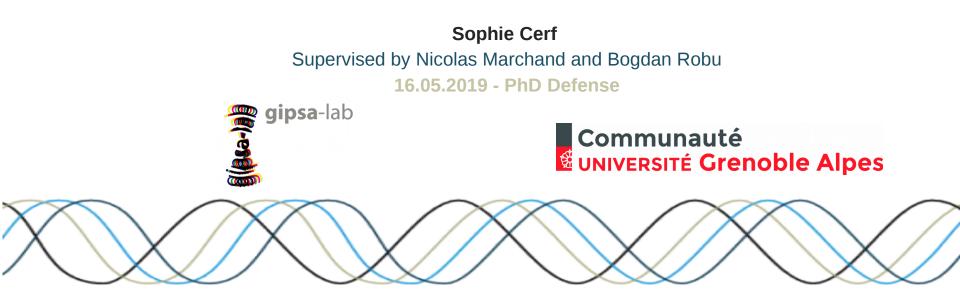


Control Theory for Computing Systems Application to big-data cloud services & location privacy protection



Computing Systems Context

- Growing in number and complexity
- Used by all actors of the society
- Service vs. Platform

 Objectives: Automated software adaptation to guarantee performance, availability, security, etc.

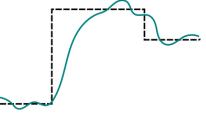
control	reliability	(dependability	robustness
performance	s S	ecurity	guarantee	privacy
	adaptatior	ו	availability	costs
		2/3	7	

Control Theory Approach

Automated tuning of a system to guarantee objectives

3/3

- Properties
 - Evolution through time
 - Observable and tunable system
- Objectives
 - Outputs performance
 - Stability
- Modeling
- Control
- Evaluation



control signal

feedback loop

Application Use-Cases

Location Privacy

- Automated database protection [SRDS'17], [IEEE TDSC'19]
- Dynamic formulation, modeling and control [DAIS'18] [CCTA'18]

BigData Cloud Services

- Adaptive Robust Control [IFAC WC'17]
- Optimal Cost-aware Control [CDC'16]
- Learning Algorithms

Robust Learning on Unreliable Data [NIPS'18] [DSN'19]

5-months internship @IBM Research, Zurich

Feedback-based Training of Neural Networks [CCTA'19]

R

Outlines

- I. Background
 - Computing System Context
 - Control Theory Approach
 - Application use-cases
- II. Location Privacy
- III. BigData Cloud Services
- **IV.** Conclusions

Outlines

6/37

I. Background

II. Location Privacy

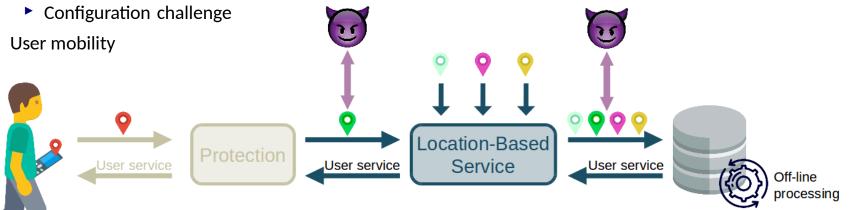
- Introduction, Related Works and Objectives
- Control Problem Formulation
- Modeling: developpement and validation
- Control: formulation and evaluation
- III. BigData Cloud Services IV. Conclusions

Introduction on Location Privacy

Scenario

٠

- User perpective : dynamic location broadcating
- Location-Based Service perspective : mobility databases
- Privacy
 - Motivation : leaks, regulations
- **Location Privacy Protection** Mechanism (LPPM)



Related Work

State of the Art

- (Agir, 2014) iteratively modify the configuration to meet the privacy objective
 - Limits: Computing intensive, no utility
- (Chatzikokolakis, 2015) adapts Geo-I's parameter to the density of the area

