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L'optimisation simultanée de la forme et de l'anisotropie des composites stratifiés sont traités dans certains travaux de la littérature [START_REF] Rion | Topology optimization of membranes made of orthotropic material[END_REF][START_REF] Peeters | Combining topology and lamination parameter optimisation[END_REF][START_REF] Allaire | Stacking sequence and shape optimization of laminated composite plates via a level-set method[END_REF]]. Ce groupe de méthodes optimise simultanément la forme du composite stratifié et la distribution de l'anisotropie en déterminant la distribution optimale de l'orientation des fibres ou la séquence d'empilement optimale du composite stratifié. Certains travaux traitent de l'optimisation simultanée des empilements et des formes de plis, où une approche de type isogéométrique est utiliser pour déterminer les courbures optimales de la coque [START_REF] Nagy | Design of anisotropic composite shells using an isogeometric approach[END_REF][START_REF] Kpadonou | Anisotropy and Shape Optimal Design of Shells by the Polar-Isogeometric Approach[END_REF]. Néanmoins, la plupart de ces méthodes sont limitées à des coques dont la géométrie est prédéfinie. L'optimisation de la forme se restreint à la distribution de l'épaisseur totale sur la coque et à la définition de la localisation de chute de pli. En effet, la courbure de la coque est déterminée au début de l'optimisation. Ces méthodes visent donc à créer des trous dans la forme prédéfinie de la coque et donc à déterminer les bordures de la structure, mais ne définissent pas la forme globale de la coque.

Des méthodes d'optimisation topologique multi-échelles ont été développées afin de traiter l'optimisation simultanée de la topologie et de la distribution d'anisotropie à partir d'un encombrement maximal 3D. Le concept consiste à déterminer simultanément la distribution spatiale optimale du matériau à l'échelle macroscopique de la strucutre et à déterminer la microstructure optimale du matériau à l'échelle inférieure. Plusieurs travaux sont développés dans la littérature [START_REF] Allaire | Optimal design for minimum weight and compliance in plane stress using extremal microstructures[END_REF][START_REF] Allaire | Shape optimization by the homogenization method[END_REF][START_REF] Coelho | A hierarchical model for concurrent material and topology optimisation of three-dimensional structures[END_REF][START_REF] Xia | Concurrent topology optimization design of material and structure within nonlinear multiscale analysis framework[END_REF][START_REF] Long | Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson's ratios for maximum frequency[END_REF]. Ces méthodes présentent l'avantage d'optimiser simultanément la topologie et l'anisotropie des matériaux à partir d'un encombrement maximal 3D, sans a priori sur la forme optimale. Les solutions obtenues peuvent être adaptées à l'impression 3D. Néanmoins, ces méthodes sont limitées à l'utilisation de matériaux spécifiques qui sont des mélanges de deux matériaux isotropes ou de matériaux isotropes et de vide. De plus, dans ce dernier cas, le matériau équivalent admet une densité intermédiaire à l'échelle macroscopique (matériau rempli partiellement), car il est composé de matériau et de vide.

Les méthodes citées ci-dessus permettent d'optimiser la distribution de l'anisotropie du matériau. Pour les matériaux composites stratifiés, il est possible de déterminer la répartition optimale de l'orientation, de l'épaisseur ou de la séquence d'empilement. Des méthodes avancées permettent d'optimiser l'orientation en même temps que la distribution d'épaisseur du composite stratifié, en donnant la forme optimale des plis et le chemin optimal des fibres ou la séquence d'empilement. D'autres méthodes optimisent simultanément la topologie et Optimisation simultanée de la forme et de l'anisotropie de structures aéronautiques xiii l'anisotropie des matériaux à partir d'un volume de conception 3D maximum. Cependant, ces méthodes utilisent généralement des matériaux microstructurés qui ne correspondent pas nécessairement aux matériaux industriels usuels tels que les matériaux à fibres longues carbone/époxy par exemple. Ainsi, d'une part, certaines méthodes sont développés pour l'optimisation de la distribution de l'anisotropie avec une forme fixée et prédéfinie, d'autre part, d'autres méthodes d'optimisation topologique n'utilisent que des classes de matériaux spécifiques.

C'est dans ce contexte que cette thèse a été réalisée. Son objectif consiste à développer une méthode d'optimisation simultanée de la forme et de la distribution d'anisotropie d'une structure 3D, à partir d'un encombrement maximal et de conditions aux limites et de charges prédéfinies, sans a priori sur la forme de la structure et du matériau.

Une méthode pour l'optimisation simultanée de la forme et de l'anisotropie La méthode proposée consiste à faciliter l'optimisation simulatnée en résolvant analytiquement le problème par rapport aux variables d'optimisation. Pour ce faire, la paramétrisation de la forme et de l'anisotropie, la formulation du problème d'optimisation et l'algorithme de résolution numérique sont choisis précautionneusement.

La distribution de matière est paramétrée par une variable distribuée, la densité, qui spécifie en chaque élément du domaine la présence (1) ou l'absence de matière (0). C'est une variable continue qui pondère le tenseur d'élasticité en chaque point de la structure. Une méthode de pénalisation simple visant à supprimer les densités intermédiaires est utilisée : la méthode SIMP, Solid Isotropic Material with Penalization [START_REF] Bendsøe | Optimal shape design as a material distribution problem[END_REF]]. Celle-ci consiste à utiliser un exposant dont la valeur doit être bien choisie par une stratégie de continuation pour faire tendre la densité vers 0 ou 1.

La méthode utilise les propriétés homogénéisés du matériau élastique. Afin de paramétrer le matériau de manière simple, le tenseur d'élasticité est représenté par des invariants. Cette paramétrisation dépend du type de symétrie du matériau utilisé et est donc différente en 2D et en 3D. Les deux types de paramétrisations sont présentés plus bas dans ce résumé. Un choix adéquat des invariants est effectué afin de simplifier la résolution du problème d'optimisation. Le domaine de recherche des invariants est le domaine des matériaux thermodynamiquement admissible (tenseur d'élasticité défini positif).

L'optimisation vise à maximiser la rigidité globale de la structure c'est-à-dire à minimiser la compliance (travail des efforts extérieurs). En effet, moins la structure travaille, moins elle se déforme et plus elle est rigide. Une contrainte de volume maximal (donc de masse maximale) est imposée. Le point clé de la méthode réside dans la reformulation du problème de minimisation de la compliance en une double minimisation de l'énergie complémentaire par rapport aux variables d'optimisation et par rapport aux champs de contraintes. Pour ce faire, les formulations variationnelles et les théorèmes énergétiques sont exprimées.

Pour résoudre numériquement le problème, l'algorithme des directions alternées [START_REF] Allaire | Optimal design for minimum weight and compliance in plane stress using extremal microstructures[END_REF] est choisi. Il s'apparente à une méthode de critère d'optimalité car c'est une méthode itérative de point fixe sur les conditions d'optimalité. Il consiste à calculer les valeurs optimales des variables d'optimisation en chaque point de la structure, à contraintes fixées, puis xiv Résumé de synthèse à réactualiser le champs de contraintes. Ainsi, l'algorithme itère sur un cycle de minimisations locales et de minimisations globales. Cet algorithme a été choisi car son implémentation et sa mise en oeuvre sont simples. De plus, son coût numérique est réduit dans le cadre de la minimisation de la compliance. La convergence de l'alogirthme est également prouvée. Enfin, l'algorithme est adapté à l'optimisation simultanée de la densité et de l'anisotropie. Par la combinaison de la méthode SIMP pour paramétrer la forme, et des invariants pour paramétrer le tenseur d'élasticité, les minimisations locales sont résolues analytiquement. Les expressions explicites des variables optimales sont alors obtenues. Les minimisations globales sont résolues par des calculs éléments finis.

La stratégie de mise en oeuvre de la méthode est réalisée en deux étapes. Dans un premier temps, la méthode est développée pour les matériaux orthotropes 2D. Ensuite, la méthode est étendue au cas 3D pour les matériaux isotropes transverses. La principale différence entre la méthode développée en 2D et celle en 3D réside dans la paramétrisation de l'anisotropie du matériau et donc dans la résolution analytique des minimisations locales par rapport aux variables d'optimisation liées à l'anisotropie.

La première partie de ce mémoire présente le contexte bibliographique de cette thèse ; positionne l'algorithme des directions alternées par rapport aux principales algorithmes d'optimisation ; et présente les paramétrisations de la forme et de l'anisotropie utilisées au cas 2D. La Partie II de ce mémoire développe la méthode en 2D. En 2D, le matériau orthotrope est décrit par les paramètres polaires. Le formalisme polaire [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF]] paramétrise le tenseur d'élasticité avec des invariants. Par conséquent, l'expression du tenseur d'élasticité dans n'importe quel repère devient simple et direct. L'avantage de la méthode polaire est sa capacité à séparer la partie isotrope (partie qui ne dépend pas de l'orientation du matériau) de la partie anisotrope. De plus, la minimisation de l'énergie par rapport aux paramètres polaires est grandement simplifiée.

La résolution de la minimisation de l'énergie complémentaire par rapport aux paramètres polaires est développée dans les travaux de [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF]]. La minimisation de l'énergie complémentaire est réalisée uniquement par rapport à la partie anisotrope du tenseur d'élasticité, la partie isotrope est fixée. En effet, comme cette partie n'est pas bornée, les valeurs optimales des invariants correspondant à la partie isotrope tendent vers l'infini. Cela correspond à une solution triviale qui est le matériau le plus rigide possible. Afin de travailler dans le domaine de matériaux réalisables, la partie isotrope est fixée. La résolution est analytique et donne des expressions explicites des paramètres polaires optimaux.

La Partie III de ce mémoire étend la méthode au cas 3D. L'originalité principale de la thèse réside dans la détermination simultanée de la distribution de la densité et de l'anisotropie pour les structures 3D, partant d'un encombrement maximal, sans a priori. La méthodologie globale reste inchangée par rapport à celle utilisée en 2D. Le matériau isotrope transverse est paramétré par cinq invariants. Ces invariants sont choisis afin de simplifier la minimisation de l'énergie élastique par rapport aux invariants. Les critères de sélection de ces invariants sont multples: leur signification physique, l'expression simple des conditions de positivité du tenseur d'élasticité, les relations simples entre les invariants du tenseur de rigidité et de souplesse, et la séparation de la partie isotrope de la partie anisotrope.

La résolution de la minimisation de l'énergie complémentaire par rapport à ces invariants est ensuite développée dans la thèse. De manière similaire au cas 2D, la minimisation de l'énergie complémentaire est réalisée uniquement par rapport à la partie anisotrope du tenseur d'élasticité, dont la partie isotrope est fixée. La stratégie de minimisation se fait en deux étapes. Dans un premier temps, les invariants optimaux qui minimisent l'énergie élastique sont calculés pour une Optimisation simultanée de la forme et de l'anisotropie de structures aéronautiques xv orientation donné du matériau. Ensuite, l'orientation optimale du matériau est recherchée pour les valeurs optimales des invariants obtenues dans la première étape. La résolution analytique donne des expressions explicites des valeurs optimales, ce qui fait l'avantage de la méthode. Ces valeurs optimales dépendent des champs de contraintes.

