
HAL Id: tel-02271372
https://hal.science/tel-02271372v2

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient method for the calculation of the
free-surface Green function using ordinary differential

equations
Chunmei Xie

To cite this version:
Chunmei Xie. An efficient method for the calculation of the free-surface Green function using ordinary
differential equations. Fluids mechanics [physics.class-ph]. École centrale de Nantes, 2019. English.
�NNT : 2019ECDN0013�. �tel-02271372v2�

https://hal.science/tel-02271372v2
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE 
 
 
 

L'ÉCOLE CENTRALE DE NANTES  
COMUE UNIVERSITE BRETAGNE LOIRE 
 

ECOLE DOCTORALE N° 602  
Sciences pour l'Ingénieur  
Spécialité : Mécanique des Milieux Fluides   
 

An efficient method for the calculation of the free-surface Green 
function using ordinary differential equations 
 
Thèse présentée et soutenue à Nantes, le 14/05/2019  
Unité de recherche : Laboratoire d Hydrodynamique, d Energétique et d Environnement Atmosphérique
(LHEEA), Ecole Centrale de Nantes  CNRS UMR 6598 

Par 

Chunmei Xie 

Rapporteurs avant soutenance : 
 
Bingham B. Harry      Professor, Technical University of Denmark, Denmark 
Richard   Porter         Senior Lecturer, University of Bristol, UK 
 
Composition du Jury :  
 
Président : Yves-Marie Scolan Professeur, ENSTA  Bretagne  
Examinateurs :  Marion Darbas  MCF-HDR, Université de Picardie Jules Verne 

Yves-Marie Scolan Professeur, ENSTA  Bretagne 
Pierre Ferrant               Professeur, Centrale Nantes   

Dir. de thèse : Aurélien Babarit  HDR, Centrale Nantes  
 
Invité  
Xiaobo Chen  Docteur-Ingénieur, Bureau Veritas 



Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervi-
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Chapter 1

Introduction

Résumé

Dans le premier chapitre, le contexte et le sujet de la thèse sont présentés. Nous
étudions les efforts et les mouvements induits par les vagues dans le cadre de la
théorie des écoulements potentiels avec la méthode des éléments frontières. Le
contexte de la méthode des éléments de frontière et de la fonction de Green, qui
est la principale préoccupation de cette thèse, est donné. Ensuite, les contributions
principales et les grandes lignes de la thèse sont présentées.

1.1 Wave-induced loads and motions

The oceans cover over 70 percents of the Earth’s surface. They have been traveled
and explored since ancient times. The development of marine science and technol-
ogy in the last century has made the extensive exploitation of the oceans’ resources.
Nowadays, they provide important living and nonliving resources, such as fish; oil
and natural gas; minerals and renewable energy. The need to further harvest the
ocean resources is growing up with increasing world population and the lack of
land resources.

Ships for transportation of passengers and goods, fish farms in open sea, oil and
gas platforms, platforms for the recovery of shallow-sea and deep-sea minerals,
wind energy farms and wave energy converters are the main structures deployed
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at sea in order to exploit its resources. For the design of all those structures, the
understanding of wave-structure interaction effects is critical in order to provide
reliable estimates of wave loads.

A lot of researchers have investigated wave-structure interaction effects. The
methods to study the wave-induced loads and motions can be split into : theoreti-
cal analysis; experiments; numerical calculations.

Theoretical analysis is powerful and highly reliable but it is limited by strict
assumptions. Only few cases with simple geometries and simple boundary con-
ditions can be solved theoretically. They are usually considered as validation tests
for model tests or numerical calculations.

For experiments, full-scale trials are desirable but expensive and difficult to
perform under controlled conditions. Therefore, lots of countries have built tow-
ing tank and water tunnels in order to perform model tests. In model tests, di-
mensional analysis is first applied to find the main characteristics and define the
parameters. An issue with model test is that it can be challenging to scale tests’ re-
sults to full scale when viscous hydrodynamic forces matters. Moreover, available
equipment at the test facilities may also limit the experimental possibilities. Last
but not least, model tests are usually expensive.

Due to the fast advance of computer technology, numerical modelling play an
increasingly important role for the calculation of wave-induced loads and motions.
Numerical results can usually be achieved at much cheaper cost and faster than
experimental results. Nevertheless, model tests are still indispensable as they can
provide insight in the physical phenomena for the numerical calculations and also
for the validation of the numerical calculations.

In summary, the three methods complement each other in hydrodynamic study.
In this thesis, we focus on numerical modelling of wave-structure interaction.

A variety of hydrodynamics problems concerning ships and offshore platforms
can be addressed within the context of potential flow theory (in which viscous ef-
fects are neglected) [65]. Those problems include the wave resistance and motion
of ships in presence of waves [25], [68], [56], the dynamic response of offshore and
wave/wind energy converters to wave action [8], [30], [32], [73], propeller perfor-
mance and interactions between adjacent ships maneuvering in close proximity
[47], [13], [48], [89], ... In all those cases, the Reynolds number is large. Provided
that the geometry is streamlined or if the Keulegan–Carpenter number is small, the
separation of the boundary layer is avoided. Thus, viscous effects can be neglected
and potential flow theory can be used. Within this framework, the most efficient
and widely used numerical method is the boundary element method (BEM), also
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named the panel method.

1.2 The background of boundary element method and
Green function

Having been developed for over four decades, the BEM firmly stands in the arena
of the numerical methods for solving the partial differential equations, such as
Helmholtz equation.

The concept of the BEM method is to convert the volume problem into a prob-
lem on the surface of the domain boundaries. It is achieved by converting the
problem defined by partial differential equations in the domain into an integral
equation over the boundaries of the domain. Compared to other numerical meth-
ods such as finite element method, finite difference method, finite volume method
which are classified as domain methods, the boundary element method reduces
the spatial dimensions. It leads to easier generation of the mesh, usually smaller
linear systems, less computer memory requirements and more efficient computa-
tion. However, note that the matrices of the linear problem involved in BEM are
usually dense and non-symmetrical.

In BEM, the velocity potential is obtained through the distribution of singu-
larities (source and/or normal dipoles) over on panels representing the geometry.
Thus, the BEM is also considered as a semi-analytical method due to the integral
nature of singularities used in the formulations. This semi-analytical nature makes
the BEM highly accurate. Exterior problems defined by unbounded domains but
bounded boundaries can be handled as easily as interior problem. Another ad-
vantage of the BEM is that the physical values at the boundaries can be obtained
directly which can be important for some applications.

The early history of the boundary element method from the 18th century up to
the late 1970s is reviewed in [18]. It covers potential theory, Laplace equation, the
existence and uniqueness of the solution of boundary value problems, the Gauss
and Stokes theorems that allow the reduction of spatial dimensions, the Green’s
identities, Green’s function, the Fredholm integral equations and the extension of
Green’s formula to acoustics, elasticity, hydrodynamics and other physical prob-
lems. The authors also celebrated the pioneers behind these mathematical devel-
opments with short biographies. Another comprehensive review up to 1980s was
written by Tanaka [76]. One can refer to those two review papers for the back-
ground, the theory and the applications of the BEM.
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Numerical implementations of boundary integral equations in hydrodynamics
can be classified according to: which singular element is distributed on the bound-
aries (sources , normal dipoles, mixed of sources and normal dipoles · · · ); which
approximation is used for the distribution (constant, linear, or higher order distri-
bution); and whether the used Green function satisfies the free-surface condition.

The use of boundary element method in hydrodynamic problems did not blos-
som out until the seminal work for three-dimensional bodies with arbitrary geome-
tries by Hess and Smith [41], [40], [42], which was based on their previous works
for two-dimensional and axis-symmetric bodies [75], [39]. In their work originally
dedicate to aerodynamics, an unbounded domain is considered (no free-surface).
The body surface is discretized by quadrilateral panels with a constant source den-
sity distribution on each panel. The pulsating sources and/or sinks are placed at
the center of the panels. The integral equation for the body surface source density
is replaced by a set of linear algebraic equations for the values of the source den-
sity on each panel. Once the linear system built, the Seidel iterative procedure can
be used to solve it. Then, it is straightforward to obtain the velocity potential, the
velocity, the pressure and the forces.

Numerous studied followed Hess and Smith’s work. Some uses the source for-
mulation with source density distribution (indirect method) while others apply
the potential formulation with a mixed source and normal dipole distribution (di-
rect method). The computational effort involved in building and solving the linear
systems of these two methods is similar, albeit there can be differences in the re-
sults depending on the applications. According to [65], for thin bodies, the normal
dipoles approach is more stable than sources for representing the cross-flow com-
ponents. To get the fluid velocity, the gradient of the Green function is needed
for the source formulation while for the potential formulation, the second deriva-
tives are required. Since the local velocity induced by the dipole distribution varies
rapidly over distances comparable to the panel dimensions, the potential formu-
lation is less accurate for cases in which curved surfaces are approximated by flat
panels.

The body surfaces are usually discretized by flat triangles or quadrangles. The
density of singularities is constant on each panel in the constant panel method. It
is a mature and very efficient method which is widely used in academia [28], [33],
[44], [50] and industry. Almost all commercial seakeeping softwares are based on
the constant panel method. They include Hydrostar [2], WAMIT [5], NEMOH [3],
AQWA [1], SESAM [4], · · · . Some of them include options to use higher order
singularities distributions.
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However, for curved body surfaces, the constant distribution is discontinuous
between panels. Thus, it may require a large number of panels to achieve sufficient
accuracy. To overcome this limitation, Webster [85] proposed the linear sources dis-
tribution with triangle panels. Higher order panel methods were then proposed in
[58], [57], [77], [78], [81], [59], [60], [53] which essentially represents the state of the
art in BEM solutions today. Linear and higher order BEM are expected to be more
accurate than the constant panel method for the same discretization level when
curved surfaces are involved. However, they are more challenging to implement
because of the more complicated mathematics.

Another major contribution of Hess and Smith [41], [40], [42] is their deriva-
tion of the analytical expression for the potential and velocity induced by a source
distribution for a quadrilateral. Indeed, the direct numerical integration is slow
and inaccurate when the field point is near or on the panels. This source only sin-
gularity method is also called as the Rankine panel method. The Rankine panel
method with sources only was then extended to constant distributions of sources
and normal dipoles on panels of arbitrary polygonal shapes [37] and linear distri-
butions on triangular panels [91], [85]. Furthermore, the potential and velocity for
a distribution of normal dipoles over a quadrilateral panel where the density of
singularities is constant, linear, bilinear or of arbitrary polynomial form was given
by Newman [64].

For wave-structure interaction problems, the free-surface condition must be
fulfilled. Rankine sources do not satisfy the free-surface condition by themselves.
Thus, additional fundamental solutions of Laplace equation subject to the free-
surface condition and radiation condition must be added. The combination of the
Rankine source and the additional solutions satisfying the free-surface condition
is called the Green function. It is named after the British mathematician George
Green [35]. This additional fundamental term includes the image source term and
the free-surface term in addition to the Rankine source. One important part of
numerical burden in the BEM is the evaluation of free-surface Green function. For-
tunately, in some cases, exact formulations of the Green function are available such
as the Green functions with zero forward speed in infinite or finite water depth and
in time domain or frequency domain. In this thesis, only the infinite water depth
case (deep water) is considered.

The mathematical formulations of Green function in that case are reviewed in
Chapter 3. Despite the exact formulations, the numerical evaluation of the Green
function is still very hard because of its highly oscillatory behavior. Lots of re-
searchers have worked on this issue [62], [?], [67], [79], [26], [88], [14], · · · . Almost
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all these methods are based on the integral formulations. A different perspective
was proposed by Clément [24], [23] in the time domain and in the frequency do-
main. He found that the time domain Green function is the solution of a fourth
order differential equation (ODE) and the corresponding frequency domain Green
function is the solution of a second order differential equation. This provides a
new perspective to understand the properties of Green function and also to evalu-
ate the Green function.

The used of the ODE to evaluate the Green function has been implemented in
a seakeeping code in time domain [22]. However, it was not done in the frequency
domain, which is the main objective of this thesis.

The similar works maybe also be made for finite depth or non-zero forward
speed Green functions.

1.3 Present contributions

• The exact mathematical expressions of the Green function in infinite depth
of water and in the frequency domain with zero speed are collected, which
could be useful to better understand the numerical behavior of the Green
function.

• Several existing algorithms for the evaluation of the Green function in deep
water and in the frequency domain with zero speed are implemented and
compared with respect to their accuracy and computational time which could
be useful for engineers to choose the most appropriate method for their ap-
plications.

• A series of ODEs of the Green function and its gradient with respect to time
and frequency are given. The ODEs with respect to the spatial variables are
first introduced in this thesis which may give another perspective for the
calculation of surface integrals or the volume integrals of the Green function.

• It is challenging to solve the second order ODEs of the Green function and its
gradient with usual initial conditions at the original point of variable because
of the degenerated properties and the singularities. A new way to remove
the difficulty by modifying the ODEs associated with new functions free of
the singularity is introduced. The new ODEs are then transformed into their
canonic form by using a novel definition of vector functions. The canonic
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form can then be solved with the initial conditions at the original point since
all involved terms are finite.

• The expansion method is applied to find analytical solution of Green function
for small frequencies. It is based on series of logarithmic function together
with ordinary polynomials

• A new ODE-based boundary element method is developed to calculate the
hydrodynamic coefficients (added mass, damping coefficient, excitation force)
of marine structures.

1.4 Thesis outline

This thesis is organized as follows. In Chapter 2, the basic equations of potential
flow theory and the boundary element method are recalled. The existence and
removal of irregular frequencies are discussed. The mathematical formulations of
Green function are collected and several existing algorithms are implemented and
compared in Chapter 3. The series of ODEs of Green function and its gradient
with respect to time, frequency, and spatial variables are presented in Chapter 4.
In Chapter 5, a new way to solve ODEs of the frequency-domain Green function
and its gradient is introduced. The results of a new BEM code using the ODEs to
calculate the Green function are validated by comparison to analytical solutions
and the results of Hydrostar in Chapter 6. Finally, Chapter 7 is the conclusions and
perspectives of this thesis.
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Chapter 2

Linear potential flow theory and
boundary element method

Résumé

Dans ce chapitre, les équations de la théorie potentielle linéaire sont d’abord présentées.
Le problème aux limites du premier ordre pour l’interaction de vagues avec des
structures est établi. Pour résoudre le problème aux limites, la méthode des éléments
frontières est largement utilisée. Deux problèmes importants liés à la méthode des
éléments frontières, la fonction de Green et l’élimination des fréquences irrégulières,
sont discutés.

2.1 Basic equations of the linear potential flow theory

The basic equations of the linear potential flow theory are first recalled. The case
study is that of floating or submerged bodies without forward speed with free
surface in infinite depth of water and in presence of regular incident propagative
waves.

Let us define the three-dimensional Cartesian coordinates system Oxyz. The
(x, y) plan coincides with the mean free surface level and the Oz axis is oriented
positively upwards. The free surface elevation E is defined by:
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z = E(x, y, t) (2.1)

The fluid is assumed to be inviscid and incompressible and the flow is irrota-
tional. Therefore the curl of the velocity

−→
V is zero:

∇×
−→
V = 0 (2.2)

The curl of the gradient of any continuously twice-differentiable scalar field is al-
ways the zero vector. Thus, the flow vector velocity

−→
V can be expressed as the

gradient of a scalar potential Φ(M, t) at the field point M = (xM , yM , zM) and time
t:

−→
V = ∇Φ (2.3)

In potential flow theory, the potential Φ is called the velocity potential.

The mass conservation law for an incompressible fluid is:

∇ ·
−→
V = 0 (2.4)

By combining equations (2.3) and (2.4), one can show that the velocity potential
satisfies the Laplace equation:

∇2Φ = 0 (2.5)

The momentum equation for an inviscid flow can be written as:

(
∂

∂t
+
−→
V · ∇)

−→
V = −∇(

Pr
ρ

+ gz) (2.6)

in which Pr stands for the fluid pressure, ρ is the density of fluid and g is the
gravity. The Bernoulli equation can be obtained from the momentum equation
expressed. It reads:

Pr
ρ

+ gz +
∂Φ

∂t
+
∇Φ · ∇Φ

2
= C(t) (2.7)

where C(t) is an arbitrary function of t. It can usually be absorbed into Φ.

The dynamic behaviour of the free-surface is governed by the kinematic and
dynamic free-surface boundary conditions. The kinematic condition is established
by considering that a particle of the free surface always stays on the surface. This
kinematic condition is obtained by taking the material derivative of (2.1):
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∂E
∂t

+
∂Φ

∂x

∂E
∂x

+
∂Φ

∂y

∂E
∂y
− ∂Φ

∂z
= 0 (2.8)

Furthermore, the free surface dynamic condition is obtained by neglecting the
effect of surface tension and by considering that the pressure given by (2.7) is equal
to the atmospheric pressure at the free surface:

gE +
∂Φ(x, y, E , t)

∂t
+
∇Φ(x, y, E , t) · ∇Φ(x, y, E , t)

2
= 0 (2.9)

Combining the dynamic and kinematic condition, the free-surface condition is:

∂2Φ

∂t2
+ g

∂Φ

∂z
+

1

2
∇Φ · ∇(∇Φ · ∇Φ) + 2∇Φ · ∇∂Φ

∂t
= 0 (2.10)

The last assumptions are that the steepness of the incident waves is small and
that the body motion is small in comparison to its dimensions. Thus, the velocity
potential can be expanded according to the perturbation theory:

Φ(M, t) = Φ(1)(M, t) + Φ(2)(M, t) + · · · (2.11)

The superscript (·) denotes the order of the velocity potential and Φ(2) � Φ(1).
Other physical quantities, i.e. free surface elevations, dynamic pressures, wave

loads and body’s motions, can be expanded in similar forms.
Finally, by introducing the expansion (2.11) into (2.5) and (2.10) and by devel-

oping Φ(z = E) on the mean free surface (z = 0), one can obtain the boundary
value problems for the different orders.

2.1.1 Boundary value problem at first order

At the first order, the linear boundary value problem for the interaction of a body
with waves is: [l]

∇2Φ(1) = 0 M ∈ (τe) (2.12a)

gΦ(1)
z + Φ

(1)
tt = 0 M ∈ SF (2.12b)

Φ(1)
n =

−→
X

(1)
t · ~n M ∈ SB (2.12c)

∇Φ(1) = 0 M ∈ (C) (2.12d)

where SF is the mean free-surface, SB is the body surface,
−→
X t is the velocity of

the body, and (C) (x2 + y2 + z2 →∞) is a surface at the infinity. (τe) stands for the
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fluid domain shown in Figure 2-1. It is limited by SF , SB, (C).

Figure 2-1: Schematic of immersed part of an arbitrary geometry

This boundary value problem (BVP) includes the Laplace equation (2.12a), the
linearised free-surface condition (2.12b), the body surface condition (2.12c) and the
radiation condition (2.12d). The the existence and the uniqueness of the solution
of the BVP (2.12) for a given incident wave and body motion was prescriptive for
non-bulbous body by John [46].

The first order free surface elevation is given according to the dynamic condi-
tion (2.9) by:

E (1) = −1

g

∂Φ(1)

∂t
(2.13)

evaluated at z = 0 .
The total dynamic pressure on the body surface is given according to the Bernoulli

equation by:
P (1)
r = −gρX(1)

3 − ρΦ
(1)
t (2.14)

where X(1)
3 the vertical displacement.

In this thesis, only the first order problem is considered. Therefore, in the fol-
lowing, for sake of simplicity, the first-order quantities such as Φ(1), E (1), P (1)

r are
written as Φ, E , Pr.

2.2 Boundary element method

2.2.1 Green function

Let us define the source point, field point and other notations as depicted in Figure
2-2. The source point P (xP , yP , zP ) and the field point M(xM , yM , zM) are both
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lying on or under the free surface (zP ≤ 0, zM ≤ 0). The image source point
P ′(xP , yP ,−zP ) is the mirror of the source point P with respect to the mean free
surface. The horizontal distance between the source point P and the field point
M is denoted by r. The vertical distance between the image source point P ′ and
the field point M is −Z. The distance between the source and field points is de-
noted by R and the distance between the image source point and the field point is
R1 =

√
r2 + Z2. The angle θ is defined by cos θ = −Z/R1 and sin θ = r/R1. The

relations between the coordinates are given by:

r =
√

(xM − xP )2 + (yM − yP )2

Z = zM + zP

R =
√

(xM − xP )2 + (yM − yP )2 + (zM − zP )2

(2.15)

Figure 2-2: Definition of source point (P), field point (M) and other notations

To solve the first-order boundary value problem defined by equation (2.12), a
fundamental solution which satisfies the following equations can be used:

∇2G∞(M,P, t) = δ(M,P ) M ∈ τe (2.16a)

gGz + Gtt = 0 M ∈ SF (2.16b)

G = O(1/r) r →∞ (2.16c)

in which δ is the Dirac function and δ(M,P ) = δ(xM − xP )δ(yM − yP )δ(zM − zP ).
The solution of equation (2.16) is called the Green function. It gives the field of

velocity potential at M(xM , yM , zM) created by a source located at P (xP , yP , zP ).
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2.2.2 Boundary integral equation

Let us apply the Green’s second formula to the couple of harmonic functions (Φ,G)

[36]:

4πΩΦ(M) =

∫∫
S(P )

[
∂Φ(P )

∂n(P )
G(M,P )− Φ(P )

∂G(M,P )

∂n(P )

]
dS(P ) (2.17)

4πΩ is the ’solid angle’ over which the fluid is viewed from M and the normal
vector. The left hand side is the result of the domain integral while the terms on
the right hand side come from the transformation of the volume integral into the
surface integral on the boundaries according to the formula of Ostrogradsky. The
boundary surface S(P ) includes the body surface SB, the mean free surface SF
and the surface at infinity C. Both the integrals on the surface at infinity and on
the mean free surface are zero according to equations (2.16) and equation (2.12a).

4πΩΦ(M) =

∫∫
SB

[
∂Φ(P )

∂n(P )
G(M,P )− Φ(P )

∂G(M,P )

∂n(P )

]
dS(P ) (2.18)

with Ω = 1, 1/2, 0 for M ∈ (τe),M ∈ SB,M ∈ (τi) with flat panels.