В

- Limits: not objective driven, no utility
- (Primault, 2016) iteratively evaluates the privacy and utility for refining configuration parameters
 - Limits: Computing intensive
- Open Challenges
 - No performance guarantees
 - Privacy is not dynamic, i.e. no history is taken into account
 - No robustness regarding user's mobility

Objectives & Main Results

- Objectives
 - Automatic guarantees of privacy and utility for users and services through LPPM configuration, with robustness regarding user's movements.
- Main Results
 - Automatic objective-based LPPM choice and configuration for mobility datasets
 - [SRDS'17] [IEEE TDSC]
 - PULP framework (Matlab)
 - Online utility-aware modeling and control of location privacy

- [DAIS'18] [CCTA'18]
- dynULP framework (Matlab)

Control Problem Formulation

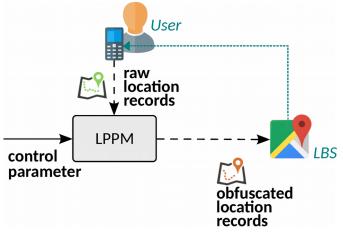
10/3

System

- Mobile device user broadcasting her location dynamically to receive a service
- Use of an online LPPM
 - Geo-I (differential privacy)

Inputs

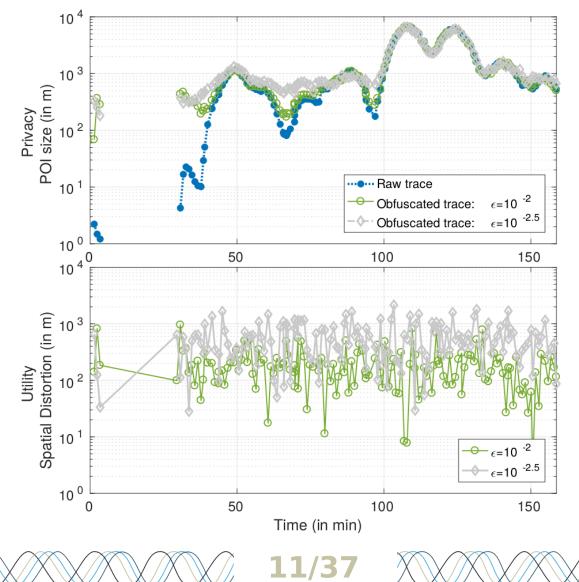
- Amount of spatial noise added to the location
- User mobility
- Outputs
 - Privacy
 - Diameter of the largest Point of Interest from the last time window
 - Utility
 - Spatial distortion



$$\longrightarrow priv(k) = 2 \times median\left(dist[l(t), l_c(k)]\right) \\ l_c(k) = \frac{1}{T} \sum_{t=k-T}^k l(t)$$

$$\rightarrow$$
 util(k) = dist[l(t), l'(k)]

Motivation

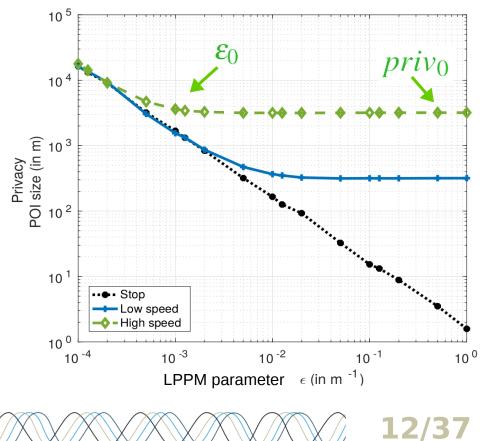


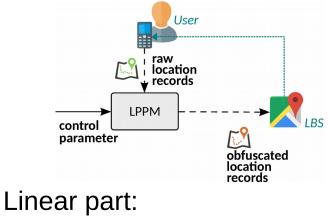
Modeling

Static – Dynamic – Validation

Methodology:

Set the input parameter and measure the output privacy, for different user movements