Validation numérique de la méthode sur des applications numériques En 2D (partie II) comme en 3D (partie III), une attention particulière a été apportée à la mise en oeuvre numérique et à la validation de la méthode sur des cas tests. En particulier, plusieurs recommandations destinées à l'utilisateur de la méthode sont proposées pour réaliser efficacement l'optimisation. Une stratégie de continuité est proposée afin de faire tendre la solution vers une solution en noir et blanc, en jouant sur la valeur du paramètre de pénalisation de la densité. Une initialisation spécifique des variables d'optimisation est également recommandée afin de contourner les problèmes de dépendance à l'initialisation. Une méthode de filtrage est également utilisée pour contourner les problèmes de dépendance au maillage et les problèmes de damier.

La méthode est appliquée sur des cas test numériques de structures 2D classiques : une poutre console et un pont (Partie II Chapitre 5). Les cas tests numériques illustrent l'influence de l'anisotropie sur la forme optimale, en réalisant plusieurs optimisations de la forme de la poutre console et en utilisant différentes orientations (uniformes dans la structure) du matériau. La capacité de la méthode est évaluée en augmentant progressivement la complexité de l'optimisation : optimisation topologique de la densité seulement, optimisation topologique de la distribution de la densité et de l'orientation du matériau et optimisation topologique de la distributions de la densité et de l'anisotropie du matériau (orientation et invariants). L'intérêt d'optimiser simultanément la densité et l'anisotropie est illustrée. Pour une même masse de la structure, celle dont l'orientation du matériau est optimisée est plus rigide que celle faite de matériau isotrope (stratifié quasi-isotrope et aluminium). Nous illustrons cette observation en Figure 1. Enfin, l'optimisation simultanée donne une structure plus rigide que l'optimisation séquentielle, et d'autant plus rigide quand les chargements sont complexes (l'optimisation séquentielle consiste à trouver une forme optimale en fixant l'anisotropie du matériau, puis d'optimiser par rapport à l'anisotropie en fixant la forme ; en revanche, l'optimisation simultanée cherche à optimiser en même temps la forme et l'anisotropie).

La méthode est également appliquée sur des cas test numériques de structures 3D (Partie III Chapitre 8). La méthode est capable de déterminer simultanément la distribution optimale de la densité et de l'anisotropie d'une structure 3D. Comme en 2D, une poutre console est optimisée d'abord en densité seule, puis en introduisant progressivement de plus en plus de degrés de liberté liés à l'anisotropie du matériau. La Figure 2 La méthode est également capable de traiter des cas tests industriels complexes. Nous l'appliquons ainsi à l'optimisation d'un linteau de porte de fuselage modélisé par un DFEM (Detailed Finite Element Model) fourni par STELIA Aerospace. Nous proposons plusieurs solutions afin de remplacer le linteau actuel fait en titane par des structures plus légères ayant la même rigidité globale. Les solutions obtenues, qu'il s'agisse de solutions en titane, en carbone/époxy, xvi Résumé de synthèse ou avec une évolution continue sur la structure des propriétés d'isotropie transverse du matériau diffèrent considérablement de la solution industrielle actuelle. En effet, ces solutions sont obtenues en considérant un unique cas de charge, et le seul critère de la maximisation de la rigidité de la structure. Le problème de conception réel est beaucoup plus riche : plusieurs cas de charges et d'autres critères mécaniques entrent en ligne de compte, comme par exemple des critères de déplacement maximal ou de résistance de la structure dont l'intégration future dans la méthode d'optimisation proposée constitue une des perspectives de ces travaux. The thesis work in this document is part of a research project called OPTILIO at STELIA Aerospace. The theme of the project is the design of composite structures, especially highly loaded structures of the fuselage such as an aircraft door surrounding lintel, for instance. The thesis project is a collaboration between STELIA Aerospace, ONERA and Institut Jean le Rond d'Alembert -Sorbonne Université. The objective is to develop a design methodology for innovative structures made of anisotropic material. The emergence of 3D printing or additive manufacturing provides the capability of manufacturing microstructured materials and complex structures. One can cite, for instance, fused deposition modeling, stereolithography and selective laser sintering. The design of such metallic structures relies on topology optimization. It is interesting to note that topology optimization was developed decades before the manufacturing methods of structures with organic shapes existed. Today, manufacturing methods are emerging for anisotropic materials such as Automated fiber placement (AFP) or 3D printing for carbon fiber reinforced polymer (CFRP) materials. Others will certainly come in the coming decades. This project anticipates such developments by extending topology optimization to anisotropic materials, such as composite materials.

Motivation

Weight and cost reductions of structures are permanent challenges for aeronautic industries. As a response to this concern, structural optimization is on the rise, especially topology optimization. It consists in determining the best shape of a structural component or the best layout of structures. An objective function is considered and constraints are imposed. Usual design criteria, that can be considered as either objective or constraints, are for instance the total mass or the compliance. Topology optimization has reached a certain maturity in the design of structures with isotropic material, essentially metallic. A second solution to structural weight reduction is the use of lighter materials than metals like composite materials. Composite materials are competitive for light-weight structural design thanks to their higher stiffness-to-mass and strength-to-mass ratio compared to metallic materials. Composite materials offer additional degrees of freedom in the optimization. Indeed, it is possible to tailor the anisotropy of the material and therefore to adapt the material according to the stress distribution within the structure. However, the corresponding design problem is very difficult. Consequently, topology optimization is not a mature research subject for structures made of anisotropic materials. We might wonder how to handle topology optimization of structures made of anisotropic materials. In effect, the nature of anisotropic materials makes their integration in the optimization process very difficult. The anisotropy behavior is defined by numerous properties that change in function of the considered reference frame. Therefore its study is difficult in 2D and is even much more complex in 3D.

Laminate composite optimization

Great research effort was made to optimize composite structures and to take advantage of their anisotropic behavior. The optimization of composites is addressed by many authors with laminate composite structural optimization. The laminate composite optimization usually aims at finding the minimum number of layers, the best layer orientation and stacking order. A document about the design and optimization of laminated composite material can be found in [START_REF] Gürdal | Design and optimization of laminated composite materials[END_REF].

A review of the optimization of the stacking sequence of laminates can be found in [START_REF] Ghiasi | Optimum stacking sequence design of composite materials Part I: Constant stiffness design[END_REF][START_REF] Ghiasi | Optimum stacking sequence design of composite materials Part II: Variable stiffness design[END_REF]. The authors divide the study of laminate composite optimization method in two parts: constant stiffness design [START_REF] Ghiasi | Optimum stacking sequence design of composite materials Part I: Constant stiffness design[END_REF]] and variable stiffness design [START_REF] Ghiasi | Optimum stacking sequence design of composite materials Part II: Variable stiffness design[END_REF]]. The latter enables variable anisotropy distribution over the part. Many authors use metaheuristic methods to determine the optimal layup of laminates by changing the orientations of the plies, the thickness, or the stacking sequence [Rodolphe Le Riche and Raphael T. Haftka 1993; [START_REF] Irisarri | Computational strategy for multiobjective optimization of composite stiffened panels[END_REF]. Optimal thickness of laminated composites of wind turbines are determined in [Sørensen and Lund 2013] using gradient-based methods. Homogenized stiffness is considered in the works of [START_REF] Miki | Optimum Design of Laminated Composite Plates Using Lamination Parameters[END_REF][START_REF] Ijsselmuiden | Optimal design of variable stiffness composite structures using lamination parameters[END_REF]] by using the lamination parameters and in the work of [START_REF] Jibawy | Hierarchical structural optimization of laminated plates using polar representation[END_REF][START_REF] Burger | Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength[END_REF]] by using the polar method. Recent works deal with the introduction of manufacturing constraints into the optimization [D. M. [START_REF] Peeters | Optimal design, manufacturing and testing of non-conventional laminates[END_REF]]. The topic of finding optimal anisotropy distribution using laminates is nowaday mature. However, the search of the optimal anisotropy distribution is performed on fixed and predefined geometries of the shells, such as a wind turbine blade for instance in [Sørensen and Lund 2013]. These methods do not consider the optimization of the shape of the structure.

Ply shape optimization on thin walled structures

Some works in the literature deal with the concurrent optimization of the shape and the anisotropy distribution of the laminate composites. [START_REF] Rion | Topology optimization of membranes made of orthotropic material[END_REF] optimize simultaneously the topology of 2D structures and the fiber orientations of orthotropic material that represent laminate composites. [D. [START_REF] Peeters | Combining topology and lamination parameter optimisation[END_REF]] determine the optimal boundaries of the structure and the optimal fiber angle distribution of two dimensional laminate composite structures. [START_REF] Allaire | Stacking sequence and shape optimization of laminated composite plates via a level-set method[END_REF] optimize laminated composite plates where the shape of each layer is determined concurrently with the stacking sequence. This group of methods optimizes concurrently the shape of the shell laminate composite and the anisotropy distribution by determining the optimal fibre angle distribution or the optimal stacking sequence of the laminate composite. Nevertheless, their limit is that the optimization is performed on a predefined geometry of the shell. The shape optimization is restricted to the total thickness distribution over the shell and the definition of the ply drop location. Indeed, the curvature of the shell is determined at the start of the optimization. The methods create holes on the maximum design volume attributed to the shape of the shell, giving the boundaries of the structure but do not define the global shape of the shell. The simultaneous optimization of shape and material distribution of a shell-like structure is carried out in [START_REF] Nagy | Design of anisotropic composite shells using an isogeometric approach[END_REF]] and [START_REF] Kpadonou | Anisotropy and Shape Optimal Design of Shells by the Polar-Isogeometric Approach[END_REF]] by using an isogeometric-like approach, in which the curvature of the shell is optimized.

Multiscale topology optimization for 3D structures

Multiscale structural topology optimization methods have been developed in order to deal with the concurrent optimization of topology and material anisotropy distribution starting from a 3D maximum design volume prescribed and loads and boundary conditions. The concept of the methods is to determine simultaneously the optimal spatial distribution of the material at the macroscopic structural scale, and to determine the optimal local microstructure at the microscopic scale. The topology and the anisotropic material are jointly optimized for 2D structures in [START_REF] Allaire | Optimal design for minimum weight and compliance in plane stress using extremal microstructures[END_REF] and for 3D structures in [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]]. The material is represented at the macroscopic scale with an homogenized orthotropic material, and at the microscopic scale with a N-rank sequential laminate. [START_REF] Coelho | A hierarchical model for concurrent material and topology optimisation of three-dimensional structures[END_REF] address the problem of the simultaneous characterization of the optimal topology of the structure and the optimal design of the cellular material used in its construction. The method uses a mixture of void and isotropic materials that is periodically repeated inside a small neighborhood. The concurrent optimization of the topology at the macroscopic scale and of the material at the microscopic scale, by considering highly nonlinear heterogeneous structures, is addressed in [START_REF] Xia | Concurrent topology optimization design of material and structure within nonlinear multiscale analysis framework[END_REF]. [START_REF] Long | Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson's ratios for maximum frequency[END_REF] propose a two-scale concurrent topology optimization method for maximizing the frequency of composite macrostructures that are composed of periodic composite unit cells composed of two isotropic materials with distinct Poisson's ratios. The advantage of the cited methods is that they optimize concurrently the topology and the material anisotropy starting from a maximum 3D design volume, so that there is no a priori on the shape of the optimal topology. The methods are capable of considering various criteria and physical phenomena such as compliance, frequency, nonlinear multiscale behavior. The solutions exhibiting macroscopic topology of the structure and microscopic material can be suitable for 3D printing. Nevertheless, they are restricted to the use of specific materials that are mixtures of two materials or void and isotropic material. Furthermore, at the macroscopic scale, these correspond to intermediate density values.

