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General Introduction

In the ancient world, light and flags were used as a way of wireless communication. In
1867, James Clerk Maxwell predicted the existence of electromagnetic (EM) waves,
proposing an interrelation between electric and magnetic fields. In 1887, Heinrich
Rudolf Hertz confirmed the existence of EM waves traveling at the speed of light by
performing experiments in his laboratory. The waves he produced and received are
now called radio waves. A breakthrough came with Guglielmo Marconi who developed
the wireless telegraph in 1895. Since then, he succeeded in transmitting radio signals
through space, increasing the distance of communication gradually. In 1901, he estab-
lished the first wireless communication across the ocean, by transmitting radio signals
across the Atlantic ocean. From then until today, different wireless technologies have
been developed, including radio and television broadcasting, radar communications,
satellite communications, wireless networking, mobile wireless communications, etc.

With the rise of big data era, along with the increasing demand of wireless data
services, the major goal of researchers over the years has been to support high data
rates to satisfy needs. A major obstacle to build a reliable high speed wireless commu-
nication system is the wireless propagation medium. In wireless communication, the
signal propagating through the wireless channel is exposed to different types of fading,
especially multipath fading due to multipath propagation [1]. This impacts the relia-
bility of the communication link and limits the data rate.

Multiple-input multiple-output (MIMO) technology has become an active research
topic during the last decade due to its capability for achieving the high transmission
rates required by an increasing number of data-demanding applications. MIMO tech-
nology provides a plenty of benefits that allow dealing with the challenges posed by the
impairments in the wireless channel, especially multipath fading. It provides several
important performance gains such as array gain, diversity gain, and multiplexing gain.

19



20 General Introduction

The benefits of MIMO are achieved through the exploitation of the spatial dimension
across multiple antennas at the transmitter and receiver, in addition to the time and
frequency dimensions already exploited in the conventional single-input single-output
(SISO) systems [2].

MIMO, along with orthogonal frequency division multiplexing (OFDM), are key
technologies used in 4G (fourth generation) wireless networks. MIMO is a key technol-
ogy for the next fifth generation (5G) wireless networks that employ massive antenna
arrays and millimeter wave (MMW) frequencies.

Knowledge of the wireless propagation channel characteristics is crucial for the re-
liability of wireless communications, especially in MIMO communications in order to
fully benefit from the advantages provided by using multiple antennas at the transmit-
ter and receiver sides. This information about the channel characteristics is referred
to as channel state information (CSI). CSI represents the information about the signal
propagation from the transmitter to the receiver, it represents wireless channel effects
such as power attenuation and time spreading of signals. CSI plays an important role in
the system performance, channel state information at the receiver (CSIR) can be used
for equalization purpose against intersymbol interference (ISI) caused by multipath
propagation, and channel state information at the transmitter (CSIT) can be used for
optimal transmission design. Hence a performant “ideal” MIMO communication sys-
tem would require an exact knowledge of the MIMO channel or CSI. CSI estimation
approaches can be classified into parametric and nonparametric. In the nonparametric
approach, the channel matrix is estimated directly without referring to any underlying
physical propagation parameters. On the other hand, the parametric approach relies on
physical channel models to estimate channel parameters, such parameters are useful for
understanding the wireless channel, and can be utilized to improve the communication
system performance by adapting the transmission and reception designs according to
them.

Clustering due to scatterers is an important property that characterizes several
wireless channels, where according to different wireless channel investigations, chan-
nel multipath components are modeled as clusters of multirays. For instance, this
phenomenon (clustering) characterizes wideband/ ultrawideband (UWB) and MMW
communication channels. These new channel characteristics have to be considered in
the future channel estimation techniques.

The work in this thesis focuses on clustered MIMO channel parameter estimation,
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specifically, time domain parameters. This thesis is divided into five chapters. The
first part of the first chapter represents the basic wireless channel propagation charac-
teristics, especially, fading in wireless channels. Fading channel is classified into large
scale fading and small scale fading, large scale fading characterizes the channel behav-
ior over large distances and incorporates path loss and shadowing. Small scale fading
characterizes the channel behavior over short time periods or travel distances, and is fur-
ther classified into two categories based on multipath delay spread and doppler spread.
Based on multipath delay spread, fading is classified into flat fading and frequency se-
lective fading. Based on doppler spread, fading is classified into slow fading and fast
fading. In the second part, we introduce diversity techniques in wirless communication
systems, and we focus on spatial diversity, by showing the benefits brought by using
multiple transmit or/and receive antennas.

In the second chapter, we provide an overview of different MIMO channel mod-
els. The channel models are classified into physical and non-physical models. Physical
models are further classified into deterministic and stochastic models, where stochastic
models are classified into geometry-based models, nongeometrical models, and propa-
gation based analytical models. Then we introduce sparsity and clustering properties
in wireless channels, in addition to the common support property in outdoor MIMO
channels. Finally, we introduce a sparse clustered MIMO channel model with common
support, on which our proposed estimation methods are based.

Chapter 3 deals with channel parameter estimation. Estimation approaches are
classified into parametric and nonparametric. The nonparametric approach refers to
MIMO channel matrix estimation (MIMO channel estimation) while the parametric ap-
proach refers to channel parameters estimation. We classify methods that can be used
for channel parameter estimation into 3 categories: beamforming methods, subspace
based methods and compressive sensing methods.

Chapter 4 illustrates two proposed channel mean path (cluster) delays estimation
approaches. The first approach is based on the first order Taylor expansion around
the mean delay parameter, where a compressive sensing based method is proposed to
estimate the channel mean delays. And the second approach is based on higher order
Taylor expansion around the mean delay parameter, where a method for estimating
the channel mean delays is then proposed based on the subspace approach, and on the
tracking of the effective dimension of the signal subspace. The proposed methods are
validated through computer simulations and estimation performance is illustrated.
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In chapter 5, we propose to estimate the standard deviation of delay spreading
within each cluster. A stochastic channel modeling approach is proposed, where the
statistical distribution of multiray delays within each cluster is exploited. A subspace
based method that allows to estimate both mean delay and standard deviation of delay
spreading is then derived. An efficient approach is proposed to estimate the standard
deviation of delay spreading based on the derived subspace method, and using the
mean delays estimated by the method proposed in chapter 4. The proposed method is
validated through computer simulations.



Chapter 1

Basic wireless channel propagation
characteristics and introduction to
multiple antenna systems

1.1 Introduction

Establishing a reliable wireless communication system requires deep understanding of
wireless channel propagation models and characteristics. Several factors are involved
in the process of determining the channel behavior: signal/channel bandwidth, envi-
ronment or propagation medium, noise, etc. Due to these factors, a signal transmitted
through the environment exhibits fluctuation and attenuation in its level at the receiver
side. The phenomenon of fluctuation of the attenuation of the signal level, is referred
to as “fading”. In wireless channels, a signal emitted from a transmit antenna arrives
at the receive antenna through multiple paths (Figure 1.1) with different amplitudes,
phase shifts, and delays due to the reflection, diffraction or scattering of electromagnetic
waves in the environment. This results in a constructive and destructive interference of
signals from the different paths, leading to the fluctuation of the received signal level.
This phenomenon is the so-called “multipath fading”, and it has a significant impact
on the reliability and performance of wireless communication.
Mainly, two types of fading characterize a wireless channel: large scale fading and small
scale fading [1,3–7]. Large scale fading refers to the signal power attenuation and fluc-
tuation due to path loss and shadowing. Path loss refers to power loss due to the
propagation over large distances. Shadowing is when signals are interrupted or blocked
by large objects such as mountains and buildings over the propagation path between
the transmitter and the receiver. Shadowing results in relatively slow fluctuation in

23
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the signal level, its effect depends on the dimension of objects in the environment with
respect to the wavelength or the radio frequency of the electromagnetic waves. Three
basic phenomena, characterize wireless signal propagation: reflection, diffraction, and
scattering.

Figure 1.1: Multipath propagation

The free-space path loss is expressed as:

Pr
Pt

= GtGr

( λ

4πd

)2
(1.1)

where Pt and Pr are the transmitted and received signal powers respectively, Gt and
Gr are the transmit and receive antenna gains respectively, λ is the signal bandwidth,
and d is the distance between the transmit and receive antennas.

Small scale fading refers to the rapid fluctuation of the signal over short periods or
short travel distances. The small scale fading scheme can be divided into two categories.
The first one is related to the multipath delay spread, and the second is related to the
Doppler spread. Within each category, depending on the relation between the different
signal and channel parameters, different signals exhibit different types of fading. Figure
1.2 illustrates the different classifications of a wireless fading channel.
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Figure 1.2: Fading channel classification

For small scale fading based on the multipath time delay spread, we have two types
of fading, flat fading and frequency selective fading.

1.2 Flat fading

Consider a complex baseband signal modulated by a carrier frequency fc and trasmitted
through a wireless multipath channel that consists of L0 propagation paths. Let s(t)
be the passband signal representation defined as:

s(t) = Re{sb(t)ej2πfct} (1.2)

At the receiver, the corresponding received signal at a given instant t is given as
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r(t) = Re{
L0∑
l=1

γlsb(t− τl)ej2πfc(t−τl)}

= Re{(
L0∑
l=1

γlsb(t− τl)e−j2πfcτl)ej2πfct} (1.3)

where sb(t) is the transmitted baseband signal, γl is the attenuation of path l and τl is
the corresponding time delay.

The complex baseband received signal is given as:

rb(t) =

L0∑
l=1

γlsb(t− τl)e−j2πfcτl (1.4)

Assuming that we are dealing with narrowband signals, the narrowband assumption
states that sb(t−τl) ≈ sb(t) for all l. This is related to the limited time resolution due to
signal’s narrow bandwith in comparison with the channel coherence bandwidth. Limited
time resolution means that signals from different paths cannot be distinguishable, as
this time resolution is inversely proportional to the signal bandwidth. According to
this, rb(t) is given as :

rb(t) = sb(t)

L0∑
l=1

γle
−j2πfcτl (1.5)

Hence

h =

L0∑
l=1

γle
−j2πfcτl (1.6)

is the complex channel coefficient. Depending on the values of the time delays τl, the
different propagation paths can add up constructively or destructively causing fading.
Constructive interference amplifies the signal amplitude at the receiver, while destruc-
tive interference attenuates the signal amplitude. An example of this phenomenon is
illustrated in Figure 1.3, where it is assumed that at each time instant, the receive
antenna (for example mobile user) is changing its position, where the power of the
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received fading signal versus time is shown. For each time instant, the channel coeffi-
cient h is given as the constructive or destructive sum of a large number of multipath
components.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-35

-30

-25

-20

-15

-10
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Figure 1.3: Received signal power versus time, multipath fading channel

As we can see, for the case of flat fading, at a given instant t, the channel is seen as
a single coefficient (h), in other words, it is not described by its different propagation
path delays, the channel impulse response is seen as a single impulse. Due to this, the
channel over the given signal bandwidth looks flat in the frequency domain, that is, all
the frequency components of the signal will experience the same level of fading.

Regarding the statistics of the fading coefficient h, let
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h =

L0∑
l=1

γle
−j2πfcτl

=

L0∑
l=1

γlcos(2πfcτl)− j
L0∑
l=1

γlsin(2πfcτl)

= Xr + jXi (1.7)

where Xr =
∑L0

l=1 γlcos(2πfcτl) and Xi = −
∑L0

l=1 γlsin(2πfcτl).

Each of Xr and Xi is the sum of a large number of random components, hence
according to the central limit theorem, Xr and Xi can be modeled as Gaussian random
variables. Now let

h = Xr + jXi = γejφ (1.8)

where γ =
√
X2
r +X2

i is the magnitude and φ = tan−1(Xi
Xr

) is the phase.

Assuming that Xr and Xi are zero mean independent random variables with same
variance σ2

X . It follows that γ is Rayleigh distributed with the following probability
density function

fγ(γ) =
γ

σ2
X

e
−γ2

2σ2
X (1.9)

and φ is uniformly distributed over [−π, π].

The Rayleigh probability density function is shown in Figure 1.4 for different σ2
X .



1.3 Frequency selective fading 29

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1.4: Rayleigh probability density function

The Rayleigh fading is reasonable when there is no line of sight path between the
transmitter and receiver. When the line of sight path exists, Rician fading becomes a
more reasonable model.

1.3 Frequency selective fading

Frequency selective fading refers to the case of wideband signals, where due to the
relatively large bandwidth in comparison with channel coherence bandwidth, some path
delays can now be resolvable.

The time varying response of a multipath channel is given as:

h(t, τ) =
L∑
l=1

αl(t)δ(τ − τl(t)) (1.10)
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If the channel is time invariant (static), the channel impulse response (CIR) is given
as:

h(τ) =
L∑
l=1

αlδ(τ − τl) (1.11)

where L is the number of resolvable path delays, τl is the time delay of path l and αl
is the corresponding complex gain coefficient (including phase parameter).

The number of resolvable multipaths depends on the available time resolution (or
signal bandwidth). Consider Figure 1.5 that illustrates the signals scattering from
different boundaries (ellipses).

Figure 1.5: Resolvability of channel multipath components

Let ∆τ be the available time resolvability, which is inversely proportional to the
signal bandwidth. Due to the first boundary (ellipse), all multipath delays are arriving
within 0 to ∆τ , according to the available time resolution, these are unresolvable, and
hence seen as one path, similarly due to the second boundary (ellipse), multipath delays
fall in the interval from ∆τ to 2∆τ , then according to the available time resolution,
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these are seen as one another path, and so on. Now if a sufficient number of unre-
solvable multipath components falls within the intervals ([0,∆τ ], [∆τ, 2∆τ ], ...), then
the envelope of each channel gain coefficient |αl| within these intervals can be Rayleigh
distributed (assuming no line of sight) with uniformly distributed phase.

1.3.1 Power delay profile

One of the important characteristics of frequency selective channels is the power delay
profile (PDP). PDP is given as the measure of the received signal power as a function
of the channel propagation delays, it is defined as:

Pdp(τ) = Rhh(τ) = E[|αl|2]δ(τ − τl) (1.12)

where E[|αl|2] is the power associated to path delay τl, Rhh(τ) is the channel autocor-
relation function.

The main parameters characterizing the PDP are the mean delay, the root mean
square (RMS) delay spread, and the maximum excess delay (or maximum delay spread).
The mean delay is given as:

τ̄ =

∑L
l=1 τlPdp(τl)∑L
l=1 Pdp(τl)

(1.13)

The RMS delay spread is given as:

στ =
√
τ̄ 2 − τ̄ 2 (1.14)

where τ̄ 2 =
∑L
l=1 τ

2
l Pdp(τl)∑L

l=1 Pdp(τl)
, and the maximum excess delay is given as:

τmax = τL − τ1 (1.15)

If the channel coefficients at any two distinct delays τ1 and τ2 are uncorrelated, such
that the channel autocorrelation function at these two delays is given as:

Rhh(τ1, τ2) = Rhh(τ1)δ(τ1 − τ2) (1.16)

then the channel is referred to as uncorrelated scattering (US) channel model.
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1.3.2 Frequency domain characteristics

The channel can also be considered and characterized in the frequency domain, through
the Fourier transform of the channel impulse response, as follows:

H(f) =

∫ +∞

−∞
h(τ)e−j2πfτdτ (1.17)

Similarly to what is done in the delay domain, the statistical properties of H(f)
can be obtained in the frequency domain, through the autocorrelation function. The
correlation between frequency domain channel components at two distinct frequencies
f1 and f2 is given as:

RHH(f1, f2) = E[H(f1)H∗(f2)]

= E[

∫ +∞

−∞
h(τ)e−j2πf1τdτ

∫ +∞

−∞
h∗(τ)ej2πf2τdτ ]

=

∫ +∞

−∞
Rhh(τ)e−j2π(f1−f2)τdτ (1.18)

Let ∆f = f1 − f2, we have

RHH(∆f) =

∫ +∞

−∞
Rhh(τ)e−j2π∆fτdτ (1.19)

which is the Fourier transform of the channel PDP.

RHH(∆f) gives information about the range of frequencies over which the fading
pattern is highly correlated. This frequency range, over which the channel is considered
flat, is the coherence bandwidth (Bc), that is, the frequency components of the signal
over this range, will experience the same fading pattern.

Bc is a key parameter to characterize a wireless channel. Its value compared to the
signal bandwith, provide information about the type of fading experienced. When the
bandwidth of the transmitted signal (Bs) is less than Bc, the resulting phenomenon is
flat fading, while when Bs > Bc, the fading is frequency selective.

The value of Bc is inversely proportional to the channel delay spread στ , where gen-
erally, the relation is given as Bc ≈ 1/στ . However there is no one universal definition.
There are two common definitions that are based on the least correlation value assigned
for the frequency correlation function RHH(∆f). If the coherence bandwidth is defined
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as the frequency range over which RHH(∆f)/RHH(0) is at least 0.9, then it is given
as [3]:

Bc =
1

50στ
(1.20)

However, if the coherence bandwidth is defined as the frequency range over which
RHH(∆f)/RHH(0) is at least 0.5, it is given as:

Bc =
1

5στ
(1.21)

The main impairment introduced in the case of frequency selective fading is inter-
symbol interference, that is, when the signal bandwidth is greater than the channel
coherence Bc or in other words, when the symbol period (Ts ≈ 1/Bs) is significantly
less than the channel delay spread στ , multiple copies of symbols (with different gains)
arrive at different time delays causing different symbols to interfere with each other,
resulting in signal distortion. This is not the case for flat fading, where the symbol
period Ts is significantly greater than the channel delay spread στ such that different
multipath components arrive almost at the same time and the channel is modeled as a
single complex coefficient.