Let us now consider a complementary domain (τi) inside the body. It is limited
by the body boundary SB and the interior free-surface SFi (see Figure (2-1)).

∇2Φ′ = 0 M ∈ (τi) (2.19a)

gΦ′z + Φ′tt = 0 M ∈ SFi (2.19b)

Φ′n = −
−→
X

(1)
t · ~n M ∈ SB (2.19c)

where Φ′ is the velocity potential of interior domain.

By applying the Green’s second formula:

4πΩΦ′(M) = −
∫∫

SB

[
∂Φ′(P )

∂n(P )
G(M,P )− Φ′(P )

∂G(M,P )

∂n(P )

]
dS(P ) (2.20)

with Ω = 1, 1/2, 0 forM ∈ (τi),M ∈ SB,M ∈ (τe) in the constant method. It should
be noted that the − in the right side hand is because of opposite direction of the
normal vector for the interior and exterior domain.

For better use the properties of singularities like sources and dipole and to get
the gradient of velocity potential around the body easily. We do addition of Eqns.
2.18 and 2.20, the boundary integral equation can be obtained:
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4πΩSB
(Φ(M) + Φ′(M))

=

∫∫
SB

[(
∂Φ(P )

∂n(P )
− ∂Φ′(P )

∂n(P )

)
G(M,P )− (Φ(P )− Φ′(P ))

∂G(M,P )

∂n(P )

]
dS(P ) M ∈ SB

(2.21)

2.2.3 Wave radiation and diffraction

Let us further assume that the velocity potential is harmonic. Thus, the velocity
potential and Green function can be written as:

Φ(M, t) = <(ϕ(M)e−iωt) (2.22a)

G(M,P, t) = <(G(M,P )e−iωt) (2.22b)

in which <(·) means to take the real part and ω is the wave frequency. .
Linearity allows the decomposition of the body-generated wave perturbation

potential into the radiation potential ϕR and the diffraction potential ϕD. The de-
tails of the decomposition can be seen in Wehausen and Laitone’s book [86]. The
velocity potential can thus be expressed as:

ϕ = ϕR + ϕD + ϕI (2.23)

in which ϕI is potential of the incoming waves.
For the radiation potential, we can further decompose it into six components:

ϕR = −iω
6∑
j=1

ξjϕj (2.24)

where ξj , j = 1, ..., 6 denote the amplitudes of the body displacement in its six
body degrees of freedom.

For the diffraction potential and the potential of the incident waves, one can
write:

ϕD = ξ0ϕ7 (2.25a)

ϕI = ξ0ϕ0 (2.25b)

where ξ0 is the (complex) amplitude of the incident wave.
The complex radiation velocity potential components ϕj , j = 1, ..., 6 and the
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diffraction velocity potential ϕ7 satisfy the Laplace equation in the fluid domain.
They also satisfy the free surface condition on the z = 0 plane:

ϕjz − k0ϕj = 0, j = 1, ...7 (2.26)

with k0 = w2/g the wavenumber.

The radiation and diffraction velocity potential satisfy the Sommerfeld radi-
ation condition at infinity for infinite depth water. Finally, the body boundary
conditions are:

ϕjn = nj, j = 1, ..., 6 (2.27)

ϕ7n = −ϕ0n (2.28)

where ni, i = 1, 2, 3 are the Cartesian components of a unit vector normal to
the body surface and pointing out of the fluid domain, and (n4, n5, n6) = (xM −
x0, yM − y0, zM − z0)× (n1, n2, n3) with O(x0, y0, z0) the reference point of rotation.

The incident wave potential is defined by:

ϕ0 = −ig
ω
ek0zeik0x cosβ+ik0y sinβ (2.29)

Where β is the propagation angle of the incident waves relatively to the positive
x-axis.

2.2.4 Source distribution

By introducing (2.22) into (2.21), by choosing ϕ′ = ϕ on SB and by defining σ =

ϕn − ϕ′n as the source density, one obtains:

ϕ =

∫∫
SB

(
−iω

6∑
j=1

ξjϕj + ξ0ϕ7

)
GdS + ξ0ϕ0 (2.30a)

ϕj =

∫∫
SB

σjGdS (2.30b)

The source distribution is determined by satisfying the boundary condition on
the body surface SB:
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4πΩSB
σj(M) +

∫∫
SB

σj(P )
∂G(M,P )

∂n(M)
dS(P ) =

{
nj(M) j = 1, 2, · · · , 6
−∂ϕ0/∂n(M) j = 7

(2.31)

2.2.5 Mixed distribution

An alternative way is to consider a mixed sources and dipoles distribution. The
dipole density is defined by µ = ϕ− ϕ′. Let us define ϕ′ = 0. Thus, the dipole dis-
tribution is the velocity potential itself and the boundary integral equation reads:

4πΩSB
µj(M) +

∫∫
SB

µj(M)
∂G(M,P )

∂n(P )
dS(P )

=


∫∫

SB

nj(P )G(M,P )dS j = 1, 2, · · · , 6∫∫
SB

(−∂ϕ0/∂n) (P )G(M,P )dS j = 7

(2.32)

2.2.6 Numerical solution

The boundary element method is a popular numerical computational method for
solving linear partial differential equations (2.12) which have been formulated as
integral equations (2.31) and (2.32) [6], [7], [71], [12], [37], [26], [51], [66], [15].

In this thesis, the mixed source and dipole distribution is considered and the
body wet surface is discretized in flat panels (quadrangles). The density of source
and dipole distributions on each panel is assumed to be constant. Therefore, equa-
tion (2.32) can be transformed into two linear systems with influence coefficients
depending on the evaluation of Green function and its gradient.

2.2.7 Equation of motion of a floating body

Once the integral equation (2.32) is solved, the first-order pressure can be obtained
by equation (2.14). Moreover, the integration of the first terms in equation (2.14)
plus the variation of the gravity loads leads to the hydrostatic stiffness coefficients
(Ckj) in (2.34). The second term in (2.14) leads to the definition of the added-mass
coefficients (Akj), the damping coefficient (Bkj), and the wave exciting loads Fk.
They are defined respectively by integration of the pressure due to radiated waves
and the pressure due to incoming and diffracted waves:
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ω2Akj + iωBkj = ω2ρ

∫∫
SB

ϕjnkdS and Fk = −iωρξ0
∫∫

SB

(ϕ0 + ϕ7)nkdS (2.33)

with k, j = 1, · · · 6
Finally, the motion equation can be formulated as:

6∑
j=1

[
−ω2(Mkj + Akj)− iω(Bkj +B′kj) + Ckj + C ′kj

]
ξj = Fk (2.34)

where Mkj is the inertia matrix. (B′kj), (C
′
kj) are artificial damping coefficient and

stiffness coefficients.

2.3 Removal of irregular frequencies

2.3.1 The irregular frequencies issue

When the boundary integral formulations (2.31) and (2.32) are used, irregular fre-
quencies arise in the solution of the exterior problem.

It was first pointed out by John [46] that when the body surface boundary inter-
sects the free surface, the integral boundary equation has eigenfunctions for certain
values of the frequencies (eigenvalues called irregular frequencies).

It should be noted that the irregular frequencies effect is due to the formulation
of the boundary integral but that does not reflect an irregularity in the solution of
the BVP. As a matter of fact, the eigenfunctions of the integral boundary equation
for exterior problem are induced by these of the interior problem. Indeed, when
the solution of the exterior problem is expressed in terms of sources or/and dipoles
distributions over the body surface, it assumes an interior fluid motion such that
the potential is continuous across the body surface. If the hypothetical interior
problem has eigenfunctions, the corresponding source or/and dipole distribution
become undetermined. As a consequence, the solution of the exterior problem
cannot be expressed by the source or/and dipole density on the body surface. In
summary, the irregular frequencies are certain discrete frequencies for which the
solution of the integral equation is not unique.

Numerically, it translates into the determinant of the matrix of the discretized
equation to be equal to 0. Near the irregular frequencies, the condition number of
the matrix becomes large, which translates into large errors in the solution over a
substantial frequency band around the irregular frequencies. Note that the width
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of the ’polluted’ band is reduced when the number of panels is increased.

2.3.2 The removal of the irregular frequencies

The detrimental effect of irregular frequencies in applications was not evident un-
til the late sixties. In 1967, Frank [31] developed a two-dimensional panel method
with source distributions for the prediction of the hydrodynamic pressure, force
and moment on cylinders. His numerical results showed substantial errors in the
prediction of the hydrodynamic coefficients near the irregular frequencies. After
Frank’s [31] work, researchers have investigated the removal of the irregular fre-
quencies from modifying the system of the internal system or the external system
to decrease the condition number of the linear system.

In 1975, Ohmatsu [70] applied an additional rigid ’lid’ on the body waterplane
area to close the interior problem in two dimension. This approach is called the
extended boundary condition method. The presence of the lid eliminates the reso-
nance associated with the interior Dirichlet eigen problem and therefore eliminates
the irregular frequencies for the exterior problem. Ohmatsu [70] also gave the
theoretical demonstration for a circular cylinder that the eigenfrequencies of the
interior problem is the irregular frequencies in exterior problems. The extended
boundary condition method is effective for two- and three-dimensional problems
with a source distribution and the Green method at the cost of using additional
panels on the body waterplane areas. A variant of this method was proposed in
1998 by Malenica and Chen [61]. They moved down the interior surface below the
free-surface plane in order to avoid the problem of logarithmic singularity of Green
function. Unfortunately, this approach cannot remove all the irregular frequencies.

Ogilvie and Shin [69] removed the first irregular frequency in two dimensions
by placing a point wave source on the interior free surface acting as an absorber of
the energy of the corresponding resonant Dirichlet eigensolution. This approach
follows Ursell’s suggestion [82] which was to add a source at the origin with the
strength selected to absorb the energy associated with a possible sloshing mode.
This approach is called the modified Green function method. Ogilvie and Shin
discussed the symmetric or asymmetric problems for which we just need to modify
the Green function. This approach is simpler than Ohmatsu’s method [70] as it
involves only a minor change in the Green function to avoid the eigenfrequencies
near the frequencies under consideration. In 1981, Ursell [83] found that the use
of a set of singularities is necessary for the removal of more than the first irregular
frequency in two-dimension. Moreover, the optimal choice of the numbers and
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locations of the singularities is challenging.

Another method called the modified integral-equation method was introduced
by Lee and Sclavounos [52] by extending the work of Burtin and Miller for acoustic
wave scattering problem [11]. They proposed a modified integral equation involv-
ing the linear superposition of the classical Green function and its normal deriva-
tive with respect to the field point. The normal derivative should be multiplied
by a purely imaginary constant to remove all irregular frequencies. It is shown
that an optimal value of this imaginary constant exists. It can be determined by
minimizing the condition number of the modified integral equation at the first ir-
regular frequency of the Green function. A sphere and a truncated vertical cylinder
in three-dimension were tested to illustrate the effectiveness of this approach.

In 1994, Zhu [92] investigated the modified Green function method and the
extended boundary condition method. They compared them to the modified in-
tegral equation method. They used the WAMIT code [5]. They found that for a
circular cylinder and a rectangular barge, the extended boundary method is the
most effective.

Method I: The modified integral-equation method

Burtin and Miller [11] suggested the use of a linear combination of Dirichlet and
Neumann boundary conditions which leads to an interior eigenproblem accepting
trivial solutions at all frequency:

ϕ′ + α
∂ϕ′

∂n
= 0 (2.35)

where ϕ′ is the velocity potential on the interior boundary and α is a complex
constant.

There are no irregular frequencies when α has a nonzero imaginary part ac-
cording to Lee and Sclavounos [52]. They extended this Dirichlet and Neumann
boundary condition to the exterior problem.

2πϕR(M) +

∫∫
SB

ϕR(P )
∂G(M,P )

∂nP
dS(P ) + α

∂

∂nM

∫∫
SB

ϕR(P )
∂G(M,P )

∂nP
dS(P )

(2.36a)

=

∫∫
SB

∂ϕR(P )

∂nP
G(M,P )dS(P )− 2πα

∂ϕR(M)

∂n(M)
+ α

∂

∂nM

∫∫
SB

∂ϕR(P )

∂nP
G(M,P )dS(P )

(2.36b)
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in which M ∈ SB.
A simpler integral equation exists for the sum of the incident and diffraction

potential ϕID.

2πϕID(M) +

∫∫
SB

ϕID(P )
∂G(M,P )

∂nP
dS(P ) = 4πϕ0(M) (2.37)

After having applied the Dirichlet and Neumann boundary condition, one has:

2πϕID(M) +

∫∫
SB

ϕID(P )
∂G(M,P )

∂nP
dS(P ) + α

∂

∂nM

∫∫
SB

ϕID(P )
∂G(M,P )

∂nM
dS(M)

= 4π[ϕ0(M) + α
∂ϕ0(M)

∂nM
]

(2.38)
There are two disadvantages for this method. The first one is the extra complex

constant α. The accuracy of the method depends on the selection of the constant.
If its value is too large, numerical errors are introduced because of the additional
integral equation associated with the normal derivative. On the other hand, if its
value is too small, the condition number of the linear system will still be large and
the irregular frequencies cannot be removed completely. Moreover, Zhu and Lee
[93] found out that a larger number of panels are required to achieve the same
accuracy as with the original integral equation. The second disadvantage is the
calculation of the extra normal derivative which increases the computational cost.

Method II: Extended boundary condition method

Paulling and Wood [72] suggested that a ’lid’ in the body at the level of the undis-
turbed free-surface on which a rigid wall boundary condition would be applied
would remove the eigenfunctions for the interior problem [72]. In 1975, Ohmatsu[70]
proved this method theoretically and numerically.

In this method, the integral equation becomes:

2πϕ(M) +

∫∫
SB

ϕ(P )
∂G(M,P )

∂nP
dS(P ) +

∫∫
SFi

ϕ(P )
∂G(M,P )

∂np
dS(P )

=

∫∫
SB

∂ϕ(P )

∂nP
G(M,P )dS(P ) M ∈ SB (2.39a)

−4πϕ(M) +

∫∫
SB

ϕ(P )
∂G(M,P )

∂nP
dS(P ) +

∫∫
SFi

ϕ(P )
∂G(M,P )

∂nP
dS(P )

=

∫∫
SB

∂ϕ(P )

∂nP
G(M,P )dS(P ) M ∈ SFi (2.39b)
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This method requires additional panels on the free-surface inside the body.
Therefore the computational cost increases although the additional panels can be
much smaller than the panels on the body surface. Note that the required num-
ber of panels on the free-surface inside the body increases with the order of the
irregular frequencies.

The Green function at the free-surface is oscillating and divergent with increas-
ing frequency. Thus, it can introduce large errors for high frequencies. Therefore
a variant of this method was proposed by Malenica and Chen [61]. It consists in
moving down the ’lid’ to avoid the oscillation and divergence. The only difference
is that the −4π must be changed into −2π in (2.39b). A drawback of this approach
is that it can not remove all the irregular frequencies.

Method III: Modified Green function method

In this method, sources are added at points Mi inside the body such as ϕ′(Mi) = 0

on the interior surface SFi.

∆ϕ′(M) = 0 M ∈ (τi)

ϕ′z(M)− k0ϕ′(M) = 0 M ∈ SFi
ϕ′(M) = −

−→
X

(1)
t · ~n M ∈ SB

ϕ′(Mi) = 0 Mi ∈ SFi

(2.40)

It leads to the system below which is a overdetermined system.

2πϕ(M) +

∫∫
SB

ϕ(P )
∂G(M,P )

∂nP
dS(P ) =

∫∫
SB

∂ϕ(P )

∂nP
G(P,M)dS(P ) M ∈ SB

(2.41a)∫∫
SB

ϕ(P )
∂G(~s, P )

∂nP
dS(P ) =

∫∫
SB

∂ϕ(P )

∂nP
G(~s, P )dS(P ) ~s ∈ SFi

(2.41b)

Challenges of this approach are that ~s should not be on the nodal points of the
eigenmodes, that it involves an overdetermined system which is less efficient than
solving a square matrix, and that choosing the sources point and the number of
the sources point is difficult for different mesh and different geometries.
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An extension is to combine (2.41a) and (2.41b).

2πϕ(M) +

∫∫
SB

ϕ(P )
∂Ĝ(M,P )

∂nP
dS(P ) =

∫∫
SB

∂ϕ(P )

∂nP
Ĝ(M,P )dS(P ) M ∈ SB

(2.42)
Following this approach, Ogilvie and Shin [69] added a source at the origin

of the interior free-surface. They defined the modified Green function Ĝ in two-
dimensions as shown in the following: For symmetric problems

Ĝ(M,P ) = G(M,P ) + αG(M,~s)G(~s, P ) (2.43)

For asymmetric problems

Ĝ(M,P ) = G(M,P )+α1G(M,~s)G(~s, P )+α2G(M,~s)(
∂G(~s, P )

∂sx
)+α3G(M,~s)(

∂G(~s, P )

∂sy
)

(2.44)
A more general modified Green function is:

Ĝ(M,P ) = G(M,P ) +
N∑
k=1

αkG(M,~sk)G(~sk, P ) (2.45)

Zhu and Lee [93] tested the modified Green function method for bodies with
two planes of symmetry with ~s at the origin. Their numerical results indicate that
the irregular frequencies can be removed but the value α depends on the mode
of motion. Also the range of α is very restricted if an iterative solver is used due
to the poor conditioning of the linear system. For arbitrary bodies and arbitrary
motions, the optimum location of the point ~s and the number of the points is far
from being obvious.

The numerical results of removal of the irregular frequencies will be discussed
in Chapter 6.
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Chapter 3

Comparison of existing methods for
the calculation of the infinite water
depth free-surface Green function in
the frequency domain for the
wave-structure interaction problem

Résumé

Dans ce chapitre, les expressions mathématiques et les méthodes numériques pour
la fonction de Green à surface libre en profondeur inifnie et dans le domaine
fréquentiel sont examinées. Douze expressions différentes sont passées en revue
et analysées. Toutes ces expressions sont des solutions mathématiques exactes
pour la propagation d’ondes à partir d’une source pulsante située dans le domaine
des fluides. Cependant, leur évaluation numérique est difficile. Des méthodes
numériques dédiées ont été développées. Elles comprennent des développements
en série, des polynômes, des interpolations dans une table, des développements
multipolaires, des approximations avec des fonctions élémentaires, etc. Dans ce
travail, quatre méthodes ont été implémentées: la méthode de Newman [63], la
méthode de Delhommeau [27], la méthode de Telste-Noblesse [79] et la méthode
de Wu et al. [88]. On trouve que le temps de calcul moyen de la méthode de New-
man est de 5.745× 10−7. Il en vaut 5. 782 ×10−8 pour la méthode de Delhommeau.
Pour les méthodes de Telste-Noblesse et de Wu et al., elles sont respectivement

33



4, 642×10−8 et 1.721×10−7. La précision est respectivement de 6D (6 décimales), 5D
et 3D pour la méthode de Newman, la méthode de Telste-Noblesse et la méthode
de Wu et al. Pour la méthode de Delhommeau, elle est de 3D sauf lorsque les
coordonnées verticales sont proches de 0. La précision de la méthode de Delhom-
meau peut être augmentée de manière significative en affinant la discrétisation
des variables d’espace pour les fonctions tabulées et en utilisant des méthodes
d’interpolation plus élevées, au prix d’un temps de calcul accru.

In this chapter, the mathematical expressions and numerical methods for the free-
surface Green function with zero speed in deep water and in the frequency do-
main are studied. Twelve different expressions are reviewed. Several existing
algorithms are implemented and compared according to the CPU time and ac-
curacies. This work is published in Applied Ocean Research and attached below.
There are three errors needed to be corrected.

• R in Eq. (44) should be replaced by R1.

• zM in Eq. (15) should be replaced by zM + zP . The same error was made in
Wehausen’s book [86] and the correct expression can be found in Eq. (5.8b)
in Noblesse’s paper [67].

• Equations (30) and (31) need to be corrected as:

I(X, Y ) =
1

X

∞∑
n=0

(−1)n
X−2n

n!

{
1

2
· 3

2
· 5

2
...

(2n− 1)

2

}
I2n(−Y ) (3.1)

∂I(X, Y )

∂X
=− 1

X2

∞∑
n=0

(−1)n
X−2n

n!

{
1

2
· 3

2
· 5

2
...

(2n− 1)

2

}
I2n(−Y )

− 2

X

∞∑
n=0

(−1)nn
X−2n

n!X

{
1

2
· 3

2
· 5

2
...

(2n− 1)

2

}
I2n(−Y )

(3.2)

• The CPU time of Wu’s method is not correct because of wrong detective way.

The Fig. 7(d) and Table 5 should be replaced by the figure and table be-
low. The corrected CPU time is similar as other’s result [87]. Although Wu’s
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method is not the fastest one, it will benefit its advantage in parallel compu-
tation.

Figure 3-1: Wu et al’s method

Table 3.1: Computation time for calculating the Green function and its derivatives
for different algorithms

Algorithm
Total computation time (s) Averaged

(NX = 220, NY = 150) computation time (s)
Direct Integral 3.840× 10−1 1.164× 10−5

Newman 1.896× 10−2 5.745× 10−7

Delhommeau 1.908× 10−3 5.782× 10−8

Telste-Noblesse 1.532× 10−3 4.642× 10−8

Wu et al. 5.680× 10−3 1.721× 10−7

35



Contents lists available at ScienceDirect

Applied Ocean Research

journal homepage: www.elsevier.com/locate/apor

Comparison of existing methods for the calculation of the infinite water
depth free-surface Green function for the wave–structure interaction
problem
Chunmei Xie, Youngmyung Choi, François Rongère, Alain H. Clément, Gérard Delhommeau,
Aurélien Babarit⁎

Ecole Centrale de Nantes, 1 Rue de la Noë, 44300 Nantes, France

A R T I C L E I N F O

Keywords:
Wave–structure interaction
Linear potential theory
Green function
Numerical modeling

A B S T R A C T

In this study, the mathematical expressions and numerical methods for the free-surface Green function of the
linearized wave–structure problem in deep water and in the frequency domain are investigated. Twelve different
expressions are reviewed and analyzed. All these expressions are exact mathematical solutions for the propa-
gation of waves from a pulsating source located in the fluid domain. However, their numerical evaluation is
challenging. Dedicated numerical methods have been developed. They include series expansions, polynomials,
table interpolations, multipole expansions, approximations with elementary functions, etc. In this work, four
methods were implemented: the Newman's method [1], the Delhommeau's method [2], the Telste-Noblesse's
method [3] and the Wu et al.'s method [4]. Their CPU time and accuracy are compared. It is found that the
average computational time for Newman's method is 5.745× 10−7. It is 5.782×10−8 for the Delhommeau's
method. For Telste-Noblesse's method and Wu et al.'s methods, they are 4.642× 10−8 and 1.491×10−9, re-
spectively. The accuracy is respectively 6D(6 decimals), 5D and 3D for the Newman's method, the Telste-
Noblesse's method and the Wu et al.'s method. For the Delhommeau's method, it is 3D except when the vertical
coordinate is close to 0. The accuracy of the Delhommeau's method can be increased significantly by refining the
discretization of the space variables for the tabulated functions and by using higher interpolation methods, at
cost of increased computational time.

