v) in the Benjamini-Schramm sense. The
adjacency matrix A, has spectrum 4, (A,) = --- > A,(A,) and we’ll note

1 n
Ha, = Z 0%, ()
i=1

the empirical spectral measure of G,,. One of the strong features of the Benjamini-Schramm conver-
gence is that is guarantees that t4, converges to some limit measure, defined from (G, v) (see [1, 126]
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or [34, Proposition 2.5]). More precisely, if G, converges in the BS sense to a random graph (G, v)
with distribution p, then

sup |Fa,(t) — Fp(t)| — 0 (A.1.3)
teR

where Fy, is the cumulative distribution function of 4, , and F}, is the cumulative distribution function
of some measure [, over %, which depends only on p. The convergence (A.1.3) is in fact equivalent
to the convergence of all the atoms (i.e. pa,({A}) — up({A}) for any real number A) and the weak
convergence of 4, towards p,. Obviously, identifying L, is quite delicate and we will shun the
problem for a moment; to do this, we will need an important concept, unimodularity. We will give an
explicit description of U, at page 172, as well as a definition of unimodularity.

As described, the convergence (A.1.3) does not give informations on the behaviour of some precise
eigenvalues such as 4;(A,), because the behaviour of a negligible number of eigenvalues vanishes
in the weak convergence. We cannot entirely rely on the spectral continuity to study the extreme
eigenvalues, even if this continuity still gives us some informations; in fact, we will need some ad hoc
techniques such as trace methods. A consequential part of this thesis will be devoted to the use of
trace methods to study the high eigenvalues of graphs.

A.2 Eigenvalues of regular graphs

In this section, we are interested in graphs with a fixed degree sequence, and in the second eigenvalue
of their transition matrix; the results and proofs are gathered in chapter 1 of this thesis, from the
prepublication [62].

To begin, we give a brief overview of the motivations around this question, notably through Alon’s
theorem. To fix the ideas, I start by presenting it in the context of simple d-regular graphs.

Spectra and expansion

Let us give ourselves a d-regular graph G. The simple random walk on this graph has transition matrix
Py = él(x,y)€E~ It is clear that P = %A, where A is the adjacency matrix; in this framework, the
spectrum of P and the spectrum of A are identical up to a homothety. The results of this section are
formulated in terms of the transition matrix P.

It is not difficult to check that the largest eigenvalue of P is 1, and the multiplicity of 1 is equal to
the number of connected components of G; on the other hand, —1 is an eigenvalue if and only if the
graph is bipartite (see for example [31, Section VIII.2]). The behaviour of the highest eigenvalue is
therefore not very informative. The question of knowing the behavior of the second highest eigenvalue
is much richer and more difficult. We will note

A, = max{|A| : A eigenvalue of P with |A| < 1}

the modulus of the largest non-trivial eigenvalue. There are many results that link this quantity to
important properties of the graph related to its expansion: the general idea is that if A, is small, the
graph is a good “expander”, in the sense that its edges are very well distributed in the graph and that
the removal of some of them does not cause major harm in its geometry. Several tools can be used to
quantify this intuition.

Cheeger’s Inequality. For any d-regular graph G, we have

d(1—2,)
2

where @(G) = minycy, x|<|v|/2 % is the isoperimetric constant* of the graph. When A, is small, this

inequality means that ®(G) is large: for each subset X, there are many edges that come out of X.

<®(G) <d\/1- A, (A2.1)

4 Also called Cheeger constant, conductivity, expansion constant, etc.
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Expander-mixing lemma. Another link between A, and G is the famous expander mixing lemma: if
G is a d-regular graph, then for all X,Y < V, we have

ex,v)— PN o T (A2.2)

n

where E(X,Y) = {(u,v) € E:ue€ X,veY} is the number of edges between X and Y. The number of
possible edges between X and Y is |X||Y|/2 and the density of the edges is d/(n — 1), approximately
d/n if n is large. Therefore, if the edges of G were randomized in G with this density (which is
equivalent to taking an Erdés-Rényi graph with parameters (n,d/n)), the average number of edges
between X and Y should be d|X||Y|/n. The expander-mixing lemma gives the difference between this
average number of edges and the actual number of edges between X and Y.

These two inequalities are extremely effective for harvesting information on G from a simple
bound on A, or A,. For example, there are bounds on the chromatic number or diameter; we refer to
[87, Chapter 4] for many developments around this theme.

The two inequalities (A.2.1) and (A.2.2) are only true stricto sensu for d-regular graphs, but they
have an everlasting compilation of variants in the context of oriented graphs, or when the graph is not
regular.

Markov Chains. In another context, A, gives the long time speed of convergence of Markov chains.
In general, the transition matrix of a Markov chain is neither symmetric nor even diagonalizable.
Its eigenvalues are therefore not necessarily real, and are ordered by decreasing modulus: A; =1 >
|A2| = -+ = |A,|. When the chain is irreducible and aperiodic, the Perron-Frobenius theorem results
in 1 being a simple eigenvalue, so in this context we have || = A,.

PROPOSITION A.2.1 ([104], [117]). Let P be the transition matrix of an irreducible aperiodic Markov
chain on a finite state space S = {1,...,n}, with invariant distribution m,. Let 1 = |A| = |42 = -+ >
|A,| be the eigenvalues of P ordered by decreasing modulus, and let d(t) be the distance to equilibrium
at time t, defined by d(t) = max,es | P'(x,-) — T.||rv, where | - | v is the total variation distance. Then,
1

lim d(r)

t—00

= |Aa]. (A2.3)

Again, if |A;| = A, is small, the Markov chain on G will quickly converge towards its equilibrium
measure. The computation of |A,| is therefore crucial to study the fine properties of random walks on
the graph. This is what motivated many studies around A, for various graph models, the simplest —
but already difficult — being that of regular graphs.

The Alon-Boppana bound

The famous Alon-Boppana bound says that A, for regular graphs is essentially larger than 2+/d — 1/d;
the most precise formulation, to my knowledge, is as follows: if P is the transition matrix of a d-regular
graph G, then
d—1 T
M(P) 22— _— . A24
2(P) d COS(diam(G)+2> (A-24)

In essence, if r = diam(G) is large, we have

A(P) = Ma(P) > 2*/”7 y <1—0 <r12>)

The first proof is due to Alon ([120]), and this version is due to Mohar ([116]); both use the variational
formulations (A.1.2). Within the setting of adjacency matrices of simple graphs, many generalizations
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exist (see in particular [125] and its references). If G, is a sequence of d-regular graphs whose diameter

tends towards infinity, we have

24/d —1
7

Any sequence of d-regular graphs whose diameter goes to infinity has a diameter that also goes to

infinity, and therefore satisfies the inequality (A.2.5).

liminfA, (P,) > (A.2.5)

2/d—1/d

The appearance of the number 21/d — 1/d is not accidental, and results in particular from the approx-
imation of the empirical spectral measure of G by the Kesten-McKay density (see Figure A.2). More
precisely, let G, = (V,,,E,) be a regular graph whose size |V,| goes to infinity, and whose diameter
tends towards infinity.

We saw earlier that if G, is taken uniformly at random on ¢ (n,d) then G, converges towards
the infinite d-regular tree T, in the Benjamini-Schramm sense, and therefore the spectral measure >
up, converges ([113]) to the spectrum of the transition operator on T, known as the Kesten-McKay
law. It is an absolutely continuous measure with respect to the Lebesgue measure, it has support
[-24/d —1/d,2+/d — 1/d], and the density (see Figure A.2) is given by

1) — (dx)?
pd(x) = dl[_ 2 /d=T @] d\/;;zldz 1)(dx()i ) . (A.2.6)

1—1
d ' d

Figure A.2 — Histogram of the eigenvalues of the adjacency matrix P of a regular 3-graph with 10000
vertices; the Kesten-McKay limit measure is in red.

As we have already mentioned, the weak convergence L, — pg(x)dx does not give any specific
information on the behaviour of particular eigenvalues such as A,. However, the Portemanteau lemma
implies that for every open subset O — R, we have liminf g, (0) = §, ps. By taking O =]2v/d — 1 /d —
€,+00[, we get

eigenvalues of P, such that A > 2¥4=1 ¢ »0
[{elg " ¢, pa(t)dr = c(d, &) > 0.
n 2y/d—1/d—¢

SStricto sensu, the convergence (A.1.3) applies to the spectral measure of the adjacency matrix of G,, but here the
renormalization P = d~'A is trivial, so Up, converges to the measure pt, od, which is of course the spectrum of the random
walk operator on T;.
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The proportion of eigenvalues of G, that are greater than 2v/d — 1/d — € is therefore strictly positive
(aresult due to Jean-Pierre Serre, [130]), which is much stronger than A, > 2+/d — 1/d — €. However,
convergence (A.1.3) does not allow us to say more: we could very well have A, (P,) — 1, for example.
We will see that this is not the case.

