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descriptive et automatique

Dirigée par Benoı̂t Crabbé
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1

Titre : Analyse syntaxique automatique en constituants discontinus des
langues à morphologie riche.

Résumé : L’analyse syntaxique consiste à prédire la représentation syn-
taxique de phrases en langue naturelle sous la forme d’arbres syntaxiques.
Cette tâche pose des problèmes particuliers pour les langues non-configu-
rationnelles ou qui ont une morphologie flexionnelle plus riche que celle
de l’anglais. En particulier, ces langues manifestent une dispersion lex-
icale problématique, des variations d’ordre des mots plus fréquentes et
nécessitent de prendre en compte la structure interne des mots-formes
pour permettre une analyse syntaxique de qualité satisfaisante.

Dans cette thèse, nous nous plaçons dans le cadre de l’analyse syntax-
ique robuste en constituants par transitions. Dans un premier temps, nous
étudions comment intégrer l’analyse morphologique à l’analyse syntax-
ique, à l’aide d’une architecture de réseaux de neurones basée sur l’appren-
tissage multi-tâches. Dans un second temps, nous proposons un système
de transitions qui permet de prédire des structures générées par des gram-
mmaires légèrement sensibles au contexte telles que les LCFRS. Enfin,
nous étudions la question de la lexicalisation de l’analyse syntaxique. Les
analyseurs syntaxiques en constituants lexicalisés font l’hypothèse que les
constituants s’organisent autour d’une tête lexicale et que la modélisation
des relations bilexicales est cruciale pour désambiguı̈ser. Nous proposons
un système de transition non lexicalisé pour l’analyse en constituants dis-
continus et un modèle de scorage basé sur les frontières de constituants et
montrons que ce système, plus simple que des systèmes lexicalisés, obtient
de meilleurs résultats que ces derniers.

Mots clefs : Traitement automatique des langues naturelles, analyse
syntaxique automatique, arbres en constituants discontinus, systèmes de
transitions, apprentissage profond, apprentissage multi-tâches.
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Title: Discontinuous Constituency Parsing of Morphologically Rich Lan-
guages.

Abstract: Syntactic parsing consists in assigning syntactic trees to sen-
tences in natural language. Syntactic parsing of non-configurational lan-
guages, or languages with a rich inflectional morphology, raises specific
problems. These languages suffer more from lexical data sparsity and ex-
hibit word order variation phenomena more frequently. For these lan-
guages, exploiting information about the internal structure of word forms
is crucial for accurate parsing.

This dissertation investigates transition-based methods for robust dis-
continuous constituency parsing. First of all, we propose a multitask learn-
ing neural architecture that performs joint parsing and morphological anal-
ysis. Then, we introduce a new transition system that is able to predict dis-
continuous constituency trees, i.e. syntactic structures that can be seen as
derivations of mildly context-sensitive grammars, such as LCFRS. Finally,
we investigate the question of lexicalization in syntactic parsing. Some
syntactic parsers are based on the hypothesis that constituents are orga-
nized around a lexical head and that modelling bilexical dependencies is
essential to solve ambiguities. We introduce an unlexicalized transition
system for discontinuous constituency parsing and a scoring model based
on constituent boundaries. The resulting parser is simpler than lexicalized
parser and achieves better results in both discontinuous and projective
constituency parsing.

Keywords: Natural language processing, syntactic parsing, discontinu-
ous constituency trees, transition systems, deep learning, multitask learn-
ing.
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This dissertation is about robust syntactic parsing of languages with a
rich inflectional morphology. We propose a method for large-scale pars-
ing of these languages with three key properties. First of all, the method is
efficient and achieves empirical parsing time linear in the length of a sen-
tence. Secondly, it integrates morphological and functional analysis into
parsing. Finally, it is complete in the sense that it is capable of predicting
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                                   SENT                                
                     ┌──────────┬───┴───────────┬───────────────────┐   
                   VPinf        │               │                   │  
           ┌─────────┴───────── │ ───────────── │ ──────────┐       │   
           NP                   │               │           │       │  
  ┌────────┼─────────┐          │               │           │       │   
  │        │         AP         NP              VN          VN      │  
  │        │         │      ┌───┴───┐     ┌─────┴────┐      │       │   
DETWH      NC       ADJ    DET     NPP    V         CLS    VINF   PONCT
  │        │         │      │       │     │          │      │       │   
Quelle politique monétaire  la     BCE  devait     -elle conduire   ?  

g=f
n=s
s=int
fun=det

g=f
n=s
s=c

fun=mod

g=f
n=s

s=qual
fun=mod

g=f
n=s
s=def
fun=det

g=f
n=s
s=p

fun=suj

m=ind
n=s
p=3

t=impft
fun=root

g=f
n=s
p=3
s=suj
fun=suj

m=inf
fun=obj

s=s
fun=ponct

Figure 1.1: Syntactic analysis. Which monetary policy should the ECB
lead? Notations: (g)ender, (s)ubcat, (n)umber, (m)ood, (t)ense, (p)erson,
(fun)ction.

discontinuous constituency structures, and thus model long-distance de-
pendencies that projective constituency trees do not represent adequately.
The type of analysis we are interested in is illustrated in Figure 1.1, where
a long-distance extraction is represented with a discontinuous VPinf, and
each word is associated with its morphological analysis, including part-
of-speech tag and morphological attributes, and its syntactic function (e.g.
subject, object).

In the remainder of this introduction, we motivate the choice of the
framework of transition-based parsing by presenting some desiderata for
large scale discontinuous constituency parsing (Section 1.1). Then, we
describe typical issues in parsing morphologically rich languages (Sec-
tion 1.2) and how our contributions address them (Section 1.3).

1.1 Desiderata for Large-Scale Parsing

A syntactic parser needs to be robust. Robustness is the capability to
output a syntactic analysis even for an utterance that is not grammat-
ically well-formed. Most actual language productions, textual or oral,
contain a degree of non-canonicity, including disfluencies, non-sentential
fragments, spelling or pronunciation mistakes, agreement errors. Yet, those
productions are interpretable nonetheless. In that respect, robust parsing
is not a recognition problem: it does not say anything about the grammati-
cality of a sentence. Robustness is a desirable property of parsers, because
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typical applications use actual language production that can be very noisy,
such as user-generated contents.

Another desideratum for a syntactic parser aiming at analysing a lot
of textual data is efficiency. Chart parsers for Probabilistic Context-Free
Grammars (PCFG) based on an exhaustive search have a complexity in
O(n3), which is unpractical for long sentences. In contrast, the methods
we used in this dissertation run in linear time and scale easily to sentences
of any length.

These properties are required by most applications of parsing, such as:

• Building semantic representations. Syntactic parsing is a first step
towards building a semantic representation of a sentence or towards
deeper understanding of documents. For example, semantic parsers
have been shown to perform much better with features extracted
from syntactic trees (Ribeyre et al., 2015). Syntactic trees are also
helpful for discourse parsing (Feng and Hirst, 2012) and to identify
discourse relations (Pitler and Nenkova, 2009).

• Constructing resources automatically. Syntactic parsers are used
to automatically construct new corpora with predicted syntactic an-
notations (Seddah et al., 2012), which may be used either for un-
supervised learning (Levy and Goldberg, 2014) or linguistic studies
(Thuilier, 2012).

• Psycholinguistic modelling. Although they are not designed for
this purpose in the first place, parsers may be models of human syn-
tactic processing. In particular, incremental parsers have interesting
properties for psycholinguistic modelling (Hale, 2001; Roark et al.,
2009; Hale, 2014). Moreover, the properties we described as desider-
ata for parsers are also taken to be properties of human sentence pro-
cessing: efficiency, robustness (Crocker, 1999).

In this dissertation, we focus on transition-based parsing. Transition-
based parsing decomposes a tree in a sequence of operations that can be
seen as a linearization of the tree. It casts the parsing problem as a se-
quence prediction problem. Transition-based parsing is inherently robust,
as it does not usually rely on an explicit grammar. Transition-based meth-
ods are also generally more efficient as they support linear time decoding
algorithms, such as greedy search and beam search. The experiments pre-
sented in this dissertation confirm that very simple approximate search
methods can lead to very high results provided that the scoring system
uses adequate representations.
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Figure 1.2: Prepositional attachment ambiguities.

1.2 Parsing Morphologically Rich Languages

This section presents some issues in constituency parsing. The general
goal of parsing is solving structural ambiguities (Section 1.2.1). We do not
address this problem directly, instead we focus on selected issues, which
are prevalent when parsing morphologically rich languages: morphology
(Section 1.2.2), discontinuities (Section 1.2.3) and bilexical dependency
learning (Section 1.2.4).

1.2.1 Solving Ambiguities

The main difficulty of parsing is to solve the ambiguity exhibited by
natural languages. For a single sentence, there are usually several different
plausible syntactic analyses. Although some ambiguities are natural, most
ambiguities are artificial. Most native speakers would not notice them
as only one of the plausible analyses is prominent. Most attachment
decisions are relatively easy to solve, e.g. finding which noun is the
governor of a determiner, but some specific types of ambiguities are hard
for a parser.

Typical artificial ambiguities are coordination ambiguities and prepo-
sitional attachment ambiguities. For example, in Figure 1.2, the preposi-
tional phrases (PP) may be attached either as a modifier to the noun phrase
(NP) or to the verb phrase (VP). The knowledge required to solve these
ambiguities is very hard to learn for a parser. Due to attachment combina-
torics, the number of possible parses for a single sentence can easily range
in the millions.
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For transition-based parsers that are incremental (and process the sen-
tence left-to-right), the additional difficulty to solve ambiguities is that
they might not have access to the relevant information, e.g. unprocessed
words at the end of the sentence, at the time of the attachment decision. In
other words, the parser is subject to a locality bias: it takes decisions based
on local information, rather than the whole sentence.

1.2.2 Modelling the Morphology-Syntax Interface

Morphologically Rich Languages (MRL thereafter) raise specific problems
in parsing (Seddah et al., 2013).1

They are more subject to lexical data sparsity, as a lexeme may have nu-
merous different inflected forms. A lot of word forms in the test set will not
have been seen during training and the parser will not have parameters for
them. The treatment of these unknown words is crucial. Moreover, MRLs
exhibit more flexible word order than configurational languages such as
English. Important syntactic information is expressed through morphol-
ogy. For example, the case of a noun determines its syntactic function,
which is a very important cue to decide on its attachment in a syntactic
tree. To recover the syntactic structure of a sentence, it is decisive to model
the interaction between morphology and syntax. Most existing parsers for
MRLs use a pipeline approach and rely on an external morphological tag-
ger. Instead, we propose to model interaction between morphology and
syntax with a multitask learning architecture (Chapter 6).

1.2.3 Predicting Discontinuous Constituency Trees

Projective constituency trees are not adequate to model a number of
syntactic phenomena related to word order variations, e.g. long distance
extractions. Although these phenomena also appear in configurational
languages, they are more frequent in MRLs. However, discontinuous
constituency parsing has attracted much less attention than projective
constituency parsing so far, and it is a much more difficult task in terms
of complexity. Existing results in discontinuous parsing are rather low
compared to projective constituency parsing. In particular, discontinuous

1As Seddah et al. (2013), we take MRLs to denote languages with a richer inflectional
morphology than English. This definition includes agglutinative languages (Hungarian,
Korean), languages with some degree of word order flexibility (German, Polish), but also
languages, such as French, that exhibit similar issues in parsing, such as lexical data
sparsity.
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                                                 SENT[devait]                                           
                            ┌───────────────┬─────────┴──────────────────┬───────────────────────────┐   
                     VPinf[conduire]        │                            │                           │  
             ┌──────────────┴────────────── │ ────────────────────────── │ ────────────────┐         │   
       NP[politique]                        │                            │                 │         │  
  ┌──────────┼──────────────┐               │                            │                 │         │   
  │          │        AP[monétaire]      NP[BCE]                     VN[devait]       VN[conduire]   │  
  │          │              │         ┌─────┴─────────┐         ┌────────┴────────┐        │         │   
DETWH        NC            ADJ       DET             NPP        V                CLS      VINF     PONCT
  │          │              │         │               │         │                 │        │         │   
Quelle   politique      monétaire     la             BCE      devait            -elle   conduire     ?  

Figure 1.3: Lexicalized Constituency Tree.

constituents are very hard to predict. For example, Maier (2015) report F1
scores lower than 20 on discontinuous constituents.

1.2.4 Learning Bilexical Relations

Most transition-based constituency parsers are lexicalized in the sense
that they predict lexicalized constituency trees. In a lexicalized tree, each
constituent is associated with its lexical head, as illustrated in Figure 1.3.
Lexicalized transition systems implicitly construct an unlabelled depen-
dency tree during parsing and they rely on the head of constituents for
feature extraction (see Section 3.2.1.4). In other words, they rely on the
assumption that constituents are built around a lexical head and that cap-
turing bilexical relations is an essential part of accurate parsing. Such a hy-
pothesis seems all the more important for non-configurational languages
such as MRLs, that exhibit more word order variation. Yet, bilexical re-
lations are also more difficult to learn for these languages, due to data
sparsity. As it is difficult to generalize from very sparse data, statistical
parsers tend to overfit easily.

In this dissertation, we address the question of lexicalization: should
transition-based constituency parsers try to model bilexical dependencies,
or rely instead on structural information?

1.3 Contributions and Outline

Our contributions address several aspects of parsing: (i) learning biases,
(ii) interaction with morphology (iii) transition systems for discontinuous
constituency parsing.
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1.3.1 A Dynamic Oracle to Deal with Locality Biases

In terms of learning methods, we introduce the first dynamic oracle for
projective lexicalized constituency parsing. Transition-based parsers with
greedy decoding cannot recover from errors. Wrong decisions at the
beginning of parsing may compromise future decisions, due to error
propagation. They are usually trained to predict the gold action from a
gold configuration (obtained assuming every previous action was gold).
They are in a much more different situation at test time, when mistakes
can be made.

A way to alleviate this problem is to simulate a more realistic setting
at training time, i.e. take into account that the parser may do wrong pre-
dictions, and training it to predict the best possible action in any configu-
ration, including configurations where the gold tree is not reachable due
to previous mistakes. A dynamic oracle is a function that outputs the set
of the best actions (with respect to a loss function) for any possible pars-
ing configuration. Our experiments show that training with the dynamic
oracle improved a greedy parser in a multilingual setting.

1.3.2 Multitask Learning for Parsing and Morphological
Analysis

In the case of languages with a rich inflectional morphology, tagsets are of-
ten very large, and structured into a coarse part-of-speech tag and a set of
morphological attributes (such as tense, mood, case). The most common
approach to integrate morphological information to parsing is the pipeline
approach: use the output of a morphological tagger as features. A limita-
tion of this strategy is that it relies on an external tool that may be hard to
deploy, given the complexity of the tagsets. Moreover, pipeline systems
are subject to error propagation.

Instead, we developed a parsing architecture that took advantage of
the fact that recent proposals in parsing (Kiperwasser and Goldberg, 2016;
Cross and Huang, 2016b) use a bi-LSTM component that is very similar
to a tagging architecture (Plank et al., 2016). We introduce a joint model
based on multitask learning, allowing syntax and morphology to interact
seamlessly. We further show that including functional labelling as an
additional word-level tagging task improves parsing. The resulting parser
outputs both constituency trees and labelled dependency trees and obtains
state-of-the-art results on the SPMRL dataset (Seddah et al., 2013).
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1.3.3 Transition Systems for Discontinuous Parsing

Although corpora often contain annotations for non-local dependencies
resulting from a range of linguistic phenomena (e.g. long distance extrac-
tion, extraposition, scrambling), this information is often ignored by con-
stituency parsers. One way of representing the non-local dependencies
is to allow crossing branches in constituency trees, as is shown in Fig-
ure 1.1, resulting in structures that can be seen as derivations of mildly
context sensitive formalisms such as Linear Context-Free Rewriting Sys-
tems (LCFRS). This type of structure corresponds to the general case for
the description of syntactic structures, as it is adequate for the description
of languages with high degree of word order flexibility that are nearly al-
ways languages with a rich inflectional morphology (Futrell et al., 2015).

In this dissertation, we introduce a new transition system for lexical-
ized discontinuous constituency parsing called SR-GAP (shift-reduce-gap).
This transition system can derive any labelled discontinuous tree in quadra-
tic time. However, due to the scarcity of discontinuities in language data,
it is empirically as fast as a transition-based projective constituency parser,
and thus avoids the computational cost induced by the added expressivity
of the underlying formalisms. This system obtains state-of-the-art results
on several German treebanks.

1.3.4 Unlexicalized Systems for Constituency Parsing

Finally, we introduce an unlexicalized variant of SR-GAP, based on a struc-
ture-label strategy (Cross and Huang, 2016a) and its lexicalized counter-
part. These transition systems aim at assessing the role of explicit lexi-
calization in parsing. Parsing results in both projective and discontinuous
multilingual constituency parsing show that lexicalization is not necessary
to achieve very high results.

1.3.5 Outline

The dissertation is organized in three parts.
Part I provides the necessary background in constituency parsing and

consists of three chapters. Chapter 2 introduces chart parsing with proba-
bilistic grammars. Chapter 3 reviews standard transition systems for pro-
jective and discontinuous constituency parsing and describes their prop-
erties. Chapter 4 focuses on learning and decoding algorithms used in
transition-based parsing.
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Part II deals with projective constituency parsing and presents two
contributions. In Chapter 5, we introduce a dynamic oracle algorithm that
improves the training of greedy transition-based constituency parsers.
Chapter 6 focuses on the integration of morphological information in the
parser and presents a parsing model that performs jointly constituency
and dependency parsing, functional labelling and morphological analysis.

Part III focuses on discontinuous constituency parsing. Chapter 7
introduces a new transition system for discontinuous transition-based
parsing. It is an extension of the shift-reduce algorithm and can derive any
labelled discontinuous constituency tree in linear empirical time (O(n2) in
the worst case).

Chapter 8 investigates the question of lexicalization; it introduces tran-
sition systems for unlexicalized and lexicalized discontinuous parsing and
compares them in different settings. It shows that explicit lexicalization is
not necessary to achieve very strong results in discontinuous parsing. This
result is confirmed with additional experiments on multilingual projective
constituency parsing.
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1.3.6 Publications

Some of the contributions presented in this dissertation have been pub-
lished before in conferences or journals.

• Chapter 4 discusses some results published in TALN (Coavoux and
Crabbé, 2015) and TAL (Coavoux and Crabbé, 2016).

• Chapter 5 has been published in ACL (Coavoux and Crabbé, 2016).2

• Chapter 6 is an extended version of an article published in EACL
(Coavoux and Crabbé, 2017b).3

• Chapter 7 is an extended version of an article published in EACL
(Coavoux and Crabbé, 2017a).4

• Chapter 8 presents mostly original unpublished work. The baseline
model used in this chapter has been published in TALN (Coavoux
and Crabbé, 2017).

Finally, the code used for all experiments carried out for this disserta-
tion has been published online, as free software, in the following reposito-
ries:

• www.github.com/mcoavoux/mtg

• www.github.com/mcoavoux/hyparse

• www.github.com/mcoavoux/french_disco_data

• www.github.com/mcoavoux/multilingual_disco_data

2The chapter includes a few verbatim passages from the article.
3See footnote 2.
4See footnote 2.

www.github.com/mcoavoux/mtg
www.github.com/mcoavoux/hyparse
www.github.com/mcoavoux/french_disco_data
www.github.com/mcoavoux/multilingual_disco_data
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2.1 Introduction: Parsing Paradigms

There are two main parsing paradigms: chart parsing and transition-
based parsing.1 A chart parser generally uses an explicit grammar and
models directly trees. It searches for the best derivation for a sentence
with dynamic programming to factorize common subtrees in different
hypotheses. Typical chart parsers for projective structures run inO(|G|·n3)
where n is the length of a sentence and G is the size of the grammar.

In contrast, transition-based parsers do not model directly trees, but
sequences of actions that build trees. They are usually incremental and

1Excluding graph-based parsing (McDonald et al., 2005), a third paradigm only used
in dependency parsing.

25
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support fast approximate search. As they do not model a grammar
explicitly, they are inherently robust.

There is some overlap between the two paradigms. Decoding in chart
parsing may be performed incrementally (by computing the scores of sub-
trees on prefixes of the sentence). It is also possible to use dynamic pro-
gramming in transition-based parsing under certain conditions (Huang
and Sagae, 2010).

In this chapter, we review standard formalisms typically used to rep-
resent syntactic structures (Section 2.2), and chart parsing methods based
on probabilistic grammars (Section 2.3).

2.2 Syntactic Representations and Formalisms

2.2.1 Constituency and Dependency Trees

There are two widely used types of syntactic representations in Natural
Language Processing (NLP): dependency trees and constituency trees
(Figure 2.1). Dependency trees represent the syntactic structure as a set
of directed typed relations between governors and their dependents. For
example, in Figure 2.1, the word faut is the root of the tree and has
two arguments, a subject il and an object étonner, and several modifiers
(negation particles).

In contrast, constituency trees focus on phrases, i.e. recursive group-
ings of words based on syntactic and distributional properties. For exam-
ples, a Noun Phrase (NP) such as un flop (Figure 2.1) may usually be substi-
tuted to another NP without changing the grammaticality of the sentence.

Although dependency and constituency trees focus on different as-
pects of the syntactic structure, there is a very large overlap in the in-
formation they represent. In particular, there are conversion procedures
between the two formalisms (Candito et al., 2010). The dependency ver-
sions of the French Treebank (Abeillé et al., 2003) and the Penn Treebank
(Marcus et al., 1993) were automatically converted from the original con-
stituency versions. Moreover, some grammatical formalisms encode both
constituency and dependency information, e.g. lexicalized Tree Adjoining
Grammars and lexicalized Context-Free Grammars (see Section 2.3.1.2).

2.2.2 Representing Non-Local Dependencies

Long distance dependencies are syntactic relations that link words that
are arbitrarily far in the sentence. A number of phenomena may produce
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det
obj
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Figure 2.1: Constituency tree (upper part) and dependency tree (lower
part). It is not surprising that he flopped.
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non-local dependencies, such as long-distance extractions or dislocations,
as illustrated by the following examples where the items involved in the
non-local dependency are in bold:

• Who do you think will come ? (question extraction)

• The cat that the dog tried to bite ran away. (relative extraction)

• An excellent environmental actor he is. (dislocation)

In dependency trees, these phenomena are usually accounted for with
non-projectivity. In a projective dependency tree, every word dominates
a contiguous string of words in the sentence. In contrast, in a non-
projective tree, this constraint does not hold. For example, in Figure 2.2d,
the word mean does dominate its argument what but not the auxiliary does,
nor consensus.

Constituency trees can also use non-projectivity to represent non-local
dependencies. Yet, few constituency corpora are natively annotated with
discontinuous constituents. Among these, the corpora most used in pars-
ing experiments are the Negra corpus (Skut et al., 1997) and the Tiger cor-
pus (Brants et al., 2002). Instead, the long-distance dependencies are either
not annotated (French Treebank) or represented with indexed traces (Penn
Treebank). In Figure 2.2c, the dependency between what and mean is rep-
resented by an empty category ∗T∗ in the prototypical position occupied
by the object of a verb, coindexed with the extracted element. However,
constituency parsers typically train and evaluate on modified versions of
treebanks where traces are deleted as well as functional annotations (Fig-
ure 2.2b). This preprocessing has become standard and makes parsing eas-
ier, as empty categories are hard to predict. Nevertheless, the drawback is
that parsers completely ignore an important amount of information con-
tained in the original trees.

In this dissertation, we will focus on two types of representations:
projective constituency trees without empty categories and discontinuous
constituency trees.

2.3 Chart Parsing

We first review grammar-based parsing for projective constituency trees
with Probabilistic Context-Free Grammars (PCFG) and related models (Sec-
tion 2.3.1). Then, we present parsing with Linear Context-Free Rewrit-
ing Systems (LCFRS), a grammar formalism that can derive discontinuous
constituency trees (Section 2.3.2).
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         SBARQ                       
 ┌─────────┴────┬──────────────────┐  
 │              SQ                 │ 
 │         ┌────┼──────┐           │  
 │         │    VP     │           │ 
 │   ┌──── │ ───┴───── │ ─────┐    │  
 │  WHNP   │           NP     │    │ 
 │   │     │           │      │    │  
 RB  WP   VBZ          NN     VB   . 
 │   │     │           │      │    │  
 So what  does     consensus mean  ? 

(a) Discontinuous constituents.

         SBARQ                   
 ┌───┬─────┴───────┬───────────┐  
 │   │             SQ          │ 
 │   │     ┌───────┼──────┐    │  
 │  WHNP   │       NP     VP   │ 
 │   │     │       │      │    │  
 RB  WP   VBZ      NN     VB   . 
 │   │     │       │      │    │  
 So what  does consensus mean  ? 

(b) No representation.

                  SBARQ                      
 ┌────┬─────────────┼──────────────────────┐  
 │    │             SQ                     │ 
 │    │     ┌───────┼───────────┐          │  
 │    │     │       │           VP         │ 
 │    │     │       │      ┌────┴────┐     │  
 │  WHNP-1  │     NP-SBJ   │         NP    │ 
 │    │     │       │      │         │     │  
 RB   WP   VBZ      NN     VB      -NONE-  . 
 │    │     │       │      │         │     │  
 So  what  does consensus mean     *T*-1   ? 

(c) Indexed traces.

So what does consensus mean ?

advmod

dobj

aux

nsubj

punct

(d) Non-projective dependency tree.

Figure 2.2: Representation strategies for non-local dependencies.

2.3.1 Probabilistic Models for CFG Parsing

After describing PCFG parsing and discussed its limitations (Section 2.3.1.1),
we present two extensions of this model: lexicalized PCFG (Section 2.3.1.2)
and PCFG with latent annotations (Section 2.3.1.3).

2.3.1.1 Probabilistic Context-Free Grammar

Model Definition A Probabilistic Context-Free Grammar (PCFG) is a
Context-Free Grammar (CFG) associated with a function p that gives a
probability for each rewrite rule, such that the probabilities of rewrite
rules with the same left-hand side symbol sum to 1. The probability of
a grammar rule p(A → α) = p(α|A) is the probability that a nonterminal
A rewrites as α.

A PCFG can be easily extracted from a treebank. For example, Fig-
ure 2.3 shows the PCFG extracted from the two trees in Figure 1.2. The
probabilities of grammar rules are estimated by relative frequency.

A PCFG extends a CFG by defining a probability distribution on every
possible tree derivable by the grammar. The probability of a tree is the
product of probabilities of grammar rules used to derive it:

p(t) =
∏

X→α∈t

p(α|X) (2.1)
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G = (N, T,R, S, p)
N = {S, NP, VP, PP}
T = {Garnet, eats, a, salad, with, falafels, friends}

R =



S→ N VP : 1 N→ Garnet : 1
3

PP→ P N : 1 N→ salad : 1
3

VP→ V NP : 2
3

N→ falafels : 1
6

VP→ VP PP : 1
3

N→ friends : 1
6

NP→ D N : 2
3

D→ a : 1
NP→ NP PP : 1

3
P→ with : 1
V→ eats : 1


Figure 2.3: Probabilistic Context-Free Grammar.

where t is seen as a set of anchored rules. Anchored rules (or instantiated
rules) associate a grammar rule with the relevant spans in the sentence,
e.g. Xi...j → Ai...k Bk...j . A PCFG is also a language model, since it defines a
probability distribution over strings of terminals:

p(s) =
∑

t,yield(t)=s

p(t) (2.2)

where the yield of the tree is the string of terminals that forms its leaves.
PCFG parsing uses the probability of trees to solve ambiguities. The

best tree for a sentence s is the highest probability tree:

t̂ = argmax
t,yield(t)=s

p(t) (2.3)

Inference Equation 2.3 can be solved efficiently with dynamic program-
ming. Consider a binary PCFG. Thanks to the decomposition of trees as
sets of anchored rules (Equation 2.1), the calculation of the probability of a
tree decomposes into identical subproblems. For a tree t with subtrees tl,
tr with respective roots X, A and B, the probability of t rewrites as:

p(t) = p(X→ A B) · p(tl) · p(tr) (2.4)

Since an instantiated constituent will appear in many possible trees, the
solutions to the subproblems are reused many times.

The CKY algorithm exploits this structure to find the highest probabil-
ity tree in O(|G| · n3) (Algorithm 1). The grammar G = (N, T,R, S, p) must
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[A, i, k, p1] [B, k, j, p2]
[X, i, j, p1 · p2 · p(X→ A B)]

}
X→ A B ∈ R

[X, i, i+ 1, p(X→ si)]

}
X→ si ∈ R

Table 2.1: Deduction rules for CFG parsing.

be in Chomsky Normal Form (CNF): the right-hand side of every gram-
mar rule must consist of either (i) exactly two nonterminals or (ii) exactly
one terminal (lexical rules). Any context-free grammar can be transformed
into a weakly equivalent CNF grammar.2

The CKY algorithm iteratively fills an array P , called a chart, such
that P [i, j,X] stores the probability of the highest probability subtree with
the label X and whose span in the sentence is (i, j). At the end of the
loop starting at line 10, P [0, n, S] is the probability of the solution to
Equation 2.3. The tree itself can be recovered in a second data structure
B.

Algorithm 1 CKY algorithm for CFG weighted parsing.
1: function PARSE(G = (N, T,R, S, p), s)
2: s is a sentence of length n
3: G is a CNF grammar
4: P [i, j,X]← 0 is an array of double
5: B[i, j,X] is an array of tuples to store best subtrees
6: for i = 0 to n− 1 do
7: for X ∈ N do
8: if X→ si ∈ R then
9: P [i, i+ 1, X]← p(X→ si) . Lexical rules

10: for j = 2 to n do . j span end
11: for i = 0 to j − 2 do . i span beginning
12: for k = i+ 1 to j − 1 do . k split point
13: for X→ A B ∈ R do
14: q ← p(X→ A B) · P [i, k, A] · P [k, j, B]
15: if q > P [i, j,X] then
16: P [i, j,X]← q
17: B[i, j,X]← (A,B, k)

18: return (P,B)

From a broader point of view, the CKY algorithm may be viewed as
a Viterbi-style strategy to solve a shortest path problem in a hypergraph

2Transformation algorithms are akin to those presented in Chapter 3.
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with a semi-ring structure (Goodman, 1999; Huang, 2008). In this struc-
ture, other strategies are possible to speed up parsing, in particular the A∗

algorithm (Huang, 2008). For further speed-ups, it is customary to add
only certain items to the chart (with a threshold, or by keeping only the
k-best items), with the cost of optimality.

The CKY algorithm can be modified to output the k-best trees instead
of the highest probability tree. Having access to several analyses is useful
in order to rerank them using more complex scoring systems (Charniak
and Johnson, 2005), or to delay the resolution of ambiguities until the next
module in a pipeline approach (e.g. a semantic analyser).

The CKY algorithm is a dynamic programming implementation of
the deduction system in Table 2.1. In the deduction-based approach to
weighted parsing inference (Pereira and Warren, 1983; Nederhof, 2003),
parsing items are tuples [X, i, j, p] of an anchored nonterminal Xi...j and
the probability p of a subtree with Xi...j as a root. The goal is to deduce
the final item [S, 0, n, p] that maximizes p, from axioms (the tokens in the
sentence) and a set of inference rules to deduce new items from an agenda
of current items. A weighted deduction system describes a high-level
specification of a parsing algorithm, and abstracts away from the order
in which operations are performed.

The Limitations of PCFG Raw PCFG parsers perform rather poorly, due
to their strong independence assumptions. The probability of a grammar
rule does not depend on its horizontal context (sibling nodes) nor its
vertical context (parent nodes). Moreover, most attachment decisions
completely ignore the lexicon despite its informativeness.

The only differences between the two hypotheses in Figure 1.2, ig-
noring terminals, are the two anchored rules NP2...6 → NP2...4 PP4...6 and
VP1...6 → VP1...4 PP4...6. As a consequence, if p(VP → VP PP) > p(NP →
NP PP), then the first structure will never be chosen. The parser will con-
sistently prefer to attach PPs to VPs in ambiguous cases, which is not a
desirable behaviour.

In order to address these problems, two research directions have been
proposed. The first one, developed by Collins (1999), chose to model
bilexical relations between words in order to use lexical information to
solve ambiguities. The second one consists in refining the grammar in
order to capture finer distributions (Klein and Manning, 2003).
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S[eats]

N

Garnet

VP[eats]

V

eats

NP[salad]

NP[salad]

D

a

N

salad

PP[falafels]

P

with

N

falafels

S[eats]

N

Garnet

VP[eats]

VP[eats]

V

eats

NP[salad]

D

a

N

salad

PP[friends]

P

with

N

friends

Garnet eats a salad with falafels Garnet eats a salad with friends

Figure 2.4: Lexicalized constituency trees with the corresponding depen-
dency trees that they encode implicitly.

2.3.1.2 Lexicalized PCFG

In a lexicalized PCFG, each nonterminal is annotated with a terminal that
is its lexical head. The rules of a lexicalized PCFG in Chomsky Normal
Form have one of the two following forms:

• X[h]→ A[ha] B[hb] where h ∈ {ha,hb}

• X[h]→ h

where X[h] means that h is the lexical head of constituent X. Each binary
rule encodes a bilexical dependency between a head and one of its depen-
dents. As a consequence, a lexicalized constituency tree implicitly encodes
an unlabelled dependency tree as shown in Figure 2.4.

The probability of grammar rules used to decide where to attach the
prepositional phrase now includes lexical information. The probabilities

p(NP[salad]→ NP[salad] PP[falafels]
and p(VP[eats]→ VP[eats] PP[falafels]

encode the likelihood that falafels is a modifier for, respectively, salad or
eats, leading to better attachment decisions.

The limitation of lexicalized PCFGs is that the probabilities of lexical-
ized rules are very hard to estimate, due to the sparsity of bilexical data
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and the explosion of the number of nonterminal symbols (|N | × |T |).3 In
order to make the model work in practice, Collins (1999) proposes several
possible decompositions of the probability of lexicalized rules and needs
to resort to smoothing methods and backoff strategies to part-of-speech
tag.

2.3.1.3 PCFG with Latent Annotations

The second strategy renounces modelling bilexical dependencies, a prob-
lem deemed too hard. Instead, it aims at refining the grammar to capture
finer distributions of nonterminals.

Raw categories in treebanks do not encode certain distributional prop-
erties of symbols. For example, the VP symbol in the Penn Treebank
does not distinguish VPs with a finite verb and VPs with an infinitival
verb. Moreover, subject NPs are more likely to rewrite as personal pro-
nouns than object NPs. These finer grained distinctions may be captured
by symbol-splitting (Klein and Manning, 2003): each symbol in the tree-
bank is annotated with contextual or linguistic information. For example,
an NP can be enriched with its parent node leading to a number of new
annotated nonterminals (NPˆS, NPˆVP, NPˆNP). Probabilistic grammars
extracted from treebanks with such annotations are larger but also more
effective for parsing than standard PCFG.

Instead of designing the new split categories manually, they can be
learned automatically (Matsuzaki et al., 2005; Petrov et al., 2006) to obtain
models called PCFG with Latent Annotations (PCFG-LA).

The split symbols make inference somewhat more complex, as the
probability of a tree with the original set of nonterminals is a probability
marginalized over each possible combinations of latent annotations:

p(t) =
∑
x∈X

p(t/x) (2.5)

where X is the set of all possible affectations of annotations to the non-
terminals of t and p(t/x) is the probability of the tree with latent annota-
tions x. Exact parsing is NP-hard for PCFG-LA (Matsuzaki et al., 2005).
However, there are several approximate inference methods, the simplest
of which is to search for the most probable annotated tree:

t̂ = argmax
yield(t/x)=s,x∈X

p(t/x) (2.6)

3In practice, lexicalized nonterminals are generated dynamically when parsing.
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and return the tree stripped of annotations.
PCFG-LA models and derived models, such as Tree Substitution Gram-

mars with latent annotations (Shindo et al., 2012),4 obtained state-of-the-
art results on English. However, they do not perform well on non-configu-
rational languages or languages with a rich inflectional morphology (Sed-
dah et al., 2013). A possible explanation is that these parsers do not inte-
grate morphological information easily.

4Tree Substitution Grammars are an extension of CFG in which a nonterminal can
rewrite as a tree fragment. It has the same expressivity as a CFG.

                          SBARQ             
                       ┌────┴─────────────┐  
                       SQ                 │ 
             ┌─────┬───┴────┐             │  
             VP    │        │             │ 
      ┌──────┴──── │ ────── │ ───┬────┐   │  
    WHADVP         │        NP   │    NP  │ 
 ┌────┴──────┐     │        │    │    │   │  
WRB          RB   VBP      PRP   VB  PRP  . 
 │           │     │        │    │    │   │  
How        deeply  do      they read  it  ? 

G = (N, T, V, P, SBARQ)

N = {SBARQ, SQ, VP, WHADVP, NP, WRB, RB, VBP, PRP, VB, .}
T = {How, deeply, do, they, read, it, ?}
V = {X, Y, Z, T}

P =



SBARQ(XY )→ SQ(X) .(Y ) WRB(How)→ ε
SQ(XY ZT )→ VP(X,T ) VBP(Y ) NP(Z) RB(deeply)→ ε
VP(X, Y Z)→WHADVP(X) VB(Y ) NP(Z) VBP(do)→ ε
WHADVP(XY )→WRB(X) RB(Y ) PRP(they)→ ε
NP(X)→ PRP(X) VB(read)→ ε
.(?)→ ε PRP(it)→ ε


Figure 2.5: Discontinuous tree and extracted LCFRS.
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Discriminative Chart Parsing Finally, a development of unlexicalized
chart parsing consists in using a discriminative scoring model instead of
an explicit probabilistic grammar (Hall et al., 2014; Durrett and Klein, 2015;
Stern et al., 2017). These models weigh subtrees using structural features,
such as tokens at the boundaries of constituents.

2.3.2 Probabilistic LCFRS

Discontinuous constituency trees (such as those in Figure 2.2a and 2.5) can
be seen as derivations of Linear Context-Free Rewriting Systems (LCFRS).
LCFRS is a class of formal grammars that can generate mildly context-
sensitive languages. LCFRS provides the expressivity required to describe
natural languages as there are mildly-context sensitive phenomena that
cannot be described adequately with CFG (Shieber, 1985; Joshi, 1985).

2.3.2.1 Linear Context-Free Rewriting Systems

In an LCFRS grammar, a nonterminal can span a tuple of subsequences of
terminals in the sentence whereas in a CFG, a nonterminal spans a single
subsequence. For example, in Figure 2.5, the VP spans two subsequences
How deeply and read it that are not contiguous because they are separated
by another subsequence do they. The fan-out of a nonterminal is the
number of non-contiguous maximal subsequence it spans. The set of
terminals dominated by a nonterminal is called its yield. An LCFRS5 is
a tuple 〈N, T, V, P, S〉where:

• N is a finite set of nonterminals with a function dim : N → N that
determines the fan-out of each nonterminal;

• T and V are disjoint finite sets of terminals and variables;

• S ∈ N is the axiom of the grammar with dim(S) = 1;

• P is a finite set of rules with the following form

A(α1, . . . , αdim(A))→ A1(X
(1)
1 , . . . , X

(1)
dim(A1)

) . . . Am(X
(m)
1 , . . . , X

(m)
dim(Am))

such that:

– A and Ai are nonterminals;
5We use the definition and notations from Kallmeyer and Maier (2013) that is based on

the vocabulary of Simple Range Concatenation Grammar (Boullier, 1998), an equivalent
formalism, rather than the original formulation of Vijay-Shanker et al. (1987).
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– X
(i)
j are variables:

– αi ∈ (T ∪ V )∗ are sequences of variables and terminals;

– each variable X in the rule occurs exactly once in the left-hand
side and exactly once in the left-hand side.

Grammar rules specify both hierarchical relations between nonterminals
and how to compute the yield of the nonterminal in the left-hand side with
that of the nonterminal in the right-hand side. Consider for instance the
rule that generates the discontinuous VP in Figure 2.5:

VP(X, Y Z)→WHADVP(X) VB(Y ) NP(Z)

It specifies that a VP rewrites as a WHADVP VB and NP and spans
two subsequences of the sentence represented by X and YZ. This rule
corresponds to the following tree fragment:

VP

WHADVP VB NP

i j k l m
X Y Z

where i < j < k < l < m are indices in the sentence.
Consider now the rule:

SQ(XY ZT )→ VP(X,T ) VBP(Y ) NP(Z)

The SQ is not discontinuous (its fan-out is one), it rewrites as a discontin-
uous VP with fan-out two, with two nonterminals VBP and NP inside the
gap of the VP. The rule can be illustrated by the following tree fragment:

SQ

VP VBP NP

i j k mo
X Y Z T

Finally lexical rules have the form: A(w) → ε, meaning that A spans a
single terminal w and that it has no nonterminal child.
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[A,ρA, p1] [B,ρB, p2]
[X,ρX , p1 · p2 · p(X(ρX)→ A(ρA) B(ρB))]

}
X(ρX)→ A(ρA) B(ρB) ∈ R

[X, 〈〈i, i+ 1〉〉, p(X(si)→ ε)]

}
X(si)→ ε ∈ R

Table 2.2: Deduction rules for LCFRS parsing.

2.3.2.2 Properties of an LCFRS

There are two important properties to characterize an LCFRS grammar: its
rank and its fan-out. The fan-out of an LCFRS grammar is that of the non-
terminal with the highest fan-out. An LCFRS with fan-out one is equiva-
lent to a CFG. The rank of an LCFRS rule is the number of nonterminals
in its right-hand side and the rank of an LCFRS grammar is the highest
rank of its rules. Like CFG, LCFRS grammars can be binarized with re-
versible algorithms. However, it is possible that a binarized LCFRS has a
fan-out greater than the fan-out of the original grammar. As the complex-
ity of LCFRS parsing depends on the fan-out, binarization methods have
been proposed to minimize the fan-out of the resulting binary grammar
(Gómez-Rodrı́guez et al., 2009).

2.3.2.3 Parsing with Probabilistic LCFRS

A probabilistic LCFRS is an LCFRS associated with a function p : R→ [0, 1]
that gives a probability for each grammar rule, such that the probabilities
of rules with the same left-hand side sum to one. A binary probabilis-
tic LCFRS can be parsed in O(n|3f |) (Kallmeyer, 2010) with CKY-style dy-
namic programming, where f is the fan-out of the grammar. Table 2.2
presents deduction rules for CKY LCFRS parsing. Parsing items have the
form [A,ρA, p] where (A,ρA) is an instantiated nonterminal and p is the
probability of the parsing item. An instantiated nonterminal is associated
with a vector of ranges ρA = 〈〈l1, r1〉, . . . 〈lm, rm〉〉 where dim(A) = m and
each 〈li, ri〉 is the span of a subsequence of the sentence dominated by A.
Likewise, an instantiated grammar rule X(ρX) → A(ρA) B(ρB) is a rule
where variables and terminals are replaced by range vectors. The goal of
the deduction system is to derive the item [S, 〈〈0, n〉〉, p] with the highest
probability.
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2.3.2.4 A Related Formalism: Discontinuous Data-Oriented Parsing

Data-Oriented Parsing (DOP) models are probabilistic grammars that con-
siders arbitrary tree fragments to define the probability of tree, instead of
only local grammar rules. Initially developed for projective constituency
parsing, DOP was adapted to discontinuous constituency parsing by van
Cranenburgh et al. (2011) and subsequent work (van Cranenburgh, 2012;
van Cranenburgh and Bod, 2013; van Cranenburgh et al., 2016). DOP mod-
els perform better than Probabilistic LCFRS parsing, but require heuristics
to make inference time reasonable (van Cranenburgh et al., 2016).