1. Introduction

The diffraction and radiation of water waves by floating bodies with
zero mean forward speed and in deep water are phenomena of utter-
most importance in ocean engineering. They must be taken into account
in the design of marine structures such as oil and gas platforms or
marine renewable energy converters. In the industry, boundary element
methods (BEM)-based codes are usually used to calculate these effects
and determine the pressure fields and wave-induced forces acting on
the structures. BEM codes rely on the linear free surface potential flow
theory which itself relies on the free-surface Green function and its
derivatives.

Two distinct numerical problems must be overcome in the im-
plementation of BEM codes [1]. Firstly, the discretization of the body
surface by a large number of panels leads to the construction of a dense
linear system of equations which must be solved by suitable algorithms.
Secondly, the evaluation of the Green function and its derivatives is

challenging because of their singular behaviour at the origin. Typically,
the numerical complexity of BEM codes is proportional to O(N2) or O
(N3) with N the number of unknowns. The Green function is computed
O(N2) times to set up the linear system. The linear system is solved
either by an iterative method with O(N2) complexity or by Gauss
elimination with O(N3) complexity. The complexity can be reduced
down to O(Nlog N) using acceleration algorithms such as the pre-
corrected Fast Fourier Transform(pFFT) [5]. Although the computa-
tional time for the evaluation of the Green function and its derivatives is
not fully representative of the computational time needed by a BEM
code to evaluate the diffraction and radication by a floating body, it is
still considered as one of the challenges for efficient three-dimensional
computation of hydrodynamic coefficients and forces.

In the frequency domain, this Green function is solution of the fol-
lowing boundary value problem:
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where G∞ is the Green function in deep water, δ is the Dirac function, R
is the distance between the source point M(xM, yM, zM) and the field
point P(xP, yP, zP). ω is the wave frequency and g is the gravity. In Eq.
(1), the first equation is the Laplace equation; the second equation
derives from the linearized free-surface conditions and the last equation
is the radiation condition at infinity.

This boundary value problem was studied extensively during the
1940s and 1950s and exact mathematical expressions for its solution
were obtained and those expressions were reviewed by Wehausen and
Laitone [6]. Later, Ursell [7] developed an expression involving a series
of spherical harmonics for a heaving semi-sphere. A modified Green
function from Haskind's representation was then proposed by Kim [8].
It was implicitly provided by Havelock in [9]. This modified expression
was also re-derived by Hearn [10]. Finally, an integral representation in
terms of an exponential integral was introduced independently by
Guevel [11], Martin [12] and Noblesse [13].

The numerical evaluation of these expressions (and the evaluation
of their derivatives) is challenging because of the complexity of the
involved mathematical expressions, the mathematical singularity in
M= P and the associated computational time [1] [3]. This is an issue
for BEM codes because the Green function (and its derivatives) must be
evaluated many times to solve the wave–structure interaction problem
for each considered frequency. Thus, with the rapid development of
computing resources, the focus shifted in the 1980s from the derivation
of mathematical expressions for the Green function towards the algo-
rithms and numerical methods for its efficient numerical computation.
Noblesse [13] [14] proposed two complementary near-field and far-
field single integral representations in terms of the exponential integral.
An asymptotic expansion and convergent ascending series are used to
calculate the Green function for large and small distances between the
source and field point, respectively. Two complementary Taylor series
expansions are also provided when the non-dimensional spatial co-
ordinates approach zero. In 1986, Telste and Noblesse [3] published a
numerical code for the evaluation of the Green function and its deri-
vatives based on Noblesse's previous study [14]. The computational
domain was divided into five sub-domains.

In 1984, Newman [15] used the Romberg quadrature to evaluate
the finite integral of the free-surface Green function with double pre-
cision accuracy. In the same year, he proposed a new series expansion
[16]. It is computationally efficient at small and moderate radial dis-
tances between the source and field points. A year later, he [1] pro-
posed an algorithm for the evaluation of Green function and its deri-
vatives in infinite and constant finite depth. The computational domain
is divided into several domains for which polynomial approximations
are provided including the series expansion from his previous paper
[16]. This algorithm is implemented as a standard subroutine named as
”FINGREEN” in the boundary element method (BEM)-based code
WAMIT [1,17].

In 1991, a new algorithm based on a polynomial series approx-
imation was proposed by Chen et al. [18–20]. Double Chebyshev
polynomials approximations with special functions are used to evaluate
the Green function for infinite and finite water depth. Chen's algorithm
is implemented in the BEM code HYDROSTAR. A similar algorithm with
double Chebyshev polynomials is also proposed by Wang in [21].

To reduce the computational time, Delhommeau developed a
technique involving four tabulated functions and Lagrange interpola-
tions. This technique is implemented in the BEM code AQUADYN [2]
and in the open source code NEMOH [22].

Other expressions and numerical methods are available. In a
number of research works, the Green function is decomposed into three
parts: a free-space singularity, a non-oscillatory local flow and waves.
Ba et al. [23] and Ponizy et al. [24] provided approximation methods

for the non-oscillatory local flow term based on the use of a co-
ordinates-transformation and a function-transformation. Proper co-
ordinates and function transformations reduce the problem of approx-
imating singular functions for unbounded domains into that of
approximating smoothly varying functions over finite domains. Linear
table interpolation can thus be used. Peter and Meylan proposed an
eigenfunction expansion representation [25]. In 2011, a semi-analytical
method was developed with the Haskind-Havelock kernel calculated by
a singularity subtractive technique [26]. The same year, the multipole
expansion was extended for the infinite water depth free surface Green
function [27].

Recently, Wu et al. [4] proposed a global approximation of the
Green function and its derivatives based on Noblesse's paper [14,3]. A
simple approximation involving elementary functions is given for the
local flow component. It does not require dividing the computational
domain into multiple sub-domains.

A completely different approach was proposed by Clément [28]. It is
based on a second order differential equations for the Green function.
However, a challenge with this method is its initialization.

It should be noted that the numerical errors associated to BEM-
based codes stem from several sources as discussed in [4]. They include
the approximation of the body surface by a large number of panels; the
approximation of the variations (piecewise constant, linear, quadratic,
or higher-order) of the densities of the singularities (source, dipole)
distributions over the surface panels; the numerical integration of the
Green function and its gradient over the panels; and the numerical
evaluation of the Green function and its gradient. Thus, the effect of
numerical errors in the numerical evaluation of the Green function and
its derivatives for practical computations is difficult to estimate. Liang
et al. [29] investigated the accuracy of linear and second order wave
loads for a hemisphere and a freely Floating Production Storage and
Offloading (FPSO) unit. They used the Wu et al.'s method. They showed
that using this 3D accuracy method for the Green function and its
gradient doesn’t make much difference for the hydrodynamic coeffi-
cients and forces when compared to results obtained using highly ac-
curate methods. Howevever, the conclusion may not be same for other
practical cases.

In this paper, various expressions for the free-surface Green function
are reviewed and presented. Several numerical methods have been
proposed among which four methods were selected and compared with
respect to accuracy and computational time. The two first ones are the
Newman's and Telste-Noblesse's methods. They were selected because
they are widely known in the industry and academia. The Newman's
method is implemented in the industry standard BEM code WAMIT. The
Delhommeau's method was selected because it is implemented in the
open source code NEMOH. The fourth method is that of Wu et al.. It was
selected because it provides a global approximation which is easy to
implement and doesn’t need subdivisions. Thus it may be more suitable
for parallel computation.

2. Mathematical expressions for the free-surface Green function in
deep water

In this study, the time factor of the complex potential is taken as
e−iωt. The coordinates and variables are depicted in Fig. 1. The mean
free surface level is located at the plane z=0. The vertical axis z points
upwards. The source point P(xP, yP, zP) and the field pointM(xM, yM, zM)
are both lying on or under the free surface (zP≤0, zM≤0). The image
source point P′(xP, yP, − zP) is the mirror of the source point P with
respect to the mean free surface. The horizontal distance between the
source point P and the field point M is denoted by r. The vertical dis-
tance between the image source point P′ and the field point M is −Z.
The distance between the source and field points is denoted by R and
the distance between the image source point and the field point is

= +R r Z1
2 2 . The angle θ is defined by cosθ=− Z/R1. The relations
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between the coordinates are given by:
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2.1. Expressions of the first type

We define the expressions of the Green function of the first type as
the expressions that can be written as:

= + +G r Z
R R

g r Z i k e J k r4 ( , , ) 1 1 ( , , ) 2 ( )k Z

1
0 0 00

(3)

g−(r, Z, ω) is called the free-surface term whereas the first two terms
are the Rankine source (1/R) and the image source (1/R1) contribu-
tions, respectively. One can note that these two source distributions
cancel each other when the field point is located on the mean free
surface z=0. k0 is the wave number defined by k0=ω2/g and J0(k0r) is
the zeroth order Bessel function of the first kind.

2.1.1. Expression 1
The classical expression for the free-surface term reads [28]:

=g r Z k
k k

e J( , , ) 2PV (kr)dk
0 0

kZ
0 (4)

where PV∫ represents the Cauchy principal integral. For ω=0 and
ω→∞, one can show that:

=

+ =

g r Z

g r Z

( , , 0)

( , , ) 0
R
2
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2.1.2. Expression 2
The expression used in the BEM codes NEMOH and AQUADYN [2],

[22] is:

=g r Z k dRe J( , , ) 2 [ ( ) 1 ]0

2

2

(6)

where ζ= k0(Z+ ir cosθ) and J(ζ)= eζ[E1(ζ)+ iπ]. E1(ζ) is the com-
plex exponential function. In this expression, the free-surface term only
involves a finite integral of the complex exponential integral whereas it
is an infinite integral in the classical expression (4). Therefore, a direct

numerical integration may be used to evaluate it. However, it should be
noted that the integration kernel tends to infinity with a logarithmic
behavior when both r and Z tend to 0.

Note that in the BEM codes NEMOH and AQUADYN, the evaluation
of the Bessel function in the imaginary part of the Green function is
replaced by the evaluation of the following expression:

=G r Z k e dIm Re[ 4 ( , , )] 2 0
2

2

(7)

2.2. Second type

We define the expressions of the Green function of the second type
as:

= + +G r Z
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(8)

By comparing to the expressions of the first type, one can see that
the contribution of the image source is included in the free-surface term
g0(r, Z, ω).

2.2.1. Expression 3
The free-surface term g0 is given in Wehausen and Laitone's book

[6], equation (13. 17″). It reads:

= +g r Z k k
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It can be shown that it is equivalent to expression 1 by using the
Lipschitz's integral: = + =R r Z e J1/ 1/ (kr)dk1

2 2
0

kZ
0 . Notably, ex-

pression 3 is used in Newman's paper [1].

2.2.2. Expression 4
Another expression of g0 can be found in [9], [25], [30],:
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where K0(kr) is the modified Bessel function of the second kind and
Y0(k0r) is the Bessel function of the second kind. This expression is
known to be difficult to evaluate numerically due to the singular be-
havior of K0(kr). It has a logarithmic singular behavior close to k=0
and a slowly decaying behavior of the integrand when r is small.

2.3. Third type

We define the expressions of the Green function of the third type as:

= + + ++G r Z
R R

g r Z i k e J k r4 ( , , ) 1 1 ( , , ) 2 ( )k Z

1
0 0 00

(11)

For the expressions of this type, it can be noted that the sum of the
contributions of the Rankine and image source term satisfies the
homogeneous Neumann boundary condition on the mean free surface

+ =n R n R( / (1/ ) / (1/ ) 0)1 .

2.3.1. Expression 5
Applying Lipschitz's integral into Eq. (4) or (9), the free-surface term

can be written by:

=+g r Z k
k k

e J( , , ) 2 PV 1 (kr)dk0 0 0

kZ
0 (12)

Note that it is equivalent to equation (13.15) in Wehausen and
Laitone's book [6]. When r=0, the free-surface term given can be
written:

=+g Z k e k ZE(0, , ) 2 ( )k Z
i0 00 (13)

where Ei(x) is the exponential integral. When r=0 and Z→0, g+(r, Z,

Fig. 1. Source and field point.
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ω) has a logarithmic behavior.

2.3.2. Expression 6
In [9], [30], the following expression was given by Havelock:
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This expression corresponds to equation 3 in Peter and Meylan's
paper [25] and to equation (13. 17 ) in Wehausen's book [6]. One may
note the similarity with equation (10).

2.3.3. Expression 7
Expression 7 was proposed by Haskind [31]. It corresponds to the

equation (13. 17′) in Wehausen's Book [6]:
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2.3.4. Expression 8
A modified Haskind Green function was studied by several re-

searchers [8–10,32]. It is called the Haskind-Havelock representation in
D’elía et al.'s paper [26]. It reads:

= + +
++g r Z k e k r Y k r e

t r
H( , , ) ( ) ( ) 2 dtk Z

Z

k t
0 0 0 0 0

0

2 2
0

0

(16)

where H0(k0r) is the Struve function as defined in [33]. This expression
is equivalent to Eq. (3b) in Newman's paper [1] and equation (12) in
Liapis's paper [34] where it is called as a Havelock's finite integral.

It is well suited for evaluating the Green function when Z is small.
When the source and field points are both located on the free-surface
(z=0), it can be simplified to:

= + ++g r k k r Y k r i k J k rH( , 0, ) [ ( ) ( )] 2 ( )0 0 0 0 0 0 0 0 (17)

2.3.5. Expression 9
The Bessel function of the second kind in equation (16) is singular

when kr=0. Kim [8] introduced a regularized Bessel function N0 to
remove this singularity. This regularized Bessel function reads:
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Substituting (18) into equation (16) leads to:
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2.3.6. Expression 10
The near-field expression was introduced by Noblesse [14], equa-

tion (5.11). It reads:
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When the source point and the field point have the same horizontal
coordinates (i.e. r=0), the near-field expression simplifies to:

= = ++g r Z k e k Z iRe E( 0, , ) 2 [ ( 0)]k Z
0 1 00

(21)

The near-field expression includes special functions and a finite
integral which can be evaluated by direct numerical integration tech-
niques.

2.3.7. Expression 11
The far-field expression is given by equation (5.21) in [14]. It reads:
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Similarly to the near-field expression given in Eq. (21), the far-field
expression includes special functions and a finite integral which can be
evaluated by direct numerical integration techniques.

2.4. Fourth type

2.4.1. Expression 12
An eigenfunction representation of the Green function was proposed

by Peter and Meylan [25]:
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H0
(1) is the Hankel function of the first kind of first order. There is no

singularity in the integrand. Numerical quadrature is used to evaluate
the integral in their work.

2.5. Summary of the analytical expressions

Expressions 1 to 12 of free-surface Green function are summarized
in Table 1. In practice, it is convenient to use non-dimensionalized
coordinates rather than dimensional ones since it reduces the integral to
a function of only two variables. Therefore, let us define the non-di-
mensional variables X= k0r, Y= k0Z, YM= k0zM and YP= k0zP. Ex-
pressions 1 to 12 can be rewritten as function of these non-dimensional
variables given in Table 2.

3. Numerical methods for the evaluation of the Green function
and its derivatives

In this section, the numerical methods for the evaluation of the
Green function and its derivatives developed by Newman [1], Del-
hommeau [2], Telste and Noblesse [3] and Wu et al. [4] are reviewed.

3.1. Newman's method

Newman's method proposed in 1985 is based on the non-dimen-
sional versions of (9) and (16). For the efficient evaluation of the in-
tegrals in these expressions, Newman divided the quadrant (X, Y) into
six sub-domains. Corresponding sub-domains are depicted in Fig. 2. The
derivatives of the Green function can be calculated by using the chain
rule:

= + + +

= + + +

+

+

( )
( )

k k G X Y ik e J X

k k G X Y ik e J X

4 ( ( , ) 2 ( ))

4 ( ( , ) 2 ( ))

G
r r R R X

Y

G
Z Z R R Y

Y

1 1
0 0 0 0

1 1
0 0 0 0

1

1 (24)

where G+(X, Y) is the non-dimensionalized free-surface term.
According to Eq. (16), ∂G+(X, Y)/∂Y=−G+(X, Y)− 2/R1.

Therefore, only algorithms for G+(X, Y) and ∂G+(X, Y)/∂X are required
to evaluate the Green function and its derivatives. For the sake of
convenience, the finite integral in equation (16) is written as I(X, Y)

=
+

=
+

+
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3.1.1. Sub-domain 1
Sub-domain 1 is defined by X > 8 and −Y > 20. There, the non-
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dimensional version of equation (16) is used. The integral is approxi-
mated by Legendre polynomials:
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where Pn is the Legendre polynomial and (d, θ) denote the polar co-
ordinates such that X= d cosθ and −Y= d sinθ and d= k0R1,
α=sinθ. According to [1], the truncation order of 4 leads to a 6 dec-
imals accuracy in this sub-domain.

3.1.2. Sub-domain 2
For −X/Y < 0.5, Eq. (9) is used. The free-surface term G+(X, Y)

can be rewritten as:
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The calculation of Ei(−Y) depends on the definition in [33]. The series
are truncated at n=9 to achieve a 6 decimals accuracy.

3.1.3. Sub-domain 3
For X > 3.7, −X/Y > 4, the integral is approximated by:
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where

= = +I e I e t1 and dtY
n

Y t Y n
0 2 0

2
(32)

The integral I2n is solution of the recursion relation:

= +I Y n Y n n I( ) 2 ( ) 2 (2 1)n
n n

n2
2 2 1

2 2 (33)

The series in equations (30) and (31) are truncated at n=3 to achieve a
6 decimals accuracy.

3.1.4. Sub-domain 4
For 0 < X < 3.7, 0 <− Y < 2, G+(X, Y) is approximated using a

series expansion [16]:
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Table 1
Summary table of the expressions of the Green function

Type Real part of the free-surface term Name Reference

= +G g r Z4 ( , , )R R
1 1
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=g r Z e J( , , ) 2PV (kr)dkk
k k0 0
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2 1 Guével [2], [22]
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where the coefficient Cmn is defined by:
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2
1 1, 2 (36)

The truncation of the double summation series is made both for m and
n. According to Newman's paper [1], the 6 decimals accuracy is
achieved with a total of 33 terms. In the present work, it was found that
43 terms are needed to achieve the 6 decimals accuracy for the deri-
vatives of the Green function.

3.1.5. Sub-domain 5
In sub-domain 5, the finite integral in equation (16) is approximated

by:

=
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(38)

where X Y( , ) is the slowly-varying residual functions in the given
region. X Y( , ) and X Y X( , )/ are approximated using Chebyshev
polynomials [35]. To calculate the coefficients of the Chebyshev poly-
nomials, values of I are obtained by direct numerical integration. The
Double Chebyshev polynomial expansions are truncated to the desired
accuracy by neglecting coefficients smaller than 10−6.

3.1.6. Sub-domain 6
The approximation for the remaining sub-domain is not defined in

[1]. After numerical tests, the algorithm for sub-domain 3 with n=7 is
used.

3.2. Delhommeau's method

In 1989, Delhommeau introduced an algorithm based on inter-
polations of the Green function from a pre-calculated table [2]. The

Table 2
Expressions of the Green function as function of non dimensional coordinates.

Green function Real part of the free-surface term Name Reference
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Fig. 2. The six sub-domains in Newman's method.
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Delhommeau's method relies on equation (6). The derivatives are given
by:

= + +
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3.2.1. Elementary functions
In Delhommeau's method, the expressions of the Green function and

its derivatives in equations can be expressed as the function of these
four elementary integrals:

=

=

= =

=

=

D X Y i d

d

D X Y i e d e d

Z X Y d

Z X Y e d

Re J

Im J

Re Im

Re J

Re

( , ) ( cos )[ ( ) ]

cos [ ( ) ]

( , ) [ ( cos ) ] [ cos ]

( , ) [ ( ) ]

( , ) [ ]

1 /2
/2 1

/2
/2 1

2 /2
/2

/2
/2

1 /2
/2

2 /2
/2

(41)

The algorithm for the calculation of the complex exponential integral
function can be found in appendix 3 in [36].

3.2.2. Tabulation method for near and moderate field
In Delhommeau's method, the four elementary integrals in equation

(41) are interpolated from tabulated data at selected interpolation
nodes (Xi, Yj). Lagrange polynomials of the fourth order are used for the
interpolation. Direct numerical integration is used for evaluation of the
elementary integrals at interpolations nodes. The integration interval
[−π/2, π/2] is divided into 5001 points. For the numerical integration,
the Simpson's rule is used. The by-default tabulation domain in
AQUADYN 2.1 and NEMOH is Xi ∈ [0, 100] and Yj ∈ [−16,
− 1.58× 10−6]. Since the integrals D1 et Z1 go to infinity with a
logarithmic behavior when X=0 and Y tends to 0−, the interpolation
nodes should be more dense close to zero. Thus, the interpolation nodes
(Xi, Yj) are defined by:
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j

j

/5 6

/8 4.5 (43)

This discretization was found to be sufficient for simple bodies [2].
For complex geometries, refinement of the grid of interpolation nodes
may be required.