Ramanujan graphs and the Alon-Friedman theorem

Given the importance of the second eigenvalue and the lower bound of Alon and Boppana, it is natural
to focus on the extremal graphs for A,, those with a second eigenvalue smaller than 2+/d — 1/d. A
connected d-regular graph is called Ramanujan when the eigenvalues of P are either 1 or less than
24/d — 1/d, as in the following Figure.

FOROOAX X IO MK AKX XA RBOEKX MBBHAMX X

-1 1
72\/(1?1 0 2@_1

Figure A.3 — In red, the spectrum of a Ramanujan graph. When —1 is eigenvalue, we often say that G
is a bipartite Ramanujan graph.

These graphs are optimal expanders in view of the previous section, and we will not dwell on the
incredible breadth of their applications, for which we refer to the influent syntheses [66] and [87], or
more recently [124]. It should be noted, however, that the question of their existence has been proven
to be highly non-trivial.

The construction of Ramanujan graph families is a difficult problem, which was first solved for
some values of d ([111, 107], for cases where d — 1 is a prime integer): one can construct Ramanujan
graphs as Cayley graphs of PSL(FF,) from a well chosen set of generators® see [66] for an accessible
presentation. The existence of d-regular Ramanujan graphs has finally been shown for all d > 2
([108, 109, 110], bipartite Ramanujan graph constructions); however, it should be noted that the latter
works are purely existential in nature and do not allow to explicitly construct these Ramanujan graphs.

These “constructions” represent a tour de force, but here the probabilistic method has made it
possible to bypass the problem in a spectacular way. Indeed, in the late 1980s, Alon conjectured that
almost all regular graphs are almost Ramanujan. More precisely, he conjectured ([9]) that if G, is
chosen uniformly at random on ¢ (n,d), then

PTG Tt

n—o d

(A2.7)

Obviously, (A.2.7) does not solve the question of the existence of Ramanujan graphs, insofar as we
can have sequences G, that satisfy A.(G,) — 2+/d — 1/d while not being Ramanujan. However, for
applications, there is not so much difference, since such a sequence is asymptotically optimal in the
sense that it reaches the lower bound of Alon-Boppana.

The first proof of (A.2.7) dates back to 2004 ([79]), in a now famous paper of Friedman; a second
proof, due to Bordenave [33], introduced a powerful high-trace method to study the large eigenvalues
of some matrices. The first and last chapter of this thesis are based on this method.

Directed regular graphs

A digraph is said to be regular when all its vertices have the same degrees (in and out): d; =d;” =d.
From now on, we will note ¢_, (n,d) the set of all directed d-regular graphs with n vertices.

The proof that these graphs are Ramanujan uses number theory tools due in particular to Ramanujan, hence their name.
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As mentioned in the beginning of this introduction, it would be misleading to believe that directed
graphs are simply a variant of simple graphs. The entire previous section is based on two tools: first,
the Alon-Boppana bound, and second, the convergence of up,. However, to date, there is no satis-
factory equivalent of either in the context of directed graphs. One of the reasons is that the transition
matrix P, is no longer hermitian: its eigenvalues are complex numbers, and there are no variational
characterizations. However, the theory of directed expanders is attracting increasing attention in vari-
ous fields, as evidenced by the recent synthesis [124].

Let us start by examining a possible directed analogue of the Alon-Boppana inequality. The
Benjamini-Schramm convergence theory is still valid for directed graphs, and it is not difficult to
convince oneself that if G, is a uniform directed d-regular graph, then G, — T, the d-regular di-
rected tree: each vertex has d in-neighbors and d out-neighbors. The limitation lies in the definition
of the spectral measure of 'ﬁ‘d, since the transition operator on this tree is not self-adjoint. However,
we do know that the spectrum of this operator, calculated in [67], is equal to {|z| < 1/+/d}. In fact, the
shape of the limiting spectral measure for 4, is still conjectured; it is assumed but not proved that the
limiting measure, supported on D(0,1/+/d), is given by ([40, page 70]) :

1 d*(d—1)

This is not the radialization of the Kesten-McKay distribution (see Figure A.4).

Such convergence would immediately imply a directed analog of the bound (A.2.5) (which is itself
weaker than Alon-Boppana), but it is unlikely that this method can be generalized to other models —
the computation of the spectral measure of operators on directed Galton-Watson trees is not obvious
(the right notion of spectra for non-self-adjoint operators is the Brown measure), and similarly the
convergence of the spectrum of digraphs towards the Brown measure of their limit in the Benjamini-
Schramm sense seems for the moment out of reach.

Figure A.4 — An overview of the oriented Kesten-McKay density for d = 13. When d — o0, this
distribution converges (after renormalization by v/d) towards the circle, i.e. the uniform distribution
on D(0,1). When G, is uniform on ¢ (n,d) and d,, — o0, the convergence of 14, towards the circle
distribution is now proven ([58]).

Ramanujan digraphs

A d-regular digraph is a Ramanujan digraph if its transition matrix P has A, < 1/ Vd. There is a
conjectured analog of (A.2.7) and of Friedman’s theorem on those graphs (eqn. 5.4 in [124]) : for any
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sequence of rv (G,) where G, is uniformly distributed over ¢_, (n,d) and with transition matrix B,

we have |
A P,) —> — A.2.9

in probability as n — c0. Note that whp, G, is connected, gence A, = |4, |. The upper bound is proven
in this thesis: it is the directed analog of Alon-Friedman’s theorem.

Theorem 21. Let d > 3, and let G be uniformly distributed over 9, (n,d), with transition matrix P.
Then, for any € > 0 we have

A(Py) < \}2 +e (A.2.10)

with probability going to 1 as n — 0.

The lower bound, the directed analog of Alon-Boppana, is not proven up to this day. As explained
in the preceding paragraph, a probabilistic analog seems to be true, but a deterministic analog of
(A.2.7) cannot be true: some nontrivial d-regular digraphs such as De Bruijn graphs have all their
nonzero eigenvalues with modulus 1 ([68]).

The result I proved in my first paper is indeed considerably stronger than Theorem 21, for it applies
to every graph with a fixed degree sequence.

Graphs with prescribed degrees

Regular graphs have a very strong form of homogeneity, in the sense that each vertex has an identical
behaviour in terms of degrees. In many applications, especially those that study graphs from real
networks, vertices have different degrees, and often these degrees are accessible: it is easier to have a
list of the degrees of a network, than all the connections in the network. To model such networks, we
use models of graphs with prescribed degrees; we refer to [119, 60] and their bibliography for many
examples from applied mathematics.

In such a model, the degrees (incoming and outgoing) are given: we know the listd = (dl+ Ay s.dtdy)
of the degrees, and we choose G uniformly at random from the set 4_, (n,d) of digraphs which have
this sequence of degrees. The question of whether ¢4_, (n,d) is not empty, i.e. whether there are graphs
with this degree sequence’ is an old and interesting question, to which we will return in the second
part of this work. This question is actually secondary due to a famous technology, the configuration
model (see [32], for a presentation in the context of non-directed graphs).

The problem with the uniform model on ¥_, (n,d) (but also on ¥ (n,d)) is that there is no easy
and manageable method to generate a uniform random variable on these sets®. Rather than doing this,
we prefer to use multi-graphs instead of graphs, in the sense that (i,7) loops and multiple edges are
allowed. For any sequence of integers d satisfying d” +---+d, + =d +---+d, :=m, such a
multigraph exists, and there is a simple way to generate it: we paste d; incoming half edges to vertex
i and d;" outgoing half edges, and then for each of the m outgoing half edges, we randomly glue them
to one of the available incoming half edges. The digraph G is then obtained by identifying each pair
of half edges glued to a single directed edge. This yields a multi-graph which is uniform on the set
A, (n,d) of all directed multi-graphs with d as degree sequence.

However, the uniform model on .Z_, (n,d) has a form of absolute continuity with respect to the
uniform model ¢, (n,d). More precisely, one can show two things: if G is uniform on .Z_, (n,d),
then

1. there is a constant ¢ > 0 depending only on maxd (and not n) such that if » is large enough,
P(Ge¥9.(n,d)) >c,

7In this case, we say that d is a digraphical sequence.
8No one even knows their cardinal in general, and it is unlikely that it will have any closed or explicit form. Only
asymptotics are known.

165



A.3. Digression : the degree sequence

2. the distribution of G conditioned on being in ¢, (n,d) is the uniform distribution on ¢, (n,d).