2.4 Conclusion

In this chapter, we have presented chart parsing methods for two types of
syntactic structures: projective constituency trees and discontinuous con-
stituency trees. Discontinuous trees can model directly syntactic phenom-
ena that are difficult to represent with projective trees without an addi-
tional layer of annotation, such as indexed traces. They can be viewed
as derivations from mildly context-sensitive grammars, such as Linear
Context-Free Rewriting Systems. With exact decoding, chart parsers based
on probabilistic grammars can decide grammaticality for an input sen-
tence. However, they have a high polynomial complexity and are imprac-
tical for large-scale robust parsing. In the next two chapters, we focus on
another parsing paradigm: transition-based parsing.
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Transition-based Parsing
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3.1 Introduction

In the transition-based parsing framework, a syntactic tree is decomposed
into a sequence of elementary actions called transitions. The problem of
syntactic parsing is thus reduced to a sequence prediction problem. For
a sequence of tokens wn1 = (w1, . . . , wn), the goal is to predict a sequence
of transitions am1 = (a1, . . . , am), called a derivation that builds the best
syntactic tree for the sentence. Transitions are applied to the state of the
parser, represented by a tuple of data structures. A parsing example in this
framework is illustrated in Table 3.1 with a toy sentence, where the couple
(Stack, Buffer) defines the state of a shift-reduce parser.

40
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Parsing state

Action Stack Buffer

Cats like catnip
Shift =⇒ Cats like catnip

Reduce-Unary(NP) =⇒ (NP Cats) like catnip
Shift =⇒ (NP Cats) like catnip
Shift =⇒ (NP Cats) like catnip

Reduce-Unary(NP) =⇒ (NP Cats) like (NP catnip)
Reduce-Binary(VP) =⇒ (NP Cats) (VP like (NP catnip))

Reduce-Binary(S) =⇒ (S (NP Cats) (VP like (NP catnip)))

Table 3.1: Derivation of a syntactic tree with the shift-reduce algorithm.

3.1.1 Parsing as a Search Problem

Transition-based parsing can be viewed as a search problem, where an
agent aims at achieving a goal by accomplishing a sequence of actions
(Russell and Norvig, 2003). A typical search problem is defined by the
following components:

• An initial state.

• A set of possible actions. Actions are partial functions from states
to states, that can only be performed if some preconditions on input
states are satisfied.

• A goal test that determines whether the current state is a final state,
i.e. whether the agent’s goal is achieved.

• A path cost function that weighs every possible path, generally with
the sum of costs of actions.

In the context of parsing, states are tuples of data structures that
typically contain subtrees. Actions construct new trees by creating new
labelled nodes and arcs. The preconditions on actions ensure the well-
formedness of the syntactic tree being constructed. The goal test simply
checks whether the parser has constructed a syntactic tree that spans every
tokens in the input sentence. Finally, the cost function is based on a
statistical classifier that weighs each possible action in a given state. In
parsing, the size of the search space is exponential in the length of the
sentence, which makes exhaustive search impractical.

Transition-based parsing is an online search problem. Online search
problems are a subtype of search problems, where the agent only observes
its current state, and thus must perform actions to explore the state space
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and find a solution (Russell and Norvig, 2003). Usually, the parser can
only partially observe its current state. It only uses a local region of the
state to construct an input for the classifier. As a result, it is subject to
biases when weighing actions.1

3.1.2 Deterministic Parsing

Given a set of actions A, the size of the search spaceO(|A|k) is exponential
in the number k of actions in a derivation. To reduce the size of the search
space, the set of actions is usually designed to forbid cycles. Preconditions
on actions make sure that there is a bound on the longest possible deriva-
tion, that depends on the length of the sentence. Typically, a transition
system for projective parsing derives a tree in O(n) steps, whereas a sys-
tem for discontinuous parsing can perform at most O(n2) steps, where n
is the length of the sentence.

A complete transition-based parser usually comprises the following
components:

• A transition system defines parsing configurations and a set of
transitions with their preconditions.

• An oracle is an algorithm used to determine the gold derivation
from a tree with a specific transition system (see Chapter 5 for more
precise definitions).

• A statistical model is responsible for giving scores to different deriva-
tions for the same sentence and disambiguating between them. Usu-
ally, the score of a derivation decomposes as the sum of the scores of
actions, which facilitates search for the best tree.

• A search algorithm is used to determine the highest-scoring deriva-
tion.

A transition system consists of a set of states and a set of transitions,
which are partial functions from states to states. In the context of parsing,
states are usually called configurations and defined as tuples containing
partial structures being constructed and unprocessed tokens. A specific
transition system must define:

• Configurations, including special states such as the initial configura-
tion and the final configurations;

1Models based on recurrent neural networks (see Section 4.5.3) address these biases
by constructing features based on the whole parsing state.
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• A finite set A of transitions;

• A boolean function specifying whether transition a ∈ A is allowed
in a configuration c.

Parsing with a transition-system starts with the initial configuration
and consists in deriving new configurations until a final configuration is
reached. Transition systems are non-deterministic, the state space size
is exponential in the size of the sentence to parse. Determinism can
be provided by a set of heuristics designed from linguistic knowledge
(Nivre, 2003). Most of the time though, parsers rely on a multi-class
classifier which scores each possible action in a given configuration and
resort to approximate search algorithms to select the best action sequence.
In Algorithm 2, we present a generic transition-based parsing algorithm,
based on greedy search.

Algorithm 2 High-level transition-based parsing algorithm.
function PARSE(wn1 , f )

. f : weight function (statistical model)
c← INITIAL(wn1 )
while c is not a final configuration do

T ← {a|ISPOSSIBLE(a, c)}
t← argmaxa∈T f(c, a)
c← t(c)

return GETTREE(C) . Recover tree from final configuration

3.2 Transition Systems

Depending on the type of syntactic representations used and their prop-
erties (e.g. projectivity), researchers have proposed several transition sys-
tems.2 Most transition systems for constituency parsing are based on the
shift-reduce algorithm inherited from the theory of compilers (Knuth, 1965).
Early works on natural language parsing extended the LR algorithm to
handle the inherent ambiguity of natural language grammars (General-
ized LR algorithm by Tomita, 1987). Data-driven constituency parsers are
based on Sagae and Lavie (2005), who drew inspiration from classifier-
based dependency parsers that were proposed a couple of years earlier
(Yamada and Matsumoto, 2003; Nivre and Scholz, 2004).

2See Nivre (2008) for an overview of dependency parsing transition systems.



CHAPTER 3. TRANSITION-BASED PARSING 44

(a)

            SENT                 
     ┌───────┴────┬───────────┐   
     NP           VN          │  
 ┌───┴───┐   ┌────┴────┐      │   
DET      NC CLR        V    PONCT
 │       │   │         │      │   
 L'     été  s'      achève   .  

      SENT        
       │           
     VPinf        
 ┌─────┴────┐      
 │          NP    
 │     ┌────┴───┐  
 VN    │        AP
 │     │        │  
VINF   NC      ADJ
 │     │        │  
Lire  page      27

(b)

                              SENT[achève]                        
                      ┌────────────┴───────────────────────────┐   
                SENT:[achève]                                  │  
       ┌──────────────┴────────────────────────┐               │   
    NP[été]                                VN[achève]          │  
 ┌─────┴─────┐                     ┌───────────┴────────┐      │   
DET          NC                   CLR                   V    PONCT
 │           │                     │                    │      │   
 L'         été                    s'                 achève   .  

         SENT@VPinf[lire]                
   ┌────────────┴────────────┐            
   │                      NP[page]       
   │            ┌────────────┴───────┐    
VN[lire]        │                  AP[27]
   │            │                    │    
  VINF          NC                  ADJ  
   │            │                    │    
  Lire         page                  27  

Figure 3.1: Trees from the French Treebank (Abeillé et al., 2003) (a), and
the result of the preprocessing step (b). Summer ends. Read page 27.

In this section, we present standard transition systems for projective
constituency parsing, focusing on the system that we will use in Chap-
ters 5 and 6 (Section 3.2.1). Then, we present discontinuous transition
systems (Section 3.2.2) to which we will compare the SR-GAP system in-
troduced in Chapter 7. Most transition systems can only output a subset
of labelled syntactic trees, usually projective binary trees with a limited
number of unary constituents. In order to predict n-ary trees, it is stan-
dard to preprocess trees in the training set with reversible modifications
so that they satisfy those constraints, and to unprocess predicted trees to
obtain n-ary syntactic trees (Section 3.2.3).

3.2.1 A Lexicalized Shift-Reduce Transition System

In this section, we present a standard lexicalized transition system intro-
duced by Crabbé (2014) that we will use in later chapters (5 and 6). This is a
modified version of the transition system of Sagae and Lavie (2005), with
a mechanism designed to make sure that a derivation for a sentence of
length k is bounded by a function of k. This property is important because
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Input t1[w1]t2[w2] . . . tn[wn]

Axiom 〈ε, t1[w1]t2[w2] . . . tn[wn]〉

Goal 〈A[w], ε〉

SHIFT
〈S, t[w]|B〉
〈S|t[w], B〉

REDUCE-UNARY-X
〈S|s0[h], B〉
〈S|X[h], B〉

REDUCE-RIGHT-X
〈S|s1[h]|s0[h′], B〉
〈S|X[h′], B〉

REDUCE-LEFT-X
〈S|s1[h]|s0[h′], B〉
〈S|X[h], B〉

GHOST-REDUCE
〈S|t[h], B〉
〈S|t[h], B〉

Table 3.2: Lexicalized shift-reduce transition system (Crabbé, 2014) as a
deduction system.

statistical models may be biased towards longer or shorter derivations,
harming comparability between derivations of different lengths. This is-
sue is important in particular when the parser uses a global model (Zhu
et al., 2013).

In what follows, we assume that syntactic trees are binary, and that
the only unary constituents generate preterminals. We also assume that
trees are lexicalized: each constituent is annotated with its lexical head.
The preprocessing steps that are needed to transform the trees accordingly
are described in Section 3.2.3. We illustrate in Figure 3.1 the result of this
transformation for two sentences from the French Treebank.
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3.2.1.1 Set of Transitions

A configuration is defined as a couple 〈S,B〉where S is a stack containing
subtrees and B is a buffer containing tokens. In the initial configuration,
S is empty and B contains the sequence of tokens to be parsed. A
configuration 〈S,B〉 is final iff S contains a single tree rooted by the axiom
and B is empty. Actions are defined as follows:

• SHIFT pops a token from the buffer and pushes it on the stack.

• REDUCE-UNARY-X pops the subtree at the top of the stack, creates
a new unary constituent labelled X with the subtree as its child and
pushes X onto the stack.

• REDUCE-RIGHT-X and REDUCE-LEFT-X pop two subtrees from the
stack, create a new binary constituents with the two subtrees as its
children, choose the lexical head of the right (resp. left) child to be
the lexical head of X, and push X onto the stack.

The transitions are summarized as a deduction system in Table 3.2. In this
table, X[h] denotes a nonterminal X and its head h. The input consists
of tokens w1 . . . wn and their POS tags t1 . . . tn. The symbol | is used for
concatenation, s0 and s1 denote the two topmost elements in the stack.
Finally, A is the root symbol.

3.2.1.2 The Derivation Length Problem

With the set of actions defined above, a derivation for a sentence of length n
has n SHIFTS, n − 1 binary reductions and between 0 and n unary reduc-
tions. As stated above, statistical models used to disambiguate between
possible derivations might be biased towards longer or shorter deriva-
tions. For example, Crabbé (2014) shows that the score of a partial deriva-
tion computed by a perceptron is approximately linear in the number of
actions. As a consequence, the parser may try to maximize the number of
unary reductions when searching for the best derivation.

To solve this problem, Crabbé (2014) introduced a GHOST-REDUCE ac-
tion that has no effect, and added the constraint that each SHIFT action
must obligatorily be followed by either a REDUCE-UNARY-X or a GHOST-
REDUCE action. This constraint ensures that the sum of GHOST-REDUCE
and REDUCE-UNARY-X occurrences in a derivation is exactly n. Conse-
quently, there is exactly 3n − 1 actions in any derivation. We present a
full derivation in Table 3.3 for the binarized tree of Figure 3.1. The tree is
derived in exactly 14 steps (3× 5− 1) since the sentence has 5 tokens.
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Action Stack Buffer

L’1 été2 s’3 achève4 .5

SHIFT =⇒ L’ été2 s’3 achève4 .5

GHOST-REDUCE =⇒ L’ été2 s’3 achève4 .5

SHIFT =⇒ L’ été s’3 achève4 .5

GHOST-REDUCE =⇒ L’ été s’3 achève4 .5

REDUCE-RIGHT-NP =⇒ (NP[2] L’ été) s’3 achève4 .5

SHIFT =⇒ (NP[2] L’ été) s’ achève4 .5

GHOST-REDUCE =⇒ (NP[2] L’ été) s’ achève4 .5

SHIFT =⇒ (NP[2] L’ été) s’ achève .5

GHOST-REDUCE =⇒ (NP[2] L’ été) s’ achève .5

REDUCE-RIGHT-VN =⇒ (NP[2] L’ été) (VN[4] s’ achève) .5

REDUCE-RIGHT-SENT: =⇒ (SENT:[4] (NP[2] L’ été) (VN[4] s’ achève)) .5

SHIFT =⇒ (SENT:[4] (NP[2] L’ été) (VN[4] s’ achève)) .
GHOST-REDUCE =⇒ (SENT:[4] (NP[2] L’ été) (VN[4] s’ achève)) .

REDUCE-LEFT-SENT =⇒ (SENT[4] (SENT:[4] (NP[2] L’ été) (VN[4] s’ achève)) .)

Table 3.3: Derivation with the transition system of Crabbé (2014). For
legibility, lexical heads are indicated by the terminal index instead of the
full word form.

3.2.1.3 Preconditions on Actions

The set of nonterminals for preprocessed trees includes the nonterminals
in the original trees as well as the following two categories of new nonter-
minals:

• Collapsed symbols contain ‘@’ and represent tree fragments made
only of unary rewrites. For example, the symbol SENT@VPinf in
Figure 3.1 represents the two nodes SENT → VPinf. Any symbol
that starts with X@, where X is the root symbol of every tree in
the original treebank is considered to be a possible axiom by the
transition system.

• Temporary symbols are used to binarize an n-ary constituent and
are suffixed by ‘:’. For example, the constituent SENT: in Figure 3.1
is part of a constituent labelled SENT.

A direct consequence of the binarization algorithm (Section 3.2.3) is
that the binarized trees have the two following properties: (i) no node may
have two temporary symbols as children (ii) a temporary symbol X: must
contain in its span the lexical head of the corresponding X constituent.
Figure 3.2 features two trees that cannot have been obtained by the bina-
rization algorithm. In the left-hand tree, a nonterminal has two children
labelled with temporary symbols. In the right-hand tree, the temporary
symbol X: does not span the lexical head of X.

The preconditions on actions both make sure that the predicted binary
trees can be unambiguously unbinarized and that some basic conditions
are satisfied (e.g. impossible to shift if the buffer is empty). The two main
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X

X: X:

X[h]

A[h] X:[b]

B[b] C[c]

Figure 3.2: Impossible binarized trees.

constraints to handle temporary symbols is that it is forbidden to apply a
binary reduction to two temporary symbols, or to derive a configuration
in which the buffer is empty and the two topmost symbols in the stack are
temporary symbols. The parser state must satisfy the following conditions
for a transition to be performed:

• SHIFT

– B is not empty

– the previous action is not SHIFT

• REDUCE-LEFT-X (resp. REDUCE-RIGHT-X)

– s0 (resp. s1) is not a temporary symbol (conditions i and ii
above)

– S has at least 2 elements

– the previous action is not SHIFT

– if B is empty and s2 is a temporary symbol, X must not be a
temporary symbol (condition i above)

– if B is empty and S has 2 elements, X must be an axiom

• REDUCE-UNARY-X

– The previous action is SHIFT

– If the sentence has only one token, X must be an axiom

• GHOST-REDUCE

– The previous action is SHIFT

– The sentence has more than 1 token
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3.2.1.4 Relationship with the Arc-Standard System

Since this transition system predicts lexicalized trees, it constructs simul-
taneously a dependency tree and a constituency tree. The dependency
tree construction is explicit with the binary reductions. If s1 and s0 have
lexical heads h1 and h0, REDUCE-LEFT (resp. REDUCE-RIGHT) produces an
unlabelled dependency arc h1 → h0 (resp. h0 → h1).

In fact the algorithm constructs a dependency tree in the same fashion
as the arc-standard transition system formulated by Nivre (2004)3 In the
arc-standard transition system, a configuration is a triple 〈σ, β,A〉where σ
is a stack, β is a buffer and A is a set of labelled dependency arcs with the
form (governor, label, dependent). Its transitions are defined as follows:

• SHIFT(〈σ, b|β,A〉) = 〈σ|b, β, A〉

• RIGHTl(〈σ|s1|s0, β, A〉) = 〈σ|s1, β, A ∪ {(s1, l, s0)}〉

• LEFTl(〈σ|s0, β, A〉) = 〈σ|s0, β, A ∪ {(s0, l, s1)}〉

With this transition system, if we ignore the dependency labels, the
derivation for the dependency tree encoded in the lexicalized constituency
tree is the following sequence: SHIFT, SHIFT, RIGHT, SHIFT, SHIFT, RIGHT,
RIGHT, SHIFT, LEFT, which is identical to the derivation in Figure 3.2,
modulo the GHOST-REDUCE actions.

3.2.1.5 Related Transition Systems

Since Sagae and Lavie (2005), several variants have been introduced,
which are all based on the same actions (SHIFT, REDUCE-LEFT, REDUCE-
RIGHT, REDUCE-UNARY) but have different strategies to address the issues
of unary constituents and varying derivation lengths.

Zhang and Clark (2009) do not collapse unary constituents during
preprocessing but limit the number of consecutive unary reductions to
three to ensure that the length of a derivation is bounded. Zhu et al. (2013)
use a padding mechanism, with an action called IDLE that can only be
performed if a goal state has been reached. During a beam search, if one
item in the beam has already reached a goal state, it is padded with IDLE
actions until every hypothesis in the beam has also reached a goal state.
Since these actions are scored like any other actions, the scores between
derivations in the beam are more comparable.

3This formulation differs slightly from the formulation usually presented (Nivre,
2008).
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Finally, Mi and Huang (2015) use an approach similar to that of Crabbé
(2014) but more general. At parsing step i, if i is even, the parser can
only SHIFT or perform a binary reduction; if i is odd, the parser can only
perform a unary reduction or an action with no effect. They preprocess
trees to allow unary constituents as long as they immediately dominate
a binary constituent or a preterminal (but not another unary constituent).
This method ensures that any derivation has exactly 4n − 2 steps, and
that different hypotheses are synchronized in the beam. It also requires
a lighter preprocessing, as not all unary constituents have to be collapsed
to single symbols, which alleviates the grammar inflation that typically
results from treebank preprocessing (see Section 3.2.3).

3.2.2 Discontinuous Constituency Parsing Transition Sys-
tems

Transition-based methods for parsing discontinuous constituents were
proposed recently (Versley, 2014a,b; Maier, 2015; Maier and Lichte, 2016).
Previous approaches to data-driven discontinuous constituency parsing
rely either on probabilistic grammars (Section 2.3.2) or on a reduction to
dependency parsing. We briefly review the latter method (Section 3.2.2.1),
before presenting two transition systems for discontinuous constituency
parsing: an easy-first system (Section 3.2.2.2) and a swap-based system
(Section 3.2.2.3).

3.2.2.1 The Reduction to Dependency Parsing Approach

The problem of discontinuous constituency parsing can be reduced to non-
projective dependency parsing by using a reversible transformation from
constituency trees to dependency trees. To avoid loss of information in
the transformation, it is necessary to encode structural information in the
set of labels used in dependency trees. The advantage of this approach
is the ability to use state-of-the-art dependency parsers with rich feature
templates, and to scale easily to full corpora, whereas methods based on
probabilistic grammars usually use inference algorithms that have a high
polynomial complexity and are hardly practical for very long sentences.
The approach based on a reduction to dependency parsing was first
proposed by Hall and Nivre (2008) and notably developed by Fernández-
González and Martins (2015).

In the rest of this section, we present two transition systems for dis-
continuous constituency parsing: EAFI (Easy-first, Section 3.2.2.2) and SR-
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SWAP (shift-reduce-swap, Section 3.2.2.3). They both rely on the same
strategy: using a swap action (Nivre, 2009) to reorder terminals and re-
duce the problem to projective parsing.

3.2.2.2 The Easy-First Transition System

Versley (2014b) introduced EAFI, a transition system for discontinuous
constituency parsing inspired by the easy-first transition system for de-
pendency parsing (Goldberg and Elhadad, 2010a). The easy-first strategy
aims at minimizing error propagation by taking easy attachment decisions
first and delaying the difficult decisions as long as possible.

In this framework, in contrast to other transition systems, parsing is
non-directional. Trees are constructed in a bottom-up fashion. A parsing
configuration 〈L〉 consists of a single list, called pending in the terms of
Goldberg and Elhadad (2010a), that initially contains the sequence of
tokens to be parsed. At each step, the parser chooses one of the following
actions:

• REDUCE-UNARY-X(〈l0 . . . , li−1, li, li+1 . . . ln〉)
= 〈l0 . . . , li−1, X, li+1 . . . ln〉;

• REDUCE-BINARY-X(〈l0 . . . , li−1, li, li+1, li+2 . . . ln〉)
= 〈l0 . . . , li−1, X, li+2 . . . ln〉,

X has li and li+1 as subtrees;

• ADD-LEFT(〈l0 . . . , li−1, li, li+1 . . . ln〉) = 〈l0 . . . , li−1, li+1 . . . ln〉,
li−1 has li as subtree;

• ADD-RIGHT(〈l0 . . . , li−1, li, li+1 . . . ln〉) = 〈l0 . . . , li−1, li+1, . . . ln〉,
li+1 has li as subtree;

• SWAP(〈l0 . . . , li−1, li, li+1, li+2, . . . ln〉) = 〈l0 . . . , li−1, li+1, li, li+2, . . . ln〉.

The REDUCE-BINARY actions also assign the head of the new constituent
based on a head percolation table.4 The SWAP action has the precondition
that the heads h and h′ of li and li+1 are in surface order. This precondition
prevents cycles of useless SWAPS. Parsing terminates when the configura-
tion 〈A〉 is generated, where A is the root symbol.

As each action can be performed at any position in the pending list,
there areO(k·|G|) possible actions, where k is the length of the pending list
and |G| is the number of nonterminal in the underlying grammar. Though

4A head percolation table specifies for each grammar rule X → A B how to find the
lexical head of X.
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               ROOT             
            ┌───┴─────────────┐  
            S                 │ 
      ┌─────┼───┐             │  
      │     VP  │             │ 
 ┌─── │ ────┴── │ ─────┐      │  
PDS VMFIN      PPER  VVINF    $.
 │    │         │      │      │  
Das wollen     wir  umkehren  . 

               ROOT             
            ┌───┴─────────────┐  
            S                 │ 
      ┌─────┴───┐             │  
      S:        │             │ 
      ┌─────┐   │             │  
      │     VP  │             │ 
 ┌─── │ ────┴── │ ─────┐      │  
PDS VMFIN      PPER  VVINF    $.
 │    │         │      │      │  
Das wollen     wir  umkehren  . 

Figure 3.3: Tree from the Tiger treebank and its binarization. We want to
reverse that.

this seems to incur a high computational cost, in practice, as transitions
only modify configurations locally (i.e. in a small node window), the
scores of most actions do not change after a transition. Therefore, only
a small number of features and action scores have to be recomputed after
each parsing step.

Due to the very nature of the strategy, there are a lot of possible
derivations for a single tree. A statistical model is responsible for scoring
actions and determining which actions will be taken first. Thanks to the
ADD-LEFT and ADD-RIGHT actions, the algorithm can derive non-binary
trees, bypassing the issues raised by treebank binarization.

3.2.2.3 The Shift-Reduce-Swap Transition System

The Shift-Reduce-Swap transition system (henceforth SR-SWAP), proposed
by Maier (2015), is an extension of a lexicalized shift-reduce system such as
the one presented earlier (Section 3.2.1, Table 3.2). It relies on the same data
structures: a stack of subtrees and a buffer of tokens. The only addition to
the standard shift-reduce system is a SWAP action defined as follows:

SWAP(〈S|s1|s0, B〉) = 〈S|s0, s1|B〉

that can be performed only if

• s1 is a preterminal;

• B is not empty;

• s1 occurs before s0 in the sentence.
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Transitions Configurations
Stack Buffer

Das wollen wir umkehren .
SHIFT =⇒ Das wollen wir umkehren .
SHIFT =⇒ Das wollen wir umkehren .
SHIFT =⇒ Das wollen wir umkehren .
SHIFT =⇒ Das wollen wir umkehren .
SWAP =⇒ Das wollen umkehren wir .
SWAP =⇒ Das umkehren wollen wir .

RR-VP =⇒ VP[umkehren] wollen wir .
SHIFT =⇒ VP[umkehren] wollen wir .
RR-S: =⇒ S:[wollen] wir .
SHIFT =⇒ S:[wollen] wir .

RL-S =⇒ S[wollen] .
SHIFT =⇒ S[wollen] .

RL-ROOT =⇒ ROOT[wollen]

Table 3.4: Derivation for the tree in Figure 3.3 with SR-SWAP (POS tags are
ignored).

Oracles and Terminal Reordering A derivation example for a discon-
tinuous tree with SR-SWAP is presented in Table 3.4. This is the derivation
given by the oracle described in Maier (2015), which corresponds to a post-
order tree traversal and uses a simple reordering strategy (left reordering),
which is defined as a recursive procedure in Algorithm 3.

There can be several derivations for the same tree, depending on
the reordering strategy (Maier and Lichte, 2016). Alternative reordering
strategies are defined by modifying the condition on line 6 of Algorithm 3.
These can be conditions on the structure, size, or labels of trees (Maier and
Lichte, 2016). The strategy choice may have a substantial effect on parsing
because a good reordering strategy minimizes the length of derivations,
making them easier to learn for a statistical model.

Derivation Lengths The derivation length for a sentence of size n may
widely vary, as a derivation might contain 0 to n unary reductions, and
O(n2) SWAPS and SHIFTS.5 Maier (2015) adopts two strategies to handle

5A swapped terminal must be shifted again later in the derivation. In some cases, the
same terminal must be swapped several times to derive certain trees (see Section 7.4 for
an example).
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Algorithm 3 Left reordering algorithm, adapted from Maier and Lichte
(2016).

1: function REORDER(node)
2: if ISPRETERMINAL(node) then
3: return node
4: s1, s2← SUBTREES(node)
5: . INDEX returns the index of the leftmost preterminal in the yield

of a tree
6: if INDEX(s1) < INDEX(s2) then
7: return concat(REORDER(s1), REORDER(s2))
8: else
9: return concat(REORDER(s2), REORDER(s1))

this issue: the padding strategy of Zhu et al. (2013), presented in Sec-
tion 3.2.1.5, and a variant of SR-SWAP which uses a COMPOUNDSWAPi ac-
tion. This compound action bundles i SWAPS in a single action, which
reduces substantially the length of some derivations.

3.2.3 Preprocessing the Trees

As transition systems derive only trees that satisfy some structural con-
straints (e.g. binary trees), parsers need to resort to reversible algorithms to
preprocess the trees before learning, and post-process the predicted trees
before evaluating them. In this section, we present and discuss standard
preprocessing algorithms.

3.2.3.1 Binarization

Both the lexicalized shift-reduce transition system and the SR-SWAP tran-
sition systems require trees to be binary.6 We present binarization proce-
dures in Algorithm 4. Figure 3.4 illustrates these binarization strategies
for a lexicalized subtree. The simplest binarization algorithm consists in
forming a right-branching (3.4c) or left-branching (3.4d) tree by using ei-
ther BINARIZERIGHT or BINARIZELEFT as the node binarization procedure
(Algorithm 4). These are not suitable for lexicalized transition systems
as they do not represent adequately constituency headedness information
(Figure 3.4b).

In contrast, head-outward binarization (Figures 3.4e and 3.4f) keeps
this information, as every binary constituent corresponds to a bilexical

6Binarization procedures are identical for projective and discontinuous parsing.
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A[h]

B[b] C[c] X[h] D[d] E[e]

(a) Original lexicalized n-ary tree frag-
ment
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(b) Corresponding dependency sub-
tree
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(c) Right-first binarization
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ing left of head)
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B[b] A:[h]

C[c] A:[h]
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X[h] D[d]

E[e]

(f) Head-outward binarization (start-
ing right of head)

Figure 3.4: Four binarization strategies.
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Algorithm 4 Binarization algorithms.
1: function BINARIZE(node = { label, children })
2: for child in children do
3: BINARIZE(child)

BINARIZENODE(node)
4: . BINARIZENODE is one of the following functions
5: function BINARIZELEFT(node = {label, children = first|second|rest})
6: while length(children) > 2 do
7: newnode← CREATENODE(GETTMP(label), [first, second])
8: children← newnode|rest
9: first|second|rest← children

10: function BINARIZERIGHT(node = {label, children = rest|secLast|last})
11: while length(children) > 2 do
12: newnode← CREATENODE(GETTMP(label), [secLast, last])
13: children← newnode|rest
14: rest|secLast|last← children
15: function BINARIZEHEADOUTWARDLEFT(node ={label, children})
16: if length(children) > 2 then
17: headIndex← FINDHEADINDEX(node)
18: if headIndex = 0 then
19: BINARIZELEFT(NODE)
20: else if headindex = length(children) - 1 then
21: BINARIZERIGHT(NODE)
22: else
23: childrenLeft← children[:headIndex+1]
24: childrenRight← children[headIndex:]
25: newnode← CREATENODE(GETTMP(label), childrenLeft)
26: BINARIZERIGHT(newnode)
27: children← newnode|childrenRight
28: BINARIZELEFT(node)
29: function BINARIZEHEADOUTWARDRIGHT(node ={label, children})
30: if length(children) > 2 then
31: headIndex← FINDHEADINDEX(node)
32: if headIndex = 0 then
33: BINARIZELEFT(NODE)
34: else if headindex = length(children) - 1 then
35: BINARIZERIGHT(NODE)
36: else
37: childrenLeft← children[:headIndex]
38: childrenRight← children[headIndex-1:]
39: newnode← CREATENODE(GETTMP(label), childrenRight)
40: BINARIZELEFT(newnode)
41: children← childrenLeft|newnode
42: BINARIZERIGHT(node)
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dependency. For example, the tree fragment (A:[h] B[b] A:[h]) in
Figure 3.4c encodes the dependency arc h → b of the dependency tree
in Figure 3.4b. Head-outward binarization may start either with nodes
that precede the lexical head (Figure 3.4e) or follow it (Figure 3.4f). In
the context of parsing, left-first head-outward binarization seems a better
choice, because it enables the parser to start reducing as soon as the
constituent head is available. Another consequence of this choice is that
the parser is more incremental in the sense of Nivre (2004): the average
length of the stack during a derivation is shorter than it would be with
right-first head-outward binarization.

It has to be noted that even with unlexicalized chart parsers, be they
CFG parsers or LCFRS parsers, using a head-outward binarization algo-
rithm leads to better results than left-first or right-first binarization (Klein
and Manning, 2003; van Cranenburgh et al., 2016). This fact suggests that
the organization of a constituent around a lexical head is an important cue
for parsing, even when it is not explicitly used as a feature by the statistical
model.

If we ignore lexicalization –as do standard evaluators in constituency
parsing– the four binarized structures in Figure 3.4 would yield the same
n-ary tree. The number of possible binarization for a single n-ary con-
stituent is the number of binary trees with n leaves. However, only a few
of those possible binary trees would encode the correct bilexical depen-
dencies.

In the binarization algorithms we have presented, the only temporary
symbol for a nonterminal X is X: despite the fact that temporary con-
stituents do not have the same distribution (A: may rewrite as C X or as A:
D). In other contexts, it is standard to distinguish different temporary sym-
bols according to their context, by using symbols annotated with their k
immediate siblings, k being a bound low enough to avoid an explosion of
the size of the resulting grammar. This process is called order-k horizontal
Markovization (Klein and Manning, 2003). The head-outward algorithm
we presented above is a particular case with k = 0. When k is high enough,
there is a bijection between original trees and binarized trees.

3.2.3.2 Merging Unary Productions

The tree transformation that is required to avoid the unary constituents
that do not produce a preterminal is straightforward: replace each node X
that rewrites as Y (where Y is not a preterminal) by a collapsed node X@Y.
We illustrate this transformation in Figure 3.1 (right-hand side).
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Tiger (train) Projectivized Tiger (train)

original preprocessed original preprocessed

Number of nonterminal symbols 25 112 26a 596
Temporary symbols (types) 0 24 0 22
Temporary symbols (occurrences) 0 343,780 0 378,500
Collapsed symbols (types) 0 63 0 549
Collapsed symbols (occurrences) 0 5,821 0 60,195
Hapaxes 1 22 1 251
Kurtosis 2.5 16.1 2.2 126.5

Table 3.5: Statistics about the symbol distribution differences after tree-
bank preprocessing for two versions of the Tiger treebank.
aA ROOT symbol has been added to each sentence to ensure each tree has
the same root label.

3.2.3.3 Head Annotation

In order to annotate each constituent in a treebank with its lexical head,
the most common approach is to use a head percolation table (Collins,
1999). A head percolation table specifies a set of rules to find the head of a
constituent depending on the grammar rule it instantiates. Such tables are
also used to convert constituency treebanks to dependency treebanks.

Another method, introduced by Crabbé (2015), consists in projecting
dependency arcs from a dependency corpus to a constituency corpus, and
using heuristics to solve ambiguous cases. To do so, the two corpora must
be aligned at the sentence level.

3.2.3.4 Tree Transformations and Grammar Inflation

Both tree transformations, the binarization and the merging of unary
constituents, introduce new symbols: collapsed unary symbols (X@Y@Z),
and temporary symbols (X:). In fact, the number of distinct nonterminals
in the resulting treebank is often much larger than in the original treebank.

To illustrate this, we plotted the symbol distributions before and after
preprocessing in the training sets of two versions of the Tiger treebank.
The first version (Figure 3.5) is the original discontinuous corpus (it is the
TIGERM15 corpus used in Chapter 7). The second version (Figure 3.6)
is a projective treebank automatically converted from the discontinuous
treebank by the SPMRL shared task organizers (Seddah et al., 2013).

In both cases, we observe an explosion of the number of nonterminals
(more than 20 times as many symbols in the projective case, 5 times in the
discontinuous case). In terms of types, the collapsed unaries are the most
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numerous nonterminal symbols (Table 3.5). However, in terms of occur-
rences, the temporary symbols are much more frequent. Both graphs in
Figures 3.5 and 3.6 show a very long tail of collapsed unaries. Indeed, the
distributions of symbols after the preprocessing have a very high kurtosis7

compared to the distributions of symbols before preprocessing. In partic-
ular, a high proportion of new symbols have only a single occurrence in
the preprocessed corpus (20% in the discontinuous case, nearly 50% in the
projective case).

The striking difference in the number of collapsed unary symbols in
both (preprocessed) versions of the same corpus comes from the automatic
projectivization that produces a lot of unary chains (e.g. NP@NP@PP@PP@-
NP@S) as artefacts of discontinuous constituents.8

Since many symbols may be left-headed or right-headed, or found in
unary constituents, the total number of parsing actions exceeds the num-
ber of symbols. The SR-SWAP transition system uses 182 different actions
(types) to derive the discontinuous version of the treebank. The lexical-
ized shift-reduce transition system introduced earlier uses 921 actions to
derive the projective version. Such unbalanced distributions of labels are
hard to learn for a classifier, as it is not likely to infer anything about the
distribution of a symbol from a single occurrence.

Several questions arise from these observations. First of all, the de-
sign of transition systems that do not require binarization would reduce
the number of possible labels and therefore the number of possible ac-
tions, which may make predictions easier. Recent proposals in projective
constituency parsing explored this possibility with different strategies and
obtained very good results (Cross and Huang, 2016b,a; Dyer et al., 2016).
We introduce in Chapter 8 a model that generalizes the approach of Cross
and Huang (2016a) to discontinuous parsing, using the GAP action intro-
duced in Chapter 7 to predict discontinuous constituents. Secondly, the
strategy we presented to handle unary constituents tends to produce a
high number of very rare labels. Alternative strategies would allow the
parser to perform a unary reduction at any time (Sagae and Lavie, 2005),
but it would then need heuristics (e.g. bound on the number of consecu-
tive REDUCE-UNARY) to avoid endless cycles of unary reductions. Finally,
it appears that the choice of tree representations has an even bigger im-
pact. In the case of the Tiger treebank, it seems much more reasonable

7Kurtosis measures the tailedness of a distribution, a high value indicates a high
number of low-frequency items overall.

8To a lesser extent, we observe the same issue for other corpora obtained by conver-
sion, for example the version of the Penn Treebank used for constituency parsing has
been stripped of empty categories, which produces a lot of unary chains.
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Figure 3.5: Symbol distribution in the Tiger treebank before (upper part)
and after (lower part) preprocessing.
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Figure 3.6: Symbol distribution in the SPMRL projectivized version of the
Tiger treebank, before (upper part) and after (lower part) preprocessing.
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to parse discontinuous constituency trees directly. This is a problem we
investigate in Chapter 7.

3.3 Conclusion

This chapter has introduced transition systems for both projective and
discontinuous constituency parsing. It has also highlighted typical issues
in transition-based constituency parsing: the grammar inflation caused by
treebank preprocessing, and the problem of derivation lengths, which may
be both detrimental to a classifier. In the next chapter, we present statistical
models and search algorithms typically used in constituency parsing.
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4.1 Introduction

The transition systems that we have introduced in the previous chapter
may be viewed as non-deterministic finite state machines. As they do
not enforce grammatical constraints (except those related to temporary
symbols), they can derive any labelled tree given a set of labels. In other
words, transition systems massively overgenerate, which is desirable for
robustness, but makes the space of possible trees very large.

To make a transition system deterministic, statistical parsers rely on a
scoring system s that gives a weight for every possible derivation t for a
sequence of tokens x. With such a function, searching for the best tree is
equivalent to solving the following problem:

t̂ = argmax
t∈GEN(x)

s(x, t), (4.1)

where GEN(x) is the set of all possible derivations for a sentence of length
|x|. Equation 4.1 formulates the parsing problem as a structured classifi-
cation problem since both the input x and the output t are structured as
sequences of different lengths. In most cases, the scoring system is a clas-
sifier and the scoring function s decomposes as a sum of scores of actions:

s(x, t) =
K∑
i=1

sl(ci−1, ai) (4.2)

where c0, . . . cK is the sequence of configurations successively obtained
when applying the sequence of actions t = (a1, . . . , aK) to the initial
configuration c0 for the input sentence x. This decomposition enables
the parser to search incrementally for the best derivation as the scores of
partial derivations with the same prefix can be factorized.

In this chapter, we make explicit two aspects of equations 4.1: (i)
decoding: how to solve the equation and (ii) learning: how to define s
and learn its parameters.

First of all, we describe search algorithms to search for the best deriva-
tion (Section 4.2). Then, we discuss how to instantiate the scoring function
s and to learn its parameters. In particular, we focus on the structured
perceptron (Section 4.3), local classifiers (Section 4.4) and on more recent
models based on deep learning (Section 4.5).
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4.2 Searching for the Best Derivation

Given a transition system, a scoring function s and a sentence, weighted
parsing can be cast as a search problem. The search space of the problem
is structured as a tree where each node is a parsing configuration and
each arc is a transition weighted by its cost. Figure 4.1 illustrates the
search space: cxi are configurations and sxi are transition scores. The
root of the tree c0 is the initial configuration. The problem is to find the
highest-weight path from the initial state to a final state (i.e. any terminal
configuration). Before presenting standard search algorithms used in
parsing, we briefly describe the structure of the search space.

4.2.1 Structure of the Search Space

Thanks to the design of the transition system and the preconditions on
actions, the search space is finite. However, the number of states in the
search space grows exponentially with the distance (in number of arcs) to
the root. Under certain conditions on the configuration-scoring function s,
the search space can be factorized as a Directed Acyclic Graph (Huang
and Sagae, 2010).1 In the general case, we defined s as a function of
a whole configuration (and of an action). In practice though, s often
only depends on a local region of a configuration c, namely the topmost
elements of the stack and the buffer. In such a case, the configurations
that are locally identical will be given the same transition scores by s. By
defining equivalent search states as states that are locally identical –and
therefore have the same outgoing scores– and merging them, the search
space becomes a DAG. This factorization makes it possible to use dynamic
programming in order to explore efficiently a greater part of the search
space (Huang and Sagae, 2010; Mi and Huang, 2015), or even perform
optimal search (Zhao et al., 2013; Thang et al., 2015) in a reasonable time.

4.2.2 Search Algorithms

In this section, we describe standard search algorithms used in transition-
based parsing. We use the following notations throughout the section:

1This observation holds for both transition-based dependency parsing (Huang and
Sagae, 2010; Zhao et al., 2013) and constituency parsing (Mi and Huang, 2015; Thang
et al., 2015).
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Figure 4.1: Search space illustration. Each edge is labelled by an action
and its score. In practice, the branching factor is larger and corresponds to
the number of available actions.
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• s(c) denotes the score of a configuration, i.e. the sum of the scores of
the successive transitions required to reach c. It is sometimes referred
to as the prefix score as it is the score of the prefix of a derivation.

• NEXT(c) denotes the set of states adjacent to c.

• K-ARGBEST generalizes the argmax operator to the k arguments with
the highest values in a given set. For example, for a function f
defined as f(a) = 1, f(b) = 0, f(c) = 3, we have

2-ARGBESTe∈{a,b,c}{f(e)} = {a, c}.

1-ARGBEST is the argmax operator.

Moreover, we assume that the transition system uses one of the strategies
described in Section 3.2.1.2 to make sure that derivations have the same
length and avoid a bias towards long or short derivations.