3.2.3. Asymptotic formulas for the far field
For X > 100 or −Y > 16, the four elementary integrals are ap-

proximated by:
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(44)

3.3. Telste-Noblesse's method

In the algorithm of Telste-Noblesse, three representations are used:
The modified Haskind representation (equation (16)), the near-field
representation (equation (21)) and the far-field representation (equa-
tion (22)). The derivatives of Green function are expressed as the fol-
lowing:
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Depending on the representation, the derivatives with respect to X
of real part of the free-surface term can be written:
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In the algorithm of Telste-Noblesse, the computational domain is
also split into sub-domains. The sub-domains are shown in Fig. 3.

3.3.1. Sub-domain 1
For large to moderate values of d and X≠0, an asymptotic ex-

pansion is applied for the far-field representation. For 0≥ Y≥ Yt (Yt
being a user-defined variable set to −14.5 in the Telste-Noblesse's al-
gorithm), the free-surface term is expanded as follows:

+
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+G X Y X e
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1 (47)

α=− Y/d (0≤ α < 1) and the polynomials pn are defined by:
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=
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p
p
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Fig. 3. Sub-domains used in the Telste-Noblesse's method.
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The derivatives with respect to X are given by:
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where the polynomials qn are defined by:
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When Yt≥ Y, the wave term and its derivatives are approximated as
follows:
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The truncation order of the series is n=10 outside the ellipse X2/
122+ Y2/152=1 and n=5 outside the ellipse X2/162+ Y2/202=1.
The absolute errors are reported to be smaller than 10−6 in [3].

3.3.2. Sub-domain 2
The sub-domain 2 corresponds to 0≤ X≤1.2− 0.15Y,

−2≤ Y≤0. A convergent ascending series is used. The ascending
series is based on the near-field representation. The free-surface term is
expressed as:

= + + ++G X Y d Y F Y J X S X Y e T X Y( , ) 2[{ ln( ) ( )} ( ) 2 ( , )] 2 ( , )Y
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(53)

where F0(Y), S0(X, Y), T0(X, Y) are defined as follows:
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In these last equations, γ=0.5772. . . is the Euler's constant. n′ is
the largest integer which does not exceed (n−1)/2 and σ= X/(d− Y).
Fn(Y) is defined as follows:
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A corresponding ascending series for the derivatives with respect to
X is given by:
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with
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5 terms are required for the series T0 and T1 and 10 terms are re-
quired for the series S0 and S1 to achieve 10−6 accuracy. For
X < 0.55−2Y, less terms are needed.

3.3.3. Sub-domain 3
A Taylor series expansion of the near-field integral representation is

used in the neighborhood of the vertical axis X=0:
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rn(Y) is given by:
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It is also solution of the recursion relation:
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Similarly, a Taylor series expansion can be obtained for the deri-
vatives:
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Rational approximations are used for the calculation of
+e Y iRe E{ [ ( 0)]}Y

1 as in [3]. To achieve the accuracy of 10−6, five, ten
and fifteen terms are respectively retained in the series depending on
whether X≤min(−0.3Y, 1.8), X≤min(−0.5Y, 5.4) or X≤min
(−0.7Y, 9.1) with 2≤− Y≤15.

3.3.4. Sub-domain 4
In the neighborhood of the horizontal plane Y=0, a Taylor series

expansion of the Haskind integral representation is used:
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The polynomials sn are solution of the following recursion relation:
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with

=C n n( 1) {1·3·5 (2 1)}/{2·4·6 (2 )}n
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For the derivative, the Taylor series expansion is:
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In the region 1.2≤ X≤12, the truncation order is 10 if Y≥max
(−0.4X+0.15, − 1.5) or 20 if Y≥−0.4X.

3.3.5. Sub-domain 5
The sub-domain 5 corresponds to the region where 1 < d < 10

along with 0.4 <− Y/X < 10/7. In this sub-domain, the modified
Haskind representation is used. The free-surface term and its deriva-
tives are given by:
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where c is a special constant and F0(X), F1(X), I0(X, Y) and I1(X, Y) are
defined by the integrals:
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These integrals involve the integrands +(1 )2 1/2 and +(1 )2 3/2.
Those terms can be approximated by polynomials. Then the integrals
can be integrated analytically which leads to series expansion forms of
the solution. The special constant c is set to 0.4, 0.65, 0.85 and 1.1 for
the regions 0.4 <− Y/X≤0.65, 0.65 <− Y/X≤0.85, 0.85 <− Y/
X≤1.1 and 1.1 <− Y/X≤10/7, respectively.

3.4. Wu et al.'s method

A simple approximation of the Green function was proposed by Wu
et al. [4] which valid in the whole domain. It derives from the No-
blesse's near-field representation [13]. The free-surface term is split into
a local flow term L(X, Y) and an out-going free-surface term W(X, Y):
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where ζ has the same definition as in section 2.1.2. The derivatives of
Green function are:
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and

=L X Y e dIm E* ( , ) 4 [ ( ) 1 ]cos
0

2
1

(77)

Wu et al. developed a simple approximation for the local flow term
and its derivative: L≈ La, L L* *

a. The approximated local flow term La

is:
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L
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with
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where α=− Z/R1, β= r/R1, ρ= k0R1/(1+ k0R1) and the polynomials
A, B, C and D are defined by:

= + +
+ +
= + + +

+ +
= + +
+
= + +
+ +

A

B

C

D

1.21 13.328 215.896 1763.96 8418.94 24314.21
42002.57 41592.9 21859 4838.6
0.938 5.373 67.92 796.534 4780.77 17137.74
36618.81 44894.06 29030.24 7671.22
1.268 9.747 209.653 1397.89 5155.67 9844.35
9136.4 3272.62
0.632 40.97 667.16 6072.07 31127.39 96293.05
181856.75 205690.43 128170.2 33744.6
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The other term L*
a is:
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with
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The polynomials A*, B* and C* are defined by:

= + +
+ +

= + + +
+ +

= + +

A

B

C

* 2.948 24.53 249.69 754.85 1187.71 16370.75
48811.41 68220.87 46688 12622.25

* 1.11 2.894 76.765 1565.35 11336.19 44270.15
97014.11 118879.26 76209.82 19923.28

* 14.19 148.24 847.8 2318.58 3168.35 1590.27

2 3 4 5

6 7 8 9

2 3 4 5

6 7 8 9

2 3 4 5

(83)

3.5. Summary of numerical schemes

The mathematical formulas for the calculation of the free-surface
term of the Green function and its derivative for the four methods are
summarized in Tables 3 and 4 .

4. Comparison of the four methods

We implemented the algorithms of Newman, Delhommeau, Telste
and Noblesse and Wu et al. For the Telste-Noblesse's method, the source
code is given in their paper [3]. However, it should be noted that we
changed the precision from single float to double float. For the Del-
hommeau's method, the code follows the NEMOH code (which is open
source) with a few minor modifications in the tabulated file. For the
Newman's and Wu et al.'s methods, we developed the source code based
on their papers. It should be noted that the computational time may
vary depending on the coding technique.

All the calculations were performed on a PC with intel(R) Core(TM)
i7-6700 CPU @ 3.40 GHZ. The codes were written in FORTRAN90 and
compiled with intel fortran 14.0.1. The evaluation of the Struve func-
tion is based on the algorithm of Newman [38]. For the Bessel func-
tions, the functions available in the FORTRAN compiler were used.

The accuracy and computational time for the four methods were
compared. To facilitate the comparisons, only results for G− and
its derivative ∂G−/∂X are shown. For the methods that provide G+
and G0, the image source contribution were added to obtain G− by
using the relations = + +G X Y G X Y X Y( , ) ( , ) 1/0

2 2 , =G X Y( , )
+ ++G X Y X Y( , ) 2/ 2 2 . For the comparisons, the non-dimensiona-

lized variables (X, Y) are uniformly discretized over the domain
X ∈ [0.001, 22], Y ∈ [0.001, 15]. This domain is expected to cover
most of the practical cases. The case of the source and field points
located at the same position is not considered since it corresponds to
the singularities. Analytical expressions are available for Y=0
(equation (16))and for X=0 (equation (13)). Reference values for
the real part of the non-dimensionalized free-surface term of the
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Green function (G−) and its derivative (G−X=∂G−/∂X) are shown in
Fig. 4. They were obtained by direct numerical integration using an
adaptive Gaussian 3-point quadrature. The absolute error for the re-
ference values is less than 10−8.

The absolute error for the Green function between the values
computed from the direct integration and four methods are plotted in
Fig. 5. As expected, a 6 decimals accuracy is obtained with the New-
man's method over the whole computational domain, see Fig. 5(a). The
error is greater in the sub-domain 1, which corresponds to the far-field,

than in the other sub-domains. The absolute errors computed with the
algorithm of Delhommeau are shown in Fig. 5(b). The absolute error is
greater than the other methods especially in the near field. The error for
the Telste-Noblesse's method is shown in Fig. 5(c). The error is the
greatest in the middle of the domain. Nevertheless, the method achieves
a 5 decimals accuracy. The error for the algorithm of Wu et al. is shown
in Fig. 5(d). The accuracy is 3 decimals.

The absolute error for ∂G−/∂X for the four methods are shown in
Fig. 6. The results are similar to that for G−: the accuracy is 6D, 5D, 3D

Table 3
The expressions of the free-surface term of the Green function and their derivatives which are useful for numerical calculation (1)

Expression number Expressions: G+(X, Y) and + X Y( , )G
X

Region of fast convergence Reference
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Table 4
The expressions of the free-surface term of the Green function and their derivatives which are useful for numerical calculation (2)
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for the algorithms of Newman, Telste-Noblesse's and Wu et al., re-
spectively. For Delhommeau's method, the accuracy is 3D almost ev-
erywhere in the considered domain except when (X, Y) is close to (0, 0).
However, the value of the Green function is large in that situation
which makes the relative error small, in the order of 1 to 2%.

Note that for some cases of (X, Y), the accuracy of the derivative can
be less than the function as can be seen by close inspection of Fig. 5 and
Fig. 6, depending on the method.

The computational time for calculating the Green functions and its
derivative over the set of discretized (X, Y) values for the different

Fig. 4. The free-surface term of the Green function G− and its derivative G−X using the direct integral method.

Fig. 5. The errors of the free-surface term of the Green function G− of Newman's, Delhommeau's, Telste and Noblesse's, Wu et al.'s methods compared to direct
integral method.
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algorithms is shown in Table 5. As one can expect, the computational
time is the greatest for the methods that are the most accurate (direct
numerical integration and Newman's method). The direct numerical
integration with tolerance of 10−8 needs 20 times more computational
time than the Newman's method. The Delhommeau and Telste-No-
blesse's methods are an order of magnitude faster than the Newman's
method. However, the accuracy is respectively about three orders of
magnitude and slightly less than the Newman's method. With respect to
computational time, the Wu et al.'s method is the fastest one.

Overall, it appears that the best method is the Newman's method
and Telste-Noblesse's method with respect to accuracy. With respect to
computational time, the Wu et al.'s method is best.

As in Newman's and Telste-Noblesse's method, the evaluations

algorithms are different in each sub-domains. The computational time
for each (X, Y) computational points as function of the method is shown
in Fig. 7. It can be seen that the computational time depends not only
on the method but also on the sub-domains. The local computational
time for the Newman's method is shown in Fig. 7(a). The average
computational time for each sub-domain is shown in Table 6. In the
sub-domain 2, the computational time increases with increasing Y.

The computational time for the Delhommeau's method is shown in
Fig. 7(b). Since it is based on the fourth order Lagrange polynomial
interpolation, the computational time does not vary much over the
interpolation domain. For large X and Y, the asymptotic formulation is
used to calculate the Green function which explains why the compu-
tational time for Y≥16 is much shorter than for the rest of the domain.

The compuational time for the Telste-Noblesse's method in shown in
Fig. 7(c). The computational time varies between O(10−7) and O
(10−8). The average computational time for each sub-domain is shown
in Table 7. For any given X and Y, the computational time appears to be
less than that of the Newman's method.

The computational time for the Wu et al.'s method is shown in
Fig. 7(d). It is shown that the computational time suddenly increases for
X≥3. It is because despite the fact that the flow term is approximated
with a simple polynomials with the elementary functions, the Wu et al.'s
method still requires a subroutine to calculate the Struve function
(H0(k0r)). This subroutine is based on the algorithm by Newman [39],
which uses different approaches depending on whether X is greater or

Fig. 6. The errors of the derivative of free-surface term of the Green function G−X of Newman's, Delhommeau's, Telste and Noblesse's, Wu et al. methods compared to
direct integral method.

Table 5
Computational time for calculating the Green function and its derivatives a
function of the different algorithms.

Algorithm Total computation time (s)
(NX=220, NY=150)

Averaged computation
time (s)

Direct numerical
integration

3.840×10−1 1.164× 10−5

Newman 1.896×10−2 5.745× 10−7

Delhommeau 1.908× 10−3 5.782× 10−8

Telste-Noblesse 1.532× 10−3 4.642× 10−8

Wu et al. 4.920× 10−5 1.491× 10−9
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smaller than 3. Nevertheless, a key feature of the Wu et al.'s method is
that it is not based on subdivisions of the flow domain. Thus, it may be
more suited for parallel computations compared to the other methods.

5. Conclusions

In this paper, we reviewed the available mathematical expressions

for the deep water free-surface Green function in frequency domain and
four different numerical methods which were developed for its nu-
merical evaluation. The four methods are the Newman's method, the
Delhommeau's method, the Telste-Noblesse's method and the Wu et al.'s
method. The computational time and accuracy with each method are
compared. The Newman's method is the most accurate providing a 6
decimal accuracy. However, it is also the slowest. The Telste and

Fig. 7. Local computation time to calculate the Green function and its derivatives based on Newman's, Delhommeau's, Telste-Noblesse's, Wu et al's and direct integral
method.

Table 6
Averaged computation time of Newman's algorithm.

# of sub-
domain

Corresponding (X, Y) Averaged computation time
(s)

1 (X > 8, −Y > 20) 1.805× 10−7

2 (−X/Y < 0.5) 8.439× 10−7

3 (X > 3.7, − X/Y > 4) 2.573×10−7

4 (0 < X < 3.7, 0 <− Y < 2) 5.265×10−7

5 (−X/Y≤4, − Y≤2) 4.925×10−7

6 (Therestpartwith− Y > 2) 4.149×10−7

Table 7
Averaged computation time of Telste-Noblesse's algorithm.

# of sub-
domain

Corresponding (X, Y) Averaged computation
time (s)

1 (X2/122+ Y2/152≥ 1) 3.607× 10−8

2 (0≤ X≤1.2−0.15Y,
− 2≤Y≤0)

4.110× 10−8

3 (X≤min(0.7Y, 9.1)) 7.454× 10−8

4 (X≥−0.4X) 4.094× 10−8

5 (Therestpart) 6.699× 10−8
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Noblesse's method is an order of magnitude faster than the Newman's
method, but it is slightly less accurate. The method by Delhommeau lie
in-between the Newman and Teslte-Noblesse's method with respect to
computational time but it is less accurate than the Telste-Noblesse's
method. This makes this latter method preferrable to the Delhommeau's
method. The Wu et al's method is also less accurate than the Newman
and Teslte-Noblesse's method, but it is also the fastest method and the
simplest with respect to numerical implementation (as they do not use
different expressions depending on the position in the computational
domain).

Finally, a limitation of this work is that only the case of deep water
was considered despite the case of finite depth is also very important for
practical applications. This is left for future work.
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Chapter 4

Ordinary differential equations for
the infinite water depth free-surface
Green functions and its derivatives

Résumé

Dans le chapitre précédent, les fonctions de Green à surface libre dans le do-
maine fréquentiel sont toutes exprimées sous forme intégrale. Dans ce chapitre,
nous montrons que la fonction de Green et ses dérivées sont solutions d’équations
différentielles par rapport au temps ou à la fréquence. Par ailleurs, de nouvelles
équations différentielles ordinaires sont établies pour la fonction de Green par rap-
port à la variable d’espace, à la fois dans le domaine fréquentiel et dans le domaine
temporel.

In the previous chapter, the free-surface Green functions in the frequency domain
are all expressed in integral forms. In this chapter, we derive several ordinary dif-
ferential equations (ODEs) for the free-surface Green function and its derivatives
in the frequency domain. This part of work are extension of Clement’s work [24],
[23]. The ODEs with respect to time and frequency are derived in a new way. The
ODEs with respect to spatial variables in the time domain and frequency domain
are firstly proposed in this thesis.
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4.1 Time Domain Green function

4.1.1 Boundary value problem in time domain

The time-domain Green function of the free-surface hydrodynamic problem is de-
fined as the fundamental solution of the following boundary value problem. The
variables are nondimensional in terms of reference length [L] and reference time
[L/g].

• Continuity or Laplace equation

∆MF∞(r, Z; t) = δ(|PM |)δ(t− t0) ∀zM ≤ 0;∀t ≥ 0 (4.1)

• Free surface conditions

∂2F∞(r, Z; t)

∂t2
+
∂F∞(r, Z; t)

∂zM
= 0 zM = 0;∀t ≥ 0 (4.2)

• Condition at infinity

∇MF∞(r, Z; t)→ 0 zM → −∞;∀t ≥ 0 (4.3)

∇MF∞(r, Z; t)→ 0 r →∞;∀t ≥ 0 (4.4)

t0 is assumed to be 0.
The solution to this initial-boundary value problem has been derived by Haskind

[38] and Brard [10] for deep water. It was generalized by Finkelstein [29] for the
finite water depth cases. According to these references, a mathematical expression
of time-domain Green function in deep water reads,

F∞(r, Z; t) = − 1

4π
[δ(t)F0(r, Z) +H(t)F (r, Z; t)] (4.5)

with

F0(r, Z) =
1

R
− 1

R1

(4.6)

and

F (r, Z; t) = 2

∫ ∞
0

J0(Kr)e
KZ
√
Ksin(

√
Kt)dK (4.7)
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H(t) is the Heaviside unit step function, and δ(t) the Dirac distribution and J0

is the Bessel function of the first kind of order 0. F0(r, Z) is often referred to the
instantaneous or impulsive part of the Green function while F (r, Z; t) is called the
memory part.

The Green function in time domain as function of the natural variables can be
obtained from the Green function in time domain with initial variables by a change
of variables. It reduces the number of effective variables from three to two. Jami
[45] showed that the memory part of the Green function can be expressed as a
function of two variables (µ, τ).

F (r, Z; t) = 2R
−3/2
1 F̃ (µ, τ) (4.8)

with

F̃ (µ, τ) =

∫ ∞
0

J0(λ
√

1− µ2)e−λµ
√
λ sin(

√
λτ)dλ (4.9)

by using the change of variables (r, Z, t)→ (R1, µ, τ).


r

Z

t

⇒


R1 = (r2 + Z2)1/2

µ = − Z

(r2 + Z2)1/2

τ =
t

(r2 + Z2)1/4

(4.10)


R1

µ

τ

⇒


r = R1

√
1− µ2

Z = −µR1

t = τ
√
R1

(4.11)

4.1.2 Time-domain differential equations for the Green function

Using Eq. (4.7), one can show that the time-domain Green function is one solution
of three differential equations, ∀Z ≤ 0 and ∀t > 0.

∂2F

∂Z2
+

1

r

∂F

∂r
+
∂2F

∂r2
= 0 (4.12a)

∂2F

∂t2
+
∂F

∂Z
= 0 (4.12b)

∂4F

∂t4
− ∂2F

∂Z2
= 0 (4.12c)
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Eq. (4.12a) expresses the Laplace equation (4.1). Eq. (4.12b) is similar to (4.2)
except that it is valid in the whole fluid domain, not only on the free-surface (z =

0).

Using the change of variables defined by Eqs. (4.10) and (4.11), we define the
Jacobian Matrix (see [24])

∣∣∣∣∣∣∣∣∣∣∣

∂r

∂R1

∂r

∂µ

∂r

∂τ
∂Z

∂R1

∂Z

∂µ

∂Z

∂τ
∂t

∂R1

∂t

∂µ

∂t

∂τ

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

√
1− µ −R1µ√

1− µ2
0

−µ −R1 0
τ

2
√
R1

0
√
R1

∣∣∣∣∣∣∣∣∣∣
= −R1

√
R1

1− µ2
(4.13)

It vanishes when and only when the source point and the field point are located
in the same place. It is a trival case which is a priori excluded from the domain of
the present study.

The change of variables gives, at the first level of derivative

∂

∂r
=
√

1− µ2
∂

∂R1

− µ
√

1− µ2

R1

∂

∂µ
− τ

√
1− µ2

2R1

∂

∂τ

∂

∂Z
= −µ ∂

∂R1

− 1− µ2

R1

∂

∂µ
+

1

2

µτ

R1

∂

∂τ
∂

∂t
=

1√
R1

∂

∂τ

(4.14)

and for the second derivatives (diagonal terms):
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∂2

∂r2
=
µ2

R1

∂

∂R1

+
µ(2− 3µ2)

R2
1

∂

∂µ
+
τ(3− 5µ2)

4R2
1

∂

∂τ

+ (1− µ2)[
∂2

∂R2
1

− 2µ

R1

∂2

∂µ∂R1

− τ

R1

∂2

∂τ∂R1

]

+
(1− µ2)

R2
1

[µ2 ∂
2

∂µ2
+ µτ

∂2

∂τ∂µ
+
τ 2

4

∂2

∂τ 2
]

∂2

∂Z2
=

(1− µ2)

R1

∂

∂R1

− 3µ
(1− µ2)

R2
1

∂

∂µ
+
τ

4

(5µ2 − 2)

R2
1

∂

∂τ

+ µ2 ∂
2

∂R2
1

+ 2µ
(1− µ2)

R1

∂2

∂µ∂R1

− µ2τ

R1

∂2

∂τ∂R1

+ [
1− µ2

R1

]2
∂2

∂µ2
− µτ

R1

(1− µ2)

R1

∂2

∂τ∂µ
+
µ2τ 2

4R2
1

∂2

∂τ 2

∂2

∂t2
=

1

R1

∂2

∂τ 2

(4.15)

With the change of variables, Eq. (4.12) can be transformed into three simi-
lar partial equations. The first step of the derivation is to perform the change of
variables in Eq. (4.10), then using Eqs. (4.14), (4.15) together with a change of the
dependent variable F → F̃ through Eq. (4.8). Switching to the indicative notation
for the derivatives, we get:

τ 2F̃ττ + 5τ F̃τ + 4(1− µ2)F̃µµ − 8µF̃µ + 3F̃ = 0 (4.16a)

2F̃ττ + µτF̃τ − 2(1− µ2)F̃µ + 3µF̃ = 0 (4.16b)

2F̃ττττ −
µ2τ 2

2
F̃ττ + τ(1− 11

2
µ2)F̃τ + 2µτ(1− µ2)F̃τµ

− 2(1− µ2)2F̃µµ + 12µ(1− µ2)F̃µ + (3− 21

2
µ2)F̃ = 0 (4.16c)

4.1.3 Ordinary differential equations in time domain

A fourth order ODE for F̃ with respect to the time variable τ

From the set of partial differential equations 4.16 one can easily recover the fourth
order ordinary differential equation fot the time-domain Green function uncovered
by Clément in 1998 [24].

