Introducing complex dependence structures into supervised component-based models

Jocelyn CHAUVET

work supervised by Catherine TROTTIER and Xavier BRY

Montpellier April 19th, 2019

General context

 \hookrightarrow Why regularise a regression model ?

Fuzzy conceptual model, large amount of variables

- ► Ill-conditioned matrix (almost singular)
 - \hookrightarrow Instability of coefficients
- ▶ High dimensional data (p > n)
 - \hookrightarrow Multicollinearity, singularity

General context

 \hookrightarrow Why regularise a regression model ?

Fuzzy conceptual model, large amount of variables

- ▶ Ill-conditioned matrix (almost singular)
 - $\hookrightarrow \mathsf{Instability} \mathsf{ of coefficients}$
- High dimensional data (p > n)
 - \hookrightarrow Multicollinearity, singularity

Regularisation (definition)

Introduction of additional criteria besides the Goodness–of–Fit in the estimation process in order to

- ► solve an ill-posed problem
- prevent overfitting

Existing methods

Existing methods

Penalty-based regularisation

Penalised log–likelihood $\ell(\boldsymbol{\beta}; \boldsymbol{y}) - \lambda \operatorname{pen}(\boldsymbol{\beta})$

- ► LASSO: $pen(\beta) = \|\beta\|_1$
 - $\, \hookrightarrow \, \, \mathsf{Sparse \ solutions}$
 - \hookrightarrow Variable selection
- ► Ridge: $pen(\beta) = \|\beta\|_2^2$
 - \hookrightarrow Shrinkage towards 0
 - \hookrightarrow Reduce the estimator's variance
- ► Elastic-net:
 - $\mathsf{pen}(\boldsymbol{\beta}) = (1-\alpha) \|\boldsymbol{\beta}\|_1 + \alpha \|\boldsymbol{\beta}\|_2^2$
 - \hookrightarrow Variable selection
 - $\, \hookrightarrow \, \, {\rm Grouping} \, \, {\rm effect} \,$

Penalty-based regularisation

Penalised log–likelihood $\ell(\boldsymbol{\beta}; \boldsymbol{y}) - \lambda \operatorname{pen}(\boldsymbol{\beta})$

- ▶ LASSO: $pen(\beta) = \|\beta\|_1$
 - $\, \hookrightarrow \, \, \mathsf{Sparse \ solutions}$
 - \hookrightarrow Variable selection
- ▶ Ridge: $pen(\beta) = \|\beta\|_2^2$
 - $\,\hookrightarrow\,$ Shrinkage towards 0
 - \hookrightarrow Reduce the estimator's variance
- ► Elastic-net:

 $\mathsf{pen}(\boldsymbol{\beta}) = (1-\alpha) \|\boldsymbol{\beta}\|_1 + \alpha \|\boldsymbol{\beta}\|_2^2$

- \hookrightarrow Variable selection
- $\, \hookrightarrow \, \, {\rm Grouping} \, \, {\rm effect} \,$

Framework of interest

- Many highly correlated explanatory variables
- Proxies to latent phenomena to be found and interpreted

↓ Component–based approaches

Dissertation defense

Component-based regularisation

 $\begin{array}{l} \text{Components} = \text{synthetic variables} \left\{ f_h = X u_h \, | \, h = 1, \ldots, H \right\} \\ u_h = \left\{ \begin{array}{l} \arg \max_{u \in \mathbb{R}^p} \; \operatorname{crit}(u) \\ \\ \text{w.r.t.} \; \|u\| = 1 \; \text{and} \; X u \perp X u_1, \ldots, X u_{h-1} \end{array} \right. \end{array}$

Component-based regularisation

 $\begin{array}{l} \mbox{Components} = \mbox{synthetic variables} \left\{ f_h = X u_h \, | \, h = 1, \ldots, H \right\} \\ u_h = \left\{ \begin{array}{l} \mbox{arg max} & \mbox{crit}(u) \\ \\ \mbox{w.r.t.} & \|u\| = 1 \mbox{ and } X u \perp X u_1, \ldots, X u_{h-1} \end{array} \right. \end{array} \right. \end{array}$

Component-based regularisation

 $\begin{array}{l} \text{Components} = \text{synthetic variables} \left\{ f_h = X u_h \, | \, h = 1, \ldots, H \right\} \\ u_h = \left\{ \begin{array}{l} \arg \max_{u \in \mathbb{R}^p} \, \operatorname{crit}(u) \\ \\ \text{w.r.t.} \ \|u\| = 1 \ \text{and} \ X u \perp X u_1, \ldots, X u_{h-1} \end{array} \right. \end{array} \right. \end{array}$

Jocelyn CHAUVET

Dissertation defense

Structural relevance

 \hookrightarrow Introduced by Bry and Verron (2015)

Supervised Components via the Structural Relevance

$$\begin{aligned} \mathsf{crit}(\boldsymbol{u}) &= \left[\mathsf{SR}(\boldsymbol{u})\right]^{\boldsymbol{s}} \left[\mathsf{GoF}(\boldsymbol{u})\right]^{\boldsymbol{1-s}} \\ \mathsf{SR}(\boldsymbol{u}) &= \phi_{\boldsymbol{l}}(\boldsymbol{u}) = \left(\sum_{j=1}^{p} \left[\mathsf{cor}^{2}\left(\boldsymbol{X}\boldsymbol{u}, \boldsymbol{x_{j}}\right)\right]^{\boldsymbol{l}}\right)^{\frac{1}{l}} \end{aligned}$$

Structural relevance

 \hookrightarrow Introduced by Bry and Verron (2015)

Supervised Components via the Structural Relevance

$$\operatorname{crit}(\boldsymbol{u}) = \left[\operatorname{SR}(\boldsymbol{u})\right]^{\boldsymbol{s}} \left[\operatorname{GoF}(\boldsymbol{u})\right]^{\boldsymbol{1-s}}$$
$$\operatorname{SR}(\boldsymbol{u}) = \phi_{\boldsymbol{l}}(\boldsymbol{u}) = \left(\sum_{j=1}^{p} \left[\operatorname{cor}^{2}\left(\boldsymbol{X}\boldsymbol{u}, \boldsymbol{x}_{j}\right)\right]^{\boldsymbol{l}}\right)^{\frac{1}{\boldsymbol{l}}}$$