4.2.2.1 Greedy Search

Definition and Complexity Greedy search is the simplest and most
efficient search algorithm. It consists in choosing the single highest scoring
action at each parsing step (function GREEDYSEARCH in Algorithm 5). It
has a complexity in O(m(n)) where m(n) is the bound on the number of
actions for a sentence of size n.2 The efficiency is the main advantage
of greedy search. Nevertheless, it has no guarantee of optimality and is
very sensitive to search error: once a single mistake has been made, the
parser cannot recover. This effect is particularly detrimental to parsing
when the parser has only access to local information and must commit to
a hypothesis before being able to access relevant information. We illustrate
such bias with an analogy with human sentence processing about the
garden path effect.

Locality Biases: Garden Path Effects When searching incrementally,
the parser may need to solve ambiguities without having access to the
relevant information at the time of the decision. This difficulty is similar
to the garden path effect in human sentence processing. The garden
path effect arises when the preferred analysis for the first words of the
sentence becomes ungrammatical once the following token is processed,
and the analysis must be revised. Consider the following sentence: the

2For projective dependency parsing transition systems, m(n) ∈ O(n). For the SR-SWAP
transition system, m(n) ∈ O(n2).



CHAPTER 4. WEIGHTED PARSING: DECODING AND LEARNING 68

government plans to raise taxes were defeated. When hearing the beginning
of the sentence, the listener is likely to parse it as a sentence (analysis 1
below). However, when the next token were is processed, it cannot be
integrated to this analysis. Instead, the processor must revise the analysis
of the beginning of the sentence to obtain a grammatical parse (analysis 2).

1. (S (NP the government) (VP plans to raise taxes)

2. (S (NP the government plans to raise taxes) (VP were defeated))

Such sentences causes processing difficulty for humans, e.g. higher read-
ing times.

This effect is also a fundamental issue in incremental transition-based
parsing, in particular with a greedy search algorithm. When a greedy
parser commits to an analysis, it cannot revise it. In order to alleviate the
locality biases, there are two main approaches:

• Using a more complex search algorithm to explore a greater part of
the search space and be less likely to dismiss the gold analysis at an
early stage of parsing. We describe more elaborate search algorithms
in the next paragraphs.

• Using representations that give a global view on the sentence in
order to better inform parsing decisions, for example bi-RNN models
(Section 4.5.3).

4.2.2.2 Beam Search

Beam search is an approximate breadth-first search algorithm that only
keeps the k best hypotheses at each parsing step (function BEAMSEARCH
in Figure 5). As beam search has a complexity in O(k ·m(n)), linear in the
length of a derivation, it is a very popular choice of search algorithm in
transition-based parsing (Zhang and Clark, 2009; Zhu et al., 2013; Crabbé,
2015; Watanabe and Sumita, 2015; Wang et al., 2015; Maier, 2015, among
many others). The size of the beam k controls the tradeoff between
efficiency and accuracy.

When the scoring function s only depends on a local region of a
configuration, dynamic programming may be used together with beam
search (Mi and Huang, 2015), letting the parser explore a huge part of the
search space while still being fast in practice. Indeed, Huang and Sagae
(2010) and Mi and Huang (2015) report empirical linear time parsing.
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Algorithm 5 Search algorithms for parsing.
1: function GREEDYSEARCH(c) . c: initial state
2: while c is not a goal state do
3: c← argmaxc′∈NEXT(c) s(c

′)

4: return c
5: function BEAMSEARCH(c, k) . k: size of beam
6: B ← {c} . Current beam
7: while ∃c ∈ B st c is not a goal state do
8: H ←

⋃
c∈B{c′ ∈ NEXT(c)}

9: B ← K-ARGBESTc∈H{s(c)}
10: return argmaxc∈B s(c)

11: function BESTFIRST(c)
12: Q← MAXPRIORITYQUEUE()
13: ADD(Q, c, 0)
14: while c← POP(Q) is not a goal state do
15: for c′ ∈ NEXT(c) do
16: ADD(Q, c′, s(c′))

17: return c

Beam search is not suited to unnormalized locally trained models.3

Zhang and Nivre (2012) showed that a locally trained perceptron obtains
its best results with greedy search and that its performance drastically
decreases with the size of the beam. However, beam search may improve
the performance of normalized locally trained models such as the feed-
forward neural network that we present in Section 4.5.2.

4.2.2.3 Best-First Search

The best-first search strategy (function BESTFIRST in Algorithm 5) consists
in exploring the most promising hypotheses first. The parser maintains a
priority queue of search states using their scores as priority keys. At each
step, it removes the best state from the priority queue, expands it to new
candidate states and adds them onto the queue. It returns the first final
configuration extracted from the priority queue.

Best-first search is optimal under the condition that the search space
satisfies the superiority property. This property holds when, for two
states c and c′ ∈ NEXT(c), s(c′) < s(c). In other words, scores should
get worse after each transition. It is the case when s(c) is the sum of the

3See also Section 4.4 for a discussion of local classifiers.
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log probabilities of actions leading to c, for example when the classifier is
a MaxEnt model (Sagae and Lavie, 2006; Mi and Huang, 2015). When the
scoring function is based on an unnormalized model, such as a perceptron,
heuristics can make sure that the search space satisfies the superiority
condition (Thang et al., 2015). In fact, best-first search in a space that
satisfies the superiority condition can be reduced to an instance of Dijkstra
algorithm for finding a shortest path, by trying to minimize −s(c), instead
of maximizing s(c).

A variant of best-first, A∗, uses as priority keys the sum of the state
score and of a heuristic cost. Under certain conditions on the heuristic
cost, A∗ has the same optimality guarantees as best-first search while be-
ing faster as it explores fewer search states. Together with dynamic pro-
gramming, these search algorithms have been used to perform optimal
search in transition-based constituency parsing (Thang et al., 2015). How-
ever, the complexity of exact search is high: O(n3) to O(n6) depending on
the feature templates (Thang et al., 2015).

4.2.3 Interim Conclusion

We have presented algorithms to search for the best tree for a given sen-
tence. In this dissertation, we will focus on fast approximate algorithms,
such as greedy search or, sometimes, beam search. We now turn to the
scoring function s(c) and describe standard statistical models to define it
and learn its parameters.

4.3 A Linear Classifier: the Structured Percep-
tron

The structured perceptron (Collins, 2002) is an algorithm that aims at
learning a linear scoring function s for structured prediction problems.
It is widely used in constituency parsing (Zhang and Clark, 2009; Zhu
et al., 2013; Crabbé, 2014, 2015; Thang et al., 2015, among many others) and
discontinuous constituency parsing (Versley, 2014b; Maier, 2015; Coavoux
and Crabbé, 2017a). The structured perceptron, in contrast to more recent
neural models, is rather fast to train and has much fewer hyperparameters
(essentially the number of iterations and the beam size).

We first introduce the learning algorithm (Section 4.3.1). Then, we de-
scribe how to obtain vector representations of derivations (Section 4.3.2).
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Finally, we discuss how to adapt the learning algorithm when only ap-
proximate inference is available (Section 4.3.3).

4.3.1 The Structured Perceptron Algorithm

The structured perceptron algorithm4 (Collins, 2002) was introduced as an
extension of the perceptron (Rosenblatt, 1958) to the problem of structured
classification. A linear scoring function s has the following formulation:

s(x, y) = w ·Φ(x, y)

where Φ is a feature function (see Section 4.3.2) and w is a parameter
vector. The structured perceptron is an algorithm to estimate w from a
set of training example D = {x(i), y(i)}Ni=1, where each x(i) is a sequence
of (possibly tagged) tokens, and each y(i) is the transition sequence for
deriving the corresponding gold tree.5

Algorithm 6 Global averaged perceptron algorithm.
1: function PERCEPTRONLEARN({x(i), y(i)}Ni=1, Φ, Epochs)
2: k ← 1
3: w(k) ← (0, . . . , 0)
4: for e = 1 to Epochs do
5: for i = 1 to N do
6: ŷ = argmaxy∈GEN(x(i)) w(k) ·Φ(x(i), y)
7: k ← k + 1
8: if ŷ 6= y(i) then
9: w(k) ← w(k−1) + Φ(x(i), y(i))−Φ(x(i), ŷ)

10: else
11: w(k) ← w(k−1)

return 1
k

∑k
i=1 w(i)

The perceptron algorithm (Algorithm 6) iterates several times over the
data (or until convergence). At each step, it makes a prediction for the
current example with the current parameters w(k) and updates w if the
prediction was incorrect.

The function Φ maps the sequence of tokens x(i) and a derivation y
to a real-valued vector (see following section). In the plain perceptron

4Sometimes called global perceptron.
5We assume that y(i) is computed by a deterministic oracle: if there are several gold

derivations for the same tree, the oracle only returns one of them, and solves ambiguity
in a consistent way.
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algorithm, the learner would return w(k). Instead, on the last line of Al-
gorithm 6, it returns the average of every successive set of parameters
1
k

∑k
i=1 w(i). The averaged perceptron usually gives much better gener-

alization in practice. In the case where the data is linearly separable, the
perceptron will converge to 0 error on the training set. However, to avoid
overfitting, it is usually best to stop training before the error on the devel-
opment set starts to increase.

The perceptron algorithm may be viewed as a particular case of stochas-
tic gradient descent (SGD) to optimize the following loss:

L(w;D) =
N∑
i=1

max

{
0, max

y∈GEN(x(i))
{w ·Φ(x(i), y)} −w ·Φ(x(i), y(i))

}
(4.3)

which is known as the structured perceptron loss. This loss is a variant
of the hinge loss used in max-margin classifiers such as Support Vector
Machines (SVMs), that enforces a null margin.

In the following paragraphs, we describe how to define the function
Φ first, and then how to adapt the algorithm in the case of inexact search,
that is in situations where instead of solving argmaxy∈GEN(x(i)) w ·Φ(x(i), y)
on line 6 of the algorithm, ŷ is calculated by approximate search, as is
generally the case in parsing.

4.3.2 Mapping Derivations to Vectors

In order to apply the perceptron to the training data, we need a function
Φ that maps a whole derivation to a real-valued vector that represents it.
The global feature representation Φ decomposes as a sum of local feature
representation Φl:

Φ(x, y) =
K∑
i=1

Φl(ci−1, yi) (4.4)

where ci is the configuration obtained by applying the first i transitions yi1
of y to the sentence x. This decomposition into local feature representation
makes it possible to search incrementally for the best derivation as the
scores of different derivations with the same prefix can be factorized.

The function Φl is said to be local because it only depends on a local
region of a parsing configuration, i.e. on the topmost elements in the stack
and the first elements in the buffer. Each coefficient of Φl(c, y) is valued by
a feature function that specifies that the action to be scored is y and that a
conjunction of conditions is satisfied such as:
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Stack Buffer

s1.c[w]

s1.lc[lw]

s1.wl

s1.rc[rw]

s1.wr

s0.c[w]

s0.lc[lw]

s0.wl

s0.rc[rw]

s0.wr
b0.w b1.w . . .

Example instantiation

ε[ε]

ε[ε]

ε

ε[ε]

ε

SENT:[achève]

NP[été]

l’

VN[achève]

achève
. ε

Figure 4.2: Illustration of the locality of an abstract configuration and a
concrete configuration when deriving the tree in Figure 3.1 (lower left-
hand part).

• Unigram feature function: the nonterminal symbol of the first ele-
ment of the stack (s0) is NP.

• Bigram feature function: the word form at the top of the buffer (b0)
is cat and its POS tag is NC.

A conjunction of conditions aims at capturing feature interactions. These
functions can be arbitrarily complex and focus on any information avail-
able from the configuration. In particular, they could be conditions of the
morphological attributes of tokens when available (“the case of b0 is ac-
cusative”). A practical limit to the complexity of feature functions is the
number of conjoined conditions: due to the sparsity of the n-gram feature
functions when n is too high, standard sets of feature functions only use
up to 4-gram conditions.

In order to specify concisely a set of feature functions to define Φl, it is
customary to describe feature templates. Feature templates are high-level
specifications for a set of feature functions. Most of the time, they are de-
fined as a position (or a conjunction of positions) in a configuration. For
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example, the template s0.c represents N feature function of the form “the
nonterminal at the top of s0 is X” where N is the number of distinct non-
terminals in the treebank and X is a variable for a nonterminal. Similarly,
the template s0.rc&s0.rw&b0.w represents N × V 2 feature functions of the
form “the nonterminal which is the right child of s0 is X, its lexical head is
Y and the word form of b0 is Z”, where V is the size of the vocabulary and
X, Y and Z are variables.

Figure 4.2 introduces notations for local positions in a configuration.
Traditionally, standard feature templates (Zhu et al., 2013) focus on the top
four nodes in the stack (s0 to s3) and on the first four elements in the buffer
(b0 to b3). Zhu et al. (2013) observed that features on the left and right
children of s0 and s1 are also informative. Following Hall et al. (2014),
Crabbé (2015) used additional span features, i.e. features valued by the
tokens at the right and left boundaries of constituents in the stack (denoted
by si.wl and si.wr in Figure 4.2) because the boundaries of constituents
often contain useful cues, such as function words.

Although the type of representation induced by Φl has been very
successful for numerous tasks in Natural Language Processing in general,
they have several limitations that we discuss here. First of all, finding a
good set of feature templates for a task –feature engineering– is generally
a difficult problem. For n atomic pieces of information available in a
configuration, there are n3 potential trigram templates.6 The problem
becomes all the more complex when a lot of different information types
are available, increasing the number of potential atomic features in a
configuration. For example, when the parser has access to morphological
attributes for each token7 (Crabbé, 2015). Although some systematic
feature selection methods may be used (Bawden and Crabbé, 2016), they
are often relatively slow.

Representations based on feature functions are very sparse. Φ typically
has millions of coefficients, but only a handful of non-zero coefficients.
The underlying representation of the lexicon is entirely symbolic: the
lexicon is a set of symbols with no relationship between them. Two
features s0.w = achève and s0.w = termine will be coded on different
dimensions of Φ. Different feature templates with the same value will
also be encoded on different dimensions (for example s0.w = achève
and s0.wr = achève, Figure 4.3). Conjunctions of features might encode
bilexical dependencies but they are very hard to estimate due to data

6A typical set of feature templates contains 40 to 200 templates.
7In the SPMRL dataset (Seddah et al., 2013), depending on the language, annotations

for 7 (German) to more than 20 (Basque) morphological attributes are available.
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Φl(c) = (0, 0, . . . 0, 1, 0 . . . 0, 1, 0 . . . 0, 1, 0 . . . 0, 1, 0 . . . 0, 1, 0 . . . , 0, 0)

s0.c=NP
s0.rc=VN

s0.w=achève
s0.wr=achève

s0.wr=achève & s0.c=SENT:

Figure 4.3: Instantiation of Φ (only a few features are shown).

sparsity. In other words, the lexicon is seen as an unstructured object, that
completely ignores the notion of similarity between symbols.

4.3.3 Training a Structured Perceptron with Inexact Search

The standard training of a structured perceptron requires exact inference
to solve equation 4.1 at each training step. However, although it is possible
to find the highest-scoring derivation in reasonable time under certain
conditions using dynamic programming (Thang et al., 2015), most parsers
use an approximate search algorithm for efficiency (see Section 4.2). Under
approximate inference, the convergence guarantees of the perceptron do
no longer hold.

Let us assume that the parser solves the problem on line 6 of Algo-
rithm 6 with a beam search, which does not provide optimality guaran-
tees. In such a case, the learner might make invalid updates. An invalid
update (Huang et al., 2012) happens when the gold sequence y is the high-
est scoring sequence but was not found by the search algorithm. The pre-
dicted sequence ŷ is such that:

w ·Φ(x, ŷ) < w ·Φ(x, y)

In such a case, the update rule (line 9) will give a bonus to the gold
sequence and a penalty to the predicted sequence, which would not have
happened with exact decoding.

In order to maintain the convergence properties of the perceptron, the
trainer must only do valid updates (Huang et al., 2012). The condition for
a valid update with a predicted sequence ŷ and a gold sequence y is that
w · Φ(x, ŷ) > w · Φ(x, y). In other words, the predicted sequence must
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have a higher score than the gold sequence. A heuristic to make sure that
every update satisfies this condition is the early update strategy (Collins
and Roark, 2004) that consists in making an update on partial sequences
as soon as the gold derivation falls out of the beam. 8

4.4 Structured Prediction with Local Classifiers

Although transition-based parsing is a structured prediction problem,
it can be reduced to an unstructured problem by considering that the
data is not a set of sentence-tree couples, but a set D = {(c(i), a(i))}Mi=1

of configurations and actions (that can be extracted statically from the
treebank using an oracle). In such a case, the representation Φl for a
configuration would not change, nor the form of the scoring function:

s(x, t) =
K∑
i=1

w ·Φl(ci−1, yi) (4.5)

What fundamentally changes with respect to the global perceptron is
the objective function. Instead of trying to optimize the scores of whole
derivations for given sentences, the trainer would optimize the scores of
single actions for given configurations:

L(w;D) =
M∑
i=1

max

{
0,max

a∈A
{w ·Φl(c

(i), a)} −w ·Φl(c
(i), a(i))

}
(4.6)

where A is the set of all possible actions.
The main advantage of local classifiers is that they are faster to train

and easier to implement. However, they suffer a lot from error propaga-
tion and locality biases.9 As they only see gold configurations at training
time, they fail to learn how to behave with noisy configurations, i.e. with
configurations that result from wrong parsing decisions.

There are few works using a local classifier for transition-based con-
stituency parsing (Sagae and Lavie, 2005) since structured classifiers (most
often structured perceptrons) perform much better and are still relatively
fast to train. However, recently, approaches with non-linear classifiers
such as neural networks obtained good results despite these locality bi-
ases (Section 4.5.2.4).

8See Huang et al. (2012) for the theoretical justification for the early update strategy as
well as the description of the max-violation update rule that ensures that every update is
valid.

9A way to improve the training of local classifiers is to let the parser explore the search
space during training. We investigate this method in Chapter 5.
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4.5 Neural Models

This section presents neural models for parsing. Early attempts at parsing
with neural networks date back to the beginning of the 2000s (Mayberry III
and Miikkulainen, 1999; Lane and Henderson, 2001; Henderson, 2003,
2004; Titov and Henderson, 2007). However, these proposals precede
the deep learning tsunami (Manning, 2015) and the popularization of word
embeddings in NLP. They use word representations that limit the full
potential of neural network methods. More recently, Collobert (2011)
introduced a parser based on a cascade of chunkers that used distributed
word representations. Other recent proposals construct compositional
representations of subtrees during parsing (Socher et al., 2010; Stenetorp,
2013; Socher et al., 2013).

We first present the issue of lexical data dispersion in parsing that mo-
tivates the use of neural models (Section 4.5.1). We go on to describe a
simple feed-forward architecture (Section 4.5.2) and a bidirectional recur-
rent neural network model (Section 4.5.3).

4.5.1 Lexical Data Dispersion

An important problem in NLP, and in particular in parsing, is the scarcity
of lexical data. Due to the Zipfian distribution of word forms in textual
data, few (closed-class) word forms are very frequent and most word
forms have very few occurrences, as illustrated by the proportion of
hapaxes in corpora (Table 4.1).

For a parser, it is difficult to infer generalizations about rare words. The
problem is exacerbated in languages with a rich inflectional morphology
as they exhibit a higher type-token ratio and a higher Out-Of-Vocabulary
(OOV) rate. Among the 9 languages in the SPMRL dataset (Seddah et al.,
2013), 6 have an OOV rate (types) higher than 30 percent, whereas it is
only 12.8 for the Penn Treebank. For 5 languages, more than 10% of tokens
in the development set are unknown word forms. The amount of data
about bilexical dependencies is even scarcer.

In order to limitate the consequences of the lexical data sparsity prob-
lem, the choice of representation for words is crucial, in particular, the shift
to vector representations for words and the use of morphological informa-
tion to better represent unknown tokens.
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SPMRL PTB

Arabic Basque French German Hebrew Hungarian Korean Swedish Polish English

Train

Tokens 589,220 96,368 443,113 719,530 128,046 170,141 296,446 76,332 66,778 950,028
Types 36,906 25,136 27,470 77,220 15,971 40,782 85,671 14,100 21,793 44,389
Hapax rate (word types) 41.0 67.1 46.0 58.7 50.9 67.8 69.7 61.7 72.7 46.5

Dev

Tokens 73,932 13,851 38,820 76,704 11,301 29,989 25,278 9,339 8,382 4,0117
Types 12,342 5,551 6,695 15,852 3,175 10,673 12,164 2,689 4,269 6,840
OOV rate (word occurrences) 3.8 18.4 3.2 7.6 9.6 19.9 26.6 11.9 24.8 2.8
OOV rate (word types) 18.5 41.0 16.2 30.9 27.0 48.9 48.2 35.8 47.2 12.8

Table 4.1: Lexical data sparsity in the SPMRL dataset (Seddah et al., 2013)
and the Penn Treebank.

4.5.2 Feed-Forward Neural Networks

In this section, we motivate and describe an instantiation of the scoring
function s as a feed-forward neural network, corresponding to the trans-
position to constituency parsing of the model of Chen and Manning (2014)
for dependency parsing.

The two main differences between this model and a linear discrimi-
native classifier, such as a local perceptron, are (i) that feature templates
are valued by word embeddings, instead of one-hot vectors, and (ii) the
non-linearity added by hidden layers. Neural networks address several
issues related to the sparse representation of configurations Φl identified
in Section 4.3.2:

• Structured lexicon: by using symbol embeddings as the primitive
units to represent a configuration, neural networks make it possible
to exploit information about the similarity between symbols and
thus alleviate the data sparseness problem.

• Feature learning: the hierarchical structure of deep neural networks
aims at learning automatically what feature combinations are infor-
mative for parsing, bypassing the problem of defining complex fea-
ture templates.

• Parameter sharing: the same atomic symbol has a represention that
does not depend on its position in the configuration. The embedding
matrices are shared across positions, which limits data sparseness.

4.5.2.1 Mapping Configurations to Vectors

The representation of a configuration h(0) –the input to the network– is the
concatenation of k embeddings of symbols extracted from the configura-
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tion. The specification of these symbols is determined by unigram feature
templates, i.e. by k distinct typed positions such as those in Figure 4.2. In-
stead of being valued by one-hot vectors, as would be implicitly the case
when using feature functions, these templates are valued by the embed-
ding corresponding to the symbol that occupies the specified position.10

There are as many embedding matrices as there are types of symbol used
to form h(0) (nonterminal, word form, POS tag, morphological attributes,
etc.), and these matrices are parameters of the model, that can either be
initialized randomly or with pretrained embeddings.

4.5.2.2 A Feed-Forward Architecture

The architecture we describe is a local classifier aiming at modelling
P (a|c), the probability distribution of actions given a configuration c.
Given an input vector h(0) computed for a configuration c, the feed-
forward network computes the probability of each possible action with
the following steps:

h(1) = f(W(1) · h(0) + b(1)) (4.7)

h(2) = f(W(2) · h(1) + b(2)) (4.8)

h(o) = Softmax(W(o) · h(2) + b(o)) (4.9)
s(c, a) = logP (a|c) (4.10)

= log h(o)a (4.11)

where W(i) and b(i) are parameters, h(i) are successive layers of the net-
work, f is a non-linear activation function, and the Softmax function nor-
malizes a vector to a distribution with the following operation:

Softmax(v) =
exp(v)∑k
i=1 exp(vi)

The number of non-linear layers and their sizes are hyperparameters of
the model. In practice, a frequent choice is to use two hidden layers as
shown in the equations above. When the score of an action is given by
its log probability, the additive model defined in equation 4.2 still applies.
Assuming the probability of a derivation is the product of the probabilities
of its actions, the parser searches for the highest probability derivation.

10The lookup may be viewed as the product E(t)·es where E(t) is the embedding matrix
for type t and es is a one-hot vector for symbol s of type t, which makes embedding
matrices explicit as parameters of the model.
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4.5.2.3 Objective Function and Training

The feed-forward network we presented in the previous paragraph is a
local model as it sees the data as a set of couples of configurations and
actions D = {(c(i), a(i))}Mi=1. The parameters θ of the model are usually
trained by stochastic gradient descent (SGD)11 to minimize the following
objective function:

L(θ;D) = −
M∑
i=1

logP (a(i)|c(i);θ) (4.12)

4.5.2.4 Discussion

Despite being subject to important locality biases, this architecture can ob-
tain good results in terms of accuracy.12 For example, such models out-
perform structured perceptrons (Coavoux and Crabbé, 2016; Coavoux and
Crabbé, 2016) and can be much faster at test time, since some intermediary
results (for the first hidden layer) can be precomputed in the initialization
step of the parser.

Both the change to symbol embedding representations and the use of
non-linear hidden layers are important for achieving good results. We
show in Coavoux and Crabbé (2015) that a linear model where the output
layer is computed directly from the concatenation of input embeddings
h(0) performed rather poorly. This observation suggests that taking into
account interactions between features, which is done with bigram and
trigram feature functions in a perceptron, is important for achieving good
results and that non-linear hidden layers play this role in neural network
architectures.

In order to extend this feed-forward architecture to a global model,
Weiss et al. (2015) introduced a model for dependency parsing that uses a
pretrained feed-forward neural network, similar to the one we presented,
as a tool to build vector representations for a global perceptron. For a
given configuration c, they use the concatenation [h(1); h(2); h(o)] as the
input of a global perceptron. This model achieved good accuracies in
dependency parsing. We adapted it to constituency parsing and tested it
on the French Treebank and Penn Treebank (Coavoux and Crabbé, 2016).
The results showed that the global perceptron trained with a beam of 16
achieved slightly better accuracy that the feed-forward greedy model, i.e. a

11Or other gradient-descent-based methods.
12This section discusses preliminary results of our PhD research (Coavoux and Crabbé,

2015; Coavoux and Crabbé, 2016).
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much smaller improvement than what was observed by Weiss et al. (2015)
in dependency parsing.

4.5.3 Bidirectional Recurrent Neural Networks

Feed-forward neural networks obtained very good results in dependency
(Chen and Manning, 2014; Weiss et al., 2015) and constituency parsing
(Wang et al., 2015; Coavoux and Crabbé, 2016) but are still subject to
locality biases since the objective function is only defined and optimized
for couples made of a configuration and an action.

To mitigate the effects of locality, two complementary strategies consist
either in using a better search algorithm that explores a larger part of the
search space, or using a global statistical model. For the latter strategies,
different approaches were introduced that are based on a global objective
function. A first approach consists in learning to search during training
(Weiss et al., 2015; Watanabe and Sumita, 2015; Zhou et al., 2015; Andor
et al., 2016). These proposals use either a perceptron loss or a globally
normalized cross-entropy loss, and require beam search at training time.
Another approach aims at conditioning the score of an action on a whole
configuration (Dyer et al., 2015; Kiperwasser and Goldberg, 2016; Cross
and Huang, 2016b) by exploiting the ability of recurrent neural networks
to construct fixed-size vector representations of arbitrarily long sequences.

In this section we describe the scoring model of Cross and Huang
(2016b) that we extend in Chapter 6 to morphological analysis. It models
the probability of a derivation aK1 for a sentence xn1 as:

P (aK1 |xn1 ) =
K∏
i=1

P (ai|ai−11 , xn1 ) (4.13)

The architecture consists in two components that are trained jointly. The
first component is a bidirectional Recurrent Neural Network (bi-RNN)13

encoder that constructs context-aware representation for every token in
the sentence. The second component is very similar to the feed-forward
network presented above, but replaces the symbol embeddings in its input
by the output of the bi-RNN encoder.

13We use RNN as a generic term which includes simple RNN (Elman, 1990) and more
complex types of recurrent cells such as Gated Recurrent Unit (Cho et al., 2014, GRU) or
Long Short-Term Memory Network (Hochreiter and Schmidhuber, 1997, LSTM).
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4.5.3.1 Building Context-aware Embeddings with a Bi-RNN

Motivations The bi-RNN encoder component aims at addressing two is-
sues of the feed-forward model of Section 4.5.2. First of all, the lexical rep-
resentations used by the feed-forward network are static. They only de-
pend on the word form (and possibly its associated symbols, be they POS
tags or morphological attributes), but not on the context. However, the
context of occurrence of a word is important because it may help disam-
biguate ambiguous word forms, or capture information about the proper-
ties of an unknown word form. Secondly, the feed-forward parsing model
has only a bounded view on the buffer, which is particularly detrimental
to parsing when the parser must make decisions before having access to
the relevant information that might be arbitrarily far in the buffer. The bi-
RNN encoder constructs token representations that depends on the whole
sentence. Thus, the whole buffer may be represented by a single vector.

Recurrent Neural Network Encoder A Recurrent Neural Network (RNN)
encoder is a network that constructs fixed size representations of arbitrary
length sequences. The input to an RNN is a sequence of vectors v1, . . . ,vn.
The RNN maintains a state vector si initialized to a parameter vector sinit
and updates iteratively si at each new input vector vi. The simplest RNN
type, Elman’s network (Elman, 1990), uses the following update rule:

si+1 = g(W(r) · si + W(i) · vi + b) (4.14)

where W(r), W(i) and b are parameters for, respectively, the recurrent con-
nections, the input connections and a bias; and g is a non-linear activa-
tion function. Elman’s networks are hard to optimize, due to the vanish-
ing gradient problem (repeated multiplications during backpropagation
makes the gradient either vanish or explode for some state vectors). For
this reason, it is customary to use other RNN cell types designed to avoid
this issue, such as Long Short-Term Memory Networks14 (Hochreiter and
Schmidhuber, 1997, LSTM).

The output of the encoder is the sequence of state vectors s1, . . . , sn.
Each si is the representation of the first i elements of the input sequence.
Thus, an RNN encoder constructs representations for each possible prefix
of the input sequence in O(n). The last state sn represents the whole
sequence.

14We refer the reader to Goldberg (2015) for an overview of RNNs in NLP.
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v1 v2 v3

finit f1 f2 f3

b1 b2 b3 binit

Figure 4.4: Bi-RNN illustration on a three-element sequence.

Bidirectional RNN In order to compute contextual representations for
each token, a bidirectional RNN uses two RNN encoders (with distinct
parameters, but with the same input): a left-to-right RNN computes suc-
cessive forward states f1, . . . , fn and a right-to-left RNN computes succes-
sive backward states bn, . . .b1 (Figure 4.4). The contextual representation
for token i is the concatenation ci = [fi; bi]. A bi-RNN may also be used
to represent a whole sequence instead of each element in the sequence,
for example to compute a character-based representation of a word form
(Ballesteros et al., 2015; Plank et al., 2016). In such a case, we use the con-
catenation of the last forward and backward states [fn; b1] to represent the
whole sequence.

4.5.3.2 Predicting Actions

The computation of a distribution on actions for a given configuration is
very similar to what is done with a feed-forward neural network (Sec-
tion 4.5.2.2). Feature templates specify a list of typed positions in the con-
figuration. These positions correspond either to a nonterminal or to a lex-
ical element. The input to the action classifier h(0) is the concatenation
of nonterminal embeddings and of the contextual embeddings ci corre-
sponding to the lexical elements. We illustrate the instantiation of h(0) for
a full example in Figure 4.5, with the following template set:

{s0.c, s1.c, s0.w, s0.wl, s0.wr, s1.w, s1.wl, s1.wr, s2.wr, b0}

In this template set, b0 and s2.wr are meant to represent, respectively
the whole content of the buffer and the content of the stack beyond
s1. The other templates represent the right corner, left corner and head
element of s1 and s0. This template set is rather small compared to
those typically used with a feed-forward architecture (Chen and Manning,
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                        SENT                                     
                ┌────────┴────────────────────┬───────┬───────┐   
              VPinf                           │       │       │  
 ┌────────┬─────┴─────────────────────┐       │       │       │   
 │       Ssub                         │       │       │       │  
 │    ┌───┴─────┐                     │       │       │       │   
 │    │        Sint                   │       │       │       │  
 │    │   ┌─────┴────┐                │       │       │       │   
 VN   │   NP         VN               │       VN      AP      │  
 │    │   │     ┌────┼───┬────┐       │       │       │       │   
VINF  CS PRO   ADV   V  VPP  VPP     ADV      V      ADJ    PONCT
 │    │   │     │    │   │    │       │       │       │       │   
Dire que rien   n'   a  été  fait toutefois serait excessif   .  

(a) Tree from the French Treebank. Saying that nothing has been done though would
be excessive.

Stack Buffer

s2 s1 s0 b0 b1 b2 b3

VN[Dire]

VINF

Dire

CS

que

Sint[a]

NP[rien]

PRO

rien

VN[a]

VN:[a]

VN:[a]

ADV

n’

V

a

VPP

été

VPP

fait

toutefois serait excessif .

(b) Example configuration from a derivation for the tree in 4.5a.

Template Type Symbol value Vector value

s2.wr lexical Dire c1

s1.c nonterminal CS eCS

s1.w lexical que c2

s1.wr lexical que c2

s1.wl lexical que c2

s0.c nonterminal Sint eSint

s0.w lexical a c5

s0.wl lexical rien c3

s0.wr lexical fait c7

b0 lexical toutefois c8

(c) A feature template set and its instantiation for the configuration in 4.5c. es
is a simple embedding for symbol s. ci is the vector representation of token i
computed by the bi-LSTM.

Figure 4.5: Feature instantiation for bi-RNN parsing.
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2014; Coavoux and Crabbé, 2016). Kiperwasser and Goldberg (2016) and
Cross and Huang (2016a) showed that a minimal template set is generally
informative enough to achieve state-of-the-art accuracies in, respectively,
dependency parsing and projective constituency parsing, thanks to the
quality of bi-RNN representations.

The data consists of a set of couples of sentences and derivations
D = {(x(i), a(i))}Ni=1. The objective function to train this architecture is the
likelihood of full derivations:

L(D;θ) =
N∑
i=1

− logP (a
(i)
1...Ki
|x(i);θ) (4.15)

=
N∑
i=1

Ki∑
j=1

− logP (a
(i)
j |a

(i)
1...j−1, x

(i);θ) (4.16)

4.6 Conclusion

In this chapter, we have presented an overview of decoding techniques
and learning algorithms for transition-based constituency parsing. Transition-
based parsers usually resort to approximate linear time search methods,
such as beam search or greedy search. However, those algorithms are sub-
ject to locality biases. Under certain conditions on the scoring function, a
parser can also rely on dynamic programming to explore a greater part of
the search space, or even perform exact decoding in polynomial time.

After having presented the traditional global perceptron algorithm, we
have discussed motivations for the recent shift towards neural methods.
In particular, the use of symbol embeddings limits the data sparsity prob-
lem and leverages the similarity between symbols encoded in the embed-
ding vector space. Finally, the use of Recurrent Neural Networks to con-
struct global feature representations efficiently addresses the issue of lo-
cality biases of approximate search methods.
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5.1 Introduction

This chapter introduces an algorithm aimed at improving the training
of greedy constituency parsers. Locally trained transition-based greedy
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parsers are subject to inherent locality biases. Due to the locality of feature
extraction, they must often make decisions before having access to the
relevant information that may be arbitrarily far in the buffer. In other
words, they run the risk of committing too early to a specific hypothesis.

Furthermore, early mistakes may have devastating consequences on
the rest of an analysis. During training, the parser learns to predict a gold
action from a gold configuration. At test time, due to error propagation,
it must predict actions from noisy configurations and noisy features, but
had not been prepared to do so, which intensifies error propagation.

There are different strategies to mitigate these effects. In principle, they
are complementary, and their benefits might add up:

• Better search: abandon greedy decoding for beam search. By keep-
ing several hypotheses in the beam, the parser avoids committing
too early to a particular analysis. Yet, it is still possible for the correct
hypothesis to fall out of the beam early.

• Global features: condition the probability of an action on the whole
configuration (Cross and Huang, 2016b,a).

• Non-monotonic transition systems: allow the parser to cancel pre-
vious decisions in some cases. Such systems have been proposed for
dependency parsing (Honnibal et al., 2013; Honnibal and Johnson,
2015; Fernández-González and Gómez-Rodrı́guez, 2017) but never
applied to constituency parsing.

• Learning to search: instead of training the parser only on gold con-
figurations, train it to predict the best action in any likely configura-
tion.

In this chapter, we investigate how to apply the last strategy to constituency
parsing. The learning-to-search approach has been initially developed to
perform structured classification with a locally trained classifier (Daumé
et al., 2009). Instead of seeing the training data as a set of gold configura-
tions with corresponding gold actions, it considers the whole search space
for each sentence. For a single sentence, the training data is generated on
the fly by sampling likely configurations and training the parser to pre-
dict the best possible actions in these configurations. In order to use this
training policy, it is necessary to have a dynamic oracle available, that is a
function able to compute what the best action is in any configuration.

In dependency parsing, dynamic oracles have been proposed for most
transition systems (Goldberg and Nivre, 2012, 2013; Goldberg et al., 2014;
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Gómez-Rodrı́guez and Fernández-González, 2015) and shown to improve
greedy parsing. In constituency parsing though, dynamic oracle training
had not been proposed until recently (Coavoux and Crabbé, 2016; Cross
and Huang, 2016a). Soon after the work presented in this chapter was
published, Cross and Huang (2016a) introduced an unlexicalized transi-
tion system for constituency parsing that does not require binarization, as
well as a dynamic oracle that is provably optimal for F1. In contrast, the
dynamic oracle we introduce in this chapter is designed for a lexicalized
shift-reduce transition. Though we could not prove optimality for our ora-
cle in the general case, it brought similar absolute improvements (≈ +0.3)
as that of Cross and Huang (2016a).

We first motivate the learning-to-search approach in greedy parsing
(Section 5.2). Then, we introduce a dynamic oracle for transition-based
constituency parsing (Section 5.3). Finally, we show that the proposed
oracle improves parsing in a multilingual setting (Section 5.4).

5.2 Training a Parser with an Oracle

In this section, we motivate the use of a dynamic oracle when training
a transition-based parser based on the lexicalized shift-reduce transition
system presented in Section 3.2.1 and on a local statistical model such as
the feed-forward network of Section 4.5.2.2.

5.2.1 Limitations of Static Oracles

The oracle is an important component of a transition-based parser. An
oracle is a function that computes the best action given a parsing configu-
ration and a gold tree. Most of the time, greedy parsers use a static oracle,
that is an oracle that is only defined for gold configuration and that out-
puts a single gold action.

For some transition systems, a single tree may be derived by several
distinct action sequences. In such cases, a static oracle favours only one
of those sequences. The choice between those sequences may have a
significant effect on parsing (Maier and Lichte, 2016), as some sequences
may be easier to learn than others.
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A limitation of static oracles is that the parser only sees gold configu-
rations at training time, that is a tiny region of the search space. Learning
consists in optimizing the likelihood of gold actions:

N∑
i=1

− logP (a(i)|c(i))

where the dataset D = {(a(i), c(i))}Ni=1 is a set of couples of gold configura-
tions and actions extracted statically from the treebank. At test time, the
parser is in a completely different situation. Due to wrong decisions, it
may end up in configurations very different from those it had seen during
training. The situation is analogous to training a parser with gold POS tags
as features and having only access to predicted tags at test time. Parsers
are usually trained on data with predicted tags, to match the evaluation
setting.

The motivation for training the parser on a greater part of the search
space is the same: making the training setting as close as possible to the
test setting. Instead of optimizing only the likelihood of gold actions, the
parser optimizes the likelihood of best actions given any configuration,∑

c∼D

− logP (o(c)|c)

where training examples are drawn from a distribution D of configura-
tions and o(c) is the set of best actions for configuration c. Ideally, D is the
distribution of configurations the parser is likely to encounter at test time.
In practice, D is approximated by sampling paths in the search space for
sentences in the training set. Overall, by training the parser on a greater
part of the search space, we hope to limit error propagation. We need two
components to train a parser on likely configurations in the search space:

• An exploration policy, that is a way to sample likely configurations
in the search space (Section 5.2.2).

• A dynamic oracle: a complete non-deterministic oracle (Goldberg
and Nivre, 2012). A dynamic oracle determines the non-empty set
of best actions for any possible configuration. We define a dynamic
oracle in Section 5.3.

5.2.2 Learning with Exploration

An online trainer iterates several times over each sentence in the tree-
bank, and updates its parameters until convergence. When a static ora-
cle is used, the training examples can be pregenerated from the sentences.
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When we use a dynamic oracle instead, we generate training examples
on the fly, by following the prediction of the parser (given the current pa-
rameters) instead of the gold action, with probability p, where p is a hy-
perparameter that controls the degree of exploration. The online training
algorithm for a single sentence s, with an oracle function o is shown in Al-
gorithm 7. It is a slightly modified version of algorithm 3 from Goldberg
and Nivre (2013), an approach they called learning with exploration.

In particular, since the neural network we used in our experiments is
based on a log-likelihood loss, and not the perceptron loss used in Gold-
berg and Nivre (2013), updates are performed even when the prediction
is correct. When p = 0, the algorithm acts identically to a static oracle
trainer, as the parser always follows the gold transition. When the set of
actions predicted by the oracle has more than one element, the best scor-
ing element among them is chosen as the reference action to update the
parameters of the neural network.1

Algorithm 7 Online training for a single annotated sentence s, using an
oracle function o.

1: function TRAINONESENTENCE(s,θ, p, o)
2: c← INITIAL(s)
3: while c is not a final configuration do
4: A← o(c, s) . set of best actions
5: â← argmaxa fθ(c)a . prediction
6: if â ∈ A then
7: t← â . t: target
8: else
9: t← argmaxa∈A fθ(c)a

10: θ ← UPDATE(θ, c, â, t) . backpropagation
11: if RANDOM() < p then
12: c← â(c) . follow prediction
13: else
14: c← t(c) . follow best action
15: return θ

1Another possibility would have been to reinforce every action in the set predict by o
in such a case.
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Stack: S|(C, l, i)|(B, i, k)|(A, k, j)
Action Preconditions

REDUCE-LEFT/RIGHT-X:, X:∈ NTMP C/∈ Ntmp or j < n
REDUCE-RIGHT-X B/∈ Ntmp

REDUCE-LEFT-X A/∈ Ntmp

Table 5.1: Constraints to ensure that binary trees can be unbinarized. The
setNTMP is the set of temporary symbols and n is the length of the sentence.

5.3 A Dynamic Oracle for Lexicalized Shift-Reduce
Parsing

In this section, we introduce a dynamic oracle for lexicalized shift-reduce
constituency parsing to instantiate the function o used in Algorithm 7.

To compute the best actions to perform in a given configuration, the
oracle relies on a function L(a, c, T ) that calculates the cost of applying
action a in configuration c when the gold tree is T . The correctness of the
oracle depends on the cost function (Goldberg and Nivre, 2013). A correct
dynamic oracle o will have the following general formulation:

o(c, T ) = {a|L(a, c, T ) = min
a′
L(a′, c, T )} (5.1)

The correctness of the oracle is not necessary to improve training. In
theory, the oracle only needs to be ‘good enough’ (Daumé et al., 2009),
as confirmed in the context of dependency parsing by Straka et al. (2015).

The rest of this section is structured as follows. We first introduce some
definitions and notations (Section 5.3.1). We go on to define a cost function
(Section 5.3.2) and an algorithm to compute it (Section 5.3.3) and thus solve
Equation 5.1.

