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CHAPTER 1

INTRODUCTION

1.1 Context

Reducing energy consumption is crucial for embedded computing and to deploy
new applications as highlighted, for instance, by the power challenge stated in the
International Roadmap for Devices and Systems [37]. This reduction is particularly
important for the devices of the Internet of Things (IoT) since they are often battery
powered and may harvest energy in their immediate environment. Such devices
have to be designed for being powered-up during many years. Hence every op-
portunity for reducing their energy consumption should be taken into account.

The IoT is a global network of numerous devices including sensors (e.g. smoke
detectors, microphones, antennas, light detectors), actuators (e.g. motors, speak-
ers, lights) and computers (e.g. microcontrollers, data loggers, small multicore
processors). These devices are dispersed into the environment or embedded in
everyday objects (e.g. smartphones, tablets, connected watches). They exchange
various types of informations from a few bits to larger data with possible connec-
tions to the cloud. See [43] for more details. IoT devices are used in many appli-
cations from various domains such as building and home automation, emergency
notification systems, transportation systems, bio-medical systems, gaming and en-
tertainment applications. Computations in IoT devices have to comply with strong
resource constraints such as power consumption (due to battery limits), silicon
area (for reducing fabrication costs) and also timings (to ensure service quality).
Reducing the energy consumption during the global design of IoT services is a
major challenge to increase the battery life of the devices.

Recently many applications and systems based on various approximation so-
lutions have emerged. Some approximations can be applied due to the natural
robustness of the applications or the algorithms to small errors. IoT devices col-
lect data acquired by sensors in their environment, process and aggregate those
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data into compact messages sent to a higher-level system. These sensors data
are subject to inherent variations and noises (e.g. measurement noise(s)). For
instance, small differences for a few pixels over an image do not change its in-
formational content. Processing all of those data with the maximal precision (i.e.
width of the operands in operators) or with the maximal intended accuracy (e.g.
algorithms with the higher quality) allowed by the circuit can be wasteful. For in-
stance, temperature data for home automation may not require a large dynamic
and accuracy.

Approximate computing is a field that explores various methods to reduce some
computation costs, such as power consumption, execution time or silicon area,
by allowing, ideally small, degradations during intermediate computations without
compromising the quality of the final result [92, 12, 53]. Examples of error-tolerant
applications amenable to approximate computing are: signal and image recog-
nition, mining, fuzzy search, lossy compression, multimedia, data analytics, etc.
Approximate computing evolved along three main directions: hardware, applica-
tions, and analysis.

First, on the hardware side, the literature advanced from switches and gates [62,
64], towards arithmetic operators [35, 61], and finally to dedicated accelerators [55,
33]. Many types of approximate hardware units are proposed, see [18] for a com-
plete study. Whereas some computation kernels can benefit from hardware ac-
celerators, another direction is to evaluate the interest of integrating approximate
hardware units into a general purpose embedded processor. Using this type of
flexible solution, multiple applications and kernels could potentially benefit from
these approximate units, without the need to build a specific accelerator for only
one kernel. Therefore one of the main question in this thesis is: would IoT appli-
cations benefit from a small general purpose processor containing functional units
with a reduced width?

Second, on the application side, several types of work are proposed. For in-
stance, algorithmic modifications are proposed to reduce the number of opera-
tions required to solve a problem by skipping loop iterations or instructions [17,
76]. These modifications lead to good initial energy reductions. In this work, we
consider a reference implementation of an algorithm and we investigate how to
reduce the energy consumption further using an embedded processor equipped
with reduced width units. Furthermore, new programming models and data-types
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are proposed to express approximations in a high-level language [74, 73]. Com-
piler support for approximate computing targets either code generation for specific
programming models [74, 68], or introduce static approximations in a conventional
source code [67, 14]. Methods for runtime control are also implemented to man-
age the output quality and the energy consumption during the execution of a pro-
gram [39, 94].

Some programming and compiler methods can be beneficial to an embedded
processor with reduced width instructions. For this purpose, we build a set of
tools around the RISC-V environment [10] for program annotation, compilation
and simulation. We aim to enable fast exploration of applications and kernels,
without necessarily claiming novelty at this level. Future work will explore which
programming support and compiler level optimizations are more suitable for this
task.

Third, to evaluate the impact of approximations in complete applications, a
growing number of works deal with methods and tools for analyzing errors in some
computation kernels [72, 65]. This type of approaches may also involve algorithmic
changes. Some formal error-analysis methods are proposed, however intensive
simulations are still required for large workloads and realistic applications [21]. As
this is not the main topic of this thesis, we use simulations to evaluate the output
quality for various applications executed on our modified processor.

Energy consumption estimations and models are important to evaluate some
trade-offs between the output quality and the actual energy reduction, although
this topic is not central to approximate computing. Complete and accurate energy
models for processor cores and memories are important but they are hard to ob-
tain from the literature. The thesis was carried out in CEA Leti where we have
an internal, private, implementation of a RISC (reduced instruction set computer)
32-bit processor in a test chip. We used our internal data from the test chip mea-
surements integrated into some power models from the literature [61] to construct
our energy model for our processor at the instruction level.

Numerous low-power embedded processors do not include floating-point units
because the hardware implementation of a floating-point support requires a higher
silicon area and power consumption than fixed-point or integer ones. A recent work
by Barrois et al. [18] show that, for some particular workloads such as K-means,
floating-point operations on a reduced width (e.g. 8-bit) are more efficient than
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fixed-point solutions and with larger width (e.g. 16-bit) the fixed-point operations
are more efficient than the floating-point operations. As we aim to study applica-
tions running on a general embedded processor, we stick to conventional cores
with integer or fixed-point units.

1.2 Problem statement

As introduced above, the main goal of this thesis is to determine whether IoT
applications would benefit from a general purpose processor core equipped with
reduced width units for approximate computing. This general question implies to
answer several more detailed questions stated below.

In the current literature, the evaluation of approximate arithmetic operators in
general, and for reduced width ones in particular, is only performed for stand-
alone units (i.e. not embedded in a processor running a complete application).
In this stand-alone context, approximate operators can lead to important energy
reductions, for instance up to 58% in [35]. But, in complete applications running in a
general purpose processor not all operations can be approximated. Subsequently,
one question in our more complete context is: how much global energy reduction
can be obtained on complete applications with such approximate units embedded
in a processor?

In approximate computing, most of the functional units studied in the state of
the art are adders and multipliers. However the energy evaluation of full width
(e.g. 32 bits) arithmetic and data-memory operations in [54] and [82] indicates that
data-memory operations may consume more than 2 times the energy of arithmetic
ones in current circuits technologies. Hence we investigate the extension of the
reduced width principle to data-memory units. Here another question is: to which
extent both approximate arithmetic and data-memory units impact the energy con-
sumption and the result quality of a given application executed in our processor?

Finally, various optimizations can be performed on the hardware or/and on the
software parts of a complete system leading to very different impacts on the global
energy reduction. Not all application parts are amenable to approximations. Cur-
rently, there is a lack of general models providing an early insight into the global
energy reduction offered by approximate computing methods (in software or/and
in hardware). It would be interesting to have simple and relevant models such as
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the Amdahl’s law for speedup evaluation in parallel computers. For a given a set
of applications, another question is: when and where implementing reduced width
units is worthwhile? More precisely, which processor units impact the most the
energy consumption, and can they benefit from reduced width approximations in
hardware? Similarly on the software side, another question is: what software char-
acteristics impact the most the global power consumption? For example, the ratio
between memory and computation operations may be a key factor to estimate the
power gain when using reduced width units.

1.3 Contributions

Our first contribution is the evaluation of some trade-offs between the application
output quality and the energy consumed by an embedded general purpose proces-
sor extended with approximate units. We target a platform composed of a RISC-V
processor core [10] coupled with a data and an instruction memory. The RISC-
V is an open source processor which allows us to easily extend compilation and
simulation tools needed for our exploration. The RISC-V supports instruction set
architecture (ISA) extensions. Then, we extend the RISC-V with approximate units
where the width is reduced. In these reduced width units, the operations, for both
computations and data-memory accesses, are performed on a given number of
most significant bits configurable at runtime.

We propose a set of annotations and an instrumentation tool to ease our ex-
perimental investigations. During an internship, Tiago Trevisan Jost implemented a
compiler support to handle pragmas added in the source code and he extends the
RISC-V simulator [11] with profiling tools that return statistics including the number
of executed instructions of a given type [81]. This work was put in perspective and
integrated with an energy model proposed in this thesis. We construct an energy
model for each reduced width instruction and we integrated it in the tool-chain to
perform application-level energy consumption estimations.

After testing and validating the extended RISC-V platform, we evaluate the
impact of the reduced width integer units on some fixed-point applications. Our
objective is to study the trade-offs between the estimated energy reduction and
the application quality reported during intensive simulations, with various reduced
widths for the units. In this evaluation, we first study the impact of common reduced
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arithmetic operators (integer addition and multiplication in our processor). Then
we extend the investigation to both computations and data memory accesses with
various reduced widths. Our evaluation is performed on a selection of applications
from the Axbench benchmark suite [93]: jmeint, Sobel filter and forwardk2j.

We also deal with the impact of the conversion from the floating-point represen-
tation into the fixed-point one on the output quality for the tested applications. Most
of the benchmarks proposed in the state of the art are implemented in floating-
point. Then, we have to convert them into fixed-point for our processor. Using
several errors metrics, we evaluate the quality degradation due to this conversion
for the selected benchmarks. Our experiments suggest that these applications
are suitable for fixed-point computations, the error compared to the initial floating-
point solution is acceptable (less than 0.1%) for configured widths from 16 bits and
above.

Our results show an energy reduction, for the tested applications executed with
reduced width units for both computations and data-memory accesses, improved
up to 14%, compared to the reduction obtained using only reduced width units for
addition and multiplication. This improvement is due to the fact that all tested ap-
plications contain other types of instructions than addition and multiplication, e.g.
numerous memory accesses, load and store. Extending the reduced width prin-
ciple to the data-memory unit decreases a lot the global energy consumption. We
can conclude that a general purpose processor extended with reduced width units
must integrate both computations and data-memory approximate units. Using ap-
proximate units only for computations lead a very small power gain.

Our second contribution is a global energy model for both hardware and soft-
ware designers to have an early insight into the application-level energy consump-
tion. Our model includes both software parameters and hardware architecture
ones. The software parameters are the percentages of reduced width operations
for both computations and data-memory accesses and the width required for some
target output quality. The hardware parameters are the widths of the units and the
energy reduction obtained for each type of stand-alone approximate unit. Our
global energy model is inspired from Amdahl’s law. In parallel computing, the
Amdahl’s law evaluates the speedup of an application executed in a parallel com-
puter. It clearly shows that both the actual number of processors and the ratio of
the parallel and the sequential parts in the program are keys elements. Similarly,
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in approximate computing for complete applications (i.e. not only small kernels),
our model as well as our experimental results show that the energy consumption
depends on both the degree of approximation (i.e. the configured width in the
units in our study) and on the proportion of approximate instructions in a complete
program.

1.4 Thesis organization

The manuscript is organized in five main chapters as follows.
The Chapter 2 presents the state of the art. We first discuss the closest re-

lated work to the thesis contributions. Second we present several quality metrics
and applications in various domains to evaluate the tested approximate computing
methods. Then we describe the RISC-V processor targeted in our study. Finally a
summary that leads to the thesis contributions is presented.

The Chapter 3 describes the architecture of the RISC-V processor extended
with reduced width units. We first describe the extensions for reduced width com-
putations and data-memory units. Then we present our energy model used to
estimate the energy consumption of both full width and reduced width instructions.

The Chapter 4 investigates the energy vs output quality trade-offs of applica-
tions executed on our RISC-V extended with reduced width units. At first the tested
applications are converted from the floating-point to the fixed-point representation
to study the impact of this conversion on the output quality. Then we study the
impact of reduced width computations and data-memory accesses on the output
quality and on the global energy consumption.

The Chapter 5 presents a global energy model that includes both software
parameters and hardware architecture ones. At first we present a generic energy
model. Then we use our global energy model on several applications and we
show how a software and a hardware designer can estimate the impact of some
optimizations on the global energy reduction.

The Chapter 6 concludes the thesis. At first the main contributions are sum-
marized, then some future work is proposed.
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CHAPTER 2

STATE OF THE ART

This chapter reviews the literature in the domain of approximate computing. Ap-
proximate computing is a field that explores methods to trade computation cost
(in terms of execution time, power consumption, or chip area) with degradations
in the quality of the computation result. Such degradations should be minimal or
acceptable for the application concerned. The means to realize this trade-off are
multiple: changing the algorithm, skipping operations, reducing the arithmetic pre-
cision, embedding memory blocks that have a non-negligible probability to lose
their state, etc. As approximate computing is not yet a well established field, the
terminology is not yet widely adopted. The idea of accepting errors in operations
is present in many domains, and it may be referred to as:

• Inexact computing: “designing unreliable hardware and computing systems
that are useful for unreliable computing elements while garnering resource
savings in return” [62]. Palem, Enz and their collaborators explore the energy
saving limits of what they call inexact circuits [63], [64], [45]. The studies are
performed at a fundamental physical level, e.g. network of switches including
AND, OR and NOT gates, and further build inexact arithmetic operators, e.g.
additions, and kernels, e.g. FFT.

• Probabilistic computing: "energy spent by the processing units is lowered,
resulting in an increase of the probability that some operations might go
wrong" [30]. George et al. from Georgia Institute of Technology, USA, explore
the potential, in terms of energy reduction, of the probabilistic arithmetic units
such as adders and multipliers. In these units, the circuits supply voltage is
lowered proportionally to the output errors. The probabilistic arithmetic units
are used to implement an FFT reducing the energy by a factor of 5.

• Fault-tolerant computing: “the ability of computing in a presence of faults
to reduce the resource costs” [71]. This concept is already investigated for
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a long time [71, 60], and it is applied by different communities in hardware
and software. Building fault-tolerant systems requires to analyze the types of
errors tolerated and the components reliable for fault-tolerant computing [16],
[51], which is rather close to what approximate computing requires.

• Stochastic computing: “The ability to exploit the statistical nature of application-
level performance metrics and to match it to the statistical attributes of the
underlying device and circuit fabrics” [75]. Solutions for stochastic comput-
ing are proposed by various communities. For example Shanbhag and this
team, from Illinois University, Urbana, USA, describe the potential in terms
of performance and energy reduction in the design of non-ideal circuits, i.e.
circuits designed for error-tolerant operations [75]. The authors raise also the
challenges related to the design of computer aided design (CAD) for stochas-
tic computing, e.g. develop techniques for mapping software programs onto
programmable processors. Xiu et al. from Purdue University, USA, explore
numerical methods for stochastic computations, e.g. Monte Carlo [91].

• Imprecise computing: “The approach which enables programs to produce
results that are not correct using less time or resources” [31]. Imprecise
computing [46] is oftenly employed interchangeably with approximate com-
puting [46, 31, 90]. This term seems to be preferred in the real-time domain.

• Significance-driven computing: “the ability to maximize quality while meet-
ing user-specified energy constraints” [83]. The term is coined by with a
team from Thessaly university, Greece and Queen’s university Belfast, United
Kingdom [83, 66, 84]. The authors propose a programming framework for
the investigation of the energy reduction and the output quality of software
programs. The framework includes a programming model with pragmas di-
rectives to annotate the source code, a compiler support that handles the
pragmas directives and a runtime controller that makes decisions at runtime.
The pragmas directives indicate the relative importance of the tasks and al-
low the runtime controller to execute the approximated version of a given
source code, provided by the programmers.

Our work investigates the impact of reduced width arithmetic operations on appli-
cations. As such, it may fall under the name of significance-driven computing or
imprecise computing.
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2.1. Numerical data representation

This chapter is organized as follows. Since our study focuses on the reduced
width, we first describe the numerical data representation formats used in the
approximate computing methods in Section 2.1. Second we present algorithmic
approximations applied in both hardware and software solutions in Section 2.2.
Third we present the hardware blocks for approximate computing in Section 2.3,
and the software-level solutions for approximate computing including programming
and compiler support and runtime control in Section 2.4. Then we describe the
benchmark applications and the quality metrics for evaluation of our approxima-
tion strategy in Section 2.5. Then we present the target processor to execute these
applications in Section 2.6. Finally we present the energy model estimated to eval-
uate the energy consumption of various instructions in Section 2.7. Section 2.8
summarizes the chapter.

2.1 Numerical data representation

In a computer, real numbers (i.e. reals) are typically encoded on a finite number
of bits. The two common number formats are: the floating-point representation
and the fixed-point one. Because the width of a given format is finite, not all re-
als can be represented, thus, for some numbers, rounding is required. Several
rounding modes exist. For an in-depth presentation of real numbers and the asso-
ciated arithmetic we refer the reader to [56]. In what follows we introduce the basic
concepts necessary to understand the rest of the thesis.

2.1.1 Floating-point

The number x is represented in floating-point by three bit fields, as presented in
Figure 2.1:

• sign s; s = 0 if x > 0 and s = 1 if x < 0;

• exponent e; e is an integer such that emin < e < emax; emin is the smallest
possible exponent and emax is the largest possible exponent ;

• significant (or mantissa) m; m has one bit before the radix point and at most
p− 1 bits after; p is the precision: the number of bits of the mantissa.
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Figure 2.1: Floating-point representation

x = (−1)s ×m0.m1m2...mp−1 × 2e (2.1)

Rounding modes

The rounding modes to represent a number (x) in a given format are:

• rounding towards −∞ (R−(x)): returns the largest machine number that is
less than or equal to x;

• rounding towards +∞ (R+(x)): returns the smallest machine number that is
greater than or equal to x;

• rounding towards 0 (R0(x)): is equivalent to R−(x) if x ≥ 0 and to R+(x) if
x ≤ 0;

• rounding to nearest: returns the closest machine number to x; if x is equidis-
tant to two consecutive machine numbers, the result could be: the number
that is away from 0, the even number, or the odd one.

2.1.2 Fixed-point

The number x is represented in fixed-point by a fixed number of bits before and
after the binary point, as presented in Figure 2.2. The fixed-point format consists
of:

• an integer part represented on "i+ 1" bits including the signed bit that is the
most significant bit (xi)

• a fractional part represented on "f " bits
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• a width, that is the total number of bits: w = 1 + i+ f

Figure 2.2: Fixed-point representation

x =
i+1∑

k=−f

(xk × 2k) (2.2)

The same rounding modes as ones presented above in Sub-section 2.1.1 can
be used in the fixed-point representation.

The conversion from one format to another is possible. The direction of the
conversion in embedded systems is mostly from the floating-point representation
to the fixed-point one. For example, [50] proposes a methodology for the floating-
to-fixed-point conversion for software implementations for DSP architectures. The
aim is to determine the fixed-point specification minimizing a program source code
execution time for a given accuracy constraint. Fixed-point libraries, proposed to
help programmers implementing their applications, are compared in what follows.

Fixed-point libraries

Libfixmath, a C/C++ library [1], implements all mathematical functions such as
trigonometric functions, logarithm and exponential functions, root square function
and arithmetic operators. However the library handles only the format Q32.16 for
data representation, i.e. w = 32 and f = 16. The smallest and the largest width in
Libfixmath is 32 bits and the rounding mode is the rounding towards +∞.