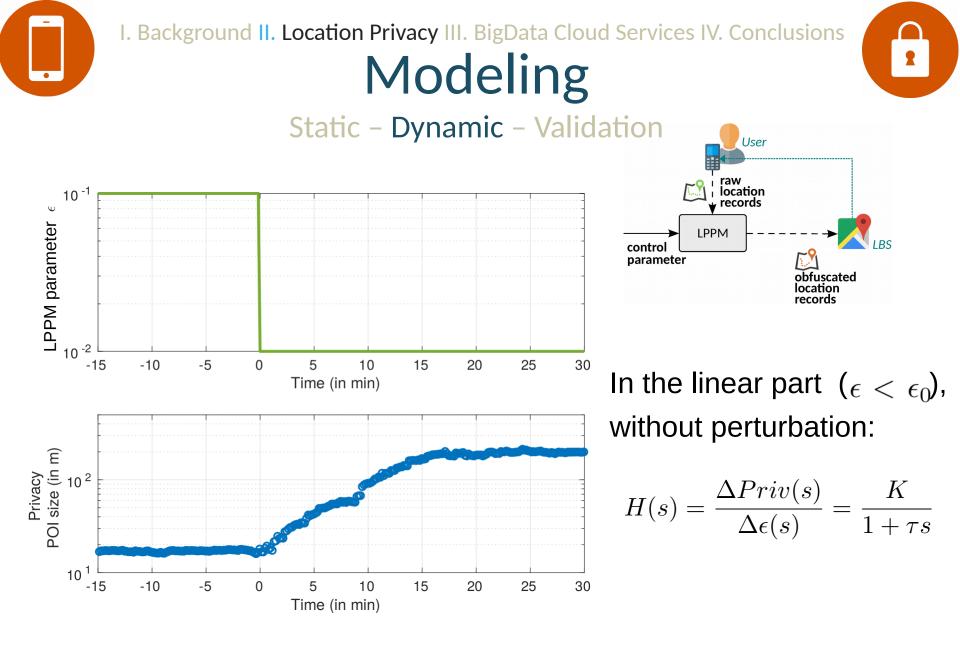


 $log(priv) = a log(\epsilon) + b.$

Linearisation:

$$\Delta \varepsilon = log(\varepsilon) - log(\varepsilon_0),$$

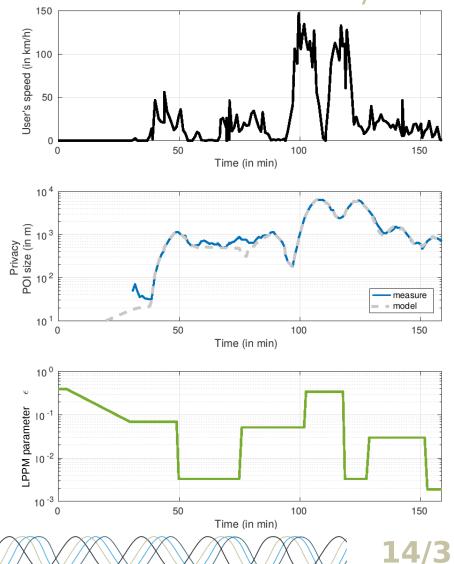
$$\Delta Priv = log(priv) - log(priv_0).$$



13/3

Static – Dynamic – Validation

Modeling



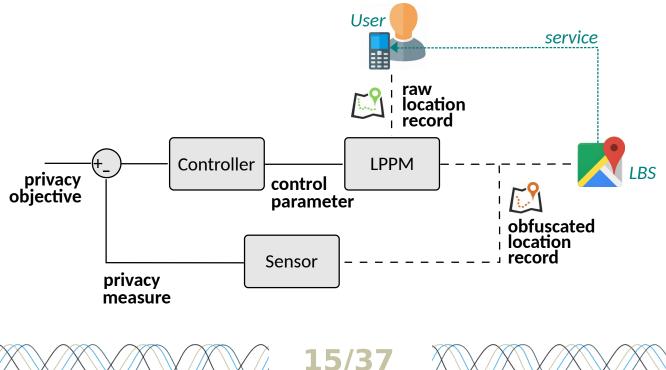
- Input scenarios
 - Mobility trace
 - comprehensive synthetic trace
 - real-life record
 - LPPM parametrization
- Modeling performance indicators
 - Normalized log squared