Therefore, if we have a sequence of (d(")) of degrees, with d(") of length n, and maxd(") < A for some
integer A not depending on 7, then we have the following property: for any event E, we have

lim P///_,(n,d) (G € E) =0 - liHOlOPg_)(md) (G € E) =0.

n—0o0

In other words, all asymptotically true properties for the multigraph model will be true for the corre-
sponding digraph model. The model on multigraphs is therefore much more general than the model
on graphs, at least regarding the asymptotic behaviour.

Alon’s theorem, general formulation

The main result of the first chapter of this thesis is the following theorem, which is the directed analog
of (A.2.7) when P, is the transition matrix of a digraph with a fixed degree sequence.

Theorem 22 ([62]). Ler d = (df,....df.dy,...,d;) be a sequence of integers with d| + -+ +

v ¥n
d, = dfr +--++d] :=m, and let G, be the random multigraph obtained via the configuration model

on M, (n,d"™). We assume that there are two constants 3 < 8 < A < oo such that for all n,
5 <mind™ < maxd™ < A. (A.2.11)
Then, for every € > 0,

te (A.2.12)

with a probability going to 1 when n — co.

Thanks to the previous remarks, the result also holds when d is digraphic and G is taken uniformly
from ¢_, (n,d). When the degree sequence is constant, we find back Theorem 21, since then dl-i =d
for all i. Note that if d;" = d;” for any i (the graph is then Eulerian), the resulting bound is 4/n/m =
1/v/dmean, the inverse root of the average degree, a result to be related to a similar bound in the
stochastic blockmodel shown in [43], and for Erd6s-Rényi graphs in the last chapter of this thesis).

The presence of a possible eigenvalue with modulus close to 1/8~! remains uncertain; the proof
does not allow to get rid of the maximum in (A.2.12) and numerical simulations seem to indicate
that in the regime where this maximum is 1/8, there is indeed an eigenvalue with modulus close to
1/6 with probability a priori not zero, as in Figure A.5b. The question of whether the limit measure
actually has an atom in ! remains open.

A.3 Digression : the degree sequence

In the preceding section, we studied the spectral properties of some graphs with a given degree se-
quence, say dy,...,d,. Knowing if there exists some graph with this specific degree sequence was
secondary, because the configuration model allowed us to bypass this hypothesis. However, the ques-
tion is interesting by itself: what are the conditions for an integer sequence to be the degree sequence
of a simple graph ? Such sequences are called graphic sequences.

The Erdos-Gallai theorem

The question was solved by Erd6s and Gallai in a famous 1960 paper:
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(b) Un exemple du cas ou p

5-'=1)2.
e In (b), we have n = 1800 vertices, including 600 of degree (5,6), 600 of degree (3,7) and 600 of

degree (9,4). In this case, we have p

Figure A.5 — Two realizations of the spectrum of P for a graph G from the directed configuration

model. The red circle has radius p and the green circle has radius 1/8. The isolated point on the right

is 1, the Perron-Frobenius eigenvalue.
e In the figure (a) there is n = 1600 vertices, of which 700 of degree (2,2) and 800 of degree (9,9), so

that in this case p
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Theorem 23 (Erd6s-Gallai, [73]). Let d = (dy,...,d,) be an integer sequence in decreasing order.
There is a simple graph G with degrees given by this sequence if and only if those two conditions are
met:

di+---+d, is even, (A.3.1)

and if for any k € {1,...,n} we have

dy+-+dg <k(k—1)+ ) min(d;,k). (A3.2)
i=k+1

There are many proofs of this theorem, the shortest being the one of Tripathi and Vijay ([138]);
there are also other charaterizations of graphic sequences, all equivalent to this one; a list can be found
in [131]. In the setting of directed graphs, there are also similar criteria, notably listed in [28]. The
second result presented in this thesis is a generalization of those results and an extension of the “degree
sequence” concept to whole neighborhoods.

The universal covering of a graph

We can see the degree of a vertex x as a characterization of its immediate neighborhood: more pre-
cisely, the degree of x is d if and only if x has d neighbors. However, as part of the Benjamini-Schramm
convergence, we need to study neighbourhoods deeper than 1 ([35]). To do this, it is necessary to in-
troduce the concept of universal covering.

Let G = (V,E) be a finite graph. A graph G’ = (V' E’) is a covering of G if there is a surjection
p V' — V which is a local isomorphism, in the sense that for any vertex x, the application p is a
bijection between the edges in G incident to x and the edges in G’ incident to p(x). It is the analog of
the notion of /ifting from topology.

A connected graph has a particular covering, which is canonical in some sense: the universal
covering. This is the only covering of G that is a tree; it is noted 7. This covering has two essential
properties:

e [t is unique up to isomorphism,
e Itis a covering of all the coverings of G.

The universal covering of a graph can be seen as the graph G unfolded, i.e. in which each cycle
is forgotten while maintaining the adjacency of the vertices. Let us give some examples to clarify the
ideas.

Figure A.6 — An example of universal covering: the infinite comb on the right is the universal covering
of the graph in the left.

e The universal covering of any d-regular graph (with d > 1) is Ty;
e the universal covering of a cycle is a bi-infinite line;

o the universal covering of the graph in the left of Figure A.6 is the infinite comb in the right of
A.6.
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The universal covering of a graph carries a lot of information about it, because it gives a good local
approximation — especially when G does not have many small cycles. In theoretical computer sci-
ence, universal coverings have led to many advances in parallel computing ([13], [14]). In probability,
it is of paramount importance to study processes on graphs that are locally tree-like ([84], [12]).

The h-neighborhoods

Let G be a connected graph and T its universal covering. Let x be a vertex of G. Its h-universal
covering neighborhood is the (isomorphism class of) the ball By (y, ) where y is any antecedent of x
by p; one will easily check that this does not depend on the chosen antecedent. This /#-neighborhood
can be seen as the true neighborhood of x in G, but in which the cycles have been “unfolded”. Given T
we thus have access to the list (71,...,1,) of the universal A-neighborhoods in G. Is the converse also
true ? To put it differently, if one takes a sequence t = (¢, ...,t,) of unlabelled rooted trees with depth
< h, how can we decide if this sequence is the sequence of the A-neighborhoods in a real graph G ?

When & = 1, this is exactly the problem solved by Erdés and Gallai. Indeed, an unlabelled rooted
tree with depth 1 is nothing more than the number of the leaves at the root. If we note 7(d) the tree
with d + 1 vertices and d leaves, then any graph G whose 1-neighborhoods are (¢(d1),...,t(d,)) is in
fact a graph whose degree sequence is (dj,...,d,), as in Figure A.7.

AN T NN A AN

Figure A.7 — Is this collection of trees with depth 1 the collection of 1-neighborhoodsin a simple graph
with 8 vertices ? This is exactly the same thing as telling if d = (3,1,2,3,5,2,3,1) is a graphical
sequence.

The data of h-universal coverings in a graph can be used to generate random graphs with these
neighborhoods. For instance, suppose that (#,...,f,) is a sequence of trees. In [35], the authors use
a variant of the configuration model to construct multi-graphs with this sequence as the sequence of
universal A-neighborhoods; their construction is similar to the configuration model, with half-edges
that are glued together. We generalized this construction and answered the question of existence of
true graphs with a given sequence of universal neighborhoods.

A characterization

The question that arises is therefore the following. We note .7, the set of unlabelled rooted trees with
a maximum depth of 4.

QUESTION A3.1. Lett= (t1,...,t,) be an-uplet of elements of .7},. Is it the n-uplet of the universal
h-neighborhoods of a simple graph G?

Before answering the question, we need some definitions — everything will be clearer if we refer
to Figure A.8.

Let ¢ be a rooted tree with root e and e = (e,x) be an edge adjacent to the root. The deletion
of e separates ¢ into two connected components, one containing the root noted #/, and the other not
containing it, noted s. Vertices at depth & are removed from /. The resulting tree, rooted at e, is an
element of .7},_ that will be noted r. The other tree, s, rooted at x, is also an element of .7},_. We will
then say that the type of e is the couple T = (r,s), and the opposite type of e is defined as (s,r) = 7.
It is possible to decompose all types of edges adjacent to the root into three separate sets, A, A, B:

e Ais the set of diagonal types, i.e. having the form (r,7);
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e A U B is the set of non-diagonal types, and the sets A and B are chosen so that if the type 7 is in
A, then 77! is in B.

Figure A.8 — Construction of 7(e) = (r,s) for the e ridge in the ¢ tree.

If 7 is the type of one of the edges of one of the trees in t, we note d; the number of edges e incident
at the root of #; and such that 7(e) = 7, i.e. the “degree in 7 of #;”. Finally, we put Ny = df +--- +dy.
The following theorem is the main result of [41], a work in collaboration with Charles Bordenave.
The indices in parenthesis mean that the double sequence (df,df 71) has been ordered in decreasing
lexicographical order.