Flash method-comparison

PCR vs PLSR vs "Supervised Component Regression"

Issues

► Non-independent observations

- \hookrightarrow Grouped and panel data
 - \Rightarrow From GLM to GLMM (use of random effects)

Multivariate framework

 \hookrightarrow Several responses of various types $Y = igg[y_1 igg| \dots igg| y_q igg]$

Additional explanatory variables

- $\hookrightarrow \text{ with little redundancy}$
- $\hookrightarrow \ \mathsf{Requiring} \ \mathsf{no} \ \mathsf{regularisation}$

Supervised Component-based regularisation for multivariate GLMMs

- The Congo–Basin floristic data
- The mixed-SCGLR method
- Simulation study
- Results on the floristic data
- Introducing a time-specific random effect
- 3 Perspectives

Floristic data: a multivariate GLM ?

Problem: Model and predict the **abundance of tree species** in the tropical moist forest of the Congo–Basin

Responses: q = 8 abundances of selected tree species (i.e. multivariate count responses) ↓ Multivariate GLM

Introducing a time-specific random effect F

Perspectives

Regularisation needed

Correlation-heatmap

Explanatory variables:

- ▶ p = 56 highly correlated environmental variables
 - \hookrightarrow Information redundancy
 - \hookrightarrow Model **instability**
- r = 2 additional covariates (geology and anthropogenic interference)

₩

Regularisation

via supervised components common to all responses SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect

Perspectives

Random effects needed: GLMM

SCGLR:

- ► The land-plots are assumed independent...
- ... yet they are grouped into
 22 concessions

Mixed-SCGLR:

 Within-group dependence modelled by a random effect

Multivariate GLMM

Mixed–SCGLR (1)

Notations:

- $\boldsymbol{Y}_{n \times q}$: matrix of q response vectors $\boldsymbol{y}_1, \ldots, \boldsymbol{y}_q$
- $X_{n imes p}$: explanatory variables x_1, \dots, x_p (many, redundant)
- ▶ $A_{n \times r}$: additional covariates a_1, \ldots, a_r (few, not redundant)
- $U_{n \times N}$: design matrix of the random effects

Mixed–SCGLR (1)

Notations:

- $\boldsymbol{Y}_{n \times q}$: matrix of q response vectors $\boldsymbol{y}_1, \ldots, \boldsymbol{y}_q$
- \blacktriangleright $old X_{n imes p}$: explanatory variables $old x_1, \dots, old x_p$ (many, redundant)
- $A_{n imes r}$: additional covariates a_1, \ldots, a_r (few, not redundant)
- $U_{n \times N}$: design matrix of the random effects

Single component multivariate GLMM

For each $k \in \{1, ..., q\}$, $g_k (\mathbb{E} (\boldsymbol{Y_k} | \boldsymbol{\xi_k})) = \boldsymbol{\eta_k}$ $\boldsymbol{\eta_k} = (\boldsymbol{Xu}) \gamma_k + \boldsymbol{A\delta_k} + \boldsymbol{U\xi_k}$ $\boldsymbol{\xi_k} \stackrel{\text{ind.}}{\sim} \mathcal{N}_N (\boldsymbol{0}, \sigma_k^2 \boldsymbol{I}_N)$, with N the number of groups SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect

Perspectives

Mixed–SCGLR (2)

Estimation method: Iterative procedure based on a linearisation of the model

 \hookrightarrow Pseudo-responses: z_k

"Linearised" model $\boldsymbol{z_k} = \underbrace{(\boldsymbol{Xu})\gamma_k + \boldsymbol{A\delta_k} + \boldsymbol{U\xi_k}}_{\boldsymbol{V}} + \boldsymbol{e_k} \quad \text{with:} \quad \begin{cases} \mathbb{E}\left(\boldsymbol{e_k} \mid \boldsymbol{\xi_k}\right) = \boldsymbol{0} \\ \mathbb{V}\left(\boldsymbol{e_k} \mid \boldsymbol{\xi_k}\right) = : \boldsymbol{W}_{\boldsymbol{k}}^{-1} \end{cases}$

Introducing a time-specific random effect Perspectives

Mixed–SCGLR (2)

Estimation method: Iterative procedure based on a linearisation of the model

 \hookrightarrow Pseudo-responses: z_k

"Linearised" model $z_{k} = \underbrace{(Xu)\gamma_{k} + A\delta_{k} + U\xi_{k}}_{\eta_{k}} + e_{k} \quad \text{with:} \quad \begin{cases} \mathbb{E}\left(e_{k} \mid \xi_{k}\right) = 0 \\ \mathbb{V}\left(e_{k} \mid \xi_{k}\right) =: W_{k}^{-1} \end{cases}$

Alternate procedure

(i) Given γ_k , δ_k , ξ_k and σ_k^2 , we compute the component f = Xu(ii) Given u, we estimate γ_k , δ_k , ξ_k and σ_k^2 \hookrightarrow Schall's algorithm, Henderson's system

Introducing a time-specific random effect Perspect

Mixed-SCGLR (3)

Step (ii)

Henderson's systems

$$\hookrightarrow$$
 Given $\boldsymbol{f} = \boldsymbol{X} \boldsymbol{u}$, for each $k \in \{1, \dots, q\}$:

$$egin{pmatrix} f^{\mathsf{T}}W_kf & f^{\mathsf{T}}W_kA & f^{\mathsf{T}}W_kU \ A^{\mathsf{T}}W_kf & A^{\mathsf{T}}W_kA & A^{\mathsf{T}}W_kU \ U^{\mathsf{T}}W_kf & U^{\mathsf{T}}W_kA & U^{\mathsf{T}}W_kU+D_k^{-1} \end{pmatrix} egin{pmatrix} \gamma_k \ \delta_k \ \boldsymbol{\xi}_k \end{pmatrix} = egin{pmatrix} f^{\mathsf{T}}W_k\,z_k \ U^{\mathsf{T}}W_k\,z_k \ U^{\mathsf{T}}W_k\,z_k \end{pmatrix}$$