All of the above cited methods allow to optimize the anisotropy distribution of the material. For laminate composite materials, it is possible to determine the optimal distribution of the orientation, the thickness or the stacking sequence. Advanced methods permit to tailor the orientation at the same time as the topology of the laminate composite, giving the optimal shape of the plies and the optimal fibre path or stacking sequence. Other methods optimize concurrently the topology and the material anisotropy starting from a maximum 3D design volume. However, these methods are usually based on the use of micro-structured materials that do not necessarily correspond to the usual industrial structural material such as long fiber carbon/epoxy materials for instance. Thus, on the one hand, one can find methods for the optimization of anisotropy distribution with fixed structural shape. On the other hand, one can find topology optimization methods that make use of specific classes of materials only.

Objective

This study was developed in this context. Our purpose is to develop a method for the simultaneous optimization of the topology and the anisotropy distribution of a 3D structure, starting from a prescribed maximum design volume and prescribed boundary conditions and loadings, without a priori on the shape of the structure and the material, and using a general transversely isotropic elastic material.

Industrial context

For aeronautic industry, the trend is to replace highly loaded and massive metallic structures with composite structures that are lighter. For instance, the keel beam or the center wing bow are now made of composite materials. Most of the time, the structure is replaced by a black metal solution. A black metal solution is a composite structure whose shape derived from the former metallic structure. The laminates are often restricted to quasi-isotropic or slightly oriented solutions. By doing so, significant mass saving can be achieved, thanks to the composite superior specific properties. Moreover, waste from the manufacturing process is reduced as composites are manufactured essentially with draping processes. For instance, STELIA Aerospace replaces the highly loaded door surrounding lintel of an aircraft made of titanium with a lintel made of composites. STELIA Aerospace is also looking to replace a landing gear keel of the aircraft with a composite structure. However the black metal solution is not optimal because the anisotropy of the composite material is not used properly. Furthermore, the metallic shape might not be the most adequate for anisotropic materials. In order to obtain an optimal solution, the shape of the structure should be optimized concurrently with the anisotropy of the material, so that there is no a priori on the initial topology and unlike the black metal design, there are no simplifying assumptions on the material behavior. To our knowledge, there is no available methodology that determines the optimal shape and the optimal distribution of anisotropy.

To go further, engineers optimize the anisotropy of the material by using composite optimization. The latter is generally done with a predefined shape of the structure, most of the time derived from the preexisting metallic part. Therefore, engineers perform a sequential optimization in which, first, the topology of the structure made of metallic material is optimized, second, the material anisotropy distribution is optimized by using the topology obtained in the first step. Nevertheless, shapes of metallic structures are not appropriate for anisotropic composite structures. Indeed, the material anisotropy influences the optimal shape. [D. [START_REF] Peeters | Combining topology and lamination parameter optimisation[END_REF]] obtained two different shapes in the case of a quasi-isotropic (QI) structure and in the case of a composite laminate structure obtained by a combination of topology optimization and composite optimization with lamination parameters. These observations show that it is necessary to optimize the shape and the distribution of anisotropy of the considered structure all at once. Indeed, the concurrent optimization could result in higher performance structures, since the material is adapted to the shape of the structure.

Outline of the thesis

Our work starts by introducing the material anisotropy related to design variables into the optimization process (Part I). For this purpose, we select a suitable algorithm for the numerical resolution of the problem, an appropriate parameterization method in topology optimization and a convenient parameterization of the material anisotropy. Indeed, since the study of anisotropy is complex, its integration in the optimization process is a complex task. A convenient choice of the design variables is crucial so that the concurrent optimization can be carried out in a simple and efficient way. Chapter 2 overviews the main algorithms in structural optimization and the main methods in topology optimization, in order to select them carefully. Chapter 3 presents the polar method that is a suitable parameterization of the elasticity tensor with invariants, for 2D behavior. The idea is to use invariants in order to facilitate the study of anisotropy behavior. By selecting the polar method, the optimization with respect to the anisotropy design variables can be performed analytically. The next step is the development and the validation of the method for 2D structures (Part II). The idea is to start with optimization of 2D structures made of orthotropic materials, in order to test the feasibility of the method, the optimization being more complex in 3D. The objective is to ease the concurrent optimization by resolving it analytically with respect to the design variables. For this purpose, the parameterization of the design variables selected in Chapter 2 (for topology) and Chapter 3 (for anisotropy) are used. The problem is formulated so that it is possible to propose closed form solutions for the optimal values of the design variables. To this end, the maximization of the global structural stiffness is formulated into a double minimization of the complementary energy with respect to the design variables and with respect to the stress field, thanks to the use of the variational formulations and the energy theorems. Then, the algorithm selected in Chapter 2 is adapted to the concurrent optimization of the density and the anisotropy distributions in order to solve the double minimization problem with respect to the design variables and with respect to the stress field. By putting all these ingredients together, the minimization of the complementary energy with respect to the design variables (density variables and polar parameters) can be performed analytically. Therefore, the resolution is straightforward and simple (Chapter 4).

The method developed for 2D structures requires numerical validation to prove its efficiency. Chapter 5 validates numerically the method with application on 2D test cases. The objective is to evaluate the capability of the method to concurrently determine the optimal material density and anisotropy distributions. For this purpose, an optimization strategy is first proposed in order to perform efficiently the concurrent optimization. Second, we illustrate the influence of the anisotropy on the optimal shape by performing topology optimizations of a cantilever beam with uniform anisotropic materials. In order to show the capability of the numerical method, we add gradual complexity in the optimization: topology optimization of density only, topology optimization of density and material orientation distributions and topology optimization of density and material orthotropy distributions. By doing so, on the one hand, we show the interest of replacing a metallic material with a composite one, and on the other hand, we illustrate the interest of optimizing concurrently the topology and the material anisotropy distribution.

Part III is dedicated to the extension of the method developed in Part II for 3D structures made of transversely isotropic material. The idea is to use a similar methodology than in 2D and to adapt it for 3D behavior. Chapter 6 summarizes the main features of the method in 3D. Since the main difference between the 2D and the 3D cases is the material used, the principal contribution needed is to find an appropriate set of invariants and to solve the local minimization of the complementary energy with respect to these invariants. Chapter 7 selects, first, suitable invariants that describe a transversely isotropic material. Second, it solves the minimization of the elastic energy with respect to the selected invariants.

Finally, Chapter 8 evaluates the capability of the method to determine concurrently the optimal density distribution and the optimal anisotropy distribution for 3D structures. Firstly, an optimization strategy is recommended to the user in order to perform efficiently the numerical optimization. Secondly, an academic test case is treated where a cantilever beam is optimized with gradual complexity on the optimization: topology optimization of density only, topology optimization of density and material orientation distributions and topology optimization of density and material orthotropy distributions. Thirdly, we illustrate the capability of the method to deal with a complex industrial test cases: an aircraft door surrounding lintel. A significant work is done in order to implement the method for the concurrent optimization of topology and material anisotorpy distribution based on a detailed finite element model (DFEM) provided by STELIA Aerospace, in order to dispose of numerical tools for aircraft substructures.

Reading grid

Some aspects and methods are voluntarily repeated several times in the document so that Part II and Part III are self-consistent. Part I presents the main structural algorithm, the main parameterizations of topology, the method used for the parameterization of the anisotropy and the minimization of the elastic energy. Part II develops the methodology to optimize concurrently the topology and the material anisotropy distribution for 2D structures. In order to have a self-sufficient chapter on the methodology, we recall the algorithm and the parameterizations presented in the first part of the thesis. Guidelines for an efficient use of the method are presented in Chapter 5. Part III extends the method for 3D structures. Chapter 6 gives the main features of the methodology used Chapter 1. Introduction in 3D which are very similar to the case of the 2D method. Some guideline given in Chapter 8 are also redundant with the case in Chapter 5.

Chapter 2. Algorithms for structural optimization and methods for topology optimization

Introduction

Structural optimization requires adequate algorithms, to solve numerically the problem, and suitable parameterization of the design variables. The aim of this short chapter is twofold. First we give a quick panorama of the main algorithms for structural optimization. The alternate directions algorithm that is used in this work is positioned with respect to the main methods. Its general principle is presented. Second, we give a quick overview of topology optimization methods. The methods for parameterizing the topology of the structure are discussed. We present the SIMP method that we choose to parameterize the topology of the structure.

Algorithms for structural optimization

This section gives a short overview of structural optimization algorithm. With the development of numerical simulation and in parallel with optimization algorithms, structural optimization has consisted, since the 1960s, in sizing optimization in which an algorithm modifies geometric variables or dimensions, corresponding to the variables of engineers (section of a stiffener...). From the 1970s and the first complex fluid simulations, optimization then turned to shape optimization in which the geometry of the boundary is optimized. Finally, from the end of the 1980s, topology optimization, in which the variables define the presence of material or not, allows the topology of the parts to be modified by adding, for example, holes in areas of lower stress. Figure 2.1 illustrates these three main structural optimization categories. The motivation of this section is to search for a practical resolution of structural optimization problems. Structural optimization usually involves large numbers of variables and optimization constraints. Furthermore, typical optimization objectives and constraints involve mechanical responses, to be evaluated through numerical simulations (e.g. finite element analysis), that can be costly. This section presents a quick overview of the optimization algorithms. There are many methods for solving an optimization problem numerically. The usual main methods can be 2.2. Algorithms for structural optimization classified as metaheuristic methods, gradient-based methods, convex approximation methods and optimality criteria methods. Beyond this overview, this section aims at choosing an optimization algorithm for our work. In particular, we present the alternate directions algorithm that will be used in this work, and we motivate this choice.

Metaheuristic methods

Metaheuristics are stochastic algorithms essentially inspired by nature, physics or biologic systems: e.g. genetic algorithm inspired by the theory of evolution, simulated annealing inspired by metallurgy. Among metaheuristics, the most well known algorithms applied to structural optimization are cell division algorithms [START_REF] Kobayashi | On a biologically inspired topology optimization method[END_REF]], evolutionary algorithms [R. Le Riche and R. T. Haftka 1997; [START_REF] Hansen | Completely Derandomized Self-Adaptation in Evolution Strategies[END_REF][START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF], particularly [START_REF] Hamda | Application of a Multi-Objective Evolutionary Algorithm to Topological Optimum Design[END_REF] apply the evolutionary algorithm to topological optimum design. Particle swarm optimization or PSO, simulated annealing methods [START_REF] Anagnostou | Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling[END_REF]] and ant colony methods [START_REF] Kaveh | Structural topology optimization using ant colony methodology[END_REF]] are also well known algorithms among metaheuristic methods. Their robustness and flexibility allow them to solve "black box" problems without gradient calculation and sometimes non-linear (mechanical behavior). They are particularly adequate for discrete parameterization, and therefore for combinatorial optimization. Furthermore, smoothness hypotheses are not necessary on the objective functions and optimization constraints. The metaheuristic algorithms are suitable for global optimizations. Indeed, the two principles of metaheuristics are intensification and diversification or exploitation and exploration. Intensification consists in focusing on a local region knowing that a current good solution is found in this region. Diversification means generating diversified solutions to explore the global research space. A balanced combination of these two major components will generally ensure to achieve the global optimum. However, these algorithms fail to treat a large number of optimization variables. In addition, they are computationally expensive as a significant number of objective function evaluations are required. Finally, the convergence of the algorithm to a global optimum is not guaranteed.