Figure 1.6: Flat fading vs Frequency selective fading

Figure 1.6 illustrates the flat fading and the frequency selective fading phenomena.
As shown, for the case of flat fading (Bs < Bc), signal’s frequency components undergo
highly correlated fading pattern, while for frequency selective fading (Bs > Bc), signal’s
frequency components undergo different fading patterns, causing signal distortion.
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1.4 Doppler effect

Doppler effect (or Doppler shift/spread) refers to the change in the frequency of the
propagating electromagnetic wave due to the relative motion between the transmitter
and the receiver, or due to the mobility of scattering objects in the environment.

Consider a mobile user (considered as transmitter) traveling through a base station
(receiver) at a speed ϑ. Due to the doppler shift, the frequency received at the base
station is given as:

fr = fc + fd (1.22)

where fc is the carrier frequency and fd the doppler frequency shift given as

fd =
ϑ cos θ

c
fc (1.23)

where c is the speed of light and θ is the angle between the direction of motion and the
base station.

Consider again the flat fading case, if there is no motion between the transmitter
and the receiver, the channel coefficient is given as in (1.6). Now, as the mobile station
(transmitter) is moving toward the base station (receiver), after some time t has passed,
the distance decreases by (ϑ cos θ)t, the previous propagation delay (in the case where
there was no motion) for a given path l will also decrease as:

τl(t) = τl −
ϑ cos θl
c

t (1.24)

Hence the time varying channel coefficient h(t) is given as:

h(t) =

L0∑
l=1

γle
−j2πfcτl(t)

=

L0∑
l=1

γle
−j2πfc(τl−

ϑ cos θl
c

t) (1.25)

In fact, in the above equation, channel amplitudes, delays, and doppler shifts are
assumed to be approximately static (slow varying with time), however, the different
channel parameters γl, τl and θl themselves can vary with time. To avoid confusion
about time varying time delay, in (1.24), the time varying delay parameter will be
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written as τ
′

l (t) = τl(t) − ϑ cos θl(t)
c

t, where τl(t) here (different from τl(t)) in (1.24)) is
the delay of the channel at time t (without doppler, due to the nature of the channel),
τ
′

l (t) is the overall delay at time t when doppler is included (this means that τl(t) will
be replaced by τ

′

l (t) in (1.25)), and the doppler frequency shift corresponding to path

l is fdl(t) = ϑ cos θl(t)
c

fc. Channel coefficient h(t) can be generalized and written as:

h(t) =

L0∑
l=1

γl(t)e
−jφl(t) (1.26)

where φl(t) is the phase parameter including the contribution of doppler in addition to
the phase due to the propagation delay.

For the frequency selective case, the channel response is given as in (1.10), where
the phase of αl(t) contains also the contribution of doppler (each αl(t) is of the form of
h(t) in(1.26)).

The doppler spread is sometimes called the channel fading rate or fading bandwidth.
The key parameter related to doppler effect is the channel coherent time (Tc). Tc is
the time interval over which the channel is almost invariant (static). Tc is inversely
proportional to fdmax and it can have different definitions when it is related to it. A
first approximative relationship between the coherence time and doppler spread is given
as:

Tc ≈
1

fdmax
(1.27)

where fdmax is the maximum doppler shift given as fdmax = ϑ
c
fc.

Consider a frequency selective channel, the time varying channel complex coefficient
is given as:

αl(t) = |αl(t)|e−jφl(t) (1.28)

Assuming that the channel amplitudes, delays, and doppler shifts are approximately
static, hence we have |αl(t)| ≈ |αl| and

φl(t) = 2πfcτl − 2πfdlt (1.29)

Now we want to know how the channel is changing with time, or for how long the
channel will stay static (the duration over which the above assumptions still valid). In
other words we want to know the channel coherence time Tc. This can be done through
the autocorrelation function of the channel response for a given path l, given as:
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Rαl(t, t+ ∆t) = E[αl(t)α
∗
l (t+ ∆t)]

= E[|αl|2e−j2πfcτl+j2πfdl tej2πfcτl−j2πfdl (t+∆t)]

= PαlE[e−j2πfdl∆t]

= PαlE[e−j2πfdmaxcosθl∆t] (1.30)

Assuming that θl is uniformly distributed over [0, π], then

Rαl(t, t+ ∆t) = Pαl

∫ π

0

1

π
e−j2πfdmaxcosθl∆tdθl

= PαlJ0(2πfdmax∆t) = Rαl(∆t) (1.31)

where J0() is the zero-order Bessel function.

We can notice that the autocorrelation function depends on ∆t and not on t. Hence
the channel response is wide sense stationary (WSS). This WSS model combined with
the US model, the overall model is called wide sense stationary uncorrelated scattering
(WSSUS) model.

Now if Tc is defined as the time interval over which Rαl(∆t)/Rαl(0) is greater than
0.5, then Tc is given as [3]:

Tc ≈
9

16πfdmax
(1.32)

In the frequency domain, the doppler power spectrum of the channel is given as:

S(f) =

∫ +∞

−∞

Rαl(∆t)

Rαl(0)
e−j2πf∆td∆t

=


1

πfdmax

√
1−( f

fdmax
)2
, if |f | 6 fdmax

0 otherwise

(1.33)

hence the doppler spread is the frequency range over which S(f) is non-zero. The above
doppler spectrum is referred to as the Jakes’ spectrum. Due to the doppler shift, the
propagating signals exhibit what is called “spectral broadening”.
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Based on the value of Tc relative to the symbol period Ts, we have two types of fad-
ing: slow fading and fast fading. The fading phenomenon is referred to as slow fading
when the transmitted symbol period is less than the channel coherence time, that is
Ts < Tc (or Bs > fdmax), while when Ts > Tc ( Bs < fdmax), it is referred to as fast fading.

The channel coherence time has an important impact on the wireless communica-
tion system design, since it affects the rate of channel estimation procedure that should
be done at the receiver.

Figure 1.7 summarizes the different types of small scale fading.

Figure 1.7: Classification of small scale fading.

Fading has a big impact on the amount of information that can be sent over a
channel, the maximum data rate that a communication channel can support with small
error probability is referred to as the channel capacity.

The capacity of an additive white Gaussian noise (AWGN) channel without fading
is given as

CAWGN = Blog2(1 + SNR) (1.34)
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With the effect of fading, the channel capacity of a flat fading channel is given as

CSISO = Blog2(1 + |h|2SNR) (1.35)

1.5 Diversity and multiple antenna systems

Diversity is defined as the scheme or technique that can be used to improve the com-
munication reliability against fading problem in wireless communications. Diversity
techniques can be classified into three main categories: Time diversity, frequency di-
versity and spatial diversity (or antenna diversity).

In time diversity, multiple copies of the same signal are transmitted on different
time slots seperated at least by the channel coherence time Tc, in order to assure that
the signals will exhibit uncorrelated fadings. The disadvantage of time diversity is that
different time slots are used to send the same data, hence resulting in lower data rate.
In frequency diversity, multiple copies of the same signal are transmitted on different
carrier frequencies seperated at least by the channel coherence bandwidth Bc to assure
uncorrelated fadings. The disadvantage of frequency diversity is that different frequency
bands are used to send the same data, hence requiring extra bandwidth and therefore
decreasing spectral efficiency. Another form of diversity is the spatial diversity, which is
also known as antenna diversity. Spatial diversity is a scheme that uses multiple anten-
nas at the transmitter and/or receiver. The use of multiple antennas at the receiver is
referred to as “receive diversity”, and the use of multiple antennas at the transmitter is
referred to as “transmit diversity”. A system that consists of a single transmit antenna
and multiple receive antennas is referred to as single-input multiple-output (SIMO),
while a system consisting of multiple transmit antennas and single receive antenna is
referred to as multiple-input single-output (MISO). A system consisting of multiple
antennas at both the transmitter and receiver sides is referred to as MIMO.
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Figure 1.8: Illustration of SIMO, MISO and MIMO systems.

The improvement in the communication reliability against fading is measured by
what is called “Diversity gain”.

1.5.1 SIMO systems

In SIMO systems, multiple copies of the transmitted signal are received by the different
receive antennas through different independent paths, where the received signals are
processed and combined together in order to maximize the signal-to-noise ratio (SNR)
at the receiver. Under the condition that the receive antennas should be separated
at least by half of the signal carrier’s wavelength (λ/2) to assure that the signals on
different receive antennas will exhibit uncorrelated fadings. The increase in the average
received SNR in SIMO systems is referred to as array gain. A SIMO system with M
receive antennas can provide an array gain and a diversity gain of M .

Consider a flat fading channel, and a SIMO system with M receive antennas, the
M -dimensional received vector is given as:

r = hs+ z (1.36)

where s is the transmitted signal, r = [r1 . . . rM ]T such that rm is received by the mth
receive antenna, h = [h1 . . . hM ]T where hm is the channel coefficient between the trans-
mit antenna and the mth receive antenna and z = [z1 . . . zM ]T where zm is an additive
white Gaussian noise at antenna m. We need to find an optimal weighting vector that
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maximizes the output SNR.

Consider the linear combination of the received signals as follows:

r̃ = wHr (1.37)

where w = [w1 . . . wM ]T is a weighting vector. The operation in (1.37) is also known as
beamforming where w can be termed as beamformer.

Hence at the output of the beamformer we have:

r̃ = wHhs+ wHz (1.38)

The received signal component is wHhs and the noise component is wHz. Hence
the output signal power is given by |wHh|2σ2

s where σ2
s = E[|s|2] is the transmitted

signal power, and the output noise power is given as E[|wHz|2] = ||w||2σ2
z .

Hence the SNR at the output of the beamformer is given as

SNRout =
|wHh|2σ2

s

||w||2σ2
z

(1.39)

Now the goal is to find w that maximizes the output SNR. The optimal w that
maximizes the ouput SNR is given as:

wout =
h

||h||
(1.40)

The ouput SNR is then given as

SNRout =
||h||2σ2

s

σ2
z

(1.41)

this is also known as spatial matched filter.

This type of receive diversity is also referred to as maximum ratio combining (MRC).
Other receive diversity schemes are the selection combining (SC) and the equal gain
combining (EGC). In the SC scheme, the antenna with the highest received signal power
is only selected, ignoring the other received signals. In the EGC scheme, the signals at
the different receive antennas are coherently combined or co-phased, where the magni-
tudes of the beamforming weights are set to unity. SC and EGC schemes require lower
complexity than MRC, however MRC provides the best performance. In fact, in the SC
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scheme, the channel state information is not required, simply the branch with highest
SNR is selected. The EGC scheme requires the knowledge of the phase shifts caused
by the fading channel. The MRC scheme requires full knowledge of the channel state
information, in addition, it requires the estimation of the noise power at each receive
antenna. When the noise power is not the same on the different receive antennas, the
above defined weighting coefficients at each antenna are divided by the corresponding
noise power. Generally, the weighting coefficients are approximated by considering the
channel coefficients (as derived above) obtained through channel estimation [8].

In Figure 1.9, the bit error rate (BER) versus energy per bit to noise power spectral
density ratio (Eb/N0) is shown for BPSK modulation, using a SIMO system with MRC,
for different number of receive antennas. As shown, the SIMO scheme provides better
performance (less BER) compared to the SISO scheme, it is also shown that as the
number of receive antennas increases, the BER decreases.
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Figure 1.9: BER versus Eb/N0 for BPSK modulation, using SIMO system with MRC.



42
Chapter 1 Basic wireless channel propagation characteristics and introduction to

multiple antenna systems

The capacity that can be achieved when using a SIMO system is given as:

CSIMO = Blog2(1 +
||h||2σ2

s

σ2
z

) (1.42)

1.5.2 MISO systems

As mentioned before, a MISO system is composed of multiple transmit antennas and
a single receive antenna. Diversity in MISO systems can be achieved through two
schemes, depending on whether the CSI is available at the transmitter or not. First,
consider the case where the CSI is estimated and available only at the receiver. In this
case, MISO schemes exploit space and time dimensions, using the concept of space-time
coding. A famous space-time coding scheme used is the Alamouti scheme where the
data symbols and their conjugate are transmitted from the different transmit antennas
at different times, without increasing the transmission power, having the same trans-
mission power divided over the different transmit antennas. This transmission scheme
provides diversity gain with no effect on the data rate.

Consider a MISO system having 2 transmit antennas, and assume Rayleigh flat
fading channel, the data symbols to be transmitted are given as:

S =

[
s1 −s∗2
s2 s∗1

]
(1.43)

where in the first symbol period, data symbols s1 and s2 are transmitted from antenna
1 and antenna 2 respectively, then in the second symbol period, −s∗2 and s∗1 are trans-
mitted from antenna 1 and antenna 2 respectively.

At the receive antenna, at the first time instant, we have

r(1) = h1s1 + h2s2 + z(1) (1.44)

where h1 is the channel coefficient between the first transmit antenna and the receive
antenna, h2 is the channel coefficient between the second transmit antenna and the
receive antenna, and z(1) is the received noise sample at the first instant. At the
second time instant

r(2) = −h1s
∗
2 + h2s

∗
1 + z(2) (1.45)

Taking the conjugate of the second sample we have
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r∗(2) = −h∗1s2 + h∗2s1 + z∗(2) (1.46)

If we stack the first received sample and the conjugate of the second received sample
as follows: [

r(1)
r∗(2)

]
=

[
h1 h2

h∗2 −h∗1

] [
s1

s2

]
+

[
z(1)
z∗(2)

]
(1.47)

Let H̃=

[
h1 h2

h∗2 −h∗1

]
, the columns of H̃ are orthogonal where

H̃H̃H =

[
|h1|2 + |h2|2 0

0 |h1|2 + |h2|2
]

(1.48)

Let w1 = [h1 h∗2]T , then at the first time instant, the first symbol s1 can be detected
as:

wH
1

[
r(1)
r∗(2)

]
= (|h1|2 + |h2|2)s1 + h∗1z(1) + h2z

∗(2) (1.49)

The output SNR is given as SNRout1 = (|h1|2 + |h2|2)
σ2
s1

σ2
z

where σ2
s1

is the power of
the signal transmitted from the first antenna.

Let w2 = [h2 − h∗1]T , then at the second time instant, the second symbol s2 can
be detected as:

wH
2

[
r(1)
r∗(2)

]
= (|h1|2 + |h2|2)s2 + h∗2z(1)− h1z

∗(2) (1.50)

The output SNR is given as SNRout2 = (|h1|2 + |h2|2)
σ2
s2

σ2
z

, where σ2
s2

is the power of
the signal transmitted from the second antenna.

As the transmission power is divided equally among the transmit antennas such

that σ2
s1

=σ2
s2

=σ2
s

2
. The output SNR for a given symbol is given as

SNRout =
||h||2

2

σ2
s

σ2
z

(1.51)

As noticed, the Alamouti scheme can achieve a diversity gain of order 2, but results
in a 3 dB loss (half of the signal power) in SNR compared to the MRC scheme with 2
receive antennas. Hence the above transmit Alamouti scheme provides diversity gain
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without any array gain. This is the cost of achieving diversity in the absence of CSI at
the transmitter.

In Figure 1.10, the BER versus Eb/N0 is shown for BPSK modulation, using a MISO
system employing the Alamouti code, for different number of transmit antennas.
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Figure 1.10: BER versus Eb/N0 for BPSK modulation

As shown, the MISO scheme allows to achieve less BER compared to the SISO
scheme, where this BER decreases as the number of transmit antennas increases.

We can notice from Figures 1.9 and 1.10 that the SIMO scheme employing MRC
provides better performance than the MISO scheme employing the Alamouti code. This
is better illustrated in Figure 1.11. In fact, in addition to the diversity gain provided
by the two schemes, the SIMO scheme (with MRC) can achieve array gain while the
MISO-Alamouti scheme cannot.
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Figure 1.11: Comparison between MISO and SIMO performance

Although MISO scheme does not provide any array gain, that is, there is no increase

in the input SNR (σ
2
s

σ2
z
), however due to the diversity gain, it results in an improvement

of the output SNR in comparison with the SISO case.

For a MISO system with N transmit antennas, the MISO channel capacity is given
as

CMISO = Blog2(1 +
||h||2

N

σ2
s

σ2
z

) (1.52)

Consider again a 2 × 1 MISO system, and a symbol s transmitted from the two
transmit antennas, but this time, assume that the transmitter knows the CSI, such
that the channel coefficients h1 and h2 are known to the transmitter. In this case, a
kind of precoding can be applied such that at the transmitter side, the symbol s is
multiplied by

h∗1
||h|| and transmitted from the first antenna as s1 =

h∗1
||h||s, the symbol s is
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also multiplied by
h∗2
||h|| and transmitted as s2 =

h∗2
||h||s from the second transmit antenna.

At the receive antenna, we have:

r = (
|h1|2

||h||
+
|h2|2

||h||
)s+ z = ||h||s+ z (1.53)

The output SNR is then given as

SNRout = ||h||2σ
2
s

σ2
n

(1.54)

which is the same as MRC. This can be referred to as transmit beamforming.