Eq. (4.16b) can be rewritten as follows:
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2(1− µ2)F̃µ = 2F̃ττ + µτF̃τ + 3µF̃ (4.17)

It shows that the derivatives of the Green function can in fact be computed di-
rectly from the solution to the Green function ODE, removing the need to solve
additional ODEs which is similar as in Li et al. [54]. We also found the similar
result in frequency domain.

Then, by differentiating once with respect to τ :

2(1− µ2)F̃µτ = 2F̃τττ + µτF̃ττ + 4µF̃τ (4.18)

Differentiating one more time leads to:

2(1− µ2)F̃µττ = 2F̃ττττ + µτF̃τττ + 5µF̃ττ (4.19)

Now Eq. (4.18) can be substituted into Eq. (4.16c) to eliminate the F̃µτ terms.
We get:

2F̃ττττ+2µτF̃τττ+
µ2τ 2

2
F̃ττ+τ(1−3

2
µ2)F̃τ+(3−21

2
µ2)F̃ = 2(1−µ2)2F̃µµ−12µ(1−µ2)F̃µ

(4.20)

The F̃µ term in the RHS is now eliminated by using Eq. (4.17) above, leading to

2F̃ττττ + 2µτF̃τττ + (
µ2τ 2

2
+ 12µ)F̃ττ + τ(1 +

9

2
µ2)F̃τ + (3 +

15

2
µ2)F̃ = 2(1− µ2)2F̃µµ

(4.21)

Now eliminating F̃µ in Eqs. (4.16a) and (4.16b), we can express F̃µµ in terms of
F̃ and its successive derivatives with respect to τ :

4(1− µ2)2F̃µµ = [8µ− τ 2(1− µ2)]F̃ττ + (9µ2τ − 5τ)F̃τ − (3− 15µ2)F̃ (4.22)

Finally, using Eq. (4.22) to express the RHS of Eq. (4.21) leads, after simplifica-
tions, to sought ODE for F̃ :

2F̃ττττ + 2µτF̃τττ + (
τ 2

2
+ 8µ)F̃ττ +

7

2
τ F̃τ +

9

2
F̃ = 0 (4.23)

The initial conditions are derived from Eq.(4.9)and equation 6.624.6 pp.734 in
[34]:
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F̃ 2k(µ, 0) = 0, F̃ 2k+1(µ, 0) = (−1)k(k + 1)!Pk+1(µ); k = 0, 1, ... (4.24)

where Pk+1 denotes the Legendre polynomial of order k + 1.

A fourth order ODE for F with respect to the time variable t

Returning to the initial variables (r, Z; t), one can show from (4.23) that the memory
part of the Green function F is solution of the ordinary differential equation:

(r2 + Z2)Ftttt − ZtFttt + (
1

4
t2 − 4Z)Ftt +

7

4
tFt +

9

4
F = 0 (4.25)

where the subscript t means the time derivatives. The corresponding initial
conditions are,

F (r, Z; 0) = 0

Ft(r, Z; 0) = −2
Z

(r2 + Z2)3/2

Ftt(r, Z; 0) = 0

Fttt(r, Z; 0) = 2
r2 − 2Z2

(r2 + Z2)5/2

(4.26)

The ordinary differential equations for F̃ and F and corresponding initial con-
ditions were first obtained by [24] by introducing a general fourth order ODE.

A new fourth order ODE for F̃ with respect to the space variable µ

Re-starting from Eq. (4.16), we will now eliminate the time derivatives to keep
only the spatial derivatives with respect to µ. Multiplying Eq. (4.16a)by µ and
(4.16b) by −5 and summing leads to:

(µτ 2 − 10)F̃ττ = −4µ(1− µ2)F̃µµ − 2(5− 9µ2)F̃µ + 12µF̃ (4.27)

Multiplying now Eq. (4.16a) by 2 and (4.16b) by −τ 2 and summing gives

− τ(µτ 2 − 10)F̃τ = −8(1− µ2)F̃µµ + 2(µ2τ 2 + 8µ− τ 2)F̃µ − 3(2− µτ 2)F̃ (4.28)

By differentiating these two equations with respect to µ, one can obtain expres-
sions F̃µτ , F̃µµτ and F̃µττ as differential forms of successive derivatives of F̃ with
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respect to the single variable µ: F̃ , F̃µ, F̃µµ, F̃µµµ, F̃µµµµ.

Then, let us substitute these expressions into the time variable ODE Eq. (4.23)
and express the fourth derivative using Eq. (4.19), we obtain:

c4F̃µµµµ + c3F̃µµµ + c2F̃µµ + c1F̃µ + c0F̃ = 0 (4.29)

with

c0 =− 12µ(µ2 + 1)τ 6 + 24(14µ2 + 9)τ 4 − 2880µτ 2 − 2400

c1 =µ(µ2 + 1)τ 8 − 2(39µ4 + 8µ2 + 9)τ 6 + 12µ(167µ2 − 23)τ 4

− 160(87µ2 − 35)τ 2 + 2400µ

c2 =µ2(µ2 − 1)τ 8 − 8µ(µ2 − 1)(7µ2 + 4)τ 6 + 4(297µ4 − 266µ2 − 63)τ 4−
320µ(15µ2 − 23)τ 2 − 400(45µ2 − 13)

c3 =− 8µ2(µ2 − 1)2τ 6 + 64µ(µ2 − 1)(µ2 − 3)τ 4 + 160(µ2 − 1)(9µ2 + 7)τ 2

− 12800µ(µ2 − 1)

c4 =− 16(µτ 2 − 10)2(µ2 − 1)2

(4.30)

Using the original integral formula (4.9), one can show that the initial condi-
tions are:

F̃ (0, τ) = +

∫ ∞
0

λ
1
2J0(λ) sin(

√
λτ)dλ

F̃µ(0, τ) = −
∫ ∞
0

λ
3
2J0(λ) sin(

√
λτ)dλ

F̃µµ(0, τ) = +

∫ ∞
0

λ
5
2J0(λ) sin(

√
λτ)dλ+

∫ ∞
0

λ
3
2J1(λ) sin(

√
λτ)dλ

F̃µµµ(0, τ) = −
∫ ∞
0

λ
7
2J0(λ) sin(

√
λτ)dλ−

∫ ∞
0

λ
5
2J1(λ) sin(

√
λτ)dλ

(4.31)

Following [24], [34] (P.609), let us define the auxiliary function Kp,q(R, τ):

Kp,q(R, τ) =

∫ ∞
0

λ−(1/2)+pJq(λR) sin(
√
λτ)dλ (4.32)

Thus:
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F̃ (0, τ) = +K1,0(1, τ)

F̃µ(0, τ) = −K2,0(1, τ)

F̃µµ(0, τ) = +K3,0(1, τ) +K2,1(1, τ)

F̃µµµ(0, τ) = −K4,0(1, τ)− 3K3,1(1, τ)

(4.33)

The RHSs of Eqs. (4.33) can be computed by recurrence from the results in [34]
(22.20, P.609).

K0,0(R, τ) =
π

2
√

2

τ

R
J(1/4)(

τ 2

8R
)J(−1/4)(

τ 2

8R
) (4.34)

The first recurrence relation is obtained by differentiating Eq. (4.32) twice with
respect to τ , leading to

Kp+1,q(R, τ) = − ∂2

∂τ 2
Kp,q(R, τ) (4.35)

The second one derives from the well-known recurrence relations for the deriva-
tives of the Bessel functions:

Kp+1,q+1(R, τ) =
q

R
Kp,q(R, τ)− ∂

∂R
Kp,q(R, τ) (4.36)

Then, starting from Eq. (4.34), and using successively Eqs. (4.35) and (4.36)
with at least R = 1, one can show that the initial conditions for the ODE in µ of the
Green function F̃ are:
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F̃ (0, τ) =
π

16
√

2
τ 3
[
J(1/4)(

τ 2

8
)J(−1/4)(

τ 2

8
) + J(3/4)(

τ 2

8
)J(−3/4)(

τ 2

8
)

]

F̃µ(0, τ) = − π

64
√

2
τ



(τ 4 − 8)J(1/4)(
τ 2

8
)J(−1/4)(

τ 2

8
)

−6τ 2J(−1/4)(
τ 2

8
)J(−3/4)(

τ 2

8
)

+6τ 2J(1/4)(
τ 2

8
)J(3/4)(

τ 2

8
)

+τ 4J(−3/4)(
τ 2

8
)J(3/4)(

τ 2

8
)



F̃µµ(0, τ) =
π

256
√

2
τ 3



(τ 4 − 60)J(1/4)(
τ 2

8
)J(−1/4)(

τ 2

8
)

−16τ 2J(−1/4)(
τ 2

8
)J(−3/4)(

τ 2

8
)

+16τ 2J(1/4)(
τ 2

8
)J(3/4)(

τ 2

8
)

+(τ 4 − 12)J(3/4)(
τ 2

8
)J(−3/4)(

τ 2

8
)



F̃µµµ(0, τ) = − π

1024
√

2
τ



(τ 8 − 220τ 4 − 160)J(1/4)(
τ 2

8
)J(−1/4)(

τ 2

8
)

−(30τ 6 − 40τ 2)J(−1/4)(
τ 2

8
)J(−3/4)(

τ 2

8
)

+(30τ 6 − 40τ 2)J(1/4)(
τ 2

8
)J(3/4)(

τ 2

8
)

+(τ 8 − 116τ 4)J(−3/4)(
τ 2

8
)J(3/4)(

τ 2

8
)



(4.37)

This ODE are original work and may be useful for the calculation of influence
coefficient in BEM without the convolution operator.

Validation of the ODEs with respect to µ of F̃

In order to validate this ODE with respect to µ, we compare the results of evaluat-
ing the function F̃ (µ, τ) by integrating the new ODE in µ 4.29 with the ODE for F̃
with respect to τ which has been validated by Clément [24], [22].

Eq. (4.23) and Eq. (4.29) were integrated using the RK4 method with initial
conditions given by Eq. (4.24) and Eq. (4.37), respectively. Fig. 4-1 shows the
results for F̃ obtained by integrating the ODE with respect to τ with ∆τ = 0.01;
while the Fig. 4-2 shows the results for the ODE with respect to µ with ∆µ =

0.01, 0.001, 0.0001.

The order of the ODE in Eq. (4.29) decreases when µτ 2 − 10 = 0 or µ2 − 1 = 0.
The first case is shown by the black line in Fig. 4-2 (the other case is µ = 1. A
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limited case which is excluded here). When µ is smaller than
10

τ 2
, one can see that

there is an excellent agreement between the results with ODE with respect to τ and

the ODE with respect to µ. However, when µ becomes greater than
10

τ 2
, the results

for the ODE with respect to µ diverges as instabilities appear in the integration of
the ODE.

From Fig. 4-2, one may wonder whether the degenerated order line defines the
limit of the oscillating zone in (µ, τ) plane, as the knowledge of such a limit would
be beneficial for the numerical integration of the function. Fig. 4-3, in which the
legend has been modified to highlight this limitation, shows the degenerated order
line dose not actually separate the oscillating and non-oscillating zones.

Figure 4-1: The result F̃ of ODE with respect to τ with ∆τ = 0.01
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(a) ∆µ = 0.01

(b) ∆µ = 0.001

(c) ∆µ = 0.0001

Figure 4-2: The result F̃ of ODE with respect to µ with ∆µ = 0.01, 0.001, 0.0001 and
the black lines are the degenerated order lines.

Figure 4-3: Same as Fig. 4-2(a) with a modified legend to highlight the limitation
between the oscillating and non oscillating zones.

4.1.4 An alternative derivation of ordinary differential equations
in the time domain

In 1998, fourth order differential equations were proposed by Clément [24] for the
free-surface Green function and its derivatives in the time domain. They were
derived using another method. A general fourth order ordinary differential equa-
tion was derived for a class of functions including the time-domain Green function
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of linearized free-surface hydrodynamics and all its spatial derivatives. Bingham
compared the accuracy and efficiency of several method for computing the time-
domain Green function including the ODE method based on Clément’s work. [9]
The ODE for F is given above (Eq. 4.25). We recall in the following the ODEs for
the vertical and horizontal derivatives:

ODE for Fr

(r2 + Z2)Frtttt − ZtFrttt + (
1

4
t2 − 6Z)Frtt +

11

4
tFrt +

21

4
Fr = 0 (4.38)

The initial conditions are

Fr(r, Z; 0) = 0

Frt(r, Z; 0) = 6
rZ

(r2 + Z2)5/2

Frtt(r, Z; 0) = 0

Frttt(r, Z; 0) = 6
r(−r2 + 4Z2)

(r2 + Z2)7/2

(4.39)

ODE for FZ

(r2 + Z2)FZtttt − ZtFZttt + (
1

4
t2 − 6Z)FZtt +

11

4
tFZt +

25

4
FZ = 0 (4.40)

The initial conditions are

FZ(r, Z; 0) = 0

FZt(r, Z; 0) =
rZ

(−2r2 + 4Z2)5/2

FZtt(r, Z; 0) = 0

FZttt(r, Z; 0) = −6
Z(3r2 − 2Z2)

(r2 + Z2)7/2

(4.41)

4.2 Frequency-Domain Green function

4.2.1 Boundary value problem in the frequency domain

The frequency-domain Green function of the free-surface hydrodynamic problem
is the solution of the following boundary-value problem.

∆MG∞(r, Z;ω) = δ(|PM |) ∀zM ≤ 0 (4.42)
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− k0G∞(r, Z;ω) +
∂G∞(r, Z;ω)

∂zM
= 0 zM = 0;∀t ≥ 0 (4.43)

Conditions at infinity

∇MG∞(r, Z;ω)→ 0 zM → −∞;∀t ≥ 0 (4.44)

lim
r→∞

√
r

(
∂G∞(r, Z;ω)

∂r
− ik0G∞(r, Z;ω)

)
= 0 (4.45)

4.2.2 Partial differential equations in the frequency domain

Using Eq.4.16a, Eq.4.16b and Eq. 4.23, let us now derive the PDEs in the frequency
domain. Multiplying both sides of Eq.4.16a by H(τ):

τ 2HF̃ττ + 5τHF̃τ + 4(1− µ2)HF̃µµ − 8µHF̃µ + 3HF̃ = 0 (4.46)

Let us introduce the auxiliary function S̃(µ, τ) = H(τ)F̃ (µ, τ). Taking into
account the differential relation between the Heaviside and Dirac functions, i.e
δ(τ) = dH(τ)/dτ , one can show:

S̃ = HF̃

S̃τ = δF̃ +HF̃τ

S̃ττ = δτ F̃ + 2δF̃τ +HF̃ττ

S̃τττ = δττ F̃ + 3δτ F̃τ + 3δF̃ττ +HF̃τττ

Sττττ = δτττ F̃ + 4δττ F̃τ + 6δτ F̃ττ + 4δF̃τττ +HF̃ττττ

(4.47)

Using Eq. (4.47) in Eq. (4.46), one can show:

τ 2S̃ττ + 5τ S̃τ + 4(1− µ2)S̃µµ − 8µS̃µ + 3S̃ = τ 2(δ(1)F̃ + 2δF̃ (1)) + 5τδF̃ (4.48)

Let us take its Fourier transform seen in Appendix a. Note the Fourier trans-
form of S̃(τ) is the frequency dependent part G̃0($) with

√
R1G̃0($) = G̃($). For

the left hand side:

L = F(τ 2S̃ττ + 5τ S̃τ + 4(1− µ2)S̃µµ − 8µS̃µ + 3S̃) (4.49)
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F(τ 2S̃ττ ) = $2G̃$$ + 4$G̃$ + 2G̃

F(5τ S̃τ ) = −5($G̃$ + G̃)

F(3S̃) = 3G̃

F(4(1− µ2)S̃µµ − 8µS̃µ) = 4(1− µ2)G̃µµ − 8µG̃µ

(4.50)

L = $2G̃$$ −$G̃$ + 4(1− µ2)G̃µµ − 8µG̃µ (4.51)

For the right hand side:

R = F(τ 2(δ(1)F̃ + 2δF̃ (1)) + 5τδF̃ ) = 0 (4.52)

Finally, it remains:

$2G̃$$ −$G̃$ + 4(1− µ2)G̃µµ − 8µG̃µ = 0 (4.53)

For Eq. (4.16b), we use the same derivation. Multiplying the both sides by
H(τ):

2HF̃ττ + µτHF̃τ − 2(1− µ2)HF̃µ + 3µHF̃ = 0 (4.54)

Using Eq. (4.47), one can show:

2S̃ττ + µτS̃τ − 2(1− µ2)S̃µ + 3µS̃ = 2(δ(1)F̃ + 2δF̃ (1)) + µτδF̃ (4.55)

For the left hand side:

L = F(2S̃ττ + µτS̃τ − 2(1− µ2)S̃µ + 3µS̃) (4.56)

F(2S̃ττ ) = 2(i$)2G̃ = −2$2G̃

F(µτS̃τ ) = −µ($G̃ω + G̃)

F(3µS̃) = 3µG̃

F(−2(1− µ2)S̃µ) = −2(1− µ2)G̃µ

(4.57)

L = −µ$G̃$ − (2$2 − 2µ)G̃− 2(1− µ2)G̃µ (4.58)

For the right hand side:

R = F(2(δ(1)F̃ + 2δF̃ (1) + µτδF̃ ) (4.59)
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F(2δ(1)F̃ ) = 2(−F̃ (1)(0) + i$F̃ (0)) = 2(−µ+ 0) = −2µ

F(4δF̃ (1)) = 4F̃ (1)(0) = 4µ

F(µτδF̃ ) = 0

(4.60)

R = 4µ− 2µ = 2µ (4.61)

Finally:

− µ$G̃$ − (2$2 − 2µ)G̃− 2(1− µ2)G̃µ = 2µ (4.62)

which shows that the derivatives of frequency-domain Green function can be ob-
tained directly without other ODEs.

The time domain homogeneous ODE with natural variables (4.23) obviously
still holds when both sides are multiplied by H(τ), leading to:

HF̃ττττ + µτHF̃τττ + (
τ 2

4
+ 4µ)HF̃ττ +

7

4
τHF̃τ +

9

4
HF̃ = 0 (4.63)

Using Eq. (4.47), one can show:

S̃ττττ + µτS̃τττ + (
τ 2

4
+ 4µ)S̃ττ +

7

4
τ S̃τ +

9

4
S̃ =

+ δ(4F̃τττ + µτ3F̃ττ + (
1

4
τ 2 + 4µ)2F̃τ +

7

4
τ F̃ )

+ δτ (6F̃ττ + µτ3F̃τ + (
1

4
τ 2 + 4µ)F̃ )

+ δττ (4F̃
(1) + µτF̃ )

+ δτττ F̃

(4.64)

For the left hand side:

L = F [S̃ττττ + µτS̃τττ + (
1

4
τ 2 + 4µ)S̃ττ +

7

4
τ S̃τ +

9

4
S̃] (4.65)
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F(S̃ττττ ) = (i$)4G̃ = $4G̃

F(µτS̃τττ ) = µi(G̃(i$)3)$ = µ($3G̃)$ = µ3$3G̃+ µ$3G̃$

F(
1

4
τ 2 + 4µ)S̃ττ ) =

1

4
i2((i$)2G̃)$$ + 4µ(i$)2G̃

=
1

2
G̃+$G̃$ +

1

4
$2G̃$$ − 4µ$2G̃

F(
7

4
τ S̃τ ) =

7

4
i(i$G̃)$ = −7

4
(G̃+$G̃$)

F(
9

4
S̃) =

9

4
G̃

(4.66)

Thus:

L = ($4 − µ$2 + 1)G̃+ (µ$3 − 3

4
$)G̃$ +

1

4
$2G̃$$ (4.67)

For the right hand side, using the initial conditions for F̃ of Eq. (4.24):

F [δ[4F̃ (3) + µτ3F̃ (2) + (
1

4
τ 2 + 4µ)2F̃ (1) +

7

4
τ F̃ ] = 4F̃ 3(0) + 8µF̃ (1)(0) = 4− 4µ2

F [δ(1)[6F̃ (2) + µτ3F̃ (1) + (
1

4
τ 2 + 4µ)F̃ ]] = −6F̃ (3)(0)− 7µF̃ (1)(0) = −6 + 11µ2

F [δ(2)[4F̃ (1) + µτF̃ ]] = 4F̃ (3)(0) + 2µF̃ (1)(0)− 4$2F̃ (1)(0) = 4− 10µ2 − 4$2µ

F [δ(3)F̃ ] = −F̃ (3)(0) + 3$2F̃ (1)(0) = 3µ2 − 1 + 3$2µ
(4.68)

Thus:

R = −$2µ+ 1 (4.69)

Rearranging the terms, we finally get:

1

4
$2G̃$$ + (µ$3 − 3

4
$)G̃$ + ($4 − µ$2 + 1)G̃ = 1−$2µ (4.70)

Finally, we obtain two PDEs for the Green function in the frequency domain:
Eqs. (4.53), (4.62) and one ODE with respect to the frequency variable $ (4.70).
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4.2.3 Ordinary differential equations in frequency domain

A second order for G̃ with respect to the frequency variable $

The second order ODE for G̃ with respect to the frequency variables $ has been
shown in (4.70).