Gradient based methods

For handling continuous variables, gradient based methods are generally used. The concept is to find a descent direction that makes the solution go further to the optimum. The main methods are the SQP, Sequential Quadratic Programming [START_REF] Arora | Structural optimization by mathematical programming methods[END_REF][START_REF] Schittkowski | Software for Mathematical Programming[END_REF] and the MMFD methods, Modified Method of Feasible Directions used for structural optimization first in [START_REF] Vanderplaats | Structural optimization by methods of feasible directions[END_REF]. The descent direction is obtained by computing the derivative of the objective and constraint functions. Therefore, sensitivity analyses are needed. Gradient based methods are very useful for handling problems with large numbers of variables and constraints, for instance, by using the adjoint method for the computation of the derivatives for topology optimization. They can handle large numbers of responses with direct methods for sensitivity analysis. These methods can be applied to any sort of continuous optimization problem. Moreover, when the convergence is ensured, the algorithm converges quickly. However, a gradient calculation is required for each iteration, the objective function as well as constraints must be differentiable. The optimum is a local one.
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Convex approximation methods

Convex approximation methods are adapted to structural optimization. They solve an approximation of the problem, by creating several sub problems that are convex and solving them successively. The associated algorithms are MMA, the Method of Moving Asymptots [START_REF] Svanberg | A class of globally convergent optimization methods based on conservative convex separable approximations[END_REF][START_REF] Zillober | A globally convergent version of the method of moving asymptotes[END_REF], GCMMA, the Globally Convergent version of MMA [START_REF] Svanberg | A class of globally convergent optimization methods based on conservative convex separable approximations[END_REF]], and CONLIN, the Convex Linearization method [START_REF] Fleury | CONLIN: an efficient dual optimizer based on convex approximation concepts[END_REF]]. CONLIN is generally used for truss structure, while GCMMA is suitable for topology optimization. These methods are used for structural optimization in NASTRAN SOL200. An example of application of MMA can be seen in [START_REF] Sigmund | A 99 line topology optimization code written in Matlab[END_REF]] for topology optimization. The convex approximation methods have the advantage of solving complex problems with a large number of optimization variables. They allow to handle numerous mechanical responses or constraints. They usually go with a mechanism to reduce the number of optimization constraints (constraints screening, regionalization, ...). However, it is difficult to manage equality constraints. Moreover, they are computationally expensive: an evaluation of the objective function and constraints as well as derivative calculations are necessary for each iteration. For structural optimization, expertise of the user to perform the methods is needed. Therefore, these methods can be complex to use.

Optimality criteria methods

Optimality criteria methods have been developed as an alternative approach to mathematical programming methods in structural optimization in order to overcome the high numerical costs of mathematical programming when dealing with a large number of variables [START_REF] Hassani | A review of homogenization and topology optimization III-topology optimization using optimality criteria[END_REF]]. Indeed, mathematical programming needs the computation of the objective function, constraint functions and their derivatives. Application of the optimality criteria methods on structural optimization can be found in [START_REF] Prager | Introduction to Structural Optimization[END_REF][START_REF] Kirsch | Optimum structural design : concepts, methods, and applications[END_REF][START_REF] Rozvany | Layout Optimization of Structures[END_REF][START_REF] Rozvany | Layout Optimization of Structures[END_REF]. They are indirect methods as they do not directly optimize the objective function.

The concept is to express optimality mechanical conditions in order to compute the optimal values of design variables. The conditions could be either intuitive or rigorous. For instance, "fully stressed design" and "simultaneous failure mode design" are intuitive optimality criteria methods [START_REF] Hassani | A review of homogenization and topology optimization III-topology optimization using optimality criteria[END_REF]]. Rigorously derived optimality criteria are often based on Kuhn-Tucker optimality conditions or on the use of the alternate directions algorithm [START_REF] Allaire | Optimal design for minimum weight and compliance in plane stress using extremal microstructures[END_REF].

Optimality criteria methods are largely used in structural optimization. They are very efficient for problems with a large number of variables. Their numerical cost is low as the methods only need a few number of mechanical analysis. Furthermore, their main advantage is that the optimal values of the design variables are given explicitly with closed form analytical solutions. However, the optimality criteria methods can handle only few constraints and a restricted choice of objective functions. They are used essentially for compliance minimization problems and frequency maximization problems. Handling other responses such as stress constraints, for instance, is difficult. Furthermore, the optimal design found by optimality criteria might not match the one of the initial optimization problem because the problem solved is slightly different (especially for fully stressed design problem), but is often found empirically to be close to it.

In this work, we choose the alternate directions algorithm [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]] for solving the numerical problem of concurrent optimization of material density and anisotropy distribution. The first reason is its simplicity, especially when taking into account the material anisotropy in the optimization process. Indeed, the anisotropic behavior is difficult to study. Mathematical programming such as gradient based methods and convex approximation methods are thus cumbersome for sensitivity analyses of the objective function and the constraint functions with respect to the material anisotropy. On the contrary, by expressing optimality conditions on the material properties, closed form solutions can be obtained (see section 3.5). The analytical expressions of the anisotropy design variables make it possible to integrate the anisotropy in a simple way into the optimization process. The second reason is its low numerical cost. Indeed, the optimal values of the design variables are given explicitly. Therefore, the method is cost free for sensitivity analysis. Finally, the quick convergence of the algorithm to a stationary point of the optimization problem is guaranteed.

The alternate directions algorithm is similar to a fixed point method. Its concept is to alternate between minimization with respect to the design variables and minimization with respect to the stress field. The minimization with respect to the design variables is performed locally, at each point of the structure, while the minimization of the stress field is carried out globally, at the structural level. The local minimizations are performed analytically. The global minimization amounts to solving a linear elasticity problem, that can be performed with a finite element analysis. The procedure iterates until a convergence criterion is achieved. The alternate directions algorithm is structured as follows:

1. Initialization of the design parameters and computation of the stress field state corresponding to the initial design parameters 2. Computation of the optimal design parameters by using optimality conditions of the problem, with the stress field obtained from the previous iteration. This step corresponds to the local minimizations problem.

3. Updating of the stress field by using the optimal design parameters obtained in the previous local minimization. This step corresponds to the global minimization problem and can be performed with a finite element analysis.

4.

A convergence criterion is defined on the objective function (hard convergence) and the design variables (soft convergence). If the convergence criterion is achieved, optimal parameters are found, otherwise, new local minimizations are performed (step 2).

In this work, the alternate directions algorithm is adapted to the problem of concurrent optimization of material density distribution and material anisotropy, for compliance minimization problem with equality constraint on the volume. Further details of the adaptation of the algorithm are given in section 6.4.

Topology optimization methods

Among the three categories of structural optimization, topology optimization is used at a conceptual design level to find the shape of the structure that maximizes its mechanical performance or minimizes its weight under given performance requirements. Size and shape optimizations already start with a predefined and known shape of the structure in which the parameters that define its geometry or its constitutive material are optimized. On the contrary, in topology optimization, there is no a priori on the optimal topology. Therefore, topology optimization is more general. In this work, topology optimization is used for determining concurrently the optimal material distribution and optimal material anisotropy repartition.

For structures made of isotropic materials, methodologies in the literature are abundant: Sigmund et al. [START_REF] Sigmund | Topology optimization approaches: A comparative review[END_REF] and [START_REF] Deaton | A survey of structural and multidisciplinary continuum topology optimization: post 2000[END_REF] survey developments of topology optimization. Interesting recent results can be found in [START_REF] Jia | Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular micromechanics[END_REF] Chapter 2. Algorithms for structural optimization and methods for topology optimization [START_REF] Lekszycki | A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses[END_REF], and particularly in [START_REF] Lekszycki | Functional adaptation of bone as an optimal control problem[END_REF]Andreaus et al. 2014] for applications to biomechanics. This section compares two main methods of parameterization of the topology of the structure. Density based methods are positioned with respect to the boundary variation methods in order to parameterize the topology of the structure in this work. Other methods exist such as "hard-kill" methods with the most popular one that is the Evolutionary Structural Optimization [START_REF] Huang | Evolutionary topology optimization of continuum structures: methods and applications[END_REF], and biologically inspired method based on cellular division (see for instance [START_REF] Kobayashi | On a biologically inspired topology optimization method[END_REF]). But they are not discussed here.

Boundary variation methods

Boundary variation methods are techniques that consider the structural boundaries. They use implicit functions to define the structural boundaries. The function specifies a contour line that separates what is within from what is outside the structure. For boundary variation method, two main techniques are used in the literature: the level set method that uses a scalar function to represent the boundaries, and the phase-field method that uses a phase field function over a domain composed of two phases. The resulting topology presents clean and smooth edges that require little post-processing effort to interpret. The phase-field method for topology optimization is based on the movement of a phasetransition phenomena such as solid-liquid transition. The considered domain is composed of two phases defined by a phase field function φ. The region separating the two phases varies continuously with a thin finite thickness. The phase-transition exhibited by the phase field function represents the structural boundaries. This region is modified by dynamic evolution equations of the phase field function. The phase-field method is applied on topology optimization problems, for instance, in [START_REF] Bourdin | Design-dependent loads in topology optimization[END_REF][START_REF] Bendsøe | Optimal structural design with composites: free material and laminate design[END_REF]].

In the level set method, a scalar function Φ defines the boundaries, at its zero level (contour). The movements of the defined level according to the physical problem and optimization conditions define the shape of the geometric boundary [START_REF] Deaton | A survey of structural and multidisciplinary continuum topology optimization: post 2000[END_REF]. The level set method is applied on structural optimization for compliance minimization problem in [START_REF] Sethian | Structural Boundary Design via Level Set and Immersed Interface Methods[END_REF][START_REF] Allaire | Structural optimization using sensitivity analysis and a level-set method[END_REF][START_REF] Burger | Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength[END_REF]. It has been extended to several applications dedicated, for instance, to additive manufacturing [START_REF] Allaire | Shape optimization of a layer by layer mechanical constraint for additive manufacturing[END_REF]Allaire and Bogosel 2018], non linear responses [START_REF] Allaire | Structural optimization using sensitivity analysis and a level-set method[END_REF][START_REF] Kwak | Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm[END_REF][START_REF] Kim | Level Set-Based Topological Shape Optimization of Nonlinear Heat Conduction Problems Using Topological Derivatives #[END_REF] and thermoelasticity [START_REF] Gao | Topology optimization of thermo-elastic structures with multiple materials under mass constraint[END_REF].

Boundary variation methods are very efficient for determining the topology precisely as the topology presents clean and smooth edgess. Typically, these methods are convenient for design problems in which the interface should be known (heat exchange, fluid-structure interaction). The methods give clear contour of the shape and give easy definition of geometrical parameters. Boundary variation methods do not require penalization method, however they need computation of topological gradients and construction of interpolation schemes that can be complex [START_REF] Norato | A topological derivative method for topology optimization[END_REF]].