Theorem 24. Let be t = (11,...,t,) a n-tuple of elements of F,. It is graphical if and only if

1. for any T € A, the number N; is even and if for any k we have

k n
Zld{l.) <k(k—1)+ ;1min(d(fi),k), (A3.3)
i= i=k+

2. for any T € A, we have N; = N,-1, and for any k we have

k k
> dfy <y min(df) k). (A3.4)
i=1 i=1

Reconstruction problems

Theorem 24 was proven in the particular case & = 2 by [19, 16]. One of the authors’ motivations is
the general graph reconstruction problem: let G be a graph with some property &. Is it possible to
reconstruct B from the simple data of &?? More generally, is it possible to determine if there is a graph
verifying &, and if so, is such a graph unique?

When & is the property of having a given degree sequence, the Erdds-Gallai theorem answers
the existence part of the question; the uniqueness part was solved later (see [16], theorem 4.2 and
references therein).

One of the reasons why question A.3.1 can be solved is because we only considered neighbour-
hoods in the universal covering, i.e. we forget the cycles. The same question in which we replace
these universal neighbourhoods with the real ones, where cycles are preserved, seems really out of
reach. Let us quote, for example, the famous Kelly-Ulam reconstruction conjecture: starting from a
graph G with n vertices, we note g; the isomorphism class of the graph G deprived of its vertex i. Is
it possible to find G from the knowledge of (g1, ...,g,)? This question seems quite easy; it was asked
by Ulam in the 1940s, but it remains unresolved.
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A.4 Spectra of trees

We come back in this section to the simplest model of random graphs: the Erd6s-Rényi model and its
adjacency matrix. As mentionned earlier, if G, ~ ER(n,d/n), then G, converges in the Benjamini-
Schramm sense towards PGW/ (d) and the empirical spectral measure of the adjacency matrix A,, noted
Ha,, converges as in (A.1.3) to a limit measure Upgw(q)- The goal of this section is to describe the
nature of the spectrum (continuous part, atoms); we will state two new results and a few questions.

As promised, we start by giving a precise definition of the measure Upgw (4), and more generally
of 1y when p is the measure of certain rooted trees: the key notion here is unimodularity.

Unimodularity

In the Benjamini-Schramm convergence, the uniform rooting of finite graphs is a powerful idea with
deep consequences. By taking the root uniformly at random, one studies the graph from the viewpoint
of a typical vertex, ruling out the possible extravagant behaviour of a few vertices. If a sequence
of finite graphs (G,) converges to (G,o0), its limit will exhibit some flavor of vertex uniformity: for
instance, the distribution of the rooted graph (G,o0) will be invariant by re-rooting. This is called
unimodularity ([8, 7, 27, 34]).

Let us first introduce the set % of (isomorphism classes of) bi-rooted graphs, i.e. triplets (G,0,w)
where v, w are two vertices of G. We endow this space with the topology of local distance, as for ¥.
We say that a distribution over ¥, is unimodular if for any measurable function f : %, — R,

E, [Z f(G,o,w)] =E, [Z f(G,w,o)] , (A.4.1)

weV weV

where E, means that the random rooted graph (G, 0) has distribution p under E,. When G = (V,E)
is finite, the random variable (G(v),v) with uniform root v € V is unimodular, and the Benjamini-
Schramm limits of unimodular graphs are still unimodular, by taking the limit under (A.4.1). As
a consequence, every distribution p on ¢, which is a Benjamini-Schramm limit of a sequence of
finite graphs® is unimodular. The converse is not known to this day (see [7, 27] for many interesting
developments on this question).

A unimodular Galton-Watson tree with progeny 7 = (7,),>0 is a random rooted tree in which
the number of children of the root has distribution 7, and the number of children of the other vertices
has distribution 7, which is the size-biased version of 7:

AL (n+1)7tn+1
T Nokm

Distributions such that 7 = 7 are the Poisson distributions, which generate the prototypical example of
GW trees, namely Poisson Galton-Watson trees PGW (d), who naturally appear as the limit of diluted
Erd8s-Rényi graphs ER(n,d/n).

When 7 = §;, we have & = J,_; and in this case UGW(J,) is the infinite d-regular tree T, the
limit of uniform d-regular graphs.

Spectral measure of unimodular graphs

Let G = (V,E) be a locally finite graph over a countable vertex set V. Its adjacency operator A is the
operator defined on the Hilbert space

veV

%zEZ(V)z{f:V—»C,Z|f(v)\2<oo}

9Such distributions are dubbed sophic.
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by
(ex,Aey) =1 ek (A4.2)

where (e, : x€ V) is the canonical basis of .77”. The domain D4 of A is the dense set of finitely supported
vectors Dy = vect(e, : x€ V). When G is finite, A is a symmetric matrix, and there are no problems in
defining its spectrum. When G is not finite, difficulties appear. If its degrees are uniformly bounded
by a same integer A, then A is a bounded self-adjoint operator, and can be extended to a bounded self-
adjoint operator on the whole space .77, so here again the spectrum is well-defined through classical
spectral theory.

However, many graphs of interest (such as Galton-Watson trees) do not have bounded degrees,
and there are also trees with are not self-adjoint ([118]).

Luckily enough, unimodular measures are concentrated on trees that are essentially self-adjoint
([34, Prop. 2.2]), for which the notion of spectrum can easily be defined. More precisely, the spectral
theorem shows that for any rooted graph (G,0) whose adjacency operator is essentially self-adjoint,
there is a unique Borel probability measure U ) on R such that

Vze C\R, (e, (A—2)"eoy = J —du G.o)(t) :=5(2). (A.4.3)

The term 5(z) is the Stieltjes transform of the measure [ ). On can thus retrieve the measure (g o)
using the Stieltjes inversion formula; even when this inversion cannot be performed explicitly, one can
still obtain extra informations. For instance, the atoms are given by

.1 .
“(G,O)(M}) = III_E% EJm ts(A +it).

If (G,0) is a random rooted tree with unimodular distribution p, the measure p, is then defined as

tp =Ep[lGo)- (A4.4)

We refer to [54] for the technical details.

We already saw that UGW(9,) = Or,: in this case, (G,0) is the deterministic d-regular tree T,.
The LHS of (A.4.3) is a Laurent series whose coefficients are the numbers of closed walks at the
root of Ty, which can explicitly be computed through combinatorial arguments ([113]). This gives
an explicit expression of the Stieltjes transform of ,, and taking the inverse shows that u, is the
Kesten-McKay distribution already mentioned.

One can find in [29] many examples of converging sequences of finites trees and their spectra.

The limiting spectral measure of diluted Erdds-Rényi graphs

We give ourselves a real number d > 0, and we study the spectrum of G with distribution ER(n,d/n).
We saw in Section A.1 that G, converges in the Benjamini-Schramm sense towards PGW(d). Thanks
to the spectral continuity (A.1.3), the empirical distribution of the eigenvalues of the adjacency matrix

Al’l’
1 n

converges to a probability measure [pgw/(q) that will simply be noted (4, and which is the averaged
spectral measure of the Galton-Watson tree as defined in (A.4.4). This convergence can be established
without the help of the Benjamini-Schramm machinery ([143, 94]), but it is the latter that provides
the representation of pgw (q) s in (A.4.3)-(A.4.4). If we note Fy,, Fpgw (q) the cumulative distribution
functions of uy,, Ug, then

Slllg |Fn(l) — FPGW(d) (I)| — 0. (A45)
te
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A.4. Spectra of trees

As already observed, this convergence implies the convergence of atoms, in the sense that lim g, ({A})
Uqs({A}) for any real number A. In particular, as

Ug,({0}) = dimker(A,)/n,

we know the asymptotic behavior of the kernel of A,, provided we are able to calculate tpgw (4)({0})-

Physicists Bauer and Golinelli, by focusing on the kernel of G, have made several striking conjec-
tures about the behaviour of u; around zero ([23, 21]). Thanks to the replica symmetry method, they
were able to conjecture the exact value of the atom at zero, namely

tpgw(a)({0}) = e +dxe ™ +x—1 (A.4.6)
where x is the smallest solution in ]0.1[ of the equation x = e~ — dX. This formula was rigorously
proved later in [44], notably by using recursion formulas on the Stieltjes transform of Upgw(q)-

Bauer and Golinelli finely noted that the RHS in (A.4.6) is analytical in d when d < e, and has
a singularity at the point d = e; they interpreted this phenomenon as a transition in the nature of the
spectral measure, noting on their numerical simulations the appearance of a continuous part around
zero when d > e.

de

The Anderson model and the nature of the spectrum

Any Borel measure ( on R can be split into

U= Hac + Hpp + Hsc (A.4.7)

where U, is absolutely continuous with respect to the Lebesgue measure, L, is purely atomic and s
is singular with respect to the Lebesgue measure, but has no atoms.