1.5.3 MIMO systems

In MIMO systems, multiple antennas are used on both the transmitter and receiver
sides, as seen before, the use of multiple transmit or receive antennas allows to provide
diversity gain, thus to improve the communication reliability. In addition, the use of
multiple transmit antennas (with CSI available at the transmitter) or multiple receive
antennas provides array gain, that is, increasing the power of the transmitted signal,
or SNR. Using multiple transmit and receive antennas is capable of providing an ad-
ditional gain called the spatial multiplexing gain. The spatial multiplexing gain can
be defined as the gain attained through transmitting different data streams from the
different transmit antennas leading to an increase in the capacity of the system without
the need for additional bandwidth or transmission power. However there is a tradeoff
between the spatial multiplexing gain and the diversity gain, such that as diversity
gain increases, multiplexing gain decreases and vice versa. With no spatial multiplex-
ing, which means that the same data is transmitted over all the transmit antennas, a
MIMO system with N transmit antennas and M receive antennas has the capability to
achieve a diversity gain equal to N ×M . On the other hand, if different data are sent
on the different transmit antennas, the MIMO system is able to achieve a maximum
multiplexing gain equal to min(N,M) in the case of high SNR, without any diversity
gain, where min(N,M) is defined as the number of degrees of freedom in the system.

Consider a flat fading MIMO system with N transmit antennas and M receive
antennas, the MIMO system model is given as:

y = Hs + z (1.55)

where y = [y1 . . . yM ]T is the received signal vector, s = [s1 . . . sN ]T is the transmitted
signal vector, z = [z1 . . . zM ]T is the noise vector, and H is the MIMO channel matrix
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given as:

H =


h11 h12 . . . h1N

h21 h22 . . . h2N

. . . .

. . . .

. . . .
hM1 hM2 . . . hMN

 (1.56)

where hmn is the channel coefficient between the mth receive antenna and nth transmit
antenna.

Consider the singular value decomposition (SVD) of H, then

H = UHDHVH
H (1.57)

where DH is an M × N diagonal matrix, and the matrices UH and VH are M ×M
and N × N unitary matrices, respectively. If H is a full rank matrix then its rank is
min(N,M), which is also the number of spatial degrees of freedom. Let Nd=min(N,M),
then H has Nd non-zero singular values on its diagonal such that µ1 ≥ µ2 ≥ · · · ≥ µNd .

Assuming the CSI is known at the transmitter side, the data symbols can be pre-
coded as:

s̃ = VHs (1.58)

then s̃ is transmitted. Consequently,

ȳ = Hs̃ + z (1.59)

Now if we multiply at the receiver by UH
H , we have:

ỹ = UH
H ȳ + UH

Hz

= UH
HUHDHVH

HVHs + z̃

= DHs + z̃ (1.60)

Hence we have:

ỹm = µmsm for m = 1, . . . Nd (1.61)
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when M > N (Nd = N), then ỹm for m = 1, . . . N are the first N non-zero elements
of y, while when M < N (Nd = M), only M symbols can be received, hence only M
non-zero data symbols can be transmitted.

As shown in the above scheme, the MIMO system is equivalent to an Nd parallel
SISO systems. It follows that the capacity of the MIMO system will be the sum of
capacities of the different parallel SISO systems. The MIMO channel capacity is given
as:

CMIMO =

Nd∑
m=1

Blog2(1 + µ2
m

σ2
sm

σ2
z

) (1.62)

where the total transmission power σ2
s distributed over the different transmit symbols

at the different transmit antennas is given as σ2
s =

∑Nd
m=1 σ

2
sm .

The MRC scheme, which is illustrated before for the SIMO case can be employed in
the MIMO case, where the received symbols are detected by multiplying the received
vector y by the conjugate transpose of the channel matrix H, as follows:

ŝ = HHy (1.63)

If the channel matrix H is known at the transmitter, a precoding scheme (transmit
beamforming) can be applied, by multiplying the data symbols to be transmitted by
the conjugate of the channel matrix.

Other detection schemes are zero forcing (ZF) and minimum mean square error
(MMSE) schemes. In the ZF scheme, the received signal vector is multiplied by the
pseudo inverse of the channel matrix, as follows:

ŝZF = H†y (1.64)

where H† = (HHH)−1HH . ZF receiver attempts to minimize inter-antenna interfer-
ence, but results in noise enhancement. ZF can be used as a precoding scheme. The

scheme involves multiplying the data symbols to be transmitted by (H†)
T

.

The MMSE detection provides better performance in comparison with the ZF
scheme, with increased complexity. It attempts to simultaneously reduce both the
interference and the noise. MMSE signal detection is given as:

ŝMMSE = (HHH + σ2
zI)−1HHy (1.65)
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When the channel matrix H is known at the transmitter, MMSE can be used as a
precoding scheme. It involves multiplying the data symbols to be transmitted by
H∗(HTH∗ + σ2

zI)−1.

The precoding/detection schemes described above are linear schemes. There exists
also a class of nonlinear schemes. Such schemes are more complex but can achieve
better performance. Among several nonlinear detection schemes, the vertical bell lab
layered space time (V-BLAST) scheme [9] is popular . V-BLAST relies on successive
interference cancellation (SIC), where symbols are detected in an iterative manner.

In the above, for the sake of simplification, we considered a flat fading channel to
illustrate the benefits achieved by using MIMO systems. Considering the frequency
selective fading case, a time varying frequency selective channel matrix for an N ×M
MIMO system is given as:

H(t, τ) =


h11(t, τ) h12(t, τ) . . . h1N(t, τ)
h21(t, τ) h22(t, τ) . . . h2N(t, τ)

. . . .

. . . .

. . . .
hM1(t, τ) hM2(t, τ) . . . hMN(t, τ)

 (1.66)

If the channel is time invariant, then hnm(t, τ) = hnm(τ) for all n and m. Consider
a frequency selective channel with L multipath components, the system model is then
written as:

y(t) =
L∑
l=1

H(τl)s(t− τl) + z(t) (1.67)

In the flat fading case, the narrowband assumption states that the different propoga-
tion paths cannot be resolved temporally, which is not the case for frequency selective
fading. Based on that, flat fading or narrowband MIMO channel models are fully char-
acterized by their spatial structure, while frequency selective or wideband channels are
characterized by their spatial and temporal (multipath) structure.
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1.6 Conclusion

This chapter provides a basic understanding of the fading characteristics in wireless
channels. Different types of fading are presented, and the effects of fading on commu-
nication performance are addressed. Different diversity schemes used against fading
are then introduced, focusing on spatial diversity, where a brief review of the basics of
MIMO communication technology is provided.



Chapter 2

MIMO channel models

The design and performance of MIMO systems highly depend on the propagation envi-
ronment [5, 10, 11]. A MIMO channel model that accurately describes the propagation
channel is important to exploit the advantages provided by MIMO systems.

MIMO channel models can be categorized into physical and non-physical models. In
non-physical models, the channel matrix coefficients are modeled statistically with re-
spect to the correlation between them. On the other hand, physical models characterize
the MIMO channel by means of physical parameters related to the signal propagation
through the channel [12], such parameters can be the time of arrival (TOA), angle of
departure (AOD), angle of arrival (AOA).

2.1 Physical models

Physical models can be divided into deterministic and stochastic models.

2.1.1 Deterministic models

In deterministic physical models, the channel is described in a deterministic fashion.
Ray tracing [4, 13, 14] is a well known effective method used for deterministic channel
modeling. It is used as an alternative to solving Maxwell’s equations (approximate so-
lution to Maxwell’s equations) [6], that characterizes the propagation paths on the basis
of geometrical optics. In ray tracing methods, prior information such as the positions of
the transmitter, receiver and objects in the environment are known, channel propaga-
tion characteristics are obtained by tracking rays from the transmitter to the receiver,
considering different types of physical propagation phenomena such as reflection, diffrac-
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tion, etc., that occurs as a result of rays interaction with objects in the environment.
Although deterministic physical models have the ability to provide accurate channel
modeling, they are computationally intensive, which make statistical/stochastic physi-
cal models more convenient to consider, as they are more computationally efficient.

2.1.2 Stochastic models

In stochastic models, the physical propagation parameters are described in a stochastic
or statistical manner. Stochastic models are divided into geometry-based stochastic
models and nongeometric stochastic models.

2.1.2.1 Geometry-based stochastic channel models (GSCM)

In such models, the geometry of the channel is taken into account, where the physical
propagation parameters are modeled by defining statistical distributions to scatterers
in the environment, that is, the positions of the scatterers are modeled as random and
ruled by some predetermined statistical distributions. It follows that the values of the
physical parameters are influenced by these distributions.

Two main scattering configurations can be considered for geometry-based models:
single-bounce scattering and multiple-bounce scattering [12,15,16].

A single-bounce scattering assumes that there exists a single scattering interface
between the transmitter and the receiver, so that the transmitted signal bounces one
time before it arrives at the receiver. The simple case of single-bounce scattering is when
the scatterers are assumed to be uniformly distributed over space (spatially uniformly
distributed) [12]. Another models assume that scatterers are distributed randomly
around the transmitter or/and the receiver [12, 17].

Multi-bounce scattering is the case when the signal bounces several times before
arriving at the receiver, this can be due to different scatterers distributed in the envi-
ronment or/and local scatterers surrounding the transmitter or/and receiver.
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Figure 2.1: Illustration of GSCM (single-bounce and multiple-bounce scattering).

Figure 2.1 illustrates the phenomena of single-bounce and multiple-bounce scatter-
ing. As shown, we have three cases, for the single-bounce scattering case, the wave is
only scattered by the local scatterers around the transmitter. For the double-bounce
case, the wave is scattered by the local scatterers around the transmitter and receiver,
and for the triple bounce case, in addition to wave scattering by local scatterers around
the transmitter and receiver, the wave is also scattered by a cluster of scatterers faraway
in the environment.

The geometry of scatterers in the environment has an impact on the AOA and TOA
statistics, that is, the distributions of scatterer positions within clusters have an impact
on AOA and TOA statistical distributions. [18,19].
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2.1.2.2 Nongeometrical stochastic channel models

In nongeometrical stochastic models, the physical propagation parameters are modeled
in a statistical manner without referring to the geometry of scatterers in the environ-
ment. Two main nongeometrical models exist in the literature, the extended Saleh-
Valenzuela model and Zwick model.

Extended Saleh-Valenzuela model

The Saleh-Valenzuela model is proposed for the indoor environments, it assumes
that the multipath components (MPCs) arrive within clusters. The model was first
proposed in SISO systems considering only the time of arrivals [20], but it was later
developed to include the AOA and AOD [21–24], where the channel impulse response
is given as :

h(t,Θt,Θr) =
L∑
l=1

Pl∑
p=1

βlpδ(t− Tl − τlp)δ(θT − θTl − θTlp)δ(θR − θRl − θRlp) (2.1)

where L is the number of clusters, Pl is the number of multirays within cluster l, Tl,
θTl and θRl are the TOA, AOD and AOA of the lth cluster, respectively (Tl is defined
as the TOA of the first ray in the cluster). τlp, θ

T
lp and θRlp are the TOA, AOD, AOA

of the pth ray in the lth cluster, respectively, and βlp is the corresponding complex gain.

The magnitude of βlp (|βlp|) is assumed to be Rayleigh distributed and its phase is
uniform. The expected power of the pth ray in the lth cluster is given as

E[|βlp|2] = E[|β11|2]e−Tl/Γe−τlp/ζ (2.2)

where E[|β11|2] is the expected power of the first ray in the first cluster, and Γ and ζ
are the cluster and ray decay time constants.

Assuming that TOA, AOD and AOA statistics are independent, the cluster and ray
arrival times follow a Poisson process, where the cluster arrival time is an exponentially
distributed random variable conditioned on the TOA of the previous cluster, given as:

P (Tl/Tl−1) = Λe−Λ(Tl−Tl−1) (2.3)

where Λ is the cluster arrival rate. Likewise, the ray arrival time within a cluster is an
exponentially distributed random variable conditioned on the TOA of the previous ray,
given as:
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P (τlp/τl,p−1) = ηe−η(τlp−τl,p−1) (2.4)

where η is the ray arrival rate.

The distributions of the angles of arrival and departure θTlp and θRlp are assumed to
be uniform over [0, 2π) (note that θTl and θRl are meant to be the mean AOD and mean
AOA respectively), and the rays within a cluster can be assumed to have a Laplacian
distribution, such that

p(θTlp) =
1√
2σTθ

e
−|
√

2
θTlp

σT
θ

|
(2.5)

where σTθ is the standard deviation of the angular spread corresponding to AOD. Sim-
ilarly

p(θRlp) =
1√
2σRθ

e
−|
√

2
θRlp

σR
θ

|
(2.6)

where σRθ is the standard deviation of the angular spread corresponding to AOA.

Zwick model

Zwick model treats the different MPCs separately, due to the reason that clustering
and multipath fading do not occur in an indoor channel in case of sufficiently large
sampling rate [12,25]. The MPCs are treated independently without amplitude fading,
while the phase changes of the different MPCs are involved in the model through geo-
metric basis, characterizing the motion of the transmitter, receiver and scatterers.

In physical models, the channel between the transmitter and receiver is modeled on
the basis of electromagnetic waves propagation without referring to antenna configu-
rations [12]. Alternatively, analytical models deal with MIMO channel matrix directly
by providing it a mathematical representation. Analytical models depend on antenna
configurations, and they can be classified based on correlation properties or through
the decomposition of the channel matrix in terms of propagation parameters. Analytic
models do not really rely on the physical propagation characteristics, however, when
the MIMO channel matrix is expressed mathematically in terms of some propagation
parameters, the model can be considered as a kind of propagation based analytical
model. Hence we choose to classify these kinds of models as physical models. The
other kind of analytical models are the correlation based models that totally ignore the
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propagation parameters.

2.1.2.3 Propagation based analytical models

Finite scatterer model

In finite scatterer channel model [26], a finite number L of MPCs is considered, each
of them is characterized by a complex amplitude αl, AOD θTl , AOA θRl and delay τl.

Consider an N × M MIMO system, for the narrowband case, the delays can be
neglected, and the channel matrix is expressed as:

H =
L∑
l=1

αla(θRl )aT (θTl ) = ARΞAT
T (2.7)

where a(θTl ) and a(θRl ) are the transmit and receive steering vectors and

AR = [a(θR1 ) . . . a(θRL )]

AT = [a(θT1 ) . . . a(θTL)]

Ξ = diag{α1 . . . αL} (2.8)

For wideband systems, the delay is included in the model, the tapped delay line
representation of the channel matrix is then given as:

H(τ) =
+∞∑

κl=−∞

Hκlδ(τ − κlTs) (2.9)

where Ts = 1
B

with B the system bandwidth, and Hκl is given as

Hκl =
L∑
l=1

αlsinc(τl − κlTs)a(θRl )aT (θTl )

= AR(Ξ�Tκl)AT
T (2.10)

where Tκl = diag{sinc(τ1 − κlTs), . . . , sinc(τL − κlTs)}.

The MPC parameters can be assigned some statistical distributions, and in some
environments these distributions can be guessed from measurements [12].
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Virtual channel representation

In the previous finite scatterer model, the channel matrix is expressed in terms of the
actual physical AODs and AOAs. In virtual channel representation (VCR), the MIMO
channel is modeled in the beam space, through expressing the channel matrix in terms
of fixed spatial basis defined by fixed transmit and receive virtual angles associated
to virtual scatterers in the environment, such that the channel matrix H is expressed
as [27]:

H = FM(Ω̃�G)FH
N (2.11)

where FN and FM are the discrete Fourier transform (DFT) matrices (the fixed basis)
that consists of the steering vectors corresponding to N transmit and M receive vir-
tual angles (or scatterers), respectively, and (Ω̃�G) is an M ×N matrix representing
the environment in between the virtual transmit and receive scatterers. The matrix
Ω̃ is the element-wise square root of the coupling matrix Ω whose elements represent
the mean power coupled from the virtual transmit to the virtual receive angles (or
scatterers), and G is an M × N independent and identically distributed (i.i.d.) zero
mean complex Gaussian matrix. Hence the mnth element of (Ω̃�G) corresponds to a
pair of virtual transmit scatterer n and virtual receive scatterer m, if either the virtual
scatterer n or the virtual scatterer m does not exist, the nmth element of (Ω̃�G) will
be zero. In fact, the matrix (Ω̃ �G) is a 2-D DFT of H. The transmit and receive
virtual angles defined by the transmit and receive DFT matrices are determined by the
spatial resolution of the transmit and receive antenna arrays, which means that the
accuracy of model increases as the number of antennas increases. It is important to
mention that the virtual representation of the channel matrix in terms of DFT basis
is only convenient for uniform linear antenna arrays. The VCR model is useful for the
theoretical analysis of the capacity scaling in MIMO systems [12,28].

Figure 2.2 illustrates both the physical channel model and the VCR model.
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Figure 2.2: Physical channel modeling vs virtual channel representation.

Another propagation based analytical model is the Maximum entropy model, which
is based on the principle of maximum entropy, that exploits the available prior informa-
tion about the propagation environment (such as time delays, AODs, AOAs, bandwidth,
etc.) to derive the model that expresses the available knowledge, that is, to find the
probability distribution of the channel that best fits the available data [12,29].

2.2 Non-physical models

We classify the analytical channel models that characterize the MIMO channel matrix
statistically without referring to the physical propagation characteristics as non-physical
channel models. Such models can be also referred to as correlation based models [12].