Density methods

In this work, density methods are used to parameterize the topology of the structure. In spite of the apparition of grey areas that exhibit unclear contours compared to boundary variation methods, the use of density methods is simple and is suitable for dealing with anisotropy in the optimization process. Density based methods use explicit parameterization of the design domain. In theses methods, the structure is subdivided with finite elements. Their concept is to define a density variable that specifies in each element of the structure if there is solid material or void. Density methods are very simple. The density variable indicates at each point x of the structure whether there is material (ρ(x) = 1) or void (ρ(x) = 0). The stiffness of the structure is thus pondered by the density variable. Optimized stiffness tensor C(x) and compliance tensor S(x) are expressed in function of the considered material stiffness tensor C 0 (x) and compliance tensor S 0 (x) (Eq. (2.3.1))

C(x) = ρ(x)C 0 ⇔ S(x) = 1 ρ(x) S 0 (2.3.1)
Since the discrete problem is ill-posed and leads to a large-scale integer programming problem, the discrete problem is relaxed into a continuous one. The density variable is continuous, ρ takes any value in [ρ min , 1]. In order to avoid numerical issues with discretized stiffness matrix, the lowest admissible value ρ min is generally set to 10 -3 . Allowing ρ(x) to be valued in the interval [ρ min , 1] involves intermediate densities appearing in the optimum topologies. However, grey areas are difficult to interpret because they correspond to a mixture of void and material. Intermediate material can be idealized with microstructures by using homogenization techniques. The techniques arrange two isotropic phases in space at a microscopic level. Allaire et al. used a mixture of material and void by using sequential laminates in [START_REF] Allaire | Optimal design for minimum weight and compliance in plane stress using extremal microstructures[END_REF][START_REF] Allaire | Shape optimization by the homogenization method[END_REF]]. Periodic microstructures are used in the work of [START_REF] Coelho | A hierarchical model for concurrent material and topology optimisation of three-dimensional structures[END_REF]. Other topology of microstructures are found in [START_REF] Zuo | Multi-scale design of composite materials and structures for maximum natural frequencies[END_REF][START_REF] Xia | Concurrent topology optimization design of material and structure within nonlinear multiscale analysis framework[END_REF]. In this work, no intermediate densities are allowed in the optimal design.

To have grey areas suppressed, penalization techniques force the density variable to converge towards either 0 or 1. Several penalization techniques exist: SIMP (Solid Isotropic Material Penalization) [START_REF] Bendsøe | Optimal shape design as a material distribution problem[END_REF]], RAMP (Rational Approximation of Material Properties) [START_REF] Stolpe | An alternative interpolation scheme for minimum compliance topology optimization[END_REF] and SINH [START_REF] Bruns | A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization[END_REF]]. Another technique of penalizing was proposed by Fuchs et al. using reciprocal variables (SRV) [START_REF] Fuchs | The SRV constraint for 0/1 topological design[END_REF]. Considering that the SIMP, RAMP and SINH methods give similar results, we choose the SIMP method in this work. The SIMP method makes ρ(x) to be either close to 0 or to 1 in the optimal design by using an exponent p ≥ 1. This exponent penalizes the stiffness of intermediate densities. The optimized stiffness tensor C(x) and compliance tensor S(x) in (2.3.1) becomes as follows, in function of the considered material stiffness tensor C 0 (x) and compliance tensor S 0 (x) (Eq. (4.2.1))

C(x) = ρ(x) p C 0 ⇔ S(x) = 1 ρ(x) p S 0 (2.3.2)
In density methods, regularization techniques are required to control the density values (or sensitivities) in order to prevent numerical issues and to smooth the final topology. The numerical problems are often checkerboard instabilities or mesh dependency. Two main methods are used for regularization of the densities: the filtering methods and the constraint methods. Filtering methods modify directly the density variables or the sensitivities while constraint methods utilize localized or global-level constraints. An overview of the main regularization techniques is found in [START_REF] Deaton | A survey of structural and multidisciplinary continuum topology optimization: post 2000[END_REF].

In the present work, a density based method is used and the SIMP method is employed as penalization method. The SIMP method can be applied to a broad range of applications and physical models. A topology optimization technique was developed to solve thermal system in [Gersborg- [START_REF] Gersborg-Hansen | Topology optimization of heat conduction problems using the finite volume method[END_REF]. Desmorat [B. Desmorat 2013a] used the SIMP method for optimization with thermo-elastic stress loads. Elastic structures with frictionless unilateral contact have also been optimized in [B. [START_REF] Desmorat | Structural rigidity optimization with frictionless unilateral contact[END_REF]. As this method reaches maturity, it is implemented in various commercial tools in the field of mechanics and multiphysics (e.g. fluid structure interaction). All the same, topology optimization methods are performed on a conceptual Chapter 2. Algorithms for structural optimization and methods for topology optimization design level. The optimization methodology gives a first approach of the final manufacturable designed structure and a further step of reinterpreting the solution into a CAO model is needed. Afterwards, a parametric optimization is necessary for a more detailed design.

Conclusion

In this chapter, the main ingredients for handling efficiently the concurrent optimization of material density distribution and material anisotropy repartition are chosen. The first ingredient is the alternate directions algorithm that is positioned with the main algorithms for structural optimization. This algorithm has been chosen for the following three main reasons. First its simplicity is interesting in both theoretical and implementation viewpoint. Second, the algorithm exhibits low numerical cost. Thisd, it is well-suited for topology optimization and as we will show in the following, very convenient for concurrent optimization of material density and anisotropy distributions. The second ingredient is the parameterization of the topology of the structure.

The SIMP method is chosen to penalize the density that defines the presence or absence of the material. The simplicity of the method is also the reason why we chose it. Indeed, by choosing this parameterization, integrating the anisotropy in the optimization becomes simple. The next chapter presents a suitable parameterization of the anisotropy behavior in 2D, so that the problem resolution can be performed analytically. 

Introduction

The study and understanding of anisotropy is a matter of interest in order to design materials. Indeed, the material anisotropy can be tailored in order to improve the mechanical behavior of a structure under a given set of loading condition. Isotropic materials do not permit this as their behavior remains the same in every directions. However, the complexity of anisotropy makes its study and understanding very difficult. Consequently, anisotropic materials are difficult to design and to manufacture. This chapter presents a methodology developed in [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF]] to design the behavior of a planar orthotropic material in elasticity scope. The method uses a general orthotropic material thermodynamically admissible in order to handle all possible materials. The methodology lies on a choice of anisotropy behavior representation with adequate parameters that are the polar parameters. The second key point is to solve analytically the optimization problem with respect to the selected parameters. The results of the work of [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF]] will be used in this work in chapter 4. The aim of the chapter is twofold. It first presents the polar method. Second, it presents the minimization of the complementary energy.

Positioning of the polar method and the minimization of the complementary energy

The design of the anisotropy in structural optimization is generally done either numerically or analytically by searching the optimal values of the material properties. This section position the numerical method with respect to the analytical method. In this work, we use the analytical method as it is simple and straightforward.

Zowe and Kocvara addressed the problem of Free Material Optimization [START_REF] Zowe | Free material optimization via mathematical programming[END_REF]] in order to design material by using mathematical model developed by Bendsoe [START_REF] Bendsøe | An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design[END_REF]]. In comparison with topology optimization, the method uses the components of the stiffness tensor as design variables. The method was extended by [START_REF] Ben-Tal | Free Material Design via Semidefinite Programming: The Multiload Case with Contact Conditions[END_REF]] to a problem with multi loads and contact conditions. They introduced eigenfrequency constraints in [START_REF] Stingl | Free Material Optimization with Fundamental Eigenfrequency Constraints[END_REF] or stress constraints in [START_REF] Kočvara | Solving nonconvex SDP problems of structural optimization with stability control[END_REF]. [START_REF] Bendsøe | Optimal structural design with composites: free material and laminate design[END_REF]] applied the method on composite laminates. This problem is a semi-definite programming (S.D.P.) problem. Its numerical resolution is then very complex as sophisticated algorithm and resolution strategies are needed [START_REF] Kočvara | Solving nonconvex SDP problems of structural optimization with stability control[END_REF][START_REF] Kočvara | A nonlinear SDP algorithm for static output feedback problems in COMPLeib[END_REF]].

[Sacchi Landriani and Rovati 1991; Banichuk 2011] proposed a methodology of minimizing the complementary energy to design material in order to solve the problem analytically rather than numerically. The orientation of orthotropic material axes were optimized. [START_REF] Cheng | On sufficiency conditions for optimal design based on extremum principles of mechanics[END_REF] minimized the elastic energy with respect to the symmetry axes position and with respect to the elastic parameters [START_REF] Hammer | Parametrization in laminate design for optimal compliance[END_REF]] represented by the lamination parameters. The design space of the lamination parameters were found by [START_REF] Miki | A graphical method for designing fibrous composites with required in-plane stiffness[END_REF][START_REF] Miki | A graphical method for designing fibrous composites with required in-plane stiffness[END_REF]. The advantage of these methods lies on the analytical resolution of the problem that is straightforward and eases its physical interpretation. However, these methods use specific materials that are composite laminates.

In this work, we use the methodology of minimizing the complementary energy to design material. Indeed, this method is simple as it gives analytic expressions of the optimal material properties. However, instead of using a specific material (such as laminates) that significantly reduces the range of possible materials, the method uses a general orthotropic material (that satisfies the conditions of existence of the material).

In elasticity scope, the anisotropy behavior is characterized by a fourth order tensor. The tensor is described with high number of parameters that depend on the chosen reference frame. Therefore, the mathematical transformations needed to express the tensor in a rotated frame are complex. In Cartesian representation, the change of frame involves fourth order trigonometric functions that are intricate. In the design of material, the ability to express the elasticity tensor in any frame, in a simple way, is mandatory as the material may be spatially distributed: the principal axes of the material change and the reference frame could be different from the principal axis of the material. Cartesian representation is then not an adequate method to represent anisotropy in the design of material.

To address complex transformations when changing frames, the expression of the parameters of the elasticity tensor should be independent on the considered frame. This could be done by using invariants. [START_REF] Tsai | Introduction to Composite Materials[END_REF] proposed an alternative representation of the elasticity tensor by using seven parameters (Tsai-Pagano parameters). They are expressed in function of the Cartesian components, in plane elasticity. Their use permits to simplify the transformation of the elasticity tensor when changing frame. However, the parameters are not invariants.

The polar method, introduced by Verchery [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Vannucci | A special planar orthotropic material[END_REF]] is a representation of elasticity tensors by invariants. There are five polar invariants that describe a completely anisotropic material in plane elasticity. In comparison with the Cartesian representation, the change of frame is performed easily as it can be simply done by changing only polar angles. Furthermore, the study of elastic symmetries is straightforward by writing algebraic expressions of the polar components. Hence, clear physical meaning of the polar invariants is exhibited. The feature of the polar method is also its ability to separate the isotropic part of the elasticity tensor from its anisotropic part. In the design of anisotropic materials, it is thus possible to design only the anisotropic components. Finally, the polar method permits to write the elastic energy with concise and explicit expression. Therefore, it permits to tailor anisotropic elastic behavior by minimizing analytically the elastic energy. Section 3.4 presents the polar method from the work of [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Vincenti | Conception et optimisation des composites stratifiés par méthode polaire et algorithme génétique[END_REF][START_REF] Vannucci | A special planar orthotropic material[END_REF][START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF]]. The elasticity tensor is represented with its five polar invariants. The definite positiveness condition is shown in terms of polar components. Physical meaning are given and the special case of orthotropy is developed.

Once the elastic invariants are presented, the minimization of the complementary energy of a general orthotropic material subject to a given plane state of stress, with respect to the anisotropic components of the stiffness tensor is presented. The resolution is analytic thanks to the polar method, giving closed form of the optimal design variables. Section 3.5 presents the minimization of the complementary energy carried out in [START_REF] Vincenti | Optimal Orthotropy for Minimum Elastic Energy by the Polar Method[END_REF] and in [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF]].