The Fixed Point Class C++ [2] implements the cosines and sinus functions,
the exponential and the root square functions and the arithmetic operators. The
format Qw.f is represented with w ∈ {8, 16, 32} and each of the three w values in-
cludes a number of fractional bits f , with f ∈ {1, 2, . . . , 8} , {1, 2, . . . 16} or {1, 2, . . . 32},

21



Chapter 2 – State of the art

respectively. In Fixed Point Class, the smallest width is equal to 8 bits and the
largest width is 32 bits and the rounding mode is the rounding towards +∞.

The MFixedPoint C/C++ library [3] implements only arithmetic operators. The
width of the format Qw.f is represented with w ∈ {32, 64} and f ∈ {1, 2, ...32} or
{1, 2, ...64}, respectively. In MFixedPoint, the smallest width is equal to 32 bits and
the largest width is 64 bits and the rounding mode is the rounding towards +∞.

Libfi, a C/C++ library [4] implements only arithmetic operators. The repre-
sented formats in Libfi are more flexible than the above ones: the width does not
have to be a power of two: w ∈ {2, 3, ..., 32} and f ∈ {1, 2, ...32}.

In Libfi, the overflow behavior and the rounding mode are customizable. Libfi
proposes a data-type format that allows to handle five parameters:

• TOTAL_WIDTH: total number of bits in binary representation, including the
sign for signed numbers; it corresponds to w in the Qw.f format;

• FRACTION_WIDTH: number of fractional bits; it corresponds to f in the
Qw.f format;

• SIGNEDNESS: Fi::SIGNED for signed numbers; SIGNEDNESS:Fi::UNSIGNED
for unsigned numbers;

• OVERFLOW : behavior when a number overflows the range representable
with the selected quantization parameters; the valid parameters are:

– Fi::Saturate: saturate the number to the maximum or to the minimum
value allowed with the selected quantization parameters;

– Fi::Wrap: wrap the value around when overflow occurs; if we try to
increase the largest possible value, the smallest possible value is re-
turned; as opposite, if we try to decrease the smallest possible value,
the largest possible value is returned;

– Fi::Throw : when overflow occurs, throw a Fi::PositiveOverflow or a Fi::NegativeOverflow
exception, depending on the direction of the overflow;

– Fi::Undefined : the behavior of overflow is undefined; this overflow option
is selected when execution speed is more important than the output
results;
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• ROUNDING: behavior when a number is not representable with the selected
quantization parameters. The rounding modes are the same as ones pre-
sented in Subsection 2.1.1;

Table 2.1 summarizes the features of each fixed-point library presented above.
For each of them, we indicate the types of implemented functions: arithmetic op-
erations and mathematical functions such as trigonometric functions, exponential,
square root. Although Libfi implements less functions than others, it allows to
make computation in low precision, e.g. less than 8 bits and it allows to handle
overflow behavior during simulations. In our investigation, we select Libfi which is
more flexible than the others libraries. To handle the functions not implemented in
the Libfi library an approximation of such functions is performed with Sollya [25]
designed for implementation of numerical functions, including the estimation of the
mathematical functions in their polynomial versions.

Libraries Arith. Math. Low precision Scalability (w not Overflow All rounding
operations functions (w ≤ 8) necessarily a power of 2) handled modes

Libfixmath 3 3 7 7 7 7

Fixed Point Class 3 3 3 7 7 7

MFixedPoint 3 7 7 7 7 7

Libfi 3 7 3 3 3 3

Table 2.1: Fixed-point libraries

2.2 Algorithmic approximations

A given problem may be solved by multiple algorithms. Approximations can be
done at this level by choosing an algorithm with less steps or without mathematical
functions that have a costly implementation.

One of the algorithmic approximation approaches applied on both hardware
and software solutions is the approximations of the costly mathematical functions
with CORDIC [87] or polynoms [42]. For example, [49] estimates the cos(x) and
sin(x) functions with a CORDIC-based approach using shifts and additions oper-
ations. Other methods such as polynomial approximation are proposed to reduce
the computation time due to iterations in CORDIC-based methods.

[42] proposes a polynomial approximation solution. The authors estimate,
with additions and multiplications operations, the mathematical functions includ-
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ing −(x
2 )log2(x), cos−1(x),

√
−ln(x), ln(1 +x), 1

(1+x) . The proposed solutions aim to
reduce the size of the interval of input data by proposing a segmentation method
other than the traditional uniform segmentation, as presented on Fig.2 of the third
page of the paper. The experimental results indicate that for more than 8 bits
of precision, the area is reduced by a factor of 2 with their segmentation method
compared to the uniform one.

One common limitation that we note in the existing methods for mathematical
polynomial approximation is the fact that the energy consumption of the studied
functions is not evaluated. The metrics to evaluate the effects of the function ap-
proximations are for example, the output accuracy [80], the memory size [22].

One of the most implemented methods applied on software solutions is task
skipping [17], [77], [76]. The method consists in reducing the number of executed
operations for a given program source code. For example, [17] proposes an au-
tomatic framework that allows programmers to reduce the energy consumption of
the expensive loops. The programmer provides the source code with loop perfo-
ration (i.e. with less iterations of the loops than the actual ones) and the function
for evaluation of the output quality. For each execution, the output is compared
against the expected output to evaluate the quality loss by running the application
with less iterations in the loops. The reduction of the number of instructions is
implemented with an early termination of the loops when the required quality of
result is reached. The experiments are performed on commercial applications and
a web-search engine executed on an Intel core 2 Duo (3GHz) processor and an
Intel 64-bit Xeon Quad core (2.33 GHz) processor. The results indicate that the
energy consumption can be reduced by up to 21% for an error rate equal to 0.27%.
We note that the proposed approach allows users to be less involved in the quality
of results evaluation and the method improves energy reduction for an acceptable
quality of output. The task skipping allows also to reduce the computation time of a
given program as indicated in [77]. [77] evaluates the loop perforation technique on
a set of applications, e.g. Monte Carlo simulation, search space enumeration, in
order to generate source code that produces results with less computations. The
experiments are performed on the PARSEC suite [20] that includes image process-
ing, multimedia and scientific applications executed on an Intel Xeon X5460 Quad
core processor. The results indicate that for an error less than 5%, the execution

24



2.3. Hardware blocks for approximate computing

time is reduced by a factor of 2.
Another approach that can be applied on loops and other operations are pro-

posed in [76]. The approach consists in the implementation of a mechanism called
Hardware Redundant Execution (HaRE). The HaRE allows to reduce the errors on
computations by returning in some previous states that are not costly and that have
an impact on the program output quality. The HaRE allows to activate a task with
the pragma HaRE on or to avoid a task to be executed with the pragma HaRE
off. The experiments are performed on machine learning applications executed on
Graphite, a simulator for multi-core systems [52]. The results indicate that with an
error rate equal to 0.1%, the computation time can be improved by up to 54%.

The above solutions produce good costs reductions, e.g. energy consumption,
computation time for an acceptable quality of output of the evaluated applications.
In this work, we keep the number of program operations and investigate how the
energy consumption can be reduced with an acceptable output quality, by execut-
ing them with reduced width units embedded in a processor.

2.3 Hardware blocks for approximate computing

Decreasing circuit complexity or clocking up less area are ways to reduce the en-
ergy consumption in hardware design. Several solutions have been proposed,
for example: the approximate accelerators [55], [33] and the approximate opera-
tors [35], [61].

The design of arithmetic operators for approximate computing, e.g. adders and
multipliers, is one of the most common work in the approximate computing com-
munity at hardware level. The energy consumption of these operators is reduced
by applying methods such as the voltage scaling and the width reduction.

The voltage scaling aims to reduce the circuit’s energy consumption. The prin-
ciple is to increase or decrease the supply voltage depending on the required en-
ergy reduction and the target output quality. Several solutions have been proposed
e.g. [26], [70]. The width reduction at hardware level consists in reducing the num-
ber of bits in the design of hardware blocks to reduce their complexity [95],[35].

The proposed arithmetic operators for approximate computing can be grouped
into two categories: the fixed width ones and the variable width ones. The differ-
ence between the two categories is the fact that the variable width operators can
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be reconfigured at runtime and the fixed width operators cannot be changed at
runtime.

2.3.1 Fixed width adders and multipliers

The fixed width operators are operators in which the precision is not configurable
at runtime, i.e. the precision does not change with the new parameters, e.g. in-
put data, energy budget. Different solutions have been proposed for adders and
multipliers.

[95] proposes an adder that consists of two parts: an accurate part and an in-
accurate one. For the accurate part, the adder follows the standard addition prin-
ciples from the least significant bit (LSB) to the most significant bit (MSB). For the
inaccurate part another mechanism is applied from MSB to LSB. The mechanism
consists in performing the standard one-bit addition if the two bits of the operands
are equal to "0" or if the two bits are different from one to another; but when the two
bits are equal to "1", all bits in the right part, from this bit are set to "1". The adder
is implemented using a library for 0.18µm CMOS technology and simulated with
a frequency set to 100 MHz. The results indicate 60% of power reduction when
compared to the conventional adders. We note that the mechanism applied on the
fixed width adders improves the energy reduction and the delay. The limitation of
such operators is the fact that it is optimized for a given width configuration.

The design of multipliers is also one of the topic of interest in approximate com-
puting at circuit level. In [40] an approximate multiplier is proposed. It is composed
of two parts: a multiplication part in which the standard accurate multiplication is
applied and a non-multiplication part in which a special mechanism is applied. The
mechanism consists in checking the bit position of each operand. If the two bits
are equal to "0", the corresponding bit result is set to "0" and if one or both of the
two bits are equal to "1", the process finishes and all result bits that follow are set
to "1". The multiplier is implemented using a library for 0.18µm CMOS technology
and simulated with a frequency set to 100 MHz. The results indicate that, in com-
parison with the standard multiplier, for a 12-bit multiplier, the power dissipation
decreases from 50% to 96% and a reduction of area by a factor of 2.1 for more than
90% of output quality. The results are interesting but we note the same limitations
as in the fixed width adders, i.e. the complexity in the configurability of the circuits
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to fit with parameters such as accuracy, energy savings requirements.

The above operators (adders and multipliers) are energy-efficient and can be
configured for a given application. We target a general purpose embedded pro-
cessor that can execute multiple applications. The fixed width operators are not
convenient to handle different widths demands.

2.3.2 Variable width adders and multipliers

Variable-width operators are operators in which the precision can be configured at
runtime. Several operators are proposed, e.g. [86], [38], [35], [61].

[86] presents an adder with an accurate and an inaccurate part. The inaccu-
rate part performs computations with reduced bits in the carry chain. In this adder
the output is evaluated at runtime. A signal indicates if the result is equal to the
expected one. If the result is not correct, the errors induced by the approximations
are corrected by performing the addition on the accurate part. The adder is imple-
mented using a library for 0.18µm CMOS technology. The results indicate that the
proposed adder can be 1.5×−2.5× faster than an accurate adder.

[38] proposes an accuracy-configurable approximate adder (ACA) that includes
an error-correction functionality and aims to reduce the number of bits in the carry
chain. ACA supports both accurate and inaccurate computations; the accuracy of
computation is reconfigurable. The adder is divided into three sub-adders and the
middle one corrects the potential errors, as presented on Figure 2 on the second
page of the paper. The error detector is implemented with several AND gates. The
ACA design is synthesized to a TSMC 65nm cell library with Synopsys Design
Compiler. For simulations at gate-level, Cadence NC-Sim is used. The results
indicate that the energy can be reduced by up to 30% when compared with the
conventional pipelined adder.

[35] proposes a Dynamic Range Unbiased Multiplier for Approximate Applica-
tions (DRUM). The parameterizable multiplier is implemented to dynamically tune
the precision of computations depending on the accuracy and the power consump-
tion target. The proposed method limits the number of bits by selecting dynamically
a range of bits on the two operands. For each operand, the k−1 bits from the most
significant bits (MSBs) are selected; the kth bit is set to 1. The design is synthe-
sized to a TSMC 65nm cell library with Synopsys Design Compiler. The evaluation
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of DRUM is performed on a hardware Gaussian filter. The results indicates that for
an acceptable accuracy, i.e. SNR of 91 dB, the whole Gaussian filter design with
DRUM achieves power savings of 58% for k = 6 bits.

[61] implements a 16-bit multiplier in which the width is scaled with the volt-
age scaling method. A given number of LSBs of the operator inputs are set to
zero. The method is evaluated on booth multiplier implemented on a 28nm FDSOI
standard-cell library from STMicroelectronics. The results indicate that the energy
consumption of a 16-bit fixed-point multiplier, at 10 bits is reduced by up to 32%.

The variable width operators solved the issues raised in the fixed width ones,
i.e. the configurability at runtime. Although the proposed operators have large
energy savings, up to 58%, when evaluated separately, most of them are not eval-
uated on a complete application. The evaluation of these operators on real appli-
cations, are required to have an insight into the global energy reduction for a given
program.

2.4 Software for approximate computing: program-

ming, compiler and runtime support

The application of the approximate computing techniques at software level re-
quires programming models to express specific data-types for the approximable
variables. Note that in this thesis, the approximable variables refer to the variables
in which the approximation leads to acceptable quality degradation. The authors
in [74], [68], [73] propose programming and compiler support for approximate com-
puting.

[74] proposes EnerJ, an extension of the Java programming language. En-
erJ includes type qualifiers (@Approx and @Precise) to declare the approximable
variables. The type qualifiers allow to mark approximable variables for low-power
memory storage operations and approximate operations for computation. The
strategy applied in operations for computation is the floating-point width reduc-
tion. For the low-power memory storage operations, the applied strategies are the
reduction of the supply voltage and the reduction of the refresh rate of the DRAM.
EnerJ is evaluated on a set of applications in various domains: SciMark2 suite [5]
including scientific kernels, ZXing [6], a bar code reader for mobile devices, jMon-
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keyEngine [7], a 2D and 3D game engine that implements triangle intersection
problems, ImageJ [8], a program for image processing, Raytracer [9], a 3D ren-
derer that generates images by tracing the path of light as pixel. The evaluated
applications are executed on both desktop and mobile environments. The results
indicate that with at most 34% of annotated variables, the energy reduction is from
10% to 50% with an acceptable output quality. We note that the proposed exten-
sions for EnerJ are simple to implement by a programmer.

[68] proposes FLEXJAVA, a framework for Java applications that allows pro-
grammers to make annotations on the source code to mark the approximable
parts, as in [74]. Moreover FLEXJAVA handles object-oriented programming con-
cepts, e.g. inheritance, polymorphism. The same approximation strategies as [74]
are applied both in the computation and memory storage operations (i.e floating-
point width reduction, reduction of the supply voltage and reduction of the refresh
rate). The evaluation is performed on the same applications and platforms as En-
erJ. Compared to the EnerJ, FLEXJAVA claims to reduce the programmer efforts
in the annotation process: from 6× to 12×, because for the same energy reduction,
FLEXJAVA reduces the number of required annotations from 2× to 17×. We note
that FLEXJAVA proposes a safety analysis to identify the sensitive operations.

[73] proposes ACCEPT, a framework that includes C/C++ type qualifiers de-
rived from EnerJ (@Approx and @Precise). The pointer types are not yet handled
in the approximation scheme. The approximation strategies are the loop perfo-
ration [77], the neural acceleration [28]. ACCEPT is evaluated with the PARSEC
parallel benchmark suite [19] in 3 platforms: a standard x86 server, a mobile SoC
with an FPGA for neural acceleration, and a low-power embedded sensing device.
The results indicate that the speed up is improved by up to 2.3× on the x86 server,
up to 4.8× on the mobile SoC, and up to 1.5× on the embedded device for errors
less than 10%, acceptable for the evaluated applications.

The above solutions claim a high energy reduction, i.e. up to 2×. To improve the
energy reduction (by up to 2.8×), other work proposes runtime control solutions.
However most of them implement the task skipping techniques [69] or handle the
cores for execution (i.e. host processor, accelerators) [48].

[69] develops a runtime framework that automatically skips operations, on a
given source code during the program execution. The authors target applications
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with high volume of data including a reduced-and-rank (RnR) kernel, used in, e.g.
video processing, recognition, search and data mining. A RnR kernel allows to
perform a reduction operation (e.g. L1-norm, distance computation, dot product)
between a given input data vector and a set reference vectors to return a set of re-
duction outputs. From these outputs, the user deducts the degree of approximation
of a given source code. An other approach deducts the degree of approximation
of a given source code by studying the correlation between the current input data
and a set of previous input data. The experiments are performed on eye detection
and clustering applications executed in a hardware extended with additional reg-
isters, counters, and control logic. The additional components, synthesized with
Synopsys Design Compiler and mapped to a 45nm Open Cell Library, allow to
automatically tune the quality knobs. The results indicate that the energy is im-
proved up to 2.38× and 2.5× when the quality constraints are relaxed to 2.5% and
5% respectively, acceptable for the evaluated applications. The energy overhead
induced by the search of the degree of approximation and by the additional compo-
nents is around 10% compared to the energy consumption of the original program.
We note that the overhead energy costs are acceptable in comparison with the
global energy reduction obtained with the method.

[48] implements a predictor that estimates the quality of output degradation of a
given program and indicates which source code version (original or approximated)
has to be executed. The selected version of the source code to be executed on a
host processor or on an approximate accelerator depends on the required quality
of output. The methods for the predictor design are a table-based approach and
a neural approach. The table-based approach, with a training phase, maps the
input data to the corresponding prediction, e.g. errors on the quality of output.
The neural approach estimates models for quality of output control, with a set of
training data. The experiments are performed on a set of applications in various
domains: image processing, clustering, 3D gaming, executed on a processor that
includes an accurate core and a neural processing unit. The results indicate that
for the table-based predictor the energy consumption is reduced by up to 2.8× for
an error of 5% and the neural predictor achieves 17% larger energy reduction than
the table-based predictor. We note large energy reduction, however we have no
idea about the values of energy overhead costs induced by the runtime process.

The proposed solutions for runtime control mostly investigate the task skipping
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technique. To exploit the configurability of the units that we study in our contribu-
tions, the runtime control of the data representation could be studied for more en-
ergy reduction. Moreover the solutions are mostly for floating-point architectures.
Since numerous low-power embedded processors do not include floating-point
units because the hardware implementation of a floating-point support requires
a higher silicon area and power consumption than fixed-point or integer ones. Bar-
rois et al. [18] highlights the advantages of fixed-point operators compared to the
floating-point ones, e.g. in terms of energy reduction, silicon area. On a real ap-
plication such as K-means, the floating-point representation with reduced widths
(e.g. 8 bits) provides more energy reduction. However with larger widths (e.g. 16
bits) the fixed-point representation is still less costly in terms of energy consump-
tion compared to the floating-point one. As we aim to study applications running
on a general embedded processor, we stick to conventional cores with integer or
fixed-point units.

2.5 Benchmark applications and quality metrics

The benchmark applications potentially of interest for approximate computing area,
for example Mediabench [41], ALPbench [44] which aim at the evaluation of mul-
timedia and communication systems. These suites include applications such as
data compression, human machine interface. The San Diego vision benchmark [85]
includes applications for features tracking, image segmentation, robot localization.
MEVBench [27] includes applications for mobile computer vision. Minebench [57]
is a data mining benchmark suite for clustering, classification applications. Axbench [93],
a benchmark suite proposed by the approximate computing community, it includes
a series of applications from various domains.

We select benchmark applications with available input data and quality metrics,
and that tolerate approximations. Thus in this thesis we perform experiments with
Axbench applications that provide a large set of input data and quality metrics,
and that are specifically implemented to evaluate the impact of an approximate
computing method.
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Axbench

Axbench is a suite of CPU and GPU applications proposed to evaluate the impact
of the neural network method [28] on the application output quality, the energy
consumption and/or the computation time. The CPU applications are more suitable
for our investigation. Axbench includes as CPU applications: blackscholes, FFT,
inversek2j, forwardk2j, jmeint, jpeg, K-means, Sobel filter.