 $\frac{1}{|K|} \sum_{k \in K} \frac{(log(priv_{model}(k)) - log(priv_{measure}(k)))^2}{log(priv_{measure}(k))}$

Control

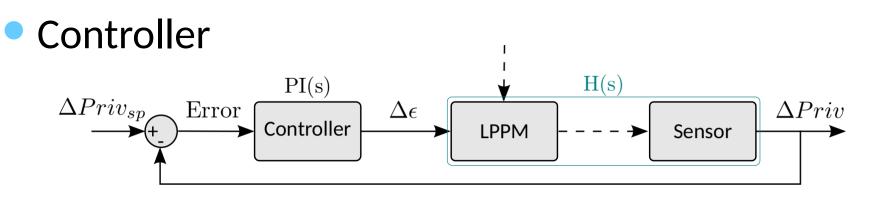
Formulation – Evaluation

- Objectives
 - Robust privacy reference tracking
 - Increase utility when possible



Control

Formulation – Evaluation

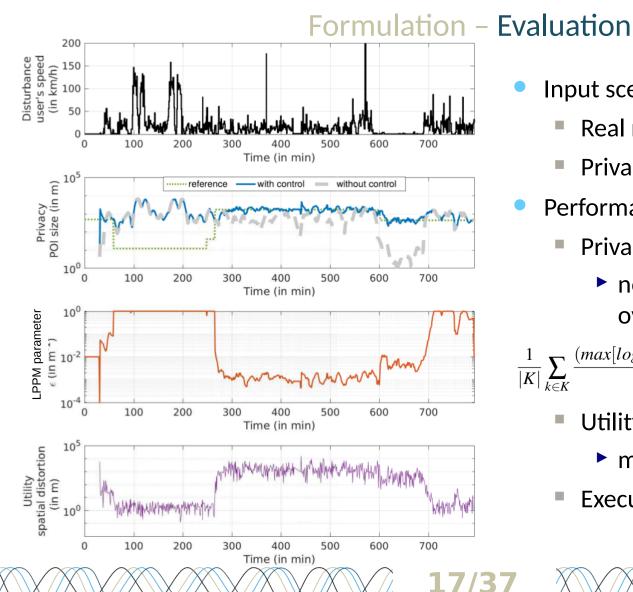


16/3

• Linear formulation $\Delta Priv_{sp} = log(priv_{sp}) - log(priv_0).$

• Anti Windup $\varepsilon(t_i) = min(max(\varepsilon_{PI}(t_i), \varepsilon_{min}), \varepsilon_{max}).$ Proportionnel Integral $PI(s) = \frac{\Delta \varepsilon(s)}{\Delta Priv_{sp}(s) - \Delta Priv(s)} = \frac{K_I}{s} + K_P.$

Control



- Input scenarios
 - **Real mobility trace**
 - Privacy specification
- Performance indicators
 - Privacy regulation
 - normalized log square overshoot

$$\frac{1}{|K|} \sum_{k \in K} \frac{(max[log(priv_{sp}(k)) - log(priv_{measure}(k)), 0])^2}{log(priv_{sp}(k))}$$

- Utility preservation
 - median, 99th percentile
- **Execution** time

Outlines

- I. Background
- **II.** Location Privacy

III. BigData Cloud Services

- Introduction and Objectives
- Related Work: Problem Formulation & Modeling

18/37

- Robust Control
- Cost-aware Control

IV. Conclusions

Introduction on Cloud Services

Scenario

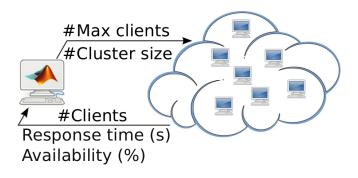
- Bigdata processing framework Hadoop/MapReduce
 - Can realize many tasks
 - Widely used in the industry
 - Master-slave architechture
- Cloud based : shared, scalable resources