A second order for G with respect to the frequency variable ω

Returning back to the original variables (r, Z, ω), this ODE reads:

ω2

4
Gωω − ω(ω2Z +

3

4
)Gω + (ω4(r2 + Z2) + ω2Z + 1)G =

2(1 + Zω2)√
r2 + Z2

(4.71)

The initial conditions are:

G(r, Z; 0) =
2

R1

Gω(r, Z; 0) = 0

(4.72)

A second order for G̃ with respect to the space variable µ

Let use now combine the three PDEs for G̃ Eqs. (4.53), (4.62), (4.70) to obtain a new
ODE with respect to the space variable µ.

Multiplying Eq. (4.53) by −1

4
and then summing with Eq. (4.70), we obtain:

(µ$3 − 1

2
$)G̃$ + ($4 − µ$2 + 1)G̃− (1− µ2)G̃µµ + 2µG̃µ = 1−$2µ (4.73)

From Eq. (4.62) and Eq. (4.73), one can eliminate G̃$. Thus, we obtain a second
order ODE for G̃ with respect to µ.

µ(1−µ2)G̃µµ + (2µ$2− 2µ3$2− 1−µ2)G̃µ + ($4µ−$2µ2−$2)G̃ = −µ2$2 (4.74)

To establish the initial values of G̃(µ = 0), G̃µ(µ = 0), G̃µµ(µ = 0), we start from
the modified Haskind formulation of the Green function [49]:
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G∞(r, Z;ω) =
1

R
+

1

R1

− πk0ek0Z [H0(k0r) + Y0(k0r) +
2

π

∫ 0

Z

e−k0t√
t2 + r2

dt]

+ 2iπk0e
k0ZJ0(k0r)

(4.75)

Follow the definition above,

G∞(r, Z;w) =
1

R
− 1

R1

+G(r, Z; iw) (4.76)

G(r, Z;ω) =
2

R1

− πk0ek0Z [H0(k0r) + Y0(k0r) +
2

π

∫ 0

Z

e−k0t√
t2 + r2

dt] + 2iπk0e
k0ZJ0(k0r)

(4.77)

Through the change of variables (r, Z, w) → (R1, µ,$) and omitting the imagi-
nary part, one can show:

G(µ,$) =
2

R1

− π$
2

R1

e−µ$
2

[H0($
2
√

1− µ) + Y0($
2
√

1− µ2)+

2

π

∫ 0

−µ

e−$
2x√

x2 +
√

1− µ2

dx]
(4.78)

Using
√
R1G̃0($) = G̃($), we have G̃ =

R1

2
G. Thus:

G̃(µ,$) =(2− π$2e−µ$
2

[H0($
√

1− µ) + Y0($
2
√

1− µ2)

+
2

π

∫ 0

−µ

e−$x√
x2 +

√
1− µ2

dx])/2
(4.79)

From this last equation:

G̃(µ = 0) = (2− π$2H0($
2)− π$2Y0($

2))/2 (4.80)

After differentiation of Eq. (4.78):

G̃µ(µ = 0) = −$2(2− π$2H0($
2)− π$2Y0($

2))/2 (4.81)

After a second differentiation:
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G̃µµ(µ = 0) = −$4(π$2H0($
2) + π$2Y0($

2) + πH1($
2) + πY1($

2)− 4)/2 (4.82)

Note that Eq. (4.80) agrees with Eq 5.9 in [67], and that Eq. (4.81) agrees with
Eqn. (77) with µ = 0.

Validation of the ODE of G̃ with respect to µ

The ODE for G̃ with respect to $ has been validated by Clément [23], [90], [74].
Here, we validate the ODE with respect to µ (Eq. (4.74)).

The ODE is integrated using the RK4 method with the initial conditions given
by (4.80), (4.81), (4.82). The results for G̃ are shown in Fig. 4-4(a) and compared to
the results with the direct numerical method. One can see that the ODE of G̃ with
respect to µ is well validated 4-4(b).

(a) G̃ (b) ∆G̃

Figure 4-4: The result G̃ of ODE with respect to µ with ∆µ = 0.0001 and the error
by using ODE with ∆µ = 0.0001 compared to direct numerical integration
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4.2.4 An alternative derivation of ordinary differential equations
in the frequency domain

Eq. (4.71) forG(r, Z;ω) can also be obtained from (4.25) by using the Fourier Trans-
form [23].

ODE for Gr

Following [23], the ODE for the spatial derivative Gr can be obtained as follows.
We start from the time domain domain homogeneous ODE for Gr, we multiply by
the Heaviside step function H(t) and we use Eq. (4.47). It leads to:

(r2 + Z2)S(4) − ZtS(3) + (
1

4
t2 − 6Z)S(2) +

11

4
tS(1) +

21

4
S =

+ δ(4(r2 + Z2)F (3)
r − 3ZtF (2)

r + 2(
1

4
t2 − 6Z)F (1)

r +
11

4
tFr)

+ δ(1)(6(r2 + Z2)F (2)
r − 3ZtFr(1) + (

1

4
t2 − 6Z)Fr)

+ δ(2)(4(r2 + Z2)F (1)
r − ZtFr)

+ δ(3)((r2 + Z2)Fr)

(4.83)

Let us take the Fourier transform of the left hand side of Eq. (4.83):

L = F((r2 + Z2)S(4) − ZtS(3) + (
1

4
t2 − 6Z)S(2) +

11

4
tS(1) +

21

4
S) (4.84)

By using the rules of Fourier transform for derivatives
(
F
{
f (n)(t)

}
= (iω)nf̂(iω)

)
and for the product by a polynomial

(
F{tmf(t)} = im

dm

dωm
f̂(iω)

)
.

L1 = (r2 + Z2)(iω)4Ŝ = ω4(r2 + Z2)Ŝ (4.85)

L2 = −Z(i
d

dω
((iω)3Ŝ)) = −Z(ω3Sω + 3ω2Ŝ) (4.86)

L3 =
1

4
i2
d2

dω2
((iω)2Ŝ)− 6Z(iω)2Ŝ =

1

4
(ω2Ŝωω + 4ωŜω + 2Ŝ) + 6Zω2Ŝ (4.87)

L4 =
11

4
i
d

dω
(iωŜ) = −11

4
ωŜω −

11

4
Ŝ (4.88)
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L5 =
21

4
Ŝ (4.89)

L = F
{

(r2 + Z2)S(4) − ZtS(3) + (
1

4
t2 − 6Z)S(2) +

11

4
tS(1) +

21

4
S

}
=

1

4
ω2Ŝωω − (Zω3 +

7

4
ω)Ŝω + (ω4(r2 + Z2) + 3ω2Z + 3)Ŝ

(4.90)

For developing the Fourier transform of the right hand side of Eq. (4.83), let
us recall first the following relations derived from the fundamental property of the
Dirac delta function and through integration by parts:

F(δ(t)f(t)) =

∫ +∞

−∞
δ(t)f(t)e−iωt = f(0)

F(δ(1)(t)f(t)) =

∫ +∞

−∞
δ(1)(t)f(t)e−iωt = −f (1)(0) + iωf(0)

F(δ(2)(t)f(t)) =

∫ +∞

−∞
δ(2)(t)f(t)e−iωt = f (2)(0)− 2iωf (1)(0)− ω2f(0)

F(δ(3)(t)f(t)) =

∫ +∞

−∞
δ(3)(t)f(t)e−iωt

= −f (3)(0) + 3iωf (2)(0) + 3ω2f (1)(0)− iω3f(0)

(4.91)

We now take the Fourier transform of the right hand side:

R = F(δ(4(r2 + Z2)F (3)
r − 3ZtF (2)

r + 2(
1

4
t2 − 6Z)F (1)

r +
11

4
tFr)

+ δ(1)(6(r2 + Z2)F (2)
r − 3ZtFr(1) + (

1

4
t2 − 6Z)Fr)

+ δ(2)(4(r2 + Z2)F (1)
r − ZtFr)

+ δ(3)((r2 + Z2)Fr))

(4.92)

R1 = ((4(r2 + Z2)F (3)
r − 3ZtF (2)

r + 2(
1

4
t2 − 6Z)F (1)

r +
11

4
tFr)(0)

= 4(r2 + Z2)F (3)
r (0)− 12ZF (1)

r

(4.93)
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R2 = −(6(r2 + Z2)F (2)
r − 3ZtFr(1)(0) + (

1

4
t2 − 6Z)Fr)

(1)(0)

+ iω(6(r2 + Z2)F (2)
r − 3ZtFr(1) + (

1

4
t2 − 6Z)Fr)(0)

= −(6(r2 + Z2)F (3)
r − 9ZF (1)

r )(0)

(4.94)

R3 = (4(r2 + Z2)F (1)
r − ZtFr)(2)(0)− 2iω((4(r2 + Z2)F (1)

r − ZtFr))(1)(0)

− ω2(4(r2 + Z2)F (1)
r − ZtFr)(0)

= 4(r2 + Z2)F (3)
r − ω2(4(r2 + Z2)F (1)

r )− 2ZF (1)
r

(4.95)

R4 = (r2 + Z2)(−F (3)
r (0) + 3iωF (2)

r (0) + 3ω2F (1)
r (0)− iω3Fr(0))

= (r2 + Z2)F (3)
r (0) + 3(r2 + Z2)ω2F (1)

r (0)
(4.96)

The right hand side is then:

R = (r2 + Z2)F (3)
r (0)− ω2(r2 + Z2)F (1)

r (0)− 5ZF (1)
r (0)

=
−6r(1 + Zω2)

(r2 + Z2)3/2

(4.97)

And the ODE for Gr is:

1

4
ω2Grωω − (Zω3 +

7

4
ω)Grω + (ω4(r2 + Z2) + 3ω2Z + 3)Gr =

−6r(1 + Zω2)

(r2 + Z2)3/2
(4.98)

with initial conditions:
G(r, Z; 0) =

−2r

R3
1

Grω(r, Z; 0) = 0

(4.99)

ODE for GZ

The difference between Gr and GZ for the left hand side is the coefficient of the last

term, L5 =
25

4
Ŝ. Therefore:

L =
1

4
ω2Ŝωω − (Zω3 +

7

4
ω)Ŝω + (ω4(r2 + Z2) + 3ω2Z + 4)Ŝ (4.100)

The difference for the right hand term are the initial conditions :
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R = (r2 + Z2)F (3)
r (0)− ω2(r2 + Z2)F (1)

r (0)− 5ZF (1)
r (0)

=
−4Z(2 + ω2Z) + 2r2ω2

(r2 + Z2)3/2

(4.101)

Thus, the ODE for GZ is:

1

4
ω2GZωω − (Zω3 +

7

4
ω)GZω + (ω4(r2 + Z2) + 3ω2Z + 4)GZ

=
−4Z(2 + ω2Z) + 2r2ω2

(r2 + Z2)3/2

(4.102)

with initial conditions:
G(r, Z; 0) =

−2Z

R3
1

GZω(r, Z; 0) = 0

(4.103)

4.3 Summary

In this chapter, new derivations of ODEs of time-domain free-surface Green func-
tion and its derivatives associated with the time variable and ODEs of frequency-
domain free-surface Green function and its derivatives associated with the fre-
quency variable are introduced. A new ODE of time-domain free-surface Green
function associated with the spatial variable and a new ODE of frequency-domain
free-surface Green function associated with spatial variables are proposed and val-
idated. Further work on the uniqueness and existence of ODEs need to be done.
The properties of ODEs of time-domain Green function associated with spatial
variables are net clear and more theory on ODEs are needed.
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Chapter 5

A new ordinary differential equation
for the evaluation of the
frequency-domain Green function

Résumé

Les équations différentiels ordinaires dans le domaine temporel dérivés dans le
dernier chapitre ont été considérés comme un moyen efficace d’évaluer la fonction
de Green et son gradient [22] et peuvent être utilisés pour éviter les intégrales de
convolution de l’équation intégrale dans le domaine temporel [19], [20], [21]. Nous
pensons que les équations différentielles ordinaires dans le domaine fréquentiel
peuvent être utiles pour évaluer la fonction de Green et avoir d’autres applications.
Cependant, il est difficile de résoudre ces équations différentielles dans le domaine
de fréquence depuis l’origine en raison de la singularité. Dans ce chapitre, une
nouvelle équation différentielle ordinaire exempte de singularité est dérivée et
est utilisée pour évaluer la fonction de Green dans le domaine fréquentiel et son
gradient. Une méthode d’expansion efficace pour obtenir la fonction de Green
est également proposée pour les petites fréquences. Les comparaisons avec des
évaluations de la fonction de Green utilisant la méthode classique d’intégration
directe sont fournies. Elles montrent que l’équation différentielle modifée peut
fournir des estimations précises de la fonction de Green.
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5.1 A new ordinary differential equation for the eval-
uation of the frequency-domain Green function

The ODEs in time domain derived in the last chapter have been considered as an
efficient way to evaluate the Green function and its gradient [22] and can be used
to avoid the convolution integrals of time domain boundary integral equation [19],
[20], [21]. We believe that ODEs in the frequency domain found in Chapter 4 and
[23] may be also useful to evaluate the Green function and have other applications.
However, it is challenging to solve the ODEs of Green function and its gradient in
the frequency domain at the origin due to the singularity. In this chapter, modified
ordinary differential equations free of singularity is derived and is used to eval-
uated the frequency-domain Green function and its gradient. The details can be
seen in attached article which is accepted by Applied Ocean Research.

The computational time for calculating the Green function is not discussed in
attached article. Here we add this information. The computational time for cal-
culating the Green function in the attached article for G̃(µ,$) and G(r, Z;ω) are
4.52 × 10−8, 4.39 × 10−8. We can see that ODE-based method is faster than other
existing methods shown in Chapter 3 but this advantage is not so obvious.
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A B S T R A C T

Clément (2013) derived a second order ordinary differential equation (ODE) satisfied by the free-surface Green
function in the frequency domain. Since then, similar ODEs for the gradient of the Green function have been
developed. Unfortunately, all these ODEs degenerate at zero frequency. Therefore, it is not possible to initialize
the numerical solution of these ODEs from this zero frequency. Alternative methods based on the shifting of the
initial condition to frequencies strictly greater than zero have then been developed.

The present paper describes an alternative approach to address this issue. It involves a new function which is
the solution of a modified ODE which can be solved from the zero frequency.

Finally, comparisons with evaluations of the Green function using the classical direct integration method are
provided. They show that the new ODE can provide accurate estimates of the Green function.

1. Introduction

Boundary element method (BEM)-based codes are widely used in
the industry and in academia to investigate wave structure interactions
effects on marine structures. BEM codes rely on the frequency domain
linear free-surface potential flow theory which involves the free-surface
Green function and its gradient. An important part of the numerical
burden in BEM codes relates to the numerous numerical evaluations of
the free-surface Green function. Indeed, they must be evaluated for a
large set of geometrical configurations and for a wide range of fre-
quencies to assess the structure response across all possible incident
wave conditions.

Various analytical formulations and algorithms for the calculation
of the free-surface Green function and its derivatives have been pro-
posed. Pioneering work was performed by Noblesse [1–3] and Newman
[4–6] using sub-domains methods with series expansions and poly-
nomial approximations. Double Chebyshev polynomials approxima-
tions methods with special functions were proposed by Chen [7,8] and
Wang [9]. Other efficient methods include tabulated functions with
Lagrange interpolations [10], approximation methods with co-
ordinates-transformation [11,12], eigen-function expansion [13], semi-
analytical method based on a singularity subtraction technique [14],
multipole expansion method [15]. Recently, Wu et al. [16,17] proposed
a global approximation based on Noblesse's method [2,3]. It uses a

simple approximation involving elementary functions for the local flow
component. It does not required dividing the computational domain
into multiple sub-domains. All those methods were recently reviewed in
[18].

The analytical formulations typically include a source term, an
image term, and a singular integral. The algorithms implemented in
most common BEM softwares (WAMIT [19], HydroStar [20] or NEMOH
[21] for example) are based on integral formulations.

A different approach was introduced by Clément [22] who showed
that the frequency domain Green function is the solution of a second
order ordinary differential equation (ODE) of the frequency variable.
Thus, the Green function can be evaluated by integrating numerically
this ODE, provided that initial conditions are available. Since then, si-
milar ODEs for the gradient of the frequency domain Green function
have been established (see [23] and [24]).

The remaining challenge for the evaluation of the frequency domain
Green function and its gradient using ODEs is the evaluation of the
initial conditions. Indeed, despite the values of the Green function and
its first derivatives are known for ω= 0, the method cannot be started
from that point because the ODEs degenerate for ω= 0. Thus, in [24],
the ODEs are initialized at the non-zero frequency ω= 1. A power-
series expansion method is used to solve the ODEs for ω < 1 while a
trigonometrically fitted block Numerov-type method is used for ω≥ 1.
Note that it is not explained in [24] how the initial conditions are
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obtained for ω= 1. In [23], initial conditions for arbitrary values of ω
were obtained using methods relying on the numerical approximations
of the singular integral.

In this paper, we present an alternative method which enables using
ω= 0 for the initial conditions. The ODEs for the Green function and its
derivatives are recalled in Section 2. The singular behaviour for ω= 0
is highlighted. In Section 3, the singularity is extracted and a modified
ODE is introduced. Numerical results and comparisons with direct nu-
merical integration are shown in Section 4. Finally, a conclusion is
given in Section 5.

2. ODEs for the Green function and its derivatives

In this study, only the infinite water depth free-surface Green
function is considered. The coordinates and variables are depicted in
Fig. 1. The mean free surface level is located at the plane z= 0. The
vertical axis z points upwards. The gravity constant is denoted g. The
source point P(xP, yP, zP) and the field point M(xM, yM, zM) are both
lying on or under the free surface (zP ≤ 0, zM ≤ 0). The image source
point P′(xP, yP, − zP) is the mirror of the source point P with respect to
the mean free surface. The horizontal distance between the source point
P and the field point M is denoted by r. The vertical distance between
the image source point P′ and the field point M is −Z. The distance
between the source and field points is denoted by R and the distance
between the image source point and the field point is = +R r Z1

2 2 .
The angle θ is defined by cos θ= − Z/R1 and sin θ= r/R1. The rela-
tions between the coordinates are given by:

= +
= +
= + +

r x x y y
Z z z
R x x y y z z

( ) ( )

( ) ( ) ( )

M P M P

M P

M P M P M P

2 2

2 2 2
(1)

2.1. ODEs with nondimensional original variables

The wave frequency is denoted ω and the time dependent factor of
the complex potential is e−iωt. The frequency domain Green function
G∞ can be written:

= +G r Z
R R

G r Z4 ( , , ) 1 1 ( , , )
1 (2)

with

= +G r Z k
k k

e J kr dk i k e J k r( , , ) 2PV ( ) 2 ( )kZ k Z
0 0

0 0 0 00
(3)

where =k w g/0
2 is the wave number and J0(·) is the Bessel function of

the first kind and zero order.
Let us consider the nondimensional Green function =G G L¯ . Let:

=R R L¯ / , =R R L¯ /1 1 , =r r L¯ / , =Z Z L¯ / , = = =k k L L g¯ / ¯0 0
2 2, =k̄ kL,

=Ḡ GL where L denotes a reference length. The non-dimensional Green
function has the same form as the Green function with dimensional
variables:

= +G r Z
R R

G r Z4 ¯ (¯, ¯, ¯ ) 1
¯

1
¯

¯ (¯, ¯, ¯ )
1 (4)

with

= +G r Z k
k k

e J kr dk i k e J k r¯ (¯, ¯, ¯ ) 2PV
¯

¯ ¯ ( ¯¯) ¯ 2 ¯ ( ¯ ¯)kZ k Z
0 0

¯ ¯
0 0

¯ ¯
0 00

(5)

The ODEs for the nondimensional Green function and its derivatives
can be written [23]:

+ + + + + = +
+

G Z G r Z Z G Z
r Z

¯
4

¯ ¯ ( ¯ ¯ 3
4

) ¯ ( ¯ (¯ ¯ ) ¯ ¯ 1) ¯ 2(1 ¯ ¯ )
(¯ ¯ )

2
¯ ¯

2
¯

4 2 2 2
2

2 2 1/2

(6)

+ + + + +

= +
+

G Z G r Z Z G

r Z
r Z

¯
4

¯ ¯ ( ¯ ¯ 7
4

) ¯ ( ¯ (¯ ¯ ) 3 ¯ ¯ 3) ¯

6¯ (1 ¯ ¯ )
(¯ ¯ )

r r r
2

¯ ¯ ¯
2

¯ ¯
4 2 2 2

¯

2

2 2 3/2 (7)

+ + + + +

= + +
+

G Z G r Z Z G

Z Z r
r Z

¯
4

¯ ¯ ( ¯ ¯ 7
4

) ¯ ( ¯ (¯ ¯ ) 3 ¯ ¯ 4) ¯

4 ¯ (2 ¯ ¯ ) 2¯ ¯
(¯ ¯ )

Z Z Z
2

¯ ¯ ¯
2 ¯ ¯

4 2 2 2 ¯

2 2 2

2 2 3/2 (8)

For =¯ 0, the values of the Green function and its first gradient can be
obtained from equation (3). They are given by:

= =G
R

G¯ 2
¯ , ¯ 0
1

¯ (9a)

= =G r
R

G¯ 2¯
¯ , ¯ 0r r¯
1
3 ¯ ¯

(9b)

= =G Z
R

G¯ 2 ¯
¯ , ¯ 0Z Z¯
1
3 ¯ ¯ (9c)

It can be observed that for =¯ 0, equations (6),(7) and (8) degen-
erate into zero order equations. Thus, they cannot be used to obtain the
second derivatives of the Green function for that frequency. This sin-
gularity prevents using =¯ 0 as the initial condition for the ODEs.

The ODEs apply both to the real and imaginary part of the Green
function. However, the imaginary part can be expressed analytically
[18], [6], [2]. Thus, in the following, we shall focus only on the eva-
luation of the real part of the Green function. Moreover, the .̄ on top of
the variables will be omitted as hereafter we only discuss the non-
dimensional Green function.