Update variance components

$$\sigma_k^2 \longleftarrow \frac{\boldsymbol{\xi}_k^{\mathsf{T}} \boldsymbol{\xi}_k}{N - \frac{1}{\sigma_k^2} \mathsf{Trace}\left[\left(\boldsymbol{U}^{\mathsf{T}} \boldsymbol{W}_k \boldsymbol{U} + \boldsymbol{D}_k^{-1} \right)^{-1} \right]}$$

Introducing a time-specific random effect F

Perspectives

Mixed–SCGLR (4)

Step (i)

Goodness-of-Fit

$$\psi(oldsymbol{u}) = \sum_{k=1}^{q} \left\| \Pi_{\mathsf{span}\{oldsymbol{X}oldsymbol{u},oldsymbol{A}\}} \, oldsymbol{z}_{oldsymbol{k}}
ight\|_{oldsymbol{W}_{oldsymbol{k}}}^2$$

Introducing a time-specific random effect Per

Perspectives

Mixed–SCGLR (4)

Goo

Step (i)

dness–of–Fit
$$m{\psi}(m{u}) = \sum_{k=1}^q \left\| \Pi_{\mathsf{span}\{m{X}m{u},m{A}\}} \ m{z}_{m{k}}
ight\|_{m{W}_{m{k}}}^2$$

Structural Relevance

$$\phi(u) = \left(\sum_{j=1}^{p} \left[\operatorname{cor}^{2}\left(Xu, x_{j}
ight)
ight]^{l}
ight)^{rac{1}{l}}, \hspace{0.2cm} ext{with} \hspace{0.1cm} l \in [1, +\infty)$$

Perspectives

Mixed–SCGLR (4)

Step (i)

Goodness-of-Fit
$$\psi(\boldsymbol{u}) = \sum_{k=1}^{q} \left\| \Pi_{\mathsf{span}\{\boldsymbol{X}\boldsymbol{u},\boldsymbol{A}\}} \ \boldsymbol{z}_{\boldsymbol{k}} \right\|_{\boldsymbol{W}_{\boldsymbol{k}}}^{2}$$

Structural Relevance

$$\phi(oldsymbol{u}) = \left(\sum_{j=1}^p \Big[\operatorname{cor}^2{(oldsymbol{X}oldsymbol{u}, oldsymbol{x_j})}\Big]^{oldsymbol{l}}
ight)^{oldsymbol{l}}, \hspace{0.2cm} ext{with} \hspace{0.1cm}oldsymbol{l} \in [1, +\infty)$$

Trade-off GoF/SR

$$\begin{array}{l} \max \quad \left[\psi(\boldsymbol{u}) \right]^{1-s} \left[\phi(\boldsymbol{u}) \right]^s, \quad \text{with } s \in [0, 1] \\ \text{w.r.t.} \quad \|\boldsymbol{u}\| = 1 \quad (\text{Identification constraint}) \end{array}$$

Jocelyn CHAUVET

Dissertation defense

SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect Perspectives

Simulations (1)

Two random responses: $Y = \begin{bmatrix} y_1 | y_2 \end{bmatrix}$

Introducing a time-specific random effect Perspectives

<u>Sim</u>ulations (1)

Two random responses: $Y = \begin{bmatrix} y_1 | y_2 \end{bmatrix}$ **Fixed effects:**

▶ 30 explanatory variables $\mathcal{N}(0,1)$:

$$X = \left[\begin{array}{ccc} \underbrace{x_1 \dots \dots x_{15}}_{\text{bundle } X_0 \text{ (large)}} & \underbrace{x_{16} \dots \dots x_{25}}_{\text{bundle } X_1 \text{ (medium)}} & \underbrace{x_{26} \dots x_{30}}_{\text{bundle } X_2 \text{ (small)}}\right]$$

Within each bundle:

$${
m cor}({m x_j},{m x_k}) = egin{cases} {m 1} & {
m if} \; j = k \ {m au} & {
m if} \; j \neq k \end{cases} ext{ with } {m au} \in \{ {m 0.1}, {m 0.3}, {m 0.5}, {m 0.7}, {m 0.9} \}$$

Introducing a time-specific random effect Perspectives

Simulations (1)

Two random responses: $Y = \begin{bmatrix} y_1 | y_2 \end{bmatrix}$ **Fixed** effects:

▶ 30 explanatory variables $\mathcal{N}(0,1)$:

bundle X_0 (large) bundle X_1 (medium) bundle X_2 (small) \hookrightarrow predicts y_1 \hookrightarrow predicts y_2 \rightarrow nuisance

Within each bundle:

$$\mathsf{cor}(oldsymbol{x_j},oldsymbol{x_k}) = egin{cases} \mathbf{1} & ext{if } j = k \ au & ext{if } j
eq k \end{cases} ext{ with } oldsymbol{ au} \in egin{array}{c} \mathbf{x_k} & ext{if } j
eq k \end{cases}$$

 $\{0.1, 0.3, 0.5, 0.7, 0.9\}$

Random effects:

•
$$N = 10$$
 groups and $R = 10$ units per group

$$\,\, \hookrightarrow \,\, {\sf Design} \,\, {\sf matrix} \,\, {oldsymbol U} = {oldsymbol I}_N \otimes {oldsymbol 1}_R$$

Introducing a time-specific random effect Perspectives

Simulations (2)

Model

$$\mathcal{M}:egin{cases} y_1 = Xeta_1 + U\xi_1 + arepsilon_1\ y_2 = Xeta_2 + U\xi_2 + arepsilon_2 \end{cases}$$
 with

$$oldsymbol{\xi_k} \sim \mathcal{N}_N\left(\mathbf{0}, oldsymbol{I}_N
ight) \,\,$$
 and $\,\, oldsymbol{arepsilon_k} \sim \mathcal{N}_{NR}\left(\mathbf{0}, oldsymbol{I}_{NR}
ight)$

 $100 \; {
m samples} \; {
m of} \; {
m model} \; {\mathcal M} \; {
m for} \; {
m each} \; {
m value} \; {
m of} \; au$

Comparison with:

