N
N

N

HAL

open science

Design, implementation and analysis of keyed hash

functions based on chaotic maps and neural networks
Nabil Abdoun

» To cite this version:

Nabil Abdoun. Design, implementation and analysis of keyed hash functions based on chaotic maps

and neural networks. Electronics. UNIVERSITE DE NANTES, 2019. English. NNT:

02271074

HAL Id: tel-02271074
https://hal.science/tel-02271074
Submitted on 26 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Public Domain

https://hal.science/tel-02271074
https://hal.archives-ouvertes.fr

UNIVERSITE

L]

UNIVERSITE DE NANTES

o

Université Libanaise

Ecole Doctorale
Sciences et Teclmologies

THESE DE DOCTORAT DE

Rapporteurs avant soutenance :

M. René Lozi
M. Maroun Chamoun

Composition du Jury :

Président: M. René Lozi
Examinateurs : M. Maroun Chamoun
M. Ali Hamie

M. Damien Sauveron

Dir. de these : M. Safwan EIl Assad
Co-dir. de thése : M. Mohamad Khalil
Co- Encadrants : Mme Rima Assaf

M. Olivier Deforges

Professeur des Universités, Université de Nice Sophia-Antipolis
Professeur des Universités, Université Saint-Joseph

Professeur des Universités, Université de Nice Sophia-Antipolis

Professeur des Universités, Université Saint-Joseph
Professeur des Universités, Arts, Sciences and Technology University
Maitre de conférences, HDR, Université de Limoges

Maitre de conférences, HDR, Université de Nantes
Professeur des Universités, Université Libanaise

Docteur Ingénieur, Electricité du Liban
Professeur des Universités, INSA de Rennes

ACKNOWLEDGEMENT

Foremost, I thank God for giving me the strength to complete this thesis that also was completed

with the guidance and support of many people.

My sincere thanks goes to my supervisors Prof. Safwan El Assad, Prof. Mohamad Khalil, Prof. Oli-
vier Deforges, and Dr. Rima Assaf to guide me well throughout the research work from title’s selection
to finding the results. Their immense knowledge, motivation and patience have given me more power
and spirit to excel in the research writing. Conducting the academic study regarding such a difficult topic
could’t be as simple as they made this for me. They all have played a major role in polishing my research

writing skills. Their endless guidance is hard to forget throughout my life.

I would like to thank the members of my dissertation committee Dr. René Lozi, Dr. Maroun Cha-
moun, Dr. Ali Hamie, and Dr. Damien Sauveron, for their time and intellectual contributions to my

development as a researcher.
I would like also to thank IETR lab directors who provided me an opportunity to join their team, and
who gave access to the laboratory and research facilities. Without their precious support it would’t be

possible to conduct this research.

I would always remember my fellow lab mates too for the fun-time we spent together, sleepless

nights that gave us the courage to complete tasks before deadlines and for stimulating the discussions.

Last, but not least, I would like to thank all my family, friends, both in France and Lebanon, for their

prayers and support, especially during the difficult times of the PhD journey.

Thank you all ...

TABLE OF CONTENTS

Introduction

Preface, Motivation and Objectives e

Thesis Outline and Contributions v v ittt e e e

1 A brief review of standard hash functions SHA-2 and SHA-3

1.1
1.2

1.3

1.4
1.5

1.6
1.7

2.1
2.2

23

2.4

Introduction
Cryptography : foundation and basicconcepts
1.2.1 Generalities of hash functions
1.2.2 Cryptographic hash functions
Merkle-Damgard constructiono e e e
1.3.1 Merkle-Damgard construction : preprocessing and compression
1.3.2 Three one-way compression functions,
1.3.3 Keyed hash functions based on Merkle-Damgard construction
Secure Hash Algorithm SHA-2 e
Sponge construction Lo e e e e
1.5.1 Sponge construction : initialization, absorbing and squeezing
1.5.2 From unkeyed Sponge to keyed-Sponge construction
Secure Hash Algorithm SHA-3 o

Conclusion e e

Main chaos-based hash functions of the literature

Introduction L. e e e e
Chaos properties e e e e e e e
2.2.1 Main characteristics of chaotic systems suitable to build hash functions
222 Chaoticmaps v v v v vt e e e e e e e e e e e e e e
Neural Networks o e
2.3.1 Main characteristics of Neural Network suitable to build hash functions

Some chaos-based hash functions of the literature

15
15
16

21
21
21
22
23
24
25
28
29
30
33
33
36
37
45

Table of Contents

2.4.1 Hash functions based on Chaoticmaps 51
2.4.2 Hash functions based on Chaotic maps and Neural Networks 54
2.4.3 Specific chaos-based hash functions, 56
2.5 Conclusion 57

Design and security analysis of keyed chaotic neural network hash functions based on the

Merkle-Damgard construction 59
3.1 Introduction e 59
3.2 Chaotic Neural Network structure of the proposed keyed hash functions 59
32.1 Paddingrule 60
3.2.2 Suggested outputschemes L L 61
3.2.3 Detailed description of the proposed Chaotic System 62
3.2.4 Keyed hash functions based on two-layer CNN structure (Structure 1) 63

3.2.5 Keyed hash functions based on one-layer CNN with Non-Linear output layer
(Structure 2) e 69
3.3 Performance analysis e 71
3.3.1 One-way propertyot e e e e e e e 71
3.3.2 Statistical tests L. 73
3.3.2.1 Analysis of collision resistance 74
3.3.2.2 Distributionof hashvalue 75
3.3.2.3 Sensitivity of hash value h to the messageM 76
3.3.2.4 Sensitivity of hash value h to the secretkey K 80
3.3.2.5 Statistical analysis of diffusioneffect 84
3.33 Cryptanalysis L e e 85
3.3.3.1 Bruteforceattacks oL 87
3.3.3.2 Cryptanalytical attacks 90
334 Speedanalysis 94

3.3.5 Performance comparison with other Chaos-based hash functions of literature and
standards hash functions Lo oL o 96
34 Conclusion 97

Design and security analysis of keyed chaotic neural network hash functions based on the

sponge construction 101
4.1 Introduction L e e e e 101
4.2 Proposed keyed-Sponge Chaotic Neural Network hash functions 102

4.2.1 Description of the general structure of the two proposed keyed-Sponge CNN
hash functions L. 102
4.2.2 Keyed-Sponge hash functions based on two-layer CNN structure (Structure 1) . 107

Table of Contents 5

4.2.3 Keyed-Sponge Hash functions based on one-layer CNN and one Non-Linear out-

putlayer (Structure2) 108

4.3 Performance analysis L. L 111
4.3.1 One-way property o e e e e e e e e e e 112

4.3.2 Statistical tests L e e e e 112

43.2.1 Analysis of collision resistance 112

4.3.2.2 Distributionof hashvalue 113

4.3.2.3 Sensitivity of hash value hto the message M 114

4.3.2.4 Sensitivity of hash value h to the secretkey K 114

4.3.2.5 Statistical analysis of diffusioneffect 114

433 Cryptanalysis e e e e 118

433.1 Bruteforceattacks Lo 120

43.3.2 Cryptanalytical attacks 121

434 Speedanalysis e 122

4.3.5 Performance comparison with the standard hash function SHA-3 124

4.4 Conclusion e 126

5 Duplex construction-based chaotic neural networks for authenticated encryption 127
5.1 Work under constructiono e 127
Conclusions and Perspectives 129

A Synthese des travaux réalisés : Conception, mise en ceuvre et analyse de fonctions de ha-

chage avec clé basées sur des cartes chaotiques et des réseaux neuronaux 133
A.1 Contexte etobjectifs e 133
A2 Contributions e e e e e e e 134

A.2.1 1 ere contribution : conception, mise en ceuvre et analyse de fonctions de hachage
basées sur des cartes chaotiques et des réseaux neuronaux utilisant la construc-

tion de Merkle-Damgard 134

A.2.1.1 Fonction de hachage chaotique CNN a clé construite avec deux couches 136
A.2.1.2 Fonction de hachage chaotique CNN a clé construite avec une couche
neuronal suivie par une couche formée d’une combinaison des fonc-

tions non-linéaireso 137
A.2.2 2eéme contribution : conception, mise en ceuvre et analyse de fonctions de ha-
chage avec clé basées sur des cartes chaotiques et des réseaux neuronaux en

utilisant la construction d’Eponge 138
A.2.2.1 Fonction de hachage chaotique CNN a clé basée sponge construite

avecdeuxcouches 139

6 Table of Contents

A.2.2.2 Fonction de hachage chaotique CNN a clé basée sponge construite par
une couche de réseaux neuronaux suivie par une couche comprenant
une combinaison des fonctions non-linéaires 140

A.3 Travail en cours de réalisation 144

Bibliography 147

LIST OF FIGURES

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

2.1
2.2

3.1
32
33
34

3.5

3.6
3.7
3.8
39

Hashfunction e 25
Security properties of hash functions 25
Classification of cryptographic hash functions 26
Strengthened Merkle-Damgard construction 27
Model of Strengthened Merkle-Damgard construction 27
The three methods of one-way compression function 29
One iteration in a SHA-2 family compression function 33
General structure of the Sponge construction 34
The three types of keyed-Sponge functions 34
Parts of the state array, organized by dimension 39
[lustration of 6 applied to asinglebit 40
Nlustrationof p forb=200 41
Illustration of 7 applied to asingleslice 42
[lustration of) appliedto asinglerow 43
General structure of neural networks oL oL 51
Mathematical model of aneuroni L o . 52
The proposed Merkle-Damgard compression functions based on CNN with output schemes 60

The padding of input message in the proposed hash functions 61
The structure of the Chaotic System 63
The structure of the i block in the proposed keyed hash function based on two-layer

CNN with MPoutput scheme it 65
A detailed structure of the i block in the proposed keyed hash function based on two-

layer CNN with MP outputscheme 66
The proposed keyed hash function based on two-layer CNN with MP output scheme . . . 67
A detailed structure of the k" neuron in input layer of the two proposed hash functions . 68
Non-linear functions L 70

The proposed keyed hash function based on one-layer NL CNN with MP output scheme . 72

List of Figures

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3

4.4

4.5

4.6
4.7

4.8
4.9
4.10
4.11

5.1

Al
A2

A3
A4

AS

Cryptanalysis : Statistical tests and attacks on hash functions 73
Distribution of hash value for Structure 1 with MP output scheme 79
Histogram of B; e e 86
General scheme of hash authentication 88
Second preimage attack on Digital Signature scheme 89
Hash length extension attack 91
Meet-in-the-middle preimage attack 92
Joux attack L e 93
Comparison of HTH for Structure 1 and Structure 2 - n, = 24 rounds with MMO,

MMMO, and MP output schemes 96
General structure of the two proposed keyed-Sponge CNN hash functions 103
Padding rule of the input message M in the two proposed keyed-Sponge CNN hash functions 105

Detailed structure of the i’ Chaotic function in the proposed keyed-Sponge two-layered

CNN hash function e 109
Detailed structure of the k" neuron in input layer of the two proposed keyed-Sponge CNN
hash functions e 110

Detailed structure of the k’* neuron in output layer of the proposed keyed-Sponge two-

layered CNN hash functions 110
Detailed structure of NL Functionsblock 112
Detailed structure of the i Chaotic function in the proposed keyed-Sponge hash function

based on one-layered NL CNN i e 113
Distribution of hash value for Structure 1 with 256-bit hash value length 118
Histogram of B; for Structure 1 with 256-bit hash value length, and J = 2048 tests . . . 119
Histogram of B; for Structure 1 with 512-bit hash value length, and J = 2048 tests . . . 120
Comparison of HTH for Structure 1 and Structure 2 - n, = 8/24 rounds with 256/512-

bit hash outputlengths L 123
General structure of the Duplex construction 127
Construction de la structure de Merkle-Damgard 135

Trois schémas de sortie de fonctions de compression Merkle-Damgard proposées basées
surCNN L L 136
La structure du systéme chaotique 137
Fonction de hachage CNN a clé, construite avec deux couches et utilise un schéma de
sortie MP L 138
Structure détaillée du k" neurone de la couche d’entrée de deux fonctions de hachage

PIOPOSEES . . . o v i e e e e e e e e e e e e e e e 139

List of Figures 9

A6
A7

A8
A9

Les fonctions non linéaires oo 140
Distributions du haché pour le message entier et le message constant pour la structure 1
avecle schémadesortie MP 141
Schéma général de la construction Eponge 142
Structure générale des deux fonctions de hachage CNN proposées avec une clé basée sur

lafonction €ponge L. e e e e e 144

A.10 Distributions du haché pour le message entier et le message constant pour la structure 1

avec une longueur de valeur de hachage de 256 bits 145

A.11 Schéma général de la construction Duplex, 146

LIST OF TABLES

1.1

3.1
3.2

33

34
3.5

3.6

3.7

3.8

3.9
3.10
3.11

3.12

3.13

3.14

3.15
3.16

Essential parameters of the Secure Hash Algorithm SHA-3 38

Number of hits @ according to the number of rounds 7, of Structure 2 for 2048 tests . . 76

Number of hits w regarding the proposed structures with the three output schemes for

2048 SIS . . v v e e e e e e e e e 77
Number of hits @ of the proposed structures with MP output scheme for J = 512, 1024,

and 2048 tests L L e e e e e 77
Theoretical values of the number of hits @ according to the number of testsJ 77

Mean, Mean/character, Minimum, and Maximum of the absolute difference d for the

proposed structures with the three output schemes and J =2048 tests 78

Mean, Mean/character, Minimum, and Maximum of the absolute difference d for the
proposed structures with MP output scheme and J = 512, 1024, and 2048 tests 78

Sensitivity of hash value to the message for the proposed structures with MMO output

scheme e e 80

Sensitivity of hash value to the message for the proposed structures with MMMO output

scheme L e e 81

Sensitivity of hash value to the message for the proposed structures with MP output scheme 81

A comparison of average B; and HD;(%) for message sensitivity 82
Sensitivity of hash value to the secret key for the proposed structures with MMO output

scheme 82
Sensitivity of hash value to the secret key for the proposed structures with MMMO output

scheme e 83
Sensitivity of hash value to the secret key for the proposed structures with MP output

scheme L 83
A comparison of average B; and HD;(%) for key sensitivity 84
Diffusion statistical-results for the two proposed structures 85
Diffusion statistical-results for the two proposed structures with MP output scheme . . . 86

11

12

List of Tables

3.17

3.18

3.19

3.20

3.21

322

3.23

3.24

3.25

4.1
4.2

4.3

4.4
45

4.6

4.7

4.8
4.9

4.10
4.11

4.12

Hashing time, hashing throughput, and the number of cycles per Byte for Structures 1
and 2 with MMO output scheme and 2048 random tests 94
Hashing time, hashing throughput, and the number of cycles per Byte for Structures 1
and 2 with MMMO output scheme and 2048 randomtests 95
Hashing time, hashing throughput, and the number of cycles per Byte for Structures 1
and 2 with MP output scheme and 2048 randomtests 95
Comparison in terms of collision resistance of the proposed structures with MP output
scheme with some chaos-based hash functions 97

Comparison of the statistical results of diffusion for the proposed structures with MP

output scheme with some chaos-based hash functions 98
Comparison in terms of collision resistance of the proposed structures with MP output
scheme and SHAZ2-256 e 99
Comparison of the statistical results of diffusion for the two proposed structures with MP
output scheme and SHA2-256 e e 99
Comparison of NCpB of the proposed structures with three output schemes with some
chaos-based hash functions 99
Comparison of NCpB of the proposed hash functions with the unkeyed and keyed standards 99
Main characteristics of the two proposed keyed-Sponge CNN hash functions 104
Theoretical values of the number of hits @ according to the number of tests J for 256-bit
lengthof hash values 114
Theoretical values of the number of hits w according to the number of tests J for 512-bit
lengthofhashvalues 114
Number of hits @ according to the number of rounds #, of Structure 2 for 2048 tests . . 115

Number of hits w regarding the proposed structures with the two length of hash values
for 2048 tests e e e 115

Mean, mean/character, minimum, and maximum of the absolute difference d for the pro-

posed structures with the two lengths of hash values and J =2048 tests 116
Sensitivity of hash value to the message for the proposed structures with 256-bit length

ofthehashvalues 116
A comparison of average B; and HD;(%) for message sensitivity 116

Sensitivity of hash value to the secret key for the proposed structures with 256-bit length
ofhashvalues 117
A comparison of average B; and HD;(%) for key sensitivity 117
Diffusion statistical results for the two proposed structures, with the two lengths of hash
values, and J = 2048 tests e 119
Hashing time, hashing throughput, and number of needed cycles to hash one Byte for
Structures 1 and 2 with 256-bit length hash values and 2048 random tests 122

List of Tables 13

4.13 Hashing time, hashing throughput, and number of needed cycles to hash one Byte for
Structures 1 and 2 with 512-bit length hash values and 2048 random tests 123

4.14 Comparison in terms of collision resistance of the proposed structures with the standard
SHA-3 for 256-bit hash valueslength 124

4.15 Comparison in terms of collision resistance of the proposed structures with the standard
SHA-3 for 512-bithash valueslength 124

4.16 Comparison of the statistical results of diffusion for the two proposed structures with the
standard SHA-3 for 256-bit hash values length 125

4.17 Comparison of the statistical results of diffusion for the two proposed structures with the
standard SHA-3 for 512-bit hash values length 125

4.18 Comparison of average B; and HD;(%) for message sensitivity of the two proposed struc-
tures with the standard SHA-3 for 256 and 512 bits hash values length 125

4.19 Comparison of NCpB of the proposed structures with the standard SHA-3 for 256 and
512 bitshash valueslength, 125

A.1 Nombre de collusion w obtenus par les deux structures proposées avec les trois schémas
de sortie pour 2048 tests L Lo e e e 141
A.2 Résultats statistiques de la diffusion pour les deux structures proposées 142

A.3 Nombre de collusions w obtenues pour les deux structures proposées avec les deux lon-
gueurs de hachage pour 2048 tests 143

A4 Résultats statistiques de la diffusion pour les deux structures proposées, avec les deux
longueurs de hachage pour 2048 tests 143

INTRODUCTION

Preface, Motivation and Objectives

Cryptography is the art and science of secret communication. It involves the transformation of infor-
mation in such a way that it is not possible for people separate from the legitimate source and destination
to access the information while it is stored or transferred over insecure networks. This goal is achieved
by designing cryptographic algorithms. Indeed, cryptographic algorithms are, in general, classified into
three : hash functions, symmetric-key algorithms, and asymmetric-key algorithms. Unlike symmetric
and asymmetric algorithms that are revertible, hash functions are one-way functions that produce output

values, which are invertible. So, it is impossible to compute the input from its output.

A hash function can be used to map a message of arbitrary length into an output value of fixed length.
The values returned by a hash function are called hash values, hash codes, digests, or simply hashes. Ba-
sically, the hash functions are used in the construction of hash tables. Additionally, hash functions are

used to find similar stretches in the DNA sequences.

Moreover, hash functions are also one of the most useful primitives in cryptography. Indeed, they
play an important role in different applications such as Data Integrity [1], Message Authentication [2],
Digital Signature [3, 4], Password Protection, Generation of Pseudorandom Numbers, and Authenticated

Encryption [5]. In such cases, hash functions are known as cryptographic hash functions.

A secure cryptographic hash function A (addressed as hash functions in the rest of thesis) must verify,
in addition to the three main security properties mentioned below, the two implementation properties :

Compression and ease of computation.
1. Preimage resistance (one-way).
2. Second preimage resistance (weak collision resistance).
3. Collision resistance (strong collision resistance).

At the highest level, cryptographic hash functions are categorized into two main categories : unkeyed

hash functions, called Message Detection Codes (MDCs), and keyed hash functions, named Message

15

16 Introduction

Authentication Codes (MACs). An unkeyed hash function uses an initial value /V to hash a message M
and produce a hash value /. On the other hand, a keyed hash function uses, additionally, a secret key K

which should be distributed between the sender and the receiver.

MDCs confirm that an input message M has not been tampered with by an attacker or a noisy chan-
nel in transition, while MACs confirm that an input message M has not changed and has been sent by
a known source to a receiver that shares the same secret key K with the sender. Hence, MDCs verify
the integrity of M while MACs verify both the integrity and the authenticity of M. MACs are originally

proposed for Data Integrity, Message Authentication, Digital Signature applications, and so on.

As a consequence of the publication of some attacks against many classical hash functions of the
MD-SHA family [6], the American National Institute of Standards and Technology (NIST) initiated a
public competition in 2008 called the SHA-3 contest. This was to determine a new standard for hash
functions [7]. This competition ended on August 5, 2015 with the announcement of the winning algo-
rithm, the KECCAK function.

Different from conventional cryptography, a new direction in cryptography has been widely develo-
ped in the past decade. Many researchers used chaotic dynamic systems and neural network structures,
for their important properties, to build new hash functions that achieve the necessary security require-
ments mentioned above, called Chaotic Neural Network (CNN) hash functions [8, 9]. In fact, Chaotic
Systems are suitable to be used in cryptographic hash algorithms due to their security features, such
as sensitivity to minute changes in initial conditions, random-like behavior, unstable periodic orbits,
and confusion diffusion properties. On the other hand, Neural Networks exhibit, by construction, many
suitable properties to be used in cryptographic hash algorithms, such as non-linearity, parallel implemen-
tation, data diffusion, flexibility, one-way, and compression function. It should be noted that the CNN
acronym is used for Cellular Neural Network and Convolutional Neural Network, but in our study it is

an abbreviation of Chaotic Neural Network.

Thus, the design of secure hash functions is crucial.

Thesis Outline and Contributions

This thesis is organized as follows :

Chapter 1 explains the fundamental characteristics of hash functions. First, we present the diverse
classification, the main properties, the essential features and the different applications of hash func-

tions. Second, we introduce the two major categories of hash functions, mainly unkeyed and keyed hash

Introduction 17

functions. Subsequently, we present the different methods for building hash functions. Then, we briefly
describe the standard SHA-2 based on the Merkle-Damgard construction with its three output schemes
used to produce the final hash value /. Finally, we describe the general model of the Sponge construction
and the standard SHA-3.

Chapter 2 introduces the two chaotic maps, namely Discrete Skew Tent map (DSTmap) and Discrete
Piecewise Linear Chaotic map (DPWLCmap), used in this thesis and their main cryptographic proper-
ties. Then, we present the principle of neural networks and their characteristics. These two components
are used to construct new hash functions, named Chaotic Neural Network (CNN) hash functions. So, we
present the related work on chaotic neural network hash functions in the literature, which are based on
the two previous components [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31]. Some works was realized as hashing schemes based only on chaotic maps such as logistic
map, high-dimensional discrete map, piecewise linear chaotic map, tent map, sine map and Lorenz map
or on 2D coupled map lattices. Other researchers proposed combined hashing and encryption schemes
based on chaotic neural network. Furthermore, many scientists have been working on developing hash
functions using feed forward-feedback nonlinear filter, shuffle-exchange network, changeable-parameter

and self-synchronization, and so on.

Chapter 3 presents our first contribution [32, 33, 34, 35]. It consists of designing and implementing
two KCNN hash functions based on the Merkle-Ddamgard construction. First, we realize the two keyed
hash function structures based on chaotic maps and neural networks (KCNN). These two structures use
the same padding rule, which is applied to the input message of arbitrary length, to obtain a message of

fixed size (multiple of 2048 bits), the same chaotic system and chaotic neural network.

The proposed chaotic system is composed of a Discrete Skew Tent map (DSTmap) with one recur-
sive cell (delay equal to 1). This chaotic system takes as input a secret key K of 160-bit length and
calculates the necessary samples used to initialize the parameters of the CNN layers. For the first propo-
sed structure, the CNN is formed of a two-layered neural network of eight neurons each. The proposed
activation function of the CNN used two coupled chaotic maps, DSTmap and DPWLCmap, connected
in parallel. For the second proposed structure, the CNN is composed of a one-layered neural network of
eight neurons, followed by a combination of non-linear functions. These non-linear functions, used in
the standard SHA-2, improve the hash throughput while maintaining the necessary security requirements
by iterating n, times the output layer. After many experimental tests, we chose the number of rounds #n,

equal to 24 for more robustness and equal to 8 for a compromise between robustness and hash throughput.

For these two structures, we implement the three output schemes : CNN-Matyas-Meyer-Oseas, Mo-
dified CNN-Matyas-Meyer-Oseas, and CNN-Miyaguchi-Preneel that precede the generation of the final

18 Introduction

output hash value 4. Finally, we evaluate the performance of the two proposed KCNN hash functions
in terms of security (statistical tests, cryptanalytical attacks) and computation time. The proposed hash
functions are as well secure as the other chaos-based hash functions presented in the literature, including
the standard Secure Hash Algorithm SHA-2. On the other hand, the NCpB of structure 2 is better than
those of the literature, but a little inferior to that of SHA-2.

Chapter 4 presents our second contribution [36]. In the first part of this chapter, we introduce the
general model of the unkeyed-Sponge, and we present the three methods used to transform the Sponge
function to a keyed-Sponge construction such as Outer keyed-Sponge (OKS), Inner keyed-Sponge (IKS),
and Full-State Keyed Sponge (FKS). Second, we describe in detail the two proposed structures of hash
functions based on the Sponge construction (KSCNN). For the two proposed structures of KSCNN, we
realized two variants of hash value lengths : 256 bits and 512 bits. The bitrate r, the capacity ¢ and the
width b are the main characteristics of hash functions that must be initialized right at the beginning. The
width b, equal to 1600 bits, determines the length of the intermediate hash values, while the bitrate r
and the capacity c¢ specify the lengths of the hash value 4 : 256 bits (r = 1088, ¢ = 512) and 512 bits
(r =576, c = 1024). These KSCNN use the same chaotic system of chapter 3. The first structure KCNN
is composed of two-layer CNN containing five and eight neurons, respectively. The second structure is
formed of a one-layer CNN of five neurons followed by a combination of non-linear functions. For the
second KSCNN, from many experimental tests, we chose a number of rounds 7, equal to 8 and 24 rounds

for the same reasons as elucidated in chapter 3.

In general, the functioning of these two hash functions comprises three phases : Initialization phase,
Absorbing phase, and Squeezing phase. In the initialization phase and after adding a suffix 01, a multi-
rate padding rule is applied to the input message. Then, the message is divided into blocks of size r
bits. In the absorbing phase, the entire message is absorbed block by block. This phase generates a hash
value of length 1600 bits. When the value of the desired length is greater than 1600 bits, the proposed
hash functions enters the squeezing phase. The squeezing phase generates the final desired hash value
by extracting r-bit from the intermediate hash values, each time. Finally, whatever the used structure, the

output layer is iterated seven times to generate the intermediate hash values of 1600-bit length.

In the second part of this chapter, we estimate the performance of two proposed KSCNN hash func-
tions in terms of security and computational time. For this purpose, we first perform several statistical
tests such as collision resistance, distribution of hash value, sensitivity of hash value to the message,
sensitivity of hash value to the secret key, and the diffusion effect. Then, we study the immunity of
the proposed KSCNN hash functions against many attacks such as preimage, second preimage, collision
resistance, length extension, and meet-in-the-middle preimage attacks. Furthermore, we measure the ave-

rage hashing time, the hash throughput and the number of needed cycles to hash one byte (NCpB). We

Introduction 19

observed that, globally, the obtained performance is close to those of the standard SHA-3.

Chapter 5 concerns the Duplex construction. For this purpose, we are currently working on the de-
sign of a CNN-DUPLEX structure which allows the alternation of input and output blocks at the same
rate as the Sponge construction, similar to a full-duplex communication (one call to the chaotic function
per input block). This will later be adapted for using in Authenticated Encryption with Associated Data
(AEAD).

Finally, we conclude the manuscript by giving a summary of the main new ideas and the contributions
of our work in the domain of keyed Chaotic Neural Network hash functions. Moreover, we present future

research issues related to our work and the scope to work on them.

Chapter 1
A brief review of standard hash functions
SHA-2 and SHA-3

1.1 Introduction

We dedicate this chapter to explain the fundamental concepts of cryptography primitives. Then, we
start by providing the generalities, properties, and classification of cryptographic hash functions, namely
keyed and unkeyed hash functions. We introduce the general model of Merkle-Ddmgard construction,
which was used in the design of many popular hash algorithms such as MD5, SHA-1 and SHA-2. Next,
we explain the current standard hash function SHA-2 briefly. Furthermore, we introduce the general mo-
del of the Sponge function, that was used in the construction of the new standard hash function SHA-3.

Then, we explain the standard hash function SHA-3 shortly. Finally, we conclude this first chapter.

1.2 Cryptography : foundation and basic concepts

Since the beginning of the writing language, it was necessary to find ways to hide valuable informa-
tion [37]. Cryptography is the science that concerns the transformation of information so that it is not
possible to other people different from the legitimate source and destination to access this information.
The Cryptology process requires two different and complementary stages. The first step is cryptography
which presents selection of the tools and the framework which guide the concealing of the information.
The second one is cryptanalysis which means the evaluation of the transformation system.
Cryptography has mainly been used by the governments and military for the confidentiality of informa-

tion. The modern cryptography begins with the Shannon theory [38], in which three fundamental goals

21

22 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

must be achieved [39, 40, 41] :

1. Confidentiality : it ensures that information is not made available or disclosed to an adversary

excepting the authorized persons.
2. Integrity : it is the assurance that the information is trustworthy and accurate.
3. Auvailability : it ensures that information are available to authorized people when it is needed.

Authenticity and Non-Repudiation are also essential parts of a secure system. These two terms are ex-

plained as follows :
1. Authenticity : it confirms that both parties involved are who they claim they are.

2. Non-repudiation : it refers to the ability to prove that the sender really sent the message, so the

recipient cannot claim that the message was not sent.

There are several ways of classifying cryptographic algorithms. They can be categorized based on the
number of keys that are employed, and further defined by their application and use. The three types of

cryptographic algorithms are represented as follows :

1. Secret Key Cryptography (SKC) : Uses a single key for both encryption and decryption; also

called symmetric encryption. Primarily used for confidentiality.

2. Public Key Cryptography (PKC) : Uses one key for encryption and another for decryption; also
called asymmetric encryption. Primarily used for authentication, non-repudiation, and key ex-

change.

3. Hash Functions : Uses a mathematical transformation to irreversibly hash information, providing

a digital fingerprint. Primarily used for message integrity and authentication.

1.2.1 Generalities of hash functions

A hash function usually means a function that compresses an input data to produce an output value A
called hash value or hash-code, shorter than the input [42, 43] . Often, such a function or algorithm takes
an input of arbitrary length to generate an output of fixed length. It’s kind of generating a signature of
this input. When it comes to web development for example, it’s common to encounter a scenario where
you need to compare if 2 files have the same content [44]. Also, suppose that you have to compare those
files frequently. Without hash functions, you probably would need to read all content from the first file
and all content from the second file to compare if they match. But you can generate a signature for each
file using a hash function and then compare the two signatures. Consequently, this way is more faster due
to small size of the generated signatures. Another example, the hashing process used for indexing and
locating items in databases accelerate the speed of research because it is easier to find the shorter hash
value than the longer original string.

In general, hash functions are divided into two large categories :

1.2. Cryptography : foundation and basic concepts 23

1. Non-cryptographic hash functions including Cyclic Redundancy Checks (CRC) and checksum
functions such as, CRC-64, sum32, Adler-32, ...

2. Cryptographic hash functions including keyed and unkeyed hash function such as, Message Di-
gest MDS5, Secure Hash Algorithms SHA-2 and SHA-3, Cipher Block Chaining Message Authen-
tication Code CBC-MAC, Hash Message Authentication Code HMAC, ...

Non-cryptographic hash functions are used in many parts of life like hash table, a kind of data structure
that is used to store key/value pairs. These types of hash functions is out of study in this thesis. On the
other hand, cryptographic hash function are used in cryptography and information security, and there
are many different types of hash functions, with various security properties. A classical application of
cryptographic hash functions is to store the hash value of password instead of the password itself, in
databases. In the next sub-section, we bring out the importance of cryptographic hash functions, and

explain their implementation and security properties.

1.2.2 Cryptographic hash functions

Cryptographic hash functions play a fundamental role in modern cryptography. The basic idea of
cryptographic hash functions is that a hash-value % serves as a compact representative image (sometimes
called an imprint, digital fingerprint, or message digest) of an input message M and is used as an uniquely
identifiable element (see Fig. 1.1) [42]. For example, computing the hash of a downloaded file from the
Internet, and comparing the result to a previously published hash value, can show whether the download
has been modified or tampered with. So, the receiver can verify the integrity of the received data sent by
the sender. Precisely, a cryptographic hash function H, that requires to be a deterministic process, maps
bit-strings of arbitrary finite length |M]| to strings of fixed length (u bits), where |M| > u [43]. So, every
time if the same input message M is hashed by H, the same hash value % is obtained. H is many-to-one
relationship that implies the existence of unavoidable collisions (pairs of input message with identical
output hash value) with very small probabilities.

A cryptographic hash function H aims to guarantee a number of properties, which makes it very useful

for information security. H must verify at least the following two implementation properties [44] :

1. Compression : H maps an input message M of arbitrary finite bit-length to a hash value % of fixed
bit-length u bits.

2. Ease of computation : given H and an input message M, H(M) is easy to compute.

Nevertheless, two important requirements are needed to realize the cryptographic hash functions : the
hardness to find collisions and the appearance of randomness. Also, H has the following three security

properties (see Fig. 1.2) :

1. Preimage resistance (one-way) : for all the pre-specified hash values 4, it is computationally

infeasible to find any message input that is hashed to the chosen hash value.

24 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

2. Second preimage resistance (weak collision resistance) : it is computationally infeasible to find

any second input that has the same hash value as a specified input message M.

3. Collision resistance (strong collision resistance) : it is computationally infeasible to find any two
distinct message inputs (M, M') hashed to the same hash value, such that H(M) = H (M'). It should

be noted that, the users are free to choose both input messages.

We should mention that the notion of computationally infeasible depends on the relationship between
the amount of work the designer has to do to secure the system in comparison to the amount of work that
the attacker has to do to break it.

At the highest level, cryptographic hash functions are classified into two classes (see Fig. 1.3) :

1. Modification Detection Codes (MDCs) or unkeyed hash functions.
2. Message Authentication Codes (MACs) or keyed hash functions.

The MDCs confirm that an input message M has not been tampered by an attacker or a noisy channel in
transition, while MACs confirm that an input message M has not changed and has been sent by a known
source to a receiver that shares the same secret key K with the sender. So, MDCs verify the integrity
of M, while MACs verify both the integrity and authenticity of M [45]. The MACs, originally proposed
to generate the Digital Signature (DS) application, are nowadays used in various information security
applications to achieve Authenticated Encryption [46].

In this thesis, our work is restricted to keyed cryptographic hash functions (simply called hash functions
in the rest of this paper) that are originally proposed to generate the inputs of Digital Signature (DS) ap-
plication. Later, these hash functions are designed to achieve certain security properties, such as message
authentication useful for building cryptosystems. In general, a keyed hash function [47] uses a secret key
K. The Merkle-Damgard structure, which is unkeyed hash function that uses initial values IV, can be
transformed to a keyed hash function by appending a secret key K to the input message M to produce the

hash value 5.

1.3 Merkle-Damgard construction

In cryptography, many structures are used to construct different hash functions [48], such as Merkle-
Damgard [49, 50], Wide Pipe [51], Fast Wide Pipe [52], HAIFA [53], and Sponge construction [54].
Indeed, a number of these structures are essential in the design of several popular hash functions. The
Merkle-Damgard construction was used in the design of MDS5 [55], SHA-1 [2], and SHA-2 [3] stan-
dards. The Sponge construction was used in the design of a new secured standard hash algorithm SHA-3
[7], which will be used when the current standard SHA-2 will be inevitably compromised. In the follo-
wing, we introduce the Merkle-Damgard construction (Fig. 1.4) and the model of Strengthened Merkle-
Damgard (Fig. 1.5).

1.3. Merkle-Damgard construction 25

Message

M

}
H
}

Hash value h

FIGURE 1.1 — Hash function

Message
M

"

1

Hash value h Hash value h Hash value h

Preimage resistance Second Preimage resistance Collision resistance

FIGURE 1.2 — Security properties of hash functions

1.3.1 Merkle-Damgard construction : preprocessing and compression

Figure 1.4 shows the structure of Merkle-Ddamgard construction where the compression function is
defined by :
C:{0,1} x {0,1}™l — 10,1}/ (1.1)

26 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

Cryptographic
Hash functions

Y

Keyed
VMAC, UMAC, CNN ..

Collision
Resistance

Unkeyed
MD, SHA, RIPEMD ..

Message
Authentication
Code MACs

Modification
Detection Code
MDCs

Other
Applications

Other
Applications

Pre-image
Resistance

2" pre-
image
Resistant

Digital

Data h
Integrity Signature

Time Software
Stamping protection

Encryption
algorithms

Hashing
passwords

OWHF: One Way Hash Function
CRHF: Collision Resistant Hash Function
UOWHF: Universal One Way Hash Function

FIGURE 1.3 — Classification of cryptographic hash functions

C takes as inputs a chaining or state variable h;, (i = 0,...,q — 1) of size [bits and a message block
M;, (i =1,...,q) of size |M;| bits, to produce the updated chaining variable &;, (i = 1,...,q) of size I bits.
Thus, to allow the usage of input messages of arbitrary length, the Merkle-Ddamgard structure needs a
padding, which transforms the input message into a padded message M of length multiple of |M;| bits.
Indeed, a simple padding is insufficient because, in this case, the generated hash value is vulnerable to
different attacks due to collision between the latest blocks. We will consider the Strengthened Merkle-
Damgard padding with length strengthening (see Fig. 1.5). It uses a padding function named "is-pad"”,
which appends the binary value of the message length L at the end of the message to generate the padded

1.3. Merkle-Damgard construction 27

Message
2048 bits m
M L . Mg i PL

l l l Output

function

ho h1 h2
wi—» ¢ /> ¢ —» .. 6 Hash value h
HM: HM:

P: Padding, L: Length of the message M, C: Message compression function

FIGURE 1.4 — Strengthened Merkle-Damgard construction

Message

Mi
P .
| |
: Message -

1% | .
I y compression -
. function I
| |
I i
Output
function
Hash value h

FIGURE 1.5 — Model of Strengthened Merkle-Damgard construction

message. Additionally, the Strengthened Merkle-Ddamgard construction employs a predefined initializa-

tion vector 1V used as the first state value of the structure. Then, the padded message is processed as a

28 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

sequence of message blocks M || Ma || ... || M,,.
The Strengthened Merkle-Damgard hash function SMD¢(M) is defined as follow :

Algorithm 1 The Strengthened Merkle-Damgard hash function SMD¢ (M)

My || My || ... || My < "is-pad(M)"
ho <1V
fori=1toqdo
hi < C(hi—1,M;)
end for
h < O(hy)
Return /.

1.3.2 Three one-way compression functions

In general, the one-way compression functions are often built from block ciphers. Block ciphers
take two fixed size inputs (the key and the plaintext) and return one single output which is the same
size as the input plaintext. Thus to turn any normal block cipher into a one-way compression function,
some methods are used such as, Davies—Meyer, Matyas—Meyer—Oseas, Miyaguchi—Preneel (see Fig.
1.6). These methods are then used with the Merkle-Damgard construction to build the hash function.

These methods are described in detail in the next paragraphs.

Davies—Meyer compression function : The Davies—Meyer compression function feeds each block of
the message M, as a key to the block cipher (Fig. 1.6-a). It feeds the previous hash value h;_; as the
plaintext. Then, the output value is xored with /;_; to produce the new intermediate hash value ;. In the
first round when there is no previous hash value, it uses an initial value V. In mathematical notation, the

Davies—Meyer compression function is represented by the following equation :

hi = Cu;(hi—1) ® hi— (1.2)

Matyas—Meyer—Oseas compression function : The Matyas—Meyer—Oseas feeds each block of the
message M; as the plaintext (Fig. 1.6-b). Then, the output value is xored with M; to produce the new
intermediate hash value A;. The previous intermediate hash value h;_ is fed as the key to the block
cipher. In the first round when there is no previous hash value, it uses an initial value /V. If the block
cipher has different block and key sizes, h;_ will have the wrong size for use as the key. So, it is first fed
through the function O to be converted/padded to fit as key for the cipher. In mathematical notation, the

Matyas—Meyer—Oseas compression function is represented as follows :

hi = Con,_,)(M;) ®M; (1.3)

1.3. Merkle-Damgard construction 29

Miyaguchi-Preneel compression function : The Miyaguchi—Preneel feeds each block of the message
M,; as the plaintext (Fig. 1.6-c). Then, the output value is xored with M; and with the previous intermediate
hash value h;_; to produce the new hash value A;. h;_; is fed as the key to the block cipher. In the first
round when there is no previous hash value, it uses an initial value V. If the block cipher has different
block and key sizes, h;_; will have the wrong size for use as the key. So, it is first fed through the function
O to be converted/padded to fit as key for the cipher. In mathematical notation, the Miyaguchi—Preneel

compression function is represented by the following equation :

hi = Con,_,)(M;) @ hi—1 & M; (1.4)

hi-1
Mi
HMi
hi T hi
a) Davies-Meyer b) Matyas-Meyer-Oseas ¢) Miyaguchi-Preneel

FIGURE 1.6 — The three methods of one-way compression function

1.3.3 Keyed hash functions based on Merkle-Ddmgard construction

Generally, hash functions are classified as Unkeyed or keyed. Unkeyed hash functions accept a mes-
sage M with arbitrary length and produce a hash value & with fixed length u. On the other hand, keyed
hash functions accept both a variable length message M and a fixed length key K to produce a fixed
length hash value 4 :

Hy - {0,1}K 5 {0,1}* — {0,1}" (1.5)

30 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

1.4 Secure Hash Algorithm SHA-2

The Secure Hash Algorithm SHA-2 is a set of cryptographic hash functions designed by the Uni-
ted States National Security Agency (NSA). They are built using the Merkle-Damgard structure. SHA-2
includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of six hash func-
tions with hash values that are 224, 256, 384 or 512 bits : SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256. SHA-256 and SHA-512 are novel hash functions computed with 32-bit and
64-bit words, respectively. They use different shift amounts and additive constants, but their structures are
otherwise virtually identical, differing only in the number of rounds. SHA-224 and SHA-384 are simply
truncated versions of SHA-256 and SHA-512 respectively, computed with different initial values. SHA-
512/224 and SHA-512/256 are also truncated versions of SHA-512, but the initial values are generated
using the method described in Federal Information Processing Standards (FIPS) PUB 180-4. SHA-2 was
published in 2001 by the National Institute of Standards and Technology (NIST) a U.S. federal standard
(FIPS).

The SHA-256 operates in the manner of MD4, MD5, and SHA-I. The message to be hashed is first pad-
ded with its length in such a way that the result is a multiple of 512 bits long, and then parsed into 512-bit
message blocks M) M) .. M®™)_ The message blocks are processed one at a time : Beginning with a

fixed initial hash value H(?), sequentially compute the following equation :
HO — gli=1) + Cypit ([—]("*1)) (1.6)

where C is the SHA-256 compression function and + means word-wise addition mod 232. HWV) is the hash
of M. The SHA-256 compression function operates on a 512-bit message block and a 256-bit intermediate
hash value. Hence, there are two main components to describe :

1. SHA-256 compression function.
2. SHA-256 message schedule.

The initial hash value H® is the following sequence of 32-bit words, which are obtained by taking the
fractional parts of the square roots of the first eight primes : H 1(0) = 6a09e667, HZ(O) = bb6Taels, H3(0) =
3c6ef372, H\" = a541f53a, H" =510e527f, H.") = 9505688¢, H."” = 1£83d9ab and H." = 5be0cd19.
The computation of the hash of a message begins by preparing the message. First, the message is padded
in this way : Suppose the length of the message M, in bits, is /. Append the bit 1 to the end of the message,

and then v zero bits, where v is the smallest non-negative solution to the equation :
[+1+v=448 mod 512 1.7

To this append the 64-bit block which is equal to the length / written in binary. For example, the (8-bit
ASCII) message "abc" has a length equal to 8 x 3 = 24 bits. So, it is padded with a one, then 448 -
(24 + 1) = 423 zero bits, and then its length to become the 512-bit padded message. The length of the

1.4. Secure Hash Algorithm SHA-2 31

padded message should now be a multiple of 512 bits. Second, parse the message into N 512-bit blocks
M (1),M (2), M (), The first 32 bits of message block i are denoted M, (i), the next 32 bits are denoted
Mfi), and so on up to Ml(ls) The big-endian convention throughout is used, so within each 32-bit word,
the left-most bit is stored in the most significant bit position. Then, The hash computation proceeds as

follows :

Algorithm 2 The Secure Hash Algorithm SHA-256 compression function
fori=1toNdo

Initialize registers a,b,c,d,e, f,g,h with the (i — 1)* intermediate hash value (= the initial hash

value when i = 1)
a+ Hl(’fl)
i—1)

b<—H2(

h<+ HéH)
Apply the SHA-256 compression function to update registers a, b, ..., h
for j=0to 63 do
Compute Che, f,g),Maj(a,b,c),X0(a),X1(e), and W; (see definitions below)
T\ < h+X1(e)+Ch(e,f,8) +K;+W;
T, + X0(a) +Magj(a,b,c)
h<g
g« f
f+e
e« d+T
d+c
c+b
b+ a
a+TT+T,
end for
Compute the i intermediate hash value H)
HY —a+H""

1 bl

H(N):(H1 JHy"’,...,Hg) is the hash of the message M.

32 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

Six logical functions are used in SHA-256. Each of these functions operates on 32-bit words and

produces a 32-bit word as output. Each function is defined as follows :

Ch(x,y,z) = (xA\y)® (—xAz)
)© (xAz) @ (yA2)
Sz(x)@S”()@ 52
(x
(

(x) (1.8)
(x)

where A : AND logic, — : NOT logic, & : XOR logic, V : OR logic, R" : right shift by n bits, S" :
right rotation by n bits. All of these operators act on 32-bit words.

The expanded message blocks Wy, W1, ..., W3 are computed via the SHA-256 message schedule as repre-
sented in Algorithm 3.

Algorithm 3 The Secure Hash Algorithm SHA-256 message schedule
for j=0to 15 do
_)

W =M
end for
for j=16to 63 do

Wj — GI(WJ 2)—|-W] 7+GO< - 15)+WJ 16
end for

A sequence of constant words Ko, K1, ..., Ke3 is used in SHA-256. In hexadecimal, these constants are
given by :

428a2f98 71374491 b5cOfbcf e9b5dbadS 3956¢25b S9f111f1 923f82a4 ablcSedS
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deblfe 9bdc06a7 c19bfl174
e49b69cl efbed786 0fc19dc6 240calcc 2de92c6f 4a7484aa Scb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c¢92e 92722c¢85
a2bfe8al a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34bObcbS 391cOcb3 4ed8aada Sb9ccadf 682e6ff3

748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2
These are the first thirty-two bits of the fractional parts of the cube roots of the first sixty-four primes.

The SHA-256 compression function is given in Fig. 1.7.

1.5. Sponge construction 33

Do , /)_> Ho
D1 ™ H1
D2 ™ H2
M ™

D3 \‘ ‘J H3
Da ™ Ha
Ds ™y Hs
De ™y He
D7 A l YVN ™ H7

L ch | [52] | [maj] |50]

VN V. NIV
T\ L T\

FIGURE 1.7 — One iteration in a SHA-2 family compression function

1.5 Sponge construction

In cryptography, a Sponge function or Sponge construction is any of a class of algorithms with finite
internal state that take an input bit stream of any length and produce an output bit stream of any desi-
red length [56]. Sponge functions have both theoretical and practical uses. They can be used to model
or implement many cryptographic primitives, including Cryptographic Hashes, Message Authentication
Codes, Mask Generation Functions, Stream Ciphers, Pseudo-Random Number Generators, and Authen-
ticated Encryption.

In the following, we introduce the Sponge construction (Fig. 1.8), the model of Keyed-Sponge construc-
tion (Fig. 1.9), and the detailed structure of the standard Secure Hash Algorithm SHA-3 (section 1.6).

1.5.1 Sponge construction : initialization, absorbing and squeezing

In Fig. 1.8, we give the general structure of the unkeyed Sponge construction, which splits into three

phases : the Initialization phase, the Absorbing phase, and the Squeezing phase. The unkeyed Sponge

34 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

\ Message M |
u
h—

hash value h
Pad: “10..01”

Divide M|| 01| |Pad
10*1 into g blocks
|

I
I
I
A M: Mq >
| r r
v, — |
:
) 4) 4
—&H> D> > >
r 0 I
I I
I f I
HMo! ho f HM:1 h1 f HMg1 hg1 HM{ hq f HMg+1 hg+1 f HMg+2 hq+2
outer : :
inner | I
c 0 i > » > i » » »
LI | I
Initialization phase : Absorbing phase : Squeezing phase
| |

IV: Initial Value, r: rate, c: capacity, f: function

FIGURE 1.8 — General structure of the Sponge construction

[Key K] | Message M |
K| m \ Message M | Message M
I

Pad: “10..01” Pad: “10..01”

Divide K || M||01]||Pad
10*1 into q blocks
L

Pad: “10..01”

Divide M| | 01| | Pad
10*1 into q blocks
|

Divide M| |01]| | Pad
10*1 into g blocks
|

I I
| |
I I
> T > T >
114 — wv — : w — :
I I
I I
B E— D —— |
0 | 0 | 0 |
r | r HMo: r HMo:
|
HMo| L | || >
outer I : :
; - |
inner
c I 0 |) c K|l c K|l !
L I L | I L I
I | I
Initialization phase : Initialization phase : Initialization phase :
(a) Outer (b) Inner (c) Full-state

IV: Initialization Vector, r: rate, c: capacity

FIGURE 1.9 — The three types of keyed-Sponge functions

1.5. Sponge construction 35

construction builds a hash function, which operates on a state HM;, (i > 0) of size b bits. These states are
split into an inner part C of c-bit size named capacity, which is hidden, and an outer part R of r-bit size
named bitrate, which is accessible externally. The size of these states named width b-bit is given by b =r
+ c. In the initialization phase of this construction, the initial value IV = HM,, of b-bit size is initialized
to 0, and the input message M is padded then divided into g blocks of r-bit size. Next, the g blocks of
the entire message are absorbed message block M; by message block M;, (i = 1,...,q) in the absorbing
phase, and the hash value 4 is squeezed out r-bit block by r-bit block in the squeezing phase.

It should be noted that, the speed of the construction relies partially on the bitrate r, while the security
depends partially on the capacity c. Precisely, the absorption process consists of xoring each message
block M;, (i = 1,...,q) with r-bit size of HM;, (i = 0,...,q — 1), which forms the input of the function f
to obtain HM;, (i = 1,...,q) of b-bit size. Therefore, it is necessary to pad each message block M;, (i =
1,...,q) by O of c-bit size. If the bitrate r is increased, then more bits are absorbed at once and the
construction runs faster. However, the increase of the bitrate r implies decrease in the capacity ¢, and so
there is a trade-off between speed and security.

Thus, a padding rule Pad is needed to ensure that the input message of arbitrary length is padded to a
bit-string with length multiple of r bits. Indeed, a simple padding rule with O is insufficient because the
generated hash value will be vulnerable to different attacks due to the collision between all-zero latest
message blocks. Then, as we have already seen from the Sponge construction structure’s, the padded
message is divided into ¢ blocks and processed as a sequence of message blocks M || M || ... || M.

The Sponge construction algorithm’s is defined as follow :

Algorithm 4 The Sponge construction Spongelf,Pad,r]

Require : r < b
Interface : i = Sponge[f,Pad,r|(M,u) with M € 75, integer u >0, and h € Z;
M [|Ma] ... |M, = M| |Pad[¥](|M])
HMy = 0"
fori=1toqdo
hi—y = HM;_; ® (M;||0°~")
HM; = f(hi_1)
end for
h=(lHM,]),
while |i| < u do
HM,.1 = f(hy)
b= hlI([HM 1),
end while
Return (|A]),.

36 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

1.5.2 From unkeyed Sponge to keyed-Sponge construction

Without any structural changes, the unkeyed Sponge hash functions, which use an initial value 1V,
are transformed to keyed-Sponge hash functions by adding a secret key K, as an additional input to the

structure. Three types of keyed-Sponge functions [57] are used in the literature (see Fig. 1.9) :

1. The Outer keyed-Sponge (OKS) [58] : The secret key K is prepended to the message M, i.e., the
obtained input message is K || M (Fig. 1.9-a).

2. The Inner keyed-Sponge (IKS) [59] : The secret key K is put in the inner part of the initial value
1V (Fig. 1.9-b).

3. The Full-State Keyed Sponge (FKS) [60] : The secret key K is put in the inner part of the ini-
tial value IV as IKS, but the input message M is absorbed over the entire b-bit state instead of

absorbing it in the r-bit outer part only (Fig. 1.9-c).

The first two types of keyed-Sponge were analyzed by Andreeva et al. [61], and Naito and Yasuda [62].
The idea of the third type appeared first in the donkeySponge [63], and an analysis for only one output
block was given by GaZi et al. [64]. Then, a complete security analysis of the FKS was given by Mennink
etal. [60] and Daemen et al. [65]. From a security perspective, the three modes achieve approximately the
same security level of ¢ bits, and there is no reason to take a key K of size |K| bits greater than the capacity
¢ (K| > ¢) [57]. However, in terms of the number of permutation evaluations, FKS is more efficient than
OKS and IKS : the absorption of b-bit input data at a time rather than r bits (r < b). Intrinsically, FKS has
made IKS obsolete : both require adaptation of the unkeyed Sponge algorithm, both take one processing
of the permutation function f to absorb the key K, both are approximately equally secure, but FKS is more
efficient. The FKS does not necessarily make OKS obsolete, although it is less efficient, OKS does not
require an adaptation of the unkeyed Sponge algorithm. So, we restrict our focus to FKS hash functions.
The keyed-Sponge hash functions are used in several applications such as, MAC generation and Bitstream
encryption.

For the MAC generation application, the MAC function is given by :
. 7Kl b L u
MACk v[M]:Zy ' xZ3 x Zy — Z) (1.9

where K is the secret key, IV is the initial value, Z, is a binary sequence, and |K|, b, L, and u are the lengths
of the secret key K, the initial value IV, the message M, and the desired hash value A, respectively.

For the Bitstream encryption application, the STREAM function is given by :
STREAMy v : 2\ x 28 — Z5° (1.10)

In the next section, we explain the Secure Hash Algorithm SHA-3.

1.6. Secure Hash Algorithm SHA-3 37

1.6 Secure Hash Algorithm SHA-3

The Secure Hash Algorithm SHA-3 is the latest member of the SHA family of standards, released by
NIST on August 5, 2015 [66]. SHA-3 is internally different from the MD5, SHA-1 and SHA-2. SHA-3 is a
subset of the cryptographic primitive family KECCAK-f designed by Bertoni et al. [67]. The KECCAK-p
family of permutations is the specialization of the KECCAK-f family :

KECCAK — plb,n,] = KECCAK — f[b] (1.11)

where b is the width and #, is the number of rounds. Consequently, the KECCAK family is denoted by
KECCAK|c](N, d), given as follows :

KECCAK|c|(N,d) = SPONGE[KECCAK — p[1600,24], pad10*1,1600 — ¢|(N,d) (1.12)

where N is the concatenation of the initial message M with the suffix 01 (N =M || 01), d is the hash value
length (u = d), and pad10*1 is the used padding rule. As we can see, this equation is restricted to the case
b = 1600 bits and n, = 24 rounds, for a given input message M [7]. In the future, additional modes of
KECCAK-p may be specified and approved in FIPS publications or NIST special publications.

In particular, the four variants of SHA-3 hash functions are defined from the KECCAK[c](N, d) function

as follows :

SHA3 —224(M) = KECCAK[448](M || 01,224)
SHA3 —256(M) = KECCAK[512)(M || 01,256)
SHA3 —384(M) = KECCAK][768](M || 01,384)
SHA3 — 512(M) = KECCAK[1024](M || 01,512)

In each case, the capacity c is double the hash value length u, i.e., ¢ = 2 x u, and the suffix 01 supports
the domain separation; it distinguishes the SHA-3 hash functions from the Extendable-Output Functions
(XOFs), such as SHAKE128 and SHAKE256 [66], where its suffix is 1111 (N =M || 1111).

The four SHA-3 hash functions specified in FIPS 202 supplement the hash functions specified in FIPS
180-4 [68] : SHA-I family and SHA-2 family. For XOFs, the length of the output can be chosen to meet
the requirements of user applications.

Keccak’s authors have proposed additional uses for the function, not (yet) standardized by NIST, inclu-
ding a stream cipher, an authenticated encryption system, a tree hashing scheme for faster hashing on
certain architectures [69], and authenticated encryption with associated data algorithms Keyak and Ketje
[70, 71].

SHA-3 uses the Sponge construction, in which data is absorbed into the sponge, then the result is squee-

zed out.

38 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

Message Digest Size 224 256 384 512
Message Size Nomax. Nomax. Nomax. No max.
Block Size (bitrate r) 1152 1088 832 576
Word Size 64 64 64 64
Number of Rounds 24 24 24 24
Capacity ¢ 448 512 768 1024
Collision Resistance 2112 2128 2192 2256
Second Pre-image Resistance ~ 22%* 2236 384 212

TABLE 1.1 — Essential parameters of the Secure Hash Algorithm SHA-3

In the absorbing phase, message blocks are xored into a subset of the state equal to r, which is then trans-
formed as a whole using a permutation function f. In the squeezing phase, output blocks are read from
the same subset of the state equal to c, alternated with the state transformation function f. The maximum
security level is half the capacity [69].

Given an input bit string N, a padding function Pad, a permutation function f that operates on bit blocks

of width b, a rate r and an output length u, we have the Sponge construction :
Z = Sponge|f,pad,r|(N,u) (1.13)

yielding a bit string Z of length u, works as described in the Algorithm 4.

In SHA-3, the state S consists of a 5 x 5 array of w-bit words. With w = 64, bisequal to 5 x 5 x w = 1600
bits. The KECCAK-f family is also defined for small and intermediate state sizes. Small state sizes (w =
1) can be used to test cryptanalytic attacks, and intermediate state sizes (from w = 8 to w = 32) can be
used in practical to design lightweight applications.

For SHA-3-224, SHA-3-256, SHA-3-384, and SHA-3-512 instances, r is greater than u, so there is no
need for additional block permutations in the squeezing phase; the leading u bits of the state are the
desired hash. However, SHAKE128 and SHAKE?256 allow an arbitrary output length, which is useful in
applications such as optimal asymmetric encryption padding.

To ensure that the message can be evenly divided into r-bit blocks, padding is required. SHA-3 uses the
pattern padl0*1 in its padding function Pad (multi-rate padding) : a 1 bit, followed by zero or more 0

bits (maximum r — 1) and a final 1 bit. In Table 1.1, we give the essential parameters of the SHA-3.

SHA-3 Iteration Function f

For the internal processing within f, the input state variable s is organized as a 5 * 5 * 64 array a. The
64-bit units are referred to as lanes. The notation a [x, y, z] refers to an individual bit with the state array.
(Note that the first index x designates a column and the second index y designates a row). Within a lane
are labeled z = 0 through z = 63. The mapping between the bits of s and those of a is s [64(5y + x) + z] =
a [x, y, z] (see Fig. 1.10).

1.6. Secure Hash Algorithm SHA-3 39

The block transformation f, which is Keccak-f[1600] for SHA-3, is a permutation that uses XOR, AND
and NOT operations, and is designed for easy implementation in both software and hardware. The basic
block permutation function consists of 12+ 2/ rounds of five steps. The five step mappings that comprise
a round of KECCAK — p[b,n,| are denoted by 6,p, 7, , and 1. The algorithm for each step mapping
takes a state array, denoted by A, as an input and returns an updated state array, denoted by A’, as the
output. The size of the state is a parameter that is omitted from the notation, because b is always specified
when the step mappings are invoked. The 1 mapping i, has a second input : an integer called the round

index, denoted by i,. The other step mappings do not depend on the round index.

P i i
u =
$ ~ state
o -
T
Y
e plane + slice
‘—-" “‘—-"
a a
",Il =
oW f column - lane
- - - -
a
bit
.

FIGURE 1.10 — Parts of the state array, organized by dimension

Specification of 6(A) :
The specification of 8(A) step mapping is provided in Algorithm 5 and shown in Fig. 1.11.

40 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

Algorithm 5 Specification of 8(A)
Input state array A.

Output state array A’.
Steps
for all pairs (x,z) such that 0 <x<5and 0 <z<wdo
Clx,z] = A[x,0,z] ®Alx, 1,z) DA[x,2,z] DA[x,3,z] DA[x,4,7]
end for
for all pairs (x,z) suchthat 0 <x <5and 0 < z<wdo
Dix,z) = C[(x—1) mod 5,z) ®@C[(x+ 1) mod 5,(z— 1) mod w]
end for
for all triples (x,y,z) suchthat0 <x<5,0<y<5,and0<z<wdo
A'[x,y,z] = Alx,y,2] ® Dx,z].
end for

f Zz
X

FIGURE 1.11 — Illustration of @ applied to a single bit

Specification of p(A) :
The specification of p(A) step mapping is provided in Algorithm 6 and shown in Fig. 1.12.

1.6. Secure Hash Algorithm SHA-3

41

Algorithm 6 Specification of p(A)

Input state array A.

Output state array A’.

Steps

for all z such that 0 <z <wdo
A’[0,0,z] = A[0,0,Z]

end for

(x,y) = (1,0)

for r =0to 23 do
for all z such that 0 < z < w do

A'lx,y,2] = Alx,y, (z— (t+1)(t +2)/2)mod w]

end for
(x,y) = (, (2x+3y)mod 5)

end for

Return A'.

LA
// f
4
ard /':’//l/
s/ W
g
L L
L1 i L/)r/
r g
—t — TV
_r/ G

FIGURE 1.12 — Illustration of p for b =200

Specification of 7(A) :
The specification of w(A) step mapping is provided in Algorithm 7 and shown in Fig. 1.13.

42 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

Algorithm 7 Specification of 7w(A)

Input state array A.

Output state array A’.

Steps

for all triples (x,y,z) suchthat 0 <x<5,0<y<5,and0<z<wdo
A'[x,y,2] = A[(x+3y)mod 5,x,7]

end for

Return A’.

[> [] &
o L >
w ARCOMMRGQODD
< ® Py o
< ® ® Y
e A h{
¢ P o« |\
0 D) O)
gL R
o [¥ ® ¥

FIGURE 1.13 — Illustration of & applied to a single slice

Specification of y(A) :
The specification of y(A) step mapping is provided in Algorithm 8 and shown in Fig. 1.14.

Algorithm 8 Specification of y(A)

Input state array A.

Output state array A’.

Steps

for all triples (x,y,z) suchthat 0 <x<5,0<y<5,and 0 <z<wdo
A'[x,y,7] = Alx,y,2) ® ((Al(x+ 1)mod 5,y,z) 1) . A[(x+2)mod 5,y,7])

end for

Return A’.

Specification of 1(A) :

The 1 mapping is parameterized by the round index, i,, whose values are specified in Step 2 of Algorithm

1.6. Secure Hash Algorithm SHA-3 43

& & S F b

FIGURE 1.14 — Illustration of y applied to a single row

11 for computing KECCAK-p[b, nr]. Within the specification of t in Algorithm 10 below, this parameter
determines / + 1 bits of a lane value called the round constant, denoted by RC. Each of these / + 1 bits is
generated by a function that is based on a linear feedback shift register. This function, denoted by rc, is

specified in Algorithm 9.

Algorithm 9 rc(7)
Input integer 7.
Output bit rc(1).
Steps
if t mod 255 = 0 then
Return 1.
end if
Let R = 10000000
fori=1 totmod 255 do

R=0||R

R[0] = R[0] ® R[]

R[4] = R[4] ® R[]

R[5] =R[5]®R[8]

R[6] = R[6] ® R[]

R = Truncg[R|
end for

44 Chapter 1 — A brief review of standard hash functions SHA-2 and SHA-3

Algorithm 10 1(A,i,)
Input state array A.

Input round index i,.

Output state array A’.

Steps

for all triples (x,y,z) suchthat 0 <x<5,0<y<5,and 0 <z<wdo
A'lx,y,z] = Alx,y,z]

end for

Let RC =0"

forj=0toldo
RC[2) —1] = re(j+7iy)

end for

for all z suchthat 0 <z <wdo
A’[0,0,z] = A’[0,0,z] ® RC|z]

end for

Return A’.

KECCAK-p[b, n,] :
Given a state array A and a round index i,, the round function Rnd is the transformation that results from

applying the step mappings 6, p, 7, X, and i, in that order, i.e., :
Rnd(A,iy) = 1(x(n(p(6(A)))),ir) (1.14)

The KECCAK — p[b,n,] permutation consists of n, iterations of Rnd, as specified in Algorithm 11.

Algorithm 11 KECCAK — p[b,nr|(S)
Input string S of length b.

Input number of rounds 7,.

Output string S’ of length b.

Steps

Convert S into a state array A

fori,=12+42l—n,to 12+2[—1do
A=Rnd(A,i,).

end for

Convert A into a string S’ of length b

Return §'.

1.7. Conclusion 45

1.7 Conclusion

In this chapter, we introduced briefly the fundamentals concepts of cryptographic hash functions :
generalities, properties and classification (unkeyed and keyed hash functions). First, we presented the
current standard hash function SHA-2 based on Merkle-Ddamgard construction. Then, we described the

future standard SHA-3 based on the Sponge function.

Chapter 2
Main chaos-based hash functions of the

literature

2.1 Introduction

In this chapter, first we introduce the main properties of chaotic signals and neural networks. Then, we
describe briefly the two discrete chaotic maps used in this thesis, the Discrete Skew Tent map (DSTmap)
and the Discrete Piece Wise Linear Chaotic map (DPWLCmap). Next, we present briefly the state-of-

the-art of some chaos-based hash functions of the literature. Finally, we conclude this chapter.

2.2 Chaos properties

Many complex systems can be better understood through Chaos Theory. Henri Poincaré, a mathema-
tician, laid the groundwork for Chaos Theory [72]. He was the first to point out that many deterministic
systems display a "sensitive dependence on initial conditions". Poincaré described this concept in the
following way : "It may happen that small differences in the initial conditions produce very great ones in
the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction
becomes impossible".

Later, in the 1900s, Edward Lorenz, MIT meteorologist, discovered by chance what would be called the
Chaos Theory. Lorenz studied the phenomenon of Chaos Theory in the context of weather systems [73].
When making weather predictions, he noticed that his calculations were significantly impacted by the
extent to which he rounded his numbers. The end result of the calculation was significantly different
when he used a number rounded to three digits as compared to a number rounded to six digits. His obser-

vations on Chaos Theory in weather systems led to his famous talk, which he entitled, "Predictability :

47

48 Chapter 2 — Main chaos-based hash functions of the literature

Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas ?" [74]. In reference to this talk,
Chaos Theory has also been described as the "butterfly effect".

Lorenz had discovered the chaotic behavior of a nonlinear system, that of the weather, but the term Chaos
Theory was only later given to the phenomenon by the mathematician James A. Yorke, in 1975 [75]. Lo-
renz also gave a graphic description of his findings using his computer. The figure that appeared was his
second discovery : the attractors.

Chaos theory is a branch of mathematics that focused on the behaviour of complex dynamic systems
[76]. In chaos theory, a chaotic system is a simple, non-linear dynamic process that reflects completely
unpredictable behaviour, and hence randomness. Moreover, it is a deterministic system and highly sen-
sitive to initial conditions, such that, if two identical chaotic systems are in two slightly different initial
conditions, they will evolve toward amazingly different results [77]. Chaos theory has many applications
in several disciplines, including meteorology, physics, computer science, engineering, politics, business,
social sciences, economics, philosophy, and biology [78]. Since 1980s, the idea of using chaotic systems
to design crypto-systems has attracted more and more attention. It can be traced to Shanon’s classical
paper on theory of secrecy systems [79]. The good dynamical properties of chaotic systems implies good
cryptographical properties of crypto-systems. For that, chaotic sequences has been used in the design of
cryptographic primitives including image encryption, pseudo-random number generators, watermarking,
steganography, and hash functions [80]. In the following sub-sections, we give the main characteristics
of chaotic signals and neural networks suitable to build secure hash functions, and a brief description of
DSTmap and DPWLCmap.

2.2.1 Main characteristics of chaotic systems suitable to build hash functions

A chaotic system is characterized by the following important security features [81, 82, 83, 84, 85] :
1. Sensitivity to initial conditions
. Random-like behaviour

. Unstable dense periodic orbits

. Nonlinearity

2
3
4. Ergodicity
5
6. Unpredictability
7

. Deterministic Nature

2.2.2 Chaotic maps

In mathematics, a chaotic map is a function which exhibits some sort of chaotic behaviour. It often
takes the form of iterated function and occurs in the study of dynamical systems. Chaotic maps may

be parametrized by a continuous-time or a discrete-time parameter. According to Alligood et al. [86],

2.2. Chaos properties 49

a chaotic map is a function of its domain onto itself, the starting point of the trajectory (the sate from
which the system starts) is called the initial condition [87].

Several chaotic maps with one-dimension (1-D), two-dimensions (2-D) and three-dimensions (3-D) are
proposed in the literature. In this subsection, we will give a brief description of the two chaotic maps

Discrete Skew Tent map and Discrete Piecewise Linear Chaotic Map that will be used in this thesis.

Discrete Skew Tent map

The Discrete Skew Tent map is a one dimensional piecewise map, exhibiting chaotic dynamics. It is
a non invertible transformation of the input interval onto itself [88].

The equation of the Discrete Skew Tent function is defined as follows :
X(n) =DSTmap(X(n—1),P)
V< XD o< X(n—1) <P
2.1
=< 2V —1] if X(n—1)=P

2V x ZXON | ipp<X(n—1) <2V

where the dynamical variable X (n) and the control parameter P take an integer value that belongs to the
interval 10, 2V -1].

Discrete Piecewise Linear Chaotic Map

The Discrete Piecewise Linear Chaotic map is another one dimensional piecewise map, exhibiting
chaotic dynamics [89]. The DPWLCmap has been often used in data encryption [90].

The equation of the Discrete Piecewise Linear Chaotic function is defined as follows :
X(n) = DPWLCmap(X(n—1),P)

2N 5 Xl | ifO<X(n—1)<P

2.2)

]

|2V x X=D-F if P<X(n—1)<2N-!

2V x ZX0-D=P e oN=1 < X (n—1) <2V — P
]

oV x ZX=l | N _p e X(n—1) <2V — 1

2N _1-—pP otherwise

where X (n) € [1,2Y — 1] and P is the discrete control parameter and satisfies 0 < P < 2V~1,

50 Chapter 2 — Main chaos-based hash functions of the literature

2.3 Neural Networks

Neural Networks are built from simple units called neurons, which work in concurrent manner to
realize complex functions in different areas : classification, identification, pattern recognition, speech
recognition, automation, and so on.

These units are mimic human nerve system. These units are connected by connections (synapses). Every
connection has some weight. Neural networks were learned by modifying the values of weights between
units. Learning is realized by presenting a set of inputs and a set of target outputs and the adjusting is
based on a comparison between computed output and expected target. This process is repeated until the
difference is less than a specify threshold.

The most known architecture of neural network is a perceptron. A lot of architectures of perceptron were
proposed by Rosenblatt [91]. The simple one is a single layer perceptron. The structure of feed-forward
neural network can consist of one or several hidden layers of neurons with activation function and one
output layer as seen in Fig. 2.1. Hidden layers with nonlinear activation functions realized the confusion
and diffusion process between input and output sets. At the beginning, input values are applied to the
input neurons. Each neuron computes his output. Computed values are sent to the hidden layer. The
output value is obtained after calculation layer by layer and the process is finished when the output layer
is achieved. The detailed structure of a neuron i is shown in Fig. 2.2. The output of this neuron is given

by the following equation :

n

Ci=F((), Wik x P)+B)) (2.3)
k=0

2.3.1 Main characteristics of Neural Network suitable to build hash functions

The neural networks are suitable to use in cryptographic hash functions thanks to its interesting

properties [92] :

1. Nonlinear structure : complex relationships between inputs and outputs and consequently ensure

the confusion property by using a nonlinear function as a transfer function.

2. Diffusion property : The mixing process is applied at each neuron, while the output is in relation

to all the elements of the input as seen in figure 2.2.

3. Parallel implementation : the structure of neural networks permit naturally a parallel implemen-

tation. Normally, this lead to reduce the execution time.

4. Flexibility : the size of input/output (n elements) can be changed, which allows to ensure a flexible

size of data block.

5. One-way compression function.

2.4. Some chaos-based hash functions of the literature 51

Inputs Outputs

Input Layer Hidden Layer Output Layer

Fl, FH, FO: Input, Hidden, and Output activation functions, respectively

FIGURE 2.1 — General structure of neural networks

2.4 Some chaos-based hash functions of the literature

A new direction in the construction of chaos-based hash functions appeared in 2002. Due to the
strong non-linearity of chaotic systems and neural network structures, some designers usually combine
these two systems to build secure hash functions. In the following, we present three kinds of chaos-based
hash functions, namely Hash functions based on Chaotic maps, Hash functions based on Chaotic maps

and Neural Networks, and Specific chaos-based hash functions.

2.4.1 Hash functions based on Chaotic maps

Many researchers developed hashing schemes based on simple chaotic maps, such as logistic map,
high-dimensional discrete map, piecewise linear chaotic map, tent map, and Lorenz map or on 2D cou-
pled map lattices [12, 27].

In 2002, Wong [10] generalized the chaotic cryptographic scheme based on iterating a logistic map
with the look-up table updated dynamically. So, that it can perform encryption and hashing to produce
the cipher text and the hash value for a given message. In another work, Xiao et al. [13] present an algo-
rithm for one-way hash function construction based on the piecewise linear chaotic map with changeable
parameter P. The Cipher Block Chaining (CBC) mode is introduced to ensure that the parameter P in
each iteration is dynamically decided by the last-time iteration value and the corresponding message bit

52 Chapter 2 — Main chaos-based hash functions of the literature

Activation
function
n
inputs F

FIGURE 2.2 — Mathematical model of a neuron i

in different positions. Finally, the final Hash value is obtained through the linear transform on the itera-

tion sequence.

In 2005, Yi [14] proposed a new 2/-bit iterated hash function based on chaotic tent maps. In 2007,
Zhang et al. [17] proposed a novel chaotic keyed hash algorithm using a feed forward-feedback nonlinear
filter. Arumugam et al. [20] presented a new approach of applying chaos functions for generating Mes-
sage Authentication Code with higher security but with smaller key size. They designed an algorithm
by using variable Initialization Vectors (/Vs) instead of a constant /V. They proved that the algorithm
satisfies the expected properties of the MAC to provide security. Also, they show that their proposed
algorithm would be useful for authenticating very sensitive information in the areas of military, banking

and financial transaction.

In 2007, Wang et al. [93] designed an algorithm for one-way hash function construction based on
iterating a chaotic map. The total chaotic space is divided into some subspace based on the density distri-

bution function of the chaotic map. Each subspace is associated with a unique bit in a bit sequence. The

2.4. Some chaos-based hash functions of the literature 53

value of the chaotic map is dynamically decided by the last-time value and the corresponding message bit
in different positions. When the chaotic value is in one subspace, changes the corresponding bit. Finally,

the bit sequence is used as the hash value.

In their paper, Wang et al. [18] proposed an algorithm for constructing one-way hash function based
on spatiotemporal chaos. A two-dimensional coupled map lattices (2D CML) with parameters leading to
the largest Lyapunov exponent is employed. The state of the 2D CML is dynamically determined by its
previous state and the message bit at the corresponding positions. The hash value is obtained by a linear
transform on the final state of the 2D CML.

In 2008, Magableh et al. [94] proposed a new hash function (CHA-1) based on the Logistic Map. The
proposed new hash algorithm (CHA-1) produce hash value of 160-bit, accept any message length less
than 289 bits, and having security factor of 280, Akhavan et al. [95] proposed an algorithm for one-way
hash function construction based on piecewise nonlinear chaotic map. In his proposed hash algorithm,
message is totally connected to the all parameters, so that the generated hash value is highly sensitive
to the message. Also, in order to achieve high security in hash function, they are combining a piecewise
nonlinear chaotic map and a one-dimensional chaotic map. Although the combination of these two maps
leads to the increased complexity of the hash function. Also, they studied their proposed algorithm in

terms of security and speed.

In 2009, Amin et al. [26] investigated an algorithm for one-way hash function construction based on
chaos theory. A chaotic tent map is chosen, for certain parameter values, this system can display highly
complex behaviour and even chaotic phenomena. The hash value is obtained by iterating the tent map.
In addition to statistical tests, they studied the immunity of their proposed algorithm against birthday
attack and meet-in-the-middle attack. Zhang et al. [96] proposed an algorithm for one-way hash function
construction based on conservative chaotic system. They use the conservative systems to perform itera-
tion operation instead of dissipative system to overcome the traditional defects, which makes this method
of hash function construction has a high security. In their algorithm, the two initial inputs and steps of
iterations are generated by last round of iteration. Wang et al. [97] proposed a parallel structure of hash
function based on the coupled map lattices. Not only the message block but also its position in the whole
message block chain are used as the input of the hash round function. The output of round function is

generated by iterating the CML. The final hash value is the mixed result of all the hash round values.

In 2011, Liu [28] proposes a novel one-way Hash function which is based on the Coupled Integer
Tent Mapping System and termed as THA (THA-160, THA-256). The algorithm adopts a piecewise mes-
sage expansion scheme. In his algorithm, the message expansion scheme has enhanced the degree of

nonlinear diffusion of the message expansion, and thus increased the computation efficiency.

54 Chapter 2 — Main chaos-based hash functions of the literature

2.4.2 Hash functions based on Chaotic maps and Neural Networks

In the literature, other researchers proposed to combine chaotic maps and neural networks to build

new Chaotic Neural Network hash functions.

In 2004, Xiao and Liao [11] proposed a combined hashing and encryption scheme by using chaotic
neural network. With random chaotic sequences, the weights of neural network are distributed and the

permutation matrix P is generated.

In 2006, Lian et al. [16, 15], based on chaotic neural networks, construct a hash function, which
makes use of neural networks’ diffusion property and chaos’ confusion property. This function encodes
the plaintext of arbitrary length into the hash value of fixed length. Then, its security against statistical
attack, birthday attack and meet-in-the-middle attack is analyzed in detail. Xiao et al. [98] analyzed the
cause of vulnerability of their original parallel keyed hash function based on chaotic maps [25] in detail,
and then proposed the corresponding enhancement measures. Liu and Xiu [19] introduced the hysteresis
activation function, and proposed a novel hysteretic chaotic neuron model by the function. It is shown that
the model may exhibit a complex dynamic behaviour. On the basis of this neuron model, they construct

a novel neural network, which can be applied to hysteresis system modeling.

In 2008, Yang et al. [24] designed a novel chaotic hash algorithm based on a network structure for-
med by 16 chaotic maps. The original message is first padded with zeros to make the length a multiple
of four. Then, it is divided into a number of blocks each contains 4 bytes. In the hashing process, the
blocks are mixed together by the chaotic map network since the initial value and the control parameter
of each tent map are dynamically determined by the output of its neighbors. To enhance the confusion

and diffusion effect, the cipher block chaining (CBC) mode is adopted in the algorithm.

In 2009, Xiao er al. [21] proposed an algorithm for parallel keyed hash function construction based on
chaotic neural network. The mechanism of changeable-parameter and self-synchronization establishes a
close relation between the hash value bit and message, and the algorithm structure ensures the uniform
sensitivity of the hash value to the message blocks at different positions. In the same year, Deng et al.
[22] proposed a novel combined cryptographic and hash algorithm based on chaotic control character.
The control character is generated by chaotic iteration. The plaintext is pre-processed in terms of control
character, and then encrypted by the look-up index table. At the same time, the chaotic trajectory is
changed continuously according to the control character, which can avoid the dynamical degradation of
chaos. Besides, the look-up index table is updated by utilizing the control character continuously, and the

index item of the final look-up index table can be considered as the hash value of the whole paragraph

2.4. Some chaos-based hash functions of the literature 55

of plaintext. Therefore, the proposed algorithm can perform both encryption/decryption and hash in a

combined manner.

Deng et al. [23] analyzed in detail the potential flaws in the algorithm proposed in the paper "A chaos-
based cryptographic Hash function for message authentication" [12]. Then, the corresponding improving
measures are proposed. They enhance the influence that each bit of the final Hash value is closely related
to all the bits of the message or key and a single bit change in message or key results in great changes in
the final hash value. Li et al. [99] proposed an algorithm for constructing a one-way novel hash function
based on two-layer chaotic neural network structure. The Piecewise Linear Chaotic Map (PWLCM) is
utilized as transfer function, and the 4-dimensional and One-Way Coupled Map Lattices (4D OWCML)

is employed as key generator of the chaotic neural network.

Since 2010, there has been a real turning point in building new secure hash algorithms based on
chaotic maps and neural network. Huang [100] proposed an enhancement of Xiao’s parallel keyed hash
function based on chaotic neural network [21]. Indeed, in Xiao’s scheme, the secret keys are not nonce

numbers, which might produce a potential security flaw.

In 2011, Li et al. [101] proposed and analyzed in their paper a parallel Hash algorithm construc-
tion based on chaotic maps with changeable parameters. The two main characteristics of the proposed
algorithm are parallel processing mode and message expansion. The algorithm translates the expanded
message blocks into the corresponding ASCII code values as the iteration times, iterates the chaotic
asymmetric tent map and then the chaotic piecewise linear map, continuously, with changeable para-
meters dynamically obtained from the position index of the corresponding message blocks, to generate
decimal fractions, then rounds the decimal fractions to integers, and finally cascades these integers to
construct intermediate Hash value. The final hash value with the length of 128-bit is generated by logical

xor operation of intermediate Hash values.

In 2013, He et al. [29] designed an algorithm for constructing one-way hash function based on chao-
tic neural network. The neural network model is initialized by two chaotic maps. Then, the message are
divided into blocks with fixed length and inputted to neural network one by one. Since the output feed-
back model is employed, its output not only depends on the input and parameters of the neural network,
but also on its status. This dependence is enhanced by iterating the chaotic map, which is very useful to
improve the performance of hash function. The final hash value is extracted from status value of output
layer cells. Li et al. [102] reconsider and analyze their previous paper "A novel hash algorithm construc-
tion based on chaotic neural network" [99]. Then, they present equal-length and unequal-length forgery
attacks against its security in detail. Finally, they propose a significantly improved approach by utilizing

a method of complicated nonlinear computation to enhance the security of the original hash algorithm.

56 Chapter 2 — Main chaos-based hash functions of the literature

In 2015, Abdoun et al. [32] proposed an efficient algorithm for constructing a secure Hash function ba-
sed on Chaotic Neural Network structure. The proposed Hash function includes two main operations :
Generation of Neural Network parameters using fast and efficient Chaotic Generator and Iteration of the

message through the three-layer Chaotic Neural Network.

2.4.3 Specific chaos-based hash functions

In the literature, high-dimensional chaotic maps have also been used in hash functions for higher

complexity and better mixing.

Xiao et al. [98] designed a parallel keyed chaos-based hash function, where a mechanism of both
changeable-parameter and self-synchronization is used to establish a close relation of the keystream with

the algorithm key, the content, and the order of each message block.

In their paper, Nouri et al. [103] proposed and analyzed a dynamic Hash algorithm construction
based on chaotic maps with controllable parameters. Based on simplest 2-D chaotic maps, a new hash
function has been proposed and analyzed. Moreover in this paper, an algorithm for one way hash func-
tion construction based on chaos theory is introduced. The proposed hash function operates on messages
with arbitrary length to produce 128 bits hash value and can be easily implemented in both hardware and
software. The two core characteristics of the recommended algorithm are chaotic behaviours and parallel
processing mode. The proposed algorithm contains controllable parameters dynamically obtained from

the position index of the corresponding message blocks.

In their paper, Akhavan et al. [104] proposed a new efficient scheme for parallel hash function based
on high-dimensional chaotic map. In the proposed scheme, the confusion as well as the diffusion effect

is enhanced significantly by utilizing two nonlinear coupling parameters.

Jiteurtragool et al. [105] proposed a topologically simple keyed hash function based on circular
chaotic sinusoidal map network that uses more complex map, i.e., the Sine map. In 2014, Teh et al.[30]
introduced a parallel chaotic hash function based on the shuffle-exchange network that runs in parallel to
improve hashing speed. Chenaghlu et al. [31] published a new keyed parallel hashing scheme based on
a new hyper sensitive chaotic system with compression ability. In 2015, Guesmi et al. [106] proposed a
novel image encryption algorithm based on a hybrid model of deoxyribonucleic acid (DNA) masking, a
Secure Hash Algorithm SHA-2 and the Lorenz system. In 2016, Li et al. [107] proposed a chaotic hash
algorithm based on circular shifts with variable parameters. They exploit piecewise linear chaotic map
and one-way coupled map lattice to produce initial values and variable parameters. In their paper, circu-

lar shifts are introduced to improve the randomness of hash values.

2.5. Conclusion 57

2.5 Conclusion

In this chapter, we presented the main characteristics of chaos theory and neural networks suitable to
build hash functions. Then, we gave an overview of DSTmap and DPWLCmap used in our contributions.

Finally, we presented three categories of some chaos-based hash functions of the literature.

Chapter 3

Design and security analysis of keyed
chaotic neural network hash functions
based on the Merkle-Damgard

construction

3.1 Introduction

This chapter proposes two keyed hash functions based on Chaotic Neural Network (CNN), and for
each one, three output schemes are suggested as presented in Fig. 3.1. The first CNN hash function uses
two-layer neural network structure (named Structure 1), whereas the second hash function uses one-
layer neural network followed by a combination of Non-Linear (NL) functions (named Structure 2).
The obtained results of several statistical tests and cryptanalytic analysis highlight the robustness of the
proposed keyed CNN hash functions, which is fundamentally due to the strong non-linearity of both the
chaotic systems and the neural networks. The comparison of the performance analysis with some chaos-
based hash functions of the literature and with standard hash functions make the proposed hash functions

suitable for data integrity, message authentication, and digital signature applications.

3.2 Chaotic Neural Network structure of the proposed keyed hash func-

tions

In the next sub-sections, we explain the padding rule, the three suggested output schemes based on
Matyas-Meyer-Oseas [108, 109, 110] and Miyaguchi-Preneel [111, 112, 113, 114]. Next, we describe

59

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
60 Merkle-Damgard construction

U'Blocki ¥ _ U'Blocki 'Blocki ¥ _
| | |
I : I ; -
Chaotic Chaotic ' [chaotic
. | » . Ir . l »
ki1 "] system ki 5 " system kM1 " system
I I I
KMi KMi
a) CNN-Matyas-Meyer-Oseas b) Modified CNN-Matyas-Meyer-Oseas ¢) CNN-Miyaguchi-Preneel

FIGURE 3.1 — The proposed Merkle-Ddamgard compression functions based on CNN with output schemes

the proposed Chaotic System used to generate the parameters of CNN compression function. Then, we

present in detail the two proposed CNN hash functions : Structure 1 and Structure 2.

3.2.1 Padding rule

The message M is padded with the bit pattern 00...0 of length v bits, as shown in equation (3.1) (see

’

Fig. 3.2). The remaining 64 bits is used by the padding function "is-pad" to denote L (see sub-section

13.1).
v = M| — mod[(L+64),|M;] (3.1

It should be noted that, if L exceeds 2%, then L mod 2%* is taken as the message length instead of L [43].

In general, we have 3 cases of padding :

case a: mod(|M|,|M;|) < |M;| — 64.
case b mod(|M|,|M;|) = 0.
case ¢ : mod(|M|,|M;|) > |M;| — 64.

3.2. Chaotic Neural Network structure of the proposed keyed hash functions 61

Now, let’s take a look at the three cases of padding where |M;| = 2048 bits (Fig. 3.2), which is as follows :

case a :if L =60606 bits :

v = 2048 — mod[(6066 + 64),2048] = 14 bits.
case b :if L =6144 bits :

v =2048 — mod|[(6144 + 64),2048] = 1984 bits.
case c . if L =6086 bits :

v = 2048 — mod|[(6086 + 64),2048] = 2042 bits.

Then, the padded message is processed as a sequence of message blocks M, || M, || ... || M,.

a) mod(|M|, 2048) < 1984

v 64 bits
>

Last Message Part Padding Length of the

00..0 message M
Block message Mgq -
h 2048 -
b) mod([M|[, 2048) =0 B v L 64 bits
Padding Length of the
Last Message Part 00..0 message M
. Block message Mg-1 - Block message Mgq -
h 2048 o 2048 -
c)mod(|M|[, 2048) > 1984 . v - 64 bits
Padding Padding Length of the
Last Message Part 00..0 00...0 message M
. Block message Mgq-1 L Block message Maq -~
2048 2048

FIGURE 3.2 — The padding of input message in the proposed hash functions

3.2.2 Suggested output schemes

Matyas-Meyer-Oseas (MMO) output scheme

In this output scheme, the message block M; is xored with the chaining variable HM;, which is the output
of the CNN that takes as inputs M; and the output of the Chaotic System (Fig. 3.1-a). The state value
KM;_, is the key of the Chaotic System. Due to the possible different bit-length, an output function O
precedes the generation of the final output KM;, which represents the key of the next block, which is as

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
62 Merkle-Damgard construction

follows :
KM; = O(HM; ® M;) (3.2)

where i : the block index; 1 <i<gq.
fori=1:KMy=K : the secret key.
fori=gq:KM, = h:the final hash value.

Modified Matyas-Meyer-Oseas (MMMO) output scheme
This output scheme is similar to MMO output scheme except for the xor operation. Indeed in this case,
HM,; is xored with KM;_; (Fig. 3.1-b), where the final output KM, is defined by :

KM; = O(HM; ® KM;_1) (3.3)

where i : the block index; 1 <i<gq.
fori=1:KMy= K : the secret key.
fori=q: KM, = h: the final hash value.

Miyaguchi-Preneel (MP) output scheme
This output scheme can be considered as an extension of the MM O output scheme, where KM;_; is also
added to the xor operation between M; and HM; (Fig. 3.1-c). The final output KM, is defined by :

KMI‘:O(HMI'@MI'@KM,;]) (3.4

where i : the block index; 1 <i<gq.
fori=1:KMy=K : the secret key.
fori=q: KM, = h: the final hash value.

3.2.3 Detailed description of the proposed Chaotic System

The proposed Chaotic System is used to generate the parameters concerning the CNN compression
function (Fig. 3.1). It comprises the DSTmap with one recursive cell (delay equal to 1) (Fig. 3.3). Its

outputs are defined as follows :
KSs(n) = DSTmap(KSs(n—1),01)
2N x K5 if 0<KSs(n—1) < Q1
=q2¥ -1 if KSs(n—1) =0l

3.5

2N x 20D f o1 < KSs(n—1) <2V

3.2. Chaotic Neural Network structure of the proposed keyed hash functions 63

where KSs(n) and KSs(n-1) are the outputs of DSTmap at the n'" and (n — 1) iterations, respectively.
Q1 is the control parameter of DSTmap, and N is the finite precision equal to 32 bits. KSs(n), KSs(n-1),
and Q1 range between 1 to 2V — 1.
The secret key K, used for the first message block M, is composed of the necessary parameters and
initial conditions of the simplified version of the Chaotic Generator patent [115] and it is given by the
following equation :

K = {KSs1(0),Ks1,KSs1(—1),Us,Q1} (3.6)

where KSs1(0) and KSs1(—1) are the initial values, Uss is an additional initial value used only to generate
the first sample, Ks1 is the coefficient, and Q1 is the control parameter of the Chaotic System. The
components of K are samples of 32 bits length and its size is given as follows :

|K| = |KSs(0)| + |Ks| + |KSs(—1)|+ |Us| + | Q1| = 160 bits 3.7

KSSi(nL

FIGURE 3.3 — The structure of the Chaotic System

3.2.4 Keyed hash functions based on two-layer CNN structure (Structure 1)

The general architecture of the proposed keyed hash function is composed of the defined Chaotic
System and two-layer CNN (Fig. 3.4) [33]. Each layer is composed of 8 neurons, where each one uses
a chaotic activation function (Figures 3.5 and 3.7). The chaotic activation function consists of two xo-
red chaotic maps : a Discrete Skew Tent map (DSTmap) and a Discrete Piecewise Linear Chaotic map
(DPWLCmap) [115, 116, 117]. Each map is iterated T times (by experiment, we choose the transient
phase tr = 30 for Structure 1 and tr = 20 for Structure 2), before generating the first useful sample for

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
64 Merkle-Damgard construction

maintaining the randomness of the output. The outputs of the DPWLCmap are defined as follows :

KSp(n) = DPWLCmap(KSp(n—1),02)

¢

2N x K52ll) if 0<KSp(n—1)< Q2
oV x KU 82 i Q2 < KSp(n—1) <2V
—{ 9N 2N_KSp(n—1)-02 . 4N_1I N ©-5)

N 2Kl oV g0 < KSp(n—1) <2V — 1

2V _1-02 otherwise

where KSp(n) and KSp(n-1) are the outputs of DPWLCmap at the n'" and (n— 1) iterations, respectively.
Q2 is the control parameter. N is the finite precision and is equal to 32 bits. KSp(n), KSp(n-1), and Q2
range between 1 to 2V,

It should be noted that in the proposed structures, the padded message M is divided into ¢ blocks, where
M;, (1<i<gq)is the i'* input block of the message M, KM;, (0 <i < g— 1) is the i'" key, and HM;, (1 <
i < q) is the i'" hash value of block M;, (1 <i<gq).For the first block M;, K = KM, is the secret key
[116]. For the final block M, h is the final hash value of the entire message M (Fig. 3.6).

3.2. Chaotic Neural Network structure of the proposed keyed hash functions

65

KMi1

Block i

Chaotic System based on DSTmap

Wi BI Ql WO | BO Qo
A, N A v A,
C
> Input Layer » Output Layer
CNN
HMi"
Mi 7N KMi1
A
.
o
KM

FIGURE 3.4 — The structure of the i block in the proposed keyed hash function based on two-layer CNN

with MP output scheme

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
66 Merkle-Damgard construction

FIGURE 3.5 — A detailed structure of the i block in the proposed keyed hash function based on two-layer
CNN with MP output scheme

3.2. Chaotic Neural Network structure of the proposed keyed hash functions

67

Message M

o
SZﬁts

M

2048 bits

M:

Mg

__o
——b

o
X
64 bits |v bits

M

@ 256 bits

>|| Hash Value h

FIGURE 3.6 — The proposed keyed hash function based on two-layer CNN with MP output scheme

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the

68

Merkle-Damgard construction

Psc Wisk Qlk1
Pake1 — skl l
Psk+2 + Yy
Paces + » DSTmap
T Wiskes A
Bl 1 Qlk,2
Pairs — Wlsk+a v l
Pss + > DPWLCmap
Wisgk+s T A
Psk+6
* Wilsk+6
Psk+7 WIgk+7

FIGURE 3.7 — A detailed structure of the k" neuron in input layer of the two proposed hash functions

Detailed description of the two-layer CNN hash function :

The detailed structure of the i block in the proposed two-layer CNN hash function using Miyaguchi-
Preneel output scheme, as an example, is given in Fig. 3.5. Each of the input and output layers has
8 neurons. For each block M; at the input layer, each neuron has 8 input-data : P;,(j = 0,...,7) for
neuron 0, P, (j =8, ...,15) for neuron 1 and so on until reaching P}, (j = 56, ...,63) for neuron 7. Each
P;,(j=0,...,63) is weighted by WI;,(j = 0,...,63), where both are the samples (integer values) of 32
bits length. The Chaotic System generates the necessary samples (Key Stream (KS)) to supply the CNN
of each block i, which is as follows :

KS={WI,BI,QI, WO,BO,Q0} 3.9
and its size is written as :
|KS| = |WI|+|BI| + |QI| + [WO| + |BO|+|Q0| = 176 samples (3.10)

where |WI| = 64 samples, |BI| = 8 samples, |QI| = 16 samples, |WO| = 64 samples, |[BO| = 8 samples,
and |QO| = 16 samples, each of the 32 bits length.

The chaotic activation function of each neuron k(k = 0,...,7) for the input layer is now explained as
an example, (the activation function for the output layer has similar description). As we can see in Fig.
3.7, the first four inputs Pj, (j = 8k, ...,8k + 3) are weighted by the WI;,(j = 8k, ...,8k+ 3) and then

3.2. Chaotic Neural Network structure of the proposed keyed hash functions 69

added together with the bias Bl (weighted by 1) to form the input of DSTmap. The second four inputs
P;,(j =8k+4,...,8k+7) are weighted by WI;, (j = 8k +4,...,8k+7) and then added together with the
same bias Bl to form the input of DPWLCmap. QI}.1 and QI > are the control parameters of DSTmap
and DPWLCmap, respectively. The biases BI; are necessary in case the input message is constant.

The outputs of the chaotic activation function are denoted Cy for the input layer, which is given by equa-

tion 3.11, and H, for the output layer, which is given by equation 3.12.

Ci = mod{[F1+F2],2V} where

8k+3
F1 = DSTmap{mod(| ‘ng(WIj x Pj)]+ Bl, 2V), 0l 1} 311
]_ 8k+7
F2=DPWLCmap{mod(| Y. (WI;x P;)]+BI,2"),0L,}
j=8k+4

H, = mod{[G1+ G2,2N]} where
3
G1 = DSTmap{mod(| -Zo(WO"’ i X C)]+BO,2V),001 } (3.12)
j=

.
G2 = DPWLCmap{mod([L. (WO ; x C;)] + BO,2"), 004>}
j=4

where k=0, 1, ..., 7.

The outputs Cy of the input layer, weighted by WOy, (k = 0,...,7), and the output biases BOy, (k =
0,...,7), weighted by 1, are the inputs of the activation function of the output layer. Both WOy ; and BOy
are samples of 32 bits length. For each neuron, DSTmap and DPWLCmap are iterated once. The output
HM;,(i=1,...,q) of each block is the concatenation vector of Hy, (k =0,...,7) (Fig. 3.6). Then, the final
hash value of length 256 bits is given by the following equation :

h=O[KM, ®HM; ®M,| = O[(KMy > ®HM, 1 ©M, 1) S HM,; DM,
=..=O0[(K©HM, M) DHM, DMy & ... D HM, © M,]

(3.13)

where O is the Least Significant Bit (LSB) output function.

3.2.5 Keyed hash functions based on one-layer CNN with Non-Linear output layer (Structure
2)

Thus, to efficiently increase the hash throughput while keeping the necessary security requirements,
we replace the output layer neural network of Fig. 3.5 by a combination of non-linear functions used
in the standard SHA-2. However in our implementation, the round constant K;, (i = 0,...,63) and the
message schedule array W;, (i = 0, ...,63) are not useful (Fig. 3.8). As we can see in the figure 3.8, the
non-linear functions take 8 32-bit inputs Dy, (k =0, ...,7) and generates 8 32-bit outputs H, (k=0,...,7).
The four boxes (Ch, Maj, X0, and £1) combine the input data in non-linear ways to generate Hy and

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
70 Merkle-Damgard construction

H,, while the other outputs Hy(k = 1,2,3,5,6,7) are connected directly to Dy, which is as follows :
Hy =Dy (k=1,2,3,5,6,7). These non-linear functions are defined as follow [3] :

Ch(Dy4,Ds,Dg) = (Dg \Ds) @ (D4 A Dy)

Maj(Do,D1,D3) = (Do AD1) @ (Do AD2) ® (D1 ADy)

Y0(Do) = ROTR?*(Dy) ® ROTR" (D) ® ROTR**(Dy) (3.14)
Y1(Dy4) = ROTR%(D4) ® ROTR' (D4) ® ROTR? (Dy)

ROTR"(x) = (x>n)V (x < (32—n))

where A\ :AND logic,—: NOT logic,® : XOR logic,V : OR logic,>>: Binary Shift Right operation, and <:
Binary Shift Left operation.

Do C o_> Ho
D1 \A H1
D2 o ™y H?2
Yy ™
D3 \‘ ‘j H3
Das ™y Ha
Ds \A Hs
Ds ™y Hs
D7 A\ A 4 l A 4 YvVY R H7
Lch | [52] | [maj] [50]
Y Y Y Y
RNVAAY AR N
U T\ U T\

FIGURE 3.8 — Non-linear functions

Detailed description of One-Layer CNN followed by NL functions :
The structure of the proposed CNN is given in Fig. 3.9. To supply the CNN, the Chaotic System generates

3.3. Performance analysis 71

the necessary samples (Key Stream (KS)) of each block i, which are as follows :
KS={WI,BI,QI, WO} (3.15)
and its size is given as follows :
|KS| = |WI|+|BI|+ |QI|+ |WO| = 96 samples (3.16)

where |WI| = 64 samples, |BI| = 8 samples, |QI| = 16 samples, and |WO| = 8 samples, each of 32
bits length. The outputs Cy, (k = 0,...,7) of the chaotic activation function given by equation 3.11 are
weighted by WOy, (k = 0,...,7) to form the inputs of the NL layer. The outputs Hy, (k =0,...,7) are
given by equation 3.17.

p
Hy = Ch(D4,D5,D6) @ Dy @21(D4) @Maj(Do,Dl,Dz) @ZO(D())

Hy =Dy, H, =D\, H3 =D, (3.17)

H, = Cl’l(D4,D5,D6) ® Dy @21(D4) @ D3

Hs = Dy, H¢ = Ds, H7 = D¢

We iterate the non-linear functions until the necessary security requirements are met. From experimen-
tal results (given in performance analysis paragraph), the number of rounds n, equals to 8, which is

sufficient. The final hash value % of length 256 bits is given in equation 3.13.

3.3 Performance analysis

To evaluate the performance, in terms of cryptanalysis and hash throughput, of the two proposed
structures for each suggested output schemes, we perform the following experiments and analysis. Then,
we compare their performance with most chaos-based hash functions in the literature and SHA-2. First,
the one-way property (preimage resistance) is showed and then the statistical tests, the brute force, and

cryptanalytical attacks of the proposed hash functions are analyzed (Fig. 3.10).

3.3.1 One-way property

In the two proposed structures, we will show that it is extremely difficult to compute the message M
and the secret key K when only the hash value £ is known. For the first structure, the hash H is written in

a general form, which is as follows (equations 3.11 and 3.12) :

H = G[(WO x C+BO0),00] = G[(WO x F((WI x P+ BI),QI),00)] (3.18)

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the

72 Merkle-Damgard construction
K
'Block1 vy !
Message M I WO |
B I wiBLQl DSTmap with delay 1 |
Po 3 : :
P \ga AR 2 — r--L--—, |
g P > I IPo C I H I
: | W | |
Mol | WA e ! WOy Do, ﬂ,! !
I | Pe | I Blo,Qlo | I | |
|- Pe__ I I | I | I
Ps3 | |P7 |
B ' FI : | by |
-“pI_“ ! ! Cl, WO, Dl;l 1,
P : ! BnQl /| ~| Non- :
Ms ; I | I | Linear ! !
: I I I I . — 1
X | | : || Functions |
___Eél___ | | | |
| Pe__ I | | I | I |
Pe3 | | . | | | |
. | | | | | :
I
| I I | I I
. I I I I I
WOy, Hr
| | - P |
| | | Dy | |
: I I I I
| : | I Output! :
i L __ |
HM Y
M N K
I \
) 4
| o
| WM. KM:=LSB(M:® HM:® K)
: Mas D\ KM
| N KM
I I Blockq oo ¥ |
. [/6] '
| I wiBLAl DSTmap with delay 1 1 :
I
. | |
I - [fe——— = I
| I 1P, Ci I H :
I
P ! Wi A G| WOy Doy Hy !
S | -
Mqu : i i | |
; I
“gg“ : ! WO, D. ! H: : :
| Pes : i 'i Non- _’I I
| _Po___ : | ! Linear ! :
———%——— | | | Functions | |
L= ' | | | |
: 2 |
Mq : 'g | | | | |
0 T | I !
T , | |
___Egz___f;a | | | |
v I I | !
[t} WO, » H, |
: g I I
I I
I
: | Output! :

D
@
s
®
5
B
=<

T
=
< /‘

2

@ 256 bits
«—>
‘rI Hash Value h

FIGURE 3.9 — The proposed keyed hash function based on one-layer NL CNN with MP output scheme

3.3. Performance analysis 73

Cryptanalysis

Attacks on
Hash functions

Statistical tests on
Hash functions

A 4

v
Brute force attacks Cryptanalytical attacks

Collision

Meet-in-the-

Preimage " Length
Collision Distribution and second res’s| tar;(c e extension middle
resistance of hash value preimage (:;:::ay attack preimage

attacks attack) (Padding attack) attack

Sensitivity to
the message

Sensitivity to
the secret key

Exhaustive

key search
attack

Joux attack

(Multi-collision
attack)

Herding
attack

Long
message
second
preimage
attack

Diffusion
effect

FIGURE 3.10 — Cryptanalysis : Statistical tests and attacks on hash functions

For the second structure, the hash H can be written as follows :

H=NL (WO xC)=NL[WO x F((WI x P+BI),0I] (3.19)

A brute force attack, as defined in sub-section 3.3.3.1, tries for a given secret key K to find a message M,
of which its hash is equal to a given hash value. The attacker needs to try, on average, 2~ values of M,
to find the desired hash value 4. As u is the length of the hash value equal to 256 bits in the two proposed
structures, then according to today’s computing ability, this attack is infeasible [13, 14, 15, 16].

3.3.2 Statistical tests

This paragraph lists down the analysis of the following tests : Collision resistance, Distribution of
hash value, Sensitivity of hash value h to the message M, Sensitivity of hash value h to the secret key K,

and Diffusion effect.

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
74 Merkle-Damgard construction

3.3.2.1 Analysis of collision resistance

This test is usually conducted to evaluate the quantitative analysis of collision resistance [10, 13].
First, the hash value % of a random message is generated and stored in the ASCII format. Next, a bit in
the message is randomly selected, toggled, and then a new hash value /' is generated and stored in the
ASCII format. The two hash values are represented by : h = {c1,¢2,...,¢;} and B = {c/|, ¢}, ...,c}}, where
¢; and c; are the i ASCII character of the two hash values /& and /', respectively. The size s of the hash
value in the ASCII code is equal to s = ;¢ = 32 characters. The two hash values are compared with
each other and the number of characters with the same value at the same location, namely the number of

hits w, is counted according to the following :
(3.20)

where the function 7'(.) converts the entries to their equivalent decimal values.

For J independent experiments and under the assumption of uniform and random distribution of hash
value, the theoretical number of tests denoted by W, (@) with a number of hits @ =0,1,2,...,s, is given
by [17] :

! 1 1
Wi(@) =J x Prob{w} =J— a)= (3.21)

Goa)a) (o
Thus, to find the optimal number of round #, for Structure 2, we calculate, using the equation 3.20, the
number of hits w according to n, (n, =1, 2, 4, 8, 16, 24) in the worst case, where the number of tests J =
2048 tests.

As we can see from the results obtained in Table 3.1, with MMO output scheme, as an example, for 7,
= 8 rounds, there are zero hits for 1825 tests, one hit for 207 tests, two hits for 15 tests, and three hits
for 1 test. For n, = 24 rounds, there are zero hits for 1817 tests, one hit for 225 tests, and two hits for 6
tests. Similar results are obtained for other output schemes as well. The number of rounds 7, equals 8,
whereas 24 seems to be adequate for the three output schemes. We choose n, = 24, for more robustness
and the number n, = 8 is a compromise between robustness and hash throughput.

Table 3.2 represents the number of obtained hits @, for the proposed structures for the three output
schemes, with J = 2048 tests and for n, = 8, 24 rounds for Structure 2. We remark that, for 7, = 8 rounds,
the obtained results with Structure 2 are similar to the results obtained with Structure 1, irrespective of
the considered output scheme. For n, = 24 rounds, the obtained results with Structure 2, as are slightly
bit better than that of Structure 1.

Thus, to evaluate the influence of the test number J (J =512, 1024, and 2048 tests) on the number of hits,
we calculate @ for the proposed structures with MP output scheme, and for n, = 8, 24 rounds for the

second structure. The obtained results presented in Table 3.3 for Structures 1 and 2 with n, = 8 rounds

3.3. Performance analysis 75

are similar, while with n, = 24 rounds of Structure 2, the number of hits is smaller than that of the other
cases. We remark that the number of hits increases with the number of tests J. These results are in sync
with the theoretical values of W;(®) calculated from equation 3.21 and are represented in Table 3.4.

The collision resistance is also quantified by the absolute difference d of two hash values given by
equation 3.22. We evaluated and presented the mean, mean/character, minimum, and maximum of d for

the two proposed hash functions in Tables 3.5 and 3.6.

s=32
d=Y |T(c:)—T(c))] (3.22)
i=1

From the results given in Table 3.5 for J = 2048 tests, we observe that the mean/character value with
the MMO output scheme for Structure 1 (mean/character = 85.04) and Structure 2 - n, = 24 rounds
(mean/character = 85.81) are close to the expected value 85.3 given in equation 3.23. The results presen-
ted in Table 3.6 with J (J =512, 1024, and 2048 tests) show that, when J is increasing, the mean/character
converge to the expected value E. For two hash, i.e., h = {ci,c2,...,¢c;} and b’ = {¢}, ¢}, ..., ¢}, with in-
dependent and uniformly distributed ASCII character having equal probabilities, the expected value of
the mean/character is calculated by [118] :

E[T(c;)—T(c;)] = % x L =85.3 (3.23)

1

where T(c;) and T'(c;) € {0, 1,2, ..., 255} and L = 256 (L is the number of levels).

3.3.2.2 Distribution of hash value

A hash function H should produce uniform distribution of hash value 4. To verify this property,
we perform the following test : for a given message M, "With the wide application of Internet and
computer technique, information security becomes more and more important. As we know, hash
function is one of the cores of cryptography and plays an important role in information security.
Hash function takes a message as input and produces an output referred to as a hash value. A hash
value serves as a compact representative image (sometimes called digital fingerprint) of input string
and can be used for data integrity in conjunction with digital signature schemes.", we calculate its
hash value 4, for the proposed Structure 1 with MP output scheme, before drawing two-dimensional
graphs. The first graph shows the ASCII values of the message according to their index positions (Fig.
3.11a). The second graph exhibits the hexadecimal values of the hash value & according to their index
positions (Fig. 3.11b). As we can see, the distribution of original message is mostly localized around a
small area, while the distribution of hexadecimal values spreads around the entire area. This property of
hash value / must be true under the worst case of constant input message such as "00...0" (Figures 3.11c

and 3.11d). Similar results are obtained for the two proposed hash functions with their different output

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the

76

Merkle-Damgard construction

Number of hits

0 1 2 3 4 16 17 24 25 26 28
number of rounds
ny
Output schemes

MMO 1 1778 240 24 1 0 0 O 5 O O O
2 1784 248 11 0 0 5 O O O O O
4 1790 243 14 1 0 0 O O O O O
8 1825 207 15 1.0 0 O O O O O
16 1811 222 14 1. 0 0 O O O O O
24 1817 225 6 0 0O O O O O O O
MMMO 1 1757 232 11 0 0 O O 45 1 2 O
2 1725 259 15 1 0 45 3 0 O O O
4 1828 206 14 0 0 O O O O O O
8 1800 237 10 1 0 0 O O O O O
16 1801 233 14 0 0 0 O O O O O
24 1810 230 7 1 0 O O O O O O
MP 1 1744 238 17 1 0 O O 46 0 1 1
2 1773 215 11 1 0 45 3 0 O O O
4 1783 251 13 1.0 0 O O O O O
8 1817 215 16 0 0 0 O O O O O
16 1813 218 16 1 0 O O O O O O
24 1815 226 7 0 0 O O O O O O

TABLE 3.1 — Number of hits @ according to the number of rounds 7, of Structure 2 for 2048 tests

schemes.

3.3.2.3 Sensitivity of hash value h to the message M

An efficient hash function H should be extremely sensitive to any input message M, which means

that any slight change in the input message should produce a completely different hash value 4;. To verify

this property, we calculate, for a given secret key K, the hash value 4; in hexadecimal format, the number

of bits changed B;(h, h;) (bits), and the sensitivity of the hash value 4 to the original message M measured

by Hamming Distance HD;(h,h;)(%) is given as follows :

I

Bi(h,hi) =) [h(k) @ hi(k)] bits
=1

Bi(h,h;)

HDj(h,h;)q = i

x 100%

The message variants are obtained under the following conditions :

Condition 1 : The original message M is the one given in Section 3.3.2.2.

(3.24)

(3.25)

3.3. Performance analysis 77

Output schemes Number of hits ®

0 1 2 3

Structure 1 MMO 1833 200 15 O
MMMO 1799 237 12 0

MP 1803 232 13 0

Structure 2 MMO 1825 207 15 1
n,=8 MMMO 1800 237 10 1
MP 1817 215 16 O

Structure 2 MMO 1817 225 6 O
n, =24 MMMO 1810 230 7 1
MP 1815 226 7 O

TABLE 3.2 — Number of hits @ regarding the proposed structures with the three output schemes for 2048
tests

Number of tests Number of hits @

0 1 2 3

Structure 1 512 444 64 4 0
1024 905 111 8 O

2048 1803 232 13 0

Structure 2 512 446 62 4 0
n,=8 1024 899 117 8 O
2048 1817 215 16 O

Structure 2 512 452 58 2 0
n, =24 1024 905 116 3 O
2048 1815 226 7 O

TABLE 3.3 — Number of hits @ of the proposed structures with MP output scheme for J = 512, 1024, and
2048 tests

0]
0 1 2 3 32
J 512 45172 56.68 344 0.13 442x10°7
1024 90345 11337 689 0.27 884x10°7
2048 180691 22674 13.78 0.54 1.76x1077*

TABLE 3.4 — Theoretical values of the number of hits @ according to the number of tests J

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
78 Merkle-Damgard construction

Output schemes Mean Mean/character Minimum Maximum

Structure 1 MMO 272143 85.04 1736 3723
MMMO 2764.05 86.37 1829 3757

MP 2633.17 82.28 1471 3779

Structure 2 MMO 2616.94 81.77 1559 3574
n=8 MMMO 2854.76 89.21 1845 4195
MP 2861.93 89.43 1707 3951

Structure 2 MMO 2746.07 85.81 1696 3807
n, =24 MMMO 2856.03 89.25 1545 3981
MP 2615.44 81.73 1540 3671

TABLE 3.5 — Mean, Mean/character, Minimum, and Maximum of the absolute difference d for the pro-
posed structures with the three output schemes and J = 2048 tests

Number of tests Mean Mean/character Minimum Maximum

Structure 1 512 2637.00 82.40 1471 3779
1024 2637.99 82.43 1471 3779

2048 2633.17 82.28 1471 3779

Structure 2 512 2872.23 89.75 1828 3872
n-=8 1024 2868.04 89.62 1707 3951
2048 2861.93 89.43 1707 3951

Structure 2 512 2603.32 81.35 1764 3671
n =24 1024 2620.85 81.90 1626 3671
2048 2615.44 81.73 1540 3671

TABLE 3.6 — Mean, Mean/character, Minimum, and Maximum of the absolute difference d for the pro-
posed structures with MP output scheme and J = 512, 1024, and 2048 tests

3.3. Performance analysis

79

ASCIlI value

130

90

80

701

60

50

40-

30

100 200 300 400

Hexadecimal value

15

i
)

10

20 30 40 50

60

0 500 600 0 70
Character sequence index Hexadecimal code sequence index
(@) (b)
49 15
x
48.8
x X x
48.6 x x
X x x x
48.4
o 10/ x x x
=
g 48.2 E x
z 48 E))
3] 8 x
7] k=l
< 478 g x
3}
T 5 » x
47.6
x x x X X x
47.4 x
x xx x
47.2
x x x x X x X
47 0 . %
100 200 300 400 500 600 0 10 20 30 40 50 60 70
Character sequence index Hexadecimal code sequence index
(©) (d)

FIGURE 3.11 — Distribution of hash value for Structure 1 with MP output scheme

Condition 2 : We change the first character W in the original message to X.

Condition 3 : We change the word With in the original message to Without.

Condition 4 : We change the dot at the end of the original message to comma.

Condition 5 : We add a blank space at the end of the original message.

Condition 6 : We exchange the first message block M, "With the wide application of Internet and
computer technique, information security becomes more and more important. As we know, hash
function is one of the cores of cryptography and plays an important role in information security.
Hash function takes a mes", with the second message block M, "sage as input and produces an out-
put referred to as a hash value. A hash value serves as a compact representative image (sometimes
called digital fingerprint) of input string and can be used for data integrity in conjunction with
digital signature schemes".

In Tables 3.7, 3.8, and 3.9, we present the obtained results of 4;, B;, and HD;(%) under each condition
for the two proposed hash functions with their output schemes, i.e., MMO, MMMO, and MP.

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the

80 Merkle-Damgard construction
Message variants Hexadecimal hash values B; HD;%
Structure 1 1 bedf7967520105d114e2cdf3399f52394a53e276bb104307345bacf93e317ef6 - -
2 48def8102016f2e3a5f8¢7d8dc782b5b4e3e930cc207f925176ab87f380ad03d 125 48.82
3 d486760a20882b71746704d35ffdcd0f07c5tfe23cad86bd8117737205dd163¢ 127 49.60
4 b8bdc0f41686695f582a4d2e5b37f9b98813ab9¢c1cc42ba64024ee1769b422e7 113 44.14
5 €82980358f548044d0328f613a640fe23d1cb8465325dc223a7881ae65ef360d 136 53.12
6 76e33a9b2{6599542¢557bdac7bee94f25dddbc615b222653201fd484ae8celc 130 50.78
Average - 126.2 49.29
Structure 2 1 1d6238873699dd1¢252e02c¢88e1d2a380d9b5ea8e6c09¢788fadd3955b959975 - -
n=8 2 6ea75e2045e994639a7d547ece06a6a399397a6¢cc501152ffe4d4727030bedb2 128 50
3 72dcdf42b4c6d47352b75a7f2a7bbb3d9144¢519e¢99¢e10cdd1a04237433730bf 131 51.17
4 308f5d0ce0c0a7b140cc7c179ae4697fba8ea270433c¢50b015095877¢2047267 141 55.07
5 ebeacl7eb7b2d842ef21971f6¢9da59771f7a0e0612ecd96e37a97691ebOclcd 135 52.73
6 1e56b053ebe94fcdeb36f8ed74981da9¢c01a861cdbe9d3b3c176ecfab8102a336 122 47.65
Average - 1314 51.32
Structure 2 1 afSe7ca7c83a72c¢77f0e9b7d47df11b0f66cadc862d6522d592dcSad9bae938 - -
n, =24 2 46f051a065a716de24405¢782adaccb29b3a85b0b75b34a9ba0757644bcdcc33 127 49.60
3 4£9¢3863d40a2a1094d8d7483acc0724cbd9f2b68648db7fe8c0609327¢c8318 130 50.78
4 2b41f84285427b479d6948d20dd00eb389956dd325894d6036e510b99b20055d 126 49.21
5 15e6695fca52780d8694183b0bba7b5fb43bc29329¢78018287bd87776cdf459 132 51.56
6 d5a21663581034f865ba7a2bc93d29232b0f57f99f8d33a8ef50e1070c84ae88 133 51.95
Average - 129.6 50.62

TABLE 3.7 — Sensitivity of hash value to the message for the proposed structures with MMO output
scheme

In Table 3.10, we reassessed the obtained results and even for a single test, the results were inside the
normal range. Therefore, the proposed hash functions have high message sensitivity. These results were

in sync with precision in the diffusion test, which was realized over a large number of tests.

3.3.2.4 Sensitivity of hash value h to the secret key K

Thus, to evaluate the sensitivity of hash value / to the secret key K, hash simulation experiments were
conducted under five different conditions (the original input message M is fixed), which are as follows :
Condition 1 : The original secret key K is used.

In each of these conditions, we flip the LSB in the afore-mentioned initial conditions and parameters.
Condition 2 : We change the initial condition KSs(0) in the secret key.

Condition 3 : We change the parameter Ks in the secret key.

Condition 4 : We change the initial condition KSs(-1) in the secret key.

Condition 5 : We change the control parameter Q1 in the secret key.

In Tables 3.11, 3.12, and 3.13, we present the obtained results of 4;, B;, and HD;(%) under each condition
for the two proposed structures with their output schemes, i.e., MM O, MMMO, and MP.

In Table 3.14, we reassessed the obtained results and even for a single test, the results are inside the

normal range. Therefore, the proposed hash functions have high key sensitivity.

3.3. Performance analysis 81
Message variants Hexadecimal hash values B; HD;%
Structure 1 1 719adf0e0cdf5b149edc54efdbc09bb6df5a0ce3d3ac9bccc39ac5a64ea6553 1 - -
2 29472¢054759a85c0c172e27bc1b957f09488c40329424¢c48aac1d1141dd8297 132 51.56
3 1bee2969559824929f8d53fda2¢541288a4a04491a0a11670b3b907fa0d5dd91 119 46.48
4 27¢29f1e040d922b31559¢0e3f4e36edc9bdad55¢f058d7f0eaa7a9f9eda6d98 124 4843
5 65489772dff489621f3188237¢1{f84c8bf686d7a4f5c6f1e114b740c72¢922 133 51.95
6 64755b1267172432dbf243d698db2dd40ff63df7375f645886d064b2d05fdb2 135 52.73
Average - 128.6 50.23
Structure 2 1 a594a994aal62adca654e889deale6344190aa02328302465570df8f0084f5e¢6 - -
n-=8 2 9d698ca7855b104a526a075a36¢bf158da31¢872257db0d8d589502f60a8115f 135 52.73
3 fe77f2939687110cc6f383ed0ac2990e89b513ed1425¢c2a2ded04ce8ab26331e 129 50.39
4 d906ae7eaf90974ce664e8adb535e71b798873bfdc77827¢3715715bb6b5cbbS 113 44.14
5 flea83bl6b7fecd5d523573d35f52a424e35a8dc38af6e013f9d2020f0825¢35 136 53.12
6 29e7a1e00480ff09b86d357982d28ab641758c071cee1a2095452¢b583740194 121 47.26
Average - 126.8 49.53
Structure 2 1 6abbd825d6b17184a5fc558670f9f78d91b3812c899¢8a062ef855507b4a81e5 - -
n, =24 2 ¢7¢8654da6fd4fb838f8f9beadbaa223b8298alcleOcda2181a23e612cbb8446 122 47.65
3 0fedee2f96a9092539a4{d229466b381a794db148dal78e635022d9a690eabf 130 50.78
4 9b01{686addb2e2f6dbd7046b985bdae1b5b39a7da3aec544ecb6c8efd310a00 128 50.00
5 9901£f0d69138df2f70a5930ede63447875c¢859830bc87e4164a83b083a6al193 131 51.17
6 ¢5035924044140a2009837907fba710d05efbcbe 12ff9¢c1d14d9090961bd054e 113 44.14
Average - 124.8 48.75
TABLE 3.8 — Sensitivity of hash value to the message for the proposed structures with MMMO output
scheme
Message variants Hexadecimal hash values B; HD;%
Structure 1 1 a005e50f9673ecee6e80c07¢550e53f8a950cb4a91176a2a340b5822ec2f28c4 - -
2 ddecfadcc796f46d63762eb8f0c7af6233ded0d61€a901541db1£8890f999755 141 55.07
3 3f8b28e72a453ad31e798a60ec46b64abdeb3e95674b28d535a5d2feb8a7cdd8 139 54.29
4 b40f8beOee3c28fc7c76578d6e8b49f56ea25aa0c2944475691746a7c2f23387 129 50.39
5 c0fOb6c0fee17303¢94ab30ad6d7blecd50d9606e4fab176e726b20a3¢229b5d 139 54.29
6 551eb7f04ec0ae2f0ceec2bb451a2b67682305697a0ffef418e221bdaad4a09¢ 129 50.39
Average - 1354 52.89
structure 8 1 31882869cce69d7734f0078d29297841b99d3f9786a1cf522688de9561826¢ee - -
n-=8 2 d8da2aelaacca231e26931237f8bal388aef0faf2372dde8876d329564bb4{39 129 50.39
3 0b43925¢8865869¢7dde5¢c67cfd976{839bd8f5¢8fda2814c2c61cedc926b380 130 50.78
4 d9e813e636a7a960664ab422b1eb1892be71f43a28229399bdcf51a5ab0df8d 131 51.17
5 dOf1dcbf0670f8a3ef2771d0f0d8404c6068ab43b303d1aa%e335d9a757ddb6b 149 58.20
6 1441805beb1753d9¢81bd 16d9059f312e57752732¢12€539ec606555f2d9042 137 53.51
Average - 1352 52.81
Structure 2 1 a86e4c2ff1450a08a173b2d9ef27d941fcb9a06f76ad1e70108192¢ce3cd02al6 - -
n,=24 2 22e2025f1d0bdb5b20098e812d81a63b27e722¢9e2eb521e87e00943f7afldbe 132 51.56
3 366d73069aa3e7238773a6ba39bbfc29203f28ffd05f8fec06060ececc54fc2e 113 44.14
4 cd1fcb9c2c9alcaab20b4c8bf11f18493533b42004d9f77411957ab1850831db 128 50.00
5 a0ef7aa8c7200a711f30101de786e2450f7a7f1e884a44831aba30c77f46b478 122 47.65
6 bbf12b6acb919c¢42edb035fe0945b414bf0809b666bbb536976139beedeadbdd 124 48.43
Average - 123.8 48.35

TABLE 3.9 — Sensitivity of hash value to the message for the proposed structures with MP output scheme

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
82 Merkle-Damgard construction

Output scheme B; HD;%

Structure 1 MMO 126.2 49.29
MMMO 128.6 50.23

MP 1354 52.89

Structure 2 MMO 1314 51.32
n.=8 MMMO 126.8 49.53
MP 1352 52.81

Structure 2 MMO 129.6 50.62
n, =24 MMMO 124.8 48.75
MP 123.8 48.35

TABLE 3.10 — A comparison of average B; and HD;(%) for message sensitivity

Message variants Hexadecimal hash values B; HD;%
Structure 1 1 bedf7967520105d114e2c¢df3399f52394a53e276bb104307345bacf93e317ef6 - -
2 60f63ae88faca074964bc5e¢71022d77003f61ed4dddd8b027¢7826e8f31725ff 116 45.31
3 3e7a24001b11a0a5376d55d073e5910e1bb3b98e4736793ca8bcdf4b5da27b41 127 49.60
4 fd8fe49f2c¢5013871f1e291d6c74ceefeb9cdeead9a236d6b923bb04da3c7f4b 135 52.73
5 054¢289004f47tde2fd041e5¢830cd4a74d9b586ba2b79835fbSee13¢7289717 139 54.29
Average - 129.25 50.48
Structure 2 1 1d6238873699dd1c252e02¢88e1d2a380d9b5ea8e6¢09¢788fa4d3955b959975 - -
n-=8 2 aab2bfb971b64b4349a5045d277421df6ee299dc209b0bf0ceIbfccif8bbbe8b 138 53.90
3 c5667f505bcb289ec52be2fce9al 68b72ad0de3fae396b7654134cf419309b0f 123 48.04
4 54b21e25c1ee818897c54e84ecal 5d2ddbd7b505ef8 1ba2¢099a5¢852db33b51 121 47.26
5 f6e6702867¢3c3ee86a4d86a6153b1266£58847a704665417fbc66fc39d8179f 132 51.56
Average - 128.5 50.19
Structure 2 1 afSe7ca7c83a72c77t0e9b7d47df11b0f66cadc862d6f522d592dc5ad9bae938 - -
n, =24 2 £922e9e31¢36e932{fb098930fa2726b29alce91c5¢62b1f16981609b9b2453b 125 48.82
3 3566ab26fff9¢3a232368b624267¢3397ab1099ba744{f5f6ec97a7cbc483fas 126 49.21
4 3b6a773dfe06e246ab3f53¢c3c9a0af08123346bb8ale58al7caf6046992e08a7 130 50.78
5 40ed183aa3cfb41d9d6£7¢304d9ab05a0007044b0db841039f4315c¢046051641 146 57.03
Average - 131.75 51.46

TABLE 3.11 — Sensitivity of hash value to the secret key for the proposed structures with MMO output
scheme

3.3. Performance analysis 83

Message variants Hexadecimal hash values B; HD;%
Structure 1 1 719adf0e0cdf5b149edc54efdbc09bb6df5a0ce3d3ac9bccc39ac5a64ea65531 - -
2 £2d4772a5a605¢729e8ad2¢3db016a20135f617b98c4366bb9b44cead 1 8afe92 114 44.53
3 23¢5a8b268979416f80a32c7aa272¢23¢cd293e20fe3547f8a621815276b3ebab 130 50.78
4 75c848fa05415217403dbc2235da6d8fa7fal 8b7526b376e4fbb89497303¢340 120 46.87
5 22¢9b90204e4522181389ccff6ab7d24547415b87¢c8cbd3425¢83929¢3221024 118 46.09
Average - 120.50 47.07
Structure 2 1 a594a994aal 62adca654e889deale63441902a02328302465570df8f0084f5¢6 - -
n.=8 2 96ebc3ab71912e96b77b6c0db2ad2b0b300484abec4c326bbf10e7b5263ba545 127 49.60
3 67d10bee9dedd7e06d58ee10aca74ca3336000f1984a54591d4f9e33face2ala 138 53.90
4 d2db9912d01e0b5933¢37fd868983577893b03f490abe2683e2e11870d1df69 123 48.04
5 6d5b61d74e75c¢d983b4f0bf3913211dd991aa35f378842bb187d734f708a49db 126 49.21
Average - 128.5 50.19
Structure 2 1 6abbd825d6b17184a5fc558670f9f78d91b3812¢899c8a062ef855507b4a81e5 - -
n,=24 2 8741188aadde9edba0310e69541¢85936202a4c¢7ef4de93¢9906bdd970931948 149 58.20
3 ¢10308d6126ebaecf0ed5982b03e0c27a521060a570aa0a2cf692e63d2d149336 137 53.51
4 e8818d36b227e849ed6e3al21745f8d8803bf9425384745fbaba2blb7adbe32c 119 46.48
5 26354f0bc5ade6385ac23¢715acccf65¢2d2b28785e504a4a2966121189b8fde 132 51.56
Average - 13425 5244

TABLE 3.12 — Sensitivity of hash value to the secret key for the proposed structures with MMMO output
scheme

Message variants Hexadecimal hash values B; HD;%
Structure 1 1 2005e50f9673ecee6e80c07¢c550e53f8a950cb4a91176a2a340b5822ec2{28c4 - -
2 27de6d91694c777474b94f2adec3ed8c5b5b0da8c38fed5bdc75e2¢2bf97972f 143 55.85
3 3fa8a997b46131a1429d0006b6c03f181898632313a64f3da8143d1cadd66925 122 47.65
4 f670f60cfc1daecb0c81988735b736c8c18851cebe5b94a6f1234f49bd4d5209 117 45.70
5 7¢68bc63287bfe02badbceb99cdde6alef5e9e7429d1dc3d2a9bf90b34a6402¢ 123 48.04
Average - 126.25 49.31
Structure 2 1 31882869cce69d7734f0078d291297841699d3f9786a1cf522688de9561826¢ee - -
n,=8 2 0b840b10ffdadc9febddabf4ab2{642ffe55t730386b8d295534368af526fa33 136 53.12
3 2f65ed46a3cb9b0ebb1cf7cd52558de58e2ebc7474b01£169a6b30067e20e5a5 134 52.34
4 cf524afe65de3a8123e43e61540a28180f0be21669a3cadb4d62fdca34f538b5 139 54.29
5 27d7a12¢3a95¢9f52148b43d60c7dbd3acd0b774¢885d712bf2bb7673b77443¢e 131 51.17
Average - 135 52.73
Structure 2 1 a86e4c2ff1450a08a173b2d9ef27d94 1fcb9a06f76ad1e70108192ce3cd02al6 - -
n, =24 2 37235dea611e13421ca8545078d0ec3a88654cfbc4e24bd64dd110ce2ed4eal3e 121 47.26
3 7f60df23e3570ba37890a0b199e¢891835757fabc67b96e2cbbd02d0f64629¢cb7 120 46.87
4 d3bd1e2064cecd5851624b61019a097a00ecal37bd1cff0d50b1af161185581¢e 127 49.60
5 149bb7e22e¢3a018254a5¢cfb711e192471971857¢96663e6ec189762548f09ca3 139 54.29
Average - 126.75 49.51

TABLE 3.13 — Sensitivity of hash value to the secret key for the proposed structures with MP output
scheme

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
84 Merkle-Damgard construction

Output scheme B; HD;%

Structure 1 MMO 129.25 5048
MMMO 120.50 47.07

MP 126.25 49.31

Structure 2 MMO 128.5 50.19
n-=8 MMMO 128.5 50.19
MP 135 52.73

Structure 2 MMO 131.75 51.46
n, =24 MMMO 134.25 52.44
MP 126.75 49.51

TABLE 3.14 — A comparison of average B; and HD;(%) for key sensitivity

3.3.2.5 Statistical analysis of diffusion effect

Since confusion and diffusion were first proposed by Shannon [4] in 1949, they have been extensively
used to evaluate the security of cryptographic primitives. In the context of hash functions, confusion is
defined as the complexity of the relation between the secret key K and the hash value & for a given
message M, whereas diffusion is defined as the complexity of the relationship between the message M
and the hash value & for a given key K. The confusion effect is naturally obtained in hash functions and
it is very strong in chaos-based hash functions, due to the inherent properties of chaos. In cryptographic
hash functions, strong diffusion is required. The ideal diffusion effect is obtained when any single bit
change in the message causes a change with a 50% probability for each bit of a hash value (binary
format). This is often referred to the avalanche effect in literature [119].

To evaluate the performance of the two proposed structures with different output schemes, i.e., MMO,
MMMO, and MP, we performed the following diffusion test :

the previous defined message M is chosen and a hash value / is generated. Next, a bit in the message
is randomly selected and toggled and a new hash value is generated. Then, the number of bits changed
B; between the two hash values is calculated. This test is performed at J-time, where J = 512, 1024, and

2048 tests. The six statistical values concerning this test are calculated as follows :
1. Minimum number of bits changed :
Buin = min({B;}i=1,..j) bits
2. Maximum number of bits changed :

3. Mean number of bits changed :
B=1Y! B, bits
4. Mean changed probability (mean of HD;(%)) :

P = (%)% 100 %

5. Standard variance of the changed bit number :

3.3. Performance analysis 85

Output schemes
MMO MMMO MP
Structure1 B,,;, 98 98 100
Binax 158 158 154
B 127.98 12790 127.95
P 49.99 49.96 49.98
AB 8.01 8.12 8.03
AP 3.13 3.17 3.13

Structure 2 B, 99 98 103
n-=8 Biax 157 154 157
B 128.31 128.18 127.97
P 50.12 50.07 49.99
AB 8.03 8.17 8.01
AP 3.13 3.19 3.13
Biin
Binax
B
P

101 103 100

155 156 157
127.81 127.70 127.88

49.92 49.88 49.95

AB 8.23 8.06 7.94
AP 321 3.15 3.10

Structure 2
n, =24

TABLE 3.15 — Diffusion statistical-results for the two proposed structures

AB = \/1%1 i (Bi—B)?
6. Standard variance of the changed probability :
AP = \/ﬁ {:1(2§%—P)2>< 100 %

The obtained statistical results of diffusion presented in Table 3.15 with 2048 tests demonstrates that
the diffusion effect is close to the expected one. Indeed, irrespective of the used structure and the output
schemes, both B and P are very close to the ideal values (128 bits and 50%, respectively), while AB and
AP are very low, which indicates that the diffusion is extremely stable. These results, presented in Table
3.16, are also confirmed through the tests with J = 512 and 1024, for Structures 1 and 2 with MP output
scheme.

In addition, we draw the histogram B; (Fig. 3.12) of Structure 1 with MP output scheme to show that the
values of B; are centered on the ideal value 128 bits. Similar results are obtained for the other proposed

hash functions as well.

3.3.3 Cryptanalysis

The attackers make use of some general attack methods that are available to them, which can be
applied to any Unkeyed or Keyed hash functions (Fig. 3.10). These attacks depend only on the hash

value length u for the unkeyed hash function and on the hash value length u and the secret key length

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
86 Merkle-Damgard construction

Number of tests
512 1024 2048
Structure 1 B, 100 100 100
Biax 149 152 154
B 128.11 128.22 127.95
P 50.04 50.08 49.98
AB 8.11 8.17 8.03
AP 3.16 3.19 3.13

Structure 2 B, 104 104 103
n.=8 Biax 150 151 157
B 12798 127.88 127.97
P 4999 4995 4999
AB 7.92 7.98 8.01
AP 3.09 3.12 3.13

Structure 2 B, 100 100 100
n, =24 Biax 153 153 157
B 127.85 127.96 127.88
P 4995 4998 49095
AB 8.22 8.10 7.94
AP 3.21 3.16 3.10

TABLE 3.16 — Diffusion statistical-results for the two proposed structures with MP output scheme

120

100

80

60

Frequency distribution

401

20

0
100 110 120 130 140 150 160
Bi value

FIGURE 3.12 — Histogram of B;

|K| for the keyed hash function. If the cryptanalyst can find a method to retrieve K, the system is entirely
compromised (during the key life time) [51, 120].

3.3. Performance analysis 87

3.3.3.1 Brute force attacks

A brute-force attack on a keyed hash function is more difficult than a brute-force attack on an unkeyed

hash function. There are two possible types of attacks, which are as follows :

1. Attacks on the hash value h, namely Preimage attack, second preimage attack, and collision

resistance attack.
2. Attack on the secret key K, namely Exhaustive key search attack.

For the first type of attacks, for a given secret key K, the fastest way to compute a first or second preimages
and collision resistance is through a brute force attack that consists of randomly selecting values of M
and try each value until a collision occurs. For exhaustive key search attack, the attacker requires known

{message, hash} pairs.

Preimage and second preimage attacks [121]

In a preimage attack, given only the hash value A, the attacker tries to find the original message M in a
way such that H(M) = h without attempting to recover the secret key K. For example, in an authentication
security service, a website stores {username, H(password)} in its database instead of {username, pass-
word}. When a user tries to access the website in question, the website verifies the authenticity of the
user by comparing H(input) with the stored hash H(password) (Fig. 3.13). Now, suppose this database is
compromised and an attacker succeeds in accessing a given hash value, then he can try to generate the
corresponding message using a preimage attack.

In a second preimage attack, the adversary has more information. Specifically, he knows the hash value &
for a given message M and he tries to find another message M’ that produces the same hash value 4. For
example, in digital signature scheme for data integrity security service, the attacker has access to both
document M and its hash 4 and tries to find a new document M’, such that H(M’) = h, so that he can send
the signed new document M’ as the original signed document M (Fig. 3.14).

For the first and second preimage attacks, the adversary would have to try, on average, 24! values of
M to find one that generates the given hash value 4. Our proposed structures produce hash values of
length 256 bits, so that the minimum amount of work required by an attacker to violate the preimage or
second preimage resistance property should be 22°6~! operations, which is considered very high. Thus,

the proposed hash functions are robust against first and second preimage attacks.

Collision resistance attack (Birthday attack) [122]

In the collision resistance attack, the attacker tries to find two messages (M, M) that collide with the same
hash value 4. The minimum amount of work required by an attacker to violate the collision resistance
property is approximately 2%/2 operations. This required effort is proven by a mathematical result referred
to as the birthday paradox, which is detailed in the example below.

Let us take the situation whether any two students in a class have the same birthday. Suppose that the

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
88 Merkle-Damgard construction

e —

Message
M

}
H ¥

Secret Key
K
Hash value h

— NO No
Stored Hash » I Authentication
values
lYES

Validate

Authentication

FIGURE 3.13 — General scheme of hash authentication

class has 23 students. If a teacher specifies a day (say August 11), then the probability that at least one
student has the same birthday as any other student is (1 — W) =50.73%. Birthday attack is
widely exploited for finding any two messages M and M’, such that H(M) = H(M'), then the couple (M,
M’) is named a collision. If the length of 4 is u and hash values are random with a uniform distribution,
an adversary can expect to find a collision (M, M’) with a 50% probability within /2% = 2u/2 attempts.
Yuval [123] proposed the following strategy in DS application (Fig. 3.14) to exploit the birthday paradox

in a collision resistant attack without attempting to recover the secret key K :

1. The sender is prepared to sign a legitimate message M by appending the appropriate ciphered
u-bit hash code using its private key.

2. The attacker generates 24/2 minor variations M of the message M, where all of them essentially

convey the same meaning along with storing these messages and their hash values in a table.

3. The attacker tries to find a fraudulent message M’ that has the same sender’s signature which was

generated using the second preimage attack.

4. The attacker generates 2*/2 minor variations M’ of M’, where all of them essentially convey the

3.3. Performance analysis 89

@) Sender) 5 Receiver
—- Message
Message m
wm [—

| G =

—_— —_—
' Hash value h
Secret Key Secret Kev Validate
< \&/ > Data
Integrity

l Encryption Digital
Hash value h |e=———(Signature
DS

u

Private Key

Decryptlon

Digital
Signature
DS

Hash value h

I

Public Key

FIGURE 3.14 — Second preimage attack on Digital Signature scheme

same meaning. For each 0M’, the attacker computes H(OM’), checks for matches with any of the
H(8M) values, and continues until a match is found, H(6M’) = H(6M).

5. Then, the attacker gives the valid fraudulent message M’ to the sender for signature and this
signature can then be attached to the fraudulent message for transmission to the intended receiver.

Thus, the attacker is assured of success even though the encryption key is not known.

Another practical example is when the attacker finds a collision between a valid Microsoft Windows
security patch and a malware. Then, the attacker sends his malware to sign it, in any certificate company,
and ship it to Microsoft Windows users around the world. Later, when a user tries to download the new
patch, his computer gets infected.

Also, for collision resistance attack, the length of hash value 4 determines the security and the proposed
hash functions are secure against these kinds of attacks because an attacker needs, on average, 228!

tries.

Exhaustive key search attack [118, 124]

In keyed CNN hash functions, if the attacker has access to a pair (message, digest), then normally the
key can be found by exhaustive searching and, on average, the attacker needs 2/XI~! tries, where K| is
the length of the secret key K. Thus, the level of effort for brute force attack on keyed hash functions can
be expressed as min(2/K1,24). As |K| = 160 bits, consequently, the proposed hash functions are immune

against these kinds of attacks.

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
90 Merkle-Damgard construction

3.3.3.2 Cryptanalytical attacks

Cryptanalytic attacks seek to exploit some properties of the keyed hash function to perform some
attacks other than brute force attacks. An ideal keyed hash function should require a cryptanalytic effort
greater than or equal to the brute force effort. Far less research has been conducted on developing such
attacks. A useful survey of some methods for specific keyed hash functions is developed in [125]. In
the following paragraphs, we apply the main cryptanalytic attacks of the literature on the proposed hash

functions, which are listed below :
1. Length extension attack (Padding attack)
2. Meet-in-the-middle preimage attack
3. Joux attack (Multi-collision attack)
4. Long message second preimage attack
5

. Herding attack

Length extension attack [126, 127]

In cryptography and computer security, a length extension attack is a type of attack where an attacker
can use H(M) and the length of M to calculate H(M||EM) for an attacker-controlled extended message
EM. The following attack is applied on Merkle — Damgard structure that is transformed on keyed hash
functions by adding the secret key K in the beginning of the message M (MAC). This attack allows the
inclusion of extra message (EM) into a signed message, but needs to know the length of secret key K.
Algorithms like MD5, SHA-1, and SHA-2 that are based on the Merkle — Damgard construction are
vulnerable to these kinds of attacks. However, HMAC is not vulnerable to the length extension attacks
[128].

The attacker can perform the following steps. Suppose Alice sends (message M, hash value /) as a pair to
Bob. Let us assume that the attacker has access to the message and its hash, then, he can easily calculate,

from this pair, a new hash value /', which is as follows :

1. Pad the message M with an arbitrary extended message EM with a length equal or multiple of a

size block.
2. Set the digest 4 as the secret key.

3. Calculate the new hash value 4’ corresponding to (M||EM). This means that / is used as the key
for the added block(s) of (M||[EM).

4. Substitute (M, h) pair by (M||EM,K") and send it to Bob as a valid signature (Fig. 3.15).

In our proposed hash functions, the secret key K is not pre-pended to the message M but used as an
input for the Chaotic System to produce the necessary supplies to CNN. Then, such an attack can not be

conducted.

3.3. Performance analysis 91

Key

i
) | | EEENEEEE EEEEEEEE
EEEENEEE EEENEEEE-A « FEEOO0000
EEEEEEEE EEECO00O0 I O

_ EEEEEEEE 00000000 00000000
EEEEEEEE, . OO0 00O wouayespoating (OO

v EEEEREEE HUoooogod Hoogoogd
0000 00nn Uuogogonl Uoogodg
00000000 FE D D D D s« ket) D] ER D R e

l | Justsit l l
Block 1 —b o =l Block q —> Block q+1 —>

FIGURE 3.15 — Hash length extension attack

Meet-in-the-middle preimage attack (MITM)[129, 130]

The meet-in-the-middle preimage attack is a generic cryptanalytic approach that is originally applied
to the cryptographic systems based on block ciphers (Chosen plain-text attack). In 2008, Aoki and Sa-
saki [130] noticed that the MITM attack could be applied to hash functions, to find preimage, second
preimage, or collision for intermediate hash chaining values instead of the hash value 4. This attack has
successfully broken several designs : the MD hash family includes MDJ5 [131], round-reduced SHA-O0,
and SHA-1 [130], round-reduced SHA-2 [132], some Davies-Meyer hash constructions, e.g., Tiger [133],
reduced HAS-160 [134] and HAVAL [135]. The steps of MITM attack, illustrated in Fig. 3.16 for a given

secret key K, can be explained as follows :

1. Use the hash function H to calculate the hash value & of a message M that is divided into ¢

fixed-size blocks.

2. Split the chain hash function in two parts, where the first part includes g-2 blocks and the second

part includes the last two blocks g-1 and gq.

3. Choose a message Q of length ¢-2 in the form
{Ql ; Q27 cey Qq72}~

4. Compute the hash value KQ, > of the chosen message using H.

5. Generate 2*/2 random blocks By . For each generated block By, (instead of M,_1), start computing
(from the splitting point) to generate the chaining hash value : KQ, 1; = C(Bx,,KQy—2), i =
1,2,...,2%/2 which forms a list Lg, containing all the computed chaining values (KQ,—1,)x,i =
1,2,

...,2"/2 at the matching point.

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
92 Merkle-Damgard construction

6. Generate 2/* random blocks By. For each generated block By;,j = 1, ...,24/* (instead of M,),
start calculating KQy (k= 1,2,...,2"/*) with KQqx = C(By,,KQy-1x) (k=1,2,...,2%/*). Then
form a list LBY_,;k containing the chaining values of
(KQq—1,jx)y (k=1,2,..., 24/4). Then, Lg, is compared to Lp, to find a collision at the matching
point.

7. If a collision is found, then form the message
{01,024, ..., Qq,z,BXi,Byj} that gives the desired hash value % and, therefore, use it to produce

the same digital signature. Otherwise, repeat the above six steps with a different chosen message
{Ql) Q27 ceey
Qq—Z}-

The probability that one element {KQ,_1 j«}y from Lp, matches one element {KQ,_ x}x from Lg, is

1 1
Qu/2* Qu/2

. u/2 . . .
of them are equal to an element of By, is (1 — Zul/z)? " Given that, (1 —x) <e™*, the previous expression
—1/2%)2 =

equal to Otherwise, the probability is (1 — 55). For all the elements of L, , the probability that none

can be approximated by : (e e~!. Then, the probability that one intermediate matching value
occurs is :

P=1—-¢1=0632 (3.26)

As our hash functions are preimage resistant, the effort to succeed the meet-in-the-middle attack with
probability 0.632 is 24/2.

2048 > |

Me:;age M Mq2 ‘ Mas Mq p,L
c I I
KM,
KMo HM; KM: KMq3 HMaq Y ki
Block 1 0)» Block g-2 Block g-1 Block q] Hash value h
Output
function
Hash value h
KQq
Chosen
Message Q: Qq2 Bx By
Q

P: Padding, L: Length of the message M, C: Message compression function | |

FIGURE 3.16 — Meet-in-the-middle preimage attack

3.3. Performance analysis 93

Joux attack [136]

A collision attack takes time of order 24/2 (sec. 3.3.3.1). A multi-collision attack means that a set of
messages that all have the same hash value 4. In 2004, Joux showed that searching multi-collisions is not
so hard when it comes to finding ordinary collision. Indeed, he demonstrated that finding 2’ collisions

~1)/2" evaluations [51]. To illustrate

cost only about ¢ times a single collision attack, 7 x 24/2 instead of 22
this relation, let we show how 4 collisions (¢ = 2) can be obtained with only two calls of a collision finding
machine. This collision finding machine uses birthday attack algorithm. For a given secret key K, a first
call to the collision finding machine generates two different blocks M; and M] that yield a collision :
KM; = C(M;,K) = C(M{,K). Then, a second call to the same collision finding machine locates two
other blocks M, and M}, such that C(M»,KM;) = C(M},KM,). When putting these two steps together,
we obtain the following 4 collisions :

C(Mp,C(M,,K)) = C(M5,C(M,K))

— C(My,C(M;,K)) = C(M5,C (M, K)).

Joux claimed that this basic idea can be extended to much larger collisions by using more calls to the
collision finding machine. More precisely, using 7 calls, we can build 2'-collision for a given hash function
H. All of the 2" hashing processes go through KMy, KM, ..., KM,. A schematic representation of these 2
blocks together with their common intermediate hash values is drawn in Fig. 3.17.

Furthermore, Joux observed that, for two independent hash functions H and G and a given message M
with H(M) = h and G(M) = g, the concatenation of the two obtained hash values (%||g) is not more secure
against collision attacks, preimage resistance attack, and second preimage attack than any of the two

hash functions taken separately.

. 2048 ,
NI:;s/sfvie M1/ M1 M2/ M2 M1/ M't1 Mt/ M
i M1 ¥ Mt
:________1'.]__]
---" “S~< S i O
| | L, | S KM
KMe-2, |HMt1 KMt 1,7 Mt
[Bockt:1 —{Dp i } S Blockt L@H j >
\ \ |
[T | ,1/ | So | Pid
A 4--1r boms~e o --1r"
L I _,T S 4 | Output
Mty MY function

C: Message compression function

FIGURE 3.17 — Joux attack

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the

94 Merkle-Damgard construction
Message Structure 1 Structure 2 -n, =8 Structure 2 - n, = 24

length HT HTH NCpB HT HTH NCpB HT HTH NCpB
513 8.60 57.37 43.70 4.47 112.02 22.71 6.73 7321 34.20
1024 15.24 64.98 38.75 8.18 124.18 20.79 8.02 124.17 20.30
2048 27.02 72.66 34.33 13.82 14344 17.56 15.11 13290 19.20
4096 51.13 76.50 32.46 2573 153.06 16.34 2699 146.33 17.13

10* 122.15 78.18 31.76 60.16 15942 15.64 62.30 153.79 16.20

10° 1211.30 79.14 31.49 590.16 162.70 15.34 626.89 15421 16.29
10 11972.02 79.73 31.12 5910.81 162.14 15.36 618543 155.61 16.08

TABLE 3.17 — Hashing time, hashing throughput, and the number of cycles per Byte for Structures 1
and 2 with MMO output scheme and 2048 random tests

Long message second preimage and Herding attacks [137]

The Long message second preimage attack [138] and the Herding attack [139] are closely related to the
Joux attack. For the first kind of attack, the attacker can find a second preimage for a message M of 2°
blocks with b x 2/21 4-2u=b+1 effort. For the second attack, the needed work by the attacker to find 2
collisions is 247/~ 4 21/2H/242 4 ¢ 5 /241,

3.3.4 Speed analysis

We evaluated the computing performance of the two proposed hash functions with their output
schemes for different message lengths. For this purpose, we calculated the average hashing time HT
(micro second), the average hashing throughput HTH (MBytes/second) and the needed number of cycles
to hash one Byte NCpB (cycles/Byte).

M ize(M Byt
HTH (MBytess) = _1essage size(MBytes) (3.27)
Average hashing time(s)
CPUspeed(Hz)
NCpB les/Byte) = —————~ 3.28
PB (eyeles/Byte) = it (Byres) (3:28)

We used a computer with a 2.6 GHZ Intel core i5-4300M CPU with 4 GB of RAM running Ubuntu
Linux 14.04.1 (32-bit). In Tables 3.17, 3.18, and 3.19, the average HT, the average HTH, and the average
NCpB for the two structures with their output schemes are presented. It was observed that, irrespective
of the output schemes, the computing performance of Structure 2 is approximately twice better than
the computing performance of Structure 1, even for n, = 24 rounds. To focus more on these results, the
HTH for the two structures with their output schemes 3.18 were drawn in figure 3.18.

The variation of computing performance according to the size of the message is due to the transition
phase of both chaotic system and chaotic activation function of a neuron. Indeed, the cost of the transition
phase is approximately equal 2 x tr x4 =240 Bytes for Structure 1 (tr = 30) and 160 Bytes for Structure

2 (tr = 20) in our implementation.

3.3. Performance analysis 95

Message Structure 1 Structure 2 -n, =8 Structure 2 - n, = 24
length HT HTH NCpB HT HTH NCpB HT HTH NCpB
513 8.53 5772 43.34 5.16 99.80 26.21 6.89 71.12 35.02
1024 15.11 65.65 38.42 7.78 127.88 19.77 8.03 124.46 20.40
2048 27.21 72.30 34.56 13.47 145.78 17.11 14.32 137.94 18.19
4096 51.71 75.81 32.83 2540 15457 16.13 26.67 147.56 16.93
10* 122.50 78.05 31.85 59.71 160.27 15.52 63.25 152.32 16.44

10° 1216.68 78.70 31.63 603.15 159.79 15.68 632.82 153.17 16.45
10 11935.23 79.97 31.03 6015.73 160.38 15.64 6272.66 153.96 16.30

TABLE 3.18 — Hashing time, hashing throughput, and the number of cycles per Byte for Structures 1
and 2 with MMMO output scheme and 2048 random tests

Message Structure 1 Structure 2 -n, =8 Structure 2 - n, = 24
length HT HTH NCpB HT HTH NCpB HT HTH NCpB
513 8.67 57.19 44.04 4.45 111.99 22.61 6.76 73.19 34.36
1024 14.77 66.84 37.55 7.72 128.94 19.62 7.94 124.42 20.19
2048 27.05 7273 34.35 13.81 143.17 17.55 16.03 127.37 20.36
4096 51.52 76.12 32.71 27.42 14593 17.41 28.16 141.84 17.88
10* 122.12 7832 31.75 59.73 160.25 15.53 63.87 151.23 16.60

103 1232.16 78.32 32.03 58529 163.83 15.21 631.08 153.34 16.40
10 11866.13 80.42 30.85 5864.95 16329 15.24 6250.05 154.55 16.25

TABLE 3.19 — Hashing time, hashing throughput, and the number of cycles per Byte for Structures 1
and 2 with MP output scheme and 2048 random tests

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the
96 Merkle-Damgard construction

160 T T L T T T oo
—6— S1-MMO « 5

150 —8— S1-MMMO .
—»— S1-MP
140 i

—%— S2-MMO
1301 —— S2-MMMO i
—&— S2-MP
120F s

110 T

100 .

90 .

Hash Throughput [MB/s]

70 .

60| .

50 s MR SN | s MR SN | s MR SR | s MR SR
10° 10° 10" 10° 10°

Data Length [Bytes]

FIGURE 3.18 — Comparison of HTH for Structure 1 and Structure 2 - n, = 24 rounds with MMO,
MMMO, and MP output schemes

3.3.5 Performance comparison with other Chaos-based hash functions of literature and
standards hash functions

We compared the performance of the proposed hash functions with some hash functions of literature
in terms of statistical analysis and NCpB. Table 3.20 presents the comparison with chaos-based hash
function in terms of collision resistance for MP output scheme with 2048 tests. As we can see, except Li
et al. [101] our obtained results are more close to the expected values. Table 3.21, additionally, presents
the comparison of statistical results of diffusion. We observed that the obtained results for all cited
references are closed to the expected values. It should be noted that besides the two references [105,
31], all the other references in Tables 3.20 and 3.21 present structures that work with hash value 4 = 128
bits. For comparison purposes, we took the 128 LSB hash values.

Tables 3.22 and 3.23 present the comparison of the proposed chaos-based hash functions with standard
hash function in terms of collision resistance and diffusion. Aside the values of Structure 2 - n, = 8
rounds, the obtained results are similar to those obtained by standard hash functions.

The speed performance, in terms of the number of cycles to hash one Byte (NCpB), of the proposed

3.4. Conclusion 97

Hash function Number of hits @ Absolute difference d
0 1 2 3 Mean Mean/character Minimum Maximum

Xiao et al. [13] - - - - 1506 94.12 696 2221
Xiao et al. [21] 1926 120 2 O 1227.8 76.73 605 1952
Deng et al. [23] 1940 104 4 O 1399.8 87.49 583 2206
Yang et al. [24] - - - - - 93.25 - -
Xiao et al. [25] 1915 132 1 O 1349.1 84.31 812 2034
Lietal. [27] 1901 146 1 O 1388.9 86.81 669 2228
Wang et al. [93] 1917 126 5 O 1323 82.70 663 2098
Huang [100] 1932 111 5 O 1251.2 78.2 650 1882
Li et al. [99] 1928 118 2 O 1432.1 89.51 687 2220
Lietal. [101] 1899 124 25 O 1367.6 85.47 514 2221
Lietal. [102] 1920 124 4 O 1319.5 82.46 603 2149
He et al. [29] 1926 118 4 O 1504 94 683 2312
Xiao et al. [98] 1924 120 4 O 1431.3 89.45 658 2156
Yu-Ling et al. [140] 1928 117 3 O 1598.6 99.91 796 2418
Xiao et al. [141] 1932 114 2 O 1401.1 87.56 573 2224
Lietal. [142] 1920 122 6 O - - - -
Lietal. [143] 1905 135 8 O 1335 83.41 577 2089
Structure 1 1931 114 3 O 1291.64 80.72 480 2038
Structure 2 - n, = 8 1929 114 5 O 1426.23 89.13 730 2213
Structure 2-n,=24 1942 106 0 O 1338.85 83.67 629 2071

TABLE 3.20 — Comparison in terms of collision resistance of the proposed structures with MP output
scheme with some chaos-based hash functions

keyed chaos-based hash functions is compared to that of some chaos-based hash functions of literature
and with the main standards of the unkeyed and keyed hash functions, which are presented in Tables 3.24
and 3.25, respectively. We observed that the NCpB of the Structure 2 is approximately twice as fast as
the best NCpB obtained by [30], but it is a little bit slower than the SHA-2’s NCpB and approximately
four times slower than the main keyed hash functions.

3.4 Conclusion

We realized and analyzed the security and computation performance of the two keyed chaotic neu-
ral network hash functions, based on Merkle-Ddamgard construction with three output schemes MMO,
MMMO, and MP. The obtained results quantified the robustness of the proposed hash functions for using
them in data integrity, message authentication, and digital signature applications. The very good per-
formance is due to the strong one-way property of the combined chaotic system with neural network
structure. Indeed, the neuron’s activation functions are based on a secure and efficient chaotic generator.
Compared to some chaos-based hash functions of literature, the proposed CNN hash functions are more

robust and show good results in terms of computation performance.

Chapter 3 — Design and security analysis of keyed chaotic neural network hash functions based on the

98 Merkle-Damgard construction
Hash function Bpin Bmax B P(%) AB AP %
Xiao et al. [13] - - 63.85 49.88 5.78 4.52
Lian et al. [15] - - 63.85 49.88 579 452
Zhang et al. [17] 46 80 6391 4992 558 4.36
Wang et al. [18] - - 6398 4998 553 433
Xiao et al. [21] - - 64.01 50.01 5.72 447
Deng et al. [22] - - 6391 4992 558 4.36
Deng et al. [23] - - 63.84 49.88 5.88 4.59
Yang et al. [24] - - 64.14 50.11 5.55 4.33
Xiao et al. [25] - - 64.09 50.07 548 4.28
Amin et al. [26] - - 63.84 49.88 5.58 4.37
Li et al. [27] 45 81 63.88 4990 537 4.20
Wang et al. [93] - - 6390 4993 5.64 441
Akhavan et al. [95] 42 83 6391 4992 5.69 445
Huang [100] - - 63.88 4991 5.75 4.50
Li et al. [99] - - 63.80 49.84 575 4.49
Wang et al. [97] 44 82 64.15 50.11 5.76 4.50
Lietal. [101] - - 63.56 4966 742 5.80
Lietal. [102] - - 63.97 4998 5.84 4.56
He et al. [29] 45 83 64.03 50.02 5.60 4.40
Jiteurtragool et al. [105] 43 81 62.84 49.09 5.63 4.40
Teh et al. [30] - - 64.01 50.01 5.61 4.38
Chenaghlu et al. [31] - - 64.12 50.09 5.63 441
Akhavan et al. [104] 43 82 63.89 4991 577 4.50
Nouri et al. [103] - - 64.08 5006 572 4.72
Xiao et al. [98] 47 83 63.92 4994 562 4.39
Yu-Ling et al. [140] - - 64.17 50.14 5.74 4.49
Xiao et al. [141] - - 64.18 50.14 559 4.36
Lietal. [142] - - 64.07 5006 5.74 448
Liet al. [143] - - 63.89 4991 5.64 441
Ren et al. [144] - - 63.92 4994 578 4.52
Guo et al. [145] - - 6340 4953 7.13 6.35
Yu et al. [146] 45.6 81.8 6398 4998 573 4.47

Zhang et al. [147] - - 64.43 4946 5.57 451
Jiteurtragool et al. [105] 101 153 126.75 49.51 798 3.12
Chenaghlu et al. [31] 101 168 128.08 50.03 8.12 3.21
Structure 1 45 86 64.05 5003 565 441
Structure 2 - n, = 8 42 84 63.88 4991 5.66 4.42
Structure 2 - n, = 24 43 85 63.90 4992 560 437

TABLE 3.21 — Comparison of the statistical results of diffusion for the proposed structures with MP
output scheme with some chaos-based hash functions

3.4. Conclusion 99

Hash function Number of hits @ Absolute difference d

0 1 2 3 Mean Mean/character Minimum Maximum
SHA2-256 [3] 1817 220 11 O 2707.10 84.59 1789 3819
Structure 1 1803 232 13 O 2633.17 82.28 1471 3779
Structure 2 -n, =8 1817 215 16 O 2861.93 89.43 1707 3951
Structure 2-n,=24 1815 226 7 O 2615.44 81.73 1540 3671

TABLE 3.22 — Comparison in terms of collision resistance of the proposed structures with MP output
scheme and SHA2-256

Hash function Biin Bmax B P(%) AB AP %
SHA2-256 [3] 104 154 128.01 50.00 7.94 3.10
Structure 1 100 154 12795 4998 8.03 3.13

Structure2-n,=8 103 157 12797 4999 8.01 3.13
Structure 2 -n, =24 100 157 127.88 4995 794 3.10

TABLE 3.23 — Comparison of the statistical results of diffusion for the two proposed structures with MP
output scheme and SHA2-256

Hash Structure 1 Structure 2 -n, =8 Structure 2 - n, =24 Wang[18] Akhavan[95] Teh[30]
function MMO MMMO MP MMO MMMO MP MMO MMMO MP
NCpB 31.12 31.03 3085 15.36 15.64 1524 16.08 16.30 16.25 122.4 105.5 28.45

TABLE 3.24 — Comparison of NCpB of the proposed structures with three output schemes with some
chaos-based hash functions

Hash function Structure 1 Structure2 -n, =8 Structure 2 - n, =24 SHA2-256
MMO MMMO MP MMO MMMO MP MMO MMMO MP
NCpB 31.12 31.03 30.85 15.36 15.64 15.24 16.08 16.30 16.25 11.87

Hash function VMAC HMAC GCM CMAC DMAC CBC-MAC BLAKE2
NCpB 0.42 14.42 0.42 441 4.40 2.88 2.58

TABLE 3.25 — Comparison of NCpB of the proposed hash functions with the unkeyed and keyed standards

Chapter 4
Design and security analysis of keyed
chaotic neural network hash functions

based on the sponge construction

4.1 Introduction

Since 2009, many researchers have used Sponge construction to build new cryptographic hash func-
tions. In 2010, Aumasson et al. proposed QUARK as a novel design philosophy for lightweight hash
functions in order to minimize memory requirements [148]. Guo et al. proposed a lightweight hash func-
tion family PHOTON, based on the Advanced Encryption Standard (AES) design with the new mixing
layer method [149]. It achieves excellent area/throughput trade-offs and very acceptable performances
with simple software implementation. Bogdanov et al. proposed another family of lightweight hash func-
tions called SPONGENT with hash output sizes varying from 88 bits (for preimage resistance only) to
256 bits [150]. However, each of the three lightweight functions has unique characteristics, and none
seems to dominate on all aspects [151]. For example, PHOTON and SPONGENT build the permuta-
tion function f on highly optimized block cipher, and have slightly lower memory footprints. Whereas,
QUARK is inspired by the stream cipher GRAIN, and the block cipher KATAN. However, SPONGENT
has a significantly lower throughput than QUARK and PHOTON, while PHOTON appears to have a
lower security margin. Thus, the necessity of a new hash function based on Sponge construction, with
strong level security and high throughput, has arisen [36]. With Sponge construction, hash value length
can vary, based on user demand [152].

In this chapter, we propose two robust keyed hash functions based on Sponge construction that contains
a Chaotic System (CS) and a CNN, where the input message M is hashed to a hash value / of fixed bit

101

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
102 construction

length equal to 256 and 512 bits. The combining of CNN with Sponge construction increases the secu-
rity of the proposed hash function. Our proposed structures use an efficient CS [115], which generates
pseudo-chaotic samples used to initialize the parameters of the neural network. Also, the proposed acti-
vation function of neural network is composed of two chaotic maps connected parallel to each other. The
two introduced elements make our proposed hash functions more secure against different attacks, com-
pared to existing hash functions based on Sponge construction. Indeed, the theoretical analysis, statistical
tests and experimental simulations, presented in detail in this chapter, demonstrate that the proposed hash
functions have very good statistical properties, strong collision resistance, high message sensitivity, high

key sensitivity and are immune against preimage, second preimage and collision attacks.

4.2 Proposed keyed-Sponge Chaotic Neural Network hash functions

The proposed keyed-Sponge hash functions introduce the Chaotic functions Cf;, (i > 1) that contain
a CS and a CNN. These Chaotic functions use a padded block message M; || 0, (i = 1,...,q) of size b-bit,
a secret key KM, of length |K| = 160 bits and subkeys KM;, (i > 1) of length 128 bits to produce hash
values with two variant lengths 256 and 512 bits, depending on the values of r and c (see Fig. 4.1). In
these structures, we use the CS proposed in section 3.2.3 of chapter 3.
The first CNN hash function uses two-layered Neural Network named Structure 1, whereas the second
hash function uses one-layered Neural Network followed by a combination of Non-Linear (NL) functions
named Structure 2.
In the next sub-section, we describe the general structure of the two proposed keyed-Sponge CNN hash

functions.

4.2.1 Description of the general structure of the two proposed keyed-Sponge CNN hash
functions

The general architecture of the proposed keyed-Sponge CNN hash functions (KSCNN[c](M || 01, u))
is composed of three phases : Initialization phase, Absorbing phase, and Squeezing phase (see Fig. 4.1).

Initialization phase

This phase determines the values of r and ¢ according to Table 4.1, and initializes the initial value
1V = HM, to 0, and the secret key K = KMj. Also, in this phase, the input message M is appended by
the suffix 01, padded using the function Pad (explained below), and divided into ¢ blocks M;, (i = 1,...,q)
of r-bit size, each block.

For both structures (1 and 2), we adopt the same values of r and ¢ as the standard SHA-3 : for 256-bit
hash value, ¢ equal to 512 bits (like SHA3-256), and for 512-bit hash value, ¢ equal to 1024 bits (like
SHA3-256).

r C
+—r—>

M. Mg |0

Absorbing phase

Y KMq1=LSB(HMq-1

D

Y

hq~1

Chaotic

CNN <
System

Cfq

Hash value h

Squeezing phase

4.2. Proposed keyed-Sponge Chaotic Neural Network hash functions 103
\ Message M
|
(101 :
Initialization phase |
Pad: “10..01" :
;NL, Secret keyl
Divide M| |01 |Pad HMo [0 0 ! r ¢
KM —r—>
10*1 into q blocks ? : M(HM(‘)
| 4;5 I
M: :
[hq
| Y
|
Chaotic| | : Chaotic
<._
System I au System
| :
__________________________ g f.!. | i Cfq+
| i
| HMg:1, KMg+1=LSB(HMg+1)
— e LT s | T —
Mo M [0 —p | I
| l ’
| !
i | hq+1
| Chaotic | : My
| System |- |
I Chaotic ||
I Cf2 | ' |} o System
HM: :
| i Cfq+2
|
| HMg2y KMgw2=LSB(HMgs2)
. |
HMq-I :
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Y b

FIGURE 4.1 — General structure of the two proposed keyed-Sponge CNN hash functions

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge

104 construction
Hash function Characteristics
Definition rate r (bits) Capacity c (bits) Output size (bits)
Structure 1-256(M) KSCNN[512](M || 01, 256) 1088 512 256
Structure 2-256(M)
Structure 1-512(M) KSCNN[1024](M || 01, 512) 576 1024 512

Structure 2-512(M)

TABLE 4.1 — Main characteristics of the two proposed keyed-Sponge CNN hash functions

In our proposed hash functions, we use the multi-rate padding Pad, which appends a bit sequence 10*1
of length v+2 bits (a bit 1 followed by the minimum number v of 0, and a last bit 1), as shown in equation
“4.1):

v=r—mod[((L+2)+2),r] 4.1)

where L = [M|.
In general, we have 3 cases of padding (Fig. 4.2) :

case a:mod(|M+2|,r) <r—2.
case b:mod(|M +2|,r) =0.
case ¢ : mod(|M+2|,r) >r—2.

Now, let’s take a look at the three cases of padding where » = 1088 bits, which is as follows :

case a:if L =3248 bits :

v = 1088 —mod[(3248 +2) +2,1088] = 12 bits.
case b :if L=3262 bits :

v = 1088 —mod[(3262+2) +2,1088] = 1086 bits.
case c:if L=13261 bits :

v = 1088 —mod[(3261 +2) +2,1088] = 1087 bits.

Then, the padded message is divided into g blocks, and processed as a sequence of message blocks :

M || 01 || pad10*1 =M, | My || ... || M, 4.2)

Absorbing phase
In this phase, the g blocks of the entire message are absorbed message block M; by message block
M;, (i = 1,...,q) of r-bit size. Each block M;, (i = 1,...,q) is padded by 0¢, and the obtained blocks

4.2. Proposed keyed-Sponge Chaotic Neural Network hash functions 105

a) mod(|M|], r) < r-2

Last Message Part I ol 1 1| 00..0 1

Block message Mgq

r

b) mod([M|[, r) =0 v
Pad
Last M. Part
as essage Par I Dl 1 1| 00..0 1
P Block message Magq-1 _ Block message Mgq _
< ; > ; >
c)mod(|M|], r) > r-2 P v _
Pad
Last Message Part
o011 00...0 1
_ Block message Magq-1 - Block message Mq N
r r

FIGURE 4.2 — Padding rule of the input message M in the two proposed keyed-Sponge CNN hash func-
tions

M; || 0, (i=1,...,q) of b-bit size are xored with the intermediate hash values HM;_1,(i = 1,...,q), where
HM, = IV was defined in the Initialization phase. The obtained values h;_,(i = 1,...,q) of 1600-bit
size from the xor operation are the inputs of Cf;, (i = 1,...,q) with the subkeys KM;, (i =1,...,q— 1) of
128-bit size. The outputs of Cf;, (i = 1,...,q) are the chaining variables HM;, (i = 1,...,q) of size b bits
(b = 1600 bits) for every r-bit input message block M;, (i = 1,...,q). For the first Chaotic function Cfj,
KM, = K is the secret key of size 160 bits [116]. For the other Chaotic functions Cf;, (i > 2), the subkeys
KM;,(i=1,...,q— 1) are obtained from the Least Significant Bit (LSB) of HM;,(i=1,...,q— 1), (KM; =
LSB(HM;),(i = 1,...,q — 1)). These subkeys are used by the CS, to generate the necessary parameters
and initial conditions for CNN. For the final Chaotic function Cf,, HM, forms the final hash value h, of
b-bit size produced by the absorbing phase for the input message M. The pseudo-code of the absorbing

phase is given below :

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
106 construction

Algorithm 12 The absorbing phase

Require : r < b

M | M || ... || My < Pad(M || O1)

HM, <+ 0P

fori=1toqdo
hi—y <~ HM;—1 & (M; || 0°))
HM; + Cf;(KM;_y,hi_1)

end for

Return (|74])..

Squeezing phase

When the desired hash value length u is greater than the width b (u > b), the squeezing phase is used. In
this case, the hash value h, of b-bit size produced by the absorbing phase is used as a unique input to the
squeezing phase, and the obtained hash values HM;, (i > g) are sequentially forwarded to Cf;, (i > g +1).
For each HM;, (i > q), the Most Significant r bits are extracted to Z;, (j > 1), and the Least Significant
128 bits are extracted to form the key KM;, (i > gq) for the CS of each Cf;, (i > g+ 1). Finally, the
concatenation of all obtained values Z;,(j > 1) of r-bit size constitute the final hash value 4 of the

desired length u bits, as given by the following equation :
h=2Z\||23]|Z3]\... = (LHMg])|[([HMgs1)| | (LHMg2]).] (4.3)

Below, we give the pseudo-code of the squeezing phase :

4.2. Proposed keyed-Sponge Chaotic Neural Network hash functions 107

Algorithm 13 The squeezing phase

Require : u > b
Zy (lHMqJ)r
j2
h<+ 7,
fori=q+l1,...do
while u > |h| do
hi—y < HM;
HM; < Cf;(KM;_1,h; 1)
Zj < (HMi)),
h«h|Z
j—j+1
end while
end for
Return (|A]),.

In the next sub-section, we describe the proposed CS used in the Chaotic functions Cf;, (i > 1) to

generate the necessary parameters and initial conditions for CNN.

4.2.2 Keyed-Sponge hash functions based on two-layer CNN structure (Structure 1)

The structure of the Chaotic function Cf; for KSCNN[512] and KSCNN[1024] is shown in Fig. 4.3.
It contains a CNN input layer of five neurons, and a CNN output layer of eight neurons. To supply both

these layers, the CS generates the necessary samples (Key Stream (KS)), composed as follows :
KS={WI,BI,QI,WO,BO,Q0} 4.4
Its size must be :

|KS| = |WI|+ |BI|+ |QI|+ [WO| + |BO|+ |QO| = 129 samples 4.5)

where |WI| = 50 samples, |BI| = 5 samples, |QI| = 10 samples, |WO| = 40 samples, |BO| = 8 samples
and |QO| = 16 samples, each of 32 bits length.

Indeed, the neurons of the two layers adopt the same activation function with different inputs. For each
hi,(i=0,...,qg— 1) at the input layer, each input neuron has 10 input data (Fig. 4.3 and Fig. 4.4). For
each neuron (k = 0,...,4), the first five inputs P;, (j = 10k, ..., 10k +4) are weighted by the WI;, (j =
10k, ..., 10k +4) and then added together with the bias B} (weighted by 1) to form the input of DSTmap.
The second five inputs P;j, (j = 10k + 35, ...,10k 4 9) are weighted by W1;,(j = 10k+5,...,10k+9) and

then added together with the same bias B} to form the input of DPWLCmap. All inputs P;, weights W1;

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
108 construction

and biases BI} are samples (integer values) of 32 bits length. The biases Bly, (k =0, ...,4) are necessary
in case the input message is constant (see Fig. 4.4). QI; | and QI > are the control parameters of DSTmap
and DPWLCmap, that are defined by equations 3.5 and 3.8 in chapter 3, respectively.

After computation, the two outputs of chaotic maps DSTmap and DPWLCmap are xored together to
generate the output of neuron denoted by Cy, (k =0, ...,4), which is given by equation (4.6) :

Cr = mod{[F1+F2],2"} where

10k+4
F1=DSTmap{mod([¥ (WI;x P;)]+ BI,2N), 0l 1} (4.6)
=10k '
’ 10k+9
F2=DPWLCmap{mod([Y. (WI;x P;)]+BI,2"), 0L}
j=10k+5

For the output layer, each neuron has 5 input data : WO, ; x C;,(k=0,...,7; j = 0,...,4), where k repre-
sents the index of output neuron, j represents the index of input neuron, C;, (j =0, ...,4) are the outputs of
input layer, and WOy j, (k=0,...,7; j = 0,...,4) are the weights associated with the connections between
input and output layers. Cj,(j = 0,...,4) and WO j,(k =0,...,7; j = 0,...,4) both are samples (inte-
ger values) of 32-bit length. As shown in Fig. 4.5, the first three inputs Cy, C; and C, are weighted by
WOy j,(k=0,...,7,j=0,...,2) and then added together with the bias BOy, (k =0, ...,7) (weighted by 1)
to form the input of DSTmap. The last two inputs C3 and Cy4 are weighted by WOy ;, (k=0,...,7;j =3,4)
and then added together with the same bias BOy, (k = 0,...,7) to form the input of DPWLCmap. After
computation, the two outputs of chaotic maps DSTmap and DPWLCmap are xored together to generate

the output of neuron, given by equation (4.7) :

Hy, = mod{[G1+ G2,2N]} where
2
G1 = DSTmap{mod(| ZO(WO,{J X Cj)]4+BO,2"), 00,1 } 4.7
J:

4
G2 = DPWLCmap{mod([Y, (WO j x C;)] + BO,2V),00}

j=3

Here also, the biases BOy, (k =0, ...,7) and the control parameters QO 1, QOi2,(k=0,...,7), used by
DSTmap and DPWLCmap, are samples of 32 bits length.
The output layer is iterated 7 times to generate the intermediate hash values of length b = |7 x 8 x 32|

(by concatenating the values of the output vector Hy, (k =0, ...,7)).

4.2.3 Keyed-Sponge Hash functions based on one-layer CNN and one Non-Linear output
layer (Structure 2)

The structure of the second proposed keyed-Sponge CNN hash function uses the same input CNN
layer of Structure 1, and a NL output layer formed by some NL functions used in SHA-2 (See Fig. 4.6).

4.2. Proposed keyed-Sponge Chaotic Neural Network hash functions 109

P Input | L _ " Outputi

Lo o _______ I
HM;
<b——>

KMi = LSB(HM!)
——

FIGURE 4.3 — Detailed structure of the i’ Chaotic function in the proposed keyed-Sponge two-layered
CNN hash function

To supply the CNN of each Cf;, ((i > 1)), the CS generates the necessary samples :
KS = {WI,BI,QI, WO} (4.8)

with,
|KS| = |WI|+|BI|+|QI|+ |WO| =70 samples (4.9)

Here, |WO| = 5 samples instead of 40 samples are needed for the Structure 1 (see Fig. 4.7).
The outputs of the input layer Cy, (k = 0,...,4) given by equation (4.6) are weighted by WOy, (k =
0,...,4) to form the inputs Dy, (k =0, ...,4) of the NL output layer : Dy = WOy x x Cy, (k =0, ...,4). The

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge

110

construction

P1ok
Piok+1

P1ok+2
P1ok+3

P1ok+a

Blk

P1ok+7

P1ok+s

| P1ok+9

Wiliok

Wl10k+1

WI10k+2

Wl1o0k+3
Wliok+4

Qlk,1

P1ok+5

P1ok+6

Wl10k+7

A 4

DSTmap

Qlk,2

l

Wil10k+8

WI10k+9

A

DPWLCmap

FIGURE 4.4 — Detailed structure of the k”* neuron in input layer of the two proposed keyed-Sponge CNN

hash functions

QOk,1

4

DSTmap

QOk,2

l

Co WOk,0
WOk,1
C1
vy
WOk,2
C2
A
BO« 1
WOk;3 Y
Cs +
X
Ca WOk,4

DPWLCmap

FIGURE 4.5 — Detailed structure of the k' neuron in output layer of the proposed keyed-Sponge two-
layered CNN hash functions

4.3. Performance analysis 111

outputs Hy, (k =0,...,7) are given by equation (4.10) :

Ho=Do®t1®Maj(D1,D2,D3) ©X0(Dy)

H| =t1® Dy
H, =Dy ®Dy,H3 =D ®D>,Hy = D, ® D3
Hs =Dy® D Ptl (4.10)

H(, :Dl @D2@t1
H; =D, ®D; Pl
| where 11 = Ch(Dy,D2,D3) & Dy © £1(D3)

Dy, (k=0,...,4) are truncated to 32-bit length and and Hy, (k =0, ...,7) are values of 32-bit length.
The four NL functions (Ch, Maj, £0 and 1) are defined as follows :

Ch(Dy,D5,D3) = (D) AD>) @ (=D AD3)

Maj(Dy,Dy,D3) = (D1 ADy) ® (D1 AD3) ® (D, AD3)

Y0(D;) = ROTR*(D;) © ROTR"(D;) ® ROTR**(D) (4.11)
Y1(D3) = ROTR®(D;) © ROTR''(D3) ® ROTR? (D3)

ROTR"(x) = (x>n)V (x < (32—n))

where A :AND logic,—: NOT logic,® : XOR logic,V : OR logic,>>: Binary Shift Right operation and <:
Binary Shift Left operation.

To calculate the intermediate hash values, first we iterate the output layer n, times, with n, = 1, 2, 4, 8,
16, 24, depending on the needed security level. The obtained results given in the performance section
indicate that n, = 8 is sufficient. Then, with fixed n,, we again iterate the output layer 7 times to obtain

the desired length of the intermediate hash values as done in Structure 1.

4.3 Performance analysis

In order to evaluate the performance in terms of security and number of needed cycles per Byte of
KSCNN[512] and KSCNN[1024], we applied the same required experiments and analysis as done in
chapter 3. Also, the obtained performances are compared with the standard SHA-3. First, the one-way
property (preimage resistance) of the proposed structures is analyzed. Then, statistical tests such as, the
collision resistance, the distribution of hash value, the sensitivity of hash value to the message and to the
secret key, and the diffusion effect are evaluated. Also, the immunity of these structures against the brute-
force and cryptanalytical attacks is studied. A detailed description of these tests is provided in chapter 3.

For that, in this section we just resume the necessary test description to interpret its obtained results.

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
112 construction

" Non-Linear Functions /TN N
: ¥ -
I I
. D .

Do - NP >
| 4 |

D1 I % o} to! n_:_; H2
| N <}

D: H o Ly Hs
; O
D3 [N —v > H4
| B [

Da —: : » Hs
I I
: : » He

l l
: YYVY Vv YyYVY V¥V : » Hy
! L | [s2 [maj | [50 !
I v v I
: ») » tn N, :
| NVRaNY I NV I
I I

FIGURE 4.6 — Detailed structure of NL Functions block

4.3.1 One-way property

On average, an attacker needs 2“~! values of the message, to retrieve the hash value 4 of length u
equal to 256 or 512 bits. With such lengths, nowadays, this attack is infeasible [13, 14, 15, 16].

4.3.2 Statistical tests

In this sub-section, we perform and analyze the following statistical tests.

4.3.2.1 Analysis of collision resistance

The theoretical number of tests with a number of hits @ =0, 1,2, ..., s, are represented in Tables 4.2
and 4.3 for 256 and 512 bits hash value lengths, respectively.
The obtained results in Table 4.4, for the two lengths of hash values, the number of rounds n, = 8 and n,
= 24 give the best results. Indeed, for 256-bit hash value length with n, = 8, there are zero hits for 1787
tests, one hit for 244 tests, and two hits for 17 tests. For n, = 24, there are zero hits for 1824 tests, one hit
for 213 tests, and two hits for 11 tests. Similar behavior is obtained for 512-bit hash value length with a
slight increase in the number of hits. In Table 4.5, we resume the obtained number of hits @ =0, 1, 2, 3,

4 for the two proposed structures. As expected, we obtain comparable results.

4.3. Performance analysis 113

KM
e i _____________________ I
Mi Wllm Discrete Skew Tent Map ﬁ
| | ===
l TN hix 1Po ¢ i ! H i
[M [0 }|—> » Wi A\ WOus Doy Ho,
+—r—> Blo,Qlo | ! |
r c W | I l
+—> :
b Ps | |
| |
| |

HMi-1 (&

Linear
Functions

|
|
|
|
|
|
|
|
|
|
|
|
|
|
Non- _’I :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

KMi = LSB(HM:)

A\ 4

FIGURE 4.7 — Detailed structure of the ' Chaotic function in the proposed keyed-Sponge hash function
based on one-layered NL CNN

We also calculate the mean, mean/character, minimum, and maximum of the absolute difference d of two
hash values. The results are represented in Table 4.6.

From the obtained results, we observe that the mean/character values are close to the expected values
that are equal to 85.33 for 256-bit hash value length (L = 256) and equal to 170.66 for 512-bit hash value
length [118].

4.3.2.2 Distribution of hash value

We evaluate the hash value / of the same message given in chapter 3, for Structures 1 and 2 with

256-bit and 512-bit hash value lengths. In Fig. 4.8, we show the ASCII values of the message M (Fig.
4.8a), and its hexadecimal hash value & (Fig. 4.8b) according to their index positions.
As expected, the distribution of hexadecimal hash value looks like a mess, while the distribution of the
original message is located around a small area. Even under the worst case of constant input message
such as "00...0" (Fig. 4.8c), the distribution of the hash value & (Fig. 4.8d) is also verified. Similar results
are obtained for the two proposed structures with their two variant hash output lengths.

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
114 construction

0]
0 1 2 3 32
J 512 45172 56.68 344 0.13 4.42x10°7
1024 903.45 11337 6.89 027 8.84x1077
2048 180691 226.74 13.78 054 1.76x10~ "

TABLE 4.2 — Theoretical values of the number of hits @ according to the number of tests J for 256-bit
length of hash values

0]
0 1 2 3 4 64
J 512 39855 100.02 1235 1.00 0.05 7.14x1077
1024 797.10 200.05 2471 2.00 0.11 1.42x107
2048 159420 400.11 4942 4.00 023 2.85x107%

TABLE 4.3 — Theoretical values of the number of hits @ according to the number of tests J for 512-bit
length of hash values

4.3.2.3 Sensitivity of hash value h to the message M

Under each condition (see chapter 3), we give in Table 4.7, the obtained results of 4;, B;, and HD;(%)
for 256-bit hash value length. Similar results are obtained for hash value length equal to 512 bits.
In Table 4.8, we compare the obtained results for the two structures with their two lengths 256 and 512
bits. All these results are close to the expected values, proving the high message sensitivity of the two

proposed structures.

4.3.2.4 Sensitivity of hash value h to the secret key K

We calculate, under each of the five conditions (given in paragraph 3.3.2.4 in chapter 3), for the
two proposed structures with their two variants of hash value length 256 and 512 bits, the hash value 4;
(hexadecimal), the number of bits changed B;(h, h;) (bits), and the sensitivity of the hash value 4 to the
secret key K measured by Hamming Distance HD;(h, h;)(%).

Table 4.9 presents the obtained results of &;, B;, and HD;(%) for 256-bit hash value length. Similar results
are obtained for hash value length equal to 512 bits.

In Table 4.10, we compare the obtained results for the two structures with their two lengths 256 and 512
bits. All these results are close to the expected values, demonstrating the high key sensitivity of the two

proposed structures.

4.3.2.5 Statistical analysis of diffusion effect

The optimal value of diffusion effect is obtained when flipping any bit in the message M causes a

change of each output bit in the hash value (binary format) with a probability of one half (50%) [79].

4.3. Performance analysis 115

Number of hits
0 1 2 3 4 5

number of rounds

ny
Length of hash values

256 1 1814 220 14 0 0 O
2 1815 224 8 1 0 O
4 1802 232 13 1 0 O
8 1787 244 17 0 0 O
16 1825 214 8 1 0 O
24 1824 213 11 0 0 O

512 1 1598 396 52 1 1 O
2 1552 439 52 5 0 O
4 1594 401 44 6 3 0
8 1607 371 67 3 0 0
16 1602 395 47 4 0 O
24 1600 359 46 2 1 0

TABLE 4.4 — Number of hits @ according to the number of rounds 7, of Structure 2 for 2048 tests

Length of hash values Number of hits @

0 1 2 3 4

Structure 1 256 1806 229 13 0 O
512 1572 419 51 6 O

Structure 2 256 1787 244 17 0 O
n,=8 512 1607 371 67 3 O
Structure 2 256 1824 213 11 0 O
n, =24 512 1600 399 46 2 1

TABLE 4.5 — Number of hits @ regarding the proposed structures with the two length of hash values for
2048 tests

To quantify the performance of the two proposed structures with their variants of hash output lengths

256, and 512 bits, we compute the six following statistical tests :
1. Minimum number of bits changed (bits).
2. Maximum number of bits changed (bits).
3. Mean number of bits changed (bits).
4. Mean changed probability (mean of HD;(%)) (%).
5. Standard variance of the changed bit number.
6. Standard variance of the changed probability (%).

and the obtained results given in Table 4.11 with 2048 tests demonstrate that the diffusion effect is close

to the expected one.

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
116 construction

Length of hash values Mean Mean/character Minimum Maximum

Structure 1 256 2715.39 84.85 1695 3831
512 5414.34 169.19 3911 7062

Structure 2 256 258451 80.76 1654 3759
n=8 512 5478.30 171.19 3874 6871
Structure 2 256 2665.24 83.28 1642 3784
n, =24 512 5233.34 163.54 3767 6606

TABLE 4.6 — Mean, mean/character, minimum, and maximum of the absolute difference d for the propo-
sed structures with the two lengths of hash values and J = 2048 tests

Message variants Hexadecimal hash values B; HD;%
Structure 1 1 d53280d1£7a652977e7943472ea34a343746f09f6c8ea084f0b9d5009fecf467 - -
2 2081268dee082e8b2a9cbaaa8156fad0595d6fbd83aca9a92a5c¢649d9e53a82¢e 139 54.29
3 9c0f5327df3f01a4311283caae6051a7780ca06d81d69dbfdfed57dec4a67db4 128 50.00
4 c0alb6e48295f620c2c42eled101023cbefectoeca5d505d3355604fb8bb2db0 142 55.46
5 e3edfd70412befe9b54c6d000b1116316112b98cf0b6432f68ddf0ec6b829fcf 133 51.95
6 29f9¢f09e3d0764b53c4a67a5450fc828fc78e12af51de43b6b77f978292¢db3 146 57.03
Average - 137.60 53.75
Structure 2 1 d3a15d8621f3fec42dca5abf7077091196275130fcef4e21a1521d81470245ae - -
n,=8 2 346dd0bf7ac39dd0992¢27b4fdef79e6aacda0d29733324ef3f26¢c 1cadd0b528 133 51.95
3 2ae7c91d1e34279fcc90fdee0678370280452922¢c786¢55c0d6e0fb08b539190 133 51.95
4 82ed73ae08e2efe8498d795a2fe685a730a5c2fdaec6dd8cc8ad2171d7ee662b 116 45.31
5 3bae189d094240cf7ca3a5tfcf98461f056d078b4bal0f76d092b146290632a26 137 53.51
6 145759fe7d944ed8adaal26d7d0107cef753261757812c56872a39f50d7818cc 121 47.26
Average - 128.00 50.00
Structure 2 1 £39457de07d62bea3fb35b5698ec008e004db03197b77a7¢30e821a6a8499119 - -
n, =24 2 cb5dc81199de92b10ebf54d31185f37676ba5ca36d077d91723dda34150275¢e1 140 54.68
3 9a0d013b3132aldb0ada8a5aa59cel1a49d38137760d7dc81cf91b77{f73545ac 140 54.68
4 ef73910049a7a86ace7103c7d8f537fdfab9eab130c81f0d264c2b370400f67b 122 47.65
5 2087a2da6dcf4187ad407532ce2207¢14673ff0e56d512fa35b76009bde698c6 128 50.00
6 006b3905b48157204b5a2¢0922cdb1a869a297e3add562abc442ff0a82dd94 1 143 55.85
Average - 134.60 52.57

TABLE 4.7 — Sensitivity of hash value to the message for the proposed structures with 256-bit length of
the hash values

Length of hash values B; HD;%

Structure 1 256 137.60 53.75
512 266.00 51.95

Structure 2 256 128.00 50.00
n-=8 512 204.40 39.92
Structure 2 256 134.60 52.57
n, =24 512 25420 49.64

TABLE 4.8 — A comparison of average B; and HD;(%) for message sensitivity

4.3. Performance analysis 117

Message variants Hexadecimal hash values B; HD;%
Structure 1 1 d53280d1f7a652977e7943472ea34a343746f09f6c8ea084f0b9d5009fecf467 - -
2 a3614a0d3d7d77cffbde676045f5abf4add0f46ec9ed08e293e2a96118bbb364 124 48.43
3 9cc68e614f3ce3161ece75dc8474d31f7a080fb30b7ed239334fd485cbS5e8ca 131 51.17
4 5a2502125bc452c8d7ac3c4f20deSeedf422219839bbfabf1a22923b2a87¢cb96 130 50.78
5 ac84f96d784967e¢643d750f9¢15184ab4e6a93c408bf5eca22585f99eb98fa3 1 146 57.03
Average - 13275 51.85
Structure 2 1 d3a15d8621f3fec42dcaSabf7077091f96275130fcef4e21a1521d81470245ae - -
n.=8 2 5e148302c03950dffe19911bd144c5713ed1c8750bee6c8324b338e9cb2635ed 121 47.26
3 f5d2f5ae0db1c67d5a85f47994ea894db129241c07a361a4c9cc1c90ecOfblcl 122 47.65
4 18eaeOeac4dcdedc01b8d55¢231119e1d5286bb2fa08f107d8al13db82e984feb 124 48.43
5 b56c8b1b210b34cb5a41948d7e1b16ba90614af2c1c4d64ee59e54790be40831 128 50.00
Average - 12375 4833
Structure 2 1 £39457de07d62bea3fb35b5698ec008e004db03197b77a7e30e821a6a8499119 - -
n, =24 2 d920e5ea9ae97a63fc75bb205733bc329464c5c67f868620d4c081321797f8¢c6 141 55.07
3 dce025ba7f9fb1b72d2754eeeatb696740d691fd3129744bf6£549¢25¢d8b158 115 44.92
4 c5e3e27affb359a4648039f8201¢029213eb9345f730cf66b3aef40c805b65db 119 46.48
5 182bb7760e4708c3464bbaed011154a9d903f06be1d73d9ea68dd3da7e9f7718 130 50.78
Average - 126.25 49.31

TABLE 4.9 — Sensitivity of hash value to the secret key for the proposed structures with 256-bit length of
hash values

Length of hash values B; HD;%

Structure 1 256 132.75 51.85
512 252.50 49.31

Structure 2 256 123.75 48.33
n,=8 512 265.50 51.85
Structure 2 256 126.25 49.31
n, =24 512 256.00 50.00

TABLE 4.10 — A comparison of average B; and HD;(%) for key sensitivity

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
118 construction

130 T T T T T 15

120}

110+

100 .

i
)
T

90

80

ASCIlI value

70r

Hexadecimal value

o
T

60

501

40r

golmzmre e - e g -
0 100 200 300 400 500 600 0 10 20 30 40 50 60 70

Character sequence index Hexadecimal code sequence index
(@ (b)
49 15
48.8
48.6
48.4
o 10F
=
g 482 E
E z
Z 48 £
3 £
< 478 g
3]
E
47.6
47.4
47.2
47 0
100 200 300 400 500 600 0 10 20 30 40 50 60 70
Character sequence index Hexadecimal code sequence index
© (d)

FIGURE 4.8 — Distribution of hash value for Structure 1 with 256-bit hash value length

Additionally, we can observe that the diffusion is extremely stable, whatever the hash value length and
the used structure, because both B and P are very close to the ideal values (B = 128 bits for 256-bit hash
value length, B = 256 bits for 512-bit hash value length, and P = 50% for all structures), while AB and
AP are very small. For different number of tests (J = 512, 1024, and so on), similar results are obtained
for the two structures with their different hash value lengths.

Also, to show that the values of B; are centered on the ideal values 128 bits and 256 bits (for u = 256 bits
and u = 512 bits, respectively), we draw the two histograms B; (see Fig. 4.9 and Fig. 4.10) of Structure

1. We obtain similar results for Structure 2.

4.3.3 Cryptanalysis

In the literature, exist known attacks, which can be applied to unkeyed or keyed hash functions.
Bertoni et al. [54] demonstrate the dependency of these attacks on the hash value length u for the unkeyed
hash function and on the hash value length u and the secret key length |K| for the keyed hash function.

4.3. Performance analysis 119

Length of hash values
256 512
Structure 1 B, 101 217
Biax 155 293
B 128.10 256.20
P 50.04 50.04
AB 7.96 11.20
AP 3.11 2.18
Structure 2 B, 99 214
n,=8 Biax 156 291
B 127.70 255.90
P 49.88 49.98
AB 8.22 11.37
AP 3.21 2.22
Structure 2 B, 99 215
n, =24 B, 154 296
B 127.88 255.53
P 49.95 49.90
AB 8.02 11.41
AP 3.13 2.23

TABLE 4.11 — Diffusion statistical results for the two proposed structures, with the two lengths of hash
values, and J = 2048 tests

120

100

Frequency distribution
[=2] o
o o
T

N
o
T

201

0
100 110 120 130 140 150 160
Bi value

FIGURE 4.9 — Histogram of B; for Structure 1 with 256-bit hash value length, and J = 2048 tests

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
120 construction

e
o

Frequency distribution
N w B a (2] ~
o o o o o o
T T T T T

=
o
T

0 L L L L L L L
210 220 230 240 250 260 270 280 290 300

Bi value

FIGURE 4.10 — Histogram of B; for Structure 1 with 512-bit hash value length, and J = 2048 tests

Normally, if the secret key is compromised, then the system is completely compromised (during the
key life time) [51, 120]. In the following, we demonstrate the robustness of the proposed two structures

against these known attacks.

4.3.3.1 Brute force attacks

The brute force attacks are on the hash value 4 and on the secret key K (namely, Exhaustive key
search attack). The attacks on the hash value can be ordered from the easiest one to the hardest one :

1. Collision resistance attack

2. Preimage attack and Second preimage attack

Exhaustive key search attack [118, 124]
For the two proposed structures, in the Exhaustive key search attack, the attacker needs 2/KI-1 = 215

tries. So, this attack is ineffective.

Collision resistance attack (Birthday attack) [122]
In this case, the attacker tries to find two messages (M, M"), which hit the same hash value 4. The smaller

expected workload required by an attacker to break the collision resistance property is approximately
24/2,

Preimage and Second preimage attacks [121]
In the Preimage attack, for a known value 4, the attacker tries to find its original message M : H(M) = h.

4.3. Performance analysis 121

In the Second preimage attack, the attacker knows the hash value 4 for a given message M, and tries to
find another message M’ that generates the same hash value &. For these two attacks, the smaller expected
workload required by an attacker to break the collision resistance property is approximately 2.

In conclusion, to realize the attack on the hash value for the two proposed structures with the minimum

2128

length used (u = 256 bits), the minimum workload required by an attacker is attempts, which is

infeasible.

4.3.3.2 Cryptanalytical attacks

The cryptanalytical attacks try to find specific weaknesses in the structure of a hash function, and
perform on it some attacks, with an amount of effort less than the brute force attack. In the following
paragraphs, we consider the two most common cryptanalytic attacks of the literature on the proposed
hash functions [125, 153] :

1. Length extension attack (Padding attack)
2. Meet-in-the-middle preimage attack

3. Joux attack (Multi-collision attack)

4. Long message second preimage attack

5

. Herding attack

Length extension attack [126, 127]
In our proposed hash functions, the secret key K is not pre-pended to the message M, but used as an input

for the CS to produce the necessary supplies to CNN. Then, such an attack cannot be conducted.

Meet-in-the-middle preimage attack (MITM)[129, 130]

The Meet-in-the-middle preimage attack is a generic cryptanalytic approach, originally applied to the
cryptographic systems based on block ciphers (chosen-plaintext attack). In 2008, Aoki and Sasaki [130]
noticed that the MITM attack could be applied to hash functions, to find preimage, second preimage, or
collision for intermediate hash chaining values instead of the hash value /. This attack has successfully
broken several designs. As our hash functions are preimage resistant, the minimum effort (with u = 256
bits) to succeed the Meet-in-the-middle attack with probability 0.632 is 24/2 = 2128 tries.

Joux attack [136]

Joux claimed that, using ¢ calls, we can build 2’-collision for a given hash function H. Furthermore, Joux
observed that, for two independent hash functions H and G and a given message M with H(M) = h and
G(M) = g, the concatenation of the two obtained hash values (k||g) is not more secure against collision
attacks, preimage resistance attack, and second preimage attack than any of the two hash functions taken

separately.

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge

122 construction
Message Structure 1 Structure 2 - n, =8 Structure 2 - n, = 24
length HT HTH NCpB HT HTH NCpB HT HTH NCpB

513 0.0058 27.41 124.33 0.0019 104.81 30.24 0.0029 100.65 28.20
1024 0.0102 49.25 60.68 0.0039 115.78 2445 0.0039 72.10 51.78
2048 0.0190 36.90 93.56 0.0078 11590 24.43 0.0087 102.86 27.08
4096 0.0336 52.08 53.28 0.0156 104.67 33.38 0.0175 92.64 3527
10* 0.0849 48.84 63.51 0.0371 12475 22.44 0.0419 101.10 30.71
108 8.2666 55.05 50.30 3.5986 130.45 21.21 4.0537 11270 24.56

TABLE 4.12 — Hashing time, hashing throughput, and number of needed cycles to hash one Byte for
Structures 1 and 2 with 256-bit length hash values and 2048 random tests

Long message second preimage and Herding attacks [137]

For the Long message second preimage attack [138], the attacker can find a second preimage for a
message M of 22 blocks with b x 24/2+1 - 2u=b+1 effort. For the Herding attack [139], the needed work
by the attacker to find 2 collisions is 24711 4-24/2+/242 ¢ 5 pu/2+1,

4.3.4 Speed analysis

We estimate the computing performance of the two proposed structures with their hash value lengths
for different message lengths. Then, the average hashing throughput HTH (MBytes/second) and the
needed number of cycles to hash one Byte NCpB (cycles/Byte) are calculated as follows :

|M|(MBytes)
HTH (MB = 4.12
CPUspeed(Hz)
NCpB les/B = 4.1
CpB (cycles/Byte) HTH(Byte)s) (4.13)

where HT (second) is the average hashing time.

The calculation is done in C code, using a computer with a 2.9 GHZ Intel core 17-4910MQ CPU with 4
GB of RAM running Ubuntu Linux 14.04.1 (64-bit) operating system. We give in Tables 4.12, and 4.13,
the average HT, the average HTH, and the average NCpB for the two structures with their hash value
lengths. When the overhead related to the structures becomes negligible (from 10000 data bytes), we
observe that whatever the length of the hash values (256 or 512 bits), the hash throughput of Structure
2 is just over twice compared to Structure 1. Also, we remark that whatever the structure, the hash
throughput with 256-bit hash value length (in this case r = 1088 bits) is approximately twice with 512-
bit hash value length (in this case r = 576 bits). Indeed, when r is increased the hash time of the absorbing
phase is decreased. Additionally, we show in Fig. 4.11 the HTH for the two structures with their hash

value lengths.

4.3. Performance analysis 123

Message Structure 1 Structure 2 - n, =8 Structure 2 - n, =24

length HT HTH NCpB HT HTH NCpB HT HTH NCpB
513 0.0097 19.68 172.47 0.0043 53.16 54.61 0.0043 41.65 75.04
1024 0.0180 26.93 103.42 0.0073 52.42 57.64 0.0087 42.87 78.30
2048 0.0336 26.84 107.66 0.0141 65.65 42.32 0.0161 52.71 57.99
4096 0.0698 28.30 98.48 0.0278 56.87 55.19 0.0336 54.85 54.32
10 0.1621 27.57 101.87 0.0712 65.50 42.49 0.0761 58.02 47.82
10° 15.6166 29.53 93.67 6.6293 68.97 40.12 7.8032 59.95 46.16

TABLE 4.13 — Hashing time, hashing throughput, and number of needed cycles to hash one Byte for
Structures 1 and 2 with 512-bit length hash values and 2048 random tests

140 —————————
—6— S1-256 -
- _
120l S1-512 |
—— S2-256/r=8 | |
—*%— S2-256/r=24
2 100+ S2-512/r=8 | A
=3 —<— S2-512/r=24
[a]
= .
>
Q.
<
g
© 60r
e
|_
<
<
S 40t
20+
02“ISH“I4H“I5 . 6
10 10 10 10 10

Data Length [Bytes]

FIGURE 4.11 — Comparison of HTH for Structure 1 and Structure 2 - n, = 8/24 rounds with 256/512-bit
hash output lengths

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge

124 construction
Hash function Number of hits @ Absolute difference d
0 1 2 3 Mean Mean/character Minimum Maximum
Structure 1 1806 229 13 0 2715.39 84.85 1695 3831
Structure 2 -n, =8 1787 244 17 O 2584.51 80.76 1654 3759
Structure 2 -n, =24 1824 213 11 O 2665.24 83.28 1642 3784
SHA3-256 [7] 1818 211 19 O 2776.16 86.75 1686 3895

TABLE 4.14 — Comparison in terms of collision resistance of the proposed structures with the standard
SHA-3 for 256-bit hash values length

Hash function Number of hits @ Absolute difference d

0 1 2 3 4 Mean Mean/character Minimum Maximum
Structure 1 1572 419 51 6 O 5414.34 169.19 3911 7062
Structure2-n,=8 1607 371 67 3 O 5478.30 171.19 3874 6871
Structure2-n,=24 1600 399 46 2 1 5233.34 163.54 3767 6606
SHA3-512 [7] 1593 418 35 2 O 5502.66 171.95 3933 7106

TABLE 4.15 — Comparison in terms of collision resistance of the proposed structures with the standard
SHA-3 for 512-bit hash values length

4.3.5 Performance comparison with the standard hash function SHA-3

We give below the computing performance comparison of our proposed hash functions with the stan-
dard hash function SHA-3 in terms of robustness and speed. To the best of our knowledge, we mention
that we do not find until now any work about chaos-based hash function using Sponge construction in
the literature. In Tables 4.14, 4.15, 4.16, 4.17, and 4.18, we compare the obtained statistical results (colli-
sion resistance, diffusion, and message sensitivity) of our proposed chaos-based hash functions with the
standard SHA-3 for the two hash output lengths 256 and 512 bits. After carefully analyzing the values of
these tables, we can conclude that all our obtained statistical results are close to those of standard SHA-3.
In Table 4.19, we give a comparison in terms of the needed number of cycles to hash one byte (NCpB)
of the proposed chaos-based hash functions with the standard SHA-3 for 2048 tests. We observe that
globally the performance of SHA-3 in terms of NCpB is better than that obtained by the proposed chaos-
based hash functions. For example, for the long messages (1 MB), the NCpB obtained by SHA-3, wha-
tever the hash length value, is 7 times less than the NCpB of the structure 1, but is only less than 3 times
of the NCpB obtained by Structure 2 - n, = 8. However, our simulations were done in sequential im-
plementation without optimization. So, with a parallel implementation (with 50 output neurons) using
optimized calculation, the performance computing will be at least similar to that of SHA-3. It can be even
better than that of SHA-3 when using Structure 2 - 1, = 8.

4.3. Performance analysis 125

Hash function Buin Buax B P(%) AB AP %
Structure 1 101 155 128.10 50.04 796 3.11
Structure 2-n,=8 99 156 127.70 49.88 8.22 3.21
Structure 2 -n, =24 99 154 127.88 4995 8.02 3.13
SHA3-256 [7] 101 153 128.05 50.02 8.01 3.13

TABLE 4.16 — Comparison of the statistical results of diffusion for the two proposed structures with the
standard SHA-3 for 256-bit hash values length

Hash function Buin Bmax B P(%) AB AP%
Structure 1 217 293 25620 50.04 11.20 2.18
Structure 2 -n, =8 214 291 25590 4998 11.37 2.22
Structure 2 -n, =24 215 296 25553 4990 1141 223
SHA3-512 [7] 221 288 255.82 4996 11.08 2.16

TABLE 4.17 — Comparison of the statistical results of diffusion for the two proposed structures with the
standard SHA-3 for 512-bit hash values length

Length of hash values B; HD;%

Structure 1 256 137.60 53.75
512 266.00 51.95

Structure 2 256 128.00 50.00
n-=8 512 204.40 39.92
Structure 2 256 134.60 52.57
n, =24 512 25420 49.64
SHA3-512 [7] 256 124.00 48.43
512 248.00 48.43

TABLE 4.18 — Comparison of average B; and HD;(%) for message sensitivity of the two proposed struc-
tures with the standard SHA-3 for 256 and 512 bits hash values length

Message length Structure 1 Structure 2 - n, =8 Structure 2 - n, =24 SHA-3

256 512 256 512 256 512 256 512
513 12433 17247 30.24 54.61 28.20 75.04 13.53 59.39
1024 60.68 103.42 24.45 57.64 51.78 78.30 32.12 48.83
2048 93.56 107.66 24.43 42.32 27.08 57.99 27.10 41.22
4096 53.28 9848 33.38 55.19 35.27 54.32 15.92 13.82
104 63.51 101.87 22.44 42.49 30.71 47.82 13.28 13.43
108 50.30 93.67 21.21 40.12 24.56 46.16 6.92 1295

TABLE 4.19 — Comparison of NCpB of the proposed structures with the standard SHA-3 for 256 and 512
bits hash values length

Chapter 4 — Design and security analysis of keyed chaotic neural network hash functions based on the sponge
126 construction

4.4 Conclusion

We designed, implemented and analyzed the security and computing performance of the two pro-
posed keyed CNN hash functions based on Sponge construction with two hash output lengths 256 and
512 bits. The obtained results, in terms of statistical analyses and cryptanalytical attacks, are similar
to those obtained by the standard SHA-3. For the computing performance, the obtained results of our
proposed structures are less than the standard SHA-3 due to the sequential implementation. In parallel
implementation, using 50 output neurons, the computing performance of Structure 2 - n, = 8 will be
better than the standard SHA-3. Then, the proposed keyed-Sponge CNN hash functions can be used in
data integrity, message authentication, and digital signature applications. Our future work will focus on
the XOFs, based on the the keyed-Sponge CNN (CNN-SHAKE), where the hash output length will be
variable. Also, we will implement a new duplex construction based on CNN (CNN-DUPLEX) that will
be used in authenticated encryption application.

Chapter 5
Duplex construction-based chaotic neural
networks for authenticated encryption

5.1 Work under construction

In this chapter, we are currently working on the design of a CNN-DUPLEX structure (see Fig. 5.1)
which allows the alternation of input and output blocks at the same rate as the Sponge construction,
similar to a full-duplex communication (one call to the chaotic function per input block) [63, 152]. This
work will be adapted for using in Authenticated Encryption with Associated Data (AEAD) applications,

and will be published as a new research paper in a journal with impact factor.

L

A
v

\ Message M | T T >
M: Ms
>
: :"""""" ur B R B [I VERR
| ! |
| | |
v o (pad) t | (Pad) % !
! ! |
|] I
L L i
- > > —>
rllo : : A 4 : : A\ "4 |
| |
| Hiyt hi| f HMz | hz| f HM3
outer Lo P i
inner | : ! : :
|0 T > T > —>
! ! _/ ro N |
| |
|
| C N B S
Initialization phase Duplexing phase Duplexing phase Duplexing phase

IV: Initial Value, r: rate, c: capacity, f: function

FIGURE 5.1 — General structure of the Duplex construction

127

CONCLUSIONS AND PERSPECTIVES

In this thesis, we studied the problem of designing, implementing, and analyzing the secure keyed
chaotic neural network (KCNN) hash functions based on the Merkle-Damgard and Sponge constructions.
These proposed KCNN hash functions are suitable for data integrity, message authentication, digital si-

gnature and authenticated encryption.

In chapter 1, we presented the fundamental concepts of hash function primitives. We began by intro-
ducing the foundation principles and basic concepts of hash functions as well as the two major categories
of modern unkeyed and keyed hash functions. First, we described the standard SHA-2 that was based on
the Merkle-Damgard construction. Then, we presented the standard SHA-3 that was based on the Sponge

construction.

In chapter 2, we introduced the main characteristics of chaotic maps and neural networks that are
suitable for building new chaotic neural network hash functions. These main characteristics are sensiti-
vity to minute changes in initial conditions, random-like behavior, non-linearity, data diffusion, one-way,
and parallel implementation. Then, we provided the state-of-the-art versions of certain chaos-based hash

functions in the literature.

In Chapter 3, we presented our first contribution. It consists of realizing two new KCNN hash func-
tions based on the Merkle-Damgard construction. First, we introduced the necessary padding rule of the
input message used in our proposed KCNN hash functions. Second, we realized the three output schemes
CNN-Matyas-Meyer-Oseas, Modified CNN-Matyas-Meyer-Oseas, and CNN-Miyaguchi-Preneel that pre-
cede the generation of the final output hash value 4. Third, we explained the proposed chaotic system
based on a Discrete Skew Tent map (DSTmap) with one recursive cell (delay equal to 1) running over a
finite precision (N = 32). The chaotic system takes a secret key K with length equal to 160 bits to generate
the necessary Key Stream (KS) that supply the layers of CNN. Then, we proposed the first structure of
keyed hash functions based on a two-layer CNN. Each layer is composed of eight neurons, where each
one uses a chaotic activation function. The chaotic activation function consists of two coupled chaotic
maps : a DSTmap and a DPWLCmap.

129

130 Conclusions and Perspectives

In order to increase the hash throughput while keeping the necessary security requirements, we repla-
ced the output layer neural network in the two-layer CNN by a combination of non-linear functions used
in the standard SHA-2. These non-linear functions are iterated 7, times in order to achieve the security
requirements. After several experimental tests, we chose the number of rounds »n, equal to 24 for more

robustness and equal to 8 for a compromise between robustness and hash throughput.

Finally, we studied the performance of the two proposed keyed hash functions in terms of security
(statistical tests, cryptanalytical attacks) and speed and, subsequently, compared the obtained results with

other chaos-based hash functions from the available literature, as well as with the standard SHA-2.

In Chapter 4, we presented our second contribution. It consists of designing and implementing, in a
secure manner, two new KCNN hash functions based on the Sponge construction. First, we introduced
the general structure of these two proposed keyed-Sponge CNN hash functions (KSCNN), characterized
by the bitrate r, the capacity c, and the intermediate hash values of 1600-bit length. These KSCNN utilize
the same chaotic system as described in chapter 3. Second, we presented the three types of keyed-Sponge
functions such as Outer keyed-Sponge (OKS), Inner keyed-Sponge (/KS), and Full-State Keyed Sponge
(FKS). Third, we described in detail the first proposed structure based on a two-layer CNN and the second
structure based on a one-layer CNN, followed by a combination of non-linear functions. For the second
KSCNN, after several experiments, we chose a number of rounds n, equal to 8 and 24 rounds for the
same reasons as elucidated in chapter 3. The two KSCNN hash functions are composed of three phases :
Initialization phase, Absorbing phase, and Squeezing phase. In the initialization phase, we padded the
input message M of arbitrary length to a bit-string with a length that is a multiple of the bitrate r. In the
absorbing phase, the entire message is absorbed, message block by message block of r-bit size. In the
squeezing phase, we squeezed out the hash value 4 when the desired length hash value is greater than
1600 bits.

The input layer of the two proposed KSCNN is composed of five neurons while the output layer of
the first structure is composed of eights neurons. For the two proposed KSCNN, we realized two variants
of hash value lengths : 256 bits (r = 1088, ¢ = 512) and 512 bits (r = 576, ¢ = 1024). To produce the
intermediate hash values of 1600 bits, the output layer of each structure is iterated seven times. Finally,
we provide the statistical and cryptanalytical analysis, and the computing performance measures of the
proposed KSCNN. We observed that the obtained performance is close to those of the standard SHA-3.

In Chapter 5, we worked on the structure of the KCNN-DUPLEX, integrating the proposed KCNN-
Sponge hash functions for use in an Authenticated Encryption with Associated Data (AEAD) application.

Conclusions and Perspectives 131

In future studies, we plan to further develop the design of the proposed KCNN-DUPLEX schemes
and to analyze their performance. Moreover, we also plan to realize a parallel implementation of the
proposed hash functions and to design lightweight CNN hash functions. In addition, we intend to realize
a library of hash functions based on the proposed structures. Furthermore, a user guide to help developers

implement their applications under the proposed chaos-based hash functions will also be developed.

Appendix A

Synthese des travaux réalisés : Conception,
mise en ceuvre et analyse de fonctions de
hachage avec clé basées sur des cartes

chaotiques et des réseaux neuronaux

A.1 Contexte et objectifs

Les fonctions de hachage sont des primitives les plus utiles en cryptographie. En effet, elles jouent
un réle important dans 1’intégrité des données, 1’authentification des messages, la signature numérique
et le chiffrement authentifié. Une fonction de hachage calcule une empreinte de taille fixe relativement
petite, a partir d’un message de taille arbitraire, nettement plus grande. Cette empreinte, appelée aussi
condensé ou simplement haché, dépend de tous les bits du message et est utilisée comme représentant
compact du message concerné. Une fonction de hachage cryptographique H doit vérifier au moins les

deux propriétés d’implantation suivantes :

1. Compression : H mappe un message d’entrée M de longueur arbitraire a un haché 4 de longueur

fixe.

2. Simplicité de calculs : étant donnée la fonction de hachage H et un message d’entrée M, la valeur
H(M) doit étre facile a calculer.

En plus, H doit vérifier au moins les trois propriétés cryptographiques suivantes :

1. Résistance a la pré-image : étant donné un haché h choisi aléatoirement, il est impossible de

trouver un message M tel que H(M) = h.

133

Synthese des travaux réalisés : Conception, mise en ceuvre et analyse de fonctions de hachage avec clé basées sur
134 des cartes chaotiques et des réseaux neuronaux

2. Résistance a la seconde pré-image : étant donné un message M choisi aléatoirement, il est im-

possible de trouver un message M’ tel que H(M) = H (M').

3. Collision : il est informatiquement impossible de trouver deux messages M, M, tels que M # M’
et HM)=H (M').

Dans la littérature, de nombreuses structures sont utilisées pour construire différentes fonctions de ha-
chage, telles que la structure de Merkle-Ddamgard utilisée dans le standard SHA-2, la structure d’Eponge
utilisée dans le standard SHA-3, et d’autres structures non-standardisées comme Wide Pipe, Fast Wide
Pipe, et Haifa. D’ autre part, en ajoutant une clé secrete, les fonctions de hachage sans clé deviennent des
fonctions de hachage avec clé. Ces fonctions de hachage avec clé sont surtout utilisées dans 1’authentifi-
cation des données. Il existe plusieurs méthodes pour intégrer la clé secrete, mais la plus connue est celle
qui concatene la clé secrete avec le message M, puis réalise le hachage de I’ensemble KIIM.

Le standard actuel est SHA-2, mais récemment, certaines faiblesses ont pu étre trouvées. Pour cette rai-
son, un concours public a été lancé en 2008 afin de promouvoir un nouveau standard. En 2015, la fonction
KECCAK a gagné cette compétition et elle est ainsi devenue la nouvelle norme, nommée SHA-3.

A partir de 2002, plusieurs travaux de recherche sont apparus sur la réalisation de fonctions de hachage
cryptographique basées sur des cartes chaotiques et des réseaux neuronaux. La combinaison des cartes
chaotiques et des réseaux neuronaux permettent intrinsequement d’augmenter le degré de sécurité des
fonctions de hachage. En effet, un systeme chaotique est une fonction non-linéaire qui se caractérise
par des caractéristiques importantes pour la sécurité, telles qu'une sensibilité aux conditions initiales, et
des propriétés statistiques similaires aux systemes pseudo-aléatoires. D’ autre part, les réseaux neuronaux
ont des propriétés appropriées pour construire des fonctions de hachage telles qu’une non-linéarité, une
implémentation parallele, une diffusion efficace de données, une fonction de compression a sens unique
et une flexibilité significative.

Notre apport dans cette these concerne la conception, la réalisation et I’analyse de fonctions de hachage
basées sur des cartes chaotiques et des réseaux neuronaux s’appuyant sur la construction de Merkle-

Déamgard et celle d’Eponge.

A.2 Contributions

A.2.1 1 ere contribution : conception, mise en ceuvre et analyse de fonctions de hachage
basées sur des cartes chaotiques et des réseaux neuronaux utilisant la construction
de Merkle-Damgard

La construction de Merkle-Ddamgard est un algorithme d’extension de domaine qui a été largement
utilisé dans la conception de nombreux algorithmes connus de hachage de la premiére génération, tels
que MD5, SHA-I et SHA-2. Son succes venait de sa preuve de sécurité simple et efficace. En particulier,

il est possible de prouver que si la fonction de compression est résistante aux collisions, alors ca sera le

A.2. Contributions 135

cas aussi pour la fonction de hachage elle-mé&me construite a partir de la méme structure.

La figure A.1, montre la structure de la construction Merkle-Ddmgard ou le message M, aprés avoir
été préparé (opération pad), est divisé en ¢ blocs M;,(j = 1,...,q) de taille fixe |M;| bits chacun (dans
notre cas, nous avons choisi [M;| = 2048 bits). La fonction de compression de la structure Merkle-
Damgard est représentée par la fonction C qui prend en entrée un couple de deux variables la valeur d’état
hi,(i=0,...,q—1) (appelée variable de chainage ou haché intermédiaire) et le bloc de message M;, (j =
1,...,q) de taille 2048 bits. Pour i=0, h0 est une valeur initiale, notée IV (pour Initial Value en anglais).
Pour chaque couple d’entrée (h;,M;) oui=0,...,q—1et j=1,...,q, la fonction de compression C,
calcule de maniére itérative une nouvelle variable d’état h;, (j = 1,...,q) de taille 256 bits.

Une fois tous les blocs du message traité€s, la dernicre valeur de chainage h, désignera le haché du
message M. Il est aussi possible d’appliquer a &, une fonction de finalisation O afin d’obtenir la valeur
du haché final A.

Message
2048 bits M
M: Mz | e Mg | PL

l l l Output

function

ho h1 h2
WV —» ¢ /> ¢ —> . Hash value h
HM1 HM:

P: Padding, L: Length of the message M, C: Message compression function

FIGURE A.1 — Construction de la structure de Merkle-Dédmgard

Rembourrage (Padding)

Pour permettre I’utilisation d’un message d’entrée M de longueur arbitraire, il suffit de rajouter a cette
dernieére une série de bits pour la rendre divisible par 2048. Cette opération est appelée rembourrage
(padding en anglais) qui sert a rendre la longueur du message M multiple de la taille |;|. Le rembour-
rage, connu sous le nom "MD-Strengthening", doit étre injectif pour éviter les collisions qui réduisent le
niveau de sécurité de la fonction de hachage par des attaques statistiques. Le rembourrage utilisé dans
cette partie de la these consiste a ajouter a la fin du message M, une série de zéros de taille v suivis par

64 bits représentant la valeur de la longueur du message initial. Le nombre de bits de v est donné par

Synthese des travaux réalisés : Conception, mise en ceuvre et analyse de fonctions de hachage avec clé basées sur
136 des cartes chaotiques et des réseaux neuronaux

I’équation suivante :
v =|M;| —mod[(L+ 64),|M;] (A.1)

Dans la figure A.2, nous représentons les trois schémas de sortie des fonctions de compression proposées
basées CNN (Chaotic Neural Networks). Ces schemes sont, Matyas-Meyer-Oseas, Matyas-Meyer-Oseas
modifié, et Miyaguchi-Preneel. Le systeme chaotique utilisé est donné dans la figure A.3. Il est formé
d’une carte chaotique Skew Tent discrete (DSTmap) avec une seule cellule récursive. Deux structures de
CNN sont proposées, une structure avec deux couches CNN et une structure avec une couche CNN suivie

d’une combinaison de fonctions non-linéaires.

U'Blocki ¥ _ U'Blocki U'Blocki ¥ _
| | |
I : I ; -
Chaotic Chaotic ' [Chaotic
. I . IV . | »
ki1 " System ki 5 " system kM1 " system
I I I
KMi KMi
a) CNN-Matyas-Meyer-Oseas b) Modified CNN-Matyas-Meyer-Oseas ¢) CNN-Miyaguchi-Preneel

FIGURE A.2 — Trois schémas de sortie de fonctions de compression Merkle-Ddamgard proposées basées
sur CNN

A.2.1.1 Fonction de hachage chaotique CNN a clé construite avec deux couches

Dans cette structure, chaque couche est composée de huit neurones (voir Fig. A.4), dont chacun uti-
lise une fonction d’activation chaotique détaillée en figure A.5. Cette dernieére comprend une carte Skew
Tent discrete (DSTmap) et une carte Piecewise Linear Chaotic discrete (DPWLCmap). Pour maintenir le
caractere aléatoire de la sortie et avant la génération du premier échantillon utile, chacune de ces cartes
chaotiques est itérée au départ 30 fois.

Dans le cas de schéma de sortie MP par exemple, le systeme chaotique de chaque block; utilise une
clé d’itération d’entrée notée par KM;, (i = 1,...,q— 1), qui est le résultat de I’addition modulo 2 de la

valeur de la fonction de hachage HM;, du bloc du message M; et de la clé d’itération du bloc précédent

A.2. Contributions 137

KSsi(n)

\)_(/< kSsi(n-1) ‘

FIGURE A.3 - La structure du systéme chaotique

KM;_;. La clé secrete K, de taille 160 bits, est le KM et est utilisé par le premier bloc M; du message
d’entrée.
Le processus de calcul effectué dans les neurones de la couche de sortie est similaire a celui effectué

dans les neurones de la couche d’entrée.

A.2.1.2 Fonction de hachage chaotique CNN a clé construite avec une couche neuronal suivie par

une couche formée d’une combinaison des fonctions non-linéaires

Afin d’augmenter le débit de hachage tout en respectant les exigences de sécurité nécessaires, nous
avons remplacé la couche de sortie, de la structure précédente a deux couches, par une combinaison de
fonctions non linéaires utilisées dans le standard SHA-2 (voir Fig. A.6). Ces fonctions non linéaires sont
itérées n, fois pour répondre aux exigences de sécurité. Aprés de nombreux tests expérimentaux, nous
avons choisi un nombre d’itérations égal a 24 pour plus de sécurité et 8 pour un compromis entre sécurité
et débit de hachage.

Analyse des Performances

Nous avons évalué les performances de deux fonctions de hachage a clé proposées, en termes de sécurité
(tests statistiques, attaques cryptanalytiques) et de débit. Ci-dessous nous présentons quelques résultats
obtenus par les deux structures proposées. Dans les Tables A.1 et A.2, nous donnons respectivement le
nombre de collisions w (hits) et les résultats statiques de la diffusion, pour les trois schémas de sortie
utilisés. Dans la figure A.7, nous montrons les distributions du haché du message entier et du message
constant "00...0", pour la premiere structure avec le schéma de sortie MP. Enfin, nous avons comparé les

résultats obtenus a d’autres fonctions de hachage de la littérature, ainsi qu’au standard SHA-2.

Synthese des travaux réalisés : Conception, mise en ceuvre et analyse de fonctions de hachage avec clé basées sur
138 des cartes chaotiques et des réseaux neuronaux

KM

FIGURE A.4 — Fonction de hachage CNN a clé, construite avec deux couches et utilise un schéma de
sortie MP

A.2.2 2eme contribution : conception, mise en ceuvre et analyse de fonctions de hachage
avec clé basées sur des cartes chaotiques et des réseaux neuronaux en utilisant la
construction d’Eponge

La construction Eponge est capable de produire des sorties de taille arbitraire. Contrairement 2 la
construction Merkle-Dédmgard qui est basée sur une fonction de compression, la construction Eponge
repose sur une transformation itérée de permutations opérées sur des blocs de taille fixe b = 1600 bits. Le
hachage d’un message M se déroule de la maniere suivante. On commence par rembourrer le message
avec un rembourrage injectif et on découpe ensuite le résultat de cette opération en blocs My, ...,M, de
taille fixe. Ensuite, les b bits de 1’état interne sont initialisés avec la valeur 0. La procédure se déroule en

deux étapes successives (voir Fig. A.8) :

1. Etape absorption : Dans cette étape, les blocs sont absorbés de facon itérative. Le premier bloc

A.2. Contributions 139

[Pac Wisk Qles

Psks 1 Wisk+1

Psk+2 _ WIsk+2 A S

|+ > DSTmap
_P8k+3 Wisk+3 A
Bl __* Qlk.2

Parg _ Wlskea A l

Pacss \ |+ » DPWLCmap
Wilsk+5 \ T 7y

Psk+6
Wilsk+6

Psk+7 Wilsk+7

FIGURE A.5 — Structure détaillée du k™ neurone de la couche d’entrée de deux fonctions de hachage
proposées

M est combiné a I’aide d’'un OU exclusif avec 1’état interne. La transformation f est ensuite
appliquée au résultat de cette opération. Puis, le deuxieme bloc de message M, est ajouté a I’état
interne et la transformation f est de nouveau appelée. La méme procédure est répétée jusqu’a ce

que tous les blocs de message soient absorbés.

2. Etape d’essorage : Pendant cette étape, des blocs Z; sont extraits a partir de 1’état interne i comme

indiqué sur la figure A.8. La taille des blocs Z; extraits, peut étre choisie par 1’utilisateur.

En général, les fonctions de hachage basées Sponge utilisant une clé, integrent celle-ci soit dans la valeur
initiale /V (Inner Keyed Sponge IKS), soit dans le message d’entrée (Outer Keyed Sponge OKS), soit
dans la valeur initiale avec absorption de b bits (Full-state Keyed Sponge FKS).

A.2.2.1 Fonction de hachage chaotique CNN a clé basée sponge construite avec deux couches

La figure A.9, représente I’architecture générale basée sponge de deux structures CNN de fonctions

de hachage a clé proposées. La premiére structure est composée de deux couches neuronales.

Synthese des travaux réalisés : Conception, mise en ceuvre et analyse de fonctions de hachage avec clé basées sur
140 des cartes chaotiques et des réseaux neuronaux

Do e ﬁ_’ Ho
D1 ™y H1
D2 ™y H2
Jan ™y

D3 \‘ ;/ Hs
D4 \ Ha
Ds ™y Hs
Ds ™ He
D7 LA l v YVvY v R H7

L e | [52] | [maj] |50]

Y Y Y Y
VAANIVEA VAANEVAA)
U T\ U T\

FIGURE A.6 — Les fonctions non linéaires

A.2.2.2 Fonction de hachage chaotique CNN a clé basée sponge construite par une couche de
réseaux neuronaux suivie par une couche comprenant une combinaison des fonctions

non-linéaires

Comme dans le cas de la construction de Merkle-Damgard, et pour les mémes raisons citées plus
haut, nous avons utilisé comme couche de sortie une combinaison de fonctions non linéaires pas tres

différentes de celles utilisées dans le standard SHA-2.

Analyse des Performances

Nous avons estimé les performances de deux fonctions de hachage a clé proposées, en termes de sécurité
et de débit, et nous présentons ci-dessous quelques résultats obtenus par les deux structures proposées.
Dans les Tables A.3 et A.4, nous donnons le nombre de collisions w (hits) et les résultats statistiques de
la diffusion respectivement pour la premiere structure avec les deux longueurs de hachage. Dans la figure
A.10, nous montrons les distributions du haché du message entier et du message constant "00...0", pour
la premiére structure avec une longueur de hachage égale a 512. Enfin, nous avons comparé les résultats

obtenus a d’autres fonctions de hachage de la littérature, ainsi qu’au standard SHA-3.

A.2. Contributions 141

Output schemes Number of hits ®

0 1 2 3

Structure 1 MMO 1833 200 15 O
MMMO 1799 237 12 0

MP 1803 232 13 0

Structure 2 MMO 1825 207 15 1
n,=8 MMMO 1800 237 10 1
MP 1817 215 16 O

Structure 2 MMO 1817 225 6 O
n, =24 MMMO 1810 230 7 1
MP 1815 226 7 O

TABLE A.1 — Nombre de collusion @ obtenus par les deux structures proposées avec les trois schémas
de sortie pour 2048 tests

130 T T T T T 15
o 10
=2
] 90 S
E g
Z 80 £
-
< 70p g
3]
I 5
60
50
40
gl e o e g et s e et e ey o))))))
0 100 200 300 400 500 600 0 10 20 30 40 50 60 70
Character sequence index Hexadecimal code sequence index
(@ (b)
49 T T T T T 15
48.8
48.6
48.4
o 10p< x X
=
g 482 g
E E
= 48 £
<478 g
)
T 5
47.6
474
47.2
47 0 . 5
100 200 300 400 500 600 0 10 20 30 40 50 60 70
Character sequence index Hexadecimal code sequence index
© (d)

FIGURE A.7 — Distributions du haché pour le message entier et le message constant pour la structure 1
avec le schéma de sortie MP

Synthese des travaux réalisés : Conception, mise en ceuvre et analyse de fonctions de hachage avec clé basées sur
142 des cartes chaotiques et des réseaux neuronaux

Output schemes
MMO MMMO MP
Structure1 B,,;, 98 98 100
Binax 158 158 154
B 127.98 12790 127.95
P 49.99 49.96 49.98
AB 8.01 8.12 8.03
AP 3.13 3.17 3.13

Structure 2 B, 99 98 103
n-=8 Bnax 157 154 157
B 128.31 128.18 127.97
P 50.12 50.07 49.99
m
p

AB 8.03 8.17 8.01

AP 3.13 3.19 3.13

Structure 2 B, 101 103 100
n, =24 Biax 155 156 157

B 127.81 127.70 127.88
49.92 49.88 49.95
AB 8.23 8.06 7.94

AP 3.21 3.15 3.10

TABLE A.2 — Résultats statistiques de la diffusion pour les deux structures proposées

| Message M |

S ——

hash value h
Pad: “10..01”

Divide M| |01] | Pad

|
|
M: M: M i
|

10*1 into g blocks
| >
| r r r
Vo, — | =
:
) 4) 4
! N ! » »
— > D> > > .
r 0 I I
I I
I f I
HMo! ho f HM:1 h1 f HMg-1 hq-1 HMd hq f HMg+1 hq+1 f HMg+2 hq+2
outer : :
inner | R |
c 0 i > > » i > > » ..
L | I
I
I

. | .
Initialization phase Absorbing phase | Squeezing phase

IV: Initial Value, r: rate, c: capacity, f: function

FIGURE A.8 — Schéma général de la construction Eponge

A.2. Contributions 143

Length of hash values Number of hits ®

0 1 2 3 4

Structure 1 256 1806 229 13 0 O
512 1572 419 51 6 O

Structure 2 256 1787 244 17 0 O
n,=8 512 1607 371 67 3 0
Structure 2 256 1824 213 11 0 O
n, =24 512 1600 399 46 2 1

TABLE A.3 — Nombre de collusions w obtenues pour les deux structures proposées avec les deux lon-
gueurs de hachage pour 2048 tests

Length of hash values
256 512
Structure 1 B, 101 217
Biux 155 293
B 128.10 256.20
P 50.04 50.04
AB 7.96 11.20
AP 3.11 2.18
Structure 2 B, 99 214
n.=8 Biax 156 291
B 127.70 255.90
P 49.88 49.98
AB 8.22 11.37
AP 3.21 2.22
Structure 2 B, 99 215
n, =24 Bax 154 296
B 127.88 255.53
P 49.95 49.90
AB 8.02 11.41
AP 3.13 2.23

TABLE A.4 — Résultats statistiques de la diffusion pour les deux structures proposées, avec les deux
longueurs de hachage pour 2048 tests

Synthése des travaux réalisés :

144

Conception, mise en ceuvre et analyse de fonctions de hachage avec clé basées sur
des cartes chaotiques et des réseaux neuronaux

\ Message M

Divide M||01]|Pad
10*1 into q blocks

M:

M,

Absorbing phase

|
|
Initialization phase :
|
r |
—— pe—p Secretkeyl
WMo [0 T o] kmo |
________________________________ _
|
|
|
|
|
|
|
Chaotic| | | |
System :
|
r c I
— > Y KMi=LSB(HM1)| |
L M2 D |
|
|
|
Chaotic | |
System |
|
HM: |
|
|
|
|
. |
[:
r c
S . Y KMq1=LSB(HMq1)
Mg [0] D |
|
|
|
|
|
|
|
|
|
|
T
1

) 4

3 Chaotic |
| System

r C
HMq))

:E KMq=LSB(HMq)
r —_— ‘
+—r
hq
Y
N Chaotic| | |
System
1 Cfqu
HMq+1" KMg+1=LSB(HMg+1)
r . ,
+—r
hq+1
v
- Chaotic || |
System
Cfg+2
HMgi2y, KMg2=LSB(HMgs2)

Hash value h

Squeezing phase

FIGURE A.9 — Structure générale des deux fonctions de hachage CNN proposées avec une clé basée sur

la fonction éponge

A3

Travail en cours de réalisation

Nous travaillons actuellement a la réalisation d’une structure CNN-DUPLEX (voir Fig. A.11). Elle

traite chaque block du message apres rembourrage et fournit en sortie un ensemble de bits souhaitées (u;)

A.3. Travail en cours de réalisation

145

130

ASCIlI value

701

60

501

40-

30
0 100 200 300

400

Character sequence index

(@)

500

600

49 T T T

48.81

48.6

ASCII value

L L L
0 100 200 300

L
400

Character sequence index

©)

L
500

600

Hexadecimal value

Hexadecimal value

15

x x x x
x
x x
x
10 x X X x Bl
X x x X X
X x
x XXX x x
x X X x
5 x x i
X x X x x x x
x X X X
x x
0 " .
0 10 20 30 40 50 60 70
Hexadecimal code sequence index
(b)
15 T T T T T T
x x
X x x x
x X x x
x
10 X X x Bl
x X x x <
x x x
x X x
X xx
5 X x X XX XX x x R
X x x x x
x x
x x
x x
0
0 10 20 30 40 50 60 70
Hexadecimal code sequence index
(d)

FIGURE A.10 - Distributions du haché pour le message entier et le message constant pour la structure 1

avec une longueur de valeur de hachage de 256 bits

extrait de la valeur de chainage intermédiaire. Nous adapterons cette structure pour réaliser le chiffrement

authentifié avec des données associées.

Mots clés : Fonctions de hachage avec clé, Réseaux neuronaux chaotiques, Structure Merkle-Damgard,

Fonction Eponge, Cryptanalyse.

Message M

M:

M:

A y 3

o

H L

|

|

|

|

|

- v _

|

y 3 & F 3 “

w |

|

|

IIIIIIII - — ——
N

IR Suiutts et

T |

|

|

|

|

|

<)

|

A S A “

W |

|

~ |

.S ___|l___2
kS

Duplexing phase Duplexing phase Duplexing phase

Initialization phase

IV: Initial Value, r: rate, c¢: capacity, f: function

FIGURE A.11 — Schéma général de la construction Duplex

BIBLIOGRAPHIE

[1]

[10]

[11]

[12]

SK Hafizul ISLAM. « Provably secure dynamic identity-based three-factor password authenti-
cation scheme using extended chaotic maps ». In : Nonlinear Dynamics 78.3 (2014), p. 2261-
2276.

FIPS PUB. « Secure hash standard ». In : Public Law 100 (1995), p. 235.
Secure Hash STANDARD et PUB FIPS. « 180-2 ». In : August 1 (2002), p. 72.

Kai CHAIN et Wen-Chung KUO. « A new digital signature scheme based on chaotic maps ». In :
Nonlinear dynamics 74.4 (2013), p. 1003-1012.

Guido BERTONI et al. « Duplexing the sponge : single-pass authenticated encryption and other
applications ». In : International Workshop on Selected Areas in Cryptography. Springer. 2011,
p- 320-337.

Marc Martinus Jacobus STEVENS et al. Attacks on hash functions and applications. Mathemati-
cal Institute, Faculty of Science, Leiden University, 2012.

NIST SHA. «standard : Permutation-based hash and extendable-output functions ». In : FIPS
PUB 202 (3), p. 2015.

Ali KASSEM et al. « Efficient neural chaotic generator for image encryption ». In : Digital Signal
Processing 25 (2014), p. 266-274.

Xinbin LI et al. « Energy-efficient and secure transmission scheme based on chaotic compres-
sive sensing in underwater wireless sensor networks ». In : Digital Signal Processing 81 (2018),
p. 129-137.

Kwok-Wo WONG. « A combined chaotic cryptographic and hashing scheme ». In : Physics let-
ters A 307.5 (2003), p. 292-298.

Di X1A0 et Xiaofeng L1IAO. « A combined hash and encryption scheme by chaotic neural net-
work ». In : Advances in Neural Networks-ISNN 2004 (2004), p. 13-28.

Hong Sze KwoOK et Wallace KS TANG. « A chaos-based cryptographic hash function for mes-
sage authentication ». In : International Journal of Bifurcation and Chaos 15.12 (2005), p. 4043—
4050.

147

148 Bibliographie
[13] Di X1A0, Xiaofeng L1AO et Shaojiang DENG. « One-way Hash function construction based on
the chaotic map with changeable-parameter ». In : Chaos, Solitons & Fractals 24.1 (2005), p. 65—

71.

[14] Xun YI. « Hash function based on chaotic tent maps ». In : IEEE Transactions on Circuits and
Systems Il : Express Briefs 52.6 (2005), p. 354-357.

[15] Shiguo LIAN, Jinsheng SUN et Zhiquan WANG. « Secure hash function based on neural net-
work ». In : Neurocomputing 69.16 (2006), p. 2346-2350.

[16] Shiguo LIAN et al. « Hash function based on chaotic neural networks ». In : Circuits and Systems,
2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on. IEEE. 2006, 4—pp.

[17] Jiashu ZHANG, Xiaomin WANG et Wenfang ZHANG. « Chaotic keyed hash function based on
feedforward—feedback nonlinear digital filter ». In : Physics Letters A 362.5 (2007), p. 439-448.

[18] Yong WANG et al. « One-way hash function construction based on 2D coupled map lattices ».
In : Information Sciences 178.5 (2008), p. 1391-1406.

[19] Xiangdong L1U et Chunbo XIU. « Hysteresis modeling based on the hysteretic chaotic neural
network ». In : Neural Computing and Applications 17.5-6 (2008), p. 579-583.

[20] G ARUMUGAM, V Lakshmi PRABA et S RADHAKRISHNAN. « Study of chaos functions for their
suitability in generating message authentication codes ». In : Applied Soft Computing 7.3 (2007),
p- 1064-1071.

[21] Di X1A0, Xiaofeng LTAO et Yong WANG. « Parallel keyed hash function construction based on
chaotic neural network ». In : Neurocomputing 72.10 (2009), p. 2288-2296.

[22] Shaojiang DENG et al. « A novel combined cryptographic and hash algorithm based on chaotic
control character ». In : Communications in Nonlinear Science and Numerical Simulation 14.11
(2009), p. 3889-3900.

[23] Shaojiang DENG, Yantao LI et Di XIAO. « Analysis and improvement of a chaos-based Hash
function construction ». In : Communications in Nonlinear Science and Numerical Simulation
15.5 (2010), p. 1338-1347.

[24] Huagian YANG et al. « One-way hash function construction based on chaotic map network ». In :
Chaos, Solitons & Fractals 41.5 (2009), p. 2566-2574.

[25] Di X1a0, Xiaofeng LIAO et Yong WANG. « Improving the security of a parallel keyed hash
function based on chaotic maps ». In : Physics Letters A 373.47 (2009), p. 4346—4353.

[26] Mohamed AMIN, Osama S FARAGALLAH et Ahmed A Abd EL-LATIF. « Chaos-based hash

function (CBHF) for cryptographic applications ». In : Chaos, Solitons & Fractals 42.2 (2009),
p. 767-772.

Bibliographie 149

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Y L1, D X1A0 et S DENG. « Secure hash function based on chaotic tent map with changeable
parameter ». In : High Technol. Lett 18.1 (2012), p. 7-12.

Jiandong L1U et al. « A Fast New Cryptographic Hash Function Based on Integer Tent Mapping
System. » In : JCP 7.7 (2012), p. 1671-1680.

Bo HE et al. « A method for designing hash function based on chaotic neural network ». In :
International Workshop on Cloud Computing and Information Security (CCIS). 2013.

Je Sen TEH, Azman SAMSUDIN et Amir AKHAVAN. « Parallel chaotic hash function based on
the shuffle-exchange network ». In : Nonlinear Dynamics 81.3 (2015), p. 1067-1079.

Meysam Asgari CHENAGHLU, Shahram JAMALI et Narjes Nikzad KHASMAKHI. « A novel
keyed parallel hashing scheme based on a new chaotic system ». In : Chaos, Solitons & Fractals
87 (2016), p. 216-225.

Nabil ABDOUN et al. « Hash Function based on Efficient Chaotic Neural Network ». In : Inter-

national Conference on Internet Technology and Secured Transactions. 2015, p. 32-37.

Nabil ABDOUN et al. « Secure hash algorithm based on efficient chaotic neural network ». In :

The 11th International Conference on Communications. 2016, comm?2016.

Nabil ABDOUN et al. « Design and implementation of robust Keyed Hash functions based on
Chaotic Neural Network ». In : (2018).

Nabil ABDOUN et al. « Design and security analysis of two robust keyed hash functions based
on chaotic neural networks ». In : Journal of Ambient Intelligence and Humanized Computing
(2019), p. 1-25.

Nabil ABDOUN et al. « New keyed chaotic neural network hash function based on sponge construc-
tion ». In : 2017 12th International Conference for Internet Technology and Secured Transactions
(ICITST). IEEE. 2017, p. 35-38.

Simon SINGH. « The code book. The science of secrecy from ancient Egypt to quantum crypto-
graphy ». In : Swiat Ksiazki (2003), p. 19-21.

Claude Elwood SHANNON. « A mathematical theory of communication ». In : Bell system tech-
nical journal 27.3 (1948), p. 379-423.

Eiichiro FUJISAKI et Tatsuaki OKAMOTO. « Secure integration of asymmetric and symmetric

encryption schemes ». In : Annual International Cryptology Conference. Springer. 1999, p. 537-
554.

Gustavus J SIMMONS. « Symmetric and asymmetric encryption ». In : ACM Computing Surveys
(CSUR) 11.4 (1979), p. 305-330.

150

Bibliographie

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]

[57]

Yogesh KUMAR, Rajiv MUNJAL et Harsh SHARMA. « Comparison of symmetric and asymmetric
cryptography with existing vulnerabilities and countermeasures ». In : International Journal of

Computer Science and Management Studies 11.03 (2011).

William STALLINGS. Cryptography and Network Security : Principles and Practice, Internatio-
nal Edition : Principles and Practice. Pearson Higher Ed, 2014.

Alfred] MENEZES, Paul C VAN OORSCHOT et Scott A VANSTONE. Handbook of applied cryp-
tography. CRC press, 1996.

Phillip ROGAWAY et Thomas SHRIMPTON. « Cryptographic hash-function basics : Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and collision

resistance ». In : International workshop on fast software encryption. Springer. 2004, p. 371-388.

Suk-Hwan LEE et al. « Key-dependent 3D model hashing for authentication using heat kernel
signature ». In : Digital Signal Processing 23.5 (2013), p. 1505-1522.

Mihir BELLARE et Chanathip NAMPREMPRE. « Authenticated encryption : Relations among
notions and analysis of the generic composition paradigm ». In : International Conference on the

Theory and Application of Cryptology and Information Security. Springer. 2000, p. 531-545.

Mihir BELLARE, Ran CANETTI et Hugo KRAWCZYK. « Keying hash functions for message
authentication ». In : Annual International Cryptology Conference. Springer. 1996, p. 1-15.

B DENTON et R ADHAMI. « Modern Hash Function Construction ». In : ().

Ralph Charles MERKLE, Ralph CHARLES et al. « Secrecy, authentication, and public key sys-
tems ». In : (1979).

Ivan Bjerre DAMGARD. « A design principle for hash functions ». In : Conference on the Theory
and Application of Cryptology. Springer. 1989, p. 416-427.

Stefan LUCKS. « Design Principles for Iterated Hash Functions. » In : JACR Cryptology ePrint
Archive 2004 (2004), p. 253.

Mridul NANDI et Souradyuti PAUL. « Speeding up the wide-pipe : Secure and fast hashing. » In :
Indocrypt. T. 6498. Springer. 2010, p. 144-162.

Orr DUNKELMAN et Eli BIHAM. « A framework for iterative hash functions : Haifa ». In : 2nd
NIST Cryptographich Hash Workshop. T. 22. 2006.

Guido BERTONI et al. « Sponge functions ». In : ECRYPT hash workshop. T. 2007. 9. 2007.
Ronald RIVEST. « The MD5 message-digest algorithm ». In : (1992).

Guido BERTONI et al. « Keccak specifications ». In : Submission to nist (round 2) (2009), p. 320-
337.

Bart MENNINK. « Key Prediction Security of Keyed Sponges ». In : JACR Transactions on Sym-
metric Cryptology (2018), p. 128-149.

Bibliographie 151

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]
[70]

[71]

[72]

[73]

Guido BERTONT et al. « On the security of the keyed sponge construction ». In : Symmetric Key
Encryption Workshop. T. 2011. 2011.

Donghoon CHANG et al. « A keyed sponge construction with pseudorandomness in the standard
model ». In : The Third SHA-3 Candidate Conference (March 2012). T. 3. 2012, p. 7.

Bart MENNINK, Reza REYHANITABAR et Damian VIZAR. « Security of full-state keyed sponge
and duplex : applications to authenticated encryption ». In : International Conference on the

Theory and Application of Cryptology and Information Security. Springer. 2015, p. 465-489.

Elena ANDREEVA et al. « Security of keyed sponge constructions using a modular proof ap-

proach ». In : International Workshop on Fast Software Encryption. Springer. 2015, p. 364-384.

Yusuke NAITO et Kan YASUDA. « New bounds for keyed sponges with extendable output :
Independence between capacity and message length ». In : International Conference on Fast

Software Encryption. Springer. 2016, p. 3-22.

Guido BERTONI et al. « Permutation-based encryption, authentication and authenticated encryp-

tion ». In : Directions in Authenticated Ciphers (2012).

Peter GAZI, Krzysztof PIETRZAK et Stefano TESSARO. « The exact PRF security of trunca-
tion : tight bounds for keyed sponges and truncated CBC ». In : Annual Cryptology Conference.
Springer. 2015, p. 368-387.

Joan DAEMEN, Bart MENNINK et Gilles VAN ASSCHE. « Full-state keyed duplex with built-in
multi-user support ». In : International Conference on the Theory and Application of Cryptology
and Information Security. Springer. 2017, p. 606-637.

Morris] DWORKIN. SHA-3 standard : Permutation-based hash and extendable-output functions.
Rapp. tech. 2015.

M BAUM. NIST selects winner of secure hash algorithm (SHA-3) competition. Rapp. tech. Tech.
rep., National Institute of Stanards et Technology, 2012.

PUB FIPS. « 180-4 ». In : Secure hash standard (SHS),” March (2012).
JG BERTONI. « The Keccak sponge function family ». In : http ://keccak. noekeon. org (2011).

Guido BERTONI et al. « CAESAR submission : Ketje vl, March 2014 ». In : URL http ://ketje.
noekeon. org/Ketje-1.1. pdf.[cited at p. 44, 48, 49, and 67] ().

Guido BERTONI et al. « CAESAR submission : Keyak v1 ». In : CAESAR First Round Submis-
sion, March (2014).

Christian OESTREICHER. « A history of chaos theory ». In : Dialogues in clinical neuroscience
9.3 (2007), p. 279.

Edward N LORENZ. « Deterministic nonperiodic flow ». In : Journal of the atmospheric sciences
20.2 (1963), p. 130-141.

152

Bibliographie

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[83]

Edward U LORENZ et Edward U LORENZ. « Predictability : does the flap of a butterfly’s wings

in Brazil set off a tornado in Texas ? » In : Resonance 20.03 (1972).

Tien-Yien LI et James A YORKE. « Period three implies chaos ». In : The American Mathemati-
cal Monthly 82.10 (1975), p. 985-992.

Diana RICHARDS. « Is strategic decision making chaotic ? » In : Behavioral Science 35.3 (1990),
p.- 219-232.

David LEVY. « Chaos theory and strategy : Theory, application, and managerial implications ».
In : Strategic management journal 15.S2 (1994), p. 167-178.

Hua WANG et Eyad H ABED. « Bifurcation control of chaotic dynamical systems ». In : Nonli-
near Control Systems Design 1992. Elsevier, 1993, p. 283-288.

Claude E SHANNON. « Communication theory of secrecy systems ». In : Bell system technical
Jjournal 28.4 (1949), p. 656-715.

Amir AKHAVAN, Azman SAMSUDIN et Afshin AKHSHANI. « A symmetric image encryption
scheme based on combination of nonlinear chaotic maps ». In : Journal of the Franklin Institute
348.8 (2011), p. 1797-1813.

Robert MATTHEWS. « On the derivation of a “chaotic” encryption algorithm ». In : Cryptologia
13.1 (1989), p. 29-42.

René LozZI1. « Emergence of randomness from chaos ». In : International Journal of Bifurcation
and Chaos 22.02 (2012), p. 1250021.

Oleg GARASYM, Jean-Pierre LOZI et René L0OZI. « How useful randomness for cryptography
can emerge from multicore-implemented complex networks of chaotic maps ». In : Journal of
Difference Equations and Applications 23.5 (2017), p. 821-859.

Qiaolun GU et Tiegang GAO. « A novel reversible robust watermarking algorithm based on chao-
tic system ». In : Digital Signal Processing 23.1 (2013), p. 213-217.

Cristoforo Sergio BERTUGLIA et Franco VAIO. Nonlinearity, chaos, and complexity : the dyna-

mics of natural and social systems. Oxford University Press on Demand, 2005.

Kathleen T ALLIGOOD, Tim D SAUER et James A YORKE. Chaos : An Introduction to Dynami-
cal Systems. 1996. 1997.

Gregory L BAKER, Gregory L BAKER et Jerry P GOLLUB. Chaotic dynamics : an introduction.
Cambridge university press, 1996.

T YOSHIDA, H MORI et H SHIGEMATSU. « Analytic study of chaos of the tent map : band

structures, power spectra, and critical behaviors ». In : Journal of statistical physics 31.2 (1983),
p- 279-308.

Bibliographie 153

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Hong ZHOU. « A design methodology of chaotic stream ciphers and the realization problems in
finite precision ». In : Department of Electrical Engineering, Fudan University, Shanghai, China
59 (1996).

Stergios PAPADIMITRIOU et al. « A probabilistic symmetric encryption scheme for very fast
secure communication based on chaotic systems of difference equations ». In : International
Journal of Bifurcation and Chaos 11.12 (2001), p. 3107-3115.

Frank ROSENBLATT. « The perceptron : a probabilistic model for information storage and orga-

nization in the brain. » In : Psychological review 65.6 (1958), p. 386.

KJ HUNT et D SBARBARO. « Neural networks for nonlinear internal model control ». In : IEE
Proceedings D (Control Theory and Applications). T. 138. 5. IET. 1991, p. 431-438.

Yong WANG et al. « One-way hash function construction based on iterating a chaotic map ». In :
Computational Intelligence and Security Workshops, 2007. CISW 2007. International Confe-
rence on. IEEE. 2007, p. 791-794.

Mahmoud MAQABLEH, Azman Bin SAMSUDIN et Mohammad A ALIA. « New hash function

based on chaos theory (CHA-1) ». In : International Journal of Computer Science and Network
Security 8.2 (2008), p. 20-27.

A AKHAVAN, A SAMSUDIN et A AKHSHANI. « Hash function based on piecewise nonlinear
chaotic map ». In : Chaos, Solitons & Fractals 42.2 (2009), p. 1046-1053.

Qing-hua ZHANG, Han ZHANG et Zhao-hui LI1. « One-way hash function construction based
on conservative chaotic systems ». In : Information Assurance and Security, 2009. IAS’09. Fifth
International Conference on. T. 2. IEEE. 2009, p. 402-405.

Yong WANG, Kwok-Wo WONG et Di XTAO. « Parallel hash function construction based on cou-

pled map lattices ». In : Communications in Nonlinear Science and Numerical Simulation 16.7
(2011), p. 2810-2821.

Di X1A0, Xiaofeng LIAO et Shaojiang DENG. « Parallel keyed hash function construction based
on chaotic maps ». In : Physics Letters A 372.26 (2008), p. 4682—4688.

Yantao LI, Shaojiang DENG et Di X1AO. « A novel Hash algorithm construction based on chaotic
neural network ». In : Neural Computing and Applications 20.1 (2011), p. 133-141.

Zhongquan HUANG. « A more secure parallel keyed hash function based on chaotic neural
network ». In : Communications in Nonlinear Science and Numerical Simulation 16.8 (2011),
p. 3245-3256.

Yantao LI et al. « Parallel Hash function construction based on chaotic maps with changeable

parameters ». In : Neural Computing and Applications 20.8 (2011), p. 1305-1312.

Yantao LI et al. « Improvement and performance analysis of a novel hash function based on

chaotic neural network ». In : Neural Computing and Applications 22.2 (2013), p. 391-402.

154

Bibliographie

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Mahdi NOURI et al. « A dynamic chaotic hash function based upon circle chord methods ». In :
Telecommunications (IST), 2012 Sixth International Symposium on. IEEE. 2012, p. 1044-1049.

Amir AKHAVAN, Azman SAMSUDIN et Afshin AKHSHANI. « A novel parallel hash function
based on 3D chaotic map ». In : EURASIP Journal on Advances in Signal Processing 2013.1
(2013), p. 126.

N JITEURTRAGOOL et al. « A topologically simple keyed hash function based on circular chao-
tic sinusoidal map network ». In : Advanced Communication Technology (ICACT), 2013 15th
International Conference on. IEEE. 2013, p. 1089-1094.

R GUESMI et al. « A novel chaos-based image encryption using DNA sequence operation and
Secure Hash Algorithm SHA-2 ». In : Nonlinear Dynamics 83.3 (2016), p. 1123-1136.

Yantao LI et Xiang LI. « Chaotic hash function based on circular shifts with variable parame-
ters ». In : Chaos, Solitons & Fractals 91 (2016), p. 639-648.

Stephen M MATYAS. « Generating strong one-way functions with cryptographic algorithm ». In :
IBM Technical Disclosure Bulletin 277 (1985), p. 5658-5959.

Timo BARTKEWITZ. « Building Hash Functions from Block Ciphers, Their Security and Imple-
mentation Properties ». In : Ruhr-University Bochum (2009).

Bruno O BRACHTL et al. Data authentication using modification detection codes based on a

public one way encryption function. US Patent 4,908,861. 1990.

Shoji MIYAGUCHI, Masahiko IWATA et Kazuo OHTA. « New 128-bit hash function ». In : Proc.

4th International Joint Workshop on Computer Communications, Tokyo, Japan. 1989, p. 279—
288.

Bart PRENEEL, René GOVAERTS et Joos VANDEWALLE. « Hash Functions Based on Block Ci-
phers : A Synthetic Approach. » In : Crypto. T. 93. Springer. 1993, p. 368-378.

Shoji MIYAGUCHI, Kazuo OHTA et Masahiko IWATA. « Confirmation that some hash functions
are not collision free ». In : Workshop on the Theory and Application of of Cryptographic Tech-
niques. Springer. 1990, p. 326-343.

B PRENCEL et al. « Collision-free hashfunctions based on blockcipher algorithms ». In : Secu-
rity Technology, 1989. Proceedings. 1989 International Carnahan Conference on. IEEE. 1989,
p- 203-210.

Safwan EL ASSAD et Hassan NOURA. Generator of chaotic sequences and corresponding ge-
nerating system. US Patent 8,781,116. 2014.

Safwan EL ASSAD. « Chaos based information hiding and security ». In : Internet Technology
And Secured Transactions, 2012 International Conference for. IEEE. 2012, p. 67-72.

Bibliographie 155

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Karol DESNOS et al. « Efficient multicore implementation of an advanced generator of discrete
chaotic sequences ». In : Internet Technology and Secured Transactions (ICITST), 2014 9th In-
ternational Conference for. IEEE. 2014, p. 31-36.

Bart PRENEEL. « Analysis and design of cryptographic hash functions ». These de doct. Katho-

liecke Universiteit te Leuven, 1993.

Horst FEISTEL. « Cryptography and computer privacy ». In : Scienfitic American 228 (1973),
p. 15-23.

Ilya MIRONOV et al. « Hash functions : Theory, attacks, and applications ». In : Microsoft Re-
search, Silicon Valley Campus. Noviembre de (2005).

Kazumaro AOKI et Yu SASAKI. « Preimage attacks on one-block MD4, 63-step MD5 and more ».
In : International Workshop on Selected Areas in Cryptography. Springer. 2008, p. 103—119.

Philippe FLAJOLET, Daniele GARDY et Loys THIMONIER. « Birthday paradox, coupon collec-
tors, caching algorithms and self-organizing search ». In : Discrete Applied Mathematics 39.3
(1992), p. 207-229.

Gideon YUVAL. « How to swindle Rabin ». In : Cryptologia 3.3 (1979), p. 187-191.

Shahram BAKHTIARI, Reihaneh SAFAVI-NAINI, Josef PIEPRZYK et al. « Cryptographic hash
functions : A survey ». In : Centre for Computer Security Research, Department of Computer

Science, University of Wollongong, Australie (1995).
Bart PRENEEL et Paul van OORSCHOT. « On the security of two MAC algorithms ». In : Ad-

vances in Cryptology—EUROCRYPT’96. Springer. 1996, p. 19-32.

Hash Length Extension Attacks | Java Code Geeks - 2017. https://www . javacodegeeks .
com/2012/07/hash-length-extension-attacks.html. (Accessed on 07/11/2017).

MD?5 Length Extension Attack Revisited | Vii’s Inner Peace. https://web.archive.org/web/
20141029080820 /http://vudang . com/2012/03/md5-length-extension-attack/.
(Accessed on 07/11/2017).

Stop using unsafe keyed hashes, use HMAC | rdist. https://rdist.root.org/2009/10/29/
stop-using-unsafe-keyed-hashes-use-hmac/. (Accessed on 07/11/2017).

Lei WEI et al. « Improved meet-in-the-middle cryptanalysis of KTANTAN (poster) ». In : Aus-
tralasian Conference on Information Security and Privacy. Springer. 2011, p. 433-438.

Kazumaro AOKI et Yu SASAKI. « Meet-in-the-middle preimage attacks against reduced SHA-0
and SHA-1 ». In : Advances in Cryptology-CRYPTO 2009. Springer, 2009, p. 70-89.

Yu SASAKI et Kazumaro AOKI. « Finding Preimages in Full MD5 Faster Than Exhaustive
Search. » In : EUROCRYPT. T. 5479. Springer. 2009, p. 134-152.

156 Bibliographie

[132] Kazumaro AOKI et al. « Preimages for Step-Reduced SHA-2. » In : ASIACRYPT. T. 5912. Sprin-
ger. 2009, p. 578-597.

[133] Jian GUO et al. « Advanced meet-in-the-middle preimage attacks : first results on full Tiger, and
improved results on MD4 and SHA-2. » In : ASIACRYPT. T. 6477. Springer. 2010, p. 56-75.

[134] Deukjo HONG, Bonwook KOO et Yu SASAKI. « Improved Preimage Attack for 68-Step HAS-
160. » In : ICISC. T. 5984. Springer. 2009, p. 332-348.

[135] Yu SASAKI et Kazumaro AOKI. « Preimage attacks on 3, 4, and 5-pass HAVAL ». In : Internatio-
nal Conference on the Theory and Application of Cryptology and Information Security. Springer.
2008, p. 253-271.

[136] Antoine JOUX. « Multicollisions in iterated hash functions. Application to cascaded construc-
tions ». In : Annual International Cryptology Conference. Springer. 2004, p. 306-316.

[137] Elena ANDREEVA et al. « Herding, Second Preimage and Trojan Message Attacks beyond Merkle-
Damgard. » In : Selected Areas in Cryptography. T. 5867. Springer. 2009, p. 393-414.

[138] John KELSEY et Bruce SCHNEIER. « Second preimages on n-bit hash functions for much less
than 2 n work ». In : Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2005, p. 474—490.

[139] John KELSEY et Tadayoshi KOHNO. « Herding hash functions and the Nostradamus attack ». In :
Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2006, p. 183-200.

[140] Luo YU-LING et Du MING-HUI. « One-way hash function construction based on the spatiotem-
poral chaotic system ». In : Chinese Physics B 21.6 (2012), p. 060503.

[141] Di X1A0, Frank Y SHIH et Xiaofeng LIAO. « A chaos-based hash function with both modifi-
cation detection and localization capabilities ». In : Communications in Nonlinear Science and
Numerical Simulation 15.9 (2010), p. 2254-2261.

[142] Yantao LI et al. « Parallel chaotic Hash function construction based on cellular neural network ».
In : Neural Computing and Applications 21.7 (2012), p. 1563-1573.

[143] Yantao L1, Di X1AO et Shaojiang DENG. « Keyed hash function based on a dynamic lookup table
of functions ». In : Information Sciences 214 (2012), p. 56-75.

[144] Haijun REN et al. « A novel method for one-way hash function construction based on spatiotem-
poral chaos ». In : Chaos, Solitons & Fractals 42.4 (2009), p. 2014-2022.

[145] Xian-Feng GUO et Jia-Shu ZHANG. « Keyed one-way Hash function construction based on the

chaotic dynamic S-Box ». In : (2006).

Bibliographie 157

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Hai YU et al. « One-way hash function construction based on chaotic coupled map network ».
In : Chaos-Fractals Theories and Applications (IWCFTA), 2011 Fourth International Workshop
on. IEEE. 2011, p. 193-197.

Han ZHANG et al. « One way hash function construction based on spatiotemporal chaos ». In :
(2005).

Jean-Philippe AUMASSON et al. « Quark : A lightweight hash. » In : CHES. T. 6225. Springer.
2010, p. 1-15.

Jian GUO, Thomas PEYRIN et Axel POSCHMANN. « The PHOTON family of lightweight hash
functions ». In : Advances in Cryptology—CRYPTO 2011 (2011), p. 222-239.

Andrey BOGDANOV et al. « SPONGENT : A lightweight hash function ». In : Cryprographic
Hardware and Embedded Systems—CHES 2011 (2011), p. 312-325.

Tolga YALCIN et Elif Bilge KAVUN. « On the implementation aspects of sponge-based authenti-
cated encryption for pervasive devices ». In : International Conference on Smart Card Research
and Advanced Applications. Springer. 2012, p. 141-157.

Guido BERTONI et al. « Cryptographic sponge functions ». In : Submission to NIST (Round 3)
(2011).

Deniz Toz. « Cryptanalysis of Hash Functions ». These de doct. Dissertation presented in partial

fulfillment of the requirements for the ..., 2013.

UNIVERSITE

BRETAGNE

UNIVERSITE DE NANTES

L1

Université Libanaise

Ecole Doctorale
Sciences et Technologies

Conception, mise en ceuvre et analyse de fonctions de hachage avec clé basées sur des

cartes chaotiques et des réseaux neuronaux

Mots clés: Fonctions de hachage avec clé, Réseaux neuronaux chaotiques, Structure Merkle-

Damgard, Fonction Eponge, Cryptanalyse.

-Résumé: Les fonctions de hachage sont des
primitives les plus utiles en cryptographie. En
effet, elles jouent un réle important dans
lintégrité des données, l'authentification des
messages, la signature numérique et le
chiffrement authentifié. Ainsi, la conception de
fonctions de hachage sécurisées est cruciale.
Dans cette thése, nous avons congu, implanté et
analysé les performances de deux architectures
comprenant chacune deux structures de
fonctions de hachage avec clé basées sur des
cartes chaotiqgues et des réseaux neuronaux
(KCNN). La premiére architecture s’appuie sur
la construction Merkle-Damgard, tandis que la
seconde utilise la fonction Eponge. La premiére
structure de la premiére architecture est formée
de deux couches KCNN avec trois schémas de
sortie différents (CNN-Matyas-Meyer-Oseas,
CNN-Matyas-Meyer-Oseas Modifié et

CNN-Miyaguchi-Preneel), tandis que Ila
seconde structure est composée d’'une couche
KCNN suivie d'une couche de combinaison de
fonctions non linéaires. La premiére structure
de la deuxiéme architecture est formée de
deux couches KCNN avec deux longueurs de
hachage 256 et 512 bits. La seconde structure
est comparable a celle utlisée dans la
premiére architecture. Le systéme chaotique
est utilisé pour générer les paramétres du
KCNN. Les résultats obtenus par les tests
statistiques, ainsi que I'analyse cryptanalytique,
démontrent la sécurité des fonctions de
hachage KCNN proposées. Enfin, nous
travaillons actuellement sur la structure KCNN-
DUPLEX intégrant les fonctions de hachage
KCNN proposées (basées Eponge) pour leur
utilisation dans une application de chiffrement
authentifiée.

Design, implementation and analysis of keyed hash functions based on chaotic maps and

neural networks

Keywords: Keyed hash functions, Chaotic Neural Networks, Merkle-Damgard structure, Sponge

function, Cryptanalysis.

-Abstract: The hash functions are the most
useful primitives in cryptography. They play an
important role in data integrity, message
authentication, digital signature and
authenticated encryption. Thus, the design of
secure hash functions is crucial. In this thesis,
we designed, implemented, and analyzed the
performance of two architectures, each with two
keyed hash function structures based on chaotic
maps and neural networks (KCNN). The first
architecture is based on the Merkle-Damgard
construction, while the second uses the Sponge
function. The first structure of the first
architecture consists of two KCNN layers with
three different output schemes (CNN-Matyas-
Meyer-Oseas, Modified CNN-Matyas-Meyer-
Oseas and CNN-Miyaguchi-Preneel).

The second structure is composed of a KCNN
layer followed by a combination layer of
nonlinear functions. The first structure of the
second architecture is formed of two KCNN
layers with two hash value lengths 256 and
512. The second structure is similar to that
used in the first architecture. The chaotic
system is used to generate KCNN parameters.
The results obtained by the statistical tests, as
well as the cryptanalytical analysis,
demonstrate the security of the proposed
KCNN hash functions. Finally, we are currently
working on the KCNN-DUPLEX structure
integrating the proposed KCNN hashing
functions (Sponge-based) for use in an
authenticated encryption application.