This decomposition is central in the physical theory of operators: if H is a self-adjoint operator on
a Hilbert space, this decomposition carries within it essential properties of H related to the behaviour
of quantum dynamics ¢ — e~ " ¢, notably via the RAGE theorem (see ([54, 135] or more specifically
[101]).

Physicists have paid considerable attention to these spectral properties in the Anderson model, for
which the Hamiltonian is given H = A + AV with A the Laplacian and V a diagonal operator; when
A is the adjacency operator on Z¢, we have the classical discrete Anderson model. The existence of
a pure point spectrum for such an operator is related to the localization phenomenon, and this is the
reason why the decomposition (A.4.7) has attracted so much attention, even when A is the adjacency
operator on a tree ([4], [95], [2]). In the language of physicists, we say that a measure y does not have
extended states at a real A when

o HOA e A keD) —u((A)
e—0 2¢

= 0. (A.4.8)

Otherwise, it is said to have extended states at A, which means that it has a continuous part (absolutely
continuous or singular continuous) at A; for example, if u = f(x)dx with f measurable, the above
limit is f(A) for almost all 7.

We have already seen that the spectral measure of T; was absolutely continuous, with Kesten-
McKay density; however, there are infinite trees whose spectral measure is

e purely atomic: the canopy tree ([5, Proposition A.2]) in particular, to which we will come back
later;

e or to the contrary, purely singular continuous; we will find in [49, 48] an explicit construction of
such trees from T, and in [5, Section 6] examples of such semi-infinite trees. In the Anderson
model, we also refer to [133, 132].
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When the tree itself is random (Galton-Watson for example), the question is more delicate. A
necessary and sufficient condition for Upgw (4 to have a continuous part, and therefore extended states,
is simply d > 1, and more generally ([46]) the measure [ygw(x) has a continuous part if and only if
7 is super-critical. The reason for this is the fact that almost surely, subgraphs which are isomorphic
with Z appear in UGW (7). However, this result does not give any information on the support of the
continuous part when it exists, and even less on its shape.

The Bauer-Golinelli transition

Bauer and Golinelli’s precise numerical simulations (see [23, Section 5.1]) led them to assume that
the continuous part of PGW(d) exibits a transition at d = e:

CONJECTURE 4. The measure [ipgw/(q) has extended states at 0 if and only if d > e.

We can see this phenomenon on Figures A.9a-A.9b-A.9c.

Such a phase transition is not in itself surprising; we already knew that if d is small enough (less
than 1), the measure tpgw (g is purely atomic and that there are no extended states at zero. However,
when d — o0, the measures [lpgw(q) converge towards the famous Wigner’s semicircle distribution
([89, 137], see Figure A.10), which is absolutely continuous with respect to the Lebesgue measure
and whose density p(t) = 1<«xV4-— t2 is non-zero on all its support. This does not rigorously prove
the appearance of extended states at zero, but it still gives an intuition of the result. What is surprising
is rather the exact location of this transition at the point e ~ 2,718.

In the prepublication [63] in collaboration with Justin Salez, we demonstrated Conjecture 4. This
result is not specific to the spectral measure of Poisson Galton-Watson trees, but is expressed within the
general framework of unimodular Galton-Watson trees UGW () (with 7 supercritical). To formulate
the results, we need the generating function of 7, which we will note

o0
() =), m"
n=0

Similarly, we note @ the generating function of #. Set M (1) = ¢@(¢) + (1 —1)¢' (1) + (1 — @(2)) — 1,
for z € [0,1]. A key element in the proof of (A.4.6) in [44] was the identity Upgw/(q)({0}) = maxM
and the fact that there is a unique number z, in ]0, 1 such as z, = 1 — @(z.). The two assumptions on
M that are involved in our main theorem are as follows:

1. The function M has a unique maximum in z.

2. M"(z.) #0.

The conditions for the emergence of extended states at zero are described by the following theo-
rem.

Theorem 25. Let @ be a measure on N, with my < 1.
e [f M does not meet condition I, then Uygw(x) has extended states at zero.
e [f M meets conditions 1 and 2, then lygw (x) does not have extended states at zero.

The existence of a continuous part at zero is therefore solved, at least in the case of Poisson
Galton-Watson trees. The question arises as to whether such results extend to other unimodular trees.

174



A.4. Spectra of trees

-4 -3 -2 -1 [ 1 2 3
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Figure A.9 — Histograms of eigenvalues of G ~ ER(n,d/n) with n = 1000 (on 100 samples). The
‘continuous’ part is zero when d < e, as predicted by Bauer-Golinelli.
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b(a)d=5b (b)yd=28 (é)d=10 (d)d =30

Figure A.10 — Histograms of eigenvalues of G ~ ER(n,d/n) with n = 1000 (100 samples). When
d — +00 you have Uy — Uwigner-

The nature of the spectrum in semi-infinite trees

The proof of the existence of a continuous part in the spectrum of Galton-Watson trees ([46]) was
based on the fact that, when the progeny 7 is supercritical, the tree contains a double ray '© which is
a sub-graph isomorphic to Z. This is not the case for other unimodular trees such as the skeleton tree
Tsquel» Which are almost certainly infinite, but which contain only one ray, i.e. a subgraph isomorphic
with N: such trees are called semi-infinite trees (or single-infinite trees by Aldous ([6, Section 4]).
Any semi-infinite tree can be identified with a sequence (7;,) of finite rooted trees, the root of 7, being
connected to that of 7,4 ; with a single edge, as in Figure A.1b.

One can easily check that the spectral measure of N is indeed the semi-circle distribution; one
could therefore bargain for a continuous part in the spectrum of any semi-infinite tree. This is not the
case, as shown by the canopy-tree (Cy,0).

LEMMA A.4.1 (Aizenman, Warzel, [5]). The spectral measure Elic, o) is purely atomic. Its atoms
are the eigenvalues of the finite trees T, 4 := (T4,0),.

Semi-infinite trees can be seen as generalizations of Jacobi matrices. In the Anderson model over
N, each vertex n has a weight V(n), and we have at our disposal numerous criteria for linking the
nature of the spectrum of H = A +V with ergodic properties of V(n) ([54], [102]). In the case of
semi-infinite tree, one can ask the following question:

QUESTION A.4.2. What is the relation between the nature of the spectrum in semi-infinite trees and
the growth or ergodicity properties of (T,,) ?

The skeleton tree

The skeleton tree, which will be noted as Tyq,el, is the Benjamini-Schramm limit of uniform trees.
More precisely, if 7, is uniformly distributed among the n"~2 labelled trees with n vertices, then
T, — Tsquel» a convergence established in [85].

O5nvariant line ensemble, in the terminology of [46].
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Figure A.11 — Histogram of the eigenvalues of the spectrum of a random tree on 1000 vertices, which
gives an approximate idea of Usquel-

Thanks to the continuity of the spectrum for local weak convergence, we have the convergence of
the empirical spectral measure Uz, to [squel- This measure is as poorly known as tygw(x); in fact, the
only interesting informations about fisq,el are obtained by passing through the limit in uz,. Let us give
two examples.

Atoms. By elementary arguments, it is possible to see that all the eigenvalues of finite trees are atoms
of Usquel; this set is a dense part of R and it is equal to the set A of the totally real algebraic numbers!!,
a result of [127]. In the simulations (see Figure A.11), we see the presence of atoms at 0, +1 (the
spectrum of the tree with only one edge), ++/2 (the spectrum of the two-edges graph).

The exact value of Usque({0}) is known; this calculation results from a purely combinatorial anal-
ysis of T,,. The link between the size of a tree’s kernel and the leaves of this tree has long been known:
for every finite tree 7, we have dimker7 = min{k : M,_»; # 0} where M; is the number of perfect
couplings in T that contain j edges. Bauer and Golinelli used this link to obtain an exact formula for
the expected rank nullity of 7,,. More specifically, they prove in [21] that

E[dimker(T,)] = n (1 - 222 (_n?mm (%)m (Z) m) . (A4.9)

Using tools from analytic combinatorics, they also calculated the generating function of dimker(7},)
and obtained the asymptotics of E[dimker(7;,)] in the form :

nli_)HC}O#Tn({O}) = .usquel({o}) =2x—1

where x, ~ 0.56714--- is the unique solution of the equation x = e~ *. This solved the problem of

computing the atom at zero for the skeleton tree, just as (A.4.6) solved this problem for the Galton-

"I A number is algebraic totally real if it is the root of a polynomial with integer coefficients, whose roots are all real.
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Watson trees. The simulations indicate the absence of extended zero states for Lsquel (see Figure A.11).
In a short section of Chapter 3, unpublished, I proved this result:

Theorem 26. The spectral measure Usq,el does not have extended states at zero.