The i.i.d. model

The i.i.d model simply describes the MIMO channel matrix as random, with in-
dependent and identically distributed elements. It is the spatially white MIMO case
that corresponds to a rich scattering environment. Referring to the VCR model, the
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i.i.d model refers to the case where all the elements of Ω̃ are non-zero and identical.
The i.i.d model is generally used for theoretical analysis of MIMO systems such as
information-theoretic analysis [12].

Kronecker model

The Kronecker model [30–33] assumes that the correlation between antennas at the
transmitter side is independent of the correlation between antennas at the receiver side,
such that the channel covariance matrix can be written as:

RH = RT ⊗RR (2.12)

where RT = E[HHH] and RR = E[HHH ] are the transmit and receive covariance
matrices, respectively.

It follows that the channel matrix H can be written as:

H = R
1/2
R GR

1/2
T (2.13)

where G is an M ×N independent and identically distributed (i.i.d.) zero mean com-
plex Gaussian matrix.

The Kronecker model results in poor estimation of channel capacity, due to the
assumption of independent transmit and receive correlations, which is not accurate in
the majority of physical channels [34]. Despite its popularity as a simple model, it has
been shown to be only applicable in specific scenarios.

Weichselberger model

The Weichselberger model [35] removes the separability condition imposed by the
Kronecker model, where it allows coupling between the transmit and receive eigen-
modes. It replaces the transmit and receive DFT matrices in the VCR model with the
eigenbasis of the transmit and receive spatial covariance matrices, RT and RR. The
eigendecompositions of RT and RR are given as:

RT = UTETUH
T

RR = URERUH
R (2.14)
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where the columns of UT and UR are the eigenvectors of RT and RR, respectively, and
ET and ER are diagonal matrices containing the corresponding eigenvalues. It follows
that H is given as:

H = UR(Ω̃�G)UT
T (2.15)

where Ω̃ is the element-wise square root of the coupling matrix Ω whose elements
represent the mean power coupled from the transmit eigenvectors (or eigenmodes) to
the receive eigenvectors and G is an M × N independent and identically distributed
(i.i.d.) zero mean complex Gaussian matrix. The Weichselberger model is equivalent
to the VCR model when the DFT matrix turns into the eigenvector matrix (as the
number of antennas goes to infinity).

2.3 Sparsity

Recently, the issue of sparsity of the wireless channel has received a lot of attention. It is
a fact that, in many scenarios, wireless channels can be characterized by few significant
paths, this is mainly attributed to the limited number of dominant scatterers distributed
in the environment, and especially for large bandwidths [36–41]. This sparsity property
has been shown to be reasonable through physical investigations that have been reported
for some physical channels [42].

2.4 Spatial correlation and the common support phe-

nomenon

In MIMO outdoor communication scenarios, since the transmit and receive array di-
mensions are relatively small compared to the long transmission distance, the signals
received by the different closely located antennas associated to the same scatterer (or
same cluster of scatterers) may be spatially correlated, where CIRs of different transmit-
receive antenna pairs may share a sparse “common support” [40, 43]. This spatial
correlation is controlled by three parameters: signal bandwith, operating frequencies
and antenna spacing [41]. When the difference between TOAs on different antennas
is less than 1

10Bs
(Bs is the signal bandwidth), the antennas will share the same path

delay, as the individual path delays on these antennas cannot be resolved, while the
associated channel gains are different [40, 41]. This is referred to as an exact common
support, where different transmit-receive antenna pairs share exactly the same path
delays [40,44]. At least, depending on the size of the array, the exact common support
phenomenon has been shown to be validated for certain groups of antennas within a
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large antenna array [41].

2.5 Clustering in wireless channels

In practice, and according to various channel investigations, several wireless channels
exhibit scattering (clustering) of the propagating signals, where the channel multipath
components arrive in clusters [36, 45–49]. For example, this phenomenon (clustering)
characterizes the wideband/ultrawideband communication channels [36, 45, 46, 50, 51],
as well as the MMW communication channels [52–54], where the channels exhibit sparse
clustering, that is, finite number of clusters are present in the channel. For instance,
as stated in [36,45,46], the well known Saleh-Valenzuela (SV) model [20] developed for
indoor channels, can be still adopted to model wideband outdoor communication chan-
nels, such that the channel MPCs are modeled as cluster of multirays. The number of
clusters in a channel depends on both the propagation environment and the considered
bandwidth [36,50].

Figure 2.3: Clustering in wireless channels
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2.6 Sparse clustered MIMO channel model with com-

mon support

For an N × M MIMO system, based on the clustering and sparsity properties of a
wireless channel, the CIR h(n,m)(t) between the nth transmit antenna and mth receive
antenna can be modeled as:

h(n,m)(t) =
L∑
l=1

Pl∑
p=1

α
(n,m)
lp δ(t− (t

(n,m)
l + τ

(n,m)
lp )), 1 ≤ n ≤ N, 1 ≤ m ≤M (2.16)

where δ(.) is the Dirac function; L is the total number of propagation paths (clus-
ters), which is considered finite, with Pl contributing rays for the lth path (cluster),

t
(n,m)
l + τ

(n,m)
lp is the pth contributing ray delay in the lth cluster with τ

(n,m)
lp a small de-

viation from the cluster mean delay t
(n,m)
l and α

(n,m)
lp is the corresponding complex gain.

In some existing works [40, 44], an exact common support condition is considered
such that different transmit-receive antenna pairs share exactly the same path delays.
However, as the bandwidth of the signal increases, the exact common support property
starts losing its validity. For this reason, in the above channel model (2.16), multiray
delays associated to a given cluster are not considered exactly the same. However, it
can be assumed that the multirays associated to a given scatterer l share the same
cluster mean delay at the different transmit-receive antenna pairs. This is a kind of
common support hypothesis. Accordingly, the CIR h(n,m)(t) between the nth transmit
antenna and mth receive antenna can be modeled as:

h(n,m)(t) =
L∑
l=1

Pl∑
p=1

α
(n,m)
lp δ(t− (tl + τ

(n,m)
lp )), 1 ≤ n ≤ N, 1 ≤ m ≤M (2.17)

where tl is the mean delay associated to cluster l shared by all the transmit-receive
antenna pairs.

2.7 Conclusion

In this chapter, an overview of MIMO channel models is provided. The channel models
are divided into different categories based on different propagation scenarios under
different conditions. Sparsity and clustering properties in wireless channels are then
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introduced, followed by the common support property in outdoor MIMO channels. A
sparse clustered MIMO channel model with common support, on which our proposed
estimation methods in chapters 4 and 5 are based, is finally presented.





Chapter 3

Channel parameter estimation

A performant “ideal” MIMO communication system would require an exact knowledge
of the MIMO channel or channel state information. MIMO channel parameters estima-
tion is required for the equalization at the receiver side and precoding at the transmitter
side. Hence, channel parameter estimation is a crucial part in MIMO communication.
Channel estimation techniques are divided into training based, semi-blind and blind
techniques. Training-based channel estimation methods are based on transmitting an
a priori known training or pilot sequence to the receiver, and estimating the instanta-
neous channel coefficients based on the received signal and on the known transmitted
sequence [43,55–57]. The maximum likelihood (ML) and the MMSE are popular tech-
niques used for channel estimation in the presence of training sequences. Blind channel
estimation techniques do not consider training symbols, where the channel is estimated
using only the statistical properties of the received signals and by exploiting the struc-
ture of the channel [56,58]. Blind techniques have the capability to greatly improve the
spectral efficiency of the system as no pilots are used for estimation. However they suffer
from high complexity with low convergence. The more reliable semi-blind techniques
refer to blind techniques which incorporate a short a priori known training sequences
leading to a better performance and more robustness than purely blind techniques.

Channel estimation methods can be further divided into nonparametric and para-
metric categories.

65
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3.1 Nonparametric approach (MIMO channel esti-

mation)

In the nonparametric approach, the methods used are unconstrained methods, that is,
they have no associated parameters to rely on. Hence, for MIMO channel estimation,
the nonparametric approach involves estimating the channel matrix directly, ignoring
its multipath structure, or without relying on any physical parameter. ML and MMSE
are popular methods used for nonparametric channel estimation.

3.2 Parametric approach (MIMO channel parame-

ter estimation)

A parametric channel estimation approach relies on a physical channel model that is
defined by physical parameters related to the signal propagation through the channel.
If wisely used, the parametric approach can achieve robust estimation and decrease
the dimension of the estimation problem. Using the parametric approach, one can
exploit the sparsity and common support properties, which is not possible in the non-
parametric approach. Using a model with few number of parameters (sparsity) allows
to obtain more robust estimation, and decrease the dimension of the estimation prob-
lem [59]. Moreover, by exploiting the exact common support property, less number of
pilots is required for the estimation problem [40,41,44], hence achieving better spectral
efficiency. In addition, a super resolution performance can be achieved through the
parametric approach by using some super resolution estimation methods.

Hence for this approach, we consider the wideband (or frequency selective) channel
model given in (1.11), where the channel is described in terms of different propagation
path delays and their corresponding gains. For an N × M MIMO system, the CIR
between the nth transmit antenna and the mth receive antenna is given as:

h(n,m)(t) =
L∑
l=1

α
(n,m)
l δ(t− t(n,m)

l ), 1 ≤ n ≤ N, 1 ≤ m ≤M (3.1)

where L is the total number of propagation paths, t
(n,m)
l is the path delay between

the nth transmit antenna and mth receive antenna, and α
(n,m)
l is the corresponding

complex gain.
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Assume that antennas at the transmitter side are transmitting pilot symbols on
different carriers in order to identify the channels associated with different transmit-
receive antenna pairs. Consider the known pulse shape g(t) transmitted at the nth
transmit antenna at a constant rate 1/T through the medium,

For the mth receive antenna, the received baseband signal is:

x(n,m)
r (t) =

L∑
l=1

α
(n,m)
l g(t− t(n,m)

l ) + z(n,m)
r (t) (3.2)

where z
(n,m)
r (t) is an additive white Gaussian noise.

Assuming an exact common support [40, 41, 44], such that t
(n,m)
l = tl. Hence the

above equation is written as:

x(n,m)
r (t) =

L∑
l=1

α
(n,m)
l g(t− tl) + z(n,m)

r (t) (3.3)

Applying the DFT, the Fourier coefficients of the received signal are given by:

X(n,m)
r [k] = G[k]

L∑
l=1

α
(n,m)
l e−j

2π
T
ktl + Z(n,m)

r [k] (3.4)

where G[k] is the DFT of pulse g(t) and Z
(n,m)
r [k] is the DFT of z

(n,m)
r (t). Writing

(3.4) in the matrix form

x(n,m)
r = GVα(n,m) + z(n,m)

r (3.5)

x(n,m)
r =

[
X(n,m)
r [0] . . . X(n,m)

r [K − 1]
]T

V = [vd(t1) . . .vd(tL)]

vd(tl) = [1 e−j
2π
T
tl . . . e−j

2π(K−1)
T

tl ]T

G = diag{G[0] . . . G[K − 1]}
α(n,m) = [α

(n,m)
1 . . . α

(n,m)
L ]T

z(n,m)
r =

[
Z(n,m)
r [0] . . . Z(n,m)

r [K − 1]
]T

(3.6)
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If we multiply by the inverse of G in (3.5), the model is written as:

y(n,m)
r = Vα(n,m) + z

′ (n,m)

r (3.7)

or

y(n,m)
r =

L∑
l=1

α
(n,m)
l vd(tl) + z

′ (n,m)

r (3.8)

The model in (3.8) is common in the array signal processing context where several
techniques have been proposed (or applied) to estimate the direction of arrival or time
of arrival of signals impinging on an array of sensors [60].

3.2.1 Beamforming techniques

The main idea in beamforming is to scan through a dictionary of time delays and to
form a linear combination of the output coefficients using a weighting vector wbf as

q(n,m) = wH
bfy

(n,m)
r (3.9)

and then to measure the output power.
At a certain time instant, for the N ×M antennas, the output power is measured

as

P (wbf ) =
1

NM

N∑
n=1

M∑
m=1

|q(n,m)|2

=
1

NM

N∑
n=1

M∑
m=1

wH
bfy

(n,m)
r y(n,m)

r

H
wbf

= wH
bfR̂yrwbf (3.10)

where

R̂yr =
1

NM

N∑
n=1

M∑
m=1

y(n,m)
r y(n,m)

r

H
(3.11)

is the covariance matrix of the observation coefficient vectors.
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3.2.1.1 Classical beamformer (Bartlett)

For the classical or conventional beamformer (also known as bartlett beamformer [61]),
the weighting vector is chosen to be vd(t) (wB = vd(t)). Then the normalized output
of the beamformer is given by:

PB(t) =
vd(t)

HR̂yrvd(t)

vd(t)Hvd(t)
(3.12)

The maximum output power refers to the true time delay where the time delays tl
correspond to the positions of the L peaks of PB(t).

The conventional Bartlett beamformer is a simple one, at the cost of limited reso-
lution and interference of close-by delays.

3.2.1.2 Capon

The Minimum variance distortionless response (MVDR) also known as Capon’s beam-
former [62] was proposed to improve the resolution performance. It is based on mini-
mizing the output power while keeping the signal of the desired delay undistorted:

min
wbf

P (wbf ) s.t. wH
bfvd(t) = 1 (3.13)

Then the weighting vector is given by:

wCAP =
R̂−1

yr vd(t)

vd(t)HR̂−1
yr vd(t)

(3.14)

Hence the power of the capon beamformer is given by

PCAP (t) =
1

vd(t)HR̂−1
yr vd(t)

(3.15)

With the MVDR beamformer, the resolution is greatly enhanced compared to the
classical (Bartlett) beamformer.
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3.2.2 Subspace based methods

A major breakthrough came out with the subspace based methods, especially the multi-
ple signal classification (MUSIC) [63] and estimation of signal parameter via rotational
invariance techniques (ESPRIT) [64] methods that provide a super resolution compared
to the limited resolution in the beamforming techniques. The main principle in subspace
methods is to divide the received data into signal and orthogonal (or noise) subspaces.
This is done through the eigendecomposition of the observation data covariance matrix.

Second order statistical analysis

In the noise free case, the covariance matrix of the observation coefficient vectors
can be written as

Ryr = VRαVH (3.16)

where the channel gains covariance matrix Rα can be estimated as

R̂α =
1

NM

N∑
n=1

M∑
m=1

α(n,m)α(n,m)H (3.17)

The eigendecomposition of Ryr is given as:

Ryr = UΛUH (3.18)

The matrix Λ is a diagonal matrix containing the eigenvalues in decreasing order
on its diagonal (λ1 ≥ λ2 · · · ≥ λK ).

Ryr is of size K×K, and V of size K×L where K > L. When V is full column rank
and the channel gain coefficients are uncorrelated, the eigenvectors associated with the
first L eigenvalues of Λ and column vectors of V will span the same subspace which is
the signal subspace, and the eigenvectors associated with the last K −L eigenvalues of
Λ will span the orthogonal subspace. Then U is defined as

U = [Us Un] (3.19)

such that Us contains the L eigenvectors spanning the signal subspace and Un contains
the K − L eigenvectors spanning the orthogonal subspace.

The L largest eigenvalues represent the contribution of signals arriving at L time
delays and the remaining K − L eigenvalues represent the noise power. In the absence
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of noise, the smallest K − L eigenvalues are zero and the rank of Ryr is L.

The eigendecomposition of Ryr can be also written as

Ryr = UsΛssU
H
s + UnΛnnU

H
n (3.20)

where Λss is an L×L diagonal matrix containing the L non-zero eigenvalues, and Λnn

is an (K − L)× (K − L) zero matrix (noise-free case).

In the presence of white noise, the observation covariance matrix is written as

Ryr = VRαVH + σ2
zIK

= UΛUH

= Us(Λss + σ2
zIL)UH

s + Un(σ2
zIK−L)UH

n

= [Us Un]

[
Λss + σ2

zIL 0
0 σ2

zIK−L

] [
UH
s

UH
n

]
(3.21)

and has a full column rank.

Now the L largest eigenvalues of Ryr correspond to signal plus noise and the K−L
smallest eigenvalues correspond to noise only. By other words, the first L eigenvalues are
greater than σ2

z and the last K−L eigenvalues are equal to σ2
z . The problem is then to

define an algorithm to estimate the signal subspace, this can be done by comparing the
eigenvalues based on a threshold defined by σ2

z or by using some information theoretic
criteria.

3.2.2.1 MUSIC

MUSIC is one of the subspace based methods which is based on the eigendecomposition
of the observation covariance matrix and relies on the orthogonality between the signal
and noise subspaces.

The expression of the observation covariance matrix as shown before is given as:

Ryr = VRαVH + σ2
zIK = Us(Λss + σ2

zIL)UH
s + Un(σ2

zIK−L)UH
n (3.22)

As mentioned before, when matrix Rα is a full rank matrix (channel gains are
uncorrelated), the columns of V and Us will span the signal subspace, and as the
signal and noise subspaces are orthogonal we have:
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UH
n vd(tl) = 0 for l = 1 . . . L (3.23)

When V has a full column rank such that the delays are distinct, and as Rα has a
full rank, then we have L delays to estimate.

Given a dictionary of time delays, the algorithm used in MUSIC is to project vd(t)
for a given delay t chosen from the dictionary on the noise subspace in order to find
the true delay, if the delay chosen from the dictionary corresponds to the true one, the
projection will be zero. The MUSIC cost function is given by:

PMUSIC(t) =
vd(t)

Hvd(t)

vd(t)HÛnÛH
n vd(t)

(3.24)

where Ûn is the estimated noise subspace matrix.