Classical representation of elasticity tensor

Cartesian representation

Any material with a linear elastic behavior is represented by its 4th order stiffness tensor C with indicial symetries C ijkl = C jikl = C klij . When this material is subjected to stress field σ, its response is measured by the deformation . The Hooke's law is:

σ = C : (3.3.1)
C is defined by 21 independent components for a completely anisotropic material. In 2D elasiticity, under a plane stress or plane strain assumption, C can be simplified to the reduced stiffness tensor Chapter 3. Polar method for complementary energy minimization in 2D elasticity Q. Relationship between the stress tensor, reduced stiffness tensor and deformation tensor becomes, in Kelvin notation:

  σ 11 σ 22 √ 2σ 12   =   Q 1111 Q 1122 √ 2Q 1112 Q 1122 Q 2222 √ 2Q 2212 √ 2Q 1112 √ 2Q 2212 2Q 1212     11 22 √ 2 12   (3.3.2)
The rotation matrix is:

T =   cos 2 δ sin 2 δ - √ 2sinδcosδ sin 2 δ cos 2 δ √ 2sinδcosδ √ 2sinδcosδ - √ 2sinδcosδ (cos 2 δ -sin 2 δ)   (3.3.3)
The rotated stress tensor is:

σ = T σ (3.3.4)
The rotated fourth order stiffness reduced tensor Q is:

Q = T QT -1 (3.3.5)
The expression of the new components of the reduced stiffness tensor is complex as there are trigonometric functions with power 4. The next section presents the Tsai Pagano parameters that permits to simplify the tensor transformation.

Tsai and Pagano parameters

The representation by using the parameters of Tsai and Pagano [START_REF] Tsai | Introduction to Composite Materials[END_REF] simplifies the change frame. The method consists in introducing new parameters function of the Cartesian components of the stiffness tensor:

U 1 = 3Q 1111 + 2Q 1122 + 3Q 2222 + 4Q 1212 8 U 2 = Q 1111 -Q 2222 2 U 3 = Q 1111 -2Q 1122 + Q 2222 -4Q 1212 8 U 4 = Q 1111 + 6Q 1122 + Q 2222 -4Q 1212 8 U 5 = Q 1111 -2Q 1122 + Q 2222 + 4Q 1212 8 U 6 = Q 1112 + Q 2212 2 U 7 = Q 1112 -Q 2212 2 (3.3.6)
The new components of Q in the new frame x -y rotated by an angle δ are:

Q xxxx = U 1 + U 2 cos2δ + 2U 6 sin2δ + U 3 cos4δ + U 7 sin4δ Q xxyy = U 4 -U 3 cos4δ -U 7 sin4δ 2Q xxxy = 2U 6 cos2δ -U 2 sin2δ + 2U 7 cos4δ -2U 3 sin4δ Q yyyy = U 1 -U 2 cos2δ -2U 6 sin2δ + U 3 cos4δ + U 7 sin4δ 2Q yyxy = 2U 6 cos2δ -U 2 sin2δ -2U 7 cos4δ + 2U 3 sin4δ Q xyxy = U 5 -U 3 cos4δ -U 7 sin4δ
(3.3.7)

3.4. Polar method for plane anisotropy representation

21

In comparison with the Cartesian components, the Tsai and Pagano parameters are easy to use when changing frame. However, they are not invariants (U 2 , U 3 , U 6 , U 7 depend on the considered frame). They are also not independent: U 1 -U 4 = 2U 5 . Tsai and Hahn introduced a slightly different expression of these parameters that exhibit a more concise transformation function when changing frame [START_REF] Tsai | Introduction to Composite Materials[END_REF]. The stiffness tensor is factorized with trigonometric functions of the angle δ.

The main drawback of these methods are that the parameters are dependent on the considered frame and are not independent. Thus, in the following, the polar invariants are preferred to the Tsai and Pagano parameters. The polar invariants are independent and do not depend on the considered frame. The next section present the polar method that will be used in the optimization of a two dimensional structure.

Polar method for plane anisotropy representation

The polar method was first introduced by Verchery [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF]]. It is a representation of tensors in two dimensions by invariants to deal with anisotropic plane problems. It is an extension to a higher order of the representation in polar coordinates of vectors and second order tensors. [START_REF] Vannucci | A special planar orthotropic material[END_REF]] reviews the polar method. Its origin and its applications mainly concern elasticity and the elastic design of composite laminates.

Polar representation of vectors and second order symmetric tensors

The representation of a vector V in an orthonormal axis system 1 -2 is either (V 1 , V 2 ) in Cartesian components, or (R, α) in polar components as shown in figure 3.1. These components are linked through the relationship:

V 1 + iV 2 = Re iα (3.4.1) In comparison with the Cartesian representation, the polar representation is advantageous when expressing the vector in a new axis system rotated by an angle δ. The new Cartesian components (V x , V y ) are expressed in function of (V 1 , V 2 ) with trigonomic functions. However, the new polar components are much more simple: (R, α -δ).

V x + iV y = Re i(α-δ) (3.4.2)
Furthermore, the polar representation gives physical meaning to the polar components. R is the Euclidian norm of the vector that is an intrinsic value, i.e. does not depend on the axis system. R is then an invariant, whereas α can be interpreted as a phase angle.

In plane elasticity, the polar representation is also used to represent second order tensors. For a second order symmetric tensor L in two dimensions, the relationships between its Cartesian components (L 11 , L 22 , L 12 , ) and its polar components (T, R, Φ) are:

L 11 = T +Rcos2Φ L 12 = Rsin2Φ L 22 = T -Rcos2Φ (3.4.3)
and vice versa:

2T = L 11 + L 22 2Re 2iΦ = L 11 -L 22 + 2iL 12 (3.4.4)
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The graphical interpretation of these relationships leads to the construction of the Mohr Circle. The components T and R are invariant. By changing the frame by an angle δ, only the polar angle Φ changes and becomes Φ -δ. The new Cartesian components in the rotated axis-system x -y are:

L xx = T +Rcos2(Φ -δ) L xy = Rsin2(Φ -δ) L yy = T -Rcos2(Φ -δ) (3.4.5)
In the case of the stress tensor σ in two dimensions, T and R can be expressed in function of the principal stresses σ I and σ II (with σ I > σ II ):

T = σ I + σ II 2 R = σ I -σ II 2 (3.4.6)
Equations (3.4.6) show that T and R represent respectively the spherical and the deviatoric parts of the two-dimensional stress tensor σ. Angle Φ represents the direction of the first principal stress σ I (with σ I > σ II ). The polar components of the tensor of plane deformations are written with small characters (t, r, φ). 
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L xx = T + R cos 2(Φ -δ) (2.30a) L xy = R sin 2(Φ -δ) (2.30b) L yy = T -R cos 2(Φ -δ) (2.30c)
La simplicité de ces lois de transformation, en comparaison des lois (2.18) et (2.20) pour les tenseurs particuliers σ et ǫ, est notable.

De plus, cette notation polaire permet d'associer une signification physique aux paramètres polaires (T, R, Φ). En effet, en décomposant le tenseur L en ses parties sphérique et déviatorique -respectivement L S et L D -il est aisé de montrer que : 

L S = T I (2.31a) L D = R cos 2Φ sin 2Φ sin 2Φ -cos 2Φ ( 
L xx = T + R cos 2(Φ -δ) (2.30a) L xy = R sin 2(Φ -δ) (2.30b) L yy = T -R cos 2(Φ -δ) (2.30c)
La simplicité de ces lois de transformation, en comparaison des lois (2.18) et (2.20) pour les tenseurs particuliers σ et ǫ, est notable.

De plus, cette notation polaire permet d'associer une signification physique aux paramètres polaires (T, R, Φ). En effet, en décomposant le tenseur L en ses parties sphérique et déviatorique -respectivement L S et L D -il est aisé de montrer que : 

L S = T I (2.31a) L D = R cos 2Φ sin 2Φ sin 2Φ -cos 2Φ ( 

Polar representation of fourth order symmetric tensors

Verchery proposed a transformation of coordinates in a field of complex variables in order to extend the polar representation to the case of the fourth order elastic tensors. The polar components of a fourth order symmetric tensor L are scalars T 0 and T 1 , moduli R 0 and R 1 , and angles Φ 0 and Φ 1 . The first four polar invariants are the quantity T 0 , T 1 , R 0 , R 1 with Pascal units, whereas the angular difference Φ 0 -Φ 1 is the fifth polar invariant. Equations (3.4.7) show the relationships between these polar components and the Cartesian ones:

L 1111 = T 0 + 2T 1 + R 0 cos4Φ 0 + 4R 1 cos2Φ 1 L 1122 = -T 0 + 2T 1 -R 0 cos4Φ 0 L 1112 = R 0 sin4Φ 0 + 2R 1 sin2Φ 1 L 2222 = T 0 + 2T 1 + R 0 cos4Φ 0 -4R 1 cos2Φ 1 L 2212 = -R 0 sin4Φ 0 + 2R 1 sin2Φ 1 L 1212 = T 0 -R 0 cosΦ 0 (3.4.7)
and conversely

8T 0 = L 1111 -2L 1122 + 4L 1212 + L 2222 8T 1 = L 1111 + 2L 1122 + L 2222 8R 0 e 4iΦ 0 = L 1111 + 4iL 1112 -2L 1122 -4L 1212 -4iL 1222 + L 2222 8R 1 e 2iΦ 1 = L 1111 + 2iL 1112 + 2iL 1222 + L 2222 (3.4.8)
As for the lower orders, the transformation laws by rotating the frame are simplified in the polar representation. When switching from a frame 1 -2 to a frame x -y rotated by an angle δ, only the angles Φ 0 and Φ 1 change and become respectively Φ 0 -δ and Φ 1 -δ. Therefore, the new Cartesian components in the new frame x -y become:

L xxxx = T 0 + 2T 1 + R 0 cos4(Φ 0 -δ) + 4R 1 cos2(Φ 1 -δ) L xxyy = -T 0 + 2T 1 -R 0 cos4(Φ 0 -δ) L xxxy = R 0 sin4(Φ 0 -δ) + 2R 1 sin2(Φ 1 -δ) L yyyy = T 0 + 2T 1 + R 0 cos4(Φ 0 -δ) -4R 1 cos2(Φ 1 -δ) L yyxy = -R 0 sin4(Φ 0 -δ) + 2R 1 sin2(Φ 1 -δ) L xyxy = T 0 -R 0 cos4(Φ 0 -δ) (3.4.9)
Relations (3.4.9) show that the Cartesian components are the sum of an invariant quantity function of the scalars T 0 and T 1 , and two quantities that depend on trigonometric functions of δ. Therefore, each cartesian component is composed of an isotropic part independent of the material orientation, and an anisotropic part dependent of the material orientation. The isotropic part of L is described by invariants T 0 and T 1 , and the anisotropic parts are described by the complex numbers (R 0 e 4iΦ 0 , R 1 e 2iΦ 1 ). The inverse of L is a fourth order tensor as well. The polar components t 0 , t 1 , r 0 , r 1 , φ 0 , φ 1 of L -1 are expressed in function of the polar components of L:

t 0 = 4 T 0 T 1 -R 2 1 ∆ t 1 = T 2 0 -R 2 0 ∆ r 0 e 4iφ 0 = 4 R 2 1 e 4iΦ 1 -T 1 R 0 e 4iΦ 0 ∆ r 1 e 2iφ 1 = -2R 2 1 e 4iΦ 1 T 0 -R 0 e 4i(Φ 0 -Φ 1 ) ∆ (3.4.10) with ∆ = 16T 1 (T 2 0 -R 2 0 ) -32R 2 1 (T 0 -R 0 cos4(Φ 0 -Φ 1 )) (3.4.
11) The polar representation above can be applied to the stiffness (Q) and the compliance (S) tensors for a 2D elastic material on plane stress assumption. Equations (3.4.10) remain valid when expressing the relationships between the polar components in terms of stiffness and compliance.
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Admissible design space

Another important feature of the polar formalism is the possibility of writing the existence condition of a completely anisotropic material. The thermodynamical bounds are expressed by stating the positive definiteness of the tensor Q. An elasticity-like plane tensor Q, is positive definite if and only if:

         T 0 > 0 T 1 > 0 T 0 -R 0 > 0 T 1 (T 2 0 -R 2 0 ) > 2R 2 1 (T 0 -R 0 cos4(Φ 0 -Φ 1 )) (3.4.12a) (3.4.12b) (3.4.12c) (3.4.12d)
as R 0 and R 1 are defined as moduli of complex number, the property that is intrinsic to the polar method is:

R 0 ≥ 0 R 1 ≥ 0 (3.4.13a) (3.4.13b)
A proof can be found in [START_REF] Vannucci | Analytical bounds for damage induced planar anisotropy[END_REF].