The arguments are an adaptation of the techniques already used to prove Conjecture 4. The ques-
tion of the existence of a continuous part remains unsolved; simulations suggest that {sq,el does indeed
have one.

A.5 [Eigenvalues of random diluted matrices

The purpose of this section is to study some weighted graphs, i.e. graphs with weights on the edges.

Formally, we give ourselves a weight matrix W € .4, ,(R), and the adjacency matrix M of a
graph, and we want to study the matrix P = M ©W where © is the Hadamard product (termwise):
P j = M; ;W; ;. Such models have been extensively studied when the underlying graph is relatively
sparse (typically when the number of edges of G is of the order nlog(n) — we will see why this
framework is more studied) or when the whole problem is Hermitian, i.e. when W is Hermitian and
the underlying graph G is a simple undirected graph; a very recent paper by Tikhomirov and Youssef
([136]) fully describes the behavior of the large eigenvalues of P when W is drawn from the GOE and
G is an ErdGs-Renyi graph with parameter d/n, in the regime d — 0.

In particular, the authors ask the following questions, which we extract verbatim from [136, page
3]

1) Is there a threshold (depending on d) for the appearance of outliers?
2) Is there an explicit expression for this threshold?
3) Do we have an explanation for the appearance of these outliers?

4) What is the exact asymptotic of these outliers?

In Chapter IV of this thesis, based on a collaboration with Charles Bordenave and Raj Rao Nadaku-
diti, we answer these four questions in the context of directed graphs, the main practical motivation
coming from the statistical problem of matrix completion, which we will present below. The main re-
sults (Theorem 27 on page 181 ef seq.) seem surprising, because they essentially say that the eigenval-
ues of non-symmetric matrices are actually more interesting than the singular values of non-symmetric
matrices — common knowledge'? usually states that eigenvalues of non-symmetric matrices are very
unstable. In the last section, we will return to this recent and promising idea.

Reconstruction

Reconstruction problems aim at reconstructing an object that is generally complex (a graph, a matrix,
a tensor, a periodic function) from a small amount of information about this object, typically a few
entries in the matrix, or some Fourier coefficients. These problems have become extremely popular in
applied mathematics, particularly through the development of recommendation systems.

We will focus on the problem of matrix reconstruction. The problem is as follows: a matrix
W is hidden. It is known to have certain structural properties (its size n x m is known, sometimes
information on its rank or entries). However, the observer only has access to the observation of certain
entries W; ; for a small set of indices (i, j) € E < [n] x [m] and tries to use this information to find
(partially, with a small error, or even exactly) the matrix W.

The literature on the subject is gigantic and we refer to [65] and its references for a global survey;
let us quote Candes, Tao and Candes, Recht [53, 52], Keshavan, Montanari and Oh [92] and Chatterjee
[55] for a few landmark papers.

12 at least, in the world of numerical mathematics.
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Obstructions to the problem and necessary assumptions

It is not always possible to reconstruct a matrix W from a small number of observations of its entries.
The two main obstacles are the sparsity of samples, and the intrinsic complexity of W.

The lack of data. Let’s take an example of a very simple reconstruction problem, in which the matrix
to be found has rank 1, i.e. it has the shape W = xy* with x,y € R” two unit vectors. Retrieving W
is like retrieving x and y, up to a sign or a phase. Suppose that the i-th line of W is not observed at
all. Then there is no way to access x;. In other words, it is necessary that the observer has at least one
observation per row and one observation per column if he wants to hope to reconstruct the original
matrix W as accurately as possible. Suppose that the entries are revealed uniformly at random; by
the coupon collector principle, to have at least one entry revealed on each line, it is necessary to have
at least logn observations on each line and therefore nlogn observations overall, in other words any
density d « logn will necessarily leave entire rows or columns unobserved.

The literature on matrix completion has thus focused on this d = logn regime. One of the con-
tributions of this work is to demonstrate that not everything is lost when d < logn or even when d is
fixed, and that it is even possible to obtain an estimator of W which is well correlated with W.

The intrinsic difficulty of the problem. Not all matrices can be easily reconstructed from a random
observation of their inputs. For example, suppose that the matrix W is all zeroes, except possibly one
or two entries, as in the example

W =ele] +ere; =
0 0

If the number of revealed entries is small and their location is sufficiently random, there is no chance
that the only two non-zero entries in the above matrix will be observed. We’ll only see zeros. It is
therefore necessary that the entries of W are sufficiently spread out in the matrix. Mathematically,
this means, for example, that the largest entry of W has order O(1/n), so that the L? mass (Frobenius
norm) is evenly distributed among the entries of the matrix. This is perfectly equivalent to requiring
that the mass of singular vectors is sufficiently distributed among the entries, a condition frequently
referred to as inconsistency condition.

In the sequel, we will adopt assumptions about W under which the problem is feasible. To do this,
we will define a large class of matrices whose complexity parameters are controlled. Note that these
assumptions are standard in the literature; see for example conditions AO-A1 in [52] or A1-A2 in [92].
We refer to the survey [65] on this subject.

We will start by focusing exclusively on positive Hermitian matrices; this is only a shallow restric-
tion, we will come back to it later. We will note

W=> weo! (A5.1)

i=1

where 1| > --- > U, are the eigenvalues ordered in descending order, the integer r is the rank, and ¢;
are orthonormal unit eigenvectors. The assumptions on W are as follows:

(i) The W rank is less than r.
(i) The eigenvalues of W are positive.
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(iii) There is a real number b > 1 such that

b
maX"Pi|oo =

—. (A5.2)
ie[r] Vn

Finally, in accordance with the general theme of this thesis, our results are valid for any fixed
d, without any restriction; they are therefore the first results on the top eigenvalues of diluted non-
hermitian matrices. All our proofs extend to the case where d grows slowly with n, typically d = n°(!).

Spectral methods

As a general rule, the observed matrix P has nearly full rank with high probability; however, a suc-
cessful idea to reconstruct W from P is to calculate its singular value decomposition, say

,.,
]
5
=~

PAN
v

)
P= ci(P)xiy}
1

1

with decreasing o;, and to get rid of all singular values and singular vectors below the true rank r of

W, i.e. to take
rank(W

)
W: Z G,'(W)X,'y;-k.
i=1

The Eckhart-Young theorem says that W is precisely the best rank-r approximation of P (in Frobe-
nius norm); the problem is that the singular values of non-Hermitian matrices and the eigenvalues of
Hermitian matrices are ‘polluted’ by the highest degrees ([136, 24, 25, 96, 139]).

A deep idea already exploited by Feige and Ofek ([77]) and popularized by Keshavan, Montanari
and Oh in their famous paper [92] is to regularize the spectrum by removing the high degrees, i.e.
the lines of P with too many revealed entries, thus obtaining a matrix P, and only then to truncate at
rank 7, obtaining 7,(P). One of the important results of [92] is that this operation makes it possible to
find the singular values of the original matrix; more precisely, under simple hypotheses'?, the authors
show that

LW T.(P)| = O(y/r/d). (A53)

Weyl’s inequalities then show that if d — oo, we find W, and that the r largest singular values of P are
aligned with those of W; the equation (A.5.3) is valid at d fixed, but in this case it does not allow us to
determine the asymptotic in n — oo of the large singular values of P.

The most interesting aspect of this method is the trimming procedure, where some data are deleted
to regularize the spectrum of the observed matrix. The idea behind the following sections is that the
good idea was not to look at the singular values of the non-Hermitian matrix P, but precisely its
eigenvalues, which are directly aligned with the large eigenvalues of W. This new idea, according
to which non-symmetry retains more information than symmetry, seems promising and has recently
emerged in an article by Chen et al ([56]). We will come back to this point in the conclusion.

Asymptotics of large eigenvalues and detection of eigenvectors

The main result we obtained is an exact description of the behavior of the eigenvalues of the matrix
P = (n/d)M ®W, with M the adjacency matrix of an Erdés-Rényi directed graph with parameters n
and d/n — the normalization by (n/d) is taken so that E[P] = W.

We show a spectacular phase transition: there is a threshold ¥ such that all eigenvalues of P greater
than this threshold are asymptotically equal to the eigenvalues of W greater than this threshold.

13Cf infra.
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To explain this result, we introduce the matrix X = nW ©W, or
Xey =W, (A5.4)

We note p = | X| its operator norm, which is the same order of magnitude as the operator norm
of W under the incoherence assumption (A.5.2). We also put L = nmax,, |W;,|. Under the previous
assumptions on W, this L is O(1). The threshold referred to above is defined as

_ pL
S—max{\/;,d}.

Note s the number of eigenvalues of W greater than 9:
M= 2 U >0 > U =00 = Uy (A.5.5)

We note |A;| = --- = |A,| the (complex) eigenvalues A. The first result is an exact asymptotic of
the large eigenvalues of P.