2.2. The singularity of the Green function for ω= 0

The difficulty to use ω= 0 as the initial condition for the ODEs
arises not only from the fact that they degenerate for that frequency but
also because of the singular behaviour of the Green function for ω= 0.

Let us recall the modified Haskind representation of the Green
function [25], [26]:

= + +
+

G r Z
R

e r Y r e
t r

H( , , ) 2 [ ( ) ( ) 2 dt]Z
Z

t

1

2
0

2
0

2 0

2 2

2
2

(10)

where H0(·) denotes the Struve function as defined by Abramowitz and
Stegun [27]. By using a Taylor expansion, the Green function can be
rewritten:

Fig. 1. Definition of source point (P), field point (M) and other notations.
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= +
+

+G r Z
R

r
Z R

O( , , ) 2 2 ln( ) 2 ( ln(
2( )

)) ( )
1

2 2 2
2

1

4

(11)

where γ is the Euler's constant.
Let us now differentiate twice this last equation to obtain the second

derivative of the Green function as function of ω. One can show that for
ω→ 0, ∂2G/∂ω2 → −8 lnω. Thus, the second derivative of the Green
function tends to infinity for ω= 0.

2.3. ODEs with nondimensional natural variables

In [23], ODEs as function of the natural variables (μ, ϖ) were in-
troduced. The natural variables are defined from the original variables
through the change of variables (r, Z, ω) ↔ (R1, μ, ϖ):

= +
= + =
= + =

r
Z

R r Z
µ Z r Z Z R

r Z R

( )
/( ) /

( )

1
2 2 1/2

2 2 1/2
1

2 2 1/4
1 (12)

=
=
=

R
µ

r R µ
Z µR

R

1

/

1 1
2

1

1 (13)

Note that as Z has values in [− ∞ , 0] and r has values in [0, ∞], the
range of possible values for μ is limited to [0, 1].

The set of ODEs as function of the natural variables are [23]:

+ + + =G µ G µ G µ1
4

˜ 3
4

˜ ( 1) ˜ 12 2 4 2 2
(14)

+ + +

=

G µ G µ G

µ µ

1
4

˜ 7
4

˜ ( 3 3) ˜

3 1 (1 )

r r r
2 2 4 2

2 2 (15)

+ + +

= +

G µ G µ G

µ µ µ

1
4

˜ 7
4

˜ ( 3 4) ˜

2 (2 ) (1 )

Z Z Z
2 2 4 2

2 2 2 (16)

with =G r Z R G µ( , , ) 2/ ˜ ( , )1 .
The initial conditions for ϖ = 0 as function of the natural variables

can be obtained according to (9) are:

= =G G˜ 1, ˜ 0 (17a)

= =G r
R

G˜ , ˜ 0r r
1 (17b)

= =G Z
R

G˜ , ˜ 0Z Z
1 (17c)

As for the case of the original variables, it can be observed that the
ODEs degenerate for ϖ = 0. Thus, the ODEs as function of the natural
variables cannot be integrated from ϖ = 0 either.

2.4. Relations between the Green function and its spatial derivatives

The vertical derivative of the Green function can be obtained di-
rectly from the Green function itself [18], [6], [2]. In the following, we
show that the same applies to the horizontal derivative.

Let us recall the nondimensional time-domain free-surface Green
function, F∞(r, Z, t) [27], [28]:

= +F r Z t t
R R

H t F r Z t4 ( , , ) ( ) 1 1 ( ) ( , , )
1 (18)

with

=F r Z t J e K K t( , , ) 2 (Kr) sin( )dK
0 0

KZ
(19)

where t is the time variable, δ(·) is the Dirac delta function and H(·) is

the Heaviside unit step function. The terms associated to the Dirac delta
function are often referred to the impulsive part of the Green function
while the term with the Heaviside unit step function is called the
memory part.

F is solution of the following partial differential equation:

+ =F
t

F
Z

Z t0 0; 0
2

2 (20)

Using the change of variables (13) with = t R/ 1 , one can show:

+ + =F µ F µ F µF2 ˜ ˜ 2(1 ) ˜ 3 ˜ 0µ
2 (21)

with =F r Z t R F µ( , ; ) 2 ˜ ( , )1
3/2 .

Applying the Fourier transform as in [22], one can show that the
Green function as function of the natural variables is a solution of the
partial differential equation:

=µ G µ G µ G µ˜ (2 2 ) ˜ 2(1 ) ˜ 2µ
2 2 (22)

Thus, the derivative of the Green function G̃µ can be obtained from
the knowledge of G̃ and G̃ .

From G̃µ and G̃ , the horizontal derivative of G̃ can be obtained
using:

= +G G µ
r

G
r

˜ ˜ ˜r µ (23)

Recalling that =G R G˜ /21 , =G R G˜ /21 , the horizontal derivative
of the Green function as function of the original variables can be ob-
tained by using:

=G
R

G r
R

G2 ˜r r
1 1

2 (24)

Thus, equations (23) and (24) provide a way to evaluate the hor-
izontal derivative of the Green function from the Green function itself
without having to solve an additional ODE.

3. A new ODE free of the singularity at the origin

3.1. Derivation

The ODEs ((6, 7), (8, 14), (15, 16)) can be written in a general form
as follows:

+ + + + + = +x y c x c xy c x c x c y c c x( ) ( )2
21

2
01 40

4
20

2
00 0 2

2 (25)

where c21, c01, c40, c20, c00, c0, c2 are parameters independent on the
variable x, x≥ 0. Note that x is the frequency variable, which is either
ω or ϖ depending on the considered ODE. y is the non-dimensional
Green function or one of its derivatives as function of the non-dimen-
sional or natural variables. The parameters are given for each equation
in A.

The initial conditions are:

=y c c(0) /0 00 (26a)

=y (0) 0 (26b)

According to (11), the asymptotic form for y when x is close to 0 is:

= + + +y x c c a x x b x o x( ) / log ( )0 00 1
2

1
2 2 (27)

with

= = + +a b r Z R G4, 2( log( /(2( )))), for1 1
2

1 (28a)

= = +a b
r

r R Z R G0, 4( 1 /(2 ( ))), for r1 1 1 1 (28b)

= = +a b µ G2, log 2 log(1 ), for ˜1 1 (28c)

= = +a b µ µ R µ G0, 1 /( (1 )), for ˜r1 1
2

1 (28d)

The asymptotic form for the first derivative of y is:
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= + + +y x a x x b x o x( ) (2 log 1) 2 ( )1 1 (29)

Let us define the new function z(x) as the difference of the original
function y minus the two leading terms in (27):

=z x y x c c a x x( ) ( ) / log0 00 1
2 (30)

Thus, y(x) and its derivative are given by:

= + +y x z c c a x x( ) / log0 00 1
2 (31a)

= + +y x z a x x a x( ) 2 log1 1 (31b)

By introducing (31) into (25), one can show that z(x) is the solution
of a the following ODE:

+ + =x z c x xz d x z x f x( ) ( ) ( )2 2 (32)

with

= +c x c x c( ) 21
2

01 (33a)

= + +d x c x c x c( ) 40
4

20
2

00 (33b)

= + +f x c a x x c c a x c a c c c x( ) log [ (2 ) log / ]40 1
4

21 20 1 21 1 40 0 00
2

(33c)

+ + + + +c c a x c a c c c c[ (2 2 ) log (3 ) / ]01 00 1 01 1 2 20 0 00

For the case =y G̃, the coefficients involved in the last bracket of f
(x) are c01 = −3, a1 = −2, c2 = −4μ, c20 = −4μ, c0 = 4 and c00 = 4
according to (14). Thus, 2 + 2c01 + c00 = 0 and −(3 + c01)
a1 + c2 − c20c0/c00 = 0. It can be shown that it is also the case for
y=G, y=Gr and G̃r using (6), (7) and (15). f(x) can then be rewritten:

= + +f x c a x x c c a x c a c c c x( ) log [ (2 ) log / ]40 1
4

21 20 1 21 1 40 0 00
2

(34)

For x→ 0, c(x) → c01 and d(x) → c00 according to equation (33)
while f(x) → 0 according to equation (34).

Moreover, it can be noted that for x→ 0:

= +z x b x o x( ) ( )1
2 2 (35a)

= +z x b x o x( ) 2 ( )1 (35b)

according to the asymptotic expression (30) of y(x). Thus, z(x) → 0 and
z′(x) → 0 for x→ 0.

In comparison with the second-order ODE (25) for y(x), the second
order ODE (32) for z(x) is of the same form on the left hand side.
However, it has a non-homogeneous term on the right hand side whose
leading order is x4 log x for x→ 0. Therefore, in contrast to y″(x), z″(x)
tends to a finite value for x→ 0 (that is 0 according to equation (34)).
The ODE for z equation (32) is free of the singularity for x→ 0.

3.2. Practical representation of the new ODE for its numerical integration

The direct application of a numerical integration scheme (e.g.
Runge-kutta (RK4)) for the ODE (32) remains difficult in practice be-
cause of the coefficient x2 associated with z″. Hereafter, we present a
method to deal with this issue.

Let us assume that x≠ 0. The ODE (32) can be re-written as:

+ + =z c x z x d x z x f x( ) / ( ) / ( )2 (36)

Let us define the new variables =u v z z x( , ) ( , / ). Their derivatives
are: =u v z u x v x( , ) ( , / / ).

By introducing the new variables in the second-order ODE (36), one
can obtain the system of differential equations:

= x xY F Y( , / ) (37)

with Y and F defined by

= ={ }u
v x x f x c x d x xY F Y Yand ( , / ) ( )

0
( ) ( )

1 1
/

(38)

The initial values for x→ 0 are

=

= =

= +{ }

{ }
{ }b

c c b

Y

Y

F

0
0

ˆ | 2
1

( 2 )
1

x x
Y

0

0 0 1

0
00 01

1
(39)

in which we used (35) to obtain and (33) for c(0) = c01, d(0) = c00 and f
(0) = 0 to obtain F0 defined by (38).

Both the initial values of and F0 being finite, usual numerical in-
tegration schemes can be used to integrate (37) in order to obtain va-
lues of the Green function from the initial conditions at x=ω= ϖ = 0.
The coefficients in equations (38) and (39) and relation between y(x)
and z(x) for G, Gr, G̃, G̃r are given in Appendix A.

4. Results

In this section, the results of the evaluation of the Green function
and its horizontal derivative by using the ODE are compared to the
results obtained using the direct integration method as described in
[23].

The Green function as function of the original and natural variables
are evaluated by solving the system (37) by using the Runge-Kutta 4
method with a constant step size Δϖ = 0.001.

The initial conditions are for ϖ = 0 from Eq. (39). The results are

Fig. 2. Results for the evaluation of G̃ with the ODE and error with the direct integration method. The ODE is solved using the RK4 method with Δϖ = 0.001 ϖ ∈ (0,
8], and μ∈ [0, 1).
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shown in Fig. 2 for ϖ ∈ (0, 8], μ∈ [0, 1). The error is defined as the
difference between the values of the Green function obtained by in-
tegrating the ODE and the direct integration method with 8 decimal
accuracy [18]. One can see that a 6 decimals (6D) accuracy is obtained.
Thus, the method using the ODE is as accurate as the most accurate of
the other numerical methods for evaluating the Green function [18],
that are based on the approximations of integral formulations.

The horizontal derivative of the Green function is obtained from the

Green function itself using (23). The values and errors are shown in
Fig. 3 for ϖ ∈ (0, 8], and μ∈ [0, 1). A satisfactory absolute accuracy of 4
decimals is obtained.

Results for the Green function as function of the original variables
and its horizontal derivative are shown in Fig. 4 and 5 . A 6D accuracy
is obtained.

Therefore, the ODE-based method can predict the Green function as
accurately (6D accuracy) as existing alternative methods. Nevertheless,

Fig. 3. Results for the evaluation of G̃r and error with the direct integration method. The ODE is solved using the RK4 method with Δϖ = 0.001 ϖ ∈ (0, 8], and μ∈ [0,
1).

Fig. 4. Results for the evaluation of G and error with the direct integration method. The ODE is solved using the RK4 method with Δω= 0.001.

Fig. 5. Results for the evaluation of Gr and error with the direct integration method. The ODE is solved using the RK4 method with Δω= 0.001.
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it can be noted that 4D accuracy is expected to be sufficient for practical
applications according to [16,17,29]

5. Conclusion

In this paper, we present a new ordinary differential equation for
the evaluation of the frequency domain Green function. In contrast to
original Clément's ODE, this modified ODE allows for the zero fre-
quency to be used for the initial conditions. Comparisons with the direct

integration method show that 6D accurate estimates of the Green
function can be obtained with this ODE. This method may be used for
calculating the Green function and its gradient. It will be investigated in
future work whether it is more efficient than conventional methods for
the calculation of hydrodynamic coefficients in BEM codes.
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Appendix A. The coefficients of ODEs for G, Gr G̃, G̃r

For sake of clarity, the parameters c21, c01, c40, c20, c00, c0, c2 for G, Gr G̃, G̃r are listed in following. The c(x), d(x), f(x) and −(c00 + 2c01) in Eqs.
(38), (39) are also given and y(x) is expressed by z(x).

G According to equation (6),

= =
= + = =

= =

c Z c
c r Z c Z c
c R c Z R

4 ; 3;
4( ); 4 ; 4;

8/ ; 8 / ;

21 01

40
2 2

20 00

0 1 2 1 (A.1)

Thus:

=c x Zx( ) 4 32 (A.2a)

= + + +d x r Z x( ) 4( ) 4Zx 42 2 4 2 (A.2b)

= +f x x R a x x x R( ) 4 ( log Za log Za 2 )2
1
2

1
2

1 1 1 (A.2c)

+ =c c( 2 ) 200 01 (A.2d)

= +y x z x R x x( ) ( ) 2/ 4 log1
2 (A.2e)

Gr According to equation (7),

= =
= + = =

= =

c Z c
c r Z c Z c
c r R c R

4 ; 7;
4( ); 12 ; 12;
24 / ; 24rZ/ ;

21 01

40
2 2

20 00

0 1
3

2 1
3 (A.3)

Thus:

=c x Zx( ) 4 72 (A.4a)

= + + +d x r Z x( ) 4( ) 12Zx 122 2 4 2 (A.4b)

=f x R( ) 8rx /2
1 (A.4c)

+ =c c( 2 ) 200 01 (A.4d)

=y x z x r R( ) ( ) 2 / 1
3 (A.4e)

G̃ According to equation (14),

= =
= = =

= =

c µ c
c c µ c
c c µ

4 ; 3;
4; 4 ; 4;

4; 4 ;

21 01

40 20 00

0 2 (A.5)

Thus:

=c x µx( ) 4 32 (A.6a)

= +d x x µx( ) 4 4 44 2 (A.6b)

= + + +f x x a x x µa x µa( ) 4 ( log log 1)2
1

2
1 1 (A.6c)

+ =c c( 2 ) 200 01 (A.6d)

= +y x z x x x( ) ( ) 1 2 log2 (A.6e)

G̃r According to equation (15),

= =
= = =

= =

c µ c
c c µ c
c µ c µ µ

4 ; 7;
4; 12 ; 12;
12 1 ; 12 1 ;

21 01

40 20 00

0
2

2
2 (A.7)

Thus:

=c x µx( ) 4 72 (A.8a)
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= +d x x µx( ) 4 12 124 2 (A.8b)

=f x µ( ) 4 1 2 (A.8c)

+ =c c( 2 ) 200 01 (A.8d)

=y x z x µ( ) ( ) 1 2 (A.8e)
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5.2 An expansion method of Green function in small
frequencies

An efficient expansion method to obtain the Green function in small frequencies
is also proposed for small frequencies. The computational time for calculating the
Green function by using expansion method for G̃(µ,$) and G(r, Z;ω) are 3.36 ×
10−8, 2.71× 10−8, respectively.

5.2.1 An expansion method for the initial conditions for the ODEs
of G and G̃ for small x

An expansion method for the initial conditions for the ODEs of G and G̃ is intro-
duced. The gradient of Green function then can be derived by using (23) and (24).
The ODE (32) involves only terms of the form x2n with n ≥ 1 and x2n log x with
n ≥ 2. Thus, let us look for a solution of the ODE of the form:

z(x) = b1x
2 +

∞∑
n=2

(an log x+ bn)x2n (5.1)

The derivatives read:

z′(x) = 2b1x+
∞∑
n=2

(2nan log x+ an + 2nbn)x2n−1 (5.2a)

z′′(x) = 2b1 +
∞∑
n=2

(2n(2n− 1)an log x+ (4n− 1)an + 2n(2n− 1)bn)x2n−2 (5.2b)

Introducing (5.1), (5.2) into (32) and after identifications and simplifications,
one gets:

∞∑
n=2

(An log x+Bn)x2n = −c40c0/c00x4 (5.3)

with
A2 = [12 + 4c01 + c00] a2 + [2c21 + c20] a1 = 0

B2 = [12 + 4c01 + c00] b2 + [2c21 + c20] b1

+ (7 + c01)a2 + c21a1 = −c40c0/c00

(5.4)

Note that a1 and b1 are defined according to equation (28).
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An = [2n(2n− 1) + 2nc01 + c00] an + [2(n− 1)c21 + c20] an−1 + c40an−2 = 0

Bn = [2n(2n− 1) + 2nc01 + c00] bn + [2(n− 1)c21 + c20] bn−1

+ c40bn−2 + (4n− 1 + c01)an + c21an−1 = 0

(5.5)

for n ≥ 3.

These recurrence relations can be used to evaluate z, z′ for small values of x.
According to (31), the original function y and its derivative y′ can be then obtained.

It should be noted that, according to the parameters c00 and c01 in equations
A.1, A.5, the coefficient of an and bn will not be zeros for n ≥ 3 for G and G̃.

5.2.2 Results of evaluation of the Green function for small fre-
quencies using the expansion method

The values of the Green function and its first derivative can be calculated using
the expansion method for $ < 1 or ω < 1. Figures 5-1 and 5-2 shows the absolute
errors when using this approach. 11 terms were used for G̃ while 14 terms where
used G, which are enough to achieve a 6D accuracy.

(a) G̃ error (b) G̃r error

Figure 5-1: Absolute errors for G̃ and G̃r evaluated using the expansion method
with 11 terms
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(a) G error (b) Gr error

Figure 5-2: Absolute errors for G and Gr evaluated using the expansion method
with 14 terms
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Chapter 6

Results of the calculation of
hydrodynamic coefficients with the
boundary element method with
ODE-based Green function

Résumé

Dans cette section, la méthode des éléments frontières avec la fonction de Green
calculée par résolution des équations différentielles sans fréquences irrégulières
est proposée. Ce code interne est validé en le comparant à la solution analytique et
aux résultats numériques de Hydrostar pour une hémisphère, Boxbarge et KCS. La
méthode basée sur les équations différentielles pour calculer la fonction de Green
est validée comme une méthode précise et efficace, convenant au calcul multi-
fréquences.
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6.1 Results of boundary element method with ODE-
based Green function evaluation

In this thesis, a new boundary element method code has been developed. The
programming language is FORTRAN. The geometry is represented by flat quadri-
laterals with normal vectors oriented towards the fluid and the mixed of sources
and normal dipoles distributions are adopted with constant density on each panel.
The singular Rankine source and image source components 1/R+1/R1 and its gra-
dient are analytically integrated over a flat quadrangle [41], [64]. The free-surface
term of the Green function and its gradient in Chapter 5 are numerically integrated
via Gaussian quadrature rule with 4 Gaussian points. The complex linear matrix
is solved by LAPACK routine zgesv.

The extended boundary condition method with a ’lid’ on the free-surface is
used because it can remove all the irregular frequencies without extra selection of
constant, surface or points.

For the calculation of the Green function, the new code implements the direct
integral method and the ODE-based method.

In this section, we present validation tests for this new code for a hemisphere,
a boxbarge and the KRISO Container ship (KCS).

Note that the reference length it set to L = 1m, the density of water is defined
as ρ = 1025kg/m3, the gravity is g = 9.81m/s2.

6.1.1 Hemisphere

The analytical solution of wave radiation by a floating hemisphere was given by
Hulme [43]. The hemisphere is discretized with 500, 2000, 4500 panels shown in
Figs. 6-1(a), 6-1(b), 6-1(c). To remove the irregular frequencies, the interior free-
surface was discretized as shown in Fig 6-1(d). The additional number of panels
is 225. The added mass coefficient A11 and A33 for surge and heave are nondimen-
sionalized by ρV and the corresponding wave-damping coefficients B11 and B33

are nondimensionalized by ρωV where ρ is the water density, V the corresponding
numerical volume and ω the wave frequency. The center of gravity is defined as
(0, 0, 0). The radius of gyration is Kxx = 16, Kyy = 16, Kzz = 8.

The results for the hemisphere are also compared to the analytical solution
given by Hulme [43] and these of Hydrostar, see Figure 6-3. An excellent agree-
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ment can be observed. The irregular frequency removal is then validated. Figure
6-2 shows the hydrodynamic coefficients with and without irregular frequencies
removal. It can be seen in Figure 6-2(a) that for the considered hemisphere, the
irregular frequencies are located around 1.4 and 1.8. With the extended boundary
condition method, the irregular frequencies are well removed.

The response amplitude operators (RAOs) for the response of the hemisphere
to incident waves are presented in Fig 6-4. They are compared to Hydrostar’s
results. Again, an excellent agreement is obtained.

(a) 500 panels (b) 2000 panels

(c) 4500 panels (d) free-surface panels

Figure 6-1: The visualization of meshes of a hemisphere discretized with 500, 2000,
4500 panels and a interior free-surface discretized with 225 panels
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(a) A11 and B11

(b) A33 and B33

Figure 6-2: The nondimensional added mass and damping coefficients of a heaving
and surging hemisphere with (dashed lines with circle markers) and without (solid
lines) irregular frequencies
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(a) A11

(b) B11

Figure 6-3: The nondimensional added mass and damping coefficients of a surg-
ing hemisphere of inhouse code (solid lines), Hydrostar (green red and blue circle
markers), analytical solution (black circle markers)
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Figure 6-4: The RAOs of hemisphere discretized by 2000 panels by using inhouse
code and Hydrostar

6.1.2 Boxbarge

The second test case is a box barge (boxbarge) . In contrast to the hemisphere which
has a smooth surface, the boxbarge has sharp corners.