Challenges

- Overcome the dynamic workload
- Deal with the cloud variability
- Not intrusive solution

Related Works

- State of the Art
 - Static, Reactive, Predictive techniques
 - (Ali-Eldin, 2012) (Nguyen, 2013)
 - Control theory : Problem formulation, modeling, controllers, experimental setup
 - (Berekmeri, 2016) (Bekcheva, 2018)
- Open Challenges
 - Robustness to environment and system's changes
 - Include cost considerations

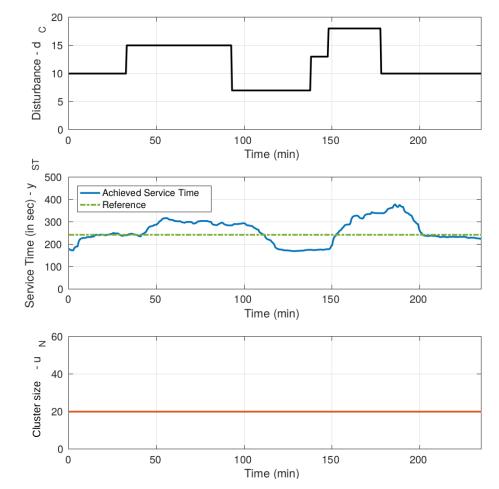


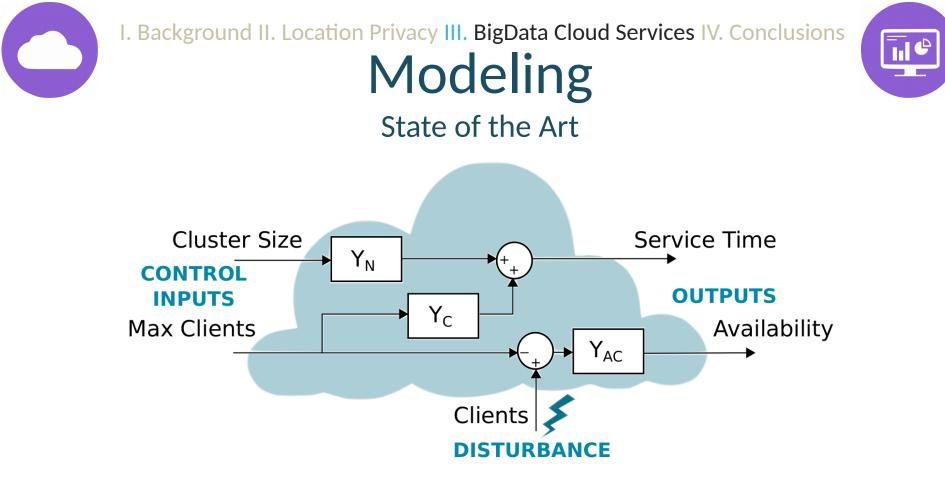
Objectives and Main Results

- Objectives
 - Ensure desired performance and availability of MapReduce while being robust to the changes in the application and its environment; in a cost-aware way
- Main Results
 - Adaptive controller robust to environment and system's changes
 - ▶ [IFAC'17]
 - Experimental setup (Linux bash, Matlab)
 - Multi-objectives cost-aware optimal controller
 - ► [CDC'16]
 - Simulation setup (Matlab Simulink)

Cloud Control Formulation

- System
 - Hadoop/MapReduce
 - Grid5000 cloud
- Outputs
 - Service time
 - Averaged execution time of jobs over the last 15 min
 - Availability
- Inputs
 - Number of nodes in the cluster
 - Maximum number of admitted clients
 - Clients workload
 - uncontrollable
- Open loop behavior