Path delays then correspond to the L peaks of PMUSIC(t).

The steps involved in the MUSIC algorithm are summarized as follows:

MUSIC

1- Collect NM DFT-domain vectors.

2- Estimate the covariance matrix Ryr .

3- Apply the eigenvalue decomposition on R̂yr and construct matrix Ûn.

4- For each value of t, calculate the cost function PMUSIC(t)
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Figure 3.1: Power spectra of Bartlett, Capon and MUSIC, for a 12×12 MIMO system,
K = 32 and two delays chosen as t = [0.48 0.56]T with SNR = 10 dB.

Figure 3.1 shows the spectra of the classical beamformer, capon’s beamformer and
MUSIC. It is noticed that the Capon beamformer provides higher resolution compared
with the classical beamformer, and MUSIC outperforms both the classical and Capon
beamformers in terms of resolution.

3.2.2.2 ESPRIT

Another subspace based method is ESPRIT. It relies on the Vandermonde structure of
the matrix V and exploits its shift invariance property.

Let V1 be the first K − 1 rows of V and V2 be the last K − 1 rows of V. Then V1

and V2 are related as:
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V2 = V1Φ (3.25)

where Φ = diag{e−j 2πT t1 , . . . , e−j 2πT tL}.

As matrices Us and V span the same signal subspace, we have:

V = UsJ (3.26)

where J is a non singular matrix.

Let Us1 and Us2 be the first K − 1 and the last K − 1 rows of Us respectively, we
have:

V1 = Us1J

V2 = Us2J (3.27)

Using the rotational invariance property, we have:

Us1JΦ = Us2J (3.28)

It follows that

Us2 = Us1JΦJ−1 (3.29)

Let Ψ = JΦJ−1, then Φ is the matrix containing the eigenvalues of Ψ, where Ψ
can be estimated using the least squares method as:

Ψ̂ = U†s1Us2 (3.30)

Let ψl for l = 1 . . . L be the eigenvalues of Ψ̂, the delays are then given by:

t̂l = − T

2π
arg(ψl) (3.31)

3.2.3 Compressive sensing

Compressive sensing (CS) is a breakthrough technology that has gained a lot of atten-
tion recently in the field of signal processing, as it provides the ability to recover signals
with fewer measurements than what is required by the conventional Shannon-Nyquist
theorem. In several applications, according to the Shannon-Nyquist theorem, a large
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number of samples is needed to be acquired, then compression can be done prior to
storage. However, CS allows to directly aquire fewer number of samples, through an ef-
ficient sampling/sensing scheme [65,66]. CS requires two conditions under which it can
be applied, the first one is the sparsity of the signal to be recovered, and the second is
the incoherence property, which is related to the sensing procedure. The sensing proce-
dure involves linear projections of the sparse signal on the basis vectors that constitute
the sensing or measurement matrix. Choosing a convenient measurement matrix can
preserve the structure of the signal, the signal can then be recovered from the linear
projections using several sparse recovery or reconstruction approaches.

Consider a sparse vector xs, and a sensing matrix Φs, the observed measurement
vector yo is given as:

yo = Φsxs (3.32)

To achieve an efficient reconstruction, the sensing matrix Φs should have low coher-
ence, where the coherence of a matrix is defined as the largest absolute inner product
between any two normalized columns of the matrix [67]. The lower the coherence of the
sensing matrix, the better the reconstruction quality can be achieved. The incoherence
property is related to the restricted isometry property (RIP) [68], which states that
for a given ks-sparse vector xs, there is a high probability to recover xs from yo if the
sensing matrix Φs obeys:

(1− δks)||xs||22 6 ||Φsxs||22 6 (1 + δks)||xs||22 (3.33)

where 0 < δks < 1, and Φs obeys the RIP of order ks if δks is not too close to 1 [66],
which means that the measurement matrix Φs approximately preserves the length of
the ks sparse vector.

In several cases, the signal is not sparse itself, but it can be sparsely represented in
some basis. Consider a non-sparse signal zs which is sparse in an orthogonal basis Ψs,
such that zs = Ψsxs where xs is the sparse vector. The measurement vector yo is then
given as:

yo = ΦsΨsxs (3.34)

For signal recovery, it is required that matrix ΦsΨs has low coherence.

Consider the case where the signal is itself sparse (3.32), the sparse vector xs can
be recovered through the following optimization problem:
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min||xs||0 s.t. yo = Φsxs (3.35)

where the l0 norm returns the number of non-zero elements in a vector. Hence in the
above problem, the goal is to find the sparsest vector xs subject to yo = Φsxs.

Although using l0 norm allows perfect signal reconstruction with high probability,
the above optimization problem is highly non-convex and thus NP-hard.

The methods used for signal recovery as a solution for the above non-convex prob-
lem are mainly classified into convex optimization (or relaxation) methods and greedy
pursuit methods.

3.2.3.1 L1 minimization

The convex relaxation methods replace the l0 norm with l1 norm, the optimization
problem turns out

min||xs||1 s.t. yo = Φsxs (3.36)

The interest in using the l1 norm is that it provides sparse solutions and results in an
convex optimization problem, hence computationally tractable, where it can be handled
as a linear programming problem.

In the presence of noise, the optimization problem becomes:

min||xs||1 s.t. ||yo −Φsxs||2 6 ε (3.37)

3.2.3.2 Greedy pursuit methods

Another class of methods includes greedy pursuit methods. Although convex optimiza-
tion methods provide better performance when compared to the greedy methods with
higher probability of signal recovery, the greedy methods are much faster [69].

Greedy methods work by selecting the elements of a dictionary (such as sensing
matrix) that best approximate the measurement vector in an iterative manner. Meth-
ods like matching pursuit (MP) [70] and orthogonal matching pursuit (OMP) [71] are
among the most popular greedy methods. In the MP method, the measurement vector
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is set as a residual, and at each iteration, the signal is correlated with the column vec-
tors given in the sensing matrix, the contribution of the vector with highest correlation
is then removed from the residual.

Matching pursuit (MP)

Given (3.32), consider the problem of recovering xs from yo, with Φs the dictionary,
the steps of the MP algorithm are summarized as follows:

Matching Pursuit

1- Initialize the residual vector as r0 = yo and the iteration counter i = 1.

2- Assume that all the columns of Φs are normalized, the algorithm selects the
column that has the highest correlation with yo by solving the following maxi-
mization problem

ζi = argmax
ns=1...Ns

| < ri−1,φns > | (3.38)

where ζi is the index of the selected vector and Ns is the number of column vectors
in Φs.

3- Let ci = | < ri−1,φζi > |, the residual is updated as:

ri = ri−1 − ciφζi (3.39)

where φζi is the vector selected at the ith iteration.

4- Increment i and return to step 2, continue until the residual value ||ri||2 is below a
predefined threshold or stop after Ks iterations if Ks (number of non-zero elements
in xs) is known a priori.

Orthogonal matching pursuit (OMP)

The OMP method provides better performance than the MP method with higher
complexity. In the OMP method, the basis vector is selected in the same manner as
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in the MP method, however for each iteration, the measurement vector is projected on
the subspace spanned by the current and previously selected vectors. The contribution
of these vectors is then removed. In this manner, the previously selected vectors will
not be selected again in the subsequent iterations. The steps of the OMP method are
summarized as follows:

Orthogonal Matching Pursuit

1- Initialize the residual vector as r0 = yo and the iteration counter i = 1.

2- Let ϕi be the set containing the indices of vectors selected until the ith iteration
(where ϕ0 = Ø) and ζi the index of vector selected at the ith iteration by solving
the following maximization problem

ζi = argmax
ns=1...Ns

| < ri−1,φns > | (3.40)

3- Set ϕi = ϕi−1 ∪ ζi

4- Find ci, the orthogonal projection of yo on the subspace spanned by the vectors
having their indices in ϕi as:

ci = Φ†siyo (3.41)

where Φsi is the matrix of vectors selected up to the ith iteration (having their
indices in ϕi).

5- The approximation of the signal and the residual are then given as:

yoi = Φsici

ri = yo − yoi (3.42)

6- Increment i and return to step 2, continue until the residual value ||ri||2 is below a
predefined threshold or stop after Ks iterations if Ks (number of non-zero elements
in xs) is known a priori.

OMP deals with the case of single measurement vector (SMV). For the case of
multiple measurement vector (MMV), a method is proposed in [72] called simultaneous
orthogonal matching pursuit (SOMP), given that the sparse input vectors share the
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same location of non-zero elements. Consider again the model given in (3.5), the matrix
of Fourier coefficient vectors at the receive antenna m due to the N transmit antennas
is given as:

X(m)
r = GVΥ(m) + Z(m)

r (3.43)

where X
(m)
r = [x

(1,m)
r . . .x

(N,m)
r ], Υ(m) = [α(1,m) . . .α(N,m)], and Z

(m)
r = [z

(1,m)
r . . . z

(N,m)
r ].

Arranging the Fourier coefficient matrices of the different receive antennas as follows:

Xr = [X(1)
r . . .X(M)

r ] (3.44)

we have

Xr = GVΥ + Zr (3.45)

where Υ = [Υ(1) . . .Υ(M)] and Zr = [Z
(1)
r . . .Z

(M)
r ].

Multiplying by the inverse of G, we have

Yr = VΥ + Z
′

r (3.46)

where Z
′
r = G−1Zr.

Given the model in (3.46), the matrix Yr can be written as:

Yr = VQlΥQl + Zr (3.47)

where VQl is given as

VQl = [vd(tb0) . . .vd(tbQl )] (3.48)

and

tbql =
ql
Ql

T for ql = 0 . . . Ql s.t. Ql >> L (3.49)

The matrix ΥQl is a sparse matrix, such that its column vectors have the same indices
of L non-zero gain coefficients associated to L column vectors in VQl , these L column
vectors in VQl are the column vectors of V.

For sparse recovery, or for delays estimation, the steps of the SOMP method are
given as follows:
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Simultaneous Orthogonal Matching Pursuit

1- Initialize the residual matrix as R0 = Yr and the iteration counter i = 1.

2- Let ϕi be the set containing the indices of vectors selected from VQl until the ith
iteration (where ϕ0 = Ø) and ζi the index of vector selected at the ith iteration
by solving the following maximization problem

ζi = argmax
ql=1...Ql

||RH
i−1vd(tbql )||1 (3.50)

3- Set ϕi = ϕi−1 ∪ ζi

4- Find Ci, the orthogonal projection of Yr on the subspace spanned by the vectors
having their indices in ϕi as:

Ci = O†iYr (3.51)

where Oi is the matrix of vectors selected up to the ith iteration (having their
indices in ϕi).

5- The approximation of the signal and the residual are then given as:

Yri = OiCi

Ri = Yr −Yri (3.52)

6- Increment i and return to step 2, continue until the residual value ||Ri||F is below
a predefined threshold or stop after L iterations if L is known a priori.

3.3 Conclusion

In this chapter, an overview of several channel parameter estimation techniques is pro-
vided. The estimation approaches are divided into parametric and nonparametric. The
nonparametric approach estimates the channel matrix without referring to any physical
propagation parameters. The parametric approach relies on physical channel models
to estimate channel parameters. The chapter divides the channel parameter estimation
methods into beamforming methods, subspace based methods and compressive sensing
based methods, focusing on the parametric approach for channel estimation.



Chapter 4

Clustered MIMO channel delay
estimation

In chapter 2, a clustered MIMO channel model is presented, where in addition to the
sparsity property of a wireless channel, the channel multipath components are modeled
as clusters of multirays. This is a typical channel configuration that future MIMO
wireless communication systems will have to cope with. A cluster of multirays can
be characterized by its mean delay and its delay spreading. The work in this chapter
focuses on mean delays estimation. Two approaches are proposed, a subspace based
approach and a compressive sensing based approach. The compressive sensing based
approach is based on the first order Taylor expansion around the mean delay parameter
where a modified SOMP method is proposed to estimate the channel mean delays.
The subspace based approach is based on higher order Taylor expansion around the
mean delay parameter, where a subspace based method is proposed to estimate the
cluster mean delays. The latter approach uses the minimum description length (MDL)
criterion [73,74] to track the signal subspace in order to estimate its effective dimension
that changes depending on the wireless environment and the SNR value.

4.1 Channel and system model

A sparse clustered MIMO channel model with common support is considered (model in
2.17). For an N ×M MIMO system, each antenna at the emitter side is transmitting
pilot symbols on a different carrier in order to identify the channels associated with
different transmit-receive antenna pairs. Consider a known pulse shape g(t) transmitted
at the nth transmit antenna with a constant rate 1/T through a medium consisting of
L clusters. For the mth receive antenna, the received baseband signal is:

81
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x(n,m)(t) =
L∑
l=1

Pl∑
p=1

α
(n,m)
lp g(t− (tl + τ

(n,m)
lp )) + z(n,m)(t) (4.1)

with z(n,m)(t) an additive white Gaussian noise.

Applying the DFT, the Fourier coefficients of the received signal are given by:

X(n,m)[k] = G[k]
L∑
l=1

Pl∑
p=1

α
(n,m)
lp e−j

2π
T
k(tl+τ

(n,m)
lp ) + Z(n,m)[k] (4.2)

for k = −K/2 + 1, . . . , K/2, where K is the considered number of Fourier coefficients,
G[k] is the DFT of pulse g(t) and Z(n,m)[k] is the DFT of z(n,m)(t). Note that K is an
even integer.

Let vk(t) = G[k]e−j
2π
T
kt; (4.2) can be rewritten as:

X(n,m)[k] =
L∑
l=1

Pl∑
p=1

α
(n,m)
lp vk(tl + τ

(n,m)
lp ) + Z(n,m)[k] (4.3)

4.2 CS based channel delay estimation approach

Equation (4.3) can be written in the matrix form as:

x(n,m) = V(n,m)ᾱ(n,m) + z(n,m) (4.4)

where
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x(n,m) =
[
X(n,m)[−k/2 + 1] . . . X(n,m)[k/2]

]T
V(n,m) = [V

(n,m)
1 . . .V

(n,m)
L ]

V
(n,m)
l = [v(t

(n,m)
l1 ) . . .v(t

(n,m)
lP )]

v(t
(n,m)
lp ) =

[
v−K/2+1(t

(n,m)
lp ) . . . vK/2(t

(n,m)
lp )

]T
ᾱ(n,m) = [α

(n,m)T

1 . . .α
(n,m)T

L ]T

α
(n,m)
l = [α

(n,m)
l1 . . . α

(n,m)
lP ]T

z(n,m) =
[
Z(n,m)[−k/2 + 1] . . . Z(n,m)[k/2]

]T
t
(n,m)
lp = tl + τ

(n,m)
lp (4.5)

Arranging the Fourier coefficient vectors for the different receive antennas in matri-
ces as X = [X(1) . . .X(M)] for X(m) = [x(1,m) . . .x(N,m)], X can be written as

X = V̄Ā + Z (4.6)

where V̄ = [V(1) . . .V(M)] for V(m) = [V(1,m) . . .V(N,m)].

Given the model in (4.6), X can be written as:

X = VQiĀQi + Z (4.7)

VQi = [v(tb0) . . .v(tbQi )] (4.8)

and

tbqi =
qi
Qi

T for qi = 0 . . . Qi s.t. Qi >> NMLP (4.9)

where P > Pl for all l.

The matrix ĀQi is a sparse matrix, since multiray delays associated to a scatterer
are not the same on different transmit-receive antenna pairs, the column vectors of ĀQi

do not share the same indices of the non-zero gain coefficients. However they share
the same indices of the gain coefficients associated to the cluster mean delays, as the
multirays associated to a given scatterer are assumed to share the same mean delay on
the different transmit-receive antenna pairs.
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Back to (4.3), as the deviations τ
(n,m)
lp are considered small, the first order Taylor

expansion of (4.3) gives:

X(n,m)[k] ≈
L∑
l=1

Pl∑
p=1

α
(n,m)
lp

(
vk(tl) + τ

(n,m)
lp dk(tl)

)
+ Z(n,m)[k] (4.10)

where dk(tl) = (−j 2π
T
k)vk(tl).

Equation (4.10) can be written as:

X̃(n,m)[k] =
L∑
l=1

a
(n,m)
l vk(tl) + b

(n,m)
l dk(tl) + Z(n,m)[k] (4.11)

where a
(n,m)
l =

∑Pl
p=1 α

(n,m)
lp and b

(n,m)
l =

∑Pl
p=1 α

(n,m)
lp τ

(n,m)
lp .

Hence the vector x̃(n,m) of the Fourier coefficients can be written as:

x̃(n,m) =
L∑
l=1

a
(n,m)
l v(tl) + b

(n,m)
l d(tl) + z(n,m) (4.12)

where

x̃(n,m) =
[
X̃(n,m)[−K/2 + 1] . . . X̃(n,m)[K/2]

]
v(tl) = [v−K/2+1(tl) . . . vK/2(tl)]

T

d(tl) = [v−K/2+1(tl) . . . dK/2(tl)]
T (4.13)

Due to the common support assumption on mean delays. The vector v(tl) is con-
tained in all the Fourier coefficient vectors in X (4.7). The concept used in the SOMP
method can then be used to estimate the mean delays, with a modified selection step.
The steps of the proposed mean delay estimation method are given as:
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Algorithm of the proposed CS based method

1. Initialize the residual matrix as R0 = X and the iteration counter i = 1.

2. Let ϕi be the set containing the indices of vectors selected from VQi until the ith
iteration (where ϕ0 = Ø) and ζi the index of vector selected at the ith iteration
by solving the following maximization problem

ζi = argmax
qi=1...Qi

(||RH
i−1v(tbqi )||2 + ||RH

i−1d(tbqi )||2) (4.14)

3. Set ϕi = ϕi−1 ∪ ζi.

4. Find Ci, the orthogonal projection of X on the subspace spanned by the vectors
having their indices in ϕi as:

Ci = O†iX (4.15)

where Oi is the matrix of vectors selected up to the ith iteration (having their
indices in ϕi).