Table 6.1: Main dimension and hydrostatic characteristics of the boxbarge
Length (m) 100

Breath (m) 50

Draft (m) 20

Reference point (m) (0, 0, 0)

Roll radius of gyration RXX (m) 20

Pitch radius of gyration RY Y (m) 20

Yaw radius of gyrations RZZ (m) 20

Linear roll viscous damping (%) 5

The main dimension and hydrostatic characteristics of the boxbarge are shown
in Table. 6.1. The boxbarge is discretized into 720, 1940, 3710 panels and the interior
free-surface is discretized with 200 panels as shown Fig. 6-5. The linear roll viscous
damping follows that in [84].

The added mass coefficient of surge, sway and heave are nondimensionalized
by ρV . For for roll, pitch and yaw, they are nondimensionalized by ρV B, ρV L, ρV H ,

92



respectively. The comparison of added mass and damping coefficients with or
without irregular frequencies are shown in Fig. 6-6. The irregular frequencies are
well removed. The added mass and damping coefficients of our inhouse code are
also compared with these of Hydrostar in Fig. 6-7. A good agreement can be
found. It can be observed that the results with 1940 panels are converged.

(a) 720 panels (b) 1940 panels

(c) 3710 panels (d) free-surface panels

Figure 6-5: The visualization of meshes of a Boxbarge discretized with 720, 1940,
3710 panels and a interior free-surface discretized with 200 panels
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(a) A11 and B11

(b) A22 and B22

(c) A33 and B33
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(d) A44 and B44

(e) A55 and B55

(f) A66 and B66
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(g) A15 and B15

(h) A24 and B24

Figure 6-6: The nondimensional added mass and damping coefficients of Boxbarge
with (dashed lines with circle markers) and without (solid lines) irregular frequen-
cies
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(a) A11 and B11

(b) A22 and B22

(c) A33 and B33
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(d) A44 and B44

(e) A55 and B55

(f) A66 and B66
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(g) A15 and B15

(h) A24 and B24

Figure 6-7: The nondimensional added mass and damping coefficients of Boxbarge
of inhouse code (solid lines), Hydrostar (green red and blue circle markers)

The added mass and damping coefficients calculated with the direct integral
method and the ODE-based method for the evaluation of the Green function are
compared. For ω ∈ [0.1, 1.8] with ∆ω = 0.0017, the maximum absolute difference of
nondimensional added mass coefficients and damping coefficients between Direct
Integral method and ODE-based method are listed in Table. 6.2 and Table. 6.3,
respectively. It is found that the maximum difference is 8.39e − 08. This small
difference further validates the usability of ODE-based method.

RAOs with ODE-based Green function method associated to boxbarge at an
incident angle β = 180◦ are presented in Fig. 6-8. The average time for the cal-
culation of the hydrodynamic coefficients for one frequency are shown in Fig.6-9.
In comparison to the direct integral method, the ODE-based method appears to
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be very efficient. Indeed, the CPU time for the calculation of matrix of influence is
not important as that of solving the linear matrix of the boundary element method,
specially, when the panels are large. It should be noted that the ODE-based method
is efficient only for multi-frequencies and for very large number of panels, it will
be difficult to store all the values of the Green function and its derivatives.

Table 6.2: The maximum absolute difference of added mass coefficient with 8 digi-
tal accuracy between Direct Integral method and ODE-based method for Boxbarge
case for ω ∈ [0.1, 1.8] with ∆ω = 0.0017

A11 8.39e− 08 A12 5.46e− 17 A13 3.13e− 16

A14 1.79e− 17 A15 4.88e− 09 A16 3.59e− 16

A21 7.74e− 17 A22 1.95e− 08 A23 1.68e− 15

A24 3.90e− 09 A25 6.68e− 17 A26 5.98e− 16

A31 7.46e− 16 A32 7.48e− 16 A33 5.85e− 08

A34 2.44e− 16 A35 1.35e− 15 A36 1.26e− 15

A41 6.26e− 17 A42 3.90e− 09 A43 5.34e− 16

A44 7.80e− 10 A45 1.10e− 16 A46 7.20e− 16

A51 1.95e− 09 A52 7.45e− 17 A53 1.02e− 15

A54 6.55e− 17 A55 1.95e− 09 A56 2.47e− 16

A61 3.67e− 16 A62 5.49e− 16 A63 8.63e− 16

A64 2.28e− 16 A65 1.78e− 16 A66 1.95e− 07
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Table 6.3: The maximum absolute difference of damping coefficient with 8 digital
accuracy between Direct Integral method and ODE-based method for Boxbarge
case for ω ∈ [0.1, 1.8] with ∆ω = 0.0017

B11 8.31e− 08 B12 7.58e− 17 B13 2.94e− 16

B14 2.12e− 17 B15 1.22e− 08 B16 3.71e− 16

B21 1.56e− 16 B22 3.49e− 08 B23 1.18e− 15

B24 3.03e− 09 B25 4.39e− 17 B26 9.34e− 16

B31 1.02e− 15 B32 6.42e− 16 B33 3.49e− 08

B34 2.76e− 16 B35 6.18e− 16 B36 1.46e− 15

B41 1.01e− 16 B42 9.02e− 10 B43 3.97e− 16

B44 1.59e− 10 B45 1.32e− 16 B46 8.90e− 16

B51 2.81e− 09 B52 1.11e− 16 B53 6.02e− 16

B54 4.57e− 17 B55 6.02e− 10 B56 2.88e− 16

B61 4.46e− 16 B62 6.43e− 16 B63 8.71e− 16

B64 2.34e− 16 B65 1.89e− 16 B66 2.50e− 07

Figure 6-8: The RAOs of Boxbarge discretized by 1940 panels by using inhouse
code and Hydrostar
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Figure 6-9: The average CPU time for boxbarge

6.1.3 KCS

The KRISO Container Ship (KCS) is further calculated to validate the solver for a
complex geometry.

Table 6.4: Main dimension and hydrostatic characteristics of the KCS
Length (m) 230

Breath (m) 32.2

Draft (m) 10.8

Reference point (m) (0, 0, 0)

Roll radius of gyration RXX (m) 9.338

Pitch radius of gyration RY Y (m) 41.906

Yaw radius of gyrations RZZ (m) 41.906

Linear roll viscous damping (%) 3

The main dimension and hydrostatic characteristics of the KCS are shown in
Table. 6.4. The KCS is discretized into 400, 1940, 3840 panels and the interior free-
surface is discretized with 650 panels as shown in Fig. 6-10. The added mass and
the damping coefficients are nondimensionalized as explained in the last subsec-
tion. Figure 6-11 shows the removal of irregular frequencies works well. Then, the
added mass and damping coefficients are compared to Hydrostar (Figure 6-12). A
good agreement can be found.
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(a) 400 panels (b) 1280 panels

(c) 3840 panels (d) free-surface panels

Figure 6-10: The visualization of meshes of a KCS discretized with 400, 1940, 3840

panels and a interior free-surface discretized with 650 panels
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(a) A11 and B11

(b) A22 and B22

(c) A33 and B33
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(d) A44 and B44

(e) A55 and B55

(f) A66 and B66
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(g) A13 and B13

(h) A15 and B15

(i) A24 and B24

106



(j) A26 and B26

(k) A35 and B35

(l) A46 and B46

Figure 6-11: The nondimensional added mass and damping coefficients of KCS
with (dashed lines with circle markers) and without (solid lines) irregular frequen-
cies
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(a) A11 and B11

(b) A22 and B22

(c) A33 and B33
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(d) A44 and B44

(e) A55 and B55

(f) A66 and B66
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(g) A13 and B13

(h) A15 and B15

(i) A24 and B24
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(j) A26 and B26

(k) A35 and B35

(l) A46 and B46

Figure 6-12: The nondimensional added mass and damping coefficients of KCS of
inhouse code (solid lines), Hydrostar (green red and blue circle markers)
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For ω ∈ [0.1, 0.18] with ∆ω = 0.0017, the maximum absolute difference for
the nondimensional added mass coefficients and nondimensional damping coeffi-
cients between Direct Integral method and ODE-based method are listed in Table.
6.5 and Table. 6.6, respectively. The small difference further validates the usability
of the ODE-based method.

RAOs associated to KCS with ODE-based Green function at an incident angle
β = 180◦ are shown in Fig. 6-13. The average time for KCS of one frequency are
shown in Fig. 6-14. Compared to direct integral method, the ODE-based method
is very efficient method. We can also find that the CPU time for the calculation
of matrix of influence is not important as that of solving the linear matrix of the
boundary element method, specially, when the panel number is large. It should
be noted that the ODE-based method is efficient only for multi-frequencies and for
very large number of panels, it will be difficult to store all the values of the Green
function and its derivatives.

Table 6.5: The maximum absolute difference of added mass coefficient with 8 digi-
tal accuracy between Direct Integral method and ODE-based method for KCS case
for ω ∈ [0.1, 1.8] with ∆ω = 0.0017

A11 1.30e− 07 A12 1.43e− 08 A13 4.38e− 07

A14 7.43e− 09 A15 2.99e− 07 A16 2.12e− 07

A21 3.74e− 08 A22 4.96e− 06 A23 2.11e− 07

A24 7.19e− 07 A25 7.47e− 08 A26 2.31e− 05

A31 3.72e− 07 A32 7.26e− 08 A33 8.47e− 06

A34 4.93e− 08 A35 5.52e− 07 A36 8.11e− 07

A41 3.89e− 09 A42 2.62e− 07 A43 3.02e− 08

A44 8.11e− 08 A45 9.07e− 09 A46 4.62e− 06

A51 2.58e− 07 A52 2.18e− 08 A53 5.29e− 07

A54 1.34e− 08 A55 5.14e− 07 A56 2.99e− 07

A61 2.30e− 07 A62 2.28e− 05 A63 1.56e− 06

A64 4.00e− 06 A65 4.42e− 07 A66 2.98e− 04
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Table 6.6: The maximum absolute difference of damping coefficient with 8 digital
accuracy between Direct Integral method and ODE-based method for KCS case for
ω ∈ [0.1, 1.8] with ∆ω = 0.0017

B11 2.42e− 07 B12 1.28e− 08 B13 1.95e− 07

B14 3.04e− 09 B15 5.69e− 07 B16 1.50e− 07

B21 2.26e− 08 B22 5.61e− 06 B23 1.23e− 07

B24 2.11e− 06 B25 5.07e− 08 B26 4.71e− 05

B31 5.36e− 07 B32 7.91e− 08 B33 2.09e− 05

B34 1.42e− 08 B35 8.30e− 07 B36 7.32e− 07

B41 2.13e− 09 B42 7.81e− 07 B43 2.20e− 08

B44 9.52e− 08 B45 5.02e− 09 B46 5.90e− 06

B51 4.10e− 07 B52 2.93e− 08 B53 8.62e− 07

B54 4.37e− 09 B55 9.63e− 07 B56 2.13e− 07

B61 1.16e− 07 B62 4.64e− 05 B63 8.82e− 07

B64 4.10e− 06 B65 2.34e− 07 B66 4.35e− 04

Figure 6-13: The RAOs of KCS discretized by 1280 by using inhouse code and
Hydrostar
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Figure 6-14: The average CPU time for KCS

6.2 Summary

In this section, the extended boundary condition method and ODE-based Green
function are used in the boundary element method code. The resulting inhouse
code is validated by comparing to the analytical solution and numerical results of
Hydrostar for hemisphere, boxbarge and KCS. The ODE-based method to calculate
the Green function is validated to be an accurate and efficient method suitable for
multi-frequencies calculation.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this thesis, wave-structure interaction problems were considered in the frame-
work of the linear potential flow theory. The boundary element method with
mixed distribution of sources and dipoles, constant panels, free-surface Green
function was used. Only the case of infinite water depth with zero speed was
studied. The exact mathematical expressions for the Green function were collected
and analyzed for better understanding of its numerical behavior. Several existing
algorithms for the evaluation of the frequency-domain Green function based on
these mathematical expressions were implemented and compared with respect to
their accuracies and computational time. A different way to understand the time-
domain and frequency-domain Green functions was proposed by introducing a
fourth and a second order ordinary differential equations for the time-domain and
frequency-domain Green functions, respectively. The solution of ODEs of Green
function in frequency domain was shown to be an alternative way to evaluate
the Green function. However, it is challenging to solve the second order ODEs
of the Green function and its gradient with usual initial conditions at the original
point of frequency variable because of the degenerated properties and the singular-
ities. A new way to remove the difficulty by modifying the ODEs associated with
new functions free of singularity was introduced in this thesis. The new ODEs
were then transformed into their canonic form by using a novel definition of vec-
tor functions. This canonic form can be then solved with initial conditions at the
original point since all involved terms are finite. An expansion method was also
given to find the analytical solution of Green function for small frequencies. The
ODE-based Green function was validated by calculating the hydrodynamics coef-
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ficient (added mass and damping coefficients) and RAOs of a floating hemisphere,
a floating boxbarge and a floating KCS.

A series of ODEs of the Green function and its gradient with respect to spatial
variables were also introduced in this thesis. They give another perspective for the
calculation of surface integrals or volume integrals of the Green function.

7.2 Perspectives

The ODEs for the time-domain Green function and frequency-domain Green func-
tion can be shown to be correct by comparing Green function with classical formu-
lations of integral form. ODEs can be used for evaluation of Green function. How-
ever, the usefulness or beauty should not limited to develop an alternative way to
evaluate Green function. The ODEs should give us more or new insights into the
wave diffraction and radiations. Lots of work have been done on the way to evalu-
ate time-domain Green function by using ODEs. One work by Clément concerning
time-domain Green function and showed the use of ODEs can avoid the convolu-
tion integral involved in the time-domain BEM solver at high-frequency [20], [21].
The frequency-domain Green function is just to be used to evaluate Green function
in Shen et al [74] and in this thesis, no work on application of ODE in frequency
domain other than Green function evaluation itself. It should be more interesting
to find the applications of ODEs in shedding other light on physical or mathemat-
ical features of the problem, in addition to just evaluate Green function for which
classical formations exist since a long time and used in practice. Unlike ODEs in
the frequency domain(F-ODE) which give Green function for all frequencies at a
fixed space points, ODEs with spatial variables (S-ODE) give Green function for all
space points for fixed frequency. S-ODE is closer to classical formulation of Green
function, at least, in its use in BEM. Both S-ODE and F-ODE have a drawback in
that we have to use a very small step in space coordinates or frequency in order to
achieve a good accuracy. However, the practical problems by BEM concern only
largely-spaced discrete space coordinates and frequencies. Thus most results in
the solution of S-ODE or F-ODE are useless in frequency-domain problems, unlike
time-domain problems, all time-step Green function could be useful.

Recently, a multi-domain method (MDM) to solve ship seakeeping with for-
ward speed [16], [55], [17], [80]. They divide the fluid domain into an internal
and external domains by an analytical control surface. The Green function method
is applied in the external domain limited from the control surface to infinity. The
classical formulations of Green function have been used in the evaluation of matrix
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coefficients. Green function is not explicitly evaluated but its spatial integrations.
S-ODE may be interesting in MDM.

The extensions of ODEs of Green function in the finite depth of water and Green
function in forward speed are expected.
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Appendix

Appendix a

The Green function of frequency domain G(r, Z;ω) can be derived as the Fourier
transform of the time-domain Green function with the following convention and
notations:

G(r, Z;ω) = Ŝ(r, Z;ω) = F(S(r, Z;ω)) =

∫ ∞
−∞

S(r, Z;ω)e−iωtdt (1)

where S(r, Z;ω) = H(t)F (r, Z; t).

The basic rules of Fourier transform for a derivative and for the product by a
polynomial are shown as below.

F{S(n)(t)} = (iω)nŜ(iω) (2)

F{tmS(t)} = im
dm

dωm
Ŝ(iω) (3)

Now we will discuss the functional relationships of Fourier transform that we
will use with the natural variables. We assumed $ = ω

√
R1 and using the natural

variables (µ, τ).

G̃0(r, Z;ω) = ˆ̃S(r, Z;ω) = F(S̃(r, Z;ω)) =

∫ ∞
−∞

S̃(r, Z;ω)e−iωtdt (4)

with S̃(r, Z;ω) = H(t)F̃ (r, Z; t).

S̃(µ, τ) = S̃(µ,

√
1

R1

t)) (5)

F(S̃(µ, τ)) = F(S̃(µ,

√
1

R1

t)) =
√
R1G̃0(µ,

√
R1ω) = G̃(µ,$) (6)

It should be noted G̃(µ,$) =
√
R1G̃0(µ,$) and G̃0(µ,$) is the corresponding

value of Fourier transform of S̃(r, Z;ω).

τmS̃(µ, τ) = R
− 1

2
m

1 tmS̃(µ, τ) (7)

F(τmS̃(µ, τ)) = R
− 1

2
m

1 im
dm

dωm
(G̃(µ,$)) = im

dm

d$m
(G̃(µ,$)) (8)
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S̃n(µ, τ) = R
1
2
n

1

dnS̃(µ, τ)

dtn
(9)

F(S̃n(µ, τ)) = R
1
2
n

1 (iω)nG̃(µ,$) = (i$)nG̃(µ,$) (10)

From equation 8 and 10, we have

F(τmS̃n(µ, τ)) = im
dm

d$m
((i$)nG̃(µ,$)) (11)
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Titre : Accélération du calcul des efforts hydrodynamiques par utilisation des propriétés 
différentielles des fonctions de Green de  à surface libre  

Mots clés : écoulement potentiel, la fonction de Green, équation différentielle ordinaire, domaine fréquentiel, la méthode 
des singularités 

Résumé : Le calcul des efforts hydrodynamiques de 
premier ordre sur un ou plusieurs corps perçant la surface 
libre est aujourd'hui bien maîtrisé, et plusieurs codes de 
calcul implémentant la méthode des singularités (dite BEM 
ou méthode d'élément frontière) ont été développés. Le 
cadre est la théorie linéarisée des écoulements potentiels à 
une surface libre. Dans ces codes BEM, les singularités 
utilisées ont la propriété intrinsèque de satisfaire à la fois 
l'équation de Laplace dans le domaine fluide ainsi que la 
condition linéarisée de surface libre.  Ces singularités, dites 
fonctions de Green à surface libre, dans le domaine 
fréquentiel en profondeur infinie et sans vitesse d'avance 
constituent le point focal de cette thèse.   

Tout d'abord, les expressions mathématiques existantes 
pour la fonction de Green de surface libre sont examinées. 
Douze expressions différentes sont passées en revue et 
analysées. Plusieurs méthodes numériques existantes sont 
comparées par rapport à leur temps de calcul et leur 
précision. 

Ensuite, une série d'équations différentielles ordinaires 
(ODEs) pour les fonctions de Green de surface libre dans 
le domaine temporel et le domaine fréquentiel et leur 
gradient est établie. Ces ODEs peuvent être utilisées pour 
mieux comprendre les propriétés de la fonction de Green et 
peuvent constituer un moyen alternatif de calculer ces 
fonctions de Green et leurs dérivées. 

 
 

Cependant, il est difficile de résoudre numériquement ces 
ODEs à cause de l'existence d'une singularité à l'origine. 
Cette difficulté est éliminée en modifiant les ODEs par 
l'utilisation de nouvelles fonctions sans singularité. Les 
nouvelles ODEs sont ensuite écrites sous forme 
canonique en utilisant une nouvelle définition de la 
fonction vectorielle. La forme canonique peut être résolue 
avec les conditions initiales à l'origine puisque tous les 
termes impliqués sont finis. Une méthode d'expansion 
basée sur une série de fonctions logarithmiques et de 
polynômes ordinaires, très efficace pour les problèmes de 
basse fréquence, a également été développée pour 
obtenir des solutions analytiques. 
 Enfin, la méthode basée sur les ODE pour calculer la 
fonction de Green est implémentée et un nouveau solveur 
BEM est obtenu. L'élimination des fréquences irrégulières 
est incluse. Le nouveau solveur est validé par 
comparaison des coefficients hydrodynamiques à des 
solutions analytiques pour une hémisphère, ainsi qu'à des 
résultats numériques obtenus avec un solveur commercial 
pour un chaland parallèlépipédique et le porte-conteneurs 
KCS. 
 
 
 
 

 
Title : An efficient method for the calculation of the free-surface Green function using ordinary 
differential equations 

Keywords : potential flow, Green function, ordinary differential equation, frequency domain, boundary element method 

Abstract: The boundary element method (BEM) with 
constant panels is a common approach for wave-structure 
interaction problems. It is based on the linear potential-flow 
theory. It relies on the frequency-domain free-surface 
Green function, which is the focus of this thesis. 
First, the mathematical expressions and numerical 

methods for the frequency-domain free-surface Green 
function are investigated. Twelve different expressions are 
reviewed and analyzed. Several existing numerical 
methods are compared including their computational time 
and accuracies.  
Then, a series of ordinary differential equations (ODEs) for 

the time-domain and frequency-domain free-surface Green 
functions and their derivatives are derived. These ODEs 
can be used to better understand the properties of the 
Green function and can be an alternative way to calculate 
the Green functions and their derivatives. However, it is 
challenging to solve the ODEs for the frequency-domain 
Green function with initial conditions at the origin due to the 
singularity. 

 

This difficulty is removed by modifying the ODEs by using 
new functions free of singularity. The new ODEs are then 
transformed in their canonic form by using a novel 
definition of the vector functions. The canonic form can be 
solved with the initial conditions at the origin since all 
involved terms are finite. An expansion method based on 
series of logarithmic function together with ordinary 
polynomials which is very efficient for low frequency 
problems is also developed to obtain analytical solutions. 
Finally, the ODE-based method to calculate the Green 

function is implemented and an efficient BEM solver is 
obtained.  The removal of irregular frequencies is included. 
The new solver is validated by comparison of 
hydrodynamic coefficients to analytical solutions for a 
heaving and surging hemisphere, and to numerical results 
obtained with a commercial solver for a box barge and the 
KCS container ship. 
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