Theorem 27. Let d > 1 be a real number and W a real matrix of size n x n verifying the assumptions
mentioned before. If n is large enough, then for any i € {1,... s} we have

i — Ai| = o(1). (A5.6)

In addition, for every i > s we have
A <d+o(1). (A5.7)

Note that the ¥ threshold is defined as a maximum: it is the same phenomenon as already noted in
the first part of this thesis, where the second eigenvalue was asymptotically lower than p v §~'. The
number 8! was the maximum of the transition matrix entries, and here L/d is the maximum of the
entries of P with high probability.

When d is large enough (more precisely when d > L?/p) it is the first term that prevails in the
definition of 9; it is easy to verify that L% /p is a good measurement of the delocalization of W, in the
sense that for a highly delocalized matrix (typically, with all equal entries) we have L?/p ~ 1. There
is therefore a competition between the localization of the matrix and the density d.

Our second result is a description of the behavior of the eigenvectors of P. The result is only
shown for rank-1 matrices (an already interesting framework, see [56]) but it will be extended to all
low ranks in future work.

Theorem 28. Suppose W = u@@* with ¢ a delocalized unit vector. If d > n|@|3, then A1 — p, and
if ¥ is the eigenvector of P associated with Ay, then with probability 1 —o(1),

4
w031 = (1 o(1)y 112 (a538)

The n|¢|} threshold simply comes from the computation of p in this case. Note that the more
delocalized ¢ is, the smaller n|(p\j11 is, another example of the competition mentioned above between
delocalization of W and d.

It is therefore possible to obtain a strictly positive correlation with the true eigenvector ¢; in the
total absence of information, the best possible estimator for ¢ is simply to take a uniform vector u on
S"=! and the correlation {u, @) then goes to 0.
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Non-orthogonality

Our work revealed an astonishing phenomenon: the eigenvectors of P associated with eigenvalues
above ¥ have a non-trivial covariance structure. More precisely, there is a matrix I of size s, depending
only on W and d, such that if y;, y; are the eigenvectors of P associated with A; ~ y; and A; ~ u;, then
(wi, yj) ~ Ty j (for a specific statement, we refer to the last chapter of the manuscript). As a general
rule, the matrix I" is not diagonal:

k i,
Z <, )L ) (A.5.9)
_ 1 J

where X has been defined in (A.5.4) and @'/ := @; ® ¢; is the termwise product of the real eigenvectors.
In some cases (for example, if the #> mass of each line of W is constant), it is easy to see that I’
is diagonal, but it is possible to construct simple examples for which this is not the case. One of
the difficulties in proving these results comes from this non-orthogonality (which disappears when
d — 0).

Erdés-Renyi directed graphs

An immediate consequence of the above theorems concerns the spectrum of diluted Erdés-Renyi
graphs, obtained by simply taking W; ; = 1/n, a matrix whose spectrum is 1 and 0 with multiplic-
ityn—1. AsuWOW =W, wegetp = 1land ® = 1//d.

From a spectral point of view, these graphs are for the moment relatively less studied then their
un-directed siblings: for the latter, which are very well known now, the results of Komlos and Fiiredi
[81] and Krievelevitch and Sudakov [96] completed by the recent works of Benaych-Georges, Borde-
nave and Knowles ([24, 25], Tikhomirov and Youssef [136] and Alt, Ducatez and Knowles [11] fully
describe the behaviour of large eigenvalues in all regimes of d.

For the directed Erd6s-Rényi graphs, our result is as follows.

COROLLARY A.5.1. Letd be a fixed real number and A be the adjacency matrix of a directed Erdds-
Rényi graph ER(n,d/n). The following statements are true with probability 1 —o(1) when n — oo:

1. Ifd < 1, all the eigenvalues of A have modulus smaller than 1 +o(1).

2. Otherwise, d > 1; in this case, Aj(A) — d and all other eigenvalues have modulus smaller than
Vd+o(1). If y is the eigenvector of A associated with A;(A), then

1

Ky, @) —A/1— 7 (A.5.10)

These points are illustrated in the figures A.12-A.13.

The previous statement thus demonstrates a well-known observation often mentioned by physi-
cists, namely that the empirical spectral measure is supported in D(0,+/d) including in the diluted
case; we refer to the excellent survey [114] (from physics), and in particular to Sections 4.2 and 4.3,
which mention these facts, but without rigorously proving them.

Note fi4, the spectral empirical measure of the adjacency matrix of a directed Erdés-Rényi graph
with parameter d/n ; to my knowledge, there are strictly no rigorous results on these measures in the
diluted framework. Only one paper by Basak and Rudelson [18] shows that if d = Q(log(n)?), then
the spectral empirical measure converges towards the circle distribution. Even the convergence of [i4,
towards a measure on C has not been proven, and a possible closed-form expression for the limit is
not even conjectured, unlike the Kesten-McKay conjecture already mentioned (Figure A.4).

Finally, let us point something already encountered in the first section of this introduction: we only
show an upper bound for |4, |. The corresponding lower bound, |A,| = v/d —o(1), is not demonstrated,
but seems true (see in particular Figure A.14).
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Figure A.12 — A plot of |{y, @)| for different mean degrees d. For each d = 2,...,20, we made 20
simulations of ER(1000,d) and computed {y;, @) (little green dashes). The mean is plotted in red and

the prediction 4/1 — 1/d is in black.
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Figure A.13 — Representation of [{y,1/4/n)| for several values of d, with n = 1000. For each d =
2,...,20, we generated 20 realizations of ER(1000,d) and numerically computed |[(y,1/y/n)| (small
green dashes). The average is in red and the theoretical limit 4/1 — 1/d is in black.
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Figure A.14 — Three realizations of directed Erd6s-Rényi graph spectra with n = 10000 vertices, for
three values of p = d/n. We cut the outlier and renormalized by 1/+/d.
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Figure A.15 — We took P = @@* with @ ~ Unif(S"~!), n = 1000. The entries in ¢ have been sorted in
ascending order. The entries of y are in green. The theoretical correlation is close to 4/ 1 — n| (p|i /d ~

4/ 1 — 3/d with high probability.

Typical case: uniform eigenvectors.

Our results are valid for any initial matrix W verifying the assumptions mentioned before. In some
sense, almost all matrices verify those assumptions. Indeed, given a spectrum X = diag(uy, ..., ),
we can choose eigenvectors U distributed according to Haar’s measure on all orthonormal matrices
with size n x r; the matrix

W =U*XU

is then uniform, and it is well known that U is delocalized in the sense that |U |, = O(1/logn/n) with
high probability. Such a model is popular in the matrix completion litterature, and it is already used in
[53, 92].

The theorems stated above will therefore be valid for most of the rank-r matrices. Figures A.15
and A.16 show illustrations of the phenomenon described in Theorem 28 for a rank-1 matrix.

These results complement those obtained in [56], which are formulated in the d — o0 regime (see
in particular [56, Page 10]); they do not obtain the transition in ¥ nor the exact asymptotics; indeed,
our method does not use any eigenvector perturbation theorem such as Davis-Kahan or Neumann’s
identity (see [142, 71, 56]), which are often optimal in the worst case but quite bad in typical cases.
Our proof technique directly integrates the perturbation of eigenvectors, and thus make it possible to
obtain detailed information on them.
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Figure A.16 — Representation of [{y, @)| for different d. First we generated W = ¢ ¢* with ¢ uniform
on §"~!. Then, for each d = 2,...,20, we performed 20 simulations of A with W as the underlying

matrix, then we calculated (y7, @). The average is in red and the limit value 4 /1 —n|@|1/d is in black.
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A.6 Two concluding remarks

This last section presents two ideas that emerged from the results of this thesis.

‘Dilute’ is the new ‘sparse’

In the literature on low-density networks or matrices, there are several interpretations on what *low-
density’ or ’sparse’ means. The general consensus is that the average number of connections of the
agents, say d, must be negligible compared to the size of the network: d = o(n). However, two regimes
are sparse in this sense: the regime we will call dilute, where d = O(1) is bounded independently of
n, and the regime we will call sparse where d = o(n) but goes to infinity, typically d = (logn) or
d = n*, with @ < 1. Tt should be noted that this terminology is not firmly established, and that the two
terms have been used interchangeably in the literature.

The modern study of low-density networks began in the 1960s with the works on phase transitions
in the Erdés-Rényi model, and has really exploded since the 1990s with the emergence of computer or
social networks, in which agents have a relatively small number of links with other agents. However,
from the point of view of applications, the diluted and sparse regimes are identical. Engineers, statis-
ticians or physicists will never face networks with a size larger than, say, 103 (the number of atoms
in the observable universe), and in practice diluted or sparse regimes will be strictly indistinguishable
(we have log 1080 ~ 184). For these applications, the results obtained for the sparse regime, where
d — oo slowly, should be largely satisfying, and indeed the sparse regime is much easier to handle
than the diluted regime and the proof techniques are well-established now.