5.3.1 Preliminary Definitions

In this section, we reformulate a lexicalized transition system to introduce
notations that we will use to design the oracle (Section 5.3.1.1). Then,
we define the notion of constituent decomposability (Section 5.3.1.2), a
property of transition systems that is a sufficient condition for computing
efficiently the cost of actions.
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5.3.1.1 Transition System

We use the lexicalized transition system presented in Section 3.2.1. We
reformulate it here to make explicit which constituents are constructed
during a derivation. A configuration c is a triple 〈S, j, γ〉 where j is the
index of the next token in the buffer, S is a stack of constituents, and γ is
the set of constituents constructed so far in the derivation.

Constituents are defined as instantiated nonterminal symbols, i.e. triples
(X, i, j) such that X is a nonterminal and (i, j) are integers denoting its
span. Although in principle, the content of γ could be retrieved from the
stack, we make it explicit to simplify the description of the oracle. The
effects of the transition are defined as follows (we ignore lexicalization):

• SHIFT(〈S, j, γ〉) = 〈S|(wj, j, j + 1), j + 1, γ〉

• REDUCE-LEFT-X(〈S|(A, i, k)|(B, k, j), j, γ〉)
= 〈S|(X, i, j), j, γ ∪ {(X, i, j)}〉

• REDUCE-RIGHT-X(〈S|(A, i, k)|(B, k, j), j, γ〉)
= 〈S|(X, i, j), j, γ ∪ {(X, i, j)}〉

• REDUCE-UNARY-X(〈S|(A, k, j), j, γ〉)
= 〈S|(X, k, j), j, γ ∪ {(X, k, j)}〉

We recall in Table 5.1 the preconditions on actions that make sure that the
predicted tree is well-formed with respect to temporary symbols.

5.3.1.2 Constituent Decomposability

Goldberg and Nivre (2013) identified arc-decomposability, a powerful
property of certain dependency parsing transition systems2 for which we
can easily derive correct efficient oracles. When this property holds, we
can infer whether a tree is reachable from the reachability of individual
arcs, simplifying the calculation of the cost of each transition. We rely
on an analogue property we call constituent decomposability. A set of
constituents is tree-consistent if it is a subset of a set corresponding to
a well-formed tree. A phrase structure transition system is constituent-
decomposable iff for any configuration c and any tree-consistent set of con-
stituents γ, if every constituent in γ is reachable from c, then the whole set is
reachable from c (constituent reachability will be formally defined in Sec-
tion 5.3.2).

2The arc-eager, arc-hybrid, and easy-first transition systems are arc-decomposable, but
the arc-standard system is not.
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There are two main issues when defining a cost function for constituent
parsing. The first is that the F-score measure, typically used to evaluate
predicted trees, is not easily decomposable, in contrast to the Labelled and
Unlabelled Attachment Score (LAS, UAS) used in dependency parsing.
For that reason, we use a proxy metric based on constituent accuracy
instead of F-measure. The second issue is related to temporary symbols,
as they impose some constraints on the parser that make the calculation
of the cost harder. Thus, we treat separately two cases: (i) an ideal case
where we assume that there is no temporary symbols and (ii) the general
case.

In the following paragraphs, we define a cost function (Section 5.3.2).
Then, we introduce an algorithm to compute the cost of actions in an ideal
case where we assume that there is no temporary symbols (Section 5.3.3)
and finally in the general case by resorting to heuristics (Section 5.3.4).

5.3.2 Cost Function

The cost function we use ignores the lexicalization of the symbols, both for
the sake of simplicity and because standard evaluation metrics are only
based on non-lexicalized constituents. Hence, we assume that there is a
single binary reduction type called REDUCE-X. We define the cost function
in several steps. First of all, we define a cost function for a predicted tree
with respect to a gold tree (Section 5.3.2.1). Then, we use it to define a cost
function for individual actions (Section 5.3.2.2).

5.3.2.1 Cost for a Tree

We adopt a representation of trees as sets of constituents. For example,
the tree in Figure 5.1, where nodes are annotated with their spans, is
represented by the set:

{(S,0,7), (NP,0,3), (NP:,1,3), (VP,3,7), (VP:,3,5),

(VP,5,7), (VP,6,7)}

The transition system constructs incrementally a set of constituents: every
REDUCE action (unary or binary) adds a new constituent to γ. We define
the cost of a predicted set of constituents γ̂, with respect to a gold set γ∗

as the number of constituents in γ∗ which are not in γ̂ penalized by the
number of predicted unary constituents which are not in the gold set:

Lr(γ̂, γ∗) = |γ∗ − γ̂|+ |{(X, i, i+ 1) ∈ γ̂ st (X, i, i+ 1) /∈ γ∗}| (5.2)
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S0...7

NP0...3

DT

A0...1

NP:1...3

NN

record1...2

NN

date2...3

VP3...7

VP:3...5

VBZ

has3...4

RB

n’t4...5

VP5...7

VBN

been5...6

VP6...7

VBN

set6...7

Figure 5.1: Binarized tree from the Penn Treebank annotated with spans
(punctuation removed).

The first term penalizes false negatives and the second one penalizes
unary false positives. Since the number of binary constituents in γ∗ and γ̂
depends only on the sentence length n, binary false positives are implicitly
taken into account by the first term.

We illustrate the cost calculation for a tree in Table 5.2. In this example,
the quantity |γ∗− γ̂| is 2 as the parser failed to predict (NP, 0, 1) and (VP, 1,
4), and |{(X, i, i+1) ∈ γ̂ st (X, i, i+1) /∈ γ∗}| evaluates to 1, as the predicted
unary constituent (NP, 2, 3) is a false positive. Therefore, the predicted set
of constituents has cost 3.

5.3.2.2 Cost for a Transition

The cost function in Equation 5.2 is easily decomposable (as a sum of costs
of transitions) whereas F1 measure is not.

The cost of a transition and that of a configuration are based on con-
stituent reachability. The relation c ` c′ holds iff c′ can be deduced from
c by performing a transition. Let `∗ denote the reflexive transitive closure
of `. A set of constituents γ (possibly a singleton) is reachable from a con-
figuration c iff there is a configuration c′ = 〈S, j, γ′〉 such that c `∗ c′ and
γ ⊆ γ′, which we write c γ.
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Gold Prediction
S

NP

w0

VP

w1 NP

w2 w3

S

VP

w0 w1

NP

NP

w2

w3

γ∗ = { (S, 0, 4), (NP, 0, 1),
(VP, 1, 4), (NP, 2, 4) }

γ̂ = { (S, 0, 4), (VP, 0, 2),
(NP, 2, 3), (NP, 2, 4) }

Table 5.2: Dynamic oracle cost calculation for a tree (artificial example).

The cost of an action a for a configuration c is the cost difference
between the best tree reachable from a(c) and the best tree reachable from
c:

Lr(a, c, γ∗) = min
γ:a(c) γ

L(γ, γ∗)− min
γ:c γ

L(γ, γ∗)

By definition, for each configuration, there is at least one transition
with cost 0 with respect to the gold parse. Otherwise, it would entail
that there is a tree reachable from c but unreachable from a(c), for any
a. Therefore, we reformulate equation 5.1:

o(c, γ∗) = {a|Lr(a, c, γ∗) = 0} (5.3)

Actions with a cost of 0 are actions that maintain the reachability of at
least one of the best trees. We illustrate the computation of the cost of
transitions in Table 5.3. After two SHIFTS, there are three gold reachable
constituents. Performing another SHIFT maintains reachability for the
three constituents, whereas performing a reduction with the two tokens in
the stack jeopardizes the reachability of (VP, 1, 4), because this constituent
is not compatible with (X, 0, 2).

In transition systems, the grammar is left implicit. A reduction of two
nodes X and Y to Z may be performed even though the grammar rule Z
→ X Y does not appear in the treebank. Nevertheless, there are constraints
related to temporary symbols. These constraints make it difficult to test the
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Configuration: 〈(w0, 0, 1)|(w1, 1, 2), 2, ∅〉

Gold reachable set Action cost

Now { (S, 0, 4), (NP, 2, 4), (VP, 1, 4) }
After SHIFT { (S, 0, 4), (NP, 2, 4), (VP, 1, 4) } 0
After REDUCE-X (any X) { (S, 0, 4), (NP, 2, 4) } (VP, 1, 4) 1

Table 5.3: Cost of transitions from a given configuration, with respect to
the gold tree in Figure 5.2 (left-hand side).

reachability of constituents. For this reason, we instantiate two transition
systems. We call SR-TMP the transition system formulated above that
enforces the constraints in Table 5.1, and SR-BIN, the same transition
system without any of such constraints. SR-BIN assumes an idealized case
where the grammar contains no temporary symbols, whereas SR-TMP is
the actual system we use in our experiments.

In Section 5.3.3, we derive a correct dynamic oracle for SR-BIN. In
Section 5.3.4, we present heuristics to use the oracle with SR-TMP.

5.3.3 Finding 0-Cost Actions

SR-BIN transition system provides no guarantees that predicted trees are
unbinarizable. The only condition for a binary reduction to be allowed is
that the stack contains at least two symbols. If so, any nonterminal in the
grammar could be used. In such a case, we can define a simple necessary
and sufficient condition for constituent reachability, which makes it very
easy to find 0-cost actions.

5.3.3.1 Constituent Reachability

Let γ∗ be a tree-consistent constituent set, and c = 〈S, j, γ〉 a parsing
configuration, such that:

S = (X1, i0, i1) . . . (Xp, ip−1, i)|(A, i, k)|(B, k, j)

A binary constituent (X,m, n) is reachable iff it satisfies one of the follow-
ing three conditions:

1. (X,m, n) ∈ γ

2. j < m < n
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3. m ∈ {i0, . . . ip−1, i, k}, n ≥ j and (m,n) 6= (k, j)

The first two cases are trivial and correspond respectively to a constituent
already constructed and to a constituent spanning words which are still in
the buffer.

In the third case, (X,m, n) can be constructed by performing n−j times
the transitions SHIFT (possibly with some in-between REDUCE-UNARY),
and then a sequence of binary reductions ended by a reduction to X . As
the index j in the configuration is non-decreasing during a derivation, the
constituents whose span end is smaller than j are not reachable if they
are not already constructed. For a unary constituent, the condition for
reachability is straightforward: a constituent (X, l − 1, l) is reachable from
configuration c = 〈S, j, γ〉 if one of these conditions holds:

1. (X, l − 1, l) ∈ γ

2. l > j

3. l = j and c = SHIFT(c′) (the last action is SHIFT)

Algorithm 8 Oracle algorithm for SR-BIN.
1: function ORACLE(c = 〈S|(A, i, k)|(B, k, j), j, γ〉, γ∗)
2: if c = SHIFT(c′) then . Last action was SHIFT
3: if (X, j − 1, j) ∈ γ∗ then
4: return {REDUCE-UNARY-X}
5: if ∃n > j, (X, k, n) ∈ γ∗ then
6: return {SHIFT}
7: if (X, i, j) ∈ γ∗ then
8: return {REDUCE-X}
9: if ∃m < i, (X,m, j) ∈ γ∗ and (X,m, j) is reachable then

10: return {REDUCE-Y,∀Y }
11: return {a|a is a possible action}

5.3.3.2 Constituent Decomposability

SR-BIN is constituent decomposable. In this paragraph, we show why this
holds. Reasoning by contradiction, let us assume that every constituent
of a tree-consistent set γ∗ is reachable from c = 〈S|(A, i, k)|(B, k, j), j, γ〉
and that γ∗ is not reachable (contraposition). This entails that at some
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point during a derivation, there is no possible transition which maintains
reachability for all constituents of γ∗. Let us assume c is in such a case.
If some constituent of γ∗ is reachable from c, but not from SHIFT(c), its
span must have the form (m, j), where m ≤ i. If some constituent of
γ∗ is reachable from c, but not from REDUCE-X(c), for any label X , its
span must have the form (k, n), where n > j. If both conditions hold, γ∗

contains incompatible constituents (crossing brackets), which contradicts
the assumption that γ∗ is tree-consistent.

5.3.3.3 Computing the Cost of a Transition

The conditions on constituent reachability makes it easy to compute the
cost of a transition a for a given configuration c = 〈S|(A, i, k)|(B, k, j), j, γ〉
and a gold set γ∗:

• The cost of a SHIFT is the number of constituents not in γ, reachable
from c and whose span ends in j.

• The cost of a binary reduction REDUCE-X is a sum of two terms. The
first one is the number of constituents of γ∗ whose span has the form
(k, n) with n > j. These are no longer compatible with (X, i, j) in
a tree. The second one is one if (Y, i, j) ∈ γ∗ and Y 6= X , and zero
otherwise. It is the cost of mislabelling a constituent with a gold
span.

• The cost of a REDUCE-UNARY-X is zero if (X, j − 1, j) ∈ γ∗ and one
otherwise.

Algorithm 8 is derived from these observations.

5.3.4 An Oracle for SR-TMP

We now turn to the SR-TMP system. When there are constraints on the
REDUCE actions (Table 5.1), the conditions for constituent reachability for
SR-BIN do not hold any longer. The consequence is that Algorithm 8 is not
correct for SR-TMP.

In Figure 5.2, we give an illustration of a prototypical case in which Al-
gorithm 8 will fail. The constituent (C:, i, j) is in the gold set of constituents
and could be constructed with REDUCE-C:. Since the third symbol in the
stack is the temporary symbol D:, the reduction to C:, another temporary
symbol, will jeopardize the reachability of (C,m, j) because reductions are
not possible when the two symbols at the top of the stack are temporary



CHAPTER 5. PARSING WITH A DYNAMIC ORACLE 100

Configuration stack Gold tree

S|D:m,i|Ai,k|Bk,j

Cm...j

Dm...i C:i...j

Ai...k Bk...j

Figure 5.2: Difficult case for SR-TMP. Due to the temporary symbol
constraints enforced by SR-TMP, the algorithm in Figure 8 will fail on this
example.

symbols (Table 5.1). The best course of action is a reduction to any non-
temporary symbol, so as to keep (C,m, j) reachable. Note that in this case,
the cost of REDUCE-C: cannot be smaller than that of a single mislabelled
constituent. Labelling errors are local, whereas structural errors may have
global consequences.

In fact, this example shows that the constraints inherent to SR-TMP
makes it non constituent-decomposable. In the example in Figure 5.2, both
constituents in the set {(C,m, j), (C:, i, j)}, a tree-consistent constituent set,
are reachable. However, the whole set is not reachable, as REDUCE-C:
would make (C,m, j) unreachable.

In dependency parsing, several exact dynamic oracles have been pro-
posed for non arc-decomposable transition systems (Goldberg et al., 2014),
including systems for non-projective parsing (Gómez-Rodrı́guez et al., 2014).
These oracles rely on tabular methods to compute the cost of transitions
and have (high-degree) polynomial worst case running time. Instead, to
avoid resorting to more computationally expensive exact methods, we
adapt Algorithm 8 to the constraints involving temporary symbols using
the following heuristics:

• Prefer correct structure to correct labelling. If the standard oracle
predicts a reduction, make sure to choose its label so that every
reachable constituent (X,m, j) ∈ γ∗ (m < i) is still reachable after
the transition. Practically, if such a constituent exists and if the third
symbol on the stack is a temporary symbol, then do not predict a
temporary symbol.

• Avoid false positives. When reductions to both temporary symbols
and non-temporary symbols have cost zero, only predict temporary
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symbols. A non-temporary symbol corresponds to a constituent in
the unbinarized tree, whereas a temporary symbol does not. There-
fore, predicting a non-temporary symbol would decrease precision
on n-ary constituents.

Algorithm 9 is the resulting oracle based on these heuristics. It is the
oracle we use in our experiments.

Head Choice In some cases, namely when reducing two non-temporary
symbols to a new constituent (X, i, j), the oracle must determine the head
position in the reduction (REDUCE-RIGHT or REDUCE-LEFT). We use the
following heuristic: if (X, i, j) is in the gold set, choose the same head
position; otherwise, predict both REDUCE-RIGHT-X and REDUCE-LEFT-X
to keep the non-determinism.

Algorithm 9 Dynamic oracle algorithm (SR-TMP).
1: function ORACLE-TMP(c = 〈S|(C, l, i)|(A, i, k)|(B, k, j), j, γ〉, γ∗)
2: if c = SHIFT(c′) then . Last action was SHIFT
3: if (X, j − 1, j) ∈ γ∗ then
4: return {REDUCE-UNARY-X}
5: if ∃n > j, (X, k, n) ∈ γ∗ then
6: return {SHIFT}
7: if A and B are temporary symbols then
8: return {SHIFT}
9: if (X, i, j) ∈ γ∗, X non-temporary then

10: return {REDUCE-X}
11: if (X, i, j) ∈ γ∗, X temporary then
12: if C is temporary and ∃m < i, (Y,m, j) ∈ γ∗ is reachable then
13: return {REDUCE-Z| Z non temporary }
14: return {REDUCE-X}
15: if ∃m < i, (X,m, j) ∈ γ∗ and (X,m, j) is reachable then
16: if C is temporary then
17: return {REDUCE-Z| Z non temporary }
18: return {REDUCE-Y|Y temporary }
19: return {a|a is a possible action}
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5.4 Experiments

The experiments we conducted aimed at assessing whether the dynamic
oracle training improved parsing. We compare two experimental settings.
In the ‘static’ setting, the parser is trained only on gold configurations; in
the ‘dynamic’ setting, we use the dynamic oracle and the training method
in Algorithm 7 to explore non-gold configurations.

Before discussing the results (Section 5.4.2) we briefly present our
experimental protocol (Section 5.4.1).

5.4.1 Experimental setting

5.4.1.1 Datasets

We used both the SPMRL dataset (Seddah et al., 2013) and the Penn Tree-
bank (Marcus et al., 1993) to assess the effect of the dynamic oracle over
a static oracle, and to compare the resulting parser with other published
results. The SPMRL dataset contains constituency treebanks for nine lan-
guages: Arabic, Basque, French, German, Hebrew, Hungarian, Korean,
Polish and Swedish. In these treebanks, each token is annotated with a
language-specific number of morphological attributes, such as case, num-
ber, tense, mood, in addition to standard POS tags. These attributes have
been shown to be very important for parsing (Björkelund et al., 2013; Crabbé,
2015). Languages with a rich inflectional morphology are more subject to
lexical data sparsity, because a single lexeme may usually appear with lots
of different word forms in the corpus. Since the corpora typically exhibit
high out-of-vocabulary rates, morphological attributes provide important
information.

The POS tags and morphological attributes were predicted using MAR-
MOT (Mueller et al., 2013), with 10-fold jackknifing for the training cor-
pora. For the SPMRL dataset, the head annotation was carried out with
the procedures described in Crabbé (2015), using the alignment between
dependency treebanks and constituency treebanks. For English, we used
Collins’ head annotation rules (Collins, 1999).

5.4.1.2 Classifier: Feed-Forward Neural Network

Feature Templates We used the feed-forward network described in Sec-
tion 4.5.2 with a single hidden layer. The input to the network is a con-
catenation of embeddings of symbols extracted from the configuration.
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Nonterminals

s0.ct s0.cl s0.cr s1.ct s1.cl s1.cr s2.ct

Tokens

s0.wt.form s0.wl.form s0.wr.form s1.wt.form s1.wl.form s1.wr.form s2.wt.form
s0.wt.tag s0.wl.tag s0.wr.tag s1.wt.tag s1.wl.tag s1.wr.tag s2.wt.tag
s0.wt.m∀m ∈M s1.wt.m∀m ∈M
b0.tag b1.tag b2.tag b3.tag
b0.form b1.form b2.form b3.form
b0.m∀m ∈M b1.m∀m ∈M

s2.ct[s2.wt] s1.ct[s1.wt]

s1.cl[s1.wl] s1.cr[s1.wr]

s0.ct[s0.wt]

s0.cl[s0.wl] s0.cr[s0.wr] b1 . . . b4

︸ ︷︷ ︸
stack

︸ ︷︷ ︸
buffer

Table 5.4: Specification of the input to the neural network as feature
templates (upper part). Schematic representation of a configuration (lower
part).

The complete list of templates is presented in Table 5.4. Each type of sym-
bol has its own embedding matrix. The types include nonterminals, word
forms, POS tags, and any of the available morphological attributes (repre-
sented by the set M in the table).

Every embedding was initialized randomly (uniformly) in the interval
[−0.01, 0.01]. Word embeddings have 32 dimensions, tags and nonterminal
embeddings have 16 dimensions. The dimensions of the morphological
attributes depend on the number of values they can have (Table 5.5). When
a feature template addresses an empty position in a configuration, for
example b0.form when the buffer is empty, it is valued by a special vector
whose coefficients are learned parameters. Finally, the hidden layer has
512 units.

Training Recall that a hyperparameter p controls the probability to fol-
low the parser’s prediction when training on a sentence, instead of fol-
lowing the best action. The value of p may have a significant effect on the
training of the parser: if p is too high, the gradient descent may converge
too slowly. If p is too low, the training accuracy can be very high in the first
iterations, which prevents the exploration of the search space. In order to
avoid these two extreme situations, for the ‘dynamic’ setting, we trained
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Number of possible values ≤ 8 ≤ 32 > 32

Dimensions for embedding 4 8 16

Table 5.5: Size of morphological attributes embeddings.

‘static’ and ‘dynamic’ setting ‘dynamic’ setting

learning rate α iterations k p

{0.01, 0.02} {0, 10−6} [1, 24] {8, 16} {0.5, 0.9}

Table 5.6: Hyperparameters. α is the decrease constant used for the
learning rate (Bottou, 2010).

every other k sentence with the dynamic oracle and the other sentences
with the static oracle. This method, used by Straka et al. (2015), allows
for high values of p, without slowing or preventing convergence. It is also
more stable than training only with the dynamic oracle.

We used several hyperparameters combinations (see Table 5.6). For
each language, we present the model with the combination which maxi-
mizes the development set F-score. We used the Averaged Stochastic Gra-
dient Descent (Polyak and Juditsky, 1992) algorithm to minimize the neg-
ative log likelihood of the training examples. We shuffled the sentences in
the training set before each iteration.

5.4.2 Results

In this section, we discuss the effect of the dynamic oracle (Section 5.4.2.1),
and the combined effect of beam search and dynamic oracle training
(Section 5.4.2.2).

5.4.2.1 Effect of the Dynamic Oracle

Results for English are shown in Table 5.7. The use of the dynamic oracle
improves the F-score by 0.4 on the development set and 0.6 on the test
set. The resulting parser, despite using greedy decoding and no additional
data, is fairly accurate. For example, it compares well with the span-based
model of Hall et al. (2014), and is much faster. Current state-of-the-art
methods (Cross and Huang, 2016a; Liu and Zhang, 2017a) are based on bi-
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Dev F1 (EVALB) Method Decoding tokens/sec

Static (this work) 88.6 transition, neural greedy
Dynamic (this work) 89.0 transition, neural greedy

Test F1 (EVALB)

Hall et al. (2014) 89.2 chart, CRF CKY 12
Petrov et al. (2006) 90.1 chart, PCFG-LA CKY 169
Durrett and Klein (2015)† 91.1 chart, neural CRF CKY -
Zhu et al. (2013)† 91.3 transition, perceptron beam=16 1,290
Crabbé (2015) 90.0 transition, perceptron beam=8 2,150
Wang et al. (2015)† 89.4 transition, neural beam=8 -
Sagae and Lavie (2006) 85.1 transition, MaxEnt greedy -
Cross and Huang (2016a) 91.3 transition, bi-LSTM greedy -
Liu and Zhang (2017a) 91.8 transition, bi-LSTM greedy -

Static (this work) 88.0 transition, neural greedy 3,820
Dynamic (this work) 88.6 transition, neural greedy 3,950

Table 5.7: Results on the Penn Treebank (Marcus et al., 1993). † Uses
clusters or word vectors learned on unannotated data.

LSTM models that compute global features, mitigating the locality biases
of greedy search.

For the SPMRL dataset, we report results on the development sets and
test sets in Table 5.8. The metrics take punctuation and unparsed sentences
into account (Seddah et al., 2013). We compare our results with the SPMRL
shared task baselines (Seddah et al., 2013) and several other parsing mod-
els. The model of Björkelund et al. (2014) is based on a product of PCFG-
LA grammars and a discriminative reranker, together with morphologi-
cal features and word clusters learned on unannotated data. Durrett and
Klein (2015) use a neural CRF based on CKY decoding algorithm, with
word embeddings pretrained on unannotated data. Fernández-González
and Martins (2015) use a parsing-as-reduction approach, based on a de-
pendency parser with a label set rich enough to reconstruct constituent
trees from dependency trees. Finally, Crabbé (2015) uses a structured per-
ceptron with rich morphological features and beam search decoding. Both
Crabbé (2015) and Björkelund et al. (2014) use MARMOT-predicted mor-
phological tags (Mueller et al., 2013), as is done in our experiments.

Our results show that, despite using a very simple greedy inference
and being strictly supervised, our base model (static oracle training) is
competitive with other single parsers on this dataset (excluding the recent
bi-LSTM parsers).
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Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

Decoding Development F1 (EVALBSPMRL)

Durrett and Klein (2015)† CKY 80.68 84.37 80.65 85.25 89.37 89.46 82.35 92.10 77.93 84.68
Crabbé (2015) beam=8 81.25 84.01 80.87 84.08 90.69 88.27 83.09 92.78 77.87 84.77

Static (this work) greedy 80.25 84.29 79.87 83.99 89.78 88.44 84.98 92.38 76.63 84.51
Dynamic (this work) greedy 80.94 85.17 80.31 84.61 90.20 88.70 85.46 92.57 77.87 85.09

Test F1 (EVALBSPMRL)

Björkelund et al. (2014)† 81.32∗ 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.12

Berkeley (Petrov et al., 2006) CKY 79.19 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.18 78.53
Berkeley-Tags CKY 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 80.89
Durrett and Klein (2015)† CKY 80.24 85.41 81.25 80.95 88.61 90.66 82.23 92.97 83.45 85.09
Crabbé (2015) beam=8 81.31 84.94 80.84 79.26 89.65 90.14 82.65 92.66 83.24 84.97
Fernández-González and Martins (2015) - 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 (84.22)

Static (this work) greedy 79.77 85.91 79.62 79.20 88.64 90.54 84.53 92.69 81.45 84.71
Dynamic (this work) greedy 80.71 86.24 79.91 80.15 88.69 90.51 85.10 92.96 81.74 85.11

Dynamic (this work) beam=2 81.14 86.45 80.32 80.68 89.06 90.74 85.17 93.15 82.65 85.48
Dynamic (this work) beam=4 81.59 86.45 80.48 80.69 89.18 90.73 85.31 93.13 82.77 85.59
Dynamic (this work) beam=8 81.80 86.48 80.56 80.74 89.24 90.76 85.33 93.13 82.80 85.64

Table 5.8: Results on development and test corpora of the SPMRL dataset.
Metrics are provided by evalb spmrl with spmrl.prm parameters
(http://www.spmrl.org/spmrl2013-sharedtask.html).
†Use clusters or word vectors learned on unannotated data.
∗Björkelund et al. (2013).

Furthermore, we observe that the dynamic oracle improves training
by up to 0.6 F-score (averaged over all languages). The improvement
depends on the language. For example, Swedish, Arabic, Basque and
German are the languages with the most important improvement. In
terms of absolute score, the parser also achieves very good results on
Korean and Basque, and even outperforms the reranker of Björkelund
et al. (2014) on Korean.

5.4.2.2 Combined Effect of Beam Search and Dynamic Oracle

Although initially, dynamic oracle training was designed to improve pars-
ing without relying on more complex search methods (Goldberg and Nivre,
2012), we tested the combined effects of dynamic oracle training and beam
search decoding. In Table 5.8, we also provide results with beam search
decoding with the models trained in the ‘dynamic’ setting. The transition
from greedy search to a beam of size two brings an improvement compa-
rable to that of the dynamic oracle. Further increase in beam size does not
seem to have any noticeable effect, except for Arabic. These results show
that the effects of dynamic oracle training and beam decoding are comple-
mentary and suggest that a good tradeoff between speed and accuracy is
already achieved in a greedy setting or with a very small beam size.

http://www.spmrl.org/spmrl2013-sharedtask.html
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5.5 Conclusion

In this chapter, we have introduced a dynamic oracle algorithm for lexical-
ized constituency parsing. We used the dynamic oracle to train a greedy
parser to learn how to search by letting it explore the search space. Ex-
periments have shown that the dynamic oracle training improves parsing
over a static oracle consistently for almost every dataset we used.
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6.1 Introduction

This chapter addresses the issue of the interfaces of phrase structure pars-
ing. We focus on two interfaces: inflectional morphology and functional
structure.
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Morphological information is very important for constituency parsing.
In the case of languages with a rich inflectional morphology, tagsets are
often very large, and structured into a coarse part-of-speech tag and a set
of morphological attributes (such as tense, mood, case). For the SPMRL
dataset for example, there are from 7 morphological attributes (German) to
24 (Basque). Adding this information as input to a parser is very beneficial
to parsing (Björkelund et al., 2013; Crabbé, 2015).

The most common approach to use morphological information in pars-
ing is the pipeline approach: the output of a morphological tagger is used
by the parser as input features (Crabbé, 2015; Björkelund et al., 2013). This
method works well in practice. For example, Crabbé (2015) reports an ab-
solute improvement of 2.2 % F1 in average on the SPMRL dataset, thanks
to the use of morphological features.

Yet, the pipeline approach has limitations. First, resorting to an exter-
nal tagger can be costly. Secondly, the pipeline is prone to error propa-
gation. Although it is possible to keep some ambiguity by providing the
k-best analyses from the external tagger to the parser (Bohnet et al., 2013;
Mi and Huang, 2015), most works use only the best single morpholog-
ical analysis, preventing interaction between structural information and
morphological information. Finally, designing feature templates when a
lot of morphological attributes are available is a difficult problem, given
the number of possible combinations (Crabbé, 2015).1 In this chapter,
we address jointly morphological analysis and parsing. In order to con-
struct representations suitable both for parsing and tagging, we incorpo-
rate character-based embeddings in the architecture, as was done in de-
pendency parsing (Ballesteros et al., 2015) and POS tagging (Santos and
Zadrozny, 2014; Labeau et al., 2015; Plank et al., 2016).

The grammatical functions of the constituents (e.g. subject, object) are
rarely predicted by constituency parsers, and ignored by the standard
evaluator (EVALB), in contrast with dependency parsing where functional
labels are part of the evaluation. However, this information is generally
available in treebanks and might be useful both for parsing and its applica-
tions. For example, subject and object NPs do not have the same properties
nor the same distributions (in English, subjects NP are more likely to be
shorter and to rewrite as a pronoun). Such linguistic knowledge has been
used successfully with annotated PCFG (Klein and Manning, 2003; Petrov
et al., 2006). On the other hand, the prediction of functional tags is im-
portant for, e.g. extracting a predicate argument semantic structure from
the syntactic tree. Depending on the annotation guidelines, the fact that

1At least for linear classifiers, neural networks being less subject to this issue.
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                      SENT                          
          ┌────────────┼─────────┬───────────────┐   
          │            │       NP-SUJ            │  
          │            │    ┌────┼───────┐       │   
        NP-OBJ         VN   │    │       AP      │  
   ┌──────┼──────┐     │    │    │       │       │   
 ADVWH    P      NC    V   DET   NC     ADJ    PONCT
   │      │      │     │    │    │       │       │   
Combien   d'   étages ont  les tours  jumelles   ?  

Figure 6.1: Tree from the French Question Bank (Seddah and Candito,
2016). The French Question Bank follows the same annotation guidelines
as the French Treebank. How many floors do the twin towers have?

an NP is a subject or an object cannot be inferred from the tree structure.
In the French Treebank annotation style, for example, subject and object
NPs are both sibling nodes of the verbal nucleus, as illustrated in the tree
in Figure 6.1. Seddah and Candito (2016) noticed that phrase structure is
rather easy to recover on the French Question Bank, but that functional
labels are hard to predict, due to word order variations. Depending on
whether they took into account functional labels during evaluation, they
observed an 18 F1 difference. Thus, functional labelling is challenging, in
particular in sentences with non-canonical word order.

In this chapter, we introduce a neural network architecture based on
multitask learning to model interactions between constituency syntax and
two of its important interfaces: morphology and functional labelling. Our
objectives are two-fold. At training time, we use morphological and
functional labels as an additional training signal to improve constituency
parsing. At test time, our model is also able to output a morphological
analysis and a functional label for each token, thus providing a more
complete syntactic analysis than a single parser.

We first introduce the framework of Multitask Learning (MTL, Sec-
tion 6.2). In Section 6.3 we present an MTL neural architecture for joint
parsing and tagging. In Section 6.4, we evaluate our model on the SPMRL
dataset.

6.2 Multitask Learning

Multitask learning is a transfer learning method introduced by Caruana
(1997) that aims at improving the generalization ability of a classifier for
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(a) Single-task learning.

(b) Multitask learning.

Figure 6.2: Single-task learning vs multitask learning.
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H

A B

Best representation

Figure 6.3: Representations learned by multitask learning (Caruana, 1997).
H is the representation search space.

a target task by using an additional training signal from a related task,
sometimes called auxiliary task.

When used with neural network classifiers,2 multitask learning usually
works by learning, often in parallel, several tasks with shared representa-
tions (Figure 6.2). In the case of single task learning (6.2a), the two tasks
with the same input are completely distinct. Instead, in a multitask learn-
ing setup, the two tasks share hidden layers as well as the parameters to
compute them from the inputs (6.2b).

Consider a main task A and a related auxiliary task B, with their
respective loss functions LA and LB, sets of parameters θA and θB, and
datasets DA and DB. In a single task setting, θA ∩ θB = ∅, and the two
loss functions are optimized separately. In contrast, in a multitask setting,
θA ∩ θB 6= ∅, and the objective function L jointly optimizes task A and B:

L(DA, DB;θ) = α · LA(DA;θA) + β · LB(DB;θB) (6.1)

where α and β are hyperparameters. Usually, the trainer samples a task at
each stochastic training step to optimize either LA or LB.

Parameter sharing works as an inductive bias: in order to fit task A,
the network will prefer a hypothesis that learns a good representation for
task B. Improvements in generalization may come from different effects
(Caruana, 1997):

• Regularization: the term LB added to the objective function pre-
vents overfitting to task A by constraining the set of hypotheses.

• Data amplification: the data from task B might contain information
useful for task A not available in the dataset for task A.

2Multitask learning can also be used with other types of classifiers, e.g. linear classi-
fiers. See Ruder (2017) for an overview.
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token morphology function

POS tag mood number person tense subcat gender

Combien ADVWH NA NA NA NA int NA mod
d’ P NA NA NA NA NA NA det
étages NC NA p NA NA c m obj
ont V ind p 3 pst NA NA root
les DET NA p NA NA def NA det
tours NC NA p NA NA c f suj
jumelles ADJ NA p NA NA qual f mod
? PONCT NA NA NA NA s NA ponct

Table 6.1: Word label matrix for a full sentence.

• Eavesdropping: a feature useful for task A but hard to learn, might
be easy to learn when learning task B. In such cases, task A eaves-
drops on the feature representation learned by task B in the shared
layers.

• Representation bias: The optimizer will learn representations that
are at the intersection of good representations for task A and good
representations for task B (Figure 6.3). The auxiliary tasks add a bias
in the search for suitable representations.

6.3 A Multitask Learning Architecture for Pars-
ing and Tagging

In this section, we introduce a parser based on the standard lexicalized
transition system already described in Chapter 3. We focus on the formu-
lation of a scoring function which models jointly parsing, full morpholog-
ical analysis and functional labelling at the word level.

The architecture is motivated by the fact that the sentence bi-LSTM of
parsers (Cross and Huang, 2016b) is very similar to a tagging architecture
(Plank et al., 2016). The full architecture is illustrated in Figure 6.4. In
what follows, we assume that, at training time, each token wi is associated
with a vector of typed symbolsMi = (Mi,1,Mi,2, . . . ,Mi,m). The word-level
labels for a single sentence form a matrix M = [M1; . . . ;Mn], as illustrated
in Table 6.1.

The objective of our architecture is to model both

p(M = (M1,M2, . . . ,Mm)|wn1 ;θt),
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the probability of every label for every token in the sentence and

p(T |wn1 ;θp),

the probability of a syntactic tree T conditioned on the whole sentence.
The first term decomposes as

p(M|wn1 ;θt) =
n∏
i=1

m∏
j=1

p(Mi,j|wn1 ;θt)

under the assumption that labels are independent. The second term is
defined as the probability of the sequence of actions a = (a1, a2, . . . ak)
used to construct T :

p(T |wn1 ;θp) = p(ak1|wn1 ;θp)

=
k∏
i=1

p(ai|ai−11 , wn1 ;θp)

The two models are based on a common representation computed with
shared parameters θs = θp ∩ θt 6= ∅. We first introduce a hierarchical
bi-LSTM model used to build a common representation with parameters
θs, then we present the models to compute respectively the distributions
p(Mi,j = · |wn1 ;θt) and p(ai = · |ai−11 , wn1 ;θp).

In contrast with the model presented in Chapter 5, this statistical model
is a global model: at each parsing step, the probability of an action is
conditioned on the whole sentence and the whole sequence of previous
actions.

6.3.1 A Shared Hierarchical Bidirectional LSTM Encoder

The shared component of the architecture consists of a hierarchical bi-
LSTM encoder that computes context-aware vector representations for
each word in the sentence.

A single character is represented by a character embedding. A word
form w is represented by the concatenation of a word embedding w and
of the output of a single layer word-level bi-LSTM encoder:

c = [LSTMf (w); LSTMb(w)].

A sentence-level bi-LSTM encoder uses the representations [w; c]i at each
position i in the sentence to construct context-aware representations d

(1)
i

for each token. All these representations and the corresponding parame-
ters (word embeddings, character embeddings, bi-LSTM parameters) are
shared across all tasks.
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Aux task input 

Parsing input

tokeni-1 char-bi-lstm
(tokeni-1) 

tokeni char-bi-lstm
(tokeni) 

tokeni+1 char-bi-lstm
(tokeni+1) 

……

a1 aj aA
…… ……Aux-task

 output

a1 aA aAaj aja1

Figure 6.4: Deep bi-LSTM encoder with auxiliary tasks supervised at the
first layer.

6.3.2 Tagging Component

We connect the representation d
(1)
i of each token to as many softmax

output layers as there are labels to predict. The distribution for each typed
Mi,j of token wi is defined as:

p(Mi,j = ·|wn1 ;θt) = Softmax(W
(j)
t · d

(1)
i + b

(j)
t ) (6.2)

where W
(j)
t and b

(j)
t are parameters for label j.

6.3.3 Parsing Component

A second bi-LSTM layer uses the sequence [d
(1)
1 ,d

(1)
2 , . . . ,d

(1)
n ] as input

and computes higher-level representations [d
(2)
1 ,d

(2)
2 , . . . ,d

(2)
n ]. Then, to

represent a configuration, we extract typed features from the stack and
buffer. The features used in practice are illustrated in Table 6.5. They
consist of the left and right corners and the heads of constituents in the
stack, as well as the labels of the first three constituents in the stack, and the
first element in the buffer. Types are either nonterminal symbols or tokens.
The nonterminal features are valued by an embedding. The token features
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are valued by the corresponding representations d
(2)
i . The concatenation

of these valued features forms a vector h(0) that is input to a feed-forward
neural network with a softmax output layer that computes a distribution
over possible actions:

h(1) = f(W(1)
p · h(0) + b(1)

p ) (hidden layer)

h(2) = f(W(2)
p · h(1) + b(2)

p ) (hidden layer)

p(ai = · |ai−11 , wn1 ;θp) = Softmax(W(3)
p · h(2) + b(3)

p ) (output layer)

where W
(l)
t and b

(l)
t are parameters and f is a non-linear activation func-

tion.
In practice, the number of hidden layers for the feed-forward network

and the choice of an activation function are hyperparameters. In our
experiments, we used a network with 2 hidden layers, as presented above,
and a rectifier (ReLU: x 7→ max{0, x}) as the activation function.

Several variants of this multitask architecture are possible (number of
layers for the sentence level bi-LSTM). In particular, it is possible to share
the two layers of the sentence-level bi-LSTM between the tagger and the
parser, instead of just the first layer. Supervising different tasks at different
levels of the hierarchical neural net has shown benefits in previous works
(Søgaard and Goldberg, 2016).

6.3.4 Objective Function and Training

To train the model, we optimize the negative log-likelihood of the data.
The loss function for a single sentence wn1 , with the corresponding gold
sequence of actions ak1 and gold labels Mn

1 is defined as:

L(ak1, w
n
1 ,M

n
1 ;θ) = −

k∑
i=1

log p(ai|ai−11 , wn1 ;θp)−
n∑
i=1

m∑
j=1

log p(Mi,j|wn1 ;θt)

where θ = θt ∪ θp. The first term is the objective function for the parser
and the second term is the objective function for the tagger. The loss for the
whole dataset is the sum of L for every sentence in the dataset. Although,
we assume that each sentence has gold annotations for every task (parsing,
morphological analysis, functional labelling), it is also possible to use a
different dataset for each task.
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Parser configuration:

s1 CATs2 CAT s0 CAT

b0RC RC RCLCLC headhead
Parsing input ,

Template set: s0.CAT, s0.LC, s0.RC, s0.head, s1.CAT, s1.LC, s1.RC, s1.head, s2.CAT, s2.RC,
b0

Figure 6.5: Feature templates for bi-RNN parsing. s and b respectively
address symbols in the stack and the buffer.

Input Auxiliary tasks

TOK+CLSTM token, character bi-LSTM
TOK+CLSTM+M token, character bi-LSTM morphology
TOK+CLSTM+M+D token, character bi-LSTM morphology, functional labels

TOK token
TOK+MMT token, predicted morphology
TOK+MMT+D token, predicted morphology functional labels

Table 6.2: Summary of models.

6.4 Experiments

The experiments we conduct have several objectives. First, we assess to
what extent the tagging auxiliary tasks can improve constituency parsing.
Secondly, we evaluate the accuracy of the output of the auxiliary tasks.
Finally, we compare our multitask model to a pipeline approach, where
predicted morphological attributes are given as the input to the parser at
test time.

In a first set of experiments, we use the model we described with a
character-level bi-LSTM, and either no auxiliary task (TOK+CLSTM), mor-
phological analysis as an auxiliary task (TOK+CLSTM+M) or morphological
analysis and functional labelling as auxiliary tasks (TOK+CLSTM+M+D).

In a second set of experiments, the input to the sentence-level bi-LSTM
does not include a character-based embedding. Instead, it is either a stan-
dard word-embedding (TOK), or the concatenation of a word embedding
and embeddings for each available morphological tag (TOK+MMT). For
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example, the token étages from the sentence above will be represented as
the concatenation [wétages; wg=m; wnumber=p; wtense=NA; wmood=NA]. Finally, the
last model uses the same input as TOK+MMT, but predicts functional la-
bels as an auxiliary task (TOK+MMT+D). The different parameters of these
models are summed up in Table 6.2.