All the above applications are implemented in floating-point format. We target
integer architectures to reduce the computation costs of the floating-point opera-
tions on the embedded systems. For each of the evaluated applications, we con-
vert them in fixed-point representation with Libfi presented in Subsection 2.1.2.
The errors introduced by the fixed-point conversion are evaluated with metrics pre-
sented below.

Most of these applications include complex mathematical functions such as
logarithm, exponential, square root, and trigonometric functions, as presented
on Table 2.2. Most of the embedded systems do not include floating-point arith-
metic unit (FPU). We estimate these functions with polynomial approximation using
Sollya [25].

Applications Arith. op Cos/Sin Tan Acos/Asin Atan Log Exp Sqrt
Blackscholes 3 7 7 7 7 3 3 3

FFT 3 3 7 7 3 3 7 3

Inversek2j 3 3 7 3 7 7 7 7

Forwardk2j 3 3 7 7 7 7 7 7

Jmeint 3 7 7 7 7 7 7 7

Jpeg 3 7 7 7 7 7 7 3

K-means 3 7 7 7 7 7 7 3

Sobel filter 3 7 7 7 7 7 7 3

Table 2.2: CPU-Axbench applications

We note that jmeint includes only arithmetic operations. Sobel filter, K-means,
jpeg, the image processing applications, include arithmetic operations and the
square root function. Blackscholes includes arithmetic operations, logarithm, ex-
ponential and square root functions. Other applications, i.e. inversek2j, forwardk2j
and FFT include arithmetic operations, trigonometric functions. FFT includes the
square root function in addition to trigonometric and arithmetic operations.

We choose to study the jmeint application because it includes only arithmetic
functions and 2 other applications: the Sobel filter, that includes the square root
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function in addition to arithmetic operations, and the forward2j including arithmetic
and trigonometric functions. The square root and the trigonometric functions are
estimated in polynomial approximations, using the fpminimax function of Sollya.

Jmeint application

Jmeint is an algorithm used in many 3D applications, e.g. gaming. Jmeint, with
geometric computations, verifies if two 3D-triangles intersect. The input is a pair of
triangles’ coordinates in 3D-dimensional space and the output is a boolean value
which indicates whether the two triangles intersect: 1 if the two triangles intersect
and 0 if they do not intersect. The steps of the algorithm are presented on Fig-
ure 2.3. To evaluate the quality of output, we compute the error rate that is the
ratio between the number of correct outputs and the total number of outputs.

Figure 2.3: Jmeint algorithm steps
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Jmeint quality metrics

To evaluate the output quality of the jmeint application, we compute the error rate.
The error rate is an error metric that indicates the frequency of errors in a method
evaluation. For jmeint, we compute the error rate between the vector of outputs
returned by the approximated program and the vector of outputs returned by the
original program. The formula of the error rate is:

ε = Ninc

Nt

(2.3)

where Ninc is the number of incorrect outputs and Nt is the number total of outputs.
Ninc is estimated with the hamming distance. The hamming distance between two
words (of the same length) is the number of places where the digits are different,
i.e. the number of positions where one is equal to 0 and the other equal to 1 and
vice versa [79]. The two words in jmeint correspond to the two compared vectors
of outputs.

Example: let’s consider a = 010110, b = 111101, the hamming distance d =
1+0+1+0+1+1 = 4.

Sobel filter application

The Sobel filter is a kernel for image processing and computer vision applications,
particularly for edge detection algorithms. Edge detection is an image processing
technique to discover the boundaries between regions in an image.

The input is a RGB image and the output is a gray-scale image (PNG format) in
which the edges are emphasized, as presented on Figure 2.4. The image gradient
of each pixel is calculated by convolving the image with a pair of filters (horizontal
and vertical filters), that are 3× 3 matrix.

Sobel filter quality metrics

The image quality evaluation is an issue in image processing applications, for that,
several metrics are proposed in this area, e.g. the RMSE, the PSNR and the
SSIM. The metrics values are computed with the parameters of the two compared
images, i.e. the image returned by the reference program and the image returned
by the approximated one.
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(a) Sobel filter input (b) Sobel filter output

Figure 2.4: Sobel filter input/output

The RMSE [78] and the PSNR [78] estimate the absolute errors between pixels
of two compared images but are less correlated to human perception of image
quality compared to the SSIM metric [88].

Let x and y be the matrix of the 2 compared images.

RMSE =

√√√√ 1
N

N∑
i=1

(xi − yi) (2.4)

where:

• N = 3× height× weight
• 3 is the number of pixel components: r, g, b;
• height and width are the dimensions of the images;
• i is the position of the pixel component on the images;
• xi is the reference pixel component value, yi is the approximated pixel com-

ponent value;

PSNR = 20× log10( L

RMSE
) (2.5)

where L is the dynamic range of the pixel values (e.g. 255 for 8-bit images).
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Let x and y the 2 compared images:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) (2.6)

where:
• µx and µy are the mean pixel values of respectively the image x and the

image y;
• σx and σy are the standard deviations between pixel values of respectively

the image x and the image y;
• σxy is the covariance of the two images x and y;
• C1 = (K1L)2 and C2 = (K2L)2, included to avoid instability when µ2

x + µ2
y and

σ2
x + σ2

y are very close to zero;
• K1 = 0.01, K2 = 0.03 and L is the dynamic range of the pixel values (255 for

8-bit images).

Forwardk2j application

Forwardk2j is a kernel for robotic applications. It aims to compute the positions of
a robot’s end-effector with the angles of the 2-joint robotic arm.

Forwardk2j takes as input the angles of the 2-joint robotic arm (Θ1 and Θ2) and
computes the position of the end-effector of the 2-joint robotic arm (x and y).

Forwardk2j quality metrics

To evaluate the quality of output in the forwardk2j application, we compute the
mean relative error (MRE) for each coordinate between the outputs returned by
the approximated program and the outputs returned by the original program.

MRE = 1
N

N∑
i=1

∣∣∣∣xi − yi

xi

∣∣∣∣ (2.7)

where N is the total number of data, x the set of original reference values, y the
set of approximated values.

Note that computing the mean relative error (MRE) with a series of very small
or null expected values (that are the denominators) is an issue in mean relative
error computations. To overcome these issues, there are some other measures
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proposed in the literature, e.g. Mean Absolute Scaled Error (MASE) [29], Sym-
metric Mean Absolute Percentage Error (SMAPE) [32].

The standard deviation is computed on the values obtained with the above met-
rics (i.e. RMSE, PSNR, SSIM, MRE) for the purpose of evaluating the dispersion
of a set data around the mean value. The lower the standard deviation, the most
the data are closed to the mean, i.e. low differences between the elements of the
studied data set.

σ =
√∑N

i=1(xi − x̄)2

N − 1 (2.8)

where x̄ is the mean value of the data set.

2.6 RISC-V processor

This section presents the processor core baseline that we consider in our exper-
iments. We utilize an open source RISC-V core [10]. The RISC-V community
provides an open Instruction Set Architecture (ISA) specification and a large set
of tools to simulate and synthesize RISC-V processor cores, as well as a large
software tools base to program, debug, and test applications for RISC-V.

One can customize a RISC-V processor core to include, for example, integer
multiply/divide, single and double precision floating-point arithmetic. The proces-
sor can work on 32, 64, or 128 bits. In the context of this thesis, we are interested
in a 32-bit integer processor, with code-name ”RV32I base” in the RISC-V terms.
From the proposed basic instruction formats [89], we use R-type, I-type and, S-
type, described below.

2.6.1 RV32I instruction formats in our work

The R-type format is for instructions with two source registers and one destina-
tion register, e.g. addition (add), subtraction (sub). The I-type is for instructions
with one source and one destination register, e.g. load word (lw), addition with
an immediate value (addi). The S-type format has two source registers and an
immediate destination, e.g. conditional branch instructions.

For the R-type format, the bits[31 : 25] (i.e. the field funct) indicate the type of
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31 25 24 20 19 15 14 12 11 7 6 0
funct rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

Figure 2.5: 32-bit RISC-V base instruction formats in our work [89]

operations to be executed, the bits[24 : 20] (i.e. the field rs2) correspond to one
source register and the bits[19 : 15] (i.e. the field rs1) to the other source register,
the bits[14 : 12] (i.e. the field funct3) inform to the processor which registers from
the registers source and destination communicate with an external accelerator, the
bits[11 : 7] (i.e. the field rd) correspond to the destination register, the bits[6 : 0]
(i.e. the field opcode) are for the code of the executed operation.

The I-type format has a imm[11:0] field in the bits[31 : 19] for the immediate
values to compute with the value of the register rs1. The format includes only one
source register file that corresponds to the bits[19 : 15]. From 19 bits and below
the I-type and the R-type have the same formats.

The S-type has the same formats as the R-type, except the fields funct and rd
in R-type, that correspond to imm[11:5] and imm[4:0] for the immediate values in
S-type.

2.6.2 RISC-V base opcodes map

An opcode is mapped with each of the instructions as presented on Table 2.3.
The opcodes of the operations are different from one operation to another.

The opcode targeted reserved are only for the standard extensions of the RISC-
V. Hence these opcodes cannot be used for external extensions added in the
standard RISC-V ISA. Inversely, the opcodes custom-0 and custom-1 are recom-
mended for the external extensions and are avoided for the standard extensions
of the RISC-V. The opcodes custom-2/rv128 and custom-3/rv128 are reserved
for the RV128 format and can utilized for the custom instruction-set extensions in
RV32 and RV64.

In this thesis, we use the opcodes custom-0 and custom-1 to extend the stan-
dard RISC-V with reduced width units.
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Table 2.3: RISC-V base opcode map [89]

inst[6:5]

inst[4:2]
000 001 010 011 100 101 110 111

00 LOAD LOAD-FP custom-0MISC-MEM OP-IMM AUIPC OP-IMM-32 48b

01 STORE STORE-FPcustom-1 AMO OP LUI OP-32 64b

10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/

rv128 48b

11 BRANCH JALR reserved JAL SYSTEMreserved custom-3/

rv128 ≥ 80b

2.6.3 RISC-V architecture

The RV32I base can be implemented in several ways. Figure 2.6 presents the
RISC-V architecture. We consider a pipeline with the following classic stages:
instruction fetch (IF) to bring the instruction from the instruction memory at the ad-
dress supplied by the program counter (PC); instruction decode (ID) to decode the
instruction, i.e. interpret the type of instruction and specify the register operands;
execution (EXE) to compute the arithmetic and logic instructions results or to com-
pute addresses for memory instructions, i.e. load and store; full width load/store
unit (LSU) to load/store the data from/in the data-memory. Note that in our inves-
tigation, the memory does not refer to both the dynamic random access memory
(DRAM) and the static random access memory (SRAM), we only consider the
SRAM.

The standard instructions in the original RISC-V processor could be grouped
into categories:

• arithmetic and logic instructions: addition (add), subtraction (sub), multiplica-
tion (mul), division (div), negate value (neg), shift left logical (sll), shift right
logical (srl),...

• branch instructions: branch on equal (beq), branch on less than (blt), branch
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Figure 2.6: RISC-V Architecture

on greater than (bgt), jump (j),...
• data transfer instructions: load immediate (li), load word (lw), store word (sw),

move (mv),
• comparison instructions: set equal (seq), set not equal (sne), set less than

(slt), greater than (sgt),...

2.7 Energy models

For estimation of the global energy consumption of a given application, several
energy models have been applied on various architectures, e.g. [54] and [82]
estimate the accurate values of energy consumption of the arithmetic and memory
instructions.

[54] measures the contribution of the data transfer and arithmetic instructions
on the total power consumption of the AMD and Intel systems. The energy con-
sumption of each instruction is measured: for double and single floating-point
instructions and for access cache and RAM. The results indicates that the data
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transfer power consumption is higher in the AMD architecture, i.e. 2.8×, compared
to the Intel power consumption of the data transfer. For Intel, we note that a byte
transfer on the RAM consumes 2.9× more than a double precision addition and
2.6× more than a double precision multiplication.

[82] proposes an energy model for ARM instructions, based on the energy
measurements on two different ARM processors: Cortex-A7 and Cortex-A15. The
measurements are obtained with the voltage/current sensors provided by the ODROID
XU+E big.LITTLE Platform [34]. The measurements are performed on several
types of instructions: integer, float and, double. We note that for the integer in-
structions, on the smallest memory (4KB), the load and store instructions consume
2× more than the additions and multiplications and 2.5× for a higher memory (i.e.
256KB). For the double instructions, on the smallest memory (4KB), the load and
store instructions consume 2× more than the additions and have approximately
the same values as the multiplications energy consumption.

We note that in the above architectures, the costs for memory accesses is
larger than the costs of the arithmetic instructions (i.e. from 2× to 2.9×). We can
deduce that in addition to the approximation of the common arithmetic units, the
approximation of the memory units could be beneficial for energy efficiency.

A set of operations have been proposed for approximate computing in order
to exploit the potential of the proposed approximate arithmetic and memory units,
when added in a complete processor. The related energy models for each of the
approximate arithmetic and memory operations are estimated, e.g. [67]. [67] pro-
poses an energy model to evaluate the impact of the approximations performed on
both arithmetic and memory operations. The approximate arithmetic operations
are width scaling floating-point arithmetic ones. For the approximate storage, the
methods consists of reducing the supply voltage and the refresh rate. For each ap-
proximate operation, an energy model that consists of a pair of parameters (ea;es)
is proposed, where ea is the energy cost of an instruction when executed accurately
and es is the factor of energy saved when an instruction is executed approximately.
The results indicate an energy reduction for each operation, e.g. es = 12% for
integer and logical operations, es = 32% for floating-point operations with 16 man-
tissa bits, es = 17% for the DRAM and es = 70% for the SRAM. We note that one
limitation of the proposed model is the fact that overheads energy of implementing
or switching to approximate hardware are omitted in the model. The methods are
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evaluated on a set of applications including ZXing [6] a bar code reader for mobile
devices, jMonkeyEngine [7] a 2D and 3D game engine that implements triangle
intersection problems, Raytracer [9] a 3D renderer that generates images by trac-
ing the path of light as pixel. The results indicate that the energy can be reduced
by up to 35%. We note the energy reduction induced by the method is large. The
large energy reduction is with not only the approximate arithmetic operations but
with both approximate arithmetic operations and approximate memory ones. We
can conclude that the approximate memory units have potential in terms of global
energy reduction of a given application.

We can see that to integrate the energy estimation of approximate units within
the energy consumption of an entire processor we would need to separate be-
tween: (1) the energy consumed by the arithmetic units, (2) the energy consumed
by the SRAM, and (3) the energy consumed by the DRAM, in case the system
has one. For our needs we consider the approximate arithmetic operations and
the energy consumed by the SRAM to construct an energy model per instruction,
as presented in Subsection 3.3.2. The width scaling method is applied in both
operations categories.

2.8 Chapter summary

In this chapter we have presented an overview of the approximate computing ap-
proaches. Since we aim to put in perspective the reduced width units within an em-
bedded processor, at first we present the numerical representation format of data,
that are the floating-point format and the fixed-point one. Second we present the
most used algorithmic approximations techniques, that are the task skipping and
the methods for approximation of mathematical functions. Third we have reviewed
the hardware blocks including approximate operators and we have discussed the
programming, compiler support and runtime support for approximate computing
on application source code. Then we have presented the benchmarks application
and quality metrics for evaluation and we have described our target processor in
which the reduced width units will be embedded. Finally we have presented the
energy models that estimate different categories of instructions.

We note that most of the solutions proposed at software level, e.g. program-
ming and compiler support, focus on floating-point architectures. Several embed-

42



2.8. Chapter summary

ded systems do not include floating-point units and the implementation of floating-
point support requires a high silicon area and power consumption. We target in-
teger or fixed-point architectures to reduce the floating-point operations costs in
embedded systems.

We note also that most of the hardware units designed for approximate com-
puting focus on arithmetic units. The studied energy models indicate that the en-
ergy consumption of the memory accesses are largely higher than the energy
consumed by the arithmetic operations, up to 2.9×. Hence the optimization of
memory units has to be investigated to improve the global energy consumption of
applications.

Moreover, the proposed approximate integer arithmetic units are only evaluated
in a separate block, which does not provide an insight into their impact on a given
application in terms of output quality and energy reduction. Hence these units
need to be embedded in a processor for a global evaluation of their impact on real
applications for more conclusive results.
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CHAPTER 3

RISC-V PROCESSOR EXTENDED WITH

REDUCED WIDTH UNITS

This chapter presents the extended RISC-V used for our approximate computing
approach. We focus on integer operations since they are more appropriate for
embedded systems than floating-point ones. The RISC-V processor is a popular
platform for experimentations because it is open source, flexible and supports the
implementation of several customized extensions.

Several approximate integer operators are proposed in the state of the art. Most
of them are implemented as stand-alone units, i.e. not integrated in a processor.
We extend the RISC-V processor with approximate integer units. Our approach
uses reduced width units for both computation and data-memory access. In re-
duced width units, the computations are performed only on the b most significant
bits (MSBs); b ∈ {1, ..., B} ;B is the maximum possible width. For each class of
the reduced width operation, an energy model is proposed for evaluating the global
energy consumption of several benchmark applications.

To easily experiment with the RISC-V processor, during an internship Tiago Tre-
visan Jost implemented compiler support to handle pragmas added in the source
code and extended the RISC-V simulator [11] with the profiling capabilities to re-
turn statistics including the number of instructions of a given type class. This work
was put in perspective and integrated with an energy model by this thesis. The
joint contribution was presented in a RISC-V workshop [81]. The energy model for
our processor at the instruction level is a combination of internal data from CEA
Leti test chip measurements with some power models from the literature [61].

This chapter is organized as follows. Section 3.1 presents the ISA of the ex-
tended RISC-V including both the standard full width instructions and the reduced
width instructions added in the RISC-V. Section 3.2 presents the architecture of the
RISC-V core extended with reduced width units. Section 3.3 presents our energy
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model for applications evaluation. Section 3.4 presents our experimental environ-
ment including a set of annotations to ease programming and an instrumentation
tool which allows to evaluate application output quality vs energy trade-offs. Sec-
tion 3.5 summarizes the chapter.

3.1 Extended RISC-V ISA with reduced width instruc-

tions

The ISA of the extended RISC-V consists of its standard instructions and our re-
duced width instructions. We consider the RV32I base of the RISC-V processor, in
which the format of the instructions are fixed to 32 bits as presented in Figure 2.5
in Chapter 2.

The categories of operations available with reduced width units are presented
on Table 3.1. These operations are arithmetic, logic and data transfer operations.
The basic RV32I formats of RISC-V are presented in Figure 2.5. The fields funct
(i.e., bits[31 : 25]), funct3 (i.e., bits[14 : 12]) and opcode (i.e., bits[6 : 0]) indicate the
instruction category.

Table 3.1: RV32I base for full width instructions

31 25 24 20 19 15 14 12 11 7 6 0
0000000 src2 src1 000 dst 0110011 add
0100000 src2 src1 000 dst 0110011 sub
0000001 src2 src1 000 dst 0110011 mul
0000001 src2 src1 101 dst 0110011 udiv
0000001 src2 src1 100 dst 0110011 sdiv

imm[11:0] src1 000 dst 0010011 addi
imm[11:0] src1 101 dst 0010011 udivi
imm[11:0] src1 100 dst 0010011 sdivi
imm[11:0] src1 010 dst 0000011 ld

imm[11:5] src2 src1 010 imm[4:0] 0100011 st

For each of the above operations presented on Table 3.1, to reduce the global
energy consumption of applications we implement the corresponding reduced width
operation, as presented below.