Jocelyn CHAUVET

Dissertation defense

SC-based regularisation for multivariate GLMMs ${\scriptstyle \circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ}$

Introducing a time-specific random effect Perspective

Simulations (3)

	LMM	GLMM-LASSO	LMM–Ridge	Mixed–SCGLR ($l=4$)		
au	(No reg.)	$\lambda^{\star}_{ extsf{lasso}}$ (shrinkage)	λ^{\star}_{ridge} (shrinkage)	H^\star (nb comp.)	s^{\star} (trade–off)	
0.1		65	24	25	0.50	
0.3		92	54	5	0.58	
0.5		124	73	3	0.70	
0.7		163	78	3	0.73	
0.9		175	85	2	0.80	

$\tau \qquad \qquad Ave\left[\max\left(\frac{\ \widehat{\beta_1} - \beta_1\ _2^2}{\ \beta_1\ _2^2}, \frac{\ \widehat{\beta_2} - \beta_2\ _2^2}{\ \beta_2\ _2^2}\right)\right]$							
0.1	0.12	0.05	0.08	0.12			
0.3	0.33	0.12	0.13	0.10			
0.5	0.61	0.20	0.16	0.07			
0.7	1.32	0.25	0.20	0.06			
0.9	4.62	0.26	0.31	0.05			

SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect

Perspectives

Simulations (4)

Jocelyn CHAUVET

18 / 43

Simulations (5)

Model

$$\mathcal{M}: egin{cases} oldsymbol{y_1} \sim \mathcal{B} ext{er} \Big(oldsymbol{p} = ext{logit}^{-1} \left[oldsymbol{X} eta_1 + oldsymbol{U} oldsymbol{\xi_1}
ight] \Big) \ oldsymbol{y_2} \sim \mathcal{P} ext{oi} \Big(oldsymbol{\lambda} = ext{exp} \left[oldsymbol{X} eta_2 + oldsymbol{U} oldsymbol{\xi_2}
ight] \Big), \end{cases}$$

Fixed-effect squared relative errors:

	GLMM (no reg.)		GLMM-	GLMM-LASSO		mixed-SCGLR	
au	\mathcal{B} er	$\mathcal P$ oi	\mathcal{B} er	$\mathcal P$ oi	\mathcal{B} er	$\mathcal P$ oi	
0.1	316.48	0.54	8.61	0.30	14.71	0.46	
0.3	398.78	0. 6 4	9.23	0.36	7.21	0.21	
0.5	576.68	0.87	14.48	0.44	2.01	0.09	
0.7	886.04	1.28	17.37	0.47	1.50	0.07	
0.9	2840.10	3.72	17.24	0.59	1.31	0.05	

SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect

Perspectives

Simulations (6)

Jocelyn CHAUVET

Dissertation defense

20 / 43

Results on the floristic data (1)

- n = 2615 land-plots, divided in
 - N=22 forest concessions (considered as groups)
- q = 8 abundances of tree genera (responses Y)
- p = 56 explanatory variables (X)
- ightarrow r=2 additional covariates (A)

Results on the floristic data (1)

•
$$n=2615$$
 land-plots, divided in

N=22 forest concessions (considered as groups)

• q = 8 abundances of tree genera (responses Y)

•
$$p = 56$$
 explanatory variables (X)

•
$$r = 2$$
 additional covariates (A)

Model

Abundance of tree species: count data

 $\,\hookrightarrow\,$ Poisson regression with log link

$$egin{aligned} m{y_k} &\sim \mathcal{P} ext{oi} \left(m{\lambda} = \exp\left[m{\eta_k}
ight]
ight) \ m{\eta_k} &= \sum_{h=1}^{H} \left(m{X} m{u_h}
ight) \gamma_{k,h} + m{A} m{\delta_k} + m{U} m{\xi_k} \end{aligned}$$

Jocelyn CHAUVET

SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect F

Perspectives

Results on the floristic data (2), $H^{\star} = 4$

SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect Proceeding Pr

Perspectives

Results on the floristic data (3)

Introducing a time-specific random effect F

Perspectives

Results on the floristic data (4)

Supervised Component-based regularisation for multivariate GLMMs

Introducing a time-specific random effect

Model definition

• Regularisation frameworks

- Ridge-penalised EM
- SC–regularised EM
- Application to the GLMMs
- Simulation study

3 Perspectives

Framework of interest

Balanced panel data with:

- ► N individuals...
- \blacktriangleright ... observed at the same **R** time-points

Notations:

- ► $y_{_{NB\times 1}}$: response vector
- $X_{NR\times n}$: design matrix of the many and redundant explanatory variables

Framework of interest

Balanced panel data with:

- ► N individuals...
- \blacktriangleright ... observed at the same **R** time-points

Notations:

- ► $y_{_{NB\times1}}$: response vector
- ▶ $X_{NR \times n}$: design matrix of the many and redundant explanatory variables

Difficulties

- ▶ High level of correlation among the explanatory variables
 - \Rightarrow Regularisation
- Individual- and time-specific effects
 - \Rightarrow Take into account the complex dependence structure

Introducing a time-specific random effect

Perspectives

The Grunfeld data

Aim: Predict the gross investments from 1950 onwards

Two elements to consider:

- The specific behaviour of each company
- The economic climate: latent phenomenon shared by all the companies which tends to persist over time

Two-way random effects model

In general, we consider data with

- ► a within-individual dependence
 - \hookrightarrow random effect with independent levels
- ► a time dependence

 \hookrightarrow random effect with AR(1) levels

₩

GLMM

(in order to deal with non-Gaussian response) with both individual- and time-specific random effects

SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect Perspectives

The GLMM framework

- $\boldsymbol{y} = (y_{11}, y_{12}, \ldots, y_{1R},$
 - $y_{21}, y_{22}, \ldots, y_{2R}, \ldots$
 - $y_{N1}, y_{N2}, \ldots, y_{NR})^{\mathsf{T}}$

$$g(\mathbb{E}(Y | \boldsymbol{\xi})) = \boldsymbol{\eta} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{U_1}\boldsymbol{\xi_1} + \boldsymbol{U_2}\boldsymbol{\xi_2}$$
$$\boldsymbol{U_1} = \boldsymbol{I}_N \otimes \boldsymbol{1}_R \text{ and } \boldsymbol{U_2} = \boldsymbol{1}_N \otimes \boldsymbol{I}_R$$