Physical meaning of the polar invariants

The polar method allows studying the elastic symmetries easily. The polar analysis of elastic symmetries gives algebraic characterization of the elastic symmetries. This characterization is more powerful than the classical geometric characterization that uses the symmetry of elastic properties linked with an underlying symmetric distribution of matter. Special values of invariants determine the elastic symmetry, and then characterize the properties of the matter. There are five different and non-equivalent types of planar elastic symmetries [START_REF] Vannucci | A special planar orthotropic material[END_REF]].

Ordinary orthotropy

The ordinary orthotropy corresponds to the condition:

Φ 0 -Φ 1 = K π 4 , K ∈ {0, 1} (3.4.14)
For a given set of invariant polar moduli T 0 , T 1 , R 0 , R 1 , two different orthotropic materials can exist. The one correspond to K = 0, the other one correspond to K = 1. These two types of material are called by Pedersen [START_REF] Cheng | On sufficiency conditions for optimal design based on extremum principles of mechanics[END_REF] as low (K = 0), and high (K = 1) shear modulus orthotropy. However, this name of classification is restrictive because the differences between these two classes are not limited to shear, but rather involve the overall mechanical response of the material [Vannucci 2009;[START_REF] Vincenti | Optimal Orthotropy for Minimum Elastic Energy by the Polar Method[END_REF][START_REF] Burger | Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength[END_REF][START_REF] Barsotti | Wrinkling of Orthotropic Membranes: An Analysis by the Polar Method[END_REF]. The possible values of K (even or odd) determine the shape of orthotropy.

R 0 -orthotropy

The R 0 -orthotropy is:

R 0 = 0 (3.4.15)
When R 0 vanishes, the anisotropy part of Q depends only on the R 1 -term. Therefore, its Cartesian components are either constant (R 0 -orthotropy include isotropy) or change after a rotation, as those of a second-order tensor, not of a fourth [START_REF] Vannucci | A special planar orthotropic material[END_REF]].

r 0 -orthotropy

The r 0 -orthotropy is:

r 0 = 0 (3.4.16)
Since the relationship between r 0 and R 0 is complex (see (3.4.10)), (3.4.16) and (3.4.15) are not equivalent. Therefore, r 0 -orthotropy and R 0 -orthotropy do not occur for the same elastic material. [Vannucci 2010] illustrates a common r 0 -orthotropic material.

Square symmetry

The material is square symmetric when:

R 1 = 0 (3.4.17)
Square symmetry is the planar equivalent of 3D tetragonal symmetry class.

Isotropy

The anisotropic moduli R 0 and R 1 vanish for an isotropic material:

R 0 = R 1 = 0 (3.4.18)
All the Cartesian components of the elasticity tensor do not depend on the material orientation.

All axis is a symmetry axis. T 0 and T 1 are the only non-null invariants. For isotropic elasticity:

T 0 = G, T 1 = 1 2 κ (3.4.19)
where G and K are respectively the 2D shear and bulk moduli. For all the anisotropic cases, the same physical meanings for T 0 and T 1 are preserved: they are a generalization of the shear and bulk moduli.

Description of orthotropy with the polar representation

The case of orthotropy considered in the following is the ordinary orthotropy with R 0 = 0. The detailed study of other elastic symmetries in the polar formalism is carried out in [START_REF] Vincenti | Conception et optimisation des composites stratifiés par méthode polaire et algorithme génétique[END_REF]]. The independent polar parameters T 0 , T 1 , (-1) K R 0 , R 1 and Φ 1 are the five parameters that describe the elastic behavior of this case of orthotropy. The relationships between the Cartesian components and the polar components in equations (3.4.7) become:

L 1111 = T 0 + 2T 1 + (-1) K R 0 cos4Φ 1 + 4R 1 cos2Φ 1 L 1122 = -T 0 + 2T 1 -(-1) K R 0 cos4Φ 1 L 1112 = (-1) K R 0 sin4Φ 1 + 2R 1 sin2Φ 1 L 2222 = T 0 + 2T 1 + (-1) K R 0 cos4Φ 1 -4R 1 cos2Φ 1 L 2212 = -(-1) K R 0 sin4Φ 1 + 2R 1 sin2Φ 1 L 1212 = T 0 -(-1) K R 0 cos4Φ 1 (3.4.20)
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Angle Φ 1 is the direction of the principal orthotropy axes within the chosen reference frame.

Relation between stiffness orthotropy and compliance orthotropy

The relation between the behavior in stiffness and in compliance is shown in this section. The condition of ordinary orthotropy in terms of stiffness is [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF]]: 4.21) This implies that:

Φ 0 -Φ 1 = K π 4 , K ∈ {0, 1} (3. 
φ 0 -φ 1 = k π 4 , k ∈ {0, 1} (3.4.22)
Orthotropy behavior in stiffness implies orthotropy behavior in compliance and vice versa. The principal directions of orthotropy in stiffness Φ 1 and in compliance φ 1 are orthogonal [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF].

φ 1 = Φ 1 + π 2 (3.4.23) [Julien 2010
] highlighted the influence of K and k-parity on the different shapes of orthotropy. Separating these cases permit to distinguish two types of materials in terms of stiffness and compliance behavior. The link between the shapes of orthotropy in stiffness and in compliance leads to conditions on the polar invariants in stiffness. Table 3.1 summarizes the different cases for orthotropy shapes and the corresponding conditions on the polar invariants in stiffness.

Table 3.1 -Relation between orthotropy shapes in terms of stiffness and compliance and corresponding conditions on the polar invariants in stiffness Shape in stiffness Shape in compliance Polar conditions

K odd k even none K even k even R 2 1 > T 1 R 0 K even r 0 -orthotropy R 2 1 = T 1 R 0 K even k odd R 2 1 < T 1 R 0
The study of shapes of orthotropy in stiffness by using orthotropic compliance tensor remains the same. In this case, T 0 , T 1 , R 0 , R 1 , K become t 0 , t 1 , r 0 , r 1 , k in table 3.1 and vice versa.

Admissible design space of orthotropic materials

The admissible design space of a completely anisotropic material is given in equations (3.4.12). In the orthotropic material case, (3.4.12d) becomes:

T 0 -(-1) K R 0 T 1 [T 0 + (-1) K R 0 ] -2R 2 1 > 0 (3.4.24)
The shape of orthotropy is characterized by the independent quantities (-1) K R 0 and R 1 . By fixing T 0 and T 1 , the admissible design space of orthotropic materials can be represented in figure 3.2. The thermodynamic limit is represented in green, and the points of these curves do not belong to the definition domain. The two domains corresponding to orthotropic materials with K even and odd are respectively represented in yellow and blue. In addition, within the K-even domain, we have highlighted with two different shades the distinction between forms of orthotropy in terms of compliance (k-even and k-odd), according to the relationships in table 3.1. The red curve is therefore the boundary between the even and odd k orthotropy forms. Finally, this graph also includes the points representative of the materials having the square symmetry (the abscissa axis R 1 = 0) as well as the isotropic materials which are represented by the origin point R 0 = R 1 = 0. A general orthotropic material in two dimensions is used in this work.
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Minimization of the 2D elastic energy with respect to polar invariants

This section presents the minimization of the elastic energy with respect to the polar parameters.

The elastic energy is expressed with respect to the polar components. The design variables are the anisotropic polar components of the elasticity tensor. The admissible design space characterizes the optimization constraints. The strategy of minimization consists in first performing the minimization with respect to the material orientation and then with respect to the moduli and the shape of orthotropy. The presented methodology were carried out in [START_REF] Vincenti | Optimal Orthotropy for Minimum Elastic Energy by the Polar Method[END_REF] and in [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF]].

Problem formulation

The elastic energy is minimized with respect to the polar parameters in 2D elasticity. The problem is formulated using the polar representation. The elastic energy is expressed with stress tensor:

W = 1 2 σ : = 1 2 σ : S : σ (3.5.1)
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For a completely anisotropic material, the compliance tensor S can be expressed with its polar components (t 0 , t 1 , r 0 , r 1 , φ 0 , ϕ 1 ). The stress tensor can be expressed with its polar components (T, R, Φ). In the polar representation, the elastic energy reads:

W = 2t 0 R 2 + 4t 1 T 2 + 2r 0 R 2 cos4(φ 0 -Φ) + 8r 1 T Rcos2(ϕ 1 -Φ) (3.5.2)
For a given orthotropic material, the compliance tensor S can be expressed with its polar components in compliance (t 0 , t 1 , r 0 , r 1 , k, ϕ 1 ), where k describes the shape of orthotropy and ϕ 1 the direction of the principal orthotropy axes within the chosen reference frame. The elastic energy becomes:

W = 2t 0 R 2 + 4t 1 T 2 + (-1) k 2r 0 R 2 cos4(ϕ 1 -Φ) + 8r 1 T Rcos2(ϕ 1 -Φ) (3.5.3)
Orthotropic behavior in compliance is equivalent to orthotropic behavior in stiffness. Therefore, (3.5.3) can be written with the polar components in stiffness (T 0 , T 1 , R 0 , R 1 , K, Φ 1 ) by using the relationships in equations (3.4.10) between polar components in terms of compliance and stiffness:

W c = 4 ∆ {2(T 0 T 1 -R 2 1 )R 2 + (T 2 0 -R 2 0 )T 2 +2(R 2 1 -(-1) K T 1 R 0 )R 2 cos4(Φ 1 -Φ) -4R 1 (T 0 -(-1) K R 0 )T Rcos2(Φ 1 -Φ))} (3.5.4) with ∆ = 16T 1 (T 2 0 -R 2 0 ) -32R 2 1 (T 0 -R 0 cos4(Φ 0 -Φ 1 )) (3.5.5)
Formulations (3.5.3) and (3.5.4) are completely equivalent. One or the other can be used to simplify the resolution of the problem. In this work, the material properties are designed in terms of stiffness behavior rather than in compliance. The objective function of the minimization problem is (3.5.4). The design variables are the stiffness polar parameters. The isotropic part (T 0 , T 1 ) is assumed to remain fixed, and the anisotropic part (R 0 , R 1 , K, Φ 1 ) is designed. The aim of the present work is to tailor the optimal shape of the orthotropic behavior, this is a reason why the isotropic components of the stiffness tensor are not considered as design variables. Furthermore, they are not bounded. Their optimal values are thus infinity since it is the stiffest material. However, infinite value of the material properties is not interesting as the material is not manufacturable. In order to work with a realistic material, the values of the isotropic part are fixed. This choice is self-evident when dealing with composite laminates with identical elementary layers as in this case, T 0 and T 1 are equal to those of the elementary layer.