46



3.1. Extended RISC-V ISA with reduced width instructions

The implemented reduced width operations are described on Table 3.2. The
reduced width operations for computation, the programming model and the instru-
mentation tooling are published in [81]. We adopt the following convention: we
prefix with a. the standard full width instructions, to designate the corresponding
reduced width versions. The instructions a.set.b, a.get.b are implemented to set
or to get the actual width of the operator. The instruction a.set.b sets the width
into a source register and a.get.b gets the width from the destination. Further-
more, we extend the work in [81] by adding a reduced width unit for data-memory
accesses. Note that the instructions for reduced width memory accesses are not
implemented in the initial extended RISC-V. The field funct3 informs the proces-
sor which registers from the two registers source and the destination register are
activated in the communication with an external accelerator. In the context of this
work, we do not implement an external accelerator, we have just added units in the
standard pipeline. Nevertheless we use the same principle to inform which regis-
ters are activated. If the bit 14 is activated, the value returned by the extended units
is stored in the destination register (dst). If the bits 13 and 12 are activated, the
source registers src1 and src2 are sent to the extended units. Table 3.2 indicates
that:

• only one source register is activated for a.set.b,
• only the destination register is activated for a.get.b,
• all the three bits are activated for a.add, a.sub , a.mul , a.udiv, a.sdiv,
• one source register and the destination register are activated for the reduced

width immediate instructions a.addi, a.subi , a.muli , a.udivi, a.sdivi,
• the destination register is activated for a.ld and the source register is acti-

vated for a.st.
The opcodes correspond to the custom-0 and the custom-1 values on Ta-

ble 2.3: bits[6 : 2] are equal to 00010 or 01010 and the bits[1 : 0] are set to 11
to avoid overlaps with other standard extensions of the RISC-V.
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Table 3.2: RV32I base for reduced width instructions

31 25 24 20 19 15 14 12 11 7 6 0

0011111 00000 src1 010 00000 0001011 a.set.b

0011110 00000 00000 100 dst 0001011 a.get.b

0000000 src2 src1 111 dst 0001011 a.add

0000001 src2 src1 111 dst 0001011 a.sub

0000010 src2 src1 111 dst 0001011 a.mul

0000011 src2 src1 111 dst 0001011 a.udiv

0000100 src2 src1 111 dst 0001011 a.sdiv

immediate src1 110 dst 0101011 a.addi

immediate src1 110 dst 0101011 a.subi

immediate src1 110 dst 0101011 a.muli

immediate src1 110 dst 0101011 a.udivi

immediate src1 110 dst 0101011 a.sdivi

imm[11:0] src1 100 dst 0101011 a.ld

imm[11:5] src2 src1 010 imm[4:0] 0001011 a.st

Let us consider the registers a1, a2, a3, a4, and a5. For each reduced width
operation an example is presented below.

Example: a.set.b, a.get.b
The instructions a.set.b and a.get.b are implemented for the configuration of the
units width.

li a5, 2 # Moves 2 to a5

a.set.b a5 # Sets the width to 2

a.get.b a4 # Stores the current width in a4

Listing 3.1: Set/Get the width

Example: addition with reduced width (a.add)
The instruction a.add computes the reduced width addition. The addition is per-
formed on b bits determined by the a.set.b instruction. An example of a.add
usage is indicated in Listing 3.2.
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li a5, 2 # Moves 2 to a5

a.set.b a5 # Sets the width to 2

a.add a3, a2, a1 # adds a2 to a1 and stores the result in a3,

# based on the actual width

Listing 3.2: Addition with reduced width

Example: immediate addition with reduced width (a.addi)
It performs a reduced width addition between an immediate and a register value,
based on the configured width.

li a5, 2 # Moves 2 to a5

a.set.b a5 # Sets the width to 2

a.addi a3, a2, 4 # adds 4 to a2 and stores the result in a3,

# based on the actual width

Listing 3.3: Immediate addition with reduced width

Example: load with reduced width (a.ld)
The instruction a.ld performs a reduced width load by copying a value from the
data-memory to a register, based on the configured width.

li a5, 2 # Moves 2 to a5

a.set.b a5 # Sets the width to 2

a.ld a3, [a2] # loads the value at address found in a2 to a3

Listing 3.4: Load with reduced width

Example: store with reduced width (a.st)
The instruction a.st performs a reduced width store by copying a value of a regis-
ter into the data-memory, based on the configured width.

li a5, 2 # Moves 2 to a5

a.set.b a5 # Sets the width to 2

a.st [a3], a2 # stores the value of a2 in a3

Listing 3.5: Store with reduced width
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3.2 Architecture of the extended RISC-V

We consider a conventional pipeline with the following stages: instruction fetch
(IF) to bring the instruction from the instruction memory at the address supplied
by the program counter (PC); instruction decode (ID) to decode the instruction,
i.e. interpret the type of instruction and specify the register operands; full width
execution (EXE) to compute the result of full width multiplications, arithmetic and
logic instructions or to compute address for memory instructions, i.e. load and
store.

We extend the RISC-V processor with both reduced width computation unit, de-
noted a.EXE and load and store unit denoted a.LSU. The unit a.EXE computes the
result of reduced width multiplications, arithmetic and logic instructions; the unit
a.LSU handles the reduced width load and store instructions. Figure 3.1 presents
our architecture of the complete processor including full width units and both ap-
proximate functional unit (a.EXE) and approximate data-memory unit (a.LSU).

Figure 3.1: Our extended RISC-V Architecture

The proposed reduced width units support multiple formats which are charac-
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terized by a number of MSBs b; b ∈ {1, ..., B} ;B is the maximum possible width.
The width of the unit is configured with a.set.b to set the width of the unit and
a.get.b to get the current width of the unit.

In our investigation, we aim to evaluate the global energy reduction of appli-
cations executed in a complete processor with reduced width units. For energy
evaluation, we propose an energy model for each class of instruction.

3.3 Energy model per instruction class

The energy model per instruction is constructed using measurements on a 28nm
FD-SOI test-chip. This chip includes a processor core that follows the architecture
described on Figure 3.1, connected to a 256KB memory, split into 64KB of instruc-
tion memory and 192KB of data memory. We consider two types of instructions:
the full width instructions and the reduced width instructions. The energy values
for the full width instructions are obtained from internal measurements on the this
test-chip. We construct the energy values of the reduced width instructions with
power models from the literature [61] that use the same technology.

3.3.1 Energy model for full width instructions

The energy values of full width instructions of the RISC-V ISA, relative to multi-
plication, are presented on Table 3.3. For each instruction class, the energy is
measured for a set of random operands. The energy consumption variations due
to the input data are under 15%, and hence in what follows we use an average
value for each instruction class. The memory is implemented in a low voltage
technology, which explains why the ld and st instructions consume less energy
than a multiplication instruction.

3.3.2 Energy model for reduced width instructions

The full width instructions energy values are presented on Table 3.3. For the re-
duced width multiplication and arithmetic and logic instructions, the energy values
are obtained by considering that the energy consumption of the a.EXE part varies
with the width as specified in [61], whereas the energy consumption of the other
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Table 3.3: Relative energy values of the full width instructions

Classes of instructions relative energy values

add 0.69

sub 0.85

mul 1.00

lgc 0.67

br 1.56

st 0.78

ld 0.71

core parts are the same as in the full width case. For the reduced width data-
memory instructions, we consider that 40% of the full width energy is not scalable,
and the 60% varies linearly with the width. Note that this percentage is depen-
dent on the design of the memory. Setting it to a value representative for another
memory implementation does not invalidate our investigation method. The imple-
mentation of the reduced width operators introduces an energy cost overhead.
This overhead is caused by the extra elements needed to partition the operators
into several threshold voltage domains, and it is taken into account in our model.

Let eAc be the energy consumption of the reduced width computations instruc-
tions, i.e. the energy consumed in the a.EXE part and the other full width core
parts, and eAm the energy consumed by the reduced width data-memory instruc-
tions, i.e. in the a.LSU part and the other core parts. With b = B, eAc(B) and
eAm(B) are calculated with the following formulas:

eAc(B) = eĀc
+ oc (3.1)

eAm(B) = eĀm
+ om (3.2)

where oc > 0 and om > 0 are the energy overheads when implementing the re-
duced width computation and data-memory instructions, respectively.

The energy values eAc for each b are constructed as follows. We had access
to: (1) measurements of eĀc

(which corresponds to full width) and (2) numbers in
simulation for a.EXE for all values of b, and oc from CEA Leti’s previous work [61].
Starting with these numbers, the values of eAc for each b are tabulated.

52



3.3. Energy model per instruction class

Furthermore, we estimate the energy value eAm(b) with the following formula:

eAm(b) = eAm(B)× (r + (1− r)× b/B), (3.3)

where r ∈ [0, 1] is a non-scalable ratio from the energy consumed by a data-
memory instruction. The ratio r is dependent on the design of the memory. In
this work we assume that 40% of the energy consumption of the a data-memory
instruction is non-scalable with the width, i.e. r = 0.4.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 A

Reduced width (b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
en

er
gy

(n
or

m
al

iz
ed

to
m
u
l

)

a.add
a.sub
a.lgc
a.mul
a.ld
a.st
add
sub
lgc
mul
ld
st

Figure 3.2: Relative energy values of reduced width and full width instructions

Figure 3.2 summarizes the energy values for reduced width instructions classes
and full width ones. We note that the energy overhead is easily observable from
26 bits and above, i.e. the energy consumption of the reduced width units is higher
than the energy consumption of the full width instruction. We can deduce that in
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our extended RISC-V, computing with more than 26 bits is costly in terms of energy
consumption, i.e. more than the full width computations, due to the width hardware
management.
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Figure 3.3: Average relative energy values of reduced width and full width instruc-
tions

Figure 3.2 indicates that for the reduced width operations for computations, i.e.
a.add, a.lgc, a.sub, a.mul the energy values are close for widths in the range 1 to
8 bits and the energy values of the reduced width operations for memory access,
i.e. a.ld, a.st, have not very large differences (absolute difference less than 0.09).
Figure 3.3 presents, for both reduced width operations for computations and for
data-memory accesses, the average energy values and the standard deviations
for each width.

The relative standard deviation of the average energy values of the a.add,
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a.lgc, a.sub, a.mul operations is less than 5%. For widths in the range 1 to 8
bits, the reduced width operations for computations have more or less the same
energy consumption; the relative standard deviations of the energy values are less
than 2% for widths in the range 9 to 18 bits, and between 2% and 5% in the range
18 to 32 bits.

The relative standard deviation of the average energy values of the a.ld, a.st
operations is less than 1%. Note that the implementation of reduced width data-
memory would probably not be efficient for width values that are not a power of
two. However, for the sake of the investigation, we consider all width values from
1 to 32 bits.

We note that in our RISC-V architecture, the estimation of the energy reduction
on a given application can be performed with average energy values, grouped into
categories of instructions, i.e. comp, mem, a.comp, and a.mem. We will exploit the
results of the Figure 3.2 in Chapter 4 and the results of the Figure 3.3 in Chapter 5.

3.4 Experimental environment

We propose a set of annotations and an instrumentation tool to ease the experi-
mental investigations. We implement a compiler support to handle pragmas added
in the source code and we extend the spike simulator [11] with the capabilities to
return statistics including the number of instructions for each class and the global
energy consumption of an application using our energy model. The statistics are
input of scripts implemented to plot the graphs presented in Chapter 4 and Chap-
ter 5.

3.4.1 Programming support for our extended RISC-V

The proposed reduced width operations may be executed with various width val-
ues. Two pragmas directives are implemented to handle the format of data repre-
sentation in the source code and to delimit the part of the source code to execute
with reduced width units.
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#pragma fixed

The pragma fixed is proposed for fixed-point computations on applications. It
manages automatically the adjustments of the scale factor in fixed-point multipli-
cation and division operations. The pragma includes the following parameters:

• ListOfVariables: the list of the variables to be handled in the fixed-point con-
version; the variables have to be integers and they may be local or global.

• (Width, Frac): the total width and the fractional width for the conversion from
floating-point to fixed-point types.

#include <stdio.h>

#define Width 30

#define Frac 10

#include <math.h>

typedef int fixed_point;

int float_to_fixed(float a)

{

return (int)(a*pow(2, Frac));

}

float fixed_to_float(fixed_point a)

{

return (float)(a/pow(2, Frac));

}

int main ( )

{

float a = 0.44;

float b = 0.23;

float c = 3.51;

float d = 0.0;

fixed_point a_fp = float_to_fixed(a);

fixed_point b_fp = float_to_fixed(b);

fixed_point c_fp = float_to_fixed(c);

fixed_point d_fp = float_to_fixed(d);
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#pragma fixed (a_fp, b_fp, c_fp, d_fp) (Width, Frac)

{

d_fp = a_fp*b_fp+c_fp;

}

printf("%f \n", fixed_to_float(d_fp)); //the result is

equal to 3.610352

return 0;

}

Listing 3.6: Pragma fixed example

#pragma reducedWidth

The pragma reducedWidth delimits the part of the source code to be executed
with the reduced width units. The compiler replaces all the operators with the
corresponding reduced width ones presented on Table 3.2. The parameters of this
pragma are:

• ListOfVariables: the list of the variables involved in the reduced width oper-
ations; they may be local, global variables or function arguments in integer
type.

• Reduced_width: allows to obtain the number of the MSBs for computation,
the LSBs (equal to Width−Reduced_width) are set to 0 on the operands.

• RwTypePropagation (True/False): indicates what the compiler should do when
the operation is between a variable declared as reduced width and a full width
one. The option set to True indicates that the reduced width operation should
be used; otherwise the full width operation is applied.

#include <stdio.h>

#define Width 30

#define Frac 10

#define Reduced_width 23 // 7 LSBs set to 0

#include <math.h>

typedef int fixed_point;
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int float_to_fixed(float a)

{

return (int)(a*pow(2, Frac));

}

float fixed_to_float(fixed_point a)

{

return (float)(a/pow(2, Frac));

}

int main ( )

{

float a = 0.44;

float b = 0.23;

float c = 3.51;

float d = 0.0;

fixed_point a_fp = float_to_fixed(a);

fixed_point b_fp = float_to_fixed(b);

fixed_point c_fp = float_to_fixed(c);

fixed_point d_fp = float_to_fixed(d);

#pragma fixed (a_fp, b_fp, c_fp, d_fp) (Width, Frac)

{

#pragma reducedWidth(a_fp, b_fp, c_fp, d_fp)

Reduced_width True

{

d_fp = a_fp*b_fp+c_fp;

}

}

printf("%f \n", fixed_to_float(d_fp)); //the result is

equal to 3.606445

return 0;

}

Listing 3.7: Pragma reducedWidth example

In Listing 3.7, an example explains how to use the pragmas in a source code.
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The first step is to initialize the pragma parameters, e.g., Width, Frac, Reduced_width.
Two functions are added in the source code to convert all floating-point variables
into integer one before applying the pragmas. The pragma fixed allows to handle
the adjustment in fixed-point multiplications and divisions. The pragma reduced-
Width replaces all full width operations (*, +, / in this example) by the reduced
width ones.

3.4.2 Instrumentation tool

An instrumentation tool is implemented to investigate the instructions breakdown
in a program, i.e. to compute the number of executed instructions for each class.
Scripts are implemented to parse the file that contains the assembly code gen-
erated by the compiler. The number of instructions and the energy model per
instruction class estimated in Chapter 3 allow to have an insight into the global
energy consumption for a given application.

The energy consumption can be evaluated on a region of the application code.
The evaluated region is delimited by the functions stats_begin(id) and stats_end(id)
(Cf. example in listing 3.8). Several regions can be evaluated at a time, they are
characterized by an id that is a parameter of stats_begin() and stats_end() func-
tions.

#include <stdio.h>

#define Width 30

#define Frac 10

#define Reduced_width 23 // 7 LSBs set to 0

#include <math.h>

#include "statistics.h" // header added to know the statistics

information on regions of a given application

typedef int fixed_point;

int float_to_fixed(float a)

{

return (int)(a*pow(2, Frac));

}
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float fixed_to_float(fixed_point a)

{

return (float)(a/pow(2, Frac));

}

int main ( )

{

float a = 0.44;

float b = 0.23;

float c = 3.51;

float d = 0.0;

fixed_point a_fp = float_to_fixed(a);

fixed_point b_fp = float_to_fixed(b);

fixed_point c_fp = float_to_fixed(c);

fixed_point d_fp = float_to_fixed(d);

stats_begin(1); // Delimit the regions to investigate

#pragma fixed (a_fp, b_fp, c_fp, d_fp) (Width, Frac)

{

#pragma reducedWidth(a_fp, b_fp, c_fp, d_fp)

Reduced_width True

{

d_fp = a_fp*b_fp+c_fp;

}

}

stats_end(1);

printf("%f \n", fixed_to_float(d_fp));

return 0;

}

Listing 3.8: Simulator input source code

Listing 3.8 presents a source code example for the simulator to get profiling infor-
mation. The profiler information includes the number of executed instructions per
class, the energy consumption of the delimited region(s) by the stats_begin() and
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stats_end() functions and the global energy consumption of the complete applica-
tion. The statistics of the example in Listing 3.8 are in Listing 3.9:

Reg Application

Energy: 4079.31366528334

add 61

a.add 1

a.mul 1

branch 4

load 37

logical 1

move 44

notmodelled 3

store 57

Reg 1

energy: 213.5803319502

a.add 1

a.mul 1

load 3

store 1

Listing 3.9: Example of the simulator output

In Listing 3.9, the region Application includes the evaluation of system calls, e.g.
printf, scanfs and the evaluation of the user specified regions (Reg 1 in this exam-
ple).

Note that in the energy model proposed in Section 3.3, we do not estimate all in-
structions categories. We group these categories into a class named notmodelled,
e.g. la (load address), ecall (used to make a request to the supporting execution
environment), auipc (add a 20-bit upper immediate to pc). In our investigation, we
evaluate only the operations included in the program algorithm, i.e. we do not in-
clude the system call functions in the application energy consumption evaluation.
Given a source code, we delimit the regions excluding the system call functions.
Finally, the percentage of notmodelled instructions in the profiling information is
very small, less than 1%.
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3.5 Chapter summary

In this chapter we have presented our platform for evaluation of the approximate
computing technique proposed in this thesis. It includes an extended RISC-V pro-
cessor and a simulation experimental environment. We have first presented the
RISC-V ISA for both the standard full width instructions and the reduced width
instructions. Second we describe our extended RISC-V architecture including re-
duced width units for computations and data-memory accesses. Third we present
the energy model of each instruction class for both the full width ones and the
reduced width instructions. Finally we present our experimental environment in-
cluding a set of annotations to ease programming and an instrumentation tool.
The above tools allow the evaluation of the reduced width units on applications in
terms of output quality and energy reduction.
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CHAPTER 4

EVALUATION OF REDUCED WIDTH

UNITS ON APPLICATIONS

In this chapter we investigate the potential of reduced width units in terms of en-
ergy reduction on applications executed in a complete processor. The studied
reduced width units are reconfigurable at runtime. The evaluation is performed on
benchmark applications proposed in the state of the art. These applications are
originally implemented in floating-point format. In the context of this thesis we tar-
get integer architectures to overcome embedded systems constraints in terms of
energy, silicon area and/or computation time.