6.4.1 Datasets

We evaluate our models on the SPMRL dataset (Seddah et al., 2013).
This dataset contains constituency and dependency treebanks aligned
at the word level for 9 morphologically rich languages. Each token is
annotated with a part-of-speech tag and a number of language-specific
morphological attributes (case, mood, tense, number).

In the first set of experiments, where morphology is predicted as an
auxiliary task, we use the gold tags and morphological annotations at
training time. At test time, the only input to the parser is a sequence of
word forms.

In the second set of experiments, we use the POS and morphological
tags predicted by MARMOT (Mueller et al., 2013) for training and pars-
ing.3 MARMOT is a CRF tagger designed to output a structured morpho-
logical analysis for each token, and to use external morphological lexicons.

As the transition system is lexicalized, we need to know the head of
each constituent in order to extract the gold derivation. The constituency
trees were head-annotated using the method of Crabbé (2015). This method
uses the alignment between constituency and dependency trees to deter-
mine the head of each constituent and uses heuristics to solve mismatch
cases. Finally, we performed a head-outward binarization with an order-
0 Markovization (see Section 3.2.3.1), and collapsed unary productions to
single nodes, except those that produce preterminals.

6.4.2 Protocol

We trained every model with Averaged Stochastic Gradient Descent (Polyak
and Juditsky, 1992) and shuffled the training set before each iteration. In a
single stochastic optimization iteration, we optimize successively the two
terms of the objective function in equation 6.2. First, we compute the gra-
dient of θt with respect to L, and update it accordingly. Then we do the
same operation with θp. We used the same learning rate for both sets of
parameters. Between these two steps, we assign POS tags to tokens, as

3We used the tags available on MARMOT website.
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Hyperparameters Values

Optimization

Iterations {4, 8, 12, . . . 28, 30}
Initial learning rate {0.01, 0.02}
Learning rate decay constant 10−6

Hard gradient clipping 5.0
Gaussian noise σ 0.01
Parameter initialization Xavier initialization
Embedding initialization Uniform([−0.01, 0.01])

Output layers

Number of hidden layers 2
Size of hidden layers 128
Activation rectifiers

Word-level bi-LSTM

Depth 2
Size of LSTM states 128
Word embeddings 32
Nonterminal embeddings 16
Morphological embeddingsa 4, 8 or 16b

Char-level bi-LSTMa

Depth 1
Size of LSTM states 32
Character embeddings 32

Table 6.3: Hyperparameters.
a When applicable.
b Depending on the number of possible values for this attribute.
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Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

Experimental conditions Development F1 (EVALBSPMRL)

TOK+CLSTM 82.97 86.88 81.97 87.91 88.43 89.91 86.12 92.13 77.08 85.93
TOK+CLSTM+M 83.03 87.93 82.0 88.32 89.42 89.98 86.71 92.8 78.4 86.51
TOK+CLSTM+M+D 83.04 87.93 82.19 88.7 89.64 90.52 86.78 93.23 79.14 86.8

TOK 80.97 76.28 79.93 85.52 85.82 81.88 72.97 82.8 72.95 79.9
TOK+MMT 82.75 88.25 82.5 88.5 90.31 91.22 86.53 93.53 79.39 87.0
TOK+MMT+D 83.07 88.35 82.35 88.75 90.34 91.22 86.55 94.0 79.64 87.14

Hall et al. (2014) 78.89 83.74 79.40 83.28 88.06 87.44 81.85 91.10 75.95 83.30
Durrett and Klein (2015) 80.68 84.37 80.65 85.25 89.37 89.46 82.35 92.10 77.93 84.68
Coavoux and Crabbé (2016) 80.94 85.17 80.31 84.61 90.20 88.70 85.46 92.57 77.87 85.09

Experimental Conditions Test F1 (EVALBSPMRL)

TOK+CLSTM+M+D 82.92 87.87 82.1 85.12 89.19 90.95 85.89 92.67 83.44 86.68
TOK+MMT+D 82.77 88.81 82.49 85.34 89.87 92.34 86.04 93.64 84.0 87.26

Björkelund et al. (2014) 81.32a 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.12

Table 6.4: Parsing results on development and test corpora (SPMRL eval-
uator). aBjörkelund et al. (2013).

they are considered nonterminals once they are shifted onto the stack and
used as features by the parser.4

We optimized hyperparameters on the development sets for each lan-
guage with a grid search over a very small set of models (16 per language).
The full list of hyperparameters is in Table 6.3. The initial states of bi-LSTM
are learned parameters. Following Kiperwasser and Goldberg (2016), we
stochastically replace a token in the training set by an UNKNOWN pseu-
doword with a probability pw = α

#{w}+α , where #{w} is the raw frequency
of w in the training set and α = 0.8375, as suggested by Cross and Huang
(2016a). In the development and test sets, the unknown words are re-
placed by the same pseudoword. This replacing does not affect the char-
acter bi-LSTM that has still access to the sequence of characters of the un-
known word. Finally, we used greedy decoding for all our experiments.

6.4.3 Results and Discussion

We first discuss the effect of the auxiliary tasks on constituency parsing,
then we compare our best models to other published results on this
dataset.

4The usual policy for training a multitask architecture is to sample a task randomly
at each stochastic step. Instead, we consider all tagging auxiliary tasks as if they
were only one task, in order to decrease training time, as running the forward and
backward propagation on the sentence-level bi-LSTM is the most expensive part of
training. However it is likely that other training policies might be better adapted to this
architecture.
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6.4.3.1 Effect of Tagging Auxiliary Tasks

Morphological Analysis Parsing results are presented in Table 6.4. We
first discuss results on the development sets. The comparison between
TOK+CLSTM and TOK shows that the simple addition of the character-
level bi-LSTM improves parsing by a large margin (+ 6 on average). The
most important improvements are for Basque, Hungarian, Korean (i.e.
agglutinative languages) and Polish.

Adding the morphological auxiliary tasks improves the model by 0.6
on average (TOK+CLSTM vs TOK+CLSTM+M), which shows that adding
morphological supervision during training to constrain representations to
be good predictors of morphological information has a beneficial effect for
parsing.

Still, the parser that models morphology as auxiliary tasks (TOK+CLSTM+M)
underperforms the one that uses predicted morphological tags as input
(TOK+MMT). Across languages, the performance difference between the
two models can be partly explained by the difference in tagging accuracy
(Table 6.5). The TOK+CLSTM+M model matches MARMOT tagging results
for several languages, but is not as good overall. MARMOT uses morpho-
logical lexicons as an additional source of information, which might be
crucial for languages such as Basque.

Functional Labelling Finally, results show that in the two settings (TOK+CLSTM+M
vs TOK+CLSTM+M+D and TOK+MMT vs TOK+MMT+D) the additional aux-
iliary task of predicting the dependency labels brings a small but consis-
tent improvement (+0.3 and +0.1 on average). We conclude that functional
information is useful for constituency parsing.

6.4.3.2 Comparison with Existing Results

Constituency Trees On the test sets (Table 6.4), we compare our models
to the parser of Björkelund et al. (2014) that is based on a product of PCFGs
with latent annotations, and a discriminative reranker using morphologi-
cal features. Our TOK+CLSTM+M+D model outperforms their reranker by
0.5 F1, despite using a greedy decoding and requiring no other inputs than
the raw sequence of tokens at test time.

Labelled Dependency Trees As our model is lexicalized, we can extract
unlabelled dependency trees from its output. As a byproduct of the
functional label auxiliary tasks, we can obtain labelled dependency trees
instead. Thus, we also evaluate the output of our parser against the
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Arabic Basque Frenchc German Hebrewc Hungarian Koreanc Polishc Swedishc

Experimental Conditions Decoding Development results – POS-Taggingd

TOK+CLSTM+M greedy 97.66 95.7 97.58 98.39 95.71 98.06 94.42 97.02 96.88
MARMOTa CRF+lexicons 97.38 97.02 97.61 98.10 97.09 98.72 94.03 98.12 97.27

Test results – UAS/LAS

TOK+CLSTM+M+D greedy 81.5/78.7 75.8/68.9 88.0/83.1 67.1/64.1 84.5/75.3 74.5/69.5 89.9/87.3 88.2/80.0 86.3/76.5
TOK+MMT+D greedy 81.3/78.6 76.8/71.2 87.8/83.5 67.2/64.7 85.8/77.3 75.9/72.0 89.6/87.5 89.6/83.1 86.7/78.5
Ballesteros et al. (2015) greedy 86.1/83.4 85.2/78.6 86.2/82.0 87.3/84.6 80.7/72.7 80.9/76.3 88.4/86.3 87.1/79.8 83.4/76.4

Best publishedb ens+reranker 88.3/86.2 90.0/85.7 89.0/85.7 91.6/89.7 87.4/81.7 89.8/86.1 89.1/87.3 91.8/87.1 88.5/82.8

Table 6.5: Dependency parsing and tagging results.
aUses external morphological lexicons (Björkelund et al., 2013).
bEither Björkelund et al. (2013) or Björkelund et al. (2014).
cLanguages with few head mismatches between the dependency and the
constituency corpora (Crabbé, 2015).
dTagging is evaluated with the dependency treebanks (the tagsets used in
the constituency treebanks might differ).

dependency corpora using the evaluator provided with the SPMRL shared
task (Seddah et al., 2013).

Dependency results are shown in Table 6.5. Our parser outperforms
Ballesteros et al. (2015), the best published results with a greedy parser, on
5 languages out of 9. Unsurprisingly, these languages correspond to the
corpora, identified by Crabbé (2015), which contain very few mismatch
cases between the dependency and the constituency treebank. This result
is in keeping with Cer et al. (2010) who have shown that constituency
parsers are very good at recovering dependency structures for English.
Our experiments confirm this finding in a multilingual setting where
labelled dependency trees are directly predicted by the parser, rather than
obtained by conversion of predicted constituency trees.

6.4.3.3 Limitation and Perspective

We plotted the learning curves for the TOK+CLSTM+M+D model trained
of the French dataset in Figure 6.6, focusing on three tasks: the parsing
task, the POS tagging task and the functional labelling task. The model
learns these three tasks at different speeds. For POS tagging, the learning
curve is nearly flat after 3 iterations for both the train and development
sets, whereas on the parsing task, generalization improves fast until the
fifteenth iteration, and we still observe very small improvements after-
wards. The functional labelling is in-between and needs roughly eight
iterations to reach its best performance.

This is not an ideal situation, as multitask learning works best when
every task “learn at similar rates and reach best performance at roughly
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Figure 6.6: Learning curves for the TOK+CLSTM+M+D model trained on
the French dataset.

the same time” (Caruana, 1997). This issue may be addressed by using
different learning rates for the different tasks.

Finally, improving on POS tagging might lead to better results in con-
stituency parsing. In this respect, the use of morphological lexicons seems
promising, for example to constrain the possible tags and morphological
attributes for each token.

6.5 Conclusion

In this chapter, we have presented a multitask method to model interfaces
of constituency parsing, namely morphological analysis and functional
labelling. We have investigated how to use morphology and functional
labelling as additional training signal to improve constituency parsing,
and to enrich the parser output. Our multitask model has obtained state-
of-the art results on the SPMRL dataset despite using a very simple search
algorithm and not requiring any other input than the raw sequences of
tokens.
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7.1 Introduction

Allowing crossing branches in constituency trees is a way to directly
model word order variation phenomena and extractions, as opposed to
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additional annotation layers such as coindexed empty categories. In this
chapter, we introduce a parsing algorithm that is incremental, efficient,
and very accurate in predicting discontinuous constituency trees.

In the constituency parsing tradition, the vast majority of parsers makes
the hypothesis that syntactic trees do not contain empty categories (Petrov
et al., 2006; Zhu et al., 2013). As a matter of fact, the standard version of
the Penn Treebank used for the training and evaluation of parsers has been
stripped of empty categories and functional annotations. One of the initial
reasons for this is the difficulty to predict empty categories.1

Early attempts at discontinuous parsing are based on probabilistic gram-
mars (Plaehn, 2004; Kallmeyer and Maier, 2010, 2013) or on a reduction
to dependency parsing with a reversible transformation of discontinuous
constituency trees to labelled non-projective dependency trees (Hall and
Nivre, 2008; Fernández-González and Martins, 2015). The parsers based
on explicit generative grammars may in principle reject a non-grammatical
sentence, but the drawback of these methods is that decoding is very ex-
pensive. For example, exact decoding with a binary probabilistic LCFRS of
fan-out k has a time complexity in O(n3k) (Kallmeyer, 2010). They usually
need to resort to heuristics (Kallmeyer and Maier, 2010; van Cranenburgh
et al., 2016) to make parsing times reasonable, and scale hardly to long
sentences. On the contrary, methods based on dependency parsing have
achieved very strong results recently (Fernández-González and Martins,
2015).

Transition-based parsing for discontinuous constituents was first pro-
posed by Versley (2014b,a) who used an easy-first approach (Goldberg
and Elhadad, 2010b). In this transition system, discontinuities are han-
dled with a swap action. Finally, Maier (2015) and Maier and Lichte (2016)
introduced a shift-reduce transition system augmented by a swap action
(shift-reduce-swap, SR-SWAP) as is done in dependency parsing (Nivre,
2009; Nivre et al., 2009). The main advantage of such methods is their ef-
ficiency. They have a complexity in O(k · n2) where k is the size of the
beam and scale to whole corpora. Despite being much more accurate than
Versley (2014b), shift-reduce-swap falls short of the parser of Fernández-
González and Martins (2015). One of the reason for this, we argue, is that
oracles for shift-reduce-swap tend to produce very long derivations and
produce configurations in which local features are not informative enough
(cf Section 7.4).

1However, there have been a few attempts at predicting empty categories either with
a post-processing step (Johnson, 2002; Levy and Manning, 2004; Takeno et al., 2015) or by
integrating empty element prediction into parsing (Schmid, 2006; Cai et al., 2011; Hayashi
and Nagata, 2016).
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s0s1s2s3. . .

* *

Reduce-X

. . . s3 s2 X

s1 s0

s0s1s2s3. . .

* *

Reduce-X

. . . s3 s1 X

s2 s0

Figure 7.1: Illustration of a reduction with the standard shift-reduce tran-
sition system (upper part) and with SR-GAP (lower part).

This chapter introduces shift-reduce-gap (SR-GAP), a lexicalized tran-
sition system able to output discontinuous constituency trees. The algo-
rithm relies on three data structures to define a parsing configuration (in-
stead of two in the standard shift-reduce algorithm). In this respect, it
is akin to Covington’s dependency parsing algorithms (Covington, 2001)
and their formulation as transition systems by Nivre (2008), who describes
them as list-based.

The chapter is structured as follows. First, we introduce the shift-
reduce-gap transition system (Section 7.2). Then, we evaluate SR-GAP in
several experimental settings (Section 7.3). Finally, we provide a compar-
ison of SR-GAP and SR-SWAP in order to understand the performance of
SR-GAP (Section 7.4).

7.2 The Shift-Reduce-Gap Transition System

First, we introduce the SR-GAP transition system (Section 7.2.1). Then, we
provide a static oracle for SR-GAP and investigate its formal properties
(Section 7.2.2). Finally, we discuss and address the problem of comparing
derivations with different lengths (Section 7.2.3).

7.2.1 Algorithm

The shift-reduce-gap transition system is an extension of the lexicalized
shift-reduce algorithm presented in Section 3.2.1, that is able to output dis-
continuous trees. Like the standard shift-reduce algorithm, it outputs bi-
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nary trees. In order to use it to predict n-ary trees, a parser relies on the re-
versible head-outward binarization algorithm presented in Section 3.2.3.1.

In the shift-reduce algorithm, reductions always apply to the two top-
most elements in the stack. Consequently, derived trees are projective be-
cause constituents in the stack always have contiguous spans (Figure 7.1,
upper part). In contrast, SR-GAP may perform reductions applied to con-
stituents that can be arbitrarily distant in the stack. We illustrate such a
reduction in the lower part of Figure 7.1. A reduction applied to the first
and the third element in the stack produces a constituent whose yield is
not contiguous.

The main difference between SR-GAP and a standard lexicalized shift-
reduce system is that SR-GAP can choose dynamically an element in the
stack and combine it with the item at the top of the stack in a reduction.
To do so, SR-GAP splits the usual stack into two data structures:

• A stack S (upper part of the stack, stores the older constituents);

• A deque D (lower part of the stack, stores the later constituents).

Reductions always apply to the top elements of, respectively, S and D
(corresponding to the two ‘*’ in Figure 7.1).

In order to control the movement of items between S and D, SR-GAP
uses an action called GAP. This action removes the topmost item of S
and pushes it onto the bottom of D, making the new topmost item of S
available for a potential reduction.

In SR-GAP, a parsing configuration consists of three data structures: S,
D and the usual buffer B. The whole transition system is presented as a
deduction system in Table 7.1. The available actions have the following
effects:

• SHIFT flushes the content of D onto S, pops a token from the buffer
and pushes it onto D

• REDUCE-UNARY-X pops the topmost element ofD (d0), creates a new
node labelled X with d0 as its single child and pushes it onto D.

• REDUCE-LEFT-X and REDUCE-RIGHT-X pop the topmost elements of
S andD (d0 and s0), create a new node labelled X with s0 and d0 as its
children, flush the content of D to S and pushes the new constituent
on D. These actions also assign a lexical head to the new constituent.

• GAP pops the topmost item in S and pushes it at the bottom of D. It
has to be noted that this action has no effect on d0.
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Input t1[w1]t2[w2] . . . tn[wn]

Axiom 〈ε, ε, t1[w1]t2[w2] . . . tn[wn]〉

Goal 〈ε, A[w], ε〉

SHIFT
〈S,D, t[w]|B〉
〈S|D, t[w], B〉

REDUCE-UNARY-X
〈S, d0[h], B〉
〈S,X[h], B〉

REDUCE-RIGHT-X
〈S|s0[h], D|d0[h′], B〉
〈S|D,X[h′], B〉

REDUCE-LEFT-X
〈S|s0[h], D|d0[h′], B〉
〈S|D,X[h], B〉

GAP
〈S|s0[h], D,B〉
〈S, s0[h]|D,B〉

IDLE
〈ε, A[w], ε〉
〈ε, A[w], ε〉

Table 7.1: Lexicalized Shift-Reduce-Gap transition system for discontinu-
ous phrase structure parsing. X[h] denotes a nonterminal X and its head
h. s0 and d0 denote the topmost elements of respectively S and D. A is the
axiom symbol. The IDLE action is introduced in Section 7.2.3.
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                           ROOT             
                            │                
                          SBARQ             
                       ┌────┴─────────────┐  
                       SQ                 │ 
             ┌─────┬───┴────┐             │  
             VP    │        │             │ 
      ┌──────┴──── │ ────── │ ───┬────┐   │  
    WHADVP         │        NP   │    NP  │ 
 ┌────┴──────┐     │        │    │    │   │  
WRB          RB   VBP      PRP   VB  PRP  . 
 │           │     │        │    │    │   │  
How        deeply  do      they read  it  ? 

                                  ROOT@SBARQ        
                          ┌───────────┴───────────┐  
                          SQ                      │ 
                          ┌────┐                  │  
                          │   SQ:                 │ 
                     ┌─── │ ───┴──────┐           │  
                     │    │           VP          │ 
               ┌──── │ ── │ ──────────┴───────┐   │  
              VP:    │    │                   │   │ 
       ┌───────┴──── │ ── │ ──────────┐       │   │  
     WHADVP          │    NP          │       NP  │ 
 ┌─────┴───────┐     │    │           │       │   │  
WRB            RB   VBP  PRP          VB     PRP  . 
 │             │     │    │           │       │   │  
How1        deeply2 do3 they4       read5    it6  ?7

Figure 7.2: Example tree from the Discontinuous Penn Treebank (Evang
and Kallmeyer, 2011). Lower part: preprocessed binarized tree. Tempo-
rary symbols are suffixed by “:”. “@” indicates a merged unary chain.

The only case where D has more than one element is after a GAP action,
because other types of actions flush D to S. To derive a projective tree, the
parser does not perform any GAP, andD always contains a single element.
Finally, the parser can perform several consecutive GAPS to access older
constituents. Performing a GAP is possible as long as S contains at least
two elements.

7.2.1.1 An Example Run

We present a full derivation for the tree in Figure 7.2 in Table 7.2. In
this table, RR, RL, and RU denote respectively a right, left, and unary
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Transitions Configurations
S D B

How deeply do they read it ?
SHIFT =⇒ WRB[How] deeply do they read it ?
SHIFT =⇒ WRB[How] RB[deeply] do they read it ?

RL-WHADVP =⇒ WHADVP[How] do they read it ?
SHIFT =⇒ WHADVP[How] VBP[do] they read it ?
SHIFT =⇒ WHADVP[How] VBP[do] PRP[they] read it ?

RU-NP =⇒ WHADVP[How] VBP[do] NP[they] read it ?
SHIFT =⇒ WHADVP[How] VBP[do] NP[they] VB[read] it ?

GAP =⇒ WHADVP[How] VBP[do] NP[they] VB[read] it ?
GAP =⇒ WHADVP[How] VBP[do] NP[they] VB[read] it ?

RR-VP: =⇒ VBP[do] NP[they] VP:[read] it ?
SHIFT =⇒ VBP[do] NP[they] VP:[read] PRP[it] ?

RU-NP =⇒ VBP[do] NP[they] VP:[read] NP[it] ?
RL-VP =⇒ VBP[do] NP[they] VP[read] ?

GAP =⇒ VBP[do] NP[they] VP[read] ?
RL-SQ: =⇒ NP[they] SQ:[do] ?
RL-SQ =⇒ SQ[do] ?
SHIFT =⇒ SQ[do] .[?]

RL-ROOT@SBARQ =⇒ ROOT@SBARQ[do]

Table 7.2: Full derivation for the tree in Figure 7.2.

reduction. Although the transition system assumes that the sentence is
already tagged and that tokens consist of couples made of a word form
and a POS tag, we do not include the POS tags in the buffer to improve
legibility.

7.2.1.2 Interpretation of the GAP Action

In transition-based parsing, the stack is often interpreted as a memory. It
stores items that have already been seen, but not completely processed.
The newest items are always at the top of the stack, whereas the oldest are
at the bottom. In projective parsing, the parser only needs to access the top
of the stack, i.e. the most recent items. In discontinuous parsing, the parser
needs to access older elements to construct discontinuous constituents.
In that respect, the GAP action can be seen as a mechanism to access
any element in the stack in linear time. The parser must perform n − 1
operations to access the nth most recent item.

This might be an interesting property from a psycholinguistic perspec-
tive. If we were to measure cognitive cost in terms of the number of
parsing operations, SR-GAP predicts that retrieving a long distance depen-
dency incurs a higher cost than constructing local dependencies.

7.2.1.3 Relationship with Covington’s Algorithm

Covington (2001) described a general algorithm for unrestricted depen-
dency parsing that consists in iterating over every pair of words in a sen-
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tence and deciding for each pair whether to link them with a dependency
arc. In Algorithm 10, the function LINK performs one of the following
operations:

• adding a right arc i→ j;

• adding a left arc i← j;

• doing nothing.

This high-level algorithm can be refined to ensure that the predicted
structure is a single tree and formulated as a transition system based
on three data structures (Nivre, 2008; Gómez-Rodrı́guez and Fernández-
González, 2015).

Algorithm 10 Covington’s algorithm, as formulated by Nivre (2007).
function PARSE(s = (w1, w2, . . . , wn))

for i = 1 to n do
for j = i - 1 downto 1 do

LINK(i, j)

The outer loop of the algorithm corresponds to successive SHIFTS,
while the inner loop constructs every dependency relation involving token
i and a preceding token. In fact, SR-GAP’s strategy is rather similar: after
having shifted token i, it constructs every constituent whose last token is
i,2 before shifting token i+ 1.

7.2.1.4 Preconditions on Actions

Preconditions on actions are needed to ensure the termination of the
algorithm and certain structural constraints on predicted trees. We present
all preconditions in Table 7.3.

As the SHIFT action flushes the content of D to S before pushing a
new token, it cancels the effect of preceding GAPS. To avoid useless
GAPS, we impose that only a binary reduction or another GAP can follow a
GAP. Furthermore, as the only unary constituents produce preterminals, a
REDUCE-UNARY action can be performed only immediately after a SHIFT.
Figure 7.4(a) shows an automaton that encodes these constraints. Any
legal action sequence must be recognized by this automaton. State S is the
state in which a REDUCE-UNARY is possible, and it is reached only with

2Following a particular order described in Section 7.2.2.3.
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Action Preconditions

SHIFT B is not empty.
The last action is not GAP.

GAP S has at least 2 elements.
If d0 is a temporary symbol, there must be at
least one non temporary symbol in S1:.

REDUCE-UNARY-X The last action is SHIFT.
X is an axiom iff this is a one-word sentence.

REDUCE-RIGHT-X, S is not empty.
REDUCE-LEFT-X X is an axiom iff B is empty, and S and D both

have exactly one element.
If X is a temporary symbol and if B is empty,
there must be a non-temporary symbol in
either S1: or D1:.

REDUCE-RIGHT-X s0 is not a temporary symbol.

REDUCE-LEFT-X d0 is not a temporary symbol.

IDLE The configuration must be final, i.e. S and B are
empty and the only element of S is the axiom.

Table 7.3: List of all preconditions for SR-GAP actions. The notation S1: is
used to denote the elements of S without the first one. The IDLE action is
introduced in Section 7.2.3.

a SHIFT action. State G is reached by a GAP and can only be left with a
binary reduction.

Other preconditions make sure that the predicted lexicalized trees can
be unbinarized. The two conditions that need to be satisfied is that no
nonterminal rewrites as two temporary symbols and that a temporary
symbol contains the lexical head of its parent. These issues were also
discussed in Section 3.2.3.

7.2.2 Oracle and Properties

After introducing some definitions, we present an oracle for SR-GAP as
well as formal properties of this algorithm.
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7.2.2.1 Preliminary Definitions

We first introduce some definitions necessary to characterize the oracle
in the next sections. Following Maier and Lichte (2016), we define a
discontinuous tree as a rooted connected directed acyclic graph T =
(V,E, r) where

• V is a set of nodes;

• r ∈ V is the root node;

• E : V ×V is a set of (directed) edges and E∗ is the reflexive transitive
closure of E.

If (u, v) ∈ E, then u is the parent of v. Each node has a unique parent
(except the root that has none). Nodes without children are terminals.

The right index (resp. left index) of a node is the index of the rightmost
(resp. leftmost) terminal dominated by this node. For example, the left
index of the node labelled VP: in Figure 7.2 is 1 and its right index is 5.

7.2.2.2 Oracle

In order to extract the gold derivation for a given tree, we repeat the
following steps, starting with the initial configuration (and indexing items
in S and D with si and di respectively) to derive new configurations:

• If the configuration is final, stop.

• If s0 and d0 have the same parent node in the gold tree, perform a
reduction with the parent node label. Choose the head direction by
looking at the gold tree.

• If s0 and di have the same parent, perform i GAPS.

• Otherwise perform a SHIFT possibly followed by a REDUCE-UNARY-
X if the shifted terminal’s parent has a single child.

The derivation in Table 7.2 illustrates this oracle.

7.2.2.3 Determinism of the Oracle

Given the preconditions on actions presented above, the oracle is inher-
ently deterministic. If we ignore lexicalization and consider only one type
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                                   ROOT@SBARQ-8         
                         ┌──────────────┴─────────────┐  
                        SQ-7                          │ 
                         ┌─────┐                      │  
                         │   SQ:-6                    │ 
                     ┌── │ ────┴────────┐             │  
                     │   │             VP-5           │ 
               ┌──── │   │ ─────────────┴────────┐    │  
             VP:-3   │   │                       │    │ 
       ┌───────┴──── │   │ ─────────────┐        │    │  
    WHADVP-1         │  NP-2            │       NP-4  │ 
 ┌─────┴───────┐     │   │              │        │    │  
WRB            RB   VBP PRP             VB      PRP   . 
 │             │     │   │              │        │    │  
How          deeply  do they           read      it   ? 

Figure 7.3: Illustration of the order ≺ on nodes.

of binary reduction,3 there is a unique gold derivation. Let ≺ be an order
relation on the internal nodes of a tree. For two nodes n and n′, let n ≺ n′

iff (i) rindex(n) < rindex(n′) or (ii) (n′, n) ∈ E∗. This order is total: if n
and n′ have the same right index i, they both dominate terminal i, which
implies that either n dominates n′ or n′ dominates n. The order ≺ is illus-
trated in Figure 7.3, where each node n is annotated with an integer in and
n ≺ n′ iff in < in′ .

If a derivation predicts two nodes n and n′ such that n ≺ n′, then the
reduction to n must necessarily precede the reduction to n′ in a deriva-
tion. The right index of d0 is non-decreasing during a derivation and cor-
responds exactly to the number of preceding SHIFTS. A node with right
index i cannot be constructed if the number of preceding SHIFTS in the
derivation is not i. Therefore, if rindex(n) < rindex(n′) (i), then n must
be constructed before n′. Moreover, if n′ is an ancestor of n (ii), it is neces-
sary that n be constructed before n′ in a derivation. As a consequence, all
the nodes of the tree must be constructed in the order ≺, from which we
conclude that there is a unique possible derivation for a given tree.

7.2.2.4 Completeness and Soundness of SR-GAP

The shift-reduce-gap transition system is sound and complete for the set
of discontinuous binary trees labelled with a set of nonterminal symbols.
Given the constraints shown in Table 7.3, this result also holds for the set
of discontinuous n-ary trees (modulo unbinarization).

Completeness is a consequence of the correctness of the oracle which
corresponds to a tree traversal in the order ≺. To prove soundness, we

3Otherwise, there can be several derivations that construct the same tree but with
different head assignments.
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need to show that any valid derivation sequence produces a discontinu-
ous binary tree. It holds from the transition system that no node can have
several parents, as parent assignation via REDUCE actions pops the chil-
dren nodes and makes them unavailable to subsequent reductions. This
implies that at any moment, the content of the stack is a forest of discon-
tinuous trees. Preconditions in Table 7.3 ensure that at least one action is
allowed at each parsing step.

The number of actions in a derivation for a sentence of size n is upper
bounded: there can be at most n SHIFT, n unary REDUCE, n − 1 binary
REDUCE and less than 1

2
· n2 GAP (see Section 7.4.1 for a precise bound).

As a consequence, the algorithm can always reach a final configuration,
where the forest only contains one discontinuous tree.

The correctness of the shift-reduce-gap transition system holds for the
set of all labelled discontinuous trees, and not for the set of all trees gen-
erated by an LCFRS grammar. Our transition system is not able to de-
cide grammaticality. From the perspective of robust analysis, this is not a
limitation: the ability to test grammaticality is traded off for parsing effi-
ciency and accuracy. The nature of the relationship between shift-reduce-
gap and automata designed explicitly for LCFRS parsing (de la Clergerie,
2002; Kallmeyer and Maier, 2015) requires further investigations.

7.2.3 Comparing Derivations with Different Lengths

For a given sentence, different derivations corresponding to potential
hypotheses may have different lengths. If the number of binary REDUCE
and SHIFT depends only on the sentence length, the number of GAP and
unary REDUCE may widely vary.

As stated in Section 3.2.1.2, this problem is recurrent in constituency
parsing, because it harms comparability between hypotheses. Depending
on the model, classifiers may be biased towards shorter or longer deriva-
tions. For example, Crabbé (2014) observes that the score given by a per-
ceptron to a derivation is approximately linear in the number of actions in
the derivation.

Existing strategies for dealing with this problem consist in including
actions with no effect in the transition system (Zhu et al., 2013; Crabbé,
2014; Mi and Huang, 2015) and modifying the preconditions on actions to
make sure that every derivation has the same length.

Following these authors, we tried two strategies. First, we use an
additional IDLE action (Zhu et al., 2013) that has no effect and can only
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(a) SHIFT-REDUCE-GAP

I S

G

SHIFT

SHIFT

RU-X|RR-X|RL-X

GAP GAP

GAP

RL-X|RR-X

(a) SHIFT-REDUCE-COMPOUND-GAP

I

S

G

SHIFT

GR|RU-X

CGAPi

RL-X|RR-X

Figure 7.4: Automata of licit action sequences for SR-GAP and SR-CGAP.
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be applied to a final configuration. This action is used to pad shorter
derivations until every derivation in the beam has the same length.

The second strategy relies on a variant of the shift-reduce-gap transi-
tion system called shift-reduce-compound-gap (SR-CGAP), which addresses
independently the two sources of varying derivation length: the unary RE-
DUCE and the GAPS. For the former, SR-CGAP uses the strategy of Crabbé
(2014): each SHIFT must mandatorily be followed by a unary REDUCE or a
GHOST-REDUCE (transition with no effect). For the latter, SR-CGAP requires
that every binary REDUCE is preceded by exactly one compound GAPi ac-
tion. Akin to the compound SWAPi action of Maier (2015), a GAPi bundles
i ∈ {0, 1, . . . ,m} GAPS in a single transition. For example, GAP0 has no
effect, GAP2 corresponds to two consecutive GAPS. There are in total m+ 1
distinct compound GAP actions. Figure 7.4(b) shows an automaton that
recognizes any licit sequence of actions. From initial state I, the parser ei-
ther performs a SHIFT, followed by GHOST-REDUCE or REDUCE-UNARY-X,
or a COMPOUND-GAPi followed by a binary reduction.

The set of transitions in SR-CGAP and the new constraints on them
make sure that any derivation for a sentence of length n will have exactly
4n − 2 actions: n SHIFTS, n unary or ghost REDUCE, n − 1 binary REDUCE
and n− 1 compound GAPi.

The SR-CGAP transition system has a O(n) time complexity (whereas
SR-GAP is in O(n2)). However, SR-CGAP is not complete: it cannot derive
a tree which requires a compound GAPi with i > m (corresponding in SR-
GAP to more than m consecutive GAPS). In our experiments, we chose the
maximum index m of a compound GAP to be the minimum possible m
such that it is possible to derive all the trees in the training set.

7.3 Experiments

The experiments we carry out aim at evaluating our transition systems’
performance in different settings and their ability to recover discontinu-
ities in comparison with other approaches.

We first present the datasets (Section 7.3.1) as well as the classifier
(Section 7.3.2) that we used. Then, we discuss our results (Section 7.3.3).
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7.3.1 Datasets

7.3.1.1 Corpora

For evaluation, we used the Tiger (Brants et al., 2002) and the Negra
(Skut et al., 1997) corpus. Maier and Lichte (2011) report that 27.5% of
sentences in the Negra corpus contain at least one discontinuity and 29.0%
of sentences in the Tiger corpus. For both corpora, approximately 3% of
sentences have a gap-degree greater than 1.

To compare fairly with previous work, we used several instantiations
of these corpora:

• NEGRA-30 contains sentences with fewer than 30 words and follows
the train-dev-test split described by Maier (2015);

• NEGRA-ALL is the full corpus and uses the split of Dubey and Keller
(2003);

• TIGERHN8 is the split described by Hall and Nivre (2008);

• TIGERM15 is the split described by Maier (2015), and previously
used in the SPMRL shared task Seddah et al. (2013).

7.3.1.2 Preprocessing

We applied the following preprocessing steps to the trees. First, we re-
moved functional labels on nonterminal nodes. In these corpora, punctu-
ation is usually attached to the root symbol, which causes spurious dis-
continuity. As is standard practice, we reattached punctuation lower to
avoid this type of discontinuity. Finally, we annotated the heads of con-
stituents with headrules, using the rules included in the DISCODOP distri-
bution (van Cranenburgh et al., 2016), and we binarized the trees with the
left-first head-outward binarization algorithm presented in Section 3.2.3.1.

7.3.2 Classifier: Structured Perceptron

We used an averaged global perceptron (Collins, 2002) with early update
(Collins and Roark, 2004). Although other statistical models based on
neural networks may give much better results (see Chapter 8), in this
chapter, we want to evaluate SR-GAP as a transition system. Therefore we
decided on a structured perceptron to compare fairly with other transition
systems (Maier, 2015; Versley, 2014b) that also use a perceptron. In every
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s1.c[w/t]

s1.lc[lw/lt]

s1.wl/tl

s1.rc[rw/rt]

s1.wr/tr

s0.c[w/t]

s0.lc[lw/lt]

s0.wl/tl

s0.rc[rw/rt]

s0.wr/tr

d1.c[w/t]

d1.lc[lw/lt]

d1.wl/tl

d1.rc[rw/rt]

d1.wr/tr

d0.c[w/t]

d0.lc[lw/lt]

d0.wl/tl

d0.rc[rw/rt]

d0.wr/tr
b0.w/t b1.w/t . . .

Figure 7.5: Abstract configuration: representation of the topmost elements
of S, D and B, using the notations introduced in Table 7.4. Due to
discontinuities, it is possible that both the left- and right- index of si are
generated by the same child of si.

experiment, we trained the model for 30 epochs and shuffle the training
set before each epoch.

We tried several feature template sets to inform the classifier, which we
describe here. The full definitions are presented in Table 7.4.

• The BASELINE set contains the templates usually used by a (projec-
tive) constituency parser (Zhu et al., 2013);

• The +EXTENDED set adds information about D (d1 and d2), i.e. items
that are inside a gap, as well as extended context on S;

• The +SPANS set adds templates based on constituent boundaries
(Hall et al., 2014), following the intuition that they often contain
functional words.

7.3.3 Results

We first compare our different models in various settings to understand
which experimental choices give the best results. Then, we compare our
best models to results published by other researchers.

In every setting, we evaluate the unbinarized predicted trees with the
evaluation tool of DISCODOP using standard evaluation parameters that
ignore punctuation and root symbols. This evaluator computes evalb-style
evaluation metrics for discontinuous constituency trees. In a few cases, we
used the SPMRL shared task evaluation parameters.4 We report 2 different
metrics (Tables 7.6 and 7.5): F1 is the standard F-measure and Disc. F1 is
an F-measure computed only on discontinuous constituents.

4When we do so, we evaluate trees after reattaching the punctuation to the root node,
because these parameters take punctuation into account.
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BASELINE

b0.tw b1.tw b2.tw b3.tw d0.tc
d0.wc s0.tc s0.wc s1.tc s1.wc
s2.tc s2.wc s0.lwlc s0.rwrc d0.lwlc

d0.rwrc s0.wd0.w s0.wd0.c s0.cd0.w s0.cd0.c
b0.wd0.w b0.td0.w b0.wd0.c b0.td0.c b0.ws0.w
b0.ts0.w b0.ws0.c b0.ts0.c b0.wb1.w b0.wb1.t
b0.tb1.w b0.tb1.t s0.cs1.wd0.c s0.cs1.cd0.c b0.ws0.cd0.c

b0.ts0.cd0.c b0.ws0.wd0.c b0.ts0.wd0.c s0.cs1.cd0.w b0.ts0.cd0.w

+ EXTENDED

s3.tc s3.wc s1.lwlc s1.rwrc d1.tc
d1.wc d2.tc d2.wc s0.cs1.cd0.c s2.cs0.cs1.cd0.c

s0.cd1.cd0.c s0.cd1.cs1.cd0.c

+ SPANS

d0.cwlwr s0.cwlwr d0.cwls0.wr d0.cwrs0.wl d0.wlwrb0.w
d0.wlwrb1.w d0.cwrs0.wlo d0.ctlwr d0.cwltr d0.ctltr
s0.ctlwr s0.cwltr s0.ctltr d0.ctls0.wr d0.cwls0.tr
d0.ctls0.tr d0.ctrs0.wl d0.cwrs0.tl d0.ctrs0.tl d0.wlwrb0.t
d0.wlwrb1.t d0.cwlo d0.ctlo s0.cwro s0.ctro

Table 7.4: Feature templates. s, d and b refer respectively to the data
structures (S, D, B) presented in Section 7.2. The integers are indices on
these data structures. left and right refer to the children of nodes. We
use c, w and t to denote a node’s label, its head and the part-of-speech tag
of its head. When used as a subscript, l (r) refers to the left (right) index
of a node. Finally lo (ro) denotes the token immediately left to the left
index (right to the right index). See Figure 7.5 for a representation of a
configuration with these notations.
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Beam size TIGERHN8 TIGERM15
F1 Disc. F1 F1 Disc. F1

2 81.86 48.49 84.28 49.04
4 83.27 53.00 85.43 53.14
8 83.61 54.42 85.93 55.00

16 83.84 54.81 86.13 56.17
32 84.32 56.22 86.10 55.50
64 84.14 56.01 86.30 56.90

128 84.05 55.76 86.13 57.04

Table 7.5: Results on development sets for different beam sizes (+SPANS
feature set).

7.3.3.1 Internal Comparisons

We present parsing results with different beam sizes in Table 7.5. As
expected, performance improves with the beam size until a ceiling is
reached with a beam size of 32. An interesting result is that a larger
beam gives small improvements for the F-measure (+1 from 4 to 32 on
TIGERHN8) but substantial gains for the discontinuous F-measure (+3.2).
We speculate that non-local information is very important for accurate
parsing, and that keeping more hypotheses in the beam may compensate
partially for the lack of global information. In fact, we will show in
Chapter 8 that scoring models based on a bi-LSTM encoder, as presented
in Chapter 4, may perform much better than a structured perceptron, even
with greedy decoding.

We compare results with the three feature sets in Table 7.6. We observe
that across the board, the +EXTENDED set improves over the BASELINE
and that +SPANS yields another improvement. The improvements are
larger for the discontinuous F1 metric. Both information about the gapped
elements and about constituent boundaries are very useful for parsing
discontinuous trees. We can perhaps expect further improvements by
looking at elements further in S, D and B to capture even more extended
context. But given that the number of templates is already high and that
finding the right combination of bigram and trigram of features is rather
costly, a much better strategy seems to shift to a neural model as that
presented in Chapter 6.