However, the difference between the dilute and sparse regimes is not artificial, and hides a deep
phase transition which — in my opinion — is underestimated in the literature: when it comes to the
spectrum, the sparse regime lies in the universality class of ‘dense’ regimes, the world of the semi-
circle distribution for Hermitian models, and of the circle distribution for non-Hermitian models. In
the main graph models (d-regular, ErdGs-Rényi d /n) with density d — o, the spectral measure always
converges to Pgc Or t0 Peircle, and this including at microscopic scales ([18, 57, 17, 59, 75, 47, 75,
74]). However, some of the real networks studied by engineers or statisticians do not lie in Wigner’s
universality class ([76, 129]), such as social network graphs, whose spectrum clearly does not look
like a semi-circle (Figure A.17).

If we want the models to fit the reality, the good criterion therefore seems to be not only the
small number of links between the agents of the system, but also the spectral structure which must be
very far from the semi-circle of circle distributions: presence of atoms, unbounded supports, extended
and localized states. The reader can see this by observing the few examples of real network spectra
in Figure A.17 (the networks in question are described at the end of the paragraph). These are the
features that should be found in applied mathematics models. From this point of view, even diluted
graph models are not necessarily the best fitted to reality: the results obtained for an Erdés-Rényi
graph with a fixed but large d parameter, for example d = 10%, will certainly be further from reality
than those obtained for any n and any d < logn.
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Figure A.17 — Some spectra of real diluted networks.

The network data in Figure A.17 are freely available, see the database [99] and the paper [140]
and the references below.

(a)

(b)

(©)
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King James’ Bible (1611) is an English version of the Bible, and is still a reference for the
Anglican Church. It contains many names (of places or people), which are the 1773 vertices
of the graph. Two names are linked by an edge if they appear in the same verse; each edge
is weighted by the number of verses in which the two names appear (so they are multi-edges).
There are a total of 9131 edges and 16401 multi-edges; the average degree is 18.5 and the
maximum degree is 364 — corresponding to the name Israel. These data were compiled by
Chris Harrisson and are available on his website.

PGP (PrettyGoodPrivacy) is a popular encryption algorithm, widely used in emails. The net-
work nodes are the users (10680) in the giant connected component, and two users are connected
if they have exchanged information secured by PGP. There are 24316 edges, the average degree
is 4.55 and the maximum degree is 205 (see [30]).

The United States power grid (one of the networks studied in the famous paper [140]) consists
of 4941 units (generally, transformers or power plants); the edges represent the power lines and
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there are 6594 of them. The average degree is 2.66 and the maximum degree is 19.

(d) In 2003, the email network of Rovira i Virgile University in Tarragona ([86]) contained 1133
users (giant component). Two users are connected if they have sent each other an email. There
are 5451 edges, the average degree is 9.6 and the maximum degree is 71.

Less symmetry, more eigenvalues

Most algebra textbooks describe the instability of the eigenvalues of non-symmetric matrices. For
example, it is easy to construct two non-Hermitian matrices which are very close in norm, but whose
eigenvalues are very different. Yet, the remarkable and ubiquitous circle law suggests that the eigen-
values of some non-symmetric random matrices are in fact very stable (see [40, Figure 2 and com-
mentary]), as if the randomness in the matrix had the power to regularize the spectrum.

Recent results seem to show that non-symmetric matrices have much finer spectral properties than
might have been expected, and that they capture the statistics of the underlying networks better than
their symmetric counterparts. For example, in the community detection problem, it was not the adja-
cency matrix that needed to be studied, but one of its non-symmetric variants, the non-backtracking
matrix ([97, 43]), because the large eigenvalues of the latter better reflect the graph’s internal structure.

Recently, a paper by Chen et al ([56]) took a step forward, suggesting that it would sometimes
be beneficial to un-symmetrize symmetric problems. The authors note and prove a phenomenon quite
similar to that described in the last part of this thesis: if M is a low-rank symmetric matrix perturbed by
unsymmetric noise H, it is more efficient to get back M from the eigenvalues of M’ = M + H than from
the singular values of M’; moreover, even if the underlying matrix M is symmetric, it is sub-optimal
to use this information by symmetrizing M.

This is also the conclusion of our work: even when the underlying matrix is symmetrical, we can
unsymmetrize it, which boils down to reorganizing the data in order to extract its essential features;
this is done

e without deleting information, unlike other procedures already used, such as trimming the high
degrees in [77] or [92],

e without losing dimension, as was the case with the non-backtracking matrix whose transition
from dimension n to dn could be quite a problem in practice, even when d = 10.

Such un-symmetrization may not be optimal; the authors of [56] note, for example, that their un-
symmetrization procedures lead to an increase in noise variance. Two perspectives seem promising:
first, the theoretical results we have presented in the last part of this thesis pave the way for very
precise threshold computations, which will often allow statistical problems to be fully solved despite
the increase in noise; and secondly, some less elementary un-symmetrization procedures will certainly
allow better use of this new philosophy.
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RESUME

Une matrice aléatoire n x n est diluée lorsque le nombre d’entrées non nulles est d’ordre n ; les
matrices d’adjacence de graphes d-réguliers ou les graphes d’Erd3s-Rényi de degré moyen d fixé sont
dilués.

Dans le premier chapitre, je démontre une borne supérieure sur la deuxieme valeur propre de la
matrice de transition sur certains graphes dilués, les graphes de configuration dirigés, dans lesquels
on a spécifié le degré (entrant et sortant) de chaque sommet. On obtient aussi une généralisation
importante du théoreme de Friedman : la seconde valeur propre de la matrice d’adjacence d’un graphe
d-régulier dirigé est inférieure a v/d + o(1).

Dans le second chapitre, issu d’une collaboration avec Charles Bordenave, on donne une général-
isation du théoreme d’Erd6s-Gallai.

Le troisieme chapitre, issu d’une collaboration avec Justin Salez, résout un probléme posé en 2004
par Bauer et Golinelli : I’existence ou non d’états étendus dans le spectre limite des graphes d’Erd6s-
Rényi de parametre d/n. On y démontre 1’absence d’états étendus en zéro lorsque d < e et la présence
d’états étendus lorsque d > e. Nos résultats s’étendent aux arbres de Galton-Watson unimodulaires.
Je démontre également 1’absence d’états étendus en zéro dans le spectre de I’arbre squelette d’ Aldous.

Le dernier chapitre est issu d’une collaboration avec Charles Bordenave et Raj Rao Nadakuditi.
On y étudie les valeurs propres de la matrice d’adjacence A d’un graphe d’Erdés-Rényi de parametre
d/n, dans lequel les arétes sont pondérées par les entrées d’une matrice symétrique P. On montre une
transition de phase spectaculaire : il existe un seuil & dépendant de P et de d tel que les plus grandes
valeurs propres de (n/d)A convergent vers les valeurs propres de P plus grandes que , et tel que les
vecteurs propres de A associés sont alignés avec ceux de P.

SUMMARY

A random n x n matrix is diluted when the number of non-zero entries is of order n; adjacency
matrices of d-regular graphs or adjacency matrices of Erd6s-Rényi graphs with fixed average degree
d are diluted. This dissertation is about the spectrum of diluted random matrices.

In the first chapter I show an upper bound on the second eigenvalue of the transition matrix on a
diluted directed graph model, the directed configuration model, in which the degree (in and out) of
each vertex is specified. We also get an important generalization of Friedman’s theorem: the second
eigenvalue of the adjacency matrix of a directed d-regular graph is less than v/d +o(1).

A second short chapter, from a collaboration with Charles Bordenave, gives a generalization of
the Erdos-Gallai theorem.

The third chapter, a collaboration with Justin Salez, solves a problem raised in 2004 by Bauer and
Golinelli: the existence (or not) of extended states in the limiting spectrum of Erd&s-Rényi graphs
with parameter d/n. We show the absence of extended states at zero when d < e and the presence of
extended states when d > e. Our results extend to the spectra of unimodular Galton-Watson tree. |
also prove the absence of extended states at zero in the spectrum of the skeleton tree.

The last chapter is a collaboration with Charles Bordenave and Raj Rao Nadakuditi. We study the
eigenvalues of the adjacency matrix A of a directed Erdés-Rényi graph with parameter d/n, in which
the edges are weighted by the entries of a symmetric matrix P. We show a spectacular phase transition:
there is a threshold & depending on P and d such that the largest eigenvalues of (n/d)A converge to
the eigenvalues of P which are greater than 3. The associated eigenvectors of A are aligned with those
of P.
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