In our investigation, we first evaluate the impact of the conversion from the
floating-point to fixed-point representation in the applications output quality before
starting the energy estimation. The errors are computed with respect to the refer-
ence floating-point outputs. To estimate these errors, we perform simulation on a
Intel core using the Libfi library [4].

Second we evaluate the potential in terms of energy reduction of some common
approximate adders and multipliers on the fixed-point applications. The evaluated
approximate adders and multipliers are reduced width units that can be reconfig-
urable at runtime. In a first study, all the memory accesses are full width. Fur-
thermore, for more energy efficiency, we extend the study with width configuration
in the data-memory accesses. We evaluate the output quality vs energy reduc-
tion trade-off. In our reduced width units, the computations are performed on a
number of most significant bits (MSBs) and for data-memory access, only a num-
ber of MSBs is loaded/stored from/in the memory. For the energy evaluation we
count the number of executed instructions and with the energy model proposed in
Chapter 3, we estimate the global energy consumption of the applications.

This chapter is organized as follows. Section 4.1 describes the methodology.
Section 4.2 evaluates the impact of the conversion from the floating-point to fixed-
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point representation on the applications output quality. Section 4.3 presents the
evaluation results on applications executed with only reduced width units for addi-
tion and multiplication. Section 4.4 investigates the impact of reduced width units
for both computations and memory accesses on the output quality and on the en-
ergy reduction of the applications executed on the extended RISC-V processor.
Section 4.5 summarizes the chapter.

4.1 Methodology

Figure 4.1: Methodology of output quality vs energy reduction trade-off evaluation.

The impact of reduced width units on applications output quality and energy
consumption is evaluated using the flow proposed on Figure 4.1. We first select
benchmark applications that provide a large set of input data and relevant qual-
ity metrics for evaluation. Second we implement the experimental environment
that aims to make easier the output quality vs energy reduction trade-off evalu-
ation of the applications. We convert the floating-point applications in fixed-point
ones for the purpose of ensuring that the applications are suitable for computa-
tions in an integer processor. With pragmas, we annotate the source code to
delimit the operations that can be executed with reduced width units without high
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quality degradation. For energy evaluation, we estimate the energy consumption
for each instruction (both accurate and approximate), as presented in Chapter 3.
Third we extend the RISC-V processor [89] with reduced width units for both com-
putations and memory accesses. The pragmas added in the fixed-point source
code are handled by new passes implemented in the LLVM compiler. The RISC-
V spike simulator [11] is augmented with the capabilities to execute the reduced
width instructions and to estimate for a given application source code, the number
of instructions executed for each class. For each instruction class, this number
is multiply with the energy value of the instruction class. We propose to use the
sum of the energy values for each instruction class to estimate the global energy
consumed by the application.

4.2 Impact of the fixed-point conversion on the ap-

plications output quality

The fixed-point conversion is required on the evaluated applications to investigate
how the output quality is impacted by the rounding modes and the representation
format, i.e. the number of fractional widths. To convert the benchmark applica-
tions from floating-point to fixed-point, we use the fixed point library libfi that in-
cludes several fixed-point formats and several rounding modes. The libfi round-
ing modes are presented in the subsection 2.1.1, i.e. rounding towards 0 (Fix),
rounding towards +∞ (Ceil), rounding towards −∞ (Floor), rounding to nearest.
For the rounding to nearest, 3 possible cases are proposed: the number can be
away from 0 (Classic), an even number (NearEven), or an odd number (NearOdd).

4.2.1 Jmeint application

Figure 4.2 presents the evaluation results of the errors introduced by the conver-
sion from floating-point to fixed-point for the jmeint application from Axbench [93],
in various rounding modes and various fractional widths.

The evaluation of jmeint in fixed-point representation is performed on 1 000
000 couples of triangles in the fixed-point format Qw.f with w = 32 bits, f in the
range {1, 2, . . . , 30} and the integer part i = 2 bits. We note that from 14 bits and
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Figure 4.2: Errors evaluation on fixed-point jmeint.

above in the fractional part, the error rate is close to 0, i.e. for all the 1 000 000
couples of triangles, the output computed with the original floating-point version
and with the fixed-point one are almost the same, with an error rate ≤ 0.03%. The
error rate is deduced from the Hamming distance by comparing one by one the
elements of the boolean vectors of size 1 000 000, returned by the floating-point
and the fixed-point applications. For fractional widths higher than 5 bits, we note
that the round to the nearest representable value (NearOdd) is the best rounding
mode for jmeint in terms of output quality. From this experiment, we can deduce
that jmeint requires to be executed with at least width = 16 bits for an acceptable
output quality.

4.2.2 Sobel filter application

Figures 4.3, 4.4, and 4.5 report the errors evaluation results of the Sobel filter ap-
plication executed in fixed-point representation with various rounding modes and
various fractional widths. The errors are estimated with three common quality met-
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rics used in the image processing applications. These metrics computed for output
quality evaluation are the root mean square error (RMSE), the peak signal to noise
ratio (PSNR) and the structural similarity (SSIM). Each metric value is computed
with parameters of the image returned by the reference floating-point program and
the image returned with computations in fixed-point in various rounding modes and
various fractional widths.
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Figure 4.3: RMSE evaluation on fixed-point Sobel filter.

The experiments are performed on 100 input images selected randomly, in
the fixed-point format Qw.f with w = 32 bits, f in the range {1, 2, . . . , 23} and the
integer part i = 9 bits. We estimate the mean values and the standard deviation
for each quality metric: the RMSE and the PSNR. The standard deviation (std)
indicates that, for each fractional width, the metric value varies depending on the
input image.

Figure 4.3 presents, for each fractional width, the average value and the stan-
dard deviation of the RMSE computed with 100 images. For the RMSE error met-
ric, the lower the RMSE value, the higher the output quality is. The results indicate
that from 10 bits and above in the fractional part, we have an acceptable output
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image, i.e. RMSE ≤ 0.01.
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Figure 4.4: PSNR evaluation on fixed-point Sobel filter.

Figure 4.4 presents, for each fractional width, the average value and the stan-
dard deviation of the PSNR computed with 100 images. For the PSNR error metric,
the higher the PSNR, the higher the output quality is. The results indicate that from
10 bits and above in the fractional part, we have a PSNR higher than 50dB, which
is considered as a good quality.

The RMSE and the PSNR estimate the absolute errors between pixels of two
compared images, i.e. the image computed by the floating-point Sobel filter pro-
gram and the image returned by the fixed-point one. However these two met-
rics are less correlated to human perception of image quality compared to the
SSIM [88].

The SSIM evaluates the similarity between the reference image, i.e. the image
computed with the floating-point program and the image returned by the fixed-point
one. For the SSIM metric in image processing, the values are in the range [0, 1].
If the SSIM is equal to 1, the two compared images are identical. On Figure 4.5,
we note that from 8 bits and above in the fractional part, the two images are quite
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Figure 4.5: SSIM evaluation on fixed-point Sobel filter.

similar, i.e. SSIM ≥ 0.999.

4.2.3 Forwardk2j application

The forwardk2j takes as input the angles of a 2-joint robotic arm and computes
the position of its end effector. To evaluate the errors induced by the fixed-point
computations with various rounding modes and various fractional widths, we use
the relative error metric.

The experiment is performed on 10 000 random couples of angles. For each
couple of the computed coordinates, the maximum value between the errors of the
two coordinates is returned. The mean values and the standard deviation of the
10 000 maximum errors are computed. Figure 4.6 indicates that from 14 bits and
above in the fractional part, the relative error is close to 0, i.e. ≤ 0.01%. We note
that for low precisions, i.e. fractional widths in the range {1, 2, . . . , 10}, with the
same number of fractional widths the relative error varies depending on the round-
ing mode. From 7 bits and above, the round to the nearest representable value
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Figure 4.6: Errors evaluation on fixed-point Forwardk2j.

(NearOdd) is the best rounding mode for Forwardk2j in terms of output quality.

4.3 Impact of reduced width units for addition and

multiplication on applications energy consump-

tion

Our first experiments on the energy evaluation are performed with the reduced
width units for addition and multiplication, which are the most investigated in the
state of the art. The global evaluation is performed on applications executed on
the RISC-V processor extended with the evaluated approximate operators (i.e.
a.add and a.mul). We performed the experiments on three applications that are
jmeint, Sobel filter and forwardk2j. For the energy consumption evaluation of an
application, we first study the instruction breakdown to compute the number of
executed instructions for each class.
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4.3.1 Instruction breakdown

We study the instruction breakdown to compute the number of executed instruc-
tions for both reduced width instructions and full width instructions. In this section
we investigate the most common studied approximate operators in the literature,
i.e. adders (a.add) and multipliers (a.mul).The notations a.add and a.mul refer to
reduced width units for addition and for multiplication, respectively.

Jmeint application

The experiments are performed with 10 000 couples of triangles provided in the
Axbench suite. In jmeint the output is a boolean value which indicates whether the
two triangles intersect or not (1 or 0). Jmeint has several possible exit points, as
presented on Figure 2.3. The number of executed instructions could be different
depending on the input data value and on the width value, as shown on Figure 4.7.
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Figure 4.7: Number of executed instructions
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In very low precision, i.e. width in the range {1, 2, . . . , 8}, the number of exe-
cuted instructions varies from one input to another depending on the width. Figure
4.7 indicates that from 9 bits and above, the execution of all 10 000 input data
seems to respect the actual program exit points, i.e. the floating-point and the
fixed-point programs have the same exit point for a given input data. The instruc-
tion breakdown is performed by computing the mean value of the executed in-
structions and the standard deviation, as indicated on Figure 4.8. Jmeint includes
11.82% of reduced width additions and multiplications.
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Figure 4.8: Jmeint instruction breakdown.

Sobel filter application

We applied several optimizations typical for the low power domain. Note that these
optimizations do not impact the output quality. The optimizations are stacked-up
one after the other, as follows:
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• V1.: 2D vector for pixel storage is replaced by 1D vector to reduce the per-
formance costs due to address computations.

• V2.: V1 + the redundant code lines are removed. The 3 components of a
pixel have the same value in gray-scale image, the same value is set to the
3 components.

• V3.: V2 + the loops for convolution computations are unrolled to reduce the
instructions introduced by the loop indexing.

• V4.: V3 + filtering with null values are removed. To apply the filters on the
pixels that are at the border of the image, in the original version, the image
is padded with zeros. In this optimization we rewrite the filtering loops to
remove this padding.
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Figure 4.9: Sobel instruction breakdown.

Figure 4.9 presents the effect of these optimizations in terms of instruction
breakdown. The total number of executed instructions is reduced by up to 2.6×
in the most optimized program, compared to the original one. The percentage of
reduced width instructions (additions and multiplications) is equal to 6.8% in the
original version of the program and 17% the most optimized program, V4. Despite
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optimizations, most instructions are still full width (83% in the most optimized one).
These instructions consist of full width instructions such as arithmetic instructions
for address computation, data-memory access and branch instructions. The high
percentage of the load instructions is due to the fact that the pixels of the image are
stored into the data-memory and to compute the gradient of one pixel, the 3 × 3
matrix elements of the two filters and ones of the region of the pixel are loaded
several times from the data-memory.

Forwardk2j application

Forwardk2j computes the position of a robotic arm. The following experiments are
performed with 10 000 couples of 2-joint robotic arm. Figure 4.10 presents the
instruction breakdown of forwardk2j. The forwardk2j application includes 46% of
reduced width additions and multiplications. We note that the forwardk2j applica-
tion includes more reduced width additions and multiplications, than the Sobel filter
and jmeint applications. Hence it might be have more energy reduction than these
two application.
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Figure 4.10: Forwardk2j instruction breakdown.

4.3.2 Energy evaluation

In the state of the art, the energy reduction obtained with the approximated adders
and multipliers are evaluated separately, i.e. not on a complete application exe-
cuted in a processor. The evaluation of these individual approximate operators
returns high energy reduction, e.g. up to 58% in [35]. We aim to evaluate the
reduced width adders and multipliers on complete applications executed in a pro-
cessor in order to have an insight into the global energy reduction. Sobel filter and
jmeint include less than 20% of reduced width additions and multiplications (i.e.
a.add and a.mul); and forwardk2j includes more a.add and a.mul (i.e. up to 46%)
than Sobel filter and jmeint applications.

Using the energy model per instruction class on Chapter 3 and the instruction
breakdown studied on Subsection 4.3.1, we evaluate the energy consumption of
these applications.
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Jmeint application

The energy consumption can be reduced by up to 44% for width = 1 bit. The
high energy reduction does not depend only on the reduced width computation
but also on the reduced number of executed instructions on early rejection tests.
As indicated on Figure 2.3, jmeint program performs several tests to indicate if
two 3D-triangles intersect or not. Two early rejection tests are performed to avoid
computations on triangles that can never intersect. For example, if one triangle
lies on one side of the other triangle plan, these two triangles can never intersect
(Cf. (1) and (2) exit points on Figure 2.3). The number of executed instructions
in the program path related to (1) and (2) exit points on Figure 2.3 is less than
the number of executed instructions in the other paths, i.e. (3), (4), (5), (6), and
(7). For several couples of triangles from the 10 000 couples, the exit points are
(1) or (2) in the range {1, 2, . . . , 8}. Hence, the energy consumption of the whole
application when a couple of triangle follows the (1) and (2) paths is less than its
energy consumption with (3), (4), (5), (6), and (7) paths. If we consider the actual
exit points of the jmeint application, (i.e. from 9 bits and above) and evaluate only
the energy reduction due to the reduced width, the global energy reduction is less
than 5%, as indicated on Figure 4.11.

Sobel filter application

Figure 4.12 presents the result of the energy consumption evaluation of the Sobel
filter application with only a.add and a.mul. The results indicate that the energy
can be reduced no more than 7%. The low energy reduction compared to the
evaluation of the operators in a stand-alone context, is due to the fact that the
application includes more than 80% of full width instructions and each instruction
(for both reduced width and full width instructions) has an energy value that is not
scalable with the width, as indicated on Figure 3.2.
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Figure 4.11: Jmeint energy consumption with a.add and a.mul.

Forwardk2j application

Forwardk2j computes the coordinates of an end-effector of a robotic arm. The out-
put is a couple of coordinates (x;y). Forwardk2j is more computation intensive than
Sobel filter and jmeint. Figure 4.10 indicates that the forwardk2j program includes
more additions and multiplications (46%) that can be executed with reduced width
than Sobel filter (17%, Cf. Figure 4.9) and jmeint (11.82%, Cf. Figure 4.8) programs.
Hence its energy reduction (19% as indicated on Figure 4.13) is higher than the en-
ergy reduction of the Sobel filter (7%) and jmeint (4%, if we consider the actual exit
points) applications.
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Figure 4.12: Sobel filter energy consumption with a.add and a.mul.

In summary, in the above experiments, we consider only the reduced width
units for addition and multiplication that are the most investigated operators in the
literature. Table 4.1 presents an overview on the energy reduction of these oper-
ators when evaluated separately and the global energy reduction when evaluated
on an application executed on a complete processor.

Table 4.1: Energy evaluation of stand-alone reduced width operators and their use
in a RISC-V processor

Solution Operators / Programs Energy reduction Accurate bits

Adder 32-bit [38] 30% 4

Stand-alone Multiplier 16-bit [35] 58% 6

operators Multiplier 16-bit [61] 39% 10

Operators Sobel filter 6% 10

embedded in Jmeint 4% 10

a RISC-V processor Forwardk2j 16% 10
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Figure 4.13: Forwardk2j energy consumption with a.add and a.mul

These results indicate that, even after code optimization, the energy reductions
are not as large as the ones obtained evaluating the individual operators sepa-
rately, as we can see in Table 4.1. The low energy reduction is due to the fact that
the applications include several categories of instructions, not only additions and
multiplications which can be approximated. Sobel filter and jmeint include more
than 80% of full width instructions including all logic, branch and memory instruc-
tions, and full width arithmetic instructions for e.g. loop indexing, address com-
putations. The forwardk2j application includes more approximated additions and
multiplications: 46%, hence the energy reduction is higher (i.e. 19%) than one of
the Sobel filter (i.e. 7%) and jmeint (i.e. 4%, if we consider the actual exit points).
To improve the energy reduction achieved by using configurable width units, the
width reduction principle is extended to the memory accesses.

79



Chapter 4 – Evaluation of reduced width units on applications

4.4 Impact of the reduced width units for both com-

putations and memory accesses on energy con-

sumption and output quality of applications

The approximation of only add and mul computation units seems not sufficient
to reach a high energy reduction. In the instruction breakdown investigation, we
note that each application includes several instructions for logic and data-memory
access that are not executed with reduced width. The data-memory instructions
could be executed with a reduced width, i.e. load/store a number of MSBs from/in
the memory. We extend the reduced width approach on logic and memory units
and we evaluate them in what follows.

4.4.1 Instruction breakdown

We investigate the category of the executed instructions on jmeint, Sobel filter,
and forwardk2j applications. The instructions are divided in two types: the full
width ones and the reduced width ones. The first type of instructions are the full
width ones corresponding to the full width arithmetic and logical instructions (al)
for e.g. address computation, loop indexing, control statement; the full width multi-
plications (mul); the full width memory instructions (mem) to read instructions and to
read/store data related to full width instructions; and branch instructions (br). The
second type is the reduced width instructions that are only the reduced width arith-
metic and logical instructions (a.al), the reduced width multiplications (a.mul) and
the reduced width data-memory instructions (a.mem) that load/store data related to
the reduced width computation instructions from/in the data-memory.

Jmeint application

As Sobel filter, in the first version of the energy evaluation with only width reduction
on the additions and multiplications, we note low energy reductions. When the re-
duced width is extended to logic and memory instructions, the number of reduced
width instructions increases (from 11.82% to 77.4%), hence the energy reduction
could be improved. Due to the difference in the number of executed instructions
that depends on the width and on the triangle coordinates, for each instruction
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Figure 4.14: Jmeint instruction breakdown.

category we estimate the mean value and the standard deviation of the number of
executed instructions.

Figure 4.14 indicates that jmeint includes 77.4% of instructions that can be ex-
ecuted with the reduced width units with 21.1% of reduced width computation in-
structions and 56.3% of reduced width data-memory instructions.

Sobel filter application

The energy evaluation on the most optimized Sobel filter program with only a.add
and a.mul leads energy reduction less than 10%. When reduced width is extended
to logic and data-memory instructions, the percentage of reduced width instruc-
tions is higher than the first version (i.e. from 17% to 73.7%), hence the energy
reduction could be improved. Figure 4.15 indicates that Sobel filter includes 44.4%
of reduced width data-memory instructions (a.mem) and 29.3% of reduced width
computation instructions including arithmetic and logic instructions (a.al) and mul-
tiplication instructions (a.mul).
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Figure 4.15: Sobel filter instruction breakdown.

Forwardk2j application

As jmeint application, no specific optimization is performed on the forwardk2j pro-
gram. The proposed program in the state of the art is already optimized. Unlike
Sobel filter and jmeint, forwardk2j includes more than 20% of a.add and a.mul as
indicated on Figure 4.10; Hence the energy reduction with only a.add and a.mul
is higher than the first two applications: Sobel filter and jmeint. When the re-
duced width is extended to logic and memory instructions, the number of reduced
width instructions increases (from 46% to 81.8%), hence the energy reduction is
improved. Figure 4.16 indicates that forwardk2j includes 70.1% of reduced width
computation instructions and 11.7% of reduced width data-memory instructions.