Finally we compare SR-GAP to its variant SR-CGAP. The results of SR-
CGAP either match or, more often, underperform those of SR-GAP. There
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NEGRA-30 NEGRA-ALL TIGERHN08 TIGERM15
Method All L ≤ 40 All L ≤ 40 All SPMRL / standard

Fernández-González and Martins (2015) dep2const 82.56† 81.08 80.52 85.53 84.22 80.62 / -
Hall and Nivre (2008) dep2const - - - 79.93 - -/-
van Cranenburgh (2012) DOP - 72.33 71.08 - - -/-
van Cranenburgh and Bod (2013) DOP - 76.8 - - - -/-
Kallmeyer and Maier (2013) LCFRS 75.75 - - - - -/-
Versley (2014b) EAFI - - - 74.23 - -/-
Maier (2015) (baseline, b=(Ne=8/Ti=4)) SR-SWAP 75.17 (15.76) - - - - -/-
Maier (2015) (best, b=(Ne=8/Ti=4)) SR-SWAP 76.95 (19.82) - - 79.52 - - / 74.71 (18.77)
Maier and Lichte (2016) (best, b=4) SR-SWAP 80.02 -/ 76.46 (16.31)

This work, beam=4 F1 (Disc. F1)

GAP, BASELINE SR-GAP 79.31 (38.66) 79.29 (39.78) 78.53 (38.64) 82.84 (47.13) 81.67 (44.83) 78.77 / 78.86 (41.36)
GAP, +EXTENDED SR-GAP 80.44 (41.13) 80.34 (43.42) 79.79 (43.56) 83.57 (50.91) 82.43 (48.81) 79.42 / 79.51 (43.76)
GAP, +SPANS SR-GAP 81.64 (42.94) 81.70 (47.17) 81.28 (46.85) 84.40 (51.98) 83.16 (49.76) 80.30 / 80.40 (46.50)

CGAP, BASELINE SR-CGAP 79.61 (41.06) 79.32 (43.49) 78.64 (42.13) 82.90 (47.86) 81.68 (45.55) 78.32 / 78.41 (39.99)
CGAP, +EXTENDED SR-CGAP 80.26 (40.52) 80.48 (43.42) 79.98 (42.60) 83.23 (50.57) 82.00 (48.28) 79.32 / 79.42 (44.66)
CGAP, +SPANS SR-CGAP 81.16 (42.39) 81.41 (44.73) 80.89 (44.13) 83.92 (50.83) 82.79 (48.84) 80.38 / 80.48 (46.17)

This work, beam=32 F1 (Disc. F1)

GAP, BASELINE SR-GAP 80.57 (42.16) 80.20 (43.87) 79.75 (42.80) 83.53 (51.91) 82.41 (49.63) 79.60 / 79.69 (44.77)
GAP, +EXTENDED SR-GAP 81.61 (45.75) 81.13 (47.52) 80.54 (46.89) 84.33 (53.84) 83.17 (51.88) 80.50 / 80.59 (46.45)
GAP, +SPANS SR-GAP 82.46 (47.35) 82.76 (51.82) 82.16 (50.00) 85.11 (55.99) 84.01 (54.26) 81.50 / 81.60 (49.17)

Table 7.6: Final test results (gold POS tags). For TIGERM15, we report met-
rics computed with the SPMRL shared task parameters (see Section 7.3.3),
as well as the standard parameters. †Trained on NEGRA-ALL.

are two likely explanations for these results. First, the padding method
of Zhu et al. (2013) might be already very effective to handle derivation
length biases. Secondly, we speculate that compound GAP actions are hard
to predict when the parser has a bounded view on S.

7.3.3.2 External Comparisons

We now compare our models with other approaches, namely chart parsers
based on explicit grammars (van Cranenburgh, 2012; van Cranenburgh
and Bod, 2013; van Cranenburgh et al., 2016; Kallmeyer and Maier, 2013),
parsers based on dependency parsing and reversible tree conversions (Hall
and Nivre, 2008; Fernández-González and Martins, 2015) and transition-
based parsers (Versley, 2014b; Maier, 2015; Maier and Lichte, 2016). Re-
sults with gold POS tags are presented in Table 7.6.5 We also give results
with predicted POS tags in Table 7.7.

Our best model outperforms the state of the art (Fernández-González
and Martins, 2015) in every setting except one. When we compare our
model to the previous best transition-based results (Maier, 2015) in the
same experimental conditions (beam size of 4), we observe that SR-GAP
has much better results (+4) and is noticeably more than twice as accurate

5New results have been published since the work presented in this chapter has been
done (Corro et al., 2017; ?). We omit them here, but include them in the experiment section
of Chapter 8.
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TIGERM15 F1 (spmrl.prm)
≤ 70 All

Versley (2014b) 73.90 -
Fernández-González and Martins (2015) 77.72 77.32

SR-GAP, beam=32, +SPANS 79.44 79.26

Table 7.7: Final results with predicted POS tags on the SPMRL split.

Dev Test Sentence Lengths

F1 Disc. F1 POS F1 Disc. F1 POS

SR-GAP, +SPANS, beam=32 90.92 73.35 100 89.91 70.25 100 All
Corro et al. (2017) 90.09 100 All
Evang and Kallmeyer (2011) - - - 79.0 - 100 < 25
van Cranenburgh et al. (2016) 86.9 - 96.1 87.0 - 96.7 ≤ 40

Table 7.8: Parsing results on the discontinuous Penn Treebank.

on discontinuous constituents. This result suggests that the representation
of a parsing configuration by three data structures is very well suited to
handle discontinuities.

Finally, we ran our model on the discontinuous version of the Penn
Treebank (Evang and Kallmeyer, 2011), in the best experimental setting
(+SPANS, beam=32). The results are presented in Table 7.8. Other pub-
lished results are not all comparable to ours, due to different experimental
settings (gold or predicted POS tags, restriction on the length of sentences),
except that of Corro et al. (2017). Our model almost matches the parser of
Corro et al. (2017) who use a more complex scoring system (bi-LSTM). We
will give more thorough evaluation on this dataset in Chapter 8.

Model Analysis A constant in every experiment we have done is that
there is usually a discrepancy between the recall and the precision of dis-
continuous constituents. We report detailed results in Table 7.9. In each
setting, precision is more than 10 points above recall (almost 20 for En-
glish).6 Our parser is rather conservative in the prediction of discontinu-
ous constituents. We hypothesize that this discrepancy might be due to the
rarity of discontinuous constituents in treebanks (and of the GAP action in
the training data).

6This observation also holds for experiments with predicted tags (not reported here).
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Dataset Recall Precision F1 ∆ Prec. / Rec.

NEGRA-30 41.5 55.2 47.4 13.7
NEGRA-ALL 43.2 59.4 50.0 16.2
TIGERHN8 49.1 60.6 54.3 11.5
TIGERM15 42.7 58.0 49.2 15.7
DPTB 64.8 84.5 73.4 19.7

Table 7.9: Detailed results for discontinuous constituents (+SPANS, SR-
GAP, beam=32, gold POS tag setting).

7.4 Discussion: a Comparison of SR-SWAP and
SR-GAP

In order to gain more insights into the factors explaining SR-GAP perfor-
mance in comparison with SR-SWAP, we investigate two key differences
between both algorithms: (i) for the same tree, SR-GAP tends to produce
a much shorter derivation than SR-SWAP, (ii) SR-GAP configurations have
arguably better access to relevant features.

7.4.1 Derivation Length

Generally, deriving a tree with SR-GAP will be less costly (in terms of the
number of actions) than with SR-SWAP. To derive discontinuous trees,
both systems implicitly predict an order on terminals with which the tree
would be projective. An example of such an order is given in Figure 7.6.
However, reordering is more efficient with SR-GAP which swaps whole
subtrees, whereas the SWAP action only targets terminals.

Moreover, each time a SWAP is performed, the swapped terminal needs
to be shifted again. As an illustration, we present a full derivation of
the tree in Figure 7.2 with SR-SWAP in Table 7.10: the tokens they and
do are swapped twice, and shifted three times during the derivation. 23
transitions are necessary to derive the tree whereas only 18 are needed
with SR-GAP.

Let us consider first the longest possible derivation for a sentence
of length n. With SR-GAP, there are exactly n shifts and n − 1 binary
reductions in a derivation (we ignore unary reductions temporarily). The
longest derivation maximizes the number of GAP actions, by performing
as many GAP actions as possible before each binary reductions. When S
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ROOT@SBARQ
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.

?7

Figure 7.6: Projective tree obtained from the tree in Figure 7.2 by reorder-
ing terminals.

contains k elements, there are k − 1 possible consecutive GAP actions. So
the longest derivation starts by n SHIFTS, followed by n − 2 GAPS, one
binary reduction, n− 3 GAPS, one binary reduction, and so on:

LSR-GAP(n) = n+ ((n− 2) + 1) + · · ·+ 1 (7.1)
= 1 + 2 + · · ·+ n (7.2)

=
n(n+ 1)

2
(7.3)

The tree on the left-hand side of Figure 7.7 is derived in 15 steps (5·6
2

). Since
the parser may also perform up to n unary reductions, the longest possible
derivation for a sentence of length n has n(n+3)

2
steps.

With SR-SWAP, the longest derivation for a sentence of length n maxi-
mizes the number of SWAPS. This derivation can be constructed as follows.
After the first SHIFT, the parser performs repeatedly:

• n− i SHIFTS (where i is the total number of tokens in the stack),

• n− i− 1 SWAPS,
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Transitions Configurations
S B

How deeply do they read it ?
SHIFT =⇒ WRB[How] deeply do they read it ?
SHIFT =⇒ WRB[How] RB[deeply] do they read it ?

RL-WHADVP =⇒ WHADVP[How] do they read it ?
SHIFT =⇒ WHADVP[How] VBP[do] they read it ?
SHIFT =⇒ WHADVP[How] VBP[do] PRP[they] read it ?
SHIFT =⇒ WHADVP[How] VBP[do] PRP[they] VB[read] it ?
SWAP =⇒ WHADVP[How] VBP[do] VB[read] they it ?
SWAP =⇒ WHADVP[How] VB[read] do they it ?

RR-VP: =⇒ VP:[read] do they it ?
SHIFT =⇒ VP:[read] VBP[do] they it ?
SHIFT =⇒ VP:[read] VBP[do] PRP[they] it ?
SHIFT =⇒ VP:[read] VBP[do] PRP[they] PRP[it] ?

RU-NP =⇒ VP:[read] VBP[do] PRP[they] NP[it] ?
SWAP =⇒ VP:[read] VBP[do] NP[it] they ?
SWAP =⇒ VP:[read] NP[it] do they ?

RL-VP =⇒ VP[read] do they ?
SHIFT =⇒ VP[read] VBP[do] they ?

RR-SQ: =⇒ SQ:[do] they ?
SHIFT =⇒ SQ:[do] PRP[they] ?

RU-NP =⇒ SQ:[do] NP[they] ?
RL-SQ =⇒ SQ[do] ?
SHIFT =⇒ SQ[do] .[?]

RL-ROOT@SBARQ =⇒ ROOT@SBARQ[do]

Table 7.10: Derivation for the tree in Figure 7.2 with SR-SWAP (Maier, 2015).

• 1 binary reduction.

In such a derivation, the number of steps is:

LSR-SWAP(n) = 1 +
n−1∑
i=1

((n− i) + (n− i− 1) + 1) (7.4)

= 1 + 2
n−1∑
i=1

(n− i) (7.5)

= 1 + 2
n(n− 1)

2
(7.6)

= n2 − n+ 1 (7.7)

The tree on the right-hand side of Figure 7.7 can be derived in 52−5+1 = 21
steps, using this strategy. Finally, if we take into account unary reductions,
the maximum length of a derivation for a sentence of size n is n2 + 1.

In the worst case, SR-GAP is asymptotically twice as economical as SR-
SWAP (n(n+3)

2
vs n2 + 1). To see if the difference in derivation lengths is

confirmed empirically, we computed some statistics on the Tiger corpus
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Figure 7.7: Example trees corresponding to the longest derivation for a
sentence of length 5 with, respectively, SR-GAP and SR-SWAP.

TIGERSPMRL (train) DPTB (train)

SR-GAP SR-SWAP SR-CSWAP SR-GAP SR-SWAP SR-CSWAP

Theoretical longest derivation n2+3n
2

n2 + 1

Longest derivation 264 2,081 1,163 294 1,459 835
Total number of gaps/swaps 40,905 361,577 105,393 33,341 215,793 55,609
Max consecutive gaps/swaps 10 68 1 9 30 1
Average derivation length wrt n 2.0n 3.0n 2.6n 2.1n 2.5n 2.3n

Table 7.11: Statistics about derivations on the training sets of the Tiger and
DPTB corpora. n is the length of a sentence. SR-CSWAP is a variant of
SR-SWAP introduced by Maier (2015).

and the Discontinuous Penn Treebank. We present them in Table 7.11. On
average, 2.0·n actions are necessary for SR-GAP to derive the gold tree for a
sentence of length n from the Tiger corpus (training set), and 3.0 ·n actions
to derive the same tree with SR-SWAP.7 As shorter derivations are arguably
less prone to error propagation, we think that derivations produced by SR-
GAP are easier to learn.

7.4.2 Feature Semantics and Feature Locality

In SR-SWAP the buffer stores both unprocessed terminals and terminals
that have been swapped. Feature functions on B are ambiguous because
they do not distinguish the two situations whereas this cue seems impor-
tant. In contrast, with SR-GAP, B only stores unprocessed terminals and

7As Maier and Lichte (2016) points out, better oracles than that presented in Maier
(2015) might produce shorter derivations.
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                                                                             SENT                                                                                                               
                        ┌───────────────┬──────────────────────────────┬──────┴──────────────────────────────────────────────────────────────────────────────────────────────────────────────┐   
                        │               │                              PP                                                                                                                    │  
                        │               │                    ┌─────────┴────────────────────────┐                                                                                            │   
                        │               │                    │                                VPinf                                                                                          │  
         ┌───────────── │ ───────────── │ ────────────────── │ ───┬─────────────────────────────┴────┬───────────────────────────────────────────────────┬──────────────────┐                │   
         │              │               │                    │    │                                  PP                                                  │                  │                │  
         │              │               │                    │    │    ┌──────────────┬──────────────┴──────────┐                                        │                  │                │   
         │              │               │                    │    │    │              │                       COORD                                      │                  │                │  
         │              │               │                    │    │    │              │              ┌──────────┴────────┐                               │                  │                │   
         │              │               │                    │    │    │              │              │                   PP                              │                  │                │  
         │              │               │                    │    │    │              │              │   ┌───────────────┴─────┐                         │                  │                │   
         │              │               │                    │    │    │              │              │   │                   VPinf                       │                  │                │  
         │              │               │                    │    │    │              │              │   │      ┌──────────────┴────┐                    │                  │                │   
         │              NP              │                    │    │    │            VPinf            │   │      │                   NP                   PP                 PP               │  
         │        ┌─────┼──────┐        │                    │    │    │      ┌───────┴────┐         │   │      │        ┌──────────┼────────┐       ┌───┴─────┐     ┌──────┴──────┐         │   
         NP       │     │      AP       VN                   │    VN   │      VN           NP        │   │      VN       │          │        AP      │         NP    │             NP        │  
   ┌─────┼───┐    │     │      │    ┌───┼─────┬───────┐      │    │    │      │       ┌────┴────┐    │   │      │        │          │        │       │         │     │      ┌──────┴───┐     │   
 ADVWH   P   NC  DET    NC    ADJ  CLR  V    CLS     VPP     P   VINF  P     VINF    DET        NC   CC  P     VINF     DET         NC      ADJ      P        NPP    P      NC         NC  PONCT
   │     │   │    │     │      │    │   │     │       │      │    │    │      │       │         │    │   │      │        │          │        │       │         │     │      │          │     │   
Combien  de gens les Nations Unies  se sont -elles engagées  à  aider  à  restaurer   l'      ordre  et  à  distribuer de_l'       aide humanitaire  en     Somalie  en septembre     1992   ?  

Figure 7.8: Tree from the French Question Bank (Seddah and Candito,
2016). How many people has the UN committed itself to help restore order and to
deliver humanitarian aid in Somalia in September 1992?

the gapped elements are in D: there is no such ambiguity and thus the
semantics of features is arguably better defined.

The second advantage of SR-GAP over SR-SWAP is that it has a better
access to relevant information when making decisions. Thanks to the use
of three data structures to define parsing configurations, SR-GAP has a
larger domain of locality. Moreover, as SR-SWAP only allows terminals
to be swapped, it must delay the construction of certain constituents that
are inside a gap, leading to very long sequences of consecutive SHIFTS
followed by consecutive SWAPS (Table 7.11).

For example, for the tree in Figure 7.8, the oracle of SR-SWAP (Maier,
2015) delays the construction of the NP les Nations Unies and that of the
VN se sont-elles engagées until the full VPinf has been constructed.

Let us compare the configurations SR-GAP and SR-SWAP are in when
they need to predict the first GAP or SWAP action when deriving the tree in
Figure 7.8. The parser needs to make the NP Combien de gens and the verb
aider contiguous to reduce them together.

The SR-GAP system is in the following configuration:

SR-GAP

S D B
s3 s2 s1 s0 d0 b0 . . .

NP NP VN à aider . . .
Combien de gens les Nations Unies se sont-elles engagées

It can access the NP Combien de gens with three consecutive GAP and then
perform a reduction. The NP is close enough to the top of S to be accessed
by the feature extractor (the templates we used include features on s3). In
contrast, SR-SWAP is in the following situation:
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SR-SWAP

S B
s9 s8 s7 s6 s5 s4 s3 s2 s1 s0 b0 . . .

NP les Nations Unies se sont -elles engagées à aider à . . .
Combien de gens

It has to perform eight SWAPS before the reduction (and to repeat sequences
of SHIFTS and SWAPS to get the terminals dominated by the VPinf node to
be moved before the string les Nations Unies se sont-elles engagées à). More-
over, when the parser must predict the first SWAPS, it has only a limited
view on the stack: feature templates are rarely defined on elements in the
stack further than s4. Therefore, the information that there is a potential
object NP for aider in the stack is inaccessible.

In this type of situation, a sequence of related decisions (perform nine
SHIFTS then eight SWAPS then REDUCE) happens over time when going
through completely different configurations, which makes SR-SWAP very
prone to error propagation.

7.5 Conclusion

In this chapter, we have introduced a new transition system for discon-
tinuous constituency parsing. We have shown that the SR-GAP algorithm
has very desirable properties: it produces shorter derivations than previ-
ous approaches, it is based on three data structures which makes relevant
information easily accessible for parsing, and it is efficient enough to scale
to whole corpora. Finally, it obtained state-of-the-art accuracies on several
treebanks.

A direct extension of the parsing algorithm presented in this chapter is
to use a different scoring model, e.g. a neural statistical model like the one
presented in Chapter 6, to predict jointly morphology and discontinuous
trees. Following recent proposals in projective constituency parsing (Dyer
et al., 2016; Kuncoro et al., 2017), the design of a generative model that
handles discontinuities might also prove fruitful. Finally, a remaining
question is to investigate the importance of lexicalization in SR-GAP, as
unlexicalized transition-based models have achieved very high results
recently in projective constituency parsing (Cross and Huang, 2016a), at
odds with the tradition of lexicalization in transition-based constituency
parsing (Sagae and Lavie, 2005; Zhu et al., 2013; Mi and Huang, 2015;
Crabbé, 2015). We address this question in the next chapter.
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This chapter investigates the issue of lexicalization in the context of
projective and non-projective constituency parsing. We use the term lexi-
calized to refer to a transition system that explicitly models bilexical rela-
tions, and thus constructs a dependency tree together with a constituency
tree. A system that is not lexicalized is unlexicalized.1

Throughout this dissertation, we have used transition systems that
assign the lexical head of a new constituent (REDUCE-LEFT and REDUCE-
RIGHT), and statistical models that use the head of a constituent as a cue to
guide parsing decisions. In this chapter, we introduce an unlexicalized
transition system for discontinuous constituency parsing and compare
it with its lexicalized counterparts. The main result of this chapter is
that unlexicalized models lead to better parsing results than lexicalized
models.

After briefly reviewing the question of lexicalization in constituency
parsing (Section 8.1), we introduce several transition systems for discon-
tinuous parsing and investigate their relevant properties (Section 8.2). We
evaluate them with both projective and discontinuous multilingual pars-
ing experiments (Section 8.3). In Section 8.4, we provide an analysis of
the mistakes of the best model on discontinuous constituents in English.
Finally, in Section 8.5, we argue that an unlexicalized transition system
based on the GAP action and on minimal feature templates is particularly
well suited to dynamic programming decoding. We outline a dynamic
programming decoding algorithm for the discontinuous case.

8.1 Lexicalization in Statistical Parsing

Traditionally, transition-based constituency parsers almost exclusively use
lexicalized transition systems (Sagae and Lavie, 2005, 2006; Zhu et al.,

1Unlexicalized parsing should not be confused with delexicalized parsing (McDonald
et al., 2011), a transfer method for dependency parsing.



CHAPTER 8. UNLEXICALIZED CONSTITUENCY PARSING 153

2013; Zhang and Clark, 2009; Maier, 2015; Liu and Zhang, 2017b). In
contrast, in chart parsing, both lexicalized models (Collins, 1997) and
unlexicalized models (Klein and Manning, 2003; Petrov et al., 2006) have
been successful. We review them in the following paragraphs.

8.1.1 Lexicalized Chart Parsers

Parsing with lexicalized PCFG was popularized by Collins (1997). In
order to limit the effect of data sparsity, Collins (1997) decomposes the
probability of lexicalized grammar rules as products of factors that include
explicitly the probability of a bilexical dependency between the heads of
the nonterminals in the right-hand side of the grammar rule.

However, Gildea (2001) and Bikel (2004) observed that Collins’ model
performance only decreased marginally without bilexical probabilities. In
fact, due to the data sparsity, the estimated bilexical probability is only
used in a very small proportion of candidate rules. This observation
suggests that the strength of the model does not rely in an adequate model
of bilexical attachments, but rather on other features, including backoff
strategies to POS tags.

The results on the SPMRL datasets presented in Table 6.2 of Chapter 6
seem to confirm this observation in another setting, namely transition-
based constituency parsing. Without any information about the morpho-
logical tags, the parser performs poorly. There is a 7 F1 difference between
the TOK+MMT and the TOK models.

8.1.2 Unlexicalized Chart Parsers

Unlexicalized chart parsers are based on the idea that learning a distribu-
tion of bilexical dependencies is too hard given the data sparsity problem.
Instead, they rely on structural information. Klein and Manning (2003)
used a refined grammar, where symbols are annotated with vertical and
horizontal context in order to capture linguistic regularities that are not
explicit in the treebank grammar and alleviate the effects of strong inde-
pendence assumptions in standard PCFG. For example, subject and object
NPs have the same label but subject NPs are more likely to rewrite as a
personal pronoun than object NPs. This distinction can be encoded by an-
notating symbols with their parent (NPˆS vs NPˆVP). These finer-grained
distribution distinctions can be learned automatically (Matsuzaki et al.,
2005; Petrov et al., 2006; Shindo et al., 2012). Other types of cues used by
chart parsers include features about the boundaries of constituents (Hall
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et al., 2014; Durrett and Klein, 2015; Stern et al., 2017), which have also
been shown to improve lexicalized constituency parsing (Crabbé, 2015;
Coavoux and Crabbé, 2017a).

8.1.3 Unlexicalized Transition-based Parsers

Recently, two unlexicalized transition systems were introduced for projec-
tive constituency parsing.

• Dyer et al. (2016) proposed a generative parsing model called Re-
current Neural Network Grammar (RNNG), and based on a tran-
sition system with a top-down parsing strategy and an RNN that
computes compositional representations of constituents. Kuncoro
et al. (2017) observed that RNNG implicitly learned some notion of
headedness. The compositional representation computed for a con-
stituent depends mostly on a single child constituent, or on several
constituents in cases such as coordination. Kuncoro et al. (2017) con-
cluded that their model captures a fuzzy notion of headedness where
multiple-head constituents are possible.

• Cross and Huang (2016a) introduced an unlexicalized transition
system that distinguishes two types of actions: the structural actions
that are used to construct an unlabelled constituent tree, and the
labelling actions that assign nonterminal labels to constituents. The
parser alternates one structural action and one labelling action. Their
model obtains state-of-the-art results on English and French (Cross
and Huang, 2016a). These results may be explained by several
factors: the properties of the transition system (that does not require
binarization) and the scoring system based on a bi-LSTM with very
few feature templates.

8.1.4 Contributions

This chapter makes several contributions. First of all, we introduce the first
unlexicalized transition system for discontinuous constituency parsing
(ML-GAP, Section 8.2.1) which extends the structure-label system of Cross
and Huang (2016a). Secondly, we formulate a lexicalized version of ML-
GAP (Section 8.2.2), that maintains the distinction between structure and
label actions. Thirdly, we compare these transition systems in several
experimental settings and show that lexicalization is not necessary to
achieve very high results (Section 8.3). Finally, we provide an error
analysis of the best model (Section 8.4).
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Input (1, 2, 3, . . . , n)

Axiom 〈ε, 0, ∅〉

Goal 〈(0, n), n, C〉

Structural actions

SHIFT
〈S, i, C〉

〈S|(i, i+ 1), i+ 1, C〉

MERGE
〈S|(j, k)|(k, i), i, C〉
〈S|(j, i), i, C〉

Labelling actions

LABEL-X
〈S|(j, i), i, C〉

〈S|(j, i), i, C ∪ {(X, j, i)}〉

NO-LABEL
〈S, i, C〉
〈S, i, C〉

Table 8.1: A reformulation of the structure-label transition system of Cross
and Huang (2016a).

8.2 Structure-Label Transitions Sytems

In this section, we introduce two transition systems for discontinuous
constituency parsing: an unlexicalized transition system called merge-
label-gap (ML-GAP, Section 8.2.1) and its lexicalized counterpart ML-GAP-
LEX (Section 8.2.2). We describe their relevant properties in Section 8.2.3.

8.2.1 Merge-Label-Gap

The transition system proposed by Cross and Huang (2016a) is presented
as a deduction system in Table 8.1. The tokens are identified by their
indices in the sentence. A parsing configuration is a triple 〈S, j, C〉 where
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S is a stack of integer couples (li, ri) representing spans, j is the index of
the first token in the buffer, and C is a set of constituents. As in Chapter 5,
a constituent is defined as a triple (X, l, r) where X is a nonterminal, and
(l, r) is its span.

The parser alternates structural actions and labelling actions. At step n,
if n is even, it must take a structural action, and a labelling action if n is
odd. As a consequence, any derivation has length 4n − 2, where n is the
length of the sentence (n SHIFTS, n − 1 MERGES, 2n − 1 LABEL-X and NO-
LABEL). Any valid action sequence must be recognized by the automaton
in Figure 8.1(a). Importantly, this transition system can derive directly n-
ary trees and does not rely on binarization algorithms.

In order to generalize this transition system to the case of discontinu-
ous constituency parsing, we need (i) to add a mechanism to predict dis-
continuous constituents and (ii) to adopt a definition of constituents that
includes discontinuous constituents. For condition (i), we use the GAP ac-
tion described in Chapter 7. For condition (ii), we define a constituent as
a couple (X, s) where X is a nonterminal symbol and s ∈ 2N is the set of
indices of terminals dominated by the constituent. Alternatively, s could
be defined as a range vector, i.e. a vector ρ = 〈(l1, r1), . . . , (ln, rn)〉 where
each couple (li, ri) represents a span (Kallmeyer, 2010). Range vectors are
used to describe instantiated rules in the LCFRS and RCG literature. We
adopt a set definition instead to simplify the description of the transition
system.

Like the SR-GAP transition system, ML-GAP is based on three data
structures: a stack S, a deque D and a buffer B. We define a parsing
configuration as a quadruple 〈S,D, i, C〉, where S and D are sequences
of index sets, i is the index of the first token in the buffer, and C is a set
of discontinuous constituents. The ML-GAP transition system is defined
as a deduction system in Table 8.2. The available actions are defined as
follows:

• The SHIFT action pushes the singleton {i+ 1} on D.

• The MERGE action pops Is0 and Id0 , the index sets at the top of S and
D, computes their union I = Is0 ∪ Id0 , flushes the content of D to S
and pushes I onto D.

• The GAP action removes the top element from S and pushes it at the
beginning of D, making the next element in S available for a MERGE
operation.

• LABEL-X creates a new constituent labelled X whose yield is the set
Id0 at the top of D.
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(a) MERGE-LABEL

S L

SHIFT|MERGE

LABEL-X|NO-LABEL

(b) MERGE-LABEL-GAP

S L

S ′

SHIFT|MERGE

GAP

GAP

MERGE

LABEL-X|NO-LABEL

Figure 8.1: Action sequences allowed in transition systems. Any deriva-
tion must be recognized by the automaton.

• NO-LABEL has no effect.

As the semantics of the GAP action, a structural action, is not to modify
Id0 , but to make an index set in S available for a MERGE, it must not
be followed by a labelling action. Any GAP must be followed either
by another GAP or by a MERGE. We illustrate this constraint with an
automaton in Figure 8.1(b). Any valid action sequence must be recognized
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Input (1, 2, 3, . . . , n)

Axiom 〈ε, ε, 0, ∅〉

Goal 〈ε, {1, 2, . . . n}, n, C〉

Structural actions

SHIFT
〈S,D, i, C〉

〈S|D, {i+ 1}, i+ 1, C〉

MERGE
〈S|Is0 , D|Id0 , i, C〉
〈S|D, Is0 ∪ Id0 , i, C〉

GAP
〈S|Is0 , D, i, C〉
〈S, Is0|D, i, C〉

Labelling actions

LABEL-X
〈S, Id0 , i, C〉

〈S, Id0 , i, C ∪ {(X, Id0)}〉

NO-LABEL
〈S, Id0 , i, C〉
〈S, Id0 , i, C〉

Table 8.2: The ML-GAP transition system, an unlexicalized transition sys-
tem for discontinuous constituency parsing.

by this automaton.2 When predicting a discontinuous constituent, the
parser may perform several structural actions in a row, with the conditions
that they constitute a sequence of GAP actions followed by a MERGE. We
illustrate the transition system with a full derivation in Table 8.3.

2However the automata over-generate since all preconditions on actions are not taken
into account.
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8.2.2 Lexicalized Merge-Label-Gap

In order to assess the role of lexicalization in parsing in the context of
structure-label transition systems, we introduce a hybrid transition sys-
tem, ML-GAP-LEX, which is based on a distinction between structural and
labelling actions, but is nonetheless lexicalized. An instantiated lexical-
ized discontinuous constituent is defined as a triple (X, I, h) where X is
a nonterminal label, I is the set of terminals that are in the yield of the
constituent, and h ∈ I is the lexical head of the constituent.

                            ROOT@S            
                    ┌─────────┴─────┬───────┐  
                    VP              │       │ 
        ┌───────────┴────────────── │ ──┐   │  
        NP                          NP  │   │ 
 ┌──────┼───────────┬─────────┐     │   │   │  
 DT     JJ          JJ        NN   PRP VBZ  . 
 │      │           │         │     │   │   │  
 An excellent environmental actor   he  is  . 

Action Configuration
Stack Deque Buffer Constituents

0 { }
SHIFT =⇒ {1} 1 { }

NO-LABEL =⇒ {1} 1 { }
SHIFT =⇒ {1} {2} 2 { }

NO-LABEL =⇒ {1} {2} 2 { }
MERGE =⇒ {1, 2} 2 { }

NO-LABEL =⇒ {1, 2} 2 { }
SHIFT =⇒ {1, 2} {3} 3 { }

NO-LABEL =⇒ {1, 2} {3} 3 { }
MERGE =⇒ {1, 2, 3} 3 { }

NO-LABEL =⇒ {1, 2, 3} 3 { }
SHIFT =⇒ {1, 2, 3} {4} 4 { }

NO-LABEL =⇒ {1, 2, 3} {4} 4 { }
MERGE =⇒ {1, 2, 3, 4} 4 { }

LABEL-NP =⇒ {1, 2, 3, 4} 4 {(NP, {1,2,3,4})}
SHIFT =⇒ {1, 2, 3, 4} {5} 5 {(NP, {1,2,3,4})}

LABEL-NP =⇒ {1, 2, 3, 4} {5} 5 {(NP, {1,2,3,4}), (NP, {5})}
SHIFT =⇒ {1, 2, 3, 4}|{5} {6} 6 {(NP, {1,2,3,4}), (NP, {5})}

NO-LABEL =⇒ {1, 2, 3, 4}|{5} {6} 6 {(NP, {1,2,3,4}), (NP, {5})}
GAP =⇒ {1, 2, 3, 4} {5} | {6} 6 {(NP, {1,2,3,4}), (NP, {5})}

MERGE =⇒ {5} {1, 2, 3, 4, 6} 6 {(NP, {1,2,3,4}), (NP, {5})}
LABEL-VP =⇒ {5} {1, 2, 3, 4, 6} 6 {(NP, {1,2,3,4}), (NP, {5}), (VP, {1,2,3,4,6})}

MERGE =⇒ {1, 2, 3, 4, 5, 6} 6 {(NP, {1,2,3,4}), (NP, {5}), (VP, {1,2,3,4,6})}
NO-LABEL =⇒ {1, 2, 3, 4, 5, 6} 6 {(NP, {1,2,3,4}), (NP, {5}), (VP, {1,2,3,4,6})}

SHIFT =⇒ {1, 2, 3, 4, 5, 6} {7} 7 {(NP, {1,2,3,4}), (NP, {5}), (VP, {1,2,3,4,6})}
MERGE =⇒ {1, 2, 3, 4, 5, 6, 7} 7 {(NP, {1,2,3,4}), (NP, {5}), (VP, {1,2,3,4,6})}

LABEL-ROOT@S =⇒ {1, 2, 3, 4, 5, 6, 7} 7 {(NP, {1,2,3,4}), (NP, {5}), (VP, {1,2,3,4,6}),
(ROOT@S, {1,2,3,4,5,6,7})}

Table 8.3: Example derivation for the tree above with the ML-GAP transi-
tion system.
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In ML-GAP-LEX, a parsing configuration is a 5-tuple 〈S,D, i, C,A〉. S
and D are sequences of couples (I, h), where I is a set of indices and h ∈ I
is a distinguished element of I . The integer i has the same semantics as
in ML-GAP, C is a set of constituents and A is a set of dependency arcs.
The ML-GAP-LEX transition system is presented in Table 8.4 as a deduction
system. The main difference with ML-GAP is that there are two MERGE
actions, MERGE-LEFT and MERGE-RIGHT, and that each of them creates a
new directed dependency arc.

8.2.3 Properties

This section illustrates key differences between the transition systems
we introduced and more standard transition systems, both in the case
of discontinuous and projective constituency parsing. We first briefly
describe the oracles we used, then we discuss several metrics computed
on treebanks: the number of action types, the number of GAP actions and
the incrementality of each transition system.

8.2.3.1 Oracles

The oracles we used are static oracles. For the ML-GAP-LEX transition sys-
tem, the oracle is very similar to the SR-GAP oracle presented in Chapter 7.
A derivation in ML-GAP-LEX can be straightforwardly computed from a
derivation in SR-GAP transition system by the following operations:

• REDUCE-LEFT-X (resp. REDUCE-RIGHT-X) actions are replaced by a
MERGE-LEFT (resp. MERGE-RIGHT) action followed by

– LABEL-X if X is a non-temporary nonterminal

– NO-LABEL otherwise

• The REDUCE-UNARY-X actions are replaced by LABEL-X.

• NO-LABEL actions are inserted to make sure the derivation satisfy the
structure-label alternation.

This oracle attaches the left dependents of a governor first. In practice,
other oracle strategies are possible as long as constituents are constructed
from their head outward.

For the ML-GAP transition system, we use an oracle that implicitly
corresponds to the left-first binarization (see Section 3.2.3.1): n-ary con-
stituents are built in a left-to-right fashion.
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Input (1, 2, 3, . . . , n)

Axiom 〈ε, ε, 0, ∅, ∅〉

Goal 〈ε, {1, 2, . . . n}, n, C,A〉

Structural actions

SHIFT
〈S,D, i, C,A〉

〈S|D, ({i+ 1}, i+ 1), i+ 1, C, A〉

MERGE-LEFT
〈S|(Is0 , hs0), D|(Id0 , hd0), i, C,A〉

〈S|D, (Is0 ∪ Id0 , hs0), i, C,A ∪ {hs0 → hd0}〉

MERGE-RIGHT
〈S|(Is0 , hs0), D|(Id0 , hd0), i, C,A〉

〈S|D, (Is0 ∪ Id0 , hd0), i, C,A ∪ {hd0 → hs0}〉

GAP
〈S|Is0 , D, i, C,A〉
〈S, Is0|D, i, C,A〉

Labelling actions

LABEL-X
〈S, Id0 , i, C,A〉

〈S, Id0 , i, C ∪ {(X, Id0)}, A〉

NO-LABEL
〈S, Id0 , i, C,A〉
〈S, Id0 , i, C,A〉

Table 8.4: A lexicalized structure-label transition system for discontinuous
parsing: ML-GAP-LEX.
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Number of action types
Corpus (train sets) SR-GAP ML-GAP-LEX ML-GAP

SPMRL

Arabic 195 101 100
Basque 88 32 31
French 181 95 94
German 923 580 579
Hebrew 286 202 201
Hungarian 79 44 43
Korean 45 19 18
Polish 157 94 93
Swedish 129 69 68

Discontinuous treebanks

English (Disco PTB) 294 157 156
French (French Treebank) 190 95 94
German (Tiger) 191 94 93
German (Negra) 136 60 59

Table 8.5: Action type statistics per transition system and corpus.

8.2.3.2 Number of Action Types

The numbers of action types for each transition system and corpus are
reported in Table 8.5. Structure-label systems have much fewer action
types, at least 30% fewer actions (Hebrew) and at most 65% (Basque).
There are two reasons for this. They have fewer nonterminal symbols
because they do not need temporary symbols. They have a single labelling
action LABEL-X for each nonterminal, where SR-GAP can have up to three
actions (REDUCE-RIGHT-X, REDUCE-LEFT-X and REDUCE-UNARY-X) for
the same nonterminal X .

Given the reduced number of action types and the distinction between
structural and labelling actions, structure-label systems have arguably
easier decisions to make. On the other hand, derivations are longer with
structure-label systems. Indeed, in shift-reduce systems, REDUCE actions
perform both a structural operation and a labelling operation in a single
parsing step. Assuming there is a limited number of unary constituents
and discontinuous constituents in a corpus, the length of a derivation for
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SR-GAP ML-GAP-LEX ML-GAP

English (Disco PTB)

Max number of consecutive GAPS 9 9 8
Average number of consecutive GAPS 1.78 1.78 1.34
Total number of GAPS 33,341 33,341 18,421

French (French Treebank)

Max number of consecutive GAPS 7 7 6
Average number of consecutive GAPS 1.57 1.57 1.33
Total number of GAPS 578 578 408

German (Tiger)

Max number of consecutive GAPS 10 10 5
Average number of consecutive GAPS 1.40 1.40 1.12
Total number of GAPS 40,905 40,905 25,852

German (Negra)

Max number of consecutive GAPS 11 11 5
Average number of consecutive GAPS 1.47 1.47 1.11
Total number of GAPS 20,149 20,149 11,181

Table 8.6: GAP action statistics in the training sets of different treebanks.

a sentence size n is around 4n for a structure-label system,3 and 2n for a
shift-reduce system.4

8.2.3.3 Number of GAP Actions

The GAP actions are supposedly more difficult to predict, because they
involve long distance information. They also increase the length of a
derivation and make the parser more prone to error propagation. We
expect a transition system that is able to predict a discontinuous tree more
efficiently, in terms of number of GAP actions, to be a better choice.

We report in Table 8.6 the number of GAP actions necessary to derive
the discontinuous trees for several corpora and for several transition sys-
tems. We also report the average and maximum number of consecutive

3n SHIFTS, n− 1 MERGES, 2n− 1 LABEL-X and NO-LABEL.
4n SHIFTS, n− 1 REDUCES.
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        X[a]                 
         ┌────┐               
        Z[f]  │              
     ┌───┼─── │ ───┬───────┐  
     │   │   Y[a]  │       │ 
 ┌── │   │ ───┴─── │ ──┐   │  
 A   B   C         D   E   F 
 │   │   │         │   │   │  
 a   b   c         d   e   f 

             X                 
         ┌───┴───┐              
         Z       │             
     ┌───┴────── │ ──┐          
     │           │   Z:        
     │   ┌────── │ ──┴───┐      
     │   │       Y       │     
 ┌── │   │ ──────┴───┐   │      
 │   │   │           │   Z:    
 │   │   │       ┌── │ ──┴───┐  
 A   B   C       D   E       F 
 │   │   │       │   │       │  
 a   b   c       d   e       f 

                 X             
             ┌───┴───┐          
             │       Z         
             │   ┌───┴───────┐  
             │   *           │ 
         ┌── │ ──┴───┐       │  
         │   Y       │       │ 
 ┌────── │ ──┴────── │ ──┐   │  
 │       *           │   │   │ 
 │   ┌───┴───┐       │   │   │  
 A   B       C       D   E   F 
 │   │       │       │   │   │  
 a   b       c       d   e   f 

• SR-GAP: SH, SH, SH, SH, GAP, GAP, GAP, RR-Y, SH, GAP, RR-Z:, GAP,
RR-Z:, GAP, RR-Z, RL-X

• ML-GAP: SH, SH, SH, MERGE, SH, MERGE, SH, GAP, MERGE, LABEL-Y,
SH, GAP, MERGE, LABEL-Z, MERGE, LABEL-X

Figure 8.2: A lexicalized tree and the binarizations respectively used by a
lexicalized system (center part) and an unlexicalized system (right part),
along with the corresponding derivations (NO-LABEL actions are ignored).

GAP actions in each case. For English and German, the unlexicalized tran-
sition system ML-GAP needs much fewer GAP actions to derive discontinu-
ous trees (approximately 45% fewer). The average number of consecutive
GAP actions is also smaller (as well as the maximum for German corpora).
In average, the elements in the stack (S) that need to combine with the
top of the deque (D) are closer to the top of S with the ML-GAP transition
system than with lexicalized systems. This observation is not surprising,
since ML-GAP can start constructing constituents before having access to
their lexical head, it can construct larger structures before having to GAP
them.

We illustrate this difference between oracles with an artificial example
in Figure 8.2. We present a lexicalized tree (left-hand part), with its
binarization used by lexicalized transition systems (center part), and the
implicit binarization used by ML-GAP (right-hand part). In the latter tree,
non-constituents are indicated with a star, corresponding to NO-LABEL
actions. We also report the corresponding derivations for SR-GAP and
ML-GAP. The SR-GAP transition system must construct constituent Y first
and need to perform three GAP actions to do so, as terminals b, c and d
must be combined with f, which has not been shifted yet. In contrast,
the ML-GAP can start constructing Z by combining b, c and d and needs
a single GAP to build Y. Such structures explain the difference in average
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and maximum number of GAP actions for lexicalized and non-lexicalized
transition systems.

8.2.3.4 Incrementality

Finally, we compare the incrementality of the three transition systems.
We adopt the definition of incrementality of Nivre (2004): an incremental
algorithm minimizes the number of connected components in the stack
during parsing. An unlexicalized system can construct a new constituent
by incorporating each new component immediately whereas a lexicalized
system waits until it has shifted the head of a constituent before starting
building the constituent. For example, to construct the following subtree,

A[h]

b c d e h

a lexicalized system must shift every token before starting reductions
in order to be able to predict the dependency arcs between h and its
dependents.5 In contrast, an unlexicalized system can construct partial
structures as soon as there are two elements with the same parent node in
the stack.6

We report the average number of connected components during a deriva-
tion for each transition system in Table 8.7. Overall, the unlexicalized tran-
sition system ML-GAP is more incremental than lexicalized transition sys-
tems, except for the Korean treebank. An explanation of this is that in the
Korean treebank, nearly all constituents are binary. The three transition
systems differ in their strategy to construct n-ary constituents but follow
the same single possible strategy for binary constituents.