5. The approximation of the signal and the residual are then given as:

Xi = OiCi

Ri = X−Xi (4.16)

6. Increment i and return to step 2 if i ≤ L, assuming that the number of mean
delays L is known a priori.

The proposed estimation method differs from the classical SOMP method in the
selection step, which is adapted according to the expression of the Fourier coefficient
vectors given in (4.12) by taking into account the vector v(tbqi ) and its derivative d(tbqi )
for selection.
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4.3 Subspace based channel delay estimation ap-

proach

As several subspace based methods are high resolution methods, we find it interesting
to incorporate more details into the model rederived by means of Taylor expansion,
seeking for better estimation performance. To achieve this, we consider the U th order
Taylor expansion of (4.3), given as:

X(n,m)[k] =
L∑
l=1

Pl∑
p=1

α
(n,m)
lp

(
vk(tl)+

U∑
u=1

(τ
(n,m)
lp )u

u!
v

(u)
k (tl)+RU(τ

(n,m)
lp )

)
+Z(n,m)[k] (4.17)

where v
(u)
k (tl) is the uth order derivative of vk(tl). In this last equation, RU(τ

(n,m)
lp ) is

the remaining term in the Taylor approximation, which is considered small, such that
its impact in the approximation can be neglected.

Equation (4.17) can be written in the following form:

X(n,m)[k] = G[k]
L∑
l=1

U∑
u=0

a
(n,m)
l,u v

(u)
k (tl) + Z(n,m)[k] (4.18)

where

a
(n,m)
l,u =

Pl∑
p=1

α
(n,m)
lp

(τ
(n,m)
lp )u

u!
. (4.19)

Equation (4.18) is written in the following matrix form:

x(n,m) = Wa(n,m) + z(n,m) (4.20)
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where

x(n,m) =
[
X(n,m)[−K/2 + 1], . . . , X(n,m)[K/2]

]T
W = [V(0)V(1) . . .V(U)]

V(u) = [v(u)(t1), . . . ,v(u)(tL)]

v(u)(tl) = [v
(u)
−K/2+1(tl), . . . , v

(u)
K/2(tl)]

T

v
(u)
k (tl) = (−j 2π

T
k)uvk(tl),

a(n,m) =
[
a

(n,m)T

0 , . . . , a
(n,m)T

U

]T
a(n,m)
u = [a

(n,m)
1,u , . . . , a

(n,m)
L,u ]T

z(n,m) =
[
Z(n,m)[−K/2 + 1], . . . , Z(n,m)[K/2]

]T
(4.21)

with x(n,m) ∈ CK×1, W ∈ CK×(U+1)L, and a(n,m) ∈ C(U+1)L×1.

Matrix W is the same for all the transmit-receive antenna pairs, as the mean de-
lays of each cluster are assumed to be the same for all the transmit-receive antenna pairs.

The matrix of Fourier coefficient vectors at antenna m due to the N transmit an-
tennas is given by:

X(m) = [x(1,m)... x(N,m)], (4.22)

which can be written as:

X(m) = WA(m) + Z(m), (4.23)

where A(m) = [a(1,m) . . . a(N,m)] and Z(m) = [z(1,m) . . . z(N,m)]

Arranging the Fourier coefficient matrices of different receive antennas as follows:

X = [X(1)X(2) . . . X(M)] (4.24)

X can be written as:

X = WA + Z (4.25)

where A = [A(1)A(2) . . . A(M)] and Z = [Z(1) . . .Z(M)].
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4.3.1 Second order statistical analysis

The covariance matrix RX of the observation Fourier coefficient vectors in X can be
estimated as:

R̂X =
1

NM
XXH . (4.26)

For the noise-free case:

RX = WRaW
H , (4.27)

where the covariance matrix Ra is given as:

Ra =
1

NM

N∑
n=1

M∑
m=1

a(n,m)a(n,m)H (4.28)

Assuming that tl for l = 1, . . . , L are different from one another, with K > (U +1)L
andNM > (U+1)L, it can be noted from the definition of matrix W that the dimension
of its column space is equal to (U + 1)L with a full rank property.

It follows that the dimension of the signal subspace is equal to the rank of Ra. In
the following we will show that Ra is a full rank matrix of rank equal to (U + 1)L,
which implies that the dimension of the signal subspace is (U + 1)L.

Proof Elements. Consider one cluster (L = 1) of mean delay t1; for the sake of simplifi-

cation, notations are abbreviated as t1 = t, P1 = P , α
(n,m)
1,p = αp, τ

(n,m)
lp = τp, and a(n,m)

is a (U + 1)-length random column vector which is replaced by a new vector a defined
as:

a =
[ P∑
p=1

αp

P∑
p=1

αp
τup
u!
· · ·

P∑
p=1

αp
τUp
U !

]T
, (4.29)

under the following assumptions:

� αp for p ∈ {1, . . . , P} are independent complex random variables such that ∀p, q ∈
{1, . . . , P}, E[αp] = 0; E[αpα

∗
q ] = σ2

p if p = q, 0 otherwise; and
∑P

p=1 E[|αp|2] = 1.

� τp for p ∈ {1, . . . , P} are independent real random variables having the same
distribution.

� αp and τp are independent.
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Defining indices u, v ∈ {0, 1 . . . U}, the (u+ 1, v + 1)th element of matrix E[aaH ] is
given as:

[E[aaH ]](u+1,v+1) = E
[ P∑
p=1

αp
τup
u!

P∑
q=1

αq
τ vq
v!

]
=

1

u!v!

P∑
p=1

P∑
q=1

E[αpα
∗
qτ

u
p τ

v
q ]. (4.30)

It follows that:

[E[aaH ]](u+1,v+1) =
1

u!v!

P∑
p=1

E[|αp|2]E[τu+v
p ] =

E[τu+v
p ]

u!v!
. (4.31)

For uniformly distributed τp between [− s
2
, s

2
], we have:

[E[aaH ]](u+1,v+1) =

{
( s

2
)u+v 1

u!v!
1

u+v+1
if u+ v is even

0 if u+ v is odd
. (4.32)

According to the elements of matrix E[aaH ], it follows that its determinant is dif-
ferent from zero, (det(E[aaH ]) 6= 0) and as it is a square matrix, then it is a full rank
matrix with rank equal to U + 1.

4.3.2 Channel delay estimation

The model in (4.25) suggests the possibility of using subspace based parameter estima-
tion techniques. In the existing works with an exact common support [40,44], subspace
methods such as MUSIC and ESPRIT are applied directly to estimate the delays. Al-
though a non-strictly exact common support model is also taken into account in [40],
the conventional ESPRIT and MUSIC methods are used with this model as well. In
this thesis, in accordance with the delay spreading phenomenon, the channel model
is reformulated, and a new subspace based method is proposed to cope with such a
model. The principle of subspace based estimation methods is to find the parameters
characterizing W by searching for the parameter vectors that best match the signal
subspace, where the signal subspace can be estimated from the measurements, based
on the eigendecomposition of the observation covariance matrix. The problem of esti-
mating the correct dimension of signal or orthogonal subspaces is of great importance
in such methods, especially in scattering situations where this problem becomes more
complicated.
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4.3.2.1 Asymptotic analysis of the signal subspace dimension

In the exact common support case with no delay spreading, and in the noise-free case,
the covariance matrix RX is of rank L. However, according to the U th order Taylor-
approximated model (4.18), due to the delay spreading, the rank of RX is increased to
(U + 1)L, leading to a larger dimension of the signal subspace. More generally, consid-
ering the exact model (4.3) with additive noise, most of the energy of the signal will be
concentrated in few eigenvalues of the covariance matrix depending on the standard de-
viation of the delay spreading, and on the level of noise. Due to these factors, different
dimensions of the signal subspace can be obtained. It follows that determining the ap-
propriate value of U is of great importance, and it should be chosen carefully depending
on these factors in order to estimate the so-called effective dimension of the signal sub-
space. Consequently, based on the definition of matrix W, an appropriate parametric
expression of vectors can be chosen in the cluster mean delays estimation procedure.

4.3.2.2 Signal subspace tracking

From the generalized model in (4.18), the dimension of the signal subspace is (U + 1)L,
where U is the order of the Taylor expansion that should be estimated to define the
effective dimension of the signal subspace. This can be done through analyzing the
eigenvalues of the estimated covariance matrix. The MDL and the Akaike information
criterion (AIC) [75] are the two most famous information theoretic criteria for esti-
mating the number of sources impinging on an array of sensors [76]. Such methods
test the eigenvalues of the estimated covariance matrix where the number of sources is
estimated based on minimizing a derived criterion. In general, the MDL is preferred as
it is considered to have better performance than AIC [77]. The MDL provides better
performance in the presence of spatially and temporally white noise [78]. The AIC pro-
vides better estimation in low SNR and small observation sample conditions, however
this estimator is not asymptotically consistent. The MDL provides better estimation
in the case of large number of observation samples, and it is asymptotically consistent.
Therefore, the MDL criterion is chosen in this thesis to estimate the effective dimen-
sion of the signal subspace. In fact, the MDL criterion will provide (U + 2)L as the

dimension of the signal subspace. Despite the fact that the error term RU(τ
(n,m)
lp ) in

(4.17) is assumed to have no effect in defining the effective signal subspace, it will be
detected by the MDL criterion as it is not equal to zero. Hence, during the signal
subspace tracking process, the effective dimension of the signal subspace is estimated
by subtracting L from the value provided by the MDL criterion. In fact, for L > 1,
each of the L clusters is assumed to occupy the same degrees of freedom (U + 1) in
the signal subspace, which should give rise to an overall subspace dimension equal to
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(U + 1)L, and hence (U + 2)L would be provided by the MDL criterion. However in
practice, in the presence of noise, the MDL algorithm will sometimes provide an integer
in the set {(U + 1)L + 1, (U + 1)L + 2, . . . (U + 2)L}. The proposed solution for this
case is to estimate U according to the following rule:

U =

⌊
MDLV

L
− 1

⌋
, (4.33)

where MDLV is the value obtained by the MDL criterion and b.c is the floor function.

4.3.2.3 Cluster mean delay estimation

The covariance matrix of X is estimated as in (4.26). As shown before, the delay
spreading gives rise to an increase in the signal subspace dimension to (U + 1)L, where
the value of U changes according to the SNR as well as the standard deviation of the
delay spreading. It follows that the eigenvectors associated with the (U + 1)L largest
eigenvalues define the signal subspace. Hence, the eigendecomposition of the estimated
covariance matrix provides the estimate of the noise subspace matrix Un. The estimated
noise subspace matrix Ûn is composed of the K−(U+1)L eigenvectors associated with
the K − (U + 1)L smallest eigenvalues of R̂X.

For the case of no delay spreading, the conventional MUSIC can be applied to
estimate the delays where the vector v(0)(t) is projected on the noise subspace. In the
case of delay spreading, as can be noticed from (4.18), vectors v(u)(t) for u = 0 . . . , U
define the signal subspace. A new cost function is then proposed, such that vectors
v(u)(t) are jointly projected onto the estimated noise subspace of dimensionK−(U+1)L.
Hence, the following cost function can be defined:

Pss1(t) =
1∑U

u=0 v(u)(t)HÛnÛH
n v(u)(t)

(4.34)

where

v(u)(t) = [v
(u)
−K/2+1(t), . . . , v

(u)
K/2(t)]T ,

v
(u)
k (t) = (−j 2π

T
k)uvk(t). (4.35)

The derived cost function can be written in the following form:

Pss1(t) =
1

v(t)H(
∑U

u=0 DH
u ÛnÛH

n Du)v(t)
(4.36)
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where

v(t) = v(0)(t) = [v−K/2+1(t), . . . , vK/2(t)]T

Du = diag{(−j 2π

T
(−K/2 + 1))u, . . . , (−j 2π

T
K/2)u}. (4.37)

The proposed cost function turns to be the conventional MUSIC when setting U = 0,
which is the case for very small delay spreading (where it tends to be neglected). The
proposed technique can be seen as an extension of MUSIC in the delay spreading case.

The algorithm used for the estimation is summarized as follows:

Algorithm of the proposed subspace based method

Number of delays L is assumed to be known.

1. Collect the NM DFT-domain vectors to build matrix X (4.25).

2. Estimate the covariance matrix RX (4.26).

3. Apply the eigenvalue decomposition on R̂X.

4. Estimate the effective dimension of the signal subspace using the MDL criterion
combined with the proposed rule (4.33).

5. Construct matrix Ûn.

6. For each value of t, calculate the cost function Pss1(t)(4.36). Then, the cluster
mean delays tl are estimated by searching for the L peaks of Pss1(t).

The proposed cost function shows no major difference from the conventional MUSIC
in terms of the computational complexity as they share the same operations such as the
FFT, RX matrix construction, eigenvalue decomposition, and the spectral searching.
The proposed cost function requires a slight increase in the computational complexity
due to the addition of the terms corresponding to the delay spreading, which is the
projection of v(u)(t) for u = 0 . . . , U on the estimated noise subspace.

4.4 Simulation results

Simulations are carried out for a 24× 24 MIMO system but similar conclusions can be
obtained with other MIMO system configurations. The DFT-domain data are gener-
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ated according to (4.3) with K = 64 Fourier coefficients. The delay deviations τ
(n,m)
lp

of multirays within each cluster l for each (n,m) transmit-receive antenna pair are
generated according to a uniform distribution and centered at tl. The correspond-
ing gains α

(n,m)
lp of the multirays are modeled as complex Gaussian random variables

generated in a way that the effective power of each cluster is normalized, such that∑Pl
p=1 E[|α(n,m)

lp |2] = 1, ∀{l, n,m}. The added noise is modeled as complex white Gaus-
sian noise. The estimation performance is assessed from Q = 500 independent sim-
ulations. The root mean square error (RMSE) of cluster mean delay estimation is

calculated as

√∑Q
i=1

∑L
l=1(t̂l(i)−tl)2
QT 2L

, where t̂l(i) is the estimated mean delay for the ith
experiment and tl is the true mean delay.
Figure 4.1 shows the RMSE of mean delay estimation of the modified SOMP method
and the classical SOMP method versus SNR.
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Figure 4.1: RMSE of mean delay estimation of the modified SOMP method and the
classical SOMP method versus SNR; Pl = 20, K = 64, L = 3, vector of chosen delays
is given as t = [0.32 0.45 0.61]T , τlp are uniformly distributed with 0.008T chosen
as the standard deviation of the delay spreading.
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As shown in the figure, the proposed modified SOMP method provides better mean
delay estimation in comparison with the classical SOMP method. By definition the
CRLB is the lowest bound of the variance of any unbiased estimator. However, as we
use the RMSE to evaluate the method, the CRLB in the figures represents the lower
bound of the standard deviation of any unbiased estimator.

Figure 4.2 shows the RMSE of the mean delay estimation versus standard deviation
of delay spreading for the modified SOMP method and the classical SOMP method.
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Figure 4.2: RMSE of mean delay estimation of the modified SOMP method and the
classical SOMP method versus standard deviation of delay spreading; Pl = 20, K = 64,
L = 3, vector of chosen delays is given as t = [0.32 0.45 0.61]T , τlp are uniformly
distributed, SNR=15 dB.

For relatively small delay spreading, the coefficient b
(n,m)
l in (4.12) is relatively small.

Hence it seems better to ignore the contribution of the vector d(tl) where the classical
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SOMP method can be used for estimation. However, as the standard deviation of delay
spreading increases, the contribution of d(tl) increases, where as shown in the above
figure, the modified SOMP method provides better mean delay estimation in compari-
son with the classical SOMP method.

To illustrate the estimation performance of the subspace based approach, we con-
sider first a unique delay group L = 1.

Figure 4.3 shows the RMSE of the mean delay estimation versus SNR of the proposed
cost function (4.36) for different values of U and MUSIC.
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Figure 4.3: RMSE of mean delay estimation of the proposed cost function for U = 1,
U = 2 and MUSIC versus SNR; Pl = 20, K = 64, τlp are uniformly distributed with
0.005T chosen as the standard deviation of the delay spreading.

Figure 4.3 shows that the proposed cost function (assuming U = 1) provides better
performance of the cluster mean delay estimation than the conventional MUSIC.
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According to the derivation of the model, in the noise-free case, it is better to choose
higher values for U to benefit from a better approximation, where small details can be
taken into account. On the other hand, with noise-contaminated data, the high order
terms in Taylor expansion (4.17) may be too small with respect to the noise power. In
fact, due to the property of Taylor expansion, it can be noted from (4.17) and (4.18),
that:

|a(n,m)
l,0 | > |a(n,m)

l,1 | > · · · > |a(n,m)
l,U | (4.38)

Hence, for U = 2 the elements in vector a
(n,m)
l,2 v(2)(tl) will tend to be quite small.