Introducing a time–specific random effect 000●0000000000 Perspectives

The GLMM framework

 $y = (y_{11}, y_{12}, \dots, y_{1R}, y_{21}, y_{22}, \dots, y_{2R}, \dots)$

```
y_{N1}, y_{N2}, \ldots, y_{NR})^{\mathsf{T}}
```

$$g(\mathbb{E}(Y | \boldsymbol{\xi})) = \boldsymbol{\eta} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{U_1}\boldsymbol{\xi_1} + \boldsymbol{U_2}\boldsymbol{\xi_2}$$
$$\boldsymbol{U_1} = \boldsymbol{I}_N \otimes \boldsymbol{1}_R \text{ and } \boldsymbol{U_2} = \boldsymbol{1}_N \otimes \boldsymbol{I}_R$$

► Individual-specific random effect: $\boldsymbol{\xi_1} = (\xi_{11}, \xi_{12}, \dots, \xi_{1N})^{\mathsf{T}} \sim \mathcal{N}_N \left(\mathbf{0}, \sigma_1^2 \mathbf{A_1} \right), \quad \mathbf{A_1} = \mathbf{I}_N$ ► Time-specific random effect: $\boldsymbol{\xi_2} = (\xi_{21}, \xi_{22}, \dots, \xi_{2R})^{\mathsf{T}} \sim \mathcal{N}_R \left(\mathbf{0}, \sigma_2^2 \mathbf{A_2}(\rho) \right)$ $\mathbf{A_2}(\rho) = \left(\frac{\rho^{|i-j|}}{1-\rho^2} \right)_{1 \leqslant i,j \leqslant R}$

Estimation through penalised EM (1)

Principle

Green, P.J. (1990) On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

$$oldsymbol{ heta}=ig(oldsymbol{eta},\sigma_1^2,\sigma_2^2,
hoig)$$
, $oldsymbol{\xi}=(oldsymbol{\xi_1},oldsymbol{\xi_2})$

$$\begin{split} \mathsf{E} : \mathcal{Q}_{\mathsf{pen}}\left(\boldsymbol{\theta} \,|\, \boldsymbol{\theta}^{[t]}\right) &:= \mathbb{E}_{\boldsymbol{\xi}|\boldsymbol{y}}\left[\ell_{\mathsf{pen}}^{\mathsf{c}}(\boldsymbol{\theta};\boldsymbol{y},\boldsymbol{\xi}) \,|\, \boldsymbol{\theta}^{[t]}\right]\\ \mathsf{M} : \boldsymbol{\theta}^{[t+1]} \longleftarrow \arg \max_{\boldsymbol{\theta}} \mathcal{Q}_{\mathsf{pen}}\left(\boldsymbol{\theta} \,|\, \boldsymbol{\theta}^{[t]}\right) \end{split}$$

Perspectives

Estimation through penalised EM (1)

Principle

Green, P.J. (1990) On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

$$\theta = (\beta, \sigma_1^2, \sigma_2^2, \rho), \ \xi = (\xi_1, \xi_2)$$

$$\begin{split} \mathbf{\mathsf{E}} &: \mathcal{Q}_{\mathsf{pen}}\left(\boldsymbol{\theta} \,|\, \boldsymbol{\theta}^{[t]}\right) := \mathbb{E}_{\boldsymbol{\xi} \mid \boldsymbol{y}}\left[\ell_{\mathsf{pen}}^{\mathsf{c}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) \,|\, \boldsymbol{\theta}^{[t]}\right] \\ \mathbf{\mathsf{M}} &: \boldsymbol{\theta}^{[t+1]} \longleftarrow \arg\max_{\boldsymbol{\theta}} \mathcal{Q}_{\mathsf{pen}}\left(\boldsymbol{\theta} \,|\, \boldsymbol{\theta}^{[t]}\right) \end{split}$$

Usual penalised complete log-likelihood

$$\begin{aligned} \ell_{\mathsf{pen}}^{\mathsf{c}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) &= \ell^{\mathsf{c}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) - \lambda \, \mathsf{pen}(\boldsymbol{\beta}) \\ \mathsf{pen}(\boldsymbol{\beta}) &= \begin{cases} \|\boldsymbol{\beta}\|_{1} \\ \|\boldsymbol{\beta}\|_{2}^{2} &= \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} \\ \alpha \|\boldsymbol{\beta}\|_{2}^{2} + (1 - \alpha) \|\boldsymbol{\beta}\|_{1}, \quad 0 \leq \alpha \leq 1 \end{cases} \end{aligned}$$

Dissertation defense

Introducing a time-specific random effect

Perspectives

Estimation through penalised EM (2)

Ridge-based regularisation

$$\hookrightarrow \boldsymbol{\theta} = \left(\boldsymbol{\beta}, \sigma_1^2, \sigma_2^2, \rho\right), \ \boldsymbol{\xi} = \left(\boldsymbol{\xi_1}, \boldsymbol{\xi_2}\right)$$

$$\begin{split} \mathbf{\mathsf{E}} &: \mathcal{Q}_{\mathsf{ridge}}\left(\boldsymbol{\theta}, \lambda \,|\, \boldsymbol{\theta}^{[t]}\right) := \mathbb{E}_{\boldsymbol{\xi}|\boldsymbol{y}} \bigg[\ell^{\mathsf{c}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) - \lambda \,\boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} \,|\, \boldsymbol{\theta}^{[t]} \bigg] \\ \mathsf{M} &: \begin{cases} \lambda^{[t+1]} \longleftarrow \mathsf{GCV}^{[t+1]}(\lambda) \\ \boldsymbol{\theta}^{[t+1]} \longleftarrow \arg \max_{\boldsymbol{\theta}} \mathcal{Q}_{\mathsf{ridge}}\left(\boldsymbol{\theta}, \lambda^{[t+1]} \,|\, \boldsymbol{\theta}^{[t]}\right) \end{cases} \end{split}$$

Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011) *Ridge Regression for Longitudinal Biomarker Data.* The International Journal of Biostatistics, 7, 1–11.