• First order with delay, discrete time models

$$Y_C(q^{-1}) = \frac{b_C q^{-1}}{1 + a_C q^{-1}} q^{-r_C}, \quad Y_N(q^{-1}) = \frac{b_N q^{-1}}{1 + a_N q^{-1}} q^{-r_N}, \quad Y_{AC}(q^{-1}) = \frac{b_{AC} q^{-1}}{1 + a_{AC} q^{-1}}$$

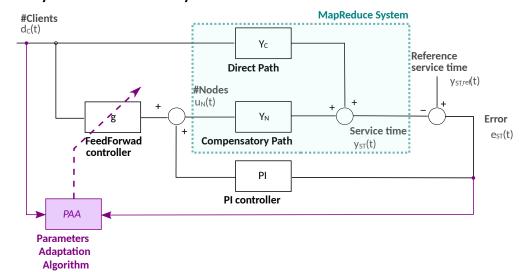
23/37

Parameters found by identification

Robust Cloud Control

Formulation – Stability – Performance

- Objectives
 - Stable service time
 - Robustness to workload changes and to system variability
- Formulation
 - PI feedback
 - steady state convergence
 - Static Feedforward
 - disturbance rejection
 - Feedforward parameter adaptation
 - robustness
- Preliminary hypothesis
 - the effect of the PI controller can be neglected
 - The two transfer functions have the same dynamics
 - and their delays are known and equal



Robust Cloud Control

Formulation – Stability – Performance

25/3

Adaptative Feedfoward gain:

$$\hat{g}(t+1) = \hat{g}(t) + \alpha x(t+1)e(t+1)$$

where

$$\mathbf{\hat{x}}(t) = \frac{sgn(b_N).q^{-(r_N+1)}}{1 + \hat{a}_N q^{-1}} d(t)$$

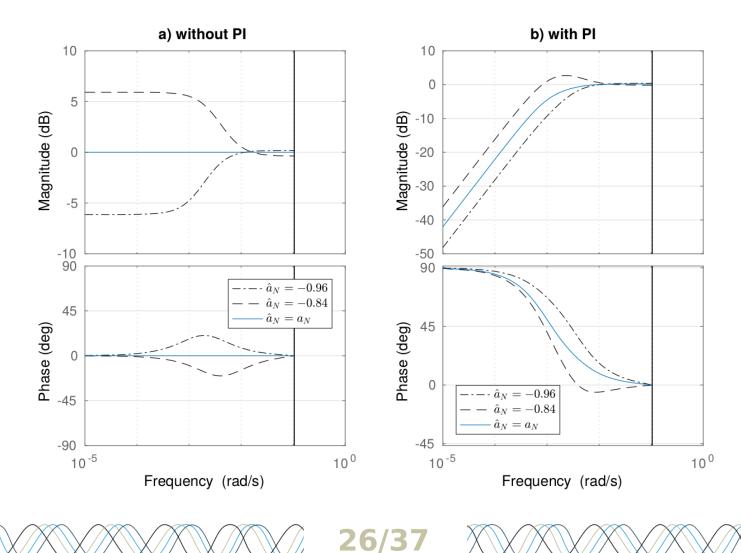
THEOREM

$$\begin{split} lim_{t\to\infty} e(t+1) \, 0 \\ \text{provided that} \qquad H'(z^{-1}) &= \frac{1+\hat{a}_N z^{-1}}{1+a_N z^{-1}} \\ \text{is a strictly positive real transfer function} \end{split}$$

HINT OF PROOF $e(t+1) = \frac{|b_N|(1+\hat{a}_N q^{-1})}{1+a_N q^{-1}} (g^* - \hat{g}(t+1))x(t)$ Optimal value of the feedforward controller

Robust Cloud Control

Formulation – Stability – Performance



Robust Cloud Control

15 ס

c

Disturbance

ST

Service Time (in sec) - y

z ⁶⁰

Time (min)

⊃ .