4.4.2 Output quality evaluation

In this section we aim to evaluate the impact of the reduced width units on the out-
put quality of the fixed-point applications. As limit of width in our investigation, we
select 26 bits in which the overflow energy costs are low. Above 26 bits, computing
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Figure 4.16: Forwardk2j instruction breakdown.

with the accurate units is less costly than computing with reduced width units as
indicated on Figure 3.2. The results from the errors evaluation of the fixed-point
applications indicate the number of integer and fractional bits required for each
of them for an acceptable error. The selected 26 bits are more than sufficient for
the evaluated applications to get an acceptable output quality, as indicated on Fig-
ures 4.2, 4.3, 4.4, 4.5 and 4.6. We set to 0 a number of LSBs to get the reduced
width value, i.e. reduced width = width - LSBs.

Jmeint application

Jmeint output is a boolean value that indicates if the two triangles intersect or not.
The Figure 4.17 presents the errors introduced by the reduced width units. The
quality metric for evaluation is the error rate.

We compare the two boolean vectors returned respectively by the reference
floating-point jmeint program and the fixed-point jmeint program executed with re-
duced width units on the fixed-point program. To estimate the error rate, we com-
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Figure 4.17: Jmeint output quality evaluation.

pute the percentage of output data for which reference and approximate values
are similar (i.e. have the same boolean value: 1 or 0). Figure 4.17 indicates that
from 16 bits, the error rate ≤ 0.1%.

Sobel filter application

We evaluate the impact of the reduced width units on the Sobel filter output quality
with the SSIM metric. The Sobel filter requires at least 9 bits in the integer part,
hence for width = 26, the maximum number of fractional bits is equal to 17 bits.

Sobel filter application, as all image processing applications, can be evaluated
using various quality metrics. The most commonly used are the RMSE, the PSNR
and the SSIM. The SSIM is the most correlated metric with human perception, it is
able to quantify the human visual perceptual quality. We perform the output quality
vs energy trade-off study with the SSIM metric. Figure 4.18 presents the mean
SSIM value and the standard deviation of the 100 random input images. We note
that from 16 bits and above, Sobel filter has an acceptable quality of results, i.e.
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Figure 4.18: Sobel filter output quality evaluation.

SSIM ≥ 0.99.

Forwardk2j application

Figure 4.19 presents the relative errors due to reduced width computations on
forwardk2j. For each couple of coordinates, the maximum value between the errors
of the two coordinates is returned, and the mean value and the standard deviation
of the 10 000 maximum errors are computed. We note that from 16 bits and above,
the relative error ≤ 0.1%.

4.4.3 Output quality vs energy trade-off study

We compare the potential in terms of energy reduction on our three applications
when executed with only reduced width computation units and when executed
with reduced width units for both computations and data-memory accesses. Fig-
ures 4.14, 4.15, and 4.16 indicate that the applications include more approximated
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Figure 4.19: Forwardk2j output quality evaluation.

instructions than full width ones (more than 75%). Hence the extension of reduced
width units on logic and memory instructions could improve the energy reduction.
In the following experiments we investigate the output quality vs energy trade-off
on our three applications.

Jmeint application

Figure 4.20 indicates that, for a high output quality, i.e. error rate ≤ 0.1%, the
energy reduction when executing the jmeint application with only a.comp is up to
2% for b = 16 bits. When accessing the data-memory with reduced width (a.mem),
the energy can be reduced by up to 14% for b = 16 bits. We note that the reduced
width data-memory units improve the energy reduction obtained with only reduced
width computation units by up to 12% for an acceptable output quality, i.e. error
rate ≤ 0.1% (for width equal to 16 bits and above).
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Figure 4.20: Jmeint output quality vs energy trade-off

Sobel filter application

The energy reduction of Sobel filter is evaluated with reduced width for both com-
putations and memory accesses. Figure 4.21 indicates that the energy reduction
when executing the Sobel filter application with only reduced width computation
instructions (a.comp) is up to 6% for b = 10 bits. With width reduction extension
when accessing the data-memory (a.mem), the energy can be reduced by up to
23% for b = 10 bits. For higher output quality, e.g. width equal to 16 bits, the energy
reduction decreases: equal to 5% with a.comp) and equal to 16% with both a.comp
and a.mem. We can deduce that for the Sobel filter application, the energy reduc-
tion with only a.comp can be improved by up to 11% with both a.comp and a.mem,
for an acceptable output quality, i.e. SSIM ≥ 0.99 (for width equal to 16 bits and
above).
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Figure 4.21: Sobel filter output quality vs energy trade-off

Forwardk2j application

Figure 4.22 indicates that, for a high output quality, i.e. relative rate ≤ 0.1% the en-
ergy reduction when executing the forwardk2j application with only reduced width
computation instructions (a.comp) is up to 12% and up to 15% with both a.comp and
a.mem. The energy reduction with only a.comp is higher in forwardk2j than in Sobel
filter and jmeint because the fraction of reduced width computation instructions is
higher in forwardk2j application than in these two applications. The integration of
reduced width memory access instructions (a.mem) improves the energy reduction
obtained with a.comp by only up to 3% for an acceptable output quality, i.e. relative
rate ≤ 0.1% (for width equal to 16 bits and above).

In summary, our experiments indicate that the extension of the width reduction
to the memory improves the energy reduction on the evaluated applications. When
the evaluation is performed with only reduced width for arithmetic units, for an
acceptable output quality, i.e. width equal to 16 bits, the energy is reduced at
most by up to 2% for jmeint, up to 5% for Sobel filter, up to 12% for forwardk2j.
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Figure 4.22: Forwardk2j output quality vs energy trade-off

When the evaluation is performed with reduced width in both arithmetic and data-
memory units, the energy can be reduced at most by up to 14% for jmeint, up to
16% for Sobel filter,and up to 15% for forwardk2j. For the evaluated applications,
the average energy reduction with only reduced computation units is improved, by
up 11.5% for the memory intensive applications, i.e. jmeint and Sobel filter, and
up to 3% forwardk2j which is computation intensive. We can conclude that for
a high quality requirements, the energy improvements are significant in memory
intensive applications, such as image processing ones which are widely used in
approximate computing.

4.5 Chapter summary

In this chapter we have evaluated the impact of the reduced width units on appli-
cations output quality and energy consumption when executed in a RISC-V pro-
cessor. We have estimated the global energy reductions on the three applications:
jmeint, Sobel filter and forwardk2j with both reduced width computations and mem-
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ory units.
At first the evaluation is performed with only approximate units including the

approximated adders and multipliers, which are the typical approximate units pro-
posed in the literature. The results indicate that, even after low-power optimizations
on the applications source code, the global energy reduction at the level of the en-
tire systems (processor core + memory) are rather low. This is because: (1) the
applications include many other instructions (e.g. memory accesses, branch in-
structions, full width arithmetic instructions for computing addresses) and not only
the additions and multiplications and (2) although the energy reduction at the op-
erator level is high, when integrating the operators in a processor, the gains of
reducing the width diminish because this reduction is not applied on some parts of
the processor, e.g. instruction fetch/decode.

More precisely, we note that when only width of computations is reduced, for
an acceptable output quality i.e. error ≤ 0.1%, the energy can be decreased up
to 2% for jmeint, up to 5% for Sobel filter, up to 12% for forwardk2j. When the
reduced width is also applied in memory access the energy can be reduced by
up to 14% for jmeint, up to 16% for Sobel filter, up to 15% for forwardk2j. Note
that the impact of the reduced width data-memory units is highlighted in memory
intensive applications such as image processing ones widely used in approximate
computing. We can conclude that if one would like to benefit from scaling the width
on the memory intensive applications, the design of reduced width memory units
must be included.
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CHAPTER 5

GLOBAL ENERGY MODEL WITH

SOFTWARE AND ARCHITECTURE

PARAMETERS

In the previous chapter we have evaluated the impact of reduced width units on
three applications. In this chapter we go one step forward and we attempt to
generalize a model for the RISC-V processor extended with reduced width units
for computation and data-memory access. The model combines both software
and hardware architecture parameters to estimate the global energy consumption
of any given application. Both software and hardware designers can make use of
the proposed model to have an early insight into the impact of optimizations on the
global energy reduction of a given application.

Software designers can use our model to have an idea on the parts of the
source code (e.g. computations or data-memory accesses) in which optimizations
may lead to important energy reduction. Moreover the model can be used to have
an idea into the global energy reduction reachable knowing the fraction of approx-
imate instructions and the required width for a target output quality.

Hardware designers can use our model to find, for a given hardware archi-
tecture, the types of units that have potential in terms of energy reduction. For
example, one can decide to optimize a complex computation unit and/or the data-
memory unit.

The energy reduction in approximate computing depends both on the degree
of approximations and on the fraction of approximable operations on a given appli-
cation, similarly to Amdahl’s law in parallel computing. In parallel computing [13],
Amdahl indicates that for a given algorithm to be executed on a multi-core platform,
the number of cores is not sufficient to reduce the computation time. The fraction
of parallelizable operations is also involved in the speedup.
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Our model can be applied on various hardware architectures. In this thesis, it is
evaluated on applications executed in a RISC-V processor extended with reduced
width units for arithmetic and logic instructions, multiplications, and data-memory
accesses.

This chapter is organized as follows. Section 5.1 describes the proposed global
energy model. Section 5.2 presents a case study that indicates how a software
designer can use the global energy model on a given application. Section 5.3
presents a case study that shows how a hardware designer can use the model
to evaluate the impact of the circuit-level optimizations on an application energy
reduction. Section 5.4 summarizes the chapter.

5.1 Global energy model

In this section, we first define the notations included in the global energy model,
then we describe the global energy reduction formula.

5.1.1 Notations

Table 5.1 defines the notations used in our global energy model. Note that in our
work, approximate refers to reduced width.
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5.1. Global energy model

SW parameters Description
NAm Number of approx. data-memory instructions
NAc Number of approx. computation instructions

NA = NAm +NAc Number of approx. instructions
NĀ Number of non-approx. instructions

N = NA +NĀ Total number of instructions
fAm = NAm

NA
Fraction of approx. data-memory instructions from NA

fAc = NAc

NA
Fraction of approx. computation instructions from NA

fA = fAc + fAm Fraction of approx. instructions
fĀ = 1− fA Fraction of non-approx. instructions

Archi. parameters Description
om Energy overhead for data-memory instructions
oc Energy overhead for computation instructions
r Ratio of non-scalable energy
eAm Average energy of an approx. data-memory instruction
eAc Average energy of an approx. computation instruction
eĀm

Average energy of a non-approx. data-memory instruction
eĀm

Average energy of a non-approx. computation instruction
eĀ Average energy of a non-approx. instruction

Global parameters Description
B Maximum width
b Active width

The width is configurable: 1 ≤ b ≤ B

EA Energy consumed by all approx.
instructions of an application

EĀ Energy consumed by all non-approx.
instructions of an application

ETĀ
Energy total of a non-approx. application

ET Energy total of an approx. application
α Energy reduction of an application

Table 5.1: Software and hardware architecture parameters
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5.1.2 Energy reduction

Let us consider a program as a set of reduced width and full width instructions. The
reduced width instructions can be grouped into two categories. The first category
is the reduced width computations instructions (i.e. a.comp) including the reduced
width arithmetic and logic instructions (e.g. a.add, a.sub, a.lgc) and the reduced
width multiplication (i.e. a.mul). The second category is the reduced width data-
memory accesses (i.e. a.mem) including the reduced width load/store instructions
(i.e. a.ld, a.st).

Let ET (b) be the total energy consumed by an application executed with b bits
(with 1 ≤ b ≤ B). We assume that the total energy consumed by an application
is the sum of the energy consumed by the reduced width instructions (i.e. EA)
and the energy consumed by the full width instructions (i.e. EĀ), as indicated in
Equation 5.1.

ET (b) = EA(b) + EĀ (5.1)

The energy consumed by all the reduced width instructions executed with b

bits, i.e. EA(b) is equal to the sum of the energy consumed by the reduced width
computations instructions and the energy consumed by the reduced width data-
memory accesses, as indicated in Equation 5.2.

EA(b) = NAm × eAm(b) +NAc × eAc(b) (5.2)

In Equation 5.2, we use the mean values of energy consumption for each cat-
egory of instructions: eAc is the mean value of the energy consumption of a typical
reduced width computation instruction (a.comp) and eAm is the mean value of the
energy consumption of a typical reduced width data-memory access (a.mem). Fig-
ure 3.3 indicates low variations of the energy consumed by instructions of the same
category. For the reduced width computation instructions, the energy consumed
by each instruction class is almost the same for widths in the range 1 to 12 bits;
the relative standard deviations of the energy values are less than 2% for widths
in the range 13 to 18 bits and between 2% and 5% in the range 18 to 32 bits. For
the reduced width data-memory instructions, the relative standard deviation of the
energy values is less than 1%. We assume that for a given instruction category
(a.comp or a.mem) the small variations between the energy consumption of the in-
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struction classes allow us to use the mean values of the energy to estimate the
global energy consumption of an application.

For the full width instructions, we also use the mean energy value to deduce
the total energy consumed by all the full width instructions of a given program, as
presented in Equation 5.3.

EĀ = NĀ × eĀ = (N −NA)× eĀ (5.3)

When an application is executed with reduced width (i.e., b < B), the energy
consumption with full width execution (i.e. ETĀ

) is reduced. The energy reduction
α is estimated with Equation 5.4:

α(b) =
(

1− ET (b)
ETĀ

)
(5.4)

ET (b)
ETĀ

= NAm × eAm(b) +NAc × eAc(b) + (N −NA)× eĀ

NAm × eĀm
+NAc × eĀc

+ (N −NA)× eĀ

(5.5)

Equation 5.5 expressed with fractions of reduced width instructions gives:

ET (b)
ETĀ

=
fAm × eAm(b) + fAc × eAc(b) +

(
1

fA
− 1

)
× eĀ

fAm × eĀm
+ fAc × eĀc

+
(

1
fA
− 1

)
× eĀ

(5.6)

5.2 Case study 1: impact of software parameters

The figures presented in this section provide to a software designer an insight
into the energy reduction, knowing the fraction of reduced width instructions. In
an application, for a given energy reduction, the figures determine the adequate
widths for computations and data-memory storage. Inversely, knowing the required
width for a given output quality, one can get an estimation of the energy reduction
based on the fraction of approximate instructions.

5.2.1 Width estimation for a given energy reduction

Figure 5.1 indicates that for a given application, the software designer can have an
early insight into the width required to execute the application for various energy
reduction values. The energy reduction depends both on the width and the fraction
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of approximate instructions, as presented on Figures 5.1a, 5.1b, 5.1c and 5.1d.
For a given energy reduction value (α), these figures indicate the width range for
which an application can be executed depending on the fraction of reduced width
data-memory instructions. For example, Figure 5.1a indicates that if one requires
an energy reduction equal to 20%, an application can be executed with width in the
range 1 to 20 bits in our extended RISC-V. For example for a given application in-
cluding 80% of approximate instructions from the number total of instructions, with
60% of approximate data-memory instructions from the number of approximate in-
structions (i.e. 60% of a.inst.), if the software designer, targets 20% of energy
reduction, this application can be executed with 15 bits.
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Figure 5.1: widths (b) for a given value of energy reduction

When we apply our model on Sobel filter and forwardk2j applications, we ob-
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5.2. Case study 1: impact of software parameters

tain approximatively the same width for a given energy reduction, as one in Fig-
ures 4.21 and 4.22 obtained by simulations. In fact, in simulations, for 20% of en-
ergy reduction, the Sobel filter (with fA = 0.737, fAm = 0.443) should be executed
with 12 bits and forwardk2j (with fA = 0.818, fAm = 0.117) should be executed with
10 bits. Our model indicates that Sobel filter and forwardk2j can be executed with
12 bits and 9 bits, respectively. We can conclude that our model gives an insight
into the required width for a given energy reduction.

We note that the width range decreases if the required energy reduction in-
creases as visible on Figures 5.1a, 5.1b, 5.1c and 5.1d. On Figure 5.1b if the
required energy reduction is equal to 30%, the width range is 1 to 14 bits with a
fAm of at least 0.2. If the required energy reduction is equal 40%, the width range
is 1 to 8 bits with a fAm of at least 0.5, as indicated on Figure 5.1c. Figure 5.1d
indicates that, if the target energy reduction is equal to 50%, the width range is 1 to
3 bits with a fA of at least 0.85. From the experiments we can conclude that an en-
ergy reduction (α) equal or more than 50% can be never reached in our extended
RISC-V, for practical values of the width, because computing with less than 3 bits
can rarely provide high output quality.

5.2.2 Energy reduction estimation for a given width

Figure 5.2 presents the energy reduction, for various widths, based on various
fractions of reduced width instructions fAc and fAm in [0, 1]. Figure 5.2a indicates
that the energy can be reduced by up to 45% with a width equal to 4 bits. Fig-
ure 5.2b indicates that the energy can be reduced by up to 38% with a width equal
to 8 bits. Figure 5.2c indicates that the energy can be reduced by up to 32% with a
width equal to 12 bits. Figure 5.2d indicates that the energy can be reduced by up
to 26% with a width equal to 16 bits.

We note that the energy reduction decreases if the fraction of reduced width
instruction decreases. For example Figure 5.2d indicates that with fA = 0.8 and
fAm = 0.4, the energy can be reduced by up to 16% for b = 16 bits. For the same
number of bits (i.e. b = 16 bits), the energy reduction decreases if the fraction of
approximate instructions is reduced, for example with fA = 0.4 and fAm = 0.2, the
energy can only be reduced by up to 4%, as indicated in Figure 5.2d.

When we apply our model on Sobel filter and forwardk2j applications, we ob-
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Figure 5.2: Energy reduction (α) for a given width

tain approximatively the same energy reduction for a given width, as one in Fig-
ures 4.21 and 4.22 obtained by simulations. In fact, with simulations, for b = 16 bits
the energy reduction of Sobel filter is equal to 16% (with fA = 0.737, fAm = 0.443,
as indicated in Figure 4.15) and the energy reduction of forwardk2j is equal to 15%
(with fA = 0.818, fAm = 0.117, as indicated in Figure 4.15. Our model indicates that
when Sobel filter and forwardk2j are executed with 16 bits, the energy reductions
are equal to 16% and 14%, respectively. We can conclude that our model can be
used to get an insight into the energy reduction obtained with a given width. For
energy efficiency, the aim is to be on the right upper part of Figure 5.2.
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5.3 Case study 2: impact of hardware units

The reduced width units for computations and data-memory accesses embedded
in our RISC-V processor, could be optimized by hardware designers to improve
the energy reduction. Our proposed global energy model allows to estimate the
energy reduction for a given application when hardware units are optimized. For
example, when the energy consumed by a unit, e.g. a multiplier, is reduced in
half by some optimizations, the proposed energy model allows to estimate the
global energy reduction on a complete application execution. We estimate at var-
ious widths the global energy reduction when one unit is optimized at a time. The
global energy model in Equation 5.6 is instantiated with the energy values per in-
struction presented in Chapter 3 and the fraction of reduced width instructions (for
both computations and data-memory accesses) of the Sobel filter and forwardk2j
applications, deduced from the instructions breakdown study in Chapter 4.