Introducing a time-specific random effect

Perspectives

Estimation through SC-regularised EM

Linear predictor

$$\boldsymbol{\eta} = \begin{cases} (\boldsymbol{X}\boldsymbol{u})\gamma + \boldsymbol{U}_{1}\boldsymbol{\xi}_{1} + \boldsymbol{U}_{2}\boldsymbol{\xi}_{2} & \text{for a single component} \\ \sum_{h=1}^{H} (\boldsymbol{X}\boldsymbol{u}_{h})\gamma_{h} + \boldsymbol{U}_{1}\boldsymbol{\xi}_{1} + \boldsymbol{U}_{2}\boldsymbol{\xi}_{2} & \text{for } \boldsymbol{H} \text{ components} \end{cases}$$

Estimation through SC-regularised EM

Linear predictor

$$\eta = \begin{cases} (Xu)\gamma + U_1\xi_1 + U_2\xi_2 & \text{for a single component} \\ \sum_{h=1}^{H} (Xu_h)\gamma_h + U_1\xi_1 + U_2\xi_2 & \text{for } H \text{ components} \end{cases}$$

SC-based complete log-likelihood $\theta = (u, \gamma, \sigma_1^2, \sigma_2^2, \rho)$, trade-off parameter $s \in [0, 1]$ $\ell_{SC}^c(\theta; y, \xi) = (1 - s) \ell^c(\theta; y, \xi) + s \log [\phi(u)]$

Complete log-likelihood : measures the fit of the model (based on component f = Xu) to the data Structural relevance criterion : measures the closeness of component f to the strongest structures of X

Introducing a time-specific random effect

Perspectives

Ridge- versus SC-EM

Ridge-based penalisation

 $\ell^{\mathsf{c}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) - \lambda \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta}$

- Penalises the "large" coefficients
- Sees the high correlations among the explanatory variables as pure nuisance
- η hard to interpret

Component-based regularisation

$$\ell^{\mathsf{c}}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{\xi}) + \frac{s}{1-s} \log \left[\phi(\boldsymbol{u})\right]$$

- ► Gives a bonus to the most interpretable bundles in *X*
- Takes advantage of the high correlations among the explanatory variables
- η easier to interpret through decomposition on components

Application to the GLMMs

LINEARISATION step

► Given
$$\mu_i := \mathbb{E}(Y_i | \boldsymbol{\xi})$$
, the working variable z_i writes
 $z_i = \underbrace{g(\mu_i)}_{\eta_i} + (y_i - \mu_i)g'(\mu_i)$

► Linearised model:

$$\mathcal{M}: \ oldsymbol{z} = \underbrace{Xeta + U_1oldsymbol{\xi}_1 + U_2oldsymbol{\xi}_2}_{\eta} + oldsymbol{e}, \quad ext{with } \mathbb{V}(oldsymbol{e}) = oldsymbol{W}$$

ESTIMATION step

► Instead of the classical Henderson's systems, we propose a Penalised/Regularised EM algorithm on *M*

Perspectives

Ridge-EM for GLMM-AR₁

$$\boldsymbol{\theta} = \left(\boldsymbol{\beta}, \sigma_1^2, \sigma_2^2, \rho\right)$$

Linearised model $\mathcal{M}^{[t]} : oldsymbol{z}^{[t]} = oldsymbol{X}oldsymbol{eta} + oldsymbol{U}_1oldsymbol{\xi}_1 + oldsymbol{U}_2oldsymbol{\xi}_2 + oldsymbol{e}^{[t]}, \hspace{1em} ext{with} \hspace{1em} \mathbb{V}\left(oldsymbol{e}^{[t]} ight) = oldsymbol{W}^{[t]}$ **Ridge estimation** $\mathsf{E:} \ \mathcal{Q}_{\mathsf{ridge}}\left(\boldsymbol{\theta}, \lambda \,|\, \boldsymbol{\theta}^{[t]}\right) := \mathbb{E}_{\boldsymbol{\xi} \mid \boldsymbol{z}^{[t]}} \left| \, \ell^{\mathsf{c}}\left(\boldsymbol{\theta} \,;\, \boldsymbol{z}^{[t]}, \boldsymbol{\xi}\right) - \lambda \, \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} \,|\, \boldsymbol{\theta}^{[t]} \right|$ $\mathsf{M:} \begin{array}{l} \left\{ \begin{matrix} \lambda^{[t+1]} \longleftarrow \mathsf{GCV}^{[t+1]}(\lambda) \\ \boldsymbol{\theta}^{[t+1]} \longleftarrow \arg \max_{\boldsymbol{\theta}} \mathcal{Q}_{\mathsf{ridge}} \left(\boldsymbol{\theta}, \lambda^{[t+1]} \, | \, \boldsymbol{\theta}^{[t]} \right) \end{matrix} \right. \end{array}$ Update **Compute** $\boldsymbol{\xi}^{[t+1]}, \, \boldsymbol{z}^{[t+1]}, \, \boldsymbol{W}^{[t+1]}$

