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Bruno DESPRÉS Examinateur
Pietro CONGEDO Examinateur
Daniel VANDERHAEGEN Examinateur
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vacances d’été!). Merci à Daniel qui, même s’il n’était pas rapporteur, a également fait cet effort (et
merci pour le bouquin!). Merci à Bruno et Pietro d’avoir accepté d’être examinateurs mais surtout pour
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résoudre.

Bon j’arrête ici, sinon je ne mettrai jamais le document en ligne. Merci à Tati Do.
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1.3.1 Content and ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 ... Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 Few words on the notations and the presentation tricks . . . . . . . . . . . . . 20

This document presents my research contributions to two fields of application: uncertainty quan-
tification for systems of conservation laws (part II), and the numerical (Monte-Carlo) resolution of the
(linear and nonlinear) deterministic Boltzmann equation (part III). Basically, in part II, we present some
strategies to solve stochastic partial differential equations (PDEs) with deterministic methods whereas
in part III we solve deterministic PDEs with stochastic resolution schemes. At first glance, the two
topics may appear different if not orthogonal. In this introductory part, we explain in which sense both
subjects are parts of the same research topic. We suggest two ways to emphasize their common points:

– in section 1.1, we insist on the fact that two models are mainly studied in this document, systems of
conservation laws and the (linear and nonlinear) Boltzmann equation. We first recall they are two
limits of the same more general quadratic Boltzmann equation. There exists several ways to derive
those limits and they are of importance in this document. For this reason, we take few pages to
briefly introduce them to obtain the two main models studied in this manuscript. We also briefly
go through the common resolution schemes for those two limits and put forward analogies: some
well-known numerical methods applied in one field of application can be very useful in the other
once some similarities noticed. It opens to new ideas, new models and new numerical methods
inspired from one field to the other.

– On another hand, in section 1.2, instead of focusing on the models we are solving in parts II and
III, we focus on the purposes we aim at achieving with these models in a Verification & Validation
(V&V) context. V&V provides the basic bricks for someone willing to compare efficiently experi-
mental and numerical results. We will see that in part II, we aim at quantifying probabilistically

3



the fluctuation/discrepancy between experimental observations and numerical results (validation).
On another hand, in part III, we focus on reducing the numerical error of Monte-Carlo simulations
(verification).

In brief, in this document, we deal with two models, two different goals with respect to these two models
because of two different needs with respect to V&V. The common objective remains we aim at providing
better simulation codes, improving their capabilities and ensuring better physical interpretations.

1.1 The (quadratic) Boltzmann equation and two of its limits

In this section, we do not aim at being exhaustive on the quadratic Boltzmann equation, its conditions
for relevance [18] nor the resolution strategies for systems of conservation laws or the linear Boltzmann
equation. The material is mainly taken from [207, 248, 128, 60, 18] and rearranged so that it helps
putting forward that the research contributions presented in this document are linked, intertwined and
first steps of an ongoing scientific project.

The (quadratic) Boltzmann equation models the properties of dilute gases by statistically analysing
the elementary collision processes between pairs of molecules. By statistically, we mean it does not aim
at characterising the positions and velocities of each particles of the gases but the probability distribution
f(x, t,v) ≥ 0 of having particles at position x = (x1, x2, x3)t ∈ D ⊂ R3, velocity v = (v1, v2, v3)t ∈ R3

and time t ∈ [0, T ] ⊂ R+. The unknown consequently depends on 3(x) + 1(t) + 3(v) = 7 independent
variables. The probability distribution f is in a 7−dimensional space and is vectorial for a mixture of
M different species of non-reacting mono-atomic particles of masses (mi)i∈{1,...,M}

f(x, t,v) = (f1(x, t,v), ..., fM (x, t,v))t.

Each (fi)i∈{1,...,M} ≥ 0 denotes the probability distribution for species i and satisfies a coupled nonlinear
integro-differential equation ∀i ∈ {1, ...,M}

∂tfi(x, t,v) + v∂xfi(x, t,v) + Fi(x, t,v)∂vfi(x, t,v) = Qi(fi, f)(x, t,v). (1.1)

In the above equation, Fi denotes the force applied to particle i and the coupling between species is
made via (Qi)i∈{1,...,M}, the collision kernels. These kernels are given by ∀i ∈ {1, ...,M}

Qi(fi, f)(x, t,v) =

M∑
j=1

Qi,j(fi, fj)(x, t,v), (1.2)

with

Qi,j(fi, fj)(x, t,v) =∫
|v − vj |σi,j(v − vj)(fi(x, t,v

′
i(v,vj))fj(x, t,v

′
j(v,vj))− fi(x, t,v)fj(x, t,vj))dvj .

(1.3)

They are built considering interactions resulting solely from two particles (hence the quadratic denomi-
nation) that are assumed to be uncorrelated prior to the collision (molecular chaos, see [18, 251, 159]). In
(1.3), the term σi,j denotes the scattering differential cross-sections between species i and j. It describes
the probability of binary collisions between i and j together with the probability for a certain change of
velocities, from v and vj to v′ and v′j . The expression of the scattering kernels with respect to v′,v′j
may be too general here (one can for example explicit the relations v′j(v,vj) and v′(v,vj) based on

kinematic considerations, see [248, 128, 60] and [32]1), but it is not central to illustrate our purpose. Let

1The notations of this document are very close to the one of this paper regarding collision kernels.
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us rewrite system (1.1) in a more concise form by introducing

f(x, t,v, λ) =

M∑
i=1

fi(x, t,v)δi(λ),

F (x, t,v, λ) =

M∑
i=1

Fi(x, t,v)δi(λ),

Q(f, f)(x, t,v, λ) =

M∑
i=1

Qi(fi, f)(x, t,v)δi(λ).

Hence, equation (1.1) can be rewritten as a scalar concise equation

∂tf(x, t,v, λ) + v∂xf(x, t,v, λ) + F (x, t,v, λ)∂vf(x, t,v, λ) = Q(f, f)(x, t,v, λ). (1.4)

Of course, integrate with respect to λ in the above expression and we recover (1.1). Expression (1.4),
equivalent to (1.1) but expressed with respect to an additional parameter λ, may appear unconventional
but prepares some discussions for the construction of MC scheme2 in part III. The global collision kernel
Q(f, f) satisfies conservation properties for

mass:

∫∫
Q(f, f)(x, t,v)m(λ)dvdλ =

M∑
i=1

∫
Qi(fi, f)(x, t,v) midv = 0,

momentum:

∫∫
Q(f, f)(x, t,v)m(λ)vdvdλ =

M∑
i=1

∫
Qi(fi, f)(x, t,v) mivdv = 0,

energy:

∫∫
Q(f, f)(x, t,v)m(λ)

1

2
|v|2dvdλ =

M∑
i=1

∫
Qi(fi, f)(x, t,v) mi

1
2 |v|

2dv = 0.

(1.5)

Note that in the above expression, we have m(λ) =
∑M
i=1miδi(λ). The kernel also satisfies (a multi-

species version, see [44, 89]) of the H-theorem, i.e. we have3

∂t

∫
f(x, t,v) ln(f(x, t,v))dv+∂x

∫
vf(x, t,v) ln(f(x, t,v))dv =

∫
Q(f, f)(x, t,v) ln(f(x, t,v))dv ≤ 0.

It implies that any local equilibrium is the minimum of the above Boltzmann entropy and has the
form of a local Maxwellian measure [18]: recall v is three dimensional, i.e. v = (v1, v2, v3)t, so that
dv = dv1dv2dv3. Then the Maxwellian measure for particle of type i is given by

Mηi,u,T (x, t,v)dv =

3∏
j=1

Mηi,uj ,T (x, t, vj)dvj . (1.6)

In (1.6), u(x, t) = (u1(x, t), u2(x, t), u3(x, t))t and

Mηj ,ui,T (x, t, vi) = η
1
3
j (x, t)

√
mj√

2πT (x, t)
exp

(
−mi

|vi − ui(x, t)|2
2T (x, t)

)
, (1.7)

with j ∈ {1, ...,M} and i ∈ {1, 2, 3}. If f satisfies the above described equilibrium property, the first

2See how expression (10.62) is built for example.

3where f(x, t,v) =

∫
f(x, t,v, λ)dλ.
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three moments of f are given by∫∫
m(λ)f(x, t,v, λ) dvdλ = ρ(x, t), which defines the mass density,

1
ρ(x, t)

∫∫
m(λ)f(x, t,v, λ) vdvdλ = u(x, t), which defines the bulk velocity,

1
ρ(x, t)

∫∫
m(λ)f(x, t,v, λ) 1

3 |v − u(x, t)|2dvdλ = T (x, t), which defines the temperature,

(1.8)

where ρ(x, t) =
∑M
i=1miηi(x, t) with ηi(x, t) =

∫
fi(x, t,v)dv, ∀i ∈ {1, ...,M}. The problem of existence

and uniqueness of solutions, stability around global equilibrium in short/long times etc. of the quadratic
Boltzmann equation must come with proper initial and boundary conditions. Some questions regarding
the previous considerations are still not fully resolved [128, 248, 44, 91, 131]. We keep those kind of
theoretical considerations and discussions for the particular cases treated in parts II and III.

Now, to understand the logical structure of this document, it is enough considering a mixture of only
two species of particles, i.e. we have M = 2: we consider H−particles4, described by fH(x, t,v) ≥ 0,
and l−ones5 described by fl(x, t,v) ≥ 0. In this case (1.1) resumes to

∂tfH(x, t,v) + v∂xfH(x, t,v) + FH(x, t,v)∂vfH(x, t,v)
= QH(fH , fl)(x, t,v),
= QH,H(fH , fH)(x, t,v) +QH,l(fH , fl)(x, t,v),

∂tfl(x, t,v) + v∂xfl(x, t,v) + Fl(x, t,v)∂vfl(x, t,v)
= Ql(fH , fl)(x, t,v),
= Ql,l(fl, fl)(x, t,v) +Ql,H(fl, fH)(x, t,v).

(1.9)

Such kind of model is, for example, intensively used in plasma physics. The heavy particles would be
ions whereas the light ones would be electrons. The forces applied depend on the electric and magnetic
fields. The ion-ion collisions kernels could then model fusion reactions for example.

In the following sections, we study two asymptotical limits for system (1.9) which are central in the
document.

1.1.1 One Hydrodynamic limit of Boltzmann equation

The first limit of equation (1.9) corresponds to the hydrodynamic one. The material of this section
is inspired from [207, 128, 248], only slightly simplified to illustrate our purpose. To describe this
first asymptotical limit, it is enough considering species H is alone, i.e. we have fl(x, t,v) = 0. The
methodology we present remains true and applicable for a mixture, see [207], the resulting model is
only more complex and longer to introduce. Suppose furthermore the force applied to the particles is
negligible, (1.9) simplifies to the scalar equation

∂tfH(x, t,v) + v∂xfH(x, t,v) = QH,H(fH , fH)(x, t,v). (1.10)

Let us introduce {
x = x∗X ,v = v∗V, t = t∗T ,
σH,H = σ∗H,H

1
λH,H

, (1.11)

where the upperscript ∗ denotes a nondimensional variable. Quantity X corresponds to a macroscopic ob-
servation length scale, λH,H corresponds to the microscopic mean free path of the particles, V corresponds
to the bulk velocity and T is the observation time scale. Let us introduce f∗H(x∗, t∗,v∗) = fH(x, t,v),
then (1.10) can be rewritten

X
T V ∂t∗f

∗
H(x∗, t∗,v∗) + v∗∂x∗f∗H(x∗, t∗,v∗) = X

λH,H
Q∗H,H(f∗H , f

∗
H)(x∗, t∗,v∗). (1.12)

4H will stand for Heavy.
5l will stand for light.
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Dropping the upperscripts ∗, we can rewrite (1.12) as

Str∂tfH(x, t,v) + v∂xfH(x, t,v) = 1
Kn

QH,H(fH , fH)(x, t,v). (1.13)

In the above expression, Str = X
T V is commonly called the Strouhal number and Kn =

λH,H
X the Knudsen

number. Assume Kn ∼ 0, then local thermodynamic equilibrium is reached almost instantaneously and
fH(x, t,v) ∼Mρ,u,T (x, t,v). The state of the gas is only determined by the thermodynamic fields ρ,u, T .
In this document, we distinguish three ways to formally derive the different hydrodynamic limits, i.e. to
identify the system of equations satisfied by the thermodynamic fields ρ,u, T in the stiff regime Kn ∼ 0:

– applying the extended thermodynamic moment closure, as described in [207], consists in first writing
the local conservation laws

∂t

∫
mfH(x, t,v)dv +∂x

∫
mvfH(x, t,v)dv = 0,

∂t

∫
mvfH(x, t,v)dv +∂x

∫
mv ⊗ vfH(x, t,v)dv = 0,

∂t

∫
m
|v|2

2
fH(x, t,v)dv +∂x

∫
mv
|v|2

2
fH(x, t,v)dv = 0.

(1.14)

In the above expression, we used the conservation relation satisfied by the collision kernel (1.5).
The system is called a system of (hierarchical) moments: the flux of an equation is the unknown of
the next one. It is not closed. The second key ingredient of the extended thermodynamic moment
closure consists is assuming the solution fH minimizes the entropy

s(f)(x, t) =

∫
f(x, t,v) ln(f(x, t,v))dv. (1.15)

Due to the H-theorem and the choice of considering only the first three moments6, it results in as-
suming f ∼Mρ,u,T . The successive moments for the hydrodynamic fields, namely the macroscopic
density ρ(x, t), the bulk velocity u(x, t) and the temperature T (x, t) associated to fH(x, t,v) as in
(1.8) satisfy:∫

mfH(x, t,v) 1 dv = ρ(x, t),∫
mfH(x, t,v) vi dv = ρ(x, t)ui(x, t), ∀i ∈ {1, 2, 3},∫
mfH(x, t,v) vivj dv = ρ(x, t)ui(x, t)uj(x, t) + δi,jρ(x, t)T (x, t), ∀i, j ∈ {1, 2, 3},∫
mfH(x, t,v)

|v|2
2 dv = 1

2ρ(x, t)|u(x, t)|2 + 3
2ρ(x, t)T (x, t),∫

mfH(x, t,v)
|v|2

2 vi dv = ui

(
1
2ρ(x, t)|u(x, t)|2 + 5

2ρ(x, t)T (x, t)
)
, ∀i ∈ {1, 2, 3}.

In term of thermodynamic quantities, (1.14) can be rewritten ∂tρ(x, t) +∂x (ρ(x, t)u(x, t)) = 0,
∂tρ(x, t)u(x, t) +∂x (ρ(x, t)u(x, t)⊗ u(x, t) + p(x, t)I3) = 0,
∂tρ(x, t)e(x, t) +∂x (ρ(x, t)u(x, t)e(x, t) + u(x, t)p(x, t)) = 0.

(1.16)

In (1.16), I3 is the identity matrix of size 3, e(x, t) = ε(x, t) + 1
2 |u(x, t)|2 and the closure relations

are given by

ε(x, t) =
3

2
T (x, t) and p(x, t) = ρ(x, t)T (x, t) = (γ − 1)ρ(x, t)ε(x, t) with γ =

5

3
. (1.17)

System (1.16) together with the closure relation is called the Euler system for a perfect mono-atomic
gas (relative to γ = 5

3 ). System (1.16) enters the more general fields of systems of conservation laws

6This can be generalized to an arbitrary number of moments.
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which are studied, from an uncertainty quantification point of view, in part II. The way the system
is closed, applying the extended thermodynamic moment closure only up to the third moment, is
also known as the Mn closure model with n = 3, i.e. the M3 model. It is generalized to uncertain
systems of conservation laws in part II.

– On another hand, the same hydrodynamic limit can also be recovered performing a Hilbert de-
velopment [128, 248, 143]. It consists in assuming 1

Kn
= O( 1

δ ) together with Str = O(1) and

expanding fH as a formal power serie fH(x, t,v) =
∑∞
k=0 f

k
H(x, t,v)δk which, once plugged into

the dimensionless equation (1.13), leads to

∂t


0

f0
Hδ

1

∞∑
k=2

fkHδ
k

+ v∂x


0

f0
Hδ

1

∞∑
k=2

fkHδ
k

 =


QH,H(f0

H , f
0
H)[

QH,H(f0
H , f

1
H) +QH,H(f1

H , f
0
H)
]
δ1

∞∑
k=2

∑
i+j=k

QH,H(f iH , f
j
H)δk

 . (1.18)

The equations governing the coefficients fkH are obtained equating the coefficients multiplying the
successive powers of δ. Order 0 (i.e. δ0, first line in (1.18)) gives

QH,H(f0
H , f

0
H) = 0,

and we recover the leading order f0
H is the local Maxwellian, of the form (1.6). In other words, the

leading order is solution of the Euler system up to O(δ) ∂tρ
0(x, t) +∂x

(
ρ0(x, t)u0(x, t)

)
= O(δ),

∂tρ
0(x, t)u0(x, t) +∂x

(
ρ0(x, t)u0(x, t)⊗ u0(x, t) + p0(x, t)I3

)
= O(δ),

∂tρ
0(x, t)e0(x, t) +∂x

(
ρ0(x, t)u0(x, t)e0(x, t) + u0(x, t)p0(x, t)

)
= O(δ),

(1.19)

with the same closure relations (1.17). Naturally, the Hilbert development allows considering
fluctuations around the leading order 0 by studying orders 1, 2, ... (i.e. δ1, δ2, ... and the next lines
of (1.18)) etc. to derive finer corrections. The first order equation is solution of

∂tf
0
H + v∂xf

0
H = Q(f0

H , f
1
H) +Q(f1

H , f
0
H), (1.20)

and leads to the Navier-Stokes system, see [128], once plugged into (1.19) and after the introduction
of some O(δ2) viscous corrections. Hilbert developments are central in both parts of this document:
in part II they are a useful tool to bridge the gap between perturbation models and Polynomial
Chaos ones (see section 7). In part III, they are used to identify particular (stiff) regimes and make
sure the (Monte-Carlo in part III) resolution scheme we build allows capturing the limit with a
good accuracy. Other different expansions can be encountered in the literature: for example the
Chapman-Enskog development [248, 62] is based on an expansion of general structure fH(x, t,v) =
Mρ,u,T (x, t,v)(1 +O(δ)) and consequently requires an a priori hypothesis7.

– Grad’s development is another example of asymptotical expansion to derive limits of the Boltzmann
equations [207]. It is based on the identification, up to a certain order, of the coefficients (fkH)k∈N
in the serie ( ∞∑

k=0

fkH(x, t,v)
∂k1+k2+k3=k

∂k1v1∂
k2v2∂

k3v3

)
Mρ,u,T (x, t,v), (1.21)

once plugged in the Boltzmann equation. It does not rely on any assumption on the form of
the distribution, it is only assumed not too far from the Maxwellian distribution: the first order
f1
H captures fluctuations around Mρ,u,T . Each derivative of the Maxwellian with respect to the

velocity components (v1, v2, v3)

Hk(v1, v2, v3) =
∂k1+k2+k3=k

∂k1v1∂
k2v2∂

k3v3

Mρ,u,T (x, t,v),

7The Maxwellian form of the O(1) coefficient is assumed and not deduced from an analysis as for the Hilbert one.
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corresponds to the kth component of the three dimensional Hermite polynomials, see [5, 117,
207]. Grad’s 13 moments model is based on such development of the Boltzmann equation onto
the components of the (3D) Hermite basis: very similar developments are central in part II in
an uncertainty quantification context, especially with the introduction of Polynomial Chaos (see
remark 3.1).

Along the previous lines, we built, via different ways, a reduced model from the quadratic Boltzmann
one. The latter is relevant in many regimes (it is intensively used to model rarefied gas, i.e. when Kn�∼0)
but more complex to solve than Euler system when hypothesis Kn ∼ 0 applies. The aim of part II is
also to present the construction of reduced models designed to capture probabilistic features of a given
set of stochastic PDE.

Every presented methodologies, extended thermodynamic moment closure or Hilbert developments
or Grad’s model, allow deriving the hydrodynamic limit of Boltzmann equation. It can be recast in the
more general form of a system of conservation laws:

∂tU(x, t) + ∂xF (U(x, t)) = 0, (1.22)

with

U(x, t) =

 ρ(x, t)
ρ(x, t)u(x, t)
ρ(x, t)e(x, t)

 and F (U(x, t)) =

 ρ(x, t)u(x, t)
ρ(x, t)u(x, t)⊗ u(x, t) + p(x, t)I3
ρ(x, t)u(x, t)e(x, t) + u(x, t)p(x, t)

 , (1.23)

together with (1.17). Those systems are of interest in many physical fields: hydrodynamics [195, 48, 78,
79, 182, 154], continuum mechanics [160, 183, 119], plasma physics [274, 276] etc. In section 1.1.3, we
go through some resolution strategies for such systems (in particular for Euler equations) but before we
identify another limit of Boltzmann equation which is intensively studied in part III of this document.

1.1.2 The Linear Boltzmann equation limit

The second limit corresponds to the linear Boltzmann one. To derive it, we rely on a Hilbert development
as in the previous section. Let us consider the coupled system (1.9) (with FH = Fl = 0) and introduce
some nondimensional variables similar to (1.11) for every species:

x = x∗X , t = t∗T ,
v = v∗HVH ,
v = v∗l Vl,
σi,j = σ∗i,j

1
λi,j

, with i, j ∈ {H, l}.
(1.24)

In (1.24), we introduce a bulk velocity for each kind of particles. We have (we perform the nondimen-
sionalization and drop the upperscript ∗)

∂tfH(x, t,vH) +vH
VHT
X ∂xfH(x, t,vH) = +VHT

λH,H
QH,H(fH , fH)(x, t,vH)

+VHT
λH,l

QH,l(fH , fl)(x, t,vH),

∂tfl(x, t,vl) +vl
VlT
X ∂xfl(x, t,vl) = +VlT

λl,l
Ql,l(fl, fl)(x, t,vl)

+VlT
λl,H

Ql,H(fl, fH)(x, t,vl).

(1.25)

In (1.24), the bulk velocities of H−particles is different than the one of particles of type l. But we assume
their bulk momentum P = mHVH = mlVl is the same. It allows rewriting (1.25) with respect to mH ,
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ml and P

∂tfH(x, t,v) +v PTmHX ∂xfH(x, t,v) = + PT
mHλH,H

QH,H(fH , fH)(x, t,v)

+ PT
mHλH,l

QH,l(fH , fl)(x, t,v),

∂tfl(x, t,v) +v PTmlX ∂xfl(x, t,v) = + PT
mlλl,l

Ql,l(fl, fl)(x, t,v)

+ PT
mlλl,H

Ql,H(fl, fH)(x, t,v).

(1.26)

Now suppose

– PT
mHX = O(δ) = PT

mlλl,l
= PT
mHλH,l

,

– PT
mlX = O(1) = PT

mlλl,H
= PT
mHλH,H

.

It implicitly makes H-particles heavy ones in comparison to l−ones as ml
mH

= O(δ). Then system (1.26)
becomes {

∂tfH(x, t,v) + vδ∂xfH(x, t,v) = QH,H(fH , fH)(x, t,v) + δQH,l(fH , fl)(x, t,v), (1.27a)

∂tfl(x, t,v) + v∂xfl(x, t,v) = δQl,l(fl, fl)(x, t,v) +Ql,H(fl, fH)(x, t,v). (1.27b)

Let us identify the leading orders in (1.27):

– the O(δ0) order for (1.27a) ensures ∂tf
0
H = QH,H(f0

H , f
0
H). It is in agreement with heavy H-

particles being not very inertial so that their flux only depends on higher orders (f iH)i>0. Besides,
l−particles do not affect the dynamic of the H−ones.

– The O(δ0) order for (1.27b) yields

∂tf
0
l (x, t,v) + v∂xf

0
l (x, t,v) = Ql,H(f0

l , f
0
H)(x, t,v). (1.28)

– The zeroth order term shows the regime neglects l− l collisions (no term Q(f0
l , f

0
l ) in (1.28)). The

first order one (i.e. the factor of O(δ1)) shows the regime ensures a relaxation toward the local
Maxwellian distribution for fl as Ql,l(f

0
l , f

0
l ) = 0 when δ becomes non-negligible (for late times for

example).

Now assume we initially have f0
H(x, 0,v) = MηH ,u,T (v), ∀x ∈ D. Then Q(f0

H , f
0
H)(x, 0,v) = 0 and

f0
H(x, t,v) = MηH ,u,T (v), ∀x ∈ D, t ∈ [0, T ]. For such dense particles H and initial condition, f0

H

behaves as a background Maxwellian distribution and (1.25) degenerates toward a scalar equation given
by

∂tf
0
l (x, t,v) + v∂xf

0
l (x, t,v) = Ql,H(f0

l ,MηH ,u,T )(x, t,v),

=

∫
|v − vH |σl,H(v − vH)MηH ,u,T (v′H(v,vH))︸ ︷︷ ︸

|v|σs(x,t,vH ,v)

f0
l (x, t,v′(v,vH))dvH

−
∫
|v − vH |σl,H(v − vH)MηH ,u,T (vH)dvH︸ ︷︷ ︸

|v|σt(x,t,v)

f0
l (x, t,v).

(1.29)

We then obtain, after some simple rearrangements, the linear Boltzmann equation more commonly
written

∂tfl(x, t,v) + v∂xfl(x, t,v) + vσt(x, t, v)fl(x, t,v) =

∫
vσs(x, t,v,v

′)fl(x, t,v
′)dv′. (1.30)

Above, v denotes the norm of the velocity v = |v| ∈ R+ of the particles and ω = v
|v| ∈ S2 denotes

their direction. Equation (1.30), together with some nonlinear couplings, are central in part III. It is
commonly used to model the transport of neutrons or photons for examples (see the references of part
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III). We focus on its resolution with a stochastic (Monte-Carlo) resolution strategy.

In the two next sections (1.1.3) and (1.1.4), we briefly go through few resolution strategies to numer-
ically approximate solutions of the two presented models (1.22) and (1.30). The aim is not to present
an exhaustive list and analysis of common resolution schemes for the two presented limits. But some of
them, or their main principle, are hinted at in the document via references. We think it can ease the
understandability of the manuscript to give some quick illustrations here. They may be of interest for
the reader unfamiliar with some of the notions therein and willing to have a quick glance at them. In
the next section, we briefly recall the main principle of deterministic and stochastic resolution strategies
to solve the two limits of interest (1.22) and (1.30).

1.1.3 Deterministic resolution schemes to solve (1.22) and (1.30)

Let us begin with the numerical resolution of the linear Boltzmann equation (1.30): the first reflex to

solve (1.30) would be to introduce a grid with respect to variables x, t and v. Assume x ∈ D =
⋃Nx

i=1Di,
a mesh of non-overlapping cells of size ∆x for the spatial discretisation, t ∈ [0, T ] =

⋃Nt
n=1[tn, tn+1] and

v ∈ R3 =
⋃Nv

i=1 Fi a regular mesh of non-overlapping cells of size ∆v in the phase domain8. For example,
a Finite Volume (FV) scheme [106] can be built to solve (1.30) by integrating the equation on some
control volume Vi,j = Di ×Fj and introducing

uni,j =
1

|Vi,j |

∫
Vi,j

u(x, tn,v)dxdv,

with |Vi,j | = ∆x∆v. If we now integrate (1.30) on every control volumes (Di×Fj)i∈{1,...,Nx,},j∈{1,...,Nv}
and with respect to time in [tn, tn+1] we have

un+1
i,j − uni,j

∆t
+ vj

1

∆x

∫
∂Di

u∗j (y)dy + vjσ
j
t,iu

n
i,j =

Nv∑
l=1

vjσ
j,l
s,iwlu

n
i,l. (1.31)

In (1.31), we

– globally explicited the terms,

– assumed constant velocities vj ≈ v ∈ Fj ,∀j ∈ {1, ..., Nx},

– and introduced a more general notation for wl = ∆v.

To close the discrete system (1.31), it remains to define the discretisation of the spatial operator (i.e.
(u∗j (y))j∈{1,...,Nv}) on the boundaries of the spatial counterpart of the control volume (commonly called
the flux). Independently of the discretisation choice for this spatial operator, the coupling in the

v−direction is done via the discretised collision kernel9, i.e. via (σj,ls,i)i,j,l∈{1,...,Nx}×{1,...,Nv}×{1,...,Nv}
on the right hand side of (1.31). We do not aim at identifying a particular scheme here10. We just want
to insist on the fact that, independently of the previous discretisation choices, the size of the mesh can
be important for fine resolutions: for a first order discretisation, in dimension 6, increasing the accuracy
of a factor 2 on a mesh of size N3

x ×N3
v implies having a factor

– (2Nx)3×(2Nv)3

N3
x×N3

v
= 64 on the memory consumption .

– 2∆t×(2Nx)3×(2Nv)3

∆t×N3
x×N3

v
= 128 on the computational time (due to the cfl condition demanding ∆t to be

proportional to ∆x).

Note that if the control volumes in the velocity direction are chosen as quadrature rules (the weights
(wl 6= ∆v)l∈{1,...,Nv} are not necessarily uniform anymore), such scheme is refered as a discrete ordinate
one or a Sn discretisation [16, 92, 61, 116, 56] where n is the number of points of the quadrature (n

8with proper cut-off or weighting at infinity, this is not the purpose of the discussion here.
9i.e. if σs = 0, each equation for j ∈ {1, ..., Nv} are independent.

10We refer to [16, 92, 61] and the references therein for this purpose.
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replace Nv as a discretisation parameter). Such strategy is applied in practice to ensure, for the same
number of control volumes in the v−direction, a better accuracy in the integration of the collision kernel.

To avoid an exponential increase of computational effort with the needed accuracy, it is for example
possible to introduce a different basis of approximation for the velocity dimension and a discretisation
parameter n of a different kind. A Pn discretisation implies formally developing the solution u(x, t,v) ≈∑n
k=0 uk(x, t)Pk(v) of (1.30) on the Legendre polynomial basis (Pk)k∈N instead of considering a sum

of weighted Dirac masses as for the Sn one. The construction of the Pn model consists in plugging
the previous development in (1.30) and performing a Galerkin projection (i.e. use the orthogonality
of the polynomial basis for a given scalar product). We obtain a reduced model of unknown U(x, t) =
(u0(x, t), ..., un(x, t))t depending only on x ∈ D and t ∈ [0, T ], see [281, 141] for example. The idea
is to trade dimension (only x, t to treat instead of x, t,v) to the size of the system to solve (U is now
of size n + 1 whereas u was of size 1). The previous development implicitly introduces the closure
hypothesis uk(x, t) = 0,∀k > n. A different way to close the system consists in applying the material
of section 1.1.1 with extended thermodynamic of moments: it consists in the same Galerkin projection
together with the assumption that the distribution fl minimizes entropy (1.15) given the constraints
on the moments (uk)k∈{0,...,n}. References [226, 133, 279, 228, 94] present an interesting and detailed
example for photontherapy applications. Such closures are commonly called Mn models. They are
intensively studied in part II in an uncertainty quantification for systems of conservation laws’ context.
The three methodologies (Sn, Pn,Mn) confer to the reduced model the structure of a hyperbolic system
of conservation laws,

∂tU(x, t) +A∂xU(x, t) + ΣtU(x, t) = ΣsU(x, t),

where A,Σt,Σs are particular matrices, see [281, 141]. In fact, such class of models are commonly called
Friedrich’s systems, see [205] and the reference therein. In other words it can be rewritten under the
same general form as (1.22) for the Euler system. The same resolution strategies can consequently be
applied. Such kind of developments and their properties (Sn, Pn and Mn) are intensively studied in part
II of this document, in an uncertainty quantification context.

In this document, when dealing with hyperbolic systems of conservation laws, Finite Volume (FV)
schemes are applied. Some are built in part II of this document for particular systems of conservation
laws. Their construction corresponds to a significant amount of work/time for the resolution strategies
of part II but they are not necessarily detailed here. On another hand, they are fully described in
[236, 232, 237, 243].

1.1.4 Stochastic resolution schemes to solve (1.22) and (1.30)

Stochastic resolution methods imply the sampling of random variables (or vectors) in opposition to
deterministic ones which do not. The term Monte-Carlo usually denotes such strategies. The description
of Monte-Carlo schemes for the resolution of the deterministic linear Boltzmann equation is the object
of part III. They rely on rewriting the integro-differential equation (1.30) as an integral one (and as
an expectation over a set of identified random variables afterward) and demand linearity. The subject
is intensively studied in part III. Despite the nonlinearity of system (1.22), Monte-Carlo methods can
be applied: the methodology is commonly denoted a kinetic scheme and rely on linearizing Boltzmann
equation (1.28) in the vicinity of equilibrium. For Euler system, this resumes to using the Maxwellian
distribution directly in an artificial collision kernel to rewrite:

∂tfH(x, t,v) + v∂xfH(x, t,v) = −fH(x, t,v)−Mρ,u,T (x, t,v)

τ
. (1.32)

Equation (1.32) is called the BGK model, see [193, 22, 27] for example, and introduces an additional
parameter τ (echoing δ of the Hilbert development), a relaxation time controling at which speed fH ∼
Mρ,u,T . The more τ → 0, the faster fH →Mρ,u,T and the more its three first moments coincide with
the solution of the Euler system. Of course, as such, (1.32) is not linear as ρ(fH),u(fH), T (fH). It needs
an additional discretisation hypothesis (for example ρ, u, T ≈ ρn, un, Tn on time step [tn, tn+1]). Once
linearized, the material of chapter 9 of part III can be applied. For a nonlinear problem, the choice of
the linearisation is central in practice and can confer interesting (or bad) properties to the numerical
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resolution: chapter 10 of part III is strewn with (good and bad) discretisation examples. The chapter
is devoted to the study and analysis of MC solvers for coupled nonlinear systems involving the linear
Boltzmann equation (1.30) and presents my original contribution in this field.

1.2 V&V: the role of numerical analysis, UQ and HPC

In the previous paragraphs, the two parts of the manuscript were presented via two models, systems of
conservation laws and the (non)linear Boltzmann equation. Another way to present those parts is via the
objectives and stakes with respect to these models. The study of Euler system, in this document, is related
to uncertainty analysis. More precisely, it is related to uncertainty propagation, presented in chapter 2
and appendix A. On the other hand, the design of Monte-Carlo schemes for the (non)linear Boltzmann
equation is related to numerical analysis. Both disciplines are tools for Verification & Validation (V&V),
see [13]. The fact the two types of models are related to two different fields of analysis also expresses the
fact that the needs are different with respect to V&V. This is emphasized in the following sections.

1.2.1 Verification & Validation (V&V)

Verification & Validation is of particular importance at the CEA DAM: in an intensive simulation context
to guaranty the performances of devices without being anymore able to perform scale 1 : 1 experiments.
More generally, it is of importance for any industrial willing to make effective use of simulations and
avoid the multiplication11 of dangerous or polluting or costly experiments. The general sketch (see figure

Physical Observation Model MX

Simulation Code MX
∆

Validation

Verification

Figure 1.1: General sketch for Verification & Validation [13].

1.1) sums up the main steps of a V&V framework, its finer bricks will be detailed in the next sections.
Every study aims at validating or invalidating the hypothesis

hypothesis: model MX is relevant to represent my physical observation. (1.33)

The framework depicted in figure 1.1 intends to be general but typically, in part II of this document,
model MX denotes a system of conservation laws of general term (recall (1.22))

MX(U(x, t)) = 0⇐⇒ ∂tU(x, t) + ∂xF (U(x, t)) = 0. (1.34)

In part III on the other hand, we have (recall (1.30))

MX(u(x, t,v)) = 0

⇐⇒ ∂tu(x, t,v) + v∂xu(x, t,v) + vσt(x, t,v)u(x, t,v)−
∫
vσs(x, t,v,v

′)u(x, t,v′)dv′ = 0.
(1.35)

The concise writingMX in order to denote the model is convenient but may hide some relevant properties
of the solution of the model. For example, see part II, systems of conservation laws are known to develop

11Note that the aim is to reduce wisely the number of experiments. Some will remain mandatory.
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discontinuous solutions in finite times [81, 260, 81, 261]. The (lack of) regularity of the solution may
be hidden by the too simple black-box notation MX . This is of importance as many numerical methods
strongly depend on some smoothness assumptions (see mainly chapters 4 and 5) which may not hold.
For this reason in the next parts, care will be taken to recall the whole set of PDEs of interest. Notation
MX will in fact only apply in this section 1.2, convenient to denote indifferently the two models of
interest in this manuscript.

Now, as presented in figure 1.1, model MX is intermediary between the physical observation of
interest and the simulation code to approximate it. The question is how can we validate or invalidate
hypothesis (1.33) having only access to an approximation MX

∆ of the model MX? In the next sections,
we briefly present how we can make effective use of the two main tools for V&V, numerical analysis and
uncertainty analysis, to answer the above question.

1.2.2 Numerical analysis: the main tool for verification

Model MX can not, in general, be solved analytically. We need to rely on an approximation of its
unknowns. Its accuracy is here controled by ∆. In part II, we rely on finite volume schemes with

∆ = ∆x = max
i∈{1,..,Nx}

|Di|.

Numerical parameter ∆x is the maximum size of Nx non-overlapping cells in a grid tesselating the
simulation domain D =

⋃Nx

i=1Di. In part III, we rely on Monte-Carlo schemes such that

∆ =
1√
NMC

.

Numerical parameter NMC is the number of MC particles12 of the simulation. Notation ∆ can even
denote a vector of numerical parameters controlling the accuracy of MX

∆ with respect to MX . For
example, suppose modelMX couples a system of conservation laws and the linear Boltzmann equation13.
Suppose furthermore that the former is solved thanks to a finite volume scheme and the latter by a
Monte-Carlo scheme: then ∆ = (∆x, 1√

NMC
). In this case (and with well built discretisation schemes),

both discretisation parameters must go to zero in order to obtain a converging approximation. Multiple
discretisation parameter methods will be intensively discussed in this manuscript14. Making sure ∆
ensures a converging behaviour of the solution as ∆→ 0 is the purpose of numerical analysis, main tool
for verification. Numerical analysis will better be put in the V&V context in section 1.2.4.

1.2.3 Uncertainty Quantification (UQ): the main tool for validation

Now, model MX , independently of any approximation parameter ∆, also depends on a vector of physi-
cal15 parameters X. Vector X is typically related to some quantities involved in the closure/constitutive
relations16 of the model or some fluctuations in the initial17 or the boundary18 conditions.

Parameter X affects the model hence its solution. By convention in the literature, when one aims
at performing an uncertainty analysis, the dependence with respect to X of the solution of the model is
made explicit. In other words in part II, our unknown is U(x, t,X) solution of MX =M(U(x, t,X)).

The variability range of X affects considerably the solution. In sketch 1.2, the fluctuations of X
are characterised probabilistically. This is to reproduce something we experimentally observe: two

12A ’MC particle’ will be defined in part III.
13This is the case for example in radiative hydrodynamics, see [48, 178, 59, 203].
14See for example the discussions related to figure 4.2 (right) in part II or figure 9.3 in part III. See also section 10.2.1 in

which a flaw in a Monte-Carlo scheme for photonics is put forward. The solver has two competing discretisation parameters
∆ = (∆x,∆t): taking ∆x→ 0 and ∆t→ 0 does not necessarily ensuresMX

∆ →M
X . A new MC scheme is then introduced

in section 10.2.2, avoiding the previous problematic behaviour.
15The term physical here is mainly used in opposition to the term numerical of the previous paragraph.
16For systems of conservation laws in part II, X can parameter the flux F . It can refer to some parameters in the equation

of state p (such as the heat capacity ratio γ for a perfect gas in hydrodynamics), or in the constitutive laws of materials
(such as the Gruneisen coefficient in continuum mechanics) etc. For the linear Boltzmann equation, X can parameter the
cross-sections/opacities (σα)α∈{s,t}.

17The exact ambient temperature in the experimental chamber for example.
18The exact incoming velocity of a fluid in a wind tunnel for example [230, 229].
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X ∼ dPX M(U(x, t,X)) = 0 U(x, t,X) ∼ dPU(x,t,X)

Choice of observable:
fpost(U(x, t,X))

Sensitivity Analysis

Inverse problem

Experimental Data

Uncertainty Propagation

Figure 1.2: General sketch for uncertainty analysis [271].

independent identical experiments do not necessarily lead to exactly the same results. Notation X ∼ dPX
should be read: X follows the distribution having probability measure dPX . In this document, the choice
has been made to rely on probability theory to model the uncertainty. Some alternatives exist, see for
example [86, 88, 87], but discussions about the relevance of these recent frameworks is beyond the scope
of this manuscript. Besides, probability theory also plays an important role in part III. Parameter
X being characterised by random variables, the solution U(x, t,X) is a random process (see appendix
A). The uncertainty propagation step aims at characterising probabilistically U(x, t,X), i.e. finding
dPU(x,t,X) such that U(x, t,X) ∼ dPU(x,t,X). The propagation step is mandatory but often only a first
step toward sensitivity analysis or calibration etc. (see sketch 1.2). In this manuscript, we will focus on
the propagation step, central to carry out any kind of uncertainty study, even if (Bayesian) calibration
[31, 30] or sensitivity analysis [138, 241] were tackled in my publications.

1.2.4 Numerical/uncertainty analysis as tools for V&V and the role of HPC

In order to better understand how numerical and uncertainty analysis can help answer the question
of paragraph 1.2.1 and validating or invalidating hypothesis (1.33), let us perform some very simple
calculations19.
Assume we observe, during an experiment, a quantity Ur: the subscript r is for reality. Now, during that
experiment, there are some parameters X which are hard to control and for which we only have a finite
accuracy. As a consequence, we only have access to Uexp, a noisy approximation of Ur such that

Ur = Uexp + δX . (1.36)

The term δX quantifies probabilistically the discrepancy between the observation and reality20. On the
other hand, we want to recover the same observation Ur from a simulation code approximating model
MX . We consequently also have

Ur = UMX + δMX . (1.37)

19Many thanks to Marc Sancandi for his help to build this simple but relevant example.
20Note that Ur is not necessarily a random variable. For example, Uexp and δX can be random variables but such

that their sum is deterministic, equals to Ur: it is like having random variables X and Y = 1 − X such that X + Y is
deterministic with X + Y = 1.
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The term δMX characterises a flaw in the model21 which, we hope, is small.
Besides, we never have access to UMX but rather to UMX

∆
such that UMX = UMX

∆
+ δ∆ where δ∆

quantifies a numerical error22. In other words, (1.37) is equal to

Ur = UMX
∆

+ δ∆ + δMX . (1.38)

When comparing experimental results and simulation ones, we typically substract (1.36) to (1.38) to get

Uexp − UMX
∆

= δX − δMX − δ∆︸ ︷︷ ︸
δ0

. (1.39)

With the introduction of δ0, we want to put forward the fact that the discrepancy between the approxi-
mated model and the observations is a sum of three terms. To validate23 or invalidate hypothesis (1.33),
we consequently need to be able to extract δMX from δ0. This step can be very tricky. Indeed, there
may exist some misleading situations for which

δ0 ≈ 0 = δ∆ + δMX − δX but δMX = δX − δ∆ 6= 0!

Such situation can lead to believe a model is relevant whereas it is not, the experiment and/or the
numerical errors cancelling the model discrepancy. We clearly want to avoid such kind of situations. In
the following, we present how numerical analysis and uncertainty analysis represent ways to avoid such
error compensations.

Expression (1.39) has three unknowns for only one equation. In a sense, numerical analysis and un-
certainty analysis are ways to provide the two remaining equations mandatory to eliminate unknowns
δ∆ and δX in (1.39).

Let us begin with δ∆: ideally, the numerical scheme to approximate MX converges so that for ∆
small enough δ∆ = O(∆ζ) with ζ < 0. The exponent ζ is commonly called the order of the converging
scheme, see [154, 74]. It is prescribed by the scheme definition and must not be evaluated. The previous
notation is equivalent to

for ∆ ∼ 0, ∃C ∈ R such that |C| <∞ and O(∆ζ) = C∆ζ . (1.40)

When ∆ is small enough to ensure δ∆ = C∆ζ , the approximation is said to be in the asymptotic regime.
In this case, this implies C can be estimated and δ∆ quantified. One can theoretically find ∆ such that
δ∆ is under a certain threshold and such that it can be considered negligible in comparison to the two
other terms

δ∆ = O(∆ζ) = C∆ζ � min(|δMX |, |δX |). (1.41)

In order to make sure (1.41) occurs, one must play with ∆. Decreasing ∆ comes with higher computa-
tional costs. It can occur that the choice of parameters ∆ ensuring (1.41) leads to too costly simulations.
In order to make sure (1.41) occurs with equivalent restitution times24, there are several levers, commonly
used in the literature, within my publications and throughout this document:

1. the first lever is High Perfomance Computing (HPC). Suppose one has access to a converging
numerical scheme but ∆ can not be made small enough to get (1.41) (for example because the
computations are too time consuming or there is not enough memory available etc.). One first
solution would be to get a new more powerful (faster or with more computational units) computer.
It is supposed to ensure, with the same solver, a better accuracy by taking smaller ∆ with, hopefully,

21For example, it stands for a missing operator in the set of PDEs: can we use Euler system as a model or shall we use
Navier-Stokes equations (part II)? A diffusion equation or a transport one (part III)? Shall we neglect the effect of external
forces F on our particles (part III)?

22Note that δ∆ can be deterministic (if from a deterministic scheme) or stochastic (if from a stochastic scheme, see the
previous section).

23Validating hypothesis (1.33) would imply verifying that δMX ≈ 0.
24If you are not patient enough to wait for more powerful computers.
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reasonable restitution times. For those not patient enough to wait for the next generation of
machine, better scalable parallel strategies can be studied and implemented. In [99] for example, the
strong and weak scalabilities of several parallel strategies for a Monte-Carlo scheme for neutronics
are studied. The present document is also strewn with HPC discussions.

2. The second lever is the order ζ of the scheme. Relying on high-order schemes [154, 74], i.e. such
that ζ < 1 or even ζ � 1, ensures improving the quality of the solution for constant ∆ and
with the same computer. Of course, this strategy implies developing new accurate and converging
schemes together with their practical verification. Publications [236, 232, 243] intensively rely on
such strategy.

3. A third possibility consists in working on the constant C: reducing it also allows obtaining a better
accuracy for a constant grid ∆ and with the same computer. It is often called an acceleration
technic or a variance reductions method in the context of a Monte-Carlo resolution. This solution
is applied more frequently than one could think: for example, in section 5.3.3 and [240], we show
that Kriging can be understood as a method aiming at reducing the constant multiplying the
convergence rate of a Lagrange interpolation. The design of asymptotic-preserving schemes also
enters this same category and are tackled in my publications [243, 3] and in this document (see
remark 9.1, sections 7 and 9.12 and chapter 10).

Of course, there are some intrications between the three above points. The design of numerical methods
already integrates parallel considerations. The design of new architectures takes into account the type
of calculations needed etc. With the above lines, we briefly presented the main elements of solution to
make sure we can eliminate δ∆ in equation (1.39).

Once (1.41) ensured, (1.39) becomes

Uexp − UMX
∆

= δ0 = δ∆︸︷︷︸
O(∆ζ)�1

+ δMX − δX = δMX − δX . (1.42)

It only remains to be able to differentiate the model discrepancy δMX from the noisy term δX . This is
where uncertainty analysis plays a role. In order to isolate δMX , one can

1. either try to reduce δX � 1 so that only remains δMX .

2. Or, if δX is not easily reducible, try to characterise δX in order to be able to eliminate it from δ0.

The first solution may imply relying on several (Nexp) independent experimental results (U iexp)i∈{1,...,Nexp}
of noises (δiX)i∈{1,...,Nexp}. The Guide for the expression of Uncertainty in Measurement (GUM, see [112])

provides recommendations to characterise statistically each realisation (δiX)i∈{1,...,Nexp}. We consequently
have

Ur − Uexp = Ur −
1

Nexp

Nexp∑
i=1

U iexp = δX =
1

Nexp

Nexp∑
i=1

δiX ∼
→∞
L (0, σexp) . (1.43)

The above expression puts forward the fact that δX follows an unidentified centered25 distribution
L(0, σexp) of variance σ2

exp. If furthermore the experiments are independent and Nexp →∞, the central
limit theorem26 ensures

Ur − Uexp = Ur −
1

Nexp

Nexp∑
i=1

U iexp = δX =
1

Nexp

Nexp∑
i=1

δiX ∼
→∞
L (0, σexp) −→

Nexp→∞
G
(

0,
σexp√
Nexp

)
. (1.44)

In (1.44), the noise δX is asymptotically gaussian27. By asymptotically, we mean that the error will be
gaussian only if enough experiments are carried out. Now, in order to reduce δX , one can

25The mean is zero.
26See [256], but it will be stated in the document.
27The term G(0, 1) denotes a gaussian random variable of zero mean and variance one.
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– either increase the number of experiments Nexp,

– or try to reduce σexp.

Increasing Nexp is simple in practice but may be costly. As a consequence, δX of variance σ2
exp may

not be gaussian. Gaussian or not, an alternative to reduce δX is to work on σ2
exp. Variance σ2

exp of δX
is closely related to the performances of the detectors used during the experiments together with the
more or less accurate characterisation of the conditions (modeled by X) of the experimental setting.
The reduction of σexp typically comes with the identification of the components of vector X inducing
the most important fluctuations of the output: this is commonly called performing a sensitivity analysis.
It allows hierarchising the main contributors of δX amongst the components of X. Assuming X has d
independent components X = (X1, ..., Xd)

t, then σ2
exp can be decomposed [266] into

σ2
exp =

d∑
i=1

Vi +

d∑
i,j=1

Vi,j + ...+ V1,2,...,d =
∑
s∈S

Vu. (1.45)

In the above expression, S = {{1}, {2}, ...{d}, {1, 1}, {1, 2}, ..., {1, 2, ..., d}} is the set of every 2d combi-
nations of variables. In (1.45), the (Vs)s∈S are the relative variances so that (Ss = Vs

σ2
exp

)s∈S , the Sobol

indices [266], express the percentage of variance explained by the set of variable s ∈ S. Once the set
of variables S having the biggest indices identified, i.e. such that σ2

exp ≈
∑
s∈S Vs, one can decide, for

example, to invest on ways to reduce the fluctuations of (Xs)s∈S , the relevant components of X. This
will lead to a reduction of σexp. In [138] and [241] for example, Sobol’s indices for sensitivity analysis
are estimated for (respectively) an aerothemal model and the linear Boltzmann equation.
Either ways, reducing σexp or increasing Nexp, aims at making sure δX � 1 so that (1.42) becomes

Uexp − UMX
∆

= δ0 = δ∆︸︷︷︸
O(∆ζ)�1

+ δMX − δX = δMX − δX︸︷︷︸
�1

= δMX . (1.46)

The modeling error δMX in δ0 of (1.39) has been isolated, extracted, quantified. It is a deterministic
quantity. We are now able to decide whether it is small enough or whether some modeling efforts remain
to be done.

The above methodology is by far the most simple and efficient. But it also corresponds to the ideal
case. Sometimes, the last analysis is not enough as δX can not be made arbitrary small28 and we remain
with

Uexp − UMX
∆

= δ0 = δ∆︸︷︷︸
O(∆ζ)�1

+ δMX − δX︸︷︷︸
Z�1

= δMX − δX . (1.47)

It is certainly in this situation that uncertainty quantification is the most relevant. It provides some
rigorous elements of solution to answer the question of the relevance of hypothesis (1.33). Let us go
through the main principles of the methodology:

– first, let us assume δX is not negligible but is probabilistically characterised:

Ur − Uexp = δX ∼ dPδX . (1.48)

Probability measure dPδX can, for example, be obtained applying the guidelines described in the
GUM [112].

– The idea now is to propagate the fluctuations induced by the uncertain experimental setting X
through modelMX and to characterise probabilistically UMX

∆
(X). Suppose UMX

∆
denotes the mean

of random variable UMX
∆

(X). Then the latter can be decomposed into UMX
∆

(X) = UMX
∆

+ δ̃X .

The characterisation of UMX
∆

(X) consequently resumes to finding the probability measure dPδ̃X
28For example, we are not able to perform enough experiments. Or σexp remains important and reducing it would be

too costly or too complex or technologically out of reach.
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of δ̃X . The characterisation of δ̃X can be done via an uncertainty propagation of input X through
model MX

∆ . It can be obtained from a simulation code. Part II sums up my work on uncertainty
propagation [236, 232, 84, 237, 242, 238, 241]. It is dedicated to the design and the analysis of
mathematical and numerical methods to estimate probability measures such as dPδ̃X and to be
able to apply the described methodology. Once the propagation step performed, we have access to

Ur − UMX
∆

= δ̃X ∼ dPδ̃X . (1.49)

This new probability measure will be central to quantify the likelihood of hypothesis (1.33).

Suppose the uncertainty propagation performed (see part II for the how-to question). We now have two
characterized distributions: {

Ur − Uexp = δX ∼ dPδX ,
Ur − UMX

∆
= δ̃X ∼ dPδ̃X .

(1.50)

It is now easy building a new random variable δ̃MX = Uexp − UMX
∆

= δ̃X − δX which will become our

decision variable for statistical hypothesis testing [256, 1, 250]. This is detailed in appendix B. Statistical
Hypothesis Testing is a key methodology for anyone willing to compare two random variables obtained
from two systems. Its main principles are recalled in appendix B with an illustration of how it can be
applied in a V&V context. Based on dPδX and dPδ̃X , the framework allows quantifying the probability
of validating falsely hypothesis (1.33). Based on this probability, we are able to decide whether accepting
hypothesis (1.33) is risky or not.

1.3 Few words on the content and style of this document

With the above material, we aimed at giving a hint at what can be encountered in the two parts of
the document. In the next sections, we detail the content of both parts, insist on the style and the
presentation choices and discuss some notation tricks which hold all along the manuscript.

1.3.1 Content and ...

Let us begin by the content. As already discussed before, this document has two main parts.

Part II is dedicated to uncertainty quantification for systems of conservation laws. Uncertainty
quantification can be applied intrusively (construction of reduced models as in the Pn,Mn examples)
or non-intrusively (use of a black-box code) and discussion on the most relevant strategy remains
an open question29. I have research contributions for both, [231, 236, 239, 232, 237, 84, 241] and
[238, 243, 31, 242, 233, 234, 240] respectively. In part II, I first present a toy problem involving the
resolution of the uncertain Euler equations (chapter 2). It allows illustrating what is expected from an
uncertainty analysis in a simplified but still challenging configuration. The problem is a fil rouge in the
sense every presented resolution strategies, intrusive in chapter 4 and non-intrusive from chapters 5 to 8,
are tested on this configuration in the same conditions. Chapter 3 corresponds to an illustrated state-of-
the-art of Polynomial Chaos and its derivations from which are based the forementioned intrusive and
non-intrusive methods. The considerations of the previous sections 1.1.1 and 1.2.3 give a good hint at the
questions arising in chapters 4 to 8. In part II, the uncertain system of conservation laws depend on one
more (random) variable X (i.e. U(x, t,X) instead of U(x, t)) and we build systems of moments intru-
sively (Pn,Mn-like approximations) or non-intrusively (Sn-like models) with respect to this variable X
instead of v. Chapters 7 and 8 are slightly different, in the sense they go beyond the fil rouge application.

Part III is devoted to the construction, the description and the implementation of Monte-Carlo
schemes for the resolution of the linear and nonlinear Boltzmann equation. The linear Boltzmann
equation is treated in chapter 9. We try to make the discussion the more complete and progressive
possible. We first build the most classical MC schemes and explain how they can be compared. The

29and may be compared to discussions about choosing a deterministic or a stochastic resolution scheme! Or which one
of Emacs or Vi is the best...
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Hilbert developments introduced in the previous section are central to understand the subtleties of
the MC schemes. The implementation aspect takes an important place in chapter 9: it is strewn with
algorithm descriptions, enriched as we take into account more and more physics (source term, acceleration
etc.). The newness and the originality of the first chapter of part III mainly comes from the presentation
choice (which is discussed in the next section). The new results are mainly gathered in the last sections
(from 9.8 to 9.12) of chapter 9 and in chapter 10. Care has been made to make the material of these
sections complementary to the published papers [241, 3, 99]. In the latter, Asymptotic Preserving
MC schemes are built for two physical applications of interest implying the resolution of the nonlinear
Boltzmann equation (i.e. coupled to an additional equation or set of equations).

1.3.2 ... Style

In this short section, we would like to justify the presentation choices in this manuscript: this work
gathers two different disciplines. We are aware a reader may want to focus on one topic but not the
other. For this reason the two parts are relatively independent. The reader interested in uncertainty
quantification can easily go through the introduction and go on with part II and the reader interested
in the Monte-Carlo resolution of the linear Boltzmann equation can skip part II to go directly to part
III. The parts are not too strongly intertwined even if few references from one part to the other had to
be done to avoid redundancies and insist on analogies30. The same effort has been made to separate,
within part II, the intrusive methods from the non-intrusive ones as it is commonly known and accepted
in the uncertainty quantification community that some authors are hermetic to one or the other...

The styles in part II and part III are also different. This is because we think the needs in the two dis-
ciplines are different. Part II is more illustrative than part III for example. Part II describes a relatively
new field and we think that an example-driven discussion helps the readability. On another hand, the
Monte-Carlo resolution of the Boltzmann equation can be considered a more classical one and an original
way to describe it is mandatory to avoid redundancies with the furnished literature. For this reason,
part III is progressive, original (I hope) and is more implementation-driven. It aims at overcoming one
difficulty I personally encountered when I started developing a Monte-Carlo method in a simulation
platform: bridging the gap between the description of the MC solver and its implementation. Because
where uncertainty analysts see a black-box method in MC resolutions, numerical analysts familiar with
deterministic schemes see black magic31. Whether the part achieves the purpose of demystifying MC
methods or not now depends on the reader’s opinion.

In both parts, depending on the familiarity of the reader with the topic, some discussions might
appear naive and simple. Those discussions are flagged as such and the familiar reader is invited to
skip them. They are addressed to, and have been motivated by questions from, students, interns, PhD
students, summer school ones or colleagues. For this reason, I also hope the document will be adapted
and will benefit future interns and PhD students. Of course, this is not the main aim of the document.
The first one is to present my research contributions to these two fields of applications and explain in
which sense they are articulated, correlated and part of a more ambitious research project. For this, I try
to make the manuscript and my publications the more complementary possible and avoid redundancies.
In many aspects, I hope this document appears more mature than some of my papers. The document
in general deals with very simple examples and configurations and more complex ones are tackled in my
publications. The two parts of the manuscript also contain some unpublished (or not yet published, see
for example chapters 5 and 8 or section 10.2). Sometimes this is due to a lack of time, sometimes because
we think it did not deserve a publication but remains illustrative enough to be in this document.

1.3.3 Few words on the notations and the presentation tricks

To end this introduction, we would like to comment on some notations and presentation tricks we hope
will ease the readability of the document. All along the document, we try to keep as much as possible

30The reader interested in the resolution of the uncertain linear Boltzmann equation may want to go through section
9.11 in which a Monte-Carlo scheme to solve the stochastic Boltzmann equation is built.

31Joke made by Christian Aussourd to who I say hello!
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the same notations for the same quantities. At least for the ones we consider the most important. For
example,

– I intensively use footnotes. This can be quite disconcerting for some readers. In this document,
the rule applied when introducing footnotes is the following: it is supposed to help the reader by
introducing additional details which I consider of a lesser32 importance in the text. In other words,
the reader confused by the use of footnote is encouraged to go on with the sentence as if it was not
there.

– Notation u or U always denotes the main quantity, the unknow33 we aim at approximating all
along the document. This may lead to unconventional notations: u denotes a neutron density in
section 10.1 for example whereas n is commonly used in the literature for the same quantity. We
think this is part of a presentation trick to help the reader focus on the unknown of interest.

– My publications are in red in the document, cf. [236] for example. This trick has already been
used in the previous sections.

– This document mainly discusses numerical approximation methods for physical applications one
wants to study given a simulation architecture. In this context, applied mathematics are only
a mean to achieve the physical purpose with the computing device at hand. High Performence
Computing (HPC) is consequently as important as the physical objective. For this reason, wherever
it is relevant, HPC considerations are tackled, mainly at the end of chapters or in summaries of
sections.

– Notation x or x always denotes a spatial variable in the spatial domain D.

– Notation t denotes the time in [0, T ] where T denotes the final time of the simulation/numerical
experiment.

– Notation v or v = |v| always denotes the velocity variable and its norm.

– When a spatial grid is introduced, it is denoted by D =
⋃Nx

i=1Di where the Di are Nx non-
overlapping cells.

– In general X denotes a random variable or a random vector and its probability measure is denoted
by dPX .

– Variable δ is always the small parameter in a Hilbert development.

– The more possible, every dependences of the unknowns and quantities are recalled. When they are
not, we explicitly explain why we drop them.

– In the document, to characterise a random variable, we prefer dealing with probability measures
instead of probability density functions. They are more general and convenient in the sense they
allow dealing with discrete random variables with the same notations. Besides, we sometimes
have some parametered laws, in the sense we have some quantities which are probability measure
with respect to one variable, independently of all the others: for example, by convention in this
document, if u(x, t,v)dv is a probability measure, then it is ∀x, t with respect to variable v.

But despite all these efforts, the document still has some slightly abusive, but convenient, notations.
They generally concern secondary quantities. To give some examples:

– in general, we consider probability measure so by convention in this document every measures sum
up to 1: we consequently write

∫
dω = 1. The notation is not conventional but is conciser and

replace both
∫

1[−1,1](ω) 1
2dω in 1D or

∫
1S2(ω) 1

4πdω in 2D.

– Sometimes, we also use the notation [0, t = ∆t] which means ∆t and t denotes the same quantities,
the end of the time step, and are both used in the chapter or the section.

32but not of none, otherwise it would not be in the text at all.
33u or U as unknown.
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– We also insist that in the following parts, u(x, t,v) and u(x, t) denote two different functions.
In general, the second one is equal to the first one integrated over the velocities, i.e. u(x, t) =∫
u(x, t,v)dv. We think this does not alter the readability of the document as care has been taken

to recall, the more possible, every dependences of every quantities.

With these few lines and precisions, I hope the document will ... Be useful...
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Part II

Uncertainty quantification for
hyperbolic systems of conservation

laws
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Chapter 2

Physical Motivations and toy
problem (fil rouge)

A ’fil rouge’ problem to compare intrusive and non-intrusive methods for uncertainty quantification

In this chapter, we focus on limit (1.16) of the Boltzmann equation (1.1). More generally, the material
of the described work can be applied to any system of conservation laws. It corresponds to a particular
form of partial differential equations (PDE), whose general structure (already presented in chapter 1) is

∂tU(x, t) + ∂xf(U(x, t)) = 0. (2.1)

In (2.1), we have

– (x, t) ∈ D ⊂ R3 × [0, T ],

– U : D × [0, T ] −→ DU ⊂ Rd, is the vector of unknowns,

– f : U ∈ Rd −→ f(U) ∈ Rd is called the flux.

We nonetheless focus on the Euler system in 1D (one spatial dimension, i.e. x = x ∈ D ⊂ R here),
modeling compressible gas dynamics, which corresponds to a particular choice of U and of the flux f(U).
It is given by the following coupled equations ∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρe) + ∂x(ρue+ pu) = 0.

(2.2)

For this fil rouge problem, we consider a perfect gas closure p = (γ − 1)
(
ρe− ρu2

2

)
. This simplifies the

discussions but the material of the next sections is not limited to such equation of states. System (2.2)
must be completed with proper initial and boundary conditions, they will be dealt with later. With the
above notations,

U(x, t) = (ρ(x, t), ρ(x, t)u(x, t), ρ(x, t)e(x, t))t,

is the vector of conservative variables: ρ is the mass density of a fluid, u its velocity so that ρu is its
momentum, and e is its specific total energy, so that ρe is its total energy. The variable p is the pressure
of the fluid, ensuring the closure of the above system.

Let us first spend some time describing the deterministic behaviour of such system in a particular
configuration of interest. It corresponds to a Sod shock tube (also called a Riemann problem). The
initial condition consists in two states1: the left one corresponds to a ’heavy’ fluid (ρ0

L = 1, p0
L = 1)

and the right one, to a ’light’ fluid (ρ0
R = 0.125 < ρ0

L, p
0
R = 0.1 < p0

L). Both states are separated by
an interface at xint = 0.5 ∈ D = [0, 1] where D denotes the simulation domain. The fluids are initially

1the upperscript 0 stands for t = 0.
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at rest (u0 = u0
L = u0

R = 0). The boundary conditions are neutral ones (zero gradient) on both sides
of D = [0, 1] but the simulation is stopped before the solution interacts with them. As soon as t > 0,
the solution develops discontinuous behaviours2: in figure 2.1 (top right), the mass density at t = 0.14

t = 0 t = 0.14
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Figure 2.1: Left: Initial conditions of the Sod shock tube for ρ, p, u with respect to the spatial variable
x. Right: solutions at time t = 0.14 for ρ, p, u with respect to the spatial variable x.

presents four constant states separated by three waves. The first wave is a smooth rarefaction fan in
the heavy fluid. The second one is called either a contact discontinuity or an interface (characteristic
of the initial discontinuity between the two initial states). The last one is a shock in the light fluid.
The pressure and the velocity are smooth at the interface so that they only have three constant states,
separated by a smooth wave: the rarefaction fan in the heavy fluid, and a discontinuous one, the shock
in the light fluid.

We now suggest building a simple uncertainty quantification problem from the previous configuration.
It will be solved thanks to a Monte-Carlo method. The latter remains the reference method in uncertainty
quantification mainly due to its simplicity of application. We will then comment on the probabilistic
properties of the above spatial profiles at time t = 0.14. We suppose the solution no longer only depends
on (x, t) but also explicitly on a random vector X ∈ Ω ⊂ RQ, where (Ω,F ,P) is a probability space

2This is proper to systems of conservation laws, not only the Euler one. Discontinuities can appear dynamically, see
[81, 260, 81, 261].
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[256]. The uncertainty is consequently here modeled thanks to probability theory. Alternatives exist,
as possiblity theory for example [86, 88, 87], but are beyond the scope of this document. The previous
system rewrites

∂tU(x, t,X) + ∂xf(U(x, t,X)) = 0,

where

– (x, t,X) ∈ D ⊂ R× [0, T ]× Ω,

– U : D × [0, T ]× Ω −→ DU ⊂ Rd, is the vector of unknowns,

– f : U ∈ Rd −→ f(U) ∈ Rd is called the flux.

For Euler system, this leads to

U(x, t,X) = (ρ(x, t,X), ρ(x, t,X)u(x, t,X), ρ(x, t,X)e(x, t,X))t.

The vector of unknowns U belonging to a probability space, the solution of the uncertainty quantification
problem is a stochastic process, i.e. random variables parametered by both x and t3. In this sense, solv-
ing an uncertainty quantification problem corresponds to the resolution of stochastic partial differential
equations (SPDE). This is emphasized in the simple example of appendix A.

In our example, the initial uncertainty is modeled by a uniform random variable X ∼ U [−1, 1] and
affects the position of the interface xint(X) = 0.5 + 0.05X between the two initial states. The interface
position is consequently uniformly distributed in the interval [0.45, 0.55]. Figure 2.2 (top-left) shows the
initial conditions for three realisations (the extremal ones X = 0.45 and X = 0.55 and the mean one
X = 0) of the interface position. The top right picture of figure 2.2 presents the same three spatial pro-
files at t = 0.14 after applying three deterministic resolutions (runs of a simulation code as a black-box).
The profiles are very close to the one obtained for X = 0, they only correspond to a translation on the
x−axis. Still, the wave positions are affected. On the top pictures of figure 2.2, we only presented the
results obtained for three chosen realisations of the interface position. In order to obtain a reference
solution for this uncertainty quantification problem, we applied an MC resolution with NMC = 1000,
where NMC is the number of realisations of X and of resolutions of (2.2).

Regarding the numerical resolution, the attentive reader would have probably noticed the results of
figure 2.1 are analytical. On another hand, the results of figure 2.2 are numerical (see the little imperfec-
tion in the vicinity of the interfaces on figure 2.2 top-right commonly called wall heating). In this section,
we do not aim at being exhaustive on the description the numerical scheme at use. But we insist it is
of importance and must have relevant properties relative to the uncertain configuration of interest for
efficiency4. Here, the numerical scheme needs to capture accurately both the constant states and their
wave positions (chronometry): for this reason we used a 3rd order Lagrange+remap scheme, conserva-
tive, shock capturing and accurate. Its characteristics and properties are detailed in [154, 101],[232] for
example.

Once the NMC resolutions performed, it remains to postprocess the classical probabilistic quantities
(mean, variance, moments, quantiles,...) of interest for the different variables of the system. Figure 2.2
(bottom) presents the spatial profiles of the mean and variance at t = 0 and t = 0.14 for the mass density.
At t = 0, the mean of the mass density is smooth and linear between the two states. The linear form of
the mean of the mass density between the two initial states is closely related to the distribution of the
random variable modeling the initial uncertainty X: a gaussian random variable X for example would
have induced an even more regular form of this same mean (it is here C0 but not C1). Note that the
smoothness of the spatial profiles for t > 0 for the mean of the mass density has been proven in [264] for
the same kind of configuration. Concerning the choice of the input random variable, we want to insist
on the fact that it greatly impacts the solutions at later times. We choose X as an uniform variable
but the material of this manuscript allows taking into account arbitrary random variables which are, in
practice, dictated by the physics at stake.

3For example, for fixed x, t, ρ(x, t,X) is a random variable.
4An illustration of this affirmation is given in section 9.11.1 of chapter 9.
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Figure 2.2: Top left: initial conditions for three realisations of the uncertain interface position for the
mass density. Bottom left: initial conditions in term of mean and variance for the mass density obtained
with 1000 realisations of the random variable X. Top right: three realisations of the mass density at
time t = 0.14. Bottom right: mean and variance of the mass density at t = 0.14 obtained with 1000
realisations of X.

Let us comment on the bottom pictures of figure 2.2: for the variance of the mass density, it is
easy identifying the spatial area of the domain D affected by the uncertainty. They correspond to the
non-zero areas for the variance. Note that the scale for the variance is on the right hand side. At
t = 0.14, the bottom right picture of figure 2.2 presents the postprocessed mean and variance of the mass
density obtained with the MC method with NMC = 1000 realisations of the interface position. First,
one can notice that the mean of the mass density is smoother than for one realisation but still display
four constant states separated by three identifiable waves. The variance of the mass density is non-zero
only in the vicinities of the three waves corresponding to the uncertainties in the rarefaction fan, the
interface and the shock. For this particular configuration, the initial uncertainty is shared between the
three physical waves at later times.

As tackled before, our aim is to solve a SPDE. Mean and variance are not, in general, sufficient or
relevant enough in order to fully characterise a random variable or a stochastic process (see appendix
A for an illustration). Until now, we focused on spatial profiles at t = 0.14. Let us now focus on
t = 0.14, spatial locations x = 0.38 (rarefaction fan), x = 0.61 (interface) and x = 0.73 (shock) and
the random variables ρ(x = 0.38, t = 0.14, X), ρ(x = 0.61, t = 0.14, X) and ρ(x = 0.73, t = 0.14, X).
The MC method allows approaching the probability density functions (pdf) of the three latter random
variables thanks to histograms (see appendix A). Figure 2.3 presents the histograms of the pdfs of the
latter random variables obtained by postprocessing the NMC = 1000 realisations of the MC method.
The top picture corresponds to the mass density random variable in the vicinity of the rarefaction fan.
It exhibits a continuous/smooth behaviour, the support of the histogram being convex (as the one of the
initial random variable X was). With such probabilistic observable, one can for example conclude that
the state ρ = 0.85 has about the same probability of occurrence as the state ρ = 0.87. On the contrary,
the histograms of the mass density in the vicinities of the interface and of the shock (bottom pictures of
figure 2.3) exhibit discontinuous/discrete behaviours. The supports of the states are non-convex: in fact,
here, it even corresponds to two Dirac masses for the states ρ ≈ 0.27 and ρ ≈ 0.42 for the interface and
ρ ≈ 0.13 and ρ ≈ 0.26 for the shock. In the vicinities of the interface and the shock, the mass densities
probabilistically behaves as rigged coins (with one side having twice more probability of occurrence than
the other). The configuration of interest, apparently simple, has been chosen to emphasize this important
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Figure 2.3: Histograms of the pdfs of the random variables ρ(x = 0.38, t = 0.14, X), ρ(x = 0.61, t =
0.14, X) and ρ(x = 0.73, t = 0.14, X) obtained by postprocessing the NMC = 1000 MC realisations.

aspect: the initially continuous random variable X is transformed into a discrete one, presenting what
is commonly called a threshold effect. A small perturbation of the initial interface position can cause a
complete change on some observables such as the mass density in the vicinity of the shock. With such
threshold effect, it is obvious that mean and variance are not relevant probabilistic quantities: the mean
of the random variable E[ρ(x = 0.73, t = 0.14, X)] = 0.24 has no physical value. The mean value of the
random variable ’throw a 6 faced dice’ is 3.5 and is never computed. The state 3.5 has a zero probability
of occurrence in practice, the mean is not informative, not relevant.

Note that once the uncertainty propagation performed, one can have access to every aspects of an
uncertainty analysis, see [271, 272]. It is often only a first step toward sensitivity analysis, robust op-
timization, probability of failure, resolutions of an inverse problem etc. With this simple example, we
wanted to depict the general conditions of the next studies: we aim at taking into account uncertainties
in systems of conservation laws. The example is in 1D spatial dimension x and 1D stochastic dimension
X but we have in mind applying such analysis to more complex configurations in 3D spatial dimensions
for example, for more complex systems of conservation laws (multi-physics) with several sources of un-
certainties (stochastic dimension Q).
Regarding the sources of uncertainties, we consider the number of uncertain parameters is not very
important Q ∼ 5 − 8. We suppose a previous study has been performed in order to identify the most
sensitive ones for the considered outputs. For an interesting and pedagogical overview of the methods
to do so, we refer to [145, 166, 145] but we will not tackle the subject anymore in this document. Our
aim is now to perform an accurate uncertainty analysis on a relatively low number of random variables.
Concerning the physics of interest, we want to tackle multidimensional multiphysics systems of conser-
vation laws (i.e. developping discontinuous solutions) for which a deterministic resolution can be very
expensive in term of computational time. Consequently, an MC method can not be applied, needing an
unaffordable number of system resolutions (runs of a simulation code as a black-box). For this reason
we will study alternative numerical methods for solving SPDEs. For these, all along our studies, we
will have to keep in mind the discontinuous behaviours of the solutions and the threshold effects they
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will trigger from a probabilistic point of view. The numerical methods will have to be computation-
ally efficient, accurate and robust with respect to such unavoidable difficulties, imposed by the PDEs
of interest. As an alternative numerical method to the MC one, in relatively low stochastic dimension,
we got interested in a recent one refered as Polynomial Chaos in the literature. The next chapters aim
at presenting an illustrated state-of-the-art of Polynomial Chaos with a systematic application of the
resolution algorithms to the above hydrodynamical ’fil rouge’ problem.
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Chapter 3

Polynomial Chaos as an alternative
to Monte-Carlo methods for UQ

An illustrated state-of-the-art on Polynomial Chaos methods
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In this chapter we suggest an illustrated state-of-the-art of Polynomial Chaos for uncertainty quantifi-
cation. We aim at describing its pros and cons having in mind the issues triggered by the hydrodynamical
problem of chapter 2. The material of this chapter was published (in a much less detailed version) in
some vulgarization journals [234, 233].

It is commonly accepted that at the basis of Polynomial Chaos for uncertainty quantification, two
main references are unavoidable, [295] and [55]. The term Polynomial Chaos was first introduced in the
seminal work of Wiener, in ”Homogeneous Chaos Theory” [295], in 1939. The paper is rich in many ways:
first for its mathematical content and theoretical results. But also through the indirectly tackled fields
of application such as probability theory, approximation theory, ergodic theory, homogeneous turbulence
and even numerical analysis of hyperbolic systems at its very end. It will be discussed in the next section
together with the second one, written in 1957, by Cameron and Martin [55]. In both papers, the authors
demonstrate a convergence theorem on an unbounded function space. The statements are complex and
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general and it may appear hard understanding all their implications in term of approximation theory and
resolution algorithm. In section 3.1, we present a (too) brief analysis of both papers in order to replace
them in nowadays’ practical context. Our main contributions (except for chapter 4), see chapters 6, 7
and 8, often only consist in new algorithmic interpretations of the work presented in both of these papers.

Regarding uncertainty quantification, the term Polynomial Chaos together with its first application
were first introduced by Ghanem and Spanos [124]. The approximation method has since then been suc-
cessfully applied to solve many uncertain problems (stochastic elastic materials [124], finite deformations
[6], heat conduction [290], incompressible flows [307, 215, 186], reacting flows and detonation [179]...).
However, most of these approaches failed in the case of ”complex” flows involving discontinuities with
respect to the random variables. Many authors analysed the approximation method, highlighted some
of its weaknesses and even suggested practical solutions, see for example [67, 66, 185, 294, 121]1. There
has been active ongoing research on this topic over the last ten years and this part II of the document
presents our contributions to the discipline.

In the next sections, we aim at performing an illustrated state-of-the-art of Polynomial Chaos for
uncertainty quantification. By illustrated, we mean that care will be taken to analyse, isolate the
points/notions of interest and imagine simple test-cases emphasizing them. We want to make the state-
of-the-art the more progressive possible and for this, we often introduce difficulties one by one, illustrate
them on simple problems and discuss the material. The reader familiar with Polynomial Chaos may find
some examples and discussions naive and skip this chapter.

The chapter is organized as follow: we first (briefly) discuss Wiener’s Homogeneous Chaos [295] and
Cameron-Martin’s theorem [55]. Section 3.1 is born from notes aiming at investigating the subtleties of
both papers. The papers are very rich and kind of hard to penetrate due to their quite disruptive notations
(at least for me). We here claim no originality and the section, in any way, does not represent a substitute
to the refered works. We hope it may help the beginner with their decryption. The discussion is general
and will probably first seem far from the concrete problem of uncertainty quantification. Attempts will be
made to shorten the gap between the paper and this field of application. As we are aiming at presenting
Polynomial Chaos as a good alternative (under some hypothesis) to Monte-Carlo methods, we want to
identify the spectral counterpart of the Central Limit Theorem [256] invoked when applying Monte-Carlo
approximation strategies. This will lead us to recall first Stone-Weierstrass’ approximation theorem. In
the following sections, we focus on uncertainty quantification applications as introduced first by [124].
We insist on Polynomial Chaos (PC) first and on the need for the introduction of generalized Polynomial
Chaos (gPC) afterward. The step from Polynomial Chaos to generalized Polynomial Chaos is the key of
the methodology. It allows a considerable gain in accuracy, hence its efficient application to even more
complex physics. In section 3.4, we recall some details about the already intensively studied orthogonal
polynomials [273, 5, 117]. They remain the basis of the PC/gPC approximation methods. Our main
contributions to the discipline are presented in the next chapters 4–6–7–8, motivated by systems of
conservation laws and the ’fil rouge’ problem described in chapter 2.

3.1 Wiener’s Homogeneous Chaos [295] and Cameron-Martin’s
theorem [55]

Before tackling Wiener’s and Cameron-Martin’s publications, we suggest reminding the well-known
Stone-Weierstrass theorem. The work described in [295, 55] may be understood as an attempt to gen-
eralize the latter to unbounded intervals under prescribed hypothesis. Note that the theorem is stated
with uncertainty quantification-friendly notations which will hold all along the document. We aim at
briefly emphasizing what Wiener, Cameron and Martin added in term of results with respect to Stone
and Weierstrass.

1Note that the list here is non exhaustive but will be completed all along this chapter.
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3.1.1 On Stone-Weierstrass’ approximation theorem

Stone-Weierstrass’ theorem is at the basis of spectral methods and will be considered a reference for the
analysis of the theorems invoked for PC/gPC representations. Care will be taken to state the different
approximation theorems and properties in similar conditions in order to make comparisons easier. We
recall our aim here is to identify the spectral counterpart of the Central Limit Theorem for Monte-Carlo
methods.

Theorem 3.1 Stone-Weierstrass’ approximation theorem: suppose u : X ∈ ∏Q
i=1[ai, bi] ⊂ RQ −→

u(X) ∈ R, u ∈ C0
(∏Q

i=1[ai, bi]
)

, the set of continuous real-valued function together with its L∞-norm

||u||∞ = sup
x∈∏Q

i=1[ai,bi]

|u(x)|.

Then there exists a sequence of polynomials (φn)n∈N converging uniformly toward u on
∏Q
i=1[ai, bi].

The proof is not detailed here but can easily be found in many books, see [105] for example. It implies the
use of Bernstein polynomials and the application of the Central Limit theorem. Both are of importance
in this document: particular families of polynomials will be studied in this part II and every Monte-Carlo
schemes described in part III will rely on the Central Limit Theorem for convergence. The strength of
the theorem comes from two aspects:

– first the convergence is uniform. But designing efficient engineering/numerical algorithms from the
L∞-norm remains complicated. Less constraining and strong norms may be more convenient.

– Second, the hypothesis of regularity of the solution does not hold for our applications. The fact that
discontinous functions are in L2(

∏Q
i=1[ai, bi]) and that polynomials are dense in this space make

it look like an interesting trade-off. The L2 space is also very convenient to build approximation
algorithms based on scalar products and projections on a space of both finite and infinite dimension.
For these reasons, in this document, the L2−norm is mainly considered.

– Note there are ongoing researches on Optimal Control and L1-minimization problems, see [85].
They are out of the scope of this document but we will probably study and work on these in the
future in order to understand their subtleties.

In [295], a new approximation theorem (the weak approximation theorem see [295]) is stated under general
conditions but hints toward considering the L2 space come very naturally along the paper. In [55], the
authors directly focus on the L2 space. In the two following sections, we briefly discuss papers [295] and
[55]. Both papers end with a new approximation theorem extending the Stone-Weierstrass one but in
order to avoid redundances, we focus on their particularties: in Wiener’s paper, the notion of ergodicity
is central. On another end, in [55], the authors state and prove their approximation theorem in a more
general form. These two aspects are described in sections 3.1.2 and 3.1.3.

3.1.2 On Wiener’s Homogeneous Chaos [295]

The most astonishing parts of Wiener’s publication [295] are in my opinion the introduction, untitled
Physical need for theory, and the conclusion, untitled The physical problem. Those parts are short but
hint at a wide range of applications, from homogeneous gas and liquids, states of turbulence and finally
considerations on solutions of nonlinear systems of conservation laws. The last ones are still hot topics
as testifies a recent paper by Tadmor et al. [109].

In his paper, the author focuses on homogeneous dynamical systems for which an ergocidity property
holds. He emphasizes the need for mathematical tools to represent, understand to accurately approximate,
solutions of dynamical systems bearing this property. Ergodicity allows translating averages over an
infinite range taken with respect to a given measure λ into averages over a set of finite measure. In
physical applications, the variable associated to the infinite set λ is usually the time whereas the spatial
set (simulation domain D such that |D| <∞ for example) corresponds to the finite one. Basically, if this
property holds, instead of observing a physical phenomenon during an infinite amount of time, averaging
spatially is enough.
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The main aim of paper [295] is to generalize Birkhoff’s ergodic theorem to multi-dimensional measure λ
without any identification with the time variable. This implicitly paves the path toward the possibility
to consider unstationary problems: solutions at a given time can be obtained from averages over some
multi-dimensional measures (λ should not be confined to the time and to any infinite set).

As explained before, the author aims at generalizing the ergodic theorem. Chaoses are the objects
on which it applies. To state the ergodic theorem as in [295], we need to introduce several notions and
definitions: in the following section, we try to introduce them in more UQ-friendly notations but we
must admit it is still a long way to achieve a satisfying enough section. Anyway, we make this attempt.
A homogeneous chaos, see [295], is defined as a scalar2 measurable function u from

u : x1, ..., xQ, X ∈ RQ × [0, 1] −→ u(x1, ..., xQ;X) ∈ R.

In the above expression, X ∼ U([0, 1]) is such that if ∀(y1, ..., yQ) ∈ RQ,∀S ⊂ R

E [1S(u(x1 + y1, ..., xQ + yQ;X))] <∞,

then ∀(y1, ..., yQ), (y′1, ..., y
′
Q) ∈ RQ × RQ

E [1S(u(x1 + y1, ..., xQ + yQ;X))] = E
[
1S(u(x1 + y′1, ..., xQ + y′Q;X))

]
.

If u is integrable, it is easier and conciser defining homogeneous chaoses as a set-function of Σ1×...×ΣQ =
Σ such that (x1, ..., xQ) ∈ Σ1 × ...× ΣQ = Σ, i.e.

U(Σ, X) =

∫
...

∫
Σ

u(x1, ..., xQ;X)dx1...dxQ.

Of course, U reduces to u, i.e. U(Σ, X) = u(x1, ..., xQ;X), when the set Σ reduces to the point
(x1, ..., xQ), i.e. (x1, ..., xQ) = Σ. Now define the set Σ(y1, ..., yQ) as such,

if (x1, ..., xQ) ∈ Σ⇐⇒ (x1 + y1, ..., xQ + yQ) ∈ Σ(y1, ..., yQ).

Then in the new notations, the definition of a homogeneous chaos becomes: if ∀(y1, ..., yQ) ∈ RQ,∀S ⊂ R

E [1S(U(Σ(y1, ..., yQ), X))] <∞,

then ∀(y1, ..., yQ), (y′1, ..., y
′
Q) ∈ RQ × RQ

E [1S(U(Σ(y1, ..., yQ), X))] = E
[
1S(U(Σ(y′1, ..., y

′
Q), X))

]
.

Thanks to the previous notions, Wiener’s generalization of the ergodic theorem can be stated as below.

Theorem 3.2 Wiener’s generalization of Birkhoff’s ergodic theorem: let U(Σ, X) be a homogeneous
chaos. Let the functional

Φ(U(Σ, X)) = g(X),

be a measurable function of X such that∫
g(X) log(|g(X)|)dPX <∞.

Then for almost all values of X,

lim
r→∞

1

V (r)

∫
...

∫
R

Φ(U(Σ(y1, ..., yQ), X))dy1...dyQ <∞.

In the above expression, r2 =
∑Q
i=1 y

2
i , R = {(y1, ..., yQ) ∈ RQ|∑Q

i=1 y
2
i ≤ r2} and V (r) the volume of

2or vector valued, the generalization is straightforward.
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R. If U(Σ, X) is metrically transitive (see [295]),

lim
r→∞

1

V (r)

∫
...

∫
R

Φ(U(Σ(y1, ..., yQ), X))dy1...dyQ =

∫
Φ(U(Σ, X))dPX , (3.1)

for almost all values of X.

Now, polynomial chaos, which will be defined in the next section, can be understood as a mathematical
object such that any function of a polynomial chaos of arbitrary order satisfies the ergodic property by
construction.
The latter property of polynomial chaos is scarcely tackled in the literature. I must admit it is still hard
for me acknowledging its relative importance in everyday applications. Still, in [243], more developed in
chapter 7, an attempt is made to take advantage of it.

3.1.3 On Cameron and Martin’s theorem [55]

In this section, we state Cameron-Martin’s theorem [55] with notations specific to the manuscript and,
we hope, friendlier in an uncertainty quantification context. This may appear of poor interest but the
reader unfamiliar with the two results may find easier identifying the common points and the differences,
the stakes and the subtleties of the different invoked theorems. Its statement is complex and is more
general than the way it is applied for uncertainty quantification. Care will be taken to highlight this
point. Understanding every aspect of the theorem may lead to new interpretations and new resolution
schemes (an attempt is made in that direction in chapter 8).

Statement of Cameron-Martin’s theorem

Let C0([a, b]) be the space of continuous functions f : x ∈ [a, b] −→ f(x) ∈ Du ⊂ R. Cameron-Martin’s
theorem uses both the Wiener measure on C0([a, b]) and the completeness of the Hermite polynomials
on R in order to introduce a complete orthonormal set of functionals on C0([a, b]) such that every real-
valued function u(f(x)) in L2(C0([a, b])) has a converging development, in L2, on this complete set. We
denote by (φHk )k∈N the Hermite polynomials, orthonormal with respect to the inner product defined by
the gaussian measure, i.e. such that3

∫
φHk (x)φHl (x)dPG(x) =

∫
φHk (x)φHl (x)1]−∞,∞[(x)

e−
x2

2√
2π

dx = δk,l,∀(k, l) ∈ N2.

Let us introduce (φαk )k∈N, a set of real orthonormal functions of L2(C0([a, b])), such that the quantity∫ b

a

φαk (x)df(x) =

∫ b

a

φαk (x)f ′(x)dx exists ∀f ∈ C0([a, b]).

Besides, ∀h(x1, ..., xp) such that ∫ ∞
−∞

h(x1, ..., xp)

p∏
i=1

dPGi(xi) <∞,

exists, we write (notations)∫ w

C0([a,b])

h

(∫ b

a

φα1 (x)df(x), ...,

∫ b

a

φαp (x)df(x)

)
dwf =

∫ ∞
−∞

h(x1, ..., xp)

p∏
i=1

dPGi(xi).

3Note that we here introduce the notation dPG(x) = 1]−∞,∞[(x) e
− x

2

2√
2π

dx.
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We furthermore define a complete orthonormal set of real functions (Φm,n)(m,n)∈N2 belonging to L2(C0([a, b]))
by

Φm,n(f) = φHm

(∫ b

a

φαn(x)df(x)

)
,∀(m,n) ∈ N2. (3.2)

Besides, ∀p ∈ N we have

Ψm1,...,mp(f) = Φm1,1(f)× ...× Φmp,p(f). (3.3)

Expression (3.3) is called the Fourier-Hermite set in [55]. Then the Cameron-Martin’s theorem is stated
as follows.

Theorem 3.3 Cameron-Martin’s theorem: the Fourier-Hermite series of any real functional u(f) ∈
L2(C0([a, b])) converges in the L2(C0([a, b])) sense. This means that if u(f) is such that∫ w

C0([a,b])

|u(f)|2dwf <∞,

then ∫ w

C0([a,b])

∣∣∣∣∣u(f)−
P∑

m1,...,mP

um1,...,mP Ψm1,...,mP (f)

∣∣∣∣∣
2

dwf <∞ −→
P−→∞

0. (3.4)

In the above expression, um1,...,mP are the Fourier-Hermite coefficients defined by

um1,...,mP =

∫ w

C0([a,b])

u(f)Ψm1,...,mP (f)dwf.

Of course, regarding uncertainty quantification, the set of orthogonal functions (φαk )k∈N of L2(C0([a, b])) is
replaced by uncorrelated continuous random variables, i.e. orthogonal continuous applications (Xk)k∈N
with ∀k ∈ N Xk : ω ∈ Ω −→ DX ⊂ R where DX is not necessarily bounded. At this stage of the
discussion, the continuity for the considered random variables may appear strong (as random variables
are generally only considered measurable) but more general cases (discrete/discontinuous input random
variables) will be discussed later in the document.

A special case of Cameron-Martin’s theorem [55]

One detail may trigger the curiosity of the uncertainty analyst familiar with the application of Polynomial
Chaos: the summation over P in (3.4) implies a tensorized basis (see expression (3.2)) with components
growing with respect to the number of components of the set (φαk )k∈N, i.e. in an uncertainty quantifi-
cation context, with respect to the set of random variables (Xk)k∈N. When commonly applied in such
context, the expansion depends only on a finite number of random variables (Xk)k∈{1,...,Q} modeling the
uncertain input parameters of interest. The theorem usually applied in uncertainty quantification prob-
lems corresponds in fact to a special case of Cameron-Martin’s theorem dealt with (and called ’special
case’) in the same publication [55]. Wiener in [295] in fact only stated this special case, but under less
constraining hypothesis with respect to the regularity of the solutions.

Theorem 3.4 A special case of Cameron-Martin’s theorem: let f(u1, ..., uQ) be any Q−dimensional
function such that

u(u1, ..., uQ)e−(u2
1+...+u2

Q) ∈ L2(−∞,∞), (3.5)

and

u(f) = u

(∫ b

a

φα1 (x)df(x), ...,

∫ b

a

φαQ(x)df(x)

)
.
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then

∫ w

C0([a,b])

∣∣∣∣∣∣u(f)−
P∑

m1,...,mQ=0

um1,...,mQΨm1,...,mQ(f)

∣∣∣∣∣∣
2

dwf <∞ −→
P−→∞

0, (3.6)

where um1,...,mQ are the Fourier-Hermite coefficients defined by

um1,...,mQ =

∫ w

C0([a,b])

u(f)Ψm1,...,mQ(f)dwf.

The difference between the statement of 3.3 and its special case 3.4 is identifiable comparing expressions
(3.4) and equation (3.6). In the second one, the number of components Q does not grow with P (the
polynomial order is the only convergence parameter). The special case of theorem 3.3 states that any
Q−dimensional functional from any subset of R (even unbounded ones) into any subset of R (even
unbounded) verifying (3.5) can be expanded in an infinite sum of Hermite-Fourier coefficients on a
Hermite basis of dimension Q.

Remark 3.1 At this stage of the discussion, it is interesting noticing that Grad’s 13 moment model
briefly presented in chapter 1 (see also [207]) is nothing more than a P = 1-truncated Polynomial Chaos
development on the Hermite basis with Q = 3 (with respect to X = (v1, v2, v3)t).

In the next chapters (until chapter 8 in fact), we mainly focus on/invoke the special case of Cameron-
Martin’s theorem. We insist it is implicitly invoked in the literature for uncertainty quantification
problems. In chapter 8, we present our attempt to build a new approximation algorithm, based on gPC,
from the general Cameron-Martin’s theorem (i.e. not its special case).

3.2 Polynomial Chaos for uncertainty quantification (UQ)

Theorem 3.4 is the convergence result at the basis of Polynomial Chaos for uncertainty quantification.
It corresponds to the spectral counterpart of the Central Limit Theorem [165, 256] for Monte-Carlo
methods. The aim of this section is to illustrate what can be asymptotically expected from a PC
approximation. For this, we consider a very special case of theorem 3.4: we focus on a 1D application
and state the theorem in a probability space.

Corollary 3.1 A very special case of Cameron-Martin’s Theorem: let (Ω,F ,P) be a probability space.
Let G ∼ G(0, 1) be a centered normalized gaussian variable with probability measure

dPG(x) =
1√
2π
e
−x

2

2 dx.

Let (φHk )k∈N be the basis of Hermite Polynomials, and let u(G) be an unknown random variable written
as a transformation of the gaussian one G.

Suppose that

∫
u2(G)dPG = E[u2(G)] <∞, then we have

uP (G) =

P∑
k=0

ukφ
H
k (G)

L2(Ω,P)−→
P→∞

u(G).

In other words, the polynomial development converges in the L2(Ω,P)-norm toward the unknown random

variable u(G). The polynomial coefficients (uk)k∈N are defined as uk =

∫
u(G)φHk (G)dPG, the projection

of the solution on the Hermite basis with respect to the gaussian scalar product.

Without further details, we illustrate the practical application of the above corollary 3.1 in an uncer-
tainty quantification analysis. To do so, we suggest considering several simple uncertainty propagation
problems.
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3.2.1 Transformation of a gaussian random variable into a uniform one

The first uncertainty quantification problem we consider here transforms a gaussian random variable into

a uniform one. This can be done by the application of u defined by X −→ u(X) = 1
2 + 1

2erf(
√

2
2 X), to

X ∼ G(0, 1). Then, u(X) ∼ U [0, 1] is a uniform random variable on the interval [0, 1]. Let us apply the
material of corollary 3.1 in order to approximate X −→ u(X). Of course, the key step of the method
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Figure 3.1: Histograms of the sampled PC developments of the random variable X ∼ G(0, 1) −→ u(X) =
1
2 + 1

2erf(
√

2
2 X) ∼ U [0, 1] for P = 1, 3, 5, 9 with analytically computed coefficients (uk)k∈{0,P}. The blue

histograms are the analytical ones obtained from sampling a uniform random variable U [0, 1].

consists in the computation of the polynomial coefficients (uk)k∈{0,...,P}. We will explain how they are
computed later in the document: chapters 4 and 5 are dedicated to numerical methods allowing so. In
this chapter, consider they are computed very accurately (even analytically whenever it is possible). We
aim at presenting what can be asymptotically expected from Polynomial Chaos.

Figure 3.1 compares the histograms obtained thanks to an MC method (reference in blue) and the
one obtained by sampling a Gaussian random variable X ∼ G(0, 1) and applying the PCP developments
for different truncation orders P (red histograms). Qualitatively, we identify a convergence behaviour:
increasing P allows the approximated histograms to get closer to the target one (in blue). For P = 9,
the PC9 and the MC histograms are almost indistinguishable.

Once the polynomial coefficients (uk)k∈{0,...,P=9} computed, the PCP histograms are obtained by

sampling from a polynomial X −→∑P
k=0 ukφk(X) rather than from a complex functional X −→ u(X)

potentially costly. In the literature, the PCP expansions are often called metamodels or surrogate models.
In this manuscript, a metamodel is also denoted by reduced model (mainly in chapter 4) or more often a
gPC approximation (in chapter 5).

Once the histogram available, one can work on many statistical features such as mean, variance, high
order moments, failure probabilities etc. depending on the purpose of the uncertainty analysis (see the
main chart in [271]). Consequently, once the histogram is accurately enough computed, we consider the
resolution of the uncertainty propagation step done, the rest being less costful postprocessings.

Now, let us consider the same uncertainty quantification problem as before but from a more quan-
titive point of view. Figure 3.2 presents a convergence study with respect to P in L2-norm for the
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PCP developments of X ∼ G(0, 1) −→ u(X) = 1
2 + 1

2erf(
√

2
2 X) ∼ U [0, 1]. As can be seen on figure 3.2,
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Figure 3.2: Convergence study of the PCP approximation for the transformation of a gaussian random

variable X ∼ G(0, 1) −→ u(X) = 1
2 + 1

2erf(
√

2
2 X) ∼ U [0, 1] into a uniform one.

for P > 1, the curve exhibits an exponential convergence rate: linear dependence with respect to P of
log(eL2) where eL2 is the L2-norm of the error. This exponential convergence rate is characteristic of
spectral methods. From a practical point of view, the gain is considerable: with P = 9, the error in
L2-norm is ≈ 10−6. Such accuracy, with a MC method can only be reached with NMC ≈ 1012 samples
which remains unaffordable for many applications. As a consequence, if we are able to compute the co-
efficients (uk)k∈{0,...,P} efficiently enough (in comparison to a certain amount of MC runs), PCP stands
for an interesting alternative.

3.2.2 Mapping of a uniform random variable into an Arcsinus and a Binomial
one

We now consider two other simple transformations. They will help understand the subtlety of the
introduction of generalized Polynomial Chaos [305, 291] few years after Polynomial Chaos [124] in an
uncertainty quantification context. For this, we first perform the same kind of convergence study as
before but on the transformation of a uniform random variable X ∼ U [0, 1] −→ u(X) = sin(2πX)
into an Arcsin law. We then apply the PC development to the transformation of a uniform random
variable into a Binomial one via the transformation X ∼ U [0, 1] −→ u(X) = 1]−∞,− 1

2 ](X). The latter
transformation is studied to anticipate the behaviour of the approximation when discontinuous solutions
are appearing (cf. the ’fil rouge’ problem presented in chapter 2).

Mapping of a uniform random variable into an Arcsinus law

We first apply PCP developments for several truncation orders P for transformation X ∼ U [0, 1] −→
u(X) = sin(2πX) and display the same convergence study as in figure 3.2. Note that in order to apply
PC here, we first had to map the input random variable X into a gaussian one in order to compute the PC
coefficients on the Hermite basis. The results are presented in figure 3.3 and once again, the test problem
suggests PCP yields an exponential convergence rate. But the curve is much flatter than in the previous
example. Indeed, a 10−2 accuracy is not even reached with P = 9 on this second example. To attain
an equivalent accuracy, the Monte-Carlo method needs about 104 samples: for such transformation, we
can consider both methods compete. The fact that the convergence rate of spectral methods strongly
depends on the regularity of the solution is well-known [42]. This represents a drawback with respect to
MC methods for which it is relatively insensitive. For MC methods, the regularity of u mainly affects
the constant multiplying the convergence rate, not the convergence rate, see section 5.2 of chapter 5.
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Figure 3.3: Convergence study of the PCP approximation for the transformation of a uniform random
variable X ∼ U [0, 1] −→ u(X) = sin(2πX) ∼ A into an Arcsinus one.

Next, in order to anticipate with the kind of solution which can be encountered when dealing with
hyperbolic systems of conservation laws, let us consider another simple transformation of a uniform
random variable into a binomial one.

Mapping of a uniform random variable into a Binomial law

We here apply PCP developments for several truncation orders P on the transformation of a uni-
form random variable X ∼ U [0, 1] via the application u(X) = 1]−∞,− 1

2 ](X). In this case, the output

u(X) ∼ B0,1( 3
4 ,

1
4 ) is a binomial one with state 0 having probability 3

4 and state 1 having probability 1
4 .

Once again, the input X being non-gaussian, we first need to map X into a gaussian random variable
to compute the PC coefficients on the Hermite basis. We display the same kind of convergence study
as before in figure 3.4. For such discrete output, the PCP approximation does not yield an exponential
convergence rate. Obtaining an accuracy below 10−1 in the L2-norm is very hard. It needs the compu-
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Figure 3.4: Convergence study of the PCP approximation for the transformation of a uniform random
variable X ∼ U [0, 1] −→ u(X) = 1]−∞,− 1

2 ](X) ∼ B into a Binomial one.

tation of more than P = 30 coefficients. The same accuracy in L2-norm can be attained with an MC
method with about NMC = 100 samples.
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With these last two examples, it is not obvious Polynomial Chaos represents an interesting alternative
to the Monte-Carlo method. In fact, Polynomial Chaos has been quite condemned in many papers be-
tween 1970 and 1980, see for example [66, 67, 103], emphasizing the need of very high order developments
for real life applications (study of turbulence for example, see [66]). The introduction of generalized Poly-
nomial Chaos (gPC) by Karniadakis et al. [305, 291] gave a new breath to the spectral approximation.
It suggests a new approximation method obtained by only slightly changing the approximation basis. It
is described in the next section.

3.3 Introduction of generalized Polynomial Chaos (gPC) for
UQ

In order to fully understand the differences between generalized Polynomial Chaos and Polynomial Chaos,
we suggest stating a second ’version/corollary’, still in 1D stochastic dimension, of Cameron-Martin
theorem which corresponds to the gPC application in the literature. It has been conjectured and applied
in many numerical examples by Karniadakis et al. (2002-2006) [305, 291] and fully demonstrated in [104].

Corollary 3.2 Convergence of generalized Polynomial Chaos: let (Ω,F ,P) be a probability space. Let
X be an arbitrary random variable of given probability measure dPX(x). Let (φXk )k∈N be the basis of
orthonormal polynomials with respect to dPX(x)∫

φXk φ
X
t dPX = δk,t,∀(k, t) ∈ N2.

Suppose the define a dense orthogonal set in L2(Ω,F ,P). Let u(X) be an unknown random variable.

Suppose that

∫
u2(X)dPX < ∞. Then the polynomial development uXP (X) =

P∑
k=0

uXk φ
X
k (X)

L2(Ω,P)−→
P→∞

u(X), converges in the L2(Ω,P)-norm toward the unknown random variable u(X). The polynomial

coefficients (uk)k∈N are defined by uXk =

∫
u(X)φXk (X)dPX . They are the projection of the solution on

above polynomial basis with respect to the scalar product defined by the probability measure dPX .

Note that the general convergence theorem seems to demand an additional condition in comparison to
Stone-Weierstrass’ or Cameron-Martin’s on the input distribution: it must have a uniquely solvable mo-
ment problem4 for the set of polynomial to be dense in L2. This assumption is in fact already in both
seminal theorems because the Hermite polynomials are dense in L2. The hypothesis deserves some more
details, it will be dealt with in the next section regarding the construction of the gPC basis. Paper [104]
also recalls the convergence is ensured for quantiles5, relative moments6, in probability7: in other words,
for every classical mathematical tools to perform a (converging) uncertainty quantification analysis. In
the following sections, we consider random input variable X for which the gPC convergence holds [104].

To sum-up, some complementary theorems ensure the convergence for some particular measures8

dPX but the complete convergence theorem for gPC has been demonstrated in [104]. Now, the efficiency
of gPC vs. PC has been numerically observed in many fields of applications [291, 294, 293, 299, 167, 76,
304, 306, 305, 208]. In the next paragraphs, we suggest revisiting the previous numerical examples with
gPC and compare its performances with PC.

4It is not restrictive for the distribution of the Askey scheme [12, 305, 303, 291] nor discrete and mixed distributions
but may be problematic for the lognormal one [104].

5Relevant when one is interested in approximating a probability of failure.
6Relevant when one is interested in central quantities.
7Relevant when one is interested in approximating the probability density function of the output variable by a histogram.
8For example if the support of dPX is bounded (uniform, arcsinus, beta laws etc.) the Stone-Weierstrass theorem ensures

the convergence of the gPC expansion. For the Poisson distribution (unbounded discrete distribution), the convergence is
ensured by the very same theorem ensuring the convergence of the Gram-Charlier expansion etc.
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Mapping of a uniform random variable into an Arcsinus law: comparison of PC and gPC

Without any further comment, we apply the gPC material to the transformation of a uniform random
variable into an Arcsinus laws, just as in one of the previous paragraph and compare the results obtained
by both approximations, PCP and gPCP . Figure 3.5 (left) compares the convergence studies for X ∼
U [0, 1] −→ u(X) = sin(2πX) with PCP and gPCP up to order P = 9. The red curve (PCP ) is the

gPCP (Legendre) vs. PCP (Hermite) gPCP=9
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Figure 3.5: Left: Comparison of the convergence rates of PCP and gPCP for the transformation of
a uniform random variable X ∼ U [0, 1] −→ u(X) = sin(2πX) ∼ A into an Arcsinus one. Right:
comparison of the target histogram and the gPC9 one (they match exactly).

same as in section 3.2. The blue one (gPCP ) is obtained applying the new version of Cameron-Martin
theorem. The convergence rate with gPC is way better on this test-problem. For P = 9, the level of
accuracy of the approximation is ≈ 10−10. Such level of accuracy was far from being reached with PC.
Figure 3.5 (right) presents the histogram of the pdf obtained with gPCP=9: it is not distinguishable
from the target histogram of the Arcsin law.

Mapping of a uniform random variable into a Binomial law: comparison of PC and gPC

Let us revisit the transformation of a uniform random variable X ∼ U [0, 1] −→ u(X) = 1]−∞,− 1
2 ](X) ∼ B

into a Binomial one with gPC instead of PC. The red curve in figure 3.6 (left) is the same as in figure

gPCP (Legendre) vs. PCP (Hermite) gPCP=6
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Figure 3.6: Left: Comparison of the convergence rates of PCP and gPCP for the transformation of
a uniform random variable X ∼ U [0, 1] −→ u(X) = 1]−∞,− 1

2 ](X) ∼ B into a Binomial one. Right:
comparison of the target histogram obtained with MC and the gPC6 one.

3.4 obtained with PCP whereas the blue one corresponds to the gPCP convergence study. The gPC
approximation is always (i.e. ∀P ) better than the PC one but the convergence remains non-spectral
(this is predicted by theory, see [42]). Figure 3.6 (right) shows the target histogram obtained with an
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MC method (red) and the one obtained with the gPC6 approximation: the gPC approximation poorly
captures the discrete behaviour of the solution. Such oscillating approximation corresponds to what is
commonly called the Gibbs phenomenon in the literature.

Summary

With the previous examples, we aimed at highlighting there exists more or less adapted basis for approx-
imating a given random variable u(X). Above all, this was already implicitly contained in the original
Cameron-Martin’s theorem [55]. In fact, in [291, 305], the authors re-interpreted Cameron-Martin’s the-
orem and put forward there even exists an optimal basis for any given L2 random variable u(X). In
table 3.1, few correspondances between optimal basis and random variables are given. Some of those
correspondances were also given in the Askey scheme see [259]. In fact, table 3.1 must be understood

Random variables Askey Polynomials
Continuous laws gaussian Hermite

gamma Laguerre
beta Jacobi

uniform Legendre
Arcsinus Chebyshev

Discrete laws Poisson Charlier
Binomial Krawtchouk

negative-Binomiale Meixner
Hypergeometric Hahn

Table 3.1: Askey scheme: correspondances between random variables and optimal gPC basis.

this way: let X be a uniform law, let u(X) be a transformation of X distributed according to an Arcsin
law. Then the development of the target random variable u(X) on a Chebyshev basis yields the fastest
convergence rate: it is analytical with only 2 polynomial coefficients, i.e. order P = 1, u0 representing
the mean and u1 the variance. More than that, the same correspondance exists also for discrete laws,
hence for transformation X ∼ U [0, 1] −→ u(X) = 1]−∞,− 1

2 ](X) ∼ B for which, according to table 3.1,

the Krawtchouk polynomials yields the best convergence rate (perfect accuracy for P = 1). Of course,
knowing the optimal basis implies knowing the output distribution which is precisely the unknown. Still,
having such existence information for the optimal basis allows looking for it and designing algorithm
aiming at it: this is the purpose of chapter 6 describing our contribution to non-intrusive gPC (see
iterative gPC or i-gPC [238, 31, 242]).

Remark 3.2 Corollary 3.2 does not mean gPC is superior to PC: assume u transforms a uniform
random variable X into a gaussian one. Than PC will hold the optimal convergence rate.

The two last sections presented two approximation methods, PC and gPC. They are closely related
in the sense the approximation algorithms for the two approaches come from two slightly different in-
terpretations of Cameron-Martin’s theorem [55]. Its complexity and completeness makes it a probable
source for even newer interpretations, hence new approximation tools.

Before tackling the different practical ways for computing the gPC coefficients, we present in the
next section the construction of the gPC basis for arbitrary random variables (i.e arbitrary probability
measures). Indeed, the first condition for applying corollary 3.2 is to be able to build the orthonormal
basis with respect to the inner product defined by the probability measure of the input random variable
X.

3.4 The construction of the gPC basis

A gPC basis is nothing more than an orthonormal polynomial basis. The gPC procedure only helps the
uncertainty analyst a priori choosing an efficient one. Orthonormal polynomials have been intensively
studied in the literature, see amongst others [273, 5, 117, 129]. In this document, we do not aim at
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being exhaustive on the subject. We only recall their main properties, those useful for the construction
of an arbitrary gPC basis associated to the inner product defined by an arbitrary probability measure
dPX . We also prepare some notions and notations for the question of numerical integration with Gauss
quadrature rules which is central for the non-intrusive application in chapter 5.

3.4.1 Inner product defined by an arbitrary probability measure

Let dPX be an arbitrary probability measure related to an arbitrary random variable X. Care will
be taken in this section to be able to consider any random variable, continuous (gaussian, uniform,...)
and even discrete/categorial (binomial, multinomial,...). We introduce the inner product defined by the
probability measure dPX as

〈f, g〉X =

∫
f(x)g(x)dPX(x). (3.7)

The above inner product, for a probability measure of a discrete random variable having D + 1 < ∞
states (xj)j∈{0,...,D} with probabilities (pj)j∈{0,...,D} > 0, resumes to

〈f, g〉X =

∫
f(x)g(x)dPX(x) =

∫
f(x)g(x)

D∑
j=0

pjδxj (x) =

D∑
j=0

pjf(xj)g(xj). (3.8)

In this particular case, the output random variable is in a finite vector space (of size D+ 1 <∞). With
expression (3.8), we insist on the fact that the notation (3.7) is compatible with continuous and discrete
input random variables. The notations are inspired from the ones of [117].

A sequence of P orthogonal polynomials (φXk )k∈{0,...P} associated to the probability measure dPX
has the following properties:

– φXk is of degree k,

–
〈
φXk , φ

X
l

〉
X

= 0, ∀(k, l) ∈ {0, ..., P}2 such that k 6= l.

The sequence is said

– orthonormal if
〈
φXk , φ

X
k

〉
X

= 1 ∀k ∈ {0, ..., P},

– monic if the coefficient of the highest degree (i.e. of xk for φXk ) for every polynomials of the sequence

(φXk )k∈{0,...,P} is 1. In this document, we use the additional upperscript m, i.e. (φX,mk )k∈N, to denote
monic (orthogonal) polynomials.

Obviously, the families (φX,mk )k∈N of monic orthogonal polynomials and (φXk )k∈N of orthonormal poly-
nomials are related. Their relative expression will be given in the next section once an additional notion
introduced. For conciseness in the following document, the sequence of polynomials orthonormal with
respect to the inner product defined by a given probability measure dPX is refered as the polynomials
associated to X or dPX . Such sequence is closely related to the statistical moments of its corresponding
random variable X or probability measure dPX . In the next section, we recall this important link.

3.4.2 Moments of a probability measure and Hankel determinants

Consider an arbitrary random variable X having probability measure dPX and suppose ∀k ∈ N

sXk =

∫
xkdPX(x) <∞. (3.9)

Then the sequence of numbers (sXk )k∈N is called the sequence of moments of the random variable X
or of the probability measure dPX . Note that if the support of X/dPX is bounded, the existence
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of the sequence (3.9) of moments such that (3.9) ∀k ∈ N is straightforward. We define the Hankel
matrices/determinants of the random variable X or of the probability measure dPX by ∀k ∈ N

HX
2k =

∣∣∣∣∣∣∣∣∣∣
sX0 sX1 ... sXk
... ... ... ...
sXn sXn+1 ... sXn+k

... ... ... ...
sXk ... ... sX2k

∣∣∣∣∣∣∣∣∣∣
, HX

2k+1 =

∣∣∣∣∣∣∣∣∣∣
sX1 sX2 ... sXk+1

... ... ... ...
sXn sXn+1 ... sXn+k

... ... ... ...
sXk+1 ... ... sX2k+1

∣∣∣∣∣∣∣∣∣∣
. (3.10)

Determining whether a sequence of finite real numbers (sk)k∈N are moments of a unique or not random
variable/probability measure is what is commonly called the classical moment problem. If such random
variable/probability measure exists and is unique, the problem is said determinate. If it exists and is not
unique, the problem is said indeterminate. Depending on the support of the random variable/probability
measure, the moment problem is called [204, 7]:

– the Hausdorff moment problem when X/dPX has a bounded support, i.e. X ∈∏Q
i=1[ai, bi]. In this

particular case, if a sequence (sXk )k∈N is a sequence of moments of a random variable/probability
measure, then the problem is determinate [204, 156, 7].

– The Stieltjes moment problem when X/dPX has a half-line support, i.e. X ∈ ∏Q
i=1[ai,∞[. In

such conditions, if a sequence (sXk )k∈N is a sequence of moments of a random variable/probability
measure, the problem may be indeterminate. A sufficient condition for uniqueness can be express
as

∞∑
k=0

(sXk )
− 1

2k =∞. (3.11)

It is called Carleman’s condition see [7].

– The Hamburger moment problem when X/dPX has an unbounded support, i.e. X ∈ RQ. In such
conditions, a sequence of moments may also be indeterminate and the Carleman’s condition see [7]
in this case is given by

∞∑
k=0

(sX2k)
− 1

2k =∞. (3.12)

Consequently, depending on the support of the random variable/probability measure of interest, if exis-
tence holds, uniqueness is not always straightforward. In the indeterminate cases, the solutions of the
moment problem form a convex set. Most of all for our applications, in the determinate moment problem
case, the set of polynomials are dense in the associated Hilbert space.

So far, we mainly dealt with uniqueness and assumed existence. Let (sXk )k∈N be a sequence of numbers
satisfying ∀k ∈ N sXk <∞. Suppose the Hankel determinants defined by (3.10) satisfies:

– either ∀k ∈ N HX
2k > 0 and HX

2k+1 > 0,

– or ∀(2k, 2k + 1) ∈ {0, ..., D}2 HX
2k > 0 and HX

2k+1 > 0 and HX
2k = HX

2k+1 = 0 for larger k,

then the sequence is a sequence of moments of a random variable/probability measure for the classical
moment problem (i.e. independently of being a Hausdorff, Stieltjes or Hamburger moment problem).
Note that in the second case, the Hilbert space associated to the existing measure is finite-dimensional
and of size D + 1.

As briefly tackled before, the existence of a set of dense polynomials associated to a given random
variable/probability measure X/dPX is closely related to the existence and the determinacy of its mo-
ments. In the following section, we present Christoffel’s formulae which explicits the relation between
the moments of a random variable and the orthonormal polynomials associated to this same one.
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3.4.3 Christoffel’s formulae, Jacobi’s matrix and construction procedures

Christoffel’s formulae [7, 156] explicits the relation between the sequence of moments (sXk )k∈N of a random
variable X and the set of orthonormal polynomials (φXk )k∈N associated to X. It is given by

∀n ∈ {0, ..., P}, φXn (x) =
1√

HX
2(n−1)H

X
2n

∣∣∣∣∣∣∣∣∣∣
sX0 sX1 ... sXn
... ... ... ...
sXk sXk+1 ... sXn+k

... ... ... ...
1 x1 ... xn

∣∣∣∣∣∣∣∣∣∣
. (3.13)

In (3.13) appears the previous Hankel determinants (3.10). From (3.13), it is easy recovering the polyno-
mial sequence may only exist up to a certain order D (whether the Hankel determinants are all strictly
positive or if there exists an order after which they are all zero). In the following document, we keep
considering, for convenience, polynomials orders k ∈ N even if for some probability measure they exist
only up to a certain order P ∈ N. With (3.13), it is easy verifying, see [7], the monic orthogonal polyno-

mials (φX,mk )k∈N can be expressed with respect to both the orthonormal ones (φXk )k∈N and the Hankel
determinants as we have ∀k ∈ N:

φXk (x) = ΓXk φ
X,m
k (x) =

√
HX

2(k−1)

HX
2k

φX,mk (x). (3.14)

Christoffel’s formulae (3.13) obviously represents a way to build the gPC basis associated to the
probability measure dPX . It definitely has a theoretical interest but it is scarcely used in practice due to
the difficulty to accurately numerically compute the Hankel determinants. The problem is more and more
ill-conditioned as the polynomial order increases. To illustrate this, suppose the sequence of moments
(sXk )k∈{0,...,2P} of an existing random variable X are not accurately known9 and assume a perturbation
of these moments such that

(sεk)k∈{0,...,2P} = (sXk + εk)k∈{0,...,2P} ≈ (sXk )k∈{0,...,2P}.

For the sake of simplicity of the following developments, we suppose a particular form for the perturbation
ε = (ε0, ..., ε2P ) = (0, ..., 0, δ) so that we suppose every moments of order n ∈ {0, ..., 2P−1} are accurately
computed whereas the last one sX2P is perturbed by δ. The polynomials orthornormal with respect to
the perturbed moments coincide with the one of X up to order P − 1 and we have

φεP (x) =
1√

HX
2(P−1)H

ε
2P

∣∣∣∣∣∣∣∣∣∣
sX0 sX1 ... sXn
... ... ... ...
sXk sXk+1 ... sXn+k

... ... ... ...
1 x1 ... xP

∣∣∣∣∣∣∣∣∣∣
. (3.15)

In other words, ε only affects the last Hankel determinant Hε
2P hence the last polynomial φP . Now, from

the definition of Hε
2P and by a development of the last line of the determinant, we have

Hε
2P = HX

2P + δHX
2(P−1) so that φεP (x) = 1√

1 + δ
HX

2(P−1)

HX
2P

φXP (x).
(3.16)

Consequently, the sequence of polynomials (φXk )k∈N associated to X and the sequence of polynomials
(φεk)k∈N associated to the perturbed moments are such that

– ∀n ∈ {0, ..., P − 1}, φεn = φXn ,

9they may be only computed, estimated etc.
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– and for the last component, we have

φεP (x) = φXP (x)− 1
2

HX
2(P−1)

HX
2P

φXP (x)δ +O(δ2). (3.17)

It is known in the litterature [14, 118, 7, 156] that in the previous conditions ∀n ∈ N

HX
2n

HX
2(n−1)

≤ 2−(4n+2) leading to

∣∣∣∣dφXPdδ

∣∣∣∣ ≥ 24P+1.

It testifies for a higher and higher sensivity of the orthornormal basis components with respect to a small
inaccuracy in the statistical moments/Hankel determinants (δ) as the polynomial order P increases. The
inaccuracy δ may come from an approximation of the moments but also from roundoff errors due to
the determinant computation algorithm. In order to avoid such aliasing errors, more stable algorithm
are available such as the Chebyshev one or the modified Chebyshev one (see [117]). Those algorithms
intensively use another important property of orthonormal polynomials. For any set of orthonormal
polynomials up to order P , there exists two sequences of coefficients (αk)k∈{0,...,P} and (βk)k∈{0,...,P}
such that ∀k ∈ {0, ..., P}√

βk+1φ
X
k+1(x) = (x− αk+1)φXk (x)−

√
βkφ

X
k−1(x). (3.18)

In the above expression, ∀k ∈ {0, ..., P}, we have

αk =

∫
xφXk (x)φXk (x)dPX(x)

〈φk, φk〉X
,

and (βk)k∈{0,...,P} are such that ∀k ∈ {0, ..., P}

βk =

〈
φXk , φ

X
k

〉
X〈

φXk−1, φ
X
k−1

〉
X

.

Equation (3.18) is refered to as the three term recurrence formulae in the literature. The Chebyshev algo-
rithms, even if known to be more stable, may also suffer inaccuracy10 in the estimations of (αk, βk)k∈N.
The relation between the moments and the coefficients of the three-term recurrence formulae can be
explicited, we refer to [273, 117] for the interested reader. It must be kept in mind that the orthornormal
basis associated to any random variable with a too important order may bear unworkable inaccuracies.

The three-term recurrence formulae can be written in a matrix form by introducing the Jacobi matrix
of order P defined by

JXP =


α1

√
β1 0 0 ... 0√

β1 α2

√
β2 0 ... 0

0
√
β2 α3

√
β3 ... 0

0 ... ... ... ... 0
0 ... ... ... ...

√
βP

 . (3.19)

Denote by ΦXP = (φX0 , ..., φ
X
P )t the vector of P+1 components of the sequence of orthonormal polynomials

associated to X, the three-term recurrence formulae ensures that

xΦXP (x) = JXP ΦXP (x) +
√
βPφ

X
P+1(x)eP , (3.20)

where eP = (0, ..., 0, 1)t is of size P + 1. It is then interesting noticing that the P + 1 roots (Xi)i∈{0,...,P}
of polynomial φXP+1 are the eigenvalues of the Jacobi matrix of order P . We have ∀k ∈ {0, ..., P}

XkΦXP (Xk) = JXP ΦXP (Xk).

10As the sequence (βk)k∈N is obviously related to the sequence of moments, see (3.13).
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Vectors (ΦXP (Xk))k∈{0,...,P} are consequently the corresponding eigenvectors. This property is intensively
used in order to build Gauss quadrature rules, see chapter 5.

3.4.4 Taking into account discrete/categorical input variables with gPC

In the previous sections, care has been taken to detail the case of discrete random variables with D + 1
states even if the notations and the results did not particularly need it. We here want to insist on the
fact that discrete input random variables are included in the gPC framework (already in [295] or in the
Askey scheme of table 3.1). This property is not obvious in the literature. It has triggered questionings
from some of my students. The construction procedure for the gPC basis of any discrete law is exactly
the same as for continuous random variables or at least the same as for random variables having an
infinite sequence of orthonormal polynomials. The only difference comes from the fact that one should
not try to build the gPC basis after a certain order depending on the number of states of the categorial
random variable. By convention in the following document and without loss of generalities, we denote
by (φXk (X))k∈N the gPC basis associated to any random variable X: if X is discrete then ∃k0 ∈ N such
that ∀k > k0, φ

X
k (X) = 0 and the notation still holds.

We do not spend too much time on this particular case but let us consider a practical example
derivated from the the ’fil rouge’ problem of chapter 2. Suppose the initial interface position can be
modeled by a discrete random variable with three equiprobable states X0 = 0.45, X1 = 0.5, X2 = 0.55
with probabilities p0 = p1 = p2 = 1

3 . In this particular conditions, the initial and final realisations of the
discrete interface position are also given by the three initial realisations displayed on the top pictures
(but the bottom ones are not representative of this choice here) of figure 2.2. The gPC basis exists up
to order P = 2, it corresponds to the Meixner polynomials (see table 3.1). The output random variables
have at most three discrete states and we know in the vicinity of the shock or the interface, they have
only two discrete ones. We assure they can efficiently be captured by the three term Meixner basis.

This section is almost allusive but we wanted to insist on this point. We now spend few sections
illustrating the main drawbacks of gPC, especially having in mind the ’fil rouge’ problem of chapter 2.

3.5 Curse of dimensionality and Gibbs phenomenon

In this section, we focus on the two main drawbacks of gPC, the curse of dimensionality and the sensitivity
to Gibbs phenomenon. As explained before, the dimensionality problem is not our main issue, we are
dealing with a fairly reasonable number of input uncertainties (see chapter 2). The Gibbs phenomenon
on the contrary is unavoidable in our applications, even in 1D stochastic dimension. In the next section,
we briefly describe and illustrate both difficulties.

3.5.1 Curse of dimensionality

The first drawback is quite simple to understand and illustrate: the previous corollaries (PC with 3.1
and gPC with 3.2) were stated in 1D stochastic dimension. Their multi-dimensional counterparts cor-
responds to a tensorization of 1D polynomial basis, exactly as detailed in the original paper [55] and
recalled in theorem 3.4. Assume X = (X1, ..., XQ)t is a vector of independent components, a gPC ap-
proximation of the transformation u(X) can be obtained by introducing Q one-dimensional gPC basis
(φik(Xi))k∈N,i∈{1,...,Q} orthonormal with respect to the independent probability measures of each com-
ponent of the random vector ∀(k, l) ∈ N2, i ∈ {1, ..., Q}:∫

φik(xi)φ
i
l(xi)dPXi(xi) = δk,l.

Approximating u(X) on the Q-tensorized P -truncated polynomial basis implies the determination of
(P + 1)Q coefficients. An increase in the dimension Q leads to an exponential increase of the number of
coefficients which are directly related to the computational resources needed (see chapters 4 to 8).
Note that we supposed X ∈ RQ is a Q-dimensional independent random vector. Independence here is
convenient but does not imply any loss of generality. Correlated random variables can be treated the
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very same way conditionally to a primary modeling via copulae, see [169, 170, 100, 34] for some very
pedagogical examples.

Several authors aimed at relieving the impact of the curse of dimensionality in high dimensions.
Each attempt comes with an additional hypothesis. For example in [34], the author build some sparse
representations assuming many coefficients are zero. For this, an L1 penalization is introduced. Other
authors [34, 35, 262, 158, 258, 72] choose to compute the coefficients on some simplexes based on hy-
pothesis of regularity of the output random variables with respect to the different input dimensions: the
truncation orders (Pi)i∈{1,...,Q} is different depending on the stochastic directions (Xi)i∈{1,...,Q} for which
some smoothness criterions are satisfied a posteriori by the output. In the following sections, due to the
appearance of discontinuous solutions in our applications, we do not make any of the above assumptions
on the regularity of the solution.

3.5.2 Sensitivity to the Gibbs phenomenon

If the curse of dimensionality can be considered a minor difficulty in the studies we are interested in, this is
quite different for the Gibbs phenomenon. Let us consider the previously tackled problem of transforming
a uniform random variable X ∼ U([−1, 1]) into a binomial one via application u(X) defined as

u(x) = 1]−∞,− 1
2 ](x) =

{
1 if x ≤ − 1

2 ,
0 else.

(3.21)

The transformation u maps a uniform random variable into a binomial one with states {0, 1} with
respective probabilities { 3

4 ,
1
4}. Discontinuous functions are in L2 so there is no surprise the classical

theorems apply. We verify it experimentally: figure 3.7 compares the gPCP=6 approximation to the
analytical solution in term of functional representation (left) and histogram of the pdf of the output
(right). The functional represention of figure 3.7 (left) testifies of the discontinuous behaviour of the

Solution u(x) and uX6 (x) histogram of u(X) and uX6
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Figure 3.7: gPC and Gibbs phenomenon in term of functional representation (left) and histogram (right)

output u(x) with respect to the uncertain parameter (red curve for the reference solution). The histogram
of the pdf, figure 3.7 (right), testifies of the bimodal behaviour of the output random variable u(X). Note
that the above simple test-problem gives a cheap and efficient emulation of the hydrodynamical problem
detailed in chapter 2: the histogram of figure 3.7 (right) is close enough to the ones obtained in the
vicinities of the shock or of the interface in figure 2.3.

In figure 3.7, the gPCP=6 approximation fails to capture the discontinuous behaviour of the output
random variable. The support of the output random variable is missed (the maximum principle is not
respected) and the behaviour is misevaluated. In fact, for such problem, increasing the polynomial order
does not allow any great improvement: the convergence rate is very slow as testifies figure 3.8. In fact
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Figure 3.8: Convergence study of the PCP and gPCP approximations for the transformation of a uniform
random variable X ∼ U [−1, 1] −→ u(X) = 1]−∞, 12 ](X) ∼ B into a Binomial one.

for such low regularity, the convergence rate is even sublinear: in figure 3.8, the logarithm of the error
with respect to P is not a straight line.

Several authors suggested algorithmic solutions in order to reduce the effect of the Gibbs phenomenon
on the gPC approximations. The main ones are gPC/Haar Wavelets representations (Lemâıtre et al.
[185]), Multi-Element gPC (Karniadakis et al. [294]) or stochastic WENO-like gPC (Abgrall [4]) etc.
To describe them briefly, the Haar wavelets are powerful in order to represent discontinuous solutions
but fail for smooth ones (whereas gPC does not). The complementary use of both representations is
very interesting but needs an arbitrary criterion in order to choose which one to use. The ME-gPC ap-
proximation consists in tracking and locating the discontinuity in the random space before decomposing
it in Ns subspaces in which are solved Ns independent uncertainty propagation problems (instead of
only one initially). It consequently raises other complex algorithmic questions. The WENO-like approx-
imations on the contrary consists in accepting locally lower degree representations based on oscillatory
behaviours/criterions.

As explained before, the Gibbs phenomenon will be intensively encountered in the application of
interest and our contributions mainly consist in dealing with it, from an intrusive point of view (robustness
difficulties in chapter 4), or a non-intrusive one (accuracy issues in chapter 5).

3.6 Summary for generalized Polynomial Chaos

With this chapter, we wanted to illustrate under which conditions gPC stands for an interesting al-
ternative to MC methods: especially in relatively low stochastic dimensions and for relatively smooth
solutions. The next chapters are dedicated to a presentation of our contributions to uncertainty quantifi-
cation thanks to gPC based reduced model. They are of two different natures, opening to two different
possibilities:

– the first possibility consists in working on the resolution method, i.e. on gPC, to increase its
efficiency. We are motivated by hyperbolic systems and in this context, the main weakness concerns
the sensitivity to Gibbs phenomenon11. In chapters 4, 6 and 8 our different contributions will aim
at alleviating the hypothesis of regularity of the solution for the gPC approximations. We will not
tackle the curse of dimensionality in this part of the document. High (physical and stochastic)
dimension problems will rather be considered in part III.

– The second possibility consists in accepting the flaws of gPC (with respect to dimensionality and
the regularity of the solutions) and apply it in well-suited relevant situations. This will be the

11In the sense it also occurs in small stochastic dimensions (also in 1D as in the example of chapter 2).
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purpose of chapter 7 in which non-intrusive gPC reduced models will be applied to accelerate
computations to predict the growth rate of hydrodynamical instabilities.

Until now, we presented what can asymptotically be expected of gPC and did not detail how to
compute the gPC coefficients (uk)k∈{0,...,P} which are the keys of the approach. Two main ways exist in
the literature for this. Intrusive methods imply building a reduced model, consequently solving a new
set of PDE and developing a new resolution code. They are detailed, together with our contributions
for systems of conservation laws, in chapter 4. Non-intrusive methods use a resolution code for the
deterministic PDE of interest as a black-box (just as MC methods do). They are detailed in chapter 5,
together with our contributions in chapters 6, 7 and 8.
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Chapter 4

Intrusive application of gPC for
systems of conservation laws

Some Pn-like or Mn-like gPC based moment models

Contents
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4.2 A step-by-step study of intrusive gPC for systems of conservation laws . . 56
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4.2.4 Application to the ’fil rouge’ problem of chapter 2 . . . . . . . . . . . . . . . . 66

4.3 Summary for intrusive gPC and the entropy closure reduced models . . . 70

In this chapter, we present a first way to compute the coefficients (uXk )k∈{0,...,P} of a gPC expansion.
It is commonly called intrusive gPC. The methodology is general and can be applied to any systems but
we focus on conservation laws. Its application results in the construction and resolution of a reduced
model of order P , a new set of PDEs derived from the initial uncertain one. Intrusiveness refers to the
fact this resolution comes with more or less1 important modifications of a simulation code. The initial
uncertain system of interest is not directly solved, it is first pretreated to obtain a new model, built from
it. In the following sections, we show that the reduced model of order P of any hyperbolic system of
conservation of size d is a new system of conservation law of size d× (P + 1) whose wellposedness is not
necessarily guaranteed. In order to understand the stakes and the importance of the property, we recall
few notions specific to hyperbolic systems. These are stated in simple forms2 as we do not intend to be
exhaustive on this topic. For the latter purpose, we rely on [81, 260, 81, 261].

One dimensional uncertain systems of conservation laws can be written in the general form{
∂tu(x, t,X) + ∂xf(u(x, t,X)) = 0,
u(x, 0, X) = u0(x,X).

(4.1)

We suppose system (4.1) is hyperbolic ∀X ∈ Ω. Hyperbolicity ensures existence and uniqueness of its
solutions, hence wellposedness. A system of conservation laws of the form of (4.1) is called hyperbolic if

1From rewriting completely a simulation code, as in this section, to minor modifications of an existing one, as in section
9.11.2.

2for example in 1D space dimension whereas they are also true in nD, etc.
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– either, the jacobian matrix of the flux ∇uf(u(x, t,X)) is diagonalizable in a complete basis of
eigenvectors ∀u(x, t,X) ∈ Du.

– or3 there exists a strictly convex mathematical entropy s for system (4.1). A mathematical entropy
is a real function

s : u ∈ Du ⊂ Rd −→ s(u) ∈ R,

such that there exists
g : u ∈ Du ⊂ Rd −→ g(u) ∈ Rd,

called the entropy flux, such that for smooth solution u of (4.1), we have

∂ts(u) + ∂xg(u) = 0. (4.2)

Besides, if s(u) is strictly convex on Du, it satisfies

∂ts(u) + ∂xg(u) ≤ 0, (4.3)

for discontinuous solutions.

In [81, 260, 81, 261], physical systems are defined as systems of conservation laws satisfying the second
point. In this part II, we only consider physical system in the sense of [81, 260, 81, 261].

Now that few notions have been briefly reminded, we suggest applying intrusive gPC as described in
the literature to our ’fil rouge’ system (Euler, see chapter 2) and identify different practical issues.

4.1 Intrusive application of gPC

The methodology consists in two main steps:

– first, the construction of a P -truncated gPC reduced model.

– Second, the development of a numerical solver and its implementation in a resolution code for the
newly built system of equations.

Both steps are detailed in sections 4.1.1 and 4.1.2 for general conservation laws before focusing on the
Euler system and our ’fil rouge’ configuration in section 4.1.3.

4.1.1 The P−truncated gPC reduced model: a Pn-like closure

Intrusive gPC is also called stochastic Galerkin gPC (sG-gPC) in the literature [185, 186, 215, 168].
Its practical application resumes to few steps: the first one consists in building the gPC basis (φXk )k∈N
associated to the probability measure dPX of the input random variable X. This step has been described
in section 3.4. Once the gPC basis at hand, the construction of the P−truncated reduced model consists
in formally assuming

u(x, t,X) =

∞∑
k=0

uXk φ
X
k (X),

3Note that the second condition implies the first one whereas the inverse is not true but once again we refer to [81, 260,
81, 261] for more details on hyperbolic systems of conservation laws.
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and introducing the above expansion in (4.1). The next step consists in performing a Galerkin projection
up to order P to get

∂tu
X
0 (x, t) + ∂x

∫
f

( ∞∑
k=0

uXk (x, t)φXk (X)

)
φX0 (X)dPX = 0,

...,

∂tu
X
k (x, t) + ∂x

∫
f

( ∞∑
k=0

uXk (x, t)φXk (X)

)
φXl (X)dPX = 0,

...,

∂tu
X
P (x, t) + ∂x

∫
f

( ∞∑
k=0

uXk (x, t)φXk (X)

)
φXP (X)dPX = 0.

(4.4)

The above system is not closed. To obtain d × (P + 1) unknowns and equations, a Pn−like closure
hypothesis4 is introduced and can be stated as follow: assume that ∀x ∈ D, t ∈ [0, T ], X ∈ Ω the solution
u(x, t,X) of (4.1) can be accurately described with exactly P + 1 terms, i.e.

u(x, t,X) =

P∑
k=0

uXk (x, t)φXk (X) with uXk = 0 ∀k > P. (4.5)

With (4.5) in mind, (4.4) simply becomes

∂tu
X
0 (x, t) + ∂x

∫
f

(
P∑
k=0

uXk (x, t)φXk (X)

)
φX0 (X)dPX = 0,

...,

∂tu
X
k (x, t) + ∂x

∫
f

(
P∑
k=0

uXk (x, t)φXk (X)

)
φXl (X)dPX = 0,

...,

∂tu
X
P (x, t) + ∂x

∫
f

(
P∑
k=0

uXk (x, t)φXk (X)

)
φXP (X)dPX = 0.

(4.6)

This process is intimately related to the methodology applied to build a Finite Element scheme [43]. For
this reason, intrusive gPC is also denoted as stochastic Finite Element in some publications relative to
elliptic equations [272, 75, 123, 157, 124, 192, 125, 142, 35, 36, 114, 300, 269, 122]. System (4.6) is a new
system of conservation laws with main conservative variable U(x, t) = (uX0 (x, t), ..., uXP (x, t))t and flux

F (U(x, t)) =

(∫
f

(
P∑
k=0

uXk (x, t)φXk (X)

)
φX0 (X)dPX , ...,

∫
f

(
P∑
k=0

uXk (x, t)φXk (X)

)
φXP (X)dPX

)t
.

It is closed, in the sense it has d × (P + 1) equations and the same amount of unknowns. But the
nonlinearity5 of f may induce the need for an additional hypothesis to obtain a more explicit expression
of the flux with respect to U . To illustrate this, let us focus on the P−truncated Euler system6. Reduced

4The term ’Pn−like closure hypothesis’ is not commonly used in the literature, it is introduced in this document to put
forward some analogies with kinetic theory, see chapter 1.

5The case of a linear f is straightforward and is not considered in this manuscript. For more details we refer to [152, 278].
6With a perfect gas closure as in chapter 2.
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model (4.7) is obtained applying the previously detailed process to (2.2):

∂tρ0 + ∂x(ρu)0 = 0,
. . .
∂tρP + ∂x(ρv)P = 0,

∂t(ρv)0 + ∂x

(
3− γ

2

P∑
i,j,l=0

(ρv)i(ρv)j

(
1

ρ

)
l

ci,j,l,0 + (γ − 1)(ρe)0

)
= 0,

. . .

∂t(ρv)P + ∂x

(
3− γ

2

P∑
i,j,l=0

(ρv)i(ρv)j

(
1

ρ

)
l

ci,j,l,P + (γ − 1)(ρe)P

)
= 0,

∂t(ρe)0 + ∂x


γ

P∑
i,j,l=0

(ρv)i(ρe)j

(
1

ρ

)
l

ci,j,l,0

−γ − 1
2

P∑
i,j,l,m,t=0

(ρv)i(ρv)j(ρv)t

(
1

ρ

)
l

(
1

ρ

)
m

ci,j,l,t,m,0

 = 0,

. . .

∂t(ρe)P + ∂x


γ

P∑
i,j,l=0

(ρv)i(ρe)j

(
1

ρ

)
l

ci,j,l,P

−γ − 1
2

P∑
i,j,l,m,t=0

(ρv)i(ρv)j(ρv)t

(
1

ρ

)
l

(
1

ρ

)
m

ci,j,l,t,m,P

 = 0.

(4.7)

In (4.7), we introduced ci,j,...,l =
∫
φXi φ

X
j . . . φ

X
l dPX . In the expression of the flux of (4.7) appears a

new quantity (( 1
ρ )k)k∈{0,...,P}, highlighted in red, which remains to be defined. In fact, its appearance is

even the result of an implicit assumption: the same development as in hypothesis (4.5) applies also to 1
ρ ,

i.e. ( 1
ρ ) =

∑P
k=0( 1

ρ )kφ
X
k , and not only to the components of the main variable (ρ, ρu, ρe)t. Closing the

reduced model (4.7) consists in defining (( 1
ρ )k)k∈{0,...,P} with respect to (ρ0, ..., ρP )t. Many numerical

strategies can be found in the literature to ’treat’ such nonlinearity [76, 299] and achieve the closure pur-
pose here. Some needs additional hypothesis on the variance of the random variable, some intensively
use the structure of the nonlinearities at play, etc. The aim here is not to go through a review of all of the
proposed methods of [76, 299]. We only insist that in [239, 232], we studied and analysed some of them
for the uncertain p−system7 and explained in which way they were not satisfying enough with respect to
the hyperbolicity of the reduced model. One closure, for example, transforms the hyperbolic p−system
into an only weakly hyperbolic reduced model, see [232, 239]. The choice of the closure consequently
confers more or less satisfying properties to (4.7). In practice, due to the important size of the reduced
model, these properties may be complex to study and it is tempting assuming hyperbolicity for (4.7)
(once a closure chosen) before going straight to its numerical resolution. In the next section 4.1.2, we
typically succumb to the previous temptation and settle for a closure choice dictated by the possibility
to develop a converging numerical scheme for (4.7) rather than on a hyperbolicity-based one.

In this section, we went through the general methodology to build a reduced model from intrusive
gPC. We put forward an analogy with the construction of Pn models for the linear transport equation,
see chapter 1 for example. The Pn models rely on the same assumption as (4.5), the gPC basis being
only replaced by the Legendre one (or spherical harmonics, see for example [281, 196, 141]). The main
difference between both (Pn and gPC ones) comes from the fact that the closure bearing relevant prop-
erties is not straightforward as soon as f is nonlinear. In the following section, we detail one first way
to close system (4.7) based on some practical needs: the closure ensures the existence of a converging
numerical scheme for the resolution of the reduced model.

7System of conservation laws of size d = 2 such that p(ρ, ε) = p(ρ) also called isentropic Euler system.
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4.1.2 Roe solver for the P−truncated intrusive gPC reduced model

The way the system is closed confers particular properties to the system. These properties, in general, are
hard to study mainly due to the size of the built reduced model. Moreover, even once the system closed
and its properties studied, it still remains to solve it. Designing a numerical solver for (4.7) for arbitrary
truncation orders P is not more straightforward than the mathematical analysis of the reduced model. In
the next section, we emphasize some closures make the freshly built P−truncated reduced model easier
to solve: choosing them hits two birds with the same stone as they allow having the good amount of
unknowns/equations together with an efficient numerical resolution. In particular, we demonstrate that
some closures preserve the existence of a homogeneous change of variables for the reduced model if the
property holds for the initial system of interest.

Definition 4.1 (Homogeneous change of variable of order K) Two vectors u ∈ Rd and z ∈ Rd
are homogeneous of order K ∈ N if they verify Ku(z) = ∇zu(z)z.

Then we have the following general property:

Property 4.1 Let a hyperbolic system of conservation laws having for unknown the vector u ∈ Rd.
Assume there exists z ∈ Rd such that u and z are homogeneous of order K. If U = (uX0 , ..., u

X
P )t ∈

Rd×(P+1) is the vector of unknown of a reduced model of order P built from intrusive gPC, then there
exists a vector Z ∈ Rd×(P+1) such that U and Z are homogeneous of order K.

Proof Let (u, z) ∈ Rd×Rd be homogeneous of order K. Let (φXk )k∈{0,...,P} be the gPC basis associated

to the probability measure dPX . Suppose z =
(4.5)

∑P
k=0 z

X
k φ

X
k and Z = (zX0 , ..., z

X
P )t. Let us furthermore

define ∀i ∈ {0, ..., P} uXi =
∫
u
(∑P

k=0 z
X
k φ

X
k

)
φXi dPX and U = (uX0 , ..., u

X
P )t. It now remains to verify

that the vectors U and Z are homogeneous of order K. For this, let us consider

∇ZU(Z)Z =



∫
∇zu

(
P∑
k=0

zXk φ
X
k

)
φX0 φ

X
0 dPX ...

∫
∇zu

(
P∑
k=0

zXk φ
X
k

)
φX0 φ

X
P dPX

... ... ...∫
∇zu

(
P∑
k=0

zXk φ
X
k

)
φX0 φ

X
P dPX ...

∫
∇zu

(
P∑
k=0

zXk φ
X
k

)
φXP φ

X
P dPX


 zX0

...
zXP

 .

The tth component of ∇ZU(Z)Z is denoted (∇ZU(Z)Z)t and we get

(∇ZU(Z)Z)t =
P∑
i=0

∫
∇zu

(
P∑
k=0

zXk φ
X
k

)
φXt z

X
i φ

X
i dPX ,

=

∫
∇zu

(
P∑
k=0

zXk φ
X
k

)[
P∑
i=0

zXi φ
X
i

]
φXt dPX .

(4.8)

Using the homogeneity property for u and z together with their respective definition, we obtain

(∇ZU(Z)Z)t =

∫
Ku

(
P∑
k=0

zXk φ
X
k

)
φXt dPX ,

= KUt,

(4.9)

and the property holds. �

A direct application of the above property leads to the construction of a Roe scheme for the reduced
model if there exists a Roe scheme for the system of conservation laws of interest. For the Euler system
of our ’fil rouge’ configuration, there exists a homogeneous change of variable of order 2 between the
conservative variable u = (ρ, ρv, ρe)

t
and z = (

√
ρ,
√
ρv,
√
ρ(e+ p

ρ ))t. Applying property 4.1, the vectors

U = (ρ0, · · · , ρP , (ρv)0, · · · , (ρv)P , (ρe)0, · · · (ρe)P )t,
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and

Z =

(
(
√
ρ)0, . . . , (

√
ρ)P , (

√
ρv)0, . . . , (

√
ρv)P ,

(√
ρ(e+

p

ρ
)

)
0

, . . . ,

(√
ρ(e+

p

ρ
)

)
P

)t
,

are also homogeneous of order 2. Consequently, applying the Pn−like hypothesis (4.5) to Z rather than
to U ensures there exists a Roe scheme for the reduced model defined by the above change of variable.
We do not detail the equivalent of (4.7) for the previous change of variable, its expression is complex. In
[232, 80], we verify the Roe conditions are satisfied and apply the Roe solver for different reduced models
from different systems of conservation laws (but we did not apply it to our ’fil rouge’ configuration). In
[224], the same solver for the Euler system, is applied in different interesting configurations.

Remark 4.1 The change of variable allows building a converging scheme for the reduced model what-
ever the truncation order P . However, just as in the previous case in which the closure needed the
definition of (( 1

ρ )k)k∈{0,...,P} as a function of (ρk)k∈{0,...,P}, we here need (ρk)k∈{0,...,P} as a function of

((
√
ρ)k)k∈{0,...,P}. In practice, during the computations, we rely on the same process as described in [76]

for treating the square nonlinearity, it does not degrade the homogeneous property, see [232].

We suggest presenting the results obtained with the built reduced model solved with the Roe scheme to
the ’fil rouge’ configuration of interest detailed in chapter 2.

4.1.3 Application to the ’fil rouge’ problem of chapter 2

We described the methodology to build a reduced model of order P . The choice of the closure has
been made so that a converging numerical resolution strategy (Roe scheme) can be designed for every
truncation order P of the reduced model and we developed a simulation code. In [224],[232, 80], the
resolution has been performed in several configurations but we here are interested to the configuration
described in chapter 2.

We initiated our simulation code with the condition of the configuration of chapter 2 and the results
are... Not presented because the code crashed at the first iteration. The obtained reduced model clearly
lacks robustness, at least for low polynomial orders P . In the vicinity of the initial interface position,
the mass density is discontinuous and its gPC approximation exhibits an oscillatory behaviour. For low
polynomial orders P , the gPC approximation of the mass density can be negative whereas the closure
presented in the previous section needs the computation of ((

√
ρ)k)k∈{0,...,P} from (ρk)k∈{0,...,P}, the

calculation being ill conditioned.
For higher polynomial order P , the conditioning of the problem probably improves but increasing P

may lead to unaffordable sizes of system. Besides, the same situation can occur in the middle of a simula-
tion, dynamically, rather than initially: in [232, 237], a Richtmyer-Meshkov shock tube8 is studied and in
such configuration, the crash occurs when a shock hits the interface between the two fluids. In [232, 80],
the reduced model with Roe scheme/homogeneous closure has also been successfully applied in several
configurations (in the sense the computations did not crash). But as will be emphasized in the following
sections, computations with reduced models which are not wellposed are of poor interest (section 4.2.2).
Furthermore, in [232, 80], some configurations did not seem to account for a loss of wellposedness: the ini-
tial conditions were such that the initial uncertainty was very small. Experimentally, we also observed the
stronger the initial uncertainty is, the greater P must be to avoid a crash. The ’small variance’ regime is
studied more in detail in chapter 7: a parallel is made between gPC based models and perturbative ones.

As a conclusion of this first section 4.1 on intrusive gPC, the results are mitigated. First, the con-
struction of a gPC reduced model from a given system of conservation laws is complex, mainly due to the
many possible choices for the closure. These choices characterise the reduced model and its properties,
hence its theoretical quality and its simplicity with respect to numerical resolution. The reduced model
is often of important size and designing a numerical solver for its resolution ∀P can be difficult. We put
forward the possibility to choose the closure so as to have a numerical solver at hand but the (lack of)
numerical results on the ’fil rouge’ configuration tends to show that choices only dictated by practical
considerations can lead to a waste of time (the time for developing the simulation code with the Roe
scheme resulting in an unworkable computation code!). With this example, we wanted to justify the

8Its one dimensional counterpart is presented in chapter 7.
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need for a theoretical analysis in order to close the reduced model properly prior to studying resolution
algorithms.

In the next sections, instead of considering directly the Euler system and our configuration of interest,
we adopt a more step-by-step approach in order to identify and analyse accurately the causes of the
numerical instabilities encountered in this section. For this, we first consider scalar conservation law,
then a system of size 2 (Shallow water) before going back to the Euler one.

4.2 A step-by-step study of intrusive gPC for systems of con-
servation laws

Regarding the robustness difficulties of the previous section, in order to identify and analyse the properties
of the intrusive gPC reduced model, we consider a more step-by-step approach. Instead of immediately
considering the Euler system, we first study scalar equations (we focus on Burgers’ equation but the
material of section 4.2.1 can be easily applied to any scalar conservation law). We then consider, in
section 4.2.2, a system of 2 conservation laws, the Shallow water system. Finally, we go back to general
systems of conservation laws. The ’fil rouge’ configuration is finally treated in section 4.2.3.

4.2.1 The particular case of a scalar conservation law

Scalar conservation laws correspond to the special case d = 1 in the general form (2.1):

∂tu(x, t,X) + ∂xf(u(x, t,X)) = 0, u ∈ Du ⊂ Rd=1. (4.10)

In this particular case, it is quite easy studying the hyperbolicity of the intrusive gPC reduced model:
for any truncation order P and any closure choice with respect to f , it is given by

∂t

 uX0 (x, t)
...

uXP (x, t)

+ ∂x

∫
f

(
P∑
k=0

uXk (x, t)φXk (X)

) φX0 (X)
...

φXP (X)

 dPX = 0. (4.11)

System (4.11) is a system of conservation laws of size P + 1 and is hyperbolic. The flux of system (4.11)
is given by

F (uX0 , ..., u
X
P ) =

∫
f

(
P∑
k=0

uXk (x, t)φXk (X)

) φX0 (X)
...

φXP (X)

 dPX .

The general term of the jacobian of the flux (we drop the dependences with respect to x, t,X for the
sake of simplicity) is given by

[
∇(uX0 ,...,u

X
P )F (uX0 , ..., u

X
P )
]
k,l

=

∫
f ′
(

P∑
i=0

uXi φ
X
i

)
φXk φ

X
l dPX .

The system being scalar, f ′ is scalar and consequently ∇(uX0 ,...,u
X
P )F (uX0 , ..., u

X
P ) is a symetric matrix,

hence the hyperbolicity of (4.11). Such property, in the scalar case, has been intensively studied in the
literature [236, 232],[278, 152, 162] whereas to our knowledge, this is much less the case for systems (i.e.
d > 1). In practice, with numerical resolutions of reduced models derived from scalar conservation laws,
we did not experienced any robustness issues nor numerical instabilities. For example, in [232], a Roe
scheme (almost as in the previous section) has been applied to Burgers’ equation and the computations
always went well (robust) and gave satisfactory results with respect to accuracy. In fact, in the case of
Burgers’ equation, we are even able to demonstrate spectral convergence, see [84], for early times (i.e.
before the appearance of a discontinuous solution). The theorem is stated here but we refer to [84] for
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the proof. Let us consider an uncertain problem for Burgers’ equation:
∂tu(x, t,X) + ∂x

(
u2(x, t,X)

2

)
= 0,

u(x, t = 0, X) = u0(x,X), X ∼ U([−1, 1])
on the periodic domain x ∈ [0, 1]per.

(4.12)

For simplicity, we consider periodic boundary conditions ([0, 1]per). The initial data is supposed to be a
smooth function for all X and we assume the time

TX = − 1

inf
x

(∂xu0(x,X))
,

at which a discontinuous solution appears is bounded from below uniformly

∃T, 0 < T < TX ∀X.

We also assume the exact solution is smooth with respect to all variables

u ∈ L∞ ((0, 1)× (0, T ε)× (−1, 1)) ∩ L∞
(
[0, 1]per × (0, T ε) : Hk(−1, 1)

)
,

for all k ∈ N where

Hk(Ω) =

{
u ∈ L2(Ω)|

∫ k∑
l=0

(u(l))2dPX <∞
}
.

Let us solve this problem with gPC as described in the literature. This leads to the P−truncated
hyperbolic reduced model

∂tu
X
0 (x, t) + ∂x

∫ (∑P
k=0 u

X
k (x, t)φXk (X)

)2

2
φX0 dPX = 0,

. . .

∂tu
X
P (x, t) + ∂x

∫ (∑P
k=0 u

X
k (x, t)φXk (X)

)2

2
φXP dPX = 0.

Then the following spectral theorem holds:

Theorem 4.1 (Convergence of Burgers’ approximation) spectral accuracy holds in the following
sense: if we denote by

‖u(t)‖2L2(I×Ω) =

∫
I

∫
Ω

u2(x, t,X)dPX(X)dx,

for all k there exists a constant Dε
k such that

∥∥u(t)− uXP (t)
∥∥2

L2(I×Ω)
≤ Dε

k

(∥∥u(0)− uXP (0)
∥∥2

L2(I×Ω)
+

1

P k

)
, t ≤ T ε.

Let us illustrate the above theorem 4.1. We consider Burgers’ equation (4.12) together with zero fluxes
boundary conditions and a smooth uncertain initial condition. This choice is motivated by the fact that
despite this smoothness, the dynamics of the system stiffen the problem in both the random and the
physical space. At t = 0, we consider u is given by

u0(x,X) = K01[0,x0](x− σX) +K11[x1,L](x− σX) +Q(x− σX)1[x0,x1](x− σX),

58



with coefficients K0,K1 to be defined and Q(x) = ax3 + bx2 + cx+d. The coefficients (a, b, c, d) are given
by

a = −2
K0 −K1

x3
0 + 3x0x2

1 − x3
1 − 3x1x2

0

, b =
3(K0 −K1)(x0 + x1)

x3
0 + 3x0x2

1 − x3
1 − 3x1x2

0

,

c = −6
(K0 −K1)x1x0

x3
0 + 3x0x2

1 − x3
1 − 3x1x2

0

, d =
−x3

1K0 + 3x2
1K0x0 +K1x

3
0 − 3K1x1x

2
0

x3
0 + 3x0x2

1 − x3
1 − 3x1x2

0

.

They ensure the initial condition and its first derivatives are continuous with respect to the space and
stochastic variable: in other words, u0(x,X) verifies the conditions of theorem 4.1 for k = 3. Several
realisations of X −→ u0(x,X), with X ∼ U([−1, 1]), are presented in figure 4.1 (left). The stochastic
initial conditions consist in uniformly distributed translations along the x-axis of one deterministic curve.
In practice, we take L = 3, K0 = 12, K1 = 1, x0 = 0.5, x1 = 1.5 and σ = 0.2 so that σX ∈ [−0.2, 0.2].
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Figure 4.1: Left: initial condition u0(x,X) for several realisations of X ∼ U([−1, 1]). Right: time
evolution of the mean and variance of the solution for t ∈ [0, T ε].

For this problem, an analytical solution is available up to the critical time TX = 3a
b2−3ac , which is here

independent of X. The analytical solution is not reminded here but is given in [84]. For the numerical
tests, we take T ε = TX − ε with ε = 10−10.

The results are displayed in figures 4.1 and 4.2. Figure 4.1 (right) shows the time evolution of the
mean and the variance with respect to the spatial variable. As time passes, the mean gets steeper and
the variance increases. The computation is stopped at T ε, just before the appearance of a shock wave in
both the stochastic and physical space. In figure 4.2 (left), we display the numerical solution with respect
to X at point x = 1.5 and at different times: it represents the time evolution in the random domain
at a certain point in space. We observe that the solution also gets steeper with respect to the random
parameter as time increases. Figure 4.2 presents the numerical results, the relative errors in L2(Ω, I)
at time T ε obtained by the discretisation of the P−truncated Burgers’ system with a Roe solver with,
respectively, 500, 1000 and 2000 cells: spectral convergence and the result of theorem 4.1 are recovered.

Remark 4.2 The stagnation in the final portion of the convergence curves in figure 4.2 (right) corre-
sponds to spatial discretisation limits: it is interesting considering there is, for a given spatial discreti-
sation ∆x, an optimal choice of P . Indeed, for the 500 cells discretisation, going beyond P = 10 does
not improve the accuracy (the error is driven by ∆x) whereas it increases considerably the computational
cost. With finer discretisations, the slope 1

Pk
is valid for higher orders.

In [84], numerical computations together with the proof of the above theorem are also presented.
According to the material of this section, intrusive gPC gives very satisfying results in the case of scalar
conservation law. To obtain an accuracy of about 10−5 with an MC method, we would need 1010 runs
of a simulation code. The same accuracy is reached with the intrusive gPC method with a polynomial
order P = 7, see figure 4.2 (bottom right), and a very fast resolution (less than a second computational
time).
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Figure 4.2: Illustration of theorem 4.1: Burgers’ solution with respect to the random parameter at
x = 1.5 for several times (left) and spectral convergence with respect to polynomial approximation order
P (right).

From the previous study, we now know that for scalar conservation laws, there is no problem of
wellposedness nor of accuracy. In order to understand the numerical instabilities of section 4.1, we need
to consider systems of conservation laws (d > 1).

4.2.2 Possible loss of wellposedness for non-scalar systems of conservation
laws

The next step consists in considering non-scalar systems of conservation laws. The first we studied
in [239] was the p−system, of size d = 2: we showed that some closures were not satisfying enough,
transforming an initially hyperbolic system into an only weakly hyperbolic reduced model. In [84], we
studied the Shallow water one, also called Saint-Venant system. It describes a flow below a pressure
surface. The system may be expressed as{

∂th(x, t,X) + ∂x (hv(x, t,X)) = 0,

∂t (hv(x, t,X)) + ∂x

(
hv2(x, t,X) + g h

2(x,t,X)
2

)
= 0,

(4.13)

where h is the water height, v the velocity of the water and g > 0 is the local gravity constant. In this case

d = 2, u = (h, hv)t and f(u) =
(
hv, hv2 + g h

2

2

)
. We assume the system is uncertain, uncertainty being

modeled by a scalar random variable X ∼ U [−1, 1]. Let us consider the first two Legendre polynomials

φX0 (X) =
1√
2
, φX1 (X) =

√
3

2
X.

The P = 1−truncated reduced model obtained from system (4.13) can be recast as

∂t

(
uX0
uX1

)
+ ∂x


∫ 1

−1

f
(
uX0 φ

X
0 (X) + uX1 φ

X
1 (X)

)
φX0 (X)dPX∫ 1

−1

f
(
uX0 φ

X
0 (X) + uX1 φ

X
1 (X)

)
φX1 (X)dPX

 = 0. (4.14)

The Jacobian matrix A of the total flux with respect to the unknown uX0 , u
X
1 is

A =

( ∫ 1

−1
∇f φX0 (X)φX0 (X)

∫ 1

−1
∇f φX1 (X)φX0 (X)∫ 1

−1
∇f φX1 (X)φX0 (X)

∫ 1

−1
∇f φX1 (X)φX1 (X)

)
∈ R4×4. (4.15)
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The Jacobian matrix of the Saint-Venant flux with respect to u = (h, hv) is

∇f =

(
0 1

−v2 + gh 2v

)
∈ R2×2. (4.16)

Property 4.2 Assume that uX0 (x, t) = (
√

2, 0) and uX1 (x, t) =
(

0,
√

2
3

)
for arbitrary x ∈ D and t ∈

[0, T ]. Then for all 0 < g < 3
25 the matrix A has complex eigenvalues, so the system (4.14) is not

hyperbolic.

Property 4.2 proves the hyperbolicity assumption does not always hold for a reduced model of a hyper-
bolic system (d > 1) of conservation laws obtained by sG-gPC. The problematic state for the height is

deterministic, h(x, t,X) =
√

2 φX0 (X) = 1, and we have hv(x, t,X) =
√

2
3 φX1 (X) = X, implying the
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Figure 4.3: Illustration of the non-hyperbolicity of the shallow water truncated system (data are specified
in Proposition 4.2). A very small germ of oscillations increases exponentially fast. The numerical diffusion
coefficient is Dn ∈

{
1, 103, 105

}
. Even artificially large numerical diffusion Dn = 105 is not able to control

it for sufficiently large time.

problematic velocity state is uncertain, equals to v = X. Property 4.2 shows the construction of a well-
posed intrusive gPC reduced model from a wellposed system of conservation laws is not straightforward.
It may not hold for any truncation order P (the loss of hyperbolicity has only been proven for P = 1) or
any configuration (only proven for a particular but admissible state). The proof is given in [84] together
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with a proof of loss of hyperbolicity for the Euler system.

To end this section, we would like to emphasize what can numerically occur when one choose to
deliberately solve a non-hyperbolic system (the material is the same as in [84]). Let us solve the latter
truncated shallow water system (P = 1) with a numerical method and set the problematic state of prop-
erty 4.2 (h0, h1, (hv)0, (hv)1) = (1, 0, 0, 1√

3
) with 0 < g = 0.1 < 3

25 as the uncertain initial condition. The

analytical solution is stationary and homogeneous (i.e. constant with respect to ∀(x, t) ∈ [0, 1] × R+).
Suppose we are interested in the solution a time T = 0.2. The truncation order P = 1 should allow
recovering the analytical stochastic solution ∀(x, t,X) ∈ [0, 1]× R+ × [−1, 1]. The numerical results are
displayed in figure 4.3 in several configurations for 100 cells: on figure 4.3 (top-left), numerical insta-
bilities appear in the center of the domain and make the solution non physical, they are even growing
exponentially fast with time. This is typical of non-hyperbolic models: small perturbations (round-off
errors here) are exponentially amplified with time. On figure 4.3 (bottom-left) and figure 4.3 (top-right),
we revisit the same problem but we apply more and more diffusive numerical schemes. We denote by Dn

the numerical diffusion coefficient (manually tuned) of our scheme. The increase in numerical diffusion
artificially smoothes the solution. It and even makes it look physical at the same time T = 0.2 on figure
4.3 (top-right), whereas it only consists in a numerical trick: if we consider the same resolution scheme
as before but are interested in the solution at a later time T = 0.4, the small oscillations occurring at
time T = 0.2 keep on growing (exponentially fast with time) leading to figure 4.3 (bottom-right).

In this section, we emphasized the importance of the hyperbolicity property of the P−truncated
reduced model, prior to having a numerical resolution strategy. In the next section, we suggest a
systematic way to close the reduced model obtained from an uncertain system of conservation laws in
order to ensure hyperbolicity by construction.

4.2.3 A closure ensuring wellposedness for general systems of conservation
laws

From what we learnt in the previous numerical and theoretical studies, care will be taken to build, prior
to any other considerations, a hyperbolic reduced model. Only then we will authorize ourselves to solve
it. In order to ease the analysis, we would like to introduce a general canvas in which both reduced
models of the previous sections could be recovered. For this, we rewrite the P−truncated gPC reduced
model built from a Galerkin projection of the components of a gPC basis in a more general form

∂tU(Λ) + ∂xF (Λ) = 0. (4.17)

In the above expression, we explicited the dependences of the main variable U with respect to an addi-
tional one, Λ, which remains to be defined at this stage of the discussion. In (4.17), the moments U(Λ) =
(uX0 (λX0 , ..., λ

X
P ), ..., uXP (λX0 , ..., λ

X
P ))t and the moments of the flux F (Λ) = (fX0 (λX0 , ..., λ

X
P ), ..., fXP (λX0 , ..., λ

X
P ))t

are defined by ∀k ∈ {0, ..., P}

uXk =

∫
uP (λX0 , ..., λ

X
P )φXk dPX , and fXk =

∫
f(uP (λX0 , ..., λ

X
P ))φXk dPX . (4.18)

Closing reduced model (4.17) resumes to the definition of the transformation uP (λX0 , ..., λ
X
P ) in (4.18).

At this stage, the introduction of Λ = (λX0 , ..., λ
X
P )t may appear artificial but it allows recovering both

the closure of section 4.1.1 and of section 4.1.2 for Euler system by choosing Λ = (uX0 , ..., u
X
P )t = U for

the first one and Λ = (zP0 , ..., z
X
P )t = Z for the second. The choice of Λ implicitly determines the shape

of uP in (4.18) (i.e. uP = u for section 4.1.1, uP = z for section 4.1.2). Now, the first term of (4.18)
defines what is commonly called a moment problem which can be stated as such: find uP such that given
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a vector (uX0 , ..., u
X
P )t, uP satisfies 

∫
uPφX0 dPX = uX0 ,

... ...,∫
uPφXk dPX = uXk ,

... ...,∫
uPφXP dPX = uXP .

(4.19)

The above problem is indeterminate in the sense there is not unicity9 of uP satisfying (4.19). To ensure
unicity, we suggest looking for uP as the only minimum of a strictly convex functional u ∈ Du −→ θ(u)
on Du. Problem (4.19) becomes: find uP ∈ Du minimizing

Θ(uP ) =

∫
θ(uP )dPX , (4.20a)

under constraints

∫
uPφX0 dPX = uX0 ,

... ...,∫
uPφXk dPX = uXk ,

... ...,∫
uPφXP dPX = uXP .

(4.20b)

Solution uP of minimization problem (4.20), if it exists, is unique and is in Du, see [155, 198]. In [84],
considerations on the existence of the solution of the moment problem are studied. It is closely related
to the convexity of the state space Du (and Dλ later on). We rely on [84] for these technical details and
focus on the properties of the closure entropy in the following section. First, if uP exists, the unicity
comes from the strict convexity of Θ(u). The Lagrange multipliers (λk)k∈{0,...,P} for problem (4.20) are
such that uP (λ0, ..., λP ) minimizes

T (u(λ0, .., λP )) = −Θ(u(λ0, .., λP )) +

P∑
k=0

∫
u(λ0, .., λP )λkφkdPX −

P∑
k=0

ukλk. (4.21)

Performing a variational study of T with respect to u in (4.21) leads to

T (u+ δu)− T (u) =

∫
δu

(
P∑
k=0

λkφk −∇uθ(u)

)
dPX +O((δu)2). (4.22)

Now, T is minimal for uP satisfying

∫
δu

(
P∑
k=0

λkφk −∇uθ(uP )

)
dPX = 0,∀δu and consequently

∇uθ(uP (λ0, .., λP )) =

P∑
k=0

λkφk. (4.23)

From the strict convexity of θ, function u ∈ Du 7−→ ∇uθ(u) = λ ∈ Dλ is invertible on Dλ and we get

uP (λ0, .., λP ) = (∇uθ)−1

(
P∑
k=0

λkφk

)
∈ Du. (4.24)

9for example uP1 (X) =
∑P
k=0 u

X
k φ

X
k (X) satisfies (4.19) and uP2 (X) = uP1 (X) + φXP+1(X) too.
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Once again, this is in agreement with the change of variable of section 4.1.2 in which z is developped
on the gPC basis rather than u. More generally, any closure introduced via a closure entropy θ implies
developping variable ∇uθ(u) on the gPC basis rather than u, cf. (4.23). In the gPC formalism presented
in the previous chapter 3, the Lagrange multipliers (λk)k∈{0,...,P} are nothing more than the coefficients
in the gPC development of ∇uθ(u), i.e. we have

∀k ∈ {0, ..., P}, λk =

∫
∇uθ(u)φkdPX . (4.25)

The closure entropy θ generalizes the changes of variables of the previous sections:

– to recover the closure of section 4.1.1, it is enough choosing θ(u) = u2

2 . In this case, ∇uθ(u) = u

and performing the gPC expansion of ∇uθ(u) or u is equivalent. Conversely, choosing θ(u) = u2

2
is equivalent to applying sG-gPC.

– The change of variable of section 4.1.2 corresponds to the particular choice∇uθ(u) = (
√
ρ,
√
ρv,
√
ρ(e+

p
ρ ))t. This choice of θ would be based on the a priori choice of being able to build a Roe scheme

for system (4.17).

– The introduction of θ to close system (4.17) also opens to new possibilities. For example, it is
possible to build closures based on some a priori knowledge of the space in which u the solution of
(4.1) lives. Scalar conservation laws verifies the maximum principle. In other words, it is possible
constraining the solution of the moment problem to a priori known bounds. The closure entropies
(θi)i∈{1,2,3,4} defined by10

θ1(u) = (u− u−) ln(u− u−)− u+ u−, is strictly convex in Du = I1 =]u−,+∞[,

θ2(u) = (u+ − u) ln(u+ − u)− u+ + u, is strictly convex in Du = I2 =]−∞, u+[,

θ3(u) =

(
(u− u−) ln(u− u−)− u+ u−

+(u+ − u) ln(u+ − u)− u+ + u

)
is strictly convex in Du = I3 =]u−, u+[,

θ4(u) = u2

2 is strictly convex in Du = I4 = R,

(4.26)

are examples of closure entropies having a unique minimum in (λ0, ..., λP )t for all P ∈ N if and
only if the vector of constraints (u0, ..., uP )t is realizable, see [155, 198]. If we study their respective
transformation (∇uθi)i∈{1,2,3,4}, it is easy verifying they are given by

u1(λ0, ..., λP ) = u− + eλ
P ∈]u−,+∞[,

u2(λ0, ..., λP ) =
−1 + u+ + eλ

P

eλ
P ∈]−∞, u+[,

u3(λ0, ..., λP ) =
u− + u+e

λP

1 + eλ
P ∈]u−, u+[,

u4(λ0, ..., λP ) = λP ∈ R,

(4.27)

and are constraigned to their respective definition domains (Ii)i∈{1,2,3,4}. We considered the scalar
case with (4.26) but it is easy building entropies having similar properties in the non-scalar case:
let Du = Ii1 × ... × Iin where (Iik)k∈{1,...,n} be convex subsets of R such that ik = 1, 2, 3 or 4.
Then θf =

∑n
k=1 θik is strictly convex in Du function of θik , k ∈ {1, ..., n} strictly convex on the

Iik ,∀k ∈ {1, ..., n} where ik = 1, 2, 3 or 4.

The gains one can obtain with the above examples of entropies are highlighted in [236, 232]. Improve-
ments have even been made in [162]. Let us now focus on the nonlinear functional we choose to minimize
to close system (4.17). We define the adjoint closure variable together with the adjoint closure entropy
as follows.

10the results are valid ∀u−, u+ ∈ R.
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Definition 4.2 (Adjoint closure variable) The adjoint closure variable λ is defined by

λ : u ∈ Du 7−→ ∇uθ(u) ∈ Dλ ⊂ Rn,

where θ is the chosen closure entropy, strictly convex in Du.

From the strict convexity of θ, transformation λ ∈ Dλ −→ u(λ) ∈ Du defines a bijection from Dλ to Du.
With the previous definition, it is convenient introducing the adjoint closure entropy.

Definition 4.3 (Adjoint closure entropy) The adjoint closure entropy for system (4.38) associated
to the closure entropy θ is given by θ∗ such that

θ∗ : λ ∈ Dλ ⊂ Rn 7−→ −θ(u(λ)) + 〈u(λ), λ〉 ∈ R. (4.28)

Function θ∗ is also strictly convex in Dλ. Indeed, it is the Legendre transformation of θ which is, by
hypothesis, strictly convex in Du. The new entropy θ∗ will considerably ease the next calculations: it
allows a concise expression for the inverse of u ∈ Du 7−→ ∇uθ(u) = λ ∈ Dλ.

Property 4.3 (Inverse of u ∈ Du 7−→ ∇uθ(u) = λ ∈ Dλ) The inverse of u ∈ Du 7−→ ∇uθ(u) = λ ∈
Dλ is given by

λ ∈ Dλ 7−→ ∇λθ∗(λ) = u(λ) ∈ Du. (4.29)

Proof It is easy verifying

∇λθ∗(λ) = −
〈
∇λu(λ),∇uθ(u(λ))︸ ︷︷ ︸

=λ

〉
+ 〈∇λu(λ), λ〉+ u(λ),

∇λθ∗(λ) = u(λ).

(4.30)

�

Now, let us go back to functional T and refine its expression with respect to (λk)k∈{0,...,P}: from the
previous analysis, it can be rewritten

T (λ0, ..., λP ) = −
∫
θ

(
u

(
P∑
k=0

λkφk

))
dPX −

P∑
k=0

〈uk, λk〉n +

P∑
l=0

∫ 〈
u

(
P∑
k=0

λkφk

)
, λlφl

〉
n

dPX .(4.31)

In (4.31), λP =
∑P
k=0 λkφk with ∀k ∈ {0, ..., P} λk =

∫
(∇uθ)φkdPX . With the above notation, (4.31)

can be equivalently rewritten

T (Λ) = −Θ(U(Λ))− 〈U,Λ〉n×(P+1) + 〈U(Λ),Λ〉n×(P+1) . (4.32)

It is equivalent to

T (Λ) = Θ∗(Λ)− 〈U,Λ〉n×(P+1) , (4.33)

where Θ∗ is the adjoint entropy of Θ. From the above expression, it is easy verifying the following
property.

Property 4.4 Functional T is strictly convex.

Proof Recall θ∗ denotes the adjoint closure entropy relative to θ, then a simple calculation of the
Jacobian matrix of T is given by

∇ΛT (Λ) = ∇ΛΘ∗(Λ)− U =

∫
∇λθ∗(λP )

 φ0

...
φP

 dPX −

 u0

...
uP

 . (4.34)
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Its Hessian is given by

∇2
Λ,ΛT (Λ) = ∇2

Λ,ΛΘ∗(Λ) =

∫
∇2
λ,λθ

∗(λP ) ·

 φ0φ0 ... φ0φP
... φiφj ...

φPφ0 ... φPφP

dPX . (4.35)

Then, for every vector X = (x0, ..., xP )t ∈ Rn×(P+1)〈
X,∇2

Λ,ΛT (Λ)X
〉
n×(P+1)

=
〈
X,∇2

Λ,ΛΘ∗(Λ)X
〉
n×(P+1)

=

∫ 〈
ΠPx,∇2

λ,λθ
∗(λP )ΠPx

〉
n

dPX > 0.
(4.36)

The positiveness comes from the strict convexity of θ∗. Consequently, Θ∗ is strictly convex and so T is.
�

From the above properties, if a minimum of T exists (realizability of the constraints), it is unique.

The new closure method for reduced model (4.17) consists in choosing a closure entropy θ, strictly
convex, and solving a minimization problem under constraints on the moments of the main variable.
It implicitly introduces a new variable, ∇uθ(u) which is developed on the gPC basis (rather than the
main variable u). Until this point, we only generalized the change of variable of section 4.1.1 and section
4.1.2 which were not satisfactory enough with respect to hyperbolicity. At a pinch, we put forward the
possibility to ensure by construction the respect of certain principles11 for the solution of (4.1). The
question now is: does it help regarding our hyperbolicity considerations?

Recall we are dealing, by hypothesis, with physical systems of conservation laws (introductory part of
this chapter). Such systems have an entropy-entropy flux pair (s, g) satisfying (4.2)–(4.3). Furthermore,
in kinetic theory [207, 63], variable ∇us(u), i.e. choosing θ = s, is called the entropic variable and plays
an important role in the closure of Mn models for example (see chapter 1). We study its properties in
the following section. In [207] (p. 29-32), the entropic variable v is introduced and corresponds to the
particular choice v = λ (directly related to the choice θ = s). It verifies the following property.

Property 4.5 (Symetrizability) The entropic variable v symetrizes system (4.1).

Proof For smooth solutions, (4.1) becomes

∂tu+ ∂xf(u) = ∇v,vs∗(v)∂tv +∇v,vg∗(v)∂xv = 0, (4.37)

where ∇v,vs∗(v) and ∇v,vg∗(v) are symetric (hessian matrices). The strict convexity of s∗ derives from
its definition with respect to s (Legendre transform). �

The idea now, as described previously, is to develop the entropic variable on the gPC basis (φXk )k∈{0,...,P}
together with defining the polynomial moments of v as vk =

∫
vφkdPX ,∀k ∈ {0, ..., P}. We will have

v ≈ vP =
∑P
k=0 vkφk. The truncated reduced model can now be defined thanks to the moments of v

∂t

 u0(v0, ..., vP )
...

uP (v0, ..., vP )

+ ∂x

 f0(v0, ..., vP )
...

fP (v0, ..., vP )

 = 0. (4.38)

The above system is closed minimizing (4.21) with θ = s (i.e. (vk)k∈{0,...,P} minimizes s under constraints
(u0, ..., uP )t). In other words, we almost directly applied the extended thermodynamic of moments closure
(see [207]) at order P to the uncertain hyperbolic system of conservation laws (4.1). It is closely related
to the construction of a Mn model (see chapter 1) with entropy s being different from the Shannon
entropy. We can characterise the dependences of the moments (uk)k∈{0,...,P} and the moments of the

11maximum principle with the examples of (4.26).
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flux (fk)k∈{0,...,P} with respect to (vk)k∈{0,...,P}:

∀k ∈ {0, ..., P}, uk =

∫
∇vs∗(vP )φkdPX =

∫
u(vP )φkdPX . (4.39)

For the flux of the truncated reduced model, we have

∀k ∈ {0, ..., P}, fk =

∫
∇vg∗(vP )φkdPX =

∫
f
(
u(vP )

)
φkdPX . (4.40)

From the above expressions of the moments (4.39) and of the moments of the flux (4.40), we can verify
the following theorem.

Theorem 4.2 (Hyperbolicity of the truncated reduced model (4.38)) The vector of moments V =
(v0, ..., vP )t of the entropic variable v, symetrises the truncated reduced model (4.38) ∀P ∈ N under con-
dition vP ∈ Dv (realizability, see [84]).

Proof Suppose the solution of (4.38) are smooth and denote by V = (v0, ..., vP )t the vector of moments
of the entropic variable v. Then (4.38) is equivalent to

∇2
V,V S

∗(V )∂tV +∇2
V,VG

∗(V )∂xV = 0. (4.41)

In (4.41), the general terms in the symetric (hessian) matrices ∇2
V,V S

∗(V ) and ∇2
V,VG

∗(V ) are given by

∇2
V,V S

∗(V )i,j =

∫
∇2
v,vs

∗(vP )φiφjdPX , and ∇2
V,VG

∗(V )i,j =

∫
∇2
v,vg

∗(vP )φiφjdPX . (4.42)

It remains to show ∇2
V,V S

∗(V ) is definite positive. Let X = (x0, ..., xP )t be a vector of Rn×(P+1), then

〈
X,∇2

V,V S
∗(V )X

〉
n×(P+1)

=

∫ 〈
ΠPx,∇2

v,vs
∗(ΠP v)ΠPx

〉
n

dPX > 0.

The positiveness comes from the strict convexity of s∗. Of course, this result is valid if vP ∈ Dv. Under
such conditions, the system is symetrisable, hence hyperbolic. �

The previous proof introduces the couple (S∗, G∗) which is very useful in practice to implement the
resolution of the the reduced model together with its closure (see [236]).

Remark 4.3 We insist the application of extended thermodynamic of moments to close a gPC based
reduced model ensures the construction of a wellposed reduced model even if the basis of multiplicators
(φXk )k∈N is not polynomial or not orthogonal. In fact, the less restrictive hypothesis on the family
of multiplicators to apply the previous methodology is that it should be pseudo-Haar (cf. [155] and
the references therein). It implies the linear dependence in L2. In practice, in this document, the
multiplicators are an orthonormal polynomial basis of L2.

The material of this section was inspired from [232, 84]. Several other points are tackled in the same
publications. For example, the technical discussion on the numerical schemes and minimization algorithm
necessary to solve (4.17) together with closure (4.21). We also study the mathematical structure of the
built truncated system in [84], the behaviour of the characteristic waves of the uncertain entropy closure
(4.17) with respect to the ones of (4.1). This behaviour is hinted at in the numerical computations
of next paragraph in which the ’fil rouge’ configuration is considered with the newly built hyperbolic
reduced model.

4.2.4 Application to the ’fil rouge’ problem of chapter 2

To finish this chapter, we suggest applying the uncertain entropy closure to the Euler system and to our
’fil rouge’ configuration. We do not spend time on the technical details such as the numerical scheme,
the optimization algorithm in order to obtain U from V , they are given in [236, 84].
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Figure 4.4: Illustration of the existence of multiple waves, see [84]. The phenomenon is especially
emphasized for the mean in the vicinity of the probable shock region (x ∈ [0.7, 0.8]) where P + 1 = 5
discontinuities are visible on the left picture and P + 1 = 21 discontinuities are visible on the right one.

Figure 4.4 presents the results obtained in term of mean and variance profiles of the mass density
at time t = 0.14. Figure 4.4 (left) presents the results for P = 4 and figure 4.4 (right) for P = 20.
Those figures must be compared to figure 2.2 (bottom right) of chapter 2. The main differences with
the reference solutions of chapter 2 are in the vicinities of the shock (x ∈ [0.7, 0.8]) and of the contact
discontinuities (x ∈ [0.55, 0.69]). If we focus on the vicinity of the shock (x ∈ [0.7, 0.8]), P + 1 = 5
discontinuities can be identified on figure 4.4 (left) and P + 1 = 21 discontinuities on figure 4.4 (right)
for the mean. They are also identifiable on the variance. The built reduced models (for P = 4 and
P = 20) do not allow recovering the smooth behaviours12 of the mean and variance profiles of the mass
density as displayed in figure 2.2. The appearance of d × (P + 1) waves for a system of conservation
laws of such size is classical, see [81, 260, 81, 261]. In fact, the observed smoothness in the vicinity of
the contact discontinuity (for P = 20 but not for P = 4) may even be relative to the choice of the
spatial discretisation: with less cells, numerical diffusion artificially smoothes the profiles. Note that
figure 4.4 also allows emphasizing that the waves in the vicinity of the interface or the shock behave
differently (sharp discontinuities for the shock, smoother behaviour for the interface) with respect to the
numerical resolution. The study of the nature (linearly degenerate, genuinely nonlinear) of the waves of
the P−truncated reduced model is complicated in general as the size of the system makes the analytical
expressions of the eigenvectors of the Jacobian of the flux hard to obtain. In [84], we propose a short
study of those waves.

As explained in chapter 2, the mean and variance are not always relevant probabilistic quantities,
especially for systems of conservation laws developing discontinuous solutions. We suggest considering
the more local observables presented in chapter 2: the pdfs of the mass density at time t = 0.14 and three
spatial locations in the vicinities of the rarefaction fan, the interface and the shock. The Monte-Carlo
references are the same as in figure 2.3 of chapter 2. The results obtained with intrusive gPC (entropy
closure) are displayed in figure 4.5 for P = 5 and figure 4.6 for P = 20 in term of histograms and
functional representations. Figure 4.5 for P = 5 first shows that in the vicinity of the rarefaction fan,
the reduced model is very efficient in the sense it allows recovering exactly the pdf of the mass density
at this location and time. On another hand, in the vicinities of the interface and of the shock, the Gibbs
phenomenon is clearly identifiable, in term of functional representation but also in term of histograms.
The two Dirac masses are not captured for this order P = 5. Note that mainly because of these two
waves for this configuration, classical intrusive gPC approaches (i.e. non hyperbolic ones) fail to give any
results (see section 4.1.3). Here, we can nonetheless verify the functional representations do not exactly
behave as a polynomial (but rather as a nonlinear function of a polynomial, see [84]). This nonlinear
representation ensures positive mass densities with respect to X even in presence of steep gradients but
does not necessarily implies accuracy.

Remark 4.4 In fact, on problems where the classical intrusive gPC approach and the entropy closure
reduced model can be compared (typically scalar conservation laws and Burgers’ equation) we can observe

12In [264], the authors show that those quantities are smooth with respect to the spatial variable x for Rieman problems.
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Figure 4.5: Pdfs (left) and functional representation in the random space of the mass density at t = 0.14
in the vicinities of the rarefaction fan (x = 0.38), the interface (x = 0.61) and the shock (x = 0.73) for
the reduced model of order P = 5.

a better convergence rate for the entropy closure reduced model with respect to the classical one (see [236]
and [162]). The gain for non-scalar conservation laws such as the Euler one has only been experimentally
noticed via the robustness of the developed simulation code.
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Figure 4.6: Pdfs (left) and functional representation in the random space of the mass density at t = 0.14
in the vicinities of the rarefaction fan (x = 0.38), the interface (x = 0.61) and the shock (x = 0.73) for
the reduced model of order P = 20.

Figure 4.6 presents similar profiles but with a higher polynomial order P = 20. Once again, the re-
sults are very good in the vicinity of the rarefaction fan. The results are improved, with respect to
figure 4.5 for P = 5, in the vicinities of the interface and the shock but the Gibbs phenomenon remains
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clearly identifiable. It is nonetheless important noticing the behaviour of the pdf of the mass density in
the vicinity of the interface: the Dirac masses are very well captured by the nonlinear approximation.
The functional representation at the same location testifies the approximation does not behave like a
polynomial as the states are quite well captured. In the vicinity of the shock, the discrete behaviour is
captured but one of the two Dirac mass is smoothed and the approximation may need an even higher
polynomial order P (with all the difficulties it implies, see section 3.4) in order to recover the second state.

4.3 Summary for intrusive gPC and the entropy closure re-
duced models

The material of this chapter mainly presented the work accomplished during my PhD thesis [232, 236, 80,
239, 237] and one additional publication [84]. Care has been taken to make the chapter complementary
to the publications. The results are applied to a new configuration (’fil rouge’ of chapter 2), common
to every approximation methods detailed in this part II. To sum up the intrusive application of gPC, it
implies the construction of a reduced model under truncation hypothesis and some additional ones in the
nonlinear case (i.e. when the flux f is nonlinear). Building wellposed reduced models with intrusive gPC
from non-scalar conservation laws is not straightforward. In practice, solving non-hyperbolic reduced
model leads directly to a lack of robustness of the developed simulation code and non physical solutions.
Nonetheless, a hyperbolic reduced model can be built applying the truncation hypothesis to the entropic
variable (which symetrizes the system). The system may appear harder and more costly to close/solve (in
practice) but robustness is ensured. Note that a better accuracy is also observed in some configurations
in which both methodologies are comparable (this is not detailed in this manuscript but emphasized in
[236]). The closure hypothesis has also been applied to more complex configurations, instable physical
flows (Richtmyer-Meshkov shock tubes as in chapter 7) in 2D with strong shocks in [237]. The entropy
closed reduced models are robust and efficient. At first glance, their application seems to be restricted
to physical system (i.e. systems of conservation laws having a couple entropy-entropy flux (s, g)). In
fact, having a physical system ensures one can choose a closure entropy (θ) ensuring the existence of a
couple entropy-entropy flux for the reduced model (by taking θ = s). In the case the system does not
have such a couple, it is still possible to close the reduced model with an arbitrary closure entropy θ
(i.e. a chosen strictly convex functional of the conservative variable). Tests have been performed and
interesting results have been obtained. For Euler system, several closure entropies (different from the
mathematical one) have been tested in different configurations: they yield acceptable, robust results.
This study will probably be the purpose of further publications. Now those closure entropies do not
ensure the theorical wellposedness of the reduced model. This observation may be an argument in the
sense that the existence of a mathematical entropy is probably strong assumption and lighter ones may
be enough. Note that this latter observation and the questions arising constitute an open problem in
the field of systems of conservation laws.

The closure strategy presented in the last sections of this chapter (and mainly in [236, 232, 84]) is
inspired from extended thermodynamic of moments [207]. Recent work showed different analogies with
kinetic theory can lead to different resolution strategies bearing interesting properties: in [83], the authors
build a kinetic scheme (see the example of chapter 1 with (1.32)) for uncertain scalar conservation laws
and ensure the respect of the maximum principle for the approximated uncertain solution. Oscillations
are constraigned and the Gibbs phenomenon is controled by construction. Paper [162] goes beyond the
material of the previous chapter (and of [84, 236]) for scalar conservation laws. It puts forward a very
interesting improvement to the entropy closure method leading to considerable gains in accuracy and
toward a better respect of the maximum principle. Papers [163, 164] are also very interesting, for several
reasons. First, connections to kinetic theory are highlighted and new methods inspired from the latter
fields (filtering) are adapted for uncertainty quantification. Second, the numerical results on Euler system
confirm the observation the closure method presented in the previous chapter yields costly but accurate
results. Finally, they also confirm that preserving some relevant invariants may be enough to obtain
accurate and reliable results. This invariant preservation is done via filtering whereas in the previous
chapter it is done via the choice of a closure entropy different from the mathematical one (θ 6= s). In
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[257], the authors also aim at producing hyperbolic (wellposed) reduced models. They rely on scheme
limitations, also inspired from kinetic theory. Their approach is also numerically compared to the closure
method of this chapter on several benchmarks (M1 model for radiative transfer mainly). Once again,
even if more costly, the closure method yields very accurate results.

Those two previous examples13 certainly show uncertainty quantification can benefit the methodolo-
gies and progresses of kinetic theory. On another hand, the reverse surely also applies. For modeling,
for example: in chapter 1 and section 3.1.3, we put forward Grad’s 13 moment model can be understood
as a Polynomial Chaos development. Its generalized counterpart (gPC) may lead to the construction
of more relevant models in specific regimes of interest. Or take the example of Pn models for the reso-
lution of the linear Boltzmann equation. Legendre polynomials are introduced, implicitly assuming the
regime of interest is isotropic (for the angular distribution): the first order captures the isotropic regime,
the higher orders compute corrections to this regime. Suppose one is interested in another identified
anisotropic angular regime. Then it is possible building the gPC basis associated to it and perform the
Galerkin projection with respect to this newly built basis. These tracks will certainly be explored in
further (modeling) research. More practically, in the next part III, gPC is introduced to reduce variance
in Monte-Carlo computations (see section 9.12 of chapter 9).

In the next chapter, we investigate the non-intrusive counterpart of gPC. We describe its application,
as detailed in the literature, and apply it to our ’fil rouge’ configuration.

13extended thermodynamic of moments of this chapter and the kinetic methodology of [83, 257, 162, 163, 164].
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Chapter 5

Non-Intrusive application of gPC for
systems of conservation laws

An Sn-like (without collision term) gPC based model
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In this chapter, we present the second way to compute the coefficients (uk)k∈{0,...,P}. It is refered
to as non-intrusive in the literature. Once again, the methodology is general and can be applied to any
system. But we here focus on systems of conservation laws. We recall general uncertain conservation
laws can be written in the form{

∂tu(x, t,X) + ∂xf(u(x, t,X)) = 0,
u(x, 0, X) = u0(x,X).

(5.1)

We suppose system (5.1) is hyperbolic ∀X ∈ Ω. Now, applying non-intrusive gPC implies the use of a
deterministic simulation code (often called black-box code in the literature) solving (5.1) at several chosen
(and licit with respect to the wellposedness of the system) points (Xi)i∈{1,...,N}. It consequently allows
avoiding the problem of building non-hyperbolic systems (encountered in chapter 4). All along the previ-
ous chapter, we refered to analogies with Pn (section 4.1) and Mn (section 4.2.3) models for the resolution
of the linear Boltzmann equation. The non-intrusive counterpart is closer to the Sn model [16, 92, 61]
for solving the linear Boltzmann equation except the collision term is zero (hence no time-dependent
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coupling between the angles in example (1.31)) and the resolutions are fully independent. The coupling
occurs mainly at the observation times and positions at which the pointwise discretised solutions are
postprocessed to build a gPC approximation. This will be detailed in the following sections. The reader,
all along the description of the methodology, may notice, through the questions arising, through the
references, that the non-intrusive application of gPC leads naturally toward the field of approximation
theory rather than model reduction as it was the case in chapter 4.

In the next sections, we detail the application and the characteristics of the non-intrusive resolution
of system (5.1). We apply it to our ’fil rouge’ problem and analyse its behaviour. Finally, we pave the
path toward a new non-intrusive approach we developed (see [238, 31, 242]), based on non-intrusive gPC
and moment theory.

5.1 Non-intrusive application of gPC

In this section, we present a brief state-of-the-art for non-intrusive gPC. The description of the methodol-
ogy may, at first glance, look like a recipe but it is representative of its practical use. Let us first suppose
the random variable1 X has probability measure dPX . The methodology consists in several steps:

1. it begins by the construction of the gPC basis (φXk )k∈N. It is orthonormal with respect to the inner
product defined by the probability measure dPX of the input random variable X. In other words,
it is such that ∫

φXk φ
X
t dPX = δk,t,∀(k, t) ∈ N2.

This step is common to intrusive gPC and is described in section 3.4.

2. The second step corresponds to the discretisation of the random variable and its probability measure
(X,dPX) by a numerical integration method with N points:

(X,dPX) ≈ (Xi, wi)i∈{1,...,N}. (5.2)

We detail how the points are usually chosen in section 5.2.

3. The next step consists in running N independent runs of a black-box code at the a priori chosen
points (Xi, wi)i∈{1,...,N} and gathering a new collection of output points2:

(u(x, t,Xi), wi)i∈{1,...,N} = (u(Xi), wi)i∈{1,...,N}. (5.3)

This step is supposed to bear the main computational effort. Up to this point, the methodology
can directly be compared to the Sn model without collision term, described in chapter 1.

4. Once the N runs obtained, the rest is only postprocessing at the observation points of interest
(several times t and positions x for example in our ’fil rouge’ problem). The estimation of the
polynomial coefficients is mainly made by numerical integration in this document ∀k ∈ {0, ..., P}.
This means we have

uXk =

∫
u(X)φXk (X)dPX ≈ uX,Nk =

N∑
i=1

u(Xi)φ
X
k (Xi)wi. (5.4)

Many authors apply other numerical methods to compute the coefficients (such as regression,
collocation, kriging). They are addressed in section 5.3 together with their analysis.

5. Finally, one can reconstruct the truncated polynomial approximation (or the collocation or kriging
ones) using the approximated coefficients (5.4)

u(X) ≈ uXP,N (X) =

P∑
k=0

uX,Nk φXk (X).

1or vector.
2We here introduce an abusive notation as we drop the dependences with respect to x and t.
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It then remains to perform the desired post-treatments in order to approximate the statistical
quantities of interest (mean, variance, histograms, etc.) related to u(X).

At the end of the process, one has access to an approximation3 uXP,N (X). The error between u(X) and

uXP,N (X) in the L2-norm can be decomposed in two main parts using the orthonormality of the gPC

basis4:

||u(X)− uXP,N (X)||2L2 =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

uXk φ
X
k (X)−

P∑
k=0

uX,Nk φXk (X)

∣∣∣∣∣
∣∣∣∣∣
2

L2

,

=

P∑
k=0

(uXk − uX,Nk )2

︸ ︷︷ ︸
integration error

+

∞∑
k=P+1

(uXk )2

︸ ︷︷ ︸
truncation error

.
(5.5)

In (5.5), the error of the non-intrusive approximation have (explicitly) two parameters:

– N for the integration error,

– and P for the truncation error.

One needs to have in mind there is still a hidden parameter which corresponds to the choice of the
discretisation/accuracy for the N runs of the black-box code (for example ∆x and/or ∆t for a deter-
ministic resolution scheme5 or NMC for a stochastic one as in part III for example). This additional
discretisation error may be important in practice and has to be taken into account. This is reminded and
illustrated in the application to our ’fil rouge’ problem later on and also in section 9.11 of the next part III.

The above description of the methodology is quite simple but to be complete, two points remain to
be tackled:

– we did not explain under which considerations the experimental design is chosen in practice for
the discretisation (5.2) of the couple (X,dPX). Section 5.2 presents some brief descriptions of
the possibilities at hand, their advantages and drawbacks. They correspond to the most common
strategies in uncertainty quantification.

– Some authors in the literature do not exactly use numerical integration methods in order to estimate
the polynomial coefficients (5.4). Amongst the other possibilities one can cite collocation methods,
regression or kriging. Their subtleties are briefly investigated, analysed and illustrated in section
5.3.

The two following sections address the two above points.

5.2 Choice of the experimental design (the most common ones
for UQ)

The choice of the discretisation of the random variable X together with its probability measure dPX
obviously directly impacts the quality of the gPC approximation as testifies (5.5). Depending on the
transformation u, the integration error may be preponderant with respect to the truncation one (see for
example [191]). The set of points and weights (5.2) are often called an experimental design. Considera-
tions to help choose it together with pedagogical examples can be found in [107, 15]. We here suggest a
brief overview of the most commonly applied strategies in uncertainty quantification studies.

3The upperscript X reminds of the approximation basis, P of the truncation order and N of the number of points for
the numerical approximation of the coefficients (uk)k∈{0,...,P}.

4assuming there are no errors in the gPC basis, see section 3.4
5for example, the intrusive counterpart of chapter 4 counted two parameters, P and ∆x as illustrated on figure 4.2,

remark 4.2 of section 4.2.1.
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Notation (5.2) for the punctual discretisation of (X,dPX) is general and has been chosen in order to
show that the material of the rest of the chapter concerning non-intrusive gPC (and even the material
of chapters 6, 7 and 8) can be applied independently of this choice. Suppose the points (Xi)i∈{1,...,N}
are chosen sampled from the probability law of X and (wi = 1

N )i∈{1,...,N}, then it corresponds to the
Monte-Carlo integration method for the estimation of the coefficients. With the same writing, we can
conveniently consider Gauss quadrature points, Latin Hypercube Samples, Sparse Grids etc. The latter
sets of points in dimension Q differ only by their asymptotic error analysis with respect to integration.
We insist we here implicitly deal with converging discretisation of (X,dPX): without this assumption,
most of the following results do not hold.

In the following sections, we detail different integration methods on a general function g : X ∈ Ω −→
g(X) ∈ R. Of course, in a non-intrusive gPC context, g ∈ {uφX0 , ..., uφXP } as we aim at applying the same
experimental design to every coefficients (uXk )k∈{0,...,P}. For some of the below descriptions, we may find
convenient considering X ∼ U [0, 1]Q. But we insist uniform variable on the square (i.e. independent)
can be mapped into any random variable. We can consequently carry out the integration with respect
to arbitrary inner products.

5.2.1 The Monte-Carlo (MC) integration method

We here recall the principles of the Monte-Carlo method for integration. These can be found in many
books (see [268, 173, 256, 165] for example). We briefly mention them for the completeness of the talk.
The reader familiar with the notion can easily jump to the next sections. The MC integration method
corresponds to the particular experimental design for which the points (Xi)i∈{1,...,N} are randomly sam-

pled from the probability law of X with uniform weights (wi = 1
N )i∈{1,...,N}. Two theorems are at the

basis of MC integration.

Theorem 5.1 (Law of Large Numbers) let X ∈ L1(Ω) be a random vector of size Q. Let (Xi)i∈N
be some independent identically distributed (i.i.d.) random vectors with X. Then6

XN = 1
N (X1 + ...+XN )

a.s.−→
N→∞

E[X]. (5.6)

This first theorem is a convergence result. The following one is stronger in the sense it describes its
convergence rate.

Theorem 5.2 (Central Limit Theorem) let X ∈ L2(Ω) be a random vector of size Q with variance
σ2. Let (Xi)i∈N be some i.i.d. random vectors with X. Let Xn be a random vector as in (5.6), then7

√
N
(
XN − E[X]

) L−→
N→∞

G(0, σ2). (5.7)

In the expression above, G(0, σ2) denotes a gaussian random variable of mean 0 and variance σ2.

Let us go back to our gPC coefficients and consider g ∈ {uφX0 , ..., uφXP } as integrands. The Central Limit
Theorem [256, 210] ensures

√
N

∣∣∣∣∣
∫
g(X)PX −

N∑
i=1

g(Xi)wi

∣∣∣∣∣ L−→
N→∞

G(0, σg,Q).

The convergence rate is O
(

1√
N

)
and is independent of the smoothness of the transformation g(X) nor

the size Q of the random vector X. In fact, the regularity of g and the size Q of the random vector
only affect the constant σg,Q. This constant can be a posteriori evaluated and is an estimation of the
error under condition its estimator8 is unbiased, see [256]. For the MC method, the points (Xi)i∈{1,...,N}
can be generated independently. Adding points always improves the quality of the experimental design.
In other words, one can enrich a posteriori the experimental design with a new set of N ′ ∈ N points

6The convergence is almost surely, see [256].
7The convergence is in law (L), see [256].
8This point is detailed and illustrated in section 9.12 and we do not recall the notion here to avoid redundancies.
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(X ′i)i∈{1,...N ′}. Experimental design(
(Xi)i∈{1,..N}

⋃
(X ′j)j∈{1,...N ′},

(
wj =

1

N +N ′

)
j∈{1,...,N+N ′}

)
, (5.8)

is still a Monte-Carlo integration method with asymptotic error O
(

1√
N+N ′

)
, independently of the choice

of N ′. This property is singular amongst the integration technics.

It is possible trading sensitivity to dimensionality and regularity for accuracy by using for example
low discrepancy sequences [209, 210, 53]. They are described in the following section.

5.2.2 Low discrepancy sequences/Quasi Monte-Carlo

In this section, we assume X ∼ U([0, 1]Q). The discrepancy of a sequence is said low [53, 54] if the
proportion of points in the sequence falling into an arbitrary set B is close to proportional to the measure
of B. The aim is to avoid clustering. Specific definitions of discrepancy differ regarding the choice of B
(hyperspheres, hypercubes, etc.) and how the discrepancy for every B is computed (usually normalized)
and combined (usually by taking the worst value). Amongst the low discrepancy sequences, the most
famous ones are the Halton, the Van Der Corput, the Faure, the generalized Faure, the Niederreiter and
the Sobol sequence, see [134, 283, 267, 209, 210].

Their asymptotic error analysis can be described assuming g is of bounded variation on [0, 1]Q, i.e.

V (g) =

∫
[0,1]Q

|g(x)|dPX(x) <∞. (5.9)

With this property, we have [210]∣∣∣∣∣
∫
g(X)dPX −

N∑
i=1

g(Xi)wi

∣∣∣∣∣ = V (g)DN (X1, ..., XN ),

where DN (X1, ..., XN ) is the discrepancy of the sequence of point (Xi)i∈{1,...,N}. It is defined by

DN (X1, ..., XN ) = sup
I⊂[0,1]Q

∣∣∣∣∣ 1

N

N∑
i=1

1I(Xi)− VI
∣∣∣∣∣ .

In the above expression, VI =
∫

1I(x)dx is the volume of I and
∑N
i=1 1I(Xi) is in fact the number of

points of (Xi)i∈{1,...,N} in I. Note that in general,

– V (g) is not known,

– and has nothing to do with the variance σ of g.

– Finally, DN is hard to estimate.

Nevertheless, one can show [53] that the convergence rate

– is at best V (g)DN ≤ logk(N)
N with k < Q,

– at worst V (g)DN ≤ logQ(N)
N depending on the smoothness of the integrand.

– For example for a function with second derivative Lipschitz-continuous, the worst case convergence

rate becomes V (g)DN ≤ ln
Q−1

2 (N)

N
3
2

, see [54] (p. 306).

The convergence rate remains faster than 1√
N

for relatively small values of Q. For efficiency with respect

to MC points, the number of dimensions needs to remain low and N should be large. In opposition

77



to the MC experimental design, the construction of a low discrepancy one must remain sequential for
efficiency: it is difficult adding points to a first low discrepancy experimental design without degradating
its properties (i.e. increasing its discrepancy).

In this document, Monte-Carlo methods are more completely studied in part III, mainly for the
resolution of the linear and nonlinear Boltzmann equations rather than for uncertainty quantification
problems. In this part II, we focus on deterministic integration strategies as the ones described below.

5.2.3 Gauss quadrature rules

The N Gauss points of any arbitrary measure dPX are the roots of the (N + 1)th degree polynomial
orthonormal with respect to the inner product defined by dPX . The Jacobi matrix JXN , see section 3.4,
is symetric and consequently diagonalizable. Its N eigenvalues are the N Gauss points (Xi)i∈{1,...,N}.
They verify ∀i ∈ {1, ..., N}

XiΦ
X
N (Xi) = JXN ΦXN (Xi) +

√
βNφ

X
N+1(Xi)︸ ︷︷ ︸

=0

eP ,

XiΦ
X
N (Xi) = JXN ΦXN (Xi).

The (ΦXN (Xi))i∈{1,...,N} are the (unnormalized) eigenvectors. There are several ways to introduce the
weights of the Gauss quadrature rule. For example, if we introduce pN (x) an arbitrary polynomial of
exact degree N and express it in term of Lagrange polynomials9 (Li(X))i∈{1,...,N}, defined at the Gauss
points (Xi)i∈{1,...,N}, we have

pN (x) =

N∑
i=1

pN (Xi)Li(x).

By definition of the quadrature rule, we have∫
pN (x)dPX(x) =

∫ ( N∑
i=1

pN (Xi)Li(x)

)
dPX(x),

=

N∑
i=1

pN (Xi)

∫
Li(x)dPX(x),

=

N∑
i=1

pN (Xi)wi.

It allows identifying

∀i ∈ {1, ..., N}, wi =

∫
Li(x)dPX(x). (5.10)

Introducing the weights as above implicitly presents them as the coefficients ensuring exact integration
of polynomials up to order N . Such N -point quadrature rule is said to have degree of exactness N and
is denoted as interpolary, see [117]. Obviously, from the definition of the weights (5.10), given any N
points, any quadrature rule can be made interpolary. Such definition is convenient but not optimal: the
optimal N -point quadrature rule has degree of exactness 2N and is called a Gauss quadrature rule [117].
It verifies (5.10) but also [117]

∀i ∈ {1, ..., N}, wi =

∫
Li(x)dPX(x) =

∫
L2
i (x)dPX(x). (5.11)

9They are polynomials of degree N verifying Li(Xj) = δi,j , ∀(i, j) ∈ {1, ..., N}2.
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The weights can also be defined by normalizing every eigenvectors (ΦXN (Xi))i∈{1,...,N} and taking their
first squared component: as φX0 (x) = 1 in our case, dealing with probability measures, we have

∀i ∈ {1, ..., N}, wi =
1

P∑
k=0

(φXk (Xi))
2

.

The two last definition of the Gauss weights emphasizes their positiveness, important in practice for
robustness. There exists other ways to define them but we do not aim at being exhaustive on the
subject: depending on the theoretical problem of interest, one formulation may be more interesting
than another. The main drawback of Gauss quadratures remains linked to the curse of dimensionality.
Building a multidimensional Gauss quadrature rule implies tensorizing the points in each directions (just
as was done for the gPC basis in section 3.5.1). The number of Gauss points increases exponentially fast
with the dimension Q. Regarding asymptotic error analysis, for a Gauss quadrature rule, we have the
following general property (see [117]):∣∣∣∣∣

∫
g(x)dPX −

N∑
i=1

g(Xi)wi

∣∣∣∣∣ =

∫
H2N (X, g)PX . (5.12)

The term H2N (x, g) denotes the Hermite interpolation polynomial of order 2N relative to function g.
We recall the Hermite interpolation polynomials relative to the points (Xi)i∈{1,...,N} satisfy

H2N (Xi, g) = g(Xi), and H ′2N (Xi, g) = g′(Xi),∀i ∈ {1, ..., N}.

If furthermore, g is 2N times differentiable then the same asymptotic error can be expressed in term of
ξ, existing in the support of the probability measure dPX , such that∣∣∣∣∣

∫
g(x)dPX −

N∑
i=1

g(Xi)wi

∣∣∣∣∣ =

〈
φX,mN , φX,mN

〉
2N !

g(2N)(ξ). (5.13)

In (5.13), g(n) denotes the nth derivative of g. The constant in the error analysis strongly depends on

the smoothness (of order 2N) of the integrand. The coefficients
(〈
φX,mk , φX,mk

〉)
k∈N

corresponds to

the norm of the monic orthogonal polynomial (φX,mk )k∈{0,...,P} associated to the probability measure
dPX . This normalization coefficient may also depend strongly on N : for Legendre polynomials10 for

example,
〈
φL,mN , φL,mN

〉
= 1

2N+1 . Obviously, for smooth solutions, the convergence rate is fast. The

Gauss quadrature rules for an arbitrary measure dPX are designed/defined [7] to ensure a good accuracy
up to order 2N for the statistical moments of the input X i.e. up to order 2N for polynomials (hence
the non optimality of the definition (5.10)). With the above remark in mind, assume g is polynomial of
order 2N − 1, then g(n) = 0,∀n ≥ 2N and the quadrature rule is exact, see (5.12). In dimension Q with
X = (X1, ..., XQ)t, due to the tensorisation of the points, the above asymptotical error becomes∣∣∣∣∣

∫
g(x)dPX −

N∑
i=1

g(Xi)wi

∣∣∣∣∣ = max
i∈{1,...,Q}


〈
φXi,mNi

, φXi,mNi

〉
2Ni!

g
(2Ni)
i (ξi)

 . (5.14)

In (5.14), (Ni)i∈{1,...,Q}, (φXik )k∈N,i∈{1,...,Q} and (g
(2Ni)
i )i∈{1,...,Q} are respectively the number of points

in each direction, the gPC basis in each direction and the 2N th
i derivative of g in each direction.

Let us come back to our final goal. We want to apply the quadrature rule to function g having
the particular form g = uφXl with l ∈ {0, ..., P} to build a gPC approximation of order P . Formally,
we can expand u ∈ L2 on the gPC basis, i.e. u =

∑∞
k=0 u

X
k φ

X
k , and introduce gl =

∑∞
k=0 u

X
k φ

X
k φ

X
l ,

10with dPX(x) = 1
2
1[−1,1](x)dx.
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gPC approximations for 3 ≤ P ≤ 20 Convergence w.r.t. P for fixed N
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Figure 5.1: Application of Gauss-Legendre quadrature rule for the integration of the gPC coefficients of
the transformation of a uniform random variable through the Runge function with N = 11 (top) and
N = 21 (bottom). The left column present the polynomial approximations for 3 ≤ P ≤ 20. The right
column present the L2-norm of the error with respect to P for fixed N .

∀l ∈ {0, ..., P}. With such notations, error analysis (5.13) becomes∣∣∣∣∣
∫
gl(x)dPX −

N∑
i=1

gl(Xi)wi

∣∣∣∣∣ =

〈
φX,mN , φX,mN

〉
2N !

∞∑
k=0

uXk (φXk φ
X
l )(2N)(ξl),

∣∣∣uXl − uX,Nl

∣∣∣ =

〈
φX,mN , φX,mN

〉
2N !

∞∑
k=0

uXk 1k+l≥2N (φXk φ
X
l )(2N)(ξl).

(5.15)

Expression (5.15) comes from the fact (5.13) holds for every gPC coefficients ∀l ∈ {0, ..., P}. Each
(ξl)l∈{0,...,P} echoes ξ as defined earlier for each (gl)l∈{0,...,P}. To study (5.15) more in detail, recall

∀k ∈ N we can rewrite φXk (X) = ΓXk φ
X,m
k (X) = ΓXk

∏k
i=1(X−Xk

i ) with (φX,mk )k∈N the monic orthogonal
polynomial relative to (φXk )k∈N and with (Xk

i )i∈{1,...,k} its roots11. Due to the fact we decomposed
(φXk )k∈N as a product of monomials, the previous notation allows rewriting(

φXk φ
X
l

)(2N)
(ξl) = 2N !ΓXk ΓXl Pk+l−2N (ξl).

In the above expression, Pk+l−2N is a monic polynomial of order k + l − 2N . With the above equality,

11The roots of the orthogonal polynomials are within the support of the probability measure dPX , distinct and real, see
[117]. Nevertheless, the decomposition could be done in the complex plane.
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(5.15) becomes∣∣∣uXl − uX,Nl

∣∣∣ =

∞∑
k=0

uXk 1k+l≥2N
ΓXk ΓXl
(ΓXN )2

Pk+l−2N (ξl).∣∣∣uXl − uX,Nl

∣∣∣2 =

∞∑
j=0

∞∑
k=0

uXk u
X
j 1j+l≥2N1k+l≥2N

ΓXk ΓXj (ΓXl )2

(ΓXN )4
Pk+l−2N (ξl)Pj+l−2N (ξl).

P∑
l=0

∣∣∣uXl − uX,Nl

∣∣∣2 =

∞∑
j=0

∞∑
k=0

uXk u
X
j

ΓXk ΓXj

(ΓXN )2

P∑
l=0

1j+l≥2N1k+l≥2N

(
ΓXl
ΓXN

)2

Qk,j,l,N︸ ︷︷ ︸
term (∗) we can control by choosing P

.

(5.16)

The last term in the left hand side of (5.16) is exactly the L2−norm of the integration error in (5.5).
The term (∗) in (5.16) corresponds to the term we can control by choosing P , independently of any
smoothness assumptions for u. Now, for a given k, we have (cf. section 3.4)

ΓXk =

√
HX

2(k−1)

HX
2k

≥ 22k−1.

Now, assume

• N grow and P is fixed: then (∗) is bounded and the integration error is O( 1
(ΓXN )2 ) = O( 1

22N−1 )

ensuring a fast convergence rate for Gauss points. Besides, term (∗) in (5.16) can be controled by
making sure l ≤ N, ∀l ∈ N, i.e. choosing P ≤ N , ensuring the minimization of the residue in (5.15)
independently of the smoothness of the solution u.

• In the opposite case, a gPC reconstruction with increasing P for fixed N (exponentially) accumu-
lates errors as (∗) becomes O((ΓXP )2 = O(22P−1).

The explosion of the L2 error with P as soon as P ≥ N (second point above) has been observed on many
numerical experiments, see [191, 72] for example. The above numerical analysis shows it is independent
of dPX and of u for the associated Gauss quadrature rule.

We suggest illustrating this behaviour on a simple uncertainty propagation problem: consider the
transformation of a uniform random variable X via the Runge function

X ∼ U[−1,1] −→
1

1 + 15X2
. (5.17)

We build a non-intrusive gPC approximation with coefficients integrated thanks to a N points Gauss-
Legendre (GL) quadrature rule. Figure 5.1 presents the results of the study with N = 11 and N = 21
points. The top right picture presents a convergence study with respect to P for N = 11 GL points.
The L2-norm of the error first decreases exponentially fast (logarithmic scale for the ordinate) before
increasing almost as quickly after P = 11 = N . The explosion of the error after P = N is in agreement
with the previous numerical analysis (cf. (5.16) and the discussion below). The quality of the obtained
gPC approximations can be observed on figure top left in the same conditions. For the bottom pictures
of figure 5.1, care has been taken to keep P ≤ N = 21 GL points. The exponential convergence of the
gPC approximation is ensured up to P = 20 as testifies the bottom right picture: the increasing quality
with P is observable on figure 5.1 (bottom-left) with a less and less oscillating approximation. Note that
the readability of the left column of figure 5.1 can be discussed: this column is mainly qualitative and
its sense will be revealed mainly when tackling section 5.3 and comparisons with the approximations
obtained with regression, collocation, kriging in the same conditions.

Note that in agreement with the latter analysis and example, in every of our applications in the next
chapters, we always keep P ≤ N in each stochastic directions.

The construction of a Gauss quadrature rule is sequential in the sense one can not in general a
posteriori add a set of points to a given Gauss quadrature rule with N points in order to enrich it. The
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roots of the orthonormal polynomials of degree N associated the measure dPX , does not in general have
the same roots as the one of degree N + 1 for example, see [273, 5, 117]. This is particular for the
Chebyshev polynomials and of practical interest: their use for numerical integration is presented in the
next paragraph through the introduction of the Clenshaw-Curtis quadrature rule.

5.2.4 Clenshaw-Curtis (CC) quadrature rule

The Clenshaw-Curtis (CC) quadrature rule is well-known for interpolation approximations on a bounded
interval [a, b]. The points of the experimental design are related to the roots of the Chebyshev polynomials
denoted by (φCk )k∈N. Chebyshev polynomials are orthonormal with respect to the probability measure

dPC(x) =
2

π
√

1− x2
dx,

of the Arcsinus random variable. The roots of the Chebyshev polynomials have two convenient properties:
first, analytical formulae are available. Second, the roots of the Chebyshev polynomial of degree P are
also roots of the Chebyshev polynomial of degree 2P . The points of the CC quadrature rule of level k
have nk = 2k−1 + 1 points and are given by

xkj = − cos

(
π(j − 1)

nk − 1

)
. (5.18)

The corresponding weights are given by

wk1 = 1
nk(nk − 2)

, for j = 1,

wkj = 2
nk − 1

1 + 2

bnk−1

2 c∑
l=1

1

1− 4l2
cos

(
2π(j − 1)l

nk − 1

) , for 2 ≤ j ≤ nk − 1.
(5.19)

The CC quadrature rule of level k (i.e. having nk points) presented above allows integration with respect
to the uniform probability measure on [−1, 1]. Such weights are designed to integrate exactly polynomials
of degree at most nk + 1 with respect to the uniform measure. In practice, comparisons between Gauss
points and CC ones for a given number/level nk/k with respect to the uniform measure are of equivalent
accuracy on arbitrary g, see [277]. The CC points being Gauss points (for the Chebyshev polynomials),
their asymptotical error analysis is the same as above in the case of an integration with respect to the
Arcsinus measure.

We here want to focus on the second property of the roots of the CC quadrature rule: the roots of φCk
are also the roots of φC2k, for n ∈ N. This implies a CC experimental design of level k can be a posteriori
enriched with level k + 1 reusing the previous runs from the kth level. The experimental design can
not be enriched adding one point after another: the previous description implies a size of experimental
design multiplied by 2 at each level.

Such property makes the quadrature rule very attractive for

– integration with respect to arbitrary measures. Any random variable can be mapped into a new
one provided their respective cumulative density functions (and their inverse). For integration on
R, the Clenshaw-Curtis points can be modified into the Fejer [288] quadrature rule which do not
have nodes at 1 and −1 (values which shall be mapped to ∞ and −∞ otherwise).

– adaptive algorithms, see for example [72, 34]. One may decide to run simulations quadrature level
after quadrature level and add points only in the stochastic directions needing it (by detecting
steep gradients using the differential between two quadrature levels for example as in [72, 34]). We
do not aim at being exhaustive on adaptive and sparse technics, we rely on [72, 191, 34] and the
reference therein.

In this part II of this document, Gauss quadrature rules are intensively applied. This choice is based
mainly on the observation that the construction of an arbitrary gPC basis needs a good accuracy on the
moments of the measure of interest (see section 3.4). Practical considerations and experiments showed
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that the Gauss points outpower every other integration rule based on this criterion. Note that quadrature
rules with negative weights such as the ones built from a Smolyak [263] procedure showed poor efficiency
in the same context. MC methods are also very robust but remain the purpose of part III.

5.2.5 MC vs. Quasi MC vs. Gauss vs. etc.

In the previous sections, several experimental designs have been presented. Their asymptotical numerical
analysis have been recalled. But we are still far away from being able to choose the relevant experimental
design in the relevant situation12. In this section, we suggest a general way to choose an experimental
design to compute an arbitrary integral under some basic assumptions.

Let us begin by the introduction of a common notation. For each experimental design of the previous
sections, we rewrite their asymptotical error ε with respect to N and Q in the more concise notation

ε = ε(σ,N,Q). (5.20)

The notation is general. For example, for an MC experimental design, see section 5.2.1, we have

ε = ε(σMC, N,Q) =
σMC√
N
.

For an uniform integration we have

ε = ε(σunif, N,Q) = σunif max
i∈{1,..,Q}

[
N−1
i

]
.

For a general low discrepancy sequence, see section 5.2.2, we have

ε = ε(σLHS, N,Q) = σ(best) LHS
logk(N)
N , with k = Q− 1 which may be optimistic in general,

= σ(worst) LHS
logQ(N)

N ,

= σ(Lipschitz) LHS
ln
Q−1

2 (N)

N
3
2

.

For a Gauss quadrature in Q dimensions, see section 5.2.3, we have

ε = ε(σGauss, N,Q) = σGauss max
i∈{1,..,Q}

[
1

2Ni!

]
.

With the few above lines, we summed-up the previous asymptotical analysis of the different experimental
designs into four lines exhibiting:

– the constant σname of the method multiplying,

– the convergence rate depending on N and Q.

Let us comment on the first above point: depending on the method, the estimation of the constant
σname of the method is not straightforward. For an MC experimental design, it is enough computing the
variance, see (5.7). For a low discrepancy sequence, one needs to estimate (5.9). For a Gauss quadrature,
one would need to estimate a derivative of order 2N of the integrand, see (5.13). The estimation of
these constants can be complex and problem dependent. But assume (this may be considered a strong
assumption) they are comparable, of the same order σMC ≈ σunif ≈ σLHS ≈ σGauss. Under such
hypothesis, we can compare the number of point needed to obtain a given accuracy ε with a problem of
dimension Q.

Table 5.2.5 presents the number of points required to reach some given accuracies ε = 10−1, ε = 10−3

and ε = 10−5 with respect to Q ∈ {1, 3, 5, 10, 20}. In blue we display the smallest number of points needed
to ensure ε for a given Q. In red, we display the largest one. The colors for the names of the experimental
designs correspond to the one used in figure 5.2. In table 5.2.5, for low dimensions, the most efficient

12In [289], the author presents an interesting introductory example in the case of the computation of a failure probability
with an MC experimental design and the risk of making bad choices.
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ε = 10−1 Q = 1 Q = 3 Q = 5 Q = 10 Q = 20
MC N = 100 N = 100 N = 100 N = 100 N = 100

Uniform N = 10 N = 1000 N = 105 N = 1010 N = 1020

(best) LHS N = 10 N = 339 N = 2.3× 105 N = 6.1× 1014 N = 7.4× 1037

(worst) LHS N = 35 N = 6909 N = 1.2× 107 N = 7.9× 1016 N = 2.3× 1040

(Lipschitz) LHS N = 5 N = 9 N = 21 N = 2064 N = 109

Gauss N = 2 N = 8 N = 32 N = 1024 N = 1048576

ε = 10−3 Q = 1 Q = 3 Q = 5 Q = 10 Q = 20
MC N = 106 N = 106 N = 106 N = 106 N = 106

Uniform N = 1000 N = 109 N = 1015 N = 1030 N = 1060

(best) LHS N = 9118 N = 1.4× 105 N = 1.2× 108 N = 2.7× 1017 N = 2.5× 1040

(worst) LHS N = 1000 N = 3.4× 106 N = 5.7× 109 N = 3.4× 1019 N = 7.7× 1042

(Lipschitz) LHS N = 100 N = 322 N = 1403 N = 176269 N = 9.0× 109

Gauss N = 4 N = 64 N = 1024 N = 1048576 N = 1.099× 1012

ε = 10−5 Q = 1 Q = 3 Q = 5 Q = 10 Q = 20
MC N = 1010 N = 1010 N = 1010 N = 1010 N = 1010

Uniform N = 105 N = 1015 N = 1025 N = 1050 N = 10100

(best) LHS N = 105 N = 2.9× 107 N = 1.2× 108 N = 9.1× 1019 N = 7.9× 1042

(worst) LHS N = 1.4× 106 N = 8.7× 108 N = 1.8× 1012 N = 1.2× 1022 N = 2.4× 1045

(Lipschitz) LHS N = 2155 N = 9426 N = 51780 N = 8810510 N = 4.0× 1012

Gauss N = 5 N = 125 N = 3125 N = 9765625 N = 9.5× 1012

Table 5.1: Number of points of the different experimental designs for an expected accuracy of ε =
10−1, ε = 10−3, ε = 10−5.

experimental design is the Gauss quadrature whereas the MC one is the worst. As dimension increases,
the MC experimental design becomes more and more competitive. On another hand, the uniform one
becomes the worst solution to integrate in high dimensions. Table 5.2.5 provides the numbers of points
required for few samples of Q and ε. Figure 5.2 presents the most efficient experimental design with
respect to Q and ε. The number of points is not represented. Each color corresponds to a particular
experimental design. The Gauss points are the most efficient for small dimensions. Their efficiency
(quite erratically) increases with the demanded accuracy. The seesaw efficiency of the Gauss points is
complementary with the efficiency of the LHS for Lipschitz continuous functions. For high dimensions,
independently of the accuracy needed, the MC experimental design is the most efficient one. Note that
the (best) LHS, the (worst) LHS and the uniform experimental designs never really present any interest
amongst the studied experimental designs, in the metric of figure 5.2.

5.3 Integration vs. Regression vs. Collocation vs. Kriging

In the literature, many authors do not rely on integration to estimate the gPC coefficients for a given
polynomial order. In this section, we present regression methods, regression-gPC [35, 26, 270, 271, 15],
collocation methods (Lagrange interpolation), collocation-gPC [175, 212, 302, 111, 176, 177, 115] and even
kriging-gPC (simpler form of what is described in [262, 158, 258]) and compare them to integration-gPC13.
We aim at showing that depending on the choice of the approximation basis and of the experimental
design, the obtained discretisations may be equivalent or not. In the cases they are not, we aim at
highlighting the more progressively possible their differences.

5.3.1 Regression-gPC approximations

Regression has been historically at the basis of many works in statistics for modeling [107, 15, 90,
117]. It is widely used and presents the advantage of being applicable in presence of noisy outputs, i.e.

13In the following sections, gPC and integration-gPC denote the same numerical process.
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Figure 5.2: The figure presents the most efficient experimental design in dimension Q (y−axis) to reach
a given accuracy (the x−axis displayes log(ε)) assuming σMC ≈ σunif ≈ σLHS ≈ σGauss. Each color is
for a type of experimental design: Gauss quadrature is the most efficient for low dimensions Q. The
(Lipschitz) LHS experimental design has a very narrow area of efficiency. The MC method is by far the
most efficient one above a certain dimension Q, independently of the desired accuracy. Note that the
uniform, (best) LHS and the (worst) LHS are never represented.

experimental noise as well as numerical noise:

– Experimental noise refers to variability in the output at the different points of the experimental
design due to a finite accuracy of the measure instruments: two identical experiments may give
slightly different results. The differences could be made smaller with more accurate measurement
devices or experimental settings less sensitive to external perturbations.

– Numerical noise refers to variability due to the use of a stochastic resolution scheme such as the
MC ones described in part III. In this context, running twice the same simulation in identical
configurations14 leads to fluctuations of the observables. Those fluctuations can be made smaller
with finer discretisation parameters (typically by increasing NMC , see part III for example).

In this section, we briefly detail the principles of regression together with its properties. For this, let us
consider a sequence of linearly independent functions FP (x) = (f0(x), ..., fP (x))t. Classically in regression
approximation, the sequence FP (x) = (1, x, ..., xP )t is often chosen, see [107, 15]. Let X −→ u(X) be our
random variable of interest. The regression model uFP (x), approximation of u, is defined as the vector
product

uFP (X) = U tPFP (X).

In the expression above, UP = (u0, ..., uP )t is defined by the vector of RP minimizing the least square
error between u and uFP , i.e. such that

UP = Argmin
V ∈RP

[J(VP )] = Argmin
V ∈RP

‖u(X)− V tPFP (X)‖2L2 . (5.21)

Differentiating J(VP ) = ‖u(X)− V tPFP (X)‖2L2 with respect to VP = (v0, ..., vP )t leads to

∇VP J(VP ) = 2‖(u(X)− V tPFP (X))FP (X)‖L2 .

14but with different initial seeds for the random number generators.
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Vector UP is consequently the unique (due to the convexity of J) solution of

∇VP J(VP ) = 0⇐⇒
∫
u(X)FP (X)dPX =

∫
V tPFP (X)FP (X)dPX . (5.22)

In the particular case FP (x) = ΦXP (x) = (φX0 (x), ..., φXP (x))t and assuming infinite integration accuracy,
the minimum of J is attained at the vector of gPC coefficients (uX1 , ..., u

X
P )t.

Let us come back to the previous assumption: equations (5.21) and (5.22) were stated assuming perfect
integration accuracy. The above expressions (5.21)–(5.22) are in practice discretised via the introduction
of an experimental design (Xi, wi)i∈{1,...,N}. It results in the gathering of the set (u(Xi), wi)i∈{0,...,P}.
Equation (5.21) is consequently replaced in practice by

UNP = Argmin
VP∈RP

[JN (VP )] = Argmin
VP∈RP

N∑
i=1

wi(u(Xi)− V tPFP (Xi))
2. (5.23)

In practice, we consequently look for the minimum of JN (VP ) ≈ J(VP ). Functional JN is minimum for
VP ∈ RP satisfying

[
(FNP )tNWNF

N
P

]
VP =

[
WNF

N
P

] u(X1)
...
u(XN )

 . (5.24)

In the above expression, we have WN = diag(w1, ..., wN ) and

FNP =

 f0(X1) ... f0(XN )
... fk(Xj) ...
fP (X1) ... fP (XN )

 .

To give an idea, the expressions of the two vector-matrix products in (5.24) read

[
WNF

N
P

]
=

 w1f0(X1) ... wNf0(XN )
... wjfk(Xj) ...
w1fP (X1) ... wNfP (XN )

 , (5.25)

and

[
(FNP )tWNF

N
P

]
=



N∑
i=1

wif
2
0 (Xi) ...

N∑
i=1

wif0(Xi)fP (Xi)

...

N∑
i=1

wifk(Xi)fl(Xi) ...

N∑
i=1

wif0(Xi)fP (Xi) ...

N∑
i=1

wif
2
P (Xi)


. (5.26)

Of course, independently of the choices of (N,P ) ∈ N2, the matrix (5.26) is invertible15. The solution
UNP satisfies the well-known (unbiased estimator see [107])

UNP =
[
(FNP )tWNF

N
P

]−1 [
WNF

N
P

] u(X1)
...
u(XN )

 . (5.27)

The conditioning of matrix (5.26) depends on both the choice of the basis FP (x) and of the experimental

15This will be emphasized in the few next lines
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design (Xi, wi)i∈{0,...,N}. Suppose FP (x) = (1, x, ..., xP )t, then matrix (5.26) has expression

N∑
i=1

wi ...

N∑
i=1

wiX
P
i

...

N∑
i=1

wiX
k+l
i ...

N∑
i=1

wiX
P
i ...

N∑
i=1

wiX
2P
i


→

N→∞

 sX0 ... sXP
... sXk+l ...
sXP ... sX2P

 . (5.28)

It tends to the Hankel matrix of measure dPX , see (3.10), defined in section 3.4. Two situations may
then occur:

– either measure dPX is discrete and the Hankel matrices are invertible only up to a specific order
(depending on the number of discrete states of dPX). In this case, the maximum size of (5.26)
corresponds to the size of the last Hankel matrix with non-zero determinant.

– Or the Hankel matrices are invertible ∀P ∈ N but their determinants are known to tend to zero
quickly as P grows (see section 3.4). It is consequently harder and harder to numerically inverse
with P .

Nonetheless, in both cases in practice, (5.26) is always invertible. Figure 5.3 presents the results obtained
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Figure 5.3: Application of Gauss-Legendre quadrature rule for regression for the transformation of a
uniform random variable through the Runge function with N = 11 (top) and N = 21 (bottom). The left
column present the polynomial approximations for 3 ≤ P ≤ 20. The right column present the L2-norm
of the error with respect to P for fixed N .

with regression on the Runge function in exactly the same conditions as in section 5.2.3 together with the
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results obtained by integration-gPC. If we focus on the convergence studies (right column) with respect
to P for fixed numbers of GL points N = 11 and N = 21, integration-gPC and regression have

– first, the same behaviour. For a small number of points of the experimental design, the polynomial
order must be kept low. The error decreases then increases after N = 11 (as soon as P goes beyond
N = 11).

– But for polynomial orders higher than P = N = 11, the error is a little bit more controlled with
the regression approximation than with the integration one.

The shapes of the regression approximations for the different order for N = 11 (top left of figure 5.3) are
quite different than the ones obtained with integration (top left of figure 5.1). When P is kept P ≤ N ,
the results obtained with integration or regression are equivalent (up to the accuracy/cost of a matrix
inversion). See for example the bottom pictures of figure 5.3. This is due to the fact that, by definition,
the L2-minimization is invariant with a change of basis.

Now suppose a particular form for FP (x) = ΦXP (x) = (φX0 (x), ..., φXP (x))t with (φXk )k∈{0,...,P} the com-
ponents of a chosen gPC basis. The obtained approximations are denoted regression-gPC ones in this
document. Let us introduce U int,N

P = (uX,N0 , ..., uX,NP )t the vector of coefficients of the gPC approxima-

Regression-gPC approximations for 3 ≤ P ≤ 20 Convergence w.r.t. P for fixed N
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Figure 5.4: Application of Gauss-Legendre quadrature rule for regression-gPC of the gPC coefficients of
the transformation of a uniform random variable through the Runge function with N = 11 (top) and
N = 21 (bottom). The left column present the polynomial approximations for 3 ≤ P ≤ 20. The right
column present the L2-norm of the error with respect to P for fixed N .

tion obtained by integration. From (5.24), it is easy noticing that, independently of the choice of the
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experimental design, the regression solution UNP is related to the integration coefficients U int,N
P by

N∑
i=1

wi(φ
X
0 (Xi))

2 ...

N∑
i=1

wiφ
X
0 (Xi)φ

X
P (Xi)

...

N∑
i=1

wiφ
X
k (Xi)φ

X
l (Xi) ...

N∑
i=1

wiφ
X
0 (Xi)φ

X
P (Xi) ...

N∑
i=1

wi(φ
X
P (Xi))

2


UNP = U int,N

P . (5.29)

Suppose now (Xi, wi)i∈{1,...,N} is a Gauss quadrature rule having the properties described in 5.2. If we
furthermore assume P ≤ N , it ensures the exact orthornormality of the gPC basis even with N < ∞
(i.e. even in a finite integration accuracy context). Consequently, with such choice, we have

UNP = U int,N
P .

Otherwise (i.e. if N > P ), the regression-gPC coefficients and the integration ones differ from the fact
the integration coefficients may not minimize the least squared error. This is emphasized in figure 5.4.
For P > N , the regression-gPC approximations have a better control of the L2 error than both classical
regression and integration.

The main interest of regression-gPC is to be able to deal with any experimental design, independently
of its integration accuracy, still ensuring a relatively good conditioning of matrix (5.26). It is particularly

Regression-gPC for 3 ≤ P ≤ 20 Convergence w.r.t. P for fixed N
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Figure 5.5: Application of Gauss-Legendre quadrature rule for regression-gPC of the gPC coefficients of
the transformation of a uniform random variable through the Runge function with N = 11 (top) and
N = 21 (bottom). The left column present the polynomial approximations for 3 ≤ P ≤ 20. The right
column present the L2-norm of the error with respect to P for fixed N .

convenient for experimental settings (in opposition to numerical experiments) and has been originately
designed [107, 15, 90] for its ability to take into account experimental noise.
The above property is emphasized in figure 5.5 in which we briefly investigate the sensitivity to the
choice of the experimental design for integration and regression-gPC. Figure 5.5 (left) shows the results
obtained with regression-gPC with N = 14 equispaced points (uniform experimental design). Figure 5.5
(right) allows comparing the results obtained with integration-gPC and regression-gPC for N = 14 GL
points and N = 14 equispaced ones. For the GL points, the behaviour is similar to what was presented
in figure 5.4 (except we have N = 14 instead of N = 11). With the equispaced experimental design,
the integration accuracy is lower than with the GL points for fixed N (see section 5.2.5). Integration-
gPC consequently gives less satisfactory results with such design: the two approaches have equivalent
L2-performances only up to P = 5. For higher polynomial orders, the integration error becomes prepon-
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derant with respect to the truncation one. With regression-gPC on another hand, the accuracy of the
GL and equispaced experimental designs are comparable up to order P = 9.

5.3.2 Collocation-gPC approximation

Regressions are convenient especially when one has to deal with experimental/numerical noise. When
considering numerical experiments, i.e. simulations, some resolution schemes may be reproducible in the
sense two runs of the same configuration give exactly the same results. This is the case for example
for the finite volume schemes used in the ’fil rouge’ application. Dealing with reproducible simulation
codes, one may demand the stochastic approximation method to be able to strictly recover the numerical
results at the experimental design points, see [175, 212, 302, 111, 176, 177, 115]. This can be obtained
using interpolation methods such as Lagrange interpolation or high-order splines for example.

Lagrange interpolation can be obtained applying formulae (5.27) in the particular case N = P . In
practice, in order to avoid the inversion of a possibly badly conditioned matrix, the Lagrange formulae
is applied

Li(x) =

N∏
j=1

i 6=j

x−Xj

Xi −Xj
,∀i ∈ {1, ..., N}. (5.30)

The resulting collocation approximation is then given by

uLN (X) =

N∑
j=1

u(Xi)Li(X). (5.31)

In term of asymptotical error analysis, we have the following well-known property: suppose u ∈ C0([a, b]),
and an experimental design (Xi)i∈{1,...,N} with N distinct nodes, then there exists ξ ∈ [a, b] such that

u(X)− uLN (X) =
u(N)(ξ)

N + 1!

N∏
i=1

(X −Xi). (5.32)

Taking the L∞-norm in the above expression we obtain

||u(X)− uLN (X)||L∞ ≤
1

N + 1!
max
ξ∈[a,b]

|u(N)(ξ)| max
x∈[a,b]

∣∣∣∣∣
N∏
i=1

(x−Xi)

∣∣∣∣∣ . (5.33)

Note that the collocation approximation does not necessarily converge. Its converging behaviour is
strongly correlated to the choice of the experimental design. Figure 5.6 (top) presents the collocation
approximations of Runge function16 obtained for N going from 1 to 20 of a uniform experimental design.
The collocation approximations diverge17 as N increases (figure 5.6 top-left).

The question arising now is: is it possible to choose an experimental design ensuring the convergence

of the collocation approach. It is commonly known, see [225], that the term max
x∈[a,b]

∣∣∣∏N
i=1(x−Xi)

∣∣∣ in

(5.33) is O( 1
2N

) at the roots of Chebyshev’s polynomials (CC points). This ensures uniform convergence
at those points. The roots of Chebyshev polynomials are Gauss points. Some authors generalized the
property of Chebyshev roots for collocation to arbitrary Gauss ones: the method is commonly called
stochastic collocation, or collocation-gPC in the literature, see [175, 212, 302, 111, 176, 177, 115]. It
refers to the use of Lagrange polynomials at the Gauss quadrature points associated to the probability
measure dPX of the input random variable X.
If derivatives of u are available at the experimental design points, Hermite interpolation can also be

16This example is well-known, I claim no originality here.
17It is even possible to prove it diverges in this case, see [64, 102] for example.
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applied, generalizing Lagrange interpolation. It ensures

u(X)− uHN (X) =
u(N)(ξ)

N + 1!

N∏
i=1

(X −Xi)
ki ,

where ki corresponds to the number of orders available at point Xi. For example if one has access to
(u(Xi), u

′(Xi)) ∀i ∈ {1, ...N}, then ki = 2,∀i ∈ {1, ..., N}.

Figure 5.6 presents the collocation-gPC approximations of Runge function (i.e. Lagrange polynomials
at GL points) in the same conditions as in the previous sections. As testifies the convergence study of
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Figure 5.6: Application of Gauss-Legendre quadrature rule for collocation-gPC of the gPC coefficients
of the transformation of a uniform random variable through the Runge function with N = 11 (top) and
N = 21 (bottom). The left column present the polynomial approximations for 3 ≤ P ≤ 20. The right
column present the L2-norm of the error with respect to P for fixed N .

figure 5.6 (right), collocation-gPC exhibits an exponential convergence behaviour. The global accuracy
at each order/number of points N = P remains higher than for integration and regression. This is mainly
due to systematic oscillating behaviour between the points. Of course, for P = 20 in figure 5.6 (right),
regression-gPC degenerates toward collocation-gPC.

Collocation-gPC has only one parameter as N = P : in figure 5.6, we compared collocation-gPC
to integration-gPC and regression-gPC with N = 21. For the latters, the comparison may seem unfair,
especially for high polynomial orders P . In figure 5.7, we perform some convergence studies keeping P = 5
fixed for integration-gPC and regression-gPC and compare them to the collocation-gPC approximations
with increasing N . The convergence studies have two regimes for the integration-gPC and regression-gPC
approximations, only one for collocation-gPC:
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Figure 5.7: Convergence studies for integration-gPC, regression-gPC (both for fixed P = 5) and
collocation-gPC with respect to N for approximating Runge function (5.17).

– in the first regime, defined by N ≤ 7, the three methods exhibit an exponential convergence rate
(log-scale). We recall we chose P = 5 for this example, implying a small numbers of points (N ≤ P )
leads to inaccurate approximations.

– Beyond N = 7 points, integration-gPC and regression-gPC’s accuracies stagnate: the stagnation
plateau corresponds to the fact the truncation error (second term in (5.5)) becomes preponderant
with respect to the integration one as N increases. This is emphasized by the fact this plateau is
the same for the two approximation methods (as they share the same experimental design).

For collocation-gPC, the error keeps on decreasing exponentially with N = P . This is due to the fact
that in this case the asymptotic error only depends on the spacing between the points of the experimental
design, see (5.33).

From the two previous sections, one may wonder whether it is possible to take advantage of both
methods. Regression-gPC allows taking into account noisy outputs and exhibits a fast convergence with
respect to P . Collocation-gPC ensures recovering exactly the outputs at the experimental design points
and exhibits a convergence rate mainly depending on the spacing between the points once the integration
accuracy reached. A compromise between regression-gPC and collocation-gPC would be a penalized
regression with the introduction of Lagrange multipliers to ensure, as constraints, the approximation is
interpolary with u at the design points. This idea is at the basis of kriging, briefly presented in the next
section.

5.3.3 Kriging-gPC approximations

The reader interested in kriging may find different denominations such as simple kriging, Ordinary krig-
ing, Universal kriging etc. Our starting point is kriging-gPC, which is here a less elaborated version18

of what can be found in [262, 158, 258]. We focus on this variant of kriging as it is the most general
we know and, of course, is related to a gPC basis, central in this part II. Basically, kriging-gPC consists
in choosing FP (X) = ΦP (X) as an approximation basis in a (universal19) kriging approximation: it
confers to the resolution similar advantages as the ones emphasized in the section comparing regres-
sion and regression-gPC (good conditioning etc.). We insist the section is non-exhaustive regarding
kriging technics and we rely on very pedagogical publications dedicated to them [284, 21, 158, 258] for
a complete state-of-the-art. This section mainly aims at comparing and understanding the differences

18less elaborated in the sense in [262, 158, 258], the authors provide an algorithm in order to choose automatically the
gPC order P whereas in this document we choose it a priori.

19If I am not mistaking.
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between kriging-gPC and gPC approximations and provide an original numerical analysis of the methods.

Kriging is also known as Gaussian process modeling. It assumes the ouput random variable of interest
u(X) is a realisation of a Gaussian random process. Let us sketch the idea behind the methodology
in the next lines. Recall we aim at approximating the transformation of the known random variable
X into the unknown one u(X). The gPC approximation relied on a polynomial approximation, i.e.

u(X) ≈∑P
k=0 u

X
k φ

X
k (X) where (φXk )k∈{0,...,P} is the gPC basis and (uXk )k∈{0,...,P} the gPC coefficients.

Kriging-gPC relies on the introduction of ZXP such that

u(X) =

P∑
k=0

uXk φ
X
k (X) + ZXP (X).

In other words, it corresponds to a gPC development plus its residue ZXP in the P−truncated gPC

associated to X. In a kriging context,
∑P
k=0 ukφ

X
k (X) is commonly called the trend. Kriging introduces

an additional mathematical ingredient whose aim is to approximate the random variable ZXP , the residue
of the gPC development. The idea is to introduce an additional dimension u ∈ Supp(X) and assume
ZXP (X) ∼ σ2(u)Z(u) is a zero-mean gaussian process of variance σ2 independent of X. The gaussian
process is fully characterised by its covariance kernel K defined by K(u, v) = E [Z(u)Z(v)] and such that
σ2(u) = E

[
Z2(u)

]
. Suppose K is known, then several constraints must be satisfied for Z to be a relevant

gaussian process to approximate u(X). Introduce µZ(u) = E[Z(u)], then we must for example have
E[u(X)] = uX0 + E[µZ(X)] = uX0 + 0 = uX0 ,

E[u2(X)] =

P∑
k=0

(uXk )2 +

P∑
k=0

uXk E
[
φXk (X)µZ(X)

]
+ E

[
µ2
Z(X)

]
,

....,

(5.34)

and so on. Ensuring the constraints are satisfied is directly linked to how K is chosen or built. In
practice, kriging models:

– first generally assume a particular parametered shape of the covariance function K(u, v, θ) where
θ is an additional (set of) parameter(s).

– The second step consists in calibrating θ. This means looking for θ̂ minimizing differences with the
above constraints in a norm which remains to be defined at this stage of the discussion. This can
be done by various means (Maximum Likelihood, Cross Validation estimation, etc. see [262, 158,
258, 21, 19]).

– Once θ̂ obtained, we have access to the random variable µ(X, θ̂) and its predictive variance σ2(X, θ̂)
with explicit matrix vector formulas (briefly detailed in the following lines).

In practice, K is often chosen homogeneous, i.e. such that K(u, v, θ) = K(u − v, θ). For a given choice
of K and θ we have (see [158])

µ(X, θ) = UNP (θ)tΦP (X) + k(X, θ)tWNK
−1(θ)

 u(X1)− UNP (θ)tΦP (X1)
...
u(XN )− UNP (θ)tΦP (XN )

 ,

σ2(X, θ) = σ2
K(θ)

(
1− [ΦtP (X), kt(X, θ)]

[
0 (WNΦNP )t

(WNΦNP )t WNK(θ)

] [
ΦP (X)
k(X, θ)

])
.

In the above expressions, µ(X, θ), σ2(X, θ) are the mean and variance of the gaussian process approx-
imating u(X). The notations are almost the same as the ones of section 5.3.1: (Xi)i∈{1,...,N} are the
points of the experimental design, WN = (w1, ..., wN )t the vector of their weights and

UNP (θ) =

 uX0 (θ)
...
uXP (θ)

 ,ΦP (X) =

 φX0 (X)
...
φXP (X)

 ,ΦNP =

 φX0 (X1) ... φX0 (XN )
... ΦXk (Xj) ...
φP (X1) ... φXP (XN )

 .
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It additionally introduces K(θ), the matrix of general term Ki,j(θ) = K(Xj − Xi, θ) and k(X, θ) =

(k(X −X1, θ), ..., k(X −XN , θ))
t
. Besides, the estimations of the coefficients of the development together

with the variance parameter are given by

UNP (θ) =
[
(ΦNP )tWNK

−1(θ)ΦNP
]−1

WNΦNPK
−1(θ)

 u(X1)
...
u(XN )

 ,

σ2
K(θ) =

 u(X1)
...
u(XN )

− ΦNP U
N
P (θ)

t

WNK
−1(θ)

 u(X1)
...
u(XN )

− ΦNP U
N
P (θ)

 .

(5.35)

In the above expressions, θ remains to be chosen. In fact, equations (5.35) express the results of the
minimization of the L2−norm (least square error, as for regression) between u(X) and µ(X, θ) for a fixed
θ. As hinted at in [158], if K = IN

20 where IN is the identity of size N , then (5.35) degenerates toward
(5.27) for the regression approximation.

The discussion about the relevant shape of the covariance function K or the way the parameter θ is tuned
is beyond the scope of this document. We refer to [21, 19, 20] for the reader interested in deepening
those considerations. The covariance kernel K can be evaluated but in general, it is chosen a priori. The
most classical choices are gaussian, exponential or Matérn kernels21. Kriging provides σ2 as a measure
of precision. However this measure relies on the correctness of the covariance function, see [19, 21]. In
other words, the term predictive variance may be strong and it, in general, reflects an assumption. If
it does not hold, the error estimation might be bad and no error estimation properties are guaranteed.
However, typically, still a good interpolation is achieved for the random variable µ(X, θ), mean of the
Gaussian process. We focus on it in the next numerical analysis and tests.

We first go through the numerical analysis of (the mean of) the kriging-gPC approximation. We aim at
helping interpreting the numerical results and comparisons with the previously presented approximations
(regression-gPC and collocation-gPC mainly) displayed in figure 5.8. For this, let us rewrite the mean
of the kriging-gPC process under a more friendly form. By noticing that

µ(X, θ) =
∑
k=0

uXk (θ)φXk (X)

+(k(X −X1, θ), ..., k(X −XN , θ))K
−1(θ)


u(X1)−

P∑
k=0

uXk (θ)φXk (X1)

...

u(XN )−
P∑
k=0

uXk (θ)φXk (XN )

 ,
(5.36)

the expression can be recast as

µ(X, θ) =
∑
k=0

uXk (θ)φXk (X) +

N∑
i=1

aPi k(X −Xi, θ). (5.37)

Expression (5.37) may appear downgrading in comparison to (5.36) as many important properties of the
approximation do not anymore explicitly appear in the coefficients (aPi )i∈{1,...,N}. Still, it is enough for
the following material. Let us introduce the functional F such that

F (X, θ) = u(X)− µ(X, θ)− g(X, θ)

N∏
i=1

(X −Xi).

20closely related to the particular choice k(u, v) = δu(v).
21which recovers continuously with a parameter both the gaussian and the exponential kernels
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We define X as an arbitrary point in Supp(X) such that ∀i,X 6= Xi and

g(X, θ) =
u(X)− µ(X, θ)
N∏
i=1

(X −Xi)

. (5.38)

The functional F has consequently N + 1 roots X1, ..., XN , X. Assume furthermore that u(X) and
k(u, v, θ) are CN+1 where, we recall, N is the number of points of the experimental design. Then
according to Rolle’s theorem, ∃ξ0 such that F (N+1)(ξ0, θ) = 0. Let us now consider two situations, we
distinguish g = gP≤N in the first case and g = gP>N in the second:

– first, suppose P ≤ N so that differentiating N + 1 times F resumes to

F (N+1)(X, θ) = u(N+1)(X)−
N∑
i=1

aPi k
(N+1)(X −Xi, θ)− gP≤N (X, θ)(N + 1!).

Using the fact that F (N+1)(ξ0, θ) = 0 allows identifying gP≤N as

gP≤N (X, θ) =
1

N + 1!

(
u(N+1)(ξ0)−

N∑
i=1

aPi k
(N+1)(ξ0 −Xi, θ)

)
.

Using the above expression of gP≤N with respect to ξ0 in (5.38) leads to the following error
estimator:

u(X)− µ(X, θ) = 1
N + 1!

(
u(N+1)(ξ0)−

N∑
i=1

aPi k
(N+1)(ξ0 −Xi, θ)

)
N∏
i=1

(X −Xi). (5.39)

Equation (5.39) can be compared to (5.32) for collocation by noticing that

u(X)− µ(X, θ) =
u(N+1)(ξ0)

N + 1!

N∏
i=1

(X −Xi)︸ ︷︷ ︸
(∗) recalls (5.32) for collocation

− 1

N + 1!

N∑
i=1

aPi k
(N+1)(ξ0 −Xi, θ)

N∏
i=1

(X −Xi)︸ ︷︷ ︸
(∗∗)

.
(5.40)

The first term (∗) in (5.40) recovers the collocation error term. The error depends on P only via the
coefficients (aPi )i∈{1,...,N} in the second term (∗∗). Equation (5.40) testifies one can decrease the
constant multiplying the convergence rate22 of the approximation method if K is sufficiently well
suited. Note also that conversely, nothing prevents it from increasing it, with respect to collocation,
if it is not.

– Suppose now P > N and differentiate N + 1 times F . We obtain

F (N+1)(X, θ) = u(N+1)(X)+

P∑
k=0

uXk (θ)
(
φXk (X)

)(N+1)−
N∑
i=1

aPi k
(N+1)(X−Xi)−gP>N (X)(N+1!).

To simplify the above expression, we can rewrite φXk (X) = ΓXk φ
X,m
k (X) = ΓXk

∏k
i=1(X − γki ),

∀k ∈ {0, ..., P} with φX,mk the monic orthogonal polynomial relative to φXk . In the latter expression,
(γki )i∈{1,...,k} are the roots23 of φXk . For k > N , the (N + 1)th derivative of φXk can be expressed as

(
φXk (X)

)(N+1)
= ΓXk

∑
i1+...+ik=N+1

CN+1
i1,...,ik

k∏
j=1

(X − γkj )(ij).

22The convergence rate is here related to 1
N+1!

∏N
i=1(X −Xi) together with a choice of norm but we here study the raw

expression (5.40).
23For a gPC basis, we know those roots are real, distinct in Supp(X) but the material holds for an arbitrary choice of

FP (X), with complex roots.
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In the above expression, the multinomial coefficients are given by CN+1
i1,...,ik

= N+1!∏k
j=1 ij !

. Each (X −
γkj )j∈{1,...,k} are monomials so that (ij)j∈{1,...,k} ∈ {0, 1}k. Otherwise, the above expression would
be zero as k < N + 1. In other words the multinomial coefficients simplify to

(
φXk (X)

)(N+1)
= (N + 1)!ΓXk

∑
i1+...+ik=N+1

k∏
j=1

(X − γkj )(ij).

Now, once again using the fact that F (N+1)(ξ0, θ) = 0 ensures

gP>N (X, θ) = gP≤N (X, θ) +

P∑
k=0

uXk (θ)ΓXk
∑

i1+...+ik=N+1

k∏
j=1

(ξ0 − γkj )(ij),

N fixed
=

P�N
gP≤N (X, θ) +O(ΓXP ).

Using the above expression in (5.38) leads to the following error estimator for the mean µ(X, θ):

u(X)− µ(X, θ) =

1
N + 1!


+u(N+1)(ξ0)−

N∑
i=1

aPi k
(N+1)(ξ0 −Xi)

+(N + 1)!
P∑
k=0

uXk (θ)ΓXk
∑

i1+...+ik=N+1

k∏
j=1

(ξ0 − γkj )(ij)


N∏
i=1

(X −Xi).
(5.41)

With (5.41), it is easy verifying for fixed N and P � N , u(X) − µ(X, θ)∼ΓXP . This imples the
approximation may diverge as24. The analysis even shows that in this regime, the asymptotic
behaviour is independent of the choice of K(u, v, θ). In other words, the same analysis allows
explaining the behaviour of regression-gPC for P > N in the examples of the previous figures
(obtained with the particular choice K(u, v, θ) = δu(v)).

To illustrate the above material, we suggest going through the application of kriging-gPC to the Runge
function in the same conditions as in the previous paragraphs. The covariance function is here chosen
as an exponential one

K(u, v, θ) = θ exp (−|u− v|θ). (5.42)

The parameter θ is calibrated performing a simple dichotomy to minimize the predictive variance σ2
K(θ)

as suggested in [262, 158, 258]. Figure 5.8 presents the kriging-gPC approximations together with the
ones obtained by integration-gPC and regression-gPC in the same conditions (the comparisons with
collocation-gPC will be tackled later on). Let us first comment on the qualitative results of the first
column of figure 5.8: for a low number of quadrature points (N = 11), kriging-gPC behaves as the
previous approximations and remain very oscillatory. As N increases to 21 (bottom-left picture), the
oscillations are way more controlled and the kriging-gPC results are much less sensitive to the choice of
the truncation order P than the other approximations. The quantitative convergence results of the right
column of figure 5.8 show first that for P ≤ N , the kriging-gPC approximations outperform the other
ones. We recall kriging-gPC benefits an additional discretisation parameter K which here is very efficient
in the sense it probably allows interesting compensations between term (∗) and term (∗∗) in expression
(5.40). For higher polynomial order, i.e. in the top pictures of figure 5.8 with N = 11 and P ≥ N ,
analysis (5.41) becomes more and more relevant and we recover experimentally that the L2−norm of

the error ||u(X) − µ(X, θ̂)||L2 = O(ΓXP ) grows fast with P . The figure even allows recovering the fact
that in such conditions (N fixed and P � N) kriging-gPC and regression-gPC give equivalent results as
expected by the error analysis of (5.41): in this regime the leading term is independent of the choice of
K. If now P is kept lower than N = 21 as in the bottom right picture of figure 5.8, error analysis (5.40)
applies. The kriging-gPC approximations then give very satisfactory results with a flat convergence curve
testifying of a less sensitive behaviour with respect to the discretisation parameter P than other methods.

24As for example, for Legendre polynomials ΓXP =
√

2P + 1.
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Figure 5.8: Application of Gauss-Legendre quadrature rule for kriging-gPC of the gPC coefficients of
the transformation of a uniform random variable through the Runge function with N = 11 (top) and
N = 21 (bottom). The left column present the polynomial approximations for 3 ≤ P ≤ 20. The right
column present the L2-norm of the error with respect to P for fixed N . The kriging kernel is chosen
exponential (5.42) and a dichotomy is applied to calibrate θ.
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Figure 5.9: Convergence studies for regression-gPC, kriging-gPC (both for fixed P = 5 and P = 10) and
collocation-gPC with respect to N for approximating Runge function (5.17).

To fully understand the influence of the covariance function, let us finally perform a convergence
study with respect to N for fixed P = 5 and P = 10 (same conditions as in figure 5.7). The results are
presented in figure 5.9: the left picture compares the convergence studies with respect to N obtained
with regression-gPC as in section 5.3.1 and kriging-gPC for fixed P = 5 and P = 10. Both methods
present two regimes:
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– in the first one, characterised by N ≤ P , regression-gPC and kriging-gPC gives exactly the same
results in L2−norm in agreement with the previous analysis (5.41). It testifies of a relative inde-
pendence of the choice of K of the approximation in such configuration.

– For N > P , regression-gPC approximations stagnate as the truncation error remains preponderant
with respect to the integration one. On another hand, for kriging-gPC, the accuracy of the approx-
imations continues to increase with N due to the covariance term in (5.40) ensuring a convergence
driven by the spacing between the points of the experimental design in this regime.

The right picture of figure 5.9 presents the same curves together with the collocation-gPC one: for N > P
for which error analysis (5.40) applies, the kriging-gPC approximations do not systematically give better
results than collocation-gPC. This is due to the fact the covariance function

– may be well-suited for some couples (N,P ) (for example for P = 5 and N ∈ {5, ..., 13} or for
P = 10 and N ∈ {10, ..., 16}),

– and not so well in comparison to collocation for others (typically for large N > 17 in the example
of figure 5.9 right).

Kriging-gPC, via the introduction of an additional discretisation tool (the covariance kernel K), ensures
a second convergence regime for N ≥ P in comparison to integration-gPC or regression-gPC which can
both lead to approximations of stagnating accuracy. The choice of the covariance kernel, in this regime,
strongly affects the convergence rate of the approximation (slope of the L2−norm of the error with
respect to N) and can lead to better approximations than integration/regression/collocation-gPC if K
is well suited. Note that K needs, this was especially emphasized in (5.40), to depend on N to make
sure kriging-gPC outperform them ∀N ∈ N.

5.4 Few other applications of gPC

In this last section, we first come back to the ’fil rouge’ problem of chapter 2 before comparing gPC,
regression, regression-gPC, collocation-gPC and kriging-gPC on a discontinous solution.

5.4.1 Application to the ’fil rouge’ problem of chapter 2

Now the methodology for solving non-intrusively an arbitrary uncertainty propagation problem presented,
it only remains to apply it to our favorite configuration (’fil rouge’ of chapter 2). Let us give few details
about the choices made (experimental design, integration...):

– concerning the approximation basis, the initial random variable being a uniform law, we select the
Legendre basis (see table 3.1) in order to apply non-intrusive (integration-)gPC.

– The next step consists in choosing the experimental design (Xi, wi)i∈{1,...,N}. We here select the
Gauss-Legendre points and weights. They are effective in low stochastic dimension (Q = 1 for our
’fil rouge’ problem), for smooth solutions and give satisfactory enough results for discontinuous one
[277]. In this section, we take N = 15 Gauss-Legendre points in order to discretise (X,dPX).

– We run N times the black-box simulation code at (Xi, wi)i∈{1,...,N} in order to obtain the out-
put points (u(Xi), wi)i∈{1,...,N}. Note that when one has access to computation clusters, those N
runs can be launched simultanously as they are independent. The methodology is said embarass-
ingly parallel as it does not require communication between the N processes. The computational
efficiency is 100%, the communications being made only for the postprocessing step, assumed neg-
ligible here in comparison to one of the N runs. Concerning those N deterministic runs, they
are performed so that we can consider the relative accuracy for each run with respect to spatial
discretisation ∆x on the observables of interest is about 10−4.

– The postprocessing step consists in computing the (uX,Nk )k∈{0,...,P}, building the gPC approxima-

tion uX,NP (X) and recovering approximations of the mean profile, the variance one and the pdfs of
the mass density at 3 points of interest at time t = 0.14 as in chapter 2.
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The chosen polynomial order in the following computations is P = 3, kept voluntarily low (to make sure
integration accuracy remains smaller than the truncation one). Figure 5.10 presents the results obtained
in term of spatial profiles for three realisations (top pictures), the mean and the variance at t = 0 and
t = 0.14 (bottom pictures). For the profiles of figure 5.10, the results are very interesting: indeed, with
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Figure 5.10: Application of non-intrusive gPC, mass density spatial profiles for some realisations, the
mean and the variance at t = 0 and t = 0.14.

only N = 15 runs and P = 3, we are able to recover the mean and variance profiles with a good accuracy.
In fact, the curves are not distinguishable from the ones obtained from the reference Monte-Carlo ones
for these observables. This can be explained by the high accuracy of the Gauss quadrature rule.

Figure 5.11 presents the results in term of pdf and functional representation of the mass density in
the vicinities of the rarefaction fan, the interface and the shock. The approximation in the vicinity of the
rarefaction fan is accurate: it is not distinguishable from the reference Monte-Carlo computations. This
is due to the smoothness of the solution in this area. The high accuracy in the vicinity of the rarefaction
fan can even be more easily observed on the functional representation of ρ(x = 0.38, t = 0.14, X) on
figure 5.11 (top right). In this context, the non-intrusive gPC approach is very efficient even for such
low polynomial order P = 3 as the gain in computational time for the same accuracy with respect to the
MC approach is given by ×NMCN = 1000

15 ≈ 66.6.
Concerning the approximations in the vicinities of the interface and the shock, we unfortunately

do not observe the same gain. The discrete behaviour of the random variables is not captured by the
non-intrusive gPC approximations. We do not detail more these results, they are very close to the ones
encountered in the example of chapter 3, section 3.5.2 and we kind of expected such behaviour.

5.4.2 Integration vs. Regression vs. Collocation vs. Kriging vs. discontinu-
ity

The first question arising after the previous study would be: if gPC fails to recover discontinuous solution,
does any of the resolution schemes presented in section 5.3 allows dealing with it? To answer this question
we suggest applying gPC, regression, regression-gPC, collocation-gPC and kriging-gPC to a discontinuous
function X −→ 1]−∞, 3

10 ](X) with X ∼ U([−1, 1]).
Figure 5.12 presents the results obtained with gPC, regression, regression-gPC, collocation-gPC and

kriging-gPC on the latter function. The presentation is sligthly different than previously as the left
column now displays the best approximations obtained with every methods with N = 11 (top) and
N = 21 (bottom). The right column shows convergence studies with respect to P in the same conditions
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Figure 5.11: Pdfs (left) and functional representation in the random space of the mass density at t = 0.14
in the vicinities of the rarefaction fan (x = 0.38), the interface (x = 0.61) and the shock (x = 0.73) with
the gPCP=3 approximation.

with N = 11 (top) and N = 21 (bottom). Note that the convergence study obtained with collocation-gPC
is not presented in the top right picture as it implies much more points (as P = N) than N = 11.

We suggest beginning by commenting the convergence studies of the right column of figure 5.12.
For N = 11 (top right), gPC, regression, regression-gPC have the same behaviour: the error slightly
decreases before exploding. The one of kriging-gPC is more singular: the error is way lower than for the
other approximations for small P but increases as fast25 as regression-gPC as soon as P > N . The top
left picture of figure 5.12 presents the best approximations obtained with every methods with N = 11.
For gPC, regression, regression-gPC, it corresponds to P = 5. For collocation-gPC, it corresponds to
N = P = 11. For kriging-gPC, it corresponds to P = 1. First, the gPC and regression approximations
perfectly match and, as expected, poorly recover the function of interest. Regression-gPC presents a

25We once again recover numerically the fact that for P � N , the explosion rate is independent of the choice of the
covariance kernel, see (5.41). Having the same behaviour for the Runge function and for the discontinuous one of this
section, we also recover it is independent of u.
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Figure 5.12: Application of Gauss-Legendre quadrature rule for gPC, regression, regression-gPC,
collocation-gPC and kriging-gPC for the approximation of the transformation of a uniform random vari-
able through a discontinuous function. The experimental designs have with N = 11 (top) and N = 21
(bottom). The left column present the best approximations obtained with every of the previous methods.
The right column present the L2-norm of the error with respect to P for fixed N . The kriging kernel is
chosen exponential (5.42) and a dichotomy is applied to calibrate θ.

similar behaviour as gPC and regression. Collocation-gPC and kriging-gPC coincide at the N = 11
points of the experimental design. Kriging-gPC is way less oscillatory but interpolates almost linearly
between the points of the experimental design on both sides of the discontinuity.

For N = 21, the convergence studies of the resolution schemes is displayed on the bottom right
picture of figure 5.12. First, the non-monotonuous convergence of collocation-gPC is singular. Once
again, gPC and regression present similar results with an increase of the error as P becomes greater
than N . The error for regression-gPC is more controlled. The kriging-gPC error, even if the lowest
amongst every methods, keeps increasing from P = 1 to P = N before equaling the one for regression-
gPC for P > N . The fact the error is the lowest for P = 1 testifies the covariance kernel ensures the
accuracy for this function. This is interesting as it precisely relies on a smoothness hypothesis. Figure
5.12 bottom left presents the best results obtained with every methods: it corresponds to P = 20 for
gPC, regression and regression-gPC, to P = N = 21 for collocation-gPC and to P = 1 for kriging-
gPC. First, even if every approximation has a quantitatively better accuracy (L2-norm) than in the
previous case, qualitatively, the coarser approximations (for N = 11) seem better. The gPC, regression
and regression-gPC approximations are very oscillatory, especially in the vicinities of the boundaries
of [−1, 1]. Surprisingly, collocation-gPC is less oscillatory than the three previous methods. The best
approximation remains the one obtained with kriging-gPC, even if almost linearly interpolating between
the points on each side of the discontinuity. The most accurate kriging-gPC approximation is once again
obtained for P = 1: this implies the covariance kernel is responsible for this accuracy, more than the
polynomial trend, even if relying on smoothness hypothesis of the solution.

101



5.5 Summary for non-intrusive gPC for systems of conservation
laws

Let us sum up the sections concerning the choice of the experimental design and the gPC based post-
processing to approximate non-intrusively random variable u(X). We insist on two main points:

– first, on the complementarity of MC methods and Gauss quadrature rules for integration. The
first one has a slow but independent of the smoothness of the solution u and of the dimension of
the uncertain variable X convergence rate. The second one has a fast but smoothness dependent
and sensitive to the dimension convergence rate. For these reasons, both are interesting but in
complementary contexts. In this part II, as already explained in chapter 2, we deal with a small
number of uncertain parameters and rely consequently more on Gauss quadratures than on MC
points. Important dimension problems are tackled in part III with the resolution of the linear
Boltzmann equation (in a Monte-Carlo context).

– Besides, regarding the choice of the postprocessed approximation, we performed the numerical
analysis and compared integration-gPC, regression-gPC, collocation-gPC and kriging-gPC in the
same conditions. We think these (analysis and comparisons) are original even if gPC and kriging-
gPC approximations have already been experimentally compared [217, 253, 158, 258, 262] on many
different statistical observables. The numerical analysis mainly aimed at identifying more easily
under which conditions the strategies differ, are equivalent or are efficient. We also insist on the fact
the comparisons have mainly been made in the L2−norm. Whether the different approximations
bear interesting properties with respect to other norms is beyond the scope of this document but
will probably be tackled in further researchs.

In practice, for the different studies we present in this document (mainly in the following chapters)
and in view of the previous results, we systematically take P ≤ N in every stochastic directions and
use Gauss quadrature rules. In such context, integration-gPC is equivalent to regression-gPC and even
to collocation-gPC if N = P . This ensures fast postprocessings for the gPC-reconstruction of random
variable u(X) especially interesting when many outputs of interest must be approximated (in chapter 7
for example, we need a gPC approximation in every cell of a spatial discretisation at every time steps).
Integration-gPC may be less flexible than regression-gPC with which it is easy a posteriori taking into
account additional points of the experimental design. Kriging-gPC presents the advantages of both
regression-gPC and collocation-gPC and may avoid stagnating approximations as P ≤ N . This property
is ensured thanks to the introduction of an additional discretisation tool (covariance kernel K) up to the
cost of a more computational posttreatment. Such mathematical tool is obviously of great interest for
industrial application but the numerical analysis and experiments of this section especially showed the
starting points of the convergence rates of the approximations for smooth solutions is mainly dictated
by the choice of the trend, i.e. the gPC basis. For discontinuous solutions the (exponential) covariance
kernel plays a stronger role than expected. For these reasons, in the next chapters, we focus on the
polynomial ingredient, at the basis of every of these methods and kickstart of every convergence curves:
still, care will taken to design new numerical methods which will remain compatible with the possibility
to enrich them with regression/collocation/kriging-gPC.

On the ’fil rouge’ problem, the intrusive gPC approach (section 4.1) and the non-intrusive one do
not have the same behaviour at all (in the vicinities of discontinuous solutions mainly). For the first
one, we were able to detect an anormal behaviour of the reduced model quite soon: the simulation code
for the reduced model crashed at the first iteration and lead us to study and analyse more in detail
what happened. Here, there are no robustness difficulties. This can be a pro but also a con as it can
be hard determining a posteriori if the oscillatory26 behaviour is physical or numerical. The method
can lead to results which are not workable nor interpretable. On another hand, having at hand a black-
box code solving the Euler equations, the non-intrusive approach is easy and fast to apply, especially
if one has a computing cluster at disposition. It is probably the best way to tackle a punctual uncer-
tainty quantification study, if care is taken to focus on smooth observables (an example of application
is given in chapter 7). For systematic uncertainty quantification studies, the investment in intrusive

26Note that with small orders P , the behaviour is not even really oscillatory for some approximations.
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methods can become relevant: it forces a more deepened analysis of the interplay between the physics of
interest, its numerical solvers and the uncertain parameters. An example of efficient intrusive applica-
tion (more efficient than a non-intrusive application) of gPC is given in part III, chapter 9, section 9.11.2.

Regarding the results of the different methods on discontinuous solutions, we were obviously not
satisfied with their respective behaviours on the ’fil rouge’ application. This is all the more frustrating as
the discontinuities are very localized, the solutions being smooth almost everywhere else. But they are
often the locations of interests. At this stage, there is still one interesting advantage of gPC which has
not yet been exploited (not even in the literature to our knowledge): in chapter 3, we insisted on the fact
that some basis where more efficient than others in order to approximate an output random variable. In
the next section, we show how we tried to integrate this a priori knowledge into a new approximation
method.
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Chapter 6

The non-intrusive iterative gPC
(i-gPC) approach

Let’s play with orthonormal basis
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As explained in the previous section, the application of non-intrusive gPC to our ’fil rouge’ configura-
tion was not satisfactory enough, mainly due to the (lack of) accuracy in the vicinities of the discontinu-
ities. The polynomial order was kept low, P = 3, but increasing P implies both aliasing problems with
respect to the construction of the orthonormal polynomial basis (see section 3.4) and an unaffordable

amount of points (Xi, wi)i∈{1,...,N} in order to accurately estimate the coefficients1 (uX,Nk )k∈{0,...,P} . In
the next paragraphs, we detail our main contribution to non-intrusive gPC. More details can be found
in [238, 242] and in [30] in collaboration with A. Birolleau, former PhD student.

6.1 The main idea behind iterative-gPC (i-gPC)

The main idea of the following material comes from the observation that for a given problem, different
basis perform differently. In table 6.1, we recalled the results of section 3.2.2 in which we applied the PC
approximation, the gPC one and added the Chebyshev approximation for the problem of transforming a

1remember we have to keep P ≤ N , see section 5.2.
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uniform random variable X ∼ U [0, 1] −→ u(X) = sin(2πX) ∼ A into an Arcsinus one. On this example,
gPC performs better than PC only by using the basis orthonormal with respect to the input random
variable X instead of the Hermite basis. With the Chebyshev basis (chosen according to table 3.1 and

input r.v. X ∼ U([0, 1])
transformations u(X) = sin(2πX)

Corresponding laws u(X) ∼ A with pdf f(x) = 1

π
√

1− x2

exact mean 0

exact variance 1
2

r.v./approximation basis Gauss./Hermite (PC) Unif./Legendre (gPC) Arcsin/Chebyshev (opt.)
gPC (order P = 9) (order P = 9) (order P = 1)

approximated mean 0 0 0
approximated variances 0.47769 0.5000000001 1

2

Table 6.1: Reminder of the results of section 3.3 regarding the performances of the PC basis, the gPC
one and the optimal one on the same test-case (Case 2).

because here we know the output distribution), the results are optimal: with P = 1, the approximation
is exact. Table 6.1 presents some quantitative results on the same transformation X −→ sin(2πX),
applying three different approximation basis: the Hermite, Legendre and Chebyshev ones. The gPC
coefficients are analytically computed, presenting what can asymptotically be obtained with an infinitely
accurate integration (it only remains the truncation error cf. (5.5)). With the Chebyshev basis, the
convergence rate is optimal in the sense the development only needs two coefficients (or P = 1) to be
analytical. Such behaviour is in fact more than a simple observation applying only for the Arcsinus law:
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Figure 6.1: Spectral convergence of the PC basis, the gPC one, the optimal one and the question of
building an intermediary basis giving at least better results than the gPC one if it can not recover the
optimal one.

it occurs to any output random variable with finite second moment, see [291, 305, 104]. There exists an
optimal basis for every transformation from any random variable X to any L2 bounded one u(X). The
existence of such basis allows trying to find it, or at least approach it. The idea is summed up in figure
6.1 where the convergence rate of PC is exponential but slow whereas the gPC one is better. The optimal
basis is represented but we can imagine there is a kind of continuum (?) of basis intermediary between
the gPC one and the optimal one. The question now is how can we find and build some of them? In the
following lines, we suggest one way to answer this question.

We aim at improving the accuracy of the approximation in a new gPC basis with respect to the gPC
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one associated to the input random variable X. In term of numerical analysis, this implies considering
two gPC approximations:

u(X) ' uXP (X) =

P∑
k=0

uXk φ
X
k (X), uXk = E[u(X)φXk (X)], (6.1)

u(X) ' uZP (Z) =

P∑
k=0

uZk φ
Z
k (Z), uZk = E[u(X)φZk (Z)]. (6.2)

The first basis (6.1) is the classical gPC one, orthonormal with respect to the inner product of the a priori
known probability measure dPX of the input random variable. The second one (6.2) is also a gPC basis
in the sense it is orthonormal with respect to an inner product defined by a probability measure dPZ
of a random variable Z. At this stage, Z remains to be determined. We aim at studying the difference
of the L2 errors in the two gPC basis. For this, (the computations are detailed in [238]) we classically
introduce uXP (X) into the L2-norm of the error in the gPC basis associated to Z

‖u(X(Z))− uZP (Z)‖22 = ‖u(X(Z))− uXP (X(Z)) + uXP (X(Z))− uZP (Z)‖22.

We now expand the previous expression to make

∆P
Z,X = ‖u(X(Z))− uZP (Z)‖22 − ‖u(X)− uXP (X)‖22,

appear. In the above expressions, the difference of errors has been expressed with respect to ∆P
Z,X which,

once expanded leads to

∆P
Z,X = E

[(
uXP (X(Z))− uZP (Z)

)2]
+ 2E

[(
uXP (X(Z))− uZP (Z)

) (
u(X(Z))− uXP (X(Z))

)]
= E

[(
uXP (X)

)2]︸ ︷︷ ︸
e1

− 2E
[
uXP (X(Z))uZP (Z)

]︸ ︷︷ ︸
��2e2

+ E
[(
uZP (Z)

)2]︸ ︷︷ ︸
e3

− 2e1 +��2e2 − 2e4 + 2e5.

We intensively use the orthonormality of both basis to show that for any arbitrary mapping X(Z):

– e1 = E
[
(uXP (X))2

]
=

P∑
k=0

(uXk )2,

– e3 = E
[
(uZP (Z))2

]
=

P∑
k=0

(uZk )2,

– e5 = E
[
uXP (X)u(X)

]
=

P∑
k=0

uXk E
[
φXk (X)u(X)

]︸ ︷︷ ︸
uXk

= e1,

– e4 = E
[
uZP (Z)u(X(Z))

]
=

P∑
k=0

uZk E
[
φZk (Z)u(X(Z))

]︸ ︷︷ ︸
uZk

= e3.

With the above results, the difference of errors in L2-norm leads to

‖u(X)− uZP (Z)‖22 − ‖u(X)− uXP (X)‖22 =

P∑
k=1

(uXk )2 −
P∑
k=1

(uZk )2. (6.3)

The above expression is valid for an arbitrary choice of the random variable Z. In (6.3), we used the
fact that the mean in the Z−basis equals the mean in the X−one independently of the choice of Z (i.e.
uZ0 = uX0 ). Result (6.3) is singular and, to our knowledge, original. The question now is, is it possible
to wisely choose Z with respect to X to make sure the approximation in the new basis gives better
performences than in the initial one? The answer is the purpose of the next section.
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6.1.1 A particular change of variable Z(X) ensuring a gain

The question now is can we choose Z(X) such that

‖u(X)− uZP (Z)‖22 − ‖u(X)− uXP (X)‖22 =

P∑
k=1

(uXk )2 −
P∑
k=1

(uZk )2≤0? (6.4)

In [238, 242], we put forward one possible change of variable Z(X) having the desired effect. Taking
Z(X) = uXP (X) ensures a gain. Let us explain how:

– first, let us introduce sZk =
∫
zkdPZ(z) the statistical moments of Z. Then the orthonormal basis

(φZk )k∈{0,...,P} has general term (Christoffel)

∀k ∈ {0, ..., P}, φZk (z) =
1√

HZ
2(k−1)H

Z
2k

∣∣∣∣∣∣∣∣∣∣
sZ0 sZ1 ... sZk
... ... ... ...
sZn sZn+1 ... sZn+k

... ... ... ...
1 z1 ... zk

∣∣∣∣∣∣∣∣∣∣
,

where HZ
2k(sZ0 , ..., s

Z
2k) are the Hankel determinants, see section 3.4.

– With the choice Z(X) = uXP (X) =
∑P
k=0 u

X
k φ

X
k (X), the first three moments of Z are given by

sZ0 = 1, sZ1 = uX0 , and sZ2 =

P∑
k=0

(uXk )2.

– It implies the second component of the new basis (φZk )k∈{0,...,P} can be expressed as

φZ1 (z) = 1√
sZ0

∣∣∣∣ sZ0 sZ1
sZ1 sZ2

∣∣∣∣
∣∣∣∣ sZ0 sZ1

1 z

∣∣∣∣ = 1√√√√ P∑
k=1

(uXk )2

(z − uX0 ).

– The second gPC coefficient in the new basis consequently reads

uZ1 = E
[
u(X)φZ1 (

∑P
k=0 u

X
k φ

X
k (X))

]
= 1√√√√ P∑

k=1

(uXk )2

∑P
k=1 u

X
k E

[
u(X)φXk (X)

]
=
√∑P

k=1(uXk )2.

If we now use this particular choice in (6.3), we get

‖u(X)− uZP (Z)‖22 − ‖u(X)− uXP (X)‖22 =
XXXXXX
∑P
k=1(uXk )2 −HHH(uZ1 )2 −∑P

k=2(uZk )2 = −∑P
k=2(uZk )2 ≤ 0, (6.5)

independently of any regularity assumptions on u. The inequality has been set assuming perfect numerical
accuracy here but the numerical analysis in a finite integration context has been deepened in [242]. We
insist some other choices Z(X) may be better and this is ongoing research on the topic. In the following
section, we suggest one way to exploit inequality (6.5) in a new algorithm.

6.1.2 Description of the i-gPC approximation algorithm

Equation (6.5) naturally represents the first step of an iterative gPC (i-gPC) algorithm whose iteration
can be described in 5 points:

– first, build the classical non-intrusive gPC approximation: u(X) ≈ uXP (X) =
∑P
k=0 ukφ

X
k (X).
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– Secondly, introduce the new random variable Z1 = uXP (X) =
∑P
k=0 ukφ

X
k (X), and build the gPC

basis orthonormal with respect to the probability measure dPZ1 of Z1, i.e. such that∫
φZ

1

k φZ
1

t dPZ1 = δk,t,∀(k, t) ∈ {0, ..., P}2.

We recall we do not need to explicitly estimate dPZ1 in order to build this orthonormal basis
(φZ

1

k )k∈{0,...,P} (see section 3.4). In fact, we estimate the moments of Z1 thanks to the chosen
experimental design and apply the algorithms of section 3.4 in order to build the new basis.

– Once the basis built, we need to estimate the coefficients of the random variable u(X) in the new

basis (φZ
1

k )k∈{0,...,P}. By definition, they are given by:

uZ
1

k =

∫
u(X(Z1))φZ

1

k (Z1)dPZ1 .

A change of variable allows expressing the coefficients (uZ
1

k )k∈{0,...,P} with respect to the probability
measure dPX of the input X:

uZ
1

k =

∫
u(X(Z1))φZ

1

k (Z1)dPZ1

[107]
=

∫
u(X)φZ

1

k (Z1(X))dPX .

We insist this change of variable is exact and is not induced by any assumption or approximation,
see [107]. This implies we can estimate the coefficients in the new basis from the same experi-
mental design (Xi, wi)i∈{1,...,N} used for the initial gPC approximation during the first step. We
consequently have

uZ
1

k =

∫
u(X)φZ

1

k (uXP (X))dPX ≈
N∑
i=1

u(Xi)φ
Z1

k (Z1(Xi))wi = uZ
1,N

k . (6.6)

The possibility to resuse the same points and weights at each iteration is important in practice as
it implies the new iterative algorithm is still a postprocessing of the initial experimental design (see
(wi, u(Xi))i∈{1,..,N} in (6.6)). It does not need anymore runs of the simulation code. Expression
(6.6) also allows highlighting the convenience of having an explicit and fast to estimate expression
of X −→ Z1(X) (see Z1(Xi)) to perform the computations of the new coefficients. Note that we
never need the inverse of X −→ Z1(X) in practice.

– The last step of the iterative process implies the construction of the new approximation in the new

basis (φZ
1

k )k∈{0,...,P} with the approximated coefficients (uZ
1,N

k )k∈{0,...,P}:

u(X) ≈ uZ1

P,N (Z1) =

P∑
k=0

uZ
1,N

k φZ
1

k (Z1).

– The rest resumes to looping on the Zj to iterate on the different gPC basis.

Inequality (6.5) together with the above process leads to what we call an i-gPC approximation at iteration
j, denoted by uPZj (Z

j(X)) in the following section.

6.1.3 Weak contraction of the i-gPC approximation

The previously presented i-gPC approximation at iteration j, denoted by uPZj (Z
j(X)), has the property

(see [238]) of a weak contraction. With the previous notations, in the corresponding basis, we have at
the jth iteration2:

||u(X)− uPZj (Zj)||L2(Ω)≤ ||u(X)− uPZj−1(Zj−1)||L2(Ω). (6.7)

2still assuming perfect integration accuracy.
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Expression (6.7) does not depend on any (additional) regularity hypothesis on X −→ u(X) ∈ L2(Ω). It
ensures that at the jth iteration, the approximation in the new basis is better or at least not worse than
the approximation at the (j − 1)th iteration.

Based on the described algorithm and (6.7), we suggest studying and analysing the non-intrusive
i-gPC approximation. For this, we once again adopt a step-by-step analysis. As in chapter 3, we first
assume the coefficients are very well approximated (analytically whenever it is possible). This analysis
will show what can be asymptotically obtained if the coefficients are accurate enough. Note that we just
described an iterative algorithm without any stopping criterion: we will spend some time on it later, as

it will closely intertwined with the integration error in the coefficients (uZ
j ,N

k )k∈{0,...,P}.

6.2 Application of i-gPC on two simple test-problems

The first test-problem we consider is the same as in section 3.7. It has been introduced to illustrate
the sensitivity of gPC to Gibbs phenomenon. The second one corresponds to the worst case scenario we
experimentally encountered when applying i-gPC.

6.2.1 Discontinuous output random variable

We consider the transformation of a uniform random variable X ∼ U([−1, 1]) −→ u(X) into a binomial
one, where u is defined as

u(x) = 1]−∞,− 1
2 ](x) =

{
1 if x ≤ − 1

2 ,
0 else.

(6.8)

Figure 6.2 recalls the results obtained with gPC. It corresponds to the first step of our iterative algorithm.
At the first iteration, the gPC approximation poorly captures the discrete behaviour of the output random
variable. Figure 6.3 shows, in functional representation, how the successive i-gPC approximations behave

Solution u(x) and uP6 (x) pdfs of u(X) and uP6
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Figure 6.2: Application of the first step of i-gPC (=gPC) on the transformation of a uniform law into a
binomial one for P = 6. The gPC6 approximation is very sensitive to the Gibbs phenomenon

iteration after iteration on this discontinuous problem: the two states of the discontinuity are better and
better captured. The i-gPC approximations do not respect the maximum principle, the amplitude of
the oscillations are more important at iteration #2 than iteration #1 but the discontinuity location is
more and more accurate. At iteration #4, there are only 5 points between the two continuous states 1
and 0. Figure 6.4 (left) presents the histogram of the reference solution obtained with an MC method

(reference) together with the one obtained with the i-gPCZ
k=5

P=6 approximation: the Dirac masses are
very accurately captured, both their masses and their locations. We insist these results were obtained in
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Adaptive gPC, P=6, it=3
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Figure 6.3: Functional representation of the i-gPC approximation through iterations 1, 2, 3 and 4.

exactly the same condition as the gPC approximation of figure 6.2 in term of polynomial order P = 6 and
integration points N (even if we took N � 1 here). Figure 6.4 (right) presents convergence results in the
logarithm of the L1−norm of the error with respect to the number of iterations k for fixed orders P = 3
up to P = 10. On this picture, one can notice that every approximations, for every truncation orders P ,
converge toward the same error once given enough iterations. For P = 3, it needs more iterations (12)
than for P = 6 (for which it needs only 7 iterations) or P = 10 (for which only 5 iterations are enough).
In fact, in [242], we showed numerically that the error at the end of the iterative process is independent
of the truncation order P . For transformation (6.8), the ideal situation with a strict inequality (6.7) for
every performed iterations is encountered, the inequality is a strong contraction:

||u(X)− uPZj (Zj)||L2(Ω)< ||u(X)− uPZj−1(Zj−1)||L2(Ω). (6.9)

If the above observation holds for every iteration j, increasing the number of iteration j ensures the con-
vergence of the approximation ||u(X)−uPZj (Zj)||L2(Ω) −→

j→∞
0 for the fixed truncation order P . In [242],

we showed that on this specific test problem, the iterative process allows recovering the Krawtchouk
basis, optimal with respect to the Binomial law of the considered output u(X), see table 3.1.

6.2.2 Smooth output random variable

The second test-problem we want to tackle in this section corresponds to the worst case scenario we
encountered. For this, we consider the transformation of a uniform random variable X ∼ U([−1, 1]) −→
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Figure 6.4: Left: histogram of the reference solution obtained with an MC method and of the i-gPCZ
k=5

P=6 .

u(X) into a polynomial of order 10. It is given by

u(X) = φL0 (X) + φL3 (X) + φL10(X). (6.10)

In (6.10), (φLk (X))k∈{0,...,P} denotes the Legendre polynomials. We apply gPC and then i-gPC for a
truncation order P = 8. Note that if P = 10, both gPC and i-gPC (at the first iteration) give the
analytical solution on this test-problem. We choose, on purpose, to truncate the basis earlier, for P = 8.
Figure 6.5 presents the results in term of functional representation and histogram obtained with the

Solution u(x) and uX8 (x) pdfs of u(X) and uX8
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Figure 6.5: Left: functional representations of the analytical solution (6.10) and its gPC approximation
of order P = 5. Right: histograms of the analytical solution (6.10) and its gPC approximation of order
P = 5.

MC reference method and with the gPCP=8 approximation. As observed in figure 6.5 (left) for the
functional representation, the gPCP=8 approximation is equivalent to the gPCP=3 one. The terms of
orders between 4 and 8 are orthogonal to the solutions and the coefficients are zero in this basis for
k ∈ {4, ..., 8}. Figure 6.6 (left) presents the same results in term of functional representation as figure 6.5

(left) obtained with i-gPCZ
k=10

P=8 in the same conditions. Qualitatively, we observe a gain with respect to
gPC. It is observable mainly in the vicinity of the boundaries of the random space [−1, 1]. Now figure 6.6
(right) presents quantitative results. It is a convergence study displaying the logarithm of the L1−norm
of the error with respect to the number of iterations from P = 5 up to P = 9. We can see that the
gain observable on figure 6.6 (left) for P = 8 is obtained at the first iteration and the next ones did not
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pdfs of u(X) et uZ
k=10
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Figure 6.6: Left: functional representations of the analytical solution (6.10) and its i-gPC approximation
of order P = 5 after 10 iterations. Right: convergence results with respect to the number of iterations k
for fixed orders P = 5, ..., 9.

improve the accuracy of the approximation. In this case, i-gPC allows a small gain after the first iteration
then stagnates. Nonetheless it corresponds to the worst case scenario in the sense the gain is small and
the stagnation occurs for k0 = 1. In this situation, we can still rely on the convergence property with
respect to P of the gPC approximation. The iterative algorithm has been designed in order to ensure
that at each step, we rely on a gPC approximation (at iteration j, the approximation is still a gPC one).
We consequently can still rely on Cameron-Martin’s theorem.

Of course, in this section, we depicted two very opposite situations:

– the first one corresponds to the ideal one, the i-gPC procedure ensures recovering the optimal basis,
see [242] for more details.

– The second one corresponds to the case where the iterative procedure stagnates after the first
iteration with a very small increase of the accuracy.

There exists some intermediary states to these situations (some are presented in [238, 242] and others
in chapter 8). But we wanted to focus on the two previous ones especially because of the respective
regularity of the transformations: the iterative process does not necessarily performs better on smooth
transformations. To sum up, with the strong hypothesis of having a very accurate numerical integration
method, we are able to emphasize that i-gPC

– gives (very) satisfactory results on discontinuous solutions,

– allows a gain even on smooth ones,

– is only a postprocess and do not need additional points with respect of a gPC approximation.

These (asymptotical) results are, to our opinion, very interesting and motivate us to continue the study
of the iterative approach in the context of a finite numerical integration accuracy.

6.3 Numerical analysis of i-gPC in finite integration context
(stopping criterion)

In this section, we revisit inequality (6.7) in the context of finite numerical integration accuracy. The
study has been carried on in [30],[242]. In order to understand the need for the following numerical
analysis, we consider the same test-cases as in section 6.2 but with a more reasonable number of points
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N for our experimental design (Xi, wi)i∈{1,...,N}. Let us first consider the smoother case, i.e. the one
where u si defined as

X ∼ U [−1, 1] −→ u(X) = φL0 (X) + φL3 (X) + φL10(X).

We now apply the same algorithm but with only N = 17 Clenshaw Curtis (CC) points for the experimen-
tal design (see section 5.2) and P = 5. Figure 6.7 displays the functional representation of the analytical

solution, the gPCP=5 approximation and the i-gPCZ
k

P=5 for k ∈ {1, ...6}. The quadrature points are also
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Figure 6.7: Functional representation of the i-gPC approximation through iterations 1, 2, 3, 4, 5 and 6 for
the smooth problem u(X) = φL0 (X) + φL3 (X) + φL10(X) with finite integration accuracy (without proper
stopping criterion).

displayed on the pictures (blue crosses at the bottom of each pictures). At the first iteration, the gPC
and i-gPC approximations are the same. After iterations #2 and #3, we can observe a gain of the i-gPC
approximation with respect to the gPC one, especially on the boundaries of the uncertain domain [−1, 1]
(as in the case of infinite integration accuracy in section 6.2). But at iteration #4, in the vicinity of
X ≈ −1, the i-gPC solution does not anymore get closer to the target solution. And after iterations #5
and #6, a numerical instability can easily be identified, developing from the small initial perturbation
appearing at iteration #4. In fact, we observe here that the error can first decrease before increasing.

113



This behaviour was not predicted by inequality (6.7). We consequently need to introduce the integra-
tion accuracy of the experimental design (Xi, wi)i∈{1,...,N} in our numerical analysis to understand and
analyse the previous behaviour.

6.3.1 Convergence behaviour of i-gPC under finite numerical integration ac-
curacy

According to Cameron Martin’s theorem and its generalization to arbitrary pdfs/polynomial basis
[55, 291] together with the hypothesis of convergence of the chosen experimental design, the follow-
ing approximations

u(X) ≈ uP,NX (X) =

P∑
k=0

uX,Nk φXk (X) = Z(X),

u(X) ≈ uP,NZ (Z) =

P∑
k=0

uZ,Nk φZk (Z),

(6.11)

converges and their errors can be decomposed into an integration and a truncation one:

(eNX)2 = ||u(X)− uP,NX (X)||2L2 =

P∑
k=0

(uXk − uX,Nk )2

︸ ︷︷ ︸
(eX,Nint,P )2

+

∞∑
k=P+1

(uXk )2,

(eNZ )2 = ||u(Z)− uP,NZ (Z)||2L2 =

P∑
k=0

(uZk − uZ,Nk )2

︸ ︷︷ ︸
(eZ,Nint,P )2

+

∞∑
k=P+1

(uZk )2.

(6.12)

In [242], we obtained the finite integration accuracy counterpart of inequality (6.5) which can be stated
as follow: with the previous notations, in the context of finite numerical integration accuracy, we have

(eNZ )2 − (eNX)2 = (eZ,Nint,P )2 − (eX,Nint,P )2 −
P∑
k=2

(uZk )2. (6.13)

The proof is in [242]. According to the above inequality, the accuracy of the approximation can increase
if we do not have

(eZ
N ,N

int,P )2 − (eX,Nint,P )2 −
P∑
k=2

(uZ
N

k )2 ≤ 0. (6.14)

The above condition is not always ensured: the integration error (eZ,Nint,P )2 can become preponderant in

comparison to −(eX,Nint,P )2−∑P
k=2(uZ

N

k )2. This is the case when numerical integration accuracy is greater
than the residue in the new basis. Consequently, if we do not want the approximation error to potentially
increase after some iteration, we have to stop it before the projection error becomes preponderant in
(6.14). In order to understand what happens more precisely, we need to go back to the definition of the
gPC coefficients in their respective basis.

As in section 3.4, we introduce the truncated family of statistical moments (sk)k∈{0,...,2P} and trun-
cated family of polynomials φXk (X) orthonormal with respect to dPX . We recall the latter orthonormal
polynomial family is directly linked with the moments of X [7, 156] as ∀n ∈ {0, ..., P}:

φXn (x) =
1√

H2(n−1)H2n

∣∣∣∣∣∣∣∣∣∣
s0 s1 ... sn
... ... ... ...
sk sk+1 ... sn+k

... ... ... ...
1 x1 ... xn

∣∣∣∣∣∣∣∣∣∣
. (6.15)
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Once again suppose the moments (sk)k∈{0,...,2P} are not accurately computed, suppose one has

(sεk)k∈{0,...,2P} = (sk + εk)k∈{0,...,2P} ≈ (sk)k∈{0,...,2P}.

Assume a particular form for the perturbation ε = (ε0, ..., ε2P ) = (0, ..., 0, δ) of the moments. This
implies every moments of order n ∈ {0, ..., 2P − 1} are accurately computed whereas the last one s2P

is perturbed by δ with δ such that (sεk)k∈{0,...,2P} is still in the moment space. One can compute the
polynomials orthornormal with respect to the perturbed moments: they coincide with the one of X up
to order P − 1 and we have

φεP (x) =
1√

H2(P−1)H
ε
2P

∣∣∣∣∣∣∣∣∣∣
s0 s1 ... sn
... ... ... ...
sk sk+1 ... sn+k

... ... ... ...
1 x1 ... xn

∣∣∣∣∣∣∣∣∣∣
. (6.16)

The perturbation ε only perturbs the last Hankel determinant Hε
2P . Now, from the definition of Hε

2P

and by a development of the last line of the determinant, we have

Hε
2P = H2P + δH2(P−1) so that φεP (x) = 1√

1 + δ
H2(P−1)

H2P

φXP (x).
(6.17)

Consequently, when considering the gPC coefficients of the transformation u(X) in the perturbed basis,
one has that ∀n ∈ {0, ..., P − 1}, uεn = uXn and

uεP = uXP
1√

1 + δ
H2(P−1)

H2P

≈ uXP −
1

2

H2(P−1)

H2P

δuXP +O(δ2), (6.18)

for the last coefficient. It is known in the litterature [14, 118, 7, 156] that in the previous conditions
∀n ∈ {0, ..., P}

H2n
H2(n−1)

≤ 2−(4n+2) leading to

∣∣∣∣duXPdδ

∣∣∣∣ ≥ 24P+1,

which testifies for a higher and higher sensivity of the gPC coefficient with respect to a small inaccuracy
in the statistical moments (δ) as the polynomial order P increases. In the next section, we present how

we control a posteriori the integration error (eZ,Nint,P )2 (which is the only positive term in (6.14)) . The
process is inspired by the idea of the numerical “admissibility” of the moment data of [14, 118].

6.3.2 Strategy for adaptive approximation truncation

If the existence of (φZk )k∈N is straightforward (see [273, 117]), the existence of (φZ
N

k )k∈{0,...,P}, the basis

obtained with finite accuracy on the coefficients (uX,Nk )k∈{0,...,P} clearly depends on the quality of the
approximation of the truncated statistical moments (sZi )i∈{0,...,2P+1} defined as:

sZi = E[Zi] =

∫
xidPZ(x) ≈ sZNi =

N∑
l=1

wl

(
uP,NX (Xl)

)i
,∀i ∈ N. (6.19)

They are central in the construction of the gPC basis orthornormal with respect to dPZN . This problem

is very sensitive and if the statistical moments (sZ
N

i )i∈N are not accurately enough calculated, one can
encounter the problem of realisability of the moment problem, see [198, 63, 155, 129, 172, 14, 7, 156].

Once the truncated statistical moments (sZ
N

i )i∈{0,...,2P+1} built, the 2P +2-sized vector may or may not
represent the first moments of a random variable due to a discrepancy in their calculations. If it is, this

implies the existence of a basis (φZ
N

k )k∈{0,...,P} associated to the constraints (sZ
N

i )i∈{0,...,2P+1} [14, 117].
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Let us here assume the distribution has a bounded3 support [a, b] and consider the related truncated
moment problem (Hausdorff). Given that any interval may be linearly mapped, we now consider the

normalized truncated moments (s̄Z
N

i )i∈{0,...,2P+1} in [0, 1]. Their existence is characterised in term of
the Hankel determinants (Hd)

H2P =

∣∣∣∣∣∣∣
s̄Z

N

0 · · · s̄Z
N

P
...

...

s̄Z
N

P · · · s̄Z
N

2P

∣∣∣∣∣∣∣ , H2P+1 =

∣∣∣∣∣∣∣
s̄Z

N

1 · · · s̄Z
N

P+1
...

...

s̄Z
N

P+1 · · · s̄Z
N

2P+1

∣∣∣∣∣∣∣ ,
H2P =

∣∣∣∣∣∣∣
s̄Z

N

1 − s̄ZN2 · · · s̄Z
N

P − s̄ZNP+1
...

...

s̄Z
N

P − s̄ZNP+1 · · · s̄Z
N

2P−1 − s̄Z
N

2P

∣∣∣∣∣∣∣ , H2P+1 =

∣∣∣∣∣∣∣
s̄Z

N

0 − s̄ZN1 · · · s̄Z
N

P − s̄ZNP+1
...

...

s̄Z
N

P − s̄ZNP+1 · · · s̄Z
N

2P − s̄Z
N

2P+1

∣∣∣∣∣∣∣ ,
(6.20)

via the following theorem [7, 156]:

Theorem 6.1 [7, 156]

– The truncated moment problem is well posed iif:
Hn ≥ 0 and Hn ≥ 0, ∀n ∈ {0, . . . , 2P + 1}.

– If Hn > 0 and Hn > 0 ∀n ∈ {1, . . . , 2P + 1} → the polynomial basis orthonormal with respect to

the pdf having the first moments (sZ
N

i )i∈{0,...,2P+1} exists and is dense in L2(Ω,A,P).

– Finally, if ∃k ∈ {1, ..., 2P+1} such that H l > 0 and H l > 0 ∀l ∈ {1, . . . , k−1} and such that Hk = 0

or Hk = 0, then there exists a polynomial basis orthonormal with respect to the (s̄Z
N

i )i∈{0,...,k}, this
basis in not dense in L2(Ω,A,P).

Similarly to the work introduced in [14], we construct the stopping criterion of our algorithm based on
theorem 6.1. For each i-gPC iteration, we compute the Hankel determinants to check wellposedness (the
ε threshold refers to machine accuracy) :

– [a.] If the first point of theorem 6.1 is not numerically satisfied , i.e. ∃n0 ∈ {0, . . . , 2P + 1} such
that Hn < −ε or Hn < −ε → we substitute P ←− bn0

2 c and test if a smaller truncation order is
realizable.

– [b.] If it is and in particular even the second point, i.e. ∀n ∈ {0, . . . , 2P+1}, Hn > ε and Hn > ε→
there exists a dense polynomial basis → we perform another iteration.

– [c.] If the third condition of theorem 6.1 is satisfied, i.e. ∃k ∈ {1, ..., 2P + 1} such that H l > ε and
H l > ε ∀l ∈ {1, . . . , k − 1} and such that |Hk| ≤ ε or |Hk| ≤ ε → there exists a polynomial basis
(not dense) depending only on the k first moments → we truncate the moment problem to the kth

term and modify the order of the i-gPC representation for this step → we stop the iterations.

Once again, even in a finite integration accuracy context, two situations may occur:

– The moments are realizable, the numerical integration accuracy is “good enough”, i.e. (6.14) is
fulfilled, and the iterative procedure converges (stagnates) according to the inequality (equality)
(6.7); equality may be reached after a certain step.

– The moments for the considered order P are not realizable, the numerical integration accuracy is

too low, i.e. ∃ k0, such that (eZ
k0 ,N

int,P )2 is important with respect to the negative terms in (6.14). In

order to reduce the integration error in the new basis, we lower the polynomial order P ←− bn0
2 c

in the new basis at iteration k0. Practically, this corresponds to making sure the integration error
with bn0

2 c is lower than with P : basically we make sure eZ
n0 ,N

int,bn0
2
c
< eZ

n0 ,N
int,P so that the positive

term in (6.13) becomes less important.

3Note that the generalization to the truncated Hamburger/Stieljes moment problem is not straightforward. In this
paper, we restrict ourselves to transformation of arbitrary random variables to random variables with bounded support.
This restriction still allows dealing with many physical applications.
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Let us briefly apply the above material to a discontinuous test-problem slightly different for the
one of section 6.2 in a finite integration accuracy context. More benchmarks are considered in [242]
together with interesting features of the new iterative algorithm. Let X be a uniform random variable
on [−1, 1]. Let u be a step function equal to 1 on [−1,−0.4] and 0 on [−0.4, 1]. The function is sampled
only once at N points. Our choice here is to use a numerical quadrature with 14 Gauss-Legendre (GL)
points. We apply non-intrusive gPC (with truncation degree P = 3 and P = 5) and i-gPC (with
truncation degree P = 3 and P = 5) together with a spectral collocation approximation (for collocation,
N = 14 =⇒ P = 14). Figure 6.8 shows the latter approximations together with the analytical solution.
The gPC and collocation polynomial approximations are oscillating whereas the i-gPC approximations
do not and avoid the Gibbs’ phenomenon, see [130]. Table 6.2 (left) presents the L1 and L2 norm of
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Figure 6.8: gPC (P = 3 and P = 5), i-gPC (P = 3 and P = 5) and collocation (P = 14) comparison

the errors of these approximations. The table shows that i-gPC does better than gPC and collocation
both in L1 and L2 norms. In practice, we notice that numerical integration accuracy is reached by the

L1-error L2-error
gPC P = 3 0.15 0.20
i-gPC P = 3 0.016 0.099
gPC P = 5 0.097 0.16
i-gPC P = 5 0.011 0.077
collocation 0.067 0.11

CC Quad. level gPC (P = 5) i-gPC (P = 5)
l = 5 0.095623 0.0075440
l = 6 0.094358 0.0070233
l = 7 0.094625 0.0030701
l = 8 0.094402 0.0018716
l = 9 0.094490 1.3055e-04

Table 6.2: Left: gPC, i-gPC and collocation errors comparison. Right: Convergence with respect to
the number of Clenshaw-Curtis (CC) quadrature level for gPC and i-gPC representations for fixed P :
numerical integration accuracy is reached.

approximation in the sense that it is here the limiting factor. This is emphasized in the numerical study
summed up in table 6.2 (right). The results are the L1-norm of the error on the same test problem with
P = 5 and for different level l of Clenshaw-Curtis (CC) quadrature rule (l = 5, l = 6, l = 7, l = 8
and l = 94). The accuracy of the gPC approximation is only slightly affected by the increase of level
of the quadrature rule. Consequently, the truncation error is in this case predominant compared to the
integration error. The behaviour of i-gPC is different: as the number of quadrature points increases, the
approximation gains in quality. It shows that it is driven by the numerical integration accuracy, and not
the truncation order P .

4The level l of the CC rule ensures the quadrature has k = 2l − 1 points nested by levels.
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6.4 Few other applications of i-gPC

In this last section, we first come back to the ’fil rouge’ problem of chapter 2 before comparing gPC,
regression, regression-gPC, collocation-gPC, kriging-gPC and i-gPC on Runge function and on a discon-
tinous solution.

6.4.1 Application to the ’fil rouge’ configuration

Now the iterative process i-gPC fully described, we go back to our ’fil rouge’ configuration with our
new numerical approximation scheme i-gPC. Note that we do not anymore systematically monitor the
number of iterations as it is automated via the stopping criterion described in the previous sections. The
new algorithm i-gPC being only a postprocess, we can reuse the same N = 15 runs of the Euler code
with the previous Gauss-Legendre points with i-gPC in the same conditions (P = 3). In term of mean
and variance of the mass density profiles, the results with i-gPC are very close to the ones obtained
with gPC. In fact, they are exactly the same as mean and variance mainly depend on the integration

M
ea

n
s

a
n

d
V

a
ri

a
n

ce
s

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

x

Moyenne de ρ, t = 0
Variance de ρ, t = 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
−0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

x

Moyenne de ρ, t = 0.14
Variance de ρ, t = 0.14

Figure 6.9: Application of non-intrusive i-gPC, mass density spatial profiles for some realisations, the
mean and the variance at t = 0 and t = 0.14.

scheme, hence the experimental design which, here, is common to both approaches. The results are
displayed in figure 6.9 even if we do not spend more time on them and focus on figure 6.10 presenting the
histograms at the particular locations and time of interest obtained with i-gPC. First, the new iterative
process allows recovering the same results as gPC in the vicinity of the rarefaction fan, see figure 6.10
(top). The algorithm has been built in order not to degrade the accuracy of the gPC approximation. For
both other waves, in the vicinities of the interface and of the shock, figure 6.10 (bottom pictures), the
gain is qualitatively very important. For the histograms, the discrete behaviour is quite well captured
with two Dirac masses at the correct location and a quite good estimation of their masses. On the
functional representations, i-gPC allows recovering the steep gradients of the solutions with respect to
the random variable. We present some other quantitative results on the ’fil rouge’ configuration in table
6.3. It displays the L1 and L2 norms for the random variable ’mass density’ in the vicinities of the
rarefaction fan, the interface and the shock. As tackled before, the chosen spatial discretisation for every
NMC = 1000 runs of the reference MC solutions and the N = 15 runs of the i-gPC approximation was
such that one can rely on an accuracy of about 10−4 ≈ ∆x. Based on this, we notice on the ’rarefaction’
lines of table 6.3 that the accuracy in the vicinity of the rarefaction fan is about 10−4 for both gPC and
i-gPC. For this wave, the stochastic counterpart of the solver do not limit the accuracy of the results
as they are close to the spatial accuracy (∆x = 10−4). On another hand, if we consider the norms of
the errors for gPC in the vicinities of the shock and the interface, the accuracy drops to 10−2 and is
two decades greater than the spatial one. For these waves, in a sense, computational resources are lost
as the stochastic solver does not allow recovering the accuracy of the a priori chosen discretisation for
the black-box runs. Regarding i-gPC in the same conditions for the interface and the shock, we recover
the accuracy of the deterministic solver for the Euler equations at the N points as the L1 and L2 norms
of the errors are about 10−4. In this context, i-gPC allows an important gain with respect to gPC as
testifies the last column of table 6.3 with a factor ×250 of gain in the vicinity of the shock and ×30 in
the vicinity of the interface. More than a gain, it allows avoiding a waste of computational resources
allocated for the N runs of accuracy ∆x = 10−4. We tried to obtain such accuracy with gPC, i.e. about
10−4 for the random variable ’mass density’ in the vicinities of the interface and the shock but we were
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Figure 6.10: Pdfs (left) and functional representation in the random space of the mass density at t = 0.14
in the vicinities of the rarefaction fan (x = 0.38), the interface (x = 0.61) and the shock (x = 0.73) with
the i-gPCP=3 approximation.

not able to reach it with P = 27 and more than thousand runs of Gauss-Legendre quadrature points.
We suspect important aliasing errors during the construction of the gPC basis for such high orders, see
section 3.4.

6.4.2 Integration vs. Regression vs. Collocation vs. Kriging vs. i-gPC

The natural question arising now is how does i-gPC perform in comparison with the different approxima-
tions of section 5.3? In this section, we apply integration-gPC, regression, regression-gPC, collocation-
gPC, kriging-gPC and i-gPC to the same functions studied in sections 5.3 and 5.4.2 (discontinuity and
Runge function).

Let us begin with function X −→ 1]−∞, 3
10 ](X) with X ∼ U([−1, 1]), intensively studied in section

5.4.2. Figure 6.11 is in the same vein as figure 5.12: we only added the curves obtained with i-gPC.
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gPCP=3,
L1-norm

i-gPCP=3,
L1-norm

errorgPC
errori−gPC

rarefaction 1.817e-04 1.817e-04 1
interface 1.633e-02 3.861e-04 42.29

shock 2.053e-02 7.863e-05 261.09
gPCP=3,
L2-norm

i-gPCP=3,
L2-norm

errorgPC
errori−gPC

rarefaction 2.196e-04 2.196e-04 1
interface 2.523e-02 8.406e-04 30.01

shock 2.765e-02 1.133e-04 244.04

Table 6.3: Quantitative comparison of gPCN=15
P=3 and i-gPCN=15

P=3 with respect to an MC reference solution
with NMC = 1000 points in term of approximations of the random variable ’mass density’ in the vicinities
of the rarefaction fan, the interface and the shock.

Let us begin by commenting on the convergence study with respect to P of figure 6.11 (top-right): the
general behaviour of i-gPC is comparable to the ones of the other approximation methods. The error
first decreases than explodes as soon as P > N. With such low number of points of the experimental
design, it is complex controling term (6.14) even with the stopping criterion described above: for some
polynomial orders, the i-gPC error is slightly more important than the gPC one, which should not
happen with a good numerical integration. This is the case for P = 4, 5, 6 for example. For those
polynomial orders, the stopping criterion should have stopped the algorithm one iteration earlier. Still,
the i-gPC approximations remain controled and of comparable qualities as the ones obtained with the
other methods. Figure 6.11 (top-left) presents the best approximations obtained with every methods:
the curves are the same as figure 5.12 described in section 5.4.2 except we added the i-gPC one. The
best i-gPC approximation is obtained with P = 3. It is much less oscillatory than the other methods
and the discontinuous behaviour of the solution is already captured.

The bottom pictures of figure 6.11 (bottom) present the same studies with N = 21 GL points. With
such an accurate numerical integration, i-gPC gives the best results as soon as P > 2. The convergence
curve for i-gPC is always below the other ones. The best i-gPC approximation is displayed figure 6.11
(bottom-left) together with the best ones of the other methods: it is obtained for P = 3, it is the less
oscillatory of every approximations and it captures the discontinous behaviour of the solution.

To complete the comparison of i-gPC with the other methods of the litterature, we perform the same
study to Runge function. First, once again, for a small number of points of the experimental design,
the behaviour of i-gPC is similar to the ones of the other methods. A decrease of the error before an
explosion: the smoothness of Runge function does not improve this point. Furthermore, as before, the
small number of points makes the control of the integration error in (6.14) difficult and i-gPC does not
always perform better than gPC: if P is kept lower than N in another hand (see P = 2, 3 in figure 6.12
(top-right), the results obtained with i-gPC are intermediary to the ones obtained with gPC, regression,
regression-gPC (upper bound) and kriging-gPC (lower bound). Qualitatively, see figure 6.12 (top-left)
the i-gPC approximation gives equivalent results as the other methods. Now, if N = 21, the integration
is accurate and i-gPC gives better results than gPC, regression, regression-gPC, up to P = N = 20.
Kriging-gPC remains more efficient on such smooth output function even if qualitatively, every best
approximations are indistinguishable (see figure 6.12 bottom-left).

6.5 Summary for non-intrusive gPC and i-gPC approximations

In this chapter, we studied a new non-intrusive application of gPC for uncertainty quantification. It
intensively uses the possibility to apply gPC non-intrusively together with the exploitation of the exis-
tence of more or less adapted basis. The independence of the points makes them embarassingly parallel
and quickly efficient when one has at hand a robust simulation code and access to a computing cluster.
With inequalities (6.3)–(6.5) we put forward the possibility to increase, during a postprocessing step,
the quality of the approximation basis without prior assumption on the regularity of output random
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Figure 6.11: This figure is the same as figure 5.12 but we added the curves obtained with i-gPC.
Application of Gauss-Legendre quadrature rule for gPC, regression, regression-gPC, collocation-gPC,
kriging-gPC and i-gPC for the approximation of the transformation of a uniform random variable through
a discontinuous function. The experimental designs have with N = 11 (top) and N = 21 (bottom). The
left column present the best approximations obtained with every of the previous methods. The right
column present the L2-norm of the error with respect to P for fixed N . The kriging kernel is chosen
exponential (5.42) and a dichotomy is applied to calibrate θ.

variable. We even suggested an algorithm based on (6.5) to build this new basis from the initial one,
associated to X. In this sense, from a practical point of view, the non-intrusive counterparts (MC, gPC
or i-gPC) only differ from the number of runs N they need and the cost of the postprocessing step at
the end of every runs of the black-box code. If we now focus on the i-gPC algorithm presented in section
6.1.2, which corresponds to our contribution in term of non-intrusive resolution scheme, we designed a
new iterative method based on gPC and moment theory allowing

– improvements only thanks to a post-processing step,

– important gains on discontinuous solutions, smaller ones on continuous ones,

– recovering the optimal basis with respect to the output in certain cases (strong contraction).

– In the case of a weak contraction we worked on another iterative algorithm presented in chapter
8. It uses the fact that the initial gPC basis and the final one (i-gPC at the last iteration) are
not necessarily orthonormal and aims at improving the accuracy of the approximation by working
on the residue in the new basis. It, in a sense, consists on a reinterpretation of Cameron-Martin’s
theorem.

Every results for i-gPC have been presented in 1D stochastic dimension but its application to higher
ones is straightforward and some cases are presented in [238, 242]. Note that the iterative approach has
not been designed to deal with more stochastic dimensions than gPC, only to improve its accuracy.

We finally insist other authors noticed the importance of increasing the accuracy of the approximation
basis prior to introducing any other numerical ingredients (such as the one introduced in kriging-gPC, see
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Figure 6.12: This figure is in the same vein as figure 6.11 except we consider Runge function instead
of a discontinuous one. Application of Gauss-Legendre quadrature rule for gPC, regression, regression-
gPC, collocation-gPC, kriging-gPC and i-gPC for the approximation of the transformation of a uniform
random variable through Runge function. The experimental designs have with N = 11 (top) and N = 21
(bottom). The left column present the best approximations obtained with every of the previous methods.
The right column present the L2-norm of the error with respect to P for fixed N . The kriging kernel is
chosen exponential (5.42) and a dichotomy is applied to calibrate θ.

section 5.3.3). In [82] for example, the author builds a new family of polynomials ensuring the respect
of bounds on the approximation of the output (maximum principle). Such new approximation basis
will probably allow efficient resolutions in an uncertainty quantification context but, more generally, for
any numerical methods implying polynomials (Pn,Mn models, high-order schemes for the deterministic
resolution of hyperbolic system, reconstruction of positive pdfs etc.).
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Chapter 7

Non intrusive gPC for Direct
Numerical Simulation (DNS)
acceleration

A well-known physical problem revisited as an uncertainty quantification one

An attempt to exploit the ergodicity of the gPC approximation (see section 3.1.2)
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The study of linearly perturbed flows has been given a lot of interest in computational fluid dynamics
(CFD) over the last decades (see [151, 149, 150, 68, 206, 274, 276, 275, 39] for example). Especially,
as we are interested in this chapter, in order to predict the growth rate of instabilities with respect to
time in very sensitive flows. On another hand, perturbation methods are also well-known in uncertainty
quantification (UQ) – see [271] for example– and have been recently generalized in this field (see [218]
for example). Spectral methods such as generalized Polynomial Chaos (gPC) have proven to be efficient
for solving Stochastic Partial Differential Equations (SPDE) and contain perturbation methods – in
the sense solutions obtained with perturbation methods can be recovered with gPC. Section 7.1 of this
chapter aims at recalling these results (already hinted at in [231, 232, 243]): perturbation methods are
presented as a limit, a reduced model, of gPC methods in a regime which will be identified. In section 7.2,
just as gPC generalizes perturbation methods in uncertainty quantification, we aim at generalizing the
study of complex flows thanks to gPC: we apply gPC in order to predict the growth rate of instabilities in
nonlinear regimes in the same condition perturbation methods are commonly applied. We directly follow
the methodology described in [237] and deepen the study by reinterpreting shock tube experiments from
[244, 286] as uncertainty driven experiments. They corresponds to Richtmyer-Meshkov (RM) ones and
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are recalled in section 7.2.

The original work presented in this chapter is published in [243] in a more concise form. We here give
more details regarding perturbative methods (section 7.1) and the resolution of the stochastic inverse
problem built in section 7.2.

7.1 Perturbation reduced models as a limit of the gPC one

In this section, we compare perturbative methods to gPC ones. The object is to formally show that
perturbative reduced models from a conservation law of interest are the limit of the gPC reduced model
of these same conservation law under certain conditions on the input uncertain parameters. The results
are demonstrated for any system of conservation laws in 1D1 even if we will focus on the Euler system
later on. We recall the general form for uncertain system of conservation laws is given by

∂tu+ ∂xf(u) = 0, with u(x, t,X) ∈ Du ⊂ Rd. (7.1)

Random variable X has probability measure dPX and models the uncertainty in, for example here, initial
conditions.

7.1.1 Perturbation reduced model of a system of conservation laws

In this first section, we recall the general form of the perturbative reduced model of a system of conser-
vation laws. Perturbative methods consists in considering small perturbations of the solution of a system
of conservation laws around its mean value. The vector of unknowns u, solution of the system (7.1) is
approximated by its Taylor development with respect to the random variable X, truncated at order P :

u(X) ≈ uP (X) = u0 +

P∑
i=1

uiX
i

i!
. (7.2)

The validity of the perturbative approach directly depends on the characteristics of the random variable
of interest X. Typically, if the probability measure of X ensures small fluctuations around µ the mean
of X. Let us focus on the set of equations obtained from reducing the system of conservation laws of
interest into a perturbed one. For this, we look at the system of equations satisfied by U = (u0, ..., uP )t,

in which formally we have uk = ∂ku
∂Xk

(x, t, µ),∀k ∈ {0, ..., P}. The perturbative reduced model of (7.1) is
obtained plugging the Taylor development (7.2) in system (7.1) and identifying the multiplicators of the
components of (1, X,X2, ..., XP ). The steps are exactly the same as the one for the Hilbert expansion
of chapter 1 to identify physical regimes of interest. Let us focus on the expression of the kth equation
of the obtained reduced model and more particularly on the expression of its flux:

f(uP (X)) = f

(
u0 +

P∑
i=1

uiX
i

i!

)
,

f(uP (X)) = f (u0) +

P∑
j=1

1

j!
f (j)(u0)

(
P∑
i=1

uiX
i

i!

)j
.

(7.3)

1The results in higher dimensions are straightforward but only make the computations heavier.
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Using Newton’s Multinomial formulae2, the flux expression becomes

f(uP (X)) = f(u0) +

P∑
j=1

∑
|~k|=j

1

j!
f (j)(u0)Cj~k

P∏
i=1

(
uiX

i

i!

)ki
,

f(uP (X)) = f(u0) +

P∑
j=1

∑
|~k|=j

1

j!
f (j)(u0)Cj~k

P∏
i=1

(
ui
i!

)ki
XPj−(P−1)k1−(P−2)k2..−kP−1 ,

f(uP (X)) = f(u0) +

P 2∑
t=1

Xt
P∑
j=1

∑
|~k|=j︸ ︷︷ ︸

j,~k/t=Pj−(P−1)k1−(P−2)k2−...−kP−1

1

j!
f (j)(u0)Cj~k

P∏
i=1

(
ui
i!

)ki
.

(7.5)

After identification of the coefficients of (Xn)n∈{0,...,P}, we deduce the components of the flux of the
truncated reduced model obtained by perturbative methods ∀n ∈ {0, ..., P} are given by

fn(u0, ..., uP ) =

P∑
j=1

∑
|~k|=j︸ ︷︷ ︸

j,~k/n=Pj−(P−1)k1−(P−2)k2−...−kP−1

1
j!
f (j)(u0)Cj~k

P∏
i=1

(ui
i!

)ki
.

(7.6)

The obtained reduced model reads

∂tu0 + ∂xf(u0) = 0,
...

∂t
un
n!

+ ∂x


P∑
j=1

∑
|~k|=j︸ ︷︷ ︸

j,~k/n=Pj−(P−1)k1−(P−2)k2−...−kP−1

1
j!
f (j)(u0)Cj~k

P∏
i=1

(ui
i!

)ki
 = 0,

...

∂t
uP
P !

+ ∂x


P∑
j=1

∑
|~k|=j︸ ︷︷ ︸

j,~k/P=Pj−(P−1)k1−(P−2)k2−...−kP−1

1
j!
f (j)(u0)Cj~k

P∏
i=1

(ui
i!

)ki
 = 0.

(7.7)

It is weakly coupled in the sense the first equation on u0 does not depend on the higher terms (uk)k∈{1,...,P},
the second one only depends on u0, u1 etc. Such reduced models are known to be weakly hyperbolic. This
is very easy to verify by diagonalizing the Jacobian of the flux on simple (scalar) conservations laws at
order P = 1. One would find out that the basis of eigenvectors is not complete. Weakly hyperbolic
systems give satisfactory results at early times but fail for long term simulations: the solutions become
unphysical as nothing prevents them from going (linearly with time) to infinity, see [81].

In the following sections, we briefly recall the construction of the gPC reduced model (even if already
tackled in chapter 4).

2Newton’s Multinomial formulae: (
x1 + ...+ xP

)j
=
∑
|~k|=j

Cj
~k

P∏
i=1

x
ki
i , (7.4)

where ~k = (k1, ..., kP ) is the vector of powers of xi, |~k| =
P∑
i=1

ki and Cj
~k

= n!
P∏
i=1

ki!

.

125



7.1.2 gPC reduced model of a system of conservation laws

The gPC reduced model of system (7.1) obtained from sG-gPC, see section 4.1, is given by

∂tu0 + ∂x

∫
f

(
P∑
i=0

uiφ
δ
i

)
φδ0dPX = 0,

...

∂tuk + ∂x

∫
f

(
P∑
i=0

uiφ
δ
i

)
φδkdPX = 0,

...

∂tuP + ∂x

∫
f

(
P∑
i=0

uiφ
δ
i

)
φδPdPX = 0.

(7.8)

Note that we slightly changed our notations, especially concerning the gPC basis, denoted by (φδi )i∈{0..P},
where a parameter δ now explicitly appears. This new parameter denotes the variance (up to a multi-
plicative factor) of the random variable X. For example, if X is a uniform random variable, δ is such
that X = µ + δU [−1, 1] so that X − µ ∼ U [−δ, δ]. In the following lines, we conserve the uniformity
assumption but we insist this is without loss of generality. System (7.8) is built with sG-gPC, i.e. with
the Pn-like closure of section 4.1. It is known to fail regarding hyperbolicity/wellposedness in certain
cases detailed in chapter 4. Rigourously speaking, the next computations should have been carried on
with the reduced model obtained by entropy closure of section 4.2.3 ensuring wellposedness. We insist
the results would be same at the price of even more complex calculations3. In the following developments,
we suppose system (7.8) is hyperbolic.

7.1.3 The perturbative reduced model as a limit of the gPC one

We begin by stating the following property:

Property 7.1 With the previous notations, the solutions (uk)k∈{0,...,P} of system (7.7) are limits of the

solutions (uδk)k∈{0,...,P} of system (7.8) as δ −→ 0.

In term of uncertainty quantification problem, this means perturbation methods are equivalent to gPC
ones in the limit of a small variance of the input initial random variable X. From a modeling point
of view, it means gPC models asymptotically preserve the perturbative regime characterised by δ → 0.
Stated as above, the results may seem obvious. They are much less comparing expressions (7.7) and
(7.8). The following proof allows understanding how one can switch from one reduced model to the
other.

Proof Let us introduce the matrix

A =


aδ0,0 0 0 ... 0
aδ1,0 aδ1,1 0 ... 0
... ... ... ... ...
aδP,0 aδP,1 ... aδP,P−1 aδP,P

 ,

matrix of the coefficients of the gPC basis,(φδi )i∈{0,...,P}, in the canonical one (Xi)i∈{0,...,P} :

∀i ∈ {0, ..., P}, we have φδi (X) =

i∑
j=0

aδi,jX
j (triangular matrix).

We denote by B the inverse of A4, we then have ∀(i, j) ∈ {0, ..., P}2 ,
P∑
k=0

ai,kbk,j = δi,j .

3We would only have to take into account one degree of nonlinearity in order to have u = ∇s(v) where v is developed
on the gPC basis.

4This inverse B exists as A is matrix allowing to go from one basis to another.
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If (φδi (X))i∈{0,...,P} is the gPC basis associated to X and (φi(X))i∈{0,...,P} the basis associated to X−µ
δ

(the reduced centered random variable of X), then we have that (φδi (X) = φi(Xδ))i∈{0,...,P}. This is easy
to understand for example if we consider uniform random variables and the Legendre basis orthonormal
with respect to dPX(x) = 1

21[−1,1](x)dx. In such conditions, (φδi (X) = φi(Xδ))i∈{0,...,P} is the basis
orthonormal with respect to X uniformly distributed on [−δ, δ]. Let us perform the change of variable
in (7.8) noticing that, from equality

u0 +

P∑
i=1

uiX
i

i!
=

P∑
i=0

uiφ
δ
i (X), (7.9)

it is possible to obtain

∀i ∈ {0, ..., P}, ui
i!

=

P∑
j=0

aj,iuj , (7.10)

which can also be rewritten

∀i ∈ {0, ..., P}, ui =

P∑
j=0

bj,i
uj
j!
. (7.11)

Then, introducing the expressions of (7.11) into (7.8), we get ∀n ∈ {0, ..., P}:

∂t

 P∑
j=0

bn,j
uj
j!

+ ∂x

∫
f

 P∑
i=0

P∑
j=0

bj,i
uj
j!

P∑
l=0

ai,l(Xδ)
l

φδn(X)dP(X) = 0,

∂t

 P∑
j=0

bn,j
uj
j!

+ ∂x

∫
f


P∑
j=0

P∑
l=0

uj(Xδ)
l

j!

P∑
i=0

bj,iai,l︸ ︷︷ ︸
δj,l

φδn(X)dP(X) = 0,

∂t

 P∑
j=0

bn,j
uj
j!

+ ∂x

∫
f


P∑
j=0

uj(Xδ)
j

j!︸ ︷︷ ︸
u0+O(d)

φδn(X)dP(X) = 0.

(7.12)

After a limited development at order P , assuming δ → 0 and the use of Newton’s Multinomial formulae
(7.4), we get ∀n ∈ {0, ..., P}:

(7.13)

∂t

 P∑
j=0

bn,j
uj
j!

+ ∂x

∫
f (u0) +

P 2∑
t=1

(Xδ)t
P∑
j=1

∑
|~k|=j︸ ︷︷ ︸

j,~k/t=Pj−...−kP−1

1

j!
f (j)(u0)Cj~k

P∏
i=1

(ui
i!

)ki
φδn(X)dP(X) = 0.

Expressing each monomials (Xt)t∈{0,...,P} in the gPC basis (φt)t∈{0,...,P} writes

∀t ∈ {0, ..., P}, (δX)t =

P∑
l=0

bl,tφ
δ
l (X).
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Its use in expression (7.13) leads to ∀n ∈ {0, ..., P}:

∂t

 P∑
j=0

bn,j
uj
j!

+ ∂x

f(u0) +

P 2∑
t=1

bn,t

P∑
j=1

∑
|~k|=j︸ ︷︷ ︸

j,~k/t=Pj−...−kP−1

1

j!
f (j)(u0)Cj~k

P∏
i=1

(ui
i!

)ki
 = 0. (7.14)

To conclude, it is enough noticing that bi,j = 0 if i > j and that bi,j =
b̃i,j
δj

if i ≤ j; the first assertion

comes from the fact that matrices At together with its inverse Bt are triangular. The second assertion
demands the study of the basis (φi(Xδ))i∈{0,...,P}. Simple calculations show that ai,j = ãi,jδ

j and that

ai,i = δi = 1
bi,i
6= 0 ∀i ∈ {0, ..., P}. The results are obtained inversing At and studying the coefficients

one after another. The system becomes ∀n ∈ {0, ..., P}:

∂t

b̃n,n 1
δn
un
n!

+

n−1∑
j=0

b̃n,j
1

δj
uj
j!



+∂x

f(u0) +
n∑
t=0

b̃n,t
1

δt

P∑
j=1

∑
|~k|=j︸ ︷︷ ︸

j,~k/t=Pj−...−kP−1

1

j!
f (j)(u0)Cj~k

P∏
i=1

(ui
i!

)ki
 = 0.

Factorizing by b̃n,n
1
δn
6= 0 in the P + 1 equations of (7.15) and letting δ −→ 0 we recover system

∀n ∈ {0, ..., P}, ∂t
un
n!

+ ∂x


P∑
j=1

∑
|~k|=j︸ ︷︷ ︸

j,~k/n=Pj−...−kP−1

1
j!
f (j)(u0)Cj~k

P∏
i=1

(ui
i!

)ki
 = 0, (7.15)

corresponding to the reduced model obtained by perturbation methods. �

The above proof presents several interests:

– it establishes a link between the flow obtained by perturbative methods and the one obtained by
the gPC reduced model. Results obtained by perturbative methods can be recovered from the
one obtained by gPC under condition δ −→ 0. The link between the approaches is made through
changes of variables between the two basis, i.e. relations (7.10) and (7.11). Both approaches are
briefly compared numerically in figure 7.1 for Euler equations (mass density at orders 0 and 1) in a
1D Richtmyer-Meshkov-like configuration where a shock hits a perturbed interface initially at rest
(more details are given in [232] but also in the next section 7.2).

– The above calculations are also interesting from a modeling points of view. As briefly highlighted
before, the previous developments are very similar to the Hilbert ones of chapter 1 used to identify
relevant regimes and obtain new models. Consider for example uniform random inputs, the interval
[−δ, δ] corresponds to the support of the initial perturbation and looking for higher order terms
(terms in O(δ)) may allow obtaining corrective models to perturbation reduced models (called
saturation model in the literature). This aspect will not be further developed in this document but
may be the object of future works.

– Perturbative methods are also cheaper than gPC based ones. This property makes them a relevant
approach for calibration. In [31] and [30], Bayesian inference is applied to calibrate models thanks
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Figure 7.1: Comparison of perturbative and gPC methods on a Richtmyer-Meshkov-like 1D problem
(see [232] for the initialization details). For the computations, we chose σ = δ = 10−6 with X a uniform
random variable. The top pictures corresponds to the mean flows with both methods, the bottom ones
for the first order ones.

to comparisons to experiments. Perturbative methods can be used for a fast calibration of the
early simulation times (as they allow recovering the gPC results in the linear regime). Once
the perturbative model calibrated, its parameters can then be mapped, thanks to the previous
developments, into the ones of the gPC model, more relevant but also more costly. This will be
emphasized in the next section 7.2.

– Finally, we insist we showed that in the limit δ → 0, gPC models recover the results obtained by
perturbative methods which are known to build weakly hyperbolic models from hyperbolic ones.
We insist this does not mean the gPC limit is weakly hyperbolic. It only means in the limit in
which perturbative methods are relevant (i.e. the linear regime with small perturbations) the gPC
models allow recovering the same observables as perturbative ones.

In this section, we showed that gPC reduced models contain perturbation ones. Perturbation models
being used in order to study chaotic flows, we suggest trying to apply the gPC one in the same context.
This has been the object of paper [237] in an intrusive manner and of paper [243] in a non-intrusive one.
In the next chapter, we suggest revisiting the results published in [243].

7.2 Direct Numerical Simulation (DNS) acceleration via gPC

A Direct Numerical Simulation is a simulation in CFD in which the fluid model of interest, usually the
Navier-Stokes equation for incompressible fluid, the Euler equations with viscous tensor for compressible
ones, is numerically solved without turbulence model. The space and time scales must consequently
be explicitly resolved by the discretisation mesh. DNS corresponds to the branch of CFD ensuring
the highest fidelity solutions. Turbulence being inherently three dimensional, the computational cost
may be prohibitive in certain configurations, the highest the Reynolds number, the finer the grid. For
steady flows, intensive use of the ergodicity assumption of the solutions allows performing statistical
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treatment over time integration on one numerical experiment but the study of unsteady ones may imply
the resolution of a potentially high number of configurations (with different initial conditions). In this
sense, DNS for unsteady flows are very similar to the uncertainty quantification studies we considered
in this document.

We here aim at practically understanding the similarities and differences between DNS for turbulence
and uncertainty quantification: remember (section 3.1.2) Wiener in [295] explicitly built Homogeneous
Chaos in order to deal with turbulence problems, to build mathematical tools for which, by construction,
ergodicity is ensured. This chapter is only a very first step toward this understanding, probably even
the term DNS should not appear (accuse me of baiting the reader here... Maybe) as the performed
simulations we consider here are unsteady flows in 2D space dimensions (and not 3D) without viscous
effects. The viscous effects not being considered, we will focus on macroscale observable. We will never
conclude anything in term of energy dissipation within the mixing zones we will consider. The typical
observable will be the size the developing mixing zone/the growth of the initial perturbation. In fact,
our hypothesis here are not stronger than the one made applying perturbative methods to the same
configurations (see [151, 149, 150, 68, 206, 274, 276, 275, 39]). On the contrary, as testifies the previous
section, those hypothesis are even lighter than with perturbative theory as the reduced model is valid
also in the nonlinear regime (not only for a small initial perturbation δ, see section 7.1).

With the two above nonetheless strong hypothesis, we will compare calibrated results obtained with
the non-intrusive gPC approximations to experimental results (and to the ones obtained from a pertur-
bative reduced model).

In the next section, we begin by presenting the configurations and experiments of interest. They
correspond to Richtmyer-Meshkov shock tubes and are much more complex than the ’fil rouge’ problem
considered all along the previous chapters. An intrusive gPC study of such experiments in cylindrical con-
figurations has been published in [237]. We here focus on their planar counterparts with a non-intrusive
gPC (and i-gPC) application. Regarding the initial uncertain interface position, it will be modeled by
a stochastic process. Stochastic process often implies dimensionality issues (one random variable per
cell of the simulation, i.e. an increasing number of random variable with spatial discretisation). We
will present briefly the Karhunen-Loeve development allowing reducing the dimensionality of the uncer-
tainty quantification problem. We will also spend some time describing the physical model of interest
(multi-material Euler system) and defining the statistical observables we aim at recovering with our gPC
approximation. In [243], the calibration step and the resolution of a stochastic inverse problem has been
made by brute force methods. In [30],[31], we worked on Bayesian inference and were able to recover the
results of [243] with automated procedures. In this document, we do not detail Bayesian Inference and
the algorithm in order to solve a stochastic inverse problem, for them we refer to [30],[31].

7.2.1 The shock tube experiments and their initial conditions

Let us first describe the main general characteristics of a Richtmyer-Meshkov (RM) shock tube. Figure
7.2 presents its features: two fluids, one at rest (fluid 1 of figure 7.2), the other is shocked (fluid 0 of figure
7.2), are initially separated by a perturbed interface which we suggest to model by a stochastic process.
When the shock hits the interface between the fluids, hydrodynamic instabilities are developping creating

x

y

xshockxint(t = 0, y)xwall

Uncertainties

fluid 0 shocked fluid 0fluid 1 ⇐=

Figure 7.2: General scheme for the initialization of the RM shock tube.
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a mixing zone. In this paper, we aim at computing the growth rates of this mixing zone with respect
to time and at comparing the numerical results to the experimental ones. Figure 7.3 presents more

xshockxmean = 0xwall

shocked SF6SF6air

Vaujours: Mach = 1.45p = 23000 Pap = 23000 Pa, xwall = 0.3

Vaujours Atwood number = ρ0−ρ1

ρ0+ρ1
= 0.67

γ = 1.095
Cv = 600J.kg−1.K−1

γ = 1.095
Cv = 600 J.kg−1.K−1

T = 286K
v = 0 m.s−1

γ = 1.4
Cv = 721 J.kg−1.K−1

T = 286K
v = 0 m.s−1

⇐=

xshockxmean = 0xwall

shocked airairSF6

VS85: Mach = 1.5p = 23000 Pap = 23000 Pa, xwall = 0.62

VS87: Mach = 1.98p = 8000 Pap = 8000 Pa, xwall = 0.49

VS89: Mach = 1.24p = 40000 Pap = 40000 Pa, xwall = 1.1

CalTech VS Atwood number = ρ0−ρ1

ρ0+ρ1
= 0.67

γ = 1.4
Cv = 721J.kg−1.K−1

γ = 1.4
Cv = 721 J.kg−1.K−1

T = 286K
v = 0 m.s−1

γ = 1.095
Cv = 600 J.kg−1.K−1

T = 286K
v = 0 m.s−1

⇐=

Figure 7.3: Initial conditions for the four RM experiments from [244] (Vaujours) and [286] (Vetter
Sturtevant (VS)).

specifically the initial conditions of the shock tubes given in papers [244] (top) and [286] (bottom). Note
that in [286], the results are obtained with the same experimental device in three different configurations:
the same kind of fluids are used but for different volumes between the interface and the wall and different
Mach numbers, see figures 7.3.

In practice, some knowledge of the modeling of the uncertain interface should be gained from exper-
imental datas in order to statistically characterise the initial stochastic process. This knowledge is not
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provided in the considered papers [244, 286] as the authors probably did not imagine one would revisit
the experiments as an uncertainty quantification case. Consequently, we here face a calibration problem:
we have to find the stochastic process modeling the initial uncertain interface position recovering the
experiments. This has been done using brute force methods in [243] and more subtle ways, intensively
applying Bayesian inference, in [30],[31].

In the next section, we introduce a new way (in the document, not new in the literature) to represent
a stochastic process, called Karhunen-Loève (KL) expansions. They are very convenient especially when
one has a priori information on the stochastic process to represent, i.e. when one knows its covariance
kernel. We suppose it is the case for the initially uncertain interface position as in [237]. Practically, it
allows reducing the dimensionality of our uncertainty quantification problem ensuring an efficient use of
gPC in order to approximate the observables of interest for times t > 0. In a second section, we briefly
describe the multimaterial Euler system, recall its properties and present the chosen resolution scheme.
The stochastic counterpart of the system is solved non-intrusively with gPC5. In the last section, we solve
our stochastic model in RM configurations and compare our numerical results to experimental ones.

7.2.2 Stochastic dimension reduction for the initial Uncertain Interface Po-
sition

The initially uncertain interface position is modeled by a stochastic process. A stochastic process is a
collection of random variables indexed by a parameter y ∈ I ⊂ R, {Fy(ω), y ∈ I, ω ∈ Ω} and such that
for fixed y, Fy(ω) is a random variable. Here, y refers to the vertical component of the interface’s spatial
position (see figure 7.2).

If we apply a cartesian mesh on the configuration of interest on figure 7.2, especially in the vicinity of
the uncertain interface as in figure 7.4, we see that the realisations of the stochastic process cross several
cells. This produces as many random variables as cells crossed by the stochastic process. In practice,

The stochastic process has:

– mean µ(y) = µ in red on the picture.
It is constant along the y-axis in our
configurations.

– Variance σ2 describing the horizontal
fluctuations around the mean.

– Covariance C(y, z) describing how
points in the domain of fluctuations are
correlated.

Fy(ω)

Uncertainties

Grid

Figure 7.4: Description of the main statistical features of a stochastic process together with a resolution
mesh on one realisation of the uncertain interface. Each cell crossed by the stochastic process is a random
variable.

this leads to unaffordable stochastic dimension problems for a spectral method such as gPC. To give an
idea, the later computations have been performed with 1000 cells in the y-direction and at least 16 cells
to capture the initial interface position along the x-axis leading to a stochastic dimension of 16000. Such
high dimension problem can only be handled applying an MC method (see figure 5.2 and the discussion
of section 5.2.5) and is out of range for gPC.

In order to reduce the stochastic dimension, we rely on a Karhunen-Loeve decomposition. Suppose
we initially know the covariance kernel

K(y, ζ) = E[FyFζ ] =

∫
Fy(ω)Fζ(ω)dPX(ω), (7.16)

5as in [243] and we now know i-gPC confirms the results obtained with gPC, see [30].
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of the stochastic process modeling the initial uncertain interface position, see figure 7.4. This kernel partly
describes the statistics of the uncertain interface. A Karhunen-Loève expansion [269] of a stochastic
process having mean µ(y) and covariance K(y, ζ) defined by

Fy(ω) = µ(y) +

∞∑
n=1

Xn(ω)
√
λnen(y), (7.17)

is an approximation of the stochastic process Fy(ω)y∈I,ω∈Ω on a basis of orthonormal functions defined
by the eigenvectors6 (ei)i∈N and eigenvalues (λi)i∈N of the covariance operator

TKf(y) =

∫
K(ζ, y)f(ζ)dζ,∀f ∈ L2(I). (7.18)

The coefficients (Xn)n∈N are centered7 normalized8 orthogonal random variables defined by

∀i ∈ N, Xi(ω) = 1√
λi

∫
I

Fy(ω)ei(y)dy. (7.19)

In practice, (7.17) is truncated up to an orderQ which denotes the stochastic dimension of our uncertainty
propagation problem. Consequently, we consider an initial condition approximated by FQy (X(ω)) ≈
Fy(ω) where X = (X1, ..., XQ)t. If the stochastic process can be accurately represented with a Karhunen-
Loeve development with a reasonable size Q then the dimensionality of our problem is reduced and
spectral methods may be effective.

7.2.3 The Multimaterial 2D Euler system

In the next section, we describe the uncertain multimaterial 2D Euler system we solve non-intrusively
with a gPC approximation. The vector of unknowns is given by

U(x, y, t,X) =


ρ(x, y, t,X)α(x, y, t,X)
ρ(x, y, t,X)
ρ(x, y, t,X)u(x, y, t,X)
ρ(x, y, t,X)v(x, y, t,X)
ρ(x, y, t,X)e(x, y, t,X)

 ,

and explicitly depends on (x, y) ∈ D ⊂ R2, t ∈ [0, T ] ⊂ R+,∗ and X = (X1, ..., XQ)t. In the following
sections, the dependences with respect to x, y, t,X are not reminded for the sake conciseness. The
quantity α denotes the volume fraction of the fluids (equals to 0 for fluid 0 and 1 for fluid 1). The
quantity ρ is the mass density, u and v are the components of the velocity, e is the specific total energy

such that e = ε+ u2

2 + v2

2 with ε the specific internal energy. The different quantities are solutions of the
uncertain multimaterial Euler system closed with a multimaterial isobare perfect gas closure defined by

∂tρα+ ∂xρuα+ ∂yρvα = 0,
∂tρ+ ∂xρu+ ∂yρv = 0,
∂tρu+ ∂x(ρu2 + p) + ∂y(ρuv) = 0,
∂tρv + ∂x(ρuv) + ∂y(ρv2 + p) = 0,
∂tρe+ ∂x(ρue+ pu) + ∂y(ρve+ pv) = 0.

(7.20)

The first equation corresponds to a closure equation for the mixture model. The second equation corre-
sponds to the mass conservation, the third and fourth to the conservation of momentum and the last one
to the total energy conservation. The last equations are given by (7.21)–(7.22): we consider a perfect
gas closure (7.21)

p(ρ, ε, α) = (Γ(α)− 1)ρε, (7.21)

6the existence of these eigenvectors and eigenvalues is ensured by Mercer’s theorem, see [202].
7zero mean: E[Xn] = 0, ∀n ∈ N.
8standard deviation equals to 1: E[X2

n] = 1, ∀n ∈ N.
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relying on the additivity of the internal energies hypothesis at the interface together with an isobare
hypothesis (7.22)

Γ(α) = −γ0γ1 − γ1 + αγ1 − αγ0

−αγ1 − γ0 + 1 + αγ0
. (7.22)

System (7.20)–(7.21)–(7.22) is hyperbolic under conditions ε > 0 and 0 ≤ α ≤ 1. From a numerical point
of view, the system for a fixed random variable X is solved thanks to a 3rd order GAIA finite volume
scheme with TVD limiters. Every details concerning the deterministic numerical discretisation are given
in [154].

7.2.4 Observable of interest, Simulations and Comparisons with Experimen-
tal Results

Regarding the (statistical and physical) observable, we are obviously interested in the interface and its
instabilities. By essence, this observable is a discontinuity. On such quantity, gPC will provide a poor
convergence rate. The idea here is to slightly change the physical observable and consider a smooth one,
still related to the interface position and relatively relevant (i.e. without losing too much information),
on which spectral convergence will be bound to occur. For this reason, we are here interested in the size
of the mixing zone with respect to time. It has to be defined in term of probabilistic quantity. For this,
let us first denote by xint(t, y,X) the uncertain interface position9. The size of the mixing zone ∆xint(t)
must be averaged over the y-axis to obtain a scalar observable consistent with the information available
in the experimental papers [244, 286]. Finally it must be reinterpretated in term of statistical quantity:
we suggest defining the size of the mixing zone as the interval in which the probability of having xint is
beyond a certain threshold α. The quantity ∆xint(t) can then be expressed as

∆xint(t) =

∫
I

(xαmax(t, y)− xαmin(t, y))dy, (7.23)

in which xαmin and xαmax are such that

P(xint(t, y,X) ≤ xαmax(t, y)) = α, and P(xint(t, y,X) ≥ xαmin(t, y)) = α,
Fxint(t,y,X)(x

α
max(t, y)) = α, and Fxint(t,y,X)(x

α
min(t, y)) = 1− α,

leading to
xαmax(t, y) = F−1

xint(t,y,X)(α), and xαmin(t, y) = F−1
xint(t,y,X)(1− α).

In the above expression, xαmax and xαmin depends on xint(t, y,X), which will be approximated with
a gPC development by applying the materials of chapters 5 and 6: xint(t, y,X) ≈ xPint(t, y,X) =∑P
k=0 xint,k(t, y)ψk(X) where (xint,k)k∈{0,...,P} are the coefficients in the gPC basis obtained non-intrusively

(numerical integration). But before introducing this approximation, let us focus on their definitions:

Fxint(t,y,X)(x
α
max(t, y)) = α,∫

1]−∞,xαmax(t,y)](x)dPxint(t,y,X)(x) = α,∫
1]−∞,xαmax(t,y)](xint(t, y,X))dPX(X) = α.

(7.24)

In fact, xαmax and xαmin are both α−quantiles of the interface positions. A proportion of the interface
position will be below xαmax and another will be above xαmin. This is emphasized in figure 7.2.4: it
first shows one realisation of the interface (in fact it shows the volume fraction α(x, y, t = 12ms)).
The combination of (7.23) and (7.24) has to be compared to (3.1) and an attempt to apply Birkhoff’s
ergodic theorem: to evaluate certain quantities evolving with respect to time, we rely on averaging over
a multidimensional measure (integration with respect to dPX in (7.24)).

This was for the intention. Now, if we go back to more technical considerations, in (7.24) the interface
position stochastic process xint(t, y,X) is approximated by a gPC development, denoted by xPint(t, y,X).

9Note that xint(0, y,X(ω)) = FQy (X(ω)) ≈ Fy(ω).

134



α
(x
,y
,t

=
1
2m

s,
X
i 1

)
x

m
a
x
(y
,t

=
12
m
s,
X
i 1

),
x

m
in

(y
,t

=
12
m
s,
X
i 1

)
x

m
a
x
(y
,t

=
12
m
s,
X
i 1
,2
,3

),
x

m
in

(y
,t

=
12
m
s,
X
i 1
,2
,3

)
x
α m

a
x
(y
,t

=
12
m
s)

,
x
α m

in
(y
,t

=
12
m
s)

Figure 7.5: The top picture shows a zoom on the interface of one realisation Xi1 of a perturbed interface
(volume fraction α(x, y, t = 12ms,Xi1). The second one superposes the xαmax and xαmin of the interface
for this realisation. They are extracted and the same is done for other realisation (third picture with
three other realisations corresponding to Xi1 , Xi2 , Xi3). On the bottom picture, the α-quantiles are
represented and are obtained from (7.24).

Second point, in (7.24), the unknown is xαmax for a given α. In other words, we have to numerically
inverse relation (7.24) to obtain an estimation of xαmax(t, y) which stands for the upper extremity of the
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mixing zone for at time t and ordinate y. The same applies to xαmin, the lower one. To perform the
inversion, we rely on a Monte-Carlo (MC) sampling of X in the gPC metamodel/stochastic surogate
model/approximation xPint(t, y,X) and an evaluation of xαmax, x

α
min from the last line of (7.24).

Remark 7.1 Note that this study has been carried out before the introduction of i-gPC. Consequently,
care has been taken to approximate a relatively smooth observable with a gPC representation, in order
to take advantage of an efficient convergence rate. In [30], i-gPC has been applied in this same context
and recovered similar results. Due to the smoothness of the observable, i-gPC and gPC have the same
performances.

Now remains to apply the above material – i.e. modelization of an uncertain interface through a
stochastic process approximated by a KL expansion, resolution of the stochastic Euler (7.20) system at
quadrature points with GAIA scheme and approximation of the stochastic process for t > 0 thanks to
non-intrusive gPC – in order to approximate the uncertain position of the interface with respect to time.

Figure 7.6 shows the evolution of the size of mixing zones with respect to time: it presents a com-
parison between the experimental results of [244] (top) and [286] (bottom) and the numerical results
obtained by solving our stochastic model and computing (7.23). The circles correspond to the results
deduced from the experiments of [244, 286]. The size of the circles corresponds to an evaluation of the
confidence in the experimental results: some uncertainties are remaining, for example concerning the
temperature during the experiments10. Besides, the experimental mixing zone sizes are estimated from
pictures implying possible chronometry difficulties and measurement uncertainties plus our retranscrip-
tion errors11. Still, we suppose these remaining uncertainties can be neglected in comparison to the one
beared by the initial uncertain interface position.

The dotted points in figure 7.6 correspond to the numerical results – approximation of ∆xint(t) of
(7.23) – obtained by solving the stochastic Euler system with uncertain initial interface position with
non-intrusive gPC. The held covariance kernels used in the experiments are given by

KV aujours(x, y) = 0.002 exp

(
−|x− y|

2.5

)
, for [244], (7.25)

and by

KV S(x, y) = 0.002 exp

(
−|x− y|

0.8

)
, for [286]. (7.26)

We truncated the KL representations after the three main modes (Q = 3) and chose X as a vector
of three independent uniform random variables on [−1, 1]: this last choice is arbitrary as we can not
extract more information on the initial conditions from papers [244, 286]. The choice of a bounded
support is consistent with the fact that the uncertainty is very localized initially and the independency
hypothesis is convenient for computations. We used an order P = 3 in each stochastic directions for
the gPC development, leading to (P + 1)3 = (3 + 1)3 = 64 gPC coefficients (full tensor of the gPC
basis) estimated thanks to a full tensorization of the Gauss-Legendre quadrature rule, 3 points in each
stochastic directions leading to 27 deterministic independent runs of the code for one curve.

On figure 7.6 (left), two numerical curves are displayed obtained with a spatial discretisation of 8 and
16 cells per amplitude12 of the initial perturbation13. Both numerical results fit the experimental ones in
the linear regime together with the nonlinear one and can be considered converged: the difference between
the two curves can be explained by the use of an MC method in order to estimate the α−quantiles of
xPint(t, y,X). In other words, we experimentally observe a convergence behaviour for the observable of
interest once our methodology applied. Theoretical convergence have not been investigated in our context
but in a recent paper [109], the authors showed convergence results in some particular measured spaces
very similar to our application context. It certainly represents a good kickstart for eventual theoretical
analysis of our methodology.

10We fixed it to the ambient temperature (286 K).
11We obtained the plots by directly reading values on the figures of the considered publication [244, 286].
12respectively 500× 500 and 1000× 1000 cells.
13On these problems, the modal discretisation can be considered fully resolved.

136



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

time (s)

M
ix

in
g 

Z
on

e 
le

ng
th

 (
m

)

VAUJOURS shock tube (PTR)

 

 
Experiment
1D Euler + Linear 2D / 3D Perturbations
2D Euler + Stochastic surrogate model, 8 cells/ampl
2D Euler + Stochastic surrogate model, 16 cells/ampl

PTR98
Mach=1.45

0 0.005 0.01 0.015 0.02 0.025
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time (s)

M
ix

in
g 

Z
on

e 
le

ng
th

 (
m

)

CALTECH shock tube (VS)

 

 
Experiments
2D Euler + Stochastic surrogate model, 8 cells/ampl

VS89
Mach= 1.24

VS87
Mach= 1.98

VS85
Mach= 1.5

Figure 7.6: Comparisons between experimental (circles) and numerical (dots) results obtained with our
stochastic model. Top: experiment from [244] with initial conditions of figure 7.3 top-left. Bottom:
experiments from [286] with the initial conditions of figure 7.3 top-right, bottom-left and bottom-right.
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Figure 7.6 (right) shows the same kind of results obtained on the three shock tubes of paper [286].
We calibrated the model – looked for the kernel allowing to recover the experimental results – on the
second RM shock tube (VS85) and fed the two other studies (VS87 and VS89) with this same covariance
(7.26) as an initial uncertain interface position: these results show the model is predictive on experiments
obtained from the same experimental device.

For VS85 and VS87, the last experimental circles are not reached by our model. Several hypothesis
can be made in order to explain this: first, it is known that gPC suffers long term integration problems
[121, 292]. Besides, they can also be explained by 3D effects/flows. In this document, we only performed
2D simulations. We also considered initial uncertain interface positions with constant means which can
be restrictive14. Finally, we can not forget an eventual inaccuracy or more important uncertainty in the
experiments for high times. These hypothesis will be investigated in further publications.

7.3 Conclusion for the gPC application to chaotic flows

We have suggested a new process in order to predict the growth rates of mixing zones between two
fluids in RM shock tubes. The modelization relies on a reinterpretation of shock tube experiments as
uncertainty driven ones. This implies modeling the uncertain initial interface position by a stochastic
process and solving the stochastic Euler system rather than relying on a turbulence model (as in DNS).
The stochastic model and the statistics of the uncertain interface position with respect to time are
recovered by building their gPC approximations.

Numerical results are compared to experimental ones and show a good agreement provided the
parameters of the covariance kernel representing the initially uncertain interface position are known.
The use of Karhunen-Loeve development allows for an important dimensionality reduction permitting
the application of spectral methods. The new stochastic methodology seems predictive in the sense
calibrating one simulation with respect to one experiment allows the prediction of the other experiments
obtained with the same experimental device. The numerical results also presented a very interesting
convergence behaviour: it has been observed in the numerical experiments but not tackled theorically.
In [109], the authors surely bring a theoretical background to the above numerical results/experiments
and the paper represents a good starting point to new theoretical studies for our context. This can be
counted amongst the possible perspectives of this work as the previous study can even be interpreted
as an acceleration of the studies performed in [109] (together with comparisons to experiments). In this
context, the capability for gPC to accelerate Monte-Carlo computations will be demonstrated in section
9.12 of chapter 9 for the resolution of the linear Boltzmann equation.

Several important points have been tackled since the publication of the above material in [243]: first,
the new non-intrusive gPC based uncertainty propagation method, i-gPC, presented in chapter 6 (see
[238]) has been applied to the same problems in [30]. The i-gPC approximations gave the same results
as gPC, even for the later simulation times. This is mainly due to the smoothness of the observable.
Secondly, in [243], due to the lack of information on the features of the initial interface position, we
applied a brute force method in order to calibrate the covariance kernel describing the initial condition.
In [30], the same kinds of stochastic inverse problem have been successfully solved applying Bayesian
Inference. The methodology is described in [31]. It allows automatizing the calibration step. This last
one can even be accelerated using perturbative models for a fast calibration by fitting first the early
times before relying on the finer gPC one.

14as the pressure on the interface can be different at the center of the domain than at the boundaries for example.
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Chapter 8

Toward an application of
Cameron-Martin’s theorem (not
only its special case)

An attempt to apply the full version of Cameron-Martins’s theorem

Contents
8.1 An attempt to apply theorem 3.3: an i-gPC decomposition of the residue 139

8.1.1 Analysis of theorem 3.3 and comparison to theorem 3.4 . . . . . . . . . . . . . 139

8.1.2 i-gPC decomposition of the residue in an infinite integration accuracy context . 140

8.1.3 i-gPC decomposition of the residue in a finite integration accuracy context . . 142

8.2 Numerical Applications of the i-gPC decomposition of residue method . . 144

8.2.1 Some (hydrodynamically motivated) 1D test-problems . . . . . . . . . . . . . . 144

8.2.2 Some (well-known in the literature) multidimensional test-cases . . . . . . . . . 155

8.3 Summary for the i-gPC decomposition of the residue algorithm . . . . . . 159

The material of this chapter may appear singular. In the previous ones, especially in those dealing
with the non-intrusive application of generalized Polynomial Chaos, the convergence theorem invoked
to justify the mathematical legitimacy of the built gPC approximation was in fact the special case of
Cameron-Martin’s theorem (i.e. theorem 3.4). This has been briefly tackled in chapter 31 in which
we identified theorem 3.4 as the spectral counterpart of the Central Limit Theorem for Monte-Carlo
methods. In this chapter, we analyse the complete Cameron-Martin theorem 3.32 and build a new gPC
based approximation method from it. Of course, invoking theorem 3.3 instead of theorem 3.3 is of
poor interest if the gPC approximation obtained from the first one is accurate enough. But all along
the previous chapters, we identified regimes for which the convergence of the gPC approximation is
relatively slow. With i-gPC in chapter 6, we increased the accuracy of a gPC approximation3 but we
identified regimes (stagnation) for which the improved approximation still strongly relies on theorem
3.44. The i-gPC approximation can face two configurations, see inequalities (6.7)–(6.13), in a finite
numerical integration accuracy context:

1. Numerical integration accuracy is reached after several iterations (i.e. we have a negligible trun-
cation error): it corresponds to the ideal case as the number N of runs of the simulation code is

1and more precisely in section 3.1.3.
2instead of its special case 3.4.
3especially for discontinuous solutions.
4i.e. the polynomial order has to be increased in order to improve the accuracy.
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in general the limiting factor (costly codes) and they are consequently fully used/harnessed. An
illustration of this behaviour is presented in section 6.2.1.

2. The accuracy of the approximation stagnates after a certain iteration j0 and the truncation error
remains preponderant. Consequently some information is still available from the N simulations
points. An illustration is given in section 6.2.2.

We suggest here to revisit theorem 3.3 in order to improve the accuracy of the i-gPC approximation
when the second case is encountered (see the numerical example of section 6.2.2). This new method is
made possible by the use of i-gPC, this will be emphasized in the following discussion. This chapter
is the only one in part II in which systems of conservation laws are only mentionned5. Every test-
problems presented here are very simple ones. They are nonetheless motivated and built from difficulties
encountered in hydrodynamical configurations (some are presented in [31]). Note that the material of
this section has not been published in any paper.

8.1 An attempt to apply theorem 3.3: an i-gPC decomposition
of the residue

In this chapter, we are motivated by revisiting theorem 3.3 in order to build a new method, a new
algorithm, in order to improve the accuracy in case 2.) detailed above. For this, we first compare more
precisely theorem 3.3 and theorem 3.4 and identify a new degree of freedom which is yet waiting to be
exploited.

8.1.1 Analysis of theorem 3.3 and comparison to theorem 3.4

As explained before, the aim of this first section is to understand what has been neglected in the special
case theorem 3.4 with respect to the complete theorem 3.3. Let us first recall the notations of section
3.1.3: remember that for any functional u(f) satisfying the conditions of theorem 3.3, we have

||u(f)− uP (f)||2L2
C0([a,b])

=

∫ w

C0([a,b])

∣∣∣∣∣u(f)−
P∑

m1,...,mP

um1,...,mP Ψm1,...,mP (f)

∣∣∣∣∣
2

dwf <∞ −→
P−→∞

0. (8.1)

The coefficients um1,...,mP are the Fourier-Hermite coefficients defined by

um1,...,mP =

∫ w

C0([a,b])

u(f)Ψm1,...,mP (f)dwf,

and we introduced a more concise notation for both the norm on the space of u(f) and the P th order
approximation uP (f) of u(f). Now, we suggest plugging a new Q−dimensional functional g(f) satisfying
the condition of the special case (theorem 3.4) into (8.1). At this stage of the discussion, g is arbitrary.
We can write

||u(f)− uP (f)||2L2
C0([a,b])

= ||u(f)− g(f) + g(f)− uP (f)||2L2
C0([a,b])

. (8.2)

Now set g(f) = uP0(f) with P0 ∈ P such that g is a Q−dimensional polynomial of given maximal orders
Pi in each directions i ∈ {1, ..., Q}. With this obvious choice, we have

||u(f)− uP (f)||2
L2
C0([a,b])

= ||u(f)− g(f) + g(f)− uP (f)||2
L2
C0([a,b])

,

= ||u(f)− uP0(f) + uP0(f)− uP (f)||2
L2
C0([a,b])

,

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣u(f)− uP0(f)−

P∑
m1,...,mP
P>P0

um1,...,mP Ψm1,...,mP (f)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

L2
C0([a,b])

.

(8.3)

5and not solved.
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Introduce RP0(f) = u(f)− uP0(f), the residue in the above norm of the functional u(f) with respect to
the P th0 order approximation. Introduce also its P order polynomial approximation defined by

RP (f) =

P∑
m1,...,mP
P>P0

um1,...,mP Ψm1,...,mP (f).

Then RP (f) is a polynomial approximation of order P with increasing dimensions. By denoting by
ψq1,...,qP (f) a simple renumerotation of the previous basis Ψm1,...mP (f) which drops the Q first compo-
nents of Ψm1,...mP (f) at every polynomial orders, we obtain that RP (f) can be rewritten as

RP (f) =

P∑
q1,...,qP

rq1,...,qPψm1,...,mP (f).

As such, RP (f) is a converging approximation of the residue RP0(f) in a new basis, orthogonal to the
initial one: we have

||u(f)− uP (f)||2
L2
C0([a,b])

= ||RP0(f)−RP (f)||2
L2
C0([a,b])

−→
P−→∞

0, (8.4)

as the left hand side tends to zero with P .
The idea behind the comparison of both theorems/approximations is quite simple. The construction

of a new algorithm taking advantage of this idea is more complex. To be efficient, the iterative process
would have to reuse the initial experimental design and improve (or at least preserve) the accuracy
thanks to an approximation of the residue of the solution. The idea is also very close to the kriging-gPC
principle (see section 5.3.3) in which a gaussian process is introduced to approximate the residue.

8.1.2 i-gPC decomposition of the residue in an infinite integration accuracy
context

We aim at incorporating the remarks of the previous section into a new algorithm in order to improve
the approximation of an output with respect to an i-gPC development. Let X denote an input random
variable of known probability measure dPX and X −→ u(X) denote a transformation of X which we
want to estimate.

For the first step of our new method, we suggest applying first i-gPC6: let us denote by uPZ (Z) the
random variable obtained from the i-gPC approximation of u(X) where Z denotes the last random
variable of iteration Z = Zklast iteration of the i-gPC process. The second step consists in building the
residue R of the i-gPC approximation uPZ (Z) with respect to u(X), i.e.

R(X) = u(X)− uPZ (Z(X)). (8.5)

The idea now is to approximate it by its i-gPC development with initial gPC basis (φXk (X))k∈{0,...,P}.
This is made possible due to the fact that the initial gPC basis (φXk (X))k∈{0,...,P} is not necessarily
orthonormal to the final gPC basis obtained after several iterations of i-gPC. We denote by RPU (U) ≈ R
this i-gPC development where U denotes the last random variable of iteration U = Uklast iteration of the i-
gPC process. If we now consider the sum of random variables uPZ (Z)+RPU (U) then we have the following
result.

Property 8.1 With the previous notations, we have

||u(X)− (uPZ (Z) +RPU (U))||L2(Ω) ≤ ||u(X)− uPZ (Z)||L2(Ω). (8.6)

Consequently, a new iterative approximation method is built. It enriches, for fixed polynomial order P ,
the number of random components of the gPC basis (it now depends on Z and U and not only on Z)
as suggested by the complete Cameron-Martin’s theorem 3.3. Note that the enrichment is only additive
for the moment (we do not consider high order cross products of uPZ with RPU for example).

6which suppose applying first gPC.
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Proof In order to prove the previous property, let us expand (8.6) into

||u(X)− (uPZ (Z) +RPU (U))||2L2(Ω) = ||u(X)− uPZ (Z)||2L2(Ω) + ||RPU (U))||2L2(Ω)︸ ︷︷ ︸
Γ1

−2E
[
(u(X)− uPZ (Z))RPU (U))

]︸ ︷︷ ︸
Γ2

.
(8.7)

By definition of the i-gPC development of the residue R, we have

R ≈ RPU (U) =

P∑
k=0

rUk φ
U
k (U), (8.8)

with (φUk (U))k∈N the orthonormal basis with respect to dPU and ∀k ∈ {0, ..., P}

rUk = E[RφUk (U)] =

∫
R(F−1

X (FU (u)))φUk (u)dPU (u). (8.9)

In the previous expression, FX and FU are the cdfs of the random variables X and U . Consequently, we
have

Γ1 =

∫
(RPU (u))2dPU (u) =

P∑
k=0

(rUk )2 ≥ 0. (8.10)

Besides, using the definition of R = u(X)− uPZ (Z) and (8.8) one has

Γ2 = E[R×RPU (U)],

=

P∑
k=0

∫
R(F−1

X (FU (u)))rUk φ
U
k (u)dPU (u),

=

P∑
k=0

rUk E[RφUk (U)] =

P∑
k=0

(rUk )2,

= Γ1.

(8.11)

Finally we get

||u(X)− (uPZ (Z) +RPU (U))||2L2(Ω) = ||u(X)− uPZ (Z)||2L2(Ω) − Γ1, (8.12)

with Γ1 ≥ 0 so that

||u(X)− (uPZ (Z) +RPU (U))||2L2(Ω) ≤ ||u(X)− uPZ (Z)||2L2(Ω). (8.13)

This ends the proof. �

The new iterative approximation is not canonical in the sense the inequality in (8.6) is not strict and
the approximation may stagnate. Some additional (regularity) hypothesis may allow identifying regimes
for which the inequality is strict but as we aim at applying the approach to general applications. We
consequently prefer keeping this general statement. Before studying any stagnation regime, the numerical
analysis of i-gPC performed in the previous chapter showed it is important considering finite numerical
integration accuracy prior to other considerations7. This is done in the next section. Nonetheless,
inequality (8.6) shows what can be expected asymptotically with accurate integration techniques and
seems interesting enough to go on in this direction.

7due to the possible appearance of numerical instabilities.
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8.1.3 i-gPC decomposition of the residue in a finite integration accuracy
context

This section is the finite integration accuracy counterpart of the previous one. It may appear redondant
and the reader not interested in the proof could directly skip this part and consider directly property
8.2. For the interested reader, the proof gives hints at how intertwined integration and truncation errors
may perturb the new algorithm.

As in the previous parts, suppose X denotes an input random variable of known probability measure
dPX . Let u(X) denote a transformation of X which we want to approximate. To do so, we suggest
applying first i-gPC: let us denote by uPZN (ZN ) the random variable obtained from the i-gPC approx-
imation of u(X) where ZN denotes the last random variable of iteration ZN = ZN,klast iteration of the
i-gPC process. The second step of our decomposition consists in approximating the residue RN of the
i-gPC approximation uPZN (ZN ) with respect to u(X),

RN = u(X)− uPZN (ZN ). (8.14)

To do so, we apply i-gPC approximation with respect to the initial gPC basis (φXk (X))k∈{0,...,P}. For
numerical integration, we rely only on the initial experimental design (Xl, wl)l∈{1,...,N}, just as for i-gPC
in the previous chapter. We build the residue at these points

(RN (Xl), wl)l∈{1,...,N} = (u(Xl)− uPZN (ZN (Xl)), wl)l∈{1,...,N}.

Now, we denote by RPUN (UN ) ≈ RN the i-gPC development of the residue RN where UN denotes the
last random variable of iteration UN = UN,klast iteration of the i-gPC process. By considering the sum of
random variables uPZN (ZN ) +RPUN (UN ) then we have the following results.

Property 8.2 With the previous notations and considering finite numerical integration accuracy, we
have

||u(X)− (uPZN (ZN ) +RPUN (UN ))||L2(Ω) − ||u(X)− uPZN (ZN )||L2(Ω) = eU
N ,N

p

−
P∑
k=0

(rU
N

k )2.
(8.15)

The term eU
N ,N

p is the projection error of the i-gPC approximation of the residue.

Of course, asymptotically (infinite integration accuracy), we recover the inequality (8.6) and the approx-
imation uPZ (Z) +RPU (U) ensures a gain with respect to the i-gPC approximation uPZ (Z).

Proof Let us expand the first term in (8.15) into

||u(X)− (uPZN (ZN ) +RPUN (UN ))||2L2(Ω) = ||u(X)− uPZN (ZN )||2L2(Ω) + ||RPUN (UN ))||2L2(Ω)︸ ︷︷ ︸
ΓN1

−2E
[
(u(X)− uPZN (ZN ))RPUN (UN ))

]︸ ︷︷ ︸
ΓN2

.
(8.16)

By definition of the i-gPC development of the residue, we have

RN ≈ RPUN (UN ) =

P∑
k=0

rU
N ,N

k φU
N

k (UN ), (8.17)

with (φU
N

k (UN ))k∈N the orthonormal basis with respect to dPUN . Besides, ∀k ∈ {0, ..., P} we have

rU
N

k = E[RφU
N

k (UN )] =

∫
R(F−1

X (FUN (u)))φU
N

k (u)dPUN (u). (8.18)
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It holds also for its approximation

rU
N ,N

k =

N∑
k=1

RN (F−1
X (FUN (Xi)))φ

UN

k (UN (Xi))wi,

rU
N ,N

k =

N∑
k=1

(u(Xi)− uP,NZN (ZN (Xi)))φ
UN

k (UN (Xi))wi.

(8.19)

Once again, FX and FUN are the cdfs of the random variables X and UN . Consequently, we have

ΓN1 =

∫
(RPUN (u))2dPUN (u) =

P∑
k=0

(rU
N ,N

k )2 ≥ 0. (8.20)

Using the definition of R = u(X)− uPZN (ZN ) and (8.17) one has

ΓN2 = E[RN ×RPUN (UN )],

=

P∑
k=0

∫
RN (F−1

X (FUN (u)))rU
N ,N

k φU
N

k (u)dPUN (u),

=

P∑
k=0

rU
N ,N

k E[RφU
N

k (UN )] =

P∑
k=0

rU
N

k rU
N ,N

k .

(8.21)

Let us introduce the projection error on the residue

(eU
N ,N

int,P )2 =

P∑
k=0

(rU
N

k − rU
N ,N

k )2 = ΓN1 +

P∑
k=0

(rU
N

k )2 − 2ΓN2 . (8.22)

Finally we get

||u(X)− (uPZN (ZN ) +RPUN (UN ))||2L2(Ω) = ||u(X)− uPZN (ZN )||2L2(Ω)

+(eU
N ,N

int,P )2 −
P∑
k=0

(rU
N

k )2,
(8.23)

which ends the proof. �

Inequality (8.15) is the basis of a new iterative algorithm which adds random variables in the approxi-
mation basis just as the complete Cameron-Martin’s 3.3 may suggest. Suppose we perform K iterations
for the i-gPC decomposition of the residue, and suppose for the transformation of interest the inequality
in (8.6) is strict, then one has

uPZN (ZN ) +

K∑
k=1

RPUN,k,k(UN,k) −→
K→∞
N→∞

u(X).

If the inequality is not strict, one can still rely on convergence with respect to P .

Regarding finite numerical integration, according to property 8.2, the accuracy of the approximation
is increased under some condition (see the proof) on the terms ΓN1 and ΓN2 , intertwining integration

and truncation errors. Of course, this condition is not always ensured and the projection error (eU
N ,N

int,P )2

may become preponderant in comparison to
∑P
k=2(rU

N

k )2. This is the case when numerical integration
accuracy is reached. Consequently, if we do not want the approximation error to potentially increase after
some iteration, we once again have to stop it before the projection error becomes preponderant in (8.6).
The main reason this part of the document does not appear amongst my list of publications comes from
the fact that I did not have the time to study the intrications of the aliasing errors between integration
and truncation in the previous inequality. The second reason comes from the rate of convergence with
respect to the new parameter (number of variables for the approximation): (8.6) tells an improvement
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may be obtained but we have no information concerning the convergence rate of the approximation. As
will be presented (experimentally) in the following examples, the gain is slow with respect to K. For
i-gPC, the convergence rate was also not available but at least the experimental tests on benchmarks
gave very satisfying results in some cases (discontinuity). Nonetheless, I suggest presenting results on
some applications in section 8.2. I had resort to arbitrary considerations for the stopping criterion. They
are probably not optimal: the iterative process is stopped when the L2-norm at the sampled points
between two iterations is greater than the L2 of the approximation at the experimental design points.
This criterion is applied when the overall polynomial order becomes greater than the number of points
(see chapter 5 and section 5.2). This corresponds to a very simple heuristic criterion which gives the
results obtained in the following sections and allows degenerating toward i-gPC and even gPC when the
integration accuracy is not good enough.

8.2 Numerical Applications of the i-gPC decomposition of residue
method

In this section, we suggest revisiting the problem of section 6.2.2 applying the new iterative approach
before considering two other difficult test-cases inspired by compressible gas dynamics problems [31].

8.2.1 Some (hydrodynamically motivated) 1D test-problems

Let us begin with the problem of section 6.2.2.

Smooth Solution: Legendre Polynomial

We consider the test-case of section 6.2.2 which motivated the introduction of the new approximation
due to a stagnation of the i-gPC process. We recall X ∼ U([−1, 1]) and u(X) is defined by

u(x) = PX0 (x) + PX3 (x) + PX10(x), (8.24)

where PXn is a one-dimensional Legendre polynomial of order n associated to the random variable X. If
P = 10 then classical gPC, i-gPC and the new i-gPC residue based approaches are exact (up to numerical
integration accuracy). In general, one does not have a priori estimations of the truncation order needed.
In this section, we deliberately choose to underestimate the truncation order (we systematically take
P < 10) and apply the new method.

Figure 8.1 presents the results obtained with the new i-gPC residue based approach for different
truncation order, a level k = 8 of Clenshaw Curtis rule, i.e. N = 257 points, and a total of 40 successive
approximations of the residue. We choose, first, to take a quite important number of points in order
to have an idea of what can be asymptotically reached and remain in the conditions of property 8.1.
Figure 8.1(b) presents a convergence study with respect to the number of residue iterations for several
polynomial orders P . The first iteration corresponds to the gPC results, the second one to the i-gPC
results and the followings to the proper iterations of the i-gPC/residue method. As expected, see theorem
8.1, the accuracy of the approximation increases with the iterations on the residue when the numerical
integration accuracy is controlled. The new method allows a gain of about a decade on this test-case.
The fact that numerical integration accuracy might be reached for some polynomial orders is tricky to
verify experimentally. Note that the convergence curves are not anymore monotonic with respect to P :
for example, P = 6 gives better results than P = 8 or P = 9 (parity/imparity or quality of the quadrature
reached?). Figure 8.1(a)–8.1(c)–8.1(d) presents the approximations obtained from gPC, i-gPC and the
i-gPC/residue approach for polynomial orders P = 4, P = 5 and P = 6. For the three orders P , the gPC
approximations consists in the same polynomial of order P = 3. The i-gPC approximations are slightly
different for the different orders: the iterative approach, for the different orders, does not explore exactly
the same approximation spaces. Nevertheless, even with i-gPC, the improvement is small due to the fact
that after few iterations of i-gPC, the basis built at each iterations are orthogonal to the residue of the
solution. The i-gPC/residue approximation, on another hand, present very different results. First, note
that for each polynomial orders, the i-gPC/residue approximations allows recovering the three modes of
the solution. Depending on the truncation order P (at this fixed quadrature level), spurious modes of
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Figure 8.1: Comparisons between the results obtained from gPC, i-gPC and i-gPC/residue for P = 4,
P = 5, and P = 6 on problem (8.24). The top right picture shows convergence curves with respect to
the number of residue iterations.
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(a) Analytical and gPC approximation (b) Analytical and i-gPC approximation

(c) Analytical and i-gPC/residue approximation

Figure 8.2: Histograms of the pdfs of the gPC, i-gPC and i-gPC/residue approximations with P = 6 for
problem (8.24).
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different amplitudes are introduced, see 8.1(a) and 8.1(c). Figure 8.2 presents histograms of the pdfs of
the gPC, i-gPC and i-gPC/residue approximations for P = 6. On this test-case, gPC and i-gPC both
leads to approximations of the histograms which could lead to bad interpretations of the results: for
both representations, the statistic is not recovered. The new method, on the contrary, even if generating
spurious modes, allows recovering the statistical properties of the solution with an interesting agreement.

Same example with a smaller experimental design: Nq = 65

Figure 8.3 presents the same results as previously but in a more realistic context in the sense we take
only 65 integration points. Figure 8.3(a) and 8.3(b) presents the comparison between the gPC, i-gPC
and i-gPC/residue approximations for P = 5 and P = 6. The gPC and i-gPC approximations are only
slightly affected by the loss in the numerical integration accuracy: this is due to the fact that for both
representations, the truncation error remains preponderant with respect to the projection error. On the
contrary, the i-gPC/residue approach is affected by this same loss of accuracy: for example, for P = 6,
more spurious modes appear in the low resolution approximation of picture 8.3(b) than on picture 8.1(d).
The i-gPC/residue approximation on this test-problem may allow tackling the projection error. Figure
8.3(c)–8.3(d)–8.3(e) present the histograms of the pdfs of the three approximations for P = 6. Note that
even if the i-gPC/residue approximation with Nq = 65 points introduces more spurious modes than the
one with Nq = 257, the approximation allows a good statistical interpretation.

First test-case inspired by compressible gas dynamics

Let us consider a new test-case inspired by what can be expected solving uncertainty propagation prob-
lems in compressible gas dynamics flows8, see [31]. The considered test-function consists in a constant
state and an affine state both separated by a discontinuity:

u(x) =

{
1 if x ≤ 0,
ax if x > 0.

(8.25)

In this section, we take a = −0.3. The test-case is difficult in the sense the solution is not anymore
piecewise constant but piecewise polynomial. In fact, the solution exhibits a mixed behaviour with a
discrete part and a uniform one. One simple way to represent the solution consists in writing u(X) =
p0U[0,1] + p1δu=1. In the previous expression, p0 + p1 = 1, and p0 = p1 = 1

2 . They are the probability
for the solution to be represented by a uniform random variable or a Dirac in 1. Figure 8.4 presents
comparisons between the analytical solution and the gPC, i-gPC and i-gPC/residue approximations for
different truncation orders P . Figure 8.4(b) shows a convergence study of the i-gPC/residue method with
respect to the number of residue iterations. The first iteration corresponds to the gPC results, the second
one to the i-gPC results and the following ones to the proper iterations of the i-gPC/residue method. Once
again, the different iterations/applications of i-gPC on the residue of the solution ensure a gain in accuracy
up to a stagnation occuring at the 12th iterations for almost every polynomial orders P . Almost one
decade is gained with respect to gPC and i-gPC applying this i-gPC/residue approach. The convergence
with respect to P of the new approach is not monotonic. Figure 8.4(a)– 8.4(c)– 8.4(d) compares the
different methods for truncation orders P = 4, P = 5 and P = 6. For the three orders, gPC leads to very
oscillating approximations and poorly represents the solution, the discontinuity is not captured neither
the affine part. The i-gPC approximations allows capturing the discontinuous counterpart of the solution
but miss the affine part. See figure 8.4(c) for example, the i-gPC approximations behaves as a piecewise
constant approximation rather than a piecewise polynomial one. The i-gPC/residue approach now allows
capturing both counterparts of the solution, the discontinuity, mainly captured by application of i-gPC
in the early steps, and the affine one during the other iterations. The new approach introduces once
again spurious modes but we insist on the fact that these spurious modes do not prevent from having
a good statistical interpretation of the solution. This is emphasized in figure 8.5 where we consider
the histograms of the pdfs of the approximations for P = 4. Figure 8.5(a) compares the histograms of
the pdfs for the analytical solution together with the one obtained from the gPC approximation. The
statistics of the solution is missed by the approximation method. Figure 8.5(b) compares the histograms

8In this section, we do not solve Euler system, we rely on built function mimicing complex behaviours in compressible
gas dynamics flows, see [31].
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Figure 8.3: Stochastic representations and histograms of the pdfs of the solution in low resolution context
(Nq = 65) for problem (8.24).
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Figure 8.4: Comparisons between the results obtained from gPC, i-gPC and i-gPC/residue for P = 4,
P = 5, and P = 6 on problem (8.25). The top right picture shows convergence curves with respect to
the number of residue iterations.
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(a) Analytical and gPC approximation (b) Analytical and i-gPC approximation

(c) Analytical and i-gPC/residue approximation

Figure 8.5: Histograms of the pdfs of the gPC, i-gPC and i-gPC/residue approximations with P = 5 for
problem (8.25).
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of the pdfs for the analytical solution together with the one obtained from the i-gPC approximation.
The method allows capturing the discontinuity and the probability p1 = 1

2 of the event u = 1 with a
good agreement (Dirac mass at u = 1). On the other hand, the uniform part of the random variable
is not well represented. Consider the i-gPC/residue approximation, figure 8.5(c) shows that both the
uniform part and the discrete one are well estimated with the good probabilities despite the introduction
of spurious modes.

Same example with a smaller experimental design: Nq = 65

Figure 8.6 presents the same results as previously but in a more realistic context in the sense we take only
65 integration points. Figure 8.6(a) and 8.6(b) presents the comparison between the gPC, i-gPC and
i-gPC/residue approximations for P = 5 and P = 6. The gPC approximations are only slightly affected
by the loss in the numerical integration accuracy. This is due to the fact that for these representations,
the truncation error remains preponderant with respect to the projection error. On the contrary, the
i-gPC and i-gPC/residue approaches are affected by this same loss of accuracy. Both representations for
both polynomial orders have more spurious modes on pictures 8.6(a)–8.6(b) in comparison to pictures
8.4(a)–8.4(d). Once again, by considering figures 8.6(c)–8.6(d)–8.6(e) we aim at emphasizing that even
with the appearance of spurious modes for the new i-gPC/residue approach, the histograms of the pdfs
of the approximations allow a good statistical interpretation.

Second test-case inspired by compressible gas dynamics

We once again consider a test-case inspired by what can be expected solving uncertainty propagation
problems in compressible gas dynamics flows (Euler system), see [31]. The expression of the test-function
is as follows:

u(x) =

 u0 if x ≤ x0,
u1 if x0 < x ≤ x1,

u1 + (x− x1)2 if x1 < x.
(8.26)

In this section, we choose u0 = 0, u1 = 1, x0 = −0.6 and x1 = −0.3. In term of Euler system, this
test-case can be interpreted as a shock interacting with a rarefaction fan, see [31]. In term of random
variable, u(X) can be viewed as the sum of a discrete random variable δu=u0=0 with probability p0

and δu=u1=1 with probability p1 and another continuous random variable which we denote by C with
probability p2 so that

u(X) = p0δu=u0
+ p1δu=u1

+ p2C.
The data of the problem are such that p0 = 0.2, p1 = 0.15 and p2 = 0.65.

Figure 8.7 presents the results obtained with the new i-gPC residue based approach for different
truncation order, a level k = 8 of Clenshaw Curtis rule, i.e. N = 257 points, and a total of 50 successive
approximations of the residue. Figure 8.7 presents comparisons between the analytical solution and the
gPC, i-gPC and i-gPC/residue approximations for different truncation orders P . Figure 8.7(b) shows a
convergence study of the i-gPC/residue method with respect to the number of residue iterations. The
first iteration corresponds to the gPC results, the second one to the i-gPC results and the followings to
the proper iterations of the i-gPC/residue method. Once again, the different iterations/applications of
i-gPC on the residue of the solution ensure a gain in accuracy up to a stagnation occuring at different
iterations depending on the polynomial order P . Once again, almost one decade is gained with respect to
gPC and i-gPC applying this i-gPC/residue approach and the convergence with respect to P of the new
approach is not monotonic. Figure 8.7(a)– 8.7(c)– 8.7(d) compares the different methods for truncation
orders P = 4, P = 7 and P = 8. For the three orders, gPC leads to very oscillating approximations
and poorly represents the solution, the discontinuity is not captured neither the continuous part. The
i-gPC approximations allows capturing the discontinuous counterpart up to a certain polynomial order.
For example, for P = 4, on figure 8.7(a), i-gPC is not much more accurate than gPC whereas for P = 7
and P = 8 on figure 8.7(c)–8.7(d), i-gPC allows capturing the discontinuous state. On the other hand,
i-gPC does capture accurately the continuous part of the random variable for P = 4 whereas it does
less accurately for high orders P = 7 and P = 8 (appearance of small oscillations in the continuous
part of the curves on figures 8.7(c)–8.7(d)). The i-gPC/residue approach now allows capturing both
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Figure 8.6: Stochastic representations and histograms of the pdfs of the solution in low resolution context
(Nq = 65) for problem (8.25).
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Figure 8.7: Comparisons between the results obtained from gPC, i-gPC and i-gPC/residue for P = 4,
P = 5, and P = 6 for problem (8.26). The top right picture shows convergence curves with respect to
the number of residue iterations.
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(a) Analytical and gPC approximation (b) Analytical and i-gPC approximation

(c) Analytical and i-gPC/residue approximation

Figure 8.8: Histograms of the pdfs of the gPC, i-gPC and i-gPC/residue approximations with P = 7 for
problem (8.26).
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counterparts of the solution for every orders P = 4, P = 7 and P = 8, see figures 8.7(a)–8.7(c)–
8.7(d), despite the appearance of spurious modes for low order P = 4 on figure 8.7(a). Figure 8.8
compares the histograms of the pdfs for the analytical solution together with the ones obtained from the
different approximation. Figure 8.8(a) compares the histograms of the pdfs for the analytical solution
together with the one obtained from the gPC approximation. The method does not allow capturing the
discontinuity and the probability p0 = 0.2 of the event u = u0 = 0. On the other hand, the continuous
part of the random variable is quite well represented. The i-gPC representation for this test-case ensures
the discrete part of the random variable is recovered accurately (p0 = 0.2 for u = u0 = 0). On the other
hand, the continuous part of the random variable is not well resolved, see figure 8.8(b). Consider the
i-gPC/residue approximation, figure 8.8(c) shows that both the continuous part and the discrete one are
well estimated with the good probabilities despite the introduction of spurious modes.

Same example with a smaller experimental design: Nq = 65

Figure 8.9 presents the same results as previously but in a more realistic context in the sense we take
only 65 integration points. Figure 8.9(a) and 8.9(b) presents the comparison between the gPC, i-gPC
and i-gPC/residue approximations for P = 7 and P = 8. Once again, the gPC approximations are
only slightly affected by the loss in the numerical integration accuracy. This is due to the fact that for
these representations, the truncation error remains preponderant with respect to the projection error.
On the contrary, the i-gPC and i-gPC/residue approaches are affected by this same loss of accuracy.
Both representations for both polynomial orders slightly miss the discontinuity position. For this test
case, even if the number of points is less important than previously, the representations do not exhibit
more important spurious modes pictures 8.9(a)–8.9(b) than on pictures 8.7(c)–8.7(d). Figures 8.9(c)–
8.9(d)–8.9(e) present the histograms of the pdfs of the three approximations for P = 7. On figure 8.9(c),
the gPC approximation allows a good agreement for the continuous part of the random variable. On
the other hand, the discrete counterpart with the two Dirac masses δu=u0 and δu=u1 is missed. On the
contrary, in the same conditions, the i-gPC approximation allows a good representation of the discrete
part of the random variable but misses the continuous one. The i-gPC/residue approach allows taking
advantage of both representations with an interesting agreement on both parts of the random variable.

8.2.2 Some (well-known in the literature) multidimensional test-cases

In this section, we apply the i-gPC/residue approach to multidimensional test-cases, the g-function of
Sobol which is a well-known benchmark in sensitivity analysis, see [36, 254].

This function is in fact very similar to the C0 CONTINUOUS integrand of the Genz package of testing
functions [120]. The model is

Y =

Q∏
i=1

|Xi|+ ai
1 + ai

, with ∀i ∈ {1, ..., D}, ai ≥ 0, (8.27)

where the (Xi)i∈{1,...,D} are independent identically distributed uniform random variables on [−2, 2] (as
in [254]). For this model, the mean and variance can be determined exactly

Ȳ = 1,

Var(Y ) =

Q∏
i=1

(
1

3(1 + ai)
2

)
− 1.

(8.28)

Parameter ai controls the stiffness of the model. Lower values of ai have the tendency to increase the
discontinuity jump of the absolute value derivative profile, while higher values tend to decrease it.

Sobol in 2 D

We choose first a Q = 2 dimension Sobol’ function and we test a stiff isotropic problem by taking
~a = (a1, a2) = (0, 0). Figure 8.10 presents the results on the 2-D Sobol g-funtion. Figure 8.10(b)
shows the convergence curves with respect to the number of iterations on the residue. The first point
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Figure 8.9: Stochastic representations and histograms of the pdfs of the solution in low resolution context
(Nq = 65) for problem (8.26).
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corresponds to the application of gPC, the second one to the application of i-gPC and the following ones
to the different iterations on the residue. The method ensures a gain with respect to both gPC and
i-gPC, even if this gain is less important than on the other test problems. Figure 8.10(a)–8.10(c)–8.10(d)
compares the histograms of the pdfs of the approximations to the analytical one. The gain is visible
from applications of gPC, i-gPC and the i-gPC/residue methods.

Sobol in 5 D

We choose aQ = 5 dimension Sobol’ function and we test an isotropic problem with ~a = (a1, a2, a3, a4, a5) =
(0.5, 0.5, 0.5, 0.5, 0.5) so that every stochastic dimensions have the same importance. Figure 8.11 presents

(a) gPC
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Figure 8.11: Comparisons between the results obtained from gPC, i-gPC and i-gPC/residue for P = 3
for problem (8.28) in 5-D. The top right picture shows convergence curves with respect to the number
of residue iterations.

the results on the 5-D Sobol g-funtion. Figure 8.11(b) shows the convergence curves with respect to the
number of iterations on the residue. The first point corresponds to the application of gPC, the second
one to the application of i-gPC and the followings to the different iterations on the residue. The method
ensures a gain with respect to both gPC and i-gPC. Figure 8.11(a)–8.11(c)–8.11(d) compares the his-
tograms of the pdfs of the approximations to the analytical one. The gain is visible from applications
of gPC, i-gPC and the i-gPC/residue methods. On this test-case, both gPC and i-gPC do not allow
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recovering the statistics of the solution. On the other hand, the i-gPC/residue approach does.

8.3 Summary for the i-gPC decomposition of the residue algo-
rithm

In this chapter, we wanted to highlight the fact that for uncertainty quantification applications, Cameron-
Martin’s theorem has probably not been fully taken advantage of in term of approximation algorithm.
We wanted to insist on the fact that some parts of it are not invoked through the gPC algorithm pre-
sented in the literature.

The i-gPC decomposition of the residue algorithm presented in this chapter is one way to put forward
the above fact but it may not represent a new viable alternative to gPC or i-gPC. As can be seen
experimentally in the previous applications, the convergence rate of the i-gPC/residue approximations
remains relatively slow with respect to the increase of the number of degree of freedom (number of residue
approximations). For small but realistic experimental designs N , the stopping criterion is activated
immediately after few iterations and the i-gPC/residue method degenerates toward i-gPC. The quality
of the approximation is not really improved with respect to i-gPC. This testifies that the regime of
interest is probably not yet well identified hence not captured. This is mainly why this chapter has not
been submitted for publication and why the term attempt is emphasized in its title. Nonetheless, we
wanted to document this attempt as its elaboration (which is probably a dead end) made us realize
and understand some aspects of both publications [295] and [55]. For example, the relation between
Cameron-Martin’s theorem and Wiener’s homogeneous Chaos is not straightforward as the ergodicity
property omnipresent in Wiener’s paper is not explicit in Cameron-Martin’s one. This ergodicity notion
may be recovered in [55] through the summation over a set of increasing number of random variables.
It may echo the possibility to average in the direction of increasing random variables Q rather than
in the direction of increasing polynomial orders P . I insist here that regarding ergodicity, I may have
made wrong statements along the document. I am not expert with this notion but I am more and more
interested by this property and aware of what can be cast behind it.
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Monte-Carlo schemes for the
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Chapter 9

Monte-Carlo methods for the linear
Boltzmann equation

An old topic (once again...) revisited
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The linear Boltzmann equation corresponds to limit (1.30) of the Boltzmann equation (1.1). It models
the behaviour of particles in a background collisional media. Its linear aspect neglects particle-particle
interactions and assumes only particle-matter collisions, matter being unaffected by the particle flow. It
is particularly relevant for physical particles of weights way smaller than the constituants of the matter
(i.e. neutrons versus (big) atoms, photons versus electrons etc.), see chapter 1. This class of PDE is very
efficient in order to describe the mean behaviour of an important number of particles1. The unknown
of the equation is the density of particles u(x, t,v) ≥ 0 having position x ∈ D ⊂ R3, at time t ∈ [0, T ]
and velocity v ∈ R3. Such models can be used for neutronics applications [268, 173], photonics [203, 59],
plasma physics [29, 24, 25], population dynamics [223] and so on. At some stage of the discussion, we
may consider u(x, t,v) = u(x, t, v, ω) depending on energy2 |v| = v ∈ R+ and with angle v

v = ω ∈ S2.

Many deterministic resolution schemes are available for this equation, such as Kinetic ones [27], Pn
[281, 196, 136, 141, 116], Mn [93, 226, 47, 137, 94, 133, 228, 279, 214, 227, 8], Sn [16, 92, 61, 116, 56]. In
this part of the document, the unknown u depending on 3(x) + 1(t) + 3(v) = 7 variables, we consider the
resolution of the linear Boltzmann equation to be a high dimensional problem. We consequently focus
on Monte-Carlo resolution schemes. The direct consequence of such a choice is (see [165]) mainly having
a numerical method whose convergence rate is independent of the regularity of the solution and of the

number of variables but relatively slow, O
(

1√
NMC

)
where NMC denotes the number of simulated MC

particles (the term MC particle will be defined later in the document).

The aim of this chapter is to present the general construction of an MC scheme for the resolution of
the linear Boltzmann equation. We explain how the description of an MC scheme resumes to identifying
several samplings. The way the MC schemes are built ensures their convergence according to theorem
3.2.1 of [165] for any linear Boltzmann equations (inductive reasoning and verification). In this chapter
we present the most common MC schemes and even suggest some original ones (see section 9.6). We
detail the construction of

– the non-analog scheme, used mainly in photonic applications,

– the semi-analog3 one, intensively used for neutronics applications,

– and the analog4 scheme, applied mainly in order to estimate probabilities of extinction of a popu-
lation of particles (small number of physical particles).

Every schemes aim at (at least) approximating the density of particle u(x, t,v), ∀x ∈ D ⊂ R3, t ∈
[0, T ],v ∈ R3, solution of the linear Boltzmann equation:

∂tu(x, t,v) + v∂xu(x, t,v) + vσt(x, t,v)u(x, t,v) =

∫
vσs(x, t,v,v

′)u(x, t,v′)dv′ + S(x, t,v). (9.1)

1The model becomes irrelevant for modeling a small number of physical particles, see [285, 200, 18, 52] for examples in
neutronics.

2Depending on the physics of interest, v may not exactly refer to energy but all along the document, v will be related
to the energy of the particles via 1

2
mv2 where v is the velocity for example for neutrons or via hv where v is the frequency

for photons.
3also refered as implicit capture scheme.
4known to mimic the physical behaviour of the particles.

163



The quantities (σα)α∈{s,t} are called the cross-sections5 in this document. The total cross-section σt
describes the collision rate of the particles in the media whereas the scattering cross-sections describes
its relative absorption, diffusion or multiplicative rate6. When there is no ambiguity, the more concise
notation σt(x, t, ·) = σt(x, t,v) and σs(x, t, ·) = σs(x, t,v,v

′) may be used in the following chapters. At
some point in the document, the scattering cross-section may be expanded into a sum over a certain
number of reactions NR:

σs(x, t,v,v
′) =

NR∑
r=0

νr(v)σr(x, t,v,v
′),

σt(x, t,v) =

NR∑
r=0

∫
σr(x, t,v,v

′)dv′ =

NR∑
r=0

σr(x, t,v).

(9.2)

In (9.2), each (σr)r∈{0,...,NR} describes the rate of occurrence of reaction r ∈ {0, ..., NR}. The coefficients
(νr(v))r∈{0,...,NR} are the multiplicities of the corresponding reactions: ∀r ∈ {0, ..., NR}, νr(v) ∈ R+ but
in general νr(v) ∈ N. We may also introduce the absorption cross-section σ0, defined by the reaction
of multiplicity ν0 = 0. Note that ”reaction” can be understood in a very broad sense. It can describe
physical reactions as implied in the previous description: for example in neutronics the (n, 2n) has
multiplicity ν(n,2n) = 2 etc. see [52]. But it can also describe more ”artificial” reactions, introduced
only for practical reasons: for example, one may need ”reaction” 0 to gather isotropic contributions (and
in this case ν0 6= 0) and reactions of higher number to treat progressively the anisotropy. Many other
decompositions can be applied, more or less computationally efficient, depending on their probabilities
of occurrence. The term S is a source term, it will be dealt with separatedly in the following sections
(see mainly section 9.9) due to the slightly different structure it confers to the equation. We finally
emphasize a notation trick which will be used all along the following chapters and which has already
been encountered in (9.2):

σr(x, t,v) =

∫∫
σr(x, t,v,v

′)dv′ =

∫∫
σr(x, t, vω, v

′ω′)dv′dω′,

=

∫∫
σr(x, t, v, v

′, ω · ω′)dv′dω′ = σr(x, t, v).

In the above expression, the dependence with respect to ω seemed to be omitted on the right hand side
(and not in the left hand side) and the notation may appear abusive. We insist it is not, as the angular
distribution of ω′ with respect to ω can be described through the scalar product ω · ω′, hence with only
one variable (naming ω · ω′) instead of two (naming ω and ω′). The notation is not conventional but is
more adapted for the material of some of the following chapters7.

Equation (9.1) must come with proper initial and boundary conditions for wellposedness. We denote
by nx the outward unitary vector normal at point x ∈ ∂D. Furthermore, we introduce

Γ− =
{

(x,v) ∈ ∂D × R3|v · nx < 0
}
.

We also generally denote by Cb(X) the space of continuous functions from X to R bounded on X.

Let us consider

– the initial condition u0(x,v) ∈ Cb(D × R3),

– the boundary condition u− ∈ Cb([0, T ] × Γ−) must be in agreement with the initial condition at
the boundary of the domain, i.e. such that

u0(x,v) = u−(0,x,v),∀(x,v) ∈ Γ−.

– and the term source S(x, t,v) ∈ Cb([0, T ]×D × R3).

5The term cross-sections is commonly used in neutronics. In photonics, authors usually use the term opacities.
6Depending on the sign of the quantity σt −

∫∫
σs(x, t,v,v′)dv′.

7The same notation trick is used in [245].
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Then there exists u ∈ Cb([0, T ]×D×R3) unique solution of (9.1), see [127, 58, 132, 10]. In the following
sections, we suppose every considered problem comes with proper initial and boundary conditions even
if they are not (abusively) reminded. Consequently the solution of our problem always exists and it is
legit to look for it. In this document, this is done with a MC resolution scheme.

When there are no ambiguities, the dependences (x, t,v) may not be recalled. In the first following
sections, without loss of generalities, we drop the source term and detail how it can be taken into account
in section 9.9.

9.1 General Methodology for the construction of an MC scheme

In this section, we describe the general methodology applied in order to build an MC scheme for solving
(9.1). The first step consists in rewriting (9.1) in an integral form. The computations may appear tedious
due to the fact that all dependences with respect to (x, t,v) must be recalled: it is important in order
to identify and apply the less constraining hypothesis during the MC resolution. In order to rewrite
(9.1) in integral form, we perform several successive exact changes of variable. By exact we mean no
approximations on the shapes of the cross-sections are made before section 9.6. We detail every of them
in the following sections. The described methodology leads to the adjoint MC resolution of the equation
(or backward Kolmogorov equation, see [219]). The direct counterpart (forward Kolmogorov equation)
will be studied in section 9.5.

As explained before, the methodology resumes to a succession of changes of variable. The first one
consists in rewriting the transport equation (9.1) on a characteristic x + vt. Equation (9.1) without
source term (S = 0) rewritten along a characteristic (x + vs, s,v) becomes

∂su(x + vs, s,v) = −vσt(x + vs, s, v)u(x + vs, s,v) +

∫
vσs(x + vs, s,v,v′)u(x + vs, s,v′)dv′. (9.3)

Let us multiply each side of the equality by

exp

[∫ s

0

vσt(x + vα, α, v)dα

]
.

We then get

∂s

[
u(x + vs, s,v)e

∫ s
0
vσt(x+vα,α,v)dα

]
= e

∫ s
0
vσt(x+vα,α,v)dα

∫
vσs(x + vs, s,v,v′)u(x + vs, s,v′)dv′. (9.4)

Integrating (9.4) in the time interval [0, t] leads to

u(x + vt, t,v) = u0(x,v)e−
∫ t
0
vσt(x+vα,α,v)dα

+

∫ t

0

e−
∫ t
s
vσt(x+vα,α,v)dα

∫
vσs(x + vs, s,v,v′)u(x + vs, s,v′)dv′ds.

(9.5)

We have then

u(x, t,v) = u0(x− vt,v)e−
∫ t
0
vσt(x−v(t−α),α,v)dα

+

∫ t

0

e−
∫ t
s
vσt(x−v(t−α),α,v)dα

∫∫
vσs(x− v(t− s), s,v,v′)u(x− v(t− s), s,v′)dv′ds.

(9.6)

Equation (9.6) is an integral equation but still needs to be worked on: first, notice that

e−
∫ t
0
vσt(x−v(t−α),α,v)dα = e−

∫ t
0
vσt(x−vα,t−α,v)dα,

=

∫ ∞
t

vσt(x− vs, t− s, v)e−
∫ s
0
vσt(x−vα,t−α,v)dαds.
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Then, the integral counterpart of (9.1) is given by

u(x, t,v) =

+

∫ ∞
t

u0(x− vt,v)vσt(x− vs, t− s, v)e−
∫ s
0
vσt(x−vα,t−α,v)dαds

+

∫ t

0

e−
∫ t
s
vσt(x−v(t−α),α,v)dα

∫∫
vσs(x− v(t− s), s,v,v′)u(x− v(t− s), s,v′)dv′ds.

(9.7)

Building an MC scheme now implies introducing a set of random variables together with their probability
measure in order to rewrite (9.7) as an expectation. The choice of the set of random variables is not
unique and consequently leads to different MC schemes having different properties. In the following
sections, we detail the construction of three MC schemes

– the analog one (section 9.2),

– the semi-analog one (section 9.3),

– and the non-analog one (section 9.4).

Their asymptotic properties will be investigated later on, in section 9.7.

9.2 The analog (Adjoint) MC scheme (mimics physics)

In this section, we describe the analog MC scheme. This scheme is usually hinted at as the scheme
mimicing the physics of the particles. This will be clarified in the following sections. For the moment we
focus on its construction. Every dependences with respect to (x, t,v) of the cross-sections are explicit.
The notations and equations are consequently heavy but it helps identifying the treatments to perform
on a MC particle8 in order to solve (9.1) with this MC method.

9.2.1 Expectation form over the analog set of random variables

The first step in order to rewrite (9.7) as an expectation consists in identifying a probability measure
relative to the time integration in equation (9.7). Let us perform a change of variable (β = t− s and β
is immediately replaced by s) in the time integrations in the scattering part. We obtain

u(x, t,v) =

+

∫ ∞
t

u0(x− vt,v)vσt(x− vs, t− s, v)e−
∫ s
0
vσt(x−vα,t−α,v)dαds

+

∫ t

0

e−
∫ s
0
vσt(x−vα,t−α,v)dα

∫
vσs(x− vs, t− s,v,v′)u(x− vs, t− s,v′)dv′ds.

(9.8)

It is then possible to factorize by

fτ (x, t,v, s)ds = 1[0,∞[(s)vσt(x− vs, t− s, v)e−
∫ s
0
vσt(x−vα,t−α,v)dαds.

The above expression is a probability measure ∀(x, t,v) ∈ D× [0, T ]×R3: indeed, it is positive and sums
up to 1 ∀(x, t,v) ∈ D × [0, T ]× R3. Using its expression in (9.8) leads to

u(x, t,v) =

∫∫  +1[t,∞[(s) u0(x− vt,v) δv(v′)

+1[0,t](s) u(x− vs, t− s,v′) σs(x− vs, t− s,v,v′)
σt(x− vs, t− s, v)

 fτ (x, t,v, s)dsdv′. (9.9)

Let us work on the components of the scattering cross-section σs: without loss of generality, one can
decompose each reaction cross-sections ∀r ∈ {0, ..., NR} as

vσr(x− vs, t− s,v,v′) = vσr(x− vs, t− s, v)Pr(x− vs, t− s,v,v′).
8The term will be defined very soon.
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In the above expression, ∀(y, β,v) ∈ D × [0, T ]× R3 we have

σr(y, β, v) =

∫
σr(y, β,v,v

′)dv′,∀r ∈ {0, ..., NR},

Pr(y, β,v,v
′) =

σr(y, β,v,v
′)

σr(y, β, v)
,∀r ∈ {0, ..., NR},

σs(y, β, v) =

∫
σs(y, β,v,v

′)dv′,

σs(y, β, v) =

NR∑
r=0

νr(v)σr(y, β, v).

(9.10)

Consequently ∀r ∈ {0, ..., NR} and ∀(y, β,v) ∈ D × [0, T ]× R3, we can identify a three dimensional (as
v′ ∈ R3) positive measure, summing up to 1 (i.e. a probability measure)

P rV′(x, t, s,v,v
′)dv′ = Pr(x− vs, t− s,v,v′)dv′,∀(x, t,v) ∈ D × [0, T ]× R3. (9.11)

Equation (9.9) can then be rewritten

u(x, t,v) =∫∫  +1[t,∞[(s) u0(x− vt,v)

+1[0,t](s)

NR∑
r=0

νr(v)u(x− vs, t− s,v′) σr(x− vs, t− s, v)
σt(x− vs, t− s, v)

P rV′(x, t, s,v,v
′)


fτ (x, t,v, s)dsdv′.

(9.12)

From the definition of the total cross-section with respect to the reaction ones, σt =
∑NR
r=0 σr, we have

∀r ∈ {0, ..., NR} and ∀(x, t,v) ∈ D × [0, T ]× R3

0 ≤ σr(x, t, v)
σt(x, t, v)

≤ 1, and

NR∑
r=0

σr(x, t, v)

σt(x, t, v)
= 1.

Consequently, the quantity fB(x, t, s,v, b)db defined as

fB(x, t, s,v, b)db =

NR∑
r=0

σr(x− vs, t− s, v)

σt(x− vs, t− s, v)
δr(b),

is a probability measure. In fact, it is the probability measure of a multinomial (i.e. discrete) random
variable. It is denoted as

B ∼M
(
r ∈ {0, ..., NR},

(
σr
σt

)
r∈{0,...,NR}

)
,

where the NR + 1 states r ∈ {0, ..., NR} with respective probabilities (σrσt )r∈{0,...,NR} ∀(x, t,v) ∈ D ×
[0, T ]×R3 are explicited. Let us now introduce the following random variables associated to the previously
identified probability measures: τ with probability measure fτ (x, t,v)ds,

V′ with probability measure PV′(x, t, s,v,v
′)dv′,

B with probability measure fB(x, t, s,v, b)db.
(9.13)

Then (9.12) can be rewritten in an adjoint recursive way as an expectation over the above set of random
variables (9.13)

u(x, t,v) = E

[
1[t,∞[(τ)u0(x− vt,v) + 1[0,t](τ)

NR∑
r=0

u(x− vτ, t− τ,V′)νr(v)δr(B)

]
. (9.14)
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Such adjoint formulation allows for example solving the transport equation and obtain approximation of
the solution at a chosen point (x, t,v) of the simulation domain. Typically, this formulation is intensively
used when one wants to recover accurate approximations on shielded detectors [173, 268].

The next step in order to describe an MC resolution is to define a MC particle together with the
treatments one must apply to it in order to solve (9.14).

9.2.2 Construction of the analog MC scheme

Once the linear Boltzmann equation (9.1) rewritten as an expectation (9.14) over a set of defined random
variables, formally, the construction of an MC scheme relies on looking for solutions of (9.14) having the
particular form

up(x, t,v) = wp(t)δx(xp(t))δv(vp(t)). (9.15)

Such solution up is commonly called a MC particle. The MC scheme intensively uses the linearity of equa-

tion (9.1): if (up)p∈{1,...,NMC} are independent solutions of (9.1) then
∑NMC
p=1 up is also solution of (9.1).

Now, remains to identify the operations one has to apply in order to make sure each (up)p∈{1,...,NMC} is
effectively an MC solution of (9.14). To do so, we plug up into (9.14) and solve a system of (compatible)
equations of unknowns wp(t),xp(t),vp(t). Plugging (9.15) in (9.14) leads to

wp(t)δx(xp(t))δv(vp(t)) =
+1[t,∞[(τ) wp(0) δx−vt(xp(0)) δv(vp(0))
+1[0,t](τ) δr(B) νr(v)wp(t− τ) δx−vτ (xp(t− τ)) δV′(vp(t− τ)).

The above expression may be disturbing but allows identifying the conditional samplings (successions of
samplings) and treatments they imply. The equations satisfied by the unknown fields of the solution up,
naming wp(t),xp(t),vp(t), are

wp(t) = 1[t,∞[(τ)wp(0) +1[0,t](τ)δr(B)νr(v)wp(t− τ),
δx(xp(t)) = 1[t,∞[(τ)δx−vt(xp(0)) +1[0,t](τ)δr(B)δx−vτ (xp(t− τ)),
δv(vp(t)) = 1[t,∞[(τ)δv(vp(0)) +1[0,t](τ)δr(B)δV′(vp(t− τ)).

Their resolution leads to wp(t) = 1[t,∞[(τ)wp(0) +1[0,t](τ)δr(B)νr(v)wp(t− τ),
xp(t) = 1[t,∞[(τ)(x0 + vt) +1[0,t](τ)δr(B)(xt−τ + vτ),
vp(t) = 1[t,∞[(τ)v +1[0,t](τ)δr(B)V′.

(9.16)

Practically, the above recursive system of equation in term of weight, position and velocity leads to
the numerical treatment/algorithm (remember we here detailed the adjoint formulation) summed up in
algorithm 1.

Remark 9.1 Note that within algorithm 1, we put forward the possibility to use two ’options’. Those
options in fact correspond to two slightly different MC schemes. They are treated as options mainly
because the practical differences in term of code developments are small:

– the first option is called ’full analog’. It implies creating as many particles as the multiplicity νr of
the sampled reaction r.

– The second option is called ’multiplicity’. It implies multiplying the weight of the MC particle
enduring a reaction r by its multiplicity νr.

If the differences are very simple in practice, the practical effects can be very important. For example, in
a fast multiplying media

– the ’full analog’ option may imply a fast growth of the number of MC particles to be treated. It can
generate memory and/or computational issues.

– On the other hand, in the same conditions, the ’multiplicity’ option ensures having a quite constant
number of particles (≈ NMC). The computation can be carried out.
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However, these options do not bear the same asymptotical properties and do not capture the same physical
regime. These asymptotical properties will be studied and analysed in section 9.7.

Note that algorithm 1 does not describe treatments for computing integrated values (called ’track length
estimators’ in the literature, see for example [165]) but only punctual one at time t (called ’indicated
value’ in the literature). Integrated observables will be dealt with in chapter 10. In this chapter, we
will consider the linear Boltzmann equation coupled to different systems. In this context, a track length
estimator may be mandatory for consistency.
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Algorithm 1: The MC analog scheme described in term of algorithmic operations in order to
compute (adjoint) u(x, t,v).

1 set u(x, t,v) = 0
2 for p ∈ {1, ..., NMC} do
3 set sp = t #this will be the life time of particle p
4 set xp = x
5 set vp = v

6 set wp = 1
NMC

7 while sp > 0 and wp > 0 do
8 if xp /∈ D then
9 #here a general function for the application of arbitrary boundary conditions

10 apply boundary conditions(xp, sp,vp)

11 end
12 Sample τ from the distribution having probability measure fτ (xp, sp, s,vp)ds.
13 if τ > sp then
14 #see the treatment in factor of 1[t,∞[(τ) in (9.16)
15 #move the particle p
16 xp ←− xp + vpsp,
17 #set the life time of particle p to zero:
18 sp ←− 0
19 #do not change the velocity of particle p
20 #do not change the weight of particle p
21 #tally the contribution of particle p
22 u(x, t,v)+ = wp × u0(xp,vp)

23 end
24 else
25 #see the recursive treatment in factor of 1[0,t](τ) in (9.16)
26 Sample B from a multinomial law of probability measure fB(xp, sp, τ,vp, b)db
27 if B = r then
28 if full analog then
29 #do not change its weight and split the particle
30 create νr(vp) particles p′ ∈ {1, .., νr(vp)} with the same characteristics as p
31 for p′ ∈ {1, ..., νr(vp)} do
32 #Sample their velocities from P rv′(xp, sp, τ,vp,v

′)dv′

33 vp′ = V ′ for every created particle p′ ∈ {1, .., νr(vp)}
34 end

35 end
36 if multiplicity then
37 #change the weight of the particle
38 wp ←− νr(vp)wp
39 #Sample the velocity of particle p from P rv′(xp, sp, τ,vp,v

′)dv′

40 vp = V ′

41 end

42 end
43 #move the particle p
44 xp ←− xp + vτ ,
45 #set the life time of particle p to:
46 sp ←− sp − τ > 0

47 end

48 end

49 end

The description of algorithm 1 deduced from the recursive set of equations (9.16) shows that the

170



analog MC scheme is defined by a set of samplings depending on almost every variables x, t,v,v′. In
practice, some additional approximations are made in order to make the samplings easier to compute.
Those are presented later in section 9.6. Note that during the analog treatment of an MC particle, the
weight of a particle does not change. In this sense, the scheme mimics physics as one can set the initial
weight to m9 so that an MC particle represents a physical one. The asymptotic property of the scheme
will be emphasized in section 9.7.

9.3 The semi-analog (Adjoint) MC scheme (implicit capture)

In the previous section, we presented the analog MC scheme built from the integral form (9.7) of the
linear Boltzmann equation (9.1). We furthermore introduced the set of random variables to rewrite it as
an expectation (9.14). The semi-analog MC scheme (also known as ’implicit capture’ in the literature
[173, 268]) starts from the same integral form (9.7)10. We can start the description of the semi-analog
scheme from (9.9) introducing the probability measure of the interaction time

fτ (x, t,v, s)ds = 1[0,∞[(s)vσt(x− vs, t− s, v)e−
∫ s
0
vσt(x−vα,t−α,v)dαds,

∀(x, t,v) ∈ D × [0, T ]× R3.
(9.17)

It is the same as in the previous section.

9.3.1 Expectation form over the semi-analog set of random variables

The description of the semi-analog scheme begins with (9.9), reminded here

u(x, t,v) =

∫∫  +1[t,∞[(s) u0(x− vt,v) δv(v′)

+1[0,t](s) u(x− vs, t− s,v′) σs(x− vs, t− s,v,v′)
σt(x− vs, t− s, v)

 fτ (x, t,v, s)dsdv′. (9.18)

The scheme mainly differs from the analog one by the choice of the random variables introduced for the
scattering cross-section. Without loss of generality, we can write

vσs(x− vs, t− s,v,v′) = vσs(x− vs, t− s, v)Ps(x− vs, t− s,v,v′).

In the above expression, ∀(y, β) ∈ D × [0, T ] we have

σs(y, β, v) =

∫
σs(y, β,v,v

′)dv′,

Ps(y, β,v,v
′) =

σs(y, β,v,v
′)

σs(y, β, v)
.

(9.19)

The quantity P sV′(x, t, s,v,v
′)dv′ = Ps(x− vs, t− s,v,v′)dv′ is positive and is summing up to 1. It is

consequently a three-dimensional probability measure ∀(x, t,v) ∈ D× [0, T ]×R3. The difference between
the analog scheme of the previous section and the one presented here comes from the fact the probability
measure for the samplings of the velocity V′ is here averaged over the set of reactions r ∈ {0, ..., NR}.
Equation (9.18) can then be rewritten

u(x, t,v) =∫∫ [ +1[t,∞[(s) u0(x− vt,v)

+1[0,t](s) u(x− vs, t− s,v′) σs(x− vs, t− s, v)
σt(x− vs, t− s, v)

P sV′(x, t, s,v,v
′)

]
fτ (x, t,v, s)dsdv′.

(9.20)

Introduce the following random variables associated to the previously identified probability measures{
τ with probability measure fτ (x, t,v)ds,
V′ with probability measure P sV′(x, t, s,v,v

′)dv′.
(9.21)

9i.e. the physical weight of the particles of interest, see part I.
10this will not be the case for the non-analog MC scheme of section 9.4.
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Then (9.20) can be rewritten in an adjoint recursive way as an expectation over the above set of random
variables (9.21)

u(x, t,v) = E
[

1[t,∞[(τ)u0(x− vt,v) + 1[0,t](τ)
σs(x− vτ, t− τ, v)
σt(x− vτ, t− τ, v)

u(x− vτ, t− τ,V′)
]
. (9.22)

For the semi-analog scheme, the reaction at the interaction time is not sampled. The MC particle endures
an averaged reaction. The ratio σs

σt
corresponds to the probability for the particle of being scattered and

verifies

E

[
NR∑
r=0

νrδr(B)

]
=

NR∑
r=0

νr
σr
σt

=
σs
σt
,

where B is the multinomial random variable defined in the previous section.

9.3.2 Construction of the semi-analog MC scheme

Regarding the construction of the semi-analog MC scheme, the steps are the same as in section 9.2.2.
We consider ’particle’ solutions (up)p∈{1,...,NMC} of (9.22) having the particular form

up(x, t,v) = wp(t)δx(xp(t))δv(vp(t)). (9.23)

Let us plug them into (9.22) to identify the operations to perform to make sure each (up)p∈{1,...,NMC} is
solution of (9.22). This leads to

wp(t)δx(xp(t))δv(vp(t)) =
1[t,∞[(τ) wp(0) δx−vt(xp(0)) δv(vp(0))

1[0,t](τ) σs
σt (x− vτ, t− τ,v)wp(t− τ) δx−vτ (xp(t− τ)) δV′(vp(t− τ)),

so that the weight, the position and the velocity satisfy
wp(t) = 1[t,∞[(τ)wp(0) +1[0,t](τ)σsσt (xp(t− τ), t− τ,vp(t− τ))wp(t− τ),

xp(t) = 1[t,∞[(τ)(x0 + vt) +1[0,t](τ)(xt−τ + vτ),
vp(t) = 1[t,∞[(τ)v +1[0,t](τ)V′.

(9.24)

Practically, the above system of equation in term of weight, position and velocity leads to the recursive
numerical treatment/algorithm (remember we here detailed the adjoint formulation) summed up in
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algorithm 2.

Algorithm 2: The MC semi-analog scheme described in term of algorithmic operations in order
to compute (adjoint) u(x, t,v).

1 set u(x, t,v) = 0
2 for p ∈ {1, ..., NMC} do
3 set sp = t #this will be the remaining life time of particle p
4 set xp = x
5 set vp = v

6 set wp(t) = 1
NMC

7 while sp > 0 and wp > 0 do
8 if xp /∈ D then
9 #here a general function for the application of arbitrary boundary conditions

10 apply boundary conditions(xp, sp,vp)

11 end
12 Sample τ from the distribution having probability measure fτ (xp, sp, s,vp)ds.
13 if τ > sp then
14 #see the treatment in factor of 1[t,∞[(τ) in (9.24)
15 #move the particle p
16 xp ←− xp + vpsp,
17 #set the life time of particle p to zero:
18 sp ←− 0
19 #do not change the velocity of particle p
20 #do not change the weight of particle p
21 #tally the contribution of particle p
22 u(x, t,v)+ = wp × u0(xp,vp)

23 end
24 else
25 #see the recursive treatment in factor of 1[0,t](τ) in (9.24)
26 #change the particle weight

27 wp ←− σs(xp, sp − τ,vp)
σt(xp, sp − τ,vp)wp

28 #Sample the velocity V′ of particle p from P sV′(xp, sp, τ,vp,v
′)dv′

29 vp = V′

30 #move the particle p
31 xp ←− xp + vτ ,
32 #set the life time of particle p to:
33 sp ←− sp − τ > 0

34 end

35 end

36 end

Algorithm 2 only differs from algorithm 1 in the recursive part of the treatment (if τ < sp). The
sampling of the velocity V′ is averaged and the weight of the particle is multiplied by the ratio σs

σt
at the

position and at the instant of the shock. The latter ratio corresponds to the probability for the particle
of being scattered. The MC particle does not anymore represent the behaviour of a physical particle
at x, t,v but rather the behaviour of a population of physical particles at x, t,v. With this treatment,
the weight of an MC particle never goes to zero if σs 6= 0. An MC particle is never explicitly captured
hence the denomination ’implicit capture’ for this scheme. The asymptotic property of the scheme will
be emphasized in section 9.7.

Once again, we insist on the fact that the semi-analog MC scheme is defined by a set of samplings
depending on almost every variables x, t,v,v′. In practice, some additional approximations are made in
order to make the samplings easier to compute. Those are presented later in section 9.6.
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9.4 The non-analog (Adjoint) MC scheme

In the previous sections, we presented two MC schemes for solving the linear Boltzmann equation (9.1).
Those are mostly used in neutronics applications. In this section, we describe the non-analog scheme,
intensively applied in photonic ones. As in the previous sections, we first rewrite the linear Boltzmann
equation (9.1) in an integral form. The two previous schemes were both built from (9.7). The non-analog
one is obtained from different changes of variables which are detailed in the next section. We then present
the set of random variables at the basis of the MC scheme. The scheme is also refered as ’capture along
the flight path’ in the literature and care will be taken to emphasize why.

9.4.1 Expectation form over the non-analog set of random variables

First, as in the previous section 9.3, we rewrite the scattering cross-section

vσs(x− vs, t− s,v,v′) = vσs(x− vs, t− s, v)Ps(x− vs, t− s,v,v′).

In the above expression, ∀(y, β) ∈ D × [0, T ] we have

σs(y, β, v) =

∫
σs(y, β,v,v

′)dv′,

Ps(y, β,v,v
′) =

σs(y, β,v,v
′)

σs(y, β, v)
.

(9.25)

The quantity P sV′(x, t, s,v,v
′)dv′ = Ps(x− vs, t− s,v,v′)dv′ is positive and is summing up to 1. It is

consequently a three-dimensional probability measure ∀(x, t,v) ∈ D × [0, T ] × R3. It is the same as for
the semi-analog scheme of section 9.3. The non-analog scheme now needs the introduction of

σa = σt − σs.

The quantity σa is not always equal to the absorption cross-section σ0 (cross-section of multiplicity
ν0 = 0). It is the case only for a particular set of reactions of the form r ∈ {0, 1}. Let us decompose σt
into σa + σs in (9.6). This allows keeping the term e−

∫ s
0
vσa(x−v(t−α),α,v)dα in factor of u0 and u. Now

using the fact that

e−
∫ t
0
vσs(x−v(t−α),α,v)dα = e−

∫ t
0
vσs(x−vα,t−α,v)dα =

∫ ∞
t

vσs(x− vs, t− s, v)e−
∫ s
0
vσs(x−vα,t−α,v)dαds,

equation (9.6) rewrites

u(x, t,v) =

+

∫ ∞
t

u0(x− vt,v)e−
∫ s
0
vσa(x−vα,t−α,v)dαvσs(x− vs, t− s, v)e−

∫ s
0
vσs(x−vα,t−α,v)dαds

+

∫ t

0

 vσs(x− vs, t− s, v)e−
∫ s
0
vσs(x−vα,t−α,v)dαe−

∫ s
0
vσa(x−vα,t−α,v)dα

×
∫∫

Ps(x− vs, t− s,v,v′)u(x− vs, t− s,v′)dv′.

ds.

(9.26)

It is then possible to factorize by

fτ (x, t,v, s)ds = 1[0,∞[(s)vσs(x− vs, t− s, v)e−
∫ s
0
vσs(x−vα,t−α,v)dαds. (9.27)

It is also a probability measure (with respect to σs rather than σt). We then rewrite the linear Boltzmann
equation in another integral form

u(x, t,v) =∫∫ [
1[t,∞[(s) u0(x− vt,v) e−

∫ s
0
vσa(x−vα,t−α,v)dα δv(v′)

1[0,t](s) u(x− vs, t− s,v′) e−
∫ s
0
vσa(x−vα,t−α,v)dα Ps(x− vs, t− s,v,v′)

]
×fτ (x, t,v, s)dv′ds.

(9.28)
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Integral form (9.28) obtained here is different from the one (9.7) used for the two previous schemes.
It mainly differs due to the exponential term multiplying u0 and u. Let us now introduce the random
variables {

τ with probability measure fτ (x, t,v)ds,
V′ with probability measure P sV′(x, t, s,v,v

′)dv′.
(9.29)

Equation (9.28) can then be rewritten in an adjoint recursive way as an expectation over the above set
of non-analog random variables (9.29)

u(x, t,v) = E
[

+1[t,∞[(τ) e−
∫ t
0
vσa(x−vα,t−α,v)dα u0(x− vt,v)

+1[0,t](τ) e−
∫ τ
0
vσa(x−vα,t−α,v)dα u(x− vτ, t− τ,V′)

]
. (9.30)

In the next section we deduce the MC treatments to apply to solve (9.30).

9.4.2 Construction of the Adjoint non-analog MC scheme

The steps for the construction of the non-analog MC scheme are similar to the previous ones. Let us
consider ’particle’ solutions (up)p∈{1,...,NMC} of (9.30) having the particular form

up(x, t,v) = wp(t)δx(xp(t))δv(vp(t)). (9.31)

Let us plug them into (9.30) in order to identify the operations to perform to make sure each (up)p∈{1,...,NMC}
is solution of (9.30). This leads to

wp(t)δx(xp(t))δv(vp(t)) =

+1[t,∞[(τ) wp(0) δx−vt(xp(0)) δv(vp(0)) e−
∫ t
0
vσa(x−vα,t−α,v)dα

+1[0,t](τ) wp(t− τ) δx−vτ (xp(t− τ)) δV′(vp(t− τ)) e−
∫ τ
0
vσa(x−vα,t−α,v)dα

,

so that the weight, the position and the velocity satisfy wp(t) = 1[t,∞[(τ)wp(0)e−
∫ t
0
vσa(x−vα,t−α,v)dα +1[0,t](τ)e−

∫ τ
0
vσa(x−vα,t−α,v)dαwp(t− τ),

xp(t) = 1[t,∞[(τ)(x0 + vt) +1[0,t](τ)(xt−τ + vτ),
vp(t) = 1[t,∞[(τ)v +1[0,t](τ)V′.

(9.32)

Practically, the above system of equation in term of weight, position and velocity leads to the recursive
numerical treatment/algorithm (remember we here detailed the adjoint formulation) summed up in
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algorithm 3.

Algorithm 3: The MC non-analog scheme described in term of algorithmic operations in order
to compute (adjoint) u(x, t,v).

1 set u(x, t,v) = 0
2 for p = 1 ∈ {1, ..., NMC} do
3 set sp = t #this will be the life time of particle p
4 set xp = x
5 set vp = v

6 set wp(t) = 1
NMC

7 while sp > 0 and wp > 0 do
8 if xp /∈ D then
9 #here a general function for the application of arbitrary boundary conditions

10 apply boundary conditions(xp, sp,vp)

11 end
12 Sample τ from the distribution having probability measure fτ (xp, sp, s,vp)ds.
13 if τ > sp then
14 #see the treatment in factor of 1[t,∞[(τ) in (9.32)
15 #change its weight

16 wp ←− e−
∫ sp
0 vpσa(xp−vpα,sp−α,vp)dαwp

17 #move the particle p
18 xp ←− xp + vpsp,
19 #set the life time of particle p to zero:
20 sp ←− 0
21 #do not change the angle or velocity of particle p
22 #tally the contribution of particle p
23 u(x, t,v)+ = wp × u0(xp,vp)

24 end
25 else
26 #see the recursive treatment in factor of 1[0,t](τ) in (9.32)
27 #change the particle weight

28 wp ←− e−
∫ τ
0
vpσa(xp−vpα,sp−α,vp)dαwp

29 #Sample the velocity V′ of particle p from P sV′(xp, sp, τ,vp,v
′)dv′

30 vp = V ′

31 #move the particle p
32 xp ←− xp + vpτ ,
33 #set the life time of particle p to:
34 sp ←− sp − τ > 0

35 end

36 end

37 end

Algorithm 3 mainly differs from the two previous ones (algorithms 1 and 2) by the fact that

– the interaction time is sampled from σs rather than from σt,

– the weight of the particle is modified along its flight path.

The sampling of the velocity V′ is averaged over the set of reactions at the position and at the instant of
the interaction (as in section 9.3). Once again, the MC particle does not anymore represent the behaviour
of a physical particle at x, t,v but rather the behaviour of a population of physical particles at x, t,v
averaged in a homogeneous media. Indeed, the weight modification along the flight path of a particle
corresponds to the solution of a punctual/homogeneous problem given by

∂sUx,t,v(s) = −vσa(x− vs, t− s, v)Ux,t,v(s). (9.33)
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It is equivalent to having

Ux,t,v(t)

Ux,t,v(0)
= e−

∫ t
0
vσa(x−vα,t−α,v)dα, (9.34)

and exactly corresponds to the weight modification along the flight path of each MC particles. The
asymptotic property of the scheme will be emphasized in section 9.7.

We have already insisted on the fact that the non-analog MC scheme is defined by a set of samplings
depending on almost every variables x, t,v,v′. In practice, some additional approximations are often
made in order to make the samplings easier to compute. Those are presented later in section 9.6.

9.5 Direct formulation and direct set of random variables

In the previous sections, we described the different sets of samplings/random variables allowing an MC
resolution for the adjoint formulation. The built MC schemes allowed computing the solution at a
priori prescribed points (x, t,v) of the simulation domain. In many applications, one is interested in the
solution on the whole domain at a given time, i.e. ∀x ∈ D and at time t ∈ [0, T ]. In order to be able
to compute the contribution of MC particles on the whole domain, it is convenient adopting a direct
formulation.

9.5.1 Adjoint and direct formulations of the same transport equation

The linear Boltzmann equation of unknown ũ from which we built the three previous adjoint MC schemes
is recalled here

∂tũ(x, t,v) + v∂xũ(x, t,v) = −vσt(x, t,v)ũ(x, t,v) + vσs(x, t,v)

∫
Ps(x, t,v,v

′)ũ(x, t,v′)dv′. (9.35)

The notations of (9.25) for the scattering term are applied. The direct counterpart of (9.35) is given
(see [219]) by

−∂tu(x, t,v)− v∂xu(x, t,v) = −vσt(x, t,v)u(x, t,v) +

∫
v′σs(x, t,v

′)Ps(x, t,v,v
′)u(x, t,v′)dv′.(9.36)

In this section, ũ is solution of the Kolmogorov Backward equation and u is solution of the Kolmogorov
Forward equation, see [219]. Let us introduce vσS(x, t,v)PS(x, t,v,v′) such that

vσS(x, t,v)PS(x, t,v,v′) = v′σs(x, t,v
′)Ps(x, t,v,v

′).

By definition we have

vσS(x, t,v) =

∫
v′σs(x, t,v

′)Ps(x, t,v,v
′)dv′,

and

PS(x, t,v,v′) =
v′σs(x, t,v

′)Ps(x, t,v,v
′)

vσS(x, t,v)
. (9.37)

The above expressions are general and independent of the shapes of the cross-sections. The previous
definitions allow rewriting (9.36) as

−∂tu(x, t,v)− v∂xu(x, t,v) = −vσt(x, t,v)u(x, t,v) + vσS(x, t,v)

∫
PS(x, t,v,v′)u(x, t,v′)dv′.(9.38)

In the following section, we present the non-analog direct MC scheme in order to solve (9.38). The
constructions of the direct analog and semi-analog ones are not presented, they would be redundant and
do not present particular additional difficulties.
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9.5.2 Direct Integral formulation for the non-analog scheme

Exactly as in section 9.2, we suggest rewriting equation (9.36) in an integral form, as an expectation over
an identified set of random variables and obtain the direct set of samplings for the non-analog scheme
of section 9.4. Equation (9.38) rewritten on a characteristic becomes

−∂su(x + vs, s,v) = −vσt(x + vs, s, v)u(x + vs, s,v)

+vσS(x + vs, s, v)

∫
PS(x + vs, s,v,v′)u(x + vs, s,v′)dv′.

(9.39)

Integrating the total cross-section term in the time derivative, we obtain

−∂su(x + vs, s,v)e−
∫ s
0
vσt(x+vα,α,v)dα =

vσS(x + vs, s, v)e−
∫ s
0
vσt(x+vα,α,v)dα

∫
PS(x + vs, s,v,v′)u(x + vs, s,v′)dv′.

(9.40)

Integrating the latter equation with respect to time on the time step [0, t] we get

u0(x,v) = u(x + vt, t,v)e−
∫ t
0
vσt(x+vα,α,v)dα

+

∫ t

0

 vσS(x + vs, s, v)e−
∫ s
0
vσt(x+vα,α,v)dα∫

PS(x + vs, s,v,v′)u(x + vs, s,v′)

dv′ds.
(9.41)

Let us introduce the quantity
σA = σt − σS .

Cross-section σA does not generally denote the absorption cross-section σ0. It is, under certain assump-
tions (only two reactions σ0, σ1 with σ1 of multiplicity ν1 = 1 for example). Applying the change of
variable β = α− t we obtain

u0(x,v) = u(x + vt, t,v)e−
∫ t
0
vσA(x+vα,α,v)dα

∫ ∞
t

vσS(x + vs, s, v)e−
∫ t
0
vσS(x+vα,α,v)dαds

+

∫ t

0

 vσS(x + vs, s, v)e−
∫ s
0
vσS(x+vα,α,v)dαe−

∫ s
0
vσA(x+vα,α,v)dα∫

PS(x + vs, s,v,v′)u(x + vs, s,v′)dv′

ds.
(9.42)

Let us introduce the probability measure of the interaction time

fτ (x, t,v, s)ds = 1[0,∞[(s)vσS(x + vs, s, v)e−
∫ s
0
vσS(x+vα,α,v)dαds, (9.43)

and the probability measure of the outer velocity

PS(x + vs, s,v,v′)dv′.

Then the expectation form of (9.42) is given by

u0(x,v) = E
[

+1[t,∞[(τ) u(x + vt, t,v) e−
∫ t
0
vσA(x+vα,α,v)dα

+1[0,t](τ) u(x + vτ, τ,V′) e−
∫ τ
0
vσA(x+vα,α,v)dα

]
. (9.44)

The above expression (9.44) relates recursively the initial condition u0 to the solution at different times
t > 0 and a priori unknown positions and velocities x ∈ D,v ∈ R3 at time t.

9.5.3 Construction of the direct non-analog MC scheme

The steps for the construction of the direct non-analog MC scheme are once again pretty similar to the
previous ones. Let us consider ’particle’ solutions (up)p∈{1,...,NMC} of (9.44) having the particular form

up(x, t,v) = wp(t)δx(xp(t))δv(vp(t)). (9.45)
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Let us plug them into (9.44) in order to identify the operations to perform to make sure each (up)p∈{1,...,NMC}
is solution of (9.44). This leads to

wp(0)δx(xp(0))δv(vp(0)) =
+1[t,∞[(τ) wp(t) δx+vt(xp(t)) δv(vp(t)) e−

∫ t
0
vσA(x+vα,α,v)dα

+1[0,t](τ) wp(τ) δx+vτ (xp(τ)) δV′(vp(τ)) e−
∫ τ
0
vσA(x+vα,α,v)dα .

The weight, the position and the velocity satisfy wp(0) = 1[t,∞[(τ)wp(t)e
−
∫ t
0
vσA(x+vα,α,v)dα +1[0,t](τ)e−

∫ τ
0
vσA(x+vα,α,v)dαwp(τ),

xp(0) = 1[t,∞[(τ)(xt − vt) +1[0,t](τ)(xτ − vτ),
vp(0) = 1[t,∞[(τ)v +1[0,t](τ)V′.

(9.46)

Practically, the above system of equation in term of weight, position and velocity leads to the recursive
numerical treatment/algorithm (remember we here detailed the direct formulation) summed up in algo-
rithm 4. Algorithm 4 mainly differs from the previous backward ones due to the initial sampling step
which consists in making sure the MC particle discretisation of the initial condition is representative of
u0. The sampling part of the algorithm is briefly and generally described in algorithm 5. But it deserves
a more detailed attention and will be dealt with in section 9.8 in a more practical way (once a grid
introduced for example). Once again, the MC particle does not anymore represent the behaviour of a
physical particle at x, t,v but rather the behaviour of a population of physical particles at x, t,v averaged
in a homogeneous media. The weight modification along the flight path of a particle corresponds to the
solution of a punctual/homogeneous problem given by

∂sUx,t,v(s) = −vσA(x + vs, s, v)Ux,t,v(s). (9.47)

It is equivalent to having

Ux,t,v(t)

Ux,t,v(0)
= e−

∫ t
0
vσA(x+vα,α,v)dα, (9.48)
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which exactly corresponds to the weight modification along the flight path of a particle.

Algorithm 4: The MC non-analog scheme described in term of algorithmic operations in order
to compute (direct) U(x, t).

1 #Initialize to zero the quantity of interest on the whole simulation domain D
2 set U(x, t) = 0 ∀x ∈ D
3 #SAMPLING: call the sampling algorithm 5
4 Sampling(NMC)
5 #TRACKING: make sure each up is an MC particles
6 for p ∈ {1, ..., NMC} do
7 set sp = 0 #this will be the current time of particle p
8 while sp < t and wp > 0 do
9 if xp /∈ D then

10 #here a general function for the application of arbitrary boundary conditions
11 apply boundary conditions(xp, sp,vp)

12 end
13 Sample τ from the distribution having probability measure fτ (xp, sp, s,vp)ds.
14 if τ > t then
15 #see the treatment in factor of 1[t,∞[(τ) in (9.32)
16 #change the particle weight

17 wp ←− e−
∫ t−τ
0

vpσA(xp+vpα,sp+α,vp)dαwp
18 #move the particle p
19 xp = xp − vp × (t− τ),
20 #set the life time of particle p to zero:
21 sp ←− t
22 #do not change the angle or velocity of particle p
23 #tally the contribution of particle p
24 U(xp, t)+ = wp
25 end
26 else
27 #see the recursive treatment in factor of 1[0,t](τ) in (9.32)
28 #change the particle weight

29 wp ←− e−
∫ τ
0
vpσA(xp+vpα,sp+α,vp)dαwp

30 #Sample the velocity V′ of particle p from P sV′(xp, sp, τ,vp,v
′)dv′

31 vp = V ′

32 #move the particle p
33 xp ←− xp − vpτ ,
34 #set the life time of particle p to:
35 sp ←− sp + τ < t

36 end

37 end

38 end

We here derived the direct counterpart of the non-analog MC scheme. The derivation of the analog
and the non-analog ones are almost identical. We just want to hint at the fact that the semi-analog
scheme may be an interesting solver if one needs to solve both the direct and the adjoint problem in
the same simulation code. Indeed, it limits the differences between the direct and the adjoint solvers
(the only difference coming from the ’inversion’ of the scattering laws) with a relatively good asymptotic
variance (see section 9.7) ensuring a good compromise between accuracy/efficiency of the solver and
development/verification times (V&V, see [13]).
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Algorithm 5: Sampling step in order to represent the initial condition u0(x,v) with NMC MC
particles. More details are given in section 9.8.1.

1 Function sampling(NMC)
2 compute U0 = 1

|D|
∫
D
∫∫

u0(x,v)dxdv

3 #SAMPLING: Sample the MC particles in order to represent the initial condition u0(x,v)
4 for p ∈ {1, ..., NMC} do

5 #Introduce the probability measure du0(x,v) = u0(x,v)
U0

dxdv

6 #Sample the correlated realisation Xp, Vp
7 (Xp, Vp) = sample from du0() #This function is detailed in section 9.8.1
8 set xp = Xp

9 set vp = Vp

10 set wp = U0
NMC

11 end
12 return The population of MC particles is an NMC approximation of the initial condition

The three most common MC schemes in order to solve the linear Boltzmann equation have been
presented all along the previous sections. We identified the samplings they imply and the algorithmic
treatments induced. The developer familiar with MC code/resolution may not exactly recognize the
samplings detailed above, mainly as they were presented in their most general form. We did not make
any assumptions on the ’shapes’ of the cross-sections with respect to (x, t,v) because we wanted to
highlight the fact that an MC scheme does not need them. In the following section, we present some
classical approximations. We insist on the fact that they are only introduced in order to simplify the
computations for the samplings and are not dictated by the MC resolution. Furthermore, we presented
three MC schemes but we did not compare their relative performences. In section 9.7, some theoretical
considerations on the convergence of the MC schemes (their asymptotic variance, their moments of high
orders) are detailed. We first tackle the most common approximations encountered in MC simulation
codes in order to simplify the samplings.

9.6 Common approximations to simplify the samplings and res-
olutions

In the above descriptions of the three most common MC schemes (adjoint or direct), we identified four
sets of probability measures. The samplings from the latters can be very complex in practice mainly due
to the dependence with respect to (x, t,v) of the cross-sections. Our aim in this section is to present the
most classical approximations used in order to simplify those samplings. Developers of MC codes will
be able to recognize the operations they apply together with the set of assumptions made. We insist
that none of these choices are induced by the MC discretisation but rather by practical considerations.
To emphasize this, we review the previous different samplings (time interaction, energy/angle) and state
the most common assumptions made. We also highlight some (scarcely applied in practice) possibilities
in order to sample the interaction time and compute the weight modification of the MC particle along
its flight path. These new possibilities paves the path toward the new MC schemes [3] we present in the
next chapter 10.

9.6.1 The interaction time τ of probability measure fτ (x, t,v, s)ds

We first consider the sampling of the interaction time denoted by τ in the previous sections, having
probability measure fτ (x, t,v, s)ds. Depending on the MC scheme, fτ may imply

– the use of the total cross-section σt (see sections 9.2 and 9.3),

– or of the averaged scattering cross-section σs (see section 9.4) or its direct counterpart σS (see
section 9.5).
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In order to treat the more generally possible every cases, we here introduce the (more concise and lighter)
notation

fτ (x, t,v, s)ds = 1[0,∞[(s)vσ(x + vs, s, v)e−
∫ s
0
vσ(x+vα,α,v)dαds. (9.49)

Expression (9.49) corresponds to the direct counterpart of the probability measure of the interaction
time, see (9.43), rather than the adjoint one (9.27). But the material of this section can be directly
applied in the adjoint samplings once noticing that

Padjoint(τ < t) = Pdirect(τ < −t).

The above relation can be deduced comparing (9.27) and (9.43) for example.
In order to sample from an arbitrary probability measure, a common method consists in inversing its

cumulative density function (cdf) defined by

Fτ (x, t,v, s) =

∫ s

−∞
fτ (x, t,v, α)dα. (9.50)

It is a classical probability result [256] that if U ∼ U([0, 1]) is sampled from a uniform random variable
on [0, 1], then τ , defined by

U = Fτ (x, t,v, τ), (9.51)

follows the desired distribution. If we now use the expression of the probability measure (9.49) in (9.51),
we get

U = Fτ (x, t,v, τ) =

∫ τ

−∞
fτ (x, t,v, α)dα =

∫ τ

0

vσ(x + vs, s, v)e−
∫ s
0
vσ(x+vα,α,v)dαds,

= 1−
∫ ∞
τ

vσ(x + vs, s, v)e−
∫ s
0
vσ(x+vα,α,v)dαds,

= 1− e−
∫ τ
0
vσ(x+vα,α,v)dα.

(9.52)

Noticing that if U ∼ U([0, 1]) then Ũ = 1− U ∼ U([0, 1]), we can write without loss of generality

− ln(U) =

∫ τ

0

vσ(x + vα, α, v)dα. (9.53)

The above expression is analytical but even if we have access to the function x, t,v −→ σ(x, t,v), this
does not imply the integral in (9.53) is easily invertible along the flight path of each particle (i.e. for
every direction ω = v

v from position x). In practice, some approximations are made in order to make
the sampling easier. The most common choice is presented in the next section.

The classical approximations for the interaction time

If the integration along the flight path is difficult, some additional assumptions can be made in order to
simplify the samplings. For example, it is usually assumed the cross-sections are constant

– with respect to time for a given set of non-overlapping time steps such that [0, t] =
⋃Nt
i=1[ti, ti+1],

– and with respect to space for a given set of non-overlapping cells such that D =
⋃Nx

i=1Di.

During one time step [tn, tn+1] of size tn+1 − tn = ∆tn, the cross-section may be approximated by

σ(x, t ∈ [tn, tn+1], v) ≈∑Nx

i=1 σ
n
i (v)1Di(x), where

σni (v) =
1

|Di|

∫
Di

1

∆tn

∫ tn+1

tn
σ(x, s, v)dxds.
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The sampling of the interaction time is now easier as (9.53) becomes

− ln(U) =

∫ τ

0

vσ(x + vα, α, v)dα,

≈
Nx∑
i=1

∫ τ

0

vσni (v)1Di(x + vα)dα.
(9.54)

Suppose the particle stays within the same cell Di between two events, then

τ = − ln(U)

vσni (v)
. (9.55)

It corresponds to the classical sampling of an exponential law of parameter vσni (v). It is denoted by
E(vσni (v)) in the following lines. Expression (9.55) is independent of the energy/velocity discretisation
of σni (v) and additional approximation for this dimension may be performed.

Depending on how the cross-sections are averaged with respect to time and space, such hypothesis
may be more of less constraining. For example, in keff computations in neutronics, the cross-sections do
not depend on time and the spatial change in cross-sections depends on the choice of the materials. In
other words, for such physical applications, it is enough spatially describing the skin of the materials to
be analytical/exact. In this case, the approximation is not restrictive. When dealing with irradiation in
neutronics, see [97, 98, 148, 95, 96],[3], the approximation may not hold as cross-sections may bear fast
evolution during one time step (see section 10.1). In photonic applications, see chapter 10, one may need
either a very fine mesh either an MC scheme having particular properties (see section 10.2) with respect
to the cell size |Di|.

Suppose now the particle crosses several cells along its flight path. Without loss of generality we can
assume the particle only crosses two cells and apply the result in a recursive way. Let us denote by D1

and D2 the crossed cells and introduce tc ∈ [0, τ ] the time in interval [0, τ ] at which the particle reaches
the interface between the two cells. In this case, (9.53) becomes

− ln(U) =
∫ tc

0
vσn1 (v)dα+

∫ τ
tc
vσn2 (v)dα,

− ln(U) = tcvσ
n
1 (v) + (τ − tc)vσn2 (v).

(9.56)

In this case, the interaction time can be rewritten

τ = − ln(U)
vσn2 (v)

+ tc

(
1− σn1 (v)

σn2 (v)

)
. (9.57)

Expression (9.57) recovers the classical exponential sampling (9.55) if

– the particle stays within the cell,

– or even if the cross-sections are the same on each side of the interface. If σn1 = σn2 , then the
corrective term in (9.57) is zero the interaction time degenerates toward (9.55).

If tc ∈ [0, τ [ and σn1 6= σn2 , a correction to the sampling − ln(U)
vσn2 (v) is applied. It depends on the time tc at

which the particle crosses the interface between the two cells but also on the ratio of cross-sections on
each sides of the interface. Due to the memorylessness of exponential laws (see [219]), we can rely on
another solution in order to sample the interaction time when the particle crosses the interface between
two cells. Statistically, (9.56) is also equivalent to

τ1 = − ln(U1)
vσn1 (v) , and

{
if τ1 < tc then τ = τ1,

else τ2 = − ln(U2)
vσn2 (v) and τ = τ2,

(9.58)

where (U1,U2) are two independent uniform random variables on [0, 1]. If the MC particle stays in the
same cell, (9.58) degenerates toward (9.55). If not, even if σn1 = σn2 , a new uniform sampling U2 is
introduced. This sampling is intensively applied in MC codes. It practically means that

– we can stop any MC particle at the interface between two cells,
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– decrease its life time by tc,

– and sample a new uniform random variable in order to obtain a new sampled interaction time.

Equations (9.58) and (9.57) are statistically equivalent, the first one only needs one sampling whereas
the second one needs as many samplings as crossed cells. With nowadays computers and random number
generators (RNGs), sampling one random variable or a set of several is not constraining. But we can
imagine the corrected sampling (9.55), needing only one sampling, may have been interesting on architec-
tures which were not able to ensure a large enough periodicity [171] of the RNGs or for computationally
intensive ones [171, 220].

The reader interested in both adjoint and direct resolutions may notice that such approximation
with respect to time and space has the following property: direct and adjoint samplings are the same.
Performing the same computations as in (9.52) but to the adjoint formulation of the interaction time
probability measure leads to the same expression of τ , given by (9.55)11. In this particular case, for the
analog and the semi-analog schemes for which the interaction time is sampled from σt, the samplings
are the same in adjoint and direct formulation.

An original approximation in order to sample the interaction time

The above approximation is commonly used in many MC codes. It presents the drawback of imposing
the same time and space discretisation to every simulated MC particles. For example, suppose there
exists two main areas in a simulation domain

– A1 where σ needs small time steps to be accurate,

– and A2 where σ remains constant with respect to time.

Then an MC particle in area A2 will be imposed the same time step as the one in area A1 whereas it does
not need it. In practice, this can lead to possible loss of computational time. On another hand, expression
(9.49) shows that the time discretisation for sampling the interaction time only depends on the flight path
of the MC particles. Now, assume we have access to the function ∀(x, t, v) ∈ D×[0, T ]×R+ −→ σ(x, t, v).
The question is what prevents us from analytically sampling from (9.49) via (9.53)? The main difficulty
may come from the fact that an analytical integration in (9.53) ∀ω = v

v ∈ S2 is difficult. In this section,
we introduce a new approximation, motivated by the previous observation, which is intensively used in
chapter 10 for the new unsplit MC scheme presented in [3].

Let us introduce a sequence of time steps (∆tpi = ti+1
p − tip)i∈{1,...,Npt } depending on the MC particle

p such that ∀p ∈ {1, ..., NMC},
∑Npt
i=1 ∆tpi = t, and such that we can approximate (9.53) along the flight

path of each particle by a (second order here) numerical integration strategy∫ t

0

vσ(x + vα, α, v)dα

≈
Npt∑
i=1

v
∆tpi

2

(
1[0,τ ](t

i
p)σ(x + vtip, t

i
p, v) + 1[0,τ ](t

i+1
p )σ(x + vti+1

p , ti+1
p , v)

)
.

(9.59)

The number of integration point Np
t depends on the MC particle p. In fact, it depends on the time

and spatial area it evolves in. Where steep gradients of x, s,v −→ σ(x + vs, s, v) are encountered, Np
t

may be important whereas it may be smaller where σ behaves as a constant. Note that in (9.59), the
integration is a second order one but higher order ones (quadrature rules, Simpson, Gauss-Lobatto, or
others as chapter 5 of part II etc.) could have been used. The integration method here is not really the
purpose. The idea is that the integral in (9.59) can be approximated along the flight path of a particle
of direction ω = v

v summing the contribution in each sub-interval [ti, ti+1]. From (9.59), we can obtain
an approximation of the sampling τ : for a realisation U of a uniform random variable on [0, 1], let us

11The only difference comes from the fact particle crosses first cell D2 and then eventually cell D1.
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denote by npτ the first i ∈ {1, ..., Np
t } such that

− ln(U) <

npτ∑
i=1

v
∆tpi

2

(
1[0,τ ](t

i
p)σ(x + vtip, t

i
p, v) + 1[0,τ ](t

i+1
p )σ(x + vti+1

p , ti+1
p , v)

)
. (9.60)

Then tn
p
τ = τp +O

(
max

i∈{1,...,Nt}
(∆tpi )

γ

)
is an approximation of order γ12 of the exact sampling τp and is

built along the flight path of the particle. It needs the evaluation of function x, s,v −→ σ(x + vs, s, v)
at successive positions x + vtip and times tip for i ∈ {1, ..., npτ + 1}. The previous process for sampling τp

is licit even for discontinuous cross-sections (jump at a cell interface for example), it does not need any
regularity assumptions. In fact, it resumes to approximating the interaction time sampling thanks to a
discrete law of (not equiprobable) states i ∈ {1, ..., Np

t }. This strategy is intensively applied in [3] in a
coupling context (see also chapter 10).

In the next section, we recall the most common approximations made on the cross-sections with
respect to energy v and angle ω (such that v = vω).

9.6.2 The energy and angle correlated samplings V′ = V ′W ′

Depending on the scheme of interest, the scattering velocity can be sampled

– from P rV′ as in (9.11) for the analog scheme of section 9.2,

– or from P sV′ as in (9.25) for the semi-analog and non-analog ones of sections 9.3 and 9.4,

– or even from PSV′ as in (9.37) for its direct counterpart in section 9.5.

In order to treat every MC schemes, we simplify the notations and consider the probability measure of
the random variables V′ = V ′W ′ where V ′ = |V′| and W ′ = V′

V ′ is denoted by

PV′(v,v
′)dv′ = PV ′,W ′(v

′ω′, vω)dv′dω′ = PV ′,W ′(v
′, v, ω′, ω)dv′dω′.

At first glance, one may argue the last expression neglects spatial and time discretisations. It is in fact
general enough: velocity changes being punctual, i.e. only at the interaction times and not integrated
along the flight path of the MC particles, space and time are only parameters of the sampling law. They
can be dropped in the following descriptions.

Treating the correlated samplings of V ′,W ′

Depending on the physics of interest, the energy v = |v| and the angle ω = v
v can be independent or

correlated. In neutronics, they are correlated. Sampling from a multidimensional law can be complex
and time consuming (see Gibbs algorithm, Metropolis-hasting etc. [252, 46]). Such strategies may not
be affordable as our MC resolution needs a correlated sampling at each interation (which can be very
frequent especially in diffusive media, see section 10.2). In order to avoid such difficulty, the scattering
energy and angle cross-section PV ′,W ′ is often pretreated in order to ensure a sampling of the energy V ′

followed by a sampling of the angle W ′ conditional to the inner and outer energies (v, V ′). For this, the
marginal probability measure for the energy is introduced:

Pv,ω,V ′(v
′)dv′ =

∫
PV ′,W ′(v

′, v, ω′, ω)dω′∫∫
PV ′,W ′(v

′, v, ω′, ω)dω′dv′
dv′.

It allows defining the conditional angular distribution by

Pv′,v,W ′(v
′, v, ω′, ω) =

PV ′,W ′(v
′, v, ω′, ω)

PV ′(v
′, v)

, which sums up to 1 with respect to ω′ by definition.

12γ is the order of the integration method and γ = 2 if we choose (9.59) as integration rule.
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With the above definitions, the process consists in first sampling the energy V ′ knowing v from the
probability measure

Pv,V ′(v
′)dv′,

and then sample the angle conditionally to having the triplet v, ω, V ′ from probability measure

Pv,V ′,W ′(v
′, v, ω′, ω)dω′ = Pv,V ′,W ′(v

′, v, ω · ω′)dω′.

Note that depending on the physics of interest and the shapes of the data σs, it may be more efficient
from a computational point of view to build first the probability for the angle W ′ and sample the energy
conditionally to the sampled angle W ′. The pretreatments are almost the same and the above description
is general.

In the particular case of monokinetic particles and isotropic scattering, i.e. σs(v
′, v, ω′, ω) = σs, the

direct and adjoint energy and angle samplings are the same.

Once the conditional distribution obtained...

Suppose now the physical data σs are pretreated as above, implying a first sampling of the energy V ′

then a sampling of W ′ conditionally to (v, V ′). In practice, it is once again all about inversing the cdfs
of the two probability measures. Let us introduce two independent samples U1,U2 of a uniform random
variable, then (V ′,W ′) are defined by

U1 =

∫ V ′

−∞
Pv,V ′(v

′)dv′,

U2 =

∫ W ′

−∞
Pv,V ′,W ′(v, V

′, ω · ω′)dω′.
(9.61)

The complexity of the above samplings directly depends on the physical constants σs. For example,
∀v, the probability measure Pv,V ′(v

′)dv′ may be discretised by a sequence of G + 1 points such that⋃G
g=0[vg, vg+1] = R+ together with normalized13 basis functions (φg(v

′))g∈{0,...,G} defined on every subin-
terval [vg, vg+1]. Introducing 1g′(v

′) = 1[vg′ ,vg′+1](v
′), we get the discretised measure

Pv,V ′(v
′)dv′ ≈

G∑
g′=0

P g
′

v φg′(v
′)1g′(v

′)dv′.

The above expression is general, it can both describe punctual cross-sections or multigroup ones [249,
71, 173, 268] depending on the shapes of the basis functions (φg)g∈{0,...,G} and the definitions of the

coefficients (P g
′

v )g′∈{0,...,G}. Independently of this choice, the sampling of the energy V ′ with discrete
cross-sections can be made once again by conditional samplings. First, sample the outer subinterval G
by inversing a discrete probability measure: sample a uniform random variable UG verifying

G = min
h∈{0,...,G}


UG <

h∑
g′=0

P g
′

v

G∑
g′=0

P g
′

v


. (9.62)

Then use the shape of the basis function φG(v) in the sampled subinterval G to obtain V ′ from another
uniform random variable UV ′ such that

UV ′ =

∫ V ′

−∞
φG(v′)dv′. (9.63)

13such that ∀g ∈ {0, ..., G},
∫
φg(v)1g(v)dv = 1.
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Sampling (9.63) is conditional to being in subinterval G. Of course, in general, the basis functions
(φg)g∈{0,...,G} are chosen so that the computation of (9.63) can be carried out analytically (linear, log-
linear, log-log on the subintervals [vg, vg+1]g∈{0,...,G}). Regarding the conditional sampling for the angle,
the process is quite the same. The main difference comes from the format strategies: for example
Legendre polynomials may be used in order to represent the anisotropy of the scattering cross-sections
[173, 268]. There exists many other ways depending on the physics of interest.

With the previous descriptions, the practical samplings with respect to energy and angles strongly
depend on the format of the data available. It is up to the developer of the MC scheme to adapt the
above material to its physics of interest and ensure performances with respect to memory and CPU
consumption.

9.6.3 The modification of the weight of the particle wp(t)

The aspect by which the three presented schemes, analog/semi-analog/non-analog (adjoint or direct),
differ most may be the modification of the weights or not of the MC particles. We denote by τ the
interaction time for an MC particle p, independently of the choice of the MC scheme. We then have:

– for the analog scheme (’full analog’ option), the weight wp(t) = wp(0),∀t ∈ [0, T ] is kept constant.
It does not change all along its flight path nor after a collision. It can be considered changed at a
collision if the MC particle is captured/absorbed (reaction σ0). In this case, the weight becomes
zero wp(τ) = 0. In practice, it is more efficient ’killing’ the MC particle, i.e. removing it from the
list of MC particle to treat, than tracking a particle with zero weight.

– For the semi-analog scheme (or the analog one with the ’multiplicity’ option), the weight wp(t) of an
MC particle does not change all along its flight path. But it is multiplied, locally at position x+vτ
and time τ , by the probability of being reemitted/scattered, i.e. wp(τ) = σS

σt
(x + vτ, τ, v)wp(0)

(direct form recalled here).

– For the non-analog scheme, the weight wp(t) of an MC particle changes all along the flight path of
the particle. It is multiplied (direct form explicited here) by the solution of the punctual/homoge-
neous problem (9.83):

wp(τ) = e−
∫ τ
0
vσA(x+vα,α,v)dαwp(0).

Note that in this particular case, an MC particle crossing the interface between two cells has its
weight affected whereas this was not the case for the previous schemes. Suppose the cross-sections
are considered constant with respect to x in each cell and assume the MC particle crosses two
cells D1 and D2 (and recursively an arbitrary number of cells), then σA(x, t,v) = σ1

A(t, v)1D1
(x) +

σ2
A(t, v)1D2(x). Denote by tc ∈ [0, τ ] the time at which the MC particle reaches the interface

position between those cells, then

wp(τ) = wp(0) e−
∫ tc
0
vσ1
A(α,v)dα e−

∫ τ
tc
vσ2
A(α,v)dα,

wp(τ) = wp(tc) e−
∫ τ
tc
vσ2
A(α,v)dα.

As testifies the above expression, the weight modification can be expressed with respect to the
weight of the particle at time tc. The MC scheme by construction handles discontinuities of
the cross-sections at the interface. In fact, what is important here is consistency between the
samplings of the interaction time and the weight modification: the treatments must be made with
the same hypothesis. For example, take the common approximations detailed in section 9.6.1 for
the interaction time for σS , consistent approximations on σA must be made, i.e. σA(x, t,v) =
σ1,n
A (v)11(x) + σ2,n

A (v)12(x). The resulting weight modification is given by

wp(τ) = wp(0) e−vσ
1,n
A tc(v) e−vσ

2,n
A (v)(τ−tc),

wp(τ) = wp(tc) e−vσ
2,n
A (v)(τ−tc).

(9.64)

On the fly computation strategies similar to the one presented in section 9.6.1 (cf. equation (9.60))
can also be applied for the weight modification. This is the case in [3] for example, and it will be
studied in the next chapter 10.
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Depending on the approximations chosen in the previous sections, the expressions of the weight mod-
ifications, samplings of the time interaction, energy and angle, for the different MC schemes can be
considerably simplified. We insist consistent treatments for all the samplings must be made in order to
ensure an MC convergence (i.e. depending only on NMC).

9.7 Variance and moments of the MC schemes

In the previous sections, we described three14 converging MC schemes. Convergence implies they ensure
obtaining asymptotically the same results for the mean, the first moment of the particle distribution.
Obviously, the schemes differ (see the samplings). But it is hard a priori having any idea of their
performances. The Central Limit theorem [256, 165] states that their performance differences can be
expressed in term of convergence rate/variance15. They will also be compared via the physical regime
they capture. The aim of this section is to give an idea of how we can choose an MC scheme having
in mind a particular physical regime. For this, we study the asymptotic behaviours of the MC schemes
with respect to the variance16 of the population of particles in a monokinetic homogeneous configuration:
it corresponds to the case of an infinite medium with constant cross-sections with respect to time, space
and energy. With these assumptions, the transport equation (9.1) resumes to

∂t

∫
u(t, ω)dω + vσt

∫
u(t, ω)dω = σs

∫
vPs(ω

′, ω)u(t, ω′)dω′. (9.65)

From the definition of Ps ensuring17 ∀ω ∈ S2,
∫
Ps(ω

′, ω)dω′ = 1, it even simplifies to the classical ODE

∂tU(t) + vσtU(t) = vσsU(t).

Its solution is U(t) = U0e
−vσat where U(t) =

∫
u(t, ω)dω. In the following section, we verify the three MC

schemes are converging for the mean solution M1(t) = U(t). We furthermore compute their asymptotical
higher order moments. The latters will allow comparing their performances.

9.7.1 Asymptotic variance of the analog scheme (full analog and multiplic-
ity)

In order to compute the first two moments of any analog MC solution of (9.65), we have to come back
to the expectation form of the transport equation from which the MC scheme is built. For the analog
scheme, the recursive equation (9.14) simplifies to

U(t) = E

[
1[t,∞[(τ)U0 + 1[0,t](τ)

NR∑
r=0

U(t− τ)νrδr(B)

]
. (9.66)

In the above expression, we recall τ ∼ E(vσt) and B ∼ M(r ∈ {0, ..., NR}, (σrσt )r∈{0,...,NR}). Let us
expand the recursive part into an infinite sum over the number of interactions. The first term in (9.66),
with U0 in factor, corresponds to the event ’there is no interaction between times 0 and t’. The second
term of (9.66) corresponds to the event ’there is at least one interaction between times 0 and t’. We here

introduce a new random variable, function of the already defined ones, Si =
∑i
k=0 τk where τk ∼ E(vσt)

∀k ∈ {1, ..., i} are independent identically distributed. It is well-known Si follows a Gamma law of
parameters (vσt, i), denoted by Si ∼ Γ(vσt, i)

18. Let us introduce Xt the stochastic process induced by
the possible histories of any MC particles, it is given by

Xt =

∞∑
k=0

U01[0,t](Sk)1[t,∞[(Sk + τk+1)

k∏
i=1

(
NR∑
r=0

νrδr(Bi))
)
. (9.67)

14Four if we count the ’full analog’ and the ’multiplicity’ options of the analog scheme.
15the Central Limit theorem states that the variance (if obtained from an unbiased estimator, see [256]) is an error

estimator.
16and even some high order moments for the semi-analog and non-analog schemes in sections 9.7.2–9.7.3.
17It only corresponds to a pretreatment of the cross-sections.
18this can be proven by first convoluting two pdfs of two exponential laws and then by recurrence.
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In the above expression, k denotes the number of interactions encountered by any MC particles for times
in [0, t]. The indicatrices

1[0,t](Sk)1[t,∞[(Sk + τk+1),

express the fact an MC particle encounters exactly k interactions during the interval of time [0, t]. The
product over i corresponds to the different scenarii/reactions a particle can encounter during any of these
k interactions. In this section, we consider the ’multiplicity’ option detailed in remark 9.1 of section 9.2.
It consists in multiplying the weight of an MC particle enduring reaction i by νi. We choose here
to study this option because it is less common than the ’full analog’ one (which is intensively studied
[285, 200, 18, 144, 246, 199] in term of high order moments). The results for the ’full analog’ option are
recalled in remark 9.2. The first moment of Xt, M1(t) = U(t), is defined by

M1(t) = U(t) = E [Xt] = E

[ ∞∑
k=0

U01[0,t](Sk)1[t,∞[(Sk + τk+1)

k∏
i=1

(
NR∑
r=0

νrδr(Bi))
)]

. (9.68)

By linearity and independence of Sk with respect to the (Bi)i∈{1,...,k} and of the (Bi)i∈{1,...,k} two by
two, the last expression becomes

M1(t) = U(t) = U0

∞∑
k=0

E

[
1[0,t](Sk)1[t,∞[(Sk + τk+1)

k∏
i=1

(
NR∑
r=0

νrδr(Bi))
)]

,

= U0

∞∑
k=0

E
[
1[0,t](Sk)1[t,∞[(Sk + τk+1)

]
E

[
k∏
i=1

(
NR∑
r=0

νrδr(Bi))
)]

,

= U0

∞∑
k=0

E
[
1[0,t](Sk)1[t,∞[(Sk + τk+1)

] k∏
i=1

E

[(
NR∑
r=0

νrδr(Bi))
)]

,

= U0

∞∑
k=0

P (τk+1 > t− Sk|Sk < t)

(
E

[(
NR∑
r=0

νrδr(B))

)])k
.

(9.69)

By definition of Sk ∼ Γ(vσt, k) and τk+1 ∼ E(vσt), the above conditional probability is equal to

P (τk+1 > t− Sk|Sk < t) = e−vσtt(vσt)
k s

k

k!
. (9.70)

The last expectation in (9.69) corresponds to the mean of the multinomial law B:

E

[(
NR∑
r=0

νrδr(B))

)]
=

NR∑
r=0

νr
σr
σt

=
σs
σt
.

Introducing the two previous expressions in U(t) leads to

U(t) =U0

∞∑
k=0

e−vσtt(vσt)
k t
k

k!

(
σs
σt

)k
,

=U0e
−vσtt

∞∑
k=0

(vσs)
k t
k

k!
,

=U0e
−vσat.

(9.71)

With the few previous computations, we formally verified the convergence of the (multiplicity option of
the) analog MC scheme for the mean of the stochastic process Xt. Let us now study the moment of
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order 2 of the stochastic process Xt. It is defined as

M2(t) = E
[
X2
t

]
= E

U2
0

∞∑
k,m=0

1[0,t](Sk)1[t,∞[(Sk + τk+1)

k∏
i=1

(
NR∑
r=0

νrδr(Bi))
)

1[0,t](Sm)1[t,∞[(Sm + τm+1)

m∏
j=1

(
NR∑
r=0

νrδr(Bj))
)
 . (9.72)

Using the fact that one MC particle has exactly k interactions, we have ∀(k,m) ∈ N2

1[0,t](Sk)1[t,∞[(Sk + τk+1)1[0,t](Sm)1[t,∞[(Sm + τm+1) = δk,m1[0,t](Sm)1[t,∞[(Sm + τm+1).

The independence of the random variables Sk, τk+1 with respect to the random variables (Bi)i∈{0,...,NR}
leads to

M2(t) = U2
0E

[ ∞∑
k=0

1[0,t](Sk)1[t,∞[(Sk + τk+1)

k∏
i=1

(
NR∑
r=0

νrδr(Bi))
)

k∏
j=1

(
NR∑
r=0

νrδr(Bj))
) ]

,

= U2
0

∞∑
k=0

P (τk+1 > t− Sk|Sk < t)E

( k∏
i=1

(
NR∑
r=0

νrδr(Bi)
))2

 ,
= U2

0

∞∑
k=0

P (τk+1 > t− Sk|Sk < t)

E

(NR∑
r=0

νrδr(B)

)2
k

.

(9.73)

The expectation is nothing more than the second moment of the multinomial law B: we introduce the
notation

E

(NR∑
r=0

νrδr(B)

)2
 =

NR∑
r=0

(νr)
2σr
σt

=
σ̃s
σt
.

Plugging the expressions in (9.73) leads to

M2(t) = U2
0

∞∑
k=0

e−vσtt(vσt)
k s

k

k!

(
σ̃s
σt

)k
,

= U2
0 e
−vσtt

∞∑
k=0

sk

k!
(vσ̃s)

k
,

= U2
0 e
−vσtt+vσ̃st.

(9.74)

In term of variance, the analog scheme with the ’multiplicity’ option verifies

σ2
multiplicity(t) = U2

0

[
U2

0 e
−vσtt+vσ̃st − e2(vσs−vσt)t

]
. (9.75)

Remark 9.2 In this section, we exhibited the asymptotic variance of the analog scheme with option
’multiplicity’. This option is much less19 studied than the ’full analog’ one for which the asymptotic
variance may be found in many books and articles, see for example [285, 200, 199, 52]. We recall the
full analog scheme mimics the physics in the sense an MC particle can represent a physical particle.
Applying both the material of papers [285, 200, 52] and the simplifications of this section leads to the
following second moment for the analog MC scheme with ’full analog’ option:

M2(t) = U2
0 (2vσ̂st+ 1)e−2vσat. (9.76)

19reasons will be given later in section 9.7.
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In the above expression, σ̂s is defined as

σ̂s =

NR∑
k=0

νk(νk − 1)σk.

In such condition, the asymptotic variance is given by

σ2
full analog(t) = U2

0 2vσ̂ste
−2vσat. (9.77)

The variance of the full analog scheme is of interest in many applications (see amongst others [200, 285,
246]) and is also refered to as the ’physical’ variance. It is used for example in order to estimate the
Feynman factor Y [222, 9, 18] (excess of variance) defined as

σ2
full analog(t)

M1(t)
= 1 + Y (t).

This physical variance may be interpreted as such: the higher σ2
full analog(t) is, the less probable the particle

population is to be close to the mean particle population M1(t). This is very well explained in [200] for
example.

Comparisons between the different asymptotic variances will be made in section 9.7.4, we suggest first
studying the two other schemes.

9.7.2 Asymptotic variance of the semi-analog scheme

Let us now come back to the expectation form of the transport equation obtained for the semi-analog
scheme and compute the nth order moment of any semi-analog MC solution of (9.65). With the simpli-
cations detailed above, the recursive equation (9.22) becomes

U(t) = E
[
1[t,∞[(τ)U0 + 1[0,t](τ)

σs
σt
U(t− τ)

]
. (9.78)

We recall we have τ ∼ E(vσt). We suggest expanding the recursive part into an infinite sum over

the number of interactions. Let us introduce a new random variable Si =
∑i
k=0 τk where τk ∼ E(vσt)

∀k ∈ {1, ..., i} are independent identically distributed. Once again Si follows a Gamma law of parameters
(vσt, i), denoted by Si ∼ Γ(vσt, i). Let us introduce Xt the stochastic process induced by the possible
histories of any MC particles. It is given by

Xt =

∞∑
k=0

1[0,t](Sk)1[t,∞[(Sk + τk+1)

(
σs
σt

)k
U0.

The indice k denotes the number of interactions encountered by any MC particles for times in [0, t]. The
indicatrices

1[0,t](Sk)1[t,∞[(Sk + τk+1),

express the fact an MC particle encounters exactly k interactions for times between [0, t]. The first
moment is defined by M1(t) = U(t) = E[Xt], and by linearity its expression becomes

M1(t) = U(t) = E [Xt] = E

[ ∞∑
k=0

1[0,t](Sk)1[t,∞[(Sk + τk+1)

(
σs
σt

)k
U0

]
,

= U0

∞∑
k=0

E
[
1[0,t](Sk)1[t,∞[(Sk + τk+1)

](σs
σt

)k
,

= U0

∞∑
k=0

P (τk+1 > t− Sk|Sk < t)

(
σs
σt

)k
.

(9.79)
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Replacing the probability of having k interactions by its expression (9.70) leads to

U(t) = U0

∞∑
k=0

e−vσtt(vσt)
k s

k

k!

(
vσs
vσt

)k
,

= U0e
−vσtt

∞∑
k=0

(vσs)
k s

k

k!
,

= U0e
−vσat.

(9.80)

With the few previous computations, we formally verified the convergence of the semi-analog MC scheme
for the mean of the stochastic process Xt. Let us now study the moment of order M of the stochastic
process Xt. It is defined as E

[
XM
t

]
with

XM
t = UM0

∞∑
i1=0

...

∞∑
iM=0

1[0,t](Si1)1[t,∞[(Si1 + τi1+1)...1[0,t](SiM )1[t,∞[(SiM + τiM+1)

(
σs
σt

)i1+...+iM

.

In the previous expression, we expanded the exponant M into M summations over indices (i1, ..., iM ).
Using the generalization to M terms of the fact that ∀(k,m) ∈ N2, we have

1[0,t](Sk)1[t,∞[(Sk + τk+1)1[0,t](Sm)1[t,∞[(Sm + τm+1) = δk,m1[0,t](Sm)1[t,∞[(Sm + τm+1),

we simplify the above expression of XM
t into

XM
t = UM0

∞∑
i=0

1[0,t](Si)1[t,∞[(Si + τi+1)

(
σs
σt

)M×i
.

Taking the expectation of XM
t leads to

E[XM
t ] = UM0

∞∑
i=0

P (τi+1 > t− Si|Si < t)

(
σs
σt

)M×i
,

= UM0 e−vσtt
∞∑
i=0

(vσt)
i t
i

i!

(
σs
σt

)M×i
,

= UM0 exp

(
(vσs)

M − (vσt)
M

(vσt)
M−1 t

)
.

(9.81)

The latter expression is in agreement with the moment of order 1 and allows obtaining the asymptotic
variance of the homogeneous process for the semi-analog scheme:

σ2
semi-analog(t) = U2

0

e (vσs)
2 − (vσt)

2

(vσt)
t

− e2(vσs−vσt)t

 . (9.82)

Let us now develop the same computations for the non-analog scheme before comparing the performances
of the three schemes in section 9.7.4.

9.7.3 Asymptotic variance of the non-analog scheme

Let us apply the same methodology to the non-analog MC scheme and compute the M th order moments
of any non-analog-MC solution of (9.65). For this, we come back the expectation form of the transport
equation from which the MC scheme is built. With the simplications detailed above, the recursive
equation (9.30) becomes

U(t) = E
[
1[t,∞[(τ)U0e

−vσat + 1[0,t](τ)e−vσa(t−τ)U(t− τ)
]
. (9.83)
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We recall τ ∼ E(vσs). Let us expand the recursive part into an infinite sum over the number of

interactions thanks to Si =
∑i
k=0 τk where τk ∼ E(vσs) ∀k ∈ {1, ..., i} are independent identically

distributed. Random variable Si follows a Gamma law of parameters (vσs, i), denoted by Si ∼ Γ(vσs, i).
Then (9.83), the equation for the mean (or the moment of order 1) rewrites

M1(t) = U(t) = E [Xt] = E

[ ∞∑
k=0

1[0,t](Sk)1[t,∞[(Sk + τk+1)e−vσatU0

]
,

= U0e
−vσat

∞∑
k=0

P (τk+1 > t− Sk|Sk < t)︸ ︷︷ ︸
=1

,

= U0e
−vσat.

(9.84)

We then recover the analytical solution of the homogeneous problem and formally verified the convergence
of the non-analog scheme for the mean. Note that in this homogeneous configuration, the convergence of
the non-analog scheme does not even depend on the probability measure of the interaction times τk, Sk
as the sum over k always equals 1, whatever this choice. The interesting part concerns the moments of
higher orders. Their computations are in fact very similar to the previous one, they are given by

E[XM
t ] = UM0 e−Mvσat.

The latter expression is in agreement with the moment of order 1 and allows showing the asymptotic
variance of the homogeneous process for the non-analog scheme is given by:

σ2
non-analog(t) = 0. (9.85)

This property of the non-analog scheme is singular. Its interpretation in term of finite accuracy MC
method (i.e. use of a finite number of MC particles as we recall the results are here obtained in the
asymptotical limit NMC →∞) will be studied in the next section.

9.7.4 Comparisons of the standard deviations of the MC schemes (homoge-
neous)

In this section, we briefly compare the four20 previous MC schemes in term of asymptotical standard devi-
ations (square root of the variance). The asymptotic standard deviations, in a homogeneous monokinetic
configuration, are recalled here:

σmultiplicity (t) = U0e
−vσat

√
e
−vσtt+v

(∑NR
r=0(νr)2σr

)
t+2vσat − 1,

σfull analog (t) = U0e
−vσat

√(
2v
∑NR
k=0 νk(νk − 1)σk

)
t,

σsemi-analog (t) = U0e
−vσat

√
e

(vσs)2−(vσt)
2

(vσt)
t+2vσat − 1,

σnon-analog (t) = 0.

(9.86)

The study performed in this section is non exhaustive. It is only a pretext to briefly present how the
analysis of standard deviations can help choose a particular MC schemes in a particular configuration.

The standard deviations are compared in figure 9.1 for a particular choice of the cross-sections and
multiplicities. For both pictures of figure 9.1, σ0 = 0.3, σ1 = 0.6 and σ2 = 0.1. The left picture presents
the time evolutions of the standard deviations with ν0 = 0, ν1 = 1, ν2 = 2. The right picture shows the
variations of the standard deviations with respect to ν2 at time t = 5 for ν0 = 0, ν1 = 1. We begin by
scheme to scheme comparisons: on figure 9.1 (left), it is easy verifying that ∀t ∈ [0, 20], in this particular
configuration,

σ2
multiplicity(t) ≥ σ2

full analog(t) ≥ σ2
semi-analog(t) ≥ σ2

non-analog(t).

If we focus on the ’multiplicity’ option of the analog scheme, its standard deviation is higher than the

20We distinguish the ’multiplicity’ and the ’full analog’ options for the analog scheme here.

193



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20
time

Multiplicity
Full−Analog

Semi−Analog
Non−Analog

v
ar

ia
n
ce

 (
t)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.2  1.4  1.6  1.8  2

Multiplicity
Full−Analog

Semi−Analog
Non−Analog

v
ar

ia
n

ce
 (

t=
5

)

ν2

Figure 9.1: Comparison of the asymptotic standard deviations of the four presented MC schemes. Left:
standard deviation with respect to time. Right: standard deviation at time t = 5 with respect to ν2.

ones of the other schemes, even higher than the one of the ’full analog’ one. This observation allows
discarding the ’multiplicity’ option as a relevant scheme:

– its standard deviation is different from the physical one21. Consequently it can not be used for
computing and studying extinction probabilities etc. (see remark 9.2). Only its first moment M1

is physically relevant.

– Its standard deviation, being different from the physical one, consequently only has a purely nu-
merical interest. In this context, it exhibits a very poor convergence rate: it is higher than the
other ones and even higher than the physical one.

For these two reasons, we can conclude the ’multiplicity’ option has a very limited numerical and physical
interest and is an example of bad MC scheme. It explains why it is scarcely used/studied in the literature.
In fact, with this option, we mainly wanted to give the reader an example of a bad MC scheme together
with how MC schemes can be compared and chosen/discarded.
The full analog scheme allows recovering the physical moments of the particle distribution, and not only
the first one. On another hand,

– in very multiplicative media, it implies dealing with more and more MC particles. This can lead
to intractable situations (memory consumption/explosion, unaffordable costs etc.).

– In very absorbing media, it implies dealing with a very small number of remaining MC particles
leading to very important variances. It consequently needs intensive computations even if one is
only interested in an accurate first order moment M1 = U .

In many configurations of interest, the particle flows are fully characterised by their first order moment.
In these cases, it is enough studying the mean of the particle distribution and consequently it is relevant
looking for the scheme having the lowest (numerical) standard deviation. The semi-analog and the non-
analog scheme both have, on the particular configuration of figure 9.1, standard deviations lower than the
full analog one. This makes them relevant alternatives in the limit of a high number of physical particles.
Figure 9.1 (right) presents the standard deviations of the four schemes at t = 5 with respect to ν2, the
multiplicity of the second reaction. We recall reaction 0 corresponds to absorption (ν0 = 0) and reaction
1 corresponds to diffusion (ν1 = 1). Once again, figure 9.1 (right) allows identifying the ’multiplicity’
scheme as an inefficient one, having systematically a higher standard deviation than the physical one. For
1 ≤ ν2 ≤ 1.35, the standard deviation of the semi-analog scheme is higher than the one of the full analog
one, lower for 1.35 ≤ ν2. On another hand, the standard deviation of the non-analog scheme is the
lower one, equals to zero whatever the choices of the different reaction parameters (νr, σr)r∈{0,...,NR}
in this monokinetic homogeneous configuration. This property of the non-analog scheme leads to the
introduction of a new22 notion: Asymptotic Preserving (AP) scheme. It will be very usefull all along the
last sections and chapters of this document.

21obtained with the ’full analog’ option mimicing physics, see remark 9.2.
22New in the document, not in the literature.
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Definition 9.1 A converging numerical scheme of discretisation parameter O(∆) is Asymptotic Pre-
serving in an identified regime of interest characterised by δ → 0, if its convergence rate weakly depends
on ∆ in this regime δ → 0. Another way to understand this definition is that the error is O(∆) = Kδ∆
with

Kδ �
δ→0

1, or at least Kδ = K,

but Kδ does not explode with δ → 0.

The above definition may appear foggy at this stage of the discussion but is also general enough to be
reused (section 9.9 and chapter 10). For example, ∆ may refer to 1√

NMC
for an MC scheme or ∆x or ∆t

once a coupling is taken into account (see chapter 10). The regime of interest is characterised by δ → 0
with δ depending on the characteristic time, length, mean free path etc. of the problem. In order to
clarify the above definition, we suggest emphasizing the AP character of the non-analog scheme in the
monokinetic homogeneous regime. To do so, it is helpful to non-dimensionalize the monokinetic linear
Boltzmann equation. Let us introduce{

x = x∗X ,v = v∗V, t = t∗T ,
σα = σ∗α

1
λα
,∀α ∈ {s, t, a}, (9.87)

where the upperscript ∗ denotes a nondimensional quantity. Let us introduce u∗(x∗, t∗, ω) = u(x, t, ω),
then

1
T ∂t∗u

∗(x∗, t∗, ω) = ∂tu(x, t, ω), 1
X ∂x∗u

∗(x∗, t∗, ω) = ∂xu(x, t, ω).

Using the above expressions in the transport equation yields

X
T V ∂t∗u

∗(x∗, t∗, ω) + v∗ω∂x∗u∗(x∗, t∗, ω) + v∗σ∗t
X
λt
u∗(x∗, t∗, ω) = v∗σ∗s

X
λs

∫
u∗(x∗, t∗, ω)dω.

Let us decompose σt = σa + σs to obtain

X
T V ∂t∗u

∗(x∗, t∗, ω) + v∗ω∂x∗u∗(x∗, t∗, ω) +v∗σ∗a
X
λa
u∗(x∗, t∗, ω)

+v∗σ∗s
X
λs
u∗(x∗, t∗, ω) = v∗σ∗s

X
λs

∫
u∗(x∗, t∗, ω)dω.

Now suppose X
VT = O( 1

δ ) = X
λa

and X
λs

= O(1), we have (we drop the upperscript ∗ for convenience)

1
δ
∂tu(x, t, ω) + v∂xu(x, t, ω) +vσa

1
δ
u(x, t, ω)

+vσsu(x, t, ω) = vσs

∫
u(x, t, ω)dω.

Performing a Hilbert development, i.e. u = u0 + u1δ + u2δ2 +O(δ3) see [143], and considering only the
first order (i.e. u0) leads to

∂tu
0 = −vσau0.

It corresponds to the monokinetic homogeneous regime as δ → 0. In this regime, the non-analog scheme

asymptotically ensures O( 1√
NMC

) =
σnon-analog(t)√

NMC
� 1, whatever the number of MC particles, as asymp-

totically σnon-analog(t) = 0, see (9.85). In practice, in such homogeneous configurations, if one performs a
convergence study with respect to NMC comparing the numerical solution to the analytical one M1(t), the
study will exhibit an O( 1

NMC
) convergence rate instead of an O( 1√

NMC
). This has been experimentally

put forward in a study of [3].
Finally, the previous expressions for the standard deviations are also interesting for the developer

willing to verify his implementations. Making sure the implementation of the MC scheme allows re-
covering the standard deviation and the high order moments up to numerical accuracy O( 1√

NMC
) in

several regimes can be a relevant and discriminating tests from a verification point of view (see V&V for
Verification and Validation, see [13]). Indeed, the higher the order of the moment is, the more sensitive
it is with respect to any inaccuracy, see sections 3.4.2–3.4.3 of chapter 3 of part II.
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9.8 A general canvas for developing MC schemes

All along the previous sections, several MC schemes, direct or adjoint, together with their characteristics
have been presented. Each scheme is interesting (except maybe the ’multiplicity’ option, discarded in
section 9.7.4) in the sense each scheme allows capturing more or less accurately different regimes or
present development advantages (extinction probability, homogeneous case, low asymptotic variance,
minimal amount of developments for adjoint/direct resolutions etc.). For these reasons, one may wish
to be able to choose the relevant scheme in the relevant situation with the same simulation device. In
this section, we insist on the fact that every one of these schemes can fit in the same canvas. This is of
practical interest especially when developing a simulation code (a platform) in order to mutualize the
more possible parts of the resolution schemes. In order to illustrate the matter, we rewrite in the same
canvas

– the three MC schemes of sections 9.2–9.3–9.4,

– for a direct resolution,

– on a given grid D =
⋃Nx

i=1Di, with the classical approximations presented in section 9.6 with respect
to space and time discretisation of the cross-sections (i.e. constant in each cell and in each time
step),

– taking into account explicitly in the chart the fact that an MC particle goes from one cell to
another.

With algorithm 9, detailed and commented later on in this section, we hope the reader willing to develop
an MC simulation code in order to solve the linear Boltzmann equation with constant cross-sections in
each cell and time step can follow the description below and achieve its purpose.

In this section, we deal with the direct resolution of the linear Boltzmann equation. As already
briefly tackled in section 9.5.2 of this document, the direct resolution needs a first step, a pretreatment,
ensuring the initial population of MC particles accurately represents the initial condition u0. This step is
technical and crucial. The sampling phase resumes once again to identifying a set probability measures
and, exactly as in the resolution phase, this set is not unique. In the next section, we detail some
possibilities, the list is non exhaustive.

9.8.1 Sampling the initial MC particle population

The first step of a direct resolution corresponds to what is commonly called the sampling phase. This
phase was hinted at in algorithm 5 in its most general form. It implies correlated samplings of the initial
position x, velocity v from a quite complex probability measure

du0(x,v) = 1
1

|D|

∫∫
D
u0(x,v)dxdv

u0(x,v)dxdv,

= 1
U0
u0(x,v)dxdv.

(9.88)

At the end of such phase, the population of (NMC) MC particles is supposed to statistically accurately
represent the initial condition u0(x,v). It means that we demand the initial MC particle population to
verify

NMC∑
p=1

up(x, 0,v) =
NMC→∞

u0(x,v),∀x ∈ D =

Nx⋃
i=1

Di,v ∈ R3, and ∀Nx ∈ N∗. (9.89)

The important point in (9.89) concerns the grid and the condition ∀Nx ∈ N∗: we want the convergence
of the initial MC particle population not to depend on the size of the grid Nx to ensure a convergence
depending only on NMC . In the following lines, we detail two possibilities to ensure the above property:
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– The first one corresponds to the ’MC solution’ in the sense it allows having uniform initial weights
wp(0) = U0

NMC
,∀p ∈ {1, ..., NMC} for every MC particles. The other fields (xp(0),vp(0),vp(0)) are

sampled from (9.88).

– The second, in opposition, would be closer to a ’quadrature rule solution’ (see part II, chapter
5). It begins by choosing arbitrarily the distribution of the fields (xp(0),vp(0),vp(0)) of the MC
particles before correcting consistently their weights wp(0).

Both methods are described and applied in a simple configuration at the end of this section. Care will
be taken to put forward the particularities of the sampling strategies.

From a practical point of view, the initial sampling phase is almost the inverse of what is presented
in part II regarding uncertainty quantification. In part II and especially in chapter 5, the idea is to
determine/approximate u0 given a particular discretisation of x,v. In this section, the problem is,
knowing u0, discretise consistently x,v. All along the next paragraph, our aim is to determine the
different fields wp(0),xp(0),vp(0) of any MC particle p in order to ensure that

NMC∑
p=1

up(x, 0,v)
a.s.
= u0(x,v), (9.90)

The overset a.s. is for almost surely, see part II. For convenience in the following lines, we use the abusive
notations wp(0) = wp,xp(0) = xp,vp(0) = vp. The first paragraph concerns how the MC particles are

initially distributed amongst some cells i ∈ {1, ..., Nx} tesselating the simulation domain D =
⋃Nx

i=1Di.
The two following ones correspond to the descriptions of the two above solutions (MC and quadrature
rule) described within a given cell Di.

Sampling ip, the initial cell of p amongst the different cells i ∈ {1, ..., Nx}
Let us consider particle p. It is common to first determine the initial cell ip of particle p before determining
its other fields. We could have determined xp first but finding ip afterward would have involved a loop
over cells and MC particles to determine ip from xp, hence possible performance losses (increasing with
the number of MC particle and the number of cells). Sampling the initial cell ip resumes to sampling
from a discrete law. We introduce

U0 =
1

|D|

∫∫
D
u0(x,v)dxdv =

Nx∑
i=1

U i0.

The quantity U0 is the initial amount of particles in the whole simulation domain D. The quantities
(U i0)i∈{1,...,Nx} are the amounts of particles in each cells Di of the simulation domains D =

⋃Nx

i=1Di
defined by

∀i ∈ {1, ..., Nx}, U i0 =
1

|Di|

∫∫
Di
u0(x,v)dxdv.
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Algorithm 6: Sampling of the initial cell ip

1 Function sample cell()
2 #More generally, this kind of function allows sampling from any discrete probability measure

with i ∈ {1, ..., Nx} states of probability
U i0
U0

.

3 U =sample uniform law()
4 set Proba = 0
5 set ip = Nx

6 for i ∈ {1, ..., Nx − 1} do
7 Proba← Proba+ U i0
8 if Proba > U × U0 then
9 ip ← i

10 break;

11 end

12 end
13 return ip

With the previous notations, the probability of having a particle in cell i is
Ui0
U0

. The initial cell ip of
particle p is sampled from the following discrete probability measure

dPI(I) =

Nx∑
i=1

U i0
U0
δi(I). (9.91)

Practically, this resumes to sampling from a uniform law in [0, 1], UI ∼ U([0, 1]), and inverse the piecewise
constant cdf of (9.91). The initial cell ip then verifies

ip = min
h∈{1,...,Nx}

{
UI <

h∑
i=0

U i0
U0

}
. (9.92)

Algorithm 6 presents the operations to obtain ip as in (9.92). Once the cell Dip identified, it remains
to sample the position and velocity of particle p within cell ip (i.e. conditionally to being in cell ip).
There are several ways to do so, two different ones are presented in the two next paragraphs. From now
on, we suppose the initial cell ip known. In order to alleviate the notations, the indice ip for cell Dip
is omitted, i.e. we determine wp,xp,vp within cell D. In other words, the following sampling strategies
can be applied even without the introduction of a grid for D.

The ’MC solution’: uniformly distributed weights and consistently sampled fields

Suppose now the cell D in which p is sampled identified, it remains to determine wp,xp,vp consistently
with probability measure

du0(x,v) =
1

1

|D|

∫∫
D
u0(x,v)dxdv

u0(x,v)dvdx =
1

U0
u0(x,v)dvdx. (9.93)

The structure of (9.93) has already been encountered in section 9.6.2. It must be compared to the
expression of dPs = Ps(v,v

′)dv′, from (9.25) for example, for the correlated samplings of the scattering
energy and angle. The sampling strategy described for dPs also applies to du0: it is possible to perform
successive conditional samplings from the marginals of du0. The order of the samplings of the different
fields can be arbitrary. In the following paragraphs, we first sample xp, then vp conditionally to being
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at position xp. Those successive samplings are described below.

Algorithm 7: Sampling step to represent the initial condition u0(x,v) with NMC particles.

1 Function sampling(NMC)
2 for i ∈ {1, ..., Nx} do
3 set N i

MC = 0
4 end
5 for p ∈ {1, ..., NMC} do
6 #Sample the cell Dip of the MC particle p according to (9.92) and algorithm 6
7 set ip = sample cell()

8 do N
ip
MC ←− N

ip
MC + 1

9 #Sample the position xp of particle p in cell ip according to (9.94)
10 set xp = sample position in cell(ip)
11 #Sample the velocity vp of particle p at position xp according to (9.95)
12 set vp = sample velocityat position(xp)

13 end
14 #Once the number of particles per cell N i

MC known ∀i ∈ {1, ..., Nx}
15 #Renormalization
16 for p ∈ {1, ..., NMC} do

17 #Set the weights of the particle to ensure exactly
∑
p∈Di

wp = U i0

18 set wp ←− U
ip
0

N
ip
MC

19 end

20 return A population of MC particles representing almost surely u0(x,v)

Let us introduce the marginal probability measure U0(x)dx defined by

U0(x)dx =
1

U0

[∫
u0(x,v)dv

]
1D(x)

|D| dx.

Introduce furthermore a new sample from a uniform law UX ∼ U([0, 1]). Then the sampled initial
position xp satisfies

UX =

∫ xp

−∞
U0(x)dx. (9.94)

It only remains to inverse the above expression in order to obtain explicitly the position xp of the particle
in the cell D. The velocity vp is then sampled conditionally to being at position xp. Introducing the
conditional probability measure

U
xp
0 (v)dv = 1

U0(xp)
u0(xp,v)dv, UV ∼ U([0, 1]), UV =

∫ vp

−∞
U

xp
0 (v)dv. (9.95)

Suppose the above probability measure is known, then the initial velocity of the particle is once again
obtained inversing its cdf as done with the position xp.

Once every samplings done for particle p, it only remains to set its weight wp. The above process
ensures equiprobable MC particles, i.e. all MC particles must have the same weight within the same
cell for consistency. At the end of the sampling phase, during a renormalization step once we know the
number of MC particles N i

MC in each cell i ∈ {1, ..., Nx}, the weight wp is set to

wp =
U i0
N i
MC

, ∀p ∈ Di. (9.96)

Such process ensures, by construction, the population of particles represents the initial condition asymp-
totically with NMC →∞. To verify it, it is enough verifying every moments of the cell population tend
to the moments of u0. In fact, it is even exact for the first moment (thanks to the renormalization step).
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The higher order moments are approximated up to O
(

1√
NiMC

)
accuracy. In practice, the different

presented marginal probability measures may be complex to inverse. We usually have resort to approxi-
mations (linear, logarithmic etc.), converging with respect to the size of the cell |D|: if an approximation

is introduced, the convergence in (9.90) may depend, strongly or not, on O
(

max
i∈{1,...,Nx}

|Di|
)

. As a

result, a compromise between the simplicity of the cdf inversions and the cell size must be made. The
algorithmic description for the MC sampling phase in order to represent the initial condition is given in
algorithm 7. A practical example applying the above strategy is presented at the end of the section.

In the next paragraph, we present another way to make sure the cell population statistically describes
the initial condition: it does not involve inversing (potentially complex) cdfs.

The ’quadrature rule solution’: uniformly distributed fields and weight corrections

We still assume we already determined the cell in which the MC particle is sampled. We here describe
another way to make sure the MC population of the cell almost surely represent the initial condition.
This second method, closer to a quadrature rule than an MC discretisation (see section 5.2.3), allows
avoiding the potentially complex cdf inversions of the previous paragraph. It supposes xp, vp are sampled
independently according to known probability measures. These probability measures can be arbitrary. In
practice, it is common choosing the uniform ones with respect to space, energy and angle, i.e. respectively
1Di (x)

|Di| dx, 1R+(v)dv, 1S2(ω)dω. The samplings are then followed by a consistent correction of the weights

in order to ensure the convergence of the MC population toward u0 almost surely. Note that the notation
1R+(v)dv for the sampling of the energy field may appear unconventional. This is done on purpose for
the sake of genericity as depending on the physics of interest, the measure 1R+(v)dv may be different.
Of course, we suppose it sums up to 1, i.e.

∫
R+ dv = 1.

With the previous choice, xp,vp, ωp are sampled independently and uniformly according to the (simple
to inverse) cdfs: 

UX ∼ U([0, 1]), UX =

∫ xp

−∞

1Di(x)

|Di|
dx,

UV ∼ U([0, 1]), UV =

∫ vp

−∞
1R+(v)dv,

UW ∼ U([0, 1]), UW =

∫ ωp

−∞
1S2(ω)dω.

(9.97)

Once the position, energy and angle obtained, it remains to make sure the weights wp ensure the con-

vergence property: setting the weight to wp = u0(xp,vp, ωp) induces an O
(

1√
NiMC

)
convergence. It is

common to correct it during a renormalization phase, once N i
MC is known, in order to enforce exactness

for the first moment, i.e. such that
∑
p∈Di wp = U i0. The above procedure is detailed in algorithm 8.

The latter sampling strategy is simpler than the one presented in the previous paragraph and is
probably the most common one. It still has an important drawback: suppose there exists a volume
V ⊂ D × R3 in cell D such that ∫∫

V
u0(x,v)

1D(x)

|D| dxdv = 0.

If this volume V is too important, many (xp,vp)p∈{1,...,NMC} can be sampled in V and many particles
would see their weights assigned to zero for consistency. In practice, to avoid such case, a rejection method
is applied (see algorithm 8) but the performance of the sampling phase may suffer from it. In fact, the
larger the size |V| of volume V and the number of dimensions of the problem (i.e. 3(x) + 1(v) + 2(ω) = 6
here), the more the rejection method is inefficient, see [161] for a pedagogical example. The latter sam-
pling strategy, with and without rejection, is applied in a simplified configuration at the end of this
section.

Of course, it is possible to mix both of the previously described methods and obtain a good compro-
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mise. This is in fact what is commonly done. We also insist on the fact that in practice, approximations
can be made without strong consequences on the convergence rate of the MC resolution on the observ-
ables of interest. For example, it is common to sample uniformly the fields xp,vp and set uniform weights

equal to
Ui0
NiMC

to the particles of cell i. This induces a O(maxi|Di|) error which can be negligeable in

comparison to the O( 1√
NMC

) error of the resolution scheme. If it is not, it is still always possible to in-

crease Nx to obtain the result. Nevertheless, care has to be taken so that the constant in the O(maxi|Di|)
error is not too important: the property may not hold for example in photonic applications in which the
source sampling is critical (teleportation error [301]). More details are given in section 9.9.1 and later in
section 10.2.1 of chapter 10.

In the next paragraph, we apply the above material on a simple initial condition u0. The aim is to
illustrate the points tackled above.

Algorithm 8: Sampling step to represent the initial condition u0(x,v) with NMC particles.

1 Function sampling(NMC)
2 for i ∈ {1, ..., Nx} do
3 set N i

MC = 0

4 set U
i,NiMC
0 = 0

5 end
6 for p ∈ {1, ..., NMC} do
7 #Sample the cell Dip of the MC particle p according to (9.92)
8 set ip = sample cell()
9 set wp = 0

10 #Rejection method
11 while wp == 0 do
12 #Sample the position xp of particle p in cell ip according to (9.97)
13 set xp = sample unif position in cell(ip)
14 #Sample the velocity vp of particle p at position xp according to (9.97)
15 set vp = sample unif velocity()
16 #Set the initial weight of particle p according to (9.96)
17 set wp = u0(xp,vp)
18 if wp 6= 0 then

19 do U
i,NiMC
0 ←− U i,N

i
MC

0 + wp

20 do N
ip
MC ←− N

ip
MC + 1

21 end

22 end

23 end

24 #Once the number of particles per cell N i
MC known together with U

i,NiMC
0 , ∀i ∈ {1, ..., Nx}

25 #Renormalization
26 for p ∈ {1, ..., NMC} do

27 #Correct the weights of the particle to ensure exactly
∑
p∈Di

wp = U i0

28 set wp ←− wp × 1

U
ip,N

ip
MC

0

U i0
N
ip
MC

29 end

30 return A population of MC particles representing u0(x,v)

Example of initial MC sampling

We consider a simple example and illustrate the two sampling methods briefly described above. We focus
on the sampling in a 1−dimensional cell D = [−1, 1]. Without loss of generality, we consider an isotropic
and monokinetic initial condition, i.e. we assume u0(x,v) = u0(x). It simplifies the computations and
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remains relevant. Besides, we suppose

u0(x) = 1[−a,a](x)
1√
2πσ

e−
x2

2σ , (9.98)

i.e. u0 has a truncated gaussian (mean 0, variance σ2) form with [−a, a] ⊂ D = [−1, 1]. Figure 9.2
presents the results obtained with the previous sampling methods for initial condition (9.98) (reference
in red) for different values of parameters σ and a. These parameters allow controlling the size of volume
V (especially thanks to a) together with the range of probable positions within the cell (especially thanks
to σ). The smaller a is, the larger |V| is. The larger σ is, the more the initial condition tends to a uniform
sampling in interval [−a, a].

σ = 0.1, a = 0.6 σ = 0.01, a = 0.6
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Figure 9.2: Comparison of the behaviours of the different kinds of initial samplings for u0 as in (9.98) for
σ = 0.1, a = 0.6 (top left), σ = 0.01, a = 0.6 (top right), σ = 0.1, a = 0.3 (bottom left), σ = 0.01, a = 0.3
(bottom right). The red curve is the reference (9.98). The dots are obtained with different samplings
(with NMC = 20 here). The dots are not exactly the weights of the MC particles but the weights
multiplied by NMC , i.e. wp(0) × NMC . The green dots are obtained with the ’quadrature without
rejection’ method, the blue dots with the ’quadrature with rejection’ one and the magenta are obtained
with the MC one.

In figure 9.2, three initial sampling strategies are compared. The ’MC solution’, the ’quadrature’
one and the ’quadrature’ one with rejection. We briefly go through few implementation details before
commenting the results:

– Let us begin with the ’MC solution’, the initial sampling ensuring uniform weights. In order to
apply this method, we first need to build the equivalent of (9.93) based on (9.98). Integrating
(9.98) on D leads to

U0 = erf

(
1

2

√
2

σ
a

)
, so that the probability measure is given by du0 =

1

√
2πσerf

(
1

2

√
2

σ
a

)e− x2

2σ dx.
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Its cdf is given by ∀x ∈ [−a, a]

Fu0
(x) =

1

2
+

1

2

erf

(
1
2

√
2
σx

)
erf

(
1
2

√
2
σa

) .
The position xp of the MC particles can be sampled introducing UX ∼ U([0, 1]) and inversing
UX = Fu0

(xp). In practice, we rely on a Newton algorithm in order to perform the inversion
and obtain the magenta dots of figure 9.2. By construction, the magenta dots are within interval
[−a, a]. The weights of the MC particles are the same (note that we display wp×NMC for a better
readability of the picture mainly). There are more MC particles in the area of higher probability,
i.e. in the vicinity of x = 0, than elsewhere.

– The ’quadrature rule solution’ (with or without rejection) is much simpler to describe. It consists
in sampling the MC particle position xp uniformly within D = [−1, 1] and setting the weights of the

MC particles to wp =
u0(xp)
NMC

. The rejection only supposes that if wp = 0, xp is resampled according
to the same probability measure (here uniformly within [−1, 1]) until wp 6= 0, see algorithm 8. The
quadrature sampling method without rejection is presented in figure 9.2 with the green dots for
NMC = 20 samples. The left column of figure 9.2 presents the results for a = 0.6 and a = 0.3. The
smaller a is, the larger the size |V| is: as a consequence, between the top picture and the bottom
one of this column, more MC particles are sampled in the ”zero weight” area and wasted. With the
rejection method (blue dots), every MC particles are sampled within interval [−a, a] but at the cost
of several rejections. The blue dots are then uniformly sampled within [−a, a] and their weights
corrected accordingly. The quadrature method without rejection is very inefficient: in figure 9.2
there are only 60% (a = 0.6) and 30% (a = 0.3) of MC particles sampled within the area of non-zero
probabilities. But the rejection does not always increase drastically its efficiency: consider the blue
dots in the top-right picture of figure 9.2. For such value of σ = 0.01, the interesting area (of high
probability) is narrow: many blue dots are assigned a very small weight due to the steep gradient
of probability of occurrence of some positions. This may induce slow convergence rates for the MC
resolution.

– To end the description of the sampling phase, let us comment on the consequence of a non consistent
sampling (and prepare the discussion concerning the teleportation error of section 10.2). Suppose
the positions are sampled uniformly within the cell [−1, 1] (as for the ’quadrature’ strategy) but the
weights are uniformly set to ensure the exactness of the first moment only. Basically, in figure 9.2,
this would imply having the same positions as the blue and green dots but the magenta weights.
For the green dots, MC particles in the ”zero-weight” area (or in the ’nearly-zero-weight” one for
the blue dots) would have a non-negligible weight. This can significantly affect the solution u at
later times (see teleportation error [301]).

We here presented two solutions for the sampling of the initial condition, we insist lots of other possibilities
exist. For example, the material of part II regarding quadrature rules can be used. In fact, Gauss
quadrature rules are even applied for the sampling of the initial condition in [298] for the MC resolution
of the Euler system with a BGK model. The method is called ’Quiet MC’ as the use of Gauss quadrature
rules in each cell for the sampling (both initial and source sampling in fact, see section 9.9) allows having
smoother profiles than with the classical MC sampling. The numerical strategy described in [298] is more
an original sampling strategy than a new MC scheme. In this sense, paper [298] shows the sampling phase
can be crucial and considerably contribute to an acceleration of the MC resolution.
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9.8.2 A general skeleton in order to develop each scheme in the same plat-
form

Algorithm 9: The general canvas for the different MC schemes described in term of algorithmic

operations in order to compute (direct) U(x, t) =

∫
u(x, t,v)dωdv.

1 #SAMPLING described in algorithm 7 or algorithm 8
2 call sampling(NMC)
3 set t = ∆t
4 #Time step loop
5 while t < T do
6 #Initialize to zero the array of the quantity of interest on the whole simulation domain D
7 set U(x, t) = 0 ∀x ∈ D
8 #TRACKING: make sure each up is an MC particles
9 for p ∈ {1, ..., NMC} do

10 set sp = t−∆t #this will be the current time of particle p
11 while sp < t and wp > 0 do
12 if xp /∈ D then
13 #here a general function for the application of arbitrary boundary conditions
14 apply boundary conditions(xp, sp,vp)

15 end
16 sample τinter = sample interaction time(vp, ip)
17 compute τexit = compute cell exit time(xp,vp, ip)
18 compute τcensus = max(t− τ, 0)
19 set τ = min(τexit, τcensus, τinter)
20 #move the particle p
21 xp ←− xp − vpτ ,
22 #change its weight
23 (K, r) = compute weight modif(vp, τ , τcensus, τexit, τinter, ip )
24 wp ←− K × wp
25 if τ == τcensus then
26 #set the life time of particle p to zero:
27 sp ←− t
28 #tally the contribution of particle p
29 U(xp, t)+ = wp
30 end
31 if τ == τexit then
32 #The particle p changes of cell: find its new cell number
33 ip = find neighbooring cell(ip,vp)
34 #set the life time of particle p to:
35 sp ←− sp + τ < t

36 end
37 if τ == τinter then
38 #Sample the velocity of particle p
39 V′ = sample velocity(vp, r, ip)
40 set vp = V′

41 #set the life time of particle p to:
42 sp ←− sp + τ < t

43 end

44 end

45 end
46 t←− t+ ∆t

47 end

Now we detailed the sampling phase, common to every direct resolutions, we suggest tackling the
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tracking one, see algorithm 9. This tracking phase is independent of the sampling of the previous
section. It describes the ’tracking’ of the population of particles23 in the discretised simulation domain
D =

⋃Nx

i=1Di, with the hypothesis of having constant cross-sections in each cell and time step

σα(x, v) =

Nx∑
i=1

σiα(v)1Di(x), α ∈ {S, t}.

More details are given in section 9.6. The structure of the tracking phase of the particles is very close to
the one presented in the description of the direct non-analog scheme (algorithm 4). We only encapsulated
some key parts in several functions: sample interaction time, compute weight modif, sample velocity24.
The three latter key functions are described in algorithms 10–11–12 but for the moment we focus on the
common canvas (algo. 9).

Algorithm 10: The sampling of the interaction time function

1 Function sample interaction time(real v, int i)
2 set τ = REAL MAX
3 #Sampling of the interaction time depending on the choice of the MC scheme
4 U =sample uniform law()
5 if MC scheme == analog or MC scheme == semi− analog then

6 τ = − ln(U)
vσit(v)

7 end
8 if MC scheme == non− analog then

9 τ = − ln(U)
vσiS(v)

10 end
11 return τ

Algorithm 11: Sampling of the velocity

1 Function sample velocity(real v, int r, int i)
2 if MC scheme == analog then
3 if full analog then
4 #The function returns a list of νr particles
5 (p′1, ..., p

′
νr )=split the particle into(νr)

6 end
7 for j ∈ {1, ..., νr} do
8 #Call the probability measure for reaction r in cell i for each split MC particles

9 Vj =sample from P r,iS (v)
10 vp′j = Vj

11 end

12 end
13 if MC scheme == semi-analog or MC scheme == non-analog then
14 #Averaged over the set of reactions in cell i
15 V′ =sample from P iS(v)

16 end
17 return V′

Each presented scheme relies on comparing three times, τinter the interaction time, τexit the time at
which an MC particle p would get out of the cell ip, τcensus the time before ending the time step. For
each scheme, the particle moves along vpτ where τ is the minimum of the three above times. Its weight
is modified or not (in compute weight modif) depending on the scheme. Furthermore, depending on the
minimum of τcensus, τexit, τinter, the particle sees its life time updated and finishes its treatment (census)

23initially sampled according to algorithm 7 or algorithm 8.
24We do not detail the functions compute cell exit time and find neighbooring cell as they depend more on the type of

grid (cartesian, structured, unstructured) than on the MC resolution scheme.
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or crosses the interface between two cells (exit) or encounters an interaction (inter). In the latter case,
its velocity change.

Let us now focus on the encapsulated functions. First, note that they all only depend on particle
fields (xp,vp, ip, ...). The first one, to sample the interaction time, only needs the particle energy vp and
is detailed in algorithm 10. Depending on the chosen scheme, the interaction time is sampled from the
total cross-section σt (analog and semi-analog) or from the scattering one σS in the current cell ip. Both
are obtained inversing the cdf of an exponential law, see section 9.6.1.

The second corresponds to the modification of the weight of the particle, detailed in algorithm 12.
For this function, the event the particle encounters explicitly appears in the treatment. The non-analog
scheme is the only one having a treatment independent of the event. The weight of a particle remains
unchanged for the analog and semi-analog schemes for the census and cell exit events. It changes in the
case of an interaction: for the semi-analog scheme, the weight is multiplied by the probability of being
scattered σS

σt
. For the analog scheme, once the indice r of the reaction sampled25, the weight of the

particle is multiplied by the multiplicity νr of reaction r or will be split later (at the interaction position
and time) for the ’full analog’ option.

Algorithm 12: The weight modification depending on the MC scheme

1 Function compute weight modif(real v, real τmin, real τcensus, real τexit, real τinter, real i)
2 set K = 1
3 if MC scheme == analog then
4 if τmin == τexit or τmin == τcensus then
5 K = 1
6 end
7 if τmin == τinter then
8 r=sample reaction number(σiS)
9 if multiplicity then

10 K = νr
11 end
12 if full analog then
13 K = 1
14 end

15 end

16 end
17 if MC scheme == semi− analog then
18 if τmin == τexit or τmin == τcensus then
19 K = 1
20 end
21 if τmin == τinter then

22 K =
σiS(v)
σit(v)

23 end

24 end
25 if MC scheme == non− analog then

26 K = e−v(σit(v)−σiS(v))τmin

27 end
28 return K, r

At the interaction time, each scheme needs the sampling of the outer velocity V′, summed up in
algorithm 11. The semi-analog and the non-analog schemes share the same procedure, using PS , averaged
over the set of reactions r ∈ {0, ..., NR}. The analog scheme implies keeping in memory the previously
sampled reaction number r in order to:

– first, split particle p into νr new particles (p′1, ..., p
′
νr ),

– and sample for each of them the outer velocity V′j from P r,iS in cell i.

25The function sample reaction number is not detailed. In fact, it is very similar to the function of algorithm 6: one
must only replace Nx by NR, U i0 by σr and U0 by σt.
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Note that the functions split the particle into and sample from P iS are not detailed. They depend more
on the choice of the data structures and physical data format (see section 9.6.2) than on the MC resolution
schemes.

In algorithm 9, time steps are explicitly detailed but for the linear Boltzmann equation, time steps
may coincide with the times of interest (MC methods are inconditionally stable for the linear Boltzmann
equation). In other words, if one is only interested in time T , it is possible choosing ∆t = T . This will
not be the case in chapter 10 in which the coupling with additional equations will induce restrictions on
the time step. Note that the above algorithm description still applies for the MC resolution of the linear
Boltzmann equation coupled to other equations but needs additional instrumentations (track length
estimator for example). They will be detailed in the next chapter.

To finish, we add that the tracking phase as described in algorithm 9 is commonly denoted ’history-
based’. It refers to the fact that during one time step, an MC particle is followed from sp = t−∆t, i.e.
the beginning of the new time step, until sp = t, i.e. the end of the current time step (if, of course, the
MC particle is not killed during its history26). Another possibility would be to apply the events one by
one to the whole population of particles until they all reach census or die, this is what is commonly called
an ’event-based’ tracking phase. These considerations are practical ones and do not explicitly depend
on the applied MC scheme. Nevertheless, the discussion on the choice of a ’history-based’ tracking or
an ’event-based’ one is far from being irrelevant as the target computation device (one may have access
to a station, a computation cluster, a supercomputer, with homogeneous nodes or hybrid ones...) may
be sensitive to the operations induced by the two possibilities. Hybrid architectures (classical nodes,
GP-GPU units, vectorization) becoming more and more common, hybrid strategies mixing history-and-
event-based tracking phases may become more and more relevant. The discussion is beyond the scope of
this document but is very interesting and we refer to [99] for some examples of fine-coarse grain parallel
strategies for the linear Boltzmann equation.

9.9 Taking into account a source term

Just as the set of random variables for the MC resolution of the transport equation (or the initial
sampling) is not unique, there are many different ways to deal with a source term. In fact, its presence
just adds combinatorial possibilities. In this section, we focus on two different MC strategies. We first
focus on the most common treatment. It is based on Duhammel’s principle27. It is very convenient in
practice as it does not need to rewrite a complete set of MC treatments if one has already access to

– an MC solver for the linear Boltzmann equation without source terms,

– together with an initial sampling phase.

We show the treatment of the source term is closely related to the initial sampling. In section 9.9.2, we
present a different way to take it into account. It corresponds to a new MC scheme, rather than only
a modification of the sampling phase. The scheme is original and to our knowledge is not commonly
applied in the literature (at least for neutronics or photonic applications). It is designed to be efficient
in presence of a stiff source term (Asymptotic Preserving scheme in this regime, see remark 9.1). It
is presented here because its construction is based on some important practical steps which are inten-
sively applied in chapter 10 in a more complex context (nonlinear Boltzmann equation due to a coupling).

As we aim at focusing on the treatment of the source term, in order to alleviate the notations and
avoid redundances, we make some assumptions. We consider the monokinetic transport equation with
constant cross-sections with respect to time, space and velocity, i.e. σt(x, t,v) = σt and σs(x, t,v,v

′) =
σsPs(ω

′, ω). This corresponds to a very simple case but the generalizations are straightforward thanks
to the already described material. The previous hypothesis lead to the following transport equation

−∂tu(x, t, ω)− v∂xu(x, t, ω) + vσtu(x, t, ω) = vσS

∫
PS(ω′, ω)u(x, t, ω′)dω′ − S(x, t, ω). (9.99)

26depending on the chosen MC scheme.
27Applied in order to prove the existence and unicity of the solution of linear Boltzmann equation with source term.

207



The source term has not been treated previously only because of a small subtlety of the structure of
(9.99). Consider first equation

−∂tu(x, t, ω)− v∂xu(x, t, ω) + vσtu(x, t, ω) = vσS

∫
PS(ω′, ω)u(x, t, ω′)dω′, (9.100)

which corresponds to (9.99) where S = 0. Then if (up)p∈{1,...,NMC} are solutions of (9.100), it is easy

verifying
∑NMC
p=1 up is also a solution of (9.100). On another hand, if (up)p∈{1,...,NMC} are solutions of

(9.99), then φ =
∑NMC
p=1 up is not a solution of (9.99) but rather a solution of

−∂tφ(x, t, ω)− v∂xφ(x, t, ω) + vσtφ(x, t, ω) = vσS

∫
PS(ω′, ω)φ(x, t, ω′)dω′ −NMCS(x, t, ω). (9.101)

In other words, the quantity 1
NMC

∑NMC
p=1 up is the solution of the linear Boltzmann equation with source

term (9.99). If the number of particles depends on time28, i.e. if NMC(t), some additional treatments

must be added to cancel the ∂tNMC(t) term for 1
NMC(t)

∑NMC
p=1 up to solve (9.99). The latter property

may appear irrelevant and obvious at this stage of the discussion but it becomes really important when
designing, developing and implementing an MC scheme. In the case of a source term, depending on the
choice of the scheme, the weight of the MC particles, mainly in the sampling phase, have to be defined
in a consistent way (with respect to NMC) together with every numerical algorithm implying a change
in the number of MC particles during their tracking (russian-roulette, splitting, window screening etc.).

In the following sections, we describe two ways to take into account a source term:

– the first one resumes to an enrichment of the initial sampling phase (hence its denomination source
sampling).

– The second corresponds to a new MC scheme.

For both resolutions, we rely on an integral form before identifying different sets of random variables
allowing to rewrite it as an expectation.

9.9.1 Application of Duhammel’s principle: source sampling (direct)

The most common MC strategy allowing to take into account an external source term S relies on
Duhammel’s principle. It can be stated as follow: let u1 be the solution of the following Cauchy problem
implying the linear Boltzmann equation without source term −∂tu1(x, t, ω)− v∂xu1(x, t, ω) + vσtu1(x, t, ω) = vσS

∫
PS(ω′, ω)u1(x, t, ω′)dω′,

u1(x, 0, ω) = u0
1(x, ω).

(9.102)

Let u2 be the solution of the following Cauchy problem with −∂tu2(x, t, ω)− v∂xu2(x, t, ω) + vσtu2(x, t, ω) = vσS

∫
PS(ω′, ω)u2(x, t, ω′)dω′ − S(x, t, ω),

u2(x, 0, ω) = 0.
(9.103)

Then u = u1 + u2 is solution of (9.99). The application of Duhammel’s principle allows decoupling
the treatment of the sources from the resolution of (9.102). The direct consequence is that one can
choose its favorite solver for (9.102) and add the resolution of (9.103) to its MC resolution code almost
transparently. From now on in this section, we focus on the MC resolution of (9.103). Equation (9.103)

28It is the case when splitting or russian-roulette is activated.
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can be rewritten in a integral form (direct formulation with u2(x, 0, ω) = 0)∫ t

0

e−vσtsS(x + vs, s, ω)ds =∫ [
+1[t,∞[(s)e

−vσAtu2(x + vt, t, ω) + 1[0,t](s)

∫
PS(ω′, ω)e−vσAsu2(x + vs, s, ω′)

]
vσSe

−vσSsds.
(9.104)

It must be rewritten as an expectation over a set of identified random variables in order to introduce
an MC discretisation. Once again, this set of random variables is not unique. Note that we paved the
path toward a non-analog treatment as we already introduced σA = σt − σS . Let us assume equation
(9.102) is solved with a non-analog MC scheme and that we want to apply similar treatments in order
to take into account the source term. Introduce τ ∼ E(vσS) and τU ∼ U([0, t = ∆t]), W ′ ∼ PS(ω′, ω),
then (9.104) becomes

∆tE [e−vσSτU e−vσAτUS(x + vτU , τU , ω)] =
E
[

1[t,∞[(τ)e−vσAtu2(x + vt, t, ω) + 1[0,t](τ)e−vσAτu2(x + vτ, τ,W ′)
]
.
(9.105)

Introduce furthermore τ ′ ∼ E(vσS), we get for the left hand side

∆tE
[
1[τU ,∞[(τ

′)e−vσAτUS(x + vτU , τU , ω)
]

=
E
[

1[t,∞[(s)e
−vσAtu2(x + vt, t, ω) + 1[0,t](s)e

−vσAτu2(x + vτ, τ,W ′)
]
.
(9.106)

At this stage, expression (9.106) must be compared to equation (9.44) (with some simplication hypothesis,
such as monokinetic etc.) where the initial condition in (9.44) has been replaced by

∆tE
[
1[τU ,∞[(τ

′)e−vσAτUS(x + vτU , τU , ω)
]
. (9.107)

An MC resolution of (9.106) comes naturally with the MC sampling of (9.107), which is similar and can
benefit the strategies applied in order to ensure the initial population of MC particles accurately represent
the initial condition29. It resumes to working on the sampling of (9.107) instead of u0(x, ω), hence its
denomination source sampling. Typically, the source sampling can be done during the initial sampling
phase (see for example algorithm 4). The main difference comes from the fact a time discretisation must
be taken into account for the source particles. Once the source sampling done, the MC treatments are
the same as in section 9.5.2. In the following section, we focus on the MC discretisation of (9.107) with
p ∈ {1, ..., NS

MC} source particles. We consider NMC = NS
MC + N0

MC where N0
MC denotes the number

of MC particles representing the initial condition. Let us define a source MC particle Sp(x, t, ω) =
wp(t)δx(xp(t))δω(ωp(t)) and determine the treatments one must apply in order to ensure it is an MC
solution of (9.106). Plugging the expression of (Sp)p∈{1,...,NSMC} into (9.106) leads to

∆t1[τU ,∞[(τ
′)e−vσAτUSp(x + vτU , τU , ω) =

1[t,∞[(τ)e−vσAtSp(x + vt, t, ω) + 1[0,t](τ)e−vσAτSp(x + vτ, τ,W ′).
(9.108)

After a change of variable, we have

∆t1[τU ,∞[(τ
′)Sp(x, τU , ω) =

1[t,∞[(τ)e−vσA(t−τU )Sp(x + v(t− τU ), t, ω) + 1[0,t](τ)e−vσA(τ−τU )Sp(x + v(τ − τU ), τ,W ′).
(9.109)

Now, let us first consider the case τ ′ < τU : in this case, the indicatrix on the left hand side is zero and
we have

0 =
1[t,∞[(τ)e−vσA(t−τU )Sp(x + v(t− τU ), t, ω) + 1[0,t](τ)e−vσA(τ−τU )Sp(x + v(τ − τU ), τ,W ′),

(9.110)

which implies Sp = 0 ∀t ∈ [0,∆t]. In other words, only sources emitted after τU contribute to u2. In
practice, in order to make sure every source MC particle contribute to u2 (and avoid rejections), their
birth times are sampled from a uniform law on τU ∼ U([0,∆t]) so that we have τ ′ > τU by construction.

29presented in sections 9.5.2–9.8 and in algorithms 5–7–8.
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From now on we suppose τ ′ > τU . We obtain the following recursive treatment for particle p

wp(τU )δx(xp(τU ))δω(ωp(τU )) =
+1[t,∞[(τ)e−vσA(t−τU )wp(t)δx+v(t−τU )(xp(t))δω(ωp(t))
+1[0,t](τ)e−vσA(τ−τU )wp(τ)δx+v(τ−τU )(xp(τ))δW ′(ωp(τ)).

(9.111)

It is exactly the same treatment as the direct one presented in section 9.5.2 (in the monokinetic case)
except the initial condition begins at time τU rather than 0. Of course, the above treatment implicitly

calls for a consistent sampling of the source term, i.e. such that
∑NSMC
p=1 Sp(x, τ

p
U , ω)

a.s.
= ∆tE [S(x, τU , ω)].

The next paragraph is dedicated to a brief description (complementary to section 9.8.1) together with
difficulties one must have in mind when dealing with S.

Let us now focus on some technical details (complementary to the ones of the initial sampling)
of the source sampling phase. First, this sampling must come with a relevant choice of NS

MC with
respect to N0

MC . This choice can be arbitrary, the convergence being ensured by an increase in both
numbers of initial (N0

MC) and source particles (NS
MC). With an arbitrary choice, the risk is only to waste

computational time. For example, it is possible sampling too many sources with respect to the number of
initial particles whereas the source term does not really contribute to the observable of interest (but the
initial condition does). In practice, it is common building a binomial law of states ’source’ and ’initial’
of parameters respectively

US
US + U0

and
U0

US + U0
,

where

US =
1

|D|

∫
D

∫ t

0

∫
S(x, s, ω)dxdsdω and U0 =

1

|D|

∫
D

∫
u0(x, ω)dxdω.

The above expressions are similar to (9.88) for the initial sampling. Then one must determine the state

of the MC particle (’initial’ or ’source’) during the sampling phase. Such choice ensures
NSMC
NMC

≈ US
US+U0

so that the number of sources NS
MC is sampled relatively to the global weight of every particles. It kind

of implicitly assumes the sources are contributing to the observable of interest with ratio US
US+U0

and

the initial condition with ratio U0

U0+US
. Consequently, this does not really guaranty avoiding a waste of

computational time but it ensures a convergence of the MC resolution with NMC , i.e. without choosing
an additional parameter.

Independently of the relative amount of source vs. initial MC particles, the sampling of the NS
MC

sources must ensure
∑NSMC
p=1 Sp(x, τ

p
U , ω)

a.s.
= ∆tE [S(x, τU , ω)] =

∫ t
0
S(x, s, ω)ds = ∆tSn(x, ω). Just as

for the initial sampling in section 9.5.3, source sampling can be described generally introducing the
probability measure

dS(x, s, ω) = 1
1

|D|

∫
D

∫∫ t

0

S(x, s, ω)dxdωds

S(x, s, ω)dxdωds,

= 1
US

S(x, s, ω)dxdωds.

(9.112)

The latter must be compared to expression (9.88) for the initial condition. Once the analogy noticed, the
strategies hinted at in section 9.8.1 can be applied. We only end this paragraph on an important remark:
the consistent samplings and weight corrections, presented in section 9.8.1, may be more critical than for
the initial condition. Indeed, for example, arbitrarily setting uniform weights for the source particles, if
not consistent, can lead to intractable approximations, see the teleportation error in [301, 69, 197, 70, 146]
or the material of section 10.2.

9.9.2 Quasi-Static method for the transport equation with source term

In this section, we present a different way to take into account a source term. The previous one only
implied a modification of the sampling phase. The one presented here implies a new and original MC
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scheme. In fact, the scheme description is almost secondary: we use it as a pretext in order to make
a parallel and an analogy between Quasi-Static methods, well-known and commonly applied in (cou-
pled/nonlinear30) neutronics mainly (see [139, 140, 216, 73, 221]), and Asymptotic-Preserving schemes
(see section 9.7.4).

We consider the linear Boltzmann equation with source term

−∂tu(x, t, ω)− v∂xu(x, t, ω) + vσtu(x, t, ω) = vσS

∫
PS(ω′, ω)u(x, t, ω′)dω′ − S(x, t). (9.113)

We first non-dimensionalize it, exactly as in section 9.7.4, by introducing{
x = x∗X , v = v∗V, t = t∗T ,
σα = σ∗α

1
λα
,∀α ∈ {S, t, A}. (9.114)

The upperscript ∗ is used to denote nondimensional quantities. Let us introduce u∗(x∗, t∗, ω) = u(x, t, ω)
and S∗(x∗, t∗) = S(x, t), then

1
T ∂t∗u

∗(x∗, t∗, ω) = ∂tu(x, t, ω), 1
X ∂x∗u

∗(x∗, t∗, ω) = ∂xu(x, t, ω).

Using the above expressions in the transport equation yields

− XT V ∂t∗u
∗(x∗, t∗, ω)− v∗ω∂x∗u∗(x∗, t∗, ω)+ v∗σ∗t

X
λt
u∗(x∗, t∗, ω) =

v∗σ∗s
X
λs

∫
u∗(x∗, t∗, ω)dω − XV S

∗(x∗, t∗).

Now, we decompose σt = σA + σs to obtain

− XT V ∂t∗u
∗(x∗, t∗, ω)− v∗ω∂x∗u∗(x∗, t∗, ω) +v∗σ∗A

X
λA

u∗(x∗, t∗, ω) + v∗σ∗s
X
λs
u∗(x∗, t∗, ω) =

+v∗σ∗s
X
λs

∫
u∗(x∗, t∗, ω)dω − XV S

∗(x∗, t∗).

Suppose X
VT = O( 1

δ ) = X
λA

= XV and X
λs

= O(1), we obtain (we drop the upperscript for convenience)

the following asymptotic linear Boltzmann equation

−1
δ
∂tu(x, t, ω)− vω∂xu(x, t, ω) +vσA

1
δ
u(x, t, ω)

+vσsu(x, t, ω) = vσs

∫
u(x, t, ω)dω − 1

δ
S(x, t).

Performing a Hilbert development, i.e. u = u0 + u1δ + u2δ2 +O(δ3) see [143], and considering only the
first order u0 = U leads to

∂tU(x, t) = vσAU(x, t) + S(x, t). (9.115)

It corresponds to the monokinetic homogeneous regime. It can be solved analytically, if completed by
an initial condition U0(x, ω) = u(x, 0, ω) and considering x as a parameter:

U(x, t) =

(
U0(x) +

∫ t

0

S(x, s)e−vσAsds

)
evσAt. (9.116)

Suppose we now want to build an Asymptotic-Preserving MC scheme for the regime δ → 0. To do so, we
follow the methodology described in [3] and use (9.116) as a reduced model preserving and solving the
stiffness. We assume it is relevant along the flight path of the particles (i.e. applied on a characteristic).
We want the MC scheme to focus on fluctuation around the stiff regime of interest. To make sure

30It also allows introducing the methodology described in [3] for the linear Boltzmann equation coupled to the Bateman
system in a simpler configuration and shows that the methodology also applies for the linear Boltzmann equation.
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having an MC discretisation of these fluctuations, we introduce f(x, t, ω) and the change of variable
u(x, t, ω) = U(x, t)f(x, t, ω) with U as in (9.116) (on a characteristic). The new unknown f solves
(multiplicative) fluctuations around the asymptotic regime U . Let us now identify the equation satisfied
by f . For this, we plug u = Uf into (9.113) to obtain

−∂tf(x, t, ω)− v∂xf(x, t, ω) + (vσt − ∂t ln(U(x, t))− v∂x ln(U(x, t))) f(x, t, ω) =

+vσS

∫
PS(ω′, ω)f(x, t, ω′)dω′ − S(x, t)

U(x, t)
.

(9.117)

It can be rewritten on a characteristic

−∂sf(x + vs, s, ω) + (vσt − ∂s ln(U(x + vs, s))) f(x + vs, s, ω) =

+vσS

∫
PS(ω′, ω)f(x + vs, s, ω′)dω′ − S(x + vs, s)

U(x + vs, s)
.

(9.118)

Along a characteristic, according to (9.116), we have

∂s ln(U(x + vs, s)) = vσA +
S(x + vs, s)

U(x + vs, s)
.

Plugging the above expression in (9.118) leads to

−∂sf(x + vs, s, ω) +

(
vσS − S(x + vs, s)

U(x + vs, s)

)
f(x + vs, s, ω) =

+vσS

∫
PS(ω′, ω)f(x + vs, s, ω′)dω′ − S(x + vs, s)

U(x + vs, s)
.

(9.119)

Now suppose a time step discretisation [0,∆t] and assume
∫
f(x, t, ω)dω ≈ 1 ∀x ∈ D,∀t ∈ [0,∆t]. The

latter hypothesis is classical in Quasi-Static (QS) methods, see [139, 140, 216, 73, 221] and is refered
as the main hypothesis in [3]. Then (9.119) can be rewritten as a balanced emission-absorption linear
Boltzmann equation

−∂sf(x + vs, s, ω) +vΣS(x + vs, s)f(x + vs, s, ω) =

+vΣS(x + vs, s)

∫
PS(x + vs, s, ω′, ω)f(x + vs, s, ω′)dω′.

(9.120)

It is such that ∂s
∫
f(x + vs, s, ω)dω = 0 ∀s ∈ [0,∆t]. In (9.120), we introduced ∀x ∈ D,∀t ∈ [0,∆t]:

vΣS(x, t) = vσS − S(x, s)
U(x, s)

,

PS(x, t, ω′, ω) =
vσSPS(ω′, ω)− S(x, s)

U(x, s)
vΣS(x, t)

.

Equation (9.120) has a form which has already been intensively encountered all along this document
and we know how to apply an MC discretisation to such linear Boltzmann equation with space and time
dependent cross-sections (see the material of section 9.5.2). We do not detail all the MC treatments but
would like to focus on the weight modification of the MC particles. Its expression is given by

U(x + vt, t)

U0(x)
=

(
U0(x + vt)

U0(x)
+

∫ t

0

S(x + vt, s)

U0(x)
e−vσAsds

)
evσAt.

It corresponds to the solution of the asymptotic regime δ → 0 of interest, along any characteristics. If
S = 0, we recover the classical expression of the weight modification (and all the other MC treatments,
even if not recalled here) for the non-analog scheme. In the asymptotic regime of interest δ → 0, the

AP/QS scheme ensures by construction O( 1√
NMC

) =
σAP/QS(t)√

NMC
� 1, whatever the number of MC parti-

cles, as asymptotically31 σAP/QS(t) = 0 when solving (9.115).

31the proof is very similar to the one detailed in section 9.7.3 for the non-analog scheme and is not performed here.
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The description of the above AP/QS MC scheme for taking into account a source term allowed
exhibiting strong analogies between

– Quasi-Static methods for the linear Boltzmann equation, intensively applied in neutronics [139,
140, 216, 73, 221],

– and Asymptotic Preserving schemes encountered in many recent publications [108, 49, 113, 50, 51]
and different application fields.

Both terminologies are closely related if not equivalent and we wanted to emphasize this point. The
description of the above scheme also introduced the methodology described in [3] in a simpler configura-
tion (in the sense there is no coupling with any other system of equation here, S is a known external field).

9.10 Taking into account an acceleration term in MC resolution
schemes

So far, we have tackled the linear Boltzmann equation with source term but without taking into account
an external acceleration. In this section, we explain in which sense the discussions of the previous sections
are more general than it appears. An acceleration term can, for example, allow taking into account

external forces on the physical particles. In this case, its expression is of the form a(x, t,q) = F (x,t,q)
m

where F (x, t,q) corresponds to the force applied to the particles at position x ∈ D, time t ∈ [0, T ],
velocity q ∈ R3 (or energy q = |q| ∈ R+ and angle Ω = q

q ∈ S2). The scalar m corresponds to the mass
of the particles of interest. In this section, we slightly change our notations as the velocity component
is now denoted by q instead of v. We will have q = v ⇐⇒ a = 0. The expression of q with respect
to v when a 6= 0 is the purpose of the following material. The acceleration applied to the particles can
be general and come from different physics: it can be gravitational forces, electromagnetic forces, it can
also be introduced in order to deal with Doppler and aberration effects, refractive and dispersive media
in photonics32 (see [59, 245, 203]) etc. Its expression can be considered an external (known) field or may
be induced by another physic of interest (Maxwell equations for example in the case of electromagnetic
field forces) hence implies a coupling. In this chapter, we consider the acceleration term is known, i.e. is
a known external field.

The linear Boltzmann equation with acceleration term generally rewrites

∂tf(x, t,q) + q∂xf(x, t,q) + a(x, t,q)∂qf(x, t,q) =

−qσt(q)f(x, t,q) +

∫
qσs(q,q

′)f(x, t,q′)dq′ + S(q).
(9.121)

The density of particles at position x ∈ D, time t ∈ [0, T ], velocity33 q ∈ R+ and angle Ω ∈ S2 is denoted
by f(x, t, q,Ω) = f(x, t, qΩ) = f(x, t,q). The left hand side of the equation is called the streaming part
of (9.121) and the right hand side the collisional part of (9.121). For the purpose of this section, we
consider the total cross-section σt, the scattering cross-section σs and the source term S only depend on,
respectively, q, (q,q′) and q as the treatment of the position and the time dependences can benefit the
descriptions of the previous sections.

There are two main ways to treat the acceleration term in MC computations:

– the first one implies curved trajectories of the MC particles for the streaming part of (9.121) and
collisions in the comobile frame. This solution is described in section 9.10.1.

– The second one implies straight trajectories for the MC particles but corrections of the cross-sections
and source term expressed in a new referential. It will be described in section 9.10.2.

32in this case, q denotes a frequence rather than an energy or a velocity.
33or energy or frequency.
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These possibilities are well-known and applied in many physical applications (see plasma [189, 25, 24, 29],
photonics [59, 203], neutronics [296, 297] etc.), but we here present them in a general and common way
focusing on the practical implications on an MC resolution.

9.10.1 An MC resolution with curved trajectories in the comobile frame

A first possibility in order to build an MC scheme taking into account an acceleration term in the
transport equation consists in rewriting the transport equation on a curved/accelerated characteristic.
In the previous sections, a characteristic was (implicitly) defined by the change of variables:

dtv(t) = 0,
dtx(t) = v(t),
v(0) = v,
x(0) = x.

(9.122)

Its resolution leads to v(t) = v(0) = v and x(t) = x + vt. In this section, the acceleration term
modifies the velocity34 and the angular distribution of the particles along their flight path as it induces
the following change of variables: 

dtq(t) = a(x(t), t,q(t)),
dtx(t) = q(t),
q(0) = q,
x(0) = x.

(9.123)

Of course, in this case, a characteristic is much more complex: solving the above system leads to
q(t) = q +

∫ t

0

a(x(s), s,q(s))ds,

x(t) = x +

∫ t

0

q(s)ds.

(9.124)

Plugging the expression of x(t) into the acceleration term we obtain the weakly35 coupled system
q(t) = q +

∫ t

0

a

(
x +

∫ s

0

q(α)dα, s,q(s)

)
ds,

x(t) = x +

∫ t

0

q(s)ds.

(9.125)

The equation satisfied by the velocity q(t) may be a nonlinear integro-differential equation and could be
hard to solve depending on the shape of the acceleration term a. In the following discussions, we assume
existence and unicity36 of q(t) and x(t) and that their analytical expressions are available. In practice,
one may have to rely on approximations such as the ones of section 9.6 for example (constant acceler-

ation in each cell Di such that D =
⋃Nx

i=1Di, independence of a with respect to q(t) etc.). Of course,
care has to be taken so that the asymptotic regime of interest is not strongly affected by the approxi-
mations. If a varies a lot on small characteristic distances, one may rely on AP methods or high order
reconstructions within cells (Splines for example for [189, 25, 24, 29]) for triggered stiff regime of interest.

Let us introduce the norm of the velocity q(s) = |q(s)| evolving with respect to time s. We can
rewrite (9.121) on one characteristic

∂sf(x(s), s,q(s)) =

−q(s)σt(q(s))f(x(s), s,q(s)) +

∫∫
q(s)σs(q(s),q′)f(x(s), s,q′)dq′ + S(q(s)).

(9.126)

34hence the energy/frequency.
35weakly coupled in the sense once solved with respect to q, we consider the solution for x(t) is straightforward.
36This suggest the definition of F does not contradict/trigger the wellposedness of (9.121) beforehand.

214



Let us introduce the abusive notations q(s)σt(q(s)) = qσt(s), S(q(s)) = S(s) and q(s)σs(q(s),q′) =
qσs(s,q,q

′): the dependence with respect to time is recalled in the first argument and to the initial
conditions q(0) = q of the velocity vector in the second one. It allows rewriting (9.126) as

∂sf(x(s), s,q(s)) =

∫∫
qσs(s,q,q

′)f(x(s), s,q′)dq′ − qσt(s)f(x(s), s,q(s)) + S(s). (9.127)

With the above expression, the linear Boltzmann equation is rewritten in an already encountered form:
it remains to build an MC scheme for the linear Boltzmann equation for cross sections/sources having
dependences with respect to time. Everything we already presented in the previous sections applies. The
integral form of equation (9.121) is then given by

f(x(t), t,q(t)) =∫  +1[t,∞[(s) f0(x,q)

+1[0,t](s)

[∫∫
qσs(s,q,q

′)
qσt(s)

f(x(s), s,q′)dq′ +
S(s)

qσt(s)

]  qσt(s)e
−
∫ t
s
qσt(α)dαds.

(9.128)

From (9.128) can be deduced the analog (section 9.2), semi-analog (section 9.3), non-analog (section
9.4) schemes in adjoint or direct (section 9.5) forms with source term (section 9.9). To sum-up, it is
possible taking into account the acceleration term by considering curved trajectories and time-dependent
cross-sections expressed in the comobile frame.

9.10.2 An MC resolution with straight trajectories in a new frame

Being able to solve the accelerated transport equation with an MC resolution scheme with particles
having straight trajectories can be convenient in practice. For example

– because we already have access to a simulation code taking into account straight trajectories.

– Or because of the complexity of computing distances to events on curved trajectories in complex
cells (non-conform, unstructured ones).

In this section, we briefly explain how, via a well chosen change of variables, it is possible to solve
(9.121) with straight trajectories at the condition of performing some corrections to the cross-sections
and source terms. It implies expressing the linear Boltzmann equation in a new frame. Depending on
the physics of interest, those corrections and this new frame take different denominations. The term
effective cross-sections/source term is used to describe the corrections in neutronics, see [296, 297]. In
photonics, there are as many denominations as authors: they are called covariant relations in [59], ef-
fective ones in [174], unadorned frame ones in [245]. Particular terminologies are also used to denote
the new frame: the corrections describe transformation laws between the comobile frame (commonly
accepted terminology) to the lab frame [296], the local proper frame [174], the unadorned (as seen by
an observer in the zero) frame [245], the fixed frame in [59] or the nonintertial frame in [203]. With
this (non-exhaustive) list of terms, we indirectly insist on the fact the material of this section can be
found in several books and publications [296, 59, 203, 245, 174] depending on the physics of interest.
More important than the terminology differences in these publications, the corrections are not deduced
from the same computations. For example, in neutronics, they are deduced from infinitesimal physical
analysis [296, 297]. In photonics [174, 59, 245, 203], they are deduced from the Lorentz invariants. In
plasma physics, to our knowledge, the solution of the previous section 9.10.1 is commonly applied37. The
main interest of this section is to highlight that independently of the physics of interest, the corrections
come from the same change of variable (on the velocity for neutronics, the frequency for photonics,...).
In order to make the description the more general possible (and to treat every physics at the same time),
we suggest an original (to our knowledge) way to identify the consistent corrections to the cross-sections
and source term. It consists in dealing with an arbitrary acceleration term and performing (once again
for an MC resolution) a particular change of variables.

37This is probably due to the fact that the acceleration term is central for this physics and the linear Boltzmann equation
without collision term, also denoted as Vlasov equation, is already physically relevant.
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In order to describe the forementioned change of variable, let us adopt a step-by-step approach. We
first consider the accelerated transport equation without collisional part and progressively introduce
the different terms (total cross-section, scattering one to finish with the source term). This progressive
methodology is commonly used, for example in order to prove the wellposedness of the linear Boltzmann
equation in [127] or for the construction of the Boltzmann equation in [18].

The accelerated transport equation without collisional part

Let us first consider the accelerated transport equation without collisional part: its expression is

∂tf(x, t,q) + q∂xf(x, t,q) + a(x, t,q)∂qf(x, t,q) = 0. (9.129)

Let us introduce an artificial quantity, homogeneous to a velocity, such that a(x, t,q) = −∂tV(x, t,q),∀x ∈
D,q ∈ R3. Then (9.129) rewrites

∂tf(x, t,q) + q∂xf(x, t,q)− ∂tV(x, t,q)∂qf(x, t,q) = 0. (9.130)

In this section we aim at exhibiting a change of variables allowing to rewrite (9.129) under the form

∂tu(x, t,v) + v∂xu(x, t,v) = 0. (9.131)

In (9.131), we implicitly have dtv(t) = 0, leading to a resolution with straight trajectories. The solutions
of (9.129) and (9.131) are respectively given by

f(x(t), t,q(t)) = f0(x,q),
u(x(t), t,v(t)) = u0(x,v),

(9.132)

where x(t),q(t) are the solutions (9.123) and x(t),v(t) of (9.122)38. We now aim at defining v(t) as a

function of q(t) and V so that
dv(t)

dt
= 0. To do so, recall39

dq(t)

dt
= a (x(t), t,q(t)) = −∂tV (x(t), t,q(t)) .

Consequently, it is possible to define v(t) as wanted noticing that

dq(t)

dt
+ ∂tV (x(t), t,q(t)) = 0 =

dv(t)

dt
.

Then v(t) can be defined as

v = q(t) +

∫ t

0

∂tV (x(s), s,q(s)) ds,

ensuring dtv = 0. Recall x(t) depends explicitly on q(t), and we can rewrite without loss of generality
in a more concise way40

v(t) = q(t) +

∫ t

0

∂tV(q(s), s)ds = q(t) + V (t).

Depending on the shape of V with respect to the dependences, the above equation may be complex to
solve without further hypothesis. In practice, assumptions (see section 9.6) can considerably simplify
the computations together with capturing the regime of interest. Note that for some physics, V may
depend only on t and not on q(t) (see [297, 59]). For others, see [29, 24, 25], the velocity dependences
are important. In the following paragraphs, we keep the computations the more general possible by
considering v(t) = q(t) + V (t).

Let us study the jacobian of the previous change of variable and its determinant. Note that when
there is no ambiguity, the time dependence is omitted for the sake of conciseness. The easiest way to

38Recall that we have q(0) = q,v(0) = v.
39We intensively use computations of the previous section.
40abusively dropping the dependence in x(0) = x as we think there are no ambiguities here.
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express the jacobian41 consists in formally introducing cartesian coordinates (vx, vy, vz) of the velocity.
We have

v =

 v cos(θ)
v sin(θ) cos(φ)
v sin(θ) sin(φ)

 , and q =

 q cos(Θ)
q sin(Θ) cos(Φ)
q sin(Θ) sin(Φ)

 ,

so that

∂(vx, vy, vz)

∂v
=

 cos(θ) −v sin(θ) 0
sin(θ) cos(φ) v cos(θ) cos(φ) −v sin(θ) sin(φ)
sin(θ) sin(φ) v cos(θ) sin(φ) v cos(θ) cos(φ)

 .

Furthermore, we have

∂(vx, vy, vz)

∂q
=

 cos(Θ) −q sin(Θ) 0
sin(Θ) cos(Φ) q cos(Θ) cos(Φ) −q sin(Θ) sin(Φ)
sin(Θ) sin(Φ) q cos(Θ) sin(Φ) q cos(Θ) cos(Φ)

 .

We finally get ∣∣∣∣∂v

∂q

∣∣∣∣ =

∣∣∣∣ ∂v

∂(vx, vy, vz)

∣∣∣∣× ∣∣∣∣∂(vx, vy, vz)

∂q

∣∣∣∣ =
q2

v2 . (9.133)

Exhibiting the above change of variable and its jacobian (9.133) will be convenient to track MC particles
with fields expressed in a new frame. But relation (9.133) can also be particularly useful in order to
compute quantities in the new frame from quantities in the comobile one: for every functional F , we
have ∫ t

0

∫
F (u(x(s), s,v(s)))dsdv =

∫ t

0

∫
F (u(x(s), s,v(q(s))))

∣∣∣∣∂v

∂q

∣∣∣∣ (s)dsdq,

=

∫ t

0

∫
F (f(x(s), s,q(s)))dqds.

(9.134)

This last relation will be applied throughout the following sections. In the latter, we express the different
cross-sections and source term in the new frame from their expression in the comobile one.

Total cross-section in the new frame

Now we highlighted a particular change of variable allowing to solve the transport counterpart of (9.121)
with straight trajectories, it remains to identify the expressions of the cross-sections in the new frame
from the ones in the comobile one given the change of variable (9.134). Let us first focus on the total
cross-section. The methodology is pretty similar to the one adopted in the previous section: we aim at
solving

∂tf(x, t,q) + +q∂xf(x, t,q) + a(x, t,q)∂qf(x, t,q) + |q|σt(|q|)f(x, t,q) = 0, (9.135)

with the change of variable (9.134) leading to an equation of the form

∂tu(x, t,v) + v∂xu(x, t,v) + |v|σt(|v|)u(x, t,v) = 0. (9.136)

We recall |v| = v and |q| = q, so that |q|σt(|q|) = qσt(q) and |v|σt(|v|) = vσt(v). The change of variable
of this section operates on q and v and not only on q, v, hence the above unconventional notations. These
echoe the remark in [245] concerning the angular dependence of the absorption cross-section expressed
in the unadorned frame in the very first chapters. In order to make sure (9.136) allows an equivalent
resolution of (9.135) in a new frame, the effective total cross-section σt has an imposed expression. To

41Here, this is obvious for non-relativistic mechanics, less in the photonic case for example but it is possible convincing
yourself by studying [245], p. 270 with expression (A.45).
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identify it, we first rewrite both equations in an integral form

f(x(t), t,q(t)) = f0(x,q)e−
∫ t
0
|q(s)|σt(|q(s)|)ds,

u(x(t), t,v) = u0(x,v)e−
∫ t
0
|v(s)|σt(|v(s)|)ds.

Now introduce an arbitrary test function ψ(q)∈ Cb(R3) so that we have (particular case of (9.134))∫ t

0

∫
f(x(s), s,q(s))ψ(q(s))dsdq =

∫ t

0

∫
u(x(s), s,v(s))ψ(q(v(s)))dsdv.

Plugging the previous expressions of u and f with respect to u0 and f0 leads to∫ t

0

∫
f0(x,q)e−

∫ s
0
|q(α)|σt(|q(α)|)dαψ(q(s))dsdq

=

∫ t

0

∫∫
u(x(s), s,v(s))ψ(q(v(s)))

∣∣∣∣∂v

∂q

∣∣∣∣ (s)dsdv,

=

∫ t

0

∫∫
f0(x,q)e−

∫ s
0
|v(q(α))|σt(|v(q(α))|)dαψ(q(s))dsdq.

We consequently have ∀ψ∈ Cb(R3) with f0 ≥ 0,∫ t

0

∫
f0(x,q)ψ(q(s))

(
e−
∫ s
0
|v(q(α))|σt(|v(q(α))|)dα − e−

∫ s
0
|q(α)|σt(|q(α)|)dα

)
dsdq = 0.

This relation is ensured if and only if

vσt(v) = qσt(q). (9.137)

Equation (9.137) expresses the effective total cross-section in the new frame from the one in the comobile
frame. The expression is in agreement with the one obtained by [296, 297] (effective total cross-section
in neutronics) and by [59, 245, 174, 203] (covariant transformation in photonics).

Scattering cross-section in the new frame

We here aim at identifying the expression of the effective scattering cross-section. The idea is similar to
the above calculations: we add a scattering term and use the previous relations in order to identify the
consistent expression of the transformed scattering cross-section. Let us consider

∂tf(x, t,q) + +q∂xf(x, t,q) + a(x, t,q)∂qf(x, t,q) =

−|q|σt(|q|)f(x, t,q) +

∫
|q|σs(q,q′)f(x, t,q′)dq′,

(9.138)

which we want to solve with the change of variable (9.122) leading to an equation of the form

∂tu(x, t,v) + v∂xu(x, t,v) + |v|σt(|v|)u(x, t,v) =

∫
|v|σs(v,v′)u(x, t,v′)dv′. (9.139)

In order to make sure (9.139) allows an equivalent resolution of (9.138) in a new frame, the effective
scattering cross-section σs has also an imposed expression. To identify it, we rewrite the two above
expressions in an integral form

f(x(t), t,q(t)) = f0(x,q)e−
∫ t
0
|q(s)|σt(|q(s)|)ds

+

∫ t

0

∫
e−
∫ s
0
|q(α)|σt(|q(α)|)dα|q(s)|σs(q(s),q′(s))f(x(s), s,q′(s))dq′ds,

u(x(t), t,v(t)) = u0(x,v)e−
∫
|v(s)|σt(|v(s)|)ds

+

∫ t

0

∫
e−
∫ s
0
|v(α)|σt(|v(α)|)dα|v(s)|σs(v(s))u(x(s), s,v′(s))dv′ds.
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The starting point of the next computations is the same as above. For every test-function ψ(q)∈ Cb(R3),
we have (particular case of (9.134))∫ t

0

∫
f(x(s), s,q(s))ψ(q(s))dsdq =

∫ t

0

∫
u(x(s), s,v(s))ψ(q(v(s)))dsdv.

The idea now is to plug the expressions of the integral solutions into the previous relation, use the
expression of the effective total cross-section (9.137) to get after few computations∫ ∫ t

0

∫ [
(|q(s)|σs(q(s),q′(s))− |v(s)|σs(v(q(s)),v′(q′(s))))
×f(x(s), s,q′(s))e−

∫ s
0
|q(α)|σt(|q(α)|)dαψ(q(s))

]
dq′dqds = 0.

The above expression is true ∀ψ(q)∈ Cb(R3), hence if and only if

σs(v,v
′) =

q

v
σs(q,q

′). (9.140)

Now it only remains to identify the corrections on the source term. It is dealt with in the next section.

Source term in the new frame

In order to express the correction one has to operate on the source term, it is enough considering equation

∂tf(x, t,q) + +q∂xf(x, t,q) + a(x, t,q)∂qf(x, t,q) = S(x, t,q), (9.141)

and

∂tu(x, t,v) + v∂xu(x, t,v) = S(x, t,v). (9.142)

In order to make sure (9.142) allows an equivalent resolution of (9.141) in a new frame, the effective
source term S has an imposed expression which can be deduced from the integral forms of both equations

f(x(t), t,q(t)) = f0(x,q) +

∫ t

0

S(x(s), s,q(s))ds,

u(x(t), t,v(t)) = u0(x,v) +

∫ t

0

S(x(s), s,v(s))ds.

Now introduce an arbitrary test function ψ(q)∈ Cb(R3), we have (particular case of (9.134))∫ t

0

∫
f(x(s), s,q(s))ψ(q(s))dsdq =

∫ t

0

∫
u(x(s), s,v(s))ψ(q(v(s)))dvds.

Plugging the two integral expressions of u and f with respect to u0, S and f0, S into the above relation
together with few computations lead to∫ t

0

∫
S(x(s), s,q(s))ψ(q(s))dsdq =

∫ t

0

∫
S(x(s), s,v(s))ψ(q(v(s)))dsdv,

=

∫ ∫ t

0

S(x(s), s,v(q(s)))ψ(q(s))

∣∣∣∣∂v

∂q

∣∣∣∣dsdq,

=

∫ ∫ t

0

S(x(s), s,v(q(s)))ψ(q(s))
|q(s)|2
|v(q(s))|2 dsdq.

The above expression is equivalent to∫ t

0

∫ [
S(x(s), s,q(s))− S(x(s), s,v(q(s)))

|q(s)|2
|v(q(s))|2

]
ψ(q)dsdq = 0.
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This relation is ensured ∀ψ∈ Cb(R3) if and only if

S(v) = S(q)
v2

q2 . (9.143)

This expression is in agreement with the one obtained by [296, 296] (neutronics) and by [59, 203] (pho-
tonics).

Implications of the above corrections on an MC resolution

In the previous section 9.10.1, dealing with curved trajectories, we did not details the MC resolution42

as the treatments were very similar as the one highlighted in the previous sections 9.2–9.3–9.4–9.5–9.9.
It depended more on the choice of the MC scheme, with a backward or a forward resolution, than on
taking into account the acceleration term. The only difference came from the fact that the MC particles
had curves trajectories defined by (9.123) instead of straight ones (9.122).

The treatments described in this section deserve some more practical details for its MC resolution.
The MC particles have straight trajectories, this is the simple part, but the cross-sections and source
term must be corrected on-the-fly in order to take into account the acceleration term. The aim of this
paragraph is to present the algorithmic implications of the above corrections on the cross-sections and
sources (9.137)–(9.140)–(9.143) for an MC resolution.

Our aim here is to solve the following transport equation of unknown u having its dependences in a
new frame (x, t,v)

∂tu(x, t,v) + v∂xu(x, t,v) + vσt(v)u(x, t,v) =

∫
vσs(v,v

′)u(x, t,v′)dv′ + S(x, t,v),
q = qω(v, V ),v = v(q, V )
vσt(v) = qσt(q),
vσs(v,v

′) = qσs(q,q
′),

S(x, t,v) = v2

q2 S(x, t,q).

(9.144)

In the above expression, V is a given external field and induces corrections to the cross-sections and
sources which are only known in the comobile frame. In other words, (9.144) could be rewritten in a
closed form

∂tu(x, t,v) + v∂xu(x, t,v) + |q(v, V )|σt(|q(v, V )|)u(x, t,v) =∫
|q(v, V )|σs(q(v, V ),q′(v′, V ))u(x, t,v′)dv′ +

v2

|q(v, V )|2S(x, t,q(v, V )).

By closed form, we mean every quantities except our unknown u are known fields (V, σt, σs, S). The
above equation, now, has a form which has already intensively been encountered throughout the docu-
ment. It can be rewritten in an integral form, as an expectation over a set of random variables, which
determine the chosen resolution scheme, in a backward or a forward manner, for its MC resolution.
We do not provide the details of the computations, they can be deduced from the previous ones in the
different sections (depending on the favorite MC scheme of the reader). We only highlight, in algorithm
13, where the corrections must be carried on and comment on them.

42no algorithmic details presented for example.
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Algorithm 13: The general canvas for the different MC schemes described in term of algorithmic

operations in order to compute (direct) U(x, t) =

∫
u(x, t,v)dv with an acceleration term. The

velocity V is supposed constant in each cell in the time step (forward form).

1 call sampling(NMC) #SAMPLING described in algorithm 5
2 set t = ∆t
3 while t < T do
4 #Initialize to zero the array of the quantity of interest on the whole simulation domain D
5 set U(x, t) = 0 ∀x ∈ D
6 #TRACKING: make sure each up is an MC particles
7 for p ∈ {1, ..., NMC} do
8 set sp = t−∆t #this will be the current time of particle p
9 #corrections on the MC source particles

10 if p == source then
11 #During the sampling phase, sources emitted in the comobile frame qp
12 vp = v(qp, V

n
ip

)

13 wp ←− |vp|
2

|qp|2
wp

14 end
15 while sp < t and wp > 0 do
16 if xp /∈ D then
17 #here a general function for the application of arbitrary boundary conditions
18 apply boundary conditions(xp, sp,vp)

19 end
20 compute q = q(vp, V

n
ip

)

21 sample τinter = sample interaction time(|q|, ip)
22 compute τexit = compute cell exit time(xp,vp, ip)
23 compute τcensus = max(t− τ, 0)
24 set τ = min(τexit, τcensus, τinter)
25 #move the particle p
26 xp ←− xp − vpτ ,
27 #change the particle weight
28 (K, r) = compute weight modif(|q|, τ , τcensus, τexit, τinter, ip )
29 wp ←− K × wp
30 if τ == τcensus then
31 #set the life time of particle p to zero:
32 sp ←− t
33 #tally the contribution of particle p
34 U(xp, t)+ = wp
35 end
36 if τ == τexit then
37 #The particle p changes of cell: find its new cell number
38 ip = find neighbooring cell(ip,vp)
39 #set the life time of particle p to:
40 sp ←− sp + τ < t

41 end
42 if τ == τinter then
43 #Sample the velocity of particle p
44 Q′ = sample velocity(q, r, ip)
45 V′ = v(Q′, V nip)

46 set vp = V′

47 #set the life time of particle p to:
48 sp ←− sp + τ < t

49 end

50 end

51 end
52 t←− t+ ∆t

53 end
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Algorithm 13 is very similar to algorithm 9 where a general canvas for MC resolutions was presented.
Their main differences are highlighted (in blue) in algorithm 13. The first blue lines concern the source
term corrections. The population of source MC particles is supposed to be built in the sampling phase,
in the comobile frame (we only know S in this frame). The energies, angles and weights of the source
particles must be corrected to represent an emitted particle in the new frame (in order to represent
S). The transformation is performed by correcting the energy qp and angle Ωp using the relation vp =
q(qp, V

n
ip

) where V nip is an estimation of V at time sp, position xp in cell ip. The weight of the source

particle is multiplied by the factor
v2
p

q2
p

in agreement with (9.143).

The described source corrections are the heaviest modifications to perform. The others resume to
applying the change of variable

v = v(q, V ), (9.145)

before the sampling of the interaction time and the computation of the weight modification and its
inverse counterpart

q = q(v, V ), (9.146)

after having sampled the scattered velocity in the case of an interaction. The different functions described
in algorithms 10–11–12 are only called with argument qp instead of vp. Of course, if a = 0, algorithm 13
degenerates toward algorithm 9 as the change of variable v = v(q, V ) and its inverse become identities.

9.11 The Uncertain Linear Boltzmann equation

In this section, we would like to tackle the combined problem of uncertainty quantification (as in part
II) and the resolution of the linear Boltzmann equation (current part III). More precisely, we tackle it
from two different point of views:

– in section 9.11.1 we question the necessity to eventually design numerical schemes43 adapted to the
uncertainty analysis we aim at carrying on.

– The matter of section 9.11.2, fully adressed in [241], shows it is sometimes very efficient opening
the black-box, i.e. being intrusive, to perform an uncertainty analysis.

We assume the reader went through the material of part II regarding uncertainty quantification: this
allows going straight to interesting uncertainty analysis considerations. As explained in part II, we
explicitly introduce the dependence of the solution u(x, t,v) of the PDE of interest with respect to a
random vector X = (X1, ..., XQ)t modeling the uncertainty. Vector X ∈ Ω ⊂ RQ may depend on the
position, the time or the velocity of the physical particles, i.e. X = X(x, t,v), ∀x ∈ D, t ∈ [0, T ],v =
vω ∈ R3. We assume its components are independent44 and that its probability measure is known
∀x ∈ D, t ∈ [0, T ],v = vω ∈ R3, denoted by dPX =

∏Q
i=1 dPXi . The aim of this section is to solve the

general SPDE (Cauchy problem)
∂tu(x, t,v, X) + v∂xu(x, t,v, X) + vσt(x, t,v, X)u(x, t,v, X) =

+

∫
vσs(x, t,v,v

′, X)u(x, t,v′, X)dv′ + S(x, t,v, X),

u(x, 0,v, X) = u0(x,v, X).

(9.147)

With such general formulation, X can describe uncertainties in the initial condition, the source term,
the cross-sections45 without more distinctions.

43for the black-box code.
44We recall this is not a strong hypothesis as we can assume the correlations have been pretreated, see part II and

[169, 100] for example.
45and even in the boundary conditions which are not recalled here for the sake of conciseness.
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9.11.1 Non-intrusive resolution of the uncertain linear Boltzmann equation

The non-intrusive resolution of (9.147) uses a simulation code46 solving the linear Boltzmann equation
as a black-box, run at several identified points (Xi, wi)i∈{1,...,N} of an experimental design depending
on the measure dPX , see chapter 5. Once the simulation code available, this corresponds to the most
direct, simple and fast way to tackle the uncertain counterpart of the numerical resolution of (9.147).

While performing an uncertainty quantification problem, we tacitly demand conditions to hold:

– From a mathematical point of view, we suppose ∀X ∈ Ω ⊂ RQ, the wellposedness of the linear
Boltzmann equation is not questionned.

– From a numerical point of view, we assume ∀X ∈ Ω ⊂ RQ the resolution scheme of the black-box
code can accurately capture the regime of interest.

Without any of these two conditions, the uncertainty analysis may be pointless [153]. The first condition
and its implications have been intensively studied in chapters 4–5 (for systems of conservation laws).
The second may deserve an example, this is the matter of this section. Suppose there exists a subspace
Dδ→0 ⊂ Ω such that the probability measure of {X ∈ Dδ→0} is non-zero. Assume furthermore that every
realisations of X in Dδ→0 induce the exploration of a stiff regime characterised by δ → 0 (see remark
9.1) for the numerical (MC) resolution. If the (deterministic) resolution scheme of the black-box code is
too sensitive with respect to its discretisation parameter in this regime (i.e for example not Asymptotic
Preserving, see definition 9.1), the numerical error for some realisations of X ∈ Dδ→0 may overcome the
variability of the uncertain parameters47. The interpretations and the conclusions of the uncertainty
analysis may then be wrong.

Let us apply non-intrusive gPC to solve (9.147) in a simple configuration. It is monokinetic and
homogeneous, so that an analytical solution is available. We assume the uncertainty, one-dimensional
here for the sake of simplicity, affects the scattering cross-sections

σs = σs + σ̂sX.

In the above expression, X ∼ U [−1, 1] and σ̂s = 1
10σs: the uncertainty affects the scattering cross-section

by a factor 10% relative to its mean. Let us build the analytical solution for this test-problem. In the
monokinetic configuration, the uncertain linear Boltzmann equation resumes to ∂tu(x, t, ω,X) + v∂xu(x, t, ω,X) + vσt(x, t)u(x, t, ω,X) =

∫
vσs(x, t,X)u(x, t, ω′, X)dω′,

u(x, 0, ω) = u0(x, ω).
(9.148)

In a homogeneous test-problem, the solution is given by U(t,X) solution of the uncertain ODE
∂tu(x, t, ω,X) + v∂xu(x, t, ω,X) + vσt(x, t)u(x, t, ω,X) =

vσs(x, t,X)

∫
Ps(x, t, ω, ω

′, X)u(x, t, ω′, X)dω′,

u(x, 0, ω) = u0(x, ω).

(9.149)

It is given by

U(t,X) = U0e
−vσa(X)t = U0e

−v(σt−σs−σ̂sX)t = U0e
−v(σa−σ̂sX)t. (9.150)

The quantity U(t,X) is a random variable indexed by time t, i.e. it is a stochastic process. In this case,
mean and variance of the stochastic process (9.150) can be computed analytically and are given by

MU
1 (t) = E[U(t,X)] = 1

2U0e
−vσat evσ̂st − e−vσ̂st

σ̂stv
,

MU
2 (t) = E[U2(t,X)] = 1

4U
2
0 e
−2vσat e

2vσ̂st − e−2vσ̂st

σ̂stv
,

V[U ](t) = MU
2 (t)− (MU

1 (t))2.

(9.151)

46based on an MC resolution with one of the MC scheme described in this part.
47i.e. some realisations may need finer discretisations for the uncertainty analysis to be relevant.
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Of course, higher order moments, probability of failure, complete characterisation of the pdf of the
stochastic process can be made but we first focus on the two first moments, the mean E[U ](t) and

the variance V[U ](t). Let us discretise (X,dPX) with NUQ
MC Monte-Carlo points. Every runs of the

black-box code solving the deterministic linear Boltzmann equation (with the non-analog or the semi-
analog MC scheme) have NMC MC particles. Figure 9.3 presents a convergence study with respect to

Semi-Analog, NMC = 10
Semi-Analog, NMC = 20
Semi-Analog, NMC = 100
Non-Analog, NMC = 10

0.001

0.01

0.1

1

1 10 100 1000 10000
NUQ

MC

L
1
−
n
o
rm

o
f
th
e
er
ro
r

Figure 9.3: Convergence studies with respect to NUQ
MC for the resolution of the uncertain linear Boltzmann

equation in a homogeneous configuration. Comparison of the convergence studies for the semi-analog
scheme for several NMC and of the non-analog scheme.

NUQ
MC = 1, 2, ..., 213 = 8192 performed in the previous configuration with the semi-analog MC scheme of

section 9.3 and the non-analog one of section 9.4 for a fixed discretisation48 NMC = 10, 20, 100. The
L1−norm of the error (i.e. on the variance) is averaged on 10 times of interest uniformly distributed (i.e.
∆t = 1) in the time interval [0, T = 10].

The three first curves (red, green, blue) are obtained with the semi-analog MC scheme for different
NMC (i.e NMC = 10, 20 and 100). The curves all present two regimes:

– as NUQ
MC increases, the L1−norm of the error decreases with the characteristic slope − 1

2 of the MC
method in the log-log plot of figure 9.3,

– until it reaches a plateau, after NUQ
MC ≈ 32 for the red curve (NMC = 10), NUQ

MC ≈ 128 for the

green one (NMC = 20) and NUQ
MC ≈ 1024 for the blue one (NMC = 100).

For NMC = 20, for example, for the semi-analog MC scheme, using NUQ
MC = 128 MC points or 8192 does

not improve the accuracy of the approximation. This is due to the too important NMC−error of the
semi-analog scheme for NUQ

MC > 128. It is even possible to compare the errors of the three plateaus and
recover roughly an O( 1√

NMC
) convergence rate. In other words we experimentally recover the fact the

error has the general form

eL1 = O
(

1√
NMC

)
+O

 1√
NUQ
MC

 . (9.152)

48NMC = 10, 20, 100 may seem very low but this is enough in order to illustrate our purpose in this configuration.
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Once NUQ
MC is important enough, it becomes negligible with respect to the error of the semi-analog

scheme. For the green curve for example, when NUQ
MC > 128, the computed variance is numerical49

and not representative of the variability due to the uncertainty. This is closely related to the fact the
constant σsemi-analog, given by (9.82) in this homogeneous regime, strongly depends on the values of

σs(X) which fluctuate due to the uncertainty. To make sure the accuracy with NUQ
MC for the semi-analog

scheme is improved, NMC must depend on the uncertain parameter X. On another hand, with the
non-analog MC scheme, Asymptotic-Preserving in this same configuration (homogeneous, see remark

9.1), increasing NUQ
MC always improves the quality of the approximation. With this scheme, care has

been taken to have a numerical scheme adapted to the uncertainty quantification problem of interest

as
σnon-analog(X)√

NMC
=

σnon-analog√
NMC

. This example emphasizes the importance of identifying a relevant scheme

for the regime of interest before tackling any uncertainty quantification problem. Of course, the problem
here is very simple but is representative of the difficulties encountered on real industrial simulations: the
different numerical errors must be balanced for an efficient study.

The above conclusion of this study has indirectly already been emphasized in previous examples and
convergence studies of part II. For example, replace

– O( 1√
NMC

) by O(∆x),

– and O
(

1√
NUQMC

)
by O(exp (−P k)),

and we obtain the same content as remark 4.2. In other words, we can expect a non-intrusive resolution
of the uncertain linear Boltzmann equation to depend on three discretisation parameters, N , NMC and
P (the size of the obtained P−truncated reduced model). This point is more developed in [241].
In the context of this chapter, there is one difference with the examples of part II. We may be able to take
advantage of the MC resolution to treat the uncertainties on-the-fly during the MC tracking. The idea is
to capitalize on the fact MC methods are insensitive to an increase of dimensions (the uncertain ones) and
weaken the sensitivity to dimension of gPC. The idea would be to obtain a resolution method depending
on one less discretisation parameter (dependence only with respec to NMC , P ). The description of such
resolution scheme is the purpose of the next section.

9.11.2 A gPC-intrusive Monte-Carlo scheme for the uncertain linear Boltz-
mann equation

The previous section showed a non-intrusive application has one important drawback. The dependence of
the accuracy of the computations to three intricated parameters. This is especially true if the uncertainty
analyst has not designed an Asymptotic-Preserving scheme in agreement with the (uncertain) regime he
wants to capture in his study. The idea here is: suppose one has to design a new adapted Asymptotic-
Preserving MC scheme, is it possible to make the MC scheme solve on-the-fly the uncertain counterpart
of the linear Boltzmann equation? The answer, positive, is summed up below and fully addressed in
[241]50. Let us consider the following uncertain transport equation

∂tu(x, t,v, X) + v · ∇u(x, t,v, X) = −vσt(x, t,v, X)u(x, t,v, X)

+vσs(x, t,v, X)

∫
Ps(x, t,v,v

′, X)u(x, t,v′, X) dv′.

(9.153)
Recall we have the notations

σs(x, t,v, X) =

∫
σs(x, t,v,v

′, X)dv′,

Ps(x, t,v,v
′, X) =

σs(x, t,v,v
′, X)

σs(x, t,v, X)
.

(9.154)

49given by (9.86) with cross-sections depending on X.
50In [241], we presented the construction of the gPC based semi-analog MC scheme, we here build the gPC based

non-analog one. This way, this document and [241] remain complementary.
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Let us go through the same steps as in sections 9.2–9.3–9.4 in which we built MC schemes but having
in mind the quantities depend also on X. We aim at identifying the changes one must perform to the
different samplings to take X into account on-the-fly during the MC resolution. First, we introduce

fτ (x, t,v, s,X) ds =

1[0,∞[(s)vσs(x− vs, t− s, v,X) exp

(
−
∫ s

0

vσs(x− vα, t− α,v, X) dα

)
ds.

(9.155)

Under some boundedness conditions51 ∀X ∈ Supp(X), where Supp(X) denotes the support of the
random variable, (9.155) remains an exponential probability measure [219]. The uncertain counterpart
of (9.28) is then given by

u(x, t,v, X) =∫ [
1[t,∞[(s) u0(x− vt,v, X) e−

∫ s
0
vσa(x−vα,t−α,v,X)dα

1[0,t](s) u(x− vs, t− s,v′, X) e−
∫ s
0
vσa(x−vα,t−α,v,X)dα Ps(x− vs, t− s,v,v′, X)

]
×fτ (x, t,v, s,X)dv′ds.

(9.156)

Introduce the set of random variables τX ,VX sampled from the probability measures τX ∼ fτ (x, t,v, s,X) ds
and VX ∼ Ps(x, t,v,v′, X)dv′. The above integral equation rewritten as a recursive expectation becomes

u(x, t,v, X) = E

[
+1[t,∞[(τX) e−

∫ t
0
vσa(x−vα,t−α,v,X)dα u0(x− vt,v, X)

+1[0,t](τX) e−
∫ τX
0 vσa(x−vα,t−α,v,X)dα u(x− vτX , t− τX ,VX , X)

]
. (9.157)

The next step consists in introducing an MC discretization allowing to take into account the uncertain
variables. Let us introduce an ’uncertain MC particle’ up defined as

up(x, t,v, X) = up(x, t,v)δX(Xp(t)) = wp(t)δx(xp(t))δv(vp(t))δX(Xp(t)). (9.158)

We are now going to identify the operations we must perform to ensure (9.158) is solution of (9.153).
For this, we plug (9.158) into (9.157) and make sure up(x, t,v, X) is a particular solution of (9.153).
Plugging up into (9.157) leads to the construction of a (compatible) system of equations of unknowns
wp(t),xp(t),vp(t), Xp(t) given by

wp(t) = 1[t,∞[(τX) e−
∫ t
0
vσa(x−vα,t−α,v,X)dαwp(0) +1[0,t](τX)e−

∫ τX
0 vσa(x−vα,t−α,v,X)dαwp(t− τX),

xp(t) = 1[t,∞[(τX) (x(0) + vt) +1[0,t](τX)(xp(t− τX) + vτX),
vp(t) = 1[t,∞[(τX) v +1[0,t](τX)(vp(t− τX) = VX),
Xp(t) = 1[t,∞[(τX) Xp(0) +1[0,t](τX)(Xp(t− τX)).

(9.159)
Let us focus on the last equation: inconditionally with respect to time t, Xp(t) is not modified. Indeed,
if τX < t we have Xp(t) = Xp(t− τX) until, events after events, the initial condition is reached leading
to Xp(t) = Xp(0) = Xp.

Remark 9.3 The latter result tells the uncertain variable must be sampled initially for every MC par-
ticles and remain unchanged. It also implies an MC particle must transport amongst its attributes the
realisation of a random vector of size Q. This has some impact on the memory consumption of the
algorithm.

Now we know Xp(t) = Xp, (9.159) reduces to wp(t) = 1[t,∞[(τXp) e−
∫ t
0
vσa(x−vα,t−α,v,Xp)dαwp(0) +1[0,t](τXp)e−

∫ τXp
0 vσa(x−vα,t−α,v,Xp)dαwp(t− τXp),

xp(t) = 1[t,∞[(τXp) (x(0) + vt) +1[0,t](τXp)(xp(t− τXp) + vτXp),
vp(t) = 1[t,∞[(τXp) v +1[0,t](τXp)(vp(t− τXp) = VXp).

(9.160)
Recall τXp ,VXp are sampled from the probability measures τXp ∼ fτ (x, t,v, s,Xp) ds and VXp ∼
Ps(x, t,v,v

′, Xp)dv′. System (9.160) is similar to system (9.24) but the samplings depending on Xp

may need few comments. Assume, for the sake of simplicity, the cross-sections do not depend on x, t

51Here, the hypothesis ∀X ∈ SuppX is certainly not optimal but sufficient for the property to hold.
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locally52 (i.e. within a cell or an element of geometry). Then the probability measure (9.155) for the
sampling of the interaction time resumes to

fτ (vp, s,Xp) ds = 1[0,∞[(s)vσs(vp, Xp)e
−vpσs(vp,Xp)s ds. (9.161)

In practice, this implies sampling τXp according to53

τXp = − ln(U)

vσs(vp, Xp)
where U ∼ U([0, 1]) and Xp is an embedded particle field just as vp. (9.162)

Expression (9.162) echoes (9.55). The same apply to the sampling of the outer54 velocity VXp and to the
weight modification of the uncertain MC particles. The cross-sections at play in (9.154)–(9.160) must
be used at both the physical (xp,vp) and uncertain (Xp) fields of the uncertain MC particle.

Now the gPC coefficients can easily be estimated thanks to the uncertain MC particles: the scheme
once again intensively uses the linearity of equation (9.153) together with the linearity of the P−truncated
gPC approximation defined via in corollary 3.2. Indeed, (up(x, t,v, X)φXk (X))p∈{1,...,NMC},∀k ∈ {0, .., P}
are independent solutions of the projection of the solution of (9.153) onto a P− truncated gPC basis.
This implies the sum over the number of uncertain MC particles verifies ∀k ∈ {0, .., P}

NMC∑
p=1

up(x, t,v, X)φXk (X) ≈ uXk (x, t,v).

Applying the operations related to (9.159) to any given uncertain MC particles ensures, by construction
(see theorem 3.2.1 of [165]), the convergence of the MC solver toward the projection of the solution
of (9.153) onto the truncated gPC basis in the limit NMC → ∞. The overall cost remains O(NMC)
together with an O( 1√

NMC
) accuracy on the gPC coefficients to compute. Note that the computation of

52This assumption is commonly done.
53The next expression is obtained inversing the cumulative density function of an exponential law, this is common in

MC computations see [165].
54Inner would be more appropriate as we are here identifying the backward samplings.
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the gPC coefficients explicitly appears in the algorithmic presentation 14 of the new MC scheme.

Algorithm 14: The gPC-intrusive MC non-analog scheme described in term of algorithmic
operations in order to compute (backward) the gPC coefficients of u(x, t,v, X). The differences
with the classical canvas are highlighted in blue: they concern the initial sampling (Xp from
dPX), the tallying (estimating the gPC coefficients (uXk (x, t,v))k∈{0,..,P} intrusively) and the
different calls to cross-sections.

1 for k ∈ {0, ..., P} do
2 set uXk (x, t,v) = 0
3 end
4 for p ∈ {1, ..., NMC} do
5 set sp = t #this will be the remaining life time of particle p, it must go down to zero

(backward)
6 set xp = x
7 set vp = v

8 set wp = 1
NMC

9 Sample X from the distribution having probability measure dPX .
10 set Xp = X
11 while sp > 0 and wp > 0 do
12 if xp /∈ D then
13 #here a general function for the application of arbitrary uncertain boundary

conditions
14 apply boundary conditions(xp, sp,vp, Xp)

15 end
16 Sample τ from the distribution having probability measure fτ (xp, sp, s,vp, Xp)ds.
17 if τ > sp then
18 #see the treatment in factor of 1[t,∞[(τ) in (9.160)
19 #change the particle weight

20 wp ←− e−
∫ sp
0 vpσa(xp−vpα,sp−α,vp,Xp)dαwp

21 #move the particle p
22 xp ←− xp + vpsp,
23 #set the life time of particle p to zero:
24 sp ←− 0
25 #tally the contribution of particle p
26 for k ∈ {0, ..., P} do
27 uXk (x, t,v)+ =wp × u0(xp,vp, Xp)φ

X
k (Xp)

28 end

29 end
30 else
31 #see the recursive treatment in factor of 1[0,t](τ) in (9.160)
32 #move the particle p
33 xp ←− xp + vpτ ,
34 #change its weight

35 wp ←− e−
∫ τ
0
vpσa(xp−vα,sp−α,vp,Xp)dαwp

36 Sample the velocity of particle p from Ps(xp, sp, τ,vp,v
′, Xp)dv′

37 vp = V
38 #set the life time of particle p to:
39 sp ←− sp − τ > 0

40 end

41 end

42 end

From the previous description, one must understand the basic idea is to try to avoid a tensorisation
between the N experimental design points concerning the random variable X and the NMC samplings
related to the physical variables (x, t,v) for the MC particles. This imposes some identified operations
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to perform a full MC approximation of the gPC coefficient with NMC samplings in the whole space of
variables (x, t,v, X). We intensively make use of the insensitiveness of an MC integration with respect
to dimension to compute the gPC coefficient of any given output of interest. The new MC scheme is
intrusive in the sense one must modify55

– the attributes of the MC particles to take into account a discretisation (Xp)p∈{1,...,NMC} of (X,dPX),

– the call to the cross-sections at those points (Xp)p∈{1,...,NMC} to sample the interaction time, the
outer velocity and modify the weight of any uncertain MC particle,

– the tallies (to embed the computations of the gPC coefficients and other outputs of interest).

The last point may deserve few more details: to approximate any ouput of interest, the post-treatment
must also be embedded in the MC resolution. Any other quantity of interest will not directly be available
unless every fields of the uncertain MC particles are tracked in some files to be post-treated. We clearly
want to avoid such solution because tracking down information with such frequency (many tallies56 of MC
particles per seconds leading to an important volume of I/O57) slows drastically down the computations
and can easily make a filesystem collapse. More details are given in the numerical examples of [241].

At this stage of the discussion, one may also wonder why relying on gPC and consequently remaining
sensitive to the dimension Q via the increasing number58 of coefficient (uXk )k∈{0,..,P} to be evaluated.
To give an element of answer, let us build the PDE satisfied by the moment of order 2 of u, solution of
(9.147). It is defined by

M2(x, t,v) =

∫
u2(x, t,v, X)dPX ,

=

∫
m2(x, t,v, X)dPX .

It certainly corresponds to one of the simplest statistical observable. In this case, quantitym2 is solution59

of

∂tm2(x, t,v, X) + v · ∇m2(x, t,v, X) = −2vσt(x, t,v, X)m2(x, t,v, X)

+2u(x, t,v, X)

∫
vσs(x, t,v,v

′, X)u(x, t,v′, X)dv′.
(9.163)

The latter equation is nonlinear (see the scattering term). The difficulty to solve (9.163) with an MC
method can be compared to the one to solve the quadratic Boltzmann equation [37, 28] for example. In
other words, to be solved numerically, it may

– either need an additional linearisation hypothesis. For example, for a Nanbu-like [37] resolution,
this implies relying on a time step discretisation and an MC resolution of the explicited equation

∂tm2(x, t,v, X) + v · ∇m2(x, t,v, X) = −2vσt(x, t,v, X)m2(x, t,v, X)
+2u(x, tn,v, X)

∫
vσs(x, t,v,v

′, X)u(x, t,v′, X)dv′.
(9.164)

In the above expression, u(x, tn,v, X) is the approximated solution at the beginning of the time
step ∆t. In other words the convergence depends on NMC but also on the time step ∆t.

– Or perform a splitting of operator between the streaming part and the collisional one with an
adaptation of Bird’s algorithm [28]. This splitting, even if having good mathematical properties
(conservations), also introduces a dependence with respect to a time step ∆t.

– Or apply an analog MC scheme and keep track of the count rate to take correlations and higher
moments into account [52]. This is usually done in a file which must be post-treated (binning and
linear fit etc. see [52]). But analog schemes are known to have a slower convergence rate, to be
computationally intensive and inadapted to very multiplicative media (in this case the size of the
written file is known to explode).

55This is easier to understand thanks to the algorithmic representations 3 and 14.
56See algorithm 3 for the definition of tallying.
57I/O refers to input/output.
58The number of coefficients increases with Q.
59Multiply (9.147) by u(x, t,v, X) to obtain (9.163).
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Of course, the above list of alternatives may not be exhaustive. Anyway, the application of gPC does
introduce a new parameter (P rather than a time step as in [37] or [28]) but the modifications to an
existing solver are minor (compare algorithms 3 and 14) and the approximation with respect to P can
even be expected to yield spectral convergence for smooth solutions (in fact, spectral convergence has
been proved in this context in [235]). In the example above, a gPC-i-MC approximation of M2 is simply
given by

M2(x, t,v) =

∞∑
k=0

(uXk (x, t,v))2 ≈
P∑
k=0

(uXk,NMC (x, t,v))2,

where ∀k ∈ {0, .., P} we have

uXk (x, t,v) ≈ uXk,NMC (x, t,v) =

NMC∑
p=1

wp(t)δx(xp(t))δv(vp(t))φ
X
k (Xp).

In [241], we numerically verify and illustrate the previous points and even consider more elaborated
statistical outputs of interest (in particular Sobol indices for sensitivity analysis, see [266, 145, 255]).
We also put forward very important gains on the new gPC based MC scheme designed in this section,
compared to a non-intrusive gPC application.

To end this section, we revisit the uncertainty quantification problem tackled at the beginning of this
section with the new gPC based semi-analog MC scheme. The results are displayed figure 9.4: the new

Semi-Analog NMC = 10
Semi-Analog NMC = 20
Semi-Analog NMC = 100

gPC intrusive Semi-Analog MC scheme (NMC = NUQ
MC)
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Figure 9.4: Convergence studies with respect to N = NUQ
MC and ∆ = NMC as in figure 9.3 (bottom right)

together with a curve obtained with the new gPC-i-MC scheme. For the latter, the uncertain parameters
are sampled within the NMC MC particles.

method also allows avoiding the kinks in the convergence curves.

9.11.3 Summary

The two previous sections could be (restrictively) summed up as the presentation of two resolution
schemes avoiding the kinks in the curves of figures 9.3–9.4. To avoid those kinks, the first method
(section 9.11.1) is non-intrusive but implies developping the relevant numerical schemes (the non-analog
one here) within the simulation device. In a sense, it is as intrusive as the second one (section 9.11.2),
which achieves the same purpose and even has some other interesting features, see [241].

More broadly, in this section, we tackled the resolution of the uncertain linear Boltzmann equation.
The first paragraph mainly aimed at putting forward the importance of having a relevant resolution
scheme for the uncertain study of interest prior to performing an uncertainty analysis. In the second
paragraph, we presented a gPC based intrusive MC scheme. It takes advantage of the MC resolution
and its insensitiveness to an increase in the dimension to treat on-the-fly during the MC tracking the
uncertain counterpart. It only needs enriching the fields of each MC particles and instrumenting the
tracking to compute the statistical observables of interest (high order moments, histograms, Sobol indices
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etc.). More details and HPC considerations can be found in [241].

9.12 Application of gPC for MC accelerations for the linear
Boltzmann equation

It is difficult talking about MC methods without hinting at variance reduction or acceleration techniques.
MC schemes, in opposition to deterministic ones, are even often chosen for their agility for decreasing

the constant K multiplying the convergence rate O
(

1√
NMC

)
= K√

NMC
. Under some conditions, K can

be assimilated with the standard deviation of the MC resolution. Variance reduction techniques are
presented and quite well described in many books, [165, 256, 173], and we do not intend to be exhaustive
here. Our aim is to put into perspective the materials of part II and part III. The originality of this
section comes from

– the analogy made with Asymptotic Preserving MC schemes (see remark 9.1),

– the introduction of gPC developments to accelerate MC computations (see part II).

Those two points are developed in the following paragraphs but to understand the stakes, at this point
of the discussion, it may be more relevant to give a simple example. Let us consider a toy integration
problem. Suppose one wants to compute

I =

∫ 1

0

exp (x)dx, (9.165)

with an MC method. Of course, the analytical solution is known, equal to I = exp 1− 1 ≈ 1.7183. The

I = 1.7183 Results Std√
n

Comparison

Classical MC (n = 1000) 1.6991 stdMC = 0.0153 reference
”Good” VR (n = 1000) 1.7093 0.0064 < stdMC

”Bad” VR (n = 1000) 1.7500 0.0299 > stdMC

Table 9.1: The table compares the Classical MC method, a variance reduction (VR) method (control
variate) with reduced model x −→ 1+x (”Good”), the same VR method with reduced model x −→ 1+5x
(”Bad”).We used n = 1000 samples. The abbreviation Std is for the estimated standard deviation, see
section 5.2.1.

principle of MC method for simple integration has already been presented in chapter 5 together with its
asymptotic properties, see section 5.2.1. Applying an MC scheme consists in introducing X ∼ U([0, 1])
and sampling NMC points (Xi)i∈{1,...,NMC} independent identically distributed (i.i.d.) according to X in
order to approximate I by

I =

∫ 1

0

u(x)dx = E [u(X)] ≈ INMC =
1

NMC

NMC∑
i=1

u(Xi). (9.166)

The quantity INMC is called an estimator and its properties will be investigated later on. Table 9.1 sums
up the results obtained with the classical MC method, a variance reduction (VR) method (which will be
detailed later on) and a badly tuned VR method on toy problem (9.165). Both VR methods rely on the
introduction of a priori information through a reduced model (detailed later on). The results are simple:
if the reduced model is not well enough chosen, the results can be worse than in the simple MC case.
Figure 9.5 illustrates why the second variance reduction approach fails. The reduced model u∗ has to
be as close as possible to the integrand so that the variance reduction method resumes to the evaluation
of nearly 0. In the second case (x −→ 1 + 5x), the area under x −→ | expx − 1 − 5x| is even larger
than the area under x −→ expx. And the two MC approximations use the same number of MC sam-
ples to explore both areas. In this case, the variance is increased and the estimation is worse, see table 9.1.
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Figure 9.5: On the left, x −→ expx (red), x −→ 1+x (blue, good reduced model) and x −→ expx−1−x
(black) are plotted. On the left, x −→ expx (red), x −→ 1 + 5x (blue, bad reduced model) and
x −→ expx − 1 − 5x (black) are plotted. The dashed area is the surface under x −→ expx − 1 − x
and x −→ expx− 1− 5x. In the second case the dashed area is more important than the surface under
x −→ expx (variance is not reduced), whereas it is smaller in the first case (variance is reduced).

With this example, it is easier having an idea of why being able to find a ”good” reduced model
is the key step60. Finding a good reduced model can reveal to be quite tricky, as illustrated above.
One generally relies on a priori available information on the integrand. How to practically use it is
the next question. There are several ways to introduce a reduced model to accelerate MC computation
of (9.166). The most classical ones are Importance Sampling (IS) and Control Variate (CV) methods.
Lots of other methods exist (Stratified Sampling, low discrepancy suites, etc. see [256, 65, 103]) but do
not necessarily need the introduction of a priori information on the integrand via a reduced model u∗.
For both methods, u∗ has to be the closer possible to u. They only differ from the fact the IS method
introduces u∗ multiplicatively whereas the CV one introduces u∗ additively61. We briefly go through
their principles in the two next paragraphs.

The Control Variate acceleration method

The CV method supposes one has a model (reduced model) x −→ u∗(x) approximating u. For ef-
ficiency, few requirements are mandatory: u∗(x) is assumed to be fast to evaluate ∀x ∈ RQ so that
I0 =

∫
u∗(x)dPX(x) = E [u∗(X)] is known with a good accuracy at a relatively low cost. The reduced

model u∗ is then plugged in the computation of I by introducing its expression in the expectation

I = E [u(X)− u∗(X) + u∗(X)] = E [u(X)− u∗(X)] + I0. (9.167)

The problem consequently resumes to the estimation of the expectation of the difference u(X)− u∗(X).
The question now is, what does it bring? Let us introduce (Xi)i∈{1,...,NMC} be NMC i.i.d. realisations
of X. Then according to the law of large numbers (stated in section 5.2.1), the estimator ICVNMC ensures

ICVNMC = I0 + 1
NMC

NMC∑
i=1

(u(Xi)− u∗(Xi))
a.s.−→

NMC→∞
E[u(X)] = I. (9.168)

It is almost surely converging and is unbiased [256]. Being unbiased ensures its variance is an error
estimator. It means the constant K multiplying the convergence rate 1√

NMC
is equal to the variance of

the estimator ICVNMC , given by

K = V
[
ICVNMC

]
= V [u(X)− u∗(X)] . (9.169)

60Note that for us, a ”good” reduced model does not mean the best: only a reduced model ensuring a variance reduction
(and above all not an increase of it!) with relatively low cost.

61also known as Difference Formulation in the literature.

232



Expression (9.169) consequently ensures the constant K can be reduced if u∗ is sufficiently well-suited,
i.e. close enough to u. Of course, if u∗ = u, the error is zero. Note that the Control Variate method is
at the basis of Multi-Level MC for uncertainty quantification, see [23, 264], which can be understood as
an iterated CV approach. This latter method was not described in part II mainly because we focused
on spectral methods.

The Important Sampling acceleration method

The IS method also assumes one has access to a model (reduced model) x −→ u∗(x) approximating u.
The main difference comes from the fact u∗ is introduced multiplicatively in the expectation I = E[u(X)]
and must satisfy slightly different requirements. Suppose u∗(X) > 0 and

∫
u∗(x)dPX(x) = 1, then

dPu∗(x) = u∗(x)dPX(x) is a probability measure. The IS method is then based on the following change
of variable

I =

∫
u(x)

u∗(x)
u∗(x)dPX(x) =

∫
u(x)

u∗(x)
dPu∗(x) = E

[
u(Y )

u∗(Y )

]
. (9.170)

In the above expression, Y follows the law defined by the probability measure dPu∗(x). Implicitly,
another condition for the IS method to ensure a gain supposes Y must be sampled easily and quickly.
The cdf of the latter probability measure must be fast to inverse, see [33].

To understand how gains can be obtained, let us introduce (Yi)i∈{1,...,NMC}, NMC i.i.d. realisations
of Y . Then, according to the law of large numbers (stated in section 5.2.1), the estimator IISNMC ensures

IISMC = 1
NMC

NMC∑
i=1

u(Yi)

u∗(Yi)
a.s.−→

NMC→∞
E
[
u(Y )

u∗(Y )

]
= I. (9.171)

It converges almost surely and is unbiased, see [256]. The variance of the estimator IISNMC is given by

K = V
[
IISNMC

]
=

∫ (
u(y)

u∗(y)

)2

dPu∗(y)− I2 =

∫
u2(y)

u∗(y)
dPX(y)− I2. (9.172)

Expression (9.172) ensures the constant K can be reduced if u∗

I is close enough to u. In such case, i.e.

if u∗

I ≈ u, we have∫
u2(y)

u∗(y)
dPX(y)− I2 ≈ I

∫
u2(y)

u(y)
dPX(y)− I2 = I

∫
u(y)dPX(y)− I2 = 0. (9.173)

Remark 9.4 Note that the non-analog MC scheme presented in section 9.4, AP in the homogeneous
regime, can be reinterpreted as an IS variance reduction with u∗(x, t) = u0(x)e−vσat (along a character-
istic) leading to a zero variance in this particular configuration. The computations of section 9.7.3 are
similar to the one performed to obtain (9.173).

Both methods presented above rely on the hypothesis of having a sufficiently well-suited reduced
model u∗ approximating u. Having such function u∗ is not generally straightforward and we have seen in
the example in the introductory paragraph that mistaking on u∗ can have some dramatic consequences. In
the next section 9.12.1, we briefly hint at a parallel between variance reduction techniques and Asymptotic
Preserving schemes. Both are equivalent when the regime of interest is identified and used in the design
of the resolution scheme. In section 9.12.2, we propose a method based on a gPC decomposition of
u in order to reduce the variance in the MC estimations of an integral when a priori information on
the integrand/regime is not available or complex to identify. In section 9.12.3, we apply the material
of section 9.12.2, and use gPC developments as reduced models, to accelerate the MC resolution of the
linear Boltzmann equation.
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9.12.1 Variance reduction, AP scheme, same problems, different denomina-
tions

Some variance reduction techniques have already been presented in this document: the semi-analog and
the non-analog schemes (sections 9.3–9.4) both reduced the variance with respect to the analog MC
scheme (see section 9.7) in the homogeneous case (see section 9.7). The multiplicity option, on another
hand, has been discarded as an interesting MC scheme precisely because it increased the variance. The
non-analog scheme was also presented as an Asymptotic Preserving scheme for the homogeneous regime.

We here want to highlight the fact that variance reduction methods and Asymptotic Preserving
schemes are closely related if not equivalent. They both aim at decreasing the constant in the O( 1√

NMC
)

convergence rate of the MC method. The main difference between both may come from the fact that
variance reduction technique are usually used when the asymptotic regime of interest (δ −→ 0) is
complex to identify and characterise, see [165, 181, 17]. When the stiff regime is known and identified,
the introduction of the asymptotic regime in the MC computation via the construction of an AP scheme
may be more efficient. An example for the nonlinear Boltzmann equation coupled to Bateman system is
described in chapter 10.

When the stiff regime of interest is hard to determine, we suggest using the spectral property in the
L2-norm (i.e. for the variance) of the gPC decomposition. The aim is to automatically build a relevant
reduced model for the regime/configuration of interest. The methodology is first described for simple
integration in the next section 9.12.2. It is then applied to the acceleration of the MC resolution of the
linear Boltzmann equation in an intensively studied configuration [165, 181, 17] in section 9.12.3.

9.12.2 Application of gPC to accelerate MC integration

We begin by restating convergence theorem 3.2 with slightly different notations. In its essence, the
theorem remains unchanged. This new statement only aims at easing the introduction of gPC for
variance reduction.

Corollary 9.1 Convergence of generalized Polynomial Chaos in new notations: let (Ω,F ,P) be a prob-
ability space. Let X be an arbitrary random variable of given probability measure dPX . Let (φXk )k∈N be
the basis of orthonormal polynomials with respect to dPX . Let u(X) be an unknown random variable.

Suppose that V [u(X)] <∞. Introduce the polynomial development uXP (X) =
∑P
k=0 ukφ

X
k (X) where the

polynomial coefficients (uk)k∈N are defined as uk =
∫
u(X)φXk (X)dPX , the projection of the solution on

above polynomial basis associated to dPX . Then we have

V
[
u(X)− uXP (X)

]
−→
P→∞

0. (9.174)

Expression (9.174) echoes (9.169), required by u∗ to be a relevant ingredient of any CV method. It even
ensures the construction of a reduced model up to an arbitrary accuracy. In the next paragraphs, we
consequently naturally choose u∗ (CV) or u∗

I (IS) as a P−truncated gPC development.

We insist on the fact that this is not the first time orthogonal polynomials are used in VR techniques,
see62 [184, 65, 103, 135, 38, 188, 66, 103]: the aim of this section is to present the properties of gPC in
the context of numerical integration (i.e. closely related to initial and source samplings of sections 9.8.1
and 9.9.1) and of the resolution of the transport equation.

Back to the toy problem (9.165) with a gPCP reduced model for a CV method

Let us illustrate what can be expected from the use of a gPC development as a reduced model on example
(9.165) with a CV method: we aim at evaluating

I =

∫ 1

0

expxdx = E[exp(X)]. (9.175)

62The list is not exhaustive but has the particularity of ranging from 1964 to 2003.
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Recall X ∼ U([0, 1]). The three first components of the gPC basis, here the Legendre one, cf. table 3.1,
associated to X are given by 

φ0(x) = 1,

φ1(x) =
√

3 (2x− 1) ,

φ2(x) =
√

5
(
6x2 − 6x+ 1

)
.

(9.176)

The coefficients of the gPC development in this basis are given by (analytical calculations here)
exp0 = −1 + e,

exp1 =
√

3(3− e),
exp2 =

√
5(−19 + 7e).

(9.177)

Figure 9.6 (right) shows the approximation of x −→ expx with the first and second order gPC, i.e.

exp1(x) = exp0 φ0(x) + exp1 φ1(x),
exp2(x) = exp0 φ0(x) + exp1 φ1(x) + exp2 φ2(x).

(9.178)

Note that the second order gPC expansion (black dotted curve) matches the analytical curve (red) on
the whole integration domain [0, 1]. On the other hand, figure 9.6 also compares the 1st and 2nd Taylor
developments63 of x −→ expx (right), given by

exp1
Taylor(x) = 1 + x,

exp2
Taylor(x) = 1 + x+ x2

2 .
(9.179)

As expected, Taylor expansions are interesting in the context of VR methods but they only match the
function locally (vicinity of 0 here). Table 9.2 sums up the results obtained with the classical MC
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Figure 9.6: On the left, x −→ expx (red), x −→ exp0 φ0(x) + exp1 φ1(x) (blue) and x −→ exp0 φ0(x) +
exp1 φ1(x) + exp2 φ2(x) (black) are plotted. On the right, x −→ expx (red), x −→ 1 + x (blue) and
x −→ 1 + x+ 1

2x
2 (black) are plotted

method and the CV method for four different reduced models:

– 1st and 2nd order Taylor expansion of x −→ expx in the vicinity of 0, see (9.179),

– and the 1st and 2nd order gPC expansions of the same function, see (9.178).

The Taylor-CV method reduces variance considerably especially with the 2nd order approximation. The
gPC-CV method reaches the same accuracy as the 2nd order Taylor-CV method with order 1. The 2nd

order gPC-CV method increases the gain of a factor 96.75/8.18 = 11.82 in comparison to the 1st order
gPC.

These results are encouraging but needs to be interpreted carefully: in all those calculations, we
supposed the gPC coefficients were known exactly. This may not be true in real computations as they

63Corresponding to the ”good” reduced models of section 9.12.2.
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I = 1.7183 Results Std√
n

Gain

Classical MC (n = 3000) 1.7151 9.0× 10−3 reference
1st order Taylor-CV (n = 3000) 1.7169 3.8× 10−3 2.36
2nd order Taylor-CV (n = 3000) 1.7179 1.1× 10−3 8.18

1st order gPC CV (n = 3000) 1.7181 1.1× 10−3 8.18
2nd order gPC CV (n = 3000) 1.7184 9.6× 10−5 96.75

Table 9.2: The table compares the Classical MC method to a 1st (x −→ 1+x) and 2nd (x −→ 1+x+ 1
2x

2)
order Taylor-CV method and to a 1st (x −→ exp0 φ0(x) + exp1 φ1(x)) and 2nd (x −→ exp0 φ0(x) +
exp1 φ1(x) + exp2 φ2(x)) order gPC-CV method. The gPC coefficients are given by (9.177) and the basis
by (9.176). The gain (last column) is the ratio of the std obtain by the Classical MC method and the
std obtained with the considered VR method.

have to be estimated. Nevertheless, it gives a good idea of what can be asymptotically achieved with
such reduced model. In the following sections, we suggest several ways to estimate the gPC coefficients.

The last section tends to show that provided an accurate estimation of the coefficients of the gPC
development of the integrand u(X), gPC combined to VR methods (CV or IS) can lead to a considerable
and automatic increase in the accuracy of the integral evaluation. We here suggest simple ways for
estimating the gPC coefficients. Let us come back to our general problem of integrating

I =

∫
u(x)dPX(x) = E [u(X)] . (9.180)

Recall u is unknown in the sense it can only be evaluated. Let us introduce (φXk )k∈N the gPC basis
associated to X64. We want to estimate the gPC expansions of u(X) on this basis, i.e. we are looking
for the coefficients

uk =

∫
u(x)φXk (x)dPX(x),∀k ∈ {0, ..., P}.

Several solutions are possible, we suggest to develop three of them.

MC method for the computation of the (uk)k∈{0,...,P}

A first possibility is to compute the (uk)k∈{0,...,P} with an MC method. By definition, we have

uk =

∫
u(x)φXk (x)dPX(x) = E[u(X)φXk (X)],∀k ∈ {0, ..., P},

where X is a random vector of dimension Q of probability measure dPX . Let us consider nMC i.i.d.
realisations of X denoted by (xi)i∈{1,...,nMC}. according to theorem 5.1,

unMCk =
1

nMC

nMC∑
i=1

u(xi)φ
X
k (xi), (9.181)

is a convergent unbiased estimator of uk, ∀k ∈ {0, ..., P}. Now introduce NMC i.i.d. realisations of X
denoted by (Xi)i∈{1,...,NMC}. Then the following estimator

InMC ,NMC = unMC0 + 1
NMC

NMC∑
i=1

(
u(Xi)−

P∑
k=0

unMCk φk(Xi)

)
a.s.−→

NMC→∞
E[u(X)] = I, (9.182)

64cf. section 3.4.
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converges ∀nMC (according to theorem 5.1) and is unbiased. Indeed, we have

InMC ,NMC = 1
nMC

nMC∑
j=1

u(xj) +
1

NMC

NMC∑
i=1

u(Xi)−
1

NMC

NMC∑
i=1

 P∑
k=0

1

nMC

nMC∑
j=1

u(xj)φk(xj)

φk(Xi)

 ,

= 1
nMC

nMC∑
j=1

u(xj) +
1

NMC

NMC∑
i=1

u(Xi)−

 P∑
k=0

1

nMC

nMC∑
j=1

u(xj)φk(xj)

 1

NMC

NMC∑
i=1

φk(Xi)

 .

(9.183)

If we now take the expectation of InMC ,NMC , we get

E[InMC ,NMC ] =
1

nMC
nMCE[u(X)] +

1

NMC
NMCE[u(X)]︸ ︷︷ ︸

as the xj and Xis are i.i.d

−


P∑
k=0

1

nMC
E

 N∑
j=1

u(xj)φk(xj)

 1

NMC

NMC∑
i=1

E[φk(Xi)]︸ ︷︷ ︸
as xj and Xi are independent

 ,

E[InMC ,NMC ] = E[u(X)] + E[u(X)]

−


P∑
k=0

E [u(X)φk(X)]︸ ︷︷ ︸
as xj are i.i.d.

1

NMC

NMC∑
i=1

E[φk(Xi)]︸ ︷︷ ︸
=δk,0(orthonormality)

 ,

= E[u(X)].

(9.184)

The last line is characteristic of an unbiased estimator, see [256].

The main drawback of this first possibility is that the VR techniques now implies nMC + NMC

evaluations of the unknown function u rather than NMC . Besides, nMC may need to be important for
efficiency. The next method suggests estimating the coefficients (uk)k∈{0,...,P} without the use of an MC
method.

Quadrature rules for the computation of the (uk)k∈{0,...,P}

A second possibility developed in [103, 38], which is also often used in uncertainty quantification, see
part II, consists in the use of quadrature rules (see [265, 180, 34]) for the evaluation of the coefficients
(uk)k∈{0,...,P}. Let us introduce the deterministic points (xl, wl)l∈{1,...,nq}, where (xl)l∈{1,...,nq} are the
points and (wl)l∈{1,...,nq} are their associated weights. Both are deterministic and ensure a discretisation
of (X,dPX). In other words, we have ∀k ∈ {0, ..., P}

uk ≈ unqk =

nq∑
l=1

wlu(xl)φ
X
k (xl). (9.185)

The following estimator

Inq,NMC = u
nq
0 + 1

NMC

NMC∑
i=1

(
u(Xi)−

P∑
k=0

u
nq
k φ

X
k (Xi)

)
a.s.−→

NMC→∞
E[u(X)] = I, (9.186)

converges ∀nq (according to theorem 5.1) and is unbiased (as the gPC coefficients are deterministically
evaluated).

Once again, the gPC acceleration of the CV method needs nq + NMC evaluations of the unknown
function u but in general nq � NMC . Of course, with such strategy, the quality of the reduced model
depends on the smoothness of the integrand and of the dimensionality of X, see section 5.2.3. In the
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next section, we suggest a last way of estimating the same coefficients implying only NMC evaluations
of the unknown function u, exactly as with the Classical MC approach.

A biased MC estimator for the computation of the (uk)k∈{0,...,P}

We here detail the implications of having a biased estimator for evaluating the gPC coefficients (uk)k∈{0,...,P}.
Introduce NMC i.i.d. MC points (Xi)i∈{1,...,NMC}. According to theorem 5.1,

uNMCk =
1

NMC

NMC∑
i=1

u(Xi)φ
X
k (Xi), (9.187)

is a convergent unbiased estimator of uk, ∀k ∈ {0, ..., P}. We here suggest to reuse the evaluations
(u(Xi))i∈{1,...,NMC} of u at the previous MC points. The approach does not need more sampling or
evaluations than the NMC ones for the (uk)k∈{0,...,P}. Integral I is approximated by the estimator

INMC =
1

NMC

NMC∑
i=1

[
u(Xi)−

P∑
k=0

uNMCk φXk (Xi)

]
. (9.188)

Table 9.3 presents the results on the same toy problem (9.165) with this low cost gPC acceleration
(9.188). The variance has been reduced if we compare the low cost gPC acceleration’s results to the ones

I = 1.7183 Results Std√
n

Gain

Classical MC (n = 3000) 1.7079 9.1× 10−3 reference
1st order Taylor-CV (n = 3000) 1.7145 3.9× 10−3 2.33
2nd order Taylor-CV (n = 3000) 1.7188 1.1× 10−3 8.27

1st order gPC CV (n = 3000) 1.7194 1.2× 10−3 7.58
2nd order gPC CV (n = 3000) 1.7175 7.9× 10−4 11.51

Table 9.3: The table compares the Classical MC method to a 1st (x −→ 1+x) and 2nd (x −→ 1+x+ 1
2x

2)
order Taylor-CV method and to a 1st (x −→ exp0 φ0(x) + exp1 φ1(x)) and 2nd (x −→ exp0 φ0(x) +
exp1 φ1(x)+exp2 φ2(x)) order gPC-CV method. The conditions are the same as in table 9.2 except from
the fact that the gPC coefficients are now estimated during the VR computation through the procedure
described in this section. The gain (last column) is the ratio of the std obtained by the Classical MC
method and the std obtained with the considered VR method.

from the Classical MC approach. Of course, the gain with respect to the Taylor based VR method is
less important than the one obtained in table 9.2 as the gPC coefficients are now estimated (rather than
known exactly).

We insist this method does not ensure estimator INMC defined in (9.188) is unbiaised as the coefficients
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(uNMCk )k∈{0,...,P} depends on (Xi)i∈{1,...,NMC}. The bias of the estimator is indeed given by

β[INMC ] = E[INMC − u(X)],

β[INMC ] = E[u(X)]− 1
N2
MC

P∑
k=0

NMC∑
l,i=1

E
[
u(Xl)φ

X
k (Xl)φ

X
k (Xi)

]
,

β[INMC ] = E[u(X)]− 1
N2
MC

P∑
k=0

NMC∑
l=1

E
[
u(Xl)φ

X
k (Xl)φ

X
k (Xl)

]
− 1
N2
MC

P∑
k=0

NMC∑
l,i=0
i6=l

E
[
u(Xl)φ

X
k (Xl)φ

X
k (Xi)

]︸ ︷︷ ︸
=E[u(Xl)φXk (Xl)]E

[
φXk (Xi)

]︸ ︷︷ ︸
=δk,0

,

β[INMC ] = E[u(X)]− 1
NMC

E[u(X)]− 1
NMC

P∑
k=1

E
[
u(X)φ2

k(X)
]

−(1− 1
NMC

)E[u(X)],

β[INMC ] = − 1
NMC

P∑
k=1

E
[
u(X)φ2

k(X)
]

= O
(

1

NMC

)
.

(9.189)

The bias tends to zero as NMC tends to infinity (∀P ∈ N). The estimator is said consistent but not
unbiased, see [256]. Nevertheless, the bias β[INMC ] is O( 1

NMC
) so that for important NMC , β[INMC ]

is negligible in comparison to the MC error. Indeed, we have O( 1√
NMC

) �
NMC�1

O( 1
NMC

). This will

be confirmed numerically in the following examples. Practically, having a biased (but consistent) MC
estimator implies the estimator converges but the variance is not anymore an error estimator, see [256].

Application of the gPCP reduced model for variance reduction on few test-problems

We suggest to test gPC reduced models for MC accelerations on several test-functions. We integrate
them on [0, 1] with respect to the Lebesgue measure and on R with respect to the gaussian measure:

u1(x) = expx,
u2(x) = cosx,
u3(x) = 1[ 1

2 ,∞[(x),

u4(x) = exp (−x2),
u5(x) = exp (5x),
u6(x) = 1[0.4,0.6](x).

(9.190)

These functions are emphasizing different aspects and difficulties for integration with MC methods (also
relative to resolution of transport equations) and VR methods.

Remark 9.5 (Error estimations) As tackled in the previous paragraph, in the case of unbiased esti-
mators, the standard deviation is an error estimator and can be evaluated a posteriori. Otherwise, it
is not, see [256]. In the following calculations, when the estimator is unbiased, the error is computed
by estimating the standard deviation of the MC results. When it is not, i.e. when estimator (9.188) is
applied, it is evaluated by computing the L2−norm of the error with respect to the analytical results (no
a posteriori error information is available or relevant/reliable in practice).

In the following examples, we apply the gPC formalism for variance reduction. When the integration
is carried on [0, 1] with respect to the Lebesgue measure, the normalized Legendre polynomials are
chosen as the gPC basis65. When the integration is carried on R with respect to the gaussian measure,
the normalized Hermite polynomials are chosen as the gPC basis66. This is in agreement with the Askey

65Orthonormal with respect to the measure x −→ 1[0,1].

66Orthonormal with respect to the measure x −→ 1√
2π
e
−x2

2 .
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scheme, see table 3.1 and section 3.3. Note that more elaborated choices could have been done concerning
the gPC basis, cf. i-gPC in chapter 6. This will not be investigated in this section but has been tested
and gives quite satisfactory results.

Figure 9.7 compares the logarithm of the variance (ln( std√
NMC

)) with respect to the number of samples

(NMC) for the evaluation of ∫
[0,1]

uk(x)dx, for k ∈ {1, ..., 6}, (9.191)

with

– the Classical MC method (blue curve),

– a CV method with reduced model given by (9.192),

– and the gPC accelerated CV method we propose in this section.

The reduced models used in order to accelerate the convergence of (9.191) are given by (9.192). They are
Taylor development of the integrand (uk)k∈{1,...,6} except for the indicatrix functions u3 and u6. They
are given by

u1
Taylor(x) = 1 + x,

u2
Taylor(x) = 1− x2

2 ,

u3
Guess(x) = 1 + x,
u4
Taylor(x) = 1− x2,

u5
Taylor(x) = 1 + 5x,

u6
Guess(x) = 1 + x.

(9.192)

For the gPC accelerated CV method, we used the low cost (biased estimator (9.188)) for estimating the
gPC coefficients (uk)k∈{0,...,P}.

Figure 9.7 shows that for every function, every gPC acceleration reduces the variance without more
estimations of the integrand than the Classical MC approach. For figure 9.7 (u2), the 1st order gPC
acceleration is less efficient than the Taylor-CV method. This is due to the fact that the cosine function
is even. Higher truncation orders give satisfactory results. The 2P + 1 orders are superposed with the
2P order ones. For figure 9.7 (u3), 1st and 2nd orders are superposed as well as 3rd and 4th orders. Every
orders are more efficient than the Taylor-CV method. The gPC acceleration shows great improvements
for u4 and u5 with respect to the Taylor-CV method. Note that for u5, the Taylor-CV method gives
results close to the Classical MC approach. For u6, the improvements of the gPC accelerations are less
important but still reduce the variance (note that once again, the Taylor-CV method gives the same
results as the Classical MC approach).

Figure 9.8 compares the logarithm of the variance (ln( std√
NMC

)) with respect to the number of samples

(NMC) for the evaluation of∫
R
uk(x)

1√
2π

exp

(
−x

2

2

)
dx, for k ∈ {1, ..., 6}, (9.193)

with

– the Classical MC method (blue curve),

– a CV method with reduced model given by (9.192),

– and the gPC accelerated CV method we propose in section 9.12.2.

Once again, for the CV method the reduced model of (9.190) are Taylor developments of the integrand
given by (9.192). For the gPC accelerated CV method, we used the low cost biased estimator (9.188).

For functions u1, u4 of figure 9.8, the results are as expected: the gPC acceleration always gives
better results than the Taylor-CV method. For u4 the Taylor-CV method gives the same results as the
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Figure 9.7: Convergence tests for the MC, Taylor-CV and gPC accelerated CV methods: integration
over [0, 1] with respect to the Lebesgue measure. The figure shows the logarithm of the estimation of the
std with respect to the number of samples. Note that the gPC accelerations always reduce the variance
of the MC method without a priori knowledge on the integrand.

Classical MC method. For function u2, the 1st order gPC accelerated CV method gives the same results
as the Classical MC method. This is once again due to the fact that the cosine is even (uNMC1 ≈ 0).
Note that this test (u2) emphasizes the fact that the gPC acceleration do not give worse results than the
Classical MC method. This is not the case for the Taylor-CV method, as illustrated on figure 9.8 (u3)
where the Taylor curve is above the MC curve. Function u5 is particular, cf. [165]: indeed, the exact
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Figure 9.8: Convergence tests for the MC, Taylor-CV and gPC accelerated CV methods: integration
over R with respect to the gaussian measure. The figure shows the logarithm of the estimation of the
std with respect to the number of samples.

variance of the estimator for this function exp (5X) where X is a normalized centered gaussian random
variable can be evaluated and is given by e50 − e25 ≈ 5.1847.1021. The variance is very important and
even once reduced, it is still very high, see [165]. On this difficult case, every methods show the same
poor behaviour due to the intrinsic important variance of the solution. Function u6 is also particularly
difficult to integrate. It is a thin heavyside function integrated on R. Only few realisations of the RV X
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contribute to the estimation of the expectation. Once again, the gPC acceleration gives the same results
as the Classical MC approach whereas the Taylor-CV method gives worse results (loss of more than a
decade in accuracy!). Note that the computational time for the gPC-CV method is not displayed in this
section as it is the same as the one for the Classical MC approach: indeed, reusing the former MC points
(cf. section 9.12.2) only implies few more operations which are not time consuming with respect to the
sampling.

Until now, we have mainly considered gPC acceleration of the CV method. The gPC acceleration
is also compatible with the IS one. Figure 9.9 revisits the same problems as previously but considering
a gPC acceleration of the IS method. For this method, the development is only carried up to order 1
mainly because the IS method implies an inversion of the cdf of the evaluated gPC expansion67 which
can reveal to be quite tricky for important P . Alternative methods exist in order to sample random
variables defined through normalized gPC expansions, from histograms, from approximated discrete pdfs
or by rejection sampling [173] for example. They aim at avoiding an inversion. Evaluating these methods
with gPC acceleration is beyond the scope of this section.

Accuracy time×10−3 ratio of times
u1 Classical MC (NMC = 220000) 10−3 9.089 s. 1 (reference)

gPC1 (NMC = 4000) 10−3 0.840 s. 10.82

u2 Classical MC (NMC = 20000) 10−3 1.203 s. 1 (reference)
gPC1 (NMC = 1200) 10−3 0.418 s. 2.87

u3 Classical MC (NMC = 100000) 1.6 10−3 6.70 103 s. 1 (reference)
gPC1 (NMC = 21000) 1.6 10−3 0.609 103 s. 11.00

u4 Classical MC (NMC = 40000) 10−3 2.245 s. 1 (reference)
gPC1 (NMC = 1000) 10−3 0.389 s. 5.77

u5 Classical MC (NMC = 15000000) 10−2 0.763 103 s. 1 (reference)
gPC1 (NMC = 1500000) 10−2 0.130 103 s. 5.86

Table 9.4: Comparison of computational times times to attain the same accuracies with the Classical
MC method and the gPC accelerated IS for the (uk)k∈{1,...,5} problems (9.190).

Figure 9.9 compares the Classical MC method to the Taylor IS and the gPC accelerated IS method
with integration carried on [0, 1] for (uk)k∈{1,...,6}. The 1st order gPC accelerated IS gives better results

than the Classical MC and the Taylor IS on (uk)k∈{1,...,5}. Even for u2, for which the Taylor IS is second
order (see (9.192)). The u6 case is particularly difficult. It consists of an indicatrix with a thin support.
For this test-case, every methods are equivalent. Table 9.4 presents quantitative results on the gains in
computational time for these last problems. The gPC acceleration enables gains from ≈ 2 to 11 with
only first orders expansions.

Remark 9.6 (Possible Optimizations) Note that for the later examples, the same number of point
is always used in the two steps of the algorithm. Very simple and obvious optimizations can increase the
efficiency of the approach:

– [(i)] indeed, to estimate the gPC coefficients, we used N(i) = NMC points,

– [(ii)] and we used the same number of points to evaluate estimator (9.188) thanks to the reduced
model of step (i), N(ii) = NMC = N(i) points .

The gPC-IS accelerated method can also be used with two different numbers of points in steps (i) and
(ii), i.e. with N(i) 6= N(ii), to increase the gain (CPU time vs. accuracy). This is emphasized in the
problem of section 9.12.3, see results of table 9.9.

67Inversion of the pdf of uXP (x) =

P∑
k=0

ukφ
X
k (x), implying the computation of the roots of the polynomial cf. [287].
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Figure 9.9: Convergence tests for the MC, Taylor-IS and gPC accelerated IS methods: integration over
[0, 1] with respect to the Lebesgue measure. The figure shows the logarithm of the estimation of the std
with respect to the number of samples.

Application of the gPCP reduced model for variance reduction on multi-dimensional test-
problems

From now on, we have only dealt with one dimensional integration problems. Here, we illustrate the gPC
acceleration on some two dimensional test-cases, presented in figure 9.10. These problems are relevant
for several reasons:
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– The treatment of higher stochastic dimension is important as the gPC expansions are subject to
the ”Curse of dimensionality”, see chapter 3 and [213]. With dimension and truncation order, the
number of gPC coefficient to evaluate grows exponentially fast68.

– These problems are often encountered for computation of presence fraction/mass fraction in the
context of material interfaces crossing cells (Finite Volume methods), see chapter 7.

– The considered problems are more and more anisotropic leading to difficulties for classical VR
technics when the direction of interest is not known a priori.

Problems of figure 9.10 consists of computing thanks to MC methods (hit and miss MC or rejection
sampling) some surfaces within a cell of size [0, 1]× [0, 1]. We suggest to evaluate the surface of a circle

Full circle: x2 + y2 ≤ 1
4 Half circle

0

0

1

1

π
4

0

0

1

1

π
8

Quarter of circle Corner

0

0

1

1

π
16

0

0

1

1

4−π
16

Figure 9.10: Presentation of the 2-D test-cases: it consists of evaluating the (red) surfaces: a full circle
of radius 0.5 (π4 ), half a circle (π8 ), a quarter of circle ( π16 ) and the outside corner of a full circle ( 4−π

16 )
of the same radius. The first problem has uniform directions and every other problems are direction
dependent: the gPC-VR (both CV and IS) automatically build a reduced model detecting the direction
of interest (see figures 9.11 and 9.12) and reduces variance.

of radius 1
2 (isotropic problem), the surface of half this circle, the surface of a quarter of this circle and

68The number of coefficient is M = D + P !
D!P !

where P is the truncation order in every stochastic dimensions, D denote

the dimension.
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the surface of one corner69 (the three last corresponding to anisotropic problems).
The results comparing the Classical MC, a Taylor VR and some gPC accelerated VR for problems

of figure 9.10 are given in figures 9.11 (CV method) and 9.12 (IS method). For the gPC accelerated
CV method, the 2-dimensional gPC basis is built by tensorization of the normalized one dimensional
Legendre basis. In the context of the gPC accelerated IS method, the 2-dimensional basis is 1st order, as
in section 9.12.2, and separable (no correlation terms70). Once again, this simplifies the inversion of the
cdf in the IS procedure. Let us now describe the results of figures 9.11 and 9.12. The full circle problem
is isotropic: this explains why the odd gPC orders are not contributing to an increase of the accuracy.
The gPC1 reduced model gives the same results as the simple MC appproach on figures 9.11 and 9.12.
This is due to the fact the first order gPC coefficients are zero. Note that the results are not better but
also not worse. In this case (gPC1), the gPC acceleration is less efficient than MC in the sense it gives
the same accuracy but computes the gPC coefficients leading to a loss of time, see tables 9.5 and 9.6.
Nevertheless, at least, the accuracy is not deteriorated.

Remark 9.7 Note that this additional computational times can be avoided by merely checking the values
of the first coefficient gPC development. In the case it does not contribute to accuracy (i.e. if gPC1 ≈ 0),
we do not perform the second step of the algorithm. But this implies the introduction of an additional
numerical parameter.

For the anisotropic problems, the 1st order gPC reduced models are efficient, see tables 9.5 and 9.6. For
the gPC accelerated CV method, see figure 9.11 and table 9.5, taking polynomial orders P > 6 leads to a
gain of about one decade in computational time with respect to MC for a given accuracy. Let us consider
the case of the gPC accelerated IS method (figure 9.12 and table 9.6) for the anisotropic problems. For
these problems, at fixed truncation order P = 1, the more the test-case is anisotropic, the more the
gain is important. This enables understanding the main difference between gPC accelerated IS and gPC
accelerated CV. The IS method suppose the sampling is done according to the pdf corresponding to the
gPC1 expansion. This pdf samples mainly in the region of interest. This explains the important gain
obtained in the case of the ”corner” problem (ratio≈ 80). On the other hand, the gPC accelerated
CV method only reuses the uniform sampling from the uniform pdfs on [0, 1] × [0, 1], leading to many
misses and a less important gain, see table 9.5. Note that this latter has the advantage of being easier
to implement than the gPC accelerated IS for orders P > 1 and ensuring a gain in accuracy even
for isotropic problems. Finally, we would like to emphasize the fact that in the context of VR method,
polynomials are not always the best reduced models. The latter 2-dimensional problems together with the
step functions u3 and u6 of section 9.12.2 could be treated more efficiently by considering discontinuous
reduced models. We want to emphasize here the possibility to combine gPC with piecewise polynomial
functions see ME-gPC [294, 201, 278], or wavelets [185], Multi-Resolution Analysis [168] or i-gPC (see
section 6 and [238, 242]). The same automated methodology presented in this section could ne used with
these reduced models. Of course, many of these approaches imply having a priori information on the
smoothness of the integrand as it is for example the case in the example of this section 9.12.2.

Remark 9.8 (CV vs. IS) The IS accelerated MC computations present important gains in the case
of anisotropic problems and poor ones in the case of isotropic ones. This can be explained by the fact
that IS approaches rely on a new sampling, done according to a new pdf allowing exploring the most
important parts of the stochastic domain. In the case of isotropic problems, the sampling is the same
as initially and the second step of the IS computation does not contribute to an increase of the accuracy
while needing more computational time (two identical samplings).

To finish this section, we briefly highlight the similarity of the above simple integration problems and
the initial or source sampling phases in MC resolutions of the linear Boltzmann equation, see sections
9.8.1–9.9.1.

69See figure 9.10 bottom right.
70i.e. u(x1, x2) = (u1

0 +u1
1φ1(x1))(u2

0 +u2
1φ1(x2)) where uij for i = 1, 2 and j = 0, 1 are computed independently in each

directions x1 and x2.
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Figure 9.11: Convergence tests for the MC, Taylor-CV and gPC accelerated CV methods: integration
over [0, 1]× [0, 1] with respect to the Lebesgue measure. The figure shows the logarithm of the estimation
of the std with respect to the number of samples. Note that the gPC accelerations always reduce the
variance of the MC method without a priori knowledge on the integrand.

9.12.3 Acceleration by gPC of the MC resolution of the linear Boltzmann
equation

In this section, we suggest applying the latter materials, gPC acceleration of MC computations, to the
resolution of the linear Boltzmann equation. Several authors [181, 17, 33] used VR techniques based
on solutions of the transport equation obtained with a deterministic first step, for example to solve a
reduced model built from the solution of the adjoint equation in a particular configuration [181, 17, 33].
In the presented algorithm, both steps, construction of a (gPC based) reduced model and resolution
using it, are stochastic. It presents the advantage of having two inconditionally stable steps. We consider
the test-case studied in [165, 181, 17, 33]. It consists in solving the stationary linear Boltzmann equation

ω · ∇xu(x, ω) + σtu(x, ω) = σs

∫
u(x, ω′)dω′, (9.194)

where x = (x1, x2) ∈ D = [0, 17]× [0, 15] and ω = S2. The problem is homogeneous{
σt = 1,
σs = 0.9,

(9.195)

with particles incoming in the simulation domain with direction ω = (0, 1) from boundary {x2 = 0, x1 ∈
[0, 17]} (the bottom one, see figure 9.13). The observable of interest is the flux through the surface
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Full Circle Accuracy time ratio of times
Classical MC (NMC = 100000) 1.3× 10−3 6.623 s. 1 (reference)

gPC1 (NMC = 100000) 1.3× 10−3 13.453 s. 0.49 or 1
gPC2 (NMC = 40000) 1.3× 10−3 2.170 s. 3.05
gPC3 (NMC = 40000) 1.3× 10−3 2.216 s. 2.98
gPC4 (NMC = 30000) 1.3× 10−3 1.300 s. 5.09
gPC5 (NMC = 30000) 1.3× 10−3 1.340 s. 4.94
gPC6 (NMC = 22000) 1.3× 10−3 0.806 s. 8.21
gPC8 (NMC = 19000) 1.3× 10−3 0.827 s. 8.00

Half of Circle Accuracy time ratio of times
Classical MC (NMC = 100000) 1.5× 10−3 6.631 s. 1 (reference)

gPC1 (NMC = 65000) 1.5× 10−3 5.690 s. 1.16
gPC2 (NMC = 55000) 1.5× 10−3 4.085 s. 1.62
gPC3 (NMC = 28000) 1.5× 10−3 1.133 s. 5.85
gPC4 (NMC = 28000) 1.5× 10−3 1.167 s. 5.68
gPC5 (NMC = 23000) 1.5× 10−3 0.817 s. 8.11
gPC7 (NMC = 17000) 1.5× 10−3 0.502 s. 13.80
gPC8 (NMC = 15000) 1.5× 10−3 0.548 s. 12.10

Quarter of Circle Accuracy time ratio of times
Classical MC (NMC = 100000) 1.3× 10−3 6.681 s. 1 (reference)

gPC1 (NMC = 65000) 1.3× 10−3 5.660 s. 1.18
gPC2 (NMC = 60000) 1.3× 10−3 4.850 s. 1.37
gPC3 (NMC = 38000) 1.3× 10−3 1.996 s. 3.34
gPC4 (NMC = 30000) 1.3× 10−3 1.292 s. 5.17
gPC5 (NMC = 25000) 1.3× 10−3 0.948 s. 7.04
gPC7 (NMC = 17000) 1.3× 10−3 0.571 s. 11.70
gPC8 (NMC = 15000) 1.3× 10−3 0.543 s. 12.30

Corner Accuracy time ratio of times
Classical MC (NMC = 56000) 10−3 2.108 s. 1 (reference)

gPC1 (NMC = 40000) 10−3 2.170 s. 0.97
gPC2 (NMC = 25000) 10−3 0.867 s. 2.43
gPC3 (NMC = 15000) 10−3 0.324 s. 6.50
gPC4 (NMC = 13000) 10−3 0.257 s. 8.20
gPC5 (NMC = 13000) 10−3 0.266 s. 7.92
gPC7 (NMC = 8700) 10−3 0.153 s. 13.77
gPC8 (NMC = 7800) 10−3 0.150 s. 14.05

Table 9.5: Comparison between times for reaching the same accuracy with the Classical MC method
and the gPC accelerated CV for the problems of figure 9.10. The gPC acceleration gives satisfactory
results (ratio> 1) for every problems. Note that the ratio of the full circle problem has been corrected
according to remark 9.7.

{x2 = 15, x1 ∈ [0, 17]} (top boundary, see figure 9.13).

Let us now apply an IS variance reduction technique for this problem. It consists of introducing
u∗(x, ω) > 0 such that

∫
u∗(x, ω)dω = 1,∀x ∈ D as a reduced model and perform the change of variable

u(x, ω) = f(x, ω)u∗(x, ω). (9.196)

Introducing (9.196) into (9.194) leads to the following transport equation of unknown f :

ω · ∇xf(x, ω) +

(
σt +

∇xu
∗(x, ω)

u∗(x, ω)

)
f(x, ω) = σs

u∗(x, ω)

∫
f(x, ω′)u∗(x, ω′)dω′. (9.197)
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Figure 9.12: Convergence tests for the MC, Taylor-IS and gPC accelerated IS methods: integration over
[0, 1]× [0, 1] with respect to the Lebesgue measure. The figure shows the logarithm of the estimation of
the std with respect to the number of samples.

Full Circle Accuracy time ratio of times
Classical MC (n = 100000) 1.3× 10−3 6.623 s. 1 (reference)

gPC1 (n = 100000) 1.3× 10−3 13.263 s. 0.50 or 1

Half of Circle Accuracy time ratio of times
Classical MC (n = 100000) 1.5× 10−3 6.687 s. 1 (reference)

gPC1 (n = 50000) 1.5× 10−3 3.347 s. 2.00

Quarter of Circle Accuracy time ratio of times
Classical MC (n = 100000) 1.3× 10−3 6.652 s. 1 (reference)

gPC1 (n = 29000) 1.3× 10−3 1.150 s. 5.78

Corner Accuracy time ratio of times
Classical MC (n = 55000) 10−3 2.020 s. 1 (reference)

gPC1 (n = 3900) 10−3 0.025 s. 80.79

Table 9.6: Comparison between times for reaching the same accuracy with the Classical MC method
and the gPC accelerated IS for the problems of figure 9.10.

For simplicity, in the following paragraph, we consider u∗(x, ω) = u1(x)u2(ω), relaxing the conditions71

on u∗ to
∫
u2(ω)dω = 1 and u1 > 0, u2 > 0. Besides, the expressions of u1 and u2 are chosen as follows:

71Note that care will be taken to satisfy σt + ∇xu
∗

u∗
> 0 for convenience.
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Figure 9.13: Description of the test-case: the particles are incoming from the surface {x2 = 0, x1 ∈ [0, 17]}
with direction ω = (0, 1). The problem is homogeneous and the detector is the surface {x2 = 15, x1 ∈
[0, 17]} located at 15 mean free paths of the particles as σt = 1.

– u1(x) = expσt ~F · x consists of spatial exponential transform of parameter72 ~F , see [17, 280].

– u2(ω) = 1 +Fω ·ω0 where F = |~F | ∈ [0, 1] can be compared to an angular biasing toward direction
ω0 through a change in the distribution of the directions ω after collisions73, see [17, 181, 280].

With these choices and adding the fact that the direction of interest is taken as ω0 = (0, 1), equation
(9.197) simplifies to

ω · ∇xv(x, ω1) + σt (1 +Kω1) f(x, ω1) = σs
1 +Kω1

∫ 1

−1

f(x, ω′1)
1 +Kω′1

π
√

1− (ω′1)2

dω′1. (9.198)

In the above expression, we have
w(ω1) = 1 + Fω1

π
√

1− ω2
1

> 0, for F ∈ [0, 1], ω1 ∈ [−1, 1],∫ 1

−1

w(ω1)dω1 = 1.

In other words, w(ω1)dω1 is a probability measure. We introduce the gPC basis associated to the pdf
w, denoted by (φk(ω1))k∈N. Here, this basis corresponds to the normalized Chebyshev polynomials
φ0(x) = 1, φ1(x) =

√
2x, φ2(x) = 2

√
2x2 −

√
2, .... Applying the gPC-IS method described previously

consists in running one first Classical MC computation in order to evaluate the gPC coefficients u0, u1

of the solution u(x, ω1) ≈ u0(x)φ0(ω1) + u1(x)φ1(ω1). They are then introduced in a second ’biased’

72This parameter ~F will be linked afterward with gPC coefficients.
73This parameter F will be linked afterward with gPC coefficients and u2 will be identified as a normalized gPC devel-

opment.
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computation via the coefficient74

F =
u1

u0

√
2, (9.199)

at the basis of the exponential transform. Relating K and the gPC coefficients u0, u1 via (9.199) aims
at emphasizing the two approaches (exponential transform and gPC) are complementary. The second
(gPC) helps identifying a relevant reduced model, the first one (exponential transform) is only a way to
use the gPC reduced model into the MC computations.

Remark 9.9 (Comparison with results obtained with Deterministic Models in [17]) Figure 9.14
compares the coefficient F (x2) obtained in [17] with a deterministic reduced model (left picture) to the
one obtained with the gPC-IS variance reduction method. Both approaches recover the relevant coefficient
of the exponential transform allowing a variance reduction in the configuration of interest.
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Figure 9.14: Comparison of coefficients of the values of coefficient F with respect to x2, 20 cells, obtained
with the gPC-IS, on the right hand side of the figure and the method suggested in [17] (figure VIII.1, p.
137) on the left hand side of the figure. The figures show an good agreement despite the use of different
methods.

Let us now present several numerical results obtained with the above procedure. Figure 9.15 shows
the flux through the surface {x2 = 15, x1 ∈ [0, 17]} for several computations. On figure 9.15 (left), three
computations are displayed: there are two MC computations with 200000 and 5000000 MC particles and
one gPC-IS computation with 200000 particles. With 200000 particles, the gPC-IS approach gives results
comparable with the Classical MC approach with 5000000 particles. Note that the computational cost
is diminished as the gPC-IS (200000 particles) calculation took 12 s. whereas the Classical MC approach
(5000000), for approximately the same accuracy, took 2 min. 15 s. The quantitative results for this
problem are displayed in tables 9.7 and 9.8. Figure 9.15 (right) shows two simulations. The first one is
a classical MC calculation with 10000000 particles (CPU time 3 min. 11 s.). The second one is a gPC-IS
calculations with 200000 particles in the first step (step (i) of remark 9.6) of the algorithm (estimation
of the gPC coefficients (uk)k∈{0,1}) and 1000000 particles for the second step (CPU time 36s.) (step (ii)
of remark 9.6). This example illustrates the fact that different combinations are possible for the number
of MC points used in the different steps of the algorithm to increase the gain. The quantitative results
for this problem are displayed in table 9.9.

Tables 9.7, 9.8 and 9.9 present the CPU times, the estimated standard deviation (Std) and the
quality (or figure of merit, FOM), defined by Q = 1

Std2 × CPU time
as in [17], with respect to the number

of MC particles of the computations for solving problem (9.194). The computations are performed with
a classical MC method (table 9.7), a gPC-IS method (table 9.8) and a gPC-IS tuned method (table 9.9).
The tuning of the last approach consists of taking less particles (10 times less in this case) to estimate the

74Due to the fact that φ1(x) =
√

2x and by normalization.
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Figure 9.15: Left: Three computations are displayed: two classical MC calculations with 200000 (CPU
time 7 s.) and 5000000 (CPU time 2 min. 15 s.) particles and one gPC-IS accelerated calculation with
200000 (CPU time 12 s.) particles. The accelerated computation (only 200000 particles) reaches the same
accuracy than the MC calculation (with 5000000 particles). Right: the first computation (classical MC)
has 10000000 (CPU time 3 min. 11 s.) particles whereas the gPC-IS computation uses 200000 particles
to evaluate the coefficient F , see (9.199), and 1000000 particles in the second step of the algorithm (total
CPU time for this gPC-IS computation: 36 s.). The gPC-IS computation is much less noisy than the
converged MC one.

gPC coefficients u0, u1 (step (i) of remark 9.6) than for the biaised computation following the estimation
(step (ii) of remark 9.6). Note that this tuning could have already been used in the computations of
sections 9.12.2–9.12.2.

MC points CPU time (s) Std QMC
QgPC
QMC

10000 0.21 0.01607 18439.49 1
100000 1.93 0.01432 2526.71 1
1000000 18.80 0.01374 281.75 1
10000000 190.01 0.01372 27.95 1

Table 9.7: Classical MC computations: we display the CPU times, the estimated standard deviation (Std)
and the quality QMC = 1

Std2 × CPU time
with respect to the number of MC particles in the simulations.

Tables 9.7 and 9.8 allow comparing classical MC calculations to the gPC-IS ones. The gain with
gPC-IS is important, see table 9.8, and tends to increase with the number of MC particles NMC . This is
related to the fact that the gPC coefficients are more accurately computed as NMC increases. The gains
represent more than one decade.

gPC points CPU time (s) Std QgPC
QgPC
QMC

10000 0.49 0.009049 24923.13 1.35
100000 4.70 0.002770 27729.53 10.97
1000000 46.00 0.002205 4471.20 15.86
10000000 461.05 0.002132 475.88 17.02

Table 9.8: gPC-IS accelerated computations: we display the CPU times, the estimated standard de-
viation (Std) and the quality QgPC = 1

Std2 × CPU time
with respect to the number of MC particles in

the simulations. For these computations, the same number of particles is used to estimate the gPC
coefficients u0, u1. The gain with respect to MC computations are also given.

Tables 9.8 and 9.9 allow comparing two gPC-IS approaches with different numbers of particles used
in step (i) of remark 9.6. For the computations of table 9.8, the same number of particles is used for the
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two steps, i.e. N(i) = N(ii) = NMC . For the computations of table 9.9, different numbers of particles are

used for the two steps and we choose N(i) < N(ii). In practice, we took N(i) = 1
10 ×N(ii) = 1

10 ×NMC .
The comparison of tables 9.8 and 9.9, allows putting forward some possible optimizations: it is possible

gPC∗ points CPU time (s) Std QgPC∗
QgPC∗
QMC

10000 0.30 0.009145 39857.61 2.16
100000 3.01 0.006505 7851.25 3.10
1000000 29.8 0.002678 4679.10 16.60
10000000 313.12 0.002132 702.61 25.13

Table 9.9: gPC*-IS accelerated computations: we display the CPU times, the estimated standard devi-
ation (Std) and the quality QgPC∗ = 1

Std2 × CPU time
with respect to the number of MC particles in the

simulations. For these computations∗, we used a lower number of particles (NMC/10 each time) so as to
estimate the gPC coefficients u0, u1. The gain with respect to MC computations are also given.

using less particles in step (i) without diminishing the accuracy of the full calculation, see table 9.9 (last
line). With the precedent choice (i.e. N(i) = 1

10 ×N(ii)), it is possible to gain more than two decades in
quality (see the rate of 25.13 in table 9.9) where the gPC-IS (N(i) = N(ii)) allowed a gain of 17.02 (see
table 9.8). The accuracy is maintained with less particles in step (i), i.e. a faster restitution time for the
simulation.

Remark 9.10 (Unstationary Problems) We here illustrated the gPC based VR techniques on a sta-
tionary problem. Its application to unstationary problems is straightforward: it consists of repeating the
same algorithm as precedently but for each time steps of the simulation.

Note that we do not apply the gPC-CV variance reduction technique to the resolution of the linear
Boltzmann equation. The application of the CV formalism is straightforward thanks to the material of the
previous sections: the CV approach implies a transformation of the initially considered linear Boltzmann
equation into a new one with a modified source term (see also [45] for some detailed explanations) which
can be handled thanks to the material of section 9.9.

9.12.4 Summary

To sum up this section, we first put forward what we consider an important analogy between AP schemes
and Variance Reduction techniques. Both aim at reducing the constant multiplying the convergence rate
of the MC method. Two situations occur:

– if the stiff regime of interest is clearly identified, we think it is more efficient relying on an AP scheme
formalism to tackle the problem. The identified stiff regime of interest can then be plugged in the
MC computations via a change of variable closely related to the IS variance reduction method.
Examples will be given in the next chapter 10 in a coupled context.

– If the stiff regime/configuration of interest is complex to identify, we suggest the introduction of
a gPC based reduced model to accelerate automatically (i.e. thanks to computations rather than
analysis) the MC resolution. Note that this is not the first time UQ based methods are applied in
order to reduce variance, see [40, 41] for example. The purpose here is not to be exhaustive but to
emphasize close relations between the different parts of the document (part II and III) and hint at
a continuity in my contributions.

Finally, section 9.12.2 (dealing with simple integration problems without further hints at the linear
Boltzmann equation) may seem far from the considerations of the other sections of this chapter. We
insist this is not the case. The problematic is comparable to the one of sections 9.8.1–9.9.1, dealing with
initial and source samplings. Those are crucial steps in a direct MC resolution of the linear Boltzmann
equation.
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Chapter 10

Monte-Carlo methods for the
nonlinear Boltzmann equation

Asymptotic-Preserving Monte-Carlo schemes for two different physics, two different regimes

Contents
10.1 Boltzmann equation coupled to Bateman system (neutronics) . . . . . . . 254

10.1.1 Classical MC schemes for neutron transport . . . . . . . . . . . . . . . . . . . . 255

10.1.2 An Asymptotic Preserving MC scheme for neutron transport . . . . . . . . . . 260

10.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

10.2 Boltzmann equation coupled to Stefan’s law (photonics) . . . . . . . . . . . 266

10.2.1 Classical Monte-Carlo schemes for photon transport . . . . . . . . . . . . . . . 269

10.2.2 Two Asymptotic Preserving MC schemes for photon transport . . . . . . . . . 274

10.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

In this chapter, we present our contribution to the MC resolution of the nonlinear Boltzmann equation.
The nonlinearity comes from a coupling with another equation or system of equations (depending on the
physics). The first section 10.1 deals with a neutronic application and the second one, section 10.2, is
related to photonics. Independently of the application, the resolution strategies are mainly based on a
splitting between the linearized Boltzmann counterpart, solved with an MC method, and the other set
of equations, usually solved with a deterministic scheme. In plasma physics, such split resolution scheme
implying both an MC resolution and a deterministic one is commonly called a Particle In Cell (PIC)
method. In neutronics or photonics, such denomination does not really hold and the solvers are usually
called MC schemes. But we insist both terms describe the same resolution strategy.

The coupling with some additional equation or set of equations introduces nonlinearity. Linearity is
mandatory for an MC resolution. The latter intensively uses the fact that if every MC particle up is a

particular solution of the transport equation (see expression (9.15)),
∑NMC
p=1 up is also a (converging in

law, see [165]) solution of the same equation. Consequently, to apply an MC discretisation, a relevant
linearisation of the coupled system has to be introduced. By relevant, we mean the linearisation choice
must be driven by the asymptotic regime one aims at capturing. Care will be taken to highlight this in
the two following sections. Depending on the physics, the regime of interest may differ and the relevant
linearisation bearing good asymptotical properties too. For the two physical applications, we first briefly
present the system of equations. We then describe the classical MC resolution schemes. We identify and
illustrate their main drawbacks with respect to the asymptotic regime of interest. We finally suggest
some Asymptotic Preserving (AP) MC schemes.
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10.1 Boltzmann equation coupled to Bateman system (neutron-
ics)

In this section, we are interested in the resolution of the time-dependent problem of particle transport
in a media whose composition evolves with time due to particle interactions (reactions). We suppose
transport to be driven by the linear Boltzmann equation (10.1a) for particles having position x ∈ D ⊂ R3,
velocity1 v ∈ R3, at time t ∈ [0, T ] ⊂ R+. Quantity u(x, t,v) is the density of presence of the particles at
(x, t,v). We assume the time variation of the media composition (vector η) can be accurately modeled

by Bateman equations (10.1b) (see [126]). Quantity σr(x, t,v) =
(
σ1
r(x, t,v), ..., σMr (x, t,v)

)t
is the

vector of reaction rates (depending on velocity/energy). We consider the vector of reaction rates is stiff.
By stiff, we mean the characteristic time for the reactions is much smaller than the transport one, at
least for some media components, in some subsets of the computation domain D. Care will be taken to
identify this regime in the following section. As a result, problem (10.1) is stiff, nonlinear and strongly
coupled:

∂tu(x, t,v) + v∇xu(x, t,v) + σt(η(x, t), v)vu(x, t,v) =

∫
σs(η(x, t),v′,v)vu(x, t,v′) dv′,(10.1a)

∂tη(x, t) =

∫
σr(η(x, t),v)vu(x, t,v) dv. (10.1b)

The interaction of particles with matter is described via the total interaction probability of particles
with media σt(x, t,v) and a scattering term σs(x, t,v,v

′). Macroscopic interaction properties depend
on both microscopic ones designated by (σα,m)α∈{t,s} and the media composition vector η(x, t) =

(η1(x, t), ..., ηM (x, t))
t
:

σt(η(x, t), v) =

M∑
m=1

σt,m(v)ηm(x, t), and σs(η(x, t),v′,v) =

M∑
m=1

σs,m(v′,v)ηm(x, t). (10.2)

Under this general form, model (10.1) can be relevant in many fields of applications. The Bateman coun-
terpart (10.1b) may be considered a particular case of the Lotka-Volterra system (see [223]) in which we
only kept the strong coupling term. Amongst the applications (non exhaustive list), one can quote biology
[223] with population dynamics, or physics with burn-up computations in neutronics [95, 147, 148, 98].
In the latter case, the particles (u) are neutrons, the media (η) is composed of nuclides. Of course, the
numerical methodology we develop in this paper is general and can be broadened to a larger scope.

Our aim is to pedagogically put forward the limitations of solvers involving a splitting between the
transport equation (solved using MC method) and the Bateman system when the latter is stiff. For
this, it is enough working on a simplified problem. Let us first assume a monokinetic particle transport
equation, i.e. u(x, t,v) = u(x, t, ω). Besides, considering the scalar Bateman equation (η(x, t) = η1(x, t))
where the reactions are modeled only with a scalar reaction rate σr(x, t) = σrη(x, t) does not alter the
nature of the coupling. Of course, the material of this section can be extended to the general case.
Its complete description has been published in [3] together with numerical examples highlighting the
drawbacks of the classical scheme we describe here. Still, we insist the material of this section is not
redundant with [3], it is complementary. Under the previous hypothesis, the collisional counterpart
becomes

∀α ∈ {t, r}, σα(η(x, t)) = σα(x, t) = σαη(x, t), σs(η(x, t), ω′, ω) = σs(x, t, ω
′, ω) = σsη(x, t)Ps(ω

′, ω).

The term Ps(ω
′, ω) corresponds to the probability for a particle having direction ω′ to get out of an

interaction with direction ω (i.e. ∀ω,
∫
Ps(ω

′, ω) dω′ = 1). The simplified system, still strongly coupled,

1or energy v = |v| ∈ R+, direction ω = v
|v| ∈ S2.
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is thus a 2-equations system:
∂tu(x, t, ω) + vω∇xu(x, t, ω) + σtη(x, t)vu(x, t, ω) = σsη(x, t)

∫
Ps(ω

′, ω)vu(x, t, ω′) dω′,(10.3a)

∂tη(x, t) = η(x, t)σrv

∫
u(x, t, ω) dω. (10.3b)

We also introduce σa = σt − σs as in the previous chapter. The above system is general with re-
spect to the coupling and can still2 describe very different regimes (absorbing, multiplicative, reactive
etc.) by changing the values of (σα)α∈{s,t,a,r}. Let us now describe the classical methodology applied to
solve (10.3) in section 10.1.1 and the new Asymptotic Preserving MC scheme we suggest in section 10.1.2.

10.1.1 Classical MC schemes for neutron transport

We first describe the most common methodology to solve system (10.3). It consists in a splitting between
the transport phase (10.3a) and the Bateman phase (10.3b). Such splitting is very convenient in practice.
For example, one can solve system (10.3) by relying on two different simulation codes: one solving the
linear Boltzmann equation and the other the Bateman system. The idea is to use the output of the first
as inputs of the second and iterate. Our aim here is to highlight the main drawback of such methodology
when encountering a stiff reaction regime (neutronics for example, see [97, 98, 148, 95, 96],[3]).

The classical MC scheme description for the resolution of (10.3)

We here present the (classical) split solver applied for the resolution of system (10.3). We analyse
the solver (linear Boltzmann phase + Bateman phase) on one time step t ∈ [0,∆t] in the limit of an
infinitely accurate MC resolution (as in [77] in photonics). In order to apply an MC scheme, one needs
a linearisation hypothesis. The latter can be summed-up as follows: the cross-sections are assumed
constant (explicit) with respect to time on [0,∆t], i.e.

σα(η(x, t)) ≈ σα(η(x, 0)) = σαη0(x),∀α ∈ {s, t, a, r}.

The transport phase in [0, t] consequently becomes

∂tu(x, t, ω) + vω∇u(x, t, ω) + vσtη0(x)u(x, t, ω) =

∫
vσsη0(x)Ps(x, ω

′, ω)u(x, t, ω′) dω′. (10.4)

It is solved with an MC scheme (see chapter 9). The MC resolution is here performed with the non-
analog scheme of section 9.4 but the conclusions of this section does not depend on this choice3. The
MC resolution is followed by a Bateman phase during which the nuclide density η must be consistently
updated.

Regarding the transport phase, by construction of the non-analog MC resolution scheme, theorem
3.2.1 of [165] ensures the convergence of the MC solver toward the solution of (10.4) in the limit NMC →
∞ for the considered time step [0,∆t = t]. In order to ensure the convergence of the scheme for (10.3) in
the limit ∆t→ 0, it remains to perform consistent tallies to update the nuclide concentrations at the end
of the time step. This contribution, or tally, must be in agreement with both the structure of equation
(10.3b), and the hypothesis made in the previous transport phase (i.e. η(x, t) = η(x, 0) = η0(x)). We
here rely on an explicit Euler scheme for the time discretisation of the Bateman counterpart4. The
application of the split MC/explicit Euler solver consists in integrating (10.3b) on time step [0, t] so that
the equation becomes

η(x, t) = η0(x) + vσr

∫ t

0

η(x, s)

∫
u(x, s, ω) dω ds. (10.5)

2Some considerations about the generalization are tackled in section 10.1.3.
3Asymptotically, every other MC scheme converges and consequently allows recovering (10.4).
4Others are detailed in [3], once again, the conclusions of this section do not depend on this particular choice.
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With the explicit hypothesis applied during the transport phase, the time integrated part rewrites∫ t

0

η(x, s)

∫
u(x, s, ω) dω ds ≈ ∆tη0(x)

1

∆t

∫ t

0

∫
u(x, s, ω) dω ds. (10.6)

The scheme is explicit for the nuclide concentration η but not for the density of particles u. The integral
1

∆t

∫ t
0

∫
u(x, s, ω) dω ds is evaluated thanks to a tally during the MC phase. Time integrated observables

are commonly called track length estimator in an MC resolution context (see [268, 165, 173, 52]). The MC
discretisation of the latter expression is obtained plugging the MC discretisation

∑
p up of u, obtained

from (9.15), into (10.6). This leads to

1
∆t

∫ t

0

∫
u(x, s, ω) dω ds

NMC≈ 1

∆t

∫ t

0

∫ NMC∑
p=1

up(x, s, ω) dω ds =

NMC∑
p=1

1

∆t

∫ t

0

wp(s)δx(xp(s)) ds.

(10.7)

The contribution of the MC particle p is non-zero only if
∫ t

0
δx(xp(s)) ds, the local time at x, is non zero.

Let us introduce the Np local times (tlp)l∈{1,...,Np} spent at position x for particle p. Then (10.7) can be
rewritten

1
∆t

∫ t

0

∫
u(x, s, ω) dω ds ≈

NMC∑
p=1

Np∑
i=1

1

∆t

∫
δtip(s)wp(s) ds =

1

∆t

NMC∑
p=1

Np∑
l=1

wp(t
l
p) =

NMC∑
p=1

Np∑
l=1

∆ulp(x).

(10.8)
The term ∆ulp(x) is the contribution, track length estimator, of the particle p for the time tlp spent at x.
Suppose the tracking of the MC particles is now instrumented to compute the sums over the flights of

each particle in each cell, this means we will have access to
∑NMC
p=1

∑Np
l=1 ∆ulp(x). Then system is closed

by updating η at each position x by plugging the previous contribution into (10.5). The time step is
then over.

The domain is usually discretised into Nx cells as in section 9.6 with constant nuclide densities per
cell. In other words, we have η0(x) =

∑Nx

i=1 η
i
01Di(x) (equivalent to constant cross-sections per cell).

Integrating the local time
∫
δx(xp(s)) ds in one cell leads to a local interval of time

∫
Di
∫
δx(xp(s) dsdx =∫

1Di(xp(s)) ds. If we introduce the Np local intervals of time (∆tlp = tl+1
p − tlp)l∈{1,...,Np} spent in cell

i for particle p during time step [0,∆t = t], the expression of the contribution of particle p to cell i
becomes

1
|Di|

∫
Di ∆ulp(x)dx = ∆ul,ip = 1

∆t

∫ tl+1
p

tlp

wp(s)1Di(xp(s)) ds = wp(t
l
p)

1− e−vσiaηi0∆tlp

vσiaη
i
0∆t

. (10.9)

It is consistent and it only remains to use the above expression in (10.8) to update the nuclide concen-
tration and end the time step.

Algorithm 15 presents how the direct resolution of section 9.5.2 must be instrumented to perform the
previous tallies, mandatory to update the nuclide density η consistently. The tracking phase only needs
the addition of one line, function compute track length, which is detailed in algorithm 16.
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Algorithm 15: The general canvas for the different MC schemes described in term of algorithmic

operations in order to compute (direct) U(x, t) =

∫
u(x, t,v)dωdv with instrumentations to

compute track length estimators.

1 #SAMPLING described in algorithm 7 or algorithm 8
2 call sampling(NMC)
3 set t = ∆t
4 #Time step loop
5 while t < T do
6 #Initialize to zero the array of the quantity of interest on the whole simulation domain D
7 set U(x, t) = 0 ∀x ∈ D
8 set ∆U(x, t) = 0 ∀x ∈ D
9 #TRACKING: make sure each up is an MC particles

10 for p ∈ {1, ..., NMC} do
11 set sp = t−∆t #this will be the current time of particle p
12 while sp < t and wp > 0 do
13 if xp /∈ D then
14 #here a general function for the application of arbitrary boundary conditions
15 apply boundary conditions(xp, sp,vp)

16 end
17 sample τinter = sample interaction time(vp, ip)
18 compute τexit = compute cell exit time(xp,vp, ip)
19 compute τcensus = max(t− τ, 0)
20 set τ = min(τexit, τcensus, τinter)
21 #move the particle p
22 xp ←− xp − vpτ ,
23 #change its weight
24 (K, r) = compute weight modif(vp, τ , τcensus, τexit, τinter, ip )
25 ∆U(xp, t)+ = compute track length(wp, vp, τ , τcensus, τexit, τinter, ip)
26 wp ←− K × wp
27 if τ == τcensus then
28 #set the life time of particle p to zero:
29 sp ←− t
30 #tally the contribution of particle p
31 U(xp, t)+ = wp
32 end
33 if τ == τexit then
34 #The particle p changes of cell: find its new cell number
35 ip = find neighbooring cell(ip,vp)
36 #set the life time of particle p to:
37 sp ←− sp + τ < t

38 end
39 if τ == τinter then
40 #Sample the angle and velocity of particle p
41 V′ = sample velocity(vp, r, ip)
42 set vp = V′

43 #set the life time of particle p to:
44 sp ←− sp + τ < t

45 end

46 end

47 end
48 t←− t+ ∆t

49 end
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The instrumentation to compute the track length estimator is in blue in algorithm 15. Expression
(10.9) is estimated along the flight path of any MC particle (independently of the event). In algorithm
16, we even present the track length estimator for the semi-analog or the analog MC schemes.

Algorithm 16: The track length estimator depending on the MC scheme

1 Function compute track length(real w0
p, real v, real τmin, real τcensus, real τexit, real τinter, real

i)
2 set ∆ = 1
3 if MC scheme == non− analog then

4 ∆ = w0
p

1− e−vσiaηi0τmin

vσiaη
i
0∆t

5 end
6 else
7 #It corresponds to the limit σia → 0 of the above estimator

8 ∆ = w0
p
τmin
∆t

9 end
10 return ∆

Numerical Analysis of the classical MC scheme for Boltzmann/Bateman

The (split) MC scheme sketched in the previous paragraph is simple but lacks accuracy and can lead to
unaffordable constraints on the time step ∆t for a stable and accurate resolution. This is illustrated in
[3] on various configurations and test-problems. In this paragraph, we perform the numerical analysis
of the MC scheme for the coupled system (10.3) to identify the constraining term (in term of accuracy
mainly). Of course, we obtain the same conclusion as in [3] but with an analysis-driven discussion rather
than a numerical-examples based one. Let us introduce the couple (Ue, η) solution of (10.3) integrated
with respect to ω. It is solution of{

∂tU
e(x, t) + F e(x, t) = −vσaη(x, t)Ue(x, t), (10.10a)

∂tη(x, t) = vσrη(x, t)Ue(x, t). (10.10b)

In the above expression, we defined F e(x, t) =
∫
∂xvu(x, t, ω)dω. The above system is not closed as F e

depends on u. But the analytical quantities Ue, F e are only auxiliary variables at this stage of the talk,
aiming at easing future calculations. The analytical solution of (10.3) integrated over angles can then
be formally rewritten

Ue(x, t) = U(x, t)−
∫ t

0

F e(x, s)e−
∫ t
s
vσaη(x,α)dα.

In the above expression, U(x, t) is solution of the homogeneous counterpart of (10.10), i.e. with source
term F e = 0. In other words, (U(x, t), q(x, t)) is solution of{

∂tU(x, t) = −vσaq(x, t)U(x, t), (10.11a)

∂tq(x, t) = +vσrq(x, t)U(x, t). (10.11b)

The latter can be solved analytically in this particular case (monokinetic, scalar Bateman) and has
solution (see [3]):

U(x, t) =
(σrU0(x) + q0(x)σa)U0(x)

σrU0(x) + q0(x)σa exp (v(σrU0(x) + q0(x)σa)t)
,

q(x, t) =
(σrU0(x) + q0(x)σa)q0(x)

σrU0(x) exp (−v(σrU0(x) + q0(x)σa)t) + q0(x)σa
.

(10.12)

We furthermore introduce one last expression UN.A.(x, t) = U0(x)e−vσaη0(x)t. The upperscript N.A.

recalls that this is what is solved along the characteristics for every MC particles (see the definition
of the non-analog MC scheme in section 9.4). Quantities UN.A.(x, t) and U(x, t) can be numerically
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compared: UN.A. is a second order (O(∆t2)) approximation of U :

U(x, t = ∆t)− UN.A.(x, t = ∆t) =
∆t∼0

1

2
σrv

2q0(x)σaU
2
0 (x)∆t2 +O(∆t3). (10.13)

In other words, we have

Ue(x, t) = U(x, t) −
∫ t

0

F e(x, s)e−
∫ t
s
vσaη(x,α)dα,

= UN.A.(x, t) +O(∆t2) +UF (x, t).
(10.14)

Now, introduce φ, solution of the linear (with η(x, t) = η0(x)) transport equation on time step [0, t]. It
satisfies

∂tφ(x, t, ω) + v∂xφ(x, t, ω) + vσtη0(x)φ(x, t, ω) = vσsη0(x)

∫
Ps(ω

′, ω)φ(x, t, ω′)dω′.

It is solved with the non-analog MC scheme. As we focus on the time discretisation, we can assume,
without loss of generality, an infinitely accurate MC resolution of the above equation just as in [77]. On
another hand, the transport equation of solution u can be rewritten as

∂tu(x, t, ω) + v∇xu(x, t, ω) + σtη0(x)evσr
∫ t
0
Ue(x,α)dαvu(x, t, ω) =

σsη0(x)evσr
∫ t
0
Ue(x,α)dα

∫
Ps(ω

′, ω)vu(x, t, ω′) dω′.

In the above formulae, we introduced the expression of the analytical nuclide density expressed thanks
to our auxiliary variable Ue. Finally introduce e(x, t, ω) = u(x, t, ω) − φ(x, t, ω). Quantity e is the
discrepancy during time step [0, t] between the solution φ of the linearized problem and the analytical
solution u. The equation satisfied by e is given by

∂te(x, t, ω) + v∂xe(x, t, ω) + vσtη0(x)(evσr
∫ t
0
Ue(x,α)dαu(x, t, ω)− φ(x, t, ω)) =

vσsη0(x)

(
evσr

∫ t
0
Ue(x,α)dα

∫
Ps(ω

′, ω)u(x, t, ω′)dω′ −
∫
Ps(ω

′, ω)φ(x, t, ω′)dω′
)
.

By rearranging the different terms, we obtain

∂te(x, t, ω) + v∂xe(x, t, ω) + vσtη(x, t)
(
e(x, t, ω) + (1− e−vσr

∫ t
0
Ue(x,α)dα)φ(x, t, ω)

)
=

vσsη(x, t)

(∫
Ps(ω

′, ω)e(x, t, ω′)dω′ + (1− e−vσr
∫ t
0
Ue(x,α)dα)

∫
Ps(ω

′, ω)φ(x, t, ω′)dω′
)
.

By introducing T , the operator implicitly defined by T (u(x, t, ω)) = 0, we can rewrite the equation
satisfied by e as

T (e(x, t, ω)) =

(1− e−vσr(
∫ t
0 [UN.A.(x,α)+O(∆t2)+UF (x,α)]dα))vη(x, t)

(
−σtφ(x, t, ω) + σs

∫
Ps(ω

′, ω)φ(x, t, ω′)dω′
)
.

The above expression allows first recovering some already known results:

– if σr = 0, the MC scheme for the linear Boltzmann equation is inconditionally accurate with respect
to the time discretisation. Indeed, in this case T (e) = 0 and u = φ (uniqueness of the solution u
for operator T , see [127]) in the limit of an infinity of MC particles.

– We have the same result if η = 0, i.e. for particles evolving in a vacuum.

– It also holds if σt = σs and if the problem is isotropic (i.e. if φ =
∫
φ). In this case, we even have

an inconditionally accurate approximation with respect to ∆t for σr 6= 0.

Of course, the latter remarks are case dependent. More generally, we have

T (e(x, t, ω)) = (1− e−vσr(
∫ t
0 [UN.A.(x,α)+O(∆t2)+UF (x,α)]dα))Γ(x, t, ω) with Γ 6= 0.

260



Quantity Γ is given by

Γ(x, t, ω) = vη(x, t)

(
−σaφ(x, t, ω)− σsφ(x, t, ω) + σs

∫
Ps(ω

′, ω)φ(x, t, ω′)dω′
)
. (10.15)

Let us now study the effects of the time discretisation scheme. Let us introduce the mean of the flux on
time step [0, t]

U
F

(x) =
1

∆t

∫ t

0

UF (x, α)dα. (10.16)

Let us use expression (10.13) to write

T (e(x, t, ω)) =

(
1− evσrU0(x)∆t 1−e−vσaη0(x)∆t

vσaη0(x)∆t
− 1

2 v
3q0(x)σaU

2
0 (x)σ2

r∆t3+O(∆t4)−vσr∆tU
F

(x)

)
Γ(x, t, ω).

Thanks to the previous simplications, we isolated the term where (σα)α∈{s,t,a,r} and ∆t compete.

Now assume we are in a regime such that σr ∼ 1
δ2 , σa ∼ 1

δ2 , σs ∼ 1
δ

, v ∼ δ and U
F ∼ δ2 with δ → 0.

We will see in the next section it characterises a stiff reactive regime. We then have the two following
expressions

Γδ(x, t, ω) =
δ∼0
−1
δ
η(x, t)φ(x, t, ω)− η(x, t)φ(x, t, ω) + η(x, t)

∫
φ(x, t, ω′)ω′,

and T (e)=−

1− e
∆t
δ U0

1−e−η0
∆t
δ

η0
∆t
δ

− 1
2 q0U

2
0

∆t3

δ2
+O(∆t4)−∆tδ

(1
δ
ηφ+ ηφ− η

∫
φ

)
.

Assume we have ∆t
δ � 1 (via the choice of ∆t), we can write

T (e(x, t, ω)) =
∆t
δ ∼0

−η(x, t)φ(x, t, ω)

[
U0(x)

∆t

δ
+

1

2
v3q0(x)U2

0 (x)
∆t3

δ3
−∆t

]
. (10.17)

Suppose we want an approximation φ of u ensuring T (e) = O(∆t), it demands ∆t = δ2. Such condition is
numerically intensive in many physical applications, see in neutronics for example [97, 98, 148, 95, 96],[3].
Finally, let us rewrite (10.17) as T (e(x, t, ω)) = −φ(x, t, ω)Kδ(x, t, ω,∆t)∆t, then

Kδ(x, t, ω,∆t) =

[
1

δ
U0(x)− 1 +

1

2
q0(x)U2

0 (x)
∆t2

δ3

]
. (10.18)

The coefficient Kδ does not satisfy the conditions of definition 9.1 regarding AP schemes as Kδ −→
δ→0
∞.

Consequently, the above MC scheme is not AP in the reactive regime.

10.1.2 An Asymptotic Preserving MC scheme for neutron transport

The Asymptotic Preserving MC scheme we present in this paper has already been presented in [3] in a
more general context (non-monokinetic, non-scalar Bateman case). The material of this section remains
complementary to [3] in the sense the new MC scheme has been described via an illustration-driven
analysis in [3] whereas we here perform the numerical analysis (in a simple case). We here compare the
convergence rates of the classical and the AP schemes.

Asymptotic regime of interest for system (10.3)

We suggest identifying more precisely the stiff regime of (10.3) for which the previous MC scheme fails
to produce accurate (and even stable see [3]) solutions, see [97, 98, 148, 95, 96],[3]. It is helpful to
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non-dimensionalize the coupled system (10.3). Let us introduce{
x = x∗X , v = v∗V, t = t∗T ,
σα = σ∗α

1
λα
,∀α ∈ {s, t, a, r}. (10.19)

The upperscript ∗ denotes a nondimensional quantity. Let us introduce u∗(x∗, t∗, ω) = u(x, t, ω), then

1
T ∂t∗u

∗(x∗, t∗, ω) = ∂tu(x, t, ω), 1
X ∂x∗u

∗(x∗, t∗, ω) = ∂xu(x, t, ω),
1
T ∂t∗η

∗(x∗, t∗) = ∂tη(x, t).

Using the above expressions in the nonlinear Boltzmann equation coupled to Bateman one (10.3) yields
X
T ∂t∗u

∗(x∗, t∗, ω) + Vv∗ω∂x∗u∗(x∗, t∗, ω) + v∗σ∗t η
∗(x∗, t∗)VX

λt
u∗(x∗, t∗, ω) =

v∗σ∗sη
∗(x∗, t∗)VX

λs

∫
u∗(x∗, t∗, ω)dω.

1
T ∂t∗η

∗(x∗, t∗) = v∗
Vσ∗r
λr

η∗(x∗, t∗)
∫
u∗(x∗, t∗, ω)dω.

Let us decompose σt = σa + σs to obtain
X
T ∂t∗u

∗(x∗, t∗, ω) + Vv∗ω∂x∗u∗(x∗, t∗, ω) + v∗σ∗aη
∗(x∗, t∗)VX

λa
u∗(x∗, t∗, ω)

+v∗σ∗sη
∗(x∗, t∗)VX

λs
u∗(x∗, t∗, ω) = v∗σ∗sη

∗(x∗, t∗)VX
λs

∫
u∗(x∗, t∗, ω)dω,

X
T ∂t∗η

∗(x∗, t∗) = v∗σ∗r
VX
λr

η∗(x∗, t∗)
∫
u∗(x∗, t∗, ω)dω.

Now suppose XT = O( 1
δ ) = VX

λa
= VX

λr
, V = O(δ) and VX

λs
= O(δ) ensuring O( 1

δ2 ) = X
λa

= X
λr

and
X
λs

= O(1), we have (we drop the upperscript for convenience)
1
δ
∂tu(x, t, ω) + δv∂xu(x, t, ω) +vσaη(x, t)1

δ
u(x, t, ω)

+δvσsη(x, t)u(x, t, ω) = δvσsη(x, t)

∫
u(x, t, ω)dω.

1
δ
∂tη(x, t) = vσr

δ
η(x, t)

∫
u(x, t, ω)dω.

Performing a Hilbert development, i.e. u = u0 + u1δ + u2δ2 +O(δ3) see [143], and considering only the
first order (i.e. u0) leads to {

∂tu
0(x, t) = −vσaη0(x, t)u0(x, t),

∂tη
0(x, t) = +vσrη

0(x, t)u0(x, t).
(10.20)

It corresponds to the monokinetic homogeneous regime as δ → 0. The second order yields

v∂xu
0(x, t, ω) + vσsη

0(x, t)u0(x, t, ω) = vσsη
0(x, t)

∫
u0(x, t, ω′)dω′.

It implies F e(x, t) = ∂x
∫

vu0(x, t, ω)dω = 0 = O(δ2). As a consequence, in the stiff regime of interest,

U
F

(x) related to F e through (10.14) and defined in (10.16) is also U
F

(x) = O(δ2). In the next section,
we present a general methodology, already detailed in the general case in [3], to build an Asymptotic
Preserving MC scheme for regime (10.20).
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Construction of an Asymptotic Preserving MC scheme for regime (10.20)

We recall the system we aim at solving is given by
∂tu(x, t, ω) + v∇xu(x, t, ω) + σtη(x, t)vu(x, t, ω) = σsη(x, t)

∫
Ps(ω

′, ω)vu(x, t, ω′) dω′,(10.21a)

∂tη(x, t) = η(x, t)σrv

∫
u(x, t, ω) dω. (10.21b)

We need an MC scheme able to capture efficiently the asymptotic regime defined by:{
∂tU(x, t) = −vσaq(x, t)U(x, t),
∂tq(x, t) = +vσrq(x, t)U(x, t).

(10.22)

The system of ODE (10.22) can be solved analytically in this configuration (monokinetic, scalar Bateman)
and its solution is given by (10.12), see [3]. To construct the Asymptotic Preserving MC scheme, we
suggest linearizing (10.21) on time step [0, t] substituting q, solution of (10.22), to η in (10.21). This
leads to

∂tφ(x, t, ω) + v∇xφ(x, t, ω) + σtq(x, t)vφ(x, t, ω) = σsq(x, t)

∫
Ps(ω

′, ω)vφ(x, t, ω′) dω′,(10.23a)

∂tη(x, t) = q(x, t)σrv

∫
φ(x, t, ω) dω. (10.23b)

In (10.23), the (now linear) transport equation (10.23a) is self consistent and has a form which has
already been intensively encountered (time dependent cross-sections) all along the document. The time
evolution of the nuclide density η only depends on φ, solution of the linearized transport equation, q being
supposedly known. Consistent tallies during the MC resolution will ensure its update. The linearized
transport equation can then be rewritten as a expectation

φ(x, t, ω) = E

[
+1[t,∞[(τ) e−vσa

∫ t
0
q(x−vα,α)dα φ0(x− vt, ω)

+1[0,t](τ) e−vσa
∫ t
t−τ q(x−vα,α)dα φ(x− vτ, t− τ,W ′) Ps(W

′, ω)

]
,

over the following set of random variables{
τ ∼ Et(vσs),
W ′ ∼ Ps(W ′, ω).

The exponential law in the above expression depends on time. The sampling of τ is made according to

fτ (x, t,v, s)ds = 1[0,∞[(s)vσsq(x− vs, t− s)e−
∫ s
0
vσsq(x−vα,t−α,v)dαds.

It is obtained from plugging the time evolution of q in expression (9.27). The weight modification5 of
any MC particles is done according to

wp(t) = wp(0)e−vσa
∫ t
0
q(x−vα,α)dα = wp(0)

U(x, t)

U0(x)
.

The consistent tally to update the nuclide density can be obtained in a same way as before. First by
integrating (10.23b) on time step [0, t]. Second by plugging the expression of q in (10.23b) together with

5To obtain the previous expressions for the probability measure of the time interaction or the weight modification, we
performed similar calculations as the ones presented in the previous chapter 9. They are only particular cases. In order to
avoid redundancies, they are not repeated here.
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the MC discretisation. It leads to

η(x, t)− η0(x) =

∫ t

0

∫∫
vσrq(x, s)u(x, s, ω)dωds,

=

NMC∑
p=1

Np∑
i=1

∫ ti+1

ti

vσrq(x, s)wp(s)δx(xp(s))δω(ωp(s))ds,

=

NMC∑
p=1

Np∑
i=1

∫ ti+1

ti

vσrq(x, s)wp(ti)
U(xp(s), s)

U0(xp(ti))
δx(xp(s))ds,

=

NMC∑
p=1

Np∑
i=1

vσrwp(ti)
1

U0(xp(ti))

∫ ti+1

ti

q(x, s)U(xp(s), s)δx(xp(s))ds,

=

NMC∑
p=1

Np∑
i=1

σr
σa
wp(ti)

(
1− U(xp(ti+1), ti+1)

U(xp(ti), ti)

)
.

It only remains to instrument the new tracking with the consistent track length estimator. It is given by

∆uip =
σr
σa
wp(ti)

(
1− U(xp(ti+1), ti+1)

U(xp(ti), ti)

)
. (10.24)

It allows closing the time step.

Note that in this section, we recovered the same MC scheme as in [3] in a slightly different way. In
[3], we perform a change of variable u(x, t, ω) = U(x, t)f(x, t, ω) and identify the transport equation
satisfied by f as in [3] or in section 9.9.2 (source term). Here, we invoked the plugging of q ≈ η on time
step [0, t]. The advantage of presenting the scheme as in [3] comes from the fact it is easier emphasizing
the Asymptotic Preserving MC scheme can be resumed to a balanced gain-loss transport equation on f
in the transport phase. In other words, we have along each characteristics, see [3],

∂s

∫
f(x + vωs, s, ω)dω = 0, ∀s ∈ [0, t].

It also eases its comparison with Quasi-Static (QS) methods, see sections 9.9.2 or 9.12.1. We refer to [3]
for more details on this point and insist that on the simplified system (10.3), the two derivations lead
to the same MC scheme. In the general case (non-monokinetic non-scalar Bateman), the two different
ways to introduce the linearisation lead to two slightly different MC discretisation schemes. Still, both
bear the asymptotic preserving property presented in the next section.

The previous expressions, for the sampling of the time interaction, the weight modification and the
tally were general. To end the description of the Asymptotic Preserving MC scheme, let us introduce
a cell discretisation as described in section 9.6. Let us assume a constant per cell discretisation for the
particle and nuclide densities of the reduced model. We have ∀x ∈ D, s ∈ [0, t]:

U(x, s) =

Nx∑
i=1

Ui(s)1Di(x),

q(x, s) =

Nx∑
i=1

qi(s)1Di(x).

With this previous hypothesis, the inversion of the cdf of the probability measure for the sampling of the
interaction time can be done analytically. We can explicitly exhibit the sampling of the time interaction

264



τ for an MC particle p in cell i:

τ = t− 1

v(σiaq
i
0 + U i0σ

i
r)

ln


(qi0σ

i
a exp

(
vt(σiaq

i
0 + U i0σ

i
r)
)

+ σirU
i
0) exp

(
σia
σis

ln(Uτ )

)
− σirU i0

qi0σ
i
a

 . (10.25)

Its expression takes into account the nuclide density variation along the flight path of the treated MC
particle. We can verify that at the first order with respect to σir ∼ 0 we have τ= − 1

vσisq
i
0

ln(Uτ ). It

corresponds to the sampling of the interaction time for the classical scheme (non stiff regime), see section
9.6. We can even put forward the second order development with respect to σir:

τ =
σir∼0

− ln(Uτ )

vσisq
i
0

+

 U i0t

σiaq
i
0

+
U i0(1− U

σia
σis
τ )

v(σiaq
i
0)2 exp

(
vσiaq

i
0t
) − U i0

(
vσiaq

i
0t−

ln(Uτ )σia
σis

)
v(σiaq

i
0)2

σir +O((σir)
2). (10.26)

Higher order approximations can be obtained in the same manner. The explicit expression for the weight
modification for an MC particle p remaining in cell i between times 0 and t is given by

wp(t) = wp(0)
U i(t)

U i0
=

(σirU
i
0 + qi0σ

i
a)

σirU
i
0 + qi0σ

i
a exp

(
v(σirU

i
0 + qi0σ

i
a)t
) . (10.27)

Quantity U i(t) is solution of (10.22) in cell i. We can once again verify that asymptotically with σir ∼ 0,
we recover the classical weight modification along the flight path of each MC particles

U i(t) =
σir∼0

U i0e
−vσiaqi0t − σir(U i0)2e−vσ

i
aq
i
0t
−1 + e−vσ

i
aq
i
0t + vσiaq

i
0t

σiaq
i
0

+O(σ2
r). (10.28)

Of course, the same applies to (10.24), the tally to update the nuclide densities.

In practice, the described Asymptotic Preserving MC scheme can be developed in the same general
canvas as in section 9.8 provided an additional line to compute the track length estimator as in algorithm
15. For this, it is enough modifying

– function sample interaction time using expression (10.25),

– function compute weight modif using expression (10.27),

– function compute track length using expression (10.24).

The other functions, in a more general case (non-monokinetic for example), must be consistently be
developed and we refer to [3] for their detailed descriptions. In this document, we now focus on the
numerical analysis of the newly built MC scheme.

Numerical Analysis of the Asymptotic Preserving MC scheme for Boltzmann/Bateman

Let us now perform the numerical analysis of the newly built Asymptotic Preserving MC scheme and
compare the results with the one of the previous classical one (mainly with expression (10.17)). The
analysis is here pretty fast thanks to the already introduced material. On time step [0, t], the previous
process supposes solving the following linearized transport equation

∂tφ(x, t, ω) + v∂xφ(x, t, ω) + vσt q(x, t)︸ ︷︷ ︸
η0(x)evσr

∫ t
0 U(x,α)dα

φ(x, t, ω) =

vσs q(x, t)︸ ︷︷ ︸
η0(x)evσr

∫ t
0 U(x,α)dα

∫
Ps(ω

′, ω)φ(x, t, ω′)dω′.
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In the above expression, η has been substituted by q. It is expressed with respect to U , solution of the
reduced model (10.22) preserving the stiff regime of interest. Once again, let us introduce e = u−φ and
substract the two transport equations to get

∂te(x, t, ω) + v∂xe(x, t, ω) + vσtη0(x)(evσr
∫ t
0
Ue(x,α)dαu(x, t, ω)− evσr

∫ t
0
U(x,α)dαφ(x, t, ω)) =

vσsη0(x)

(
evσr

∫ t
0
Ue(x,α)dα

∫
Ps(ω

′, ω)u(x, t, ω′)dω′ − evσr
∫ t
0
U(x,α)dα

∫
Ps(ω

′, ω)φ(x, t, ω′)dω′
)
.

Let us use the fact that U = Ue − UF in the above expression to rewrite

∂te(x, t, ω) + v∂xe(x, t, ω) + vσtη(x, t)
(
u(x, t, ω)− e−vσr

∫ t
0
UF (x,α)dαφ(x, t, ω)

)
=

vσsη(x, t)

(∫
Ps(ω

′, ω)u(x, t, ω′)dω′ − e−vσr
∫ t
0
UF (x,α)dα

∫
Ps(ω

′, ω)φ(x, t, ω′)dω′
)
.

We obtain

T (e(x, t, ω)) = Γ(x, t, ω)(1− e−vσr∆tU
F

(x)),

=
vσr ∼ 1

δ
UF ∼ δ2

[
−1
δ
η(x, t)φ(x, t, ω)

]
(1− e− 1

δ∆tδ2

),

=
∆t→0

−η(x, t)φ(x, t, ω)∆t = O(∆t) = Kδ∆t = K∆t.

(10.29)

It is first order in ∆t independently of δ → 0 (as Kδ = K). Expression (10.29) must be com-
pared to (10.17). With the new Asymptotic Preserving MC scheme, the dependence of Kδ(x, t, ω) =
−η(x, t)φ(x, t) with respect to δ is considerably weakened and the new MC scheme satisfies the condi-
tions of definition 9.1. The new MC scheme is AP in the reactive regime, bigger time steps can be used
and computational gains are at stakes. We rely on [3] for numerical examples.

10.1.3 Summary

To end this section, we would like to come back on some aspects of the presented Asymptotic Preserving
MC scheme:

1. first, the new MC scheme is more intrusive than the classical one which can be applied calling
successively two simulation codes. Nevertheless, we rely on the comparison of (10.17) and (10.29)
to motivate and convince the reader willing to solve (10.1) in the stiff regime (10.22).

2. The generalization of the Asymptotic Preserving MC scheme to system (10.1) (instead of (10.3))
has been presented in [3]. In particular in [3] we identify the stiff regime of interest in the non-
monokinetic non-scalar Bateman case. The numerical analysis performed in this document still
holds for such more general reduced model. The computations are only more complex. In fact, the
real challenge in this generalized context consists in the efficient resolution of the reduced model
solving the stiffness along the flight path of each MC particles, see [3].

3. Regarding the forementioned real challenge, for the simplified configuration considered in the previ-
ous paragraphs, an analytical solution for the stiff regime (10.22) is available. One cannot do better
in term of efficiency (see [3]). In fact, with this simplified configuration, we presented what can
asymptotically be expected with a cheap and efficient resolution of the reduced model. In [3], less
ideal cases were also tackled and for them, we introduced a numerical solver to estimate on-the-fly
the reduced model. In some particular configurations, it is not obvious whether the Asymptotic
Preserving scheme is still more efficient or not6.

Now, with expressions (10.26) and (10.28) and the development they introduce with respect to
σr, we wanted to highlight it is possible to define high order MC scheme. For MC schemes,
the relevant quantities on which one must increase the order are typically the time interaction,
the weight modification etc. (see for example (10.26) and (10.28)). Relying on such high-order
developments may lead to even less costly approximations.

6For some configurations, for the same accuracy, we have similar restitution times between the classical and the AP
scheme, see [3]. In fact, those cases are closer to δ = O(1) than δ � 1 as assumed in this section.
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4. To finish, we insist on the fact the methodology to build an Asymptotic Preserving MC scheme is
general and can be summed up in few phases:

– first, identify the stiff regime of interest.

– Build a relevant reduced model and approach it (efficiently).

– Plug the solution of the reduced model in the transport equation to linearize it. This can
be done via a change of variable as in [3] or by plugging it directly in the cross-sections’
expressions as in this document.

– Solve a linearized Boltzmann equation with time dependent cross-sections with an MC scheme
(with similar linearisation hypothesis as for Quasi-Static methods, see sections 9.9.2–10.1 and
[3]).

– Consistently update the quantities which are not discretised with MC particles and end the
time step.

Section 9.9.2 is typically an example of application of such methodology for problems with stiff
sources. Another example is given in remark 10.3 of the next section.

In the following section, we study a different nonlinear Boltzmann equation. It implies a different stiff
regime and different relevant linearisations for the construction an Asymptotic Preserving MC scheme.
Care will be taken to hint at point 4.) above to emphasize the methodology applied in this section also
does for different physical applications.

10.2 Boltzmann equation coupled to Stefan’s law (photonics)

In this section, we are interested in the resolution of the time-dependent problem of particle transport
in a media whose density of internal energy evolves with time due to particle interactions (Stefan’s law).
We suppose transport to be driven by the linear Boltzmann equation (10.30) for particles having position
x ∈ D ⊂ R3, velocity c (speed of light), frequency ν ∈ R+, direction ω ∈ S2 = [0, 2π] × [0, π], at time
t ∈ [0, T ] ⊂ R+. Quantity u(x, t, ν, ω) is the density of energy of the particles at (x, t, ν, ω). We assume
the time variation of the media’s density of internal energy E(x, t) can be accurately modeled by Stefan’s
law (10.30b), see [245, 203, 59]. As a result, problem (10.30) is nonlinear and strongly coupled:

∂tu(x, t, ν, ω) + cω∂xu(x, t, ν, ω) + cσt(x, t, ν)u(x, t, ν, ω)

=

∫∫
cσs(x, t, ν

′, ν, ω′, ω)u(x, t, ν′, ω′) dω′ dν′ + cσa(x, t, ν)B(x, t, ν), (10.30a)

∂tE(x, t) =

∫∫
cσa(x, t, ν) (u(x, t, ν, ω)−B(x, t, ν)) dω dν. (10.30b)

To close system (10.30), we need to define the dependences of σs, σt, σa, B with respect to the unknowns
u and E. First, the source term B corresponds to the Planckian distribution defined as

B(x, t, ν) = B(T (x, t), ν) =
2hν3

c2
1

e
hc

kT (x,t) − 1
. (10.31)

It describes the spectral density of electromagnetic radiation emitted by a black body in thermal equi-
librium at a given temperature T (x, t). The constant k and h are respectively the Boltzmann and the
Planck constants. Let us integrate the above expression over frequency and angles, we have∫

B(x, t, ν)dν = aT 4(x, t) =
8k4π5

15c3h3T
4(x, t). (10.32)

In the above expression, a is the radiative constant. Second, as detailed in chapter 9, we introduce

σs(x, t, ν) =

∫∫
σs(x, t, ν

′, ν, ω′, ω)dω′dν′.
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The opacities σs, σt and σa are related via the simple relation σa(x, t, ν) = σt(x, t, ν)−σs(x, t, ν). For the
same reason as in chapter 9, the dependence with respect to ω of σs(x, t, ν) is not recalled. The cross-
sections are commonly called opacities in such physical context and depend on x, t via the temperature
T (x, t), i.e.

σα(x, t, ·) = σα(T (x, t), ·),∀α ∈ {s, t, a}.
The density of internal energy E(x, t) also depends on T (x, t) via an equation of state. For a perfect gas,
this is the well-known relation E(x, t) = CvT (x, t) where Cv is the adiabatic coefficient of the considered
material. System (10.30) can consequently be rewritten in a closed form via the introduction of the
temperature

∂tu(x, t, ν, ω) + cω∂xu(x, t, ν, ω) + cσt(T (x, t), ν)u(x, t, ν, ω)

=

∫∫
cσs(T (x, t), ν′, ν, ω′, ω)u(x, t, ν′, ω′) dω′ dν′ + cσa(T (x, t), ν)B(T (x, t), ν), (10.33a)

∂tE(T (x, t)) =

∫
cσa(T (x, t), ν)

(∫
u(x, t, ν, ω)dω −B(T (x, t), ν)

)
dν. (10.33b)

The next step consists in simplifying (10.33) to focus on the difficult numerical aspects. Of course, care
will be taken to make sure the Asymptotic Preserving MC schemes we suggest in the following sections
can be extended to the complete problem (10.33).

To simplify problem (10.33), we first assume σt = σa = σ. In other words, there is no (physical)
scattering. Besides, we aim at focusing on the nonlinearity induced by the source term B rather than
by the opacities or the equation of state. We consequently assume that σ(T (x, t), ν) = σ(x, ν) and
E(T ) = CvT . Furthermore, we consider the grey approximation, i.e. the opacities do not depend on ν.
It ensures we can solve problem (10.33) with respect to u(x, t, ω) =

∫
u(x, t, ν, ω)dν, solution of (10.33)

integrated over every frequencies:
∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = cσ(x)aT 4(x, t), (10.34a)

∂tE(T (x, t)) = cσ(x)

(∫
u(x, t, ω)dω − aT 4(x, t)

)
. (10.34b)

To simplify the notations and focus on the nonlinearity introduced by the source term, we even go one
step beyond and set a = Cv = 1 so that (10.34) can be rewritten in a simplified closed form

∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = cσ(x)E4(x, t), (10.35a)

∂tE(x, t) = cσ(x)

(∫
u(x, t, ω)dω − E4(x, t)

)
. (10.35b)

The asymptotic regime we aim at capturing with (10.35) has already been intensively studied in the
literature, see [245, 203, 59]. To characterise it, let us introduce{

x = x∗X , t = t∗T ,
σ = σ∗ 1

λ
.

(10.36)

The upperscript ∗ denotes a nondimensional quantity. Let us denote by u∗(x∗, t∗, ω) = u(x, t, ω) and
E∗(x∗, t∗) = E(x, t), then

1
T ∂t∗u

∗(x∗, t∗, ω) = ∂tu(x, t, ω), 1
X ∂x∗u

∗(x∗, t∗, ω) = ∂xu(x, t, ω),
1
T ∂t∗E

∗(x∗, t∗) = ∂tE(x, t).
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This leads to
∂t∗u

∗(x∗, t, ω) + c
T
X ω∂x∗u

∗(x∗, t∗, ω) +
T
λ
cσ∗(x∗)u∗(x∗, t∗, ω) = cσ∗(x∗)(E∗)4(x∗, t∗),(10.37a)

∂t∗E
∗(x∗, t∗) =

T
λ
cσ∗(x∗)

(∫
u∗(x∗, t∗, ω)dω − (E∗)4(x∗, t∗)

)
. (10.37b)

Now suppose cT
X = O( 1

δ ) and T
λ
cσ∗ = 1

δ2σ
∗, we have (we drop the upperscript ∗ for convenience) ∂tu(x, t, ω) + 1

δω∂xu(x, t, ω) = 1
δ2σ(x)(E4(x, t)− u(x, t, ω)),

∂tE(x, t) = 1
δ2σ(x)

(∫
u(x, t, ω)dω − E4(x, t)

)
.

(10.38)

The above non-dimensionalization (10.38) from (10.34) can be found in many books and publications
[245, 203, 59, 77, 301, 48, 178]. All along this section, we work on the closed forms (10.35) and (10.38) of
unknowns (u,E). System (10.35), independently of the value of δ, conserves the total density of energy
of the system ’particles+media’ as

∂t

(∫
u(x, t, ω)dω + E(x, t)

)
+ ∂x

∫
cωu(x, t, ω)dω = 0.

This invariant is important in many applications and one may want the MC scheme to ensure it numer-
ically, independently of the discretisation parameters (∆x,∆t or NMC). Let us study the limit regime
δ → 0. For this, we perform a Hilbert development [143, 48, 178], i.e. u = u0 + u1δ + u2δ2 +O(δ3) and
E = E0 +E1δ+E2δ2 +O(δ3), and identify the stiff asymptotic regime of interest for (10.35). Plugging
the previous development in (10.38), and more precisely in the transport counterpart (10.35a), leads to

∂t


0
0
u0δ

2

∞∑
i=1

uiδ
i+2

+ ω∂x


0
u0δ
u1δ

2

∞∑
i=2

uiδ
i+1

 = σ




E4
0

(E4)1δ
(E4)2δ

2∑
i>2

(E4)iδ
i

−


u0

u1δ
u2δ

2∑
3

uiδ
i


 .

For the media counterpart (10.35b), we have

∂t


0
0
E0δ

2

∞∑
i=1

Eiδ
i+2

 = −
∫
σ




E4
0

(E4)1δ
(E4)2δ

2∑
i>2

(E4)iδ
i

−


u0

u1δ
u2δ

2

∞∑
i=3

uiδ
i



 .

By identifying the coefficients of 1, δ, δ2 we finally obtain:

E4
0 = u0,

ω∂xu0 = σ((E4)1 − u1),
∂tu0 + ω∂xu1 = σ((E4)2 − u2),

(E4)1 =

∫
u1,

∂tE0 = −
∫
σ((E4)2 − u2).

(10.39)

The first line of the previous expression ensures u0(x, t, ω) = u0(x, t). Together with the second line of
(10.39), it implies 1

3∂xu0(x, t) = −σ(x)
∫
ωu1(x, t, ω)dω. The latter expression is commonly called Fick’s

law. Now, plugging the last expression in the third line of (10.39) and integrating it over the angular
distribution yields

∂tu0 − ∂x
1

3σ
∂xu0 =

∫
σ((E4)2 − u2).
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Finally, adding the last line of (10.39) to the above equation leads to{
E4

0(x, t) = u0(x, t),
∂t(E0(x, t) + E4

0(x, t))− ∂x 1
3σ(x)∂xE

4
0(x, t) = 0.

(10.40)

System (10.40) is commonly called the equilibrium (relative to E4
0(x, t) = u0(x, t)) diffusion (relative to

the second order operator in (10.40)) limit for system (10.35). In the next sections, we aim at building
MC schemes to solve (10.35) with good asymptotical properties in the limit (10.40).

10.2.1 Classical Monte-Carlo schemes for photon transport

We first describe one of the most common methodology to solve system (10.35). It consists in a splitting
between the transport phase (10.35a) and the implicited Stefan law (10.35b). It is commonly denoted
by IMC for Implicit Monte-Carlo and has been introduced by Fleck and Cummings in [110]. The
implicitation, presented in the next paragraph, introduces an artificial scattering term. This numerical
trick is important and efficient in practice. This is mainly for this aspect we choose to describe this
scheme in this section rather than others (such as the Carter-Forrest [57] or the N’Kaoua [211] ones, see
[77] in which their asymptotical properties are studied).

In the next section, we briefly describe the IMC scheme for the resolution of (10.35). The beginning
of the description may recall [77] but we go further by analysing the effect of a (spatial) discrepancy
on the source term. It is crucial for the complete study of the asymptotic regime we aim at capturing
(teleportation error, see [301]).

The classical MC scheme for the resolution of (10.35)

Once again, we suggest describing the MC scheme on one time step [0, t]. The IMC linearisation of
system (10.35) can be summed up as follow: first, consider the new variable Θ(x, t) = E4(x, t) such that

∂tΘ(x, t) = 4E3(x, t)∂tE(x, t) = 4Θ
3
4 (x, t)∂tE(x, t) = β(Θ(x, t))∂tE(x, t). The IMC scheme relies on

rewriting system (10.35) with respect to the variables (u,Θ)
∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = cσ(x)Θ(x, t), (10.41a)

∂tΘ(x, t) = β(Θ(x, t))cσ(x)

(∫
u(x, t, ω)dω −Θ(x, t)

)
. (10.41b)

Let us consider an explicitation7 of β(Θ(x, t)) ≈ β(Θ(x)) = β(x) together with an implicited source term
Θ(x, t) ≈ Θt(x) in (10.41). Quantity Θt(x) denotes a constant with respect to time evaluation of Θ(x, t)
at the end of the times step [0, t]. With the above hypothesis, system (10.41) can be rewritten on time
step [0, t]: 

∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = cσ(x)Θt(x), (10.42a)

∂tΘ(x, t) = β(x)cσ(x)

(∫
u(x, t, ω)dω −Θt(x)

)
. (10.42b)

Let us integrate (10.42b) on time step [0, t] to obtain

Θt(x)−Θ(x) = β(x)cσ(x)

(∫ t

0

∫
u(x, s, ω)dωds−∆tΘt(x)

)
.

We can evaluate the implicitation as follows

Θt(x) = Θ(x) 1
1 + cσ(x)β(x)∆t

+
β(x)cσ(x)

1 + cσ(x)β(x)∆t

∫ t

0

∫
u(x, s, ω)dωds,

≈ Θ(x) 1
1 + cσ(x)β(x)∆t

+
β(x)cσ(x)∆t

1 + cσ(x)β(x)∆t

∫
u(x, t, ω)dω,

≈ Θ(x)f(x,∆t) + (1− f(x,∆t))

∫
u(x, t, ω)dω.

(10.43)

7i.e. Θ(x, 0) = Θ(x).
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In the above expression, f is commonly called the Fleck factor [110].
The above expression of Θt(x) is then plugged in (10.42a) and a second equation is introduced to

ensure energy conservation on time step [0, t]. We finally obtain
∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) =

cσ(x)f(x,∆t)Θ(x) + cσ(x)(1− f(x,∆t))

∫
u(x, t, ω)dω, (10.44a)

∂tE(x, t) = cσ(x)f(x,∆t)

(∫
u(x, t, ω)dω −Θ(x)

)
. (10.44b)

System (10.44) is now only weakly coupled in the sense (10.44a) is self consistent and (10.44b) only
depends on u solution of (10.44a) and other known fields (β,Θ, f). Equation (10.44a) is now linear and
has a form that has already been intensively encountered in this document. The linearisation introduces
an artificial scattering term, defined via the opacity σs = σ(1− f) and an artificial absorption term via
the opacity cσa = cσf such that σa + σs = σ. The source term only depends on quantities evaluated
at the beginning of the time step and has expression cσfΘ. Equation (10.44a) is classically solved with
the non-analog MC scheme of section 9.4 together with the source sampling strategy of section 9.9.1, see
[110, 77, 301]. The update of the material energy (and temperature) is made by instrumenting the MC
resolution with a consistent track length estimator as in the previous section. The update is made once
the tracking phase is over and every MC contributions tallied. The time step is then over.

Remark 10.1 The description above can be found in many publications. We would like to focus briefly
on the assumption made to go from the first line of (10.43) to its second one. Let us characterise this
hypothesis. It can be summed up as ∀t, s ∈]0, t = ∆t]

1

t− 0

∫∫ t

0

u(x, s, ω)dωds ≈
∫
u(x, t, ω)dω ⇐⇒

∫
u(x, t, ω)dω = cst =

∫
u(x, s, ω)dω. (10.45)

In practice, during the resolution phase, the equality in (10.45) is only applied along a characteristic, i.e.

we only use ∂s
∫
u(x + cωs, s, ω)dω = 0 and

∫∫ t
0
u(x + cωs, s, ω)dωds = ∆t

∫
u(x + cωt, t, ω)dω rather

than (10.45). In fact, the true linearisation hypothesis is closely related to the stiff equilibrium regime
defined by8

(stiff equilibrium regime) ∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = cσ(x)

∫
u(x, t, ω′)dω′,

(along a characteristic) ∂su(x + cωs, s, ω) + cσ(x)u(x + cωs, s, ω) = cσ(x)

∫
u(x + cωs, s, ω′)dω′,

(isotropic as δ → 0) ∂s

∫
u(x + cωs, s, ω)dω ≈ 0.

We briefly wanted to emphasize the hypothesis done in order to obtain (10.44) is closely related to
plugging the solution of the stiff regime of interest along a characteristic to linearise the system, see
point 4.) in section 10.1.3.

Now, we aim at analysing what can be asymptotically obtained (in the limit of an infinity of MC
particles) from such linearisation. The latter is well-known in the literature and its asymptotical analysis,
detailed in [77], leads to the following limit equation:

∂tu
0(x, t)− ∂x

1

3σ(x)
∂xu

0(x, t) =
1

β(x)∆t
(u0(x, t)−Θ0(x)). (10.46)

The IMC scheme, in the limit of an infinity of MC particle to solve the linearized transport equation
(10.44a), recovers the diffusion limit with the correct coefficient 1

3σ , see (10.40), but misses the strict
equilibrium limit. It introduces a numerical relaxation time β∆t such that the smaller β∆t, the better
the equilibrium limit is fulfilled. Note that the authors in [77, 282] emphasized the fact that in practice,
time steps ensuring a good agreement for the local equilibrium limit are affordable for the IMC scheme
(i.e. we can afford β∆t ∼ 0 small enough). On another hand, the treatment of the source term is central

8relaxed state of (10.35).
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for the limit regime we aim at capturing: a small inaccuracy in its sampling can introduce a significant
teleportation error. The denomination has been introduced in [197] and is very well described in [301].
Until now, we only summed up results which can be found in many publications, we now would like to
introduce some originality in the study, especially with respect to this teleportation error.

The analysis of the limit equation on time step [0, t] for the IMC scheme has been carried on con-
tinuously with respect to the spatial variable x ∈ D whereas many authors (see [301] and the references
therein) admit the spatial discretisation of the source term in the IMC linearisation is closely related
to the teleportation error. See [77, 69, 70, 301] and [282] for very pedagogical numerical examples. It
is even confirmed by the fact that tilts, i.e. spatial (bi-)linear interpolary reconstructions of Θ can lead
to significant improvements, see [69, 70, 301]. In practice, a spatial discretisation is introduced (as in

section 9.6, i.e. D =
⋃Nx

i=1Di), together with assumptions such as constant Θ in each cell. At every

beginning of time step we have an O(∆x) approximation of Θ(x) =
∑Nx

i=1 Θi1Di(x) + O(∆x) where
∆x = maxi∈{1,...,Nx}(|Di|) and Θi = 1

|Di|
∫
Di Θ(x)dx. This choice affects Θ(x) but also β(x) = β(Θ(x))

and above all the source sampling of the MC particles at every beginning of time steps. The material
of section 9.8.1 (together with the examples) put forward the importance of accurate samplings within
cells. In the following paragraphs, we suggest

– taking into account a spatial O(δx) discrepancy in the source term within cells (inaccurate source
sampling),

– together with the asymptotic development O(δ) of the linearized system (10.42).

Let us now revisit the limit equation under such condition.

Let us perform a Taylor development of Θ(x) with respect to a small spatial parameter δx. Note
that we are also going to perform a Hilbert development afterward with respect δ. For this, we write
Θ(x) = Θ0(x) + Θ1(x)δx + O(δ2

x) with of course Θ0(x) =
∑Nx

i=1 Θi
01Di(x) and Θ1(x) = ∂xΘ(x). The

upperscripts refer to the terms in the development with respect to δ (as before). Assume constant
opacities σ(x) = σ, then for small δx, we have

cσfΘ(x) = =
δx∼0

cσΘ0

1 + 4cσ∆tΘ
3/4
0

+ cσδxΘ1
1 + cσ∆tΘ

3/4
0

(1 + 4cσ∆tΘ
3/4
0 )2

+O(δ2
x),

cσ(1− f) = =
δx∼0

4c2σ2∆tΘ
3/4
0

1 + 4cσ∆tΘ
3/4
0

+ cσδxΘ1
3cσ∆t

(1 + 4cσ∆tΘ
3/4
0 )2Θ

1/4
0

+O(δ2
x),

cσf =
δx∼0

cσ
1 + 4cσ∆tΘ

3/4
0

− cσδxΘ1
3cσ∆t

(1 + 4cσ∆tΘ
3/4
0 )2Θ

1
4
0

+O(δ2
x).

(10.47)

The above developments are then plugged in the collisional part of (10.42) solved on time step [0, t].
This yields (we drop the dependences for convenience)

∂tu+ cω∂xu+ cσu =
cσΘ0

1 + 4cσ∆tΘ
3/4
0

+ cσδxΘ1
1 + cσ∆tΘ

3/4
0

(1 + 4cσ∆tΘ
3/4
0 )2

+O(δ2
x)

+

(
4c2σ2∆tΘ

3/4
0

1 + 4cσ∆tΘ
3/4
0

+
3c2σ2∆tΘ1δx

(1 + 4cσ∆tΘ
3/4
0 )2Θ

1/4
0

+O(δ2
x)

)∫
u, (10.48a)

∂tE =

(
cσ

1 + 4cσ∆tΘ
3/4
0

− δxΘ1
3c2σ2∆t

(1 + 4cσ∆tΘ
3/4
0 )2Θ

1
4
0

+O(δ2
x)

)∫
u

− cσΘ0

1 + 4cσ∆tΘ
3/4
0

− cσδxΘ1
1 + cσ∆tΘ

3/4
0

(1 + 4cσ∆tΘ
3/4
0 )2

+O(δ2
x). (10.48b)

Note that (10.48b) is built ensuring conservation of (10.48) on time step [0, t]. Now use the fact that
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cTD = O( c
∗

δ ), cσ Tλ = O( c
∗σ∗

δ2 ) in (10.48) so that we have

δ2∂tu+ δcω∂xu+ cσu = δ2cσΘ0

δ2 + 4∆tcσΘ
3/4
0

+ cσ
δ4 + δ2∆tcσΘ

3/4
0

(δ2 + 4∆tcσΘ
3/4
0 )2

δxΘ1

+

(
4∆t(cσ))2Θ

3/4
0

δ2 + 4∆tcσΘ
3/4
0

+
3δ2∆t(cσ)2

(δ2 + 4∆tcσΘ
3/4
0 )2Θ

1/4
0

Θ1δx

)∫
udω +O(δ2

x).

(10.49)

Assuming δ → 0 and keeping only the O(δ4) orders, we obtain

δ2∂tu(x, t, ω) + δcω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = δ2 Θ
1/4
0 (x)
4∆t − δ2 δxΘ1(x)

16∆tΘ
3/4
0 (x)

+

(
cσ(x)− δ2

4∆tΘ
3/4
0 (x)

+ δ2 3Θ1(x)δx

16∆tΘ
7/4
0 (x)

)∫
u(x, t, ω)dω +O(δ2

x) +O(δ4).

(10.50)

The leading order terms allows identifying the asymptotic regime for the linearized equation (10.50)

u0(x, t, ω) =

∫
u0(x, t, ω)dω,

cω∂xu
0(x, t, ω) + cσ(x)u1(x, t, ω) = 0,

∂tu
0(x, t, ω) + cω∂xu

1(x, t, ω) + cσ(x)u2(x, t, ω) = 1
4∆t(Θ0

0(x))3/4

(
Θ0

0(x)−
∫
u0(x, t, ω)dω

)
− δxΘ0

1(x)

16∆t(Θ0
0(x))3/4 +

∫
u2(x, t, ω)dω +

3

16

1

∆t(Θ0
0(x))7/4

Θ0
1(x)δx

∫
u0(x, t, ω)dω +O(δ2

x).

(10.51)

Integrating the previous relations over angles and combining them (just as in the beginning of section
10.2) yields

∂tu
0(x, t)− ∂x c

3σ(x)
∂xu

0(x, t) = 1
4∆t(Θ0

0(x))3/4

(
Θ0

0(x)− u0(x, t)
)

+ 1
16∆t(Θ0

0(x))7/4

(
3u0(x, t)−Θ0

0(x)
)
δxΘ0

1(x) +O(δ2
x).

(10.52)

Besides, the leading order with respect to δ in (10.48b) ensures
∫
u0(x, t, ω)dω = Θ0

0(x)+δxΘ0
1(x)+O(δ2

x).
Together with the isotropy of u0, we have

∂tu
0(x, t)− ∂x c

3σ(x)
∂xu

0(x, t) = − δx
8∆t(Θ0

0(x))3/4 ∂xΘ0(x) +O(δ2
x),

= − δx
2∆t∂xΘ0

0(x) +O(δ2
x),

= − δx
2∆t∂xu

0(x, t) +O(δ2
x).

(10.53)

The limit equation on time step [0, t] of the IMC scheme obtained with an infinitely accurate MC
approximation for (10.44a) but taking into account an O(δx) discrepancy in the source term (during the
source sampling phase) yields

∂tu
0(x, t)− ∂x c

3σ(x)
∂xu

0(x, t) + δx
2∆t∂xu

0(x, t) = O(δ2
x). (10.54)

The limit equation (10.54) is an advection-diffusion one. The velocity of the advection operator depends
on the discretisation parameters ∆t and δx. They even compete during time step [0, t]. On one hand,
taking ∆t the smaller possible ensures recovering the equilibrium limit (first term of the right hand
side of (10.52)), but imposes a finer and finer spatial discretisation (perturbed advection velocity in
(10.54)). In fact, the error can be very important for steep gradients of u0 (front of a Marshak wave for
example for which ∂xu

0 � 1). It is well-known the mechanism accumulates discrepancies proportionally
to the number of time steps (due to the cycle-to-cycle differences of magnitude δx

∆t∂xu
0, see [301]).

The behaviour of the IMC scheme is close to the behaviour of the Dufort-Frankel scheme for parabolic
equations. For this scheme, if Cδx = ∆t→ 0, the scheme is inconsistent. It is possible to force ∆t = C
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the greater possible (limit of stability) and make sure δx → 0 to obtain a converging O(δx) scheme.
Let us detail another way to put forward the sensitivity to a small error with respect to a spatial

perturbation of Θ during the source sampling phase. Let us consider the linearized IMC system (10.48)
and substract the system below (we drop the dependences for convenience)

∂tũ+ cω∂xũ+ cσũ =

cσΘ0

1 + 4cσ∆tΘ
3/4
0

+

(
4c2σ2∆tΘ

3/4
0

1 + 4cσ∆tΘ
3/4
0

)∫
ũ, (10.55a)

∂tẼ =

(
cσ

1 + 4cσ∆tΘ
3/4
0

)∫
ũ− cσΘ0

1 + 4cσ∆tΘ
3/4
0

. (10.55b)

In the above expression, we truncated Θ to its first term Θ0. Let us introduce e1 = u− ũ and e2 = E−Ẽ.
They correspond to the errors due to a discrepancy in the spatial discretisation (source sampling) of Θ
on time step [0,∆t] with respect to a spatially accurate IMC temporal linearisation. We have (we focus
on the first equation as it is self-consistent)

∂te1 + cω∂xe1 + cσe1 = cσδxΘ1
1 + cσ∆tΘ

3/4
0

(1 + 4cσ∆tΘ
3/4
0 )2

+
4c2σ2∆tΘ

3/4
0

1 + 4cσ∆tΘ
3/4
0

∫
e1dω +

3c2σ2∆tΘ1δx

(1 + 4cσ∆tΘ
3/4
0 )2Θ

1/4
0

∫
u.

We can rewrite it more concisely

T (e1(x, t, ω)) = cσ(x)δxΘ1(x)
1 + cσ(x)∆tΘ

3/4
0 (x)

(1 + 4cσ(x)∆tΘ
3/4
0 (x))2

+
3c2σ(x)2∆tΘ1(x)δx

(1 + 4cσ(x)∆tΘ
3/4
0 (x))2Θ

1/4
0 (x)

∫
u(x, t, ω)dω.

In the above expression, if the sources are infinitely accurately sampled (no spatial discrepancies in Θ),
T (e1(x, t, ω)) = 0. In this case, we recover the temporal IMC discretization. This is precisely this latter
property we will aim at having by construction in the next sections. Now, let us compute

T (e1(x, t, ω)) =
cσ(x)∼ 1

δ2

1
δ2 δxΘ1(x)

1 +
1

δ2
∆tΘ

3/4
0 (x)

(1 + 4
1

δ2
∆tΘ

3/4
0 (x))2

+
3

1

δ4
∆tΘ1(x)δx

(1 + 4
1

δ2
∆tΘ

3/4
0 (x))2Θ

1/4
0 (x)

∫
u(x, t, ω)dω,

=
δ∼0

δx
4δ2 ∂xΘ(x) +O(δ0).

The above expression tends to show the IMC linearisation is not AP (cf. definition 9.1) due to the
spatial discrepancy (δx). Furthermore, (10.54) shows that any such discrepancy will be amplified along
the time-steps. Any small spatial error on the emission will be amplified in the equilibrium diffusion
limit. In order to design AP MC scheme, care has to be taken to avoid such behaviour during the MC
phase. This will be the aim of the next sections but first, we would like to study the effect of having
resort to source tilting.

As emphasized in many publications, see [301] and the references therein, if the emission is non
uniform within the cell, a reconstruction method can be introduced to estimate cσfΘ in (10.42) at every
beginning of time steps. This is commonly called a tilt (see [301, 69, 70]) and it has been experimentally
observed it reduces teleportation errors. In fact, it corresponds to a second order approximation of
Θ(x) = Θtilt(x) +O(δ2

x). The same asymptotic developments (Taylor of order 2 with respect to δx and
Hilbert one with respect to δ) applying an accurate tilt can be performed. The second order equivalent
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of (10.47) reads

cσfΘ(x) = =
δx∼0

cσΘ0

1 + 4cσ∆tΘ
3/4
0

+ δ2
xcσΘ2

1 + cσΘ
3/4
0 ∆t

(1 + 4cσΘ
3/4
0 ∆t)2

+O(δ3
x),

cσ(1− f) = =
δx∼0

4c2σ2∆tΘ
3/4
0

1 + 4cσ∆tΘ
3/4
0

+ δ2
x

3c2σ2Θ2∆t

Θ
1/4
0 (1 + 4cσΘ

3/4
0 ∆t)2

+O(δ3
x),

cσfβ(Θ(x)) =
δx∼0

4cσΘ
3/4
0

1 + 4cσ∆tΘ
3/4
0

+ δ2
x

3cσΘ2

Θ
1/4
0 (1 + 4cσΘ

3/4
0 ∆t)2

+O(δ3
x),

cσfβ(Θ(x))Θ(x) =
δx∼0

4cσΘ
7/4
0

1 + 4cσ∆tΘ
3/4
0

+ δ2
xcσΘ2

√
Θ0

7Θ
1/4
0 + 16Θ0cσ∆t

(1 + 4cσΘ
3/4
0 ∆t)2

+O(δ3
x),

(10.56)

with Θ2(x) = ∂2
xxΘ(x). Plugged in the transport equation linearized on time step [0, t] and going through

the same steps as before leads to

∂tu
0(x, t)− ∂x c

3σ(x)
∂xu

0(x, t) = − δ2
x

8∆t(Θ0
0(x))3/4 ∂

2
xxΘ0(x) +O(δ3

x),

= − δ2
x

2∆t∂
2
xxΘ0

0(x) +O(δ3
x),

= − δ2
x

2∆t∂
2
xxu

0(x, t) +O(δ3
x).

(10.57)

Re-arranging the terms in (10.57) produces expression

∂tu
0(x, t)− ∂x

[
c

3σ(x)
+

δ2
x

2∆t

]
∂xu

0(x, t) = O
(
δ3
x

∆t

)
. (10.58)

It is a diffusion equation (up to order O(δ3
x)). The asymptotic diffusion coefficient is c

3σ(x) +
δ2
x

2∆t and

depends on discretisation parameters δx and ∆t. Once again, both discretisation parameters compete
during time step [0, t]. This is attenuated by the fact that δx is squared but it still accumulates dis-
crepancies proportionally to the number of time steps due to the cycle-to-cycle differences of magnitude
δ2
x

2∆t∂
2
xxu

0. The same remark as above still applies here: if ∆t = Cδ2
x with δx going to zero, the tilted

IMC scheme is inconsistent (behaviour to be compared with the Dufort-Frankel scheme for parabolic
equations). On another hand, if δx

∆t = C is kept constant and δx goes to zero, a convergence behaviour
can still be observed.

The above analysis shows that an accurate third order (tilt) reconstruction (i.e. Θ(x) = Θtilt(x) +
O(δ3

x)) is mandatory to recover the correct diffusion coefficient for the regime δ → 0. This observation is
all the more interesting that in plasma physics, many PIC codes rely on a third order spatial discretisation
of the electromagnetic fields (often third order Splines, see [25, 24, 29] for example). This is probably
for the same reason as in the previous section: the linearisation induces modification of the propagation
waves for first and second order operators. Of course, I did not study precisely the MC scheme of PIC
codes but this should be interesting to do so with the above point of view. Maybe the material of the
next section could also benefit their resolution. Due to

– the appearance of competing discretisation parameters (
δkx
∆t )k=1,2,... at every reconstruction order

k (even if attenuated from δx
∆t to

δ2
x

∆t from order 1 to order 2),

– and the possible error accumulations along the cycles,

instead of introducing an additional reconstruction, we prefer building MC schemes which do not suffer
teleportation errors. Based on these remarks, in the following sections, we present two new MC schemes,
three if we count the (approximated) one of remark 10.3, and detail their asymptotic properties.

10.2.2 Two Asymptotic Preserving MC schemes for photon transport

At this stage, it may be tempting to try to apply strictly the same methodology as in section 10.1. In
other words, plug the solution of the asymptotic regime of interest, here the equilibrium diffusion limit,
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in the MC scheme via a change of variable (u = Uf) as in [3]. This will be briefly done in remark 10.3.
We first want to emphasize the fact that for system (10.30) there are different presentation possibilities,
related to more relevant linearisations of (10.30) on time step [0, t].

In this section, we present two MC schemes to solve system (10.30) bearing interesting asymptotic
properties (as δ → 0). Depending on the linearisations, those properties differ. Their common point
remains an accurate diffusion limit capturing behaviour (and no teleportation error but the notions
are closely related). The two MC schemes are presented so the reader can pick the solver having the
properties he finds the more relevant. The first linearisation ensures capturing the diffusion limit, is
conservative but does not capture exactly the equilibrium one (only up to O(∆t)). The second captures
the equilibrium diffusion limit but does not ensure exact conservation of energy at the end of the time
step (only up to O(∆t)).

The study of section 10.2.1 showed a reconstruction of E4 = Θ is mandatory to ensure recovering
the diffusion limit. For this, we built high order reconstruction of this field from a spatial Taylor serie.
In this section, we suggest building MC schemes which do not need this spatial reconstruction (or one
may say they reconstruct it on-the-fly during the MC resolution).

A conservative Asymptotic Preserving MC scheme for the diffusion limit

We aim at solving (10.34) together with capturing regime (10.40) characterised by δ → 0. We here
suggest introducing the variable e(x, t, ω) defined by

∫
e(x, t, ω)dω = E(x, t). System (10.34) can then

be rewritten in term of unknowns (u, e) by
∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = cσ(x)

(∫
e(x, t, ω)dω

)4

, (10.59a)

∂te(x, t, ω) = cσ(x)

(∫
u(x, t, ω)dω −

(∫
e(x, t, ω)dω)

)4
)
. (10.59b)

Integrating (10.59b) with respect to ω (such that
∫

dω = 1) allows recovering (10.35b). Besides, introduce
η(E(x, t)) = E3(x, t). Then it can also be rewritten

∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = cσ(x)η(E(x, t))

∫
e(x, t, ω)dω, (10.60a)

∂te(x, t, ω) + cσ(x)η(E(x, t))e(x, t, ω) = cσ(x)

∫
u(x, t, ω)dω. (10.60b)

System (10.60) is still nonlinear. On time step [0, t], we consider linearisations corresponding to a
particular choice of η(E(x, t)) = E3(x, t) = (

∫
e(x, t, ω)dω)3 with respect to the time variable, i.e.

explicit, implicit etc. Independently of this choice, the linearized system is conservative as

∂t

(∫
u(x, t, ω)dω +

∫
e(x, t, ω)dω

)
+ ∂x

∫
cωu(x, t, ω)dω = 0.

An explicit choice for η together with the non-analog9 scheme of section 9.4 lead to the known MC scheme
of [11]. In practice, it is computationally unusable due to the small time steps it needs for stability [301].
For relevant and efficient numerical tricks to be able to take bigger time steps with this same scheme,
we rely on the work of [282] summed up in the last paragraph of this section. We here want to focus
on how to build an MC scheme for the resolution of system (10.60) of unknowns (u, e). Discretising e
with an MC approximation ensures we do not need to reconstruct a density or use source sampling and
avoid, by construction, the teleportation error.

Let us assume a linearisation based on a choice10 of η(E(x, t)) ≈ η(x, t) on time step [0, t]. The

9and not the semi-analog scheme as in the title of [11].
10explicit or implicit, this only affects the resolution, not the MC scheme.
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linearisation of system (10.60) of solution11 (φ, em) is then given by
∂tφ(x, t, ω) + cω∂xφ(x, t, ω) + cσ(x)φ(x, t, ω) = cσ(x)η(x, t)

∫
em(x, t, ω)dω, (10.61a)

∂tem(x, t, ω) + cσ(x)η(x, t)em(x, t, ω) = cσ(x)

∫
φ(x, t, ω)dω. (10.61b)

System (10.61) is now linear and can be solved with an MC scheme. It has the same structure as a
multigroup transport equation in neutronics for example, see [173, 268]. But in this case, there are only
two groups and the basis functions are analytical, given by φ0(v) = δc(v) and φ1(v) = δ0(v). Let us
clarify this point. To solve (10.61), let us build u(x, t, ω, v), a new unknown depending on one more
dimension and on unknowns (φ, e) solutions of (10.61). For this, the variable v is chosen such that

u(x, t,v) = φ(x, t, ω)δc(v) + em(x, t, ω)δ0(v).

In fact, v is nothing more than a velocity which can be c for photons or 0 for matter. Let us now build the
linear equation satisfied by u(x, t, ω, v). Expression (10.61) can be rewritten (we drop the dependences
for conciseness)

∂t(φδc + emδ0)︸ ︷︷ ︸
u

+ vω∂x(φδc + emδ0)︸ ︷︷ ︸
u

= −cσ(φδc + ηemδ0) + cσ

(
η

∫
emδc +

∫
φδ0

)
. (10.62)

It remains to make u appear in the collisional part. For the moment the integration is only over the
angular distribution. Let us introduce the Kronecker symbols

δ0,c(v
′, v) = δ0(v)δc(v

′) and δc,0(v′, v) = δc(v)δ0(v′), (10.63)

and rewrite (10.62) as

∂tu(x, t, v, ω) + vω∂xu(x, t, v, ω) + cσ(x)(δc(v) + η(x, t)δ0(v))u(x, t, v, ω) =

+cσ

∫∫
[u(x, t, v′, ω′)δ0,c(v

′, v) + u(x, t, v′, ω′)η(x, t)δc,0(v′, v)] dv′dω′.
(10.64)

One can check that choosing v = c in (10.64) allows recovering (10.61a) and choosing v = 0 in (10.64)
leads to (10.61b). We can identify scattering and total cross-sections to rewrite (10.64) under the general
form encountered all along chapter 9:

∂tu(x, t, v, ω) + v, ω∂xu(x, t, v, ω) + σt(x, t, v, ω)u(x, t, v, ω) =∫∫
σs(x, t, v, v

′)u(x, t, v′, ω′)dv′dω′.
(10.65)

In the above expression, we have

σt(x, t, v) = cσ(x)(δc(v) + η(x, t)δ0(v)), and σs(x, t, v, v
′) = cσ(x)(δ0,c(v

′, v) + η(x, t)δc,0(v′, v)).

Let us rewrite the scattering part as σs(x, t, v)Ps(x, t, v, v
′) = σs(x, t, v, v

′), this implies

σs(x, t, v) =

∫
σs(x, t, v, v

′)dv′,

=

∫
cσ(x)(δ0,c(v

′, v) + η(x, t)δc,0(v′, v))dv′,

= cσ(x)(η(x, t)δc,0(v, 0) + δ0,c(v, c)),
= cσ(x)(η(x, t)δc(v) + δ0(v)).

11We insist on the change of notation:

– (u, e) is solution of the nonlinear system (10.60),

– whereas (φ, em) is solution of the linearized system (10.61) on time step [0, t].
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By definition of Ps we have

Ps(x, t, v, v
′) =

σs(x, t, v, v
′)

σs(x, t, v)
,

=
δ0,c(v

′, v) + η(x, t)δc,0(v′, v)
δ0(v) + η(x, t)δc(v)

.

The above expression can be considerably simplified by noticing that

for v = 0, Ps(x, t, 0, v
′) = δc(v

′), and for v = c, Ps(x, t, c, v
′) = δ0(v′).

Practically, the later expressions imply the scattering term systematically makes an MC particle change
state at a collision:

– if a particle represents matter (i.e. v = 0), the outer particle represents a photon with probability
1.

– Conversely if a particle representing a photon (with v = c) encounters a collision, it is transformed
into a matter MC particle with probability 1.

Now, we are interested in a direct resolution of (10.64) on time step [0, t]. We consequently apply the
material of section 9.5 and consider the adjoint form of (10.64) given by

−∂tu(x, t, v, ω)− v, ω∂xu(x, t, v, ω) + σt(x, t, v)u(x, t, v, ω) =∫∫
σs(x, t, v, v

′)Ps(x, t, v, v
′)u(x, t, v′, ω′)dω′dv′.

(10.66)

Just as in section 9.5, we introduce

σS(x, t, v, v′) = σS(x, t,v)PS(x, t, v, v′) = σs(x, t,v
′)Ps(x, t, v, v

′).

The latter can be characterised computing

σS(x, t, v) =

∫
σs(x, t, v

′)Ps(x, t, v, v
′)dv′,

=

∫
cσ(x)(η(x, t)δc(v

′) + δ0(v′))
δ0,c(v

′, v) + η(x, t)δc,0(v′, v)

δ0(v) + η(x, t)δc(v)
,

= cσ(x)η(x, t)
δc(v)

δ0(v) + η(x, t)δc(v)
+ cσ(x)η(x, t)

δ0(v)
δ0(v) + η(x, t)δc(v)

,

= cσ(x)δc(v) + cσ(x)η(x, t)δ0(v) = σt(x, t, v).

Few calculations, similar to the already performed one before to identify Ps, show that

PS(x, t, v, v′) = Ps(x, t, v, v
′) = 1− δv(v′).

Suppose one wants to apply the (direct) non-analog MC scheme of section 9.4 to solve (10.61). Then the
samplings are quite simple:

– the time interaction is sampled from σS , i.e. cσ if the MC particle represents a photon (i.e. if
v = c) or cση if the MC particle represents matter (i.e. if v = 0).

– We have σA(x, t, v) = 0,∀x ∈ D, t ∈ [0, t], v ∈ {0, c} so that the weight of the MC particle does not
change all along the tracking phase.

– Finally, if the MC particle encounters an interaction, it changes of state with probability 1 (i.e.
systematically), from photon to matter and matter to photon.

Let us show why it is a satisfying linearisation for our coupled system. On time step [0, t], the previously
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presented MC scheme (for NMC →∞) recovers
∂tφ+ 1

δω∂xφ = 1
δ2σ

(
η

∫
em − φ

)
,

∂tem = 1
δ2σ

(∫
φ− ηem

)
.

(10.67)

Performing a Hilbert development in the first equation of the above linearized system yields

∂t


0
0
φ0δ

2

+
∑

1 φiδ
i+2

+ ω∂x


0
φ0δ
φ1δ

2∑
2 φiδ

i+1

 =

σ

∫


η0e0

(η0e1 + η1e0)δ
(η0e2η1e1 + η2e0)δ2∑
i+j>2 ηiejδ

i+j

−


φ0

φ1δ
φ2δ

2∑
3 φiδ

i


 .

(10.68)

It leads to (we used the notations (Ei =
∫
ei,Φi =

∫
φi)i∈N)

(raw results from (10.68)) (integrated results with respect to ω)
η0E0 = φ0, η0E0 = Φ0,
ω∂xφ0 = σ(η0E1 + η1E0 − φ1), 1

3∂xΦ0 = −Φ1,
∂tφ0 + ω∂xφ1 = σ(η0E2 + η1E1 + η2E0 − φ2), ∂tΦ0 − ∂x 1

3σ∂xΦ0 = σ(η0E2 + η1E1 + η2E0 − Φ2).

The same development of the second equation of (10.68) yields ∂t


0
0
e0δ

2

+
∑

1 φiδ
i+2

 = σ

−


η0e0

(η0e1 + η1e0)δ
(η0e2η1e1 + η2e0)δ2∑
i+j>2 ηiejδ

i+j

+

∫ 
φ0

φ1δ
φ2δ

2∑
3 φiδ

i


 . (10.69)

It leads to

(raw results from (10.69)) (integrated results with respect to ω)
η0e0 =

∫
φ0, η0E0 = Φ0,

η0e1 + η1e0 =

∫
φ1, η0E1 + η1E0 = Φ1,

∂te0 = σ(−η0e2 − η1e1 − η2e0 +

∫
φ2), ∂tE0 = σ(−η0E2 − η1E1 − η2E0 + Φ2).

Some equations are redundant (hence no incompatibility) but we finally obtain the asymptotic limit for
the linearized system (10.61):{

Φ0(x, t) = η0(x, t)E0(x, t) = E4
0(x, t) +O(∆t),

∂t(E0(x, t) + Φ0(x, t))− ∂x 1
3σ(x)∂xΦ0(x, t) = 0.

(10.70)

In summary, an asymptotic analysis of the above MC scheme yields, to leading order, a valid (explicit or
implicit, the above calculations are general enough to be independent of this choice) conservative discreti-
sation of the equilibrium diffusion equation (10.70). The MC scheme does not introduce ’source sampling’
as a resolution strategy and consequently does not suffer the teleportation error (avoiding potential com-
peting discretisation parameters, no cycle-to-cycle error explosion). However, the leading order radiation
intensity is not given by a planckian at the local end of time-step, indeed Φ0 = η0E0 = E4

0 +O(∆t) 6= E4
0

in general. Thus, the above method only has the diffusion limit, and not the equilibrium diffusion one,
or only up to order O(∆t).
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A non-conservative Asymptotic Preserving MC scheme for the equilibrium diffusion limit

The MC scheme presented in the previous paragraph is conservative, capture the diffusion limit, but
not the equilibrium one. We here aim at solving (10.34) together with capturing the equilibrium dif-
fusion regime (10.40) characterised by δ → 0. For this, we introduce variable θ(x, t, ω) defined by∫
θ(x, t, ω)dω = Θ(x, t) = E4(x, t). System (10.34) can then be rewritten in term of unknowns (u, θ)

∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) = cσ(x)

∫
θ(x, t, ω)dω, (10.71a)

∂tθ(x, t, ω) = cσ(x)β(Θ(x, t))

(∫
u(x, t, ω)dω −

∫
θ(x, t, ω)dω)

)
. (10.71b)

System (10.71) is still nonlinear. On time step [0, t], we consider linearisations corresponding to a
particular choice of β(Θ(x, t)) = 4Θ3/4(x, t) = 4(

∫
θ(x, t, ω)dω)3/4 with respect to the time variable,

i.e. explicit, implicit, etc. Once again, the discussion on an explicit or implicit choice for β is not the
purpose of this section. We focus on how to build an MC scheme for the resolution of system (10.71)
of unknowns (u, θ). Discretising θ with an MC approximation ensures we do not need to reconstruct a
density or use source sampling and allows avoiding, by construction, the teleportation error.

Let us assume a linearisation based on a choice12 of β(Θ(x, t)) ≈ β(x, t) on time step [0, t]: the
linearisation of system (10.71) of solution (φ, θm) is then given by

∂tφ(x, t, ω) + cω∂xφ(x, t, ω) + cσ(x)φ(x, t, ω) = cσ(x)

∫
θm(x, t, ω)dω, (10.72a)

∂tθm(x, t, ω) + cσ(x)β(x, t)θm(x, t, ω) = cσ(x)β(x, t)

∫
φ(x, t, ω)dω. (10.72b)

System (10.72) is now linear and can be solved with an MC scheme. To solve it, introduce

u(x, t, v, ω) = φ(x, t, ω)δc(v) + θm(x, t, ω)δ0(v),

where v is nothing more than a velocity which can be c for photons or 0 for matter. Expression (10.72)
can be rewritten (we drop the dependences for conciseness)

∂t(φδc + θmδ0)︸ ︷︷ ︸
u

+ vω∂x(φδc + θmδ0)︸ ︷︷ ︸
u

= −cσ(φδc + βθmδ0) + cσ

(∫
θmδc + β

∫
φδ0

)
. (10.73)

To make sure u appears in the collisional part, introduce the same Kronecker symbols as in (10.63) and
rewrite (10.73) as

∂tu(x, t, v, ω) + vω∂xu(x, t, v, ω) + cσ(x)(δc(v) + β(x, t)δ0(v))u(x, t, v, ω) =

+cσ(x)

∫∫
[u(x, t, v′, ω′)δc,0(v′, v) + u(x, t, v′, ω′)β(x, t)δ0,c(v

′, v)] dv′dω′.
(10.74)

One can check that choosing v = c in (10.74) allows recovering (10.72a) and choosing v = 0 in (10.74)
leads to (10.72b). We can identify scattering and total cross-sections to rewrite (10.74) under the general
form encountered all along chapter 9:

∂tu(x, t, v, ω) + vω∂xu(x, t, v, ω) + σt(x, t, v)u(x, t, v, ω) =∫∫
σs(x, t, v, v

′)u(x, t, v′, ω′)dv′dω′.
(10.75)

In the above expression, we introduced

σt(x, t, v) = cσ(x)(δc(v) + β(x, t)δ0(v)), and σs(x, t, v, v
′) = cσ(x)(δc,0(v′, v) + β(x, t)δ0,c(v

′, v)).

12explicit or implicit, this only affects the resolution, not the MC scheme.
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Let us rewrite the scattering part as σs(x, t, v)Ps(x, t, v, v
′) = σs(x, t, v, v

′). This implies

σs(x, t, v) =

∫∫
σs(x, t, v, v

′)dv′dω′,

=

∫
cσ(x)(δc,0(v′, v) + β(x, t)δ0,c(v

′, v))dv′,

= cσ(x)(δc,0(v, 0) + β(x, t)δ0,c(v, 0)) + cσ(x)(δc,0(v, c) + β(x, t)δ0,c(v, c)),
= cσ(x)(δc(v) + β(x, t)δ0(v)).

By definition of Ps we have

Ps(x, t, v, v
′) =

σs(x, t, v, v
′)

σs(x, t, v)
,

=
δc,0(v′, v) + β(x, t)δ0,c(v

′, v)
δc(v) + β(x, t)δ0(v)

.

Few calculations, similar to the already performed one before to identify Ps, show that

Ps(x, t, v, v
′) = 1− δv(v′),

exactly as in the previous section. Now, we are interested in a direct resolution of (10.74) on time step
[0, t]. We apply the material of section 9.5 and consider the adjoint form of (10.75) given by

−∂tu(x, t, v, ω)− vω∂xu(x, t, v, ω) + σt(x, t, v, ω)u(x, t, v, ω) =∫∫
σs(x, t, v)Ps(x, t, v, v

′)u(x, t, v′, ω′)dω′dv′.
(10.76)

Just as in section 9.5, we introduce

σS(x, t, v, v′) = σS(x, t, v, ω)PS(x, t, v, v′) = σs(x, t, v, ω
′)Ps(x, t, v, v

′).

It can be characterised computing

σS(x, t, v) =

∫∫
σs(x, t, v, v

′)Ps(x, t, v, v
′)dv′dω′,

=

∫
cσ(x)(δc(v

′) + β(x, t)δ0(v′))
δc,0(v′, v) + β(x, t)δ0,c(v

′, v)

δc(v) + β(x, t)δ0(v)
dv′,

= cσ(x)β(x, t)
δc(v)

δc(v) + β(x, t)δ0(v)
+ cσ(x)

β(x, t)δ0(v)
δc(v) + β(x, t)δ0(v)

,

= cσ(x)(β(x, t)δc(v) + δ0(v)).

Furthermore, few calculations similar to the already performed one before to identify Ps, show that

PS(x, t, v, v′) = Ps(x, t, v, v
′) = 1− δv(v′).

With the above expressions of the cross-sections, the non-analog MC schemes of section 9.4 for the direct
resolution of (10.72) on time step [0, t] implies

– sampling the interaction time from σS , i.e. cσβ if the MC particle represents a photon (i.e. if
v = c),

– or cσ if the MC particle represents matter (i.e. if v = 0).

We have

σA(x, t, v) = σt(x, t, v)− σS(x, t, v) = cσ(x) ((1− β(x, t))δc(v)− (1− β(x, t))δ0(v)) .

It describes the weight modification along the flight path of any MC particles, see section 9.5. Concerning
the scattering part, at each interaction, the MC particle changes of state, from photon to matter and
matter to photon with probability 1.
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Let us study the asymptotic properties of the above linearisation in the limit δ → 0. On time step [0, t],
the previously presented MC scheme (in the limit NMC →∞) allows solving

∂tφ+ 1
δ
µ∂xφ = 1

δ2σ

(∫
θm − φ

)
,

∂tθm = 1
δ2σβ

(∫
φ− θm

)
.

(10.77)

Performing a Hilbert development in the first equation of the above linearized system yields ∂t


0
0
φ0δ

2∑
1 φiδ

i+2

+ µ∂x


0
φ0δ
φ1δ

2∑
2 φiδ

i+1

 = σ

∫


θ0

θ1δ
θ2δ

2∑
i>2 θiδ

i

−


φ0

φ1δ
φ2δ

2∑
3 φiδ

i


 . (10.78)

It leads to (we used the notations (Θi =
∫
θi,Φi =

∫
φi)i∈N)

(raw results from (10.78)) (integrated with respect to ω)∫
θ0 = φ0, Θ0 = Φ0,

µ∂xφ0 = σ

(∫
θ1 − φ1

)
, 1

3∂xΦ0 = −σΦ1,

∂tφ0 + µ∂xφ1 = σ

(∫
θ2 − φ2

)
, ∂tΦ0 − ∂x 1

3σ∂xΦ0 = σ(Θ2 − Φ2).

The same development of the second equation of (10.77) yields ∂t


0
0
θ0δ

2∑
1 φiδ

i+2

 = σ

−


β0θ0

(β0θ1 + β1θ0)δ
(β0θ2 + β1θ1 + β2θ0)δ2∑
i+j>2 βiθjδ

i+j

+

∫ 
β0φ0

(β0φ1 + β1φ0)δ
(β0φ2 + β1φ1 + β2φ0)δ2∑
i+j>2 βjφiδ

i+j


 .(10.79)

It leads to
(raw results from (10.79)) (integrated with respect to ω)
θ0 =

∫
φ0, Θ0 = Φ0,

β0θ1 + β1θ0 = β0Φ1 + β1Φ0, Θ1 = Φ1

∂tθ0 = σ(−β0Θ2 − β1Θ1 − β2Θ0 + β0Φ2 + β1Φ1 + β2Φ0), 1
β0
∂tΘ0 = −σ(Θ2 − Φ2).

Combining the two asymptotical analysis, we finally obtain the asymptotic limit for the linearized system
(10.72): {

Φ0 = Θ0 = E4
0 ,

∂t
(
E0 + E4

0

)
− ∂x 1

3σ∂xE
4
0 = O(∆t).

(10.80)

In summary, an asymptotic analysis of the above MC scheme yields, to leading order, a valid (explicit
or implicit, the above calculations are general enough to be independent of this choice) non-conservative
discretisation of the equilibrium diffusion equation (10.80). The MC scheme does not introduce ’source
sampling’ as a resolution strategy and consequently avoids teleportation error (avoiding potential com-
peting discretisation parameters, no cycle-to-cycle error explosion). The leading order radiation intensity
is given by a planckian at the local end of time-step, indeed Φ0 = E4

0 . Thus, the above method captures
the equilibrium diffusion limit. Conservation is only ensured up to O(∆t).

Few words on how to be able to take larger time steps for the two AP linearisations

The original idea comes from X. Valentin and H. Jourdren. It consists in applying a similar methodology
as in the IMC framework. Let us introduce wisely the equivalent of the Fleck factor (see section 10.2.1)
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for the previous linearisation. We here sketch the idea for the Asymptotic-Preserving scheme obtained
from linearisation (10.61). The quivalent for the (Asymptotic-Preserving) linearisation (10.72) can be
obtained in a very similar manner and will not be presented.
The starting point is consequently (10.61) reminded here:

∂tφ(x, t, ω) + cω∂xφ(x, t, ω) + cσ(x)φ(x, t, ω) = cσ(x)η(x, t)

∫
em(x, t, ω)dω, (10.81a)

∂tem(x, t, ω) + cσ(x)η(x, t)em(x, t, ω) = cσ(x)

∫
φ(x, t, ω)dω. (10.81b)

Applying the same implicitation as in the Fleck and Cummings methodology supposes choosing η(x, t) =
ηn+1(x) and making sure the closure equation for the energy ensures conservation of the total energy of
the system. Beforehand, ηn+1(x) must be evaluated. To do so, we first identify the equation it solves
(we here drop the dependences and recall no linearisation is assumed for the moment)

∂tE
4
m = Em∂tη + η∂tEm = 4E3

m∂tEm = 4ηcσ

(∫
φ− ηEm

)
,

= Em∂tη + ηcσ

(∫
φ− ηEm

)
= 4E3

m∂tEm = 4ηcσ

(∫
φ− ηEm

)
.

(10.82)

We then have

∂tη(x, t) = 3η(x, t)cσ(x)

(
1

Em(x, t)

∫
φ(x, t, ω)dω − η(x, t)

)
. (10.83)

Let us introduce the explicitation and implicitation hypothesis

∂tη(x, t) = 3ηn(x)cσ(x)

(
1

Em(x, t)

∫
φ(x, t, ω)dω − ηn+1(x)

)
. (10.84)

We now integrate the above equation with respect to time to write

ηn+1(x) = ηn(x) + 3ηn(x)cσ(x)

(∫ t

0

1

Em(x, t)

∫
φ(x, t, ω)dω −∆tηn+1(x)

)
,

≈ ηn(x) + 3ηn(x)cσ(x)∆t

(
1

Em(x, t)

∫
φ(x, t, ω)dω − ηn+1(x)

)
.

(10.85)

We finally have

ηn+1(x) = ηn(x) 1
1 + 3ηn(x)cσ(x)∆t

+
3ηn(x)cσ(x)∆t

1 + 3ηn(x)cσ(x)∆t
1

Em(x, t)

∫
φ(x, t, ω)dω,

= ηn(x)V n(x,∆t) + (1− V n(x,∆t)) 1
Em(x, t)

∫
φ(x, t, ω)dω.

(10.86)

In the above expression, we introduce the Valentin’s factor V n: it plays exactly the same role as the
Fleck one, except it is fitted for linearisation (10.81).

Remark 10.2 The same remark as remark 10.1 can be made about equations (10.85) and the hypothesis
made to go from its first line to its second.

Plugging the expression of ηn+1 in (10.81a) and introducing the second equation to satisfy conservation
on the time step leads to

∂tφ(x, t, ω) + cω∂xφ(x, t, ω) + cσ(x)φ(x, t, ω) =

cσ(x)ηn(x)V n(x,∆t)

∫
em(x, t, ω)dω + cσ(x)(1− V n(x,∆t))

∫
φ(x, t, ω)dω, (10.87a)

∂tem(x, t, ω) + cσ(x)ηn(x)V n(x,∆t)em(x, t, ω) = cσ(x)V n(x,∆t)

∫
φ(x, t, ω)dω. (10.87b)

The above linearized system has to be solved on time step [0, t] with an MC scheme, very similar to
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the one presented before (after linearisation (10.61)), except an artificial scattering is introduced. This
artificial scattering is such that a radiative MC particle is not necessarily changed into a matter one.
There is no additional difficulty to build an MC scheme for system (10.87), it consists in applying the
material of the previous chapter 9. There is no additional difficulty to show the new linearisation bears
relevant properties with respect to the conservative equilibrium diffusion regime. The same applies for
the question of the teleportation error. The new scheme does not suffer it (as the previous analysis have
been carried out independently of an explicit or implicit choice of η and β).

10.2.3 Summary

In this section, we deepened the analysis of the IMC scheme [110] together with its improved tilted versions
[69, 70, 301]. In particular, we formally showed how a tilt behaves with respect to the regime δ → 0.
Tilting ensures better numerical approximations but intrinsically makes the ∆t and ∆x discretisation
parameters compete during each time steps. It leads to cycle-to-cycle error accumulations (see [301]). To
avoid such competing behaviour, we detailed the construction of two Asymptotic Preserving MC scheme
for the stiff regime (10.40). They are based on avoiding any small spatial discrepancies in the emission
along the cycles of the MC resolution. They both capture the diffusion limit but differ with respect
to the equilibrium conservative one. They are not subject to the teleportation error and the different
discretisation parameters do not compete. This ensures converging approximations as NMC → ∞
together with ∆t→ 0 and ∆x→ 0 independently.

We finally would like to mention a third possibility based on the few observations of this section. The
above analysis shows that without the introduction of any spatial discrepancy, the IMC linearisation
does capture the equilibrium diffusion limit. Being able to design an MC scheme for the IMC lineari-
sation avoiding this spatial discrepancy should consequently give satisfactory results. In section (9.9.2),
we detailed the construction of a new AP scheme in the stiff source regime. Its application to the IMC
linearisation (10.42) also avoids the teleportation error and gives very satisfactory results in the equilib-
rium diffusion regime. We consider the material of both sections 9.9.2 and 10.2.1 makes its construction
straightforward but we give few details on how it has been numerically tested in the following remark.

Remark 10.3 (A third AP MC scheme in the diffusion limit based on the IMC linearisation for legacy
IMC codes) In this remark, we focus on the limited number of modifications to apply in an IMC code
to be able to apply the material of section 9.9.2 and avoid the teleportation error. Let us focus on the
self-consistent equation (10.44a) obtained from the IMC linearisation (10.44):

∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσ(x)u(x, t, ω) =

cσ(x)f(x,∆t)Θ(x) + cσ(x)(1− f(x,∆t))

∫
u(x, t, ω)dω.

It can easily be recast as

∂tu(x, t, ω) + cω∂xu(x, t, ω) + cσt(x)u(x, t, ω) = cσa(x)S(x) + cσs(x)

∫
u(x, t, ω)dω, (10.88)

to fit in the notations and structure of section 9.9.2. Equation (10.88) is simpler than in section 9.9.2
in the sense the source term depends only on the spatial variable x during the considered time step. It
is easy, from the simulation code in which the IMC method is developed, to test the strategy of section
9.9.2. We here describe the few modifications needed:

– the weight modification along the flight path in a given cell i is given by (cf. (9.116))

Ki(t) =
Ui(t)

Ui(0)
= e−cσ

i
at +

Si

U0
i

(1− e−cσiat).

In the above expression, Ui(t) corresponds to the analytical solution of{
∂tUi(t) = −cσiaUi(t) + cσiaSi,
Ui(0) = U0

i .
(10.89)
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We assumed constant per cell quantities (opacities, sources, initial conditions) along each charac-
teristic. The weight of each MC particles is multiplied by Ki(t) between two events, the first one
occuring at time 0, the second at time t (independently of their nature, census, cell exit, interaction)
within cell i. In other words we have wp(t) = wp(0)Ki(t) along the flight path of the MC particle
in the time interval [0, t].

– The contribution to matter in cell i occuring between times 0 and t (track length estimator) is then
given by wp(0)(1−Ki(t)).

– Of course, without source term in cell i (if Si = 0), we recover the classical weight modification

wp(t) = wp(0)e−cσ
i
at and track length estimator wp(t) = wp(0)(1 − e−cσiat) in cell i for the non-

analog MC scheme of section 9.5 with constant per cell opacities.

– We insist with this method, source sampling (cause of the teleportation error) must be desac-
tivated.

– Finally, the sampling of the interaction time (for an MC particle in cell i) must be done according
to (9.43) with

vσiS(t) = cσis +
Si
Ui(t)

= cσis +
Si

U0
i e
−cσiat + Si(1− e−cσ

i
at)
. (10.90)

To sample the interaction time from an uniform random variable U on [0, 1], expression (9.53)
must be inversed using (10.90). This inversion implies (to my knowledge) an iterative procedure
(newton or fixed point). The latter can be computationally intensive especially in diffusive media
(characterised by the need to compute many interaction times per MC particles). To avoid relying
on such complex and costful process, we suggest approximating (10.90) by its mean on the time step
[0,∆t]. In other words, we suggest performing the following additional hypothesis

vσiS(t) ≈ vσiS =
1

∆t

∫ ∆t

0

vσiS(α)dα = E[vσiS(tU1
)] where tU1

∼ U([0,∆t]). (10.91)

To compute the above mean on-the-fly during the MC computations, we suggest applying an MC
method. Just before sampling the interaction time, the new scheme relies on one more sampling:

– sample U1 from an uniform random variable on [0, 1].

– Compute tU1
= U1∆t uniformly distributed in [0,∆t].

– Use tU1
to evaluate vσiS(tU1) from (10.90) (analytical formulae).

– Sample one realisation of the interaction time τ from

τ = − ln(U)

vσiS(tU1)
with U ∼ U([0, 1]).

– The above strategy ensures the population of MC particle, in mean, sees (10.91) as an opacity
in cell i during time step [0,∆t].

With the above modifications, it is easy implementing an IMC solver without tilt, without source sampling
and without teleportation error from an already existing (legacy) IMC code. Numerical results on the
classical benchmarks13 confirm

– the time linearisation (10.44) is efficient14,

– the loss of the AP character in the diffusion limit is mainly due to the source sampling phase15,

13Marshak waves for example.
14no dissuasive time steps for stability needed.
15triggering teleportation errors.
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– all the more emphasized by the fact the interaction time sampling (9.43) can even be simplified to
(10.91) without leading to significant errors on the numerical tests performed in the equilibrium
diffusion regime.

This MC scheme has only been tackled briefly here because it relies on additional approximation (10.91)
in comparison to the approaches of section 10.2.2.

Finally, we insist on the similarity of the methodology described here and the one presented in section
10.1 and [3]. System (10.89) typically refers to the reduced model in the stiff regime of interest hinted at
in point 4) of section 10.1.3 to build an AP MC scheme.

About the construction of the MC scheme for the nonlinear Boltzmann equation:

– once a relevant linearisation chosen,

– it simply resumes to the application of the material of chapter 9.

The key idea is then to enrich the unknown u with an additional dimension (v in the previous sections).
The MC scheme is insensitive to such increase. It then only remains to identify the resulting total
and scattering opacities. Such general methodology can be applied in many other fields of applications
(section 9.11 is a typical example with the uncertain linear Boltzmann equation).
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Chapter 11

Conclusion

The end is the beginning is the end is the ...

Contents
11.1 On Uncertainty Quantification (part II) . . . . . . . . . . . . . . . . . . . . . 287

11.2 On Monte-Carlo resolution schemes (part III) . . . . . . . . . . . . . . . . . 288

In this concluding chapter, we would like to come back to several aspects of the researches presented
in this document. We insist on

– how they can be deepened,

– which tracks could have been followed and probably will in the future,

– and which of the previous topics lead to shorten the gap between long-term studies to at hand ones.

This section is brief, on purpose, to avoid speculations on the future hot topics and possible dead-ends.
Just as the manuscript, the conclusion is divided into two parts, the first one dealing with uncertainty
quantification, the second with Monte-Carlo schemes.

11.1 On Uncertainty Quantification (part II)

Let us begin by concluding remarks and perspectives for the uncertainty quantification topic. We mainly
would like to come back on three points:

– the first point concerns the ergocidity property at the basis of polynomial chaos in the seminal work
of Wiener [295]. Ergodicity has only been skimmed in this work, mainly because the notion is still
unfamiliar to me. The literature about this mathematical and physical notion is furnished and
complex and it is not easy being a self-taught newcomer in this area. Still, I feel the importance
of it. Its underlying properties for modeling could greatly improve the understanding of complex
physical (as in chapter 7 and paper [243]) or mathematical/numerical (as in [109]) phenomenon.

– The second point concerns mainly non-intrusive gPC1, i.e. chapters 5, 6 and 8, and the construction
of improved approximation methods having

– a less important truncation error (see expression (5.5)),

– in much more (non-smooth or multimodal, see the examples of chapter 8) situations.

1and its derivations, collocation-gPC, Kriging-gPC etc., see chapter 5.
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In chapter 6, a general inequality (see (6.3)) has been put forward. It has been exploited in section
6.1.1 via a particular choice of change of variable ensuring a gain in a new basis. This choice is not
unique and there may exist some more relevant ones. For example, in section 6.1.1, we chose the
change of variable Z(X) such that (uZ1 )2 =

∑P
k=1(uXk )2 to make sure (6.3) becomes (6.5). Amongst

the many other possibilities, we may be able to make sure every (uZk )k∈{0,...,P} are related to every
(uXk )k∈{0,...,P}, i.e. with ∀k ∈ {0, .., P} uZk = uXk ×Kk and (Kk)k∈{0,...,P} sufficiently well-suited
to have inequality (6.5). Filters [162] could help finding relevant relations for example. Different
choices may bear some different interesting properties.

– The last point concerns intrusive methods. For the Euler system, it is still not clear whether being
intrusive is really an advantage. In the summaries of chapters 4 and 5, care has been taken to
highlight the pros and cons of the two approaches in the same configuration. But the conclusions
whether one approach is better than the other probably remains subjective. On another hand, in
section 9.11 and above all in [241], we put forward intrusiveness can be much more efficient than
non-intrusiveness for the resolution of the uncertain linear Boltzmann equation. In other words,
intrusiveness, under certain conditions2 helps a lot. It is sometimes worth opening the black-box
code.

The last point, closely related to the MC resolution topic, will also be tackled in the next section.

11.2 On Monte-Carlo resolution schemes (part III)

Let us finish by concluding remarks and perspectives on Monte-Carlo resolution schemes. For this topic,
we also would like to come back on three points:

– the first point concerns chapter 9 and the MC resolution of the linear Boltzmann equation. To
my knowledge, this chapter is the most complete and furnished work available in the literature
allowing to build from scratch consistent and converging MC schemes for the linear Boltzmann
equation. Some parts can probably be found in different books or publications together with some
more theoretical details but every practical/numerical3 ones are described in this document. The
latter concern has been particularly important for me during these past (engineering) years. Every
parts are originally written and we hope pedagogical enough to build simulation platforms having
several MC schemes fitted for different regimes of interest. In this chapter, there are also some
original (and efficient!) MC schemes4.

– Second, in chapter 10, we presented several Asymptotic-Preserving schemes for the resolution of
the nonlinear Boltzmann equation. The scheme of section 10.1 is presented in [3]. The schemes
of section 10.2 will be the purpose of future publications and will be accompanied by numerical
examples for comparisons. In this chapter, the steps can be summed up as

– first, identify a relevant linearisation with respect to the regime one wants to capture accu-
rately. The latter must ensure taking large time steps: having in mind an MC scheme will
be used to solve the linearised equation, to take advantage of replication domain5, one must
make the communications at the end of time steps the scarcer possible, see [99].

– Once the above step performed, it only remains to choose an adapted MC scheme (for example
amongst the ones of chapter 9) for the now linearised equation. The identification of such MC
scheme is not straightforward: for example in section 10.2.1, we put forward a very common
MC discretisation (implying source sampling mainly) leading to a loss of the asymptotical
equilibrium diffusion limit.

2Possibility to compute the gPC coefficients with an uncertain MC scheme for the system of interest as in section 9.11.
3For example, the accelerated Boltzmann equation is dealt with in [296, 297] but numerical aspects are eluded in the

latters.
4The scheme of section 9.9.2 is used to solve the model described in section 10.2 for example and bear very interesting

properties, see remark 10.3. The efficiency of the uncertain MC scheme of section 9.11 is demonstrated in [241].
5The most straightforward efficient (weak scalability) parallel strategy for MC scheme, see [99, 247, 2, 190, 187] and

[99, 3, 241].
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Now, regarding short term perspectives on this topic, we will probably tackle uncertainties in the
nonlinear models of chapter 10. The combination of the efficient MC schemes of this chapter
together with the new gPC based MC scheme of section 9.11 could lead to an almost immediate
and efficient intrusive method. This will probably the purpose of future publications.

– Finally, I would like to come back on the uncertain Euler system (tackled in part II) and the
possibility to address it via BGK or Fokker-Planck models [193, 22, 194]. Those models can be
solved with an MC scheme (see [298] for example). If a relevant linearisation of the model can
be found, i.e. if we are able to take large time steps, its MC resolution could be enriched, as in
section 9.11 and [241], to take efficiently uncertainties into account. This will also constitute future
prospective tracks.

This ends the manuscript, hope you enjoyed it, thank you for reading.
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Appendix A

Analytical resolution of the
uncertain Burgers’ equation

Or what is behind the resolution of stochastic PDEs and those histograms...

The idea of this chapter is to analytically solve an uncertain propagation problem. It will allow

– identifying explicitly its different steps,

– and introducing progressively the important notions (probability measure, histogram, introduction
of a Monte-Carlo resolution scheme for propagation etc.) casually used in the whole document.

In this short chapter, we focus on one of the simplest nonlinear conservation law, the Burgers’ equation
in 1D (spatial dimension). It corresponds to a particular choice of U and of the flux f(U) in (2.1). They
are given by ∀x ∈ D,∀t ∈ [0, T ] {

∂tu(x, t) + ∂x
u2(x, t)

2 = 0,

u(x, 0) = u0(x).
(A.1)

Equation (A.1) must come with proper boundary conditions. For the moment, we focus on the previous
Cauchy problem (A.1). The initial condition is given by

u0(x) = uH1]−∞,xH ](x) +

(
uL − uH
xL − xH

(x− xH) + uH

)
1[xH ,xL](x) + uL1[xL,∞[(x), (A.2)

with xH 6= xL and uH 6= uL. Initial condition (A.2) is continuous and has two constant states, uH for
x < xH and uL for xL < x, separated by an affine part between x ∈ [xH , xL] connecting state uH to
state uL.

In a first paragraph of this chapter, we solve (A.1) together with (A.2) analytically. Equation (A.1)
is deterministic. Its analytical resolution is classical, see [81, 260, 81]. It is briefly recalled in the
following section. Let us define t∗ as

t∗ = − 1

inf
x∈D

(dxu0(x))
,

then t∗ is such that the solution is continuous for t < t∗ and exhibits a discontinuous behaviour for
t ≥ t∗. Given the explicit expression of the initial condition (A.2), we have t∗ = − xL−xH

uL−uH , see [81, 260].
First, for t < t∗, the solution of (A.1) can be built applying the characteristic method [81, 260]. Let us
introduce the change of variable {

dtx(t) = u(x(t), t),
x(0) = x0.
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Then if Φ(t) = u(x(t), t), we have dtΦ(t) = ∂tu(x(t), t) + dtx(t)∂xu(x(t), t). Furthermore, dtΦ(t) = 0 if
u is a smooth solution of (A.1). This implies Φ(t) = Φ(0), ∀t < t∗. We then have

Φ(t) = u(x(t), t) = Φ(0) = u(x(0), 0) = u0(x0).

Finally, the solution u(x, t) can be obtained inversing the relation x = x0 + u0(x0)t of unknown x0 =
x0(t, x). We do not detail the computations here. The solution for t < t∗ is given by

u(x, t) = +uH1]−∞,xH−uHt](x)

+
(

uL−uH
xL+uLt−uHt−xH (x− uHt− xH) + uH

)
1]xH−uHt,xL−uLt](x)

+uL1]−∞,xL−uLt](x).

(A.3)

After t∗, the solution exhibits a discontinuous behaviour [81, 260] and can be obtained applying Rankine-
Hugoniot’s relation [81, 260]: let us introduce x∗(0) = xH+uHt

∗ = xL+uLt
∗, x∗(t) = x∗(0)+ uH+uL

2 (t−
t∗), we then have for t ≥ t∗

u(x, t) = uH1]−∞,x∗(t)](x) + uL1]−∞,x∗(t)](x). (A.4)

The solution of (A.1) with initial condition (A.2) is then given by1

u(x, t) = +1[0,t∗[(t)

 +uH1]−∞,xH−uHt](x)

+
(

uL−uH
xL+uLt−uHt−xH (x− uHt− xH) + uH

)
1]xH−uHt,xL−uLt](x)

+uL1]−∞,xL−uLt](x)


+1[t∗,∞[(t)

 +uH1[−∞,x∗(t)[(x)
0
+uL1[x∗(t),∞[(x)

 .
(A.5)

Few notations can be introduced to alleviate the above expression
x∗(t) = x∗0 + uH+uL

2 (t− t∗),
xH(t) = 1[0,t∗](t) [xH + uHt] + 1[t∗,∞](t)x

∗(t),
xL(t) = 1[0,t∗](t) [xL + uLt] + 1[t∗,∞](t)x

∗(t),

U(x, t) =
(

uL−uH
xL(t)−xH(t) (x− xH(t)) + uH

)
, with uL ≤ U(x, t) ≤ uH ,

so that the solution can then be rewritten in a much simpler form

u(x, t) = 1[0,t∗[(t)

 +uH 1]−∞,xH(t)](x)
+U(x, t) 1]xH(t),xL(t)](x)
+uL 1[xL(t),∞[(x)

+ 1[t∗,∞[(t)

[
+uH 1[−∞,x∗(t)[(x)
+uL 1[x∗(t),∞[(x)

]
. (A.6)

The dynamic of the deterministic solution is illustrated figure A.1. Each spatial profile corresponds to
a particular time. The first continuous profile on the left corresponds to the initial one. As time passes,

– the slope of the affine part becomes steeper and steeper,

– the spatial interval in which it lives narrower and narrower,

– until a discontinuity forms and propagates at velocity uL+uH
2 (discontinuous profiles on the right

hand side of abscissae x = 2 in figure A.1).

Such kind of solution, of low regularity, is encountered all along the present document.

In the second part of this chapter, we build an uncertainty quantification problem from (A.1) and its
initial condition (A.2). The stochastic solution of the problem we build from the previous configuration
can also be solved analytically. Suppose the solution no longer only depends on (x, t) but also explicitly
on a random variable X ∼ G(0, σ2) where G(0, σ2) denotes a gaussian of mean 0 and variance σ2. Here,

1We insist it is only rewriting (A.3) and (A.4) in the same expression.
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Figure A.1: Time evolution of the spatial profile for the solution of the deterministic Burgers’ equation.

we suppose X models an uncertainty in the initial condition u0(x,X) = u0(x −X). With the previous

particular choice for X, the probability measure of X has expression dPX(t) = 1
σ
√

2π
exp

(
− (t−µ)2

2σ2

)
dt,

with µ = 0. Its cumulative density function (cdf) is given by

FX(x) =

∫ x

−∞

1

σ
√

2π
e−

(t−µ)2

2σ2 dt =
1

2

(
1 + erf

(
x− µ
σ
√

2

))
.

Besides, we have∫ ∞
x

1

σ
√

2π
e−

(t−µ)2

2σ2 dt = 1−
∫ x

−∞

1

σ
√

2π
e−

(t−µ)2

2σ2 dt = 1− FX(x) =
1

2

(
1− erf

(
x− µ
σ
√

2

))
. (A.7)

The above expression will be useful later on2. With the above modeling of the initial uncertainty, the
uncertain Burgers’ equation rewrites{

∂tu(x, t,X) + ∂x
u2(x, t,X)

2 = 0,

u0(x, 0, X) = u0(x,X) = u0(x−X),
(A.8)

In (A.8), we have

– (x, t,X) ∈ D ⊂ R× [0, T ]× Ω,

– u0(x,X) is the uncertain initial condition built from (A.2).

The unknown u now belongs to a probability space and the solution of the uncertainty quantification
problem is a stochastic process, i.e. a random variable parametered by both3 x and t. In this sense,
solving a uncertainty quantification problem corresponds to the resolution of stochastic partial differential
equations (SPDE). As a consequence, solving analytically the uncertainty quantification problem implies
fully characterising the stochastic process u(x, t,X), solution of the uncertain Burgers’ equation (A.8).
It resumes to characterising the random variable u(x, t,X), ∀(x, t). A random variable being fully
characterised by its probability measure, we here aim at looking for dPu(x,t,X), the measure of X −→
u(x, t,X). This implies looking for the probability of every admissible states of u(x, t,X) ∼ dPu(x,t,X).

2In the above expressions, the erf function is defined as erf(x) = 1√
π

∫ x

−x
e−

t2

2 dt.

3i.e. for fixed x, t, quantity u(x, t,X) is a random variable.
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The initial uncertainty is here modeled by a gaussian random variable X ∼ G(0, σ2). It affects the
position of the affine part between the two constant states. Applying the same resolution strategy as
above and taking X into account leads to a relatively simple solution of the stochastic Burgers equation
(A.8). It is given by

u(x, t,X) =

1[0,t∗[(t)

 +uH 1]−∞,xH(t)](x−X)
+U(x−X, t) 1]xH(t),xL(t)](x−X)
+uL 1]xL(t),∞](x−X)

+ 1[t∗,∞[(t)

[
+uH1[−∞,x∗(t)[(x−X)
+uL1[x∗(t),∞[(x−X)

]
.

(A.9)

In the particular chosen configuration, t∗ does not depend on X and is still given by t∗(X) = t∗ =
− xL−xH
uL−uH . The maximum principle for Burgers equation [81, 260] ensures those states are within u ∈

[uL, uH ]. The form of the solution (A.9) allows considering separatedly the states uH , uL and the interval
u ∈]uL, uH [:

– The probability of having u(x, t,X) = uH is denoted by P(u(x, t,X) = uH) and is, by definition4,
given by

P(u(x, t,X) = uH) =

∫
δuH (u)dPu(x,t,X)(u) =

∫ ∞
−∞

δuH (u(x, t,X))dPX ,

=

∫ ∞
−∞

δuH (u(x, t, y))
1

σ
√

2π
e−

y2

2σ2 dy.

Using expression (A.7) in the above formulae bears

P(u(x, t,X) = uH) = 1[0,t∗[(t)

∫ ∞
−∞

1]−∞,xH(t)](x− y)
1

σ
√

2π
e−

y2

2σ2 dy

+1[t∗,∞[(t)

∫ ∞
−∞

1[−∞,x∗(t)[(x− y)
1

σ
√

2π
e−

y2

2σ2 dy,

= 1[0,t∗[(t)

∫ ∞
−∞

1]−∞,xH(t)](y)
1

σ
√

2π
e−

(y−x)2

2σ2 dy

+1[t∗,∞[(t)

∫ ∞
−∞

1[−∞,x∗(t)[(y)
1

σ
√

2π
e−

(y−x)2

2σ2 dy,

= 1[0,t∗[(t)
1
2

(
1 + erf

(
xH(t)−x
σ
√

2

))
+ 1[t∗,∞[(t)

1
2

(
1 + erf

(
x∗(t)−x
σ
√

2

))
,

= wuH (x, t).

In the following lines, wuH (x, t) corresponds to the weight of the Dirac mass δuH at u(x, t,X) = uH .

– Very similar computations of the probability of having u(x, t,X) = uL leads to

P(u(x, t,X) = uL) =

∫
δuL(u)dPu(x,t,X)(u),

=

∫ ∞
−∞

δuLu(x, t,X)dPX ,

=

∫ ∞
−∞

δuLu(x, t, y)dPX(y),

= 1[0,t∗[(t)

∫ ∞
−∞

1[xL(t),∞](x− y)dPX(y) + 1[t∗,∞[(t)

∫ ∞
−∞

1[x∗(t),∞[(x− y)dPX(y),

= 1[0,t∗[(t)

∫ ∞
−∞

1]−∞,x−xL(t)](y)dPX(y) + 1[t∗,∞[(t)

∫ ∞
−∞

1]∞,x−x∗(t)](y)dPX(y),

= 1[0,t∗[(t)
1
2

(
1 + erf

(
x−xL(t)

σ
√

2

))
+ 1[t∗,∞[(t)

1
2

(
1 + erf

(
x−x∗(t)
σ
√

2

))
,

= wuL(x, t).

Once again, wuL(x, t) is the weight of the Dirac mass δuL at u(x, t,X) = uL.

– The computations for the affine part are a little bit different. Let us rewrite U(x, t) = a(t)x+ b(t).

4we here only use simple probabilistic calculations, see [256].
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This implicitly defines {
a(t) = uL−uH

xL(t)−xH(t) < 0,

b(t) = − uL−uH
xL(t)−xH(t)xH(t) + uH .

We consequently have U(x−X, t) = a(t)x+ b(t)− a(t)X = U(x, t)− a(t)X. Then by definition of
the probability of having u(x, t,X) within interval ]uL, uH [ we have

P(uL < u(x, t,X) < uH) = P(u(x, t,X) = 1[xH(t),xL(t)](x−X)U(x−X, t)),
= P

(
u(x, t,X) = 1[x−xL(t),x−xH(t)](X)

[
U(x, t)− a(t)σ2G

])
,

= P
(
u(x, t,X) = 1[x−xL(t),x−xH(t)](σ

2G)
(
U(x, t)− a(t)σ2G

))
,

= P
(
u(x, t,X) = 1[ x−xH (t)

σ2 ,
x−xL(t)

σ2

](G)
(
U(x, t)− a(t)σ2G

))
.

(A.10)

The latter expression ensures u(x, t,X) can be expressed in term of truncated gaussian law: let
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Figure A.2: Mean and Variance spatial profiles of u(x, t,X) solution of the uncertain Burgers’ equation
(A.8) for different times.

us introduce a new gaussian variable X of mean U(x, t) and variance a(t)σ2, then the probability
measure conditioned to u(x, t,X) ∈]uL, uH [ is given by

dPu(x,t,X)∈]uL,uH [(u) =
1

KL,H
1[U(x,t)−a(t)(x−xH(t)),U(x,t)−a(t)(x−xL(t))](u)

1√
−2πa(t)σ2

e
− (U(x,t)−u)2

−2a(t)σ2 du.
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In the above expression, the normalization constant KL,H is simply defined such that ∀(x, t)∫
dPu(x,t,X)∈]uL,uH [(u)du = 1− wuH (x, t)− wuL(x, t).
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Figure A.3: Pdfs of the random variables u(x = 1.8, t = 0.0, X), u(x = 2.0, t = 0.0, X) and u(x = 2.2, t =
0.0, X).

Finally, introduce w]uL,uH [(x, t) = 1
KL,H

1√
−2πa(t)σ2

, then the probability measure of u(x, t,X) is fully

characterised by the sum of measures

dPu(x,t,X)(u) =

+wuH (x, t)δuH (u)

+w]uL,uH [(x, t)1[U(x,t)−a(t)(x−xH(t)),U(x,t)−a(t)(x−xL(t))](u)e
− (U(x,t)−u)2

−2a(t)σ2 du
+wuL(x, t)δuL(u).

(A.11)

Recall wuH (x, t)+w]uL,uH [(x, t)+wuL(x, t) = 1 holds ∀(x, t). From (A.11), every statistical observable of
interest can be obtained. For example, the expressions of the high order moments (Mk)k∈N of u(x, t,X)
can be calculated analytically ∀(x, t) from

Mk(x, t) =

∫
ukdPu(x,t,X)(u).

The first moment M1(x, t) (mean) and the variance V[u](x, t) = M2(x, t)−M2
1 (x, t) are displayed figure

A.2. We do not detail their expressions here but we display their spatial profiles for uL = 0, uH = 1, xL =
1, xH = 2, σ = 1 and for several times t = 0.0, t = 1.0, t = 1.2 and t = 1.5. We recall that for the
previous choices of uL, uH , xL, xH , the critical time at which a discontinuous solution appears is t∗ = 1,
whatever the value of the realisation of X. On figure A.2, it is interesting noticing how the dynamics
of the solution is hidden by the important amount of uncertainty: the slope of the mean or even the
variance are nly very slightly affected by the appearance of a shock (after t∗ = 1). Mean and variance
only seem to be advected and nonlinear behaviours are almost impossible to identify.

On another hand, from (A.11), it is also possible to display the probability density function (pdf)
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Figure A.4: Pdfs of the random variables u(x = 1.8, t = 0.6, X), u(x = 2.0, t = 0.6, X) and u(x = 2.2, t =
0.6, X).

of u(x, t,X) for several spatial locations x = 1.8, x = 2.0, x = 2.2 and times t = 0.0, t = 0.6, t = 1.4
in the same conditions (figures A.3–A.4–A.5). On figure A.3 for example, for x = 1.8, t = 0.0 (top left
picture), the initial condition behaves as a Gaussian random variable plus a Dirac mass at u = uL = 0.
At x = 2.0 on the top right picture of figure A.3, the Dirac mass has a more important probability. At
position x = 2.2, the solution is deterministic with state uL = 0 having probability 1. As time passes,
the pdf of the solution changes: in the top left picture of figure A.4, the two Dirac masses at states
uL = 0 and uH = 1 have a non-zero probability whereas the pdfs at the other locations are only slightly
affected. At time t = 1.4 on figure A.5, the top pictures testify of the deterministic behaviour of the
solution for positions x = 1.8 and x = 2.0 (state uH = 1 with probability 1) whereas the solution behaves
as the binomial law (two Dirac masses only) at x = 2.2 in the bottom picture of the same figure. If the
nonlinear behaviour of the solution was hidden when considering the mean and variance, this is not the
case when considering the pdfs: the discontinuous behaviour induces the dynamical appearance of Dirac
masses in the random variables X −→ u(x, t,X) for some x as time t increases.

Up to this point, few comments can be made: first, the complete characterization of a stochastic
process, solution of an uncertainty propagation (typically the construction of (A.11)), is complex. In
our case, it even strongly relies on the availability of an analytical solution of the deterministic model
of interest. Obviously, such analytical solution is usually far from being available. Analytical solutions
are not available anymore in this document (reason why this study is considered singular and is in the
appendix). Nonetheless, before explaining how numerical solution can be handled to capture the same
kind of solutions as in figures A.2–A.3–A.4–A.5, i.e. mean, variance, histograms etc., we would like
to make few comments on the structure of the uncertain solutions in a hyperbolic context. With the
deterministic analytical solution, we emphasized the appearance of discontinuous solutions, dynamically,
as time passes. With the uncertain problem, we emphasized first, with the study of the mean and of
the variance, that the solutions may seem smoothed out (figure A.2). They are not in reality, as testifies
the study of the pdf of the stochastic process (figures A.4–A.5). In practice, this is of capital interest as
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Figure A.5: Pdfs of the random variables u(x = 1.8, t = 1.4, X), u(x = 2.0, t = 1.4, X) and u(x = 2.2, t =
1.4, X).

the discontinuous behaviour in the stochastic space typically generates important threshold effects with
respect to the uncertain parameter. This justifies why, in this document, we consider mean and variance
are not relevant enough quantities when dealing with uncertain systems of conservation laws.

Now, to be able to perform the same interpretations as above, there is another possibility, less calcu-
latory, more computational: instead of calculating the probability measure (A.11) (complex process), it
is possible to introduce a numerical method to compute every statistical observables of interest. Having
access to the analytical solution (A.9), the idea is to apply a Monte-Carlo method, i.e. sample NMC

realisations of X and apply (A.9) to them before a postprocessing step. Figure A.6 compares the pre-
vious results, obtained from the analytical characterization of the probability measure, i.e. from (A.11),
to Monte-Carlo approximated ones obtained from the sampling of (A.9). Figure A.6 (left) compares
the results on the mean and variance spatial profiles at t = 1.5 for NMC = 100 Monte-Carlo samples.
The dynamics of the solution is well captured by the Monte-Carlo approximation (the smooth curves
are the references) but the numerical solutions exhibit a noisy behaviour, less and less identifiable as
NMC is increased. On figure A.6 (right), the analytical pdf at x = 1.8 and t = 0.5 is compared to the
Monte-Carlo approximated one, commonly called a histogram, obtained with NMC = 10000 samples.
Both are in good agreement, the two Dirac masses are captured together with the central part, even if
more samples would be needed to, for example, accurately estimate the probability of having u within
interval [0.3, 0.4]. Of course, when an analytical solution such as (A.9) is not available, one must rely on
a simulation device which must be run for the NMC realisations of the Monte-Carlo method. It usually
implies dealing with longer restitution times and an additional discretization error. Those practical issues
are discussed all along the present document.
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mean, V, t = 1.5, NMC = 100 dPu(x=1.8,t=0.5,X), NMC = 10000
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Figure A.6: Comparisons of mean, variance and pdf obtained from the analytical probability measure
(A.11) and approximated from (A.9) together with a Monte-Carlo method.
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Appendix B

Statistical hypothesis testing in a
nutshell

An example of use of an uncertainty propagation study in a V&V context

Contents
B.1 A (too brief and general) presentation of statistical hypothesis testing . . 300

B.2 Statistical hypothesis testing and uncertainty propagation for V&V . . . . 301

In this short appendix, we briefly present the main principle of statistical hypothesis testing. It is
first generally presented in section B.1. The section, in any way, does not represent a substitute to
complete works on statistics (see [256, 1] and the references therein or [250] for an interesting industrial
application in neutronics). The aim of section B.1 is to enumerate the basic bricks necessary to introduce
properly statistical hypothesis testing as can be needed after an uncertainty propagation. Section B.2
then corresponds to an application of the material of section B.1 on the problem of comparing efficiently
and rigorously experimental and numerical results tackled in section 1.2 (more precisely when δX can
not be made arbitrary small in section 1.2.4).

B.1 A (too brief and general) presentation of statistical hypoth-
esis testing

Statistical hypothesis testing is of crucial importance for anyone willing to compare two data sets
(Yi)i∈{1,...,NY } and (Xi)i∈{1,...,NX} obtained from two systems, two devices. In this section, we present a
crude summary of its main steps. These steps will be illustrated in the next section on the problem of
comparing experimental and numerical results in a V&V context (cf. the end of section 1.2.4). When
one has to compare two sets of data, generally, first comes

1. one or several questions: are my two systems, from which are drawn my two data sets, equivalent?
Are they fundamentaly different? Of how much do they differ? Or do they have the same perfor-
mances? As many questions any physician would be eager to answer when comparing experimental
results to simulation ones for example.

2. Suppose we are interested in the question

”do my systems have the same average performances?” (B.1)

The statistical hypothesis testing framework implies stating two hypothesis. They will be con-
fronted via the two data sets at hand. Those hypothesis are:
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H0 the null hypothesis. It is associated with a contradiction to a theory one would like to prove.

H1 The alternative hypothesis. It is associated with a theory one would like to prove.

Relative to question (B.1), in general, we hope for our systems to have the same performances
and do not expect any important differences. The null hypothesis would correspond to ”my two
systems do not have the same average performances”. The alternative hypothesis would rather be
”my two systems have significantly different average performances”. Note that H1 does not need
to be the contraposition of H0.

3. The next step corresponds to the efficient and accurate mathematical and statistical modeling
of the two hypothesis from the two data sets. This is where uncertainty propagation plays an
important role. Emphasis is made on the need for accuracy and efficiency because without them,
the conclusion at the end of the tests may be wrong. This modeling step will be illustrated in the
next section.

4. The last step corresponds to the definition of relevant statistical tools to compare our hypothesis,
their relevance, their significance. The comparison is said to be statistically significant if the
relationship between the data sets leads to the null hypothesis having its probability of occurence
under a certain threshold probability, the significance level. The relevant statistical tools must
be able to determining the probability of a rejection of the null hypothesis for an a priori chosen
significance level. Those tools are the type I and type II errors:

Type II: the type I error/risk corresponds to the probability α of having the null hypothesis falsely
rejected.

Type II: the type II error/risk corresponds to the probability β of having the null hypothesis falsely
assumed to be true.

By specifying a threshold probability on the admissible risk of making a type I error, the type II
error can be estimated and the statistical decision process can be controlled. One can decide to
either reject the null hypothesis in favor of the alternative or not reject it. The decision rule is to
reject the null hypothesis H0 under a certain value of the type II error, and to accept or ”fail to
reject” the hypothesis otherwise. The strength the test is defined by 1− β and corresponds to the
probability of rejecting H0 when H1 is true.

With the above lines, we quite abruptly introduced the general framework. We mainly highlighted four
points. We suggest identifying those points in the context presented in section 1.2.4 regarding V&V and
the use of uncertainty analysis as a tool to compare experimental and numerical results.

B.2 Statistical hypothesis testing and uncertainty propagation
for V&V

In the previous sections, we presented general guidelines for statistical hypothesis testing. In this section,
we focus on its application to compare rigorously experimental and numerical results. More precisely,
we are going to focus on the situation where δX can not be made arbitrary small in section 1.2.4.

Let us come back to the problem addressed in section 1.2.4 and assume we are in situation summed
up by (1.47) recalled below

Uexp − UMX
∆

= δ0 = δ∆︸︷︷︸
O(∆ζ)�1

+ δMX − δX︸︷︷︸
Z�1

= δMX − δX . (B.2)

In the above expression, recall that (see section 1.2.4 for all the details)

– vector X models probabilistically uncertain parameters from in an experimental setting.

– Scalar Uexp = 1
Nexp

Nexp∑
i=1

U iexp is the mean of Nexp experiments.
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– Scalar δX = 1
Nexp

Nexp∑
i=1

δiX is a random variable modeling probabilistically the noise in the Nexp

experiments.

– Scalar UMX
∆

is the numerical solution of model MX .

– Scalar δ∆ is the numerical error during the resolution of MX .

– Scalar δMX is finally a flaw in the model which we would like to confirm or not or even to quantify.

Equation (B.2) expresses the fact the numerical error δ∆ can be made arbitrary small (cf. the O(∆ζ)� 1
term) but not the experimental noise δX (cf. theHH�1 term). Still, we would like to be able to extract
some information from our set of experimental data (U iexp, δ

i
X)i∈{1,...,Nexp} to validate or invalidate hy-

pothesis (1.33) having some computational device at hand. The latter computational device is typically
a simulation code giving access to random variable UMX

∆
(X), result of an uncertainty propagation of the

uncertainty from parameter X through modelMX . Note that having access to UMX
∆

(X) leads to having

access to a new data set (UMX
∆

(Xi) = U iMX
∆

)i∈{1,...,N}. In agreement with the notations of section 1.2.4,

we decompose UMX
∆

(X) = UMX
∆

+ δ̃X as a sum of its mean UMX
∆

and a fluctuation term δ̃X .
With the few lines, we wanted to integrate the problem of section 1.2.4 into the framework briefly

depicted in the previous section. We have access to two data sets and we want to answer the question of
the validity of model MX to represent some experiments. Let us revisit the above summed-up problem
of section 1.2.4 applying the material of section B.1. Let us go through the same steps as before:

1. in section 1.2, we hinted at validating or invalidating hypothesis (1.33). The equivalent question
in this context would be

”is my model MX relevant to represent my physical observations?” (B.3)

Question (B.3) is probably too complex to be answered. But in general, we will be fine with having
the answer of a much less ambitious one such as

”do random variables Uexp + δX and UMX
∆

+ δ̃X have the same mean?” (B.4)

We will consider that if they do, the answer to question (B.3) will be ’yes, modelMX is relevant’.
Question (B.4) will be considered in the following steps.

2. Let us now formulate some hypothesis relative to question (B.4). We are looking for a flaw in the
model so hopefully, our experimental and numerical results do not have the same performances
and Uexp + δX and UMX

∆
+ δ̃X do not have the same mean value. As a consequence, some relevant

null and alternative hypothesis can be stated as

H0 ”Random variables Uexp + δX and UMX
∆

+ δ̃X have the same mean”.

H1 ”Finer experimental settings (i.e. a better control of the fluctuations of X) may lead to

significant differences for the means of random variables Uexp + δX and UMX
∆

+ δ̃X”.

Once hypothesisH0 andH1 stated, it remains to model them. This is when uncertainty propagation
plays an important role.

3. The modeling of the two above hypothesis comes with the characterization of random variables
Uexp + δX and UMX

∆
+ δ̃X . Suppose their respective probability measures dPδX and dPδ̃X are

available:

– the characterization of δX ∼ dPδX may come from the application of the GUM’s guidelines,
see [112].

– The characterization of δ̃X ∼ dPδ̃X may come from any of the propagation methods presented
in part II of this document for example.
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– The question now is how can we model H0 and H1 from dPδX and dPδ̃X? Let us introduce
the statistics of the test

δ̃MX = δX − δ̃X ∼ dPδ̃MX
. (B.5)

It is also called the decision variable in the litterature [256, 250]. Having access to dPδX and

dPδ̃X implies we have access to the probability measure1 of δ̃MX , denoted by dPδ̃MX
. From

dPδ̃MX
, we are going to model H0 and H1.

– Under hypothesis H1, δ̃MX = δX − δ̃X ∼ dPδ̃MX
has mean Uexp − UMX

∆
. As a consequence,

dPH1
∼ dPδ̃MX

and the modeling of H1 is simple in this case.

– Under hypothesis H0, the decision variable δ̃MX = δX− δ̃X has zero mean. As a consequence,
the statistical modeling of H0 comes with a translation of the mean of dPδ̃MX

, i.e. we have

dPH0
(u) ∼ dPδ̃MX

(u− (Uexp − UMX
∆

)).

The definition of probability measures dPH0 and dPH1 modeling hypothesis H0 and H1 ends this
step. Note that more elaborate hypothesis may lead to more complex modeling but the idea remains
the same.

4. The last step corresponds to the exploitation of dPH0
and dPH1

and the computation, for example,
of a type II risk β given a certain significance level (type I risk) α.

– Assume α chosen, then the critical region (region in which H0 is rejected) is defined by the
interval [Uα,∞[ such that ∫

1[Uα,∞[(u)dPH0
(u) = α.

In order to determine Uα, one needs to inverse the cumulative density function of dPH0
.

– Once Uα obtained, the type II risk β can be computed:

β =

∫
1]−∞,Uα](u)dPH1

(u).

It is obtained integrating dPH1
on the complementary of the critical region ]−∞, Uα].

Risk β corresponds to the probability of falsely accepting H0. Risk α corresponds to the probability
of falsely rejecting H0. As a consequence, for a given α, the smaller β is, the more efficient the test
is. Note that α and β are closely related (via Uα): one can decide to decrease β but this will lead
to an increase of α. In practice, the only way to decrease β without increasing α is to reduce the
variances of probability measures dPH0 and dPH1 . In other words, it is in agreement with making
sure δX � 1 and reducing the fluctuations of the uncertain parameters X of the experimental
setting.

To end this section, we suggest illustrating the previous purpose. Suppose the characterization of dPH0

and dPH1
done according to the material of the above points. Assume furthermore that

– we performed some experiments and some calculations to characterize dPδ̃X and dPδX .

– Their difference of means gives Uexp − UMX
∆

= 3
2 .

– The convolution of dPδX and dPδ̃X leads to the following expression of the decision variable’s
measure:

dPδ̃MX
(u) = 3

4dPG(x, 0, σexp) + 1
4dPG(x, 4σexp, 2σexp).

In the above expression, dPG denotes the gaussian measure defined by

dPG(x, µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 dx.

1The probability density function (pdf) of a sum of two random variables is obtained convoluting their pdfs, see [256].
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σexp = 0.55, α = 5%, β = 82.5% σexp = 0.25, α = 5%, β = 29.0%

σexp = 0.20, α = 5%, β = 2.7% σexp = 0.05, ideal case δX � 1 so that β � 1

Figure B.1: The figure presents the mean of H0, the mean of H1, the distributions dPH0 and dPH1 and
the area corresponding to the type I and type II risks (α and β), for several values of the experimental
variance σexp and a chosen type I error of α = 5%. The numerical values of the corresponding type II
errors are also displayed.

In this case, the decision variable’s distribution is a mixture of gaussian depending only on σexp.
The choice of having a mixture of gaussian as a decision variable is here arbitrary. It makes the
plots of figure B.1 fancier but will also put forward some interesting points later on.

– Now, according to the previous material and the considered hypothesis, we have:

dPH0(u) = dPδ̃MX
(u− (Uexp − UMX

∆
)),

dPH1
(u) = dPδ̃MX

(u).

It now only remains to exploit the results.

Figure B.1 displays

– the mean of H0, which by hypothesis is always zero,

– the mean of H1, which is given by the difference Uexp − UMX
∆

= 3
2 ,

– the distributions dPH0 and dPH1 ,

– the area corresponding to the type I and type II risks (α and β),

for several values of the experimental variance σexp and a chosen type I error of α = 5%. The numerical
values of the corresponding type II errors are also displayed above each picture.

Figure B.1 (top-left) presents the results of the statistical hypothesis test for σexp = 0.55 and α = 5%:
the type II error is β = 82.5%, see the important area under the curve dPH1 . The risk of accepting
falsely H0, i.e. that the means of the experimental and numerical results are the same, is important. For
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such level of experimental noise σexp, one can not either reject hypothesis H0. Thanks to the quantified
risk β, one can decide to work on the reduction of the experimental noise (by better controling the
fluctuations of parameters X for example). Figure B.1 (top-right) presents the same curves but with
σexp = 0.25: the type II risk has considerably decreased to β = 29.0%. Note also that the (arbitrary)
choice of having dPH0 and dPH1 based on a mixture of gaussian allows having distributions for which
the means are different from the maximum likelihood. With this remark, we wanted to put forward the
fact that hypothesis H0 and H1 must be stated according to the relevant statistical observable, their
choice is crucial to fully harnest the potential of statistical hypothesis testing. With such asymetrical
distributions, we may have had to work with quantiles rather than with the mean. Now, by decreasing
the experimental noise to σexp = 0.20 (figure B.1 bottom-left), i.e. of only 20% with respect to the
previous plot, a drastic improvement is made with respect to the type II risk as it drops from β = 29.0%
to β = 2.7%. Finally, by once again decreasing the noise to σexp = 0.05 (figure B.1 bottom-right), we
can verify we recover the ideal case where δX � 1, tackled in section 1.2.4, leading to having β � 1.
In a way, such methodology only generalizes the ideal one, to be able to deal with situations where δX
can not be made arbitrary small and help decide whether model MX is relevant enough or if some new
studies must be carried out.
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[109] U. S. Fjordholm, R. Käppeli, S. Mishra, and E. Tadmor. Construction of approximate entropy
measure valued solutions for hyperbolic systems of conservation laws. ArXiv e-prints, February
2014. pages 32, 136, 138, 288

[110] J.A. Fleck and J.D. Cummings. An implicit monte carlo scheme for calculating time and frequency
dependent nonlinear radiation transport. Journal of Computational Physics, 8(3):313 – 342, 1971.
pages 270, 271, 284

[111] J. Foo and G.E. Karniadakis. Multi-element probabilistic collocation method in high dimensions.
J. Comput. Phys., 229:1536–1557, 2010. pages 84, 90

[112] International Organization for Standardization. Guide to the expression of uncertainty in measure-
ment (GUM), volume ISO draft guide DGUIDE99998. International Organization for Standard-
ization, Geneva, 2008. pages 17, 18, 303

[113] Emmanuel Franck, Christophe Buet, and Bruno Després. Asymptotic preserving finite volumes
discretization for non-linear moment model on unstructured meshes. In Finite Volumes for Complex
Applications VI Problems & Perspectives, pages 467–474. Springer Berlin Heidelberg, 2011. pages
213

[114] P. Frauenfelder, C. Schwab, and R.A. Todor. Finite Element for Elliptic Problems with Stochastic
Coefficients. Comp. Meth. Appl. Mech. Engrg., 194:205–228, 2004. pages 53

[115] B. Ganapathysubramanian and N. Zabaras. Sparse Grid Collocation Schemes for Stochastic Nat-
ural Convection Problems. J. Comp. Phys., 225:652–685, 2007. pages 84, 90

[116] C. Kristopher Garrett and Cory D. Hauck. A comparison of moment closures for linear kinetic
transport equations: The line source benchmark. Transport Theory and Statistical Physics, 42(6–7),
2013. pages 11, 163

[117] Walter Gautschi. Orthogonal polynomials: applications and computation, volume 5. Oxford Uni-
versity Press, 1996. pages 9, 31, 42, 43, 46, 78, 79, 80, 82, 84, 115

[118] P.N. Gavriliadis and G.A. Athanassoulis. Moment data can be analytically completed. Probabilistic
Engineering Mechanics, 18(4):329–338, 2003. doi:10.1016/j.probengmech.2003.07.001. pages 46,
115

[119] S. L. Gavrilyuk, N. Favrie, and R. Saurel. Modelling wave dynamics of compressible elastic mate-
rials. J. Comput. Phys., 227(5):2941–2969, February 2008. pages 9

[120] F. Genz, A. C. Thomasset. A package for testing multiple integration subroutines. In P. Keast and
G. Fair-weather, editors, Numerical Integration, pages 337–340, Dordrecht, 1987. Kluwer. pages
156

[121] M. I. Gerritsma, J.-B. van der Steen, P. Vos, and G. E. Karniadakis. Time-dependent generalized
polynomial chaos. J. Comput. Physics, pages 8333–8363, 2010. pages 31, 138

313



[122] R. G. Ghanem and J. Red-Horse. Propagation of Uncertainty in Complex Physical Systems using
a Stochastic Finite Elements Approach. Physica D, 133:137–144, 1999. pages 53

[123] R.G. Ghanem. Ingredients for a General Purpose Stochastic Finite Element Formulation. Comp.
Meth. Appl. Mech. Eng., 168:19–34, 1999. pages 53

[124] R.G. Ghanem and P. Spanos. Stochastic Finite Elements: a Spectral Approach. Springer-Verlag,
1991. pages 31, 38, 53

[125] R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements: a Spectral Approach. Dover, 1991.
pages 53

[126] S. Glasstone G.I. Bell. Nuclear Reactor Theory. Van Nostrand Reinhold Company, New York,
N.Y. 10001, 1970. pages 255

[127] F. Golse and G. Allaire. Transport et Diffusion. 2015. Polycopié de cours. pages 165, 216, 260
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[138] M. Héliot. Sensitivity analysis for complex models. Technical Report ???, CEA DAM CESTA,
under the supervision of G. Poëtte, 2018. pages 15, 18
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Spectrales Stochastiques. Phd thesis, Université Pierre et Marie Curie, Institut Jean Le Rond
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[241] Gaël Poëtte. A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltz-
mann equation. Journal of Computational Physics, 385:135 – 162, 2019. pages 15, 18, 19, 20, 222,
225, 229, 230, 231, 289, 290
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Planes et Sphérique en Présence de Conduction de Chaleur Non-Linéaire. Technical Report DO
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[282] Xavier Valentin and Gaël Poëtte. To appear. Note interne, 2017. pages 271, 272, 276

[283] J.G. van der Corput. Verteilungsfunktionen. I. Mitt. Proc. Akad. Wet. Amsterdam, 38:813–821,
1935. pages 77

[284] Emmanuel Vazquez. Modélisation comportementale de systèmes non-linéaires multivariables par
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