8.2.3.5 Interim Conclusion

In this section, we have discussed differences between three transition
systems in different settings (discontinuous or projective treebanks). The
ML-GAP transition system has much fewer action types than SR-GAP and
is more incremental, producing simpler configurations. Finally, ML-GAP-
LEX is a hybrid system with properties from both other systems: it yields
derivations similar to those of SR-GAP whereas it has much fewer action
types. The goal of the parsing experiments of the next section with

5SHIFT, SHIFT, SHIFT, SHIFT, SHIFT, REDUCE-RIGHT-A:, REDUCE-RIGHT-A:, REDUCE-
RIGHT-A:, REDUCE-RIGHT-A.

6SHIFT, SHIFT, MERGE, SHIFT, MERGE, SHIFT, MERGE, SHIFT, MERGE.
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Projective corpora (SPMRL) Average length of stack
SR ML-LEX ML

Arabic 6.57 6.48 6.24
Basque 2.57 2.58 2.16
French 4.41 4.39 4.13
German 3.14 3.19 2.33
Hebrew 4.85 4.73 4.53
Hungarian 3.05 3.01 2.42
Korean 2.76 2.84 2.79
Polish 2.87 2.77 2.59
Swedish 3.38 3.37 3.23

Discontinuous corpora Average length of stack (S+D)
SR-GAP ML-GAP-LEX ML-GAP

English (Disco-PTB) 5.57 5.62 4.86
French (Disco-FTB) 4.41 4.39 4.13
German (Negra) 3.66 3.69 2.88
German (Tiger) 3.53 3.56 2.98

Table 8.7: Incrementality measure per transition system and corpus, mea-
sured by the average size of the stack during derivations. The average is
calculated across all configurations (not across all sentences).

these three transition systems is to assess the contributions of different
properties of ML-GAP.

8.3 Experiments

The experiments we have carried out aim at assessing the importance
of lexicalization in the context of both projective and discontinuous con-
stituency parsing. To this end, we compare the three transition systems we
have presented in this chapter (and their projective counterparts), as well
as several feature templates. As a side empirical question, we evaluate the
role of nonterminal feature templates.
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8.3.1 Statistical Model

The base statistical model is nearly identical to the TOK+CLSTM+M+D mul-
titask model of Chapter 6. A hierarchical bi-LSTM builds character-aware
word embeddings and uses them to construct context-aware representa-
tions for each token. A tagger uses each token representation to predict its
POS tag, its dependency label and its morphological attributes. Then, at
each parsing step, a feed-forward classifier extracts lexical and nontermi-
nal symbols from the configuration to predict what transition should be
taken next.

There are two differences with the TOK+CLSTM+M+D model of Chap-
ter 6. First of all, we experiment with different feature templates (see next
section). Secondly, following Cross and Huang (2016a), for the structure-
label systems, we use two distinct classifiers for the structural actions and
the labelling actions.

Let h(0) be the input of an action classifier, i.e. the concatenation of
symbol representations extracted from the configuration. The parser will
use different sets of parameters depending on the type of the next action:

Structure Label (8.1)

h(1) = f(W(s1) · h(0) + b(s1)) h(1) = f(W(l1) · h(0) + b(l1)) (8.2)

h(2) = f(W(s2) · h(1) + b(s1)) h(2) = f(W(l2) · h(1) + b(l1)) (8.3)

h(3) = Softmax(W(s3) · h(2) + b(s2)) h(3) = Softmax(W(l3) · h(2) + b(l2))
(8.4)

where W(si) and b(si) are the parameters used to predict a structural
action, whereas W(li) and b(li) are used for a label action. Thanks to
the distinction between labelling and structural actions, parsing can be
viewed as two subtasks. The use of two classifiers is related to the question
of what parameters need to be shared in a multitask setting: either just the
hierarchical bi-LSTM, or also the hidden layers of the action classifier.

8.3.2 Feature Templates

We experimented with four sets of feature templates. They are specified
in Table 8.8, using notations from Chapter 7.

• The BASE feature templates only includes span features: the tokens
that are at the boundaries of constituents in the stack (and deque in
the discontinuous case), as well as b0 to represent the buffer. The



CHAPTER 8. UNLEXICALIZED CONSTITUENCY PARSING 168

Projective Discontinuous

BASE b0, s0.wl, s0.wr, s1.wl, s1.wr, s2.wr b0, d0.wl, d0.wr, d1.wr, s0.wl, s0.wr, s1.wr
+LEX BASE+ s0.w, s1.w BASE+ d0.w, d1.w, s0.w, s1.w
+NT BASE+ s0.c, s1.c, s2.c BASE+ d0.c, d1.c, s0.c, s1.c
+LEX+NT BASE+ s0.w, s1.w, s0.c, s1.c, s2.c BASE+ d0.w, d1.w, s0.w, s1.w, d0.c, d1.c, s0.c, s1.c

Table 8.8: Feature template set descriptions.

BASE templates are meant to be minimal (6 or 7 templates vs 11 for
the template set used in Chapter 6).

• The +LEX templates add information about the heads of constituents
to assess whether these are useful for a lexicalized transition system.

• The +NT templates add features about nonterminal labels.

• Finally the +LEX+NT templates include every template in the BASE,
+LEX and +NT sets.

The absence of nonterminal symbol features in the BASE template
set might seem odd as these features encode grammar rules that are
supposedly important for accurate constituency parsing. However, Cross
and Huang (2016a) showed that they were not necessary to achieve high
accuracy in projective constituency parsing on the Penn Treebank and the
French Treebank. A possible explanation is that nonterminal features may
be inaccurate due to labelling errors.

On the training set, tagging accuracy reaches quickly 99%: the parser
will have access to near-gold features. Moreover, as it uses a static oracle,
it will have access to gold nonterminal features. In contrast, on the
development and test sets, tagging is not as accurate and the parser will
make nonterminal labelling mistakes. Due to error propagation, the parser
will not have access to gold features, but to noisy, possibly wrong, features.
In other words, there is a mismatch between the training and the testing
situations, which may harm learning. Removing nonterminal features is
the easiest way to avoid this situation. Morphosyntactic information is
still available in the representations computed by the sentence-level bi-
LSTM as they are trained to be good predictors of POS tags, as in the
stack-propagation architecture of Zhang and Weiss (2016).

8.3.3 Data

Discontinuous Treebanks For discontinuous parsing experiments, we
used the Negra corpus (Skut et al., 1997), the Tiger corpus (Brants et al.,
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2002), the discontinuous version of the Penn Treebank (Evang and Kallmeyer,
2011; Marcus et al., 1993) and a discontinuous version of the French Tree-
bank (Coavoux and Crabbé, 2017; Abeillé et al., 2003).

For the Tiger corpus, we use the SPMRL split. We obtained the
dependency labels and the morphological information for each token with
the dependency treebank versions of the SPMRL release.

We converted the Negra corpus to labelled dependency trees with the
DEPSY tool7 in order to annotate each token with a dependency label. We
do not predict morphological attributes for this corpus (only POS tags) as
only a small section is annotated with a full morphological analysis. We
use the standard split (Dubey and Keller, 2003) and no limit on sentence
length.

We used the Stanford parser to convert the Penn Treebank to a labelled
dependency corpus and annotate its tokens with dependency labels.

Following standard practice and to compare fairly with other pub-
lished results, we ignore punctuation for the evaluation, except for French,
for which we use the SPMRL evaluation parameters.

Projective Treebanks For projective parsing experiments, we used the
SPMRL dataset (Seddah et al., 2013) in the same instantiation as in Chap-
ter 6. We used the SPMRL shared task evaluator that takes punctuation
and unparsed sentences into account.

8.3.4 Results

In each setting, the only hyperparameters that are tuned are the learning
rate {0.01, 0.02} and the number of iterations {4, 8, 12, . . . , 28, 30}. They are
tuned for the F1 measure on the development sets.8 The other hyperpa-
rameters have the same values as in the experiments of Chapter 6.

8.3.4.1 Multilingual Discontinuous Constituency Parsing

Internal Comparisons Discontinuous parsing results on the development
set are shown in Table 8.9. First of all, we observe that all models perform
very well, which suggests that the differences between transition systems
have rather marginal effects compared to the bi-LSTM statistical model.

7https://nats-www.informatik.uni-hamburg.de/pub/CDG/
DownloadPage/cdg-2006-06-21.tar.gz We modified DEPSY to keep the same
tokenization as the original corpus.

8In order to maximize performance on the discontinuous constituents, another possi-
bility would have been to optimize them on the discontinuous F1 measure.

https://nats-www.informatik.uni-hamburg.de/pub/CDG/DownloadPage/cdg-2006-06-21.tar.gz
https://nats-www.informatik.uni-hamburg.de/pub/CDG/DownloadPage/cdg-2006-06-21.tar.gz
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English German (Tiger) German (Negra) French
Transition System Features F Disc. F F Disc. F F Disc. F F Disc. F

SR-GAP BASE 90.66 72.12 85.88 55.96 82.27 47.56 81.77 10.53
SR-GAP +NT 90.85 71.76 87.10 58.09 83.24 54.26 81.88 18.60
SR-GAP +LEX 90.80 70.94 86.24 55.86 81.85 47.51 82.10 7.27
SR-GAP +NT+LEX 90.86 69.31 86.47 58.20 82.72 51.38 81.96 4.65

ML-GAP BASE 91.20 72.00 87.61 60.48 83.66 53.78 82.59 22.22
ML-GAP +NT 91.07 68.63 87.37 60.95 83.61 53.19 82.42 27.27

ML-GAP-LEX BASE 91.06 68.24 86.48 56.31 82.36 46.95 81.89 15.38
ML-GAP-LEX +NT 90.69 68.66 87.22 58.20 83.49 55.20 82.22 17.39
ML-GAP-LEX +LEX 90.92 68.37 86.69 57.92 82.59 50.06 81.70 25.00
ML-GAP-LEX +NT+LEX 91.04 71.09 87.33 60.53 82.76 51.74 81.78 20.00

Table 8.9: Discontinuous parsing results on the development sets.

The ML-GAP transition system performs consistently better for the F1
measure, and most of the time, also the discontinuous F1. We conclude
from this result that lexicalization is not necessary to achieve very strong
discontinuous parsing results.

As regards feature templates, the effect of nonterminal features is ei-
ther slightly beneficial to parsing (SR-GAP) or slightly detrimental (ML-
GAP). Finally, for lexicalized transition systems, the use of head informa-
tion has in fact very little effect, and is even detrimental is some cases
(SR-GAP+NT+LEX vs SR-GAP+NT on the Tiger Corpus). From these obser-
vations, we conclude that the simplest template set must be preferred, and
focus now on the ML-GAP model with BASE features.

Morphological Analysis We report results for morphological analysis
with the selected model (ML-GAP with BASE features) in Table 8.10. For
each morphological attribute, we report an accuracy score computed over
every tokens. However, most morphological attributes are only relevant
for specific part-of-speech tags. For instance, TENSE is only a feature of
verbs. The accuracy metric is somewhat misleading, since the fact that
the tagger predicts correctly that a token does not have an attribute is
considered as a correct answer. Therefore, if only 5% of tokens bore a
specific morphological attribute, a 95% accuracy is a baseline score. For
this reason, we also report a coverage metric (Cov.) that indicates the
proportion of tokens in the corpus that possess an attribute, and an F1
measure that uses the following definitions to compute the precision and
recall:

• True positives: the system predicts the correct attribute-value pair.
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Attribute Acc. F1 Cov.

English

POS 97.25 - 100

French

POS 97.61 - 100
Complete match 89.84 - 100

Gender 97.31 97.36 50.32
Mood 99.54 97.88 10.89
Number 98.47 98.66 57.07
Person 99.67 98.36 9.95
Subcat 97.57 98.31 71.2
Tense 99.55 97.45 8.7
MWE 96.53 80.68 8.88
MWE-head 97.65 78.02 5.29

Attribute Acc. F1 Cov.

German (Negra)

POS 97.93 - 100

German (Tiger)

POS 98.37 - 100
Complete match 92.94 - 100

Case 96.87 96.85 48.24
Degree 99.7 98.04 7.53
Gender 96.89 96.83 47.73
Mood 99.85 99.07 7.82
Number 98.45 98.67 57.77
Person 99.9 99.46 9.45
Tense 99.89 99.27 7.83

German (Tiger)
Björkelund et al. (2013)

POS 98.10
Complete match 91.80

Table 8.10: Morphological analysis results on the development sets.

• True negatives: the system predicts correctly that an attribute is not
relevant for a token, for instance that a noun has no tense.

• False positives: the system predicts an attribute-value pair:

– for a token that has no such attribute (for example, prediction
of a tense for a noun);

– for a token that has such attribute but with another value (for
example, case=nom instead of case=acc).

• False negatives: when the system fails to see that the token has the
attribute.

In French, the tagger performs rather well except on the two attributes
related to multiword expression (MWE) detection. The attribute MWE has
a boolean value that specifies whether a token is part of an MWE and
MWE-head is assigned to lexical heads of MWE and specifies the POS
tag of the MWE. For example, in the compound motion de censure (motion
of censure), the three tokens have the attribute-value pair MWE=true and
motion has the additional pair MWE-head=NC+. The low performance on
these attributes is likely due to the fact that MWE recognition is more
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English German (Tiger) German (Negra) French
Transition System Features F Disc. F F Disc. F F Disc. F F Disc. F

Predicted POS tags

ML-GAP BASE 90.99 71.31 82.73 55.86 82.62 54.07 82.91 20.29

Stanojević and Garrido Alhama (2017), SWAP∗, bi-LSTM 76.96
Coavoux and Crabbé (2017a) 79.26
Corro et al. (2017) 89.17
Fernández-González and Martins (2015) 77.32
Versley (2016) 79.50
van Cranenburgh et al. (2016), ≤ 40 87 74.8

Gold POS tags

Maier (2015), SR-SWAP, perceptron 74.71 18.77 76.95 19.82
Stanojević and Garrido Alhama (2017), SWAP∗, bi-LSTM 81.64 82.87
Evang and Kallmeyer (2011)†, PLCFRS, < 25 79

Table 8.11: Discontinuous parsing results on the test sets.
∗Uses a variant of the lexicalized shift-reduce system (Cross and Huang,
2016b) with an additional SWAP action.
†Does not discount root symbols and punctuation.

difficult than the other auxiliary tasks, as it involves lexical knowledge
that is hard to learn. Moreover, the representation of MWE with attributes
is not ideal. It has to be noted that MWEs are also taken into account by
parsing evaluation as any other constituent.

In German, the tagger also achieves high results, with slightly lower
scores for case and gender. Overall, it slightly outperforms previous
results published by Björkelund et al. (2013) who used the MARMOT
tagger (Mueller et al., 2013).

External Comparisons We report the results of the selected model on
the test sets of the four corpora in Table 8.11. They are compared to other
published results. All metrics are not fully comparable as some papers
only report results with gold POS tags, or with a limit on sentence lengths.
However, our setting is the most restrictive, as the parser performs joint
tagging and scale to full corpora. Despite these differences, ML-GAP
outperforms other parsers, including the bi-LSTM parser of Stanojević
and Garrido Alhama (2017)9 that is based on a SWAP action to predict
discontinuities. This observation confirms in another setting the results
of Chapter 7, namely that GAP transition systems have more desirable
properties than SWAP transition systems.

9On Negra, they have similar results but our parser has no access to gold tags whereas
their parser does.
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trans. syst. features Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg.

DEV

SR-LEX BASE 83.42 88.06 82.29 88.03 90.01 90.34 86.91 93.25 78.74 86.78
SR-LEX +NT 83.35 87.72 82.52 88.37 89.62 90.70 86.69 92.88 79.09 86.77
SR-LEX +LEX 83.29 87.67 82.30 88.14 90.08 90.28 86.86 93.37 78.16 86.68
SR-LEX +NT+LEX 83.18 88.16 82.39 88.64 89.5 90.69 86.68 92.83 79.38 86.83

ML BASE 83.88 88.13 82.64 89.35 90.30 90.9 86.92 93.43 78.84 87.15
ML +NT 82.67 88.12 82.41 89.02 89.94 90.72 86.80 93.35 78.7 86.86

ML-LEX BASE 83.37 88.61 82.43 88.58 90.14 90.39 86.94 93.29 78.21 86.88
ML-LEX +NT 83.09 88.20 82.23 88.87 90.34 90.47 86.94 93.40 78.27 86.87
ML-LEX +LEX 82.91 88.04 81.83 88.70 90.17 90.18 87.25 93.09 78.09 86.7
ML-LEX +NT+LEX 82.43 88.01 81.93 88.88 89.99 90.58 86.89 92.96 78.07 86.64

TOK+CLSTM+M+D, Chapter 6 83.04 87.93 82.19 88.70 89.64 90.52 86.78 93.23 79.14 86.8
TOK+MMT+D, Chapter 6 83.07 88.35 82.35 88.75 90.34 91.22 86.55 94.0 79.64 87.14

TEST

ML BASE 83.56 88.81 82.55 85.66 89.90 91.58 86.19 93.33 83.54 87.24

TOK+CLSTM+M+D, Chapter 6 82.92 87.87 82.1 85.12 89.19 90.95 85.89 92.67 83.44 86.68
TOK+MMT+D, Chapter 6 82.77 88.81 82.49 85.34 89.87 92.34 86.04 93.64 84.0 87.26

Fernández-González and Martins (2015), dep - 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 (84.22)
Crabbé (2015), tb+perceptron, beam=8 81.31 84.94 80.84 79.26 89.65 90.14 82.65 92.66 83.24 84.97
Durrett and Klein (2015), neural, CKY 80.24 85.41 81.25 80.95 88.61 90.66 82.23 92.97 83.45 85.09
Coavoux and Crabbé (2016), FFNN, greedy 80.71 86.24 79.91 80.15 88.69 90.51 85.10 92.96 81.74 85.11
Legrand and Collobert (2016), RNN 80.4 87.5 80.8 82.0 91.6 90.0 84.8 93.0 80.5 85.6
Björkelund et al. (2014), ens+rerank 81.32 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.12

Table 8.12: Projective parsing results (development and test sets).

8.3.4.2 Multilingual Projective Constituency Parsing

We report results for projective parsing on the SPMRL dataset in Table 8.12.
The ML transition system with BASE features is the best performing sys-
tem. Overall, the selected model (ML with BASE features) matches the re-
sult of the TOK+MMT+D pipeline model from Chapter 6, that used a highly
accurate morphological tagger (MARMOT Mueller et al., 2013) informed
with morphological lexicons.

As observed in the discontinuous case, the different feature templates
have very little effect on parsing accuracy (±0.2). Lexicalized systems
perform no better when they have access to head features (+LEX). The
addition of nonterminal features (+NT) has hardly any effect.

We report UAS results for the ML-LEX transition system in Table 8.13 to
assess the effect of lexicalized features on the predicted dependency struc-
tures. Surprisingly enough, the lexicalized features bring no improvement
and are even detrimental in several cases (Polish, Basque). We believe that
these results suggest that even lexicalized models do not actually model
bilexical relations but rely on other surface features.
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ML-LEX Unlabelled Attachment Score (Dev)
Arabic Basque French German Hebrew Hungarian Korean Polish Swedish

BASE 82.78 74.65 88.26 71.80 85.63 74.69 90.34 90.15 83.23
+LEX 82.65 74.07 88.16 71.97 85.37 74.62 90.68 90.22 82.87
+NT 82.72 75.00 88.42 72.04 85.13 75.02 90.34 90.31 82.82
+NT+LEX 82.52 74.59 88.14 72.15 84.91 75.09 90.57 89.64 82.54

Table 8.13: UAS results with ML-LEX (dev).

8.4 Error Analysis

In this section, we provide an error analysis focused on the discontinuous
constituents for the best performing model. After describing the method-
ology, we discuss the main findings of this analysis.

8.4.1 Methodology

All analyses are performed on the development set of the Discontinu-
ous Penn Treebank (Evang and Kallmeyer, 2011), using the predictions
of the ML-GAP model with BASE features. We used DISCODOP (van Cra-
nenburgh et al., 2016) to extract the precision and recall on discontinuous
constituents for each sentence. Out of 278 sentences containing a disconti-
nuity (excluding those in which the discontinuity is only due to the punc-
tuation), 165 were exact matches for discontinuous constituents and 113
contained at least one error.

Following Evang (2011), we categorized errors according to the phe-
nomena producing the discontinuities. We used the following classifica-
tion, where the main discontinuous constituent is in bold:

• Wh-extractions (questions, relative clauses):

– What else is one to make of the whacky save-the-earth initia-
tive just proposed by several major environmental groups and
organized by the state’s attorney general?

• Fronted quotations:

– Currently, average pay for machinists is $13.39 an hour, Boeing
said.

• It-extraposition:
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– Were it true that a weak currency paves the way for trade
surpluses, then presumably Argentina would be the center of today’s
global economy.

• Circumpositioned quotations:

– “We wanted to highlight the individual, not the environment,”
he says, “and black and white allows you to do that better than
color.”

• Extraposed modifiers or complements:

– “I had calls all night long from the States,” he said.

• Subject-verb inversions:

– Grinned Griffith Peck, a trader in Shearson Lehman Hutton Inc.’s
OTC department: “I tell you, this market acts healthy.”

For each phenomenon occurrence, we sub-categorized the parser’s
prediction in one of the following category:

1. Perfect match: the parser correctly identified every discontinuous
constituent involved (discontinuous F1=100).

2. Non detection (false negative): the parser failed to detect a disconti-
nuity (discontinuous F1=0).

3. Partial recognition: the parser correctly identified the phenomenon
involved but did not obtain a 100 discontinuous F1 due to some
mistakes. This category includes labelling mistakes, errors in the
scope of the phenomenon, and errors in the internal structure of a
discontinuous constituent.

Finally, we also report false positives for each phenomenon: cases where
the parser predicted a discontinuity to model a phenomenon that does not
occur in the reference tree.

Recall Precision F1

All 91.15 91.25 91.20
Discontinuous constituents 66.59 78.36 72.00

Table 8.14: Precision and recall (development) for the selected model.
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8.4.2 Observations

The precision and recall of the model on the whole corpus are reported in
Table 8.14. As was observed in Chapter 7 with the structured perceptron
model, the precision on discontinuous constituents is much higher than
the recall, meaning that the model is rather conservative when predicting
discontinuities.

Results per phenomenon are reported in Table 8.15, ordered by num-
ber of raw occurrences. We discuss them in the next sections. For conve-
nience, we repeat the example corresponding to each phenomenon at the
beginning of each section.

8.4.2.1 Wh-extractions

Example: What else is one to make of the whacky save-the-earth initiative
just proposed by several major environmental groups and organized by
the state’s attorney general?

Non Detections For wh-extractions, a recurrent ambiguity accounts for 7
non-detected occurrences: that clauses are sometimes relative clauses (with
extraction) and sometimes a complement clause (without extraction) as il-
lustrated in the following sentences:

1. (NP the place (SBAR that world opinion has been celebrating over))

2. (NP the consensus . . . (SBAR that the Namibian guerrillas were above
all else the victims of suppression by neighboring South Africa.))

Sentence (1) is annotated with a discontinuous PP containing only that and
over to model an extraction. In contrast, there is no extraction in sentence
(2) where the that clause is a complement clause of the preceding noun.

In the 7 cases, the parser predicts a complement clause instead of a
relative clause with extraction of the object of a verb (5 cases) or the object
of a stranded preposition (2 cases).

Partial recognitions The occurrences of partial recognition of a wh-
extraction break down into several prototypical patterns. In 10 cases, the
parser found the extracted phrase and attached it at the correct extraction
site, but made a mistake in the scope of the discontinuous phrase (typically
a VP). In 4 cases, the mistake consists of just an adverb attached to the
sentence instead of the VP, as illustrated in Figure 8.3 (upper part). In the
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Wh-extractions Gold 122 100%
Perfect match 87 71.3
Partial recognition 19 15.6
Non detection 16 13.1
False positives 8 NA

Fronted quotations Gold 81 100%
Perfect match 77 95.1
Partial recognition 3 3.7
Non detection 1 1.2
False positives 0 NA

Extrapositions Gold 44 100%
Perfect match 10 22.7
Partial recognition 1 2.27
Non detection 33 75
False positives 3 NA

Circumpositioned quotations Gold 22 100%
Perfect match 11 50
Partial recognition 10 45.4
Non detection 1 4.5
False positives 3 NA

It-extrapositions Gold 16 100%
Perfect match 6 37.5
Partial recognition 2 12.5
Non detection 8 50
False positives 2 NA

Subject-verb inversion Gold 5 100%
Perfect match 4 80
Non detection 1 20
False positives 1 NA

Table 8.15: Evaluation statistics per phenomenon.
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Gold tree:

                                 ROOT                                         
                                  │                                            
                                  PP                                          
 ┌───┬────────────┬───────────────┴─────────────────────────────────────┬───┐  
 │   │            NP                                                    │   │ 
 │   │     ┌──────┴──────────┐                                          │   │  
 │   │     │                SBAR                                        │   │ 
 │   │     │                 │                                          │   │  
 │   │     │                 S                                          │   │ 
 │   │     │            ┌────┴──────────┐                               │   │  
 │   │     │            │               VP                              │   │ 
 │   │     │      ┌──── │ ───┬────┬─────┼────────┬───────────┬─────┐    │   │  
 │   │     NP   WHADVP  NP  ADVP  │     │        NP          │    ADVP  │   │ 
 │   │     │      │     │    │    │     │    ┌───┴────┐      │     │    │   │  
 RB  IN   NNP    WRB   PRP   RB  VBD  -LRB-  DT       NN   -RRB-   RB   .   ''
 │   │     │      │     │    │    │     │    │        │      │     │    │   │  
Not like Friday where  they just took   {   the     market   }   apart  .   ''

Predicted tree:

                                 ROOT                                         
                                  │                                            
                                  S                                           
 ┌───┬────────────┬───────────────┴─────────────────────────────────────┬───┐  
 │   │            NP                                                    │   │ 
 │   │     ┌──────┴──────────┐                                          │   │  
 │   │     │                SBAR                                        │   │ 
 │   │     │                 │                                          │   │  
 │   │     │                 S                                          │   │ 
 │   │     │            ┌────┼──────────┐                               │   │  
 │   │     │            │    │          VP                              │   │ 
 │   │     │      ┌──── │ ── │ ───┬─────┴────┬─────────────────────┐    │   │  
 │   │     │      │     │    │    │          NP                    │    │   │ 
 │   │     │      │     │    │    │     ┌────┴───┬───────────┐     │    │   │  
 │   │     NP   WHADVP  NP  ADVP  │     │        NP          │    ADVP  │   │ 
 │   │     │      │     │    │    │     │    ┌───┴────┐      │     │    │   │  
 RB  IN   NNP    WRB   PRP   RB  VBD  -LRB-  DT       NN   -RRB-   RB   .   ''
 │   │     │      │     │    │    │     │    │        │      │     │    │   │  
Not like Friday where  they just took   {   the     market   }   apart  .   ''

Gold tree:
                          VP                                                                                                                                                                 
      ┌───────────────────┴───────────────────┐                                                                                                                                               
      │                                      SBAR                                                                                                                                            
      │                                       │                                                                                                                                               
      │                                       S                                                                                                                                              
      │                   ┌───────────────────┴─────────────────┐                                                                                                                             
      │                   │                                     VP                                                                                                                           
      │                   │                   ┌─────────────────┴──────────────┐                                                                                                              
      │                   │                   │                                VP                                                                                                            
      │                   │                   │    ┌───────────────────────────┴───────────────────────────┐                                                                                  
      │                   │                   │    │                                                       VP                                                                                
      │         ┌──────── │ ───────────────── │ ── │ ─────┬─────┬───────┬────────────────┬─────────────────┴────────────────┐                                                                 
      │         │         │                   │    │      │     │       │                │                                  PP                                                               
      │         │         │                   │    │      │     │       │                │                 ┌────────────────┴─────────────────────┐                                           
      │         │         │                   │    │      │     │       │                │                 │                                      NP                                         
      │         │         │                   │    │      │     │       │                │                 │          ┌─────────────────────┬─────┴──────────────────┐                        
      │         │         │                   │    │      │     │       │                │                 │          │                     │                       SBAR                     
      │         │         │                   │    │      │     │       │                │                 │          │                     │                        │                        
      │         │         │                   │    │      │     │      SBAR             PRN                │          │                     │                        S                       
      │         │         │                   │    │      │     │       │            ┌───┴───┬────────┐    │          │                     │           ┌────────────┴────┐                   
      │         │         │                   │    │      │     │      SINV          │       PP       │    │          │                     PP          │                 VP                 
      │         │         │                   │    │      │     │   ┌───┼──────┐     │   ┌───┴───┐    │    │          │                 ┌───┴─────┐     │      ┌─────┬────┴────┐              
      │       WHADVP      NP                  │    │      │     │   │   NP     VP    │   │       NP   │    │          NP                │         NP   WHNP    │    PRT        NP            
      │         │     ┌───┼──────┬──────┐     │    │      │     │   │   │      │     │   │       │    │    │     ┌────┼─────┬──────┐    │         │     │      │     │    ┌────┼───────┐      
     VBN       WRB    DT  JJ    VBG     NN    MD   VB    VBN    ,  VBD PRP    VBD    ,   IN      CD   ,    IN    DT   NN    NN     NN   IN       NNP   WDT    VBD    RP   DT  NNP     NNP    
      │         │     │   │      │      │     │    │      │     │   │   │      │     │   │       │    │    │     │    │     │      │    │         │     │      │     │    │    │       │      
reconstructed  how   the long leading index would have behaved  ,  had  it  existed  ,   in     1929  ,  before the stock market crash  in     October that ushered  in  the Great Depression

Predicted tree:
                                                  VP                                                                                                                                                
      ┌──────────────────────────┬────────────────┴─────────────────┬─────────────┐                                                                                                                  
      │                          │                                  │             VP                                                                                                                
      │                          │                                  │   ┌───┬─────┴─────────────────┐                                                                                                
      │                          │                                  │   │   │                       VP                                                                                              
      │                          │                                  │   │   │     ┌─────┬───────┬───┴────┬─────────────────────┐                                                                     
      │                          │                                  │   │   │     │     │       │        │                     PP                                                                   
      │                          │                                  │   │   │     │     │       │        │    ┌────────────────┴─────────────────────┐                                               
      │                         SBAR                                │   │   │     │     │       │        │    │                                      NP                                             
      │                          │                                  │   │   │     │     │       │        │    │          ┌─────────────────────┬─────┴──────────────────┐                            
      │                          S                                  │   │   │     │     │       │        │    │          │                     │                       SBAR                         
      │                   ┌──────┴───────────┐                      │   │   │     │     │       │        │    │          │                     │                        │                            
      │                   │                  VP                     │   │   │     │     │       │        │    │          │                     │                        S                           
      │                   │             ┌────┴────┐                 │   │   │     │     │       │        │    │          │                     │           ┌────────────┴────┐                       
      │                   │             VP        │                 │   │   │     │     │       │        │    │          │                     │           │                 VP                     
      │                   │      ┌──────┴──────── │ ───┐            │   │   │     │     │       │        │    │          │                     │           │      ┌──────────┴───┐                   
      │                   │      VP               │    │            │   │   │     │     │       PP       │    │          │                     PP          │      │              PP                 
      │         ┌──────── │ ─────┴─────────────── │ ── │ ─────┐     │   │   │     │     │   ┌───┴───┐    │    │          │                 ┌───┴─────┐     │      │     ┌────────┴────┐              
      │       WHADVP      NP                      │    │      │     │   │   NP    │     │   │       NP   │    │          NP                │         NP   WHNP    │     │             NP            
      │         │     ┌───┼──────┬──────┐         │    │      │     │   │   │     │     │   │       │    │    │     ┌────┼─────┬──────┐    │         │     │      │     │    ┌────────┼───────┐      
     VBN       WRB    DT  JJ     JJ     NN        MD   VB    VBN    ,  VBD PRP   VBD    ,   IN      CD   ,    IN    DT   NN    NN     NN   IN       NNP   WDT    VBN    IN   DT      NNP     NNP    
      │         │     │   │      │      │         │    │      │     │   │   │     │     │   │       │    │    │     │    │     │      │    │         │     │      │     │    │        │       │      
reconstructed  how   the long leading index     would have behaved  ,  had  it existed  ,   in     1929  ,  before the stock market crash  in     October that ushered  in  the     Great Depression

Figure 8.3: Partial recognition cases for wh-extractions: VP scope errors.
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remaining cases, the parser failed to attach correctly other dependents of
the VP (Figure 8.3, lower part).

In 8 cases, the parser found an incorrect attachment site for the ex-
tracted phrase. The difficulty arises when there are several candidate sites,
several embedded verbs or prepositions. The parser either attaches the ex-
tracted phrase too high or too low in the tree. Trees in Figure 8.4 illustrate
two cases with an ambiguity between the extraction of the object of a verb
or of a preposition, that the parser failed to solve. The first tree exhibits an
extraction from a stranded preposition. The parser predicted an extraction
of the object of know. In the second case, the object of the verb is extracted,
wheras the parser attached the extracted element as an object of before.

The last case of partial recognition of a wh-extraction is a case of multi-
site extraction. When a phrase is extracted from the object positions of two
coordinated phrases, it is attached to the coordination phrase, which in
most cases does not produce a discontinuity.10 In the trees in Figure 8.5, the
parser interpreted the extracted where as a modifier of the first coordinated
VP instead of attaching it higher to the VP coordination.

False positives Wh-extractions exhibit the highest number of false pos-
itives. There are two recurrent types of errors. In the case of multi-site
extraction (3 occurrences), the parser tends to attach the extracted element
to the first coordinated phrase (Figure 8.6, upper part), whereas the gold
tree does not usually contain discontinuities in these cases (there are ex-
ceptions as in Figure 8.5).

In the 5 remaining cases, the parser predicted a relative clause with the
extraction of the object of a verb. The gold reference trees either display a
relative clause with an extracted subject with no discontinuity (Figure 8.6,
lower part), or a complement clause introduced by that.

8.4.2.2 Fronted Quotations

Example: Currently, average pay for machinists is $13.39 an hour, Boeing
said.

Fronted quotations are the second most frequent phenomenon produc-
ing discontinuous constituents in the data. They exhibit fairly regular
syntactic patterns and are very well predicted by the parser (95% perfect

10If the constraint that a phrase has a single parent is relaxed, the extracted phrase
could be attached to both extraction sites. However, the resulting graph would no longer
be seen as an LCFRS derivation, but rather a Range Concatenation Grammar (RCG)
derivation.
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Gold trees: Predicted trees:
                       SBAR                   
                        │                      
                        S                     
            ┌───────────┴────┐                 
            │                VP               
            │           ┌────┼───┐             
            │           │    VP  │            
            │     ┌──── │ ───┴── │ ──┐         
            │     PP    │        │   │        
  ┌──────── │ ────┴──── │ ────── │   │ ────┐   
 WHNP       NP          │        │   │     │  
  │    ┌────┴─────┐     │        │   │     │   
 WDT   JJ        NNS   VBD       RB  VB    IN 
  │    │          │     │        │   │     │   
which many     clients did      n't know about

                       SBAR                   
                        │                      
                        S                     
            ┌───────────┴────┐                 
            │                VP               
            │     ┌─────┬────┴───┐             
            │     VP    │        │            
  ┌──────── │ ────┴──── │ ────── │ ──┬─────┐   
 WHNP       NP          │        │   │    ADVP
  │    ┌────┴─────┐     │        │   │     │   
 WDT   JJ        NNS   VBD       RB  VB    IN 
  │    │          │     │        │   │     │   
which many     clients did      n't know about

         SBAR                           
          │                              
          S                             
      ┌───┴─────────┐                    
      │             VP                  
      │        ┌────┴────┬────┐          
      │        │         │    VP        
 ┌─── │ ────── │ ─────── │ ───┼─────┐    
WHNP  NP       │        ADVP  │    ADVP 
 │    │        │         │    │     │    
 IN  PRP      VBP        RB  VBN    RB  
 │    │        │         │    │     │    
that  I       have     never seen before

         SBAR                               
          │                                  
          S                                 
      ┌───┴─────────┐                        
      │             VP                      
      │        ┌────┴────┬────┐              
      │        │         │    VP            
      │        │    ┌─── │ ───┴───┐          
      │        │    PP   │        │         
 ┌─── │ ────── │ ───┴─── │ ────── │ ────┐    
WHNP  NP       │        ADVP      │    ADVP 
 │    │        │         │        │     │    
 IN  PRP      VBP        RB      VBN    RB  
 │    │        │         │        │     │    
that  I       have     never     seen before

Figure 8.4: Partial recognition cases for wh-extractions: extraction site
errors.

match). The only non-detection case is a sentence that contains no quota-
tion marks to delimit the quotation, which may explain the mistake. In the
partial match cases, the parser predicted a fronted quotation larger than it
was actually.

8.4.2.3 Extrapositions

Example: “I had calls all night long from the States,” he said.
On extrapositions, the parser scored relatively low, compared to other

phenomena. This is perhaps due to the fact that there is no clear recurrent
pattern that makes the phenomenon easy to detect: the attachment ambi-
guities to solve are as hard as prepositional attachments and often require
some semantic or world knowledge to be solved.

Except for 4 occurrences, the non-detected cases were extraposed ad-
juncts or complements of nouns. The two most frequent situations are
illustrated in Figure 8.7. In the first case, the modifier of an object NP oc-
curs after a dependent of the verb (either a modifier or an argument). The
parser misattached the PP to the ADVP. In the second case, a modifier for
an NP occurs after the verb. The parser has a tendency to attach these
post-verbal modifiers locally to the verb.



CHAPTER 8. UNLEXICALIZED CONSTITUENCY PARSING 181

Gold tree:
                      SBAR                                                                                                
                       │                                                                                                   
                       S                                                                                                  
            ┌──────────┴─────────┐                                                                                         
            │                    VP                                                                                       
            │          ┌─────────┴──────────────────────────┐                                                              
            │          │                                    VP                                                            
  ┌──────── │ ──────── │ ────────────┬──────────────────────┴──────────────┬────────────────────┐                          
  │         │          │             VP                                    │                    VP                        
  │         │          │    ┌────┬───┴──────────────────┐                  │      ┌─────────────┴───┐                      
  │         │          │    │    │                      NP                 │      │                 NP                    
  │         │          │    │    │       ┌──────────────┴───────┐          │      │      ┌──────────┴──────┐               
  │         │          │    │    │       │                      PP         │      │      │                 PP             
  │         │          │    │    │       │                  ┌───┴────┐     │      │      │      ┌──────────┴───────┐       
WHADVP      NP         │    │   PRT      NP                 │        NP    │      │      NP     │                  NP     
  │     ┌───┴────┐     │    │    │   ┌───┴──────┐           │        │     │      │      │      │          ┌───────┴───┐   
 WRB    DT       NN    MD   VB   RP  DT         NN          IN      NNS    CC     NN    NNS     IN         JJ          NN 
  │     │        │     │    │    │   │          │           │        │     │      │      │      │          │           │   
where  the     bidder must line  up  a      consortium      of     banks and/or issue billions  in     high-yield     debt

Predicted tree:
                      SBAR                                                                                                
                       │                                                                                                   
                       S                                                                                                  
            ┌──────────┴─────────┐                                                                                         
            │                    VP                                                                                       
            │          ┌─────────┴──────────────────────────┐                                                              
            │          │                                    VP                                                            
            │          │         ┌──────────────────────────┴──────────────┬────────────────────┐                          
            │          │         VP                                        │                    VP                        
  ┌──────── │ ──────── │ ───┬────┼──────────────────────┐                  │      ┌─────────────┴───┐                      
  │         │          │    │    │                      NP                 │      │                 NP                    
  │         │          │    │    │       ┌──────────────┴───────┐          │      │      ┌──────────┴──────┐               
  │         │          │    │    │       │                      PP         │      │      │                 PP             
  │         │          │    │    │       │                  ┌───┴────┐     │      │      │      ┌──────────┴───────┐       
WHADVP      NP         │    │   PRT      NP                 │        NP    │      │      NP     │                  NP     
  │     ┌───┴────┐     │    │    │   ┌───┴──────┐           │        │     │      │      │      │          ┌───────┴───┐   
 WRB    DT       NN    MD   VB   RP  DT         NN          IN      NNS    CC     NN    NNS     IN         JJ          NN 
  │     │        │     │    │    │   │          │           │        │     │      │      │      │          │           │   
where  the     bidder must line  up  a      consortium      of     banks and/or issue billions  in     high-yield     debt

Figure 8.5: Partial recognition cases for wh-extractions: shared dependent
cases (multi-site extraction).

Gold trees: Predicted trees:
                     SBAR                          
                      │                             
                      S                            
  ┌───────────┬───────┴────┬──────────┐             
  │           S            │          S            
  │      ┌────┴───┐        │    ┌─────┴───┐         
  │      │        VP       │    │         VP       
  │      │    ┌───┴───┐    │    │     ┌───┴────┐    
WHADVP   NP   │      ADJP  │    NP    │       ADJP 
  │      │    │       │    │    │     │        │    
 WRB    NNS  VBP      JJ   CC  NNS   VBP      JJR  
  │      │    │       │    │    │     │        │    
where  wages are     low  and unions are     weaker

                 SBAR                          
                  │                             
                  S                            
         ┌────┬───┴────┬──────────┐             
         │    │        │          S            
         │    │        │    ┌─────┴───┐         
         │    VP       │    │         VP       
  ┌───── │ ───┼───┐    │    │     ┌───┴────┐    
WHADVP   NP   │  ADJP  │    NP    │       ADJP 
  │      │    │   │    │    │     │        │    
 WRB    NNS  VBP  JJ   CC  NNS   VBP      JJR  
  │      │    │   │    │    │     │        │    
where  wages are low  and unions are     weaker

                   SBAR                                                        
                    │                                                           
                    S                                                          
            ┌───────┴────────────┐                                              
            │                    VP                                            
            │              ┌─────┴─────────┐                                    
            │              │               VP                                  
            │              │     ┌─────────┴───────────┐                        
            │              │     │                     PP                      
            │              │     │     ┌───────────────┴─────┐                  
           WHNP            │     │     │                     NP                
      ┌─────┴───────┐      │     │     │   ┌─────┬───────────┼──────────────┐   
    WHADVP          │      │     │     │   │     │          NAC             │  
 ┌────┴─────┐       │      │     │     │   │     │     ┌─────┼────┬────┐    │   
WRB         JJ     NNS    VBP   VBG    IN PRP$   JJ   NNP    ,   NNP   ,    NN 
 │          │       │      │     │     │   │     │     │     │    │    │    │   
how        many employees are working  at its  giant Renton  ,  Wash.  ,  plant

                                SBAR                                            
                                 │                                               
                                 S                                              
                           ┌─────┴─────────┐                                     
                           │               VP                                   
            ┌───────────── │ ────┬─────────┴───────────┐                         
            │              │     │                     PP                       
            │              │     │     ┌───────────────┴─────┐                   
           WHNP            │     │     │                     NP                 
      ┌─────┴───────┐      │     │     │   ┌─────────────────┼───────────────┐   
    WHADJP          │      │     │     │   │                ADJP             │  
 ┌────┴─────┐       │      │     │     │   │     ┌─────┬─────┼─────┬────┐    │   
WRB         JJ     NNS    VBP   VBG    IN PRP$   JJ   NNP    ,    NNP   ,    NN 
 │          │       │      │     │     │   │     │     │     │     │    │    │   
how        many employees are working  at its  giant Renton  ,   Wash.  ,  plant

Figure 8.6: False positive wh-extractions.
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Gold trees: Predicted trees:
                                     ROOT                                    
                                      │                                       
                                      S                                      
 ┌──────────────────────────┬─────────┴───────────────────┬───┬───┬────────┐  
 │                          VP                            │   │   │        │ 
 │            ┌─────────────┴──────────────────────────── │   │   │ ──┐    │  
 │            S                                           │   │   │   │    │ 
 │   ┌────────┴─────────────┐                             │   │   │   │    │  
 │   │                      VP                            │   │   │   │    │ 
 │   │   ┌──────────────────┼────┐                        │   │   │   │    │  
 │   │   │                  │    NP                       │   │   │   │    │ 
 │   │   │    ┌──────────── │ ───┴─────────┐              │   │   │   │    │  
 │   │   │    │            ADVP            PP             │   │   │   │    │ 
 │   │   │    │        ┌────┴────┐    ┌────┴───┐          │   │   │   │    │  
 │   NP  │    NP       NP        │    │        NP         │   │   NP  │    │ 
 │   │   │    │    ┌───┴────┐    │    │    ┌───┴────┐     │   │   │   │    │  
 '' PRP VBD  NNS   DT       NN   RB   IN   DT      NNP    ,   '' PRP VBD   . 
 │   │   │    │    │        │    │    │    │        │     │   │   │   │    │  
 ''  I  had calls all     night long from the     States  ,   ''  he said  . 