Introducing a time-specific random effect

Perspectives

SC-EM for GLMM-AR₁

0 0

$$\begin{aligned} \boldsymbol{\theta} &= \left(\boldsymbol{u}, \gamma, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right) \\ \hline \mathbf{Linearised model} \\ \mathcal{M}^{[t]} : \boldsymbol{z}^{[t]} &= (\boldsymbol{X}\boldsymbol{u})\gamma + \boldsymbol{U}_{1}\boldsymbol{\xi}_{1} + \boldsymbol{U}_{2}\boldsymbol{\xi}_{2} + \boldsymbol{e}^{[t]}, \quad \text{with } \mathbb{V}\left(\boldsymbol{e}^{[t]}\right) = \boldsymbol{W}^{[t]} \\ \hline \mathbf{SC-estimation} \\ \mathbf{E} : \mathcal{Q}_{\mathbf{SC}}\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{[t]}\right) &\coloneqq \mathbb{E}_{\boldsymbol{\xi} \mid \boldsymbol{z}^{[t]}}\left[(1-s)\ell^{\mathsf{c}}\left(\boldsymbol{\theta} \mid \boldsymbol{z}^{[t]}, \boldsymbol{\xi}\right) + s\log\left[\boldsymbol{\phi}(\boldsymbol{u})\right] \mid \boldsymbol{\theta}^{[t]}\right] \\ \mathbf{M} : \begin{cases} \sigma_{1}^{2[t+1]}, \sigma_{2}^{2[t+1]}, \rho^{[t+1]} \text{ computed as previously} \\ \boldsymbol{u}^{[t+1]} \leftarrow \arg\max_{\gamma} \widetilde{\mathcal{Q}}_{\mathbf{SC}}\left(\boldsymbol{u}, \gamma^{[t]} \mid \boldsymbol{\theta}^{[t]}\right) \\ \gamma^{[t+1]} \leftarrow \arg\max_{\gamma} \widetilde{\mathcal{Q}}_{\mathbf{SC}}\left(\boldsymbol{u}^{[t+1]}, \gamma \mid \boldsymbol{\theta}^{[t]}\right) \end{cases} \\ \hline \mathbf{Update} \\ \mathbf{Compute} \ \boldsymbol{\xi}^{[t+1]}, \boldsymbol{z}^{[t+1]}, \boldsymbol{W}^{[t+1]} \end{aligned}$$

Simulations (1)

Poisson regression with log link

•
$$y \sim \mathcal{P}oi\left(\lambda = \exp\left[X\beta + U_1\xi_1 + U_2\xi_2\right]\right)$$

• $X = \left[\underbrace{x_1 \dots x_{10}}_{\text{large bundle}} \underbrace{x_{11} \dots x_{15}}_{\text{small bundle}} \underbrace{x_{16} \dots x_{20}}_{\text{small bundle}}\right]$
small bundle \hookrightarrow predicts y

Introducing a time-specific random effect

Perspectives

Simulations (2)

How does convergence go?

SC-based regularisation for multivariate GLMMs

Introducing a time-specific random effect

Perspectives

Simulations (3)

Accuracy of the estimates

Autocorrelation p

50 60 70 80 90 100

🗕 SC 🕶 ridge

Jocelyn CHAUVET

Dissertation defense

Introducing a time-specific random effect $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Perspectives

Simulations (4)

Power for model interpretation

Overview on Mixed-SCGLR

Powerful trade-off between

- multivariate GLMM
- component-based regularisation

Model interpretation \nearrow

- Mixed–SCGLR provides graphical diagnoses (component planes)
- ▶ reveals the multidimensional explanatory and predictive structures

Estimate–accuracy >

Mixed-SCGLR now suitable for

- ▶ grouped data
- ▶ panel data

Major depressive disorders and grey-matter volume reduction

- 15 years follow-up neuropsychiatric study including
 636 participants
- Repeated binary response: Depressive or not
- ► 528 explanatory variables: thickness, area, volume and curvature of several brain areas
- ► Additional covariates: Gender, age...

Sparse Supervised Component $\{f_h = Xu_h | h = 1, \dots, K\}$

- Variable selection via supervised components
 - \hookrightarrow Supervised components that are weighted combination of only a few explanatory variables
- ► Idea: add a sparsity constraint on the input variables
 - $\hookrightarrow \ \text{Generic program:}$

Future developments (2)

Spatial correlation modelling

$$oldsymbol{\xi} \sim \mathcal{N}_q\left(oldsymbol{0}, arsigma^2oldsymbol{B}^{-1}
ight), ext{ where}$$

- $\blacktriangleright\ \varsigma^2$ is the unknown spatial–specific variance component, and
- ► $B = I \rho A$, where ρ is the unknown autoregressive spatial parameter and $A = (a_{ij})_{1 \leqslant i,j \leqslant q}$ is the adjacency matrix defined by

$$a_{ij} = \left\{ egin{array}{c} 1 & ext{if } j ext{ is adjacent to } i \ 0 & ext{otherwise.} \end{array}
ight.$$

A general covariance structure on $Y = \begin{bmatrix} y_1 \\ \dots \\ y_q \end{bmatrix}$?

- ▶ e.g. modelling species interactions and competition
 - \hookrightarrow Congo–Basin floristic data: some species tend to appear together
 - $\,\hookrightarrow\,$ Other species are antagonistic

References

Bry, X., Verron, T. (2015). THEME: THEmatic model exploration through multiple co-structure maximization. Journal of Chemometrics, 29, 637-647.

Bry, X., Trottier, C., Verron, T. and Mortier, F. (2013). Supervised component generalized linear regression using a PLS-extension of the Fisher scoring algorithm. Journal of Multivariate Analysis, 119, 47-60.

+ Package R : SCGLR https://github.com/SCnext/SCGLR

Chauvet, J., Bry, X., Trottier, C. (2019). *Component–based regularisation of multivariate generalised mixed models.* Journal of Computational and Graphical Statistics, *in press.*

+ Package R : mixedSCGLR

https://github.com/SCnext/mixedSCGLR

Chauvet, J., Bry, X., Trottier, C. (2019). Regularisation of GLMMs with an autoregressive random time-specific effect. in progress.

Eliot, M., Ferguson, J., Reilly, M.P. and Foulkes, A.S. (2011) *Ridge Regression for Longitudinal Biomarker Data.* The International Journal of Biostatistics, **7**, 1–11.

Green, P.J. (1990) On use of the EM for penalized likelihood estimation. Journal of the Royal Statistical Society. Series B (Methodological), 443-452.

Marx, B. D. (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics, 38, 4, 374–381.