Sobel filter application

The aim is to evaluate the potential in terms of energy reduction of the optimized
hardware units for several widths on the Sobel filter application with the fraction
of reduced width instructions deduced Figure 4.15. Figure 5.3 presents the global
energy reduction of the Sobel filter application for a given percentage of energy
reduction obtained in the optimization of one reduced width unit for several widths.
For example, Figures 5.3a, 5.3b, 5.3c indicate that for b = 8 bits, when the energy
of an approximate instruction is reduced by up to 60%, the global energy reduction
at application level is equal to 30% for computation units (both a.al and a.mul) and
equal to 40% for data-memory units (a.mem). For b = 16 bits the energy reduction
decreases: 23% with a.al, 24% with a.mul and 35% with a.mem.

Forwardk2j application

The same evaluation is performed on the forwardk2j application with the fraction
of the reduced width instructions deduced from Figure 4.16. Figure 5.4 presents
the global energy reduction of the forwardk2j application for a given percentage of
the energy reduction obtained when optimizing one reduced width unit at various
widths. For example, Figures 5.4a, 5.4b, 5.4c indicate that for b = 8 bits, when the
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Figure 5.3: Sobel filter energy evaluation with optimized units

energy of an approximate instruction is reduced by up to 60%, the global energy
reduction at application level is equal to 32% for computation units (both a.al and
a.mul) and equal to 25% for data-memory units (a.mem). For b = 16 bits the energy
reduction decreases: 26% with a.al, 28% with a.mul and 20% with a.mem.

Summary

These results indicate the units in which the optimizations may lead to high energy
reduction. For our extended RISC-V processor, we can see on Figures 5.3 and 5.4
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Figure 5.4: Forwardk2j energy evaluation with optimized units

that the data-memory units have more potential in terms of energy reduction than
the computation units. As example, let us consider the optimization of the units
(for both computations and data-memory accesses) such that the energy reduction
of the stand-alone optimized units equal to αa.unit = 60%, unit in {al, mul, mem}.
When the forwardk2j application, including only 11% of reduced width data-memory
instructions, is executed with the optimized data-memory units (with αa.mem = 60%),
its global energy reduction is equal to 25% at 8 bits, as presented on Figure 5.4c.
To obtain these 25% of global energy reduction with the reduced width computation
units, forwardk2j needs to be executed with more than 50% of a.al or a.mul, i.e. 5×
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of a.mem. For example in Figures 5.4a and 5.4b with only 32% of energy reduction
forwark2j have to be executed with 70% of a.al or a.mul, i.e. fc = 0.7).

5.4 Chapter summary

This chapter has presented a global energy model with software and hardware
architecture parameters. The proposed model allows designers to have an early
insight into the energy reduction reachable when optimizations are performed on
software and/or hardware. Knowing the percentages of reduced width operations
for both computations and data-memory accesses, one can have an early estima-
tion of the width required to execute an application for an energy reduction target.
Or, inversely, one can estimate the energy reduction of a given application for a
required number of bits to reach a given output quality. furthermore one can es-
timate the global energy reduction of a given application when a unit is optimized
or in which units of the architecture further optimizations can benefit given appli-
cations.

We evaluate our model on two different applications: the Sobel filter applica-
tion that is memory intensive and the forwardk2j application that is computation
intensive. These two applications are executed in an extended RISC-V including
reduced width units for both computations and data-memory accesses.

From this model we reach the same conclusion as in Chapter 4, namely that
the reduced width units for data-memory accesses have more potential in terms
of energy reduction than the reduced width units for computations. The energy
reduction of a reduced width data-memory instruction is 1.2× to 1.8× higher than
one of a reduced width computation instruction, as visible on Figure 3.3.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

IoT devices have to comply with strong resource constraints, such as power con-
sumption (due to battery limits), silicon area (to reduce fabrication costs) and tim-
ing (to ensure service quality). Approximate computing is a field that studies the
trade-offs between power, area, and/or performance and the quality of an appli-
cation result. One method is to reduce the width of the operands in operators, in
applications in which maximal precision is not necessary to ensure a given qual-
ity in order to decrease energy consumption. The main goal of this thesis is to
determine whether IoT applications would benefit from a small general purpose
processor core equipped with reduced width units.

To this end, we extend a RISC-V processor core [10] with functional units
where the width is reduced and configurable at runtime. This work was pub-
lished in [81]. Our evaluation is performed on a selection of applications from
the Axbench benchmark suite [93]: jmeint, Sobel filter and forwardk2j. For these
benchmarks we first had to deal with the impact of the conversion from the floating-
point representation into the fixed-point one, as most of the benchmarks proposed
in the state of the art are implemented in floating-point. We evaluate the qual-
ity degradation due to this conversion for the selected benchmarks using several
errors metrics. Our experiments suggest that these applications are suitable for
fixed-point computations, the error compared to the initial floating-point solution is
acceptable (less than 0.1%) for configured widths from 16 bits and above.

Second, we investigated both computations and data-memory accesses with
various reduced widths. For the investigated applications, the energy consumption
decreases when reducing the width from 32 (i.e. full width) to 16 bits. The max-
imum average of the energy reduction is equal to 6% when considering only the
computation units, and equal to 14% when reducing also the width for data-memory
accesses, for an error ≤ 0.1%. This work was published in [58, 59]. Using reduced
width units only for computations lead to a small power gain, even though the lit-

103



erature reports energy reductions of 1.5x to 2x at arithmetic operator level. We
conclude that it is worth extending the reduced width principle to the data-memory
to decrease the global energy consumption. As we target a general purpose em-
bedded processor, it is worth having a width that can be configured at runtime
because different applications demand different widths to deliver a given quality of
results.

Third we have proposed a global energy model for both hardware and software
designers to have an early insight into the application-level energy consumption.
Our model includes both software parameters and hardware architecture ones.
The software parameters are the percentages of reduced width operations for both
computations and data-memory accesses and the width required for some target
output quality. The hardware parameters are the widths of the units and the en-
ergy reduction obtained for each type of stand-alone approximate unit. This model
bares a similarity with Amdahl’s law. We observe that in approximate computing,
for complete applications (i.e. not only small kernels), our model as well as our ex-
perimental results show that the energy consumption depends on both the degree
of approximation (i.e. the configured width in the units) and on the proportion of
approximate instructions in a complete program. This work was part of our publica-
tion in [59]. This model can be used for other approximate computing techniques,
beyond reduced width.

This thesis opens up several directions of research.

First, the practical realization of reduced or variable width memory unit is still
to be done. The details of memory buses, address decoders, and physical mem-
ory organization should be explored to find what is an efficient implementation of
variable width memory unit.

Another aspect is programming and compiler support required for automatic
code generation for a processor with variable width. Domain-specific languages
are increasingly studied in the literature, however tuning the width is not common
practice.

Moreover, applications include elementary mathematical functions that need
to be implemented. The functions can be approximated by a polynomial approx-
imation [23], for instance. One limitation of the existing methods for polynomial
approximation is that the energy consumption is not taken into account when de-
ciding the degree or the intervals for the polynomials.
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Finally, when we have a processor in which the width can be reduced/set at
runtime, control techniques can be employed to exploit this feature and further
minimize the energy consumption. Variations due to, e.g. changing energy budget,
input data dependencies, can represent new optimization potential. Note that the
dynamic width control is often constrained by the additional costs associated with
the techniques used, and hence achieving true benefits is not straightforward.
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RÉSUMÉ

Titre: Calcul approximatif pour l’efficacité énergétique

des applications de l’Internet des objets

Introduction

L’internet des objets (IoT, pour Internet of Things en anglais) peut se voir comme un
ensemble de petits ordinateurs, de capteurs, d’actionneurs et d’autres dispositifs
embarqués qui interagissent entre eux par des échanges de données sur Internet
ou sur des réseaux locaux connectés à internet (voir p.~ex. [43]). Les disposi-
tifs de l’IoT sont implantés de plus en plus dans de nombreuses applications de
divers domaines comme la domotique, les systèmes de notification d’urgence, les
systèmes de transport, les applications de jeux, les systèmes bio-médicaux, etc.
Les calculs effectués dans ces applications sont soumis à de fortes contraintes en
consommation d’énergie, surface de silicium et temps de calcul.

Le calcul approximatif est l’une des nombreuses solutions proposées pour ré-
duire la consommation d’énergie et la surface de silicium dans l’implémentation
des services de l’IoT. Le calcul approximatif est une approche qui consiste à ré-
duire les coûts de calcul, comme p.~ex. la consommation d’énergie, la surface
de silicium ou le temps de calcul en réduisant la précision ou la qualité des cal-
culs [92, 12, 53], [62], [31], [71], [83], [75]. Le calcul approximatif est appliqué dans
plusieurs domaines où les applications sont naturellement tolérantes aux erreurs,
c.-à-d. dans lesquelles l’utilisateur n’a pas besoin d’une grande précision pour
obtenir une qualité de sortie acceptable. Des exemples d’applications tolérantes
aux erreurs dans le calcul approximatif sont: les applications de reconnaissance,
de recherche, multimédia, d’analyse de données, etc.

Dans le calcul approximatif, plusieurs stratégies ont été proposées à différents
niveaux: de la couche applicative au niveau circuit.

Par exemple au niveau applicatif, des extensions de langages de program-
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mation ont été proposées [74], [73], [68], des compilateurs approximatifs ont été
implémentés pour interpréter les annotations ajoutées sur les parties identifiées
comme approximables par l’utilisateur (ici le programmeur) dans un code source [81],
[24] ou pour introduire des approximations dans le code source approximé [67,
14]. D’autres solutions ont été proposées afin d’ajuster des paramètres de cal-
cul (p.~ex. relatifs à la consommation d’énergie, et aux erreurs de calcul) lors de
l’exécution [39], [15], [36].

Au niveau circuit, des unités approximatives ont été conçues pour des calculs
et des accès mémoire à basse consommation d’énergie [96], [47], [40], [61].

La plupart des solutions proposées en calcul approximatif au niveau matériel
ne sont pas évaluées dans un cadre applicatif complet qui permettrait d’étudier
l’impact global des techniques d’approximation proposées sur la consommation
d’énergie et la qualité des résultats. L’évaluation des solutions matérielles est
souvent effectuée de manière locale et isolée (p.~ex. sur les unités approxima-
tives seules), ce qui ne permet pas d’évaluer leur impact global si elles étaient
appliquées dans des applications complètes. Différentes évaluations de solutions
matérielles au niveau applicatif sont proposées dans l’état de l’art. Cependant,
elles se limitent aux architectures à virgule flottante qui sont trop complexes pour
la plupart des systèmes embarqués de l’IoT (les microcontrôleurs et petits pro-
cesseurs employés dans ce domaine ont très rarement des unités flottantes, mais
seulement des unités entières ou virgule fixe).

Dans cette thèse, nous évaluons d’abord l’impact de la conversion depuis la
représentation en virgule flottante vers celle en virgule fixe sur différentes appli-
cations de test (c.-à-d. une sélection de benchmarks). En effet, la plupart des
applications proposées dans l’état de l’art utilisent des données en virgule flot-
tante mais notre étude cible des architectures entières. La conversion en virgule
fixe induit des erreurs dues aux arrondis et la modification de la dynamique de
certaines données. À l’aide de plusieurs métriques d’erreur, nous évaluons cer-
taines erreurs dues à la conversion de virgule flottante vers la virgule fixe. Ensuite,
nous étendons le processeur RISC-V avec des unités entières approximatives afin
d’effectuer une évaluation globale de la réduction d’énergie et de la qualité de
sortie sur les applications de test sélectionnées.

La plupart des modèles énergétiques proposés dans la littérature pour l’évaluation
de la consommation d’énergie des applications n’incluent pas à la fois des paramètres
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logiciels et des paramètres d’architecture matériels; seuls des paramètres archi-
tecturaux sont proposés dans ces modèles. Ces modèles ne permettent pas aux
concepteurs de logiciels ou de matériels d’avoir une estimation, sans simulations,
de la réduction globale d’énergie induite par des approximations réalisées sur une
application donnée. Nous proposons un modèle énergétique global incluant à la
fois des paramètres logiciels et architecturaux pour estimer l’impact, sur la réduc-
tion d’énergie des applications, des optimisations réalisées par des concepteurs
logiciels sur le code source de l’application et/ou par des concepteurs matériels
sur le circuit.

Processeur RISC-V avec des unités à taille réduite

Plusieurs opérateurs entiers (ou en virgule fixe) approximatifs ont été proposés
dans la littérature pour réduire la consommation des ressources. Ces opérateurs
ne sont pas évalués une fois intégrés dans un processeur complet, avec sa mé-
moire, exécutant des applications. Pourtant, l’évaluation de ces opérateurs sur des
applications nécessiterait une exécution sur un processeur complet pour avoir une
vraie idée des gains réalisables globalement. Ainsi, nous étendons l’architecture
du processeur RISC-V avec une unité de calcul et une unité de chargement/stock-
age configurable en nombre de bits, dénommées respectivement a.EXE et a.LSU
(Cf. Figure 3.1). Une instruction spécifique a été ajoutée au jeu d’instructions pour
configurer la taille active des unités a.EXE et a.LSU par l’utilisateur. Pour ces unités
à taille réduite, les opérations (de calcul ou de chargement/écriture en mémoire de
données) sont effectuées uniquement sur les b bits les plus significatifs (MSBs);
b ∈ {1, ..., B} où B est la largeur maximale des données (la taille du chemin de
données totale).

Un modèle d’énergie est proposé pour chaque catégorie d’instructions clas-
siques et approximatives. Les valeurs d’énergie des instructions classiques du jeu
d’instructions RISC-V, normalisées par rapport au coût d’une multiplication, sont
présentées dans le tableau 3.3. Dans notre circuit, la mémoire est implantée dans
une technologie à basse tension, ainsi les instructions ld et st consomment moins
d’énergie qu’une instruction de multiplication pour notre processeur.

Pour la multiplication et les instructions arithmétiques et logiques à taille ré-
duite, les valeurs d’énergie sont estimées en considérant que la consommation
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d’énergie de la partie a.EXE varie avec le nombre de bits comme spécifié dans la
méthodologie [61]. D’après notre étude sur la mémoire de données, nous esti-
mons que 40% de l’énergie est indépendante de la taille et que 60% varie linéaire-
ment avec la taille. Notons que ce pourcentage dépend de la conception de la
mémoire et notre méthode reste valide pour une autre implémentation de la mé-
moire. L’implantation des opérateurs à taille réduite s’accompagne d’un surcoût.
Ce surcoût pris en compte dans notre modèle, est causé par les éléments supplé-
mentaires nécessaires pour partitionner les opérateurs en plusieurs domaines de
tension de seuil. Ainsi une opération avec la taille maximale activée (b = B bits)
consomme un peu plus que la version à taille fixe de l’unité originale.

La figure 3.2 présente les valeurs d’énergie des classes d’instructions des
unités à taille réduite et des unités à taille fixe (originales). Nous notons que les
instructions de calcul à taille réduite, c.-à-d. a.add, a.sub, a.lgc ont à peu près
la même consommation d’énergie lorsque l’exécution est effectuée dans la plage
de 1 à 8 bits. À partir de 9 bits, la consommation d’énergie de ces instructions
est différente de l’une à l’autre. Le surcoût d’énergie est très important à partir
de 26 bits, c.-à-d. que la consommation d’énergie des unités à taille réduite est
supérieure à la consommation d’énergie de l’instruction classique. On peut dé-
duire que pour notre architecture du RISC-V, le calcul avec plus de 26 bits est plus
coûteux en terme de consommation d’énergie que le calcul sur des unités à taille
fixe 32 bits originales.

Un compilateur et des outils d’aide à la simulation sont proposés pour réduire
les efforts des programmeurs. Le compilateur est implémenté pour gérer les prag-
mas ajoutées dans le code source par le programmeur et le simulateur spike [11]
est étendu pour compter le nombre d’instructions de chaque catégorie et d’évaluer
la consommation d’énergie globale d’une application grâce à notre modèle énergé-
tique.

Évaluation des unités à taille réduite sur des applica-

tions

Dans notre étude, nous évaluons d’abord l’impact de la conversion de la virgule
flottante vers la virgule fixe sur la qualité des résultats des applications avant
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d’estimer leur consommation d’énergie. Ensuite, nous évaluons le potentiel en
terme de réduction d’énergie des opérateurs les plus étudiés dans l’état de l’art,
notamment les additionneurs et les multiplieurs où la taille réduite est configurable
lors de l’exécution. Enfin, nous étudions des compromis entre la précision de cal-
cul et la réduction d’énergie sur des applications, exécutées avec des unités à
taille réduite (de calcul et d’accés mémoire). Pour l’évaluation de la consomma-
tion d’énergie, nous comptons le nombre d’instructions exécutées et nous utilisons
notre modèle d’énergie présenté au chapitre 3, enfin nous estimons la consomma-
tion d’énergie globale de trois applications de Axbench [93]: jmeint, filtre de Sobel
et forwardk2j.

Conversion de virgule flottante en virgule fixe

Les applications de référence sont converties en virgule fixe, avec les fonctions de
la bibliothèque libfi [4]. Les modes d’arrondi de libfi sont les mêmes que ceux
présentés dans la sous-section 2.1.1.

Jmeint est un algorithme qui détermine si deux triangles 3D ont une intersec-
tion ou pas. Les données d’entrée sont les coordonnées (une paire de valeurs par
sommet) des deux triangles et la sortie est une valeur booléenne qui indique s’il y
a intersection entre les deux triangles (1 codant vrai) ou pas (0 codant faux). La
métrique d’erreur pour jmeint est le taux d’erreur sur l’ensemble des sorties. Pour
évaluer la qualité en sortie, nous calculons le taux d’erreur, par mesure de la dis-
tance de Hamming en comparant un par un les éléments des vecteurs booléens
pour 1 000 000 de paires de triangles données dans la suite Axbench, retournés
par les applications en virgule flottante et en virgule fixe (en supposant ici la taille
maximale activée). La figure 4.2 indique qu’à partir de 14 bits dans la partie frac-
tionnaire, le taux d’erreur est ≤ 0.03%, c.-à-d. que pour presque tous les couples
de triangles, la sortie calculée avec le programme en virgule flottante et celle re-
tournée par celui en virgule fixe sont identiques. Avec plus de 5 bits fractionnaires,
on note que le round to the nearest representable value (NearOdd) est le meilleur
mode d’arrondi pour jmeint en terme de précision.

Le filtre de Sobel est utilisé dans des applications de traitement d’images et
de vision par ordinateur, en particulier pour des algorithmes de détection de con-
tour. La détection de contour est une technique de traitement d’image utilisée pour
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délimiter les différentes régions d’une image. La donnée d’entrée est une image
RGB et la sortie est une image en niveau de gris (format PNG) dans laquelle les
contours des régions sont mis en évidence. Le gradient de chaque pixel est calculé
par une convolution avec deux filtres: horizontal et vertical, qui sont des matrices
de taille 3 × 3. Les métriques pour l’évaluation des erreurs pour le filtre de Sobel
sont l’erreur moyenne quadratique (RMSE), le rapport signal sur bruit (PSNR) et
l’indice de mesure de similarité structurelle (SSIM) entre des images. Chacune
des métriques est calculée avec les paramètres de l’image retournée par le pro-
gramme à virgule flottante et l’image retournée avec le programme en virgule fixe,
pour plusieurs modes d’arrondi. Les expériences sont effectuées sur 100 images
choisies de manière aléatoire. La figure 4.3 présente, pour chaque taille de la par-
tie fractionnaire, la valeur moyenne de la RMSE calculée avec 100 images et son
écart type. Pour cette métrique, plus la valeur est faible, plus la qualité de l’image
retournée par le programme en virgule fixe est bonne. Les résultats indiquent qu’à
partir de 10 bits dans la partie fractionnaire, nous avons une image de sortie ac-
ceptable, c.-à-d. le RMSE est ≤ 0.01. La figure 4.4 présente, pour chaque taille
de la partie fractionnaire, la valeur moyenne du PSNR calculée sur 100 images et
son écart type. Pour le PSNR, plus il est élevé, plus la qualité de l’image retournée
par le programme en virgule fixe est bonne. Les résultats indiquent qu’à partir de
10 bits dans la partie fractionnaire, nous avons un PSNR supérieur à 50dB (seuil
classique dans le domaine). Le RMSE et le PSNR estiment les erreurs absolues
entre les pixels des deux images comparées. Cependant, ces deux métriques sont
moins corrélées à la perception humaine de la qualité de l’image que le SSIM. Le
SSIM évalue la similarité entre l’image de référence, c.-à-d. l’image calculée avec
le programme en virgule flottante et l’image renvoyée par le programme en virgule
fixe. Les valeurs du SSIM sont dans l’intervalle [0, 1]. Si le SSIM est égal à 1,
les deux images comparées sont identiques. La figure 4.5 montre qu’à partir de
8 bits dans la partie fractionnaire, les deux images sont similaires, avec un SSIM
≥ 0.999.