Thus, for a high level of noise, the norm of the vector a
(n,m)
l,2 v(2)(tl) is very small com-

pared to noise. Hence, this part of the signal is dominated by the noise, and it would be
better not to consider this part of the signal to represent the signal subspace. For this
reason, for low SNR, as can be observed in Figure 4.3, it would be better to consider
U = 1 (K − 2L as dimension of noise subspace). However as SNR increases, it would
be worth considering vector v(2)(tl) as a part of the signal subspace, and then U = 2
(K − 3L as dimension of noise subspace).

Figure 4.4 shows the comparison of RMSE of the cluster mean delay estimation
versus standard deviation of delay spreading.

We can observe that for very small delay spreading with relatively low SNR (SNR
= 5 dB), it would be better to consider that the dimension of the signal subspace is one
(U = 0), for the same reason discussed before, which is the situation of the conventional
MUSIC. However, as delay spreading increases, the proposed cost function with U = 1
outperforms MUSIC (U = 0). Again, as the delay spreading increases, the proposed
cost function for U = 3 outperforms the proposed cost function for U = 2. The increase
in the standard deviation of the delay spreading will give rise to an increase in the norm
of a

(n,m)
l,u v(u)(tl). Then, this vector will have greater impact in formulating the signal

subspace, where higher values of U can be considered.
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Figure 4.4: RMSE of mean delay estimation of the proposed cost function for U = 1,
U = 2, U = 3, and MUSIC versus standard deviation of delay spreading; Pl = 20,
K = 64, SNR = 5 dB.

We can also observe that as the delay spreading increases, the estimation is less
accurate, which is probably due to the approximation error of Taylor expansion.

4.4.1 Selecting U according to the MDL criterion

To determine the most appropriate value of U , the MDL criterion is applied on the
eigenvalues of RX. The calculated mean value of the MDL criterion (mean MDLV )
versus the standard deviation of delay spreading is plotted in Figure 4.5 to show the
performance of the MDL criterion.
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Figure 4.5: Mean value of the MDL criterion (mean MDLV ) versus standard deviation
of delay spreading; Pl = 20, K = 64, SNR = 5 dB, mean MDLV values are obtained
from 500 independent simulations each.

Observing Figures 4.4 and 4.5 simultaneously, four flat regions can be distinguished.
When MDLV = 2, the best choice for the dimension of the signal subspace (U + 1)L
is 1 (U = 0). When MDLV = 3, 4, 5, the best dimensions of the signal subspace are 2
(U = 1), 3 (U = 2), and 4 (U = 3), respectively.

However, it can be noticed that the MDL criterion fails to estimate the effective
dimension of the signal subspace correctly in some regions, it can be also noticed that
flat regions are not always clearly distinguished. For example, when the delay spreading
is 0.004T , from the observed mean MDLV values, it seems that the MDL criterion is
providing the values 2 and 3 in different realizations. This shows that the MDL crite-
rion, influenced by the random nature of scattering and the relatively high noise level,
is not always a foolproof indicator.
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In Figure 4.6, the RMSE of mean delay estimation of the proposed subspace track-
ing based method is shown. For each realization of received data, the decision about U
is obtained from the rule in (4.33), which is used to estimate the effective dimension of
the signal subspace. Then, the proposed cost function (4.36) is applied.
As shown in the figure, the proposed method allows for optimal selection of parameter
U and provides the best cluster mean delay estimation. However some minor failures of
the MDL criterion in systematically estimating the optimal effective dimension of the
signal subspace can be noted.
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Figure 4.6: RMSE of mean delay estimation of the proposed cost function for U = 1,
U = 2 and U = 3, the proposed subspace tracking based method and MUSIC versus
standard deviation of delay spreading; Pl = 20, K = 64, SNR = 5 dB.
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Figures 4.7 and 4.8 show the RMSE of the mean delay estimation and the mean
MDLV versus standard deviation of delay spreading, respectively for SNR = 15 dB.

The obtained results show that the MDL criterion provides better estimations of the
different effective dimensions of the signal subspace for different standard deviations of
delay spreading, leading to an improvement in the mean delay estimation performance
of the proposed subspace tracking based method.
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Figure 4.7: RMSE of mean delay estimation of the proposed cost function for U = 1,
U = 2, and U = 3, the proposed subspace tracking based method and MUSIC versus
standard deviation of delay spreading; Pl = 20, K = 64, SNR = 15 dB.
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Figure 4.8: Mean MDLV versus standard deviation of delay spreading; Pl = 20,
K = 64, SNR = 15 dB

As mentioned before, the increase in the RMSE with respect to the delay spreading
may be due to the approximation error in Taylor expansion. However, as shown in
Figures 4.6 and 4.7, this increase is less significant for the proposed subspace tracking
based method; this is the main advantage of tracking the effective dimension of the
signal subspace that changes according to the value of the standard deviation of the
delay spreading and the noise level.

Figure 4.9 shows the RMSE of mean delay estimation of the proposed subspace
tracking based method and MUSIC versus standard deviation of delay spreading for
different SNR values.
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Figure 4.9: RMSE of mean delay estimation of the proposed subspace tracking based
method and MUSIC versus standard deviation of delay spreading; Pl = 20, K = 64,
SNR = 5, 10, 15 dB.

The obtained results show a moderate improvement in the estimation performance
as SNR increases. In fact as SNR increases, better estimation of the covariance matrix
is obtained, hence better estimation of signal or noise subspaces is attained.

As one cluster (L = 1) is considered before for the sake of simplification, Figures
4.10 and 4.11 show the RMSE of cluster mean delay estimation for L = 2 and L = 3
situations, respectively, at SNR = 15 dB.
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Figure 4.10: RMSE of mean delay estimation of the proposed cost function for U = 1,
U = 2 and U = 3, the proposed subspace tracking based method and MUSIC versus
standard deviation of delay spreading; L = 2, t = [0.37 0.51]T , Pl = 20, K = 64,
SNR = 15 dB.
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Figure 4.11: RMSE of mean delay estimation of the proposed cost function for U = 1,
U = 2 and U = 3, the proposed subspace tracking based method and MUSIC versus
standard deviation of delay spreading; L = 3, t = [0.37 0.51 0.67]T , Pl = 20,
K = 64, SNR = 15 dB.

Figure 4.12 shows the RMSE of mean delay estimation of the proposed modified
SOMP method, the proposed subspace tracking based method, SOMP method and MU-
SIC versus standard deviation delay spreading. As shown in the figure, the modified
SOMP method provides better performance than the conventional MUSIC and SOMP
methods when the standard deviation of delay spreading is above a certain value. The
proposed subspace tracking based method provides the best performance.
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Figure 4.12: RMSE of mean delay estimation of the modified SOMP method, the
proposed subspace tracking based method, SOMP method and MUSIC versus standard
deviation of delay spreading; L = 3, t = [0.37 0.51 0.67]T , Pl = 20, K = 64, SNR =
15 dB.

4.5 Conclusion

In this chapter, two methods for channel mean delays estimation are proposed. A de-
terministic channel model is considered, and the DFT coefficients of the received signal
are rederived by means of Taylor expansion around the mean delay parameter. Based
on the first order Taylor expansion, a compressive sensing based method is proposed.
Then based on higher order Taylor approximation, a subspace based method is devel-
oped based on the tracking of the effective dimension of the signal subspace, which
depends on the channel features. The two proposed schemes are applied to estimate
the channel mean delays. The proposed methods show better performance in compari-
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son to the conventional methods. In comparison with the proposed compressive sensing
based method, the proposed subspace based method allows estimating the cluster mean
delays with more accuracy.



Chapter 5

Second order delay statistics
estimation exploiting channel
statistics - a stochastic approach

A cluster of multirays can be characterized by its mean delay and its delay spreading.
In the previous chapter, we focus on estimating the mean delays of the different clusters
based on a deterministic channel model. For the work to be complete, we propose in
this chapter to estimate the standard deviation of the delay spreading of each cluster
based on a stochastic model, exploiting time delays distribution of the clustered signals.
Based on the stochastic model, a subspace based method is derived where both the
mean delay and the standard deviation can be joinlty estimated but through a two-
dimensional expensive search. Instead, the estimation procedure is divided into two
steps. As a first step, the channel mean delays can be estimated using one of the
methods proposed in the previous chapter based on the deterministic channel model.
Then the associated standard deviations are estimated based on the stochastic model
using the mean delays already estimated in the first step.

5.1 Stochastic model based approach

In this approach, the channel delay parameter is modeled in a stochastic manner, assum-
ing a predefined statistical distribution for multiray delays. The Fourier coefficients for
any transmit-receive antenna pair can be modeled with the following random function:
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X[k] =
L∑
l=1

∫
t∈T

vk(t)αl(t; ξl)dt+ Z[k] (5.1)

where T is the interval in which the spreading for all clusters takes place; ξl = [tl, σl]
is the parameter vector characterizing the channel, such that tl is the mean delay and
σl is the standard deviation of the delay spreading of cluster l; αl(t; ξl) is the complex
gain in the cluster, where for a fixed ξl, αl(t; ξl) is a random process with respect to the
delay variable t, and Z[k] is the additive noise modeled as a Gaussian random variable
with zero mean and variance σ2

z . Since the gain coefficients are assumed to be identi-
cally distributed for all the transmit-receive antenna pairs with the same distribution
of multiray delays, subscript (n,m) is omitted in the above equation.

The Fourier coefficients are concatenated to form the following random vector:

x =
L∑
l=1

∫
t∈T

v(t)αl(t; ξl)dt+ z (5.2)

with x = [X[−K/2 + 1], . . . , X[K/2]]T , v(t) = [v−K/2+1(t), . . . , vK/2(t)]T and z =
[Z[−K/2 + 1], . . . , Z[K/2]]T .

The corresponding covariance matrix is given by

RX = E[xxH ] =

L∑
l,l
′
=1

∫
T

∫
T

E[αl(t; ξl)α
∗
l′
(t
′
; ξl′ )]v(t)v(t

′
)Hdtdt

′
+ σ2

zI (5.3)

where t, t
′ ∈ T .

Assuming that the different clustered signals are uncorrelated, and the multirays
within each cluster are also uncorrelated. It comes that :

E[αl(t; ξl)α
∗
l′
(t
′
; ξl′ )] = δll′δtt′σ

2
αl
wl(t; ξl) (5.4)

where δpq is the Kronecker delta.

The covariance matrix can then be written as follows:



5.1 Stochastic model based approach 109

RX =
L∑
l=1

R(tl, σl) + σ2
zI (5.5)

where

R(tl, σl) = σ2
αl

∫ +∞

−∞
wl(t; ξl)v(t)v(t)Hdt (5.6)

is the covariance matrix of the lth received clustered signal, wl(t; ξl) is the normalized
power delay function of the cluster and σ2

αl
is its total mean power.

Assuming that multiray delays in each cluster are uniformly distributed, we have:

wl(t; ξl) =
1

2
√

3σl
Rect(tl −

√
3σl, tl +

√
3σl) (5.7)

It turns that:

[R(tl, σl)]k+K/2,k′+K/2 =

|G[k]|2

2
√

3σl

∫ +∞

−∞
Rect(tl −

√
3σl, tl +

√
3σl)e

−j 2π
T

(k−k′ )tdt (5.8)

where k, k
′
= −K/2 + 1 . . . K/2. Let t̃ = t− tl, then

[R(tl, σl)]k+K/2,k′+K/2 =

|G[k]|2 e
−j 2π

T
(k−k′ )tl

2
√

3σl

∫ +
√

3σl

−
√

3σl

e−j
2π
T

(k−k′ )t̃dt̃

= |G[k]|2e−j
2π
T

(k−k′ )tlsinc(
2π

T
(k − k′)

√
3σl) (5.9)

The eigendecomposition of the observation covariance matrix can be given as

RX = UΛUH = UsΛsU
H
s + UnΛnU

H
n (5.10)

where the columns of Un are the K−(U+1)L eigenvectors spanning the noise subspace,
associated with the K − (U + 1)L smallest eigenvalues of RX.

For the clustered signal l, the signal has most of its energy concentrated in the
first few eigenvalues of the corresponding covariance matrix R(tl, σl). The eigenvectors
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associated to these eigenvalues are orthogonal to the noise subspace, as the remaining
eigenvalues are considered so small, we have

R(tl, σl)Un ≈ 0 (5.11)

R(tl, σl) is given in (5.9) where it is expressed in terms of the mean delay of cluster
l and the corresponding standard deviation.

Hence practically, the mean delay and the standard deviation can be jointly esti-
mated by searching for the peaks of the following 2D cost function:

Pss2(t, σ) =
1

||R(t, σ)Ûn||2F
(5.12)

where Ûn is the matrix of the estimated noise subspace eigenvectors, and ||.||F is the
Frobenius norm.

5.2 Joint deterministic-stochastic based approach

The above stochastic model based approach requires a two-dimensional search which is
computationally expensive. Hence we propose a combination between the determinstic
model and the stochastic model based approaches. Firstly, the mean delays are esti-
mated through a one-dimensional search by the cost function given in (4.36) or by the
modified SOMP method, then the value of each estimated mean delay is substituted in
R(t, σ) where from (5.9),

[R(t, σ)]k+K/2,k′+K/2 = |G[k]|2e−j
2π
T

(k−k′ )tsinc(
2π

T
(k − k′)

√
3σ) (5.13)

the corresponding standard deviation can then be estimated by (5.12) through a one-
dimensional search over σ.

The steps of the proposed approach are summarized as follows:
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Algorithm of the proposed joint deterministic-stochastic based approach

1- Collect the NM DFT-domain vectors to build matrix X.

2- Estimate the covariance matrix RX as in (4.26).

3- Estimate the effective dimension of the signal/noise subspace and construct matrix
Ûn.

4- Estimate the L mean delays using one of the proposed approaches in chapter 4.

5- For each estimated mean delay t̂l, substitute its value in R(t, σ) (5.13). Then the
corresponding standard deviation σl is estimated as:

σ̂l = argmax
σ

1

||R(t̂l, σ)Ûn||2F
(5.14)

5.3 Simulation results

In this section, some simulations are conducted to illustrate the behavior of the pro-
posed method. Simulations are carried out for a 24× 24 MIMO system. Three clusters
(L = 3) with associated delays t1 = 0.37T , t2 = 0.51T and t3 = 0.67T are considered.
Pl = 20 cluster multirays are considered for l = 1, . . . , L. K = 64 Fourier coefficients
are taken, the delay deviations τ

(n,m)
lp are generated according to zero mean uniform dis-

tribution with same variance for the three clusters. The effective power of each cluster
is normalized such that

∑Pl
p=1E[|α(n,m)

lp |2] = 1, ∀{l, n,m}. RMSE values are obtained
from Q = 500 independent runs.

The RMSE of the standard deviation estimation is calculated as

√∑Q
i=1

∑L
l=1(σ̂l(i)−σl)2
QT 2L

where σ̂l(i) is the estimated standard deviation of the lth cluster for the ith experiment.
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As the scope of this chapter is to estimate the standard deviation of the delay
spreading, we show in the first figure the RMSE of the standard deviation estimation
versus SNR, assuming that the mean delays are known.
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Figure 5.1: RMSE of standard deviation estimation versus SNR of the proposed ap-
proach with exact mean delay , σl = 0.005T for all l.

In Figure 5.2, we show the RMSE of standard deviation estimation versus SNR
provided by the proposed method (5.14) after substituting the mean delay already
estimated using (4.36).
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Figure 5.2: RMSE of standard deviation estimation versus SNR, σl = 0.005T for all l.

As discussed in the previous chapter, two factors play the role in determining the
effective dimension of the signal subspace, the standard deviation of the delay spread-
ing and the noise level. As we can see in Figure 5.2, for relatively small SNR, it is
better to use 2L as the dimension of the signal subspace (K − 2L as the dimension of
the noise subspace). However as SNR increases, it is better to increase the considered
dimension of the signal subspace to 3L (K−3L as the dimension of the noise subspace).
In fact for low SNR, small signal contributions are covered by noise, as a result, noise
seems to occupy higher dimension in the measurement space, and therefore the effec-
tive dimension of the signal subspace decreases. On the other hand, as SNR increases,
the effective dimension of the signal subspace increases, hence it is better to consider
higher dimension for the signal subspace (or lower dimension for the noise subspace).
This is illustrated in the above figures. By observing the two figures, we can notice
the influence of the accuracy of the mean delay estimation on the standard deviation
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estimation. This is expected as the mean delay estimated using (4.36) is used for the
standard deviation estimation.

Figure 5.3 shows the RMSE of standard deviation estimation versus the standard
deviation of delay spreading at SNR=15 dB.
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Figure 5.3: RMSE of standard deviation estimation versus standard deviation of delay
spreading, SNR =15 dB.

As noticed, the effective dimension of the signal subspace increases (or the effective
dimension of the noise subspace decreases) when the delay spreading increases. In fact,
with the same principle discussed before, as the delay spreading increases, the signal
contribution increases, subsequently, the effective dimension of the signal subspace in-
creases, hence it is better to consider higher dimension for the signal subspace and lower
dimension for the noise subspace.
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5.4 Conclusion

A method for estimating the standard deviation of delay spreading parameter of clus-
tered MIMO channel is proposed in this chapter. The channel delay parameter is
treated as stochastic and the channel model is rederived and expressed in terms of the
mean delay and the standard deviation of delay spreading parameters, exploiting the
statistical distribution of multirays within clusters. A subspace based method that has
the ability to estimate the mean delay and the standard deviation of delay spreading
parameters jointly with two-dimensional search is then derived. A more interesting
two-step approach is proposed where the mean delay parameter is estimated using one
of the methods proposed in chapter 4, this estimated mean delay is then utilized to es-
timate the standard deviation of delay spreading parameter using the derived subspace
based method.





General conclusion and perspectives

Conclusion

Understanding the characteristics of the wireless propagation channel is essential for
the design of MIMO communication systems. Sparsity and clustering are two wireless
channel properties that future wireless communication systems have to cope with. In
order to permit communication over such channels, a deep knowledge of the channel
characteristics and parameters is required. This thesis deals with sparsity and cluster-
ing properties of wireless channels. The channel is characterized in the time domain,
where different schemes are proposed to estimate some time domain channel parameters.

The first chapter of the thesis provides an overview of the basic wireless propaga-
tion characteristics and introduces MIMO technology. The second chapter provides
an overview of various MIMO channel models with different classifications based on
different situations. The chapter then introduces the sparsity and clustering properties
of several wireless channels, in addition to the common support property in MIMO
outdoor communication scenarios. A sparse clustered MIMO channel model with com-
mon support hypothesis is then defined. The channel is considered sparse, such that
it contains limited number of multipath components, where each multipath component
is modeled as a cluster of multirays around a mean delay, and each cluster is param-
eterized by its mean delay and delay spreading. For this considered outdoor channel
model, the multirays associated to the same scatterer are assumed to share the same de-
lay parameters (mean and standard deviation) on the different transmit-receive antenna
pairs. Chapter 3 deals with the MIMO channel parameter estimation problem. The
estimation approaches are classified into parametric and nonparametric. The chapter
focuses on the parametric approach for estimation as it allows exploiting some proper-
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ties of the channel such as sparsity and common support.

Chapters 4 and 5 illustrate the methods proposed to estimate some channel parame-
ters. The sparse clustered model defined in chapter 2 is considered. The work is focused
on estimating the mean delay and the standard deviation of delay spreading param-
eters characterizing the clusters. Chapter 4 deals with mean delay estimation, where
two approaches are proposed, a compressive sensing based approach and a subspace
based approach, based on a deterministic channel model. The compressive sensing
based approach is based on the first order Taylor expansion of the observation Fourier
coefficients, where a modified SOMP method is proposed to estimate the cluster mean
delays. The proposed modified SOMP method shows a better estimate of the mean de-
lay parameter in comparison with the conventional SOMP method. The second scheme
for estimation is based on the subspace approach. The expressions of the observation
Fourier coefficients are rederived based on higher order Taylor expansion. Then, a sub-
space based method that exploits the rederived model is proposed to estimate the mean
delays. The proposed approach is based on the tracking of the effective dimension of the
signal subspace that changes depending on the standard deviation of delay spreading
and SNR. The proposed subspace based approach outperforms both the conventional
MUSIC method and the proposed compressive sensing based method (modified SOMP
method) in terms of cluster mean delays estimation. In chapter 5, we focus on clus-
ter delay spreads estimation. A stochastic modeling of the channel delay parameter is
proposed, where the statistical distribution of multiray delays is exploited. A subspace
based method is then derived where the mean delay and the delay spreading parameters
can be estimated jointly through a two-dimensional search. More interesting, a two-
step approach is proposed. The mean delays are estimated using one of the approaches
proposed for mean delay estimation. The estimated mean delays are then exploited to
estimate the corresponding standard deviation of delay spreading using the subspace
approach.

Perspectives

The signal subspace tracking criterion proposed in chapter 4 does not seem to be effi-
cient in some cases. As a future work, the problem of signal subspace tracking can be
addressed where other approaches can be developed to attain better performance.

A time domain channel model is considered in this work. However, it will be inter-
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esting to include some spatial domain parameters (angles), where different approaches
can be proposed to estimate both time and angular domain parameters.

In addition, based on the estimated channel parameters, a study can be performed
to analyze the effect of estimation error on the performance of the system. Moreover,
a study can be carried out to analyze the capacity over the considered channel.

Finally, it would be interesting to conduct some experiments in real environments.
On one side, the validity of the considered channel model can be investigated, on the
other side, the effectiveness of the proposed estimation methods in real propagation
environments can be examined.





Résumé en francais

Dans le monde antique, la lumière et les drapeaux étaient utilisés comme moyen de
communication sans fil. En 1867, James Clerk Maxwell prédit l’existence d’ondes
électromagnétiques (EM), proposant une interrelation entre les champs électriques et
magnétiques. En 1887, Heinrich Rudolf Hertz a confirmé l’existence d’ondes électromag-
nétiques voyageant à la vitesse de la lumière en effectuant des expériences dans son
laboratoire. Les ondes qu’il a produites et reçues sont maintenant appelées ondes ra-
dio. Guglielmo Marconi a fait une percée en mettant au point le télégraphe sans fil en
1895. Depuis lors, il a réussi à transmettre des signaux radio dans l’espace, augmen-
tant progressivement la distance de communication. En 1901, il a établi la première
communication sans fil à travers l’océan, en transmettant des signaux radio à travers
l’océan Atlantique. Depuis lors jusqu’à aujourd’hui, différentes technologies sans fil ont
été développées, notamment la radiodiffusion et la télédiffusion, les communications
radar, les communications par satellite, les réseaux sans fil, les communications mobiles
sans fil, etc.

Avec la montée de l’ère du big data et la demande croissante de services de données
sans fil, l’objectif principal des chercheurs au fil des ans a été de soutenir des débits de
données élevés pour répondre aux besoins. Un obstacle majeur à la construction d’un
système de communication sans fil à haute vitesse fiable est le moyen de propagation
sans fil. En communication sans fil, le signal se propageant par le canal sans fil est
exposé à différents types d’évanouissements, en particulier les évanouissements dus à la
propagation par trajets multiples. Cela affecte la fiabilité de la liaison de communica-
tion et limite le débit de données.

La technologie MIMO (Multiple-input multiple-output) est devenue un sujet de
recherche actif au cours de la dernière décennie en raison de sa capacité d’atteindre
les vitesses de transmission élevées requises par un nombre croissant d’applications
exigeantes en données. La technologie MIMO offre de nombreux avantages qui per-
mettent de relever les défis posés par les déficiences du canal sans fil, en particulier
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l’évanouissement par trajets multiples. Il fournit plusieurs gains de performance im-
portants tels que le gain d’antenne, le gain de diversité et le gain de multiplexage. Les
avantages du MIMO sont obtenus grâce à l’exploitation de la dimension spatiale sur
plusieurs antennes de l’émetteur et du récepteur, en plus des dimensions de temps et
de fréquence déjà exploitées dans les systèmes conventionnels à entrée unique et sortie
unique (SISO).

Le MIMO et le multiplexage par répartition en fréquence orthogonale (OFDM)
sont des technologies clés utilisées dans les réseaux sans fil 4G (quatrième génération).
MIMO est une technologie clé pour la prochaine cinquième génération (5G) de réseaux
sans fil qui utilisent des réseaux d’antennes massifs et des fréquences millimétriques
(MMW).

La connaissance des caractéristiques des canaux de propagation sans fil est cruciale
pour la fiabilité des communications sans fil, en particulier dans les communications
MIMO, afin de profiter pleinement des avantages offerts par l’utilisation de la tech-
nologie antennes multiples du côté de l’émetteur et du récepteur. Ces informations
sur les caractéristiques du canal sont appelées informations sur l’état du canal (CSI).
CSI représente l’information sur la propagation du signal de l’émetteur au récepteur, il
représente les effets de canal sans fil tels que l’atténuation de puissance et l’étalement
dans le temps des signaux. La connaissance des canaux de propagation sans fil est
essentielle pour la conception des systèmes de communication MIMO. Les informa-
tions sur l’état des canaux au niveau du récepteur (CSIR) peuvent être utilisées à
des fins d’égalisation contre les interférences intersymboles (ISI) causées par la prop-
agation par trajets multiples, et les informations sur l’état des canaux au niveau de
l’émetteur (CSIT) peuvent être utilisées pour concevoir une transmission optimale. Par
conséquent, un système de communication MIMO “idéal” performant nécessiterait une
connaissance exacte du canal MIMO ou CSI. Les approches d’estimation CSI peuvent
être classées en deux catégories : paramétrique et non paramétrique. Dans l’approche
non paramétrique, la matrice des canaux est estimée directement sans référence à aucun
paramètre de propagation physique sous-jacent. D’autre part, l’approche paramétrique
s’appuie sur des modèles de canaux physiques pour estimer les paramètres des canaux,
ces paramètres sont utiles pour comprendre le canal sans fil et peuvent être utilisés
pour améliorer les performances du système de communication en adaptant les concep-
tions de transmission et de réception en fonction de celles-ci. L’intérêt de l’approche
paramétrique est qu’elle permet d’exploiter certaines propriétés du canal telles que la
parcimonie et le support commun.
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Le phénomène de regroupement dû aux diffuseurs est une propriété importante qui
caractérise plusieurs canaux sans fil, où, selon les différentes recherches sur les canaux
sans fil, les composantes de trajets multiples des canaux sont modélisées comme des
grappes (“clusters”) de rayons multiples. Par exemple, ce phénomène (regroupement
ou “clustering”) caractérise les canaux de communication à large bande/à bande ul-
tralarge (UWB) et MMW. Par conséquent, la parcimonie et le regroupement sont deux
propriétés des canaux sans fil auxquelles les futurs systèmes de communication sans fil
devront faire face. Afin de permettre la communication sur de tels canaux, une con-
naissance approfondie des caractéristiques et des paramètres du canal est nécessaire,
où les nouvelles caractéristiques du canal doivent être prises en compte dans les fu-
tures techniques d’estimation du canal. Les travaux de cette thèse se concentrent sur
l’estimation de paramètres de canal MIMO en grappes, en particulier les paramètres
du domaine temporel. Le canal est caractérisé dans le domaine temporel, où différents
schémas sont proposés pour estimer certains paramètres de canal du domaine temporel.

La thèse est divisée en cinq chapitres. La première partie du premier chapitre
représente les caractéristiques de base de la propagation d’un canal sans fil, en partic-
ulier l’évanouissement dans un canal sans fil. Le canal d’évanouissement est classé en
évanouissement à grande échelle et évanouissement à petite échelle, l’évanouissement
à grande échelle caractérise le comportement du canal sur de grandes distances et in-
corpore l’affaiblissement sur le trajet et l’ombrage. L’évanouissement à petite échelle
caractérise le comportement du canal sur de courtes périodes de temps ou sur de cour-
tes distances de déplacement et est classé en deux catégories en fonction de l’étalement
du délai multi-trajet et de l’étalement Doppler. Sur la base de l’étalement du délai de
propagation par trajets multiples, les évanouissements sont classés en évanouissements
non sélectifs et en évanouissements sélectifs en fréquence. Basé sur l’étalement Doppler,
l’évanouissement est classé en deux catégories : l’évanouissement lent et l’évanouissement
rapide. Dans la deuxième partie, nous introduisons les techniques de diversité dans les
systèmes de communication sans fil, et nous nous concentrons sur la diversité spatiale,
en montrant les avantages apportés par l’utilisation d’antennes d’émission et/ou de
réception multiples.

Dans le deuxième chapitre, nous donnons un aperçu des différents modèles de canaux
MIMO. Les modèles de canaux sont classés en modèles physiques et non physiques. Les
modèles physiques sont ensuite classés en modèles déterministes et stochastiques, où les
modèles stochastiques sont classés en modèles géométriques, modèles non géométriques
et modèles analytiques fondés sur la propagation. Ensuite, nous introduisons les pro-
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priétés de parcimonie et de regroupement dans les canaux sans fil, en plus de la propriété
de support commune dans les canaux MIMO extérieurs. Enfin, nous introduisons un
modèle de canal MIMO en grappes parcimonieux avec un support commun, sur lequel
sont basées les méthodes d’estimation que nous proposons.

Le chapitre 3 traite de l’estimation des paramètres de canal. Les méthodes d’estimat-
ion sont classées en deux catégories : paramétrique et non paramétrique. L’approche
non paramétrique fait référence à l’estimation de la matrice de canaux MIMO tandis
que l’approche paramétrique fait référence à l’estimat-ion des paramètres du canal.
Nous classons les méthodes qui peuvent être utilisées pour l’estimation des paramètres
de canal en 3 catégories : les méthodes de formation de faisceau, les méthodes basées
sur le sous-espace et les méthodes de acquisition comprimée.

Les chapitres 4 et 5 illustrent les méthodes proposées pour estimer certains paramètres
de canal. Le modèle en grappes parcimonieux défini au chapitre 2 est considéré. Le
travail est axé sur l’estimation du retard moyen et de l’écart-type des paramètres
d’étalement du retard caractérisant les grappes. Le chapitre 4 traite de l’estimation du
retard moyen, où deux approches sont proposées, une approche fondée sur l’acquisition
comprimée et une approche fondée sur le sous-espace, fondée sur un modèle de canal
déterministe. L’approche fondée sur l’acquisition comprimée est basée sur l’expansion
de Taylor du premier ordre autour du paramètre du retard moyen, où une méthode
SOMP modifiée est proposée pour estimer les retards moyens des grappes. La méthode
SOMP modifiée montre une meilleure estimation du retard moyen par rapport à la
méthode SOMP conventionnelle. L’approche sous-espace est fondée sur l’expansion de
Taylor d’ordre supérieur autour du paramètre du retard moyen, où une méthode fondée
sur le sous-espace est proposée pour estimer les retards moyens de la grappe. L’approche
proposée est fondée sur le suivi de la dimension effective du sous-espace du signal qui
varie en fonction de l’écart-type de l’étalement du retard et du rapport signal/bruit.
L’approche basée sur les sous-espaces proposée surpasse à la fois la méthode MUSIC con-
ventionnelle et la méthode basée sur l’acquisition comprimée (méthode SOMP modifiée)
en termes d’estimation des retards moyens des grappes. Dans le chapitre 5, nous nous
concentrons sur l’estimation de l’écart-type de l’étalement du retard. Une modélisation
stochastique du paramètre de retard du canal est proposée, où la distribution statis-
tique des retards multi-rayons au sein de chaque grappe est exploitée. Une méthode
basée sur le sous-espace est dérivée où le retard moyen et les paramètres d’étalement
du retard peuvent être estimés conjointement par une recherche bidimensionnelle. Plus
intéressant, une approche en deux étapes est proposée. Les retards moyens sont es-
timés à l’aide de l’une des approches proposées pour l’estimation du retard moyen. Les
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retards moyens estimés sont ensuite exploités pour estimer l’écart-type de l’étalement
des retards en utilisant l’approche de sous-espace.
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Résumé : L'utilisation de la technologie MIMO 
dans les communications sans fil a augmenté de 
façon remarquable au cours des dernières 
années.  En utilisant plusieurs antennes 
d'émission et de réception, cette technologie 
offre de nombreux avantages qui permettent de 
relever les défis posés par les déficiences du 
canal sans fil, en particulier les 
évanouissements par trajets multiples. Cela 
apporte plusieurs gains de performance 
importants tels que le gain d'antenne, le gain de 
diversité et le gain de multiplexage. Plusieurs 
canaux sans fil présentent des signaux de 
propagation parcimonieux et en "clusters".  Ces 
propriétés caractérisent les canaux des 
différentes technologies de communication sans 
fil.   Dans cette thèse, une classe de modèles de 
canaux MIMO en clusters est considérée, où les 
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composantes de trajets multiples des canaux 
sont modélisées comme des clusters de rayons 
multiples autour de retards moyens, chaque 
cluster étant caractérisée par son retard moyen 
et son étalement de retards. Les travaux de 
recherche sont axés sur l'estimation de ces 
paramètres du domaine temporel. Pour 
l'estimation du paramètre du retard moyen, 
deux approches sont proposées, une approche 
fondée sur l’acquisition comprimée et une 
approche fondée sur le sous-espace, fondée 
sur un traitement déterministe du canal. Une 
approche basée sur le sous-espace est ensuite 
proposée pour estimer l'écart-type du 
paramètre d'étalement du retard, à partir d'une 
description stochastique du canal. Les résultats 
des estimations sont illustrés par des 
simulations informatiques. 
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Abstract :  The use of MIMO technology in 
wireless communications has been increasing  
remarkably in the last years.  By employing 
multiple transmit and receive antennas, the 
technology provides a plenty of benefits that 
allow dealing with the challenges posed by the 
impairments in the wireless channel, especially 
multipath fading. It provides several important 
performance gains such as antenna gain, 
diversity gain, and multiplexing gain. Several 
wireless channels exhibit sparsity and clustering 
of the propagating signals.  Such properties 
characterize channels for different wireless 
communication technologies.  In this thesis, a 
class of clustered MIMO channel models is  
considered,  where channel multipath 
components 

components are modeled as clusters of 
multirays around mean delays, with each cluster 
characterized by its mean delay and delay 
spreading. The research work is focused on 
estimating these time domain parameters. For 
the mean delay parameter estimation, two 
approaches are proposed, a compressive 
sensing based approach and a subspace based 
approach, based on a deterministic treatment of 
the channel. A subspace based approach is 
then proposed to estimate the standard 
deviation of delay spreading parameter, based 
on a stochastic description of the channel. 
Estimation results are illustrated through 
computer simulations. 
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