High dimensional data (1)

- ▶ 100 observations
- ▶ 150 explanatory variables: $X = \begin{bmatrix} X_0 \mid X_1 \mid X_2 \mid X_3 \end{bmatrix}$
 - \hookrightarrow 60 variables in X_0 , 45 variables in X_1 , 30 variables in X_2 , 15 variables in X_3
- Responses

$$\begin{cases} y_1 \sim \mathcal{N}_n \Big(\mu = \mathbf{X} \beta_1 + U \boldsymbol{\xi}_1, \, \boldsymbol{\Sigma} = \boldsymbol{I}_n \Big) \\ y_2 \sim \mathcal{B} \Big(\boldsymbol{p} = \mathsf{logit}^{-1} \Big[\mathbf{X} \beta_2 + U \boldsymbol{\xi}_2 \Big] \Big) \\ y_3 \sim \mathcal{B} \mathsf{in} \Big(\mathsf{trials} = 30 \, \boldsymbol{1}_n, \, \boldsymbol{p} = \mathsf{logit}^{-1} \Big[\mathbf{X} \beta_3 + U \boldsymbol{\xi}_3 \Big] \Big) \\ y_4 \sim \mathcal{P} \Big(\boldsymbol{\lambda} = \exp \Big[\mathbf{X} \beta_4 + U \boldsymbol{\xi}_4 \Big] \Big). \end{cases}$$

• X_0 = nuisance bundle y_1 predicted only by X_1 , y_2 only by X_2 , y_3 only by X_3 , y_4 by both X_2 and X_3 .

High dimensional data (2)

Results

High dimensional data (3)

First idea: replace X with the matrix C of its principal components associated with non-negligible eigenvalues

- \blacktriangleright C = XV, with V the matrix of unit-eigenvectors
- ► Modified GoF and SR criteria

$$\begin{split} \widetilde{\psi}(\boldsymbol{u}) &= \sum_{k=1}^{q} \left\| \Pi_{\mathsf{span}\{\boldsymbol{C}\boldsymbol{u},\boldsymbol{A}\}} \; \boldsymbol{z}_{\boldsymbol{k}} \right\|_{\boldsymbol{W}_{\boldsymbol{k}}}^{2} \\ \widetilde{\phi}(\boldsymbol{u}) &= \left(\sum_{j=1}^{p} \Big[\operatorname{cor}^{2}\left(\boldsymbol{C}\boldsymbol{u},\boldsymbol{x}_{\boldsymbol{j}}\right) \Big]^{l} \right)^{\frac{1}{l}} \end{split}$$

Maximisation program

$$\begin{cases} \max & s \log \left[\widetilde{\phi}(\boldsymbol{u}) \right] + (1-s) \log \left[\widetilde{\psi}(\boldsymbol{u}) \right] \\ \text{subject to} & \boldsymbol{u}^{\mathsf{T}} \boldsymbol{C}^{\mathsf{T}} \boldsymbol{P} \boldsymbol{C} \boldsymbol{u} = 1, \ \boldsymbol{P} = n^{-1} \boldsymbol{I}_n \end{cases}$$

High dimensional data (4)

Better idea:

► Preserve the GoF and SR criteria

$$\begin{split} \psi(\boldsymbol{u}) &= \sum_{k=1}^{q} \left\| \Pi_{\mathsf{span}\{\boldsymbol{X}\boldsymbol{u},\boldsymbol{A}\}} \; \boldsymbol{z}_{\boldsymbol{k}} \right\|_{\boldsymbol{W}_{\boldsymbol{k}}}^{2} \\ \phi(\boldsymbol{u}) &= \left(\sum_{j=1}^{p} \Big[\operatorname{cor}^{2} \left(\boldsymbol{X}\boldsymbol{u}, \boldsymbol{x}_{j} \right) \Big]^{l} \right)^{\frac{1}{l}} \end{split}$$

Modify the norm–constraint

$$\begin{cases} \max & s \log \left[\phi(\boldsymbol{u}) \right] + (1-s) \log \left[\psi(\boldsymbol{u}) \right] \\ \text{subject to } & \boldsymbol{u}^{\mathsf{T}} \left[\tau \boldsymbol{I} + (1-\tau) \boldsymbol{X}^{\mathsf{T}} \boldsymbol{P} \boldsymbol{X} \right] \boldsymbol{u} = 1, \ \boldsymbol{P} = n^{-1} \boldsymbol{I}_{n} \end{cases}$$

► Generic program:

$$\begin{cases} \mathsf{max} \quad \mathcal{J}(\boldsymbol{v}) \\ \mathsf{subject to} \quad \boldsymbol{v}^\mathsf{T} \boldsymbol{v} = 1 \text{ and } \boldsymbol{\Delta}^\mathsf{T} \boldsymbol{v} = \boldsymbol{0}. \end{cases}$$

► Direction of ascent:

$$\boldsymbol{v}^{[t+1]} = \frac{\boldsymbol{\Pi}_{\mathsf{span}\{\boldsymbol{\Delta}\}^{\perp}} \, \boldsymbol{\Gamma}\left(\boldsymbol{v}^{[t]}\right)}{\left\|\boldsymbol{\Pi}_{\mathsf{span}\{\boldsymbol{\Delta}\}^{\perp}} \, \boldsymbol{\Gamma}\left(\boldsymbol{v}^{[t]}\right)\right\|}, \text{ with } \boldsymbol{\Gamma}\left(\boldsymbol{v}\right) = \boldsymbol{\nabla} \mathcal{J}\left(\boldsymbol{v}\right)$$

The PING algorithm

The Projected Iterated Normed Gradient Algorithm

while convergence of v non reached do

$$\left| \begin{array}{c} \boldsymbol{m} \leftarrow \frac{\Pi_{\mathsf{span}\{\boldsymbol{\Delta}\}^{\perp}} \Gamma\left(\boldsymbol{v}^{[t]}\right)}{\left\|\Pi_{\mathsf{span}\{\boldsymbol{\Delta}\}^{\perp}} \Gamma\left(\boldsymbol{v}^{[t]}\right)\right\|} \\ \mathsf{while} \ \mathcal{J}\left(\boldsymbol{m}\right) < \mathcal{J}\left(\boldsymbol{v}^{[t]}\right) \mathsf{do} \\ \left\| \begin{array}{c} \boldsymbol{m} \leftarrow \frac{\boldsymbol{v}^{[t]} + \boldsymbol{m}}{\left\|\boldsymbol{v}^{[t]} + \boldsymbol{m}\right\|} \\ \mathsf{end} \\ \boldsymbol{v}^{[t+1]} \leftarrow \boldsymbol{m} \\ t \leftarrow t+1 \\ \mathsf{end} \end{array} \right|$$