Le forwardk2j prend en entrée les angles d’un bras d’un robot à 2 articulations
et calcule la position de son actionneur. Pour évaluer les erreurs induites par
le calcul en virgule fixe, nous utilisons la métrique d’erreur relative, calculée sur
10 000 couples de coordonnées donnés dans la suite Axbench. Pour chaque
couple de coordonnées, la valeur maximale des erreurs des deux coordonnées

112



est retournée, et la valeur moyenne et son écart type sont calculés sur les 10
000 valeurs maximales. La figure 4.6 indique qu’à partir de 14 bits dans la partie
fractionnaire, l’erreur relative est ≤ 0.01%. Nous notons que pour un nombre de
bits fractionnaires dans l’intervalle [1, 10] varie selon le mode d’arrondi. À partir de
7 bits et plus, le round to the nearest representable value (NearOdd) est le meilleur
mode d’arrondi pour le forwardk2j en terme de précision.

Évaluation des additions et des multiplications à taille réduite

Nos premières expériences sur l’évaluation de la consommation d’énergie sont
effectuées avec seulement des additionneurs et des multiplicateurs approximatifs,
à taille variable, parmi les plus étudiés de l’état de l’art. L’objectif est d’estimer
la réduction globale d’énergie apportée par ces unités approximatives qui sont
seulement évaluées de façon isolée dans la littérature. L’évaluation globale est
effectuée sur des applications exécutées sur le processeur RISC-V étendu avec
les opérateurs à taille réduite a.add et a.mul. Nous avons effectué les expériences
sur les trois applications: jmeint, filtre de Sobel et forwardk2j. La première étape
est l’étude de la décomposition en différentes catégories d’instructions exécutées.
La deuxième étape consiste à évaluer le potentiel en terme d’économie d’énergie
de ces applications exécutées avec a.add et a.mul.

L’algorithme jmeint a plusieurs points de sortie. Le nombre d’instructions exé-
cutées peut donc varier en fonction des valeurs en entrée et de la taille courante
configurée pour les calculs comme indiqué sur la Figure 4.7. Les expériences ont
été réalisées avec 10 000 couples de triangles. Pour une taille active des unités
de calcul dans {1, 2, ...8} bits, le nombre d’instructions exécutées varie d’une en-
trée à l’autre. Par conséquent, l’étude des catégories d’instructions exécutées est
effectuée en calculant la valeur moyenne des instructions et l’écart type comme
indiqué sur la Figure 4.8. L’application jmeint comporte 11.82% d’instructions ap-
proximatives a.add et a.mul.

Pour plusieurs couples de triangles parmi les 10 000 utilisés, les points de sor-
tie sont (1) ou (2) sur la Figure 2.3. Ainsi, la consommation d’énergie peut être
réduite jusqu’à 44%. La forte réduction d’énergie ne dépend pas seulement des
calculs avec une taille réduite, mais aussi d’un nombre plus faible d’instructions
pour effectuer les tests de rejet précoce des points de sortie (1) ou (2) de la Fig-
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ure 2.3.

Pour le filtre de Sobel, le code source proposé dans la suite Axbench est en
virgule flottante et n’est pas optimisé pour l’exécution sur un processeur embarqué
avec des unités entières ou virgule fixe. Après conversion du code source flottant
en virgule fixe, nous avons appliqué plusieurs optimisations usuelles pour réduire
la consommation d’énergie. Ces optimisations sont:

• V1: le stockage matriciel (2D) des pixels est remplacé par un stockage vec-
toriel (1D) pour réduire le coût de calcul des adresses;

• V2: V1 + les lignes redondantes dans le code initial sont supprimées pour
éviter de calculer plusieurs fois la même valeur car les 3 composantes RGB
d’un pixel ont la même valeur en niveau de gris;

• V3: V2 + les boucles pour les calculs de convolution sont déroulées pour ré-
duire le coût des instructions introduites par le calcul des indices de boucles;

• V4: V3 + éviter l’application du filtre sur des valeurs systématiquement nulles.
Pour appliquer simplement les filtres sur les pixels qui sont au bord de l’image,
dans la version originale du code, des zéros artificiels sont ajoutés juste au-
tour de la matrice originale de l’image (padding). Dans cette optimisation,
nous avons réécrit les boucles pour enlever ces calculs avec des zéros.

La figure 4.9 présente l’impact des optimisations en terme de nombre d’instructions
exécutées. Le pourcentage d’instructions à taille réduite (c.-à-d. a.add et a.mul)
est égal à 6.8% dans la version originale du programme et à 17% dans le pro-
gramme le plus optimisé V4. Malgré les optimisations, la plupart des instructions
exécutées restent sur la taille originale (83% dans la version la plus optimisée).
Ces instructions correspondent à des calculs exacts (non approchables) destinés
p.~ex. aux calculs d’adresses, aux accès à la mémoire de données et aux instruc-
tions de branchement. Le pourcentage élevé des instructions de chargement de
la mémoire est dû au fait que les pixels de l’image sont stockés dans la mémoire
de données et que pour calculer le gradient d’un pixel, des matrices 3 × 3 des
deux filtres et celle de la fenêtre autour du pixel courant, sont aussi chargés de la
mémoire de données.

La figure 4.12 présente le résultat de l’évaluation de la consommation d’énergie
de l’application du filtre Sobel avec des unités approximatives pour les instructions
a.add et a.mul. Les résultats indiquent que l’énergie peut être réduite seulement
jusqu’à 7% pour l’application complète (alors que le gain pour les mêmes unités
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isolées est beaucoup plus important).

La figure 4.10 présente les catégories d’instructions exécutées dans l’application
test forwardk2j. Celle-ci comprend plus d’instructions a.add et a.mul, ici 46%, que
les applications filtre de Sobel et jmeint. Ainsi, sa réduction d’énergie pour une
erreur ≤ 0.1% (12% comme indiqué sur la Figure 4.13) est bien supérieure à la
réduction d’énergie des applications du filtre de Sobel (5%) et jmeint (2%, si on
considère les points de sortie réels) pour un même taux d’erreur.

Ces résultats indiquent que même après optimisation des algorithmes, la ré-
duction d’énergie n’est pas aussi importante que celle obtenue en évaluant seule-
ment les opérateurs isolés comme on peut le voir dans le tableau 4.1. Les petites
réductions d’énergie sont dues au fait que les applications en calcul approximatif
incluent toujours plusieurs catégories d’instructions autres que les a.add et a.mul.
Pour réduire encore plus la consommation d’énergie, nous étendons le principe
réduction de la taille des unités de calcul aux unités logiques et de mémoire de
données.

Évaluation des unités de calcul et des unités mémoire à taille
réduite

Notre première étude portait seulement sur l’ajout d’instructions, et des unités à
taille réduite correspondantes aux additions et aux multiplications, parmi les plus
étudiées dans l’état de l’art. Toutefois, ces unités ne sont pas suffisantes pour as-
surer une forte réduction de la consommation d’énergie. Lors de l’étude des caté-
gories d’instructions exécutées, nous remarquons que chaque application com-
prend de nombreuses instructions logiques et d’accès à la mémoire de données
qui ne sont pas exécutées avec une taille réduite. Certaines instructions d’accès
à la mémoire de données pourraient être exécutées avec une taille réduite, c.-à-d.
charger/stocker seulement un certain nombre de MSB depuis/dans la mémoire.
Nous étendons donc le principe d’approximation utilisé aux unités logiques et de
mémoire de données (celle d’instructions ne peut pas être approchée dans notre
architecture). Notre objectif est d’évaluer l’impact des instructions arithmétiques
et logiques à taille réduite (a.al, et a.mul) et des unités mémoire à taille réduite
(a.mem) sur la consommation d’énergie et la qualité des résultats des applications.

Lorsque les instructions mémoire à taille réduite sont ajoutées au processeur
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RISC-V, le pourcentage d’instructions approximatives est plus élevé que dans la
version avec seulement les unités de calcul approximatives, ce qui réduit l’énergie
plus encore. Pour jmeint les instructions à taille réduite passent de 11.82% à 77.4%,
de 17% à 73.7% pour le filtre de Sobel et de 46% à 81.8% pour forwardk2j. Pour un
taux d’erreur acceptable, p. ex. ≤ 0.1%, la réduction d’énergie avec les instructions
à taille réduite passe de 2% à 14% pour jmeint, de 5% à 16% pour le filtre de Sobel,
et de 12% à 15% pour forwardk2j. Forwardk2j inclut plus d’instructions de calcul
que d’instructions mémoire, ce qui justifie les faibles améliorations de la réduction
d’énergie avec l’unité de mémoire à taille réduite. Nous pouvons conclure que les
unités mémoires à taille réduite sont plus importantes pour les types d’applications
qui font plus d’accés mémoire que de calcul, comme p.~ex. les applications de
traitement d’images qui sont très utilisées dans le domaine du calcul approximatif.

Modèle d’énergie global

Le modèle d’énergie proposé inclut des paramètres logiciels et matériels. Il per-
met à un concepteur logiciel et matériel d’avoir une estimation rapide de l’impact
des optimisations effectuées au niveau algorithmique et/ou au niveau circuit ou
architecture, sur la consommation d’énergie d’une application donnée.

Un concepteur logiciel peut utiliser notre modèle pour avoir un aperçu sur les
parties de l’application qui auront le plus d’impact sur la réduction de l’énergie. Il
permet d’avoir une idée sur les limites des gains d’énergie possibles, pour une
application donnée, connaissant les catégories et le nombre d’instructions exé-
cutées. Connaissant la fraction des instructions à taille réduite et un budget d’énergie,
on peut estimer la taille adéquate pour la configuration des unités approximatives.
Inversement, le concepteur, connaissant la taille minimale requise pour une qual-
ité de résultat donnée, peut avoir une estimation de la réduction d’énergie en se
basant sur la fraction d’instructions approximatives exécutées. Par exemple, la
figure 5.1a indique que pour une réduction d’énergie jusqu’à 20%, un programme
peut être exécuté avec une taille active de 1 à 20 bits. Par exemple si un concep-
teur logiciel désire une réduction d’énergie de 20% et que l’application inclut 80%
d’instructions approximatives dont 60% d’instructions mémoire approximatives, c.-
à-d. fAm = 0.6, l’application pourrait être exécutée avec 15 bits; comme indiqué
sur la figure 5.1a.
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En plus des extensions sur RISC-V avec des unités de calcul et d’accès à la
mémoire de données à taille réduite, ces unités pourraient être optimisées par
les concepteurs matériels pour améliorer la réduction d’énergie (p.~ex. avec de
nouveaux algorithmes ou de meilleures architectures). Un concepteur matériel
peut utiliser notre modèle pour trouver les paramètres architecturaux qui ont du
potentiel. Le concepteur matériel peut décider d’optimiser les unités de calcul et/ou
de mémoire, en fonction des gains d’énergie espérés. Le modèle énergétique
global proposé permet d’estimer la réduction d’énergie sur une application donnée
lorsque les unités matérielles sont optimisées. Ainsi lorsque l’énergie consommée
par une unité, p.~ex. un multiplieur, est réduite de moitié par des optimisations,
le modèle énergétique proposé permet d’estimer la réduction énergétique globale
sur une application donnée. Par exemple, les figures 5.3a, 5.3b, 5.3c indiquent
que pour b = 8 bits, lorsque l’énergie d’une instruction approximative est réduite
jusqu’à 60%, la réduction globale sur le filtre de Sobel est égale à 30% pour les
unités de calcul (a.al et a.mul) et égal à 40% pour les unités de mémoire (a.mem).
Pour b = 16 bits, la réduction d’énergie diminue: 23% avec a.al, 24% avec a.mul
et 35% avec a.mem.

L’étude effectuée sur notre modèle d’énergie nous suggère une analogie avec
la loi d’Amdhal. En calcul parallèle [13], la loi d’Amdahl stipule que pour qu’un al-
gorithme donné s’exécute rapidement sur une plateforme à plusieurs processeurs,
augmenter le nombre de processeurs n’est pas suffisant pour réduire le temps de
calcul. La fraction de la partie parallélisable est également impliquée et clé. Avec
notre modèle, nous montrons clairement qu’en calcul approximatif, la stratégie
d’approximation n’est pas suffisante pour obtenir une réduction importante des
coûts de calcul. Un autre paramètre important est impliqué dans la réduction
d’énergie. Il s’agit de la fraction de la partie où la stratégie d’approximation peut
être appliqué sans un large impact sur la qualité de sortie, comme indiqué sur les
figures 5.1 et 5.2.

Conclusion

La première partie de la thèse présente un aperçu des solutions proposées en
calcul approximatif et étudie les travaux les plus proches de notre thèse. Plusieurs
solutions sont présentées dans l’état de l’art. Cependant, la plupart d’entre elles
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sont destinées à des architectures à virgule flottante qui sont trop complexes pour
les systèmes embarqués.

Nos travaux ciblent des architectures à unités entières (ou en virgule fixe) mais
la plupart des applications sont décrites en représentation à virgule flottante. Nous
avons d’abord converti les applications flottantes en représentation à virgule fixe.
Les erreurs dues à la conversion en virgule fixe sont évaluées afin de voir si les
applications sont appropriées à la représentation en virgule fixe. Ensuite, nous
avons étudié le compromis entre la qualité de sortie et la réduction d’énergie de
ces applications une fois converties en virgule fixe lorsqu’elles sont exécutées
avec des unités de calcul approximatives. Parmi les unités approximatives pro-
posées, nous avons utilisé des unités approximatives pour l’addition (a.add) et
la multiplication (a.mul) parmi les plus étudiées dans l’état de l’art. Cependant,
l’évaluation de la plupart de ces unités est effectuée de façon isolée, c.-à-d. elles
ne sont pas intégrées dans un processeur exécutant une application complète.
Nous avons étudié l’impact de ces unités lorsqu’elles sont intégrées dans un pro-
cesseur RISC-V et exécutées sur trois applications: jmeint, filtre de Sobel, for-
wardk2j. Les résultats indiquent que lorsque ces unités sont évaluées de façon
isolée, l’énergie des opérations de calcul seules peut être réduite jusqu’à 46%
alors que lorsqu’elles sont évaluées pour des applications complètes exécutées
sur un processeur dans lequel sont embarquées ces unités, la réduction d’énergie
est seulement au mieux de 2% pour jmeint, 5% pour le filtre Sobel et 12% pour
forwardk2j. La faible réduction de la consommation d’énergie avec seulement
les unités pour l’addition et la multiplication est due au fait que ces applications
comportent d’autres types d’opérations qui sont nécessairement exécutées avec
une taille maximale (les instructions classiques ou non-approchables). Parmi ces
opérations classiques, nous avons, p.~ex. les instructions de sauts, celles pour
les calculs d’adresses, etc. Nous avons d’abord étendu le RISC-V avec a.add et
a.mul à taille réduite. Puis, nous avons ajouté d’autres unités approximatives avec
les instructions logiques a.lgc, et les opérations mémoire a.ld et a.st. Les ré-
sultats indiquent que pour une erreur inférieur à 0.1%, la réduction d’énergie est
améliorée : de 2% à 14% pour jmeint, de 5% à 16% pour le filtre Sobel, de 12% à
15% pour forwardk2j qui inclue plus de calcul que d’accés mémoire.

Nous avons également proposé un modèle d’énergie global qui inclut à la fois
des paramètres logiciels et matériels. Il permet aux concepteurs de logiciels et
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de matériels, pour une application donnée, d’avoir un aperçu global de l’impact
d’optimisations d’un code source ou de circuits sur la consommation d’énergie.
L’étude avec le modèle nous a permis d’établir une analogie avec la loi d’Amdahl
habituelle en calcul parallèle.

Les unités évaluées sont configurables au moment de l’exécution. Nous souhaitons
pouvoir aller plus loin dans nos expériences en explorant la configurabilité des
unités. Pour cela, des paramètres dynamiques tels que la qualité de la sortie, le
budget d’énergie peuvent être pris en compte dans les décisions dynamiques lors
de la configuration. De plus, les fonctions mathématiques qui sont coûteuses pour
les systèmes embarquée pourraient être approximées pour améliorer la réduction
d’énergie tout en maintenant une qualité de sortie acceptable.
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Title: Approximate computing for high energy-efficiency in IoT applications

Keywords : Reduced width units; energy reduction.

Abstract : Approximate computing ex-
plores methods to trade-off the quality
of result and the computation costs, e.g.
energy consumption. One of the pro-
posed methods is to reduce the width
of the computation units. To date, such
units have been mostly evaluated sepa-
rately, i.e. not evaluated in a complete
application. In this thesis, we evaluate
the global energy reduction vs quality of
output trade-offs of applications. These
applications are executed on a RISC-V
processor extended with reduced width

computation and memory units. In these
units, only a number of most significant
bits, configurable at runtime, is active.
The results indicate in average that the
energy can be reduced by up to 14% for
an error ≤ 0.1%. Moreover we propose
a generic energy model that indicates
that both software parameters (e.g. frac-
tion of approximable code) and hard-
ware architecture ones (e.g. degree of
approximation) impact the applications
energy reduction.

Titre: Calcul approximatif à haute efficacité énergétique pour des applica-
tions de l’IoT

Mot clés : Unités à taille réduite; réduction d’énergie.

Resumé : Le calcul approximatif est
l’une des solutions proposées pour trou-
ver un compromis entre la qualité de
résultat et les coûts de calcul, p.~ex.
l’énergie consommée. L’une des méth-
odes proposées est la réduction de la
taille des unités de calcul. Cepen-
dant, la plupart de ces unités sont éval-
uées séparément, c.-à-d. elles ne sont
pas évaluées sur une application com-
plète. Dans cette thèse, nous avons
étudié le compromis entre la réduction
d’énergie globale et la qualité de sortie
des applications. Ces applications sont
exécutées sur un processeur RISC-V

étendu avec des unités à taille réduite
pour le calcul et pour l’accès à la mé-
moire de données. Ces unités sont
configurables au moment de l’exécution.
Les résultats indiquent qu’en moyenne
la consommation d’énergie peut être ré-
duite jusqu’à 14% pour une erreur ≤
0.1%. De plus, nous avons proposé
un modèle d’énergie générique qui in-
dique qu’à la fois les paramètres logi-
ciels (p.~ex. la fraction de code approx-
imable) et architecturaux (p.~ex. le de-
gré d’approximation) ont un impact sur
la réduction globale d’énergie des appli-
cations.
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