                                     ROOT                                    
                                      │                                       
                                      S                                      
 ┌──────────────────────────┬─────────┴───────────────────┬───┬───┬────────┐  
 │                          VP                            │   │   │        │ 
 │       ┌──────────────────┴──────────────────────────── │   │   │ ──┐    │  
 │       S                                                │   │   │   │    │ 
 │   ┌───┴────┐                                           │   │   │   │    │  
 │   │        VP                                          │   │   │   │    │ 
 │   │   ┌────┴────┐                                      │   │   │   │    │  
 │   │   │         NP                                     │   │   │   │    │ 
 │   │   │    ┌────┴─────────────┐                        │   │   │   │    │  
 │   │   │    │                 ADVP                      │   │   │   │    │ 
 │   │   │    │             ┌────┴─────────┐              │   │   │   │    │  
 │   │   │    │            ADVP            PP             │   │   │   │    │ 
 │   │   │    │        ┌────┴────┐    ┌────┴───┐          │   │   │   │    │  
 │   NP  │    NP       NP        │    │        NP         │   │   NP  │    │ 
 │   │   │    │    ┌───┴────┐    │    │    ┌───┴────┐     │   │   │   │    │  
 '' PRP VBD  NNS   DT       NN   RB   IN   DT      NNPS   ,   '' PRP VBD   . 
 │   │   │    │    │        │    │    │    │        │     │   │   │   │    │  
 ''  I  had calls all     night long from the     States  ,   ''  he said  . 

                                S                                                               
                           ┌────┴─────┐                                                          
                           │          NP                                                        
           ┌────────────── │ ─────────┴─────────────┐                                            
           │               │                        PP                                          
           │               │                 ┌──────┴─────────────┐                              
           │               │                 │                    NP                            
           │               │                 │      ┌─────────────┴────┐                         
           │               │                 │      │                  VP                       
           │               │                 │      │       ┌──────────┴────┐                    
           │               │                 │      │       │               S                   
           │               │                 │      │       │               │                    
           │               VP                │      │       │               VP                  
           │           ┌───┴────┐            │      │       │     ┌─────────┴────┐               
           │           │        VP           │      │       │     │              VP             
           │           │   ┌────┴─────┐      │      │       │     │    ┌─────────┴────┐          
           NP          │   │          VP     │      NP      │     │    │              NP        
    ┌──────┴─────┐     │   │          │      │      │       │     │    │         ┌────┴─────┐    
    NN           NN   VBZ VBN        VBN     IN    NNS     VBG    TO   VB       PRP$       NNS  
    │            │     │   │          │      │      │       │     │    │         │          │    
Telephone     service has been     improved for customers trying  to reach     their     brokers

                 S                                                                          
           ┌─────┴─────────┐                                                                 
           │               VP                                                               
           │           ┌───┴──────┐                                                          
           │           │          VP                                                        
           │           │   ┌──────┴──────┐                                                   
           │           │   │             VP                                                 
           │           │   │      ┌──────┴──────┐                                            
           │           │   │      │             PP                                          
           │           │   │      │      ┌──────┴─────────────┐                              
           │           │   │      │      │                    S                             
           │           │   │      │      │      ┌─────────────┴────┐                         
           │           │   │      │      │      │                  VP                       
           │           │   │      │      │      │       ┌──────────┴────┐                    
           │           │   │      │      │      │       │               S                   
           │           │   │      │      │      │       │               │                    
           │           │   │      │      │      │       │               VP                  
           │           │   │      │      │      │       │     ┌─────────┴────┐               
           │           │   │      │      │      │       │     │              VP             
           │           │   │      │      │      │       │     │    ┌─────────┴────┐          
           NP          │   │      │      │      NP      │     │    │              NP        
    ┌──────┴─────┐     │   │      │      │      │       │     │    │         ┌────┴─────┐    
   NNP           NN   VBZ VBN    VBN     IN    NNS     VBG    TO   VB       PRP$       NNS  
    │            │     │   │      │      │      │       │     │    │         │          │    
Telephone     service has been improved for customers trying  to reach     their     brokers

Figure 8.7: Non-detected extrapositions.

8.4.2.4 Circumpositioned Quotations

Example: “We wanted to highlight the individual, not the environment,”
he says, “and black and white allows you to do that better than color.”

Circumpositioned quotations were mostly well recognized by the parser.
In all partial recognition cases, the parser correctly attached a discontinu-
ous quotation to a speech verb. However, it failed to label correctly the
different fragments of the quotation. Figure 8.8 shows two typical cases of
partial recognition. In the first sentence, the parser labelled the quotation
as a VP, whereas it is an SBAR that rewrites as S in the gold reference.11

In the second sentence, the main verb is in between two coordinated
VPs. The parser chose to analyse both fragments separately, predicting
that the first one is a sentence, and that the second one is a VP without a
corresponding subject.

These errors illustrate the limitations of the model feature templates.
Consider the configurations the parser is in when it labels the three embed-
ded VPs of the tree in Figure 8.8 (upper part). These three configurations
are shown in Table 8.16 along with the features used to predict whether d0
is a constituent and what its label is. In fact, the parser predicts LABEL-VP

11The attachment of punctuation is also different but it is not taken into account by the
evaluator.
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Gold tree:
                                            ROOT                                                                                     
                                             │                                                                                        
                                            PRN                                                                                      
                                             │                                                                                        
                                            SINV                                                                                     
                                         ┌───┴────┐                                                                                   
                                         VP       │                                                                                  
                     ┌───────────────────┴─────── │ ──────────────────┐                                                               
                     │                            │                  SBAR                                                            
                     │                            │                   │                                                               
                     │                            │                   S                                                              
      ┌──────────┬── │ ────────────────────────── │ ──────────────────┴──────┬───────────────┬─────────────────────────────────┬───┐  
      │          │   │                            │                          │               VP                                │   │ 
      │          │   │                            │                          │    ┌────┬─────┴──────────┐                      │   │  
      │          │   │                            NP                         │    │    │                VP                     │   │ 
      │          │   │         ┌─────────┬────────┴────────┐                 │    │    │     ┌──────────┴───┐                  │   │  
      │          │   │         │         │                 NP                │    │    │     │              PP                 │   │ 
      │          │   │         │         │            ┌────┴──────────┐      │    │    │     │     ┌────────┴───┐              │   │  
      NP         │   │         NP        │            NP              │      │    │    │     │     │            NP             │   │ 
 ┌────┼─────┐    │   │    ┌────┴────┐    │        ┌───┼────────┐      │      │    │    │     │     │        ┌───┴──────┐       │   │  
 DT  JJR    NN   ,  VBZ  NNP       NNP   ,        DT  NN      POS     NN     ,    MD   ''    VB    IN       DT         NN      .   ''
 │    │     │    │   │    │         │    │        │   │        │      │      │    │    │     │     │        │          │       │   │  
 A  harder sell  ,  says John     Kosar  ,       the firm      's president  ,  would  '' detract from     the     profession  .   ''

Predicted tree:
                                                         ROOT                                                                    
                                                          │                                                                       
                                                         PRN                                                                     
                 ┌────────────────────────────────────────┼──────────────┐                                                        
                 │                                       SINV            │                                                       
                 │                           ┌────────────┴───────┐      │                                                        
                 │                           │                    VP     │                                                       
                 │   ┌────────────────────── │ ───────────────────┴───── │ ───┐                                                   
                 │   │                       │                           │    VP                                                 
      ┌───────── │   │ ───────────────────── │ ───────────────────────── │ ───┴──────────┬─────────────────────────────────┬───┐  
      │          │   │                       │                           │               VP                                │   │ 
      │          │   │                       │                           │    ┌────┬─────┴──────────┐                      │   │  
      │          │   │                       NP                          │    │    │                VP                     │   │ 
      │          │   │         ┌─────────┬───┴────────┐                  │    │    │     ┌──────────┴───┐                  │   │  
      │          │   │         │         │            NP                 │    │    │     │              PP                 │   │ 
      │          │   │         │         │       ┌────┴───────────┐      │    │    │     │     ┌────────┴───┐              │   │  
      NP         │   │         NP        │       NP               │      │    │    │     │     │            NP             │   │ 
 ┌────┼─────┐    │   │    ┌────┴────┐    │   ┌───┼────────┐       │      │    │    │     │     │        ┌───┴──────┐       │   │  
 DT  JJR    NN   ,  VBZ  NNP       NNP   ,   DT  NN      POS      NN     ,    MD   ''    VB    IN       DT         NN      .   ''
 │    │     │    │   │    │         │    │   │   │        │       │      │    │    │     │     │        │          │       │   │  
 A  harder sell  ,  says John     Kosar  ,  the firm      's  president  ,  would  '' detract from     the     profession  .   ''

Gold tree:
                                                                                                          ROOT                                                        
                                                                                                           │                                                           
                                                                                                          PRN                                                         
                                                                                                       ┌───┼─────────────┐                                             
                                                                                                       S   │             │                                            
                                                                                                  ┌────┴── │ ───┐        │                                             
                                                                                                  VP       │    │        │                                            
                                                                                         ┌────────┴─────── │ ── │ ──┐    │                                             
                                                                                        SBAR               │    │   │    │                                            
                                                                                         │                 │    │   │    │                                             
                                                                                         S                 │    │   │    │                                            
                                     ┌───────────────────────────────────────────────────┴──────────────── │ ── │   │ ── │ ──┬──────────────────────────────────────┐  
                                     │                                                                     │    │   │    │   VP                                     │ 
                                     │                                            ┌────────────────────┬── │ ── │   │ ── │ ──┴────┐                                 │  
                                     NP                                           │                    │   │    │   │    │        VP                                │ 
          ┌──────────────────────────┴─────┐                                      │                    │   │    │   │    │   ┌────┴───────────┐                     │  
          │                                PP                                     │                    │   │    │   │    │   │                VP                    │ 
          │                          ┌─────┴──────┐                               │                    │   │    │   │    │   │    ┌──────┬────┴───────┐             │  
          │                          │            NP                              VP                   │   │    │   │    │   │    │      S            PP            │ 
          │                          │     ┌──────┼───┬────┐     ┌──────────┬─────┴───────────┐        │   │    │   │    │   │    │      │    ┌───────┴───┐         │  
          NP                         │     NP     │   NP   │     │          NP                NP       │   │    NP  │    │   │    │     ADJP  │           NP        │ 
 ┌────────┼───────────┬────────┐     │     │      │   │    │     │     ┌────┴─────┐      ┌────┴───┐    │   │    │   │    │   │    │      │    │   ┌───────┼────┐    │  
PRP$     NNP         NNP       NN    IN   NNP     ,  NNP   ,    VBD   PRP$        NN     JJ       NN   CC  ,   PRP VBZ   ,  VBZ  VBN     JJ   IN  DT      JJ   CD   . 
 │        │           │        │     │     │      │   │    │     │     │          │      │        │    │   │    │   │    │   │    │      │    │   │       │    │    │  
His  On-Broadway Photography studio  in Portland  ,  Ore.  ,  doubled its      business last     year and  ,    he says  ,   is booked solid for the     next five  . 

Predicted tree:
                                                                                                          ROOT                                                        
                                                                                                           │                                                           
                                                                                                           S                                                          
                                                                                                       ┌───┼─────────────┐                                             
                                                                                                       S   │             │                                            
                                                                                                  ┌────┴── │ ───┐        │                                             
                                                                                                  VP       │    │        │                                            
                                                                                         ┌────────┴─────── │ ── │ ──┐    │                                             
                                                                                        SBAR               │    │   │    │                                            
                                                                                         │                 │    │   │    │                                             
                                                                                         S                 │    │   │    │                                            
                                                  ┌──────────────────────────────────────┴─────────────┬── │ ── │   │ ── │ ───────┬─────────────────────────────────┐  
                                                  S                                                    │   │    │   │    │        │                                 │ 
                                     ┌────────────┴───────────────────────────────┐                    │   │    │   │    │        │                                 │  
                                     NP                                           │                    │   │    │   │    │        VP                                │ 
          ┌──────────────────────────┴─────┐                                      │                    │   │    │   │    │   ┌────┴───────────┐                     │  
          │                                PP                                     │                    │   │    │   │    │   │                VP                    │ 
          │                          ┌─────┴──────┐                               │                    │   │    │   │    │   │    ┌──────┬────┴───────┐             │  
          │                          │            NP                              VP                   │   │    │   │    │   │    │      │            PP            │ 
          │                          │     ┌──────┼───┬────┐     ┌──────────┬─────┴───────────┐        │   │    │   │    │   │    │      │    ┌───────┴───┐         │  
          NP                         │     NP     │   NP   │     │          NP                NP       │   │    NP  │    │   │    │     ADVP  │           NP        │ 
 ┌────────┼───────────┬────────┐     │     │      │   │    │     │     ┌────┴─────┐      ┌────┴───┐    │   │    │   │    │   │    │      │    │   ┌───────┼────┐    │  
PRP$      JJ         NNP       NN    IN   NNP     ,  NNP   ,    VBD   PRP$        NN     JJ       NN   CC  ,   PRP VBZ   ,  VBZ  VBN     JJ   IN  DT      JJ   CD   . 
 │        │           │        │     │     │      │   │    │     │     │          │      │        │    │   │    │   │    │   │    │      │    │   │       │    │    │  
His  On-Broadway Photography studio  in Portland  ,  Ore.  ,  doubled its      business last     year and  ,    he says  ,   is booked solid for the     next five  . 

Figure 8.8: Partially recognized circumpositioned quotations.
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for both c′ and c′′ because they have the exact same feature instantiation.12

As a consequence, it could not have predicted correctly both the S-SBAR
labels (with the unary chain S@SBAR) and the VP.

This observation has very interesting implications. First of all, it is
somewhat surprising that the BASE feature model is the best one despite
this defect. It would be expected that a higher number of templates and
the use of head information would prevent this situation from happening.
Secondly, it seems important to model the internal structure of a cons-
tituent to make a labelling decision. In particular, relying only on the two
tokens at its left and right boundaries is insufficient because it does not
take into account the presence of a discontinuity. In other words, the set of
indices {A harder sell says would “detract from the profession.”} and {A harder
sell would “detract from the profession.”} have the same representations
(sentence from Figure 8.8). The only difference between them is the
inclusion of says in the first one. This difference is invisible to features
based only on the tokens at the boundaries of the constituent, i.e. A and ”
(quotation mark) in both cases. Designing feature templates on the form
of a potential gap in a set of indices is a direction for improving the parser.

s4 s3 s2 s1 s0 d0

c = {A harder sell} {,} {says} {John Kosar, the firm’s president} {,} {would “detract from the profession.”}
LABEL-VP, GAP, GAP, GAP, GAP, MERGE =⇒

c′ = {,} {says} {John Kosar, the firm’s president} {,} {A harder sell would “detract from the profession.”}
LABEL-VP, GAP, GAP, MERGE =⇒

c′′ = {,} {John Kosar, the firm’s president} {,} {A harder sell says would “detract from the profession.”}

Template Symbol value
c c′ c′′

b0 NA NA NA
d0.wl would A A
d0.wr ” ” ”
d1.wr NA NA NA
s0.wl , , ,
s0.wr , , ,
s1.wr president president president

Table 8.16: Limitations of the model feature templates: three configura-
tions from the derivation of the tree in Figure 8.8 (second tree) and the
corresponding features.

12The situation would have been different if the parser had chosen to attach punctua-
tion sooner.
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Gold tree:
                                                                                                   ROOT                                                                                                   
                                                                                                    │                                                                                                      
                                                                                                    S                                                                                                     
       ┌────────────────────────────────────────────────────────────────────────────────────────────┼────────────┬─────────────────────────────────────┬────────────────────────────────────────────────┐  
      SBAR                                                                                          │            │                                     │                                                │ 
  ┌────┴────────┐                                                                                   │            │                                     │                                                │  
  │             S                                                                                   │            │                                     │                                                │ 
  │             ┌─────┐                                                                             │            │                                     │                                                │  
  │             │     NP                                                                            │            │                                     │                                                │ 
  │    ┌─────── │ ────┴───────────────┐                                                             │            │                                     │                                                │  
  │    │        │                    SBAR                                                           │            │                                     │                                                │ 
  │    │        │            ┌────────┴─────────────┐                                               │            │                                     │                                                │  
  │    │        │            │                      S                                               │            │                                     NP                                               │ 
  │    │        │            │        ┌─────────────┴────────────────┐                              │    ┌────── │ ────────────────────────────────────┴────────────┐                                   │  
  │    │        │            │        │                              VP                             │    │       │                                                 SBAR                                 │ 
  │    │        │            │        │                     ┌────────┴────┐                         │    │       │                           ┌──────────────────────┴───────┐                           │  
  │    │        │            │        │                     │             VP                        │    │       │                           │                              S                           │ 
  │    │        │            │        │                     │    ┌────────┴────┐                    │    │       │                           │         ┌────────────────────┼──────────┐                │  
  │    │        │            │        │                     │    │             VP                   │    │       │                           │         │                    │          VP               │ 
  │    │        │            │        │                     │    │        ┌────┴─────────┐          │    │       │                           │         │                    │    ┌─────┴────┐           │  
  │    │        VP           │        │                     │    │        │              S          │    │       VP                          │         PP                   │    │          VP          │ 
  │    │    ┌───┴─────┐      │        │                     │    │        │              │          │    │   ┌───┴───┬───────────────┐       │    ┌────┴─────┐              │    │     ┌────┴─────┐     │  
  │    NP   │        ADJP    │        NP                    │    │        │             ADJP        │    NP  │      ADVP            ADJP     │    │          NP             NP   │     │         ADVP   │ 
  │    │    │         │      │    ┌───┼─────┬───────┐       │    │        │              │          │    │   │   ┌───┴─────┐         │       │    │    ┌─────┴──────┐       │    │     │          │     │  
  IN  PRP  VBZ        JJ     IN   DT NNP   NNP      NN      MD   VB      VBN             JJ         ,   PRP VBZ  IN        NN        JJ      IN   IN   JJ          NNP     PRP   MD    VB         RB    . 
  │    │    │         │      │    │   │     │       │       │    │        │              │          │    │   │   │         │         │       │    │    │            │       │    │     │          │     │  
While  it   is     possible that the Big  Green initiative will  be     ruled     unconstitutional  ,    it  is  of      course conceivable that  in modern     California  it could slide     through  . 

Predicted tree:
                                                                                                   ROOT                                                                                                  
                                                                                                    │                                                                                                     
                                                                                                    S                                                                                                    
       ┌────────────────────────────────────────────────────────────────────────────────────────────┼────┬───────────────────────────────────────┬─────────────────────────────────────────────────────┐  
      SBAR                                                                                          │    │                                       │                                                     │ 
  ┌────┴────────┐                                                                                   │    │                                       │                                                     │  
  │             S                                                                                   │    │                                       │                                                     │ 
  │             ┌─────┐                                                                             │    │                                       │                                                     │  
  │             │     NP                                                                            │    │                                       │                                                     │ 
  │    ┌─────── │ ────┴───────────────┐                                                             │    │                                       │                                                     │  
  │    │        │                    SBAR                                                           │    │                                       │                                                     │ 
  │    │        │            ┌────────┴─────────────┐                                               │    │                                       │                                                     │  
  │    │        │            │                      S                                               │    │                                       VP                                                    │ 
  │    │        │            │        ┌─────────────┴────────────────┐                              │    │   ┌───────┬──────────────┬────────────┴─────────────────┐                                   │  
  │    │        │            │        │                              VP                             │    │   │       │              │                             SBAR                                 │ 
  │    │        │            │        │                     ┌────────┴────┐                         │    │   │       │              │       ┌──────────────────────┴───────┐                           │  
  │    │        │            │        │                     │             VP                        │    │   │       │              │       │                              S                           │ 
  │    │        │            │        │                     │    ┌────────┴────┐                    │    │   │       │              │       │         ┌────────────────────┼──────────┐                │  
  │    │        │            │        │                     │    │             VP                   │    │   │       │              │       │         │                    │          VP               │ 
  │    │        │            │        │                     │    │        ┌────┴─────────┐          │    │   │       │              │       │         │                    │    ┌─────┴────┐           │  
  │    │        VP           │        │                     │    │        │              S          │    │   │       PP             │       │         PP                   │    │          VP          │ 
  │    │    ┌───┴─────┐      │        │                     │    │        │              │          │    │   │   ┌───┴────┐         │       │    ┌────┴─────┐              │    │     ┌────┴─────┐     │  
  │    NP   │        ADJP    │        NP                    │    │        │             ADJP        │    NP  │   │        NP        │       │    │          NP             NP   │     │         ADVP   │ 
  │    │    │         │      │    ┌───┼─────┬───────┐       │    │        │              │          │    │   │   │        │         │       │    │    ┌─────┴──────┐       │    │     │          │     │  
  IN  PRP  VBZ        JJ     IN   DT NNP   NNP      NN      MD   VB      VBN             JJ         ,   PRP VBZ  IN       NN        JJ      IN   IN   JJ          NNP     PRP   MD    VB         RB    . 
  │    │    │         │      │    │   │     │       │       │    │        │              │          │    │   │   │        │         │       │    │    │            │       │    │     │          │     │  
While  it   is     possible that the Big  Green initiative will  be     ruled     unconstitutional  ,    it  is  of     course conceivable that  in modern     California  it could slide     through  . 

Figure 8.9: It-extraposition predictions.

8.4.2.5 It-extraposition

Example: Were it true that a weak currency paves the way for trade
surpluses, then presumably Argentina would be the center of today’s global
economy.

The parser detected it-extrapositions correctly in around half of the
cases. For the other occurrences, it attached the right part of the discontin-
uous NP to a predicate on its left, usually a verb or an adjective. Figure 8.9
shows a sentence with two occurrences of it-extrapositions. The first one
was correctly predicted, whereas the second one was not, perhaps due to
the intervening adverbial phrase (of course) that was parsed as a PP.

8.4.2.6 Subject-verb Inversions

Example: Grinned Griffith Peck, a trader in Shearson Lehman Hutton Inc.’s
OTC department: “I tell you, this market acts healthy.”

The five cases of subject-verb inversions annotated with a discontinuity
follow the same pattern: finite speech verb (says, added), subject NP,
object S (quotation). The initial speech verb and the sentence form a
discontinuous VP. In the single case not detected by the parser, the speech
verb Grinned is followed by a named entity and was tagged as an NNP by
the parser.



CHAPTER 8. UNLEXICALIZED CONSTITUENCY PARSING 186

Finally, in the false positive case, the sentence follows the same pattern
but was not annotated with a discontinuous VP: the verb, the subject
NP and the object S share an SINV parent node. The parser predicts a
discontinuous VP, consistently with the cases annotated likewise.

8.4.3 Discussion

Overall, several factors explain the mistakes the parser makes. The infre-
quent syntactic patterns are harder to predict, because the parser needs to
generalize from few examples. A fair number of errors is caused by co-
ordinations and modifier attachment ambiguities that are already known
to be very difficult to solve in projective parsing, and sometimes require
semantic or world knowledge to be handled adequately.

Finally, a limitation that is inherent to the parser is the representation
of constituents based on their boundaries. Given that a constituent is
represented by its leftmost token and rightmost token, two constituents
that share the same boundaries will have the same representation, even
though one of them contains a gap and the other does not. In this
respect, finding a better representation for discontinuous constituents is
an important issue.

8.5 Dynamic Programming

In this section, we outline how to apply dynamic programming decoding
to transition-based discontinuous constituency parsing. We build on pre-
vious work on projective transition-based parsers with dynamic program-
ming, starting with Huang and Sagae (2010) and derived works (Zhao
et al., 2013; Thang et al., 2015; Mi and Huang, 2015; Shi et al., 2017).

The most frequent search algorithms used in transition-based parsing,
greedy search and beam search, only explore a small part of the search
space. With a beam of size k, a parser explores O(n · k) parsing states,
where n is the maximum length of a derivation for a sentence. With dy-
namic programming, the parser can explore an exponentially large num-
ber of parsing states, in polynomial time. Transition-based dynamic pro-
gramming parsers that use beam search still achieve linear time parsing in
practice (Huang and Sagae, 2010; Mi and Huang, 2015).
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8.5.1 Equivalent Parsing States

The key to using dynamic programming is the fact that several parsing
configurations might lead to the exact same feature instantiations. In
such situations, the costs of outgoing transitions will be identical for
these configurations and there is no need to compute them several times.
Considering a feature template list S and a function fS such that fS(c)
returns the list of symbols that instantiates the feature templates, two
configurations c and c′ are equivalent wrt S iff fS(c) = fS(c′). The
equivalence relation depends crucially on S: when there are fewer atomic
elements required to instantiate the feature templates, there will be fewer
and larger equivalence classes. Therefore, minimal feature template sets
are well suited to dynamic programming decoding.

In order to factorize equivalent states, the parser merges them into
Dynamic Programming states (thereafter DP states). Whereas a parsing
state encodes a single hypothesis, a DP state might encode an exponential
number of hypotheses.

Figure 8.10 illustrates state merging for an artificial example. The
three trees in (a) correspond to possible analyses. The derivations for
constructing these trees with a shift-reduce-gap transition system13 are
represented as a tree in (b). Equivalent states are defined by a very
simple feature template set ({s0.l, s0.r, d0.l, d0.r, b0}), and are indicated
by rectangles. For example, c′′7, c′8 and c7 form an equivalence class as
illustrated in the following table:

D S B s0.l s0.r d0.l d0.r b0

c′′7 a c A{b,d} e ε e e b d ε
c′8 a A{b,c,d} e ε e e b d ε
c7 a A{b,c,d} e ε e e b d ε

8.5.2 Tree Structured Stack

With beam search, when the parser performs a new step, it considers
every possible transition applicable to the k best states at step i and
keeps the k best transitions to generate new states and insert them in
the beam. Some of the new states might have the same predecessor
state. A naive implementation of the beam consists in copying whole

13The shift-reduce-gap transition system was chosen for the sake of simplicity but these
observations easily generalize to merge-label-gap transition systems.
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(a) 3 possible analyses
(1) (2) (3)

         A             
 ┌───────┴───┐          
 │           A         
 │       ┌───┴───────┐  
 │       A           │ 
 │   ┌───┴───┐       │  
 │   │       A       │ 
 │   │   ┌───┴───┐   │  
 a   b   c       d   e 

         A             
 ┌───────┴───┐          
 │           A         
 │       ┌───┴───────┐  
 │       A           │ 
 │       ┌───┐       │  
 │       │   A       │ 
 │   ┌── │ ──┴───┐   │  
 a   b   c       d   e 

         A             
 ┌───────┴───┐          
 │           A         
 │       ┌───┴───┐      
 │       │       A     
 │       │   ┌───┴───┐  
 │       │   A       │ 
 │   ┌── │ ──┴───┐   │  
 a   b   c       d   e 

(b) Search space for the three analyses. Rectangles indicate merged states.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c′5 c′6 c′7 c′8 c′9 c′10

c′′7 c′′8 c′′9 c′′10

(1)

(2)

(3)

SH SH SH SH R R SH R R
GAP

R R SH R R
SH

R R R

Figure 8.10: Dynamic programming: state merging. Feature template set:
{s0.l, s0.r, d0.l, d0.r, b0}.

configurations at each parsing state to generate the new states. With such
an implementation, a projective parser has aO(n2) complexity in time and
space, as each parsing step incurs a O(n) cost for copying configurations.

To avoid this cost, an efficient beam implementation must factorize
what is shared by different configurations. The Tree Structured Stack
(TSS)14 is a tree data structure in which each path from the root to a
leaf encode the stack of a parsing configuration. In such a structure, the
common stack prefixes of different configurations in the beam are shared.
Parsing actions can be performed in O(1) time and space complexity, as
no copying is required (Goldberg et al., 2013).

Figure 8.11 shows the tree-structured stack for hypotheses (1) and (2).
Red dotted lines indicate the relations between several branches in the
stack, i.e. the corresponding subtrees being constructed. Each path from
the root to another node is the stack at one stage of the analysis. When the
parser performs a shift, it adds a new arc to a leaf of the TSS and the stack
grows. When it performs a reduction, the stack shrinks. The parser must
grow a new branch from an internal node of the TSS.

Since discontinuous parsing involves reordering terminals, some amount
of copying cannot be avoided. In particular, the cost of performing a re-
duction15 is proportional to the number of preceding GAP actions. For

14The implementations of the parsers described throughout this dissertation are all
based on a TSS for beam search.

15Or a merge, depending on the transition system.
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a b c d

A

A

e
A

A

c
A

A
e

A

A

Figure 8.11: Tree-structured stack for two analyses.

example, when the parser performs the reduction to construct the discon-
tinuous constituent A{b,d}, it must copy the content of the stack between
these two arcs onto a new branch, to which it pushes the new nontermi-
nal. The second arc labelled c, in the upper part of Figure 8.11, is the result
of this operation (it has not been constructed by a SHIFT).

8.5.3 Encoding a TSS in the Parsing States

The TSS can be encoded directly into the parsing states with a set of
pointers. Figure 8.12a represents the search space augmented with such
pointers.
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c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

c′5 c′6 c′7 c′8 c′9 c′10

c′′7 c′′8 c′′9 c′′10

(1)

(2)

(3)

SH SH SH SH R R SH R R

GAP

R R SH R R

SH

R R R

c3

a b c d

A
A

e

A

A

ε

A

c

e

A

(a) GSS encoded in the search space with backpointers.

a b c d e
c b

A
A

A

A

A

A

(b) Table of well-formed sub-strings in the discontinuous case (GSS).

Figure 8.12: Search space and GSS.
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8.5.3.1 Projective Case

Let us consider first analysis (1), which is simpler because it produces a
projective tree. The dotted arcs, labelled with grammar symbols, link each
state to its predecessor in the stack. For example, the state of the stack
(S + D) in configuration c5 can be recovered by following the dotted arcs
downto c0: [a, b, A] corresponding to the path (c5, c2, c1, c0). In the terms
of Huang and Sagae (2010), the stack predecessor c′ of a parsing state c is
called a predictor state and is written c′ ∈ π(c). The set π(c) contains the
states with which c can combine in a reduction. In non-DP decoding, π(c)
is a singleton, in DP decoding though, it can have several elements.

The computation of the predictor state of a parsing state c depends on
the action producing state c.

• If c = SHIFT(c′), then c′ is the predictor state of c, because SHIFT
pushes a new item onto the stack. In Figure 8.12a, each shifted state
points to the state that generated it with an arc labelled by the newly
shifted terminal.

• If c = REDUCE-UNARY-X(c′), then π(c) = π(c′).

• If c = REDUCE-X(c′), then π(c) = π(c′′), where c′′ ∈ π(c′). For
example, c6 is the result of REDUCE-A(c5). The reduction combines
state c5 and its predictor state c2. The predictor state of c6 is c1, i.e.
the predictor state of c2. The arc between c1 and c6 is labelled by a
nonterminal A.

8.5.3.2 Discontinuous Case

The situation is slightly more complex when GAP actions are involved,
because of the reordering that happens. In the projective case, a reduction
involves a state and its predictor and focuses on two topmost element
in the stack. In the discontinuous case, a reduction applies to a state
(addressing the topmost element in the stack d0) and another state that
may be arbitrary far in the stack (s0).

To handle the discontinuous case, we make the distinction between
stack relations (σ) that are used to recover the full stack (S + D) corre-
sponding to a configuration, and predictor relations (π(c)) that points to
the states with which c can combine in a reduction.

In projective parsing, these two relations coincide perfectly because s0
will always address the second element in the stack. However, they will
not coincide when this is not the case, i.e. after a GAP action.
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Let us now consider analysis (2) in Figure 8.12a. If c = GAP(c′), then
the predictor state of c is the predictor state of the predictor state of c′:

π(c) =
⋃

c′′∈π(c′)

π(c′′)

Therefore, c2 is in π(c′5). We materialized this relation with a dashed arrow.
In contrast, σ(c) = σ(c′), as the stack is not modified by the GAP action.
This equality is represented with a dotted arc with an empty label (ε)
between c′5 and c4. The reduction that produces c′6 applies to c′5 and its
predictor state c2 ∈ π(c′5). The two corresponding stack items are b for c2
and d for c′5, thanks to the arc with the empty label.

Finally, when a reduction applies to a gapped configuration, such as
c′5, the configurations between σ(c′5) = c3 and π(c′5) = {c3} following stack
arcs (σ), are duplicated to grow a new branch in the TSS. The new c3
configuration, coloured in red, is the predictor state of c′6 and has c1 as
predictor state.

8.5.3.3 Graph-Structured Stack

The parsing states in a set of merged states share their predictor states.
For this reason, we only drew a single dotted arc going out of a DP-state.
For example, c8, c′9 and c′′9 all have c1 as a predictor state. Seen from the
perspective of DP states, the stack encoded in predictor states is in fact
a graph, illustrated in Figure 8.12b. The Graph-Structured Stack (Tomita,
1988, GSS) data structure encodes the same information as the table of
well-formed substrings used in chart parsing (Huang and Sagae, 2010).

8.5.4 Towards Exhaustive Search with Dynamic Program-
ming

As observed by Cross III (2016) and Shi et al. (2017), minimal feature tem-
plate sets lend themselves well to dynamic programming, as they encour-
age the merging of many states. In fact, the number of DP states in the
search space depends on the number of indices used to extract features
from a configuration. Cross III (2016) proposed a simplified feature set
for the merge-label transition system for projective constituency parsing
(Cross and Huang, 2016a) that is determined by only two indices. This
leads to only O(n2) possible DP states. This observation has important
consequences, as it makes exhaustive search more efficient than was pre-
viously thought possible in neural transition-based constituency parsing,
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and opens the way for globally normalized loss functions. Decoding de-
composes in two parts (Shi et al., 2017): scoring DP states and finding the
highest scoring tree. The complexity of the first part is controlled by the
number of templates, whereas the second depends on the transition sys-
tem and its expressivity (typically O(n3) for a projective dependency of
constituency transition system).

Applying the same reasoning to the discontinuous case, the BASE
feature template set is perfectly determined by six indices. There are
indeed seven feature templates, but b0 is necessarily instantiated by the
token that follows d0.wr in the sentence. Thus, the number of possible
DP states is in O(n6). However, the cost for finding the best-scoring
tree remains a high polynomial. Searching exhaustively the space of all
labelled discontinuous trees is not reasonable, but limiting the search to
trees with a bounded fan-out might be a way to perform exhaustive search
with the ML-GAP transition system.

8.6 Conclusion

In this chapter, we have presented an unlexicalized structure-label tran-
sition system based on the GAP action, and its lexicalized counterpart.
We have investigated the properties of these transition systems and evalu-
ated them in two multilingual settings: discontinuous constituency pars-
ing and projective constituency parsing.

The experimental comparisons we have carried out showed that lexi-
calized systems are not required to achieve very high parsing accuracies
and that even for lexicalized systems, the use of lexical features leads to
no improvement compared to minimal span features.

There are several possible interpretations for these results. First of all,
they suggest that it is questionable that parsers rely on bilexical statis-
tics, which have been known to be very sparse (Bikel, 2004). It is more
likely that they rely on surface syntactic patterns, captured by constituent
boundaries. We hypothesize that the results also confirm the ability of
LSTMs to encode a fair amount of syntactic information, and echo the
study by Linzen et al. (2016) about verb agreement in English.

In the last sections, we have carried out an error analysis of our best
model on the Discontinuous Penn Treebank and discussed dynamic pro-
gramming decoding. We plan to implement and evaluate dynamic pro-
gramming with beam search for discontinuous transition-based parsing.
Such a decoding algorithm might prove useful for our parser as it uses a
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minimal feature template set. Future work will also focus on the design of
a dynamic oracle for the ML-GAP transition system.



Chapter 9

Conclusion and Perspectives

This dissertation has dealt with incremental transition-based constituency
parsing and focused on parsing morphologically rich languages. Our
contributions addressed several key issues in parsing MRLs, regarding
learning biases, morphology-syntax interaction, and parsing algorithms.

First of all, we have designed a dynamic oracle algorithm for a lexical-
ized shift-reduce transition system. The oracle addressed learning biases
that greedy parsers are subject to when they are trained with a fixed set
of gold examples. The dynamic oracle was shown to improve learning on
the languages of the SPMRL dataset and on the Penn Treebank.

Secondly, we have provided a generalizable method to integrate mor-
phology and functional structure in a constituency parser with multitask
learning. The architecture that we have presented obtains state-of-the-art
results on the SPMRL dataset, both in constituency parsing and in mor-
phological analysis. It is able to output high-quality labelled dependency
trees as a by-product of constituency parsing. Moreover the architecture is
generalizable to other situations, such as discontinuous constituency pars-
ing (Chapter 8).

Thirdly, we have investigated how to predict discontinuous constituency
trees, which are a way to model directly linguistic phenomena related to
word-order variation. To this aim, we have designed a new transition sys-
tem, SR-GAP that achieved state-of-the-art parsing results. We have inves-
tigated formal and empirical properties of SR-GAP to better understand its
behaviour and performance.

Fourthly, we have studied the question of lexicalization in both projec-
tive and discontinuous transition-based constituency parsing and shown
that explicit lexicalization is not required to achieve very high parsing
results in a multilingual setting. To do so, we have presented a family
of structure-label transition systems, ML-GAP and ML-GAP-LEX that we
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have compared to SR-GAP using the multitask architecture introduced in
Chapter 6. We have provided an error analysis of the best discontinuous
model on English and discussed ways to improve it further. We have also
outlined a dynamic programming decoding algorithm for discontinuous
parsing.

Finally, we have released the different versions of the parser used in the
experiments presented in this dissertation,1 as well as scripts to produce
the discontinuous version of the French Treebank used in Chapter 8, and
the discontinuous versions of the French Question Bank (Seddah and Can-
dito, 2016) and the Sequoia Treebank (Candito and Seddah, 2012).2 The
parser is currently state-of-the-art on discontinuous corpora, and on the
SPMRL dataset, and performs jointly constituency parsing, morphologi-
cal analysis and functional labelling.

There are several possible continuations of our work. First of all, we
plan to implement and evaluate beam search decoding with dynamic pro-
gramming for discontinuous constituency parsing. In order to improve
training, we also plan to investigate globally normalized models for dis-
continuous parsing as well as the design of a dynamic oracle for the ML-
GAP transition system.

Secondly, another interesting approach to improve the parser on diffi-
cult structures is to design a non-monotonic transition system, i.e. a tran-
sition system in which some actions can undo previous actions in order
to recover from early wrong decisions. Such systems have been imple-
mented for dependency parsing (Honnibal et al., 2013; Honnibal and John-
son, 2015; Fernández-González and Gómez-Rodrı́guez, 2017) but never
proposed for constituency parsing.

Thirdly, we plan to investigate the use of the methods we developed
to other tasks. The parser we presented in Chapter 5 has already been
used to parse discourse structures (Braud, Coavoux, and Søgaard, 2017)
in a multilingual setting. Some of the contributions of this dissertation
could prove useful for discourse parsing. In particular, the multitask
architecture of Chapter 6 may be extended to model both syntax and
discourse relations and perform joint parsing.

1www.github.com/mcoavoux/mtg
2www.github.com/mcoavoux/french_disco_data

www.github.com/mcoavoux/mtg
www.github.com/mcoavoux/french_disco_data
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Marie Candito and Djamé Seddah. Le corpus sequoia : annotation syntaxique et
exploitation pour l’adaptation d’analyseur par pont lexical (the sequoia corpus :
Syntactic annotation and use for a parser lexical domain adaptation method) [in
french]. In Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 2:
TALN, pages 321–334. ATALA/AFCP, 2012. URL http://aclanthology.coli.
uni-saarland.de/pdf/F/F12/F12-2024.pdf.
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Djamé Seddah, Marie Candito, Benoit Crabbé, and Henestroza Enrique Anguiano. Ubiq-
uitous usage of a broad coverage french corpus: Processing the est republicain corpus.
In Proceedings of the Eighth International Conference on Language Resources and Evaluation
(LREC-2012). European Language Resources Association (ELRA), 2012. URL http:
//www.lrec-conf.org/proceedings/lrec2012/pdf/1130_Paper.pdf.
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treebanks using neural networks and search-based oracle. In 14th International Work-
shop on Treebanks and Linguistic Theories (TLT 2015), pages 208–220, Warszawa, Poland,
2015. IPIPAN, IPIPAN. ISBN 978-83-63159-18-4.

Shunsuke Takeno, Masaaki Nagata, and Kazuhide Yamamoto. Empty category detection
using path features and distributed case frames. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1335–1340, Lisbon, Portugal,
September 2015. Association for Computational Linguistics. URL http://aclweb.
org/anthology/D15-1156.

Le Quang Thang, Hiroshi Noji, and Yusuke Miyao. Optimal shift-reduce constituent
parsing with structured perceptron. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 1534–1544, Beijing, China,
July 2015. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/P15-1148.

Juliette Thuilier. Soft constraints and word order in French. Theses, Université Paris-
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