The objective function W c is minimized with respect to the following variables:

• the principal direction of orthotropy in stiffness Φ 1 ,

• the polar moduli R 0 , R 1 which are positive quantities (as they are defined as moduli of complex numbers),

• the parameter K that defines shapes of orthotropy.

The polar parameters should respect the thermodynamic limit (positive definiteness condition) in (3.4.12), as a general orthotropic material is used. The optimization problem of the two dimensional anisotropy for the minimization of the elastic energy, for a fixed stress field, with a given isotropic components (T 0 , T 1 ) such that T 0 > 0 and T 1 > 0, reads:

min {R 0 ,R 1 ,K,Φ 1 } W (R 0 , R 1 , K, Φ 1 ) subject to:        T 0 -R 0 > 0 T 0 -(-1) K R 0 T 1 [T 0 + (-1) K R 0 ] -2R 2 1 > 0 R 0 ≥ 0 R 1 ≥ 0 (3.5.6)
The minimization problem is solved analytically: firstly in terms of the orientation of the orthotropy axis Φ 1 , and secondly with respect to the polar parameters of the material R 0 , R 1 and K.

Minimization of the 2D complementary energy with respect to the direction of orthotropy

Sensitivity analyses are performed in order to find the optimal orientation. For the sake of simplicity, the energy formulation in terms of compliance (3.5.3) is used and the minimization is performed with respect to the parameter ϕ 1 . The same results can be obtained by carrying out the minimization in terms of stiffness (3.5.4). The optimal values of the material orientation in terms of stiffness is deduced by the relationship

Φ 1 = ϕ 1 + π 2 .
The first derivative of the local complementary energy (3.5.3) with respect to the material orientation ϕ 1 reads:

∂W ∂ϕ 1 = -16(-1) k r 0 R 2 sin2γ cos2γ + r 1 T (-1) k r 0 R with γ = ϕ 1 -Φ (3.5.7)
where Φ is the principal direction of stress, i.e. the direction of the principal stress σ I (with

σ I > σ II ). The stationary points of W in the interval ϕ 1 ∈ [-π 2 , π 2 ] are: ∂W ∂ϕ 1 = 0 ⇐⇒        r 0 = r 1 = 0 ( ⇔ case of isotropic material) R = 0 ( ⇔ case of spherical stress tensor) sin2γ = 0 ⇒ γ = 0 or γ = π 2 cos2γ = -ζ, if -1 ≤ ζ ≤ 1 (3.5.8) where ζ = r 1 |T | (-1) k r 0 R (defined for R = 0). Moreover:    sign(W (0) -W ( π 2 )) = sign(T ) sign(W (0) -W (ζ)) = sign((-1) k ) sign(W ( π 2 ) -W (ζ)) = sign((-1) k ) (3.5.9)
The global minimum among the extrema of W depends on the value of k and on the sign of the polar component T . The following property will be used:

T ≤ 0 ⇔| σ I |≤| σ II | T ≥ 0 ⇔| σ I |≥| σ II | (3.5.10) with T = σ I +σ II 2
and σ I > σ II . We call "ζ-solution", the obtained solution when -1 ≤ ζ ≤ 1.
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Case k odd

For k odd, (3.5.9) reads:

W (0) < W (ζ) and W ( π 2 ) < W (ζ) sign(W (0) -W ( π 2 )) = sign(T ) (3.5.11)
The "ζ-solution" (if it exists) is never optimal, the minimum for W is:

1. if T ≤ 0 ( ⇔| σ I |≤| σ II | ) : γ = 0 ⇒ ϕ 1 = Φ (3.5.
12)

The principal orthotropy direction for compliance (ϕ 1 ) is in the same direction as the greatest principal stress σ I .

2. if T ≥ 0 (i.e. | σ I |≥| σ II |): γ = π 2 ⇒ ϕ 1 = Φ + π 2 (3.5.13)
The principal orthotropy direction for compliance (ϕ 1 ) is orthogonal to the direction of the greatest principal stress σ I .

Therefore, if k is odd, the optimal principal orthotropy direction for compliance ϕ 1 that minimizes the elastic energy is aligned with the direction of the principal stress that has the smallest absolute value.

ϕ opt 1 = Dir {min(| σ I |, | σ II |)} (3.5.14)
The principal orthotropy direction for stiffness Φ 1 is orthogonal to that for compliance. Hence, it is optimal when it is aligned with the direction of the principal stress that has the highest absolute value.

Φ opt 1 = Dir {max(| σ I |, | σ II |)} (3.5.15)

Case k even

For k even, (3.5.9) reads:

W (0) > W (ζ) and W ( π 2 ) > W (ζ) sign(W (0) -W ( π 2 )) = sign(T ) (3.5.16)
In this case, the "ζ-solution" minimizes the energy W , if it exists.

1. if r 1 |T | r 0 R ≥ 1, the "ζ-solution" does not exist. Therefore, the direction that minimizes the elastic energy is the same as in the case k odd.

ϕ opt 1 = Dir {min(| σ I |, | σ II |)} (3.5.17) so that Φ opt 1 = Dir {max(| σ I |, | σ II |)} (3.5.18) 2. if r 1 |T | r 0 R < 1, the "ζ-solution"
exists and is optimal. The energy is minimum by finding γ such that cos2γ = -ζ.

2γ = ±arccos - r 1 T r 0 R ⇒ ϕ 1 = Φ ± 1 2 arccos - r 1 T r 0 R (3.5.19)
By introducing the sign of T : (3.5.20) and

ϕ opt 1 = Dir {min(| σ I |, | σ II |)} ± 1 2 arccos r 1 | T | r 0 R
Φ opt 1 = Dir {max(| σ I |, | σ II |)} ± 1 2 arccos r 1 | T | r 0 R (3.5.21)
Tables 3.2 and 3.3 summarize the results for the optimization with respect to the material orientation. Two distinct solutions are found. Optimal values of ϕ 1 and Φ 1 are presented respectively in tables 3.2 and 3.3.

Table 3.2 -Optimal orthotropy direction of the compliance tensor for the complementary energy minimization k odd k even

r 1 |T | r 0 R ≥ 1 ϕ opt 1 =Dir{min(| σ I |, | σ II |)} ϕ opt 1 =Dir{min(| σ I |, | σ II |)} r 1 |T | r 0 R < 1 ϕ opt 1 =Dir{min(| σ I |, | σ II |)} ϕ opt 1 =Dir{min(| σ I |, | σ II |)} ± 1 2 arccos r 1 |T | r 0 R
Table 3.3 -Optimal orthotropy direction of the stiffness tensor for the complementary energy minimization k odd k even

r 1 |T | r 0 R ≥ 1 Φ opt 1 =Dir{max(| σ I |, | σ II |)} Φ opt 1 =Dir{max(| σ I |, | σ II |)} r 1 |T | r 0 R < 1 Φ opt 1 =Dir{max(| σ I |, | σ II |)} Φ opt 1 =Dir{max(| σ I |, | σ II |)} ± 1 2 arccos r 1 |T | r 0 R
The shape of orthotropy in compliance plays a role on the results only when "ζ-solution" is defined. A close link exists between the shapes of orthotropy in compliance and in stiffness. Thus, the results are classified using the parameters k and K of orthotropy shape respectively in terms of compliance and stiffness. The optimal value of the elastic energy can take two different expressions according to the following cases:
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Case 1

• Case1-1: case k odd and K even,

• Case1-2: case k even and K even, no "ζ-solution",

• Case1-3: case k even and K odd, no "ζ-solution".

The elastic energy for optimal orientation is:

W (Φ 1 = Φ opt 1 ) = 2t 0 R 2 + 4t 1 T 2 + (-1) k 2r 0 R 2 -8r 1 | T | R (3.5.22)
Case 2

• Case2-1: case k even and K even, with "ζ-solution",

• Case2-2: case k even and K odd, with "ζ-solution".

The elastic energy for optimal orientation is:

W (Φ 1 = Φ opt 1 ) = 2t 0 R 2 + 4t 1 T 2 -2r 0 R 2 -4 r 2 1 r 0 | T | 2 (3.5.23)
In case 1, the optimal material orientation in stiffness is aligned with the direction of the principal stress which has the greatest absolute value. In case 2, the optimal material orientation in stiffness is not aligned with the direction of the principal stress. Its value is the greatest absolute value of the principal stress added with a certain angle depending on the material properties and on the spherical and deviatoric part of the stress tensor.

Minimization of the 2D complementary energy with respect to the anisotropic part of polar invariants

The minimization with respect to the polar invariants R 0 , R 1 of the stiffness tensor, and with respect to the invariant K that defines the shape of orthotropy, is presented in this subsection.

The objective function has two different expressions in function of the values of k and K, i.e. in function of the orthotropy shape, and in function of the existence or non-existence of the "ζ-solution". Expressions of optimal complementary energy (3.5.22) and (3.5.23) become respectively (3.5.24) and (3.5.25) when expressed in terms of polar components in stiffness.

ζ-solution: W ((-1) K R 0 , R 1 , Φ opt 1 ) = 1 4 2T 1 R 2 -4R 1 | T | R + (T 0 + (-1) K R 0 )T 2 T 1 (T 0 + (-1) K R 0 ) -2R 2 1 (3.5.24) no ζ-solution: W ((-1) K R 0 , R 1 , Φ opt 1 ) = 1 4 2R 2 T 0 -(-1) K R 0 - (-1) K R 0 T 2 R 2 1 -(-1) K R 0 T 1 (3.5.25)
These two cases exhibit five optimization sub-problems that can be treated separately with respect to material anisotropy moduli. Indeed, depending on the values of K and k, i.e. depending on the orthotropy shapes, the problem is written in different expressions and exhibits different conditions on the polar components. Table 3.4 shows the five optimization sub-problems that need to be solved. The conditions on the polar components come from, on the one hand, the relationship between orthotropy shapes in stiffness and compliance; and on the other hand, the existence condition of the ζ-solution, which is a condition on the polar components of the stress tensor (T, R). 

W (Φ opt 1 ) I R 2 1 < T 1 R 0 even odd (3.5.24) II R 2 1 > T 1 R 0 and r 2 1 > t 1 r 0 ; | ζ |≥ 1 even even (3.5.24) III R 2 1 > T 1 R 0 and r 2 1 > t 1 r 0 ; | ζ |< 1 even even (3.5.25) IV r 2 1 > t 1 r 0 ; | ζ |≥ 1 odd even (3.5.24) V r 2 1 > t 1 r 0 ; | ζ |< 1 odd even (3.5.25)
Each table line is a sub-problem: either (3.5.24) or (3.5.25) is the objective function. The optimization constraints are the conditions