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A B S T R A C T

What will be tomorrow’s big cities objectives and challenges? Most of
the operational problems from the real world are inherently subject to
uncertainty, requiring the decision system to compute new decisions
dynamically, as random events occur. In this thesis, we aim at tackling
an important growing problem in urban context: online dynamic
vehicle routing.

Applications of online vehicle routing in the society are manyfold,
from intelligent on demand public transportation to sameday delivery
services and responsive home healthcare. Given a fleet of vehicles and
a set of customers, each being potentially able to request a service
at any moment, the current thesis aims at answering the following
question. Provided the current state at some moment of the day, which
are the best vehicle actions such that the expected number of satisfied
requests is maximized by the end of the operational day? How can
we minimize the expected average intervention delays of our mobile
units?

Naturally, most of the requests remain unknown until they ap-
pear, hence being revealed online. We assume a stochastic knowledge
on each operational problem we tackle, such as the probability that
customer request arise at a given location and a given time of the
day. By using techniques from operations research and stochastic pro-
gramming, we are able to build and solve mathematical models that
compute near-optimal anticipative actions, such as preventive vehicle
relocations, in order to either minimize the overall expected costs or
maximize the quality of service.

Optimization under uncertainty is definitely not a recent issue.
Thanks to evolution of both theoretical and technological tools, our
ability to face the unknown constantly grows. However, most of the
interesting problems remain extremely hard, if not impossible, to solve.
There is still a lot of work. Generally speaking, this thesis explores
some fundamentals of optimization under uncertainty. By integrating
a stochastic component into the models to be optimized, we will see
how it is in fact possible to create anticipation.
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R É S U M É

Quels seront les objectifs et défis des métropoles de demain ? La
plupart des problèmes issus du monde réel sont sujets à l’inconnu,
nécessitant de prendre de nouvelles décisions de façon dynamique,
à la demande, en fonction des évènements aléatoires qui se réalisent.
Dans cette thèse, nous nous attaquons à un problème majeur, du
moins en perpectives: la gestion dynamique d’une flotte de véhicules
en contexte urbain.

Les applications pratiques des tournées de véhicules à la demande
sont nombreuses, incluant les transports publiques intelligents, les
services de livraison, les soins et interventions à domicile, etc. Étant
donnés une flotte de véhicules et un ensemble de clients, chacun pou-
vant potentiellement et à tout moment émettre une requête nécessitant
une intervention, l’objectif de cette thèse est de founir une réponse à
la question suivante. Étant donné l’état courant à un moment donné,
comment gérer notre flotte de véhicules afin de maximiser l’espérance
du nombre total de requêtes satisfaites à la fin de la journée ? Ou
encore, comment minimiser l’espérance du délai moyen d’intervention
de nos véhicules ?

Bien entendu, la difficulté réside en ce que la plupart des requêtes,
avant d’apparaître dynamiquement, ne sont pas connues. Pour chaque
problème, nous considérons qu’il nous est fourni une connaissance,
sous forme d’information probabiliste, telle que la probabilité qu’une
requête apparaisse à un certain endroit, et à un certain moment de la
journée. Grâce à des techniques issues de la recherche opérationnelle
et de la programmation stochastique, nous sommes en mesure de
construire et résoudre des modèles calculant les actions anticipatives
les plus adéquates, comme le redéploiement préventif des véhicules,
minimisant le coût total espéré, ou encore maximisant la qualité de
service.

La question de l’optimisation sous incertitude se pose depuis déjà
plusieurs décennies. Grâce aux avancées à la fois théoriques et tech-
nologiques, nous sommes chaque jour un peu plus en mesure de palier
à l’inconnu. Cependant, la plupart des problèmes intéressants restent
extrêmement difficiles à résoudre, si ce n’est impossible. Il reste beau-
coup à faire. Cette thèse explore certains concepts fondamentaux de
l’optimisation sous incertitude. En intégrant une composante stochas-
tique aux modèles à optimiser, nous verrons ensemble comment il est
en effet possible de créer de l’anticipation.
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L I S T O F S Y M B O L S

problem graph and time horizon

G = (V, A) Complete directed graph

V = {0} ∪W ∪ C Set of vertices (depot: 0)

W = {1, . . . , m} Set of waiting vertices

W0 = W ∪ {0} Set of waiting vertices, plus the depot

C = {m + 1, . . . , m + n} Set of customer vertices

ti,j Travel time along arc (i, j) ∈ A

dTD
v,v′(t

arr)
Time a vehicle must leave v to reach v′

at time tarr (time-dependent travel times)

K Number of vehicles

Q Vehicle maximum capacity

H = {1, . . . , h} Discrete time horizon

H0 = H ∪ {0} Discrete time horizon, plus offline time 0

scenarios and potential requests

R = C× H Set of potential requests

r = (cr, Γr) A potential request r ∈ R for location cr at time Γr

Γr ∈ H Reveal time of potential request r ∈ R, if it appears

cr ∈ C Location (vertex) of potential request r ∈ R

sr Service time of potential request r ∈ R

[er, lr] Time window of potential request r ∈ R

qr ∈ Q Demand of potential request r ∈ R

pr Probability of potential request r

ξ ⊆ R
A scenario describing a set of appeared request by

the end of horizon H

p(ξ) Probability of scenario ξ

ξt ⊆ ξ Subset of requests appearing at time t ∈ H

ξ1..t = ξ1 ∪ . . . ∪ ξt Subset of requests appearing up to time t,

with ξ1..h = ξ

ix



x symbols

solutions

(x, τ) First-stage solution

x = {x1, ..., xK} Set of K disjoint sequences of waiting vertices of W

τ : Wx → H
Assignment of a waiting time τw with every waiting

vertex w ∈Wx

Wx ⊆W Set of waiting vertices visited in first stage solution x

on(w) Arrival time unit at waiting vertx w

on(w) Last time unit at waiting vertx w

xt Action (decision) performed (planned) a time t ∈ H0

Xt Set of legal actions at time t ∈ H0

x0 First-stage solution (offline decisions)

xi..i+k Sequence of actions 〈xi, xi+1, . . . , xi+k〉, i ∈ H0, k ≥ 0

(x0..t, At)
Current state of the second-stage solution at

time t ∈ H

At ⊆ ξ1..t Set of accepted requests up to time t

recourse strategies

R∞ SS-VRPTW-CR recourse strategy with

unbounded vehicle capacity

Rq SS-VRPTW-CR recourse strategy with

bounded vehicle capacity

Rq+ Improved SS-VRPTW-CR recourse strategy with

bounded vehicle capacity

QR(x, τ)
Expected cost under recourse strategy R and first-stage

solution (x, τ)

QR(x, τ, ξ)
Cost under recourse strategy R and first-stage

solution (x, τ), given scenario ξ

⊥ The null vertex: ∀r ∈ R, w(r) = ⊥ ⇔ r is unassigned

w(r) Waiting vertex of Wx to which r ∈ R is assigned

πk Set of requests assigned to vehicle k

πw Set of requests assigned to wait. loc. w ∈Wx

fst(πw) Smallest request of πw according to <R

fst(πk) Smallest request of πk according to <R

r− Request of πk which immediately precedes r w.r.t. <R

dmin
r,w Min. departure time from w ∈Wx to handle r (R∞, Rq)

dmax
r,w Max. departure time from w ∈Wx to handle r (R∞, Rq)

dmin+
r,w Min. departure time from w ∈Wx to handle r (Rq+)

dmax+
r,w Max. departure time from w ∈Wx to handle r (Rq+)

dminTD
r,w Time-dependent version of dmin

r,w

dmaxTD
r,w Time-dependent version of dmax

r,w



symbols xi

integer programming formulations

xij
Binary decision variable; equals 1 iff arc (i, j) ∈ V is part of

the solution (two-index flow formulation)

yik
Binary decision variable; equals 1 iff vertex i ∈W0 is visited by

vehicle k ∈ {1, . . . , K}

xijk
Binary decision variable; equals 1 iff arc (i, j) ∈W2

0 is part of

route k ∈ {1, . . . , K}

τijk
Binary decision variable; equals 1 iff vehicle k waits for l ∈ H

time units at vertex i

misc .

[a, b] Discrete interval [a, b] = {n ∈N : a ≤ n ≤ b}





I N T R O D U C T I O N

Online vehicle routing problems aim at modeling and solving real
life problems, by considering the dynamic fashion in which pieces
of data appear. Such online problems arise in many practical situa-
tions, as door-to-door or door-to-hospital transportation of elderly or
disabled persons. In many countries, authorities try to set up dial-
a-ride services, but escalating operating costs and the complexity of
satisfying all customer demands become rapidly unmanageable for so-
lution methods based on human choices (Cordeau and Laporte, 2003).
However, such complex dynamic problems need reliable and efficient
algorithms that should first be assessed on reference problems, such
as the DS-VRPTW we describe later.

Let us consider the problem of managing a team of on-duty doctors,
operating at patient home places during nights and week-ends. On-
call periods start with all the doctors at a central depot, where each
get assigned a taxi cab for efficiency and safety. Patient requests arrive
dynamically. We approximate from historical data the probability
that a request appears, depending on the location and the moment.
Each online request comes with a hard deadline, and one must decide
whether an accepted request can be satisfied in time, and how to adapt
the routes accordingly. If it cannot be handled in time, the request is
rejected and entrusted to an (expensive) external service provider. In
such context, which is in fact an online vehicle routing problem, which
decisions lead to a minimal expected number of rejected requests?

Another problem is the one of police patrol management in big
cities. Amongst the various benchmarks considered in this thesis,
we also study the real world problem faced by a particular subset
of the police mobile units in Brussels, Belgium. Most of the units
working every day for the police department are assigned to minor
interventions or safety control during particular events. Our case
study concerns a specific team of police units, aimed at taking action
on urgent interventions, such as road traffic accidents, violence or
alarms. As a consequence, these units spend their time cruising the
city, waiting for intervention requests. We hence investigate on the best
relocation policies for each of these mobile units, thereby minimising
the expected average intervention delay.

1



2 introduction

thesis contributions

We classify the thesis contributions in three categories: models, algo-
rithms and benchmarks for online vehicle routing problems.

models . We introduce the first two-stage model for an online ve-
hicle routing problem with random customers, in which the requests
are time-constrained. Unlike the existing models, our new problem,
the SS-VRPTW-CR, stands out by respecting the nonanticipativity
principle. This is achieved by modeling the fact that the presence of
a customer, that is, the appearance of an online request, is revealed
at a random moment instead of depending on the solution itself (e.g.
when a vehicle visits it). Despite the latter property is well-known
and studied in dynamic VRPs, the problem of evaluating the expected
quality of a current solution is tricky. The lack of closed form expres-
sions exhorts to rely on sampling methods. Our models and their
associated formulae provide an alternative. Unlike sampling methods,
our approach comes with strong theoretical guarantees. In addition to
cover a whole new set of operational problems, which are inherently
two-stage (they do not accept reoptimization during the operations),
this also provides a new powerfull tool for reoptimization in dynamic
time-constrained VRPs.

algorithms . We propose both exact and heuristic solution algo-
rithms for the new two-stage stochastic VRP we introduce. In that
context, algorithms are also of importance at computing expected
costs, and we provide closed-form formulae to compute the necessary
values in pseudo-polynomial time. In the context of dynamic online
reoptimization, we provide two different novel approaches to the dy-
namic and stochastic VRP with time windows. The first approach is
quite direct, by solving the problem using a sampling method. It is
however executed while preserving the nonanticipativity principle,
but lacks of strong theoretical guarantees. In the second approach,
we show how our two-stage model recently introduced can be easily
embedded in the reoptimization process.

benchmarks . Along with the associated studies, this thesis comes
with three new realistic benchmarks for online dynamic (and stochastic)
vehicle routing problems: one in the city of Brussels, Belgium, another
in Lyon, France, and finally one benchmark in Turin (Italy). Note
that part of the realism of any online vehicle routing problem also
depends on the description of the associated travel times and costs.
A dataset of higly realistic time dependent travel times in Brussels
is provided as well, resulting in a massive use of the Google Maps
API. We highlight in Chapter 4 the current lack of real-world based
VRP studies and applications in the literature, as well as realistic



introduction 3

benchmarks. By proposing a standard representation of many types
of vehicle routing problems (including City VRPs), our framework
allows to mitigate that issue by making easier to share, adapt, reuse
and even merge data and benchmarks from different sources. Focusing
on the proposed framework, the most relevant advantage resides in
the possibility to generate diversified operational contexts, customized
degree of dynamism, huge sets of instances and tailored classes of
benchmark to test any kind of framework.



4 introduction

thesis organization

The thesis is organized in three parts.

part i . Provides the minimum technical background that the reader
needs in order to fully understand the concepts exploited all along
the thesis. In particular, basics of vehicle routing problems as well as
optimization under uncertainty are presented in Chapters 1 and 2.

part ii . Focuses on two-stage models for online VRPs, that is,
on optimizing the a priori decisions. Chapter 5 introduces a new two-
stage stochastic problem, corresponding to a new range of applications
from real world. Based on paper Saint-Guillain et al., 2017, it hence
contributes at bridging the gap between theoretical models and real
life applications, in particular in the domain of urban city VRPs. A first
benchmark is presented in Chapter 6, whereas solution methods are
introduced and experimentally assessed in Chapters 7 and 8. A real
case study directly follows in Chapter 9, involving the management
of police patrols in the city of Brussels, Belgium.

part iii . Addresses the problem of optimizing online vehicle rout-
ing decisions. Chapter 10 introduces a first sampling based solution
approach for online VRPs, from publication Saint-Guillain et al., 2015.
Thereafter, a hybrid version of the algorithm, based on the theoretical
results of Part ii, is theferafter presented and experimentally assessed
in Chapter 11. We compare our different online algorithms on various
DS-VRPTW benchmarks, as well as our real-world DS-VRP-R problem
of police patrol management in Brussels.

Parts are organized in chapters devoted to specific subjects. Each
chapter usually ends with a section that contains the local conclusions,
as well as potential future directions. A general discussion on our
theoretical and empirical results, as well as future research directions,
is provided in the Conclusion and Perspectives part at the end of the
thesis. The thesis is completed with appendices providing additionnal
materials, and which can be safely omitted at first reading.

Such a note,
appearing on the

side, summarizes
an important

concept. It is handy,
but always
redundant.

margin notes . Margin notes, such as the one showed here aside,
will appear throughout the thesis. Such a note always provide a handy,
concise and informal summary of a concept discussed locally, usually
emphasizing the importance of the latter.
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B A C K G R O U N D





1
V E H I C L E R O U T I N G P R O B L E M S

In this chapter, we briefly introduce some of the few theoretical con-
cepts on which the current thesis is based. It should be considered as
a naive, incomplete introduction to vehicle routing. We discuss the
deterministic case as well as the online variants of the problem. The
reader interested in a more extensive and technical introduction may
rely on more specific litterature, such as Toth and Vigo, 2014, which
we strongly recommand.

1.1 deterministic vehicle routing problems

In the classical, deterministic vehicle routing problem (VRP or CVRP),
a set of customers must be serviced by a homogeneous fleet of ca-
pacitated vehicles, while reconciling cumulated customers’ demands
and vehicle capacities. The vehicles are assumed to start and end their A classical VRP

aims at designing a
set of optimal vehicle
routes for servicing a
set of known
customers.

operations at a common depot. An optimal solution is then a set of
planned vehicle routes, minimizing a predefined cost function, usually
defined in terms of total travel distance.

introducing the belgian vrp. Suppose you own a food-truck
company, based in La Louvière, an important1 city in Belgium. Let
us consider the other most important cities in Belgium, and select
some (seventeen) of these. Figure 1.1 shows all those cities on a map,
including La Louvière. Currently, your small company only counts
three vehicles.

Knowing that each vehicle always stays for a full day in a city, you
should have enough trucks to cover all these cities in six days. You
then look for the best itinaries for your trucks to visit all these cities,
so that each vehicle visits at most six cities. Doing so, you will end up
with the perfect planning, which you may even repeat from one week
to another, while keeping your Sundays free! Figure 1.2 shows an
example of such optimal solution, let us say, in terms of total traveled
distance.

1 The question whether La Louvière should be considered as a noticeable, important,
Belgian place, is somewhat subjective. Historically, it played a significant role for the
Belgian economy, during the early stages of the industrial revolution. In our context
however, let us just note that the author is attached to this city.

7



8 vehicle routing problems

Figure 1.1: A selection of eighteen important cities in Belgium: Anvers, Arlon,
Bastogne, Bruges, Bruxelles, Charleroi, Courtrai, Gand, Hasselt,
La Louvière, Liège, Louvain, Mons, Malmedy, Namur, Ostende,
Rochefort, Tournai.

Figure 1.2: A possibly optimal solution to our Belgium VRP problem. We as-
sume customer unit demands. Our depot is located in La Louvière
and hosts at least three vehicles, each of maximal capacity of six.
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1.1.1 Mathematical formulations

Here we present a couple of possible formulations of the problem.
Although mathematical formulations are often related to exact solu-
tion methods (e.g. integer linear programming), the current section
does not aim at providing an introduction on those methods, nor
how to generate optimality proofs. Instead, we examine mathematical
formulations in order to discuss some of the inherent properties of
the problem, which are of particular interest, no matter the solution
approach. The technical background required during the remaining
of the section can be obtained in many volumes from the classical
literature, such as Wolsey, 1998.

The capacitated vehicle routing problem is often mathematically
formulated by using a so-called two-index flow formulation (also known
as edge formulation). Let V = {0, . . . , n} be the vertex set of our problem
with C = 1, . . . , n customer locations, where vertex 0 identifies the
depot. The classical VRP is said to be symmetric. In other words,
traveling from a customer i to a customer j contributes equivalently to
the objective function, no matter the direction in which the edges are
crossed. The edge set of the undirected complete graph, defined on V,
is then E = {(i, j) ∈ V ×V : i < j}. To each edge is then associated a
non-negative cost cij, representing the cost inquired as a vehicle travels
from customer i to customer j, or equivalently from j to i. We are
given K identical vehicles, each of maximal capacity Q. Finally, each
customer i ∈ C is associated a demand load qi.

An integer decision variable xij is associated to each edge (i, j) ∈ E,
indicating in the solution the number of times the corresponding
edge is crossed by a vehicle (no matter the direction, i.e., xij = xij). A
possible formulation, inspired from Laporte and Nobert, 1983, is the
following integer program:

Minimize ∑
(i,j)∈E

cijxij (1.1)

subject to

∑
j∈V\{i}

xij = 2 ∀ i ∈ C (1.2)

∑
i∈C

x0i ≤ 2K (1.3)

∑
i∈S

j∈V\S

xij ≥ 2r(S) ∀ S ⊆ C, S 6= ∅ (1.4)

xij ∈ {0, 1} ∀ i, j ∈ C (1.5)

x0i ∈ {0, 1, 2} ∀ i ∈ C (1.6)

xij = xij ∀ (i, j) ∈ E (1.7)

The linear objective function (1.1) represents the cumulated traveling
costs along the vehicle routes. Constraints (1.2)-(1.6) define unambigu-
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ously the solution space of the capacitated VRP. The flow conservation
constraints (1.2), or degree-two constraints, stipulate that every cus-
tomer must be visited by exactly one vehicle. Constraint (1.3) connects
the vehicle routes to the depot, thereby ensuring that at most K vehi-
cles are used. Constraints (1.4) are called rounded capacity cuts, where
r(S) = d∑i∈S qi/Qe. They ensure both the prevention of subtours, thus
playing the role of subtour elimination constraints, as well as the respect
of the vehicle capacities. In fact, for any subset S of customers, based
on the set (i, j) : i ∈ S, j ∈ V \ S of edges having exactly one endpoint
in S, constraints (1.4) ensure that there are enough vehicles interacting
with S.

Constraints (1.2) to (1.4) define a |V2|-dimensional convex polyhe-
dron, in which integrality constraints (1.5)-(1.6) identify the feasible
integer points. Note that, in order to allow vehicle routes visiting only
one customer, edges connecting the depot can take value 2. Finally,
(1.7) reflect the symmetric nature of the problem. They are not redun-
dant, as the objective function as well as constraints (1.2) and (1.6)
depend on it.

integer programming . Once translated into an adequate lan-
guage, such integer (linear) programming formulation can be almost
directly solved by common IP solvers (e.g. Gurobi, CPlex, etc.). The
only technical challenge concerns constraints (1.4), which are in fact
exponentially many. As a consequence, in practice the complete for-
mulation (1.2)-(1.7) cannot be directly provided to the solver. Instead,
a relaxed, incomplete version of the problem is initially provided,
consisting in the above formulation without any constraint from (1.4).
They are then dynamically added, in a lazy fashion, each time such
constraint is found to be violated, until an optimal solution is found
to not violate any of those. Such approach, such as the branch-and-cut
algorithm applying directly to our case, is known as a cutting plane
algorithm (Wolsey, 1998).
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assymetric general case . In fact, it is easy to see that a formu-
lation for the assymetric VRP can be obtained by removing (1.7) and
applying some minor modifications to the constraints:

Minimize ∑
i,j∈V

cijxij (1.8)

subject to

∑
j∈V\{i}

xji = ∑
j∈V\{i}

xij = 1 ∀ i ∈ C (1.9)

∑
i∈C

x0i = ∑
i∈C

xi0 ≤ K (1.10)

∑
i∈S

j∈V\S

xij = ∑
i∈S

j∈V\S

xij ≥ r(S) ∀ S ⊆ C, S 6= ∅ (1.11)

xij ∈ {0, 1} ∀ i, j ∈ V (1.12)

In fact, whereas any instance of a symmetric VRP can be directly
modeled as a assymetric VRP by using the above formulation, in
practice formulation (1.2)-(1.7) is likely to be more efficiently solved
to optimality. This is mainly due to the fact that, for any feasible The VRP is

assymetric in
general: the travel
cost between
locations A to B
usually differs from
that of B to A.
Assuming symmetric
edges may however
simplify the
formulation.

solution (i.e., admissible integer point) x in (1.2)-(1.7), there are 2K

distinct feasible solutions x′ in (1.9)-(1.12). More specifically, there is
one such x′ per combination of distinct direction that each vehicle
can choose in order to travel its route. This is illustrated in Figure
1.3. Hence, whenever it is used in order to formulate an inherently
symmetric VRP, formulation (1.9)-(1.12) is said to admit 2K symmetries.
The concept of symmetries is an important issue, and well studied
field in integer programming (see e.g. Margot, 2010).

other objective functions . Alternative objectives are often
considered, such as minimizing gaz emissions for instance. In some
cases, the related objective function (1.8) may hence not remain linear.
For instance, the fuel consumption (and therefore the associated CO2

emission) of a vehicle along an arc (i, j) may depend on the current
load of a truck as well as the distance along the arc. Note that in the
latter case, the VRP becomes assymetric, since the direction in which
the routes are traveled matters. As a consequence, formulation (1.1)-
(1.6) is not valid anymore, as one needs to consider directed edges, or
arcs, hence resulting in twice as much decision variables xij.

The scope of our introduction forces us to end here our discussion
about mathematical representations of the VRP. The solution space
defined by (1.9)-(1.12) is a good starting point yet, as almost all the
variants to the VRP are simply generalizations of it, their respective
solution space being strictly contained in the convex hull of (1.9)-(1.12).
It is however important to note that alternative (in fact, infinitly many)
mathematical formulations exists for the VRP, such as the capacity-
indexed (Pessoa et al., 2008) or set partitioning formulations (Balinski
and Quandt, 1964).
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Figure 1.3: Top-left corner: a feasible solution of the symetric VRP formula-
tion (1.2)-(1.7). To that solution correspond 23 = 8 distinct (but
equivalent) solutions, whenever a symetric VRP is modeled using
the assymetric (but more general) formulation (1.9)-(1.12).

1.1.2 Time constrained VRPs

There is no time dimension involved in the classical capacitated VRP,
yet in practice many operational contexts may be in fact inherently
time constrained. For instance, a delivery company should be able to
take into account constraints imposed by their customers, such as time
windows indicating the time interval during which each customer
accepts to be visited. In the case all the vehicles must terminate their
routes at the depot by the end of the day, then a corresponding time
window can be associated to the depot, preventing the vehicles from
leaving it before the start of the operational day, or similarly, returning
after the end of it.

The most natural related theoretical problem is the well known
Vehicle Routing Problem with Time Windows (VRPTW), a generalization
of the assymetric capacicated VRP (1.9)-(1.12). In the VRPTW, a set
of customers must be serviced by a homogeneous fleet of capacitated
vehicles, while reconciling each customer’s time windows and vehicle
travel times, as well as cumulated customers’ demands and vehicle
capacities.

A mathematical mixed integer linear programming formulation of
the VRPTW can be found in Bard et al., 2002. In fact, the mixed
term comes from the necessary continuous (i.e. non-integer) time
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variables, used in order to keep track of the arrival times at customer
vertices. How to model time in mathematical VRPTW formulations is
definitely an interesting question, which has been extensively studied
in the literature. However, discussing that question in more details is
not relevant of the scope of the current thesis. Again, the interested
reader should refer to Toth and Vigo, 2014, which provides a really
great summary of the various formulations, as well as exact solution
methods, for many different VRP variants (including the VRPTW).

We hence conclude here our introduction to deterministic VRPs,
that is, with the deterministic VRPTW. In fact, the online VRP variants
discussed throughout this thesis are all, in principle, VRPTW instances,
in which some piece of data are considered uncertain. Those variants
are discussed in the next section.

1.1.3 Quality of the data and optimality proof

Optimality proof is often considered as the Holy Grail by theoreti-
cians. Solving a VRP by using an exact, optimal method, such as Optimality always

comes with strong
assumptions.

an integer linear programming solver, guarantees that the computed
solution is indeed the best possible one. It is only true with respect to
the assumptions made on the problem itself.

The quality of the data used implicitely creates assumptions, which
often reveal unrealistic. For instance, because of the diffilculty and
the cost of obtaining realistic driving distance matrices, many VRP
studies from the scientific literature make use of Haversine distance
instead. Even in works qualified as real case-studies, it often happens
that distances are computed as the crow flies. Section 4.2 provides a
literature review of the real case-studies conducted so far, up to our
knowledge. In the latter review, we focus in particular on the realism
of the associated benchmarks.

Consider our Belgium VRP problem again. Solving it optimally actu-
ally gives us two different solutions, illustrated in Figure 1.4, whether
Haversine or realistic driving distances are used. Our driving distances
are computed using Google Maps Distance Matrix API. The Haversine
"optimal" solution reveals 40kms longer than the one obtained by using
realistic driving distances, when measured using the latter distances.
Naturally, 40kms is actually not a huge difference; but the problem
we considered is in fact really small. The difference is however likely
to grow as realistically sized problems are tackled. This is especially
true in operational contexts where the distances differ significantly, as
it is the case in urban VRPs for instance.

Consequently, when solving a combinatorial optimization problem,
in particular a VRP, one should always wonder about the relevance
of the optimality proof. Naturally, optimality proofs are definitly use-
ful in some contexts, such as validating the efficiency of another,
less expensive, heuristic solution method. By using small-sized prob-
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Figure 1.4: Comparison between two optimal solutions to the Belgium VRP.
Left: optimal solution obtained when using Haversine distances.
Right: optimal solution obtained when using driving distances.

lems, which can be solved to optimality within reasonable time and
ressources, optimal solutions can in fact be exploited in order to mea-
sure optimality gaps. But considering the real, true assumptions, is
simply not possible within our complicated world. In particular, real
data are extremely hard to obtain. Even in our example, althoughThere is no real data,

only reasonably
realistic assumptions.

we are using data that are quite realistic (GMaps assymetric driving
distances), optimality may be significantly reconsidered. In fact, our
travel distances are fixed, whereas real travel times are inherently
time-dependent (and stochastic). The distance between two cities can
indeed depend on the time of the day. As a consequence, because
we did not take rush hours into account, it is not impossible that the
Haversine solution reveals to be the optimal solution for the next week,
whereas a solution designed by hand (e.g. Figure 1.2) could be that of
another week.

However, even provided the best possible time-dependent data,
the assumptions remain unrealistic in general, as it fails at taking
uncertainty into account. Unless stochasticity is considered, that is, the
fact that the data are continuously altered by random events. Taking
such considerations into account plunges us into the domain of online
stochastic VRPs.

1.2 online vehicle routing

Whereas deterministic VRP(TW)s assume perfect information on input
data, in real-world applications some input data may be uncertain
when computing a solution. The classical deterministic VRP(TW) as-In online VRPs,

part of the problem
data get revealed

during the
operations.

sumes that customer demands, as well as all necessary information
needed to compute a solution, are known with certainty beforehand.
Unlike standard academic formulations, real world applications are
usually missing part of the problem data when computing a solution.
For instance, only a subset of the customer demands may be known
before online execution. Missing demands therefore arrive in a dy-



1.2 online vehicle routing 15

Sol. evolution

during online

execution

Online

requests

Information on

online requests

Static and

deterministic
No evolution No N.A.

Dynamic and

deterministic

Online

reoptimization
Yes No information

Dynamic and

stochastic

Online

reoptimization
Yes

Probabilistic

knowledge

Static and

stochastic

Recourse

strategy
Yes

Probabilistic

knowledge

Table 1.1: The four different VRP categories.

namic fashion, while vehicles are on their route. In that context, (part
of) the operational decisions must be computed in light of incomplete
relevant data. A solution should therefore contain operational deci- Dealing with online

VRPs requires
anticipative and/or
preventive actions,
computed in light of
all the available
relevant information.

sions that deal with the current state of knowledge, but should ideally
also be computed so that it anticipates potential unknown demands.

Albeit the uncertainty can be considered for various attributes of
the VRP (e.g. travel times, time windows, etc.), in this thesis we focus
on situations where the customer presences are unknown a priori.

1.2.1 Variants and taxonomy

Following Pillac et al., 2013, VRPs can be classified in four categories,
depending on two dimensions: solution evolution and information qual-
ity. Table 1.1 summarizes the different VRP categories. In order to
highlight the difference with dynamic and stochastic problems, to the
common appellation of “stochastic VRP (S-VRP)” we prefer the full
denomination “static and stochastic VRP” (SS-VRP for short). The same
taxonomy has been recently adopted by Psaraftis et al., 2015.

1.2.1.1 Static and deterministic VRPs

Classical VRP(TW)s can be classified as static and deterministic, since the
solution once computed does not evolve (i.e., is static) and everything is
known beforehand. The information quality is said to be deterministic.
This corresponds to the VRPs presented in Chapter 1.

1.2.1.2 Dynamic and deterministic VRPs

In D-VRP(TW)s, only part of the input is known before online ex-
ecution, whilst the remaining information is revealed dynamically.
Operational decisions must then be computed during execution, i.e.
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”online”, as the customer requests appear. It should be noted that
despite the fact that the demands arrive in a dynamic fashion, the
decision system is given no probabilistic knowledge on it. In Branke
et al., 2005 for example, no prior knowledge is provided on the poten-
tial requests, which are then assumed to be uniformly distributed in
the Euclidean plan.

1.2.1.3 Dynamic and stochastic VRPs

The DS-VRP(TW)s differ from their deterministic counterpart by the
quality of the available information. Besides the fact that only part
of the demands are known beforehand, stochastic knowledge about
potential unkown requests is available so that more anticipative online
operational decisions can be devised. During online execution, the
current solution is recomputed at each time step, in light of known
demands and current random events. This approach is called reop-
timization, as already described in Section 2.5. A DS-VRP(TW) can
therefore be formulated as a multistage stochastic program (2.11).

Examples of heuristic approaches to the DS-VRPTW can be found
in Bent and Van Hentenryck, 2004b, 2007; Ichoua et al., 2006 and
more recently in Saint-Guillain et al., 2015. Litterature reviews on both
D-VRPs and DS-VRPs can be found in Psaraftis, 1995, Pillac et al.,
2013 and recently in Ritzinger et al., 2016 and Psaraftis et al., 2015.Both DS-VRPs and

SS-VRPs are online
VRPs, for which we

assume to be
provided a relevant

stochastic
knowledge on the

missing data.

1.2.1.4 Static and stochastic VRPs

If the routes can only be adapted by following some predefined
scheme, then we are facing a Static and Stochastic VRP(TW), SS-VRP(TW)
for short. In the SS-VRP(TW), whenever a bit of information is revealed,
the current solution is adapted by applying a recourse strategy. The
concept of recourse strategy aims at avoiding complex reoptimizations.
This will be formally introduced in the next chapter. Based on theSS-VRPs only differ

from DS-VRPs by
the assumptions

made on the
complexity of the

allowed online
decisions: in

SS-VRPs,
reoptimization is

forbidden.

probabilistic information, we seek a first stage (also called a priori)
solution that minimizes its a priori cost, plus the expected sum of
penalties caused by the recourse strategy. In order for the evaluation
function to remain tractable, the recourse strategy must be efficiently
computable, hence simple enough to avoid re-optimization. SS-VRPs
should therefore be thought as two-stage stochastic programs of the
form (2.12), as described in Section 2.3.

The most famous SS-VRP is probably the SS-VRP-CD introduced
by Bertsimas (1992). In Bertsimas, 1992, the customers are known,
whereas their demands are revealed online. Two different assumptions
are considered, leading to different recourse strategies, as illustrated
in Fig. 1.5. In strategy a, each demand is assumed to be revealed when
the vehicle arrives at the customer place. If the vehicle reaches its
maximal capacity, then the first stage solution is adapted by adding a
round trip to the depot. In strategy b, each demand is revealed when
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Figure 1.5: Recourse strategies for the SS-VRP with stochastic customers and
demands (Bertsimas, 1992). The vehicle has a capacity of 3. The
first stage solution states the a priori sequence of customer visits.
When applying strategy a, the vehicle unloads at the depot after
visiting c. In strategy b, absent customers (a, d, f) are skipped.

leaving the previous customer, allowing to skip customers having null
demands.

In some operational contexts, it may also happen that the solution
can’t be adapted to restore feasibility. It typically happens when one
has to deal with time windows: if some random event makes the vehi-
cle arrive lately at a customer request, there is no possible recourse
action that could actually undo what has been already done by the
vehicle. This is called the nonanticipativity principle. The recourse strat-
egy should then at least define how the overall cost is impacted. For
instance, a fixed penalty cost can be inquired at each missed request.





2
O P T I M I Z AT I O N U N D E R U N C E RTA I N T Y

Whereas the terms stochastic optimization are sometimes used to refer to
a random exploration of some solution space, in this thesis they carry
a whole different meaning. We indeed consider optimization problems
for which some pieces of data are uncertain, therefore described by
random variables. The terms optimization under uncertainty tend to
become often used as an alternative to stochastic optimization, as it
avoids any confusion.

In this chapter, we present the basic concepts and notations that
we use in the remaining of this document in order to model data
uncertainty. We partially rely on Birge and Louveaux’s notations in
Birge and Louveaux, 2011, which we simplified in order to meet the
scope of our discussion. The scientific litterature counts tens, maybe
hundreds, of books dedicated to the vehicle routing problem (VRP).
For instance, the interested reader can find in Toth and Vigo, 2014 a
nice and quite recent introduction to the VRP and many of its variants,
as well as a rather complete description of the existing common models
and algorithms. In this thesis, we only assume the reader to be familiar
with the basics of a the classical, deterministic VRP. Henceforth, the
next section introduces the main concepts of stochastic programming,
by extending the classical VRP to the concept of uncertainty. We will
follow the example of a simple stochastic vehicle routing problem,
gradually reformulated, generalized, or adapted, in order to illustrate
those theoretical concepts.

2.1 introductory example : the courier delivery problem

Classical toy examples of stochastic programs include the Farmer’s
Problem and the News Vendor Problem, which are very well described
in Birge and Louveaux, 2011, among others. Since this thesis is rather
focused on routing problems, the motivating example described here
is what we call the Courier Delivery Problem. Formally speaking, this
stochastic problem is a direct application of the (Static and) Stochastic
Vehicle Routing Problem with random Customer, or SS-VRP-C in short,
a generalization of the Probabilistic Traveling Salesperson Problem
(Jaillet and Odoni, 1988). The taxonomy of the different online VRPs
is explained in Section 1.2.

The Courier Delivery Problem (CDP) consists in designing routes for
the delivery of courier (or parcels). Amongst the known (finite) set
of possible delivery locations, some will actually require deliveries
whereas the others not. For practical reasons however, the itinary of
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Figure 2.1: Illustrative example of the Courier Delivery Problem with three
vehicles. Left: itinaries designed a priori. Right: final itinaries,
when skipping the addresses for which no parcel has to be deliv-
ered (empty circles).

each delivery person cannot be recomputed everyday, but must instead
be predefined, efficiently, once at all. Each deliverer then follows its
itinary, i.e. a sequence of addresses, by skipping those that reveal to
not require a service. We assume for that purpose the deliverer to be
provided with an ordered pile of parcels, accorded to its itinary. Each
time he (or she) completes a delivery, the deliverer henceforth simply
retrieves the location of the next parcel to be delivered, if any. Figure
2.1 illustrates the operational process.

Fortunately, we assume the delivery company to be operating for
long enough for us to count with accurate historical data. We can
hence safely estimate the probability for each address to require a
delivery. Based on that stochastic knowledge, the CDP therefore aims
at designing a set of itinaries, such that each address is a priori part of
exactly one itinary, and which minimizes the expected total distance
to be traveled.

2.2 probability space , random variables and scenarios

Uncertainty is represented in terms of random experiments, with
outcomes denoted by ω ∈ Ω, where Ω is the set of all outcomes. Only
subsets of Ω, called events, are actually relevant to our problem and
we denote A the collection of all these events. Namely, A is problem-
dependent. Finally, to each event A ∈ A is assigned a probability
P(A), such that 0 ≤ P ≤ 1, P(∅) = 0, P(Ω) = 1 and P(A1 ∪ A2) =

P(A1) + P(A2) if A1 ∩ A2 = ∅. The triplet (Ω, A , P) is called the
probability space of our problem. In addition, the probability space
must actually satisfy a number of conditions, that are not in the scope
of this document (see e.g. Chung, 2001).

All the problem variables that are influenced by events in A are
called random variables. Each random variable (or vector) ξ is given a cu-
mulative probability distribution P(ξ ≤ x) = P ({ω ∈ Ω : ξ(ω) ≤ x}).

Random variables can be either discrete or continuous. In this thesis,
we focus on the case where a random variable can take a countable,
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usually finite, number of different values. We further define Sξ ⊂ RN

as being the support of ξ, i.e., the smallest closed subset in RN such that
P(Sξ) = 1. Namely, Sξ is the set of distinct realizations of ξ having a Provided a vector of

random variables ξ,
a scenario ξ

represents a possible
realizations of the
random vector.

positive probability; it is the set of all possible values ξ1, . . . , ξ|Sξ | that
can be assigned to the random variable ξ. Generally speaking, if ξ is
a random vector, then Sξ is the set of all its possible scenarios. In the
Courier Delivery Problem, the uncertainty is on the set of locations
requiring a delivery, which is in fact described by a random vector of
binary variables, of known (estimated) probability distributions. We
naturally define the probability distribution p(·) of a discrete random
variable, or vector, ξ as:

p(ξi) = P(ξ = ξi) = P ({ω ∈ Ω : ξ(ω) = ξi}) s.t. ∑
ξi∈Sξ

p(ξi) = 1.

Thus, p(ξi) is the probability that a specific scenario ξi ∈ Sξ realizes.
Note that ξi and ξ(ω) both represent a scenario, that is, a possible
realization of the random variable ξ. Depending on the semantic
context, both notations will be alternatively used through this thesis.
In fact, notation ξi ∈ Sξ refers to an enumerative context, whereas
ξ(ω) refers more generally to any possible value the random variable
can take, consequently to the outcome ω of the random experiment.

Finally, let f (x, ξ) be a function of some (deterministic) variable
x ∈ RN and of random variable ξ. The expected value of the random
function is defined as:

µ = E
[

f (x, ξ)
]
= ∑

ξi∈Sξ

p(ξi) · f (x, ξi).

In the CDP, f may compute the value of some key performance
indicator, such as the total traveled distance. The computation of its
expectation is then a key part (in fact, the objective function) of the
CDP, and will be discussed in Section 2.3.

2.3 two-stage stochastic programs

One way to model uncertainty in a combinatorial optimization prob-
lem is to model it as a two-stage stochastic program. The idea is to divide
the problem in two phases, called stages. In the first stage, realizations At first stage, a

solution is designed
a priori. At second
stage, the problem
data is updated, as
the missing
information are
revealed by the
random events.

of the random variables are not known yet, but some decisions must
already be taken, a priori; one thus tries to make the best decisions
while relying on the available stochastic knowledge only, that is, on
the probability distributions of the random variables. In other words,
at first stage one simply bets on one particular (set of) scenario(s),
and designs the best corresponding solution. Illustration on the left
of Figure 2.1 shows an example of first-stage solution to the CDP, in-
volving three deliverers. At the second-stage, all the random variables
get assigned to particular realizations consecutive to the outcome,



22 optimization under uncertainty

hence revealing the scenario we have to deal with. In the CDP, this
corresponds to a subset of addresses.

According to the a priori decisions as well as the revealed scenario,
further decisions, called recourse actions, must then be applied accord-
ingly. The recourse actions can be a set of alternative decisions, aimingThe recourse

actions aim at
taking

complementary
decisions, or

adapting the initial
ones, in reaction to

the outcomes.

at correcting the previous ones which are not compatible anymore
with the scenario. It can however also be a complementary set of
decisions, or simply involve the computation of linear penalties (or
rewards).

More formally, let us defineQ(x, ξ(ω)) = Q(x, ω), the deterministic
second-stage value function. It is the total cost of the recourse actions
against first-stage decisions x, when the scenario reveals to be ξ =

ξ(ω), which is of course only known after the random experiment.
A two-stage stochastic program is the problem of finding an optimal
first-stage solution, which minimizes its total first-stage cost plus the
expected total cost of the second-stage recourse actions:

min
x

z =cTx + EQ(x, ξ) (2.1)

s.t. x ∈ X,

where X is the first-stage solution space satisfying the problem de-
pendent constraints, and cTx is the first-stage solution cost. SupposeA two-stage

stochastic
program optimizes

the cost of the a
priori decisions,
plus the expected

cost of the recourse
actions.

now that the set Y(x, ω) specifies which recourse actions are allowed,
depending on the random event ω and consequently to first-stage
decisions x. Namely, Y defines the second-stage solution space. Fur-
thermore, let c′(x, ω) be a vector that defines the recourse action costs.
Generally speaking, the second-stage value function can be further
defined as:

Q(x, ω) = min{c′(x, ω)Ty : y ∈ Y(x, ω)}

Decision vector y thus fully describes the second-stage solution, corre-
sponding to first-stage decisions x and outcome ω. Illustration on the
right of Figure 2.1 shows an example of such final solution, computed
based on the a priori itiniaries (left) and following the revealed subset
of addresses requiring a delivery (filled circles).

Two-stage stochastic programs can be further characterized by the
shape of Y, relatively to X, and provide theoretical tools when it shows
to have some desired property (e.g. two-stage stochastic program with
fixed, complete recourse). Such mathematical analysis however falls
beyond the scope of this thesis. The interested reader should refer to
Birge and Louveaux, 2011 for a more detailed introduction.

2.3.1 Deterministic equivalent program

Depending on the problem, and especially on the operational assump-
tions and constraints, it may be more practical to consider function
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Q(x, ω) as a black box. In some situations, it even happens to this
second-stage value function to be computable in polynomial time. Sim-
ilarly, one step further and its expected value may also be considered
as a black box:

Q(x) = EQ(x, ξ)

called the expected second-stage value function, which totally captures
(and hides) the stochastic dimension of the problem. The problem’s The expected

second-stage value
function Q(x) may
acts as a blackbox
function, computing
the expected recourse
costs of any a priori
solution x, leading to
the formulation of a
determistic
equivalent
program.

operational context may henceforth justify the reformulation of (2.1)
as a deterministic equivalent program (Wets, 1974), or DEP:

min
x

z =cTx +Q(x) (2.2)

s.t. x ∈ X

Back to our example, the Courier Delivery Problem, the second-stage
value function Q(x, ω) simply computes, based on the a priori iti-
naries x, the total distance saved at skipping useless locations, when
the subset of the ones requiring a delivery reveals to be ξ(ω). We
immediatly notice that this simple recourse is in fact efficiently com-
putable, and that the complexity is linear in the number of locations.
Furthermore, in the CDP case, both the deterministic and the expected
second-stage value functions return negative (expected) values. In fact,
in the case of the CDP, mathematical programs (2.1) and (2.2) aim at
minimizing the distance of the first-stage itinaries, minus the expected
distance to be saved at second stage.

2.3.2 Sampling approximations

It clearly appears that program (2.1) can also be trivially computed by
enumerating all the scenarios

Q(x) = ∑
ξi∈Sξ

p(ξi)Q(x, ξi) (2.3)

Naturally, the exponential size of Sξ is a huge problem in practice.

sample average approximation. Most existing methods for
solving two-stage (and multistage) problems are approximations,
which consider a subset only of the scenarios. In the deterministic
equivalent program (2.2) of a two-stage stochastic program, where we
saw that Q(x) = EQ(x, ξ) = ∑ξk∈Sξ

p(ξk)Q(x, ξk). In the DEP formu-
lation, the expected second stage value function Q is considered as
a black box. The most natural approach, known as Scenario Sampling
Approximation (SAA, Ahmed and Shapiro, 2002), uses Monte Carlo
sampling in order to generate a limited pool of scenarios S̃ξ out of
the random variable distributions. Thanks to the scenario pool, the
expected second-stage value of a first-stage solution x can be approxi-
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mated by measuring its average performance against each scenario of
the pool:

Q(x) ≈ 1
|S̃ξ |

∑
ξi∈S̃ξ

Q(x, ξi) (2.4)

The approximation however comes with no guarantee in general, and
its average accuracy directly depends on the size of S̃ξ .

scenario reduction methods . Instead of generating randomly
a predefined number of scenarios, so-called scenario reduction (or sce-
nario aggregation) techniques look for a scenario subset, and a related
probability measure, such that the subset is minimal and close enough
to the initial distribution (Dupacova et al., 2003). This permits to
restrict significantly the amount of scenarios considered in a multi-
stage stochastic program, while providing guarantees on any optimal
solutions to the problem.

Scenario reduction techniques are necessarily coupled with a solu-
tion method, such as the Progressive Hedging algorithm of Helgason
and Wallace, 1991.

2.3.3 Recourse strategy

The Courier Delivery Problem (CDP) also exhibits an important prop-
erty: the first-stage decisions (the a priori delivery itinaries) can only
be altered by skipping locations which do not require any delivery.
That, in fact, significantly reduces the range of Y(x, ω), the allowedProvided a first-stage

solution and a
scenario realization,

a recourse strategy
is a function that
returns a unique

second-stage
solution.

recourse actions at second stage. In particular, it implies that there
exists a function f : X× Sξ → Y, computable in linear time, determin-
ing unambiguously, and for each first-stage solution x, the final set
of itinaries y according to the scenario revealed. In other words, the
existence of f implies |Y(x, ω)| = 1, for x and ω fixed. Such function
is called a recourse strategy.

The recourse strategy sometimes allows an efficient computation
of the expected second-stage value function Q(x). Suppose, in our
introductory problem, that we know the distance di,j between each pair
of locations. Also assume, for simplicity of notation, the a priori itinary
of a deliverer k to be {0, 1, 2, . . . , n, 0}, where the depot is represented
by 0. Let now h(r) be the expected remaining distance from location r,
if r requires a delivery, with necessarily h(n + 1) = 0 and h(n) = dn,0.
The expected length of the kth itinary is thus given by hk(0), with:

hk(r) =
n+1

∑
r′=r+1

r′−1

∏
i=r+1

(1− pi) · pr′ · (dr,r′ + h(r′)),

where pi is the (estimated) probability that location i requires a deliv-
ery, with p0 = 1, di,n+1 = di,0. Assuming r to be part of the second-
stage itinary (i.e. it requires a delivery), the recursion considers the
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next delivery to be r′, namely when the locations {r + 1, . . . , r′ − 1} in
between are skipped. A recourse

strategy function, if
computable in
polynomial time,
may lead to an
expected
second-stage value
function that is
efficiently
computable.

An important consequence of the above statement is that, thanks
to the recourse strategy, it provides a O(N2) algorithm to compute
EQ(x, ξ) for the CDP:

(CDP) Q(x) = EQ(x, ξ) = ∑
k

hk(x),

whereas the expectation involves in fact 2N scenarios when having N
locations in total.

2.4 robustness versus flexibility

Models and methods for optimization under uncertainty aim at finding
solutions that behave well under real life fluctuating data. However,
what does ’behave well’ mean for a solution, within that context? As
noticed in Gendreau et al., 1996b, we highlight two (very) different
properties a solution can embed in order to achieve good performances
in average, when performing in a stochastic context: robustness and
flexibility.

A particular solution is usually feasible in a subset of the scenarios
(that we hope to be significant!) but infeasible in all the remaining ones.
Whenever the system outcomes a scenario which is infeasible with
respect to the current solution, so-called recourse actions must then be
applied in order to restore feasibility. By evaluating all (or a relevant
subset of) the scenarios, one can then determine (or approximate) the
expected recourse cost. The cheaper its expected recourse cost is, the
more flexible the solution is. The associated models are called stochastic
programs with recourse (SPR), and are of the form (2.1).

2.4.1 Chance Constrained Programs

On the other hand, a solution is said to be robust if it provides guar-
anties on the reliability of the solution, over the set of possible scenar-
ios. Formally, a solution is said to be robust if it is guaranteed to stay
feasible for at least a given subset of the scenarios. The probability of
a failure, due to uncertainty, is then constrained to remain under a
given level α. Such a solution does not take into account the cost of
recourse actions in case of failure. Programs we obtain by considering
such a model are called chance constrained programs (CCP), and may be
formulated as suggested in King and Wallace, 2012: A chance

constrained
program looks for
the best first-stage
solution having at
least probability α to
remain feasible at
second stage.

(CCP) min
x

z = cTx (2.5)

s.t. ∑
ξi∈S(x)

p(ξi) ≥ α

W(x) = {ξ(ω) : x ∈ Y(x, ω)},
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where W(x) = {ξ(ω) : x ∈ Y(x, ω)} is thus the set of scenarios
in which the first-stage solution x remains a feasible second-stage
solution.

It is not hard to think at operational contexts justifying a chance
constrained formulation of the Courier Delivery Problem. Suppose that
we want to privilegiate some customers, by delivering their parcels as
soon as possible. An obvious naive approach is to design the a priori
itinaries by simply scheduling the most privilegied ones first. Such
first-stage decisions may however end up in disastrous second-stage
solutions, leading the deliverers to often work terribly late. Instead, a
chance constraint model can be used in order to guarantee that, for
instance, no deliverer will work longer than a total duration D, with
at least some probability α:

(CCP : CDP) min
x

z = cTx (2.6)

s.t. ∑
ξi∈S(x)

p(ξi) ≥ α

W(x) = {ξ(ω) : hk(x, ω) ≤ D, ∀k},

where delivering privilegiate customers after regular ones is therefore
penalized in c. Again, whereas computing the probability mass of
the set W(x) in (2.6) involves 2N scenario evaluations in general,
in contrary the assumptions made in the case of the CDP (i.e., the
recourse strategy) allow to compute the robustness of a solution x
in polynomial time. Define P{hk(r, ξ) ≤ d} the probability that the
remaining distance, from location r in itinary k, is of at most d. Hence,

∑
ξi∈S(x)

p(ξi) = ∏
k

P{hk(0, ξ) ≤ D}

since all the k random variables hk(r, ξ) are independent, with the
recursion

P{hk(r, ξ) ≤ d} =
n+1

∑
r′=r+1

r′−1

∏
i=r+1

(1− pi) · pr′ · P{hk(r, ξ) ≤ d− dr,r′}

having the base cases P{hk(n, ξ) ≤ d} = 1 if dn,0 ≤ d, zero otherwise,
and P{hk(n + 1, ξ) ≤ d} = 1, naturally.

2.4.2 Mixed formulations

Considering either pure two-stage stochastic or pure chance con-
strained programs may sometimes reveals as not perfectly apprio-
priate, depending on the context and performance requirements. In
addition to imposing a chance constraint on the durations of the CDP
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itinaries, similarly to (2.6), the company may also want to optimize an
expected quality of service Q(x):

(CDP′) min
x

z = Q(x) (2.7)

s.t. ∑
ξi∈S(x)

p(ξi) ≥ α

W(x) = {ξ(ω) : hk(x, ω) ≤ D, ∀k},

where Q(x) could be the average expected delivery time of a pre-
mium customer, for instance. Chance constraints could then be too
restrictive, if an adequate and sound α level cannot be determined a
priori, or if our courier delivery company is willing to improve the
expected customer satisfaction, at the expense of paying occasional
extra working hours. A bi-objective formulation such as

(CDP′′) min
x

(
Q(x) , 1− r(x)

)
(2.8)

provides a useful tradeoff between expected quality of service and
expected robustness r(x) = ∑ξi∈S(x) p(ξi) of the solution. A set of
Pareto efficient solutions could further be computed based on program
(2.8), explaining the relation between these two key performance
indicators.

2.4.3 Application: Robust operations management on Mars

We already presented the Courier Delivery Problem as an introductory
application example, for both two-stage stochastic and chance con-
strained formulations, in the context of vehicle routing. In Chapters
5 and 9, we present a new particular two-stage stochastic VRP and
a related real world case study. Pure scheduling problems, such as
the jobshop scheduling problem, are well-known for their similarities
with the vehicle routing problem (see e.g. Beck et al., 2003). In this
section, we present a concrete real world application using a stochas-
tic formulation of a jobshop scheduling problem, mixing two-stage
modeling with probabilistic robustness.

Project development realized about 30% of the world gross product
in 2010, whereas we estimate at at least 20% of it (6% of the world
gross product) the waste in poor project management (Turner et al.,
2010). We see hundreds of books published, every year, on the subject
of project management, development process and methodologies. Yet,
whereas the technology and mathematical tools now finally enable
for a more formal approach of the problem, there are still very few
related studies in the literature. According to Herroelen and Leus,
2005, most of the existing studies have solely been done on machine
scheduling. In fact, the scheduling theory takes its historical roots in
production planning problems. The operator is usually considered as
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Figure 2.2: The ABCD problem. Each job has a processing time of 1 or 2

hours and a time window spanning either the entire work day
(9am to 2pm) or part of it (9am to 12am). Job C must wait at least
one hour after completion of A to start and must be completed
during the first day.

a machine, whereas in project management it may rather represents a
team member: developer, technician, scientist, etc.

Most of the projects are organized in tasks, or jobs, which are
constrained by deadlines, conditionals, etc. Hence, most operations
management issues can be naturally stated as scheduling problems.
But solving the associated scheduling problem reveals to be of really
poor interest, as soon as we take into account all the context variability,
the uncertainties, that did actually justify the study of new, more
flexible, development methodologies such as Agile (Martin, 2002).
Indeed, the Waterfall methodology is only suited in an ideal, often
unrealistic, context where the project input data (e.g. development
time, requirements, . . . ) are perfectly known and remain fixed.

Let us consider the following simple scheduling problem. Four jobs
{A, B, C, D} must be scheduled to be conducted by one operator. Each
job can have one or several time windows, precedence constraints and
minimum transition time constraints, the latter stipulating a minimum
delay between the completion time of a job and the beginning of
another. We assume jobs to be atomic, so that the processing of a job
cannot be split on several time windows. The horizon comprises two
working days of five hours each, from 9am to 2pm. Figure 2.2 provides
the remaining details of the problem, which we will refer to as the
ABCD problem.

A common goal for a deterministic scheduling problem is to mini-
mize the completion time of the entire project, which is achieved here
by the sequence solution s = 〈A, B, C, D〉. It is in fact the only optimal
solution: A starts at 9am, then job B from 10 to 12, followed by job
C from 12 to 1pm and finally job D from 1 to 2pm. Now suppose
that A’s processing time is uncertain. If A reveals to require slightly
more than one hour, then job B will not be completed within its time
window, and is reported to the second day. Solution s is no longer
feasible, as job C is not completed during the first day. Assuming
the mean processing time of A to be of 1 hour, it has a significant
probability to exceed it. No matter how confident we are about A’s
processing time and the degree of its uncertainty (e.g. standard devia-
tion), a non null probability for A’s processing time to reveal not to
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be exactly 1 hour leads a high probability of failure (usually ≈ 50%).
A reliable scheduler should rather suggest the more robust solution
s = 〈A, C, B, D〉.

In Appendix A, based on Saint-Guillain, 2019, we compare both
deterministic and mixed robust stochastic approaches to the problem
of scheduling a set of scientific tasks under processing time uncertainty.
While dealing with strict time windows and minimum transition
time constraints, we provide closed-form expressions to compute the
exact probability that a given solution remains feasible. Experiments,
taking uncertainty on the stochastic knowledge itself into account,
are conducted on real instances involving the constraints faced and
objectives pursued during a recent two-week Mars analog mission in
the desert of Utah, USA. The results reveal that, even when using very
bad approximations of probability distributions, solutions computed
from the stochastic models we introduce, significantly outperform
the ones obtained from a classical deterministic formulation, while
preserving most of the solution’s quality.

2.5 multistage stochastic programs

Once again, we rely on our introductory Courier Delivery Problem,
this time in order to motivate the concept of multistage programming.
Suppose that our delivery company proposes an express pickup and
delivery service, offering to customers who call during office hours to
ship a parcel to some address, with the guarantee that it will arrive at
destination the day following the call. This typically refers to an online
version of the Pickup and Delivery Problem, a well known variant of
the VRP. A possible, simpler, approach is to separate the problem in
two different subproblems: parcel collection and parcel delivery.

The vehicle fleet is then split in both the collection vehicles, responsi-
ble for collecting the parcels, and the delivery vehicles, responsible for
delivering during the next day all the parcels that have been collected
(the day before). In order to meet the guaranteed quality of service,
each parcel must be collected the same day as the request occured,
otherwise it will not be delivered the day after.

For the need of the discussion, we focus on the collection problem
online, which is in fact an online problem. It requires to react and In an online (i.e.

dynamic) problem,
new information
arrive as the solution
is currently executed,
often requiring new
decisions.

commit new decisions as random events occur dynamically, during
the execution of the operations. A random event here is naturally
a customer that suddenly calls, asking for the collection of a parcel.
Online operational decisions must be computed in order to determine
which vehicle to send and when, so that some objective function (e.g.
fuel consumption) is optimized by the end of the day.
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2.5.1 Operational periods, scenarios and decision variables

Let H = {1, . . . , h} represent our operational time horizon, discretized
in h time units, or periods. At each period t, some piece of information
gets revealed, in a dynamic fashion. We note ωt ∈ Ωt the correspond-
ing outcome, with Ωt the subset of possible outcomes corresponding
to the random experiment at time t ∈ H.

A decision xt (which generally corresponds to a vector of decisions)
must then be taken accordingly. Then comes the next period t + 1,
with the corresponding outcome ωt+1, and so on until we reach the
end of the horizon.

t = 0 → t = 1 → · · · → t = h− 1 → t = h

∅ ω1 ωh−1 ωh

↓ ↓ ↓
x0 x1 xh−1 xh

Here period t = 0 corresponds to the first-stage period, when decision
x0 must be taken offline, that is, before any outcome get revealed (i.e.
before the beginning of the operations). Online decision xt>0 must beAt the end of the

operational horizon,
the costs of all the

intermediate a priori
and online decisions

are summed to
obtain the total final

cost.

chosen in the set Xt = X({x0, . . . , xt−1}, ωt) defining the set of legal
recourse actions at period t, which generally depends on previous
actions {x0, . . . , xt−1} and the outcomes just revealed. The final total
operational cost of the day is then obtained by summing the cost the a
priori decision and the costs of the recourse actions:

z = c0x0 + c1x1 + . . . + chxh,

where ct = c({x0, . . . , xt−1}, ωt)T defines the recourse action costs at a
given period, which may also depend on past actions and realizations.
We note X0 and c0 the initial first-stage solution space and cost vectors,
respectively, which are therefore known a priori.

example . In the online collection problem, ωt naturally corre-
sponds to the set of collection requests being revealed at time t. De-
cision variable x0 may simply correspond to the number of vehicles
involved in our online parcel collection problem, and c0 the daily wage
of a driver, in which case X0 ⊆ Z and c0 ∈ R. A vehicle leaves the
depot at t = 1, and is only allowed to move towards an unvisited
customer that already revealed a request, if any; otherwise it simply
waits at its current location. Each variable xt, associated to the online
periods t ≥ 1, could then correspond to the next destination of the
vehicle, or ∅ if no decision can be determined, either because the vehi-
cle is currently moving at time t or if there is no remaining unvisited
request at that moment.
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2.5.2 Optimal decisions

An (a priori) optimal
solution to a
multistage
stochastic
program minimizes
its expected total
final cost.

In such an operational context, that involves multiple realization and
decision periods, the optimal decision at first-stage is the one obtained
by solving the multistage stochastic program (2.9):

min
x0∈X0

c0x0 +E
[

min
x1∈X1

c1x1 +E
[

. . . E
[

ch−1xh−1 + min
xh−1∈Xh−1

EQ(xh−1, ξh)
]

. . .
]]

(2.9)

The random variable (or vector ξh) describes the random events that
may occur at period h. More explicitely, by further expanding the
expected value function EQ(xh−1, ξh) of the final period, we obtain:

min
x0∈X0

c0x0 + E
[

. . . E
[

min
xh−1∈Xh−1

ch−1xh−1 + ∑
ξh

i ∈S
h
ξ

p(ξi)Q(xh−1, ξi)
]

. . .
]

= min
x0∈X0

c0x0 + E
[

. . . E
[

min
xh−1∈Xh−1

ch−1xh−1 + ∑
ξh

i ∈S
h
ξ

p(ξi) min
xh∈Xh

chxh
]

. . .
]

(2.10)

where S t
ξ is the set of possible realizations at period t. Consequently,

Sξ = S1
ξ × S2

ξ × . . .× Sh
ξ

is the set of all the scenarios that can possibly realize over the entire
horizon, the support of ξ =

(
ξ1, . . . , ξh).

example . In our online collection problem, S t
ξ is the set of subsets

of locations at which a request (for collecting a parcel) may appear
at time unit t. An element of Sξ , a scenario, then describes a possible
sequence of requests, each coming with its location and reveal time.
If we let ct = c({x0, . . . , xt−1}, ωt)T be simply the travel distance from
the location of the vehicle at time t, according to {x0, . . . , xt−1}, to
any other location xt could take the value of, then (2.9) minimizes the
expectation of the total distance traveled.

2.5.3 Scenario tree

By further examining the structure of the stochastic program (2.10), we
notice the nested expectations, and henceforth the nested summations

. . . ∑
ξ1

i ∈S
1
ξ

p(ξ1
i )
[

. . . ∑
ξ2

i ∈S
2
ξ

p(ξ2
i |ξ1

i )
[

. . . ∑
ξh

i ∈S
h
ξ

p(ξh
i |ξ1

i , .., ξh
i )[. . .]

] ]
,

from which a tree structure clearly appears. It is well known as the
scenario tree. Each path of the tree constitutes a possible scenario
realization. This is illustrated in Figure 2.3. Leaf nodes at t = h
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Figure 2.3: Tree structure of the problem. For simplicity, the random variable
has only two possible outcomes (denoted a and b) at each period,
leading to 2h−t leaf nodes. Each leaf node ξh

i corresponds to a
specific scenario.

correspond to all the possible scenario realizations, each composed
of a path sequence ξ1

i , . . . , ξh
i of outcomes. In general, solving (2.9)

amounts, in the worst case, at following all these exponentially many
different paths.

2.5.4 Anytime formulation

The multistage stochastic program we formulate in (2.9) involves
solving the entire problem offline, that is, from period t = 0. However,At a current time

period t, the current
decision xt is only

impacted by the
previous fixed

decisions, and the
random variables

ξt+1, . . . , ξh that did
not realize yet.

a noticeable property of the model is that, at a current period t ≥ 1,
the decision xt is to be determined as previous outcomes ω1, . . . , ωt

have already been observed. In the scenario tree, this corresponds to a
specific node ξt

i , where in addition to the subtree rooted at ξt
i , we only

need to care about the partial path from t = 0 to ξt
i .

In particular, the online problems we formulate as multistage stochas-
tic programs of the form (2.9) do not only involve the selection of
the best a priori decision x0, but also online decisions at any time
t ≥ 1. From a purely syntactical point of view however, in order to
better emphasis the online nature of the problem, (2.9) may then be
reformulated as:

min
xt∈Xt

t

∑
t′=0

ct′xt′ +E
[

min
xt+1∈Xt+1

. . .+E
[

ch−1xh−1 + min
xh−1∈Xh−1

EQ(xh−1, ξh)
]

. . .
]
,

(2.11)

which can be stated as the pointwise formulation of the online de-
cision problem, for any current period 0 ≤ t < h, with x0, . . . , xt−1

being known. For t = h, the problem naturally reduces to a classical
deterministic optimization problem.
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Figure 2.4: Illustration of the implicit nonanticipativity constraints on the
scenario tree structure. We see that decisions xt+4

a and xt+4
b must

necessarily share the same ancestors: they both are determined
whilst considering previous decisions xt, . . . , xt+3 as fixed.

2.5.5 Nonanticipativity constraints

Nonanticipativity
constraints are
essential to the time
consistency of the
recourse actions;
they state that in
any case, an online
decision can be
determined in
light of the past
and current
random outcomes
only, whereas the
future events remain
unknown.

The multistage stochastic program (2.11) actually differs from the
two-stage stochastic problem defined by:

min
xt∈Xt

t

∑
t′=0

ct′xt′ + EQ
(
xt, (ξt, . . . , ξh)

)
(2.12)

, which is in fact purely a two-stage stochastic program, equivalent
to (2.1) when t = 0. Indeed, the nested shape of the expectations in
eq. (2.11) implicitely enforces the so-called nonanticipativity constraints
(Birge and Louveaux, 2011; Shapiro et al., 2009). Note that, especially
in the older literature, these are also sometime called implementability
constraints. At each time t′′ > t, decision xt′′ should minimize the
nested expectations over random variables ξt′′+1, . . . , ξh, whereas at
that point all the decision x0, . . . , xt′′−1, thus belonging to the same branch
in the scenario tree, must be considered as fixed. This is illustrated in
Figure 2.4. In the multistage program defined by (2.11), an optimal
decision xt+4

a is associated to the node corresponding to realization
ξt+4

a . In particular, the sequence of optimal decisions xt, . . . , xt+3 that
leads to the decision xt+4

a must necessarily be the same as for decision
xt+4

b , with possibly xt+4
a 6= xt+4

b , whereas xt+4
b is also optimal but

under a different context (namely, in the context of ξt+4
b ). On the

contrary, the two-stage version (2.12) of the problem actually relaxes
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Figure 2.5: Tree structure of the problem, when scenarios are considered
separately. Here n = |S t+1..h

ξ |. If we suppose that, similarly to
Figure 2.3, the random variable of each period has only two
possible realizations, we then have n = 2h−t possible scenarios.

the nonanticipativity constraints. By further developing (2.12), we
obtain the following equivalent two-stage programs:

min
xt∈Xt

t

∑
t′=0

ct′xt′ + ∑
ξi∈S t+1..h

ξ

p(ξi) Q(xt, ξt+1..h
i )

=min
xt

t

∑
t′=0

ct′xt′ + ∑
ξi∈S t+1..h

ξ

p(ξi) min
xt+1,...,xh

{
ct+1xt+1 + . . . + chxh}

s.t. t ≤ t′ ≤ h : xt′ ∈ X
(
{x0, . . . , xt′−1}, (ω1, . . . , ωh)

)
(2.13)

where S t+1..h
ξ = S t+1

ξ × . . .× Sh
ξ is then the set of all possible realiza-

tions, over the remaining periods, of random variables ξt+1, . . . , ξh.
We remark that in program (2.12), and henceforth (2.13), the sce-

narios are considered in a totally independent way, and so are the
associated recourse actions xt+1, . . . , xh, instead of being bound alto-
gether by the nonanticipavity constraints. This is illustrated in Figure
2.5. On the contrary, in (2.11) the scenarios are considered in a nested,Nonanticipativity

constraints are
implicitely part of
any scenario tree.

tree-like, manner. As a consequence, an optimal online decision xt

for (2.12) is not necessarily optimal for (2.11), and may in fact have a
higher expected value when considered in the light of the nonantici-
pativity constraints, which are essential to the time consistency of the
recourse actions.

By explicitely adding the nonanticipativity constraints to (2.12), we
hence obtain a valid two-stage equivalent program (2EP) to the multistage
stochastic program (2.11):

min
xt∈Xt

t

∑
t′=0

ct′xt′ + ∑
ξk∈S t+1..h

ξ

p(ξk) min
xt+1

k ,...,xh
k

{
ct+1xt+1

k + . . . + chxh
k
}

(2.14)

s.t. t < t′ ≤ h, ∀ξi ∈ S t+1..t′
ξ :

xt′
i ∈ X

(
{x0, . . . , xt, xt+1

i , . . . , xt′−1
i }, (ω1

i , . . . , ωt′
i )
)

(2.15)

∀ξ j ∈ S t+1..t′
ξ : ξi = ξ j ⇒ t < t′′ ≤ t′ : xt′′

i = xt′′
j (2.16)

where xt′′
i is the decision associated to node ξt′′

i in the scenario tree,
that is, the optimal decision computed in light of the stochastic knowl-
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Figure 2.6: A simple example of the impact of nonanticipativity constraints
on the online parcel collection problem. The graph shows the
(integer) travel times between vertices, which are always either 1

(dashed) or 2 (bold) periods and symmetric, except between vertices
b and c. Finally, for simplicity we assume that there are only two,
equiprobable, scenarios. The two scenarios ξ1 and ξ2 only differ
on the moment at which requests b and c arrive.

edge about random variables ξt′′+1, . . . , ξh, and conditionally that ran-
dom variables ξt+1, . . . , ξt′ realize as ξi =

(
ξt+1

i , . . . , ξt′
i
)
. For each

subsequence of realizations ξt+1
i , . . . , ξt′

i , constraints (2.15) ensure that
the associated decisions are consistent with the previous decisions
and the scenario in which they take place. Constraints (2.16) express
the nonanticipativity property, by stating that if two subsequences
of realizations ξi =

(
ξt+1

i , . . . , ξt′
i
)

and ξ j =
(
ξt+1

j , . . . , ξt′
j
)

are iden-
tical, thus meaning that they both belong to the same branch in
the scenario tree, then they must share the same identical decisions(

xt+1
i , . . . , xt′

i
)
=
(
xt+1

j , . . . , xt′
j
)
.

example . Nonanticipativity constraints may also be of importance
in the case of the online parcel collection problem. We are given one
unique vehicle starting at the depot, and a set of customer vertices.
Each customer may or not reveal a request (for collecting a parcel)
at some (discrete) time unit t ∈ H during the operational horizon
H = {1, . . . , h}. The vehicle leaves the depot at t = 1, and is only
allowed to visit each customer once, and only if it has revealed a
request. The vehicle simply waits at its current location if there is no
such destination yet. The operational online decision xt, for a period
t ≥ 1, then amounts at choosing the next destination amongst the set
of unvisited vertices for which a request revealed at a time t′ ≤ t, if any.
Figure 2.6 provides additional information. At time t = 1, the vehicle
must leave the depot and has the choice between requests a and d, for
its first destination. In light of the two equiprobable scenarios, what
should be the first destination of the vehicle, in order to minimize the
expected total travel time?

We will compare the two formulations (2.11) and (2.12) and show
that, when taking the nonanticipativity constraints into account, the
two-stage formulation (2.12) can lead to a suboptimal decision xt.
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According to (2.12), the two scenarios will be entirely known at time
t = 2. In other words, if the vehicle travels first to a, at the time it
arrives there, all the scenarios will be revealed up to t = h. We hence
know at time t = 1 that, at the moment we will have to decide x2, we
will certainly be aware of either 1) a request appears instantly at b and
another will appear at t = 3 for c (scenario ξ1), or 2) things will happen
in the other way round, according to the oppposite scenario ξ2. In the
second scenario, the information telling us that a request will appear
soon at b allows, through X2 = X

(
{x0, x1}, (ω0, . . . , ωh)

)
in (2.13), the

vehicle to anticipate the next request, leaving a to reach b at t = 3. The
total travel time is therefore 6 in both scenarios, when decision xt is to
travel to a first, henceforth being optimal with an expected cost of 6

(which is in fact the length of the shortest Hamiltonian tour).
It is however based on a very strong assumption, which is not

consistent with the description of our problem. This anticipativity
assumption, namely the relaxation of the nonanticipativity constraints
from the initial problem, tells us that everything will be revealed at
time t = 2. It results in an unrealistically low expected cost, based on
(recourse) actions that over-anticipate the future. In reality, the true
expected cost of the decision is of 7.5, as we explain now.

Let us now recalculate the expected cost (when the nonanticipativity
constraints are enforced) of the decision travel to a first. Everything
goes fine under scenario 1. Under scenario 2 however, the only request
revealed at time t = 2 when leaving a is c, so that the vehicle has no
other choice than moving towards c. It will then travel t = 3 from c
to b, and from b to d and the depot, leading to a distance of 9. The
real expected cost of action a, under (2.11) or (2.14)-(2.16), is therefore
1
2 · 6 +

1
2 · 9 = 7.5. An expected better decision is to travel to d first. By

the time the vehicle reaches d, both b and c have revealed their requests,
so that the shortest remaining tour from d (→ c → b → a → D) is
valid in both scenarios. As a consequence, (2.11) and (2.14)-(2.16) tell
us to visit d first, with a true expected cost of 7. Instead, based on a
wrong expected cost of 6 (2.12) recommends to visit a first, whereas
the true expected cost of that action is of 7.5.

2.5.6 Nonanticipativity and recourse strategies

We already pointed out in Section 2.3 that recourse strategies can
be of great practical interest, as they may allow an efficient exact
computation of a first-stage solution’s expected cost, at least when the
strategy corresponds to the real operational context. Yet, it was only
introduced in the context of two-stage stochastic programs.



2.6 recourse strategies versus online reoptimization 37

A recourse strategy can also be devised for and applied to a mul-
tistage stochastic program of the form (2.9) and (2.11). Let us first
introduce the deterministic equivalent program of (2.11):

min
xt

z =c0x0 + . . . + ctxt +Q(xt) (2.17)

s.t. xt ∈ Xt

where Q(xt) is the expected multistage value function:

Q(xt) = E
[

min
xt+1∈Xt+1

. . . + E
[
ch−1xh−1 + min

xh−1∈Xh−1
EQ(xh−1, ξh)

]
. . .
]
,

which represents the expected total cost of the optimal decisions
xt+1, . . . , xh that are to be commited subsequently to xt.

In case the operational context of the problem involves a recourse
strategy that explicitely forbids reoptimization, that is, if ∀t′ > t :
|Xt′ | = 1, then Q

(
xt, (ωt+1, . . . , ωh)

)
is computable in linear time in

h. That actually consitutes a particular degenerated multistage pro-
gram, which is rather inherently two-stage, since there is actually
no real online decision involved. In any case, it then may be that
EQ
(
xt, (ξt, . . . , ξh)

)
is then efficiently computable, in (pseudo-) poly-

nomial time. Now suppose that the recourse strategy, as defined by
Xt+1, . . . , Xh, respects the nonanticipativity constraints. If so, Q(xt) is
then efficiently computable as well, since the recourse strategy imposes
Q(xt) = EQ

(
xt, (ξt, . . . , ξh)

)
.

2.6 recourse strategies versus online reoptimization

As highlighted in Van Hentenryck and Bent, 2009, two-stage stochastic
programming considers uncertainty in the data (e.g. in the customer
demands or travel times) in order to compute robust and/or flexible a
priori solution rather than focus on operational decisions.

Some problems are inherently two-stages, such as the Farmer’s
Problem (Birge and Louveaux, 2011), whereas for other problems the
distinction between two-stage or multistage may be quite ambiguous.
In fact, online vehicle routing problems are rather inherently multi-
stage. Yet, by imposing a recourse strategy to our introductory Courier
Delivery Problem (CDP), we formulated it in a two-stage fashion,
hence putting all the emphasis on the a priori decisions, from which
the subsequent online actions will strictly follow. The choice for such
a two-stage model, and furthermore a recourse strategy, may result
from contextual constraints. In the CDP, it may simply happen that
there is no possibility for the company to equip all the vehicles with
the necessary location and communication devices. It may also be
consecutive of even more practical considerations, as for instance the
preference of the deliverers for a fixed, predefined and well-known,
itinary.
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In contrast, a multistage stochastic program defines a reoptimization
process, involving online decisions. It considers uncertainty on the
variables, as for instance which request to serve next in a VRP accord-
ing to the current realizations. Operational decisions are at therefore
at the core of the reoptimization process. Instead of relying only on
an a priori plan and a recourse strategy to solve stochastic problem
instances, in multistage programming one considers the current state
of the solution together with information about the future outcomes to
decide, step by step and after each random variable realization, which
action to consider. If for some practical or operational reasons the
problem naturally admits a recourse strategy, that is, does actually not
involve online decisions (e.g. CDP), then the multistage is degenerated
and should in fact be formulated as a two-stage instead.

2.6.1 Recourse strategies for inherently multistage problems

Nonetheless, for inherently multistage problems, thus involving non-
trivial online decisions (such as the online collection problem), im-
posing an appropriate recourse strategy can be beneficial. Let Xt

R =

XR
(
{x0, . . . , xt−1}, (ω1, . . . , ωt)

)
be the set of online decisions allowed

by the recourse strategy R at time t, depending on previous decisions
and the current scenario. Let also QR(xt) be the expected cost of a
decision xt when applying the subsequent actions as prescribed by
the recourse strategy. In order to be a valid recourse strategy, we must
have Xt

R ⊆ Xt and |Xt
R| = 1, at any period t and under any possible

scenario. If, in addition, the recourse strategy is shown to respectA nonanticipative
recourse strategy

provides a useful
lower bound on the
expected quality of

an online decision.

the nonanticipativity constraints 2.16, then for any online decision xt

we have Q(xt) ≤ QR(xt). In other words, if QR(xt) can be efficiently
computed, a guarantee on the true expected quality of any online decision
can be efficiently computed too.

In Chapter 5, we present several recourse strategies for an online
routing problem variant that generalizes our online collection problem,
among others. We also show how to efficiently compute the associated
expected costs QR(x) while preserving the nonanticipativity property.
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S C O P E O F T H E T H E S I S

This short chapter formally states the scope of the thesis, in terms
of operational contexts, by defining the input data common to all
the problems we will consider. Provided these input data, as well as
necessary assumptions on the nature of the operational decisions, the
current thesis can be unambiguously divided in two different parts:
Part ii and Part iii.

problem input data

Recall that online vehicle routing problems aim at modeling and
solving real life problems, by considering uncertainty on the data.
In both of the abovementioned cases (the SS-VRPTW and the DS-
VRPTW), the problem input, the data, are actually exactly the same.
Only the operational assumptions differ, and consequently, the way
the problem is solved.

In this thesis, we focus on cases where the customer presence, or
similarly their online requests, is unknown a priori. However, an
online request comes with a quality of service, usually in terms of
intervention delay, which must be guaranteed, using time windows
for instance.

Finally, we assume to be provided with some probabilistic knowl-
edge on the missing data. In fact, the probability distributions can be
in many situations approximated from historical data.

input data . We consider a complete directed graph G = (V, A)

and a discrete time horizon H = [1, h], where the interval [a, b] denotes
the set of all integer values i such that a ≤ i ≤ b. We note H0 = H∪{0}.
To each arc (i, j) ∈ A is associated a travel time ti,j ∈ R+, with ti,j 6= tj,i
in general. The set of vertices V = {0} ∪W ∪C is composed of a depot
0, a set of m waiting locations W = [1, m], and a set of n customer
vertices C = [m + 1, m + n]. We note W0 = W ∪ {0} and C0 = C ∪ {0}.
The fleet is composed of K identical vehicles of maximum capacity Q.

We consider the set R = C× H of potential requests, such that an
element r = (c, Γ) ∈ R represents a potential request which reveals
to appear or not, at time Γ ∈ H for customer c ∈ C. A deterministic
demand qr ∈ [1, Q], a deterministic service duration sr ∈ H, and a
deterministic time window [er, lr] with Γ ≤ er ≤ lr ≤ h are associated
to each potential request r. We note pr the probability that r appears
on vertex c at time Γ and assume independence between request
probabilities. When Γ = 0, r is known before the online execution and
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it is said to be offline. When Γ > 0, r is revealed during the online
execution at time Γ and it is said to be online. Although our formalism
imposes Γ ≥ 1 for all potential requests, in practice a request may be
known with probability 1, leading to a deterministic request. Also,
pr can be equal to zero for a specific request r. Finally, two or more
different customers in C can share the same geographical location,
making it possible to consider different types of requests in terms of
deterministic attributes.

To simplify notations, a request r = (c, Γ) may be written in place
of its own vertex c. For instance, the distance tv,c may also be written
as tv,r. Furthermore, we use Γr to denote the reveal time of a request
r ∈ R and cr for its customer vertex.

scenario realization. Let ξ ⊆ R be the set of requests that
are found to appear by the end of the horizon H. The set ξ is also
called a scenario. We note ξt ⊆ ξ, the set of requests appearing at time
t ∈ H, i.e., ξt = {r ∈ ξ : Γr = t}. We note ξ1..t = ξ1 ∪ . . . ∪ ξt, the
set of requests appearing up to time t, with ξ1..h = ξ. A sequence
〈xi, xi+1, . . . , xi+k〉, k ≥ 0 is noted xi..i+k, and the concatenation of two
sequences xi..j and xj+1..k, i ≤ j < k is noted xi..j.xj+1..k.

operational assumptions : online decisions

In order to handle new customers who appear dynamically, the cur-
rent solution must be adapted, hence computing online decisions, as
such random events occur. Depending on the operational context, we
distinguish two fundamentally different assumptions.

• If the routes can only be adapted by following some predefined
scheme, then we are facing a Static and Stochastic VRP(TW): SS-
VRP(TW).

• If the currently unexecuted part of the solution can be arbitrarily
redesigned, then we are facing a Dynamic and Stochastic VRP(TW):
DS-VRP(TW).

In a SS-VRPTW, whenever a piece of information is revealed, the
current solution is adapted by applying a recourse strategy, as described
in sections 2.3. Based on the probabilistic information, we seek a first
stage (also called a priori) solution that minimizes its a priori cost,
plus the expected sum of penalties caused by the recourse strategy.
In our case, penalties are expressed in terms of missed requests or
intervention delays. In order for the evaluation function to remain
tractable, the recourse strategy must be efficiently computable. In
other words, it must be simple enough to avoid re-optimization.

In the DS-VRPTW case, the solution is adapted by re-optimizing
the new current problem while fixing the executed partial routes.
Naturally, as the new problem is NP-hard in general, approximation
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approaches such as Approximate Dynamic Programming (see e.g.
Maxwell et al., 2010; Schmid, 2012) or (meta-)heuristics (see for exam-
ple Bent and Van Hentenryck, 2007; Ichoua et al., 2006) are preferred.

In the next chapter, we provide a literature review of both cases.
Part ii of the thesis is devoted to the study of the SS-VRPTW. Part iii
is then devoted to the study of the DS-VRPTW.





4
L I T E R AT U R E R E V I E W

This chapter provides a specific, non-exhaustive, literature review on
the subject of online VRPs, whenever the uncertainty is related to
the customer (or request) presence (or appearance). The static and
stochastic case is discussed in Section 4.1, whereas a review on the
DS-VRPTW is provided in Section 4.2. Finally, the current chapter
concludes with a literature review on an important subject, although
still rarely considered: the availability of real world benchmarks, for
the DS-VRPTW as well as other online VRPs related to real city logistic
problems.

4.1 static and stochastic vrp’s

In this section we do not consider dynamic VRPs and rather focus on
existing studies that have been carried on static and stochastic VRPs.
Specific literature reviews on the SS-VRP may be found in Bertsimas
and Simchi-Levi, 1996; Campbell and Thomas, 2008a; Cordeau et
al., 2007; Gendreau et al., 1996b and more recently in Berhan et al.,
2014; Gendreau et al., 2016; Kovacs et al., 2014; Toth and Vigo, 2014.
According to Pillac et al., 2013, the most studied cases in SS-VRPs are:

• Stochastic customers (SS-VRP-C), where customer presences are
described by random variables;

• Stochastic demands (SS-VRP-D), where all customers are present
but their demands are random variables; see for instance Chris-
tiansen and Lysgaard, 2007; Dror et al., 1989; Gauvin et al., 2014;
Laporte et al., 2002; Mendoza and Castanier, 2011; Morales, 2006;
Secomandi, 2000; Secomandi and Margot, 2009;

• Stochastic times (SS-VRP-T), where either travel and/or service
times are random variables; see for instance Kenyon and Morton,
2003; Laporte et al., 1992; Li et al., 2010; Verweij et al., 2003.

Since the SS-VRPTW-CR belongs to the first category, we focus this
review on customer presence uncertainty only.

4.1.1 SS-TSP-C

The Traveling Salesman Problem (TSP) is a particular case of the VRP
with only one uncapacitated vehicle. The first study on SS-VRP is due
to Bartholdi III et al., 1983, who considered a priori solutions to daily
food delivery. Jaillet, 1985 formally introduced the TSP with stochastic
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Customers (SS-TSP-C), a.k.a. the probabilistic TSP (PTSP) or TSPSC in
the literature, and provided mathematical formulations and a number
of properties and bounds of the problem (see also Jaillet, 1988). In
particular, he showed that an optimal solution for the deterministic
problem may be arbitrarily bad in case of uncertainty. Laporte et
al., 1994 developed the first exact solution method for the SS-TSP-C,
using the integer L-shaped method for two-stage stochastic programs
proposed in Laporte and Louveaux, 1993 to solve instances up to 50

customers. Heuristics for the SS-TSP-C have then been proposed by
Jezequel, 1985, Rossi and Gavioli, 1987, Bertsimas, 1988, Bertsimas and
Howell, 1993, Bertsimas et al., 1995, Bianchi et al., 2005 and Bianchi and
Campbell, 2007 as well as meta-heuristics such as simulated annealing
(Bowler et al., 2003) or ant colony optimization (Bianchi et al., 2002).
Braun and Buhmann, 2002 proposed a method based on learning
theory to approximate SS-TSP-C. A Pickup and Delivery Traveling
Salesman Problem with stochastic Customers is considered by Beraldi
et al., 2005, as an extension of the SS-TSP-C in which each pickup and
delivery request materializes with a given probability.

Particularly close to the SS-VRPTW-CR is the SS-TSP-C with Dead-
lines introduced by Campbell and Thomas, 2008b. Unlike the SS-
VRPTW-CR, authors assume that customer presences are not revealed
at some random moment during the operations, but all at once at the
beginning of the day. However, Campbell and Thomas showed that
deadlines are particularly challenging when considered in a stochastic
context, and proposed two recourse strategies to address deadline vio-
lations. More recently, Voccia et al., 2013 extended their work to handle
time windows. They propose two recourse strategies: first, customers
are visited even if their deadlines are violated; second, a customer
is skipped if its deadline cannot be respected. Weyland et al., 2013

proposed heuristics for the latter problem based on general-purpose
computing on graphics processing units. A recent literature review on
the SS-TSP-C may be found in Henchiri et al., 2014.

4.1.2 SS-VRP-C

The first SS-VRP-C has been studied by Jezequel, 1985, Jaillet, 1987 and
Jaillet and Odoni, 1988 as a generalization of the SS-TSP-C. The prob-
lem is defined on a graph that includes a depot and a solution exploits
a fleet of capacitated vehicles. Waters, 1989 considered general integer
demands and compared different heuristics. Bertsimas, 1992 consid-
ered a VRP with stochastic Customers and Demands (SS-VRP-CD). A
customer demand is assumed to be revealed either when the vehicle
leaves the previous customer or when it arrives at the customer’s own
location. Two different recourse strategies are proposed, as illustrated
in Figure 1.5. For both strategies, closed-form mathematical expres-
sions are provided to compute the expected total distance, given a
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first stage solution. Gendreau et al., 1995 and Séguin, 1994 developed
the first exact algorithm for solving the SS-VRP-CD for instances up
to 70 customers, by means of an integer L-shaped method. Gendreau
et al., 1996a later proposed a tabu search to efficiently approximate
the solution. Experimentations are reported on instances with up to
46 customers. Gounaris et al., 2014 later developed an adaptive mem-
ory programming metaheuristic for the SS-VRP-C and assessed it on
benchmarks with up to 483 customers and 38 vehicles.

A variant of the SS-VRPTW-C, the Courier Delivery Problem with
Uncertainty, is considered in Sungur and Ren, 2010. Potential cus-
tomers have deterministic soft time windows but are present proba-
bilistically, with uncertain service times. Vehicles are uncapacitated
and share a common hard deadline for returning to the depot. The
objective is to construct an a priori solution, to be used every day
as a basis which is adapted to daily customer requests. Unlike the
SS-VRPTW-CR, the set of customers is revealed at the beginning of
the operations. A scenario-based heuristic coupled with tabu search is
used in order to maximize the coverage of customers, minimize the
total time, earliness and lateness penalty, and finally maximize the
similarity between the a priori solution and the actual daily routes.

4.1.3 Other related SS-VRPs

In the study of Heilporn et al., 2011, uncertainty is not explicitly fo-
cused on the customers’ presence. They introduced the Dial-a-Ride
Problem (DARP) with stochastic customer delays. The DARP is a
generalization of the VRPTW that distinguishes between pickup and
delivery locations and involves customer ride time constraints. Each
customer is present at its pickup location with a stochastic delay. A
customer is then skipped if it is absent when the vehicle visits the
corresponding location, involving the cost of fulfilling the request by
an alternative service (e.g., a taxi). In a sense, stochastic delays imply
that each request is revealed at some uncertain time during the plan-
ning horizon. That study is thus related to our problem, although in
the SS-VRPTW-CR only a subset of the requests are actually revealed.
Similarly, Ho and Haugland, 2011 studied a probabilistic DARP where
a priori routes are modified by removing absent customers at the
beginning of the day, and proposed local search based heuristics.

Other interesting studies are those of Novoa et al., 2006 and Lei
et al., 2011, both focused on stochastic demands. In addition to a set-
partitioning-based model for the SS-VRP with stochastic Demands (SS-
VRP-D), Novoa et al., 2006 introduced an extended recourse strategy
in which vehicles are allowed to serve customers from a failed route,
before returning to the depot or in a new route after returning back
to the depot. In the study of Lei et al., 2011, the authors consider
the VRPTW with stochastic demands (SS-VRPTW-D). The interesting
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difference with the SS-VRP-D particular case is that, because of the
deterministic time windows, a failure on a route (which implies a
round trip to the depot) may also imply failures on the remaining
vertices on the route.

4.2 dynamic and stochastic vrp’s

The first D-VRP is proposed in Wilson and Colvin, 1977, which in-
troduces a single vehicle Dynamic Dial-a-Ride Problem (D-DARP) in
which customer requests appear dynamically. Then, Psaraftis, 1980

introduced the concept of immediate requests that must be serviced
as soon as possible, implying a replanning of the current vehicle
route. Complete reviews on D-VRP may be found in Pillac et al., 2013;
Psaraftis, 1995. In this section, we more particularly focus on Dynamic
and Stochastic VRPs (DS-VRPs).

The survey provided in Pillac et al., 2013 classifies approaches for
stochastic D-VRP in two categories, either based on stochastic modeling
or on sampling. Stochastic modeling approaches formally capture the
stochastic nature of the problem, so that solutions are computed in
the light of an overall stochastic context. Such holistic approaches
usually require strong assumptions and efficient computation of com-
plex expected values. Sampling approaches try to capture stochastic
knowledge by sampling scenarios, so that they tend to be more fo-
cused on local stochastic evidences. Their local decisions however
allow sample-based methods to scale up to larger problem instances,
even under challenging timing constraints. One usually needs to find
a good compromise between having a high number of scenarios, pro-
viding a better representation of the real distributions, and a more
restricted number of these leading to less computational effort.

An original solution approach is proposed in Bent and Van Henten-
ryck, 2004b for the DS-VRPTW, by introducing the Multiple Scenario
Approach (MSA). A key element of MSA is an adaptive memory that
stores a pool of solutions. Each solution is computed by considering a
particular scenario which is optimized for a few seconds. The pool is
continuously populated and filtered such that all solutions are consis-
tent with the current system state. Another important element of MSA
is the ranking function used to make operational decisions involving
idle vehicles. The authors designed 3 algorithms for that purpose:

• Consensus Bent and Van Hentenryck, 2004b,c selects the request
that appears the most frequently as the next serviced request in
the solution pool.

• Expectation Bent and Van Hentenryck, 2004a,c samples a set of
scenarios and selects the next request to be serviced by consider-
ing its average cost on the sampled set of scenarios. Algorithm
1 (Van Hentenryck et al., 2009) depicts how it chooses the next
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Algorithm 1: The ChooseRequest-ε Expectation Algorithm

1 for at ∈ A(ξt) do f (at)← 0 ;
2 Generate a set S of α scenarios using Monte Carlo sampling
3 for each scenario s ∈ S and each action at ∈ A(ξt) do
4 f (at)← f (at)+cost of (approximate) solution to scenario s

starting with at

5 return arg minat∈A(ξt) f (at)

action at to perform. It requires an optimization for each ac-
tion at ∈ A(ξt) and each scenario s ∈ S (lines 3-4), which is
computationally very expensive, even with a heuristic approach.

• Regret Bent and Van Hentenryck, 2004a; Bent et al., 2005 approx-
imates the expectation algorithm by recognizing that, given a
solution sol∗s to a particular scenario s, it is possible to compute
a good approximation of the local loss inquired by performing
another action than the next planned one in sol∗s .

Experiments, on online vehicle routing as well as online packet schedul-
ing, showed that the reget approach outperforms consensus and ex-
pectation in most of the cases.

Quite similar to the consensus algorithm is the Dynamic Sample
Scenario Hedging Heuristic introduced by Hvattum et al., 2006 for
the stochastic VRP. Also, Ichoua et al., 2006 designed a Tabu Search
heuristic for the DS-VRPTW and introduced a vehicle-waiting strategy
computed on a future request probability threshold in the near region.
Finally, Bent and Van Hentenryck, 2007 extends MSA with waiting
and relocation strategies so that the vehicles are now able to relocate to
promising but unrequested yet vertices. As the performances of MSA
has been demonstrated in several studies Bent and Van Hentenryck,
2007; Flatberg et al., 2007; Pillac et al., 2012; Schilde et al., 2011, it is still
considered as a state-of-the-art method for dealing with DS-VRPTW.

Other studies of particular interest for this thesis are Ghiani et al.,
2009, on the dynamic and stochastic pickup and delivery problem, and
Schilde et al., 2011, on the DS-DARP. Both consider local search based
algorithms. Instead of a solution pool, they exploit one single solution
that minimizes the expected cost over a set of scenarios. However,
in order to limit computational effort, only near future requests are
sampled within each scenario. Although the approach of Schilde et al.,
2011 is similar to the one of Ghiani et al., 2009, the set of scenarios
considered is reduced to one scenario. Although these papers show
some similarities with the approach we propose, they do not provide
any mathematical motivation and analysis of their methods.

conclusion. The dynamic and stochastic VRPTW is tackled in
Part iii of the current thesis. Throughout the latter part, we will insist
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on the following property, which is common to most of sampling
based solution approaches. Approaches based on sampling, such
as MSA, usually approximate a multistage stochastic problem by
relaxing the nonanticipativity constraints, hence solving (usually also
approximately) a two-stage problem of the form (2.12). On the contrary,
all the solution methods proposed in Part iii aim at preserving those
constraints.

4.3 benchmarks for city logistics

Taniguchi and Thompson, 2002 define City Logistics as ”the process for
totally optimizing the logistics and transport activities by private companies
with the support of advanced information systems in urban areas considering
the traffic environment, its congestion, safety, and energy savings within the
framework of a market economy”. As extensively reported in Cattaruzza
et al., 2017, urban transportation has huge economic, social and envi-
ronmental consequences. As the public and private demands for good
distribution in cities are recently exploding, public authorities and
enterprises require more intelligent policies. In the meanwhile, urban-
ization keeps growing and city inhabitants claim for improvements in
the traffic of their area.

The four main stakeholders involved in urban vehicle routing are:
shippers (retailers), carriers (transporters), residents (customers) and
administrators (representing both city and environmental concerns).
In City Logistics, the different categories of stakeholders all play an
important role in urban applications, but they are rarely considered
all together, leading the search to some local optimum (Kim et al.,
2015). Furthermore, stakeholders usually have conflicting objectives
(cooperation, competition, coopetition, collaboration), and external
concerns may be of interest. For instance, the customers might be
inclined to wait a little bit more if it may reduce their environmental
impact.

In such settings, the transportation community has been recently
devoting significant efforts to propose efficient and innovative ap-
proaches to address many types of City Logistics problems. On the
other hand, a standard framework for simulating and studying the
impact of optimization in City Logistics is currently missing, limiting
the possibility to validate in real settings the technology transfer to in-
dustry. In particular, as highlighted by Kim et al., 2015 and observed in
Section 4.3.1, there is an obvious lack of available realistic benchmark
data set for the City Vehicle Routing Problem (VRP). The instances
in the literature are based on the generalization of classical instances,
often not created for urban applications, or on artificial data, i.e., data
not coming from any historical or empirical datasets. The validation
of models and methods becomes more difficult, being the results not
directly compared to real or realistic settings. Even when real data
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become available, some other issues come from the availability of a
finite dataset, the necessity to anonymize them or to mix real data
with empirical distributions.

In our opinion, that latter issue mainly comes from the following
current limitations:

1. unavailability of full data: given a urban area, gathering the
real data associated with all four stakeholders usually requires
to much time and/or expertise to be actually implemented;

2. difficulty of combining/reusing existing data: whereas existing
studies may provide realistic data involving one or more stake-
holders, there is still no trivial way to combine such data from
different sources.

4.3.1 Literature review

We focus our review on realistic City Vehicle Routing Problem (VRP)
related case studies one can find in the literature up to these days.
The purpose of this section is primarily to identify the scope of city
VRP applications already addressed by the scientific community and
secondly, the benchmarks that are still currently available in that field.
This review is initially based on the excellent work Kim et al., 2015,
which we restrain in order to focus on real case studies, in particular,
those for which the benchmarks are still available.

The first vehicle routing case study based on real world data in
urban area is due to Dulac et al., 1980, and later Chapleau et al., 1985

who addressed the problem of collecting students and routing school
bus in the city of Drummondville (Canada). They proposed a heuris-
tic method to optimize instances involving up to 99 real bus stops.
In Vigo, 1996, a real-world problem of distributing pharmaceutical
products in downtown Bologna (Italy) is considered and modelled
as an asymmetric Capacitated Vehicle Routing Problem (CVRP). The
test instances, involving up to 70 customers, are still available on the
author’s web page. In Chang and Yen, 2012, a case study involving
a multiple Travelling Salesman Problem (TSP) with time windows is
considered in the city of Taipei (Taiwan).

Variability in vehicle travel times has been studied from several
aspects. In Fleischmann et al., 2004a, a Dynamic Pickup and Delivery
problem is studied under dynamic travel time information. They
empirically showed the importance of real-time traffic information
using real-life data from a urban traffic management center in Berlin.
Liao and Hu, 2011 later also considered a dynamic VRP under real-
time information in Taichung City, Taiwan. Sifa et al., 2011 proposed a
model for a pickup and delivery problem with time-dependent fuzzy
travel times and applied it to a real-world instance in China. Hu et
al., 2009 addressed a (deterministic) time-dependent VRP faced by a
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food wholesaler in Beijing, China. Donati et al., 2008 also proposes a
real-world case study of time-dependent VRP in Veneto (Italy). Kim
et al., 2005 worked on shortest paths under non-stationary stochastic
travel times, where each road segment can be either uncongested or
congested at a discrete moment of the time horizon. Using real time-
dependent travel time statistics on a urban road network in Detroit,
they showed that significant costs savings could be achieved when
considering such stochastic knowledge. In particular, in Kong et al.,
2012 the authors worked on shortest paths under dynamic travel times
in a downtown area in Shanghai. The raw data (1 month of taxi GPS
data, 3 months of bus GPS data in Shanghai during the year 2007) are
still currently available on demand to the authors.

Quak and Koster, 2009 studied the effect of governmental restric-
tions, such as time windows (access time regulations) and vehicle
restrictions in urban areas, on the financial and environmental perfor-
mances. Their research is based on a multiple a real-world case study
of several Dutch retailers, which provided all organizational, flow and
cost data. The impact of access time windows has also been studied
by Muñuzuri et al., 2013, through a case study in Seville (Spain).

Multi-level vehicle routing problems, such as the Two-Echelon VRP
(2E-VRP) introduced by Perboli et al., 2011, have also received recent
interest in urban context. In Escuín et al., 2012, the authors present a
real-world case study involving a time-dependent VRPTW in Zaragoza
(Spain), in which customers can be either directly delivered from the
classical depot or by mean of green vehicles by using intermediate
urban depots.

The problem of trash collection has been studied by Santos et al.,
2008, which they model as a Capacitated Arc Routing Problem (CARP)
with additional constraints, such as one-way streets, demands along
the arcs, prohibited turns, etc. An analysis is conducted provided real
data from the city of Coimbra (Portugal). A very similar problem
has also been addressed by Bautista et al., 2008 and applied to the
municipality of Sant Boi de Llobregat, within the metropolitan area
of Barcelona (Spain). Perrier et al., 2008 model urban snow plowing
operations as a Chinese postman problem and apply it to real data
from the city of Dieppe (Canada).

Vehicle breakdowns have been considered in Minis et al., 2012.
Whenever a breakdown occurs, the re-planning problem is modeled
as a modified Team Orienteering Problem (TOP) over the remaining
customers and vehicles. They validate their heuristic method on real
data from a food distribution company in Attica (Greece). Note that
their benchmark is still available on demand.

Environmental-friendly decision systems in the context of (City)
VRPs are increasingly studied nowadays under various names: Green
Vehicle Routing Problem (GVRP), Pollution-Routing Problem (PRP),
Emissions Vehicle Routing Problem (EVRP), etc. Alternative fuel vehi-
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cles are considered in Erdogan and Miller-Hooks, 2012 by means of
the GVRP. The objective is to minimize the total routing cost given lim-
ited refueling stations. Numerical experiments are conducted based
on data from a medical textile supply company in Virginia. These
data are still available under demand. In Bektas and Laporte, 2011,
a realistically generated benchmark is used in order to illustrate the
PRP over a set of cities in United Kingdoms. The benchmark is still
available. Faulin et al., 2011; Ubeda et al., 2011 addressed real-world
delivery case-studies of food delivery in Spain while also taking en-
vironmental costs into account. In Huang et al., 2012, the study a
green VRP with simultaneous pickups and deliveries. Using data from
a European company, they empirically show that fuel consumption
and carbon emission can be significantly improved while keeping the
traditional distance-minimizing objective reasonably low. A number
of similar studies (e.g., Kuo, 2010; Kuo and Wang, 2011; Kwon et al.,
2013; Saberi and Verbas, 2012; Xiao et al., 2012; Yang et al., 2013) have
been conducted on artificially generated benchmarks, many of them
based on Solomon’s instances. More recently, Maggioni et al., 2014

provided a realistic benchmark for the Multi-path TSP with stochastic
travel costs (Tadei et al., 2014) applied to electric and hybrid vehicles in
freight distribution. In particular, Maggioni et al., 2014 propose a first
example of instance generator. However, it was in a prototype form
and strictly dependent on the application, lacking a global vision.

Matis, 2010 addresses a VRP in a urban area that has the particularity
of involving hundreds of thousands of customers. This particular
VRP sometime called Street Routing Problem, and usually solved
by means of heuristic clustering methods coupled with standard
VRP/TSP approaches. In these studies, the author experiments on
several real-world postal delivery case studies in the Slovak Republic.
A similar mail distribution problem, together with a vehicle and crew
scheduling problem, was earlier addressed by Hollis et al., 2006 and
applied to smaller instances (up to 339 locations) obtained from the
Australia Post distribution service in Melbourne.

Another potential application related to City VRP is the Personal
Rapid Transit (PRT) problem described in Schüpbach and Zenklusen,
2013. In a urban area, small automated vehicles transport passengers
on demand on dedicated tracks. Whereas the idea is not recent (Fichter,
1964), there is still no computational validation based on realistic
data (e.g., real-world inspired origin-destination matrix, statistical
knowledge, etc.).

4.3.2 Conclusion

Our literature review highlights that the City VRP contributions con-
tain very few real-world based applications and the results are nor-
mally based on academic (and unrealistic) datasets. Up to our knowl-
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edge, among those studies that are based on realistic data, the corre-
sponding benchmarks are still currently available for only 6 papers:
Bektas and Laporte, 2011; Erdogan and Miller-Hooks, 2012; Kong
et al., 2012; Maggioni et al., 2014; Minis et al., 2012; Vigo, 1996. More-
over, these applications lack a global vision and they are scarcely
repeatable in a different context. Appendix section B.1 proposes a way
to overcome these issues, by introducing a simulation-optimization
framework, specific to urban VRPs. Recently, the DATA2MOVE ini-
tiative started to collect data from different sources for Logistics and
Supply Chain applications, but the project is still at an early stage
(Woensel, 2017). A lack emerging from the literature is the identifi-
cation of the main sources types, how to mix and how to interface
them with one or more simulation and optimization modules in order
to give flexible solutions to the stakeholders and the users. Amongst
the numerous VRP classes (e.g., GVRP, CARP, VRPTW, 2E-VRP, etc.)
addressed in the City VRP literature, most of these can actually be
modelled using the proposed framework, facilitating the share, reuse
and merge of existing benchmarks.

In Appendix B.2, we show how our framework can be exploited to
realize a concrete case study of online freight collection in a realistic
urban context, in the city of Turin (Italy). In particular, the study
considers the integration of different deliveries modes (i.e., cargo bikes
and lockers), reflecting the current practices in the city, which are
devoted to the adoption of green delivery options.
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T H E S TAT I C A N D S T O C H A S T I C V R P T W W I T H
R A N D O M C U S T O M E R S A N D R E V E A L T I M E S

This chapter is based on Saint-Guillain et al., 2017. Before the begin-
ning of the day, probability distributions on customer data are used to
compute a first-stage solution that optimizes an expected cost. Cus-
tomer data are revealed online, while the solution is executed, and
a recourse strategy is applied on the first-stage solution to quickly
adapt it. Existing SS-VRP variants usually make a strong assumption
on the time at which a stochastic customer reveals its data (e.g. when a
vehicle arrives at the corresponding location). Instead of reoptimizing
online, a so-called recourse strategy defines the way the requests are
handled, whenever they appear.

In the recent review of Gendreau et al., 2016, the authors argue
for new recourse strategies: with the increasing use of ICT, customer
information is likely to be revealed on a very frequent basis. In this
context, the chronological order in which this information is trans-
mitted no longer matches the planned sequences of customers on the
vehicle routes. In particular, the authors consider as paradoxical the
fact that the existing literature on SS-VRPs with random Customers
(SS-VRP-C) assumes full knowledge on the presence of customers at
the beginning of the operational period.

We introduce a new SS-VRP, called Static and Stochastic VRPTW with
both random Customers and Reveal times. The SS-VRPTW-CR considers
stochastic customers with time windows and does not make any as-
sumption on their reveal times, which are stochastic as well. Based on The

SS-VRPTW-CR
does not make any
assumption on the
moment at which
random events occur.

customer request probabilities, we look for an a priori solution com-
posed of preventive vehicle routes, minimizing the expected number
of unsatisfied customer requests at the end of the day. A route de-
scribes a sequence of strategic vehicle relocations, from which nearby
requests can be rapidly reached.

Previous models
assume customer
requests to be
revealed at the
beginning of the day.
In that context, the
SS-VRPTW-CR is
the first model to
enforce the
nonanticipativity
property.

contributions . Up to our knowledge, previous static and stochas-
tic VRP’s studies all assume that requests are revealed at the beginning
of the day, and all fail at capturing the following property: besides the
stochasticity on request presence, the moment at which a request is
received is stochastic as well. The SS-VRPTW-CR is the first one that
actually captures this nonanticipativity property. However, the recourse
strategy previously proposed does not take capacity constraints into
account. A first contribution is to introduce a new recourse strategy
that handles these constraints. We also introduce an improved re-
course strategy that optimizes routes by skipping some useless parts.

55
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We introduce closed-form expressions to efficiently compute expected
costs for these two new recourse strategies.

organization. In Section 5.1, we formally define the general SS-
VRPTW-CR. In Section 5.2, we extend the recourse strategy introduced
by Saint-Guillain et al., 2017 to deal with capacitated vehicles. In
Section 5.3, an alternative recourse strategy involving cleverer vehicle
operations is presented. The remaining chapters of the current thesis
part introduce solutions methods, as well a case studies.

5.1 problem description : the ss-vrptw-cr

The problem input data have already been introduced in Chapter 3.
Our results in the context of the SS-VRPTW-CR require integer oper-
ational times. Consequently, for what concerns the SS-VRPTW and
in particular within the current chapter, we assume ti,j = dti,je and
si,j = dsi,je. In practice, the current limitation can be avoided by
defining a time horizon, which is necessarily discrete, being accurate
enough.

5.1.1 First-stage solution.

The first-stage solution is computed offline, before the beginning of
the time horizon. It consists of a set of K vehicle routes visiting a
subset of the m waiting vertices, together with time variables denoted
by τ indicating how long a vehicle should wait on each vertex. More
specifically, we denote by (x, τ) a first-stage solution to the SS-VRPTW-
CR, where:

• x = {x1, ..., xK} defines a set of K disjoint sequences of waiting
vertices of W. Each sequence xk = 〈wm1 , ..., wmk〉 is such that xk
starts and ends with 0, i.e., wm1 = wmk = 0, and each vertex of
W occurs at most once in x. We note Wx ⊆W, the set of waiting
vertices visited in x.

• τ : Wx → H associates a waiting time τw with every waiting
vertex w ∈Wx (H is the discrete time horizon).

• for each sequence xk = 〈wm1 , ..., wmk〉, the vehicle is back at the
depot before the end h of the time horizon, i.e.,

k−1

∑
i=1

twmi ,wmi+1
+

k−1

∑
i=2

τwmi
≤ h

In other words, x defines a solution to a Team Orienteering Problem
(TOP, see Chao et al., 1996) to which each visited location is assigned
a waiting time by τ.
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Figure 5.1: Example of first stage solution with K = 3 vehicles. The de-
pot, waiting vertices and customer vertices are represented by
a square, circles and crosses, respectively. Arrows represent the
three vehicle routes: x1 = 〈D, a, b, c, d, D〉, x2 = 〈D, e, f , g, D〉 and
x3 = 〈D, j, k, l, D〉. Integers at waiting locations indicate waiting
times defined by τ. Waiting vertices h, i and m are not part of the
first stage solution and Wx = {a, b, c, d, e, f , g, j, l, k}. For vehicle 1,
we have on(D) = 1, on(a) = 3, on(a) = 9, on(b) = 12, on(b) = 16,
etc.

Given a first-stage solution (x, τ), we define on(w) = [on(w), on(w)]

for each vertex w ∈ Wx such that on(w) (resp. on(w)) is the arrival
(resp. departure) time at w. In a sequence 〈wm1 , ..., wmk〉 in x, we then
have on(wmi) = on(wmi−1) + twmi−1 ,wmi

and on(wmi) = on(wmi) + τwmi
for i ∈ [2, k] and assume that on(wm1) = 1. Figure 5.1 illustrates an
example of a first-stage solution for a basic SS-VRPTW-CR instance.

5.1.2 Recourse strategy and second-stage solution.

A recourse strategy R states how a second-stage solution is gradually
constructed as requests are dynamically revealed. In this paragraph,
we define the properties of a recourse strategy. Two recourse strategies
are given in Sections 5.2 and 5.3.

A second-stage solution is incrementally constructed for each time
unit by following the skeleton provided by the first-stage solution
(x, τ). At a given time t of the horizon, we note (x0..t, At), the current
state of the second-stage solution:

• x0..t defines a set of vertex sequences describing the route op-
erations performed up to time t. Unlike x, we define x0..t on a
graph that also includes the customer vertices. Sequences of x0..t

must satisfy the time window and capacity constraints imposed
by the VRPTW.



58 ss-vrptw with random customers and reveal times

Figure 5.2: Example of partial second stage solution (plain arrows). Filled
crosses are accepted requests. Some accepted requests, such as r1,
have been satisfied (or the vehicle is currently traveling towards
the location, e.g., r2), while some others are not yet satisfied (e.g.,
r3).

• At ⊆ ξ1..t is the set of accepted requests up to time t. Requests of
ξ1..t that do not belong to At are said to be rejected.

We distinguish between requests that are accepted and those that are
both accepted and satisfied. Up to a time t, an accepted request is
said to be satisfied if it is visited in x0..t by a vehicle. Accepted requestsAll accepted online

requests must
eventually be served.

that are not yet satisfied must be guaranteed to be eventually satisfied
according to their time windows. Figure 5.2 illustrates an example of
a second-stage solution being partially constructed at some moment
of the time horizon.

Before starting the operations (at time 0), x0 is a set of K sequences
that only contain vertex 0, and A0 = ∅. At each time unit t ∈ H,
given a first-stage solution (x, τ), a previous state (xt−1, At−1) of the
second-stage solution, and a set ξt of requests appearing at time t, the
new state (x0..t, At) is obtained by applying a specific recourse strategy
R:

(x0..t, At) = R
(
(x, τ), (xt−1, At−1), ξt). (5.1)

As explained in Chapter 2, a necessary property of a recourse strategy
is that it avoids reoptimization. We consider that R avoids reoptimiza-
tion if the computation of (x0..t, At) is achieved in polynomial, often
linear, time.

We note cost(R, x, τ, ξ) = |ξ \ Ah|, the final cost of a second-stage
solution with respect to a scenario ξ, given a first-stage solution (x, τ)

and under a recourse strategy R. This cost is the number of requests
that are rejected at the end h of the time horizon.
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5.1.3 Optimal first-stage solution

Given strategy R, an optimal first-stage solution (x, τ) to the SS-
VRPTW-CR minimizes the expected cost of the second-stage solution:

(SS-VRPTW-CR) Minimize
x,τ

QR(x, τ) (5.2)

s.t. (x, τ) is a first-stage solution. (5.3)

The objective function QR(x, τ), which is nonlinear in general, is the The SS-VRPTW-CR
minimizes the
expected amount of
rejected requests.

expected number of rejected requests, i.e., requests that fail to be visited
under recourse strategy R and first-stage solution (x, τ):

QR(x, τ) = ∑
ξi⊆R

p(ξi) cost(R, x, τ, ξi) (5.4)

Since we assume independence between requests, we have p(ξi) =

∏r∈ξi
pr ·∏r∈R\ξi

(1− pr). Note that QR(x, τ) actually represents an
expected quality of service, which does not take travel costs into
account. In fact, in most practical applications that could be formulated
as an SS-VRPTW-CR, quality of service prevails whenever the number
of vehicles is fixed, as travel costs are usually negligible compared
with the labor cost of mobilized mobile units.

Formulation (5.2)-(5.3) states the problem in general terms, hid-
ing two non-trivial issues. Given a recourse strategy R, finding a
computationally tractable way to evaluate QR constitutes the first
challenge. We address it Sections 5.2 and 5.3., based on two new re-
course strategies we propose. The second problem naturally concerns
the minimization problem, or how to deal with the solution space.
This is addressed in Chapters 7 and 8.

non-reject models . Depending on the operational context, sit-
uations may arise in which one cannot reject online requests. The
objective function should then be adapted, for example, by minimizing
the expected average intervention delay. In Chapter 9, we show how
our theoretical results for the SS-VRPTW-CR can easily be adapted
and exploited in such a context, and apply it to a real case study.

5.2 recourse strategy with bounded capacity

In this section we introduce the recourse strategy Rq, which is a gen-
eralization of the recourse strategy R∞ introduced by Saint-Guillain
et al., 2017: R∞ only considers uncapacitated vehicles (i.e., Q = ∞),
whereas Rq considers capacitated vehicles in the context of integer
customer demands. We first describe Rq and then describe the closed-
form expression that allows us to compute the expected cost of the
second-stage solution obtained when applying Rq to a first-stage
solution.



60 ss-vrptw with random customers and reveal times

5.2.1 Description of Rq

Informally, the recourse strategy Rq accepts a request revealed at time
t if the assigned vehicle is able to adapt its first-stage tour to visit the
customer, given its set of previously accepted requests. Time window
and capacity constraints should be respected, and already accepted
requests should not be perturbed.

Ideally, whenever a request appears and prior to determine whether
it can be accepted, a vehicle should be selected to minimize objective
function (5.2). Furthermore, if several requests appear at the same
time unit and amongst the subset of these that are possibly acceptable,
some may not contribute optimally to (5.2). Given a set of accepted
requests, the order in which they are visited also plays a critical role.
Unfortunately, none of these decisions can be made optimally without
reducing to a NP-hard problem. In order for Rq to remains efficiently
computable, they are necessarily made heuristically.

In what we propose, these decisions are made beforehand. Before
computing the recourse strategy and in order to avoid reoptimization,
the set R of potential requests is ordered. Each potential request r ∈ R
is also preassigned to exactly one planned waiting vertex in Wx, and
therefore one vehicle, based on geographical considerations.

5.2.1.1 Request ordering

In order to avoid reoptimization, the set R of potential requests must
be ordered. This ordering is defined before computing first-stage solu-
tions. Different orders may be considered, without loss of generality,
provided that the order is total, strict, and consistent with the reveal
time order; i.e., ∀r1, r2 ∈ R, if the reveal time of r1 is smaller than the
reveal time of r2 (Γr1 < Γr2), then r1 must be smaller than r2 in the
request order.

In this paper, we order R by increasing reveal time first, end of time
window second, and lexicographic order to break further ties. More
precisely, we consider the order <R such that ∀{r1, r2} ⊆ R, r1 <R r2

iff Γr1 < Γr2 or (Γr1 = Γr2 and lr1 < lr2) or (Γr1 = Γr2 , lr1 = lr2 and r1

is smaller than r2 according to the lexicographic order defined over
C× H).

5.2.1.2 Request assignment according to a first-stage solution

Given a first-stage solution (x, τ), we assign each request of R either
to a waiting vertex visited in x or to ⊥ to denote that r is not assigned.
We note w : R→Wx ∪ {⊥} this assignment. It is computed for each
first-stage solution (x, τ) before the application of the recourse strategy.
To compute this assignment, for each request r, we first compute the
set Wx

r of waiting vertices which are feasible for r:

Wx
r = {w ∈Wx : dmin

r,w ≤ dmax
r,w }
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where dmin
r,w and dmax

r,w are defined as follows. Time

dmin
r,w = max{on(w), Γr, er − tw,r}

is the earliest time at which the vehicle can possibly depart from
waiting vertex w in order to satisfy request r. Indeed, a vehicle cannot
handle r before (1) the vehicle is on w, (2) r is revealed, and (3) the
beginning er of the time window minus the time tw,r needed to go
from w to r. Time

dmax
r,w = min{lr − tw,r, on(w)− Sr,w}

is the latest time at which a vehicle can handle r (which also involves
a service time sr) from waiting vertex w and still leave r it at time
t ≤ on(w). Here Sr,w = tw,r + sr + tr,w. Given the set Wx

r of feasible
waiting vertices for r, we define the waiting vertex w(r) associated
with r as follows:

• If Wx
r = ∅, then w(r) = ⊥: r is always rejected as it has no

feasible waiting vertex;

• Otherwise, w(r) is set to the closest feasible vertex of Wx
r , in

terms of travel time tr,w(r). Further ties are broken with respect
to vertex number.

Once finished, the request assignment ends up with a partition

{π⊥, π1, ..., πK}

of R, where πk is the set of requests assigned to the waiting vertices
visited by vehicle k and π⊥ is the set of unassigned requests (such
that w(r) = ⊥). We note πw, the set of requests assigned to a waiting
vertex w ∈ Wx. We note fst(πw) and fst(πk), the first requests of
πw and πk, respectively, according to the order <R. For each request
r ∈ πk such that r 6= fst(πk), we note r−, the request of πk that
immediately precedes r according to the order <R. Remember that all
these notations are specific to a first-stage solution (x, τ):

5.2.1.3 Using Rq to adapt a first-stage solution at time t

At each time step t, the recourse strategy is applied to compute the
second-stage solution (xt, At), given the first-stage solution (x, τ),
the second-stage solution (xt−1, At−1) at the end of time t− 1, and
the incoming requests ξt. Recall that At−1 is likely to contain some
requests that have been accepted but are not yet satisfied.

availability time available(r) . Besides vehicle operations, a
key point of the recourse strategy is to decide whether each request r ∈
ξ t that is found to appear at time t = Γr will be accepted or not. Let
k be the vehicle associated with r, i.e., r ∈ π k . The decision to accept
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or reject r depends on the time at which k will be available to serve
r. By available, we mean that it has finished serving all its accepted
requests that precede r (according to <R) and has reached waiting
vertex w(r). This time is denoted by available(r). It is defined only
when we know all accepted requests that are assigned to w(r) and
that must be served before r. As the requests assigned to w(r) are
ordered by increasing reveal time, we know all these accepted requests
for sure when t ≥ Γr− . In this case, when vehicles exclusively serve
customer requests by performing round trips from corresponding
waiting locations, available(r) is recursively defined by:

available(r) =



on(w(r)) if r = fst(πw(r))

available(r−) if r 6= fst(πw(r))

and r− /∈ At

max{er− , available(r−) + tw(r),r−}

+ sr− + tr− ,w(r) otherwise.

request notifications . At is the set of requests accepted up to
time t. It is initialized with At−1 as all previously accepted requests
must still be accepted at time t. Then incoming requests r ∈ ξt are
considered in increasing order with respect to <R. r is either accepted
(added to At) or rejected (not added to At). A request r is accepted if
the vehicle assigned to it is available on time and its capacity is not
exceeded, i.e., if

w(r) 6= ⊥ ∧ available(r) ≤ dmax
r,w(r) ∧ qr + ∑

r′∈πk∩At

qr′ ≤ Q (5.5)

vehicle operations . Once At has been computed, vehicle op-
erations for time unit t must be decided. Each vehicle operates inde-
pendently from all other vehicles. If vehicle k is traveling between a
waiting vertex and a customer vertex, or if it is serving a request, then
its operation remains unchanged. Otherwise, its operations are de-
fined in Algorithm 2. Figure 5.3 shows an example of a second-stage
solution at time t = 17, from an operational point of view.

In the following section 5.2.2, we show how to efficiently compute
the exact expected cost incurred by recourse strategy Rq. In Section
5.2.3, we show how the resulting equations, when specialized to the
special case of the SS-VRP-C, naturally reduce to the ones proposed
in Bertsimas, 1992.

5.2.2 Expected cost of second-stage solutions under Rq

Given a recourse strategy R and a first-stage solution (x, τ) to the
SS-VRPTW-CR, a naive approach for computing QR(x, τ) would be
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Figure 5.3: Example of second-stage solution at time t = 17, under strategy
Rq. A filled cross represents a request that appeared, an empty
one a request that is either still unknown (e.g., r8) or revealed as
being absent (i.e., did not appear, e.g., r5). Here πk = 〈ra, r1, . . . , r9〉
is the sequence of requests assigned to the vehicle, according to
(x, τ). We assume qr = sr = 0, ∀r ∈ R. sat(r) represents, for a
request r, the time at which r gets satisfied. Function available(r)
is here designated by av(r) for short.
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Algorithm 2: Operations (travel, serve or wait) of vehicle k, at
current time t. Let w be the waiting vertex the vehicle is currently
assigned to, s(w) the waiting vertex (or the depot) that follows w
in x.

1 if t = on(w) then travel from w to s(w);
2 else
3 Let P = {r ∈ πw|cr /∈ x0..t ∧ (r ∈ At ∨ t < Γr)}, the set of

requests of πw not yet satisfied, either accepted or not yet
revealed;

4 if P = ∅ then travel to s(w);
5 else
6 rnext ← smallest element of P according to <R;
7 if t < dmin

rnext,w then wait until t + 1 ;
8 else travel to rnext, serve it, and travel back to w;

to literally follow equation (5.4), therefore using the strategy described
by R in order to confront (x, τ) with each and every possible scenario
ξ ⊆ R. Because there are an exponential number of scenarios with
respect to |R|, this naive approach is not affordable in practice. In
this section, we show how the expected number of rejected requests
under the recourse strategy Rq may be computed in O(nh2Q) using
closed-form expressions.

Let us recall that we assume that request probabilities are indepen-
dent of each other; i.e., for any couple of requests r, r′ ∈ R, the proba-
bility pr∧r′ that both requests will appear is given by pr∧r′ = pr · pr′ .

QR
q
(x, τ) is equal to the expected number of rejected requests,

which in turn is equal to the expected number of requests that are
found to appear minus the expected number of accepted requests.
Under the independence hypothesis, the expected number of revealed
requests is given by the sum of all request probabilities, whereas the
expected number of accepted requests is equal to the cumulative sum,
for every request r, of the probability that it belongs to Ah, i.e.,

QR
q
(x, τ) = ∑

r∈R
pr − ∑

r∈R
P{r ∈ Ah} = ∑

r∈R

(
pr − P{r ∈ Ah}

)
(5.6)

The probability P{r ∈ Ah} is computed by considering every feasible
time t ∈ [dmin

r,w , dmax
r,w ] and every possible load configuration q ∈ [0, Q−

qr] that satisfies r:

P{r ∈ Ah} =
dmax

r,w

∑
t=dmin

r,w

Q−qr

∑
q=0

g1(r, t, q). (5.7)

g1(r, t, q) is the probability that r has appeared and that vehicle k
leaves w(r) at time t with load q to serve r, i.e.,

g1(r, t, q) ≡ P{r ∈ ξΓr , departureTime(r) = t and load(k, t) = q}
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where load(k, t) is the load of vehicle k ∈ [1, K] at time t ∈ H, and
departureTime(r) = max{available(r), dmin

r,w(r)} is the time at which it
actually leaves the waiting vertex w(r) in order to serve r (the vehicle
may have to wait if available(r) is smaller than the earliest time for
leaving w(r) to serve r).

5.2.2.1 Computation of probability g1(r, t, q)

Recall that πk is the set of potential requests on route k ∈ [1, K],
ordered by <R. The base case for computing g1 is concerned with
the very first potential request on the entire route, r = fst(πk), which
must be considered as soon as vehicle k arrives at w = w(r), that is, at
time on(w), except if on(w) < dmin

r,w :

if r = fst(πk) then

g1(r, t, q) =

pr if t = max{on(w), dmin
r,w } ∧ q = 0

0 otherwise.
(5.8)

For any q ≥ 1, g1(r, t, q) is equal to zero as vehicle k necessarily carries
an empty load when considering the first request r.

The more general case of a request r which is not the first request
of a waiting vertex w ∈ Wx, (i.e., w 6= fst(πw)), depends on the time
and load configuration at which vehicle k is available for r. Although
available(r) and load(k, t) are both deterministic when we know the set
AΓr− of previously accepted requests, this is not true anymore when
computing probability g1(r, t, q). As a consequence, g1(r, t, q) depends
on the probability f (r, t, q) that vehicle k is available for r at time t
with load q:

f (r, t, q) ≡ P{finishToServe(r−) = t and load(k, t) = q}.

Note that for any such request r ∈ R : r 6= fst(πw(r)), the time
finishToServe(r−) is equivalent to available(r). On the contrary, we will
see that this is not the case for a request that is the first of its waiting
vertex. The computation of f is detailed below. Given this probability
f , the general case for computing g1 is:

if r 6= fst(πw(r)) then

g1(r, t, q) =


pr · f (r, t, q) if t > dmin

r,w(r)

pr ·∑
dmin

r,w(r)

t′=on(w(r)) f (r, t′, q) if t = dmin
r,w(r)

0 otherwise

(5.9)

Indeed, if t > dmin
r,w(r), then vehicle k leaves w(r) to serve r as soon

as it becomes available. If t < dmin
r,w(r), the probability that vehicle

k leaves w(r) at time t is null since dmin
r,w(r) is the earliest time for
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serving r from w(r). Finally, at time t = dmin
r,w(r), we must consider the

possibility that vehicle k has been waiting to serve r since an earlier
time on(w(r)) ≤ t′ < dmin

r,w(r). In this case, the probability that vehicle k
leaves w(r) to serve r at time t is pr times the probability that vehicle
k has actually been available from a time on(w(r)) ≤ t′ ≤ dmin

r,w(r).
We complete the computation of g1 with the particular case of

a request r which is not the first of the route (i.e., r 6= fst(πk))
but is the first assigned to the waiting vertex associated with r (i.e.,
r = fst(πw(r))). As the arrival time on w(r) is fixed by the first-stage
solution, departureTime(r) is necessarily max(on(w(r)), dmin

r,w(r)). In
particular, time finishToServe(r−) is no longer equivalent to available(r).
Unlike departureTime(r), load(k, t) is not deterministic but rather
depends on what happened previously. More precisely, load(k, t) de-
pends on the load carried by vehicle k when it has finished serving
r− at the previous waiting location w(r−). For every first request of
a waiting vertex, but not the first of the route (r = fst(πw(r)) and r 6=
fst(πk)), we then have:

g1(r, t, q) =

pr ·∑on(w(r−))
t′=on(w(r−)) f (r, t′, q) if t = max(on(w(r)), dmin

r,w(r))

0 otherwise ,
(5.10)

where we see that all possible time units for vehicle k to serve r−

belong to
[
on(w(r−)), on(w(r−))

]
.

5.2.2.2 Computation of probability f (r, t, q)

Let us now define how to compute f (r, t, q), the probability that
vehicle k becomes available for r at time t with load q. This depends
on what happened to the previous request r−. We have to consider
three cases: (a) r− appeared and was satisfied, (b) r− appeared but
was rejected, and (c) r− did not appear. Let us introduce our last
probability g2(r, t, q), which is the probability that a request r did not
appear (r /∈ ξΓr ) and is discarded at time t while the associated vehicle
carries load q. We note discardedTime(r) = max{available(r), Γr}, the
time at which the vehicle becomes available for r whereas r does not
appear:

g2(r, t, q) ≡ P{r 6∈ ξΓr , discardedTime(r) = t and load(k, t) = q}

The computation of g2 is detailed below. Given g2, we compute f as
follows:

f (r, t, q) = g1(r−, t− Sr−,w(r−), q− qr−) · δ(r−, t− Sr− , q− qr−)

+ g1(r−, t, q) ·
(
1− δ(r−, t, q)

)
+ g2(r−, t, q) (5.11)

where the indicator function δ(r, t, q) returns 1 if and only if request r
is satisfiable from vertex w(r) at time t with load q; i.e., δ(r, t, q) = 1 if
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t ≤ dmax
r,w(r) and q + qr ≤ Q, whereas δ(r, t, q) = 0 otherwise. The first

term in the summation of the right hand side of equation (5.11) gives
the probability that request r− actually appeared and was satisfied
(case a). In such a case, departureTime(r−) must be the current time t
minus the delay Sr− needed to serve r−. The second and third terms
of equation (5.11) add the probability that the vehicle was available at
time t but that request r− did not consume any operational time. There
are only two possible reasons for that: either r− actually appeared but
was not satisfiable (case b, corresponding to the second term) or r−

did not appear at all (case c, corresponding to the third term). Note
that f (r, t, q) must be defined only when r is not the first potential
request of a waiting location.

5.2.2.3 Computation of probability g2(r, t, q)

This probability is computed recursively, as for g1. For the very first
request of the route of vehicle k, we have:

if r = fst(πk) then

g2(r, t, q) =

1− pr, if t = max(on(w(r)), Γr) ∧ q = 0

0 otherwise.

(5.12)

The general case of a request which is not the first of its waiting
vertex is quite similar to the one of function g1. We just consider the
probability 1− pr that r is found not to appear and replace dmin

r,w(r) by
the reveal time Γr:

if r 6= fst(πw(r)) then

g2(r, t, q) =


(1− pr) · f (r−, t, q) if t > max(on(w(r)), Γr)

(1− pr) ·∑max(on(w(r)),Γr)
t′=on(w(r)) f (r−, t′, q) if t = max(on(w(r)), Γr)

0 otherwise.

(5.13)

Finally, for the first request of a waiting location that is not the first
of its route, we have:

if r = fst(πw(r)) and r 6= fst(πk) then

g2(r, t, q) =

(1− pr) ·∑on(w(r−))
t′=on(w(r−)) f (r−, t′, q) if t = max(on(w(r)), Γr)

0 otherwise.

(5.14)

5.2.2.4 Computational complexity.

The complexity of computing QR
q
(x, τ) is equivalent to that of filling

up K matrices of size |πk| × h×Q containing all the g1(r, t, q) proba-
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Figure 5.4: Cell dependencies in a f (r, t, q)-matrix. The q dimension is omit-
ted for simplicity, hence assuming zero demands. We assume
on(w) = 1, Γr = 4, dmin

r,w = 6 and Sr = 3. Cell a represents f (r, 11),
whereas cell c8 represents f (r−, 9). Since t ≥ Γr and t ≥ dmin

r,w at
cell a, f (r, 11) depends directly and exclusively on cells c8 for its
first term of eq. (5.11), and c11 for the second and third ones. Since
cell b has t < Γr and t < dmin

r,w , it does not depend on another cell
as its probability must be zero. Cell c has t = Γr and t < dmin

r,w ,
so the first term of eq. (5.11) is zero and the second and third
depend on probabilities at cells c1 to c4. Cell d has Γr ≤ t < dmin

r,w ,
so it only depends on cell c7. Finally, since cell e has t = dmin

r,w ,
first term of eq. (5.11) depends on cells c1 to c6, whereas t ≥ Γr
makes second and third terms depend on cell c9 only.

bilities. In particular, once the probabilities in cells (r−, 1 · · · t, 1 · · · q)
are known, the cell (r, t, q) such that r 6= fst(πw) can be computed
in O(h) according to equation (5.9). Given n customer vertices andThe expected cost

under QR
q

is
computable in

pseudo-
polynomial

time.

a time horizon of length h, there are at most |R| = nh ≥ ∑K
k=1 |πk|

potential requests in total, leading to an overall worst case complexity
of O(nh2Q).

5.2.2.5 Incremental computation.

Since we are interested in computing P{r ∈ Ah} for each request r
separately, by following the definition of g1 and f , the probability of
satisfying r only depends on the g1 and g2 probabilities associated
with r−. As a consequence, two similar first-stage solutions are likely
to share equivalent subsets of probabilities. This is of particular interest
when considering local search based methods generating (first-stage)
solutions in sequence, where each new solution is usually quite similar
to the previous one. In fact, for every two similar solutions, subsets
of equivalent probabilities can easily be deduced, hence allowing an
incremental update of the expected cost. This does not change the
time complexity, as in the worst case (i.e., when the first waiting vertex
of each sequence in x has been changed), all probabilities must be
recomputed. However, this greatly improves the efficiency in practice.

Figure 5.4 gives a visual representation of how the f -probabilities
of a request r depend on those of its predecessor r−. Using the same
visual representation, Figure 5.5 shows how, within the first stage
sequence πk of potential requests from the example of Figure 5.3, the
f -probabilities of each requests depend on each others.
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Figure 5.5: Dependencies between f -probabilities, when considering the first
stage sequence πa of potential requests from example of Fig-
ure 5.3. The q dimension is omitted for simplicity, hence assum-
ing zero demands. Since r1 is the very first request of πa

k , there
is a 1 − p1 probability that the vehicle gets rid of r1 at time
max(on(a), Γr1) = 3, hence f (r1, 3) = 1− p1. There is p1 proba-
bility that r1 appears, in which case the vehicle finishes with it at
time max(on(w), dmin

r1,w) + S1 that is, f (r1, 7) = p1. Then all the f -
probabilities for requests in πa

k are computed incrementally, start-
ing from f (r1, 3) and f (r1, 7). For instance, f (r2, 7) = p1 · (1− p2)
and f (r2, 9) = p1 · p2. By using an adequate data structure while
filling up such a sparse matrix, substantial savings can be made
on the computational effort.

5.2.3 Relation with SS-VRP-C

As presented in Section 1.2, the SS-VRP-C (Bertsimas, 1992) differs
by having stochastic binary demands (which represent the random
customer presence) and no time window. In this case, the goal is to
minimize the expected distance traveled, provided that when a vehicle
reaches its maximal capacity, it unloads by making a round trip to the
depot. In order to compute the expected length of a first-stage solution
that visits all customers, a key point is to compute the probability
distribution of the vehicle’s current load when reaching a customer. In
fact, this is directly related to the probability that the vehicle makes a
round trip to the depot to unload, which is denoted by the function
“ f (m, r)” in Bertsimas, 1992. The existing

closed-form
expression for
Bertsimas’
SS-VRP-C can be
derived from our
equations!

Here we highlight the relation between SS-VRPTW-CR and SS-VRP-
C by showing how Bertsimas’s “ f (m, r)” equation can be derived from
equation (5.11) when time windows are not taken into account.

Since there is no time window consideration, we can state that
Γr = dmin

r,w = 1 and dmax
r,w = +∞ for any request r. Also, each demand

qr is equal to 1. Consequently, the δ-function used in the computation
of the f probabilities depends only on q and is equal to 1 if q ≤ Q.
Therefore, the f probabilities are defined by:

f (r, t, q) = g1(r−, t− Sr− , q− 1) + g2(r−, t, q).

Now let f ′(r, q) = ∑t∈H f (r, t, q). As f (r, t, q) is the probability that the
vehicle is available for r at time t with load q, f ′(r, q) is the probability
that the vehicle is available for r with load q during the day. It is also
true that f ′(r, q) gives the probability that exactly q requests among
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the r1, ..., r− potential ones actually appear (with a unit demand). We
have:

f ′(r, q) = ∑
t∈H

f (r, t, q) = ∑
t∈H

g1(r−, t− Sr− , q− 1) + ∑
t∈H

g2(r−, t, q)

As we are interested in f ′(r, q), not the travel distance, we can assume
that all potential requests are assigned to the same waiting vertex.
Then either r = fst(πk) or r 6= fst(πw(r)). If r = fst(πk) we naturally
obtain:

f ′(r, q) = ∑
t∈H

pr · f (r, t, q− 1) + ∑
t∈H

(1− pr) · f (r, t, q)

=

pr + (1− pr) = 1, if q = 0

0, otherwise.

If r 6= fst(πw(r)), since we always have t ≥ dmin
r,w , we have:

f ′(r, q) = ∑
t∈H

pr · f (r, t, q− 1) + ∑
t∈H

(1− pr) · f (r, t, q)

= pr · f ′(r, q− 1) + (1− pr) · f ′(r, q).

We directly see that the definition of f ′(r, q) is exactly the same as the
corresponding function “ f (m, r)” described in Bertsimas, 1992 for the
SS-VRP-CD with unit demands, that is, the SS-VRP-C.

5.3 improved recourse strategy

We now introduce Rq+, a somewhat cleverer strategy than Rq. It is
based on the same request assignment and ordering as strategy Rq,
yet it improves the latter by saving operational time. More specifically,
Rq+ avoids some pointless round trips from waiting vertices, travel-
ing directly towards a revealed request from a previously satisfied
one. Furthermore, a vehicle is now allowed to travel directly fromThe improved

strategy Rq+

provides a better
upper bound on the
expected cost under

perfect
reoptimization.

a customer vertex c to the next planned waiting vertex wn without
passing by the waiting vertex w(c) associated with c. Consequently,
this allows a vehicle to finish servicing c later if reaching wn from
c is faster than reaching wn from c via w(c). Figure 5.6 provides an
intuitive illustration of the differences between strategies Rq and Rq+

from an operational point of view.
Under Rq+, the location from which the vehicle travels to satisfy a

request r may be any customer vertex v ∈ C, in addition to w(r). Given
w(r), then let dmin+

r,v = max(on(w(r)), Γr, er − tv,r) be the minimum
time at which a vehicle can leave its current location v ∈ C ∪ {w(r)}
in order to satisfy a request r. Again, recall that the request ordering
and assignment is the same as under Rq, that is, based on dmin

r,w(r) and
dmax

r,w(r) as described in Section 5.2.1. Therefore, dmin+
r,v will only be useful

to request notification and vehicle operation phases.
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Figure 5.6: Comparative examples of strategies Rq (left) and Rq+ (right).
A filled cross represents a revealed request. Under Rq, some
requests (r3, r6, r15, r20, r22) can be missed. By avoiding pointless
journeys when possible, Rq+ is likely to end up with a lower
number of missed requests than strategy Rq. For example, if
request r3 is revealed by the time request r1 is satisfied, then trav-
eling directly to r3 could help satisfy it. Similarly, on a different
route, by traveling directly to the waiting vertex associated with
request r20, the vehicle could save enough time to satisfy r20.

Let s(w(r)) be the waiting vertex that follows w(r) in the first-stage
solution (x, τ). Since the vehicle is now allowed to travel to s(w(r))
from the customer vertex cr ∈ C of a request r ∈ ξ, we also need a
variant of dmax

r,w(r) in order to take the resulting savings into account.
We call it dmax+

r,v = min
(
lr − tv,r, on(s(w(r)))− tv,r − sr − tr,s(w(r))

)
.

5.3.0.1 Vehicle operations

If vehicle k is traveling between a waiting vertex and a customer vertex,
or if it is serving a request, then its operation remains unchanged.
Otherwise, its operations are defined in Algorithm 3.

5.3.0.2 Request notification

At a current time t ≥ Γr, the time available+(r) at which the vehicle
will be able to take care of r is still deterministic and computable.
However, under Rq+, a request r can be considered as the vehicle is
idle either at a customer vertex cr′ ∈ C such that r′ ∈ πw, r′ <R r or at
waiting vertex w = w(r). Let v+(r) be the vertex from which request
r will be served (v+(r) is known at time t ≥ Γr). The request r is then
accepted if and only if:

available+(r) ≤ dmax+
r,v+(r) ∧ qr + ∑

r′∈πk∩At

qr′ ≤ Q. (5.15)
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Algorithm 3: Operations (travel, serve or wait) of vehicle k, at
current time t. Vertex v is the position of vehicle k, w the waiting
vertex it is currently assigned to, s(w) the waiting vertex (or the
depot) that follows w in x.

1 if t = on(s(w))− tv,s(w) then travel from v to s(w);
2 else
3 P ← set of requests of πw not yet satisfied, either accepted or

not yet revealed;
4 if P = ∅ then travel to s(w);
5 else
6 rnext ← smallest element of P according to <R;
7 if w(rnext) = w and rnext is revealed and accepted then
8 wait until dmin

rnext,v, travel to rnext and serve the request;
9 if w(rnext) = w but rnext is not known yet (t < Γrnext) then

10 travel back to waiting location w
11 if w(rnext) 6= w then
12 wait until on

(
s(w)

)
− tr,s(w) and travel to s(w)

where available+(r) and v+(r) are defined as follows. Given current
time t ≥ Γr and previous request r′ ∈ r−, function available(r) defined
in section 5.2.1 must be adapted to strategy Rq+:

available+(r) =


max

(
available+(r′) + tv+(r′),r′ , er′

)
+ sr′ + tr′,v+(r)

if r′ ∈ At,

available+(r′) + tv+(r′),v+(r) otherwise,

with base case of a request r1 = fst(πw) being the first of its waiting
vertex:

available+(r1) = on(w), w = w(r1) = w(r).

The location v+(r) from which the vehicle travels towards request r
depends on whether r reveals by the time the vehicle finishes to satisfy
the last accepted request:

v+(r) =



cr′ if Γr ≤ max
(
available+(r′) + tv+(r′),r′ , er′

)
+ sr′

and r′ ∈ At

v+(r′) if r′ /∈ At

w(r) otherwise

with base case v+(r1) = w(r1) = w(r), r1 = fst(πw).

5.3.1 Expected cost of second-stage solutions under Rq+

Unlike strategyRq, the satisfiability of a request r depends not only on
the current time and vehicle load but also on the vertex from which the
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vehicle would leave to serve it. The candidate vertices are necessarily
either the current waiting location w = w(r) or any vertex hosting one
of the previous requests associated with w. Consequently, under Rq+,
the probability P{r ∈ Ah} is decomposed over all the possible time,
load, and vertex configurations:

P{r ∈ Ah} =
dmax+

r,w

∑
t=dmin+

r,w

Q−qr

∑
q=0

gw(r)
1 (r, t, q) + ∑

r′∈πw
r′<Rr

dmax+
r,r′

∑
t=dmin+

r,r′

Q−qr

∑
q=0

gr′
1 (r, t, q)

(5.16)

where

gw
1 (r, t, q) ≡ P{request r appeared at a t′ ≤ t, vehicle has load q

and serves r from w at t if r is accepted}
gr′

1 (r, t, q) ≡ P{request r appeared at a t′ ≤ t, vehicle has load q

and serves r from cr′ at t if r is accepted}.

Each tuple (v, t, q) in the summation (5.16), where v is either w(r) or
a previous customer vertex r′, represents a possible configuration for
satisfying r, and we are interested in the probability gv

1(r, t, q) that the
vehicle is actually available for r while being in one of those states.

The calculus of gv
1 under Rq+ goes as follows. Let the following

additional random functions:

hw(r, t, q) ≡ P{the vehicle gets rid of request r at time t with

a load of q and at waiting location w}
hr′(r, t, q) ≡ P{the vehicle gets rid of request r at time t with

a load of q and at location cr′}

and

gw
2 (r, t, q) ≡ P{request r did not appear, the vehicle discards it

at time t with a load of q while being at waiting loc. w}

gr′
2 (r, t, q) ≡ P{request r did not appear, the vehicle discards it

at time t with a load of q while being at location cr′}.

For the very first request rk
1 = fst(πk) of the route, trivially the current

load q of the vehicle must be zero, and it seems normal for the waiting
location w = w(rk

1) to be the only possible location from which the
vehicle can be available to handling rk

1 if the request appears, or to
discard it if it doesn’t:

gw
1 (r

k
1, t, q) =

prk
1
, if t = dmin+

rk
1,w ∧ q = 0

0 otherwise.
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gw
2 (r

k
1, t, q) =

1− prk
1
, if t = max(on(w), Γrk

1
) ∧ q = 0

0 otherwise.

The vehicle thus cannot be available for rk
1 at any other location r′ <R r:

gr′
1 (r

k
1, t, q) = 0 gr′

2 (r
k
1, t, q) = 0

Concerning r1 = fst(πw) the first request of any other waiting location
w 6= w(rk

1), we use the same trick as for strategy Rq in order to obtain
the probabilities for each possible vehicle load q:

gw
1 (r1, t, q) =


pr1

on(w′)
∑

t′=on(w′)

[
hw′(prv(r1), t′, q) + ∑

r′∈πw′
hr′(prv(r1), t′, q)

]
,

if t = max(on(w), dmin+
r1,w )

0 otherwise.

gw
2 (r1, t, q) =


(1− pr1)

on(w′)
∑

t′=on(w′)

[
hw′(prv(r1), t′, q) + ∑

r′∈πw′
hr′(prv(r1), t′, q)

]
,

if t = max(on(w), Γr1)

0 otherwise.

with w′ = w(prv(r1)). From any other request r′ <R r we still have:

gr′
1 (r1, t, q) = 0 gr′

2 (r1, t, q) = 0

For a request r >R fst(πw), w ∈Wx:

gv
1(r, t, q) =


pr · hv(r−, t, q) if t > dmin+

r1,v

pr ·∑
dmin+

r1,v

t′=on(w)
hv(r−, t′, q) if t = dmin+

r1,v

0 otherwise.

gv
2(r, t, q) =


(1− pr) · hv(r−, t, q) if t > max(on(w), Γr)

(1− pr) ·∑max(on(w),Γr)
t′=on(w)

hv(r−, t′, q) if t = max(on(w), Γr)

0 otherwise.

when replacing v by either w = w(r) or r′ ∈ πw, r′ <R r, w = w(r).

At a waiting location w ∈Wx:

hw(r, t, q) = hw
1 (r, t, q) + hw

2 (r, t, q) + hw
3 (r, t, q).

The aforementioned terms of the sum are:

hw
1 (r, t, q) =


gw

1 (r, tw, q− qr) · δw(r, tw, q− qr)

+ ∑r′∈πw
r′<Rr

gr′
1 (r, tr′ , q− qr) · δr′(r, tr′ , q− qr), if t− tr,w < Γnext

r

0 otherwise.
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where

δv(r, t, q) =

1, if t ≤ dmax+
r,v ∧ q + qr ≤ Q

0, otherwise.

and tw = t− tw,r − sr − tr,w, tr′ = t− tr′,r − sr − tr,w and Γnext
r = Γr if

nxt(r) exists, zero otherwise. The second term hw
2 is:

hw
2 (r, t, q) = gw

1 (r, t, q) ·
(
1− δ(r, t, w)

)
+ gw

2 (r, t, q).

Finally:

hw
3 (r, t, q) = ∑

r′∈πw
r′<Rr

[
gr′

1 (r, t− tr′ ,w, q)(1− δr′(r, t− tr′ ,w, q)
)

+ gr′
2 (r, t− tr′ ,w, q)

]
· bool(t− tr′ ,w < Γnext

r )

where bool(a) returns 1 if the Boolean expression a is true, 0 otherwise.
The probability that the vehicle gets rid of request r at r’s location is:

hr(r, t, q) = gw
1 (r, t− tw,r − sr, q− qr) · δw(r, t− tw,r − sr, q− qr)

+ ∑
r′∈πw
r′<Rr

gr′
1 (r, t− tr′,r − sr, q− qr) · δr′(r, t− tr′,r − sr, q− qr)

if t ≥ Γnext
r , otherwise hr(r, t, q) = 0. Finally, the probability that

request gets discarded from another request r′ location:

hr′(r, t, q) =

gr′
1 (r, t, q) · (1− δr′(r, t, q)) + gr′

2 (r, t, q), if t ≥ Γnext
r

0, otherwise.

computational complexity. Given n customer vertices, w wait-
ing locations, a horizon of length h, and vehicle capacity of size Q,
the computational complexity of computing the whole expected cost
QR

q+
(x, τ) is in O

(
n2h3Q

)
.

space complexity. A naive implementation of equation (5.16)
would basically fill up an n2 × h3 × Q array. We draw attention to
the fact that even a small instance with n = Q = 10 and h = 100
would then lead to a memory consumption of 109 floating point
numbers. Using a common eight-byte representation requires more
than seven gigabytes. Like strategyRq, important savings are obtained
by noticing that the computation of g1 functions for a given request
r under Rq+ only relies on the previous request r−. By computing
g1 while only keeping in memory the expectations of r− (instead of
all nh potential requests), the memory requirement is reduced by a
factor nh. This however comes at the price of making any incremental
computation, based on probabilities belonging to a similar first-stage
solution, impossible.
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5.4 conclusions and research directions

In this chapter, we consider the SS-VRPTW-CR problem introduced in
Saint-Guillain et al., 2017. In particular, in this thesis we extend the
model with two additional recourse strategies: Rq and Rq+. These
take customer demands into account and allow the vehicles to save
operational time, traveling directly between customer vertices when
possible. We show how, under these recourse strategies, the expected
cost of a second-stage solution is computable in pseudo-polynomial
time.

Future work and research avenues

The research directions described here apply locally, that is, on the
new SS-VRP we just introduced. More general conclusions and future
work in the context of online stochastic VRPs are discussed in the
Conclusion and Perspectives part, concluding the thesis.

towards better recourse strategies . The expected cost of a
first-stage solution obviously depends on how the recourse strategy
fits the operational problem. Improving these strategies may tremen-
dously improve the quality of the upper bound they provide to exact
reoptimization. The recourse strategies presented in this paper are of
limited operational complexity, yet their computational complexity is
already very expensive. One potential improvement which would limit
the increase in computational requirements would be to rethink the
way in which the potential requests are assigned to waiting locations,
e.g. by taking their probabilities and demands into account. Another
direction would be to think about better, more intelligent, vehicle
operations. However, an important question remains: how intelligent
could a recourse strategy be such that its expected cost stays efficiently
computable?

5.5 remaining of the current thesis part

The current part of the thesis, and in particular the remaining of it,
is devoted to solution methods and applications of the new SS-VRP
we just introduced, the SS-VRPTW-CR. As usual in combinatorial
optimization, two very different approaches can be considered in
order to solve a combinatorial optimization problem: heuristic and
exact methods.

We first introduce our benchmark in Chapter 6. In Chapter 7, we
briefly explore an exact approach in order to solve the SS-VRPTW-CR
to optimality. However, despite the fact that major improvements can
obviously be added to our exact method, the inherent complexity
of the problem forces us to renonce to optimality proof. Chapter 8
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hence introduce a heuristic algorithm, as well as a meta-heuristic,
we specifically designed for the SS-VRPTW-CR, in order to achieve
good performances on realistically sized instances. Finally, Chapter 9

applies our theoretical and empirical results to a real case study.





6
A N A L M O S T R E A L I S T I C B E N C H M A R K : LY O N

The benchmark is derived from the benchmark described in Melgarejo
et al., 2015 for the Time-Dependent TSP with Time Windows (TD-
TSPTW). The latter has been created using real accurate delivery and
travel time data obtained from the city of Lyon, France. It is available at Our Lyon benchmark

is characterized by
realistic travel times.

http://becool.info.ucl.ac.be/resources/ss-vrptw-cr-optimod-lyon, as
well as the solution files and detailed result tables of the experiments
conducted in the following sections.

The benchmark contains two different kinds of instances: instances
with separated waiting locations and instances without separated
waiting locations. In an instance without separated waiting locations,
every customer vertex is also a waiting vertex, C = W. In all instances,
the duration of an operational day is eight hours and the time horizon
is h = 480, which corresponds to one-minute time steps.

To each potential request r = (cr, Γr) is assigned a time window
[Γr, Γr + ∆− 1], where ∆ is taken uniformly from {5, 10, 15, 20}. Note
that the time window always starts with the reveal time Γr. This aims Customer online

requests attributes,
as well as the
stochastic knowledge,
are artificially
generated.

at simulating operational contexts similar to the practical application
example described in introduction, the on-demand health care service
at home, requiring immediate responses within small time windows.
Finally, the instance format follows the framework suggested in Perboli
et al., 2018.

graph and travel times

We derive our test instances from the benchmark described in Mel-
garejo et al., 2015 for the Time-Dependent TSP with Time Windows
(TD-TSPTW). This benchmark has been created using real accurate
delivery and travel time data coming from the city of Lyon, France.
Travel times have been computed from vehicle speeds that have been
measured by 630 sensors over the city (each sensor measures the
speed on a road segment every 6 minutes). For road segments without
sensors, travel speed has been estimated with respect to speed on
the closest road segments of similar type. Figure 6.1 displays the set
of 255 delivery addresses extracted from real delivery data, covering
two full months of time-stamped and geo-localized deliveries from
three freight carriers operating in Lyon. For each couple of delivery
addresses, travel duration has been computed by searching for a quick-
est path between the two addresses. In the original benchmark, travel
durations are computed for different starting times (by steps of 6

minutes), to take into account the fact that travel durations depend on
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Figure 6.1: Lyon’s road network. In green, the 255 customer vertices.

starting times. In our case, we remove the time-dependent dimension
by simply computing average travel times (for all possible starting
times). We note V the set of 255 delivery addresses, and di,j the du-
ration for traveling from i to j with i, j ∈ V. This allows us to have
realistic travel times between real delivery addresses. Note that in this
real-world context, the resulting travel time matrix is not symmetric.

instance generation

We have generated two different kinds of instances: instances with
separated waiting locations, and instances without separated waiting
locations. Each instance with separated waiting locations is denoted
nc-mw-i, where n ∈ {10, 20, 50} is the number of customer vertices,
m ∈ {5, 10, 30, 50} is the number of waiting vertices, and x ∈ [1, 15] is
the random seed. It is constructed as follows:

1. We first partition the 255 delivery addresses of V in m clusters,
using the k-means algorithm with k = m. During this clustering
phase, we have considered symmetric distances, by defining the
distance between two points i and j as the minimum duration
among di,j and dj,i.

2. For each cluster, we select the median delivery address, i.e., the
address in the cluster such that its average distance to all other
addresses in the cluster is minimal. The set W of waiting vertices
is defined by the set of m median addresses.

3. We randomly and uniformly select the depot and the set C of n
customer vertices in the remaining set V \W.
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Each instance without separated waiting locations is denoted nc+w-i.
It is constructed by randomly and uniformly selecting the depot and
the set C in the entire set V and by simply setting W = C. In other
words, in these instances vehicles do not wait at separated waiting
vertices, but at customer vertices, and every customer vertex is also a
waiting location.

Furthermore, instances sharing the same number of customers n
and the same random seed x (e.g. 50c-30w-1, 50c-50w-1 and 50c+w-1)
always share the exact same set of customer vertices C.

operational day, horizon and time slots

We fix the duration of an operational day to 8 hours in all instances.
We fix the horizon resolution to h = 480, which corresponds to one
minute time steps. As it is not realistic to detail request probabilities
for each time unit of the horizon (i.e., every minute), we introduce
time slots of 5 minutes each. We thus have nTS = 96 time slots over
the horizon. To each time slot corresponds a potential request at each
customer vertex.

customer potential requests and attributes .

For each customer vertex c, we generate the request probabilities
associated with c as follows. First, we randomly and uniformly select
two integer values µ1 and µ2 in [1, nTS]. Then, we randomly generate
200 integer values: 100 with respect to a normal distribution the mean
of which is µ1 and 100 with respect to a normal distribution the mean
of which is µ2. Let us note nb[i] the number of times value i ∈ [1, nTS]

has been generated among the 200 trials. Finally, for each reveal time
Γ ∈ H, if Γ mod 5 6= 0, then we set p(c,Γ) = 0 (as we assume that
requests are revealed every 5 minute time slots). Otherwise, we set
p(c,Γ) = min(1, nb[Γ/5]

100 ). Hence, the expected number of requests at
each customer vertex is smaller than or equal to 2 (in particular, it is
smaller than 2 when some of the 200 randomly generated numbers
do not belong to the interval [1, nTS], which may occur when µ1 or µ2

are close to the boundary values). Figure 6.2 shows a representation
of the distributions in an instance involving 10 customer vertices.

For a same customer vertex, there may be several requests on the
same day at different time slots, and their probabilities are assumed
independent. To each potential request r = (cr, Γr) is assigned a
deterministic demand qr taken uniformly in [0, 2], a deterministic
service duration sr = 5 and a time window [Γr, Γr + ∆ − 1], where
∆ is taken uniformly in {5, 10, 15, 20} that is, either 5, 10, 15 or 20

minutes to meet the request. Note that the beginning of the time
window of a request r is equal to its reveal time Γr. This aims at
simulating operational contexts requiring immediate responses within
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Figure 6.2: Probability distributions in instance 10-c5w-1. Each cell represents
one of the 96 time slots, for each customer vertex. The darker a
cell, the more likely a request to appear at the corresponding time
slot. A white cell represents a zero probability request that is, no
potential request.

small time windows, such as the on-demand health care service at
home discussed in Introduction of the thesis.



7
E X A C T A P P R O A C H : B R A N C H - A N D - C U T

In this chapter, we present a complete mathematical formulation of
the SS-VRPTW-CR, along with its application to a classical branch-
and-cut solution algorithm, presented in Section 7.2. The experiments,
conducted in Section 7.3, show that the exact approach is clearly not
efficient enough in its current, early stage, version. The last contri-
bution of the chapter comes in Section 7.4, where we investigate the
limitations of the current approach and propose some improvement
ideas, inspired from the literature.

7.1 stochastic integer programming formulation

The problem stated by (5.2)-(5.3) refers to a nonlinear stochastic integer
program with recourse, which can be modeled as the following simple
extended three-index vehicle flow formulation: Our 3-index

formulation provides
a complete
mathematical
representation of the
SS-VRPTW-CR.

Minimize
x,τ

QR(x, τ) (7.1)

subject to

∑
j∈W0

xijk = ∑
j∈W0

xjik = yik ∀ i ∈W0, k ∈ [1, K] (7.2)

∑
k∈[1,K]

y0k ≤ K (7.3)

∑
k∈[1,K]

yik ≤ 1 ∀ i ∈W (7.4)

∑
i∈S

j∈W\S

xijk ≥ yvk ∀ S ⊆W, v ∈ S, k ∈ [1, K]

(7.5)

∑
l∈H

τilk = yik ∀ i ∈W, k ∈ [1, K] (7.6)

∑
i∈W0
j∈W0

xijk di,j + ∑
i∈W
l∈H

τilk l + 1 ≤ h ∀ k ∈ [1, K] (7.7)

yik ∈ {0, 1} ∀ i ∈W0, k ∈ [1, K] (7.8)

xijk ∈ {0, 1} ∀ i, j ∈W0 : i 6= j, k ∈ [1, K]
(7.9)

τilk ∈ {0, 1} ∀ i ∈W, l ∈ H, k ∈ [1, K]
(7.10)

Our formulation uses the following binary decision variables:

• yik = 1 iff vertex i ∈W0 is visited by vehicle k ∈ [1, K];

83
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• xijk = 1 iff the arc (i, j) ∈W2
0 is part of route k ∈ [1, K];

• τilk = 1 iff vehicle k waits for 1 ≤ l ≤ h time units at vertex i.

Whereas variables yik are only of modeling purposes, yet xijk and
τilk variables solely define a SS-VRPTW-CR first stage solution. The
sequence 〈w1, ..., wm′〉k of waiting vertices along any route k ∈ [1, K] is
obtained from x. By also considering τ, we obtain the a priori arrival
time on(w) and departure time on(w) at any waiting vertex w in the
sequence. By following the process described in the beginning of
Section 5.2, each sequence πk is computable directly from (x, τ).

Constraints (7.2) to (7.5) together with (7.9) define the feasible space
of the asymmetric Team Orienteering Problem (Chao et al., 1996).
In particular, constraint (7.3) limits the number of available vehicles.
Constraints (7.4) ensure that each waiting vertex is visited at most
once. Subtour elimination constraints (7.5) forbid routes that do not
include the depot. As explained in Section 7.2, constraints (7.5) willLike classical VRP

formulations, our
integer program

necessarily involves
an exponential

number of subtour
elimination
constraints.

be generated on-the-fly during the search. Constraint (7.6) ensures that
exactly one waiting time 1 ≤ l ≤ h is selected for each visited vertex.
Finally, constraint (7.7) states that the total duration of each route,
starting at time unit 1, cannot exceed h.

symmetries The solution space as defined by constraints (7.2) to
(7.11) is unfortunately highly symmetric. Not surprisingly, we see
that any feasible solution actually reveals to be precisely identical
under any permutation of its route indexes p ∈ K. In fact, the number
of symmetric solutions even grows exponentially with the number
of vehicles. Provided K vehicles, a feasible solution admits K! − 1
symmetries. In order to remove those symmetries from our original
problem formulation, we add the following ordering constraints:

∑
i∈W

2i yi,p ≤ ∑
i∈W

2i yi,p+1 , 1 ≤ p ≤ K− 1 (7.11)

7.2 branch-and-cut approach

We solve program (7.1)-(7.11) by using the specialized branch-and-cut
algorithm introduced by Laporte and Louveaux, 1993 for tackling
stochastic integer programs with complete recourse. This algorithm is
referred to as the integer L-shaped method, because of its similarity
to the L-shaped method for continuous problems introduced by Slyke
and Wets, 1969.

Roughly speaking, our implementation of the algorithm is quite
similar to its previous applications to stochastic VRP’s (see e.g. Gen-
dreau et al., 1995, Laporte et al., 2002, Heilporn et al., 2011). As in
the standard branch-and-cut scheme, an initial current problem (CP) is
considered by dropping integrality constraints (7.9)-(7.10) as well as
the subtour elimination constraints (7.5). In addition, the L-shaped
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Figure 7.1: Flow-chart of the branch-and-cut algorithm.

method proposes to replace the nonlinear evaluation function QR(x, τ)

by a lower bounding variable θ. We hence solve a relaxed version of
program (7.1)-(7.10), by defining the initial CP:

(CP) Minimize
x,τ,z

z (7.12)

subject to constraints (7.2), (7.3), (7.4), (7.6), (7.7), (7.11) and z ≥ 0.
The CP is then iteratively modified by introducing integrality condi-
tions throughout the branching process and by generating cuts from
constraints (7.5) whenever a solution violates it. These are commonly
called feasibility cuts. Let (xν, τν, zν) be an optimal solution to CP. In
addition to feasibility cuts, a lower bounding constraint on z, so-called
optimality cut, is generated whenever a solution comes with a wrong
objective value, that is when zν < QR(xν, τν). This way z is gradually
tightened upward in the course of the algorithm, approaching the
objective value from below.

The branch-and-cut scheme is depicted in Figure 7.1. The main
steps of the algorithm are as follows. Initially, the solution counter ν

and the cost c∗ of the best solution found so far are set to zero and
infinite, respectively. The list of subproblems is initialized in such a
way that CP is the only problem in it. Thereafter, the following tasks
are repeated until the list of subproblems becomes empty: 1) select
a subproblem in the list and 2) find its optimal feasible solution and
compare it with the best one found so far. When solving a particular Similarly to the

subtour elimination
constraints, lower
bounding constraints
(optimality cuts) are
added dynamically to
the model.

subproblem, it is unlikely that CP contains the exact representation
of the objective function through z. Instead, it is approximated by a
set of lower bounding constraints. Therefore, whenever an optimal
feasible solution (xν, τν, zν) is found at the end of frame B, it may
happen that it is optimal with respect to CP, but not with respect to



86 exact approach : branch-and-cut

the real objective function. This can be easily checked by comparing
the approximated cost zν with the real one cν = QR(xν, τν). If zν < cν,
then (xν, τν, zν) cannot be proven to be optimal since its approximated
cost zν is wrong, and consequently better solutions may exist for the
current subproblem.

Specific optimality cuts

We now present the valid optimality cuts we propose for the SS-
VRPTW-CR and that we use in order to gradually strengthen the
approximation of z in CP. Two families of optimality cuts will be con-
sidered: specific optimality cuts, which are only active at one feasible
solution and general optimality cuts, which apply to a whole subtree of
the branch and bound process. General optimality cuts are discussed
later in Section 7.4.

Our optimality cuts are adapted from the classical ones presented
in Laporte and Louveaux, 1993. Let (xν, τν, zν) be an optimal solution
to CP where xν, τν are integer-valued. Let A(xν) be the set of triples
(i, j, k) such that arc (i, j) is part of route k, i.e.,

A(xν) = {(i, j, k) : i, j ∈W, k ∈ [1, K], xν
ijk = 1}

and W(τν) be the set of triples (i, l, k) such that vehicle k waits l units
of time at vertex i, i.e.,

W(τν) = {(i, l, k) : i ∈W, l ∈ H0, p ∈ [1, K], τν
ilk = 1}.

Proposition 1. The constraint

z ≥ QR(xν, τν)
(

∑
(i,j,k)
∈A(xν)

xijk + ∑
(i,l,k)
∈W(τν)

τilk − |A(xν)| − |W(τν)|+ 1
)

(7.13)

is a valid optimality cut for the SS-VRPTW-CR.

proof : Indeed, the integer solution (xν, τν) is composed of exactly
|A(xν)| arcs and exactly |W(τν)| variables in τ assigned to 1. For
any different solution (x, τ, z), one must have either ∑(i,j,p)∈A(x) ≤
|A(xν)| − 1 or ∑(i,l,k)∈W(τ) ≤ |W(τν)| − 1. Consequently, for any solu-
tion (x, τ) 6= (xν, τν),

∑
(i,j,p)∈A(x)

xijk + ∑
(i,l,k)∈W(τ)

τilk ≤ |A(xν)|+ |W(τν)| − 1. (7.14)

By substituting into (7.13), we see that constraint (7.13) becomes
z ≥ QR(xν, τν) only when (x, τ) = (xν, τν). Otherwise the constraint
is dominated by z ≥ 0. �
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In practice, similarly to Laporte et al., 2002 we replace the classical
cut of the form (7.13) by a numerically more stable “integer cut” of
the form (7.14), cutting the current solution (xν, τν) off the current
subproblem, forcing the algorithm to move to a different one.

7.3 experiments

We consider recourse strategy R∞ only, that is, Rq with uncapacitated
vehicles (i.e., Q = ∞). In order to evaluate the interest of exploiting
stochastic knowledge, that is by modeling the problem as a SS-VRPTW-
CR, the solutions are compared with a wait-and-serve policy which
does not anticipate, i.e. in which vehicles are never relocated. The cur-
rent experiments do not consider the generation of general optimality
cuts, as discussed later in Section 7.4.

wait-and-serve policy. In order to assess the contribution of
our recourse strategies, we compare them with a policy ignoring
anticipative actions. This wait-and-serve (w&s) policy takes place as The

wait-and-serve
policy suggests that
vehicles only travel
between appeared
online requests, and
never relocate
preventively.

follows. Vehicles begin the day at the depot. Whenever an online
request r appears, it is accepted if at least one of the vehicles is able
to satisfy it, otherwise it is rejected. If accepted, it is assigned to the
closest such vehicle which then visits it as soon as it becomes idle. If
there are several closest candidates, the least loaded vehicle is chosen.
After servicing r (which lasts sr time units), the vehicle simply stays
idle at r’s location until it is assigned another request or until it must
return to the depot. Note that a request cannot be assigned to a vehicle
if satisfying it prevents the vehicle from returning to the depot before
the end of the horizon.

Note that, whereas our recourse strategies for the SS-VRPTW-CR
generalize to requests such that the time window starts later than the
reveal time, in our instances we consider only requests where er = Γr.
Doing it the other way would in fact require a more complex wait-and-
serve policy, since the current version would be far less efficient and
unrealistic in the case of requests with er significantly greater than Γr.

relative gains . In what follows, average results are always re-
ported for the w&s policy. We randomly generate 106 scenarios ac-
cording to the pr probabilities. For each scenario, we apply the w&s
approach to compute a number of rejected requests; finally, the av-
erage number of rejected requests is reported. The results are then
always reported by means of average relative gains, in percentages,
with respect to the w&s policy: the gain of a first-stage solution s
computed is avg−E

avg , where E is the expected cost of s and avg is the
average cost under the w&s policy.
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Branch&Cut (% gain after 12h)

scale = 1 scale = 2 scale = 5

w&s R∞ Rq+ R∞ Rq+ R∞ Rq+

10c-5w-1 12.8 8.2 14.1 7.3* 12.8 * 4.4* 9.5*

10c-5w-2 10.8 -4.8 7.4 -4.8 7.4 -8.8* 0.5*

10c-5w-3 8.0 -46.9 -26.5 -46.9* -26.5 -55.9* -43.2

10c-5w-4 10.5 -10.9 0.9 -10.9* 0.9* -10.9* 0.9*

10c-5w-5 8.4 -17.9 2.1 -17.9* 2.5 -20.5* 1.3*

#eval 8.104 5.104 105 9.104 105 9.104

10c+w-1 12.8 31.0 38.2 30.5 33.9 29.9 36.5

10c+w-2 10.8 17.9 18.8 13.2 16.9 15.2 23.6

10c+w-3 8.0 12.1 16.4 14.6 32.1 -4.3 4.4

10c+w-4 10.5 8.2 12.3 10.2 14.2 3.5 28.1

10c+w-5 8.4 19.7 30.4 5.3 22.6 -0.5 20.3

#eval 5.104 3.104 7.104 6.104 105 9.104

Table 7.1: Results on small instances: n = 10, K = 2, Q = ∞ and β = 60.
Branch&Cut for 10c-5w-x (resp. 10c+w-x) instances, m = 5 and
W ∩ C = ∅ (resp. m = n and W = C). For each instance, we
give the average cost over 106 sampled scenarios using the wait-
and-serve policy (w&s) and the gain of the best solution found by
Branch&Cut within a time limit of 12 hours, using either R∞ or
Rq+. Results marked with a star (∗) have been proven optimal.
#eval gives the average number of expectation computations for
each run, corresponding to the added optimality cuts (7.13). Grey
cells show best results.

setup. Experiments have been done on a cluster composed of 64-
bit AMD Opteron 1.4-GHz cores. The code is developed in C++11
with GCC4.9, using -O3 optimization flag. The current source code
of our library for (SS-)VRPs is available from the online repository:
bitbucket.org/mstguillain/vrplib.

7.3.1 Results

The results obtained on instances 10c-5w-x and 10c+w-x are displayed
in Table 7.1. The scale term represents the accuracy of the horizon.
When scale is one, the original horizon is considered, with its 480

time units. With scale = 5, the time horizon, as well as all the time
attributs of the problem (travel times, time windows, etc.) is squeezed
to 480/5 = 96 time units, hence simplifying (and thereby approximat-
ing!) the computation of the objective function. Such approximation
techniques are further studied in the next chapter.

Consequently to the enumerative nature of the proposed branch-
and-bound method, which is due to the lack of general optimality cuts,

bitbucket.org/mstguillain/vrplib
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experimentations showed a very poor efficiency of the exact algorithm.
Its performances, even given 12 hours of computation time, do not permit
to prove optimality on instances involving more than five waiting
vertices, even when using a simplified horizon.

7.4 general optimality cuts

We now introduce optimality cuts for the SS-VRPTW-CR that provide a
useful bound at both integer and non-integer solutions. Based on those
bounds, a node involving a non-integer solution can potentially be
fathomed during the branch and cut process, hence pruning the subset Without general

optimality cuts, our
branch-and-cut
algorithm is nothing
but a fancy
enumeration of the
feasible first-stage
solutions.

of feasible solutions down the current branch. Following Hjorring and
Holt, we refer to these as general optimality cuts, in opposition to specific
optimality cuts of the form (7.13).

Recall that from a current integer and first stage feasible solution
(xν, τν) to CP, we can easily construct the set of vehicle routes, from
sequence 〈0, w1, ..., wm′ , 0〉ν1 to sequence 〈0, w1, ..., wm′′ , 0〉νK, and that
each waiting vertex in each route is associated a waiting time in τν.
Finally, provided (xν, τν) the sequences π1, ..., πK of ordered potential
requests is obtained by following the request assignment rule involved
in the recourse strategy. These sequences of requests then allow the
computation of the solution’s expected cost.

Provided the appropriate computation of P{r ∈ Ah}, using either
(5.7) or (5.16), observe that equation (5.6) sums only positive terms
and that the f -probabilities are computed recursively from previous
requests. Consequently, a lower bound Q̃R on QR(xν, τν) can be
easily obtained by considering a set of request sequences π̃1, ..., π̃K,
where π̃k = 〈r1, r2, ..., rρ′≤ρ〉 is a prefix of πk = 〈r1, r2, ..., rρ〉 for route
k ∈ [1, K]:

Q̃R(π̃1, ..., π̃K) =
K

∑
k=1

∑
r∈π̃k

pr − P{r ∈ Ah}. (7.15)

Given a first stage solution (xν, τν) involving prefixes π̃ = π̃1, ..., π̃K,
then Q̃R(π̃) is therefore a valid lower bound for any first stage solu-
tion (x′, τ′) that involves the same set of prefixes π̃.

We designate by A(π̃) and W(π̃) the minimal sets of both arcs
(i, j, p) ∈ W2

0 × K and waiting times (i, l, p) ∈ W × H × K, for which
the corresponding variable xν

ijp and τν
ilp must be set to one in a first

stage solution (xν, τν) in order to obtain the prefixes π̃ = π̃1, ..., π̃K.
Notice that request prefixes are closely related to the concept of partial
route proposed in Hjorring and Holt, 1999, except that we consider
prefixes of request sequences instead of partial routes.

Proposition 2. Let (xν, τν, θν) be an optimal solution to CP. Let π̃ν =

π̃1, ..., π̃K be a set of prefixes from (xν, τν). Assuming Q̃R(π̃ν) to be a lower
bound on the expected cost QR(xν, τν) of any solution (x, τ), such that
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xijp = 1 for all (i, j, p) ∈ A(π̃ν), τilp = 1 for all (i, l, p) ∈ W(π̃ν) and all
other variables are unspecified, the constraint

θ ≥ Q̃R(π̃)
(

∑
(i,j,p)∈A(π̃)

xijp + ∑
(i,l,p)∈W(π̃)

τilp− |A(π̃)| − |W(π̃)|+ 1
)

(7.16)

is a valid general optimality cut for the SS-VRPTW-CR.

proof : Let (x′, τ′, θ′) be an optimal solution to CP. By substitut-
ing into (7.16), the constraint becomes θ ≥ Q̃R(π̃ν) if and only if
(x′, τ′) is such that x′ijp = 1 for all (i, j, p) ∈ A(π̃ν) and τ′ilp = 1
for all (i, l, p) ∈ W(π̃ν). Otherwise, (7.16) is dominated by θ ≥ 0.
In particular, for any solution (x′, τ′, θ′), the inequality reduces to
θ ≥ Q̃R(π̃ν) if and only if there exists, associated to (x′, τ′), a set of
prefixes π̃′ such that A(π̃ν) ⊆ A(π̃′). By definition of Q̃R, it implies
Q̃R(π̃ν) ≤ Q̃R(π̃′) and consequently the inequality θ ≥ Q̃R(π̃ν) is
then valid for both (fractional) solutions (xν, τν) and (x′, τ′). �

In order to generate a general optimality cut (7.16) from a (frac-
tional) solution (xν, τν), we then need to identify the prefixes π̃ν and
the corresponding sets A(π̃ν) and W(π̃ν). As described in Section 5.2
however, each request is assigned to a feasible waiting vertex depend-
ing on both its reveal time and the set of feasible waiting vertices for
that request, that is, the set of waiting vertices visited at a moment
allowing to serve the request. A potential request can thus be assigned
to a visited vertex only if all the visited vertices are known. Given a
(fractional) solution, this significantly reduces the number of candidate
set of prefixes, which is bounded by O(h). This is illustrated in Figure
7.2. Finally, given both a (fractional) solution (xν, τν) and a particular
set of prefixes π̃ν, the sets A(π̃ν) and W(π̃ν) can be trivially obtained.

We now explain how a set of prefixes is selected from a solution.
Notice that at a current node of the branch and bound process, Q̃R

provides a useful lower bound only if it is ≥ θ∗, the cost of the best
feasible solution found so far. Moreover, the smaller the number of
decision variables involved in a general cut, the higher the number of
fractional and integer solutions for which the cut will be active. Given
a (fractional or integer) solution (x, τ), we hence generate at most one
general cut, based on a set π̃ = π̃1, ..., π̃K of request sequence prefixes
chosen such that Q̃R(π̃) ≥ θ∗ and that |A(π̃)|+ |W(π̃)| is as small as
possible.

The f -probabilities involved in equation (7.15) can be computa-
tionally expensive to compute. In practice and as indicated by the
flow chart of Figure 7.1, it is however more convenient to compute
general optimality cuts from an integer solution. Given a feasible
integer solution (xν, τν) to CP, its optimality with respect to the cur-
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Figure 7.2: Examples of fractional solutions that could result from the LP
relaxation. For the ease of the illustration, only a subset of the frac-
tional edges are represented. Each waiting vertex is designated
by a letter, the associated waiting times are given as integers
instead of binary variables whereas arrows represent the routes.
The illustrated solution has both integer and non-integer valued
variables. In solution 1, we have x0a1 = 1 whereas xcd1, xce1 are
both fractional and sum to 1. Similarly, τb51 = 1 whereas τc31, τc81
are both fractional (and sum to 1). Given fractional solutions 1, 2

or 3, which are the candidate sets of prefixes (and the correspond-
ing decision variables) that could be considered for deriving a
cut of the form (7.16) ? In fractional solution 1, the set of waiting
vertices about to be visited at time t = 1 is not known (at least
concerning vehicle k = 2), and none of our assignment heuristics
can be applied to any potential request. In fractional solution 2,
the set of (about to be) visited vertices is known from time t = 1
to t′ = min{t1, t2, t3}, with t1 = d0,a + 13 + da,b + 5 + db,c + 3,
t2 = d0,K + 9 and t3 = d0, f + 11 + d f ,g + 12. If we apply assign-
ment A1, a set of prefixes is obtained by considering all the
requests r = (c, Γ) such that Γ ≤ t′. Prefixes are obtained simi-
larly from solution 3, except that since the waiting time at vertex
c is not known, we have t1 = d0,a + 13 + da,b + 5 + db,c.
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rent subproblem must be checked by computing the exact expected
cost QR(xν, τν). Consequently, all the f -probabilities for the current
solution are available and can be directly reused in order to identify
interesting sets of partial routes, and finally come out with useful
general optimality cuts.

All-in-one computation of optimality cuts

By using a set π̃ν of prefixes obtained from a solution (xν, τν, θν),
from (7.15) we know that Q̃R(π̃) ≤ QR(xν, τν). The condition θ∗ <

Q̃R(π̃) is therefore sufficient to discard the solution. This idea was
first proposed by Angulo et al., 2016, which suggested to improve the
L-shaped method so that unnecessary (and costly) computations of
the real expected cost are prevented by the use of an approximation
function. In practice, that means that given a solution (xν, τν, θν) where
(xν, τν) is integral, the computation of QR(xν, τν), which iterates over
the ordered sequences of potential requests within each vehicle route,
can be interrupted as soon as the current value of the summation in
(5.6) exceeds θ∗.

In addition, given the same solution (xν, τν, θν) suppose we inter-
twine the route computations such that, before considering time unit
t + 1, we consider all the potential requests of all the K vehicle routes
associated to time unit t. Equation (5.6) is then equivalently rewritten
as:

QR(x, τ) = ∑
t∈H

K

∑
k=1

∑
r∈πt

k

pr − P{r ∈ Ah}. (7.17)

Let πt
k ⊂ πk be the subsequence of requests assigned to vehicle k

such that t = Γr. In that case, if the computation is rather stopped
whenever the summation exceeds θ∗, then the set π̃ν of prefixes that
corresponds to the set of requests considered until then is both useful
(that is, Q̃R(π̃ν) ≥ θ∗) and of minimal size. A general optimality cut
of the form (7.16) is then generated.

In the case the current solution reveals to be the best encountered
so far with QR(xν, τν) < θ∗, the computation of (7.17) completes and
delivers its real expected cost (which becomes the new θ∗). It is then
very likely that θν < QR(xν, τν), in which case a specific optimality
cut of the form (7.13) must be imposed to CP.

This “all-in-one” computation therefore allows simultaneous com-
putation of both general and specific optimality cuts, if any, but also
provides potential savings on the computation. It however comes at
the price of a higher worst case complexity: O(nh3Q) (resp. O(n2h4Q))
for recourse strategy Rq (resp. Rq+).
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7.5 conclusion and further work

The branch-and-cut approach considered in this paper may not be
perfectly designed for the SS-VRPTW-CR. First notice that each opti-
mality cut of the form (7.13) is likely to be active at only one feasible
solution. As pointed out by Hjorring and Holt, 1999, if only these cuts
are to be added to CP, then our branch-and-cut method must generate
such a cut for almost each feasible first stage solution. Thus, although
not trivially doable, general optimality cuts that are active at fractional
solutions should be devised as well.

Besides the lack of general optimality cuts, another true limitation is
the fact that, unlike the exact enumerative method, the SIP formulation
(7.1)-(7.10) does not exploit the following property: there is always
an optimal solution that (a) use all the vehicles and (b) use all the
available waiting time. As a consequence, the solution space of the SIP
formulation is significantly bigger.

In Section 7.4, we propose a set of general optimality cuts for our
SIP formulation. However, although mathematically sound, they have
not been empirically tested yet, hence they come with no guarantee of
efficiency. Furthermore, branch-and-cut is only one method among all
the possible approaches that could be tested on the SS-VRPTW-CR. In
particular set partitioning methods such as column generation, which
becomes commonly used for stochastic VRPs, could also provide
interesting results.





8
H E U R I S T I C A P P R O A C H : P R O G R E S S I V E F O C U S
S E A R C H

This chapter introduces a new meta-heuristic, called Progressive Fo-
cus Search (PFS), for solving computationally demanding blackbox
optimization problems, such as the SS-VRPTW-CR.

We also introduce a new public benchmark for the SS-VRPTW-CR,
based on real-word data coming from the city of Lyon. Experimen-
tal results on this benchmark show that PFS obtains better results
than a classical search, that solves the problem without introducing
approximation factors. By comparing with a basic (yet realistic) wait-
and-serve policy which does not exploit stochastic knowledge, we
show that our stochastic models are particularly beneficial when the
number of vehicles increases and when time windows are tight. In
other words, the more the problem configuration is complicated and
demanding in terms of anticipation, the higher are the gains of using
our SS-VRPTW-CR model. Eventually, all these experiments show that
allowing vehicles to wait directly at potential customer vertices lead
to better expected results than using separated relocation vertices.

Section 8.1 describes the proposed meta-heuristic. We then show in
Section 8.2 how it can be instantiated in the case of the SS-VRPTW-CR.
Section 8.3 experimentally validates the solution method on the Lyon
benchmark presented in Chapter 6.

8.1 progressive focus search

Solving a static stochastic optimization problem, such as the SS-
VRPTW-CR, involves finding values for a set of first-stage decision
variables that optimize an expected cost with respect to some recourse
strategy:

min
x

QR(x), x ∈ X

Solving this kind of problem is always challenging. Besides the ex-
ponential size of the (first-stage) solution space X, the nature of the
objective function QR, an expectation, is usually computationally
demanding. Because enumerating all possible scenarios is usually
impossible in practice, some approaches tend to circumvent this bottle-
neck by restricting the set of considered scenarios, using for example
the sample average approximation method (Ahmed and Shapiro, 2002).
In some cases, expectations may be directly computed in (pseudo)
polynomial time, by reasoning on the random variables themselves
rather than on the scenarios. However, the required computational
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effort depends on the recourse strategy R and usually remains very
demanding, as it is the case for the SS-VRPTW-CR.

The Progressive Focus Search (PFS) metaheuristic aims at address-
ing these issues with two approximation factors, intended to reduce
the size of the solution space and the complexity of the objective
function. The initial problem Pinit is simplified into a problem Pα,βThe Progressive

Focus Search
metaheuristic aims

at laveraging the
complexity of both

the first-stage
solution space and

the evaluation of the
solutions’ expected

cost.

having simplified objective function and solution space. Parameters α

and β define the approximation factors of the objective function and
of the solution space, respectively, and Pα,β = Pinit when α = β = 1.
Whenever α > 1 or β > 1, the optimal cost of Pα,β is an approximation
of that of Pinit. Starting from some initial positive values for α and
β, the idea of PFS is to progressively decrease these values using an
update policy. The simplified problem Pα,β is iteratively optimized
for every valuation of (α, β), using the best solution found at the end
of one iteration as starting point in the solution space for the next
iteration.

The definition of the simplified problem Pα,β depends on the prob-
lem to be solved. In Sections 8.1.1 and 8.1.2, we give some general
principles concerning α and β and describe how to apply them to the
case of the SS-VRPTW-CR. In Section 8.1.3, we describe the generic
PFS metaheuristic.

8.1.1 Reducing objective function computational complexity with α

We assume the expected cost to be computed by filling matrices in
several dimensions. In order to reduce the complexity, some of these
dimensions must be scaled down. This is achieved by changing the
scale of the input data and the decision variable domains related to
the selected dimensions, dividing the values by the scale factor α and
rounding to integer if necessary.

For example, in the SS-VRPTW-CR the dimensions considered at
computing the objective function are: the number of waiting vertices
n, the vehicle capacity Q, and the time horizon h. Let h = 18000 be
the time horizon in the initial problem, corresponding to five hours
in units of one second. If we choose to reduce the time dimension
with respect to a scale factor α = 60, then all durations in the input
data (travel times, service times, time windows, etc.) are rounded to
the nearest multiple of 60. Thus, the time horizon in the simplified
problem Pα,β = P60,β is of h60 = 300, corresponding to a five-hour
time horizon in units of one minute. The domains of waiting times
decision variables are reduced accordingly, scaled from [1, 18000] in
P1,β to [1, 300] in P60,β.

Similarly, if we choose to reduce the vehicle capacity dimension
with respect to a scale factor α = 1000, and if the vehicle capacity in
the initial problem is Q = 500000, e.g. 500 kg in steps of 1 g, then
all demands must be rounded to multiples of 1000. The capacity in
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P1000,β becomes Q1000 = 500, thus 500 kg in units of 1 kg. When scaling
dimensions of different nature, such as time and capacity, different
scale factors should be considered, leading to a vector α.

Experiments (in Section 8.3) have shown us that the closer α is to 1,
the more accurate the approximation of the actual objective function
is. Progressively reducing α during the search process allows us to
quickly compute rough approximations at the beginning of the search
process, when candidate solutions are usually far from being optimal,
and spend more time computing more accurate approximations at
the end of the search process, when candidate solutions get closer to
optimality.

8.1.2 Simplifying the solution space size with β

When applying a scaling factor α, for consistency reasons the nature
of the scaled input data may impose to the domains of some decision
variables to be reduced accordingly. Yet the solution space can further
simplified by reducing the domains of (part of) the remaining decision
variables, or even by further reducing the same decision variables.
Let Dom(v) be the initial set of values that may be assigned to v,
that is, the domain of a decision variable v. Domain reduction is not
necessarily done for all decision variables, but only for a selected
subset of them, denoted as Vβ. The simplified problem is obtained
by selecting |Dom(v)|/β values and only considering these candidate
values when searching for solutions, for each decision variable v ∈ Vβ.
Ideally, the selection of this subset of values should be done in such a
way that the selected values are evenly distributed within the initial
domain Dom(v). We note Domα,β(v), the domain of a decision variable
v in the simplified problem Pα,β.

For example, in the SS-VRPTW-CR a subset of decision variables
defines the waiting times on the visited waiting vertices: τw defines the
waiting time on w, with Dom(τw) = [1, h]. If the temporal dimension
is not scaled with respect to α, or if α = 1, then Domα,β(τw) is reduced
to a subset of [1, h] that contains h/β values. To ensure that these
values are evenly distributed in [1, h], we may keep multiples of β.
However, if the temporal dimension is scaled with respect to α, the
selected values must thereafter be scaled.

Another subset of decision variables in the SS-VRPTW-CR defines
the waiting vertices to be visited by the vehicles. The initial decision
variable domains are then equivalent to W. Reducing the domains of
these decision variables can be achieved by restricting to a subset of W
that contains |W|/β waiting vertices. To ensure that these values are
evenly distributed in the space, we may use geographical clustering
techniques. Such approach will be considered in Chapter 9.

Progressively decreasing the value of β allows us to progressively
move from diversification to intensification: at the beginning of the
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search process, there are fewer candidate values for the decision vari-
ables of Vβ. The solution method is therefore able to move quickly
towards more fruitful regions of the search space. For minimization
(resp. maximization) problems, we can easily show that the optimal
solution of a simplified problem Pα,β is an upper (resp. lower) bound
of the optimal solution of the problem Pα,1; this is a direct consequence
of the fact that every candidate solution of Pα,β is also a candidate
solution of Pα,1.

8.1.3 PFS algorithm

PFS requires the following input parameters:

• An initial problem Pinit;

• Initial values (α0, β0) for α and β, as well as final values (αmin, βmin);

• An update policy U that returns the new values αi+1 and βi+1

given αi and βi;

• A computation time policy T such that T (α, β) returns the time
allocated for optimizing Pα,β;

• A solution algorithm Θ such that, given a problem P, an ini-
tial solution s, and a time limit δ, Θ(P, s, δ) returns a possiblyPFS is designed to be

used with any local
search based
optimization

algorithm.

improved solution s′ for P.

PFS is described in Algorithm 4. At each iteration i, the simplified
problem Pαi ,βi is built (line 3), and the current solution s is updated
accordingly (line 3): every value assigned to a decision variable which
is concerned by the scale factor α is updated with respect to the new
scale αi, and if a value assigned to a decision variable does not belong
to the current domain associated with αi and βi, then it is replaced
with the closest available value. Note that the updated solution may
not be a feasible solution of Pαi ,βi (because of value replacements and
rounding operations on input data). Therefore the optimizer Θ must
support starting with infeasible solutions.

Algorithm 4: Progressive Focus Search (PFS)

1 Initialize i to 0 and construct an initial solution s to problem Pinit;
2 repeat
3 Build problem Pαi ,βi and update the current solution s to Pαi ,βi ;
4 s← Θ(Pαi ,βi , s, T (αi, βi));
5 (αi+1, βi+1)← U (αi, βi);
6 Increment i
7 until αi−1 = αmin ∧ βi−1 = βmin;
8 if αmin > 1 then Update the current solution s to P1,1;
9 return s;
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Algorithm 5: Local search to compute a first stage solution of
SS-VRPTW-CR

1 Let (x, τ) be an initial feasible first stage solution.
2 Initialize the neighborhood operator op to 1

3 while some stopping criterion is not met do
4 Select a solution (x′, τ′) at random in Nop(x, τ)

5 if some acceptance criterion is met on (x′, τ′) then
6 set (x, τ) to (x′, τ′) and op to 1

7 else change the neighborhood operator op to op % nop + 1 ;

8 return the best first stage solution computed during the search

Algorithm Θ is then used to improve s with respect to the simplified
problem Pαi ,βi within a CPU time limit defined by the computation
time policy T (line 4). Finally, new values for α and β are computed,
according to the update policy U (line 5). This iterative optimization
process stops when αi−1 = αmin and βi−1 = βmin, i.e., when the last
optimization of s with Θ has been done with respect to the targeted
level of accuracy defined by (αmin, βmin). To ensure termination, we
assume that the update policy U eventually returns (αmin, βmin) after
a finite number of calls. Finally, if the final value of α is larger than
1, so that s is a scaled solution, then s is scaled down to become a
solution of the initial problem P1,1 (line 8).

8.2 pfs for the ss-vrptw-cr

In this section, we describe how the Progressive Focus Search meta-
heuristic can be instantiated in order to tackle the SS-VRPTW-CR.

8.2.1 Local search optimizer

We use a simple local search (LS) algorithm as optimizer Θ, described
in Algorithm 5. It implements a Simulated Annealing (Kirkpatrick
et al., 1983) meta-heuristic for approximating the optimal first stage
solution (x, τ), minimizing QR(x, τ). The computation of QR(x, τ) is
performed according to equations of Section 5.2.2 (and further section
5.3) and is considered from now as a black box. Starting from an initial
feasible first stage solution (x, τ), Algorithm 5 iteratively modifies it
by using a set of nop = 9 neighborhood operators. At each iteration,
it randomly chooses a solution (x′, τ′) in the current neighborhood
(line 4), and either accepts it and resets the neighborhood operator
op to the first one (line 5), or rejects it and changes the neighborhood
operator op to the next one (line 6). At the end, the algorithm simply
returns the best solution (x∗, τ∗) encountered so far.
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initial solution and stopping criterion. The initial first
stage solution is constructed by randomly adding each waiting vertex
in a route k ∈ [1, K]. All waiting vertices are thus initially part of the
solution. The stopping criterion depends on the computational time
dedicated to the algorithm.

neighborhood operators . We consider 4 wellknown operators
for the VRP: relocate, swap, inverted 2-opt, and cross-exchange (see
Kindervater and Savelsbergh, 1997; Taillard et al., 1997 for detailed
description). In addition, we introduce 5 new operators dedicated to
waiting vertices: 2 for either inserting or removing from Wx a waiting
vertex w picked at random, 2 for increasing or decreasing the waiting
time τw at random vertex w ∈ Wx, and 1 that transfers a random
amount of waiting time units from one waiting vertex to another.

acceptance criterion. We use a Simulated Annealing accep-
tance criterion (Kirkpatrick et al., 1983). Improving solutions are al-
ways accepted, while degrading solutions are accepted with a probabil-
ity that depends on the degradation and on a temperature parameter,

i.e., the probability of accepting (x′, τ′) is e−
1−QR(x,τ)/QR(x′ ,τ′)

T . The tem-
perature T is updated by a cooling factor 0 < fT < 1 at each iteration
of Algorithm 5: T ← α · T. During the search process, T gradually
evolves from an initial temperature Tinit to nearly zero. A restart
strategy resets the temperature to T ← Tinit each time T decreases
below a fixed limit Tmin. In all experiments, SA parameters were set to
Tinit = 2, Tmin = 10−6, and fT = 0.95.

8.2.2 Scale factor α

In the initial problem P1,1, temporal data is expressed with a resolution
of one-minute time units. The α factor is used to scale down this tem-
poral dimension. The time horizon is scaled down to round(h/α), so
that each time step in Pα,β has a duration of α minutes. Every temporal
input value (travel times di,j, reveal times Γr, service times sr, and
time windows [er, lr]) is scaled from its initial value t to round(t/α).
Rounding operations are chosen in such a way that the desired quality
of service is never underestimated by scaled data: lr is rounded down
while all other values are rounded up. This ensures that a feasible
first stage of a simplified problem Pα,β always remains feasible once
adapted to P1,1.

8.2.3 Domain reduction factor β

The decision variables concerned by domain reductions are waiting
time variables: Vβ = {τw : w ∈W}. In P1,1, we have Dom(τw) = [1, h].
Domains are reduced by selecting a subset of |Dom(τw)|/β values,
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evenly distributed in [1, h]. As the temporal dimension is also scaled
with respect to α, selected values are scaled down: Domα,β(τw) =

{round(i/α) : i ∈ [1, h], i mod β = 0}.
It is both meaningless (for vehicle drivers) and too expensive (for

the optimization process) to design first-stage solutions with waiting
times that are precise to the minute. Hence, in our experiments the
domain of every waiting time decision variable is always reduced by a
factor β ≥ 10. When β = 10, waiting times are multiples of 10 minutes.
When α = 1 and β = 10, we have Dom1,10(τw) = {10, 20, 30, . . . , 480},
but temporal data (travel and service times, time windows, etc.) are
precise to the minute.

8.3 experiments and results

We consider the three recourse strategies R∞, Rq and Rq+. Recourse
strategy R∞ was introduced by Saint-Guillain et al., 2017 to deal with
uncapacitated vehicle, whereas Rq presented in Section 5.2 general-
izes it to take customer integer demands into account. Finally, recall
that Rq+ is an improved, cleverer version of Rq, which is however
computationally more demanding.

We compare the respective contribution and applicability of the
three strategies. We also show how to combine them in order to take
the best of each, using several variations of PFS. An exact method
allows us to measure optimality gaps, in order to assess the quality
of the solutions found by PFS. In order to evaluate the interest of
exploiting stochastic knowledge, the solutions are compared with the
wait-and-serve policy, previously presented in Section 7.3. As with
Section 7.3, the results are reported by means of average relative gains,
in percentages, with respect to the w&s policy.

setup. Experiments have been done on a cluster composed of 64-
bit AMD Opteron 1.4-GHz cores. The code is developed in C++11
with GCC4.9, using -O3 optimization flag. The current source code
of our library for (SS-)VRPs is available from the online repository:
bitbucket.org/mstguillain/vrplib.

8.3.1 Experiments on small instances

We consider small test instances, having n ∈ {10, 20} customer ver-
tices. Furthermore, PFS is here instantiated such that we perform only
a single optimization step (lines 2-7 of Algorithm 4): α0 = αmin and
β0 = βmin. The simplified problem Pα,β is therefore first optimized for
a duration of T seconds, and the returned solution is adapted with re-
spect to the initial problem P1,1, ensuring that all results are expressed
according to the original input data. This limited experimental setting,

bitbucket.org/mstguillain/vrplib


102 heuristic approach : progressive focus search

while ignoring the impact of performing several optimization steps in
PFS, aims at determining:

1. Whether the loss of precision, introduced by α and β, is coun-
terbalanced by the fact that the approximation Pα,β is easier to
solve than the initial problem.

2. The impact of avoiding pointless trips in recourse strategy Rq+,
compared with simpler (but computationally less demanding)
strategy Rq.

3. The interest of exploiting stochastic knowledge, by comparing
the expected costs of SS-VRPTW-CR solutions with their average
costs under the w&s policy.

4. The quality of the solutions computed by the LS algorithm
under different scale factors. These are compared with optimal
solutions obtained with the exact method. When α > 1 or β >

1, the exact method solves Pα,β, and the results are reported
according to the final solution, scaled back to P1,1.

8.3.1.1 Enumerative exact method.

The branch-and-cut algorithm described in Chapter 7 suffers from
important limitations that affect its performances. In fact, it is not
able to prove optimality for most of the test instances, even those of
very small size (five waiting vertices). In order to assess the ability of
our algorithms to find (near-)optimal solutions, we devise a simple
enumerative optimization method which is able to compute optimal
solutions on these small instances. To that end, the solution space isWe use an

alternative exact
method in order to

cope with the
limitations of the

branch-and-cut
algorithm.

restricted to the solutions that (a) use all available vehicles and (b) use
all the available waiting time. Indeed, if K ≤ |W|, then on the basis of
any optimal solution which uses only a subset of the available vehicles,
a solution of the same cost can be obtained by assigning an idle vehicle
to either a non-visited waiting vertex (if any) or the last visited vertex
of any non-empty route (visiting at least two waiting locations), so that
(a) does not remove any optimal solution. Furthermore, if an optimal
first-stage solution contains a route for which the vehicle returns to
the depot before the end of the horizon, adding the remaining time to
the last visited waiting vertex will never increase the expected cost of
the solution, so that (b) is also valid. The resulting solution space is
then recursively enumerated in order to find the first-stage solution
with the optimal expected cost.

8.3.1.2 Impact of the scale factor α

Table 8.1 shows the average gains, in percentages, of using an SS-
VRPTW-CR solution instead of the w&s policy, for small instances
composed of n = 10 customer vertices with K = 2 uncapacitated
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Exact (% gain after 30 minutes)

α = 1 α = 2 α = 5

w&s Rq Rq+ Rq Rq+ Rq Rq+

10c-5w-1 12.8 8.9* 15.4 7.3* 12.8* 4.4* 9.5*

10c-5w-2 10.8 -4.8* 7.4 -4.8* 7.4* -8.8* 0.5*

10c-5w-3 8.0 -46.9* -26.5 -46.9* -26.5* -55.9* -43.2*

10c-5w-4 10.5 -10.9* 0.9 -10.9* 0.9* -10.9* 0.9*

10c-5w-5 8.4 -17.9* 2.5 -17.9* 2.5 -20.5* 0.5*

#eval 104 104 104 104

10c+w-1 12.8 35.3 34.4 35.3 34.4 32.7 26.5

10c+w-2 10.8 28.1 19.1 30.1 21.5 30.1 29.7

10c+w-3 8.0 14.4 17.1 18.8 17.1 13.3 13.7

10c+w-4 10.5 7.8 11.0 12.4 11.6 7.8 11.4

10c+w-5 8.4 3.5 8.9 8.4 6.6 23.7 1.7

#eval

PFS (% gain after 5 minutes)

α = 1 α = 2 α = 5

w&s Rq Rq+ Rq Rq+ Rq Rq+

10c-5w-1 12.8 8.9 14.1 7.3 13.1 4.4 9.2

10c-5w-2 10.8 -4.8 0.2 -4.8 4.9 -8.8 0.5

10c-5w-3 8.0 -46.9 -29.9 -43.1 -30.6 -43.1 -32.9

10c-5w-4 10.5 -10.9 -8.7 -10.9 -4.9 -10.9 -2.2

10c-5w-5 8.4 -17.9 -6.1 -18.9 -2.8 -19.5 1.1

#eval 3∗104 3∗103 7∗104 5∗103 2∗105 2∗104

10c+w-1 12.8 39.1 30.3 38.3 36.7 34.9 34.1

10c+w-2 10.8 32.3 18.8 32.1 25.2 32.3 25.8

10c+w-3 8.0 26.1 18.8 27.6 20.3 23.1 23.9

10c+w-4 10.5 22.6 12.3 23.3 16.4 18.8 16.5

10c+w-5 8.4 31.6 15.8 32.7 21.1 29.3 28.5

#eval 3∗104 3∗103 7∗104 6∗103 2∗105 2∗104

Table 8.1: Results on small instances (n = 10, K = 2, Q = ∞) when α ∈
{1, 2, 5} and β = 60. For each instance, we give the average cost
over 106 sampled scenarios using the wait-and-serve policy (w&s)
and the gain of the best solution found by the exact approach
within a time limit of 30 minutes and PFS within a time limit
of 5 minutes (average on 10 runs). Results marked with a star
(∗) have been proved optimal. #eval gives the average number
of expectation computations for each run: solutions enumerated
(Exact) or LS iterations (PFS). Grey cells show best results.
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Instance: 10c-5w-1 10c-5w-2 10c-5w-3 10c-5w-4 10c-5w-5

Travel time in C: 19.6’ 16.8’ 12.5’ 18.0’ 13.0’

Travel time C to W: 23.7’ 19.9’ 19.5’ 20.9’ 18.2’

Time window: 11.6’ 12.7’ 12.3’ 13.2’ 12.6’

Table 8.2: Statistics on instances 10c-5w-i: the first (resp. second) line gives
the average travel time between customer vertices (resp. between
a customer and waiting vertices); the last line gives the average
duration of a time window.

vehicles. We consider three different values for α. When α = 1 (resp.
α = 2, α = 5), the time horizon is h = 480 (resp. hα = 240, hα = 96) and
each time unit corresponds to one minute (resp. two and five minutes).
In all cases, the domain reduction factor β is set to 60: waiting times
are restricted to multiples of 60 minutes.

Unlike the recourse strategies, which must to deal with a limited set
of predefined waiting locations, the w&s policy makes direct use of the
customer vertices. Therefore, the relative gain of using an optimized
SS-VRPTW-CR first-stage solution is highly dependent on the locations
of the waiting vertices. Gains are always greater for 10c+w-i instances,
where any customer vertex can be used as a waiting vertex: for these
instances, gains with the best-performing strategy are always greater
than 23%, whereas for 10c-5w-i instances, the largest gain is 16%, and
is negative in some cases.

The results obtained on instance 10c-5w-3 are quite interesting:
gains are always negative; i.e., waiting strategies always lead to higher
expected numbers of rejected requests than the w&s policy. By lookingThe relative gain of

using the
SS-VRPTW-CR

first-stage solutions
depends on whether

the average travel
times between

customer vertices
exceeds the duration

of their time
windows.

further into the average travel times in each instance, in Table 8.2, we
find that the average travel time between customer vertices in instance
10c-5w-3 is rather small (12.5), and very close to the average duration
of time windows (12.3). In this case, anticipation is of less importance
and the w&s policy appears to perform better. Furthermore, average
travel time between waiting and customer vertices (19.5) is much larger
than the average travel time between customer vertices.

We note that the exact enumerative method runs out of time under
Rq+ for all instances, when α = 1. Increasing α to 2 speeds up the
solution process and makes it possible to prove optimality on all 10c-
5w-i instances except instance 5. Setting α = 5 allows to find all optimal
solutions. However, optimizing with coarser scales may degrade the
solution quality. This is particularly true for 10c-5w-i instances which
are easier, in terms of solution space, than 10c+w-x instances as they
have half the number of waiting locations: for 10c-5w-i instances, gains
are often decreased when α is increased because, whatever the scale
is, the search finds optimal or near-optimal solutions.

For PFS, gains with recourse strategy Rq+ are always greater than
gains with recourse strategy Rq on 10c-5w-i instances. However, we
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observe the opposite on 10c+w-i instances. This comes from the fact
that expected costs are much more expensive to compute under Rq+

than under Rq. Table 8.1 displays the average number of times the
objective function QR(x, τ) is evaluated (#eval), that is the number of
solutions considered by either the local search or the exact method,
in which case it corresponds to the size of the solution space (when
enumeration is complete and under assumptions (a) and (b) discussed
in Section 8.3.1.1). We note that the number of LS iterations is ±10

times smaller when using Rq+ compared to Rq. As 10c-5w-i instances
are easier than 10c+w-i instances, around 104 iterations is enough to
allow the LS optimizer of PFS to find near-optimal solutions. In this
case, gains obtained with Rq+ are much larger than those obtained
with Rq. However, on 10c+w-i instances, 104 iterations are not enough
to find near-optimal solutions. For these instances, better results are
obtained with Rq.

When optimality has been proven by Exact, we note that PFS often
finds solutions with the same gain. With α ∈ {2, 5}, PFS may even find
better solutions: this is due to the fact that optimality is only proven
for the simplified problem Pα,β, whereas the final gain is computed
after scaling back to the original horizon at scale 1. When optimality
has not been proven, PFS often finds better solutions (with larger
gains).

8.3.1.3 Combining recourse strategies: Rq/q+

Results obtained from Table 8.1 show that although it leads to larger
gains, the computation of expected costs is much more expensive un-
der recourse strategy Rq+ than under Rq, which eventually penalizes
the optimization process as it performs fewer iterations within the
same time limit (for both Exact and PFS).

We now introduce a pseudo-strategy that we call Rq/q+, which
combines Rq and Rq+. For both Enum and PFS, strategy Rq/q+ refers
to the process that uses Rq as the evaluation function during all the
optimization process. When stopping at a final solution, we reevaluate
it using Rq+. Table 8.3 reports the gains obtained by applying Rq/q+

on instances 10c-5w-i and 10c+w-i. By using Rq/q+, we actually use Rq

to guide the LS optimization, which permits the algorithm to consider
a significantly bigger part of the solution space. For both Enum and Expected costs

computed under
Rq+ are always
significantly better
than under Rq,
showing that the
recourse strategy
performs more clever
operations.

PFS, Rq/q+ always leads to better results than Rq. From now on, we
will only consider strategies Rq/q+ and Rq+ in the next experiments.

8.3.1.4 Impact of the domain reduction factor β

Table 8.4 considers instances involving 20 customer vertices and either
10 separated waiting locations (20c-10w-i) or one waiting location at
each customer vertex (20c+w-i). It compares results obtained by PFS
for two different computation time limits, with β ∈ {10, 30, 60}. When



106 heuristic approach : progressive focus search

Exact (% gain after 30 minutes)

α = 1 α = 2 α = 5

w&s Rq Rq/q+ Rq Rq/q+ Rq Rq/q+

10c-5w-1 12.8 8.9 14.0 7.3 12.8 4.4 9.5

10c-5w-2 10.8 -4.8 7.4 -4.8 7.4 -8.8 0.5

10c-5w-3 8.0 -46.9 -26.5 -46.9 -26.5 -55.9 -37.3

10c-5w-4 10.5 -10.9 0.9 -10.9 0.9 -10.9 0.9

10c-5w-5 8.4 -17.9 2.5 -17.9 2.5 -20.5 0.5

10c+w-1 12.8 35.3 37.7 35.3 37.7 32.7 34.0

10c+w-2 10.8 28.1 33.2 30.1 34.6 30.1 34.6

10c+w-3 8.0 14.4 24.4 18.8 29.9 13.3 21.9

10c+w-4 10.5 7.8 13.5 12.4 20.0 7.8 13.5

10c+w-5 8.4 3.5 10.6 8.4 13.3 23.7 31.0

PFS (% gain after 5 minutes)

α = 1 α = 2 α = 5

w&s Rq Rq/q+ Rq Rq/q+ Rq Rq/q+

10c-5w-1 12.8 8.9 14.0 7.3 12.8 4.4 9.5

10c-5w-2 10.8 -4.8 7.1 -4.8 7.4 -8.8 0.5

10c-5w-3 8.0 -46.9 -26.5 -43.1 -22.5 -43.1 -22.5

10c-5w-4 10.5 -10.9 0.9 -10.9 0.9 -10.9 0.9

10c-5w-5 8.4 -17.9 2.5 -18.9 1.8 -19.5 1.1

10c+w-1 12.8 39.1 40.9 38.3 39.5 34.9 36.2

10c+w-2 10.8 32.3 35.6 32.1 35.5 32.3 34.4

10c+w-3 8.0 26.1 35.0 27.6 35.6 23.1 30.3

10c+w-4 10.5 22.6 29.2 23.3 29.3 18.8 24.1

10c+w-5 8.4 31.6 39.8 32.7 40.7 29.3 35.0

Table 8.3: Comparison of Rq with the hybrid strategy Rq/q+ (that uses strat-
egy Rq as evaluation function during the optimization process,
and evaluates the final solution with strategy Rq+) on the small
instances used in Table 8.1, with β = 60.
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Exact (% gain after 30 minutes)

β = 60 β = 30 β = 10

w&s Rq/q+ Rq+ Rq/q+ Rq+ Rq/q+ Rq+

20c-10w-1 22.6 9.3 -12.1 9.7 -11.4 12.6 -16.0

20c-10w-2 19.8 -11.8 -27.9 -5.0 -29.1 -3.7 -31.4

20c-10w-3 21.1 -0.5 -16.7 5.6 -15.9 6.4 -21.3

20c-10w-4 25.3 4.6 -4.3 5.2 -6.9 5.4 -9.2

20c-10w-5 20.9 -10.7 -25.9 -1.0 -24.6 0.2 -23.8

20-c+w-1 22.6 15.4 2.8 17.2 2.2 17.4 0.2

20-c+w-2 19.8 7.6 -10.0 5.6 -16.8 6.9 -14.3

20-c+w-3 21.1 2.8 -11.1 3.9 -14.1 3.1 -13.7

20-c+w-4 25.3 14.3 5.2 15.3 2.6 14.0 3.0

20-c+w-5 20.9 13.6 -2.6 14.0 -11.2 16.7 -7.7

PFS (% gain after 5 minutes)

β = 60 β = 30 β = 10

w&s Rq/q+ Rq+ Rq/q+ Rq+ Rq/q+ Rq+

20c-10w-1 22.6 10.8 5.5 12.0 5.6 15.2 6.4

20c-10w-2 19.8 -5.7 -12.2 -3.8 -10.2 -1.9 -8.7

20c-10w-3 21.1 1.1 -2.8 7.7 -0.9 8.1 0.2

20c-10w-4 25.3 5.7 4.3 5.5 3.8 5.1 4.7

20c-10w-5 20.9 -9.1 -14.0 -0.0 -7.0 0.8 -6.4

20-c+w-1 22.6 17.9 13.5 19.4 11.4 20.2 13.0

20-c+w-2 19.8 12.2 2.7 10.7 2.1 12.3 3.5

20-c+w-3 21.1 4.8 1.2 6.4 0.4 7.8 0.3

20-c+w-4 25.3 15.9 12.4 18.6 13.5 19.6 14.2

20-c+w-5 20.9 15.7 9.8 19.0 11.0 18.5 12.0

Table 8.4: Relative gains 5 and 30 minutes, using three domain reduction
factors (β ∈ {10, 30, 60}), with K = 2 uncapacitated vehicles and
a scale factor α = 2. Instances involve n = 20 customer locations
and either 10 or 20 available waiting locations.
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β = 10 (resp. β = 30 and β = 60), domains of waiting time variables
contain 48 (resp. 16 and 8) values, corresponding to multiples of 10

(resp. 30 and 60) minutes. In all cases, the scale factor α is set to 2.
When considering the recourse strategy Rq+ with a five-minute

computation time limit, we observe that better results are obtained
with β = 60, as domains are much smaller. When the computation
time is increased to 30 minutes, or when considering strategy Rq/q+,
which is cheaper to compute, then better results are obtained with
β = 10, as domains contain finer-grained values.

We observe thatRq/q+ always provides better results than pureRq+,
whatever the waiting time multiple β used. Except when switching to
significantly greater computational times, Rq/q+ seems more adequate
as it combines the limited computational cost incurred by Rq with the
nicer expected performances of the cleverer strategy Rq+.

8.3.2 Experiments on large instances

We now consider instances with n = 50 customer vertices. Instances
50c-30w-i and 50c-50w-i have m = 30 and m = 50 separated waiting
locations, respectively. Instances 50c+w-i have m = 50 waiting vertices
which correspond to the customer vertices. Each class is composed
of 15 instances such that, for each seed i ∈ [1, 15], the three instances
classes 50c-30w-i, 50c-50w-i, and 50c+w-i contain the same set of 50

customer vertices and thus only differ in terms of the number and/or
positions of waiting vertices. For each instance, the vehicle’s capacity is
set to Q = 20, and we consider three different numbers of vehicles K ∈
{5, 10, 20}. In total, we thus have 45 × 3 = 135 different configurations.

We first compare and discuss the behaviors of different instantia-
tions of PFS. Then, based on the PFS variant that appears to perform
best, further experiments (Section 8.3.2.3) measure the contribution
of a two-stage stochastic model, through the use of a SS-VRPTW-CR
formulation and our recourse strategies.

8.3.2.1 Instantiations of PFS

All runs of PFS are limited to T = 10800 seconds (three hours). We
compare seven instantiations of PFS, which have different update
and computation time policies U and T , while all other parameters
are set as described in Section 6.2.1. Strategy Rq/q+ is used for all
experiments. The different instantiations are:

• PFS-α*β10: the scale factor α is progressively decreased from 5

to 2 and 1 while the domain reduction factor β remains fixed to
10. More precisely, α0 = 5, αmin = 1, and β0 = βmin = 10. The
update policy U successively returns α1 = 2 and α2 = 1, while
β1 = β2 = 10. The computation time policy T always returns
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3600 seconds, so that the three LS optimizations have the same
CPU time limit of one hour.

• PFS-α1β*: α remains fixed to 1 while β is progressively decreased
from 60 to 30 and 10. More precisely, α0 = αmin = 1, β0 = 60,
and βmin = 10. The update policy U successively returns β1 = 30
and β2 = 10, while α1 = α2 = 1. The computation time policy T
always returns 3600 seconds.

• PFS-α*β*: both α and β are progressively decreased. We set
α0 = 5, αmin = 1, β0 = 60, and βmin = 10. The update policy
U returns the following couples of values for (αi, βi): (5, 60),
(2, 60), (1, 60), (5, 30), (2, 30), (1, 30), (5, 10), (2, 10), (1, 10).
The computation time policy T always returns 1200 seconds.
The PFS optimization process is hence composed of nine LS
optimizations of 20 minutes each.

• PFS-αaβb which performs only a single LS optimization step
with T = 10800 and α0 = αmin = a and β0 = βmin = b, as
experimented in Section 7. We consider two different values for
α, i.e., a ∈ {1, 2}, and two different values for β, i.e., b ∈ {10, 60},
thus obtaining four different instantiations.

8.3.2.2 Comparison of the different PFS instantiations

The performances of the seven PFS instantiations and the baseline
w&s approach are compared in Figure 8.1 by using performance pro-
files. Performance profiles (Dolan and Moré, 2002) provide, for each
considered approach, a cumulative distribution of its performance
compared to other approaches. For a given method A, a point (x, y)
on A’s curve means that in (100 · y)% of the instances, A performed
at most x times worse than the best method on each instance taken
separately. A method A is strictly better than another method B if A’s
curve always stays above B’s curve.

According to Figure 8.1 (left), algorithms PFS-α*β10 and PFS-α*β*
show the best performances when tested on the 15 instances of class
50c+w-i with K = 20 vehicles. More experiments are conducted and
reported in Figure 8.1 (right) in order to distinguish between the
algorithms PFS-α*β10, PFS-α1β* and PFS-α*β* on all 135 instances.
In comparison to the other approaches, algorithms PFS-α*β10 and
PFS-α*β* clearly obtain the best performances on average over the 135

configurations.
Figure 8.2 illustrates, on a single instance (50c-50w-1 with K = 10

vehicles), the evolution through time of the gain of the expected cost
of the current solution s, with respect to the average cost of the w&s
policy, during a single run of PFS-α1β10, PFS-α*β10, PFS-α1β*, and
PFS-α*β*. For each incumbent solution s, the left part of Figure 8.2
plots the gain of s under Rq at its current scale α. It corresponds to
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Figure 8.1: Performance profiles. Left: comparison of the seven PFS instan-
tiations and the w&s policy on the 15 instances of class 50c+w-i,
using K = 20 vehicles. Right: comparison of PFS instantiations
PFS-α*β10, PFS-α1β* and PFS-α*β* on the 3 classes (50c-30w-i,
50c-50w-i, 50c+w-i), with K ∈ {5, 10, 20} vehicles (135 instances).

Figure 8.2: Evolution through time of the gain of the expected cost of the
current solution with respect to the average cost of the w&s policy,
during a single execution of four PFS instantiations for instance
50c-50w-1 (with K = 10 vehicles). Left: gain evaluated under Rq

at current scale α. Right: gain evaluated under Rq+ at scale α = 1.

the quality of s as evaluated by the LS algorithm. The right part plots
the corresponding gain under Rq+ at scale α = 1. In the left part, we
clearly recognize the nine different optimization phases of PFS-α*β*. A
drop in the expected cost happens whenever the current solution s is
converted to a higher scale factor. This happens twice during the run:
from α2 = 1 to α3 = 5 (point a) and from α5 = 1 to α6 = 5 (point b). In
both cases, the resulting solution becomes infeasible and the algorithm
needs some time to restore feasibility. A sudden leap happens when
converting to a lower scale. This happens six times (points c): from
αi = 5 to αi+1 = 2 and from αi+1 = 2 to αi+2 = 1, with i ∈ {0, 3, 6}.
This is a direct consequence of the fact that rounding operations are
always performed in a pessimistic way. Whereas the quality of s under
Rq at scale α appears to be worse than that of PFS-α1β10 (e.g., at point
b), the true gain of s (evaluated under Rq+, α = 1) remains always
better with PFS-α*β*.
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Figure 8.3: Scale approximation quality and impact of recourse strategies.
For each solution s encountered while running PFS-α*β*, on
instance 50c-50w-1 as displayed in Figure 8.2, left curves show
the evolution of the gap (in %) between costs computed with
α ∈ {2, 5} and those computed with α = 1. On right, the gap
between Rq and Rq+, both with α = 1.

Finally, Figure 8.3 compares the expected costs when varying ei-
ther the scale α (left) or the recourse strategy (right), using the same
sequences of solutions than those used for Figure 8.2. On left, the evo-
lution of the deviation (%) between costs computed with α = 1, and
α ∈ {2, 5}, under strategy Rq. On right, the deviation between costs
computed with Rq and Rq+, with α = 1 in both cases. Scale α = 2
(left, long dashed) always provides a better approximations, closer to
the one as computed under α = 1, than scale α = 5 (left, dashed). We
also notice a significant increase in the gaps as the algorithm finds
better solutions: under 100 seconds, costs computed at scale α = 2
(resp. α = 5) remain at maximum 10% (resp. 20%) from what would
be computed under α = 1, and tend to stabilize at around 20% (resp.
45%) in the long term. Similar observations can be made (Figure 8.3,
right) regarding the gap between costs computed with Rq at α = 1
and those computed with Rq+, α = 1. Similarly, the cost difference
subsequent to the recourse strategy tends to increase progressively
with the quality of the solutions. This could be explained by the time
discrepancies generated by rounding operations when a solution is
scaled. Better solutions having complex, tighter schedules are then
less robust to such time approximations, and more sensible to the
discrepancy effects which propagate and impact on the customer time
windows.

8.3.2.3 Results on large instances

We now analyze how our SS-VRPTW-CR model behaves compared to
the w&s policy, when varying both vehicle fleet size and the urgency
of requests. We consider algorithm PFS-α*β* only.

influence of the number of vehicles . Table 8.5 shows how
the performance of the SS-VRPTW-CR model relative to the w&s
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PFS-α*β*

w&s 50c30w 50c50w 50c+w

#rejects #rejects %gain #rejects %gain #rejects %gain

K = 5 39.3 40.1 -2.5 40.7 -4.3 39.0 0.4

K = 10 33.9 27.1 18.4 25.5 22.9 23.6 29.2

K = 20 33.7 20.3 38.9 17.9 45.8 16.0 52.2

Table 8.5: Average number of rejected requests on instances 50c-30w-i, 50c-
50w-i, 50c+w-i, w.r.t. the number of vehicles.

PFS-α*β*

w&s 50c30w 50c50w 50c+w

#rejects #rejects %gain #rejects %gain #rejects %gain

K = 5 21.0 28.1 -35.1 27.3 -31.4 26.3 -26.3

K = 10 13.8 14.8 -11.7 13.8 -3.5 12.9 3.4

K = 20 13.6 10.4 21.2 9.0 31.7 8.8 33.7

Table 8.6: Average number of rejected requests, all time window durations
being doubled.

policy varies with the waiting locations and the number of vehicles.
For 5, 10, and 20 vehicles, the average over each of the instance classes
(15 instances per class) is reported.

It shows us that the more vehicles are involved, the more important
clever anticipative decisions are, and therefore the more beneficial a
SS-VRPTW-CR solution is compared to the w&s policy. It is likelyThe more vehicles are

involved, the more
performant are the

SS-VRPTW-CR
first-stage solutions

compared to a
non-anticipative

policy.

that, as conjectured in Saint-Guillain et al., 2017, a higher number of
vehicles leads to a less uniform objective function, most probably with
the steepest local optima. Because it requires much more anticipa-
tion than when there are only five vehicles, using the SS-VRPTW-CR
model instead of the w&s policy is found to be particularly beneficial
provided that there are at least 10 or 20 vehicles. With 20 vehicles, our
model decreases the average number of rejected requests by 52.2%
when vehicles are allowed to wait at customer vertices (i.e. for the class
of instances 50c+w-i).

On the other hand, we also observe that due to the lack of anticipa-
tive actions, the w&s policy globally fails at tacking the advantage of
a larger number of vehicles. Indeed, allowing 20 vehicles does not sig-
nificantly improve the performances of the baseline policy compared
to only 10 vehicles.

influence of the time windows . We now consider less urgent
requests, by conducting the same experiments as in Section 8.3.2.3
while modifying the time windows only. Table 8.6 shows the average
gain of using an SS-VRPTW-CR model when the service quality is
reduced by multiplying all the original time window durations by two.
The results show that for K = 5 vehicles, the w&s policy always
performs better. With K = 20 vehicles, however, the average relative
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PFS-α*β*

w&s 50c30w 50c50w 50c+w

#rejects #rejects %gain #rejects %gain #rejects %gain

K = 5 14.2 22.5 -61.1 22.0 -57.8 21.1 -50.7

K = 10 7.4 10.9 -60.0 9.7 -41.7 8.8 -26.1

K = 20 7.3 8.1 -19.8 7.0 -4.1 6.0 14.0

Table 8.7: Average number of rejected requests, all time window durations
being tripled.

gain achieved by using the SS-VRPTW-CR model remains significant:
there are 33.7% fewer rejected requests on average for the class of
instances 50c+w-i.

Table 8.7 illustrates how the average gain is impacted when time
windows are multiplied by three. Given 20 vehicles, the SS-VRPTW-CR The more urgent are

the requests, the
more interesting is
the SS-VRPTW-CR
model.

model still improves the w&s policy by 14% when vehicles are allowed
to wait directly at customer vertices. Together with Table 8.5, Tables
8.6 and 8.7 show that the SS-VRPTW-CR model is more beneficial
when the number of vehicles is high and the time windows are small,
that is, in instances that are particularly hard in terms of quality of
service and thus require much more anticipation.

positions of the waiting locations . From all the experi-
ments conducted on our benchmark, it immediately appears that, no
matter the operational context (number of customer vertices, vehicles)
or the approximations that are used (scaling factor, waiting time multi-
ples), allowing the vehicles to wait directly at customer vertices always leads
to better results than using separated waiting vertices. Unless the set of
possible waiting locations is restricted, e.g., big vehicles cannot park
anywhere in the city, placing waiting vertices in such a way that they
coincide with customer vertices appears to be the best choice.

8.4 conclusions and research directions

This chapter introduced PFS, a meta-heuristic particularly suitable
for our SS-VRPTW-CR problem when coupled with the LS algorithm.
More generally, PFS is applicable to any problem in which: a) the
objective function is particularly complex to compute but depends on
the accuracy of the data and b) the size of the solution space can be
controlled by varying the granularity of the operational decisions. We
show that PFS allows to efficiently tackle larger problems for which
an exact approach is not possible.

Experiments show that SS-VRPTW-CR recourse strategies provide
significant benefits compared to a basic, non-anticipative but yet realis-
tic policy. Results for a variety of large instances show that the benefit
of using the SS-VRPTW-CR increases with the number of vehicles
involved and the urgency of the requests. Finally, all our experiments
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indicate that allowing the vehicles to wait directly at potential cus-
tomer vertices, when applicable, leads to better expected results than
using separated relocation vertices.

Future work and research avenues

The research directions described here apply locally, that is, on the
new meta-heuristic we just introduced. More general conclusions and
future work in the context of online stochastic VRPs are discussed in
the Conclusion and Perspectives part, concluding the thesis.

on solution methods . An adaptive version of PFS, therefore im-
proving the algorithm by making dynamic the decision about changing
the scale factor α or the domain reduction factor β, could be designed.
Exact optimal methods should also be investigated. However, the black
box nature of the evaluation function QR makes classical (stochas-
tic) integer programming approaches (e.g. branch-and-cut, L-shaped
method, etc.) unsuitable for the SS-VRPTW-CR unless efficient valid
inequalities that are active at fractional solutions can be devised (such
as those proposed by Hjorring and Holt, 1999, for the SS-VRP-D).
Amongst other possible candidates for solving this problem, we could
consider set-partitioning methods such as column generation, which
are becoming commonly used for stochastic VRPs. Approximate Dy-
namic Programming (ADP, Powell, 2009) is also widely used to solve
routing problems in presence of uncertainty. Combined with scaling
techniques, ADP is likely to provide interesting results.

on scaling techniques . We have shown through experiments
that the computational complexity of the objective function is an
issue that can be successfully addressed by scaling down problem
instances. However, the scale is only performed in terms of temporal
data, decreasing the accuracy of the time horizon. It may also be
valuable to consider a reduced, clustered set of potential requests,
which would also allow us to significantly reduce computational effort
when evaluating a first-stage solution.



9
A P P L I C AT I O N : A P R I O R I O P T I M I Z AT I O N F O R
P O L I C E PAT R O L M A N A G E M E N T I N B R U S S E L S

The Static and Stochastic Vehicle Routing Problem with random Re-
quests (SS-VRP-R) describes realistic operational contexts, in which
a fleet of vehicles has to deal with customer requests appearing in a
dynamic fashion. Based on a probabilistic knowledge about requests
appearance, the SS-VRP-R seeks for a priori sequences of vehicle re-
locations, optimising the expected responsiveness to the requests.

In this chapter, we show how the existing recourse strategies, pro-
posed for the SS-VRP with both random Customers and Reveal Times
(SS-VRPTW-CR), can be adapted to meet the objective function of the
SS-VRP-R. The resulting model is then applied to the real case study
of a police units management in Brussels, Belgium. In this context, the
expected average intervention delay is minimised.

In order to cope with the reality of the urban context, travel time
dependency is introduced in our computational models. Experiments
show the contribution and the adaptability of the recourse strategies
to a real life, complex, operational context. Provided an adequate
solution method, simulation-based results show the high quality of
the a priori solutions designed.

9.1 problem definition

The SS-VRP-R is very similar to the SS-VRPTW-CR, except that the on-
line customer requests are always accepted, without any time window.
Henceforth, the objective function is no longer to minimize the ex- The SS-VRP-R

aims at minimizing
the expected
average service
delay of online
requests.

pected number of rejected requests. Instead, the SS-VRP-R maximizes
the expected quality of service, by minimizing the expected average
time needed for a vehicle to meet an appeared online request.

9.1.1 Objective function

Under a given recourse strategy R, let

delayR(r, ξ(ω))

be the deterministic function that returns the delay between reveal
time Γr (of an online request r) and the moment at which a vehicle
reaches r’s location, when following a specific scenario ξ(ω). We are

115
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interested in the average time needed to meet all the requests that
appeared in ξ(ω), our second-stage value function:

QR(x, τ, ξ(ω)) =
1

|R(ξ(ω))| ∑
r∈R(ξ(ω))

delayR(r, ξ(ω)), (9.1)

where R(ξ(ω)) ⊆ R is the set of requests that revealed to appear
in scenario ξ(ω). Hence, we define the expected second-stage value
function as the expectation of the average time needed to meet any
request that reveals to appear:

QR(x, τ) = EQR(x, τ, ξ)

=
1
|R| ∑

r∈R
E
[

delayR(r, ξ) | r appears
]
, (9.2)

where delayR(r, ξ) is a random function of the a priori solution (x, τ),
the recourse strategy R and the random variables describing the
potential requests R. Therefore, P{delayR(r, ξ) = ∆ | r appears} is the
probability that r is met after a delay of ∆ time units, conditionally
that r appears.

Henceforth, the SS-VRP-R problem can be formulated as the follow-
ing two-stage stochastic program:

(SS-VRP-R) Minimize
x,τ

QR(x, τ) (9.3)

s.t. (x, τ) is a first-stage solution, (9.4)

where the expected second-stage value function QR(x, τ) is defined
in (9.2).

9.1.2 Recourse Strategy and Expected Delays: constant travel times

In its current form, and provided an implementation of strategy R
allowing the computation of delayR(r, ξ(ω)), equation (9.2) can be
directly approached by enumerating all the possible scenarios:

QR(x, τ) = ∑
ξi∈S

p(ξi)

|R(ξi)| ∑
r∈R(ξi)

delayR(r, ξi). (9.5)

Naturally, due to the size of S such approach is definitely not feasible
in practice. Sampling methods, such as Sample Average Approxima-
tion (SAA, Ahmed and Shapiro, 2002), allow to approximate QR on a
limited subset of S , but they do not provide any guarantee.

In what follows, we show how to efficiently compute QR by directly
exploiting the closed form expressions provided in Section 5.2, for the
SS-VRPTW-CR. In fact, because the SS-VRPTW-CR is closely related to
the SS-VRP-R, the recourse strategy R∞ proposed for the SS-VRPTW-
CR can be naturally exploited here for the SS-VRP-R, hence leading to
a new variant, referred to as R′ in what follows.
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The two problems are quite similar, however there are a couple
of differences we must consider while exploiting a recourse strategy
initially designed for the SS-VRPTW-CR. Customer requests do not
have time window in the SS-VRP-R; whenever a request appears, it
must be served as soon as possible. More important, all the requests
must be serviced, meaning that unlike the SS-VRPTW-CR none can be
rejected. We then make the assumption that there exists a finite time
window duration for every request, so that a solution can be found
in which a request is never rejected, even under the SS-VRPTW-CR
recourse strategy R∞.

Given a first stage solution (x, τ), and following the computation
of R∞, function g1(r, t) returns the probability that a vehicle leaves
its current location at time t to meet an accepted request r. Function
g1(r, t) is specifically defined for R∞ in Saint-Guillain et al., 2017. It
can also be naturally derived from the definition of g1(r, t, q), provided
for Rq in Section 5.2 of the current thesis.

A vehicle must depart from location v at time unit Γr + ∆− dv,r in
order to meet a request r with a delay ∆. If we assume that a request r
that appears gets immediately accepted, then:

P{delayR
′
(r, ξ) = ∆ | r appears} =

g1(r, Γr + ∆− tv,r)

pr
(9.6)

if and only if (x, τ) is such that r is always accepted under recourse
strategy R′, that is, if and only if:

pr = P{r ∈ Ah} =
dmin

r,w(r)

∑
t=dmin

r,w(r)

g1(r, t).

For such solutions and with strategy R′, equation (9.2) then becomes: We directly exploit
SS-VRPTW-CR
closed-form
expressions in
order to compute the
SS-VRP-R
objective function.

QR
′
(x, τ) =

1
|R| ∑

r∈R
∑

∆∈H
∆ ·

g1(r, Γr + ∆− tw(r),r)

pr
. (9.7)

Even with sufficiently large time windows, depending on the first
stage solution (x, τ) an appeared request may still be rejected. This is
due to the fact that, while following the sequences of waiting vertices
planned in (x, τ), strategy R′ enforces the a priori arrival times of
the vehicles at these waiting vertices. A request is then rejected if it
prevents the associated vehicle from respecting its schedule, fixed a
priori in (x, τ). Henceforth, while exploiting strategy R′, we consider
a first stage solution (x, τ) as being SS-VRP-R feasible if and only if
∀r : P{r ∈ Ah} = pr. We will see in Section 9.3.2, Solution Method, how
we can deal with this issue.

9.1.3 Recourse Strategy and Expected Delays: time-dependent travel times

As further discussed in the next section, variable travel times, and
more specifically time dependent travel times, could be an important
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aspect to take into account while dealing with urban vehicle routing.
For now, we describe how our equations can be adapted accordingly.Our SS-VRPTW-CR

closed-form
expressions can be

easily adapted to
time-dependent

travel times!

In fact, an interesting feature of our recourse strategies is that they
can be easily adapted to a context in which the travel time along an
arc depends on the moment the trip is performed. Let us define

tdep = dTD
v,v′(t

arr)

as the time a vehicle must leave v in order to reach v′ at time tarr.
In order to adapt the computation of g1 to travel time dependency,
one just needs to redefine expressions dmin

r,w , dmax
r,w and f (r, t, q). In fact,

these are the only places where travel times are involved. We then
have (this should be compared with the expressions at Sec. 5.2.1.2)

dminTD
r,w = max{on(w), Γr, dTD

w,r(er)}

and
dmaxTD

r,w = min{dTD
w,r(lr), STD

r
(
on(w)

)
}

where STD
r (tarr) = dTD

w,r
(

dTD
r,w(tarr)− sr

)
is the time at which a vehicle

needs to depart from w in order to make a round trip to r, while
servicing it, and reaching back w at time tarr. The computation of
f TD(r, t, q) is adapted as follows (see. Section 5.2.2.2):

f TD(r, t, q) = gTD
1 (r−, STD

r (t), q− qr−) · δ(r−, STD
r (t), q− qr−)

+ gTD
1 (r−, t, q) ·

(
1− δ(r−, t, q)

)
+ gTD

2 (r−, t, q).

With dminTD
r,w and dmaxTD

r,w , the time-dependent versions of random func-
tions gTD

1 and gTD
2 are simply obtained by replacing the f functions by

their time-dependent version f TD.
These are the only modifications required to adapt Rq, and there-

fore R∞, to time-dependent travel times. Quite similar modifications,
although a bit more complicated, could also be applied to strategy
Rq+. This will not be developed here, as we do not consider the latter
strategy the current study. Finally, equation (9.7) then becomes quite
naturally

QR
′
(x, τ) =

1
|R| ∑

r∈R
∑

∆∈H
∆ ·

gTD
1
(
r, dTD

w(r),r(Γr + ∆)
)

pr
. (9.8)

In the next section, we explain how the time-dependent departure time
function dTD

v,v′ is computed in practice, within our specific operational
context.

9.2 case study : brussels police department

Our case study describes the problem faced by a particular subset
of the police mobile units in Brussels, Belgium. Most of the units
working every day for the police department are assigned to minor
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interventions or safety control during particular events. Our case
study concerns a specific team of police units, aimed at taking action
on urgent interventions, such as road traffic accidents, violence or
alarms. As a consequence, these units spend their time cruising the
city, waiting for intervention requests. Based on the SS-VRP-R model,
we investigate on the best re-location policies for each of these mobile
units, thereby minimising the average expected intervention delay.

In this section, we describe how we derived the problem input data
(graph nodes, travel times and request probabilities) for the historical
data provided by the police department. The historical data consist in
a list of recorded events, each corresponding to a call received from
citizens (or alarms), or a situation spotted on-the-fly by the police unit
(e.g. flagrante delicto). Each event is described by a timestamp and a
GPS coordinates. It is also described by a type, allowing to distinguish
between alarms, armed violences, traffic accidents, etc. The recorded
period ranges from 2013 to 2017, included.

The problem input data must be realistically inferred from these
available records, in a way that best describes the situation, while re-
maining both computationally and practically tractable. In particular,
some parts of the data will be ignored while constructing our bench-
mark. In fact, we focus on a particular operational context, namely
what happens in the city from 4am to 10pm, during regular work-
ing days. In what follows, the input data are inferred from historical
records ranging from 2013 to 2016. Records of year 2017 are kept for
experimental validation purposes only.

9.2.1 Graph nodes: customer and waiting vertices

Because our approach requires a finite set of customer and waiting
vertices, the operational area, namely the city of Brussels, must be
appropriately discretised. For practical reasons, such as to limit the
size of the time-dependent travel time matrices, we limit the number
of vertices to 150.

To this end, we look at the set of all recorded events and cluster
them geographically, using a k-means algorithm, thus with k = 150.
Figure 9.1 shows the distribution of these clusters, as well as the
distribution of the events as a heat map. In what follows, the set of
graph vertices V will then be constituted of the locations of these
clusters and, consequently, customer and waiting vertices will then be
taken amongst them: C = V, W ⊆ V. The configurations of waiting
vertices are further described in Section 9.3. The depot is placed on
the area of the Central Commissariat, hence belonging to the vertices:
0 ∈ V.
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Figure 9.1: On the left, heat map of historical events according to the data,
from 2013 to 2017. The concentration of the events along a vertical
axis is due to the particular areas covered by the police depart-
ment. The 150 clusters, which are the vertices composing V, are
represented by circles. Right: focus on the city centre. The depot
vertex is depicted in red, next to the main square.

9.2.2 Time-dependent travel times

Urban VRPs have their own constraints and specificities. Whereas
travel times may not vary significantly for long, inter-city or inter-
country journeys (or are they?), the time needed to connect two given
locations within Brussels is in fact dependent of the time the trip
is performed. Figure 9.2 shows how these travel times vary, for two
different journeys illustrated in Figure 9.3, depending on both the
moment and the type of the day: either working day (Tuesday) or day
off (Sunday). These data have been retrieved by requesting Google
Maps’ API, for every five minutes of a 24-hour day.

Interestingly, the travel time variations during a working day, for
the long urban trip between Porte de Hal and the Atomium (Figure
9.2, upper green curve), appends to be very similar to the variations
depicted in Eglese et al., 2006. Based on this analysis, we split the 24

hours into 14 time bins. We use these time bins in order to construct
our time-dependent travel-time matrices.

We hence retrieved, for each arc (v, v′) ∈ V2 of our graph and for
each time bin [t, t′[, the predicted time needed for travelling from v to
v′ when leaving v at time t. This is achieved by requesting the Google
Maps’ API, while setting the departure time to t and departure date
to either a working or an off day. The date is taken sufficiently late in
the future, so that the prediction best reflects the historical average for
such time of day and day of week, and do not reflect any current traffic
consideration. In practice, by considering a working day, this ends
up requiring 1502 × 14 = 315000 travel times. Travel times during off
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Figure 9.2: The predicted travel times of two different journeys, depending
on the time of day and day of week (green: working day, blue:
day off): from Manneken Pis to the Central Station (down) and
from Porte de Hal to the Atomium (up). Time bins are separated
by dashed lines.

Figure 9.3: Left: a short urban path in Brussels, from Manneken Pis to the
Central Station. Right: a long urban path, from Porte de Hal to
the Atomium.
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days are not required, as our benchmark considers regular working
days only.

For each arc (v, v′) ∈ V2, these time-dependent matrices result
in a piecewise constant function fv,v′ : H → H returning a travel
time based on the time bin at which the trip is started. However, the
leaps from one time bin to another in the step function fv,v′ result in
unrealistic properties. In particular, as discussed in Ichoua et al., 2003

and Fleischmann et al., 2004b, this results in a non-FIFO property.
The FIFO property states that a traveller that leaves v at time t can-

not reach v′ before another traveller that left v at a time t′ < t. In other
words, one cannot arrive earlier at destination by delaying its depar-
ture. A formal definition of the FIFO property is provided in Melgarejo
et al., 2015. In order to restore the FIFO property, we compute our
FIFO time-dependent travel time function tTD

v,v′ by using the algorithm
described in Eglese et al., 2006. It follows the approach proposed in
Ichoua et al., 2003 and has the advantage of being computationally in-
teresting when travel times are small, in average, compared to the time
bins (which is, in fact, our case). Their procedure works as follows.
Provided the travel distance along arc (v, v′), a piecewise constant
time-dependent speed function is computed based on the original travel
time function fv,v′ ; whenever a trip must be spread across several time
bins, the algorithm then makes use of the speed function to deter-
mine a total travel time that preserves the FIFO property. Note that
instead of explicitely follow the algorithm they propose, a somehow
sighlty more meaningful version can be devised by using dynamic
programming. Let vv,v′(t) = fv,v′(t)/distv,v′ return the travel velocity
along arc (v, v′) at time t, based on its length distv,v′ . On this basis, we
obtain our FIFO time-dependent departure time function dTD

v,v′(t
arr),

discussed in Section 9.1.3, by following the recursive function:

φv,v′
(
a, d

)
=

a− d
vv,v′ (a) if a− d

vv,v′ (a) > bin(a)

φv,v′
(

bin(a), d− vv,v′(a) ·
(
a− bin(a)

))
otherwise,

(9.9)

returning the correct departure time, when arriving at time a, of
someone who would travel along arc (v, v′) for a distance d. Here
bin(a) is simply the first time unit of the time bin that contains a. In
fact, we necessarily have

∀a′ < a : bin(a) < a′ ⇒ vv,v′(a′) = vv,v′(a),

which justifies that if a′ = a− d/vv,v′(a) falls in the same time bin than
a, then a′ is the correct departure time. Otherwise, earlier than a the
traveler was actually traveling at a travel speed vv,v′(a− δ) 6= vv,v′(a),
meaning that at least two different speed rates are experienced along
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Figure 9.4: Evolution of how the events appear in average in the morning,
during working days around the city centre. From 4am to 6am,
events seem rather concentrated in downtown (c). From 6am to
8am, a significant part of the events occur along the main traffic
lane, between points a and b. Events then tend to become sparser
after the rush hour, from 8am to 10am.

arc (v, v′). The last piece of arc traveled, thereby at speed vv,v′(tarr)

and starting at time a = bin(tarr), is then of length

l =
(
tarr − vv,v′(tarr) · bin(tarr)

))
.

In particular, up to time a a distane of distv,v′ − l has been traveled so
far. The departure time, from v in order to reach v′ at time tarr, is then:

dTD
v,v′(t

arr) = φv,v′
(
tarr, distv,v′

)
. (9.10)

9.2.3 Potential requests: exploiting historical data

The history of events that occurred in the city during the observed
years (2013 to 2016) tells us, for any period of interest (e.g. Mondays,
7am to 8am), the average event activity of a given area. This naturally
provides an indication on the likelihood that an event will occur at
a corresponding period, in the future. For instance, the heat maps in
Figure 9.4 illustrate the observations that can be made on the data
set. When looking at events that occurred during every working day
morning, we notice a significant evolution from 4am to 10am, where
traffic incidents of course play an important role during the rush hour.

Each historical event occurred at a specific location, at a specific
date and time. We first partition the period of observation (2013 to
2016) into intervals of interest. We consider only regular working days
in our benchmark: Monday to Friday, 4am to 8pm, excluding national
holidays. Since they may not be representative of regular working
days, the months of July, Augustus and December are also ignored,
as most Belgian citizens take holidays during these periods. After
filtering, 5180 events remain in the database, observed over 738 days.
We thus have an average of 7 observed events per day.
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Similarly, we aggregate events by area of interest. We define these
areas as being the clusters described above, computed when discretis-
ing the geography of our operational context. Each event is therefore
grouped to the closest vertex v ∈ V, in terms of coordinates. Doing so,
the average distance between an event and its associated vertex is of
200 meters. The average number of events by cluster is of 34.

For a classical operational day, our entire time horizon thus rep-
resents 6 hours (4am to 10am). It is further divided in intervals of
30 minutes, called time slots. We finally associate a potential request
r = (c, Γ) to each pair of vertex c ∈ V and time slot Γ ∈ H, where Γ
is the first time unit of the corresponding time slot. When consider-
ing the entire horizon, this leads to |R| = 150× 32 = 4800 potential
requests. We then approximate the request’s probability pr based on
historical data, as the average number of time an event appeared in the
area belonging to the cluster c ∈ V and during the interval [Γ, Γ + 30′[
of the day.

9.3 experiments and results

Our experiments here aim at answering the following questions. Under
a two-stage assumption, that is, when excluding online reoptimization,
is it possible to identify first-stage solutions that beat a simple, intuitive
operational policy? Also, what is the impact of the time-dependent
travel times on the quality of the first-stage decisions?

The first question is rather important. Based on the stochastic knowl-
edge we were able to extract from our historical records, it will deter-
mine whether the operational model provided by our SS-VRPTW-CR
recourse strategy R′ is useful or not at taking good a priori decisions
in the SS-VRP-R context. To that extend, first-stage solutions will be
computed under various experimental conditions (e.g. with or without
PFS, varying the set of waiting locations, etc.). The solutions obtainedFirst-stage

solutions are
optimized in light of

the data collected
from 2013 to 2016.

on the basis of the data from 2013 to 2016 will be confronted to the
observations of 2017. The average behavior of the first-stage solutions
will then be measured against the events recorded during year 2017,
and compared to the average results obtained with a simple wait-
and-serve policy. According to the expert’s knowledge, within our
simulations each intervention is assumed to last two hours.

9.3.1 Simulations: wait-and-serve policy versus recourse strategy

Similarly to experiments of Sections 7.3 and 8.3, we rely on the same
simple wait-and-serve policy to decide vehicle actions, without taking
the stochastic knowledge into account. During the simulation, the ve-Results are obtained

by simulating on the
data recorded during

2017.

hicles will therefore always react to online events of 2017 by assigning
each new request to the closest available vehicle. Whereas such policy
is in fact very simple to simulate, in real life it would already require
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a minimal communication between the vehicles, which must be able
to share their positions and status.

On the contrary, when simulating based on a SS-VRPTW-CR first-
stage solution, the vehicles are not even required to share their position
or status. In fact, according to SS-VRPTW-CR recourse strategies, all In practice, our

SS-VRPTW-CR
recourse strategy are
easier to physically
implement than the
basic wait-and-serve
policy.

the potential requests being pre-assigned to the waiting locations,
each vehicle can operate in a totally independent way. Hence, all the
intelligence here lies in the a priori sequences of waiting locations.

Naturally, instead of relying on a priori decisions only, better perfor-
mances can always be achieved by enabling a form of collaboration be-
tween the vehicles. This however implies complicated online decisions,
which will be studied in Part iii of this thesis. Only the contribution of
the a priori decisions is of interest for now.

9.3.2 Solution method

We use the same local search algorithm as for the former experiments
of Section 8.3. In order to cope with the complexity of our real life
problem, it may as well be combined to the Progressive Focus Search
(PFS) meta-heuristic presented in Section 8.1.

As discussed in Section 9.1.2, in practice finding a solution in which
a request is always satisfied under SS-VRPTW-CR recourse strategy
R′, is not trivial. In such context, it is more adequate to reason in the
more general terms of expected service delay of an accepted request. We The SS-VRP-R

objective function
is approximated by
using a
bi-objective
function on the
SS-VRPTW-CR:
expected number of
accepted requests
with 20 minutes
time window, and
expected
intervention delay on
an accepted request.

then implement our LS algorithm while replacing objective function
(9.2) by the more general lexicographical bi-objective function QR

′
lex,

which optimises the expected number of accepted requests first, and
their expected service delay second:

QR
′

lex(x, τ) =

(
∑
r∈R

(
pr − P{r is accepted}

)
,

1
|R| ∑

r∈R
∑

∆∈H
∆ ·

gTD
1 (Γr + x− dw(r),r)

P{r is accepted}

)
, (9.11)

with P{r is accepted} = ∑tmin
r

t=tmin
r

gTD
1 (r, t), and where gTD

1 is obtained by
adapting g1 as explained in Section 9.1.3. Solutions that are SS-VRP-R
feasible thus have an objective value (z1, z2) with z1 = 0.

We immediately see that objective function (9.11) is more convenient
for a local search based method, as it facilitates transitions between
SS-VRP-R feasible solutions. In fact, they appear to be very sparse
when using the SS-VRPTW-CR recourse strategy R′. The time window
of an online request is always set to 20 minutes, allowing null or very
low values for z1 to be reached.

In practice however, we observe in Section 9.3.5 that, obtaining SS-
VRP-R feasible solutions, with z1 = 0, is computationally very difficult.
Nevertheless, even when z1 > 0, solutions having very low (z1, z2)
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Figure 9.5: Configurations of waiting locations (empty red circles). Left: 150.
Center: 100. Right: 50. Remaining vertices are displayed in black.

values constitute good operational basis, when tested under SS-VRP-R
conditions.

9.3.3 Waiting locations

There is no restriction on the locations where the police units can
be relocated. Hence, it seems natural to define W, the set of possible
waiting (re)location, as the set of all 150 vertices describing our urban
area: W = C = V. However, the solution space, and therefore the
computational performances, also depend on the number of waiting
vertices. During the experiments, we will sometime use restrictedThe size of the

solution space
greatly depends on

the number of
available waiting

vertices.

subsets of V as waiting vertices. We consider three configurations,
with |W| ∈ {50, 100, 150}. We have W = V when |W| = 150. Let Wm

denote the set W, such that |W| = m. The sets of waiting vertices are
chosen so that ∀m < m′ : Wm ⊂Wm′ . That way, a solution computed
using Wm is also a valid solution when using Wm′ . The sets of waiting
vertices are depicted in Figure 9.5.

9.3.4 Waiting time multiples and horizon scale

Our time horizon represents the six-hour interval comprised between
4am and 10am. At its original scale, it has a resolution of one time
unit per minute, that is, 360 time units.

Similarly to experiments of Section 8.3, both the horizon scale and
the waiting time multiples can be adapted in order to simplify the
computations. By reducing the resolution of the horizon, the complex-
ity of computing the objective function QR

′
lex is decreased. With a scale

of 2 for instance, each time unit counts for two minutes, leading to a
reduced horizon of 180 time units only. Of course, such approximation
comes at the price of a less accurate resulting expected value. Finally,
by restricting the set of possible waiting times that can be assigned
to vehicles at waiting locations, we greatly reduce the solution space.
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|W| = 50 |W| = 100 |W| = 150

K wm s = 1 s = 2 s = 5 s = 1 s = 2 s = 5 s = 1 s = 2 s = 5

3

10 16.7 21.2 3.3 17.6 18.7 2.5 18.2 17.2 0.8

30 13.9 20.4 2.7 19.7 19.3 0.5 20.2 18.8 0.5

60 11.4 17.8 2.7 12.6 16.2 1.1 15.0 16.9 -0.3

4

10 26.8 24.1 2.7 28.9 24.1 2.4 28.4 23.4 2.3

30 26.4 24.3 2.1 28.9 25.8 1.6 27.2 26.0 1.3

60 22.1 22.5 2.1 24.9 22.1 1.2 25.2 21.8 0.2

6

10 40.0 36.0 1.8 40.4 32.5 5.0 39.6 34.1 3.3

30 41.3 34.9 1.2 40.6 32.5 4.7 38.2 32.3 2.8

60 36.0 33.4 1.2 36.5 31.9 3.3 37.0 31.9 1.9

Table 9.1: Average relative gains (in percentages) compared to the wait-and-
serve policy, which passes the simulations (see Sec. 9.3.1) with
an average intervention delay of 11.2 (3 vehicles), 9.9 (4 vehicles)
and 9.5 minutes (6 vehicles). Each cell reports an average over
10 solutions computed with the LS algorithm, under the defined
conditions: number of vehicles K, waiting time multiple wm, num-
ber of waiting locations |W| and horizon scale s. Average travel
times (non time-dependent) are used for both optimization and
simulations.

Furthermore, assigning waiting times that are multiples of 10 minutes,
for instance, is most probably accurate enough in practice.

9.3.5 Results

The first experiments will be carried based on constant, non time-
dependent, average travels times. We will thus be able to study the
impact of different experimental factors under a more classical version
of our problem. Thereafter, we will confront these results on those
obtained when the inherent time dependency of travel times are to be
considered, in such urban context.

9.3.5.1 Varying waiting time multiples, locations and horizon scale

By using the local search algorithm alone, that is, without exploiting
the PFS meta-heuristics, we obtain the results reported in Table 9.1.
Each solution is optimized for one hour, for now by using average
travel times, that is, non time-dependend ones. In other words, for
now we optimize a bi-objective function that differs from (9.11), by
using our classical non time-dependent g1 function, instead of gTD

1 . For
each solution, we report averages over 10 runs of the LS algorithm.
Provided K vehicles, we observe that the gains vary greatly with the
experimental conditions (wm, |W|, s). With three (resp. six) vehicles,
the average gains vary from −0.3% (resp. 1.9%) to 21.2% (resp. 41.3%).
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|W| = 50 |W| = 100 |W| = 150

K wm s = 1 s = 2 s = 5 s = 1 s = 2 s = 5 s = 1 s = 2 s = 5

3

10 15.1 21.1 3.5 16.6 18.5 3.1 17.5 17.3 1.3

30 13.4 20.4 3.0 18.8 18.6 0.7 19.9 19.3 0.9

60 10.1 17.8 3.0 11.6 15.9 1.6 13.9 17.6 0.1

4

10 25.1 23.4 2.3 27.9 23.1 2.3 27.3 23.5 2.0

30 24.7 23.4 1.8 27.9 24.4 1.6 26.2 25.2 1.2

60 21.0 21.4 1.8 23.1 20.7 1.1 24.8 21.3 0.2

6

10 38.4 33.7 1.2 38.8 30.7 3.8 38.5 32.5 2.9

30 40.1 32.8 0.6 39.7 30.7 3.4 37.0 30.8 2.5

60 35.4 31.1 0.7 35.0 29.4 2.2 36.1 30.0 1.5

Table 9.2: Average relative gains (in percentages) compared to the wait-and-
serve policy (3 vehicles: 11.0 minutes; 4 vehicles: 9.8; , 6 vehicles:
9.7). Solutions (the same as for Table 9.1) are now evaluated by
simulating under the time-dependent travel times.

The best results with respect to the number of vehicles are high-
lighted in the table. Obviously, using scale 5 does not provide any
significant gain, which sounds natural as under scale 5 the horizon is
discretized in five-minute time units, which seems clearly not accurate
enough when the average intervention delay is less than ten minutes.

9.3.5.2 Impact of time-dependent travel times

We now replay all the simulations while taking time-dependency
into account. All the first-stage solutions we computed so far were
obtained while assuming constant, average, travel times. We hence
measure how they actually behave under realistic time-dependent
travel times. From now the displayed results are simply more accurate,
since the operations of year 2017 are simulated under time-dependency
assumptions.

Those new, more accurate, results are provided in Table 9.2. We
directly notice that the average gains are globally worse, but not much
different from those computed in Table 9.1 (i.e., by using constant travel
times). The best gains moves from 21.2% to 21.1% in the 3-vehicle case,When dealing with a

fleet of six vehicles,
intervention delays

can be reduced of
∼ 40% compared to

a basic
non-anticipative

policy!

from 28.9% to 27.9% with 4 vehicles, and from 40.4% to 40.1% with
6 vehicles. The reason is twofold. First, the gains are expressed in
terms of relative differences, and the average delays of both wait-
and-serve and the SS-VRP-R solutions are similarly impacted (either
positively or negatively) by the time-dependent travel times. Second,
we already observed, in Figure 9.2 of Section 9.2.2, that travel time
variations along a path tend to be more important as the length of the
path increases. However, the average travel durations only range from
about six minutes (for SS-VRP-R solutions) to ten minutes (for wait-
and-serve). In fact, all the point of solving the SS-VRP-R is to minimize
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|W| = 50 |W| = 100 |W| = 150

K wm s = 1 s = 2 s = 5 s = 1 s = 2 s = 5 s = 1 s = 2 s = 5

3

10 12.8 20.7 2.8 12.8 19.0 1.4 16.6 19.5 0.5

30 13.3 19.5 2.3 12.4 20.3 1.2 16.1 19.1 0.4

60 8.4 17.8 1.8 10.4 18.1 1.5 12.3 17.4 0.6

4

10 20.3 25.1 1.5 24.7 27.0 1.5 23.2 25.0 -0.2

30 19.5 24.1 1.1 20.7 24.6 1.3 22.2 23.8 -0.4

60 14.2 21.7 0.5 19.3 22.0 1.3 23.2 22.1 -0.4

6

10 32.1 33.5 0.4 33.8 33.0 2.8 36.4 31.3 1.5

30 32.9 31.9 0.0 36.3 31.3 2.5 36.1 31.7 1.6

60 29.7 30.0 -0.7 33.1 29.1 2.3 32.0 30.8 1.0

Table 9.3: Average relative gains (in percentages) compared to the wait-and-
serve policy (3 vehicles: 11.0 minutes; 4 vehicles: 9.8; , 6 vehicles: 9.7).
Solutions are now optimized (and evaluated) while considering
time-dependent travel time matrices. We highlight the cells that
are improved, compared with Table 9.2.

these durations. As a consequence, the time-dependent travel times
along these paths reveal, in general, quite close to their averages.

We also compute new solutions, which are now obtained by taking
time-dependency into account during the optimization process. In
other words, we now optimize the bi-objective function (9.11). Table
9.3 shows the relative gains obtained, under the same experimental
contexts. In particular, the computation time remains set to one hour.
We highlight the gains that reveal better than those obtained while
optimizing under constant travel times, that is, improving the gains of
Table 9.2.

We directly notice two important empirical results. First, exploiting
more accurate, time-dependent, travel times does not permit to im-
prove our results in general. This can be easily explained by the fact
that the improvement in the travel time accuracy, which is necessarily
not that much significant in general (as discussed in the previous
paragraph), does not compensate the increased computational effort
due to the time-dependent functions f TD

v,v′ and dTD
v,v′ . In fact, the number

of iterations performed by our local search optimizer is from 2 to 3

times lower, when dealing with time-dependent travel times. That also
explains the second important result of Table 9.3: improvements are
only observed when optimizing under scales 2 and 5.

As a consequence, we are forced to conclude that considering time-
dependency during the optimization process is not suited for this
case study. The major reasons are therefore that a) time-dependency Time-dependency is

apparently not
helpful in the context
of the current
case-study.

increases the computational effort, thus decreasing the diversification
within our local search approach, whereas b) the intensification is only
slightly increased as the travel times do not actually vary that much
in general.
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In what remains of the current Chapter, time-dependency is only
exploited during the simulations (see Section 9.3.1).

9.3.5.3 Progressive Focus Search

We now try to improve the best results obtained so far by exploiting the
PFS meta-heuristic, previously introduced in Chapter 8. The objective
function is still approximated by using a scaling factor on the horizon
resolution, as described in Section 8.2.2. Yet, here we use both the
waiting time multiples and the number of waiting locations in order
to reduce the solution space.

Let us designate a particular PFS instantiation by the tuple (s, wm, wl),
where s stands for the horizon scale, wm the waiting time multiple
and wl the size of the waiting vertex set. We hence consider all the
following 7 update policies as candidates for PFS instantiation:

1. s, where only the scale varies:
(2, 10, 150)→ (1, 10, 150).

2. wm, where only the waiting multiple varies:
(1, 60, 150)→ (1, 30, 150)→ (1, 10, 150).

3. wl, where only the waiting vertex set varies:
(1, 10, 50)→ (1, 10, 100)→ (1, 10, 150).

4. s_wm, where both scale and waiting multiple vary:
(2, 60, 150)→ (2, 30, 150)→ (1, 10, 150).

5. s_wl, where both scale and waiting vertices vary:
(2, 10, 50)→ (2, 10, 150)→ (1, 10, 150).

6. wm_wl, where both waiting multiple and vertices vary:
(1, 60, 50)→ (1, 30, 100)→ (1, 10, 150).

7. all, where all three components vary:
(2, 60, 50)→ (2, 30, 150)→ (1, 10, 150).

Table 9.4 shows the average results obtained, in relative gains over
the wait-and-serve policy, of our PFS instantiations compared to the
best LS configurations, as observed in Table 9.2. We directly note that
our PFS instantiations generally fail at improving the gains. Only
a minor improvement of 0.2% is observed under K = 6 vehicles.
Furthermore, it appears that no PFS instantiation significantly stands
out.

9.3.5.4 Short computation times

We now put the emphasis of our experimentations on average results
under very short computation times. This is mainly motivated by the
next (and last) part of this thesis: optimizing online decisions. In fact,
dynamic operational decisions require fast, reactive answers, hence
severely limiting the allowed online computation times. Furthermore,



9.3 experiments and results 131

LS PFS

wl s s wm

K s wm 50 100 s wm wl wm wl wl all

3

1

10 15.1 16.6

16.9 16.8 16.8 16.1 15.4 14.4
30 13.4 18.8

2

10 21.1 18.5

30 20.4 18.6

19.1

4

1

10 25.1 27.9

25.3 25.0 23.7 23.1 24.0 23.0
30 24.7 27.9

2

10 23.4 23.1

30 23.4 24.4

26.1

6

1

10 38.4 38.8

37.9 38.8 36.9 37.6 38.5 38.3
30 40.1 39.7

2

10 33.7 30.7

30 32.8 30.7

40.3

Table 9.4: Average relative gains (in percentages) of LS and PFS, provided
one hour computation, compared to the wait-and-serve policy.

LS PFS

wl s s wm

K s wm 50 100 s wm wl wm wl wl all

3

1

10 -6.2 3.3

8.7 5.4 11.3 11.2 6.1 10.9
30 -3.5 1.3

2

10 12.3 12.4

30 11.8 12.4

11.4

4

1

10 5.3 10.0

11.3 9.8 16.0 15.3 10.0 15.5
30 7.5 11.6

2

10 16.3 17.2

30 16.7 16.8

16.2

6

1

10 14.4 16.9

22.5 11.7 11.1 23.4 22.9 11.4
30 15.1 23.1

2

10 22.2 24.2

30 23.1 24.0

23.8

Table 9.5: Average relative gains (in percentages) of LS and PFS, provided 30

seconds computation, compared to the wait-and-serve policy.
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the interest of PFS could potentially increase as computation times
decrease.

Table 9.5 shows the average results that are now obtained while
severely limiting the computation time, allowing only to 30 seconds.
For each configuration of the LS algorithm or instantiation of PFS, the
average gains over wait-and-serve are computed over 50 optimized
first-stage solutions (instead of the previously 10 runs). We notice
that, although PFS still does not provide an improvement, the gaps
with LS tend to decrease. The scale factor reveals to be of critical
importance. In LS, due to the limited allowed computation time, scale
2 provides significantly better gains than scale 1. Furthermore in
PFS, instantiations that do not imply a variation of the scale (namely
wm, wl and wm_wl), thus operating under scale 1 only, perform
significantly worse.

We hence design the following new PFS instantiations, potentially
more suited under short computation times:

1. 2_wm: (2, 60, 100)→ (2, 10, 100).

2. 2_wl: (2, 10, 50)→ (2, 10, 100).

3. 2_wml: (2, 60, 50)→ (2, 10, 100).

4. 2_wml3: (2, 60, 50)→ (2, 10, 50)→ (2, 10, 100).

Table 9.6 reports their average results as well as those of LS under
scale 2, for computation times varying from 60 down to 10 seconds.
Performances of both LS and PFS are now similar, when provided
60 or 30 seconds. Under 20 and 10 seconds, the performances of
PFS decrease quickly, in particular, when the number of vehicles
increases. Again, it seems that PFS fails at improving the average
performances, as LS with scale 2, and in particular with 100 waiting
locations, significantly outperforms it on these short computation
times.

A question that appears is whether the Simulated Annealing meta-
heuristic, providing the diversification in both LS and PFS, may be
deterioring the average performances under such short computation
times. In fact, when provided only a few seconds, such diversification
mechanism is maybe not a luxury that can be afforded. We hence
test, and report in Table 9.7 the results obtained when the Simulated
Annealing initial temperature of Algorithm 5 is set to Tinit = 1 (in-
stead of 2), with a cooling factor fT = 0.9 (instead of 0.95). We now
observe a significant improvement of both LS and PFS, compared to
results in Table 9.6. In particular, PFS performs really better when its
internal diversification mechanism is lowered. Although it still fails at
outperforming LS, the performances of PFS are now globally similar.

Table 9.8, the average results that are obtained when diversification
is completely removed. The simulated annealing mechanism initially
embedded in both LS and PFS is simply removed, and the local search
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LS PFS

wl

60s K s wm 50 100 2_wm 2_wl 2_wml 2_wml3

3 2

10 15.1 11.5
12.8 12.6 12.3

30 11.4 11.9
13.1

4 2

10 16.2 16.7
15.5 16.6 16.5

30 15.7 16.8
17.5

6 2

10 22.1 24.5
22.8 23.3 22.7

30s 30 22.4 23.9
23.7

3 2

10 10.5 11.2
10.6 11.2 10.3

30 10.3 11.3
11.9

4 2

10 14.8 16.4
15.0 14.8 15.3

30 14.0 16.1
15.8

6 2

10 21.1 22.3
22.0 22.3 22.0

20s 30 21.8 22.4
22.4

3 2

10 8.4 10.5
10.4 8.4 5.2

30 9.1 9.5
10.5

4 2

10 12.4 14.2
7.3 10.5 4.3

30 15.0 14.9
11.6

6 2

10 18.5 21.0
15.6 10.9 11.7

10s 30 19.2 21.9
17.0

3 2

10 6.2 9.4
3.8 2.2 4.6

30 7.4 9.5
5.5

4 2

10 9.2 12.3
2.8 2.8 4.8

30 11.2 13.6
5.5

6 2

10 15.7 21.6
6.8 5.0 3.5

30 18.2 20.1
7.2

Table 9.6: Average relative gains (in percentages) of LS and PFS, under short
computation times, compared to the wait-and-serve policy.
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LS PFS

wl

60s K s wm 50 100 2_wm 2_wl 2_wml 2_wml3

3 2

10 15.6 15.1
14.3 14.6 15.4

30 15.0 14.5
16.2

4 2

10 21.4 19.6
19.9 20.3 20.4

30 21.3 19.6
20.7

6 2

10 29.0 27.9
26.7 28.2

30s 30 28.5 27.2
28.5 28.5

3 2

10 15.5 13.8
13.5 13.5 13.2

30 14.5 13.4
14.1

4 2

10 19.8 18.7
18.4 17.2 17.2

30 18.8 18.1
19.9

6 2

10 25.9 26.3
24.7 24.2 24.3

20s 30 24.7 24.9
25.2

3 2

10 13.0 12.9
11.4 12.0 12.1

30 13.6 11.8
13.2

4 2

10 16.5 16.5
16.6 17.1 16.6

30 16.2 16.2
17.3

6 2

10 23.4 25.2
24.4 23.9 24.7

10s 30 22.7 24.3
25.0

3 2

10 9.9 10.4
9.2 10.2 8.0

30 11.3 10.6
11.0

4 2

10 15.0 15.4
12.4 13.2 12.9

30 15.1 15.3
14.6

6 2

10 21.1 22.2
20.2 19.7

30 20.1 21.8
21.3 21.3

Table 9.7: Average relative gains (in percentages) of LS and PFS, under short
computation times. Lower internal diversification: Simulated An-
nealing with Tinit = 1, fT = 0.9.
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LS PFS

wl

60s K s wm 50 100 2_wm 2_wl 2_wml 2_wml3

3 2

10 -2.2 -0.4
-4.7 -1.3 -1.6

30 -6.0 -1.9
2.0

4 2

10 2.4 8.0
3.3 2.6 2.5

30 0.0 4.6
8.1

6 2

10 12.0 15.5
11.6 13.1 12.5

30s 30 11.4 15.6
17.3

3 2

10 -3.6 -1.0
-2.5 -1.7 -2.0

30 -6.5 0.4
2.1

4 2

10 0.9 8.6
2.1 1.7 2.1

30 0.5 5.3
5.6

6 2

10 13.1 16.1
12.0 12.5 12.8

20s 30 9.7 15.3
17.7

3 2

10 -3.7 1.4
-2.1 -3.9 -2.1

30 -5.0 -2.0
3.7

4 2

10 3.7 7.3
0.8 2.7 1.0

30 -0.9 7.5
8.9

6 2

10 12.4 17.8
12.5 12.7 12.8

10s 30 10.5 14.7
16.2

3 2

10 -1.8 1.7
-4.3 -3.4 -2.1

30 -3.2 -0.6
0.9

4 2

10 1.1 6.4
4.2 2.4 4.0

30 -1.8 3.6
8.1

6 2

10 8.9 16.8
10.6 10.4 9.8

30 9.5 14.5
16.7

Table 9.8: Average relative gains (in percentages) of LS and PFS, under short
computation times. No internal diversification mechanism: Hill
Climbing.
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process never moves to a degrading solution. Namely, the LS algorithm
now reduces to a simple Hill Climbing heuristic, thus being also the
embedded optimizer Θ of PFS in Algorithm 4. We observe that it
results in a dramatic deterioration of the performances, both in LS
and PFS. However, quite interesting is the fact that PFS now widely
outperforms LS, in its 2_wm instantiation. This is mainly due to the
fact that the PFS meta-heuristic, by modifying its solution space during
the optimization process, somehow tends to compensate the lack of
diversification.

9.4 conclusions

In this chapter, we described the SS-VRP-R as a practical modeling
framework of the real world problem of police units management in
Brussels. While relying on the intervention requests observed from
2013 to 2016, we showed how the equations previously introduced for
the SS-VRPTW-CR can be adapted for the SS-VRP-R, minimizing the
expected average intervention delay. Experiments are conducted while
considering 2017’s observations as a validation benchmark.

Coupled with a simple recourse strategy, first-stage solutions ob-
tained under the SS-VRP-R/SS-VRPTW-CR framework reduce the
average mean intervention delays by more than 30%, compared to a
basic wait-and-serve policy. That improvement is due to the preven-
tive nature of the first-stage solutions, computed in light of stochastic
knowledge, and which are composed of sequences of anticipative
relocation instructions for the police patrols.

Finally, in order to stick with the reality of the urban context, travel
time dependency is introduced in the computational models. The
results we obtain are however quite surprising. In fact, experimen-
tations under both constant and time-dependent travel times show
that exploiting time-dependency is not interesting in the context of
the current case-study. Namely, it appears that the contribution of
time-dependency does not compensate the increased computational
cost, leading to first-stage solutions of noticeably less expected qual-
ity when computed in light of time-dependent travel time matrices.
Furthermore, while time-dependency is known to have a significant
impact whenever time windows are involved, our SS-VRP-R case-
study does not involve any deadlines. Yet, time-dependency remains
useful in order to perform more accurate simulations, even though
the accuracy difference also reveals here not to be so important.

We also tested the PFS meta-heuristic, previsouly introduced in
Chapter 8, while varying the available computational time on our real
world instances. The results show that PFS becomes competitive when
used under very short computation times. Allowing one hour compu-
tation time, simple LS performs significantly better in average. When
computation times are limited to 60 seconds or less, we discovered
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that both LS and PFS may suffer from a too high diversification rate.
Moderating the diversification by tuning the Simulated Annealing
parameters hence allowed us to improve performances. Unlike the
experiments conducted on the Lyon benchmark, in Section 8.3, the use
of the PFS meta-heuristic did not outperform the basic LS algorithm
on our real-world case study.
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end of part ii . This ends our discussion on two-stage optimiza-
tion, and thus the current thesis part. During the next chapters, the
focus will be moved to online decisions, by considering the underlying
multistage reoptimization problem.
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M U LT I S TA G E V R P T W S : O P T I M I Z I N G O N L I N E
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10
S O LV I N G O N L I N E V R P ’ S B Y S A M P L I N G

This chapter is based on Saint-Guillain et al., 2015.
We consider a dynamic vehicle routing problem with time windows

and stochastic customers (DS-VRPTW), such that customers may re-
quest for services as vehicles have already started their tours. Since the
requests come with time windows, none all of them can be satisfied in
general, and the goal is to manage the operations such as the number
of unsatisfied ones is minimized at the end of the operational day.

To solve this problem, the goal is to provide a decision rule for
choosing, at each time step, the next action to perform in light of
known requests and probabilistic knowledge on requests likelihood.
We present a new heuristic method for solving the DS-VRPTW, based
on a Stochastic Programming modeling. By definition, our approach
enables a higher level of anticipation than heuristic state-of-the-art meth-
ods. In particular, we show that our decision rule fully integrates Unlike (most of)

sampling-based
approaches, our
decision rule
integrates the
nonanticipativity
property.

nonanticipativity constraints, previously described in Section 2.5, so that
it leads to better decisions in our stochastic context.

The resulting new online decision rule, called Global Stochastic As-
sessment (GSA), comes with a theoretical analysis that clearly defines
the nature of the method. We propose a new waiting strategy together
with a heuristic algorithm that embeds GSA. We compare GSA with
the state-of-the-art method MSA from Bent and Van Hentenryck, 2004b
(see Section 4.2), and provide a comprehensive experimental study
that highlights the contributions of existing and new waiting and
relocation strategies. Experiments on dynamic and stochastic bench-
marks, which include instances of different degrees of dynamism,
show that not only our approach is competitive with state-of-the-art
methods, but also enables to compute meaningful offline solutions to
fully dynamic problems where absolutely no a priori customer request
is provided.

The chapter is organized as follows. Section 10.1 describes the
problem. GSA is then presented in Section 10.2. Section 10.3 describes
an implementation that embeds GSA, based on heuristic local search.
Finally, section 10.4 summarizes the experimental results. A conclusion
follows in section 10.5.

10.1 problem description : the ds-vrptw

In this section we formally define the DS-VRPTW, described informally
in Section 1.2.1. Furthermore, the problem input data have already
been introduced in Chapter 3. In what follows however, we consider

141
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V = {0} ∪W = {0} ∪C, that is, the set W of waiting vertices coincides
with the customer regions C.

10.1.1 DS-VRPTW solution.

At the end of the time horizon, a solution is a subset of requests
Ah ⊆ ξ1..h together with k routes. Requests in Ah are said to be accepted,
whereas requests in ξ1..h \ Ah are said to be rejected. The routes mustSome requests are

accepted, while the
others are rejected.

Accepted requests
must be satisfied by

the end of the day.

satisfy the constraints of the classical VRPTW, restricted to the subset
Ah of accepted requests. Each route starts at the depot at a time t ≥ 1
and end at the depot at a time t′ ≤ H. For each accepted request
r ∈ Ah, there must be exactly one vehicle present at customer region
cr, at a time t′ comprised in er ≤ t′ ≤ lr, in order to start the service
of the request. The vehicle’s current load should be of at most Q− qr.
Finally, the vehicle leaves cr at a time t′′ ≥ t′ + sr. The goal is to
minimize the number of rejected requests.

As not all requests are known at time 0, the solution cannot be
computed offline, and it is computed during the online execution.
More precisely, at each time t ∈ H, a decision xt, consisting of a set ofThe horizon is

discretized in time
units. Operational

decisions, vehicle and
request acceptance,

take place at the very
beginning of each

time unit.

operational actions, is computed. Each decision xt is composed of two
parts. First, for each request r ∈ ξ revealed at time Γr, the decision xt

must specify whether to accept or reject the request. Second, xt must
give operational decisions for each vehicle at time t: service a request,
travel towards a vertex, or wait at its current position. At time 0, before
the online execution, a priori decisions x0 are computed offline.

A solution is a sequence of decisions x0..h which covers the whole
time horizon. This sequence must satisfy VRPTW constraints, i.e., the
decision of x0..h must define k routes such that each request accepted
in x0..h is served once by one of these routes within its time window,
while respecting capacity constraints. We define the objective function
r such that r(x0..t) is +∞ if x0..t does not satisfy VRPTW constraints,
and r(x0..t) is the number of requests rejected in x0..t otherwise. A
solution is a decision sequence x0..h such that r(x0..h) is minimal at the
end of the horizon.

10.1.2 Multistage stochastic formulation

We note Xt = X
(
x0..t−1, ξ1..t) the set of decisions that are valid at

a time unit t ∈ H0. Clearly, Xt depends on the past decisions x1..t−1

and the online requests ξt that just appeared. We also note Xt..t′ the
sequence of sets 〈Xt, . . . , Xt′〉 where 0 ≤ t ≤ t′ ≤ h. A each time
t, given the sequence x0..t−1 of past decisions, the best action xt is
obtained by solving the following multistage stochastic program:

min
xt∈Xt

Eξt+1

[
min

xt+1∈Xt+1
Eξt+2

[
· · · min

xh−1∈Xh−1
E

ξh

[
min

xh∈Xh
r(x0..h)

]
· · ·
]]

(10.1)
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where Eξ [·] is the expectation operator over the specific random vari-
able ξi, defined by

Eξi
[ f (ξ1, . . . , ξi, . . . , ξ j)] = ∑

ξk∈Sξi

p(ξk) E f (ξ1, . . . , ξk, . . . , ξ j).

Note that the use of this specific expectation operator is only of read-
ability purposes. It aims at highlighting the strict order in which the
information is incrementally revealed, during the online operations.
In other words, it further emphasizes that equation (10.1) enforces
nonanticipativity constraints so that, at each time t′ > t, we consider
the decision xt′ that minimizes the expectation with respect to ξt′

only, without considering the possible realizations of ξt′+1..h. In fact,
equation (10.1) is equivalent to the general pointwise multistage for-
mulation (2.11) introduced in Chapter 2, by defining the ct costs so
that c0x0 + . . . + chxh = r(x1..h).

Similarly, we note that formulation (10.1) clearly differs from the
two-stage stochastic problem defined by equation (10.2):

min
xt∈Xt

E
ξt+1..h [ min

xt+1..h∈Xt+1..h
r(x0..h)] (10.2)

Eq. (10.2) relaxes the nonanticipativity constraints and considers the
best sequence xt+1..h for each realization ξt+1..h ∈ ξt+1..h. Therefore, Relaxing the

nonanticipativity
constraints may lead
to subobtimal
decisions.

equation (10.1) may lead to a larger expectation of r than equation
(10.2), as it is more constrained. However, the expectation computed
in equation (10.1) leads to better decisions in our context where some
requests are not revealed at time t. This is illustrated in Figure 10.1.

10.2 the global stochastic assessment decision rule

The two-stage stochastic problem defined by equation (10.2) may be
solved by a sampling solving method such as MSA, which solves
a deterministic VRPTW for each possible scenario (i.e., realization
of the random variables) and selects the action xt which minimizes
the sum of all minimum objective function values weighted by sce-
nario probabilities. However, we saw that equation (10.2) does not
enforce nonanticipativity constraints because the different determinis-
tic VRPTWs are solved independently.

In order to enforce nonanticipativity constraints while enabling
sampling methods, we push these constraints in the computation of the
optimal solutions for all different scenarios. Instead of computing these
different optimal solutions independently, we propose to compute
them all together so that we can ensure that whenever two scenarios
share a same prefix of realizations, the corresponding actions are
enforced to be equal.
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Figure 10.1: A simple example of nonanticipation. The graph is displayed
on the left. Time windows are displayed in brackets. For every
couple of vertices (i, j), if an arrow i→ j is displayed then ti,j = 2;
otherwise ti,j = 20. To simplify, we consider only 2 equiprobable
scenarios (displayed on the right). These scenarios have the same
prefix (at times 2 and 3 no request is revealed) but reveal different
requests at time 4. When using equation (10.1) at time t = 1, we
choose to travel to c as the expected cost with nonanticipativity
constraints is 1: At time 4, only one scenario will remain and if
this scenario is ξ1 (resp. ξ2), request (d, 4) (resp. (g, 4)) will be
rejected. When using equation (10.2), we choose to travel to b as
the expected cost without nonanticipativity constraints is 0 (for
each possible scenario, there exists a sequence of actions which
serves all requests: travel to d, e, and f for ξ1 and travel to g, h,
and i for ξ2). However, if we travel to b, at time 3 we will have to
choose between traveling to d or g and at this time the expected
cost of both actions will be 1.5: If we travel to d (resp. g), the cost
with scenario ξ1 is 0 (resp. 3) and the cost with scenario ξ2 is
3 (resp. 0). In this example, the nonanticipativity contraints of
multistage problem (10.1) thus leads to a better action than the
two-stage relaxation (10.2).

At each time t ∈ H, let S t+1..t′
ξ be the support of ξt+1..t′ , t < t′. Given

the sequence x0..t−1 of past decisions, we choose action xt by using
equation (10.3)

xt = arg min
xt∈Xt

Q(x0..t, ξt+1..h) (10.3)

which is called the deterministic equivalent problem of equation (10.1),
with the expected multistage value function:

Q(x0..t, ξt+1..h) = ∑
ξk∈S t+1..h

ξ

p(ξi) min
xt+1

k ,...,xh
k

r(x0..t.xt+1..h
k ) (10.4)

s.t. ∀ξi ∈ Sξ , t < t′ ≤ h :

xt′
i ∈ X

(
x0..t.xt+1..t′−1

i , ξ1..t′
i
)

(10.5)

∀ξ j ∈ Sξ : ξ1..t′
i = ξ1..t′

j ⇒ t < t′′ ≤ t′ : xt′′
i = xt′′

j (10.6)

The nonanticipativity constraints (10.6) state that, whenever two sce-
narios ξi and ξ j are identical from time t + 1 to time t′, their respective
decisions for times t + 1, . . . , t′ must be identical as well (Shapiro et al.,
2009).
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Solving equation (10.3) is computationally intractable for two rea-
sons. First, since the number |S t+1..h

ξ | of possible realizations of ξt+1..h

is exponential in the number of vertices and in the remaining horizon
size h− t, considering every possible scenario is intractable in prac-
tice. We therefore consider a limited multiset S̃ ⊂ S of α scenarios
S̃ = {s1, ..., sα} generated from ξt+1..h, by using Monte Carlo sampling
(Asmussen and Glynn, 2007).

Second, solving equation (10.3) basically involves solving to opti-
mality problem Q for each possible action xt ∈ Xt. Each problem
Q involves solving a VRPTW for each possible scenario of S̃ , while
ensuring nonanticipativity constraints between the different solutions.
As the VRPTW problem is an NP-hard problem, we propose to com-
pute an upper bound Q of Q based on a given sequence xt+1..h

R of
future route actions. Because we impose the sequence xt+1..h

R , the set of
possible decisions at time t is limited to those directly compatible with
it, denoted X̃t(xt+1..h

R ) ⊆ Xt. That limitation enforces r(x0..h) < +∞.
This finally leads to the GSA decision rule:

(GSA) xt = arg min
xt∈X̃t(xt+1..h

R )

Q(x0..t, xt+1..h
R , S̃) (10.7)

which, provided realization ξt, sampled scenarios S̃ and future route
actions xt+1..h

R , selects the action xt that minimizes the expected ap-
proximate cost over scenarios S̃ . Notice that almost all the anticipative
efficiency of the GSA decision rule relies on the sequence xt+1..h

R , which
directly affects the quality of the upper bound Q.

10.2.1 Sequence xt+1..h
R of future route actions.

This sequence is used to compute an upper bound of Q. For each time
t < t′ ≤ h, the route action xt′

R only contains operational decisions
related to vehicle routing (i.e., for each vehicle, travel towards a vertex,
or wait at its current position). It does not contain decisions related to
requests acceptation. The more flexible xt′

R with respect to S̃ , the better
the bound Q. We describe in Section 10.3 how a flexible sequence is
computed through local search.

10.2.2 Computation of an upper bound Q of Q.

Algorithm 6 depicts the computation of an upper bound Q of Q given
a sequence xt+1..h

R of route actions consistent with past actions x0..t.
For each scenario si of S̃ , Algorithm 6 builds a sequence y0..h for si,
which starts with x0..t, and whose tail yt+1..h is computed from xt+1..h

R
in a greedy way. At each time t < t′ ≤ h, each request revealed at
time t′ in scenario si is accepted if it is possible to modify yt′..h so that
one vehicle can service it; it is rejected otherwise. One can consider
yt′..h as being a set of vehicle routes, each defined by a sequence of
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Algorithm 6: The Q(x0..t, xt+1..h
R , S̃) approximation function

1 Let xt+1..h
R be a sequence of route actions consistent with x0..t

2 for each scenario si ∈ S̃ do
3 nbRejected[i]← 0; y0..t ← x0..t; yt+1..h ← xt+1..h

R
4 for t′ ∈ t + 1 . . . h] do
5 for each request (j, t′) revealed at time t′ for a vertex j in

scenario si do
6 ct′..h ← trytoServe((j, t′), yt′..h)

7 if yt+1..t′−1 · ct′..h is feasible then yt′..h ← ct′..h

8 else add the decision reject(j,t’) to yt′ and increment
nbRejected[i]

9 return 1
|S̃ | ·∑si∈S̃ nbRejected[i]

planned vertices. Each planned vertex comes with specific decisions:
a waiting time and whether a service is performed. In this context,
trytoServe performs a deterministic linear time modification of yt′..h

such that (j, t′) corresponds to the insertion of the vertex j in one of
the routes defined by yt′..h, at the best position with respect to VRPTW
constraints and travel times, without modifying the order of the re-
maining vertices. At the end, Algorithm 6 returns the average number
of rejected requests for all scenarios. Note that, when modifying a
sequence of actions so that a request can be accepted (line 6), actions
yt′..h can be modified, but y0..t′−1 are not modified. This ensures that
Q preserves the nonanticipativity constraints. Indeed, the fact that
two identical scenarios prefixes could be assigned two different subse-
quences of actions implies that either trytoServe((j, t′), yt′..h) is able to
modify an action yt<t′ or is a nondeterministic function. In both cases,
there is a contradiction. Finally, notice that contrary to other local
search methods based on Monte Carlo simulation as in Ghiani et al.,
2009; Schilde et al., 2011, GSA considers the whole timing horizon
when evaluating a first-stage solution against a scenario.

10.2.3 Comparison to MSA

GSA has two major differences with MSA. Given a set of scenarios,
GSA maintains only one solution, namely the sequence xt+1..h

R , that
best suits to a pool of scenarios whilst MSA computes a set of solu-
tions, each specialized to one scenario from the pool. Furthermore, by
preserving nonanticipativity GSA approximates the multistage prob-
lem of equations (10.1,10.3). In contrary, MSA relaxes these constraints
and therefore approximates the two-stage problem (see Section 10.2
and Van Hentenryck et al., 2009).
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In particular, given a pool of scenarios obtained by Monte Carlo
sampling, MSA Expectation Algorithm 1 of Section 4.2 reformulates
equation (10.2) as a sample average approximation (SAA, Ahmed and
Shapiro, 2002; Verweij et al., 2003) problem. The SAA tackles each
scenario as a separate deterministic problem. For a specific scenario
ξt+1..h, it considers the recourse cost of a solution starting with actions
x0..t. Because the scenarios are not linked by nonanticipativity con-
straints, two scenarios ξi and ξ j that share the same prefix ξt+1..t′ can
actually be assigned two solutions performing completely different
actions x0..t′

i and x0..t′
j , for some t′ > t. The evaluation of action xt

over the set of scenarios is therefore too optimistic, leading to a sub-
optimal choice. By definition, the Regret algorithm approximates the
Expectation algorithm. The Regret algorithm then also approximates
a two-stage problem. The Consensus algorithm selects the most sug-
gested action among plans of the pool. By selecting the most frequent
action in the pool, Consensus somehow encourages nonanticipation.
However, the nonanticipativity constraints are not enforced as each
scenario is solved separately. Consensus also approximates a two-stage
problem.

10.3 solving the dynamic and stochastic vrptw

GSA alone does not permit to solve a DS-VRPTW instance. In this sec-
tion, we now show how the decision rule, as defined in equation 10.7,
can be embedded in an online algorithm that solves the DS-VRPTW.
Finally, we present the different waiting and relocation strategies we
exploit, including a new waiting strategy.

10.3.1 Embedding GSA

In order to solve the DS-VRPTW, we design Algorithm 7, which
embeds the GSA decision rule.

10.3.1.1 Main Algorithm

It is parameterized by: α which determines the size of the pool S̃
of scenarios; β which determines the frequency for re-initializing S̃ ;
and δins which limits the time spent for trying to insert a request in a
sequence.

It runs in real time. It is started before the beginning of the time
horizon, in order to compute an initial pool S̃ of α scenarios and an
initial solution x1..h

R with respect to offline requests (revealed at time
0). It runs during the whole time horizon, and loops on lines 3 to
7. It is stopped when reaching the end of the time horizon. The real
time is discretized in h time units, and the variable t represents the
current time unit: It is incremented when real time exceeds the end



148 solving online vrp’s by sampling

Algorithm 7: LS-based GSA

1 Initialize S̃ with α scenarios and compute initial solution x1..h
R

2 t← 1;
3 while real time has not reached the end of the time horizon do

/* Beginning of the time unit */

4 (xt, xt+1..h
R )←handleRequests(x0..t−1, xt..h

R , ξt)

5 execute action xt and update the pool S̃ of scenarios w.r.t. to ξt

/* Remaining of the time unit */

6 (xt+1..h
R )← optimize(xt+1..h

R )

7 t← t + 1 /* Skip to next time unit */

8 Function : optimize(xt+1..h
R )

9 while real time has not reached the end of current time unit t do
10 yt+1..h

R ← shakeSolution(xt+1..h
R )

11 if Q(x0..t, yt+1..h
R , S̃) < Q(x0..t, xt+1..h

R , S̃) then
12 xt+1..h

R ← yt+1..h
R

13 if β = number iterations since last re-initialization of S̃ then
14 Re-initialize the pool S̃ of scenarios w.r.t. ξt+1..h

15 return xt+1..h
R

16 Function : handleRequests(x0..t−1, xt..h
R , ξt)

17 y0..t−1 ← x0..t−1; yt..h ← xt..h
R

18 for each request revealed for a vertex c in realization ξt do
19 if we find, in ≤ δins, how to modify yt..h to serve request (c, t) then
20 modify yt..h to accept request (c, t)
21 else
22 modify yt..h to reject request (c, t)

23 return (yt, yt+1..h)
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of the tth time unit. In order to be correct, Algorithm 7 requires the
real computation time of lines 4-7 to be smaller than the real time
spent in one time unit. This is achieved by choosing suitable values
for parameters α and δins.

Lines 4 and 5 describe what happens whenever the algorithm enters
a new time unit: Function handleRequests (described below) chooses
the next action xt and updates xt+1..h

R . Finally, S̃ is updated such that
it stays coherent with respect to realization ξt. Each scenario ξt..h ∈ S
is composed of a sequence of sampled requests. To each customer
region i is associated an upper bound ui = min(l0 − ti,0 − si, li − t0,i)

on the time unit at which a request can be revealed in that region, like
in Bent and Van Hentenryck, 2004b. That constraint prevents tricky or
inserviceable requests to be sampled. At time t, a sampled request (i, t)
which doesn’t appear in ξt is either removed if t ≥ ui or randomly
delayed in ξt+1..h ∈ S otherwise.

The algorithm spends the rest of the time unit into function optimize,
iterating over lines 9-14, in order to improve the sequence of future
route actions xt+1..h

R . We consider a hill climbing strategy: the current
solution xt+1..h

R is shaked to obtain a new candidate solution yt+1..h
R , and

if this solution leads to a better upper bound Q of Q, then it becomes
the new current solution. Shaking is performed by the shakeSolution

function. This function considers different neighborhoods, correspond-
ing to the following move operators: relocate, swap, inverted 2-opt,
and cross-exchange (see Kindervater and Savelsbergh, 1997; Taillard
et al., 1997 for complete descriptions). As explained in Section 10.3.2,
depending on the chosen waiting and relocation strategy, additional
move operators are exploited. At each call to the shakeSolution func-
tion, the considered move operator is changed, such that the operators
are equally selected one after another in the list. Every β iterations,
the pool S̃ of scenarios is re-sampled (lines 13-14). This re-sampling
introduces diversification as the upper bound computed by Q changes.
We therefore do not need any other meta-heuristic such as Simulated
Annealing.

Note that a possible implementation of the shakeSolution function
has been previously provided as part of Algorithm 5, which describe
a variable neighborhood search in the context of the SS-VRPTW-CR.

10.3.1.2 Function handleRequest

Function handleRequest is called at the beginning of a new time
unit t, to compute action xt in light of online requests (if any). It
implements the GSA decision rule defined in equation (10.7). The
function considers each request revealed at time t for a vertex j, in a
sequential way. For each request, it tries to insert it into the sequence
xt..h

R (i.e., modify the routes so that a vehicle visits j during its time
window). As in shakeSolution, local search operations are performed
during that computation. The time spent to find a feasible solution
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including the new request is limited to δins. If such a feasible solution
is found, then the request is accepted, otherwise it is rejected. If there
are several online requests for the same discretized time t, we process
these requests in their real-time order of arrival, and we assume that
all requests are revealed at different real times.

10.3.2 Waiting and Relocation strategies

As defined in Section 10.1, a vehicle that just visited a vertex usually
has the choice between traveling right away to the next planned vertex
or first waiting for some time at its current position. Unlike in the static
(and deterministic) case, in the dynamic (and stochastic) VRPTW these
choices may have a significant impact on the quality of the solution.

Waiting and relocation strategies have attracted a great interest on
dynamic and stochastic VRP’s. In this section, we present and describe
how waiting and relocation strategies are integrated to our framework,
including a new waiting strategy called relocation-only.

10.3.2.1 Relocation strategies

Studies Bertsimas and Ryzin, 1991 and Bertsimas et al., 1993 already
showed that, for a dynamic VRP with no stochastic information, it is
optimal to relocate the vehicle(s) either to the center (in case of single-
vehicle) or to strategical points (multiple-vehicle case) of the service
region. The idea evolved and has been successfully adapted to routing
problems with customer stochastic information, in reoptimization
approaches as well as sampling approaches.In a dynamic VRP,

vehicles can be
relocated to

strategic waiting
locations, even

when they still have
customers to visit (as

long as they can
wait!).

Relocation strategies explore solutions obtained when allowing a
vehicle to move towards a customer vertex even if there is no request
received for that vertex at the current time slice. Doing so, one recog-
nizes the fact that, in the context of dynamic and stochastic vehicle
routing, a higher level of anticipation can be obtained by considering
to reposition the vehicle after having serviced a request to a more
stochastically fruitful location. Such a relocation strategy has already
been applied to the DS-VRPTW in Bent and Van Hentenryck, 2007.

10.3.2.2 Waiting strategies

In a dynamic context, the planning of a vehicle usually contains more
time than needed for traveling and servicing requests. When it finishes
to service a request, a vehicle has the choice between waiting for some
time at its location or leaving for the next planned vertex. A goodA waiting strategy

is a heuristic that
automatically

assigns waiting
times, based on the

sequences of vertices.

strategy for deciding where and how long to wait can potentially help
at anticipating future requests and hence increase the dynamic perfor-
mances. We consider three existing waiting strategies and introduce a
new one:
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• Drive-First (DF): The basic strategy aims at leaving each serviced
request as soon as possible, and possibly wait at the next vertex
before servicing it if the vehicle arrives before its time window.

• Wait-First (WF): Another classical waiting strategy consists in
delaying as much as possible the service time of every planned
requests, without violating their time windows. After having
serviced a request, the vehicle hence waits as long as possible
before moving to the next planned request.

• Custom-Wait (CW): A more tailored waiting strategy aims at
controlling the waiting time at each vertex, which becomes part
of the online decisions.

• Relocation-Only waiting (RO): In order to take maximum benefit
of relocation strategy while avoiding the computational overhead
due to additional decision variables involved in custom waiting,
we introduce a new waiting strategy. It basically applies drive-first
scheduling to every request and then applies wait-first waiting
only to those requests that follow a relocation one. By doing so, a
vehicle will try to arrive as soon as possible at a planned relocation
request, and wait there as long as possible. In contrary, it will
spend as less time as possible at non-relocation request vertices.
Note that if it is not coupled to a relocation strategy, RO reduces
to DF. Furthermore, RO also reduces to the dynamic waiting
strategy described in Mitrović-Minić and Laporte, 2004 if we
define the service zones as being delimited by relocation requests.
However, our strategy differs by the fact that service zones in
our approach are computed in light of stochastic information
instead of geometrical considerations.

Depending on the waiting strategy we apply and whether we use relo-
cation or not, additional LS move operators are exploited. Specifically,
among the waiting strategies, only custom-wait requires additional
move operators aiming at either increasing or decreasing the waiting
time at a random planned vertex. Relocation also requires two addi-
tional move operators that modify a given solution by either inserting
or removing a relocation action at a random vertex.

10.4 experimentations

We now describe our experimentations and compare our results with
those of the state of the art MSA algorithm of Bent and Van Henten-
ryck, 2004b.
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10.4.1 Algorithms

Different versions of Algorithm 7 have been experimentally assessed,
depending on which waiting strategy is implemented and whether in
addition we use the relocation strategy or not.

The drive-first waiting strategy, as well as its version including relo-
cation, produced very bad results in comparison to other strategies,
rejecting more than twice more online requests in average. Because
of its computational overhead, the custom-wait strategy also produced
bad results, even with relocation. For conciseness we therefore do not
report these strategies in the result plots.

The 3 different versions of Algorithm 7 we thus consider are the fol-
lowing: GSAwf, which stands for GSA with wait-first waiting strategy,
GSAwfr which stands for GSA with wait-first and relocation strategies,
and finally GSAro with means GSA using relocation-only strategy. Re-
call that, by definition, the relocation-only strategy involves relocation.
In addition to those 3 algorithms, as a baseline we consider the GLSwf
algorithm, which stands for greedy local search with wait-first waiting.
This algorithm is similar to the dynamic LS described in Schilde et al.,
2011, to which we coupled a Simulated Annealing metaheuristic. In
this algorithm, stochastic information about future request is not taken
into account and a neighboring solution is solely evaluated by its total
travel cost.

Finally, GSA and GLS are compared to two MSA algorithms, namely
MSAd and MSAc depending on whether the travel distance or the
consensus function are used as ranking functions.

setup. Computations are performed on a cluster composed of 32

processors 64-bits AMD Opteron(tm) 6284 SE cores, with CPU fre-
quencies ranging from 1400 to 2600 MHz. Executables were developed
with C++ and compiled on a Linux Red Hat environment with GCC
4.4.7.

10.4.2 Benchmarks

The selected benchmarks are borrowed from Bent and Van Hentenryck,
2004b which considers a set of benchmarks initially designed for
the static and deterministic VRPTW in Solomon, 1987, each of these
containing 100 customers. In our stochastic and dynamic context, each
customer becomes a request region, where dynamic requests can occur
during the online execution.

The original problems from Bent and Van Hentenryck, 2004b are
divided into 4 classes of 15 instances. Each class is characterized by
its degree of dynamism (DOD, the ratio of the number of dynamic
requests revealed at time t > 0 over the number of a priori request
known at time t = 0) and whether the dynamic requests are known
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Class DOD t = 0 [1, 160] [161, 320] [321, 480]

1,2,3 44% 0.5 0.25 0.25 0

4 57% 0.2 0.2 0.6 0

5 81% 0.1 0.1 0.8 0

6 100% 0 0.3 0.7 0

Figure 10.2: Summary of the test instances, grouped per degree of dynamism.
Cells represent the probability that a request gets revealed during
the time slice defined by each interval [t, t′].

early or lately along the online execution. The time horizon H = 480 is
divided into 3 time slices. A request is said to be early if it is revealed
during the first time slice t ∈ [1, 160]. A late request is revealed during
the second time slice t ∈ [161, 320]. There is no request revealed during
the third time slice t ∈ [321, 480], but the vehicles can use it to perform
customer operations.

In Class 1 there are many initial requests, many early requests and
very few late requests. Class 2 instances have many initial requests,
very few early requests and some late requests. Class 3 is a mix of
classes 1 and 2. In Class 4, there are few initial requests, few early
requests and many late requests. Finally, classes 1, 2 and 3 have an
average DOD of 44%, whilst Class 4 has an average DOD of 57%.

In Bent and Van Hentenryck, 2007, a fifth class is proposed with a
higher DOD of 81% in average. Unfortunately, we were not able to
get those Class 5 instances. We complete these classes by providing We add a new

instance class to the
benchmark, with
100% dynamism.

a sixth class of instances, with DOD of 100%. Each instance hence
contains no initial request, an early request with probability 0.3 and a
late request with probability 0.7. Figure 10.2 summarizes the different
instance classes.

10.4.3 Results

Average results over 10 runs are reported. In Bent and Van Hentenryck,
2004b, 25 minutes of offline computation are allocated to MSA, in
order to decide the first online action at time t = 1. During online
execution, each time unit within the time horizon was executed during
7.5 seconds by the simulation framework. In order to compensate the
technology difference, we decided in this study to allow only 10

minutes of offline computation and 4 seconds of online computation
per time unit. Thereafter, in order to highlight the contribution of the
offline computation in our approach, the amount of time allowed at
pre-computation is increased to 60 minutes, while each time unit still
lasts 4 seconds. According to preliminary experiments, both the size
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of the scenario pool and the resampling rate are set to α = β = 150
for all our algorithms except GLSwf.

Figure 10.3 gives a graphical representation of our algorithms re-
sults, through performance profiles. Performance profiles provide, for
each algorithm, a cumulative distribution of its performance compared
to other algorithms. For a given algorithm, a point (x, y) on its curve
means that, in (100 · y)% of the instances, this algorithm performed
at most x times worse than the best algorithm on each instance taken
separately. Instances are grouped by DOD and by offline computation
time. Classes 1, 2 and 3 have a DOD of 44%, hence they are grouped
together. An algorithm is strictly better than another one if its curve
stays above the other algorithm’s curve. For example on the 60min
plot of Class 6, GLSwf is the worst algorithm in 95% of Class 6 in-
stances, outperforming GSAwf in the remaining 5% (but not the other
algorithms). On the other hand, provided these 60 minutes of offline
computation, GSAro obtains the best results in 55% of the instances,
whereas only 30% for GSAwf and GSAwfr. See Dolan and Moré, 2002

for a complete description of performance profiles.
Our algorithms compare fairly with MSA, especially on lately dy-

namic instances of Class 4. Given more offline computation, our algo-
rithms get stronger, although that MSA benefits of the same offline
time in every plots. Surprisingly, GLSwf performs well compared to
other algorithms on classes 1,2 and 3. The low DOD that characterizes
these instances tends to lower the contribution of stochastic knowledge
against the computational power of GLSwf. Indeed, approximating the
stochastic evaluation function over 150 scenarios is about 103 times
more expensive than GLSwf evaluation function. However, as the
offline computation time and the DOD increase, stochastic algorithms
tend to outperform their deterministic counterpart.

We notice that the relocation strategy gets stronger as the offline
computation time increases. This is due to the computational overhead
induced by relocation vertices. GSAwf is then the good choice under
limited offline computation time. However, both GSAro and GSAwfr
tend to outperform the other strategies when provided enough offline
computation and high DOD.

As it contains no deterministic request, in Class 6 the offline com-
putation is not applicable to those algorithms that does not exploit
the relocation strategy, i.e. GLSwf and GSAwf. Class 6 shows that,
despite the huge difference in the number of iterations performed by
GLSwf on one hand and stochastic algorithms on the other, the latters
clearly outperform GLSwf under fully dynamic instances. We also
notice in this highly dynamic context that GSAro tends to outperform
GSAwfr as offline computation increases, highlighting the anticipative
contribution provided by the relocation-only strategy, centering waiting
times on relocation vertices.
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Figure 10.3: Performance profiles on classes 1 to 6. y-axis: proportion of
instances; x-axis: average performance relatively to best result.
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10.5 conclusions

We proposed GSA, a decision rule for dynamic and stochastic vehi-
cle routing with time windows (DS-VRPTW), based on a stochastic
programming heuristic approach. Existing related studies, such as
MSA, simplify the problem as a two-stage problem by using sample
average approximation. In contrary, the theoretical singularity of our
method is to approximate a multistage stochastic problem through
Monte Carlo sampling, using a heuristic evaluation function that pre-
serves the nonanticipativity constraints. By maintaining one unique
anticipative solution designed to be as flexible as possible according
to a set of scenarios, our method differs in practice from MSA which
computes as many solutions as scenarios, each being specialized for
its associated scenario. Experimental results show that GSA produces
competitive results with respect to state-of-the-art. This chapter also
proposes a new waiting strategy, relocation-only, aiming at taking full
benefit of relocation strategy.

In a future study we plan to address a limitation of our solving
algorithm which embeds GSA, namely the computational cost of its
evaluation function. One possible direction would be to take more
benefit of each evaluation, by spending much more computational
effort in constructing neighboring solutions, e.g. by using Large Neigh-
borhood Search (Shaw, 1998). Minimizing the operational cost, such as
the total travel distance, is usually also important in stochastic VRPs.
Studying the aftereffect when incorporating it as a second objective
should be of worth. It is also necessary to consider other types of
DS-VRPTW instances, such as problem sets closer to public or good
transportation. Finally, the conclusions we made in Section 10.1 about
the shortcoming of a two-stage formulation (illustrated in Figure 10.1)
are theoretical only, and should be experimentally assessed.
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H Y B R I D T W O - S TA G E / M U LT I S TA G E A P P R O A C H

As already pointed out by Saint-Guillain et al., 2017, a potential appli-
cation of the SS-VRPTW-CR comes to online optimization problems,
such as the Dynamic and Stochastic VRPTW (DS-VRPTW). Most of the
approaches that have been proposed in order to solve the DS-VRPTW,
including the approach we propose in Chapter 10, rely on Monte Carlo
sampling. In fact, because perfect online reoptimization is intractable,
heuristic methods are often preferred. Approaches based on sampling,
such as Sample Average Approximation (Ahmed and Shapiro, 2002),
are very common and consist in restricting the set of scenario to a
randomly generated subset. Because the computed costs depend on
the quality and size of the subset of sampled scenarios, they do not
provide any guarantee. Thanks to recourse strategies, the expected
cost of a first-stage SS-VRPTW-CR solution provides an upper bound
on the expected cost under perfect reoptimization, as it also enforces
the nonanticipativity constraints (see Section 2.5 and Saint-Guillain
et al., 2015, for a description of these constraints).

In this chapter, we show how the SS-VRPTW-CR can be exploited
at solving the DS-VRTPW, as an alternative to scenario sampling. In In order to solve the

DS-VRPTW,
2s-GSA combines
the two-stage
SS-VRPTW-CR
formulation with the
GSA dynamic
decision system.

particular, by considering uncertainty in the online request reveal
times, the SS-VRPTW-CR actually enforces the nonanticipativity prop-
erty. This leads a hybrid two-stage variant of GSA (called 2s-GSA),
where the SS-VRPTW-CR, namely the two-stage formulation of the
DS-VRPTW, is exploited as an upper bound on the expected cost in
the global multistage problem.

In Section 11.1, we summarize both the theoretical and empirical
results obtained on the SS-VRPTW-CR, throughout Part ii of the thesis,
in the context of online decision making. The hybrid algorithm is
described in Section 11.2. Thereby, experiments are conducted on
Section 11.3, comparing both standard and hybrid two-stage versions
of GSA on a DS-VRPTW version of our Lyon benchmark. Finally,
in Section 11.4 both GSA and 2s-GSA algorithms are applied to a
dynamic, online version of our real-world police patrol management
problem, previously introduced in Chapter 9.

11.1 lessons learned from the ss-vrptw-cr

Let us consider again the DS-VRPTW, as formulated in the previous
chapter, namely the multistage stochastic program (10.1):

min
xt∈Xt

Eξt+1

[
min

xt+1∈Xt+1
Eξt+2

[
· · · min

xh−1∈Xh−1
E

ξh

[
min

xh∈Xh
r(x0..h)

]
· · ·
]]

.
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It can be reformulated as the deterministic equivalent program (10.3)

xt = arg min
xt∈Xt

Q(x0..t, ξt+1..h)

where Q(x0..t, ξt+1..h), the expected multistage value function, is fur-
ther defined in (10.6).The SS-VRPTW-CR

recourse strategies
approximate the

DS-VRPTW
objective function,

while considerig the
entire set of

scenarios.

We saw in Chapter 5 that the recourse strategies we introduced
for the SS-VRPTW-CR, such as Rq, actually approximate the online
problem, by providing an upper bound on the expected cost under
perfect reoptimization. We also found in Chapters 8 and 9 that the
latter strategy is easily adaptable, hence exploitable in various different
contexts.

Whereas our standard GSA decision rule relies on an uppder bound-
ing heuristic on a limited set of sampled scenarios, it now becomes
clear that, in addition to provide a useful upper bound, ourRq strategy
also benefits from the entire set of scenarios.

11.1.1 Augmented first-stage SS-VRPTW-CR solutions

Let xt..h
R be a sequence of future route actions, as defined in 10.2,

including the current action candidate xt. Recall that xt..h
R contains op-

erational decisions for each vehicles (service a request, travel towards
a vertex, wait at some position) from current time t to the end of the
horizon. In particular, in addition to the visits at accepted requests,
future route actions may contain relocation (and waiting) actions, thus
involving waiting vertices.

Therefore, xt..h
R can be seen as an augmented SS-VRPTW-CR first

stage solution. It is composed of waiting vertices, coupled with their
respective waiting times τ. It is augmented with vertices that belong
to the set of accepted requests that already appeared at time t. The
expected number of rejected requests, from time t + 1 to h, is then
given by the random function Rq

A(xt..h
R , τ), with:

∀xt..h
R : Q(x0..t, ξt+1..h) ≤ QR

q
A(xt..h

R , τ).

The vertices corresponding to an accepted request, as well as past
x0..t−1 actions, are converted into fake waiting vertices which are
not assigned any potential request, but whose the associated vehicle
must visit at predefined moments. The computation of QR

q
A(xt..h

R , τ)

henceforth becomes identical to that of classical QR
q
, for strategy Rq,

described in Section 5.2.2.

11.1.2 Waiting times τ

The methods used in order to determine the waiting times τ associated
to each waiting location in xt..h

R naturally correspond to the four waiting
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strategies already described in Section 10.3.2. In particular, the Custom-
Wait (CW) waiting strategy, in which the waiting times are considered
as decision variables, simply reduces to what have been done during
all the previous thesis part (Chapters 5 to 9) in the context of the
SS-VRPTW-CR.

Instead, another possibly interesting approach would be to deter-
mine the waiting times directly from the sequences of planned vertices.
This corresponds to waiting strategies DF, WF and RO. Using Drive-
First (DF) is however not suited here, since the request assignment
heuristic of Rq would never assign potential requests to any wait-
ing location. On the contrary, waiting strategies Wait-First (WF) and
Relocation-Only (RO) will automatically assign non-zero waiting times
to the planned waiting locations. Relocation-Only

avoids assigning
waiting times τ in a
SS-VRPTW-CR
solution.

Relocation-Only particularly makes sense here, since we do not want
fake vertices to be assigned waiting times. Instead, RO puts the highest
possible waiting time to each planned waiting location. By avoiding
the need for a specific assignment of the waiting times τ in a solu-
tion, Relocation-Only hence significantly simplifies the SS-VRPTW-CR
solution space.

11.2 embedded two-stage online algorithm : 2s-gsa

Algorithm 8 depicts the 2s-GSA hybrid method. It differs from Algo-
rithm 7, GSA, in two points. First, the SS-VRPTW-CR random function
QR

q
A(xt..h

R , τ) replaces the approximation Q(x0..t, xt+1..h
R , S̃) in the eval-

uation of a solution. As a consequence, there is no scenario pool to
manage anymore. Second, whereas GSA obtains its diversification
with the periodic resampling of its scenario pool, 2s-GSA requires an
explicit diversification mechanism. The acceptation rule of 2s-GSA
(line 11) is based on a Simulated Annealing criterion, exactly as for
Algorithm 5, which is actually simply embedded as a subroutine
of Algorithm 8, function optimize (lines 8-13). To summarize, the
2s-GSA online algorithm only differs from GSA’s algorithm by the
implementation of the optimize function.

Note that the shakeSolution function is similar to that of Algo-
rithm 7. It actually implements a basic variable neighborhood search,
further described in Section 10.3.1.1. Furthermore, we assume shakeSolution
to return a new augmented SS-VRPTW-CR solution (yt+1..h

R , τ), thus
representing a possible alternative sequence of future route actions.
The waiting times τ, required by the QR

q
A function, are hence deduced

from yt+1..h
R when using Relocation-Only waiting strategy.

The handleRequests function is identical to that of standard GSA.
It depends on a global parameter δins, which limits the time limit to
find a feasible current solution including the new online request, at
line 17. Naturally, this local search phase is only performed whenever
a feasible insertion position cannot be found for the request. However,
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Algorithm 8: LS-based hybrid 2s-GSA

1 Compute initial solution x1..h
R

2 t← 1;
3 while real time has not reached the end of the time horizon do

/* Beginning of the time unit */

4 (xt, xt+1..h
R )←handleRequests(x0..t−1, xt..h

R , ξt)

5 execute action xt

/* Remaining of the time unit */

6 (xt+1..h
R )← optimize(xt+1..h

R )

7 t← t + 1 /* Skip to next time unit */

8 Function : optimize(xt+1..h
R )

9 while real time has not reached the end of current time unit t do
10 (yt+1..h

R , τ)← shakeSolution(xt+1..h
R )

11 if some acceptance criterion is met on QR
q
A(yt+1..h

R , τ) then
12 set xt+1..h

R ← yt+1..h
R

13 return the best xt+1..h
R encountered during the search

14 Function : handleRequests(x0..t−1, xt..h
R , ξt)

15 y0..t−1 ← x0..t−1; yt..h ← xt..h
R

16 for each request revealed for a vertex c in realization ξt do
17 if we find, in ≤ δins, how to modify yt..h to serve request (c, t) then
18 modify yt..h to accept request (c, t)
19 else
20 modify yt..h to reject request (c, t)

21 return (yt, yt+1..h)
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because the only objective of the local search performed at line 17 is
to restore feasibility after the new online request as been inserted, the
sequence of future actions xt+1..h

R is likely to be severely modified. In
particular, planned future waiting actions may be removed in order
to make room for the new request, hence significantly impacting the
expected quality of xt+1..h

R on the remaining horizon. Consequently, it is
not clear in general whether setting δins > 0 will actually improve the
average performances of the algorithm. The answer is most probably
problem dependent.

11.3 experiments on the ds-vrptw

Throughout this section, we compare the following three algorithms:
GLSwf, GSAro and 2s-GSAro, that is, 2s-GSA where the waiting time
are deduced by using Relocation-Only waiting strategy. Recall that in
GLSwf, only the total travel cost (distance) is minimized, and stochastic
information about future requests is not taken into account.

In Section 11.3.1 we first compare different parameters of the three
algorithms on our less realistic benchmark, in order to determine
the more promising configurations. Having selected our parameters,
experiments are conducted by using the Lyon benchmark presented
in Chapter 6, a significantly more realistic one, interpreted now as
a DS-VRPTW benchmark instead of a SS-VRPTW-CR benchmark.
Mainly for environmental reasons, we decided to limit the amount
of experiments conducted throughout the section. In fact, testing in a
dynamic context naturally requires a lot of computation time, as the
realtime must be simulated through each experiment.

setup. Experiments have been done on a cluster composed of 64-
bit AMD Opteron 1.4-GHz cores. The code is developed in C++11
with GCC4.9, using -O3 optimization flag. The current source code of
our library for SS-VRPs and DS-VRPTs is available from the online
repository: bitbucket.org/mstguillain/vrplib.

11.3.1 Parameter estimation on artificial benchmark

We first compare our three algorithms on the Bent and Van Hentenryck,
2007 benchmark, augmented with our sixth class. Recall that class 6

only contains online requests. Being highly artificial and, in our sense,
highly unrealistic, we only exploit this benchmark in order to take a
first glance at the best configurations for our various algorithms.

In order to determine whether using a positive δins insertion delay
globally improves the performances, we compare the three algorithms
with δins = 0 and δins = 5 seconds. Furthermore, GSAro is tested
with two different configurations for its scenario pool: α = β =

150 (GSA150
ro ), exactly as during the experiments of Section 10.4, and

bitbucket.org/mstguillain/vrplib
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GLSwf GSA10
ro GSA500

ro 2s-GSA1
ro

δins 0 5 0 5 0 5 0 5

Class 1 9.4 4.8 5.9 1.2 10.5 1.5 20.4 4.9

Class 2 11.5 7.6 5.3 2.3 8.5 3.3 19.0 6.8

Class 3 10.5 6.6 4.8 1.9 8.4 2.8 18.3 5.8

Class 4 15.5 12.0 4.9 2.5 7.7 4.6 21.6 9.7

Class 5 15.2 12.6 2.8 1.6 3.9 2.1 19.8 9.5

Class 6 24.1 19.7 14.3 11.5 16.2 12.8 30.8 17.9

Table 11.1: Average number of rejected requests on each instance class of the
benchmark from Bent and Van Hentenryck, 2007, with algorithms
GLSwf, GSAro and 2s-GSAro, depending on the δins parameter.
Offline computation time is set to 10 minutes. Online time units
are each simulated during 30 seconds.

α = 500, β = 150 (GSA500
ro ), in case the fact that the increased online

computational time, now of 30 seconds per time units (instead of
4), would impact the performances of the α parameter. Finally, 2s-
GSAro is tested under scale 1 (2s-GSA1

ro) for now. According to the
results obtained in Section 9.3.5, the Simulated Annealing parameters
of 2s-GSA are set to Tinit = 1 and fT = 0.9.

The offline computation time is set to 10 minutes. Each online time
unit is simulated during 30 seconds. In all our benchmarks, time units
are intended to last one minute each. Thus, using thirty seconds per
time unit produces the results one can expect to obtain when using
CPUs that are twice as slow than those used here. In fact, these thirty
seconds are therefore still realistic. Recall that in Section 10.4, each
time unit was simulated during only four seconds, in order to fairly
compare with results obtained by another study. Every simulation
is run 10 times on the corresponding benchmark instance. Only the
average result is considered. For example, in Section 11.3.1 the same
benchmark as in previous chapter is used. There are 15 instances in
each class. Each cell of Table 11.1 is then an average computed over 10

× 15 instances, 150 runs.
The average results are shown in Table 11.1. We directly remark that

setting δins = 5 increases the performances of all the algorithms. A
bigger scenario pool that contains 500 samples does not increase the
performances of GSA. Whereas the table shows average results that are
aggregated for each class, it may be interesting to consider the results
of each instance separately, as these may vary a lot within a particular
instance class. Figure 11.1 (left) thus shows the performance profiles of
these five algorithms, on the 15 × 6 = 90 instances. In fact, the curves
confirm what we already observed in Table 11.1. The performances of
2s-GSA1

ro are for now quite disappointing. We however observe that
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Figure 11.1: Performance profiles on all six classes of instances. Left: based on
average number of rejected requests. Right: based on standard
deviations.

the performance gap with the other algorithms tends to decrease has
the degree of dynamism increases, and is minimal on Class 6.

Another potentially interesting performance indicator, when choos-
ing an algorithm, may be its stability. One does probably not want an
algorithm that performs very well one day and very poorly the day
after, even though it performs quite well in average. Recall that for
each algorithm, each of the 90 instances is experimented 10 times, in
order to cope with the randomness within the optimization methods.
We can therefore consider the associated standard deviations. On the
right of Figure 11.1, we computed the performance profiles when we
consider the standard deviations as performance indicator. It shows
which are the algorithms that are the more likely to perform in a stable
way. Again, 2s-GSA compares quite bad with GSA, and reveals to be
unstable on these instances.

We observed bad performances, at least not really encouraging, of
our hybrid algorithm 2s-GSA1

ro compared to our classical GSA. How-
ever, this benchmark is really particular, and we can hope for a better
contribution when applied to more realistic contexts. In particular, this
benchmark counts only three online time slots for the 240 time units,
each time slot representing 80 time units. In comparison, time slots in
the Lyon benchmark represent 5 time units each: one potential request
per five minutes at each customer region.
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11.3.2 Results on Lyon benchmark

We now conduct our experiments on a specific class of instances from
the Lyon benchmark, presented in Chapter 6. We consider the set of
50cw-i instances, that is, involving 50 customer regions which can also
act as waiting locations. Recall that these instances involves a horizon
of 480 time units, divided in 96 time slots, each being associated to a
potential request.

In order to be able to exploit the SS-VRPTW-CR benchmark in
a DS-VRPTW context, we have to generate, based on the provided
request probabilities, a limited number of reproducible scenarios to
be simulated online. The existing data (graph information, travel
times, request probabilities and attributes), along with these sampled
scenarios, define a complete DS-VRTPW benchmark. For each 50cw-i
instance, we generate five scenarios. We thus have now 15 × 5 =
75 DS-VRPTW instances. It is available at becool.info.ucl.ac.be/
resources.

Because all the instances of the Lyon benchmark are 100% dynamic
(i.e. no offline request), 2s-GSA may be handicaped by the Relocation-
Only waiting strategy. In fact, whenever along a vehicle route two
waiting vertices follow in a row, then RO will assign zero waiting time
to the first waiting location in order to maximize the waiting time at
the next one. Having many more online request vertices than waiting
vertices, this is not a problem as is it unlikely to have two waiting
vertices that follow. However, under 100% dynamism all the offline
computation is done with waiting vertices only, whereas the requests
gradually appear during the online phase. In order to take all the
benefits from the SS-VRPTW-CR formulation, which aims at designing
preventive vehicles routes composed of several waiting locations, it is
interesting to test 2s-GSA with Custom-Wait (CW) waiting strategy. In-
deed, CW allows 2s-GSA to choose itself appropriate waiting times at
each planned waiting location. We hence add the 2s-GSA1

cw algorithm,
standing for 2s-GSA with CW (waiting time multiples of 10 minutes)
and under scale 1, as well as 2s-GSA2

cw, its variant under scale 2.
The simulation parameters are now set to 10 minutes offline com-

putation, with online time units of 20 seconds. Each instance is now
simulated 5 times (instead of previously ten). The insertion delay δins
is still set to 5 seconds. The number of vehicles, which is not tied to
the instances, is set to either 10 or 20.

Top of Figure 11.2 provides the performance profiles of each al-
gorithm, for the 75 instances, computed on the average number of
rejected requests (left of Figure 11.2) and the standard deviations
(right), provided 10 vehicles. Clearly, GSA150

ro outperforms the four
2s-GSA variants. Amongst the latters, the Relocation-Only versions of
2s-GSA, namely 2s-GSA1

ro and 2s-GSA2
ro, reveal to perform better than

their Custom-Wait counterparts. We also remark that whereas GSA150
ro

becool.info.ucl.ac.be/resources
becool.info.ucl.ac.be/resources
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Figure 11.2: Performance profiles on the Lyon benchmark (75 instances),
provided either 10 vehicles (up) or 20 vehicles (down). Left:
based on average number of rejected requests. Right: based on
standard deviations.

is more performant in average, 2s-GSA1
ro seems to be more stable

according to the standard deviations of the average results. Note that
we do not consider the standard deviations of GLS. In fact, the greedy
local search method achieves a standard deviation of (or very close
to) zero, for all instances. This is due to the absence of offline request
and the limited amount of online requests (< 100). Since new online
requests are gradually revealed as already accepted ones are being
serviced, hence fixing part of the solution (nonanticipativity principle),
GLS always finds the same global optimum (in terms of total travel
distance), on every simulation of a given scenario.

On the bottom of Figure 11.2 are displayed the performance pro-
files when the number of vehicles is set to 20, for algorithms GLSwf,
GSA150

ro , 2s-GSA1
ro and 2s-GSA2

ro only. We observe that the performance
gap between GSA and 2s-GSA does not significantly decrease as the
number of vehicles increased. GSA150

ro remains more efficient, whereas
2s-GSA1

ro is still more stable. Naturally, the gap between GLS and the
approaches based on stochastic modeling increases with the number
of vehicles involved, as already observed all the other experimental
contexts all along this thesis. In average, using 10 vehicles, GSA re-
duces the amount of rejected requests by 58%, when the average gains
of 2s-GSA1

ro and 2s-GSA2
ro are of respectively 46% and 47%. When

provided 20 vehicles, the average gains of the three algorithms increase
to 75%, 69% and 68%.
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Figure 11.3: Performance profiles on the Lyon benchmark (75 instances),
provided either 10 vehicles (up) or 20 vehicles (down), every
request time window being doubled. Left: based on average
number of rejected requests. Right: based on standard deviations.

influence of the time windows . Figure 11.3 shows how the
performance profiles evolve when the requests becomes less urgent, by
multiplying the length of each time window by two, and given either
10 and 20 vehicles. Compared to GSA, the contribution of 2s-GSA does
not improve in this context. Indeed, we saw in Section 8.3 that a SS-
VRPTW-CR modeling becomes more suited as the requests are urgent,
the problem being constrained to a high quality of service, represented
by very short time windows. GSA now reduces the amount of rejected
requests with 10 vehicles (resp. 20) by 65% (resp. 81%) in average. The
average gains of 2s-GSA1

ro are of 49% (resp. 75%), and finally 47% (resp.
73%) for 2s-GSA2

ro.

11.4 application : dynamic police patrol management in

brussels

We now apply both GSA and 2s-GSA algorithms to a dynamic, on-
line version of our real-world police patrol management problem,
previously introduced in Chapter 9.

Recall that the input data of the problem are based on observations
made during real operations from 2013 to 2016. The data collected dur-
ing 2017 are kept for validation, that is, the experimentations. It meansEach day of

observation during
2017 provides us

with a specific
instance scenario.

that each operational day during the observed period, in 2017, actually
stands for a scenario that can be experimentally simulated. After filter-
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ing the observed days as explained in Section 9.2.3, it remains a total
of 188 days, or scenarios, collected during 2017. These 188 scenarios
will of course constitute our real-world DS-VRP-R benchmark.

11.4.1 Problem definition: DS-VRP-R

We note Xt = X
(

x0..t−1, ξ1..t) the set of decisions that are valid at some
time unit t ∈ H0. The set Xt still depends on past decisions x1..t−1 and
revealed requests ξt. Unlike the DS-VRPTW, in the DS-VRP-R online
requests are always accepted, and the objective here is to serve them as
soon as possible. We still note Xt..t′ the sequence of sets 〈Xt, . . . , Xt′〉
where 0 ≤ t ≤ t′ ≤ h. A each time t, given the sequence x0..t−1 of past
decisions, the best action xt is then obtained by solving the following
multistage stochastic program:

min
xt∈Xt

Eξt+1

[
min

xt+1∈Xt+1
Eξt+2

[
· · · min

xh−1∈Xh−1
E

ξh

[
min

xh∈Xh
Q(x0..h)

]
· · ·
]]

(11.1)

where we define Q(x0..h) as the average delay on the interventions
achieved by the final solution x0..h.

In practice, GSA performs a Sample Average Approximation based
on equation (9.5). 2s-GSA uses the bi-objective formulation (9.11),
similarly to experiments conducted in Chapter 9.

11.4.2 Experimental results

We report the performance profiles of GLSwf, GSAro and 2s-GSAro,
computed based on the average intervention delays achieved on each
of the 188 instances. Each instance is simulated five times, with still
10 minutes of offline computation and 20 seconds per online time
unit. Finally, according to the results from Section 9.3, both GSA and
2s-GSA are given 100 waiting locations amongst the 150 (customer)
vertices of the discretized operational map.

This benchmark involves 360 time units, one per minute between
4am and 10am. Contrary to the Lyon benchmark (480 time units), time
slots are here of 30 minutes, which may handicap 2s-GSA.

preliminary experiments . We first compare the following five
algorithm on instances 1 to 50, provided 3 vehicles: GLSwf, GSA150

ro ,
2s-GSA1

ro, 2s-GSA2
ro and 2s-GSA1

cw. The profiles are shown in Figure
11.4. We remark that both 2s-GSA2

ro and 2s-GSA1
cw perform worse than

the other methods. Henceforth, we exclude these two algorithms from
the remaining of the experiments.

overall results : 3 vehicles . Contrary to the first 50 scenarios,
GLSwf is now outperformed by the other approaches. Over the 188



168 hybrid two-stage/multistage approach

Figure 11.4: Performance profiles on the Police benchmark (first 50 scenarios),
provided either 3 vehicles. Left: based on average intervention
delays. Right: based on standard deviations.

scenarios, GLSwf achieves an average intervention delay of 12.4 min-
utes, GSAro has an average of 10.5 minutes (avg. standard deviation:
2.6), and 2s-GSAro obtains 12.5 minutes (avg. standard deviation: 2.6).
GSAro therefore achieves a relative gain of 15%, compared to GLS.
Figure 11.5 (top) shows the associated performance profiles.

overall results : 6 vehicles . Figure 11.5 (bottom) shows the
associated performance profiles. Provided 6 vehicles, GLSwf has an
average intervention delay of 12.3 minutes, thus not taking any advan-
tage a larger fleet of vehicles. GSAro reaches now an average of 7.7
minutes (average standard deviation: 1.9), thus improving GLS by 37%.
Finally 2s-GSAro obtains 12.4 minutes (average standard deviation:
2.8).

11.5 conclusions

The hybrid algorithm 2s-GSA does not allow to beat the sampling
based algorithm proposed in the previous chapter. Experiments con-
ducted on three very different benchmarks show that the length of the
time slots significantly impacts the performances of 2s-GSA. In fact,
the best performances, compared to GSA, are obtained on the Lyon
instance involving time slots of 5 time units only. Furthermore, on that
benchmark 2s-GSA reveals to perform in a more stable way, in terms
of the standard deviations over the multiple runs of each instance.

It should be noted that whereas the first two benchmarks are used
to solve a DS-VRPTW, the third benchmark consider a DS-VRP-R case
study. On this different online problem, 2s-GSA performs significantly
worse than GSA, meaning that the underlying SS-VRPTW-CR em-
bedded model is probably not that suited to the DS-VRP-R online
problem.

Anyway, we saw that the sampling-based approach proposed by
GSA is successfull on the Lyon benchmark, allowing to satisfy signifi-
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Figure 11.5: Performance profiles on the Police benchmark, provided either
3 vehicles (up) or 6 vehicles (down). Left: based on average
intervention delays. Right: based on standard deviations.

cantly more online requests in average than the greedy local search
baseline method considered. In fact, the contribution of GSA increased
with the number of vehicles. Surprinsingly, it also increased as all
the time windows were multiplied by two: from 58% to 65% with
10 vehicles. GSA also achieved to reduce by 37% the average inter-
vention delays, in the context of our real-world online police patrol
maganement problem.
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conclusion

In this thesis, we explored two different, often complementary, ap-
proaches to time constrained online vehicle routing problems.

Optimizing a priori decisions: the SS-VRPTW-CR

This thesis introduces a new theoretical two-stage stochastic vehicle
routing problem, the SS-VRPTW-CR, intended to represent a set of
operational contexts that were not covered yet. It has the particularity
to take the uncertainty on the request reveal times into account, hence
providing the first two-stage stochastic VRP formulation that actu-
ally respects the nonanticipativity property inherent to all multistage
stochastic VRPs. Two different recourse strategies for the SS-VRPTW-
CR are proposed, for which the exact expected costs of the final
solutions are computable in pseudo-polynomial time.

Not surprisingly, solving the SS-VRPTW-CR revealed computation-
ally very hard, and the exact approaches we explored generally failed
at solving even small instances. We hence proposed a local search
method as well as a meta-heuristic, Progressive Focus Search (PFS),
to efficiently solve the SS-VRPTW-CR problem. PFS, as well as our
basic local search algorithm alone, showed to efficiently tackle larger
problems, for which an exact approach is not possible, by performing
remarkably well.

An interesting observation on the experimental results is that the
benefit of using a SS-VRPTW-CR formulation actually increases with
the number of vehicles, and the urgency of the requests. Also, our
experiments indicated that allowing the vehicles to wait directly at
potential customer vertices, when applicable, leads to better expected
results than using separate relocation vertices. However, depending
on the operational restrictions, this is not always possible.

We also proposed another two-stage stochastic vehicle routing prob-
lem, the SS-VRP-R, as a practical formulation of a real world problem,
the management of police patrol units in Brussels. We showed the
recourse strategies and closed-form expressions developed for the
SS-VRPTW-CR can actually be adapted for the SS-VRP-R, in order to
compute the expected average intervention delay. Experiments showed
that a SS-VRP-R/SS-VRPTW-CR framework may reduce the average
mean intervention delays by more than 30%, compared to a basic
policy. This improvement is due to the preventive nature of the first-
stage solutions, computed in light of stochastic knowledge, and which
are composed of sequences of anticipative relocation instructions for
the police patrols. Finally, we also described how the SS-VRPTW-CR
equations can be easily adapted in order to take time dependency of
the travel times into account, whenever it makes sense. However, the
results obtained were quite surprising. By experimenting under either
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constant or time-dependent travel times, it appeared that exploiting
time-dependency is not interesting in the context of the aforemen-
tioned case-study. This contradicts the current trend of considering
time-dependency, especially in urban contexts, as critical. Besides the
increased computational costs, the main reason is probably that most
of the trips in the city are optimized to be very short length, whereas
our measurements showed that the shorter a vehicle trip, the less the
travel time will be impacted by time-dependency.

Optimizing online decisions: the DS-VRPTW

In many operational contexts, being able to react fast and efficiently
to online events is of critical importance. Unlike two-stage formu-
lations, the multistage online VRP formulation involves non-trivial
online decisions, which must be computed in light of the available
stochastic knowledge. However, such computation is actually inher-
ently (strongly) hard, motivating the need for heuristic methods.

We hence proposed GSA, a decision rule for dynamic and stochastic
vehicle routing with time windows (DS-VRPTW), based on a stochas-
tic programming heuristic approach. Unlike existing methods, our
method does not require to relax the nonanticipativity constraints.
Instead, our method is proven to approximate a multistage stochastic
problem, through Monte Carlo sampling, but using a heuristic evalua-
tion function that preserves the nonanticipativity constraints. We also
introduced a new waiting strategy, relocation-only, aiming at taking
better benefit of the preventive vehicle relocation actions.

A possible limitation of GSA may be its scenario pool, necessarily
limited in the number of samples it contains, due to computational
constraints. We proposed to create a two-stage/multistage hybrid
version of GSA, called 2s-GSA, where the scenario pool, used to
compute an average cost, is totally replaced by a expectation calculus
over the SS-VRPTW-CR formulation we propose. We hence tested 2s-
GSA on various DS-VRTPW benchmarks, as well as our DS-VRP-R real-
world application, the online police patrol management in Brussels. It
appeared that the performances of 2s-GSA vary greatly depending on
the benchmark, whereas GSA always severely outperforms our best
greedy local search (GLS) baseline method. The more realistic is the
benchmark, the more efficient becomes 2s-GSA, compared with GSA
(and GLS). Yet, GSA remains the best alternative for the considered
benchmarks.

Our literature review, in Chapter 4, highlights that the City VRP
contributions contain very few real-world based applications and the
results are normally based on academic (and unrealistic) datasets.
Moreover, these applications lack a global vision and they are scarcely
repeatable in a different context. A lack emerging from the literature
is the identification of the main sources types, how to mix and how to
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interface them with one or more simulation and optimization modules
in order to give flexible solutions to the stakeholders and the users. In
this thesis, we provide three additional realworld benchmarks for the
DS-VRPTW. The proposed benchmarks are expressed in a convenient
format, also introduced during the thesis, making the various parts
of the instance data more flexible and easily reusable in different
operational contexts.

perspectives

There are still a number of research avenues, and potentially room for
significant improvement, in the application of probabilistic models to
the DS-VRP framework.

First, we pointed out in previous observations how the estimation of
the quality of a solution depends on the how well the recourse strategy
used fits the operational context. These should be further studied.
Some SS/DS-VRP’s could reveal particularly suited to such approach.
Applications to other operational problems, similar to VRPs, such as
the robust operations management problem studied in Appendix A,
may result be successful results.

Generally speaking, whereas most of the online operational prob-
lems are strongly NP-hard, the complexity of the proposed recourse
strategies can be an additional indicator of the computational complex-
ity of the problem in practice; when comparing two online problems,
the complexity of the closest (still pseudo-polynomial1) recourse strate-
gies developed could allow to further classify the problems. When
talking about the DS-VRPTW, and more specifically, its two-stage
counterpart the SS-VRPTW-CR, we saw that the expected cost of best
suited recourse strategy is computable in O

(
n2h3Q

)
, whereas it is

of O(nh2) for a stochastic single-machine scheduling problem with
no minimum transition times (see Appendix A). Interestingly, it is
exactly the same complexity than that of the stochastic VRP with
random demands, introduced in Bertsimas, 1992. These two problems
are in fact very similar, and consequently their recourse strategies,
which we further showed in Section 5.2.3 to be subproblems of the
SS-VRPTW-CR.

Second, this thesis focused on local search methods. Although sim-
ple to implement and easily adaptable, such algorithms could be
outperformed by other approches, already known to perform particu-
larly well on vehicle routing problems. In particular set partitioning
methods such as column generation, which becomes commonly used
for stochastic VRPs, could provide interesting results. Further research
should also be considered for alternative computational models such

1 An important theoretical question remains: how intelligent, that is, how close to the
associated online problem could a recourse strategy be, such that its expected cost
stays efficiently computable?
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as Bayesian networks (Darwiche, 2009), which naturally apply to the
random objective functions represented by the recourse strategies. Ap-
proximate Dynamic Programming (ADP, Powell, 2009) is also widely
used to solve routing problems in presence of uncertainty. Combined
with the scaling techniques, ADP is likely to provide interesting results.
Alternative representations of the uncertainty, e.g. by using fuzzy num-
bers instead of random variables (Huang and Teghem, 2012), should
also be considered.

final words

There are still a lot of potential improvements in order to obtain an
efficient dynamic decision system for online routing problems such
as the DS-VRPTW or the DS-VRP-R. In this thesis, we focused on the
application of local search algorithms to anticipative methods. The
inherent complexity of DS-VRPs makes difficult the use of stochastic
formulations. With a lot a work, we showed that it is in fact possible to
develop and compute efficiently closed-form expressions to evaluate
the expected quality of a solution. However, they do not suffice at
outperforming classical approaches, based on Monte Carlo sampling.
The simplicity of designing sampling-based evaluation algorithms
specific to particular operational contexts tends to privilegiate the
latters over complicated probabilistic models. Furthermore, whereas
independence between the potential requests must have been assumed
in order to simplify our closed-form formulae, this issue can how-
ever be easily solved with sampling. Albeit the SS-VRPTW-CR model
embeded in 2s-GSA is by definition perfectly suited within a purely
static and stochastic VRP framework, we must afterall admit that the
famous Occam’s razor principle stands still in the context of the online
VRPs studied in this thesis.

Yet, studying DS-VRP’s while looking at either their two-stage or
multistage stochastic formulations is definitly of worth, and permits to
emphasys important properties of the online problems. When possible,
especially under simple operational contexts and when the system
must provide strong guarantees, probabilistic models may be preferred
over sampling approaches. From a theoretical point of view, in often
leads in interesting, sometimes useful, results.
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Part IV

A P P E N D I X





A
R O B U S T O P E R AT I O N S M A N A G E M E N T O N M A R S

Unlike most classical scheduling problems, operations in a space mis-
sion must be planned days ahead. Complex decision chains and com-
munication delays prevent schedules from being arbitrarily modified,
hence online reoptimization approaches are usually not appropriate.
The problem of scheduling a set of operations in a constrained context
such as the Mars Desert Research Station (MDRS, Figure A.1) is not
trivial, even in its classical deterministic version. It should be seen as
a generalization of the well-known NP-complete job-shop scheduling
problem (Lenstra and Kan, 1979), which has the reputation of being one
of the most computationally demanding (Applegate and Cook, 1991).
Hall and Magazine, 1994 insist on the importance of mission planning,
as 25% of the budget of a space mission may be spent in making these
decisions beforehand. They further cite the Voyager 2 space probe
for which the development of the a priori schedule involving around
175 experiments requiring 30 people during six months. Nowadays,
hardware and techniques have evolved and it is likely that a couple
of super-equipped (i.e. with a brand new laptop) human brains may
suffice in that specific case. Yet, the problems and requirements have
evolved too. Instead of the single machine Voyager 2, space missions
have to deal with teams of astronauts.

At the MDRS, computing an optimal schedule becomes significantly
less attractive as problem data, such as the manipulation time of
experiments, are different from their predicted values. In a constrained
environment with shared resources and devices, such deviations can
propagate to the remaining operations, eventually leading to global
infeasibility. Even provided only one non-human operator, uncertainty
may be of significant impact. For instance, the future M2020 planetary
rover will be equipped with an onboard scheduler, designed to operate
under processing time uncertainty Chi et al., 2019; Rabideau and
Benowitz, 2017. The purpose of this paper is to investigate, based on
the real case study of a Mars analog mission, the impact of stochastic
robust modeling against a classical deterministic approach on the
reliability of a priori mission planning.

application and contributions . How does the ABCD prob-
lem, introduced in Section 2.4.3 of the thesis, applies to realistic case
studies? How to deal with processing time uncertainty when facing a
larger, complex, scheduling problem which possibly involves multiple
operators, unknown probability distributions and exotic constraints?
In this paper, we show how even such simple insights can actually

181
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Figure A.1: The Mars Desert Research Station (MDRS) in the Utah desert,
U.S, is a Mars analog planetary habitat.

be applied to real project development and planning. As a proof of
concept, we demonstrate the contribution of robust modeling on the
preparation and implementation of the UCL to Mars 2018 project that
took place at the Mars Research Desert Station (Utah), March’18.

Project development realizes about 30% of the world gross product
(Turner et al., 2010). Besides the space analog mission, our approach
naturally applies to a larger set of project scheduling contexts whereas
most of existing studies have solely been done in machine scheduling
environments (Herroelen and Leus, 2005).

We formulate the core problem as a robust single-machine scheduling
problem with random processing times. Tasks are subject to precedence
constraints, strict time windows and minimum transition times. We
show how the robustness of a solution, in terms of its probability to
remain feasible to operational time constraints, can be exactly com-
puted in pseudo-polynomial time, when relying on realistic recourse
assumptions. By removing the recourse assumption and thus allowing
online reoptimization, it still provides a useful valid lower bound on
the solution’s robustness. We also identify theoretical limitations to
computational tractability and propose alternatives. Finally, we adapt
the core problem to the goals pursued and constraints faced during the
UCL to Mars 2018 mission, and empirically measure the average gain of
using our generalized stochastic formulation instead of a deterministic
one. In addition to the proposed closed-form formula, computational
results are compared with those obtained when using Sample Average
Approximation method to estimate the solutions’ robustness.

organisation. Section A.1 provides a general formal description
of the problem. In section A.2, we show how the robustness of a
solution, in terms of probability to remain feasible under uncertain
processing times, can be efficiently computed. In fact, we provide
closed-form expressions to compute it in pseudo-polynomial time.
Finally, section A.3 applies theory to the practical case study of the
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UCLtoMars2018 analog mission. Conclusion and further research av-
enues are discussed in section A.4.

a.1 core problem

For now we consider a robust single-machine scheduling problem with
random processing times (R-SMS-T), involving job precedence, time
windows and minimum transition times constraints. Approximation
functions will thereafter be used to generalize the core theoretical
results to the specific problem we face in our MDRS case-study, a robust
job-shop scheduling problem involving additional specific constraints. A
recent review on stochastic scheduling is provided by Chaari et al.,
2014.

input. A discrete time horizon H = {0, . . . , h} on which a set
J = {j1, . . . , jn} of jobs must be scheduled on an unique machine (or
operator). The machine processes one job at a time and each job must
be processed exactly once. Each job j comes with a probability pd

j that
j requires a processing time d ∈ H, with ∑d∈H pd

j = 1. Each job j is
associated a set TWj ⊆ H of valid time intervals to process j, called
time windows. Precedence constraints state that a (possibly empty)
set J<j ⊂ J of jobs must be completed before starting job j. A minimum
transition time states a minimum delay wmin

j′,j to be observed between
completion of a job j′ ∈ J<j and the beginning of j.

solution and formulation. A solution to the R-SMS-T is an
ordered sequence of jobs: s = 〈ji, . . . , ji′〉. Every job j ∈ J appears
exactly once in the sequence. We use a two-index flow formulation
in order to describe s: binary decision variables xij denote whether
or not the job j ∈ J is scheduled immediately after i ∈ J. Additional
variables x0j (resp. xj0), for j ∈ J refer to the first (resp. last) job j of the
sequence.We formulate our R-SMS-T as:

max
s

r(s) (A.1)

s.t. ∑
i∈J0\{j}

xij = ∑
i∈J0\{j}

xji = 1 j ∈ J (A.2)

uj − ui + nxji ≤ n− 1 j, i ∈ J (A.3)

ui ≤ uj − 1 j ∈ J, i ∈ J<j (A.4)

xji ∈ {0, 1} j, i ∈ J0 (A.5)

where we note J0 = J ∪ 0 for conciseness. The robustness measure r(s),
detailed in the next section, gives the probability of s to remain feasible.
Flow conservation constraints (A.2) state that a job is preceded (and
followed) by exactly one job i. In fact, inequalities (A.2)-(A.3) define the
solution space of a directed traveling salesman problem (TSP), when using
a so-called MTZ-formulation (Miller et al., 1960) in order to explicitly
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formulate as uj (A.3) the position of job j in the sequence. We then
express precedence constraints quite naturally in (A.4). Since the time
dimension is stochastic, time windows and minimum transition time
constraints cannot be part of the description of a solution to the R-
SMS-T. Instead, they contribute to objective function r(s) as described
in the next section. Constraints (A.2)-(A.5) are then sufficient to define
the solution space of our robust single-machine scheduling problem
with random processing times.

recourse assumptions . In order to be efficiently computed, r(s)
requires assumptions (so-called recourse strategy) on how s is adapted
to the realizations of the random processing times:

1. The machine (operator) executes its jobs according to the ordered
sequence defined by s ;

2. When starting a job j, one does not know its processing time
until it is actually completed.

3. A job that is not completed by the end of its current time window
must be re-processed from scratch at the beginning of its next
time window, if any (otherwise 4).

4. In case the machine fails at processing a job due to unfortunate
processing times, the sequence is interrupted.

These assumptions directly come from the definition of our problem.
In particular, by fixing the sequences of s assumption 1 explicitly
forbids reoptimization. A relaxation would lead to a dynamic and
stochastic problem, and would no longer permit the exact evaluation
of r(s) in pseudo-polynomial time (unless P=NP). Furthermore, oper-
ational contexts such as space missions do not allow the modification
of the schedule in the middle of a work day. Our recourse strategy
still provides a good indicator for situations that suggest reoptimiza-
tion at the end of each work day. In fact, under assumptions 1-4 the
probability to remain feasible as computed by r(s) is a lower bound
to the probability of perfect reoptimization (optimally reoptimizating
each time a random event realizes) to remain feasible.

a.2 robustness of a solution

We define the robustness r(s) of a given solution s as its probability to
remain feasible. This can be trivially expressed in terms of the set of
possible scenario realizations:

r(s) = ∑
ξ∈E

Pr{ξ} f (s, ξ) (A.6)

where E is the set of all probable scenarios and f (s, ξ) is the indicator
function returning 1 if and only if solution s remains feasible under
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Figure A.2: Time horizon of job B. Blue cells represent TWB =
{0, . . . , 179, 300, . . . , 479}. When t <= 179 then TW−B (t) = ∅.
For 180 ≤ t ≤ 479, we have TW−B (t) = {0, . . . , 179} and, for
t ≥ 480, TW−B = {300, . . . , 479}.

scenario ξ, that is, the case described by assumption 4. is not encoun-
tered. Since the size of E grows exponentially with respect to the
number of jobs, the computation of (A.6) rapidly becomes intractable.
The most natural approximation for such an enumerative function is
called Sample Average Approximation (SAA, Ahmed and Shapiro, 2002),
which relies on Monte Carlo sampling to evaluate only a subset of E.
Its accuracy however depends on the number of samples taken into
consideration.

Instead, one can reason on the jobs themselves (and their associated
random variables) in order to derive a tractable formula to compute
r(s) exactly. Let us consider that a job j is correctly processed in a
scenario ξ if it is completed within one of its valid time windows and
fulfills all minimum transition time constraints with other jobs, if any.
It follows that the probability that a solution s remains feasible is the
probability that every job succeeds in that sense,

r(s) = Pr{
∧
j∈J

job j correctly processed in s}

= Pr{jlast correctly processed in s} (A.7)

which, by following assumption 4., is also the probability (A.7) that
we succeed at proceeding the last job jlast ∈ J of the sequence s =

〈j, . . . , jlast〉.
In our ABCD example, r(s) is the probability that job D eventually

gets completed. Our time horizon is composed by two consecutive
five-hour work days, modeled as a discrete set H = {0, . . . , 599} which
contains 600 time units of one minute each. The first 300 time units
belong to the first work day, and so on. Since job B can only be
processed during the first three hours of each day, we have TWB =

{0, . . . , 179, 300, . . . , 479}. Similarly, TWC = {0, . . . , 299} as job C must
be completed the first day. We also denote by TW−j (t) ⊆ TWj the
set of time units which only belong to the time window that directly
precedes time t and does not contain it. Figure A.2 illustrates H
according to job B. We note j− ∈ J the job that directly precedes j in
solution s.

Let Pend
j (t) the probability that job j ∈ J is completed at time t

exactly, and Pstart
j (t) the probability that j is started at time t precisely.
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Note that, consequently to assumptions 2. and 3., starting a job does
not systematically involve its completion. Job jlast is therefore correctly
processed if and only if it is completed during one of its time windows:

r(s) = ∑
t∈TWj

Pend
jlast

(t) (A.8)

completion times . For every job j ∈ J, the probability Pend
j (t)

that j finishes exactly at discrete time unit t ∈ H is constituted of all
the possible processing times that could have led to complete the job
at that specific time t:

Pend
j (t) =

 ∑t
d=0 pd

j · Pstart
j (t− d) if t ∈ TWj

0 otherwise.
(A.9)

starting times . We use starting times to handle time windows.
Suppose we know the probability Pready

j (t′) that the machine becomes
ready for job j at time t′ ≤ t, in the sense that it is ready as soon as
it completes the previous job j−, and that any minimum transition
time constraint between a job j′ and j is fulfilled. Then, Pstart

j (t) is the

probability that, according to Pready
j and j’s time windows, one actually

starts to process job j at a current time t. We decline the computation
of Pstart

j (t) in three different cases, depending on t:

• t ∈ TWj ∧ t − 1 6∈ TWj: t is the first time unit of the current
time window. For job B, this corresponds to b cells in Figure
A.2. There are two possible reasons for starting a job at such
particular moments:

– Previous job, if any, just completed or did earlier. j must
wait for current time window to begin (first summation
term below). In the case of job B, at t = 300 the first sum-
mation ranges from ΓB(300) = 180 to 300.

– j had to be reprocessed (second summation term below),
as last attempt (during previous time window TW−j ) re-
vealed to require too much time to complete and had to be
interrupted due to assumption 4. In the case of job B, at
t = 300 the second summation ranges in {(t′, d) : 0 ≤ t′ ≤
179, t′ + d > 180}.

Putting the two cases together then leads to:

Pstart
j (t) =

t

∑
t′=Γj(t)

Pready
j (t′) + ∑

t′∈TW−j (t)
d:

t′+d−1 6∈TWj

Pready
j (t′) pd

j (A.10)

where Γj(t) is the first time unit that directly follows the previous
time window (from time t) that is, the first moment from which
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we could wait for the opening of the current time window. For
job B, this corresponds to the Γ cells in Figure A.2: ΓB(0) = 0
and ΓB(300) = 180.

• t ∈ TWj ∧ t− 1 ∈ TWj: t lies on a legal time unit, but not the
first of the current time window. The only reason for starting the
job at that moment is that the machine just becomes available
(ready) at current time t:

Pstart
j (t) = Pready

j (t) (A.11)

For job B, this corresponds to c cells in Figure A.2.

• t 6∈ TWj: t is not a legal time unit for processing j,

Pstart
j (t) = 0. (A.12)

For job B, this corresponds to cells a and d in Figure A.2. Note
that the schedule definitely fails at processing j if there is no
future legal time unit. This happens in Figure A.2 if the machine
becomes available at d cells.

availability times . We define Pready
j (t) as the probability that

the machine becomes available for job j at a time t. It is the probability
that job j could be started at time t, regarding both the completion time
of j− and minimum transition time constraints only (i.e. regardless
time windows of j).
First job of a sequence. If job j is the first of the sequence s then the
moment at which the machine becomes available is obviously time
unit zero:

Pready
j (t) =

 1 if t = 0

0 otherwise.
(A.13)

Subsequent jobs. We now consider a job j which is not the first of its
sequence. If there is no minimum transition time constraint associated
from any job j′ to j, then the machine is ready for job j as soon as
previous job j− is completed:

Pready
j (t) = Pend

j− (t) (A.14)

If j has exactly one minimum transfer time constraint with an unique
job j′ ∈ J<j , probability Pready

j (t) becomes

Pready
j (t) ≡ Pr{t = max(end(j−), end(j′) + wmin

j′,j )} (A.15)

where end(j) is the time at which job j reveals to be completed.
Namely, either job j′ has completed for long enough (at a time
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t′ ≤ t − wmin
j′,j ) to not worry about minimum transition time wmin

j′,j
and the operator waits for the completion of j− in order to start j,
or the previous job j− is completed yet but j must be delayed until
current time t coincides with the completion time of j′ plus minimum
transition time wmin

j′,j . If the sequence is s = 〈A, B, C, D〉 in our example,

Pready
C (t) is the probability for t to be exactly equal to the maximum

of 1) the completion time of previous job B and 2) that of A plus one
hour. Mathematically,

Pready
j (t) = Pr{end(j−) = t ∧ end(j′) ≤ t− wmin

j′,j }

+ Pr{end(j−) < t ∧ end(j′) = t− wmin
j′,j } (A.16)

Indeed, in absence of time windows for j either we start j as soon as
j− finishes (first term of (A.16)), or we wait after the completion j−

until we reach appropriate time end(j′) +wmin
j′,j (second term of (A.16)).

Since the completion time of j− clearly depends on that of j′, it finally
leads to:

Pready
j (t) = ∑

t′≤t−wmin
j′ ,j

Pend
j′ (t′) · Pend

j−|j′(t, t′)

+ ∑
t′<t

Pend
j′ (t− wmin

j′,j ) · Pend
j−|j′(t

′, t− wmin
j′,j ) (A.17)

where Pend
j−|j′(t, t′), the probability previous job j− completes at time t

conditionally that job j′ completes at time t′ ≤ t, can be computed
recursively by following (A.9) where Pend

j′ (t′) = 1 and Pend
j′ (t′′) = 0,

for t′′ 6= t′. In particular, in case j′ = j− then (A.17) reduces to
Pend

j− (t− wmin
j′,j ), since Pend

j−|j−(t, t′) = 1 if t′ = t, zero otherwise. Note
that supplementary minimum transition time constraints can be asso-
ciated to j by adding terms to the max operator in (A.15).
Intractability issue. Having two jobs j′, j′′ on which j depends for
minimum transition time, one has to take conditional probabilities
Pend

j−|j′,j′′(t, t′, t′′) into account for every combination of t′, t′′ ∈ H. In the
case the last job jn of a solution s = 〈j1, . . . , jn〉 is constrained by mini-
mum transition times involving previous jobs j1, . . . , jn−1, computing
all the conditional probabilities is equivalent to enumerating all the
O(hn) possible scenarios. In order to keep the computation tractable,
in what follows we assume that there is at most one such constraint
per job.

computational complexity. Provided a solution to n jobs,
the complexity of computing (A.7) is equivalent to the one of filling
up three matrices Pready, Pstart and Pend, each of size nh, containing
respectively all the Pready

j (t), Pstart
j (t) and Pend

j (t) probabilities. The
computational effort required to compute each cell significantly varies
depending on the presence of minimum transition time constraints.
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No minimum transition times. Once the probabilities in cells (j, 1 · · · t)
of Pend are known, the cell Pready

(j,t) can be computed in O(1) using

(A.14). Then, using probabilities in cells (j, 1 · · · t) of Pready, cell Pstart
(j,t)

can be computed in O(h) according to equation (A.10)-(A.12). In fact,
the double summation in the second term of (A.10) is amortized in
O(h). Finally, probabilities (j, 1 · · · t) of Pstart allows to compute cell
Pend
(j,t) in O(h) according to equation (A.9). A solution consisting in n

jobs and a time horizon of length h leads to a worst case complexity
of O(nh2).
Minimum transition times. In the case where each job can have a
most one minimum transition time with another job, we consider the
worst case involving a sequence 〈j1, . . . , jn〉 in which all j2, . . . , jn jobs
have a minimum transition time constraint with j1. It then requires to
compute O(n2) conditional probability matrices Pend

j|j′ (t, t′) each of size

h2, each cell still computable in O(h). That enables the computation
of Pready values in O(h) according to equation (A.17). The overall
complexity is now of O(nh2 + n2h3). However, if we allow a job to
have minimum transition time constraints with q other jobs, then the
Pend

j|j′1...j′q
matrix will be of exponential size hq.

stochastic transition times . There are some contexts in
which transition times could also be considered stochastic. In fact,
for a fixed planning, transitions may be equivalently seen as jobs.
Stochastic transition times may be thus trivially handled, by simply
replacing in a planning each stochastic transition time by a job with
same probability distribution. Hence we equivalently end up with
sequences of jobs, but no transition times.

a.3 the ucl to mars 2018 case study

During our stay at the Mars Desert Research Station (MDRS, figure
A.1), our crew conducted 10 experiments (see http://ucltomars.org/

#!/crews/190/projects ) regrouped in 7 different research projects.
Each researcher from the team was associated to a project, composed
of a set of jobs. Each researcher acted as an operator, or machine, each
being subject to constraints such as those covered by the R-SMS-T
plus a few additional ones. The goal of the crew’s executive officer
was therefore to model and solve the associated scheduling problem
globally.

a.3.1 In-place operations

The a priori horizon covered the thirteen 9-hour work days of the
entire mission. At the end of each day, we solved an updated schedule
on the remaining horizon, depending on the scientific outcomes of the

http://ucltomars.org/#!/crews/190/projects
http://ucltomars.org/#!/crews/190/projects
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current day. For practical reasons, each researcher was only able either
to perform his/her own jobs, or to assist other researchers.

deterministic model . As we were provided 7 operators instead
of a single one, the problem we faced at MDRS had been modeled
in-place as a deterministic job-shop scheduling problem (JSP), assuming
processing times to be perfectly known. The modeling of all crew mem-
bers’ research projects merged within a global problem was inevitable,
as researchers at MDRS depend on limited and shared resources. Some
projects required extra vehicular activities (EVAs), which for security
reasons require between three and five participants. EVAs usually
take half a day (four hours) in total, should be planned and approved
days ahead and happen at most once a day. In such context, all crew
members have their schedule linked to each others even concerning
research projects that do not involve EVAs.

The time horizon consists of 10 minutes time units, each operational
day counting 24× 6 time units. In fact, because of transition time con-
straints the 15 non-working hours (out of 24) must be considered as
well. An example of project model is depicted in figure A.3. The model
requires three distinct EVAs and combines two different projects lead
by the same researcher. Because a minimum number of people is
required to validate an EVA, it is however likely that the researcher
attends additional EVAs. In fact, the model depicted is actually con-
nected to the projects lead by the seven other researchers thorough
these EVA jobs.

In addition to precedence and minimum transition time constraints,
we also notice a 24h maximum transition time between completion Treat-
ment and that of Exposition2. Maximum transition time constraints are
easily handled in the deterministic problem. The stochastic formula-
tion however requires to be adapted, as explained hereafter.

Finally, beyond feasibility the model maximizes a quality measure,
depending on several preferences predefined by the crew members,
such as maximizing the delay between second and third EVA in figure
A.3. We refer to this solution quality function as f mdrs hereafter.

solutions . Optimizing the deterministic problem was achieved
in-place using a basic local search (LS) approach, exploiting well-
known sequence neighborhood operators and a simulated annealing
meta-heuristic. Our LS algorithm is directly adapted from the one
for stochastic VRPs of Saint-Guillain et al., 2017 , while replacing the
vertices, service durations and vehicles by the jobs, processing times
and machines, respectively. On Mars, a solar day lasts approximately
24h39m and is commonly called a sol. We refer to the day preceding the
first sol of the mission as SOL0. The nth day of the mission is called
SOLn. Figure A.4 shows an example of a schedule as recomputed
during the mission. Naturally, in practice schedules recomputed later
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Figure A.3: Modeling of a research project combining botanics (green) and
biology (blue), conducted by crew member Frédéric Peyrusson
(UCLouvain, Belgium).

Figure A.4: Overview of the first six days of the global schedule as recom-
puted in-place on March 15th evening (SOL5, remaining horizon
of 8 sols), based on updated data after completing five opera-
tional days.
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than SOL5 differ as a new problem is reformulated at the end of each
day, sometimes by integrating new specific constraints or preferences.
Taking into account the initial complexity of the model, this motivated
the choice for a heuristic algorithm over an exact approach.

The problem counts from 237 jobs at SOL0, to 149 jobs at SOL7.
Time horizon, at SOL0, is composed of 13 days of 144 time units, each
of 10 minutes.

a.3.2 A posteriori analysis: stochastic robust approach

This section investigates the impact of taking uncertainty into account
at planning phase of a Mars analog mission, provided the robustness
measure we propose.

a.3.2.1 Solution method and solution evaluation.

In order to study the impact of our robust formulation, independently
of the technology used, we use the same solution algorithm as used
for the deterministic problem.

The objective function computed by the solver at each solution s is
replaced by the heuristic:

f (s) = f mdrs(s)× rmdrs(s)

where f mdrs(s) is the quality of s as computed in the deterministic
context. If the solution is not deterministic-feasible, that is if s does
not fulfill all the constraints of the problem as described in section
A.3.1 (including constraints which are specific to the MDRS, such
as minimum and maximum people attendance during EVAs), then
f mdrs(s) = 0. In other words, we optimize based on the deterministic
solution quality, processing times hence being assumed to be fixed
to their expected values, multiplied by the robustness measure of the
solution against processing time variability.

mdrs specific constraints and issues . Note that following
(A.8) our definition of r(s) does not involve the multiple parallel ma-
chines context nor the maximum transition time constraints, whereas
they were both present on projects we conducted at MDRS.

In case there is no minimum transition time constraint between jobs
of a set of machines M, as it case the case at MDRS, our definition of
r(s) can be easily generalized:

r(s) = ∏
m∈M

(
∑

t∈TWj

Pend
jm
last

(t)
)

(A.18)

where jm
last is the last job assigned by machine m ∈ M, since the execu-

tion of the jobs (and hence the Pend
jm
last

(t) probabilities) are consequently
independent between the different machines. This is true even for
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EVAs, despite their minimum and maximum people requirement. For
practical reasons, an EVA could only take place during mornings,
from 9am to 12am. Together with the lunch activities, EVAs are the
only jobs having a fixed deterministic duration (3h). The probabil-
ity of respecting the scheduled people attendance to an EVA is then
equivalent to the probability for all the assigned people to respect this
9am-12am time window.

Similarly to the minimum transition time constraints, maximum
transitions are computationally very hard to take into account while
computing an exact r(s). Instead, here we use the following approxi-
mation:

rmdrs(s) ≈ ∏
m∈M

(
∑

t∈TWj

Pend
jm
last

(t)
)

×
[
1−∑

j∈J
∑

j′∈J<j

(
∑

t′∈H
∑

t≥t′+wmax
j′ ,j

Pend
j′ (t′)Pend

j (t)
)]

(A.19)

, by supposing independence between completion times. Here wmax
j′,j is

the maximum allowed transition time between completion of j′ and
that of j, if any, otherwise wmax

j′,j = h. The additional second term is
one minus (an upper bound on) the approximated probability that a
maximum transition time constraints is violated.

horizon partitioning approximation (hpa). Another issue
with the MDRS case study is the computational effort required to
compute r(s), which critically depends on the length of the horizon. In
practice, computing rmdrs(s) on the entire horizon takes at least several
minutes, even at SOL7. Instead, we introduce the rmdrs

∆ (s) measure,
which we denote by Horizon Partitioning Approximation. HPA consists
in the robustness of s when the horizon is partitioned in indepen-
dent parts of ∆ days each. For instance, rmdrs

2 (s) is computed by first
applying rmdrs(s) on days {1, 2} only, using a two-days horizon and
considering only the jobs a priori planned at days {1, 2} by s. The
same computation is then performed on days {3, 4}, by considering
the days {1, 2} to be fixed, and so on until we cover the entire horizon.
A pass at days {d, . . . , d + ∆ − 1} computes the probability that, if
everything happens as planned by s up to start of day d, all the jobs
planned for days {d, . . . , d + ∆ − 1} get actually completed during
those days. A job at day d that has a transition time constraint with a
job j′ from a day d′ < d simply sees its time window modified accord-
ingly, since completion time of j′ is supposed to be fixed. Finally, we
multiply the probabilities obtained at each pass to get rmdrs

∆ (s). Using
rmdrs

1 (s) then provides the probability that every job gets completed
the day it is planned, which is a pessimistic approximation of the
robustness of s, since in general delaying a some job during a few
days does not necessarily break feasibility. The later can be viewed as
optimizing a stability criterion (Goren and Sabuncuoglu, 2008), in the
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sense that using ∆ = 1 we approximate the expected deviation from
daily objectives.

a.3.2.2 Experimental plan.

Our empirical study is based on real data from the UCL to Mars
2018 analog mission. Our benchmark is composed of the sequence
of updated problems we faced at SOL1, SOL2, SOL4, SOL5, SOL7,
in addition to the initial problem modeled at SOL0. Unfortunately,
models faced at sols 3, 6, 8-12 were lost due to a technical issue.

However, we ignore the exact probabilities that describe the process-
ing times of our jobs. Good predictions require a significant amount of
observations, whereas we are only provided the scenario that realized
during the mission. Collecting a sufficiently large set of observations is
often impossible in practice and it is often both necessary and realistic
to consider the real distributions as unknown (or hidden). Let Xj be
the real probability distribution of j’s processing time, and X̂j the
predicted one used by r(s). As Xj is unknown, we approximate it
using a normal distribution: X̂j ∼ N(µ̂j, σ̂). We consider five different
experimental contexts, depending on the quality of the approxima-
tions:

1. We know exactly the mean value of each distribution:
E[Xj] = µ̂j, ∀j ∈ J;

2. The approximations are fairly good:
E[Xj] ∼ Un(µ̂j ± 10%), ∀j ∈ J;

3. The approximations are of poor quality:
E[Xj] ∼ Un(µ̂j ± 30%), ∀j ∈ J

4. The approximations are globally underestimating:
E[Xj] ∼ Un([µ̂j − 10%, µ̂j + 30%]), ∀j ∈ J

5. The approximations are globally overestimating:
E[Xj] ∼ Un([µ̂j − 30%, µ̂j + 10%]), ∀j ∈ J

whereas in all five cases each hidden discrete distributions Xj is ran-
domly generated according to E[Xj], by using a normal distribution
with 50 rolls only which results in a highly imperfect normal distribu-
tion. Note that 4. stands for a pessimistic context in which processing
times will often reveal to be longer than initially estimated, in contrary
to optimistic context 5.

A solution s is optimized by using either the deterministic objective
function, f = f mdrs, or the proposed stochastic measure, f = f mdrs ×
rmdrs

∆ , exploiting the provided X̂j approximate distributions. In order
to assess the quality of s, we measure its true robustness by simulating
its execution on a sufficiently large number of scenarios (105), hence
using Sample Average Approximation (SAA, Ahmed and Shapiro, 2002).
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For each experimental context, from 1. to 5., the 105 scenarios are
randomly sampled from the Xj hidden real distributions. We then
measure the average proportion of the scenarios in which s remains
feasible. We refer to this robustness measure as SAA105(s).

a.3.2.3 Results.

For each instance SOLn, we compute a set of 10 solutions by first
using the deterministic objective function f = f mdrs, then by using
f = f mdrs × rmdrs

1 and finally by using f = f mdrs × rmdrs
2 , with 30

minutes of computation time. Table A.1 shows the average results
obtained by these sets of solutions as the percentage of simulations in
which the schedule remains feasible, depending on the instance and the
experimental context 1. to 5. We obtain these results by computing
SAA105(s). For each instance, the δ column gives the solutions average
relative difference in their deterministic attractiveness, as computed
by f mdrs.

Clearly, the solutions obtained using the two stochastic robust ap-
proaches strongly outperform those of the deterministic model. Obvi-
ously, stochastic models perform better under optimistic assumptions,
namely exact (1.) and overestimating (5.) distributions. The largest
gaps in the average robustness of both deterministic and stochastic
models appear under context 1., since at that point the stochastic
HPA functions rmdrs

1 and rmdrs
2 are computing values being almost

equivalent to the real ones. The most preferred situation is naturally
context 5. in which the mean processing times are globally overesti-
mated, since whatever the solution is, it is likely to be more robust
than under other contexts. However, it is interesting to note that even
under such fortunate conditions, the deterministic model produces
solutions that fail ±66% of the time, on average, against ±5% for
those obtained using the proposed stochastic model. Furthermore, this
improved robustness comes at the price of deteriorating by only 7% of
the solution’s deterministic quality (δ column) on average. Under con-
texts 2. and 3., average robustness is increased from the deterministic
approach by more or less 76% and 65% respectively, when using rmdrs

1 .
Finally, using ∆ = 1 compared to ∆ = 2 in rmdrs

∆ reveals to be more
advantageous here, although this is strongly problem dependent. In
fact, in our MDRS case study involving time horizons that span from
6 to 13 days, ∆ provides a parameterizable trade-off between accuracy
and computational effort.

a.3.2.4 Comparison with SAA.

Results reported in Table A.1 clearly motivate the use of a robust
formulation. However, the design and implementation of rmdrs and
rmdrs

∆ can only be justified if it allows better average results compared
to the Sample Average Approximation (SAA) method.
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f = 1. 2. 3. 4. 5. δ

f mdrs × rmdrs
1 90.5 81.6 70.8 22.8 95.2 7

f mdrs×

SAA102 89.4 78.6 47.3 8.3 96.6 15

SAA5.102 90.6 79.8 49.7 16.7 97.6 14

SAA103 89.7 78.3 56.2 19.4 97.1 12

SAA5.103 88.8 79.3 62.3 21.6 98.2 11

SAA104 87.0 76.1 55.7 19.3 96.8 14

Table A.2: Average results obtained by using the SAA-based method, de-
pending on the experimental context (from 1. to 5.), compared to
average results obtained by f × rmdrs

1 . Different scenario pool sizes
are considered, from 102 to 104.

f = 1. 2. 3. 4. 5. δ

f mdrs × rmdrs
1 89.9 81.0 68.1 19.6 95.1 8

f mdrs× SAA5.102 86.9 74.7 46.1 12.4 96.5 12

SAA103 85.7 74.5 51.8 12.1 96.2 14

SAA5.103 69.5 56.5 39.4 8.6 86.3 11

Table A.3: Average results obtained by using the SAA-based method, the
computation time being restricted to 10 minutes.

Table A.2 reports the average results obtained by repeating all the
experiments, while using f × SAAN as LS objective function, with
the number N of sampled scenario varying from 102 up to 104. Both
accuracy and computational efficiency of SAA depends on N, which is
in fact problem dependent. In our case, N = 5.103 seems to constitute
the best compromise on average, when computational time is limited
to 30 minutes. Despite the interesting results obtained by SAA5.103 , it
is however outperformed by rmdrs

1 in contexts 2., 3. and 4. In terms of
robustness, these contexts are of the utmost importance for anyone
concerned by the issues and limitations of processing time estimations.

The superiority of a closed-form function, such as rmdrs
1 , over SAA

is closely related to the available computation time. It is likely that,
provided a couple of hours rather than of 30 minutes, SAA would
eventually outperform rmdrs

1 . In contrary, reducing computation time
to 10 minutes tends to significantly reinforce the superiority of rmdrs

1 ,
as depicted in Figure A.3. We note that, as we reduce computation
time, SAA obtains better results by reducing the number of samples,
hence improving diversification in the LS process.

a.3.2.5 Accuracy of rmdrs.

Moving from the theoretical core problem to the real one faced at
MDRS naturally introduces limitations, leading to the proposed sim-
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Figure A.5: Average deviation of rmdrs
1 (blue) and rmdrs

2 (red) robustness
measures (y-axis), depending on the solutions’ true robustness
(x-axis). Top: SOL0. Bottom: SOL7.

plifying assumptions. In Figure A.5, we show how this impacts the
accuracy of the robustness functions rmdrs

1 and rmdrs
2 , on both instances

SOL0 and SOL7. For every incumbent solution s encountered by the
LS algorithm during the previous experiments (±8700 solutions for
SOL0), we recomputed the true robustness of s under experimental
context 1., thus by using SAA105 . Figure A.5 shows how the value
rmdrs

∆ (s)− SAA105(s) evolves with respect to SAA105(s).
We naturally observe that the accuracy of the robustness measure, as

computed by rmdrs
1 and rmdrs

2 , first depends on the size of the problem:
there is a clear difference between SOL0 (237 jobs) and SOL7 (149 jobs).
We note that rmdrs

2 seems globally more accurate than rmdrs
1 . Having

a closer look reveals that under SOL0 (resp. SOL7), around 82% (resp.
99%) of values computed by rmdrs

2 are comprised in SAA105(s)± 0.01,
whereas only 75% (resp. 99%) for rmdrs

1 .
The average accuracy of rmdrs

∆ globally decreases as the true ro-
bustness of the solutions increases. This suggests a hybrid approach,
mixing rmdrs

∆ in the early stage of the LS process, whereas SAA (e.g.
SAA5000) as soon as the robustness of the incumbent solution exceeds
some predefined threshold. Finally, we observe that under SOL7, rmdrs

∆
is globally not overestimating the true robustness. As a matter of fact,
while examining the other SOLn instances, the proportion of over-
estimations tends to decrease with the problem size (i.e. the number
of jobs).

a.3.2.6 Length of the horizon and deterministic quality.

It is interesting that, in the experimental results, no relation appears
between the number of operational days and the deterministic quality
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of a solution. Our first intuition tells us that the shorter is the horizon,
the better the deterministic quality, because the more likely we respect
the a priori schedule. We think that what actually happens is that the
length of the horizon, in each instance, is compensated by the urgency
of the tasks. In fact, when 10 days remain, one can afford postponing
tasks because of a poor decisions. When there are only 2 days left,
things start to be too urgent and postponing may not remain an option
anymore. In the end, both compensate so that the average quality of a
deterministic planning may after all not depend on the length of the
horizon.

a.4 conclusions and research directions

In the context of a recent Mars analog mission, we propose robust
models for daily decisions in operations scheduling. Simulations show
that our method, by taking the processing time uncertainty into ac-
count when designing a schedule, is able to produce solutions that
are significantly more reliable than those obtained using a classical
deterministic model, even when the available stochastic knowledge
is of very poor quality. Even in a context where all the average pro-
cessing times are globally overestimated, our experiments show that
the probability of a mission success is multiplied by three. The solu-
tions’ robustness comes at a relatively low price, their quality being
impacted by 7% on average, whereas the probability to stay feasible is
significantly increased.

We explore two fundamentally different approaches for evaluating
the robustness of a solution: the proposed closed-form formulas and
the well known Sample Average Approximation method. In particular,
it showed promising results for the future onboard scheduler of the
M2020 rover Chi et al., 2019. Depending on the problem and available
computation time, results suggest that the strengths of both techniques
could be combined into a hybrid algorithm.

Project scheduling is a problem daily faced by aerospace engineers
and managers, and each problem is specific. Our current understand-
ing of the problem could be improved by conducting further exper-
iments, on a broader set of operational contexts. In fact, exploiting
available data from different projects is likely to require new spe-
cific, exotic constraints to be considered at planning and optimization
phases, leading to a more comprehensive model.

Existing techniques for robust (a.k.a. proactive) scheduling are mostly
redundancy-based, or make use of temporal protection (Herroelen and
Leus, 2005). Based on random variables, our method considers the
original set of tasks without duplicating nor modifying the data, and
searches for the expected best sequencing of the tasks. This makes
our approach compatible with the two previously cited ones, and
experiments should be conducted while mixing for example with
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redundancy. Further research should also be considered for alternative
computational models such as Bayesian networks (Darwiche, 2009),
which naturally apply to our random objective function, and for alter-
native representations of the uncertainty, e.g. by using fuzzy numbers
instead of random variables (Huang and Teghem, 2012).

application to other domains . Whereas the paper is focused
on the Mars scenario, which provided the case study, it could be of
interest in many other domains. Consider for instance the case of the
biotechnology industrial domain. In biotech companies, scheduling
the manufacturing projects (e.g. production of vaccines, drugs, etc.) is
a problem for which our approach is potentially particularly valuable.
The main reasons are that: 1) their tasks must be performed by humans,
hence having highly variable processing times, and 2) they must
cope with really strict operational constraints (the so-called GMPs).
In fact, we claim that it applies to any operational context for which
planning or scheduling involves time uncertainty and hard operational
constraints.
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A S I M U L AT I O N - O P T I M I Z AT I O N F R A M E W O R K F O R
C I T Y L O G I S T I C S : A P P L I C AT I O N O N M U LT I M O D A L
L A S T- M I L E D E L I V E RY

City Logistics has attracted considerable interest from the operations
research and logistics communities during last decades. It resulted
in a broad variety of promising approaches from different fields of
combinatorial optimization. However, research on urban freight trans-
portation is currently slowing down due to two different lacks, limiting
the exploratory capacity and compromise the technology transfer to
the industry. First, the majority of the instances in the literature are
based on the generalization of classical instances, often not created for
urban applications, or on artificial data, i.e., data not coming from any
historical or empirical datasets. Thus, the validation of models and
methods becomes more difficult, being the results not directly com-
pared to real or realistic settings. Second, even when some data sources
become available, there is no standard way to mixing data gathered
from different sources and, from them, generate new instances for ur-
ban applications. This paper aims to overcome these issues, proposing
a simulation-optimization framework for building instances and assess
operational settings. To illustrate the usefulness of the framework, we
conduct a case study, in order to evaluate the impact of multimodal
delivery options to face the demand from e-commerce, in an urban
context as Turin (Italy).

contributions . The contribution of paper Perboli et al., 2018, in
which the current appendix is based, is twofold. First, we propose to
mitigate the two limitations mentioned at Section 4.3.1 by introducing
a new standard optimization-simulation framework for City Logistics.
Whereas the framework generalizes to many types of routing problems
encountered in urban areas, its generality also allows to describe
and combine requirements coming from different stakeholders. We
categorize the sources of information and we present a tool able to
mix data gathered from different sources. So we can generate new
instance sets which are realistic, i.e., they include all the characteristics
of the original datasets.

Second, we apply our framework to a case study focused on the
online urban freight distribution in the city of Turin (Italy). This study
concerns the application of the proposed simulation-optimization
framework to address the Dynamic and Stochastic Vehicle Routing
Problem with Time Windows (DS-VRPTW) problem. We analyse how
the solution quality in realistic urban scenarios is sensible to various

201
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stakeholder parameters, such as customers geographical distribution,
the available types of vehicles and their limitations, the use of lockers
for delivering part of the demand. Our experimental plan leads to a
broad variety of realistic benchmarks, each of these being specialized
in a particular operational context in the online urban collection of
parcels. This portfolio of benchmarks is made available to the com-
munity under a simple common format, in order to reuse them in
different case studies.

organisation. The paper introduction, as well as the literature
for vehicle routing case studies and applications in realistic urban
areas, can be found at Section 4.3 of the thesis. Section B.1 describes
the framework we propose in order to analyse realistic urban freight
collection problems. Then, Section B.2 shows how our framework can
be exploited to realize a concrete case study of online freight collection
in a realistic urban context. Note that the case study is the production
of Guido Perboli, Mariangela Rosano and Pietro Rizzo, rather than a
original contribution of the author of the current thesis. Conclusions
and perspectives are discussed in Section B.3, also in appendix.

b.1 a simulation-optimization framework for vrp in ur-
ban areas

The simulation-optimization framework proposed in this section is
depicted in Figure B.1. According to Crainic et al., 2017, this framework
applies a sequential simulation-optimization, where the simulations
are numerical and based on the Monte-Carlo method. The simulation
is implemented in Python, while the optimization modules can be
defined directly in Python by the Pyomo modelling tool, including the
PySP library for Stochastic Programming problems (Hart et al., 2011;
Watson et al., 2012) or can be integrated as external modules.

Thus, the framework is composed of the following modules:

1. Data fusion and operational context description;

2. Scenario generation and Simulation;

3. Optimization;

4. Context modification.

b.1.1 Data fusion and operational context description

The first phase of the framework consists in describing both the prob-
lem studied and the operational context, which may consider different
types of data sources. We define the operational context using the
following five sources of information: city network graph, vehicles
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Figure B.1: The simulation-optimization framework.

and travel times, behavioural data (e.g., users choice preferences),
socio-demographical data and city constraints (e.g., limited traffic
zones, specific restrictions for certain vehicles, etc.) and problem ob-
jectives and constraints. Some data may be stochastic, i.e., they can
be described by random variables, whenever some component of the
operational context is uncertain (e.g., service or travel times, customer
demand or presence, etc.). The problem is then fully defined by the
problem objectives and constraints data type. The framework requires
as input a problem (or operational context) description consisting of
five types of data:

a City network graph and maps. They are represented by complete di-
rected graphs over a set of depots and customers. Ideally, vertices
should be associated geographical coordinates so that to be visu-
alized on real maps. The city network graph is usually obtained
using raw data from cartography and the companies, includ-
ing maps and empirical distributions of customers and depots.
Amongst the four main stakeholders identified by Kim et al.,
2015 (residents, carriers, shippers and local administrators), the
city network graph explains the baseline geographical attributes
and means of the residents (customer locations), the shippers
(the location of the depots) and the carriers (the available road
network).

b Vehicle fleet and travel times. They include the specificities of the
vehicle types, as capacity, speed, fuel consumption, etc., as well
as their respective travel times and costs matrices. Vehicle fleet
and travel times capture the means supplied by the shippers. In
practice, these are provided by the company and possibly com-
bined with data from external sources (such as sensors spread
over the city network). Time dependence and/or uncertainty in
the travel times/costs, if any, may also be described here together
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with other uncertainties (e.g., vehicle breakdown probability dis-
tributions).

c Behavioural and socio-demographic data. They include information
concerning the density and the purchasing behaviours of fi-
nal customers for a specific market. Thus, they clearly describe
the residents stakeholders in all of their possible attributes. In
a static context, these capture the customers’ constraints (e.g.,
time windows, demands, origin-destination matrices, etc.). In
dynamic applications, any stochastic knowledge about the cus-
tomer habits can be described here (e.g., demand or service time
probability distributions, etc.).

d City constraints. Regulations imposed by the local administrators,
such as access time windows (e.g., forbidding trucks during
rush hours), vehicle weight restrictions (e.g., no heavy truck
in the city centre), etc. City constraints clearly represent the
administrators in all the regulations that could be imposed on
the other stakeholders (e.g., the carriers).

e Problem objectives and constraints. Describe the problem itself in
terms of constraints, preferences, as well as the objective function
to be optimized. They can be defined by declaring the specific
optimization module including its interface with the scenarios
or using a MIP solver by the Pyomo modelling tool.

This partitioning of the data into five distinct types allows to easily
study the impact of modifying a specific aspect of the operational
context. Furthermore, it provides the possibility of combining/reusing
data from existing case studies, hence alleviating the full data un-
availability issue discussed in Section 4.3. For instance, provided a
real-world case study on a classical CVRP, modifying only components
d and e of the problem allows to study the impact on the total carbon
emissions of restricting the access of the city centre to green vehi-
cles. From a VRPTW, one can consider a Dial-a-Ride Problem (DARP)
by adapting component c to specify whether each location should
be a pickup or a delivery location and setting maximum ride times.
Furthermore, filling component c with customer demand probability
distributions permits to study Stochastic VRPs, whereas updating
component b could allow studying the impact of taking travel time
variability into account, as well as to use empirical distributions com-
ing from other studies, letting to anonymize industrial data. Similarly,
the potential benefits of redesigning part of the road network can be
considered by applying those modifications to the component a.



B.1 a simulation-optimization framework for vrp in urban areas 205

b.1.2 Scenario generation and Simulation

Once both the problem and the operational context are well defined,
a broad set of scenarios is generated by using a high-level scenario
generator, which allows the researchers to develop specific scenarios
for different frameworks. Each scenario represents a particular realiza-
tion of all the random variables involved in the problem data. In other
words, each scenario is the description of a particular operational day.
If the problem and operational day description contain no uncertain
data, the scenario becomes the description itself. Otherwise, a set of
instances are generated using Monte-Carlo sampling. The framework
let the user define deterministic operational scenarios or stochastic
ones with associated a scenario tree to each simulation scenario.

The present version of the simulator implements a Monte Carlo
method, a module for georeferencing the data and a post-optimization
software. In more detail, the method works as follows:

• The Monte Carlo simulation module repeats the following pro-
cess for a given number |I| of iterations.

– Given the different data of the operational context as well as
eventual distributions of the data themselves, the simulator
generates a series of city scenarios.

– The chosen optimization module is executed in each sce-
nario.

– A first statistical analysis on the aggregate results of the
scenario-based optimization of a single iteration of the
Monte Carlo simulation is performed. These data are used
in order to check if one or more unrealistic or extreme
situations have been introduced in the simulation itself.

– In order to make a more accurate definition of travel times
and cost matrices, the georeference module is used. The
georeference feature is implemented by means of Google
Earth APIs and it is also used to graphically represent the
results of the simulation itself.

• The distribution of the simulation-based optimization solutions
is computed and a series of statistical data are collected.

• A post-optimization software module is devoted to comput-
ing additional Key Performance Indicators (e.g., CO2 and NOx
emissions, stop per working hour, service and travel times).

b.1.3 Optimization

During this phase, each scenario is solved using a dedicated opti-
mization algorithm that we consider here as a black box. Provided
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that the solver outputs the Key Performance Indicators required by
the case study into consideration, the post-optimization analysis is
conducted. In order to cope with different contexts in urban areas, this
simulation-optimization framework is composed of different building
elements addressing the following problems:

• Mathematical model generated by the Pyomo modelling tool;

• VRPTW combined with the load balancing;

• Stochastic TSP;

• Dynamic Stochastic VRPTW solved by the optimization algo-
rithm proposed by Saint-Guillain et al., 2015.

b.1.4 Context modification

Eventually, the structure of the operational context description makes
it easily modifiable. During this phase, some properties of the descrip-
tion are modified, leading to a new operational context to be analysed
by reiterating through phases 2 to 4.

b.2 case study : online urban freight collection in turin

In order to demonstrate the potentialities of the proposed simulation-
optimization framework, we adopt it in the case study of the city of
Turin (Italy). Our aim is twofold:

• analyse the impact of multimodal delivery options to face the
demand generated by the e-commerce.

• highlight the importance of considering real benchmark data set
for DS-VRPTW coming from different sources and stakeholders.

b.2.1 Operational contexts and benchmark generation

Online shopping is rapidly increasing the freight flows which tran-
sit into the urban areas. According to Cardenas et al., 2016; Copen-
hagen Economics, 2013; FTI Consulting, 2011, while the business to
consumer (B2C) segment of e-commerce represents around 30% of
the e-commerce turnover, they generate 56% of all e-commerce ship-
ments. Moreover, e-commerce involves individually fragmented and
time-sensitive orders of generally small-sized items, leading to more
traffic in urban areas and negative externalities on the environment
(Taniguchi and Kakimoto, 2004). These are challenging factors for City
Logistics applications, which are more and more focused on the inte-
gration of different delivery options (e.g., cargo bikes, drones, lockers,
etc.). In fact, our paper addresses this topic, considering the following
four benchmarks:
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• Benchmark 1 (B1). Only traditional vehicles (i.e., fossil-fuelled
vans) are used to manage the parcel delivery in urban areas.

• Benchmark 2 (B2). Outsourcing of classes of parcels to green
carrier subcontractors (i.e., they use bikes and cargo bikes) is a
common practice to obtain operational and economic efficiency
and customer proximity while reducing the environmental im-
pact of logistics activities (Perboli et al., 2017). Thus, in the B2

we consider that a green subcontractor delivers the parcels up
to 6 kg in the central and semi-central areas of Turin. On the
contrary, the traditional carrier manages all remaining parcels.

• Benchmark 3 (B3). We consider the adoption of delivery lockers.
They represent self-service delivery location, in which the cus-
tomer can pick up or return its parcel, according to the best and
convenient time for him. In practice, these can be seen as special
"super-customers" that aggregate the daily demands of a subsets
of the actual customers.

• Benchmark 4 (B4). In this benchmark, we consider the integration
of the vans with both bikes and lockers.

These specific benchmarks derive from the combination of three
parameters defined "a priori": the size of the traditional vehicles’ fleet,
the size of the green vehicles’ fleet and the number of lockers. These
data are provided by an international parcel delivery companies and
an international e-commerce operator, which acting in Turin. Other
input data considered in the DS-VRPTW are:

• City network graph and maps. We consider a 2.805 x 2.447

km area in Turin, which includes the centre of the city and
a semi-central area, as in Perboli et al., 2017 (see Figure B.2).
Moreover, the list of the depots, the locations of lockers and of
the potential customers inside the selected area are considered.
Concerning the depots, we contemplate a distribution centre
located on the outskirts of the urban zone and a mobile depot in
the city centre. The former supplies the traditional carrier, while
the second represents a satellite facility for the green carrier.
In addition, the list of all the roads inside the city area is also
required. Such list is arranged as a network of road-segments,
each road-segment is defined as a sequence of two connected
points, i.e., the crossroads. The information concerning the roads
was extracted from the shapefiles made available by the local
public authority in Turin. For each road-segment, the average
daily speed is measured by speed-sensors. Each element of the
mentioned lists is defined with a unique identification number
and its real GPS coordinates.

• Vehicle fleet and travel times. As mentioned above, we consider
two type of vehicle fleets: vans and cargo bikes. The parcel
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Figure B.2: Area considered in the case study. Note that in the figure the
mobile depot (square) and a set of offline customers (circles) and
lockers (crosses) are represented.
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delivery company interviewed provides the characteristics of
vehicle fleets (e.g., capacity, service time, speed). The service-time
is a vector containing the information for each type of parcel
handled, for the upload from the depot and for the unload into
the locker. According to Perboli et al., 2017, we consider three
classes of parcels: mailers (i.e., parcel with a weight up to 3 kg)
small parcels (i.e., parcel with a weight between 3 and 6 kg) and
large deliveries (i.e., parcel with weight over 6 kg). The expected
number of parcels for each class, expressed as a percentage of
the total number of parcels delivered, are shown in the Table B.1.

• Behavioural and socio-demographic data. The horizon size is
given here. We consider an 8-hours working day, from 9:00 to
17:00. The time-unit considered is 1 minute and the time-horizon
is split into four time-buckets with the same length. For each
potential customer, the demand expressed as parcel’s volume is
provided, together with the time-window for the service. The
time-windows are assigned considering the percentage of prime
members (i.e., those whose requests are prioritized restricting
the time-window to the first two time-buckets). Then, the ex-
pected behaviour of each potential customer of the DS-VRPTW
is described. It gives the probability that, for each customer loca-
tion i and each time-unit t of the time-horizon, an online request
(i.e., picking up a parcel) appears at time t for location i.

• City constraints. We do not consider any specific city constraint.

• Problem objectives and constraints. The objective is first to maxi-
mize the (expected) number of online requests satisfied by the
end of the horizon, and second minimize the total distance trav-
elled by the vehicles.

The operational context defines the number of potential customers
in the city map, the number of offline customers selected among the po-
tential ones and the percentage of prime members. In this simulation,
we generate three different-sized operational contexts with respectively
500, 250 and 100 potential customers. Each context contains 70% of of-
fline customers and 25% of prime members. These potential customers
are randomly picked from the pool of potential customers listed in the
input data and then anonymized for confidentiality matters, by offset-
ting the Cartesian coordinate system. Once the potential customers are
defined, it is possible to compute the matrix of the mutual distances
among the customers and the depots on the map. Such distances
are computed applying the Dijkstra’s shortest path to the network of
road-segments specified in the input data. The high level of detail in
the network, coupled with the haversine formula used to estimate the
distance between each pair of points that compose a road-segment,
provide us an outcome, which is much more accurate than a simple
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application of the Manhattan distance. The obtained results are in line
with the one provided by the most common web-mapping service
Google Maps. From the distance matrix is then possible to compute
the travel-times between pairs of locations, by using the measured
road-segments’ speeds available in the input data. The set of online
requests appearing during the daily time-horizon is defined by consid-
ering three different degrees of dynamism: 15%, 30% and 45%. Three
sub-contexts are thus defined for each operational context, according
to the degree of dynamism assignation. For each sub-context, a set of n
instances is sampled by generating n Poisson Random Variates (PRVs)
with parameter λ dependent on the degree of dynamism considered.
Each PRV i represents the effective number of online requests that
appear in the Instance i. The accorded set of online customers is finally
randomly selected from the list of potential ones, allowing multiple
requests for the same customers, but provided that they appear at
different moments (i.e., time units). Each scenario, which in the case
of DS-VRPTW corresponds to a sequence of revealed online requests
along the day together with their specific reveal times and locations, is
then independently solved by the optimizer. All the instances are gen-
erated and classified in classes (i.e., the benchmarks presented above),
depending on the operational context, as described in Section B.1. The
benchmarks are available online on the git repository available at the
address https://bitbucket.org/orogroup/city-logistics.git.

Table B.1 resumes the values of the input data considered in our
analysis. This information derive from interviews with Chief Executive
Officer (CEO) and logistic director of an international parcel delivery
company and of an e-commerce company operating in Turin. For
further information about these data, the interested reader could refer
to Perboli et al., 2017. Moreover, the tests are conducted using real data
concerning the customer distribution and daily volumes of deliveries
in Turin between 2014 and 2015, provided by the international parcel
delivery company that operates in Italy and is involved in the URBan
Electronic LOGistics (URBeLOG, URBeLOG, 2015).

b.2.2 Specific optimization problem definition

Ritzinger et al., 2016 provide a recent review on DS-VRP(TW)s. At
any moment of the operational day, a DSS is then responsible for
maintaining a feasible solution (i.e., satisfying the previously accepted
requests) while dealing with the appearance of online requests. In such
a context, the objective is usually expressed either in terms of expected
operating costs, such as travel distances, additional vehicles, and
expensive penalties whenever an online request cannot be accepted, or
in terms of expected profit when one gets rewarded at each satisfied
request.

https://bitbucket.org/orogroup/city-logistics.git
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Table B.1: Input data

Classes of parcel

Class Weight range % on total parcels

Mailer 0-3 kg 57%

Small delivery 3-6 kg 13%

Large delivery > 6 kg 30%

Capacity

Vehicle Parcel size max Capacity Coverage

Locker 6 kg 20
∗parcels 1 km

Van 70 kg 700 kg NA

Cargo bike 6 kg 70 kg NA

Speed in urban area Setup time

Vehicle Speed Load locker 15 min

Van 40 km/h Load bikes at 15 min

mobile depot

Cargo bike 20 km/h

Service time to deliver each class of parcels

Vehicle Mailer Small Large

delivery delivery

Van 4 min 4 min 5 min

Cargo bike 2 min 2 min NA
∗ max number of parcel per day. Note that part of the locker is

actually filled with the parcels of the previous three days
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As introduced above, we adopt the proposed simulation-optimization
framework to address the DS-VRPTW problem that we define as fol-
lows. Given a discrete horizon of length h, a depot location and a set
of n customer locations, we define the set R = {1, . . . , n} × {1, . . . , h}
of potential requests, that is, one potential request at each time unit
for each customer location. We assume the probability of each poten-
tial request to appear to be known, together with its own demand,
service time and time window in case it actually appears. Whenever it
happens and by the end of the current time unit, the request must be
either accepted or rejected. In case it is accepted, the request must be
guaranteed to be satisfied according to its time window and the vehi-
cles capacity constraints. A function c : R → R+ defines the penalty
cost inquired whenever a request r ∈ R is rejected. Provided a finite
set of capacitated vehicles, the asymmetric travel times matrix between
all pairs of locations and the set of potential requests, the goal (at each
time unit) is to operate the fleet of vehicles such that the expected total
penalty cost is minimized by the end of the horizon.

Generally speaking, VRPs aims at modelling and solving a real-life
common operational problem, in which a known set of geographically
distributed customer (pickup) demands must be satisfied using a fleet
of capacitated vehicles. The VRPTW introduces a time dimension by
restricting each customer visit in a predefined interval. The objective
is to find an optimal feasible solution, where optimality is classically
defined in terms of travel costs. In urban applications, some addi-
tional characteristics must be taken into account: the dynamic of the
customers, i.e., the customer requests are not known in advance, but
are instead revealed as the operations go, and the stochastic nature of
some parameters, i.e., some attributes are random variables. For the
aforementioned reasons, we incorporate as optimization model the
Dynamic Stochastic VRP with Time windows (DS-VRPTW) solved by
the algorithm described in Saint-Guillain et al., 2015. Based on Monte
Carlo sampling, the main idea of the Global Stochastic Assessment
(GSA) algorithm aims at maintaining a unique feasible current solu-
tion being continuously optimized with respect to a restricted pool
of sampled scenarios, while preserving nonanticipativity constraints
in the evaluation function. A classical local search approach is used,
exploiting well-known VRP neighbourhood operators such as relocate,
swap, inverted 2-opt and cross-exchange (Kindervater and Savels-
bergh, 1997, Taillard et al., 1997) to construct neighbouring solutions.
A diversification mechanism is provided by regularly renewing the
scenario pool, hence modifying the shape of the evaluation function,
making needless the use of any other meta-heuristic. Note that the
algorithm implements a relocation strategy, allowing the vehicles to
anticipatively travel and possibly wait at promising strategical (cus-
tomer) locations, even when these do not require a service (yet, if
any).
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Concerning the related DS-VRPTW applications, only a few real-
istic case studies involving the DS-VRPTW are present in literature
Hvattum et al., 2006; Schilde et al., 2011. In Bent and Van Hentenryck,
2007, the generated benchmark, later extended by Saint-Guillain et al.,
2015, is highly artificial and based on Solomon’s instances. A realistic
benchmark is considered in Hvattum et al., 2006, based on a real-world
case observed in a leading distribution company in Linjegods, Norway.
Whereas the customer distributions are based on real-world data, the
benchmark assumes Euclidean distances between them. Unfortunately,
the benchmark is not available anymore. The dynamic and stochastic
dial-a-ride problem considered in Schilde et al., 2011 is a generaliza-
tion of the DS-VRPTW where each customer consists in both a pickup
and a delivery request, associated with a maximal ride time constraint.
In their study, the authors generated their benchmarks based on real-
world assumptions, using daily operation performed by the Austrian
Red Cross during the year 2004. Up to our knowledge there is still
no standard benchmark for realistic (urban) dynamic and stochastic
VRPTWs. The benchmarks available in the literature are either too
artificial or do not include the probabilistic knowledge required in
dynamic and stochastic VRPTWs.

b.2.3 Numerical analysis

In this section, computational tests of the simulation-optimization
framework on the DS-VRPTW are described. The experimental plan
is composed of a set of randomly generated test problems. For each
benchmark and each operational context, we performed 10 indepen-
dent runs. Thus, we obtained totally 360 instances, which were inde-
pendently solved by the optimizer.

To evaluate the results we measured different Key Performance
Indicators (KPIs), according to the following standpoints:

• Economic Sustainability. As defined in Perboli et al., 2017, the
carrier incurs in operating costs related to fleet management and
maintenance, and personnel costs. These costs are increased by
a margin equal to 15% when the fleet is managed by an external
firm subcontractor. Moreover, typical contract scheme in the
parcel delivery industry imposes the conversion from a cost per
kilometre to a cost per stops. Thus, the KPI measured are:

– Cost per stop (internal fleet), in the case in which the fleet
of vehicles is owned by the carrier (CpsI).

– Cost per stop (external fleet) in the case in which the fleet
of vehicles is owned by the subcontractor (CpsE).

For further details about the computation of operating costs and
each cost item, see Perboli et al., 2017.
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• Environmental Sustainability. In order to evaluate the impact of
the adoption of green delivery means on the environment, we
computed the CO2 savings (CO2EMsav) as the kilograms of CO2

not emitted in the B2, B3, and B4. Moreover, as the externalities
have a social cost that impacts on the economic efficiency of the
logistics operator, we express the emissions saved (compared
with the B1) in monetary terms by applying the carbon tax, based
on the average price paid for CO2 emissions (Perboli et al., 2017).
This KPI is the environmental costs saving (CO2CSsav). Note
that according to the regulation ISO/TS 14067:2013 we consider
the total amount and costs of Green Houses Gas (GHG) emitted
directly or indirectly by the overall parcel delivery chain.

• Operational Sustainability. It is referred to the operational per-
formance and efficiency of each operator involved in the urban
parcel distribution. Generally, it is expressed in terms of number
of parcels delivered per hour (nD/h)

• Social Sustainability. It is strictly related to the operational sus-
tainability, as the fulfilment of the increasing demand of time-
sensitive and online deliveries and the high service quality re-
quired by the final customers affect the working conditions of
the drivers.

To provide the reader an easier understanding of the results, we
computed the percentage of each KPI compared with the reference
benchmark B1, as shown in Figure B.3. Thus, Figure B.3 depicts the
performance of the traditional courier in the B2, B3, and B4. The
values are computed as percentage variation of each KPI with respect
to the value of the same KPI in the Benchmark B1. In particular, the
∆operating costs and ∆environmental costs show the percentages of
costs savings, both operating and environmental, that the traditional
carrier obtains when the parcels up to 6 kg are outsourced to the
green carrier or delivered by means of the lockers. While, the item
∆efficiency represents the loss of efficiency that affects the traditional
carrier due to the reduced number of deliveries and the high saturation
of vans, particularly in B2.

Figure B.3 highlights improvement of both economic and environ-
mental sustainability when green delivery options (cargo bikes and
lockers) are introduced. In particular, in B2 the adoption of cargo bikes
and the optimization of routes lead to a reduction of the vans used of
about 32% and of the kilometres travelled, with consequent benefits
in terms of reduction of operating costs (-37%). At the same time a
reduction of the CO2 emission on average of 303 kg, is registered,
which correspond to a decrease of 40% in the environmental costs.

Figure B.4 reports the number of deliveries per hour of traditional
vans and green vehicles in the different operational contexts, segment-
ing the results according to the number of customers in the scenarios
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and the degree of dynamism. For the operational context B1 the green
carrier has no bar because it is not present in it. Thus, the number of
deliveries per hour (nD/h) are given for the traditional vans only. They
are reported in order to provide a reference value while comparing the
results in the operational contexts B2 and B4. The values of B3 are not
given because no green vehicle is usable in this operation context. As
figured out in Perboli et al., 2017, the outsourcing of the small parcels
(mailers and small deliveries) to the green carrier, the traditional one
incurs in a reduction of efficiency of 80% at maximum. This means, for
example, a reduction of the number of deliveries per hour from 126

to 25 in 10 working days when there are 100 customers locations and
30% of dynamism. Figure B.4 shows how the green carrier reaches the
highest number of parcels delivered when the degree of dynamism is
equal to 45%. Similarly, when the deliveries are managed by means of
lockers, there is an improvement of the economic and environmental
sustainability. However, here the reduction of the costs, both operative
(-25%) and environmental (-21%), is lower than B2. The reason is that,
although there is a reduction in the kilometres travelled by the vans
to serve the home deliveries directly to the customers, these vehicles
are still adopted to reach and supply the lockers. When the number
of customers to serve and the degree of dynamism are both to a low
level, the adoption of lockers leads the highest decrease of the number
of deliveries managed by the traditional carrier (-38%). This impact
on the efficiency corresponds to costs savings of the same order. On
the contrary, although the presence of the lockers, when the degree
of dynamism is high and, i.e., the online requests increase, they are
served by the traditional carrier. In fact, when the class of customers
locations and the degree of dynamism are of respectively 500 and 45%,
the loss of efficiency for the traditional carrier reaches the minimum
value (-12%). A significant finding is that, combining all the deliv-
ery options (B4), the highest reduction of emissions and operating
costs is reached. In particular, this reduction becomes more evident
when there is a low number of customers. Thus, they are served by
environmental-friendly delivery modes, while a very few number of
parcels is delivered by the traditional carrier. On the contrary, when
we consider 500 customers, the performance of the traditional and the
green carriers in terms of efficiency are similar to those achieved in
the B2. This means that in case of high demand the lockers saturate
quickly. Thus, bikes and vans (particularly) are used to cope the most
considerable part of the deliveries, as more flexible.

The results obtained figured out that we can minimize the number
of rejected requests by adopting the optimization solver. In fact, only
1, 2 and 9 requests are rejected respectively in B2, B3, and B4. This
rejection happens when the classes of customer locations and/or the
degree of dynamism are medium-high. On the contrary, in the other
instances all the online requests are fulfilled.
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Figure B.3: Performance of the traditional carrier, when cargo bikes and
lockers are adopted.

As mentioned above, the operational sustainability is strictly related
to the social sustainability. The integration of traditional delivery mode
with the two new options (i.e., bikes and lockers) could have a positive
impact on the social sustainability. In fact, at present, the drivers are
hard-pressed to face the high demand of home-deliveries, respecting
the time windows. Moreover, their working conditions are affected
by a broad range of issues, as traffic and congestion, unavailability of
loading/unloading zone, as well as second-time deliveries because
the customer is not at home. All these problems make difficult in a
regular working shift the achievement of the 80 deliveries per day
imposed by the common practice in the industry (Perboli et al., 2017).
Thus, considering the revenues based on the number of deliveries
and the penalties in case of not fulfilment, these problems impose
pressure on the drivers of the traditional carrier company. On the
contrary, the reduction of the number of parcels that the traditional
carrier have to deliver, combined with the optimization of the routes
and the reduction of vehicles on road, lead to a less and more balanced
workload and the improvement of the working conditions. However,
a necessary fundamental condition is that this integration must be
made in a reasonable manner. In fact, as stated in Perboli et al., 2017,
the loss of efficiency for the traditional carrier must be contained and
balanced by an increase in service quality led by the bikes and lockers
and by a continuous process of optimization and monitoring of the
activities in the overall last-mile chain.

b.3 conclusions and perspectives

In this paper we presented a new simulation-optimization framework
for building instances and assess operational settings. This research
topic arose from the emerged lack of an available realistic benchmark



B.3 conclusions and perspectives 217

Figure B.4: Performance of the green carrier. B3 is not reported, not involving
any green vehicle for the delivery.

for VRP in City Logistics applications. By proposing a standard repre-
sentation of many types of vehicle routing problems (including City
VRPs), our framework allows to mitigate that issue by making easier
to share, adapt, reuse and even merge data and benchmarks from
different sources or studies. We illustrated the proposed framework by
applying it to an online parcel delivery problem in the medium-sized
city of Turin (Italy). The novelty of our contribution is that the realism
of case study is guaranteed by the introduction in the framework of
different real data sources and stakeholder requirements. In addition,
we considered the integration of different deliveries modes (i.e., cargo
bikes and lockers), reflecting the current practices in the city, which are
devoted to the adoption of green delivery options. The experimental
plan conducted highlighted that the switch to vehicles with a low
environmental impact and to lockers, could lead an improvement
in the economic efficiency of the business model of the traditional
carrier and in the working conditions of the drivers. Moreover, the
bikes represent the most suitable vehicles to face the online requests
of deliveries, due to their high flexibility. Furthermore, the adoption
of environmental-friendly vehicles could result in benefits in terms
of CO2 emissions reduction. At the same time, this integration of
different deliveries options could cause a loss of efficiency for tradi-
tional carriers. An important outcome obtained is that a multimodal
last-mile delivery achieved by means the integration of all the deliv-
ery options considered allows reaching the lowest levels of emissions
when the number of the customers is low/medium. On the contrary,
vans and bikes represent the most appropriate means to deal with
high demand, while still pursuing environmental benefits. Finally,
focusing on the framework proposed, the most relevant advantage
resides in the possibility to generate diversified operational contexts,
customized degree of dynamism, huge sets of instances and tailored
classes of benchmark to test any kind framework. Thus, it represents
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an important contribution to the scientific research community that
could adopt it to analyse different City Logistics applications.

Future development will be the usage of the simulation-optimization
tool to validate a new system of two-echelon neighbourhood exchange
points integrating more types of delivery options, as well as integrate
into the simulation module a discrete event simulator.
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