Cluster size

Formulation – Stability – Performance

State of the Art [TCC, 2016] Adaptive Approach C Disturbance - d Time (min) Time (min) ST Service Time (in sec) - y Achieved Service Time Achieved Service Time Reference Reference Time (min) Time (min) z Cluster size

Time (min)

27/37

Cost-aware Cloud Control

Formulation – Evaluation

- Objectives
 - Guarantee desired service time and availability
 - Reduce costs of cluster reconfiguration
- Formulation
 - Model Predictive Control
 - multi objective optimal control with constraints
 - Event-Based mechanism
 - reduce control reconfiguration
 - State of the art : control signal updates monitoring ? prediction ? properly deal with MIMO objectives ?
- Need for a new triggering mechanism
 - Lyapunov Cost function based Event Triggering Mechanism
 - Compute Lyapunov value if the control signal follows the previously computed trajectory
 - Compute Lyapunov value if the control signal is recomputed (= optimal)

28

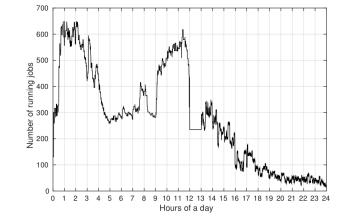
Compare them (with a threshold)

Cost-aware Cloud Control

Formulation – Evaluation

- Stability
 - [CDC'16]
- Performance
 - Real 1-day workload (Ren, 2012)
 - Guaranteed service time and availability
 - Events reduction
 - 90 % less cluster reconfiguration
 - Financial cost comparison Amazon pricing

Method	Fees	Extra costs compared to constrained cost based	
No control	5000\$	3136\$	62.7%
Time based (unconstrained)	1970\$	107\$	5.4%
Error based (unconstrained)	2020\$	157\$	7.8%
Cost based (unconstrained)	1867\$	103\$	5.3%
Constrained cost based	1863\$	-	-



Outlines

30/37

- I. Background
- **II.** Location Privacy
- III. BigData Cloud Services

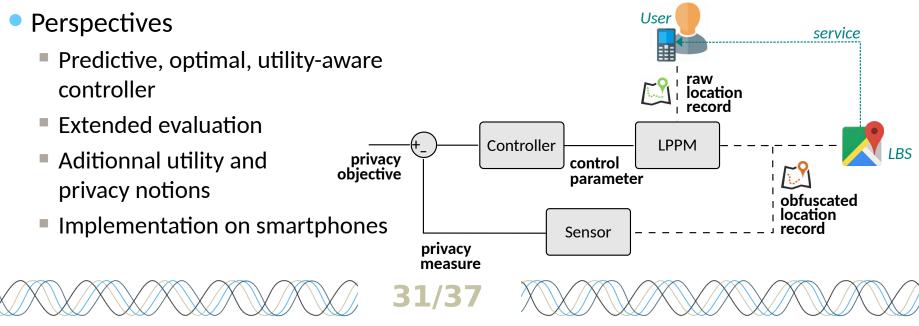
IV. Conclusions

- on Location Privacy Control
- on Cloud Services
- on Control of Computing Systems
- Perspectives

Location Privacy Control

Contributions

- Point-of Interest based Privacy
 - Iow level indicator of habits & identity
- Automatic and robust privacy vs. utility trade-off
 - Database scenario: multi-objectives guarantees, evaluation over 770 users, faster than state of the art
 - Location broadcasting scenario: problem formulation, modeling, control proof of concept



BigData Cloud Services

- Contributions
 - Resource provisionning and admission control
 - Adaptive service time monitoring for robustness against workload and environment changes
 - Multi-objectives optimal predictive controller with Lyapunov-based event triggering function
- Perspectives
 - Combination of robust and multi-objectives controllers

- Addition of more metrics
 - 99th percentile of service time
- Experimentations on a commercial cloud

Control of Computing Systems

Objectives

- Automated and robust software adaptation with formal guarantees
- Contributions
 - Development of two use-cases
 - show a large variety of usage of control tool
 - contributions on complementary use-cases
 - State of the art challenges for the computing world
 - Complementary to other solutions
 - Control mathematical background enables formal guarantees
 - Theoretical contribution for the control community
 - New properties of systems require extended theory (scale, complexity, non-physical laws, etc.)

Lessons Learned

Main Challenges

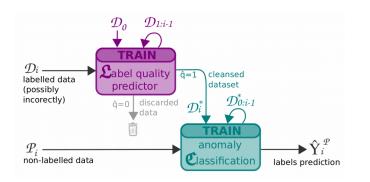
- Problem Formulation
 - Inputs, outputs and cost functions are not intuitive
- Modeling
 - Systems are not ruled by physics laws
- Orders of magnitude of signals
- Proved guarantees
- Limitations
 - Two distinct communities
 - vocabulary, communication venues, etc.
 - Dynamical system hypothesis

Perspectives

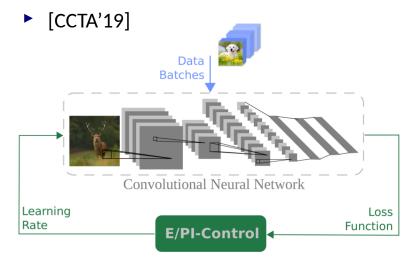
- Machine learning algorithms as a system to control
 - Internship @ IBM Research Zurich (July-Nov. 2018)
 - Objectives
 - Take the time-dynamics perspective
 - Explore more metrics than accuracy such as robusntess or privacy

35/3

- Include the decision process in the modeling
- Robust Learning on Unreliable Data
 - [NIPS'18] [DSN'19]



Feedback-based Training of Neural Networks



Acknowledgment

- Dr. Sonia Ben Mokhtar (LIRIS lab, INSA-Lyon) on Location Privacy,
- Dr. Mihaly Berekmeri (Equifax UK) on modeling and control of Hadoop,
- **Dr. Robert Birke** (ABB Research) on data analytics and privacy,
- Pr. Sara Bouchenak (LIRIS lab, INSA-Lyon) on all the contributions of this manuscript,
- **Dr. Antoine Boutet** (Privatics, INRIA Lyon) on Location Privacy,
- Dr. Lydia Y. Chen (TU Delft) on data analytics and privacy,
- Pr. Ioan D. Landau (Gipsa-lab, Univ. Grenoble-Alpes) on adaptive control of Clouds,
- Dr. Vincent Primault (University College London) on Location Privacy,
- **Zilong Zhao** (Gipsa-lab, Univ. Grenoble-Alpes) on Machine Learning.

Publications

- International Journals
 - Submitted: IEEE Transaction on Automatic Control (TAC)
 - IEEE Transaction on Dependable and Secure Computing (TDSC) 2018
- International Conferences with Proceedings
 - 55th IEEE Conference on Decision and Control (CDC 2016), Las Vegas, United States
 - Conférence francophone d'informatique en parallélisme, architecture et système (ComPAS 2017), Sophia, France
 - IFAC World Congress 2017, Toulouse, France
 - 36th International Symposium on Reliable Distributed Systems (SRDS 2017), Hong Kong, SAR China
 - 18th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS 2018), Madrid, Spain
 - 2nd IEEE Conference on Control Technology and Applications (CCTA 2018), Copenhagen, Denmark
 - Continual Learning Workshop, Neural Information Processing Systems (NIPS 2018), Montréal, Canada
 - 49th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2019), Portland, United States
 - 3rd IEEE Conference on Control Technology and Applications (CCTA 2019), Hong Kong, SAR China
- Posters & Abstracts
 - PhD Forum 34th International Symposium on Reliable Distributed Systems (SRDS 2015), Montreal, Canada
 - 11th International Workshop on Feedback Computing 2016, Wurzburg, Germany.
 - 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2016), Toulouse, France

37/3

ACM/IFIP/USENIX **Middleware** conference 2016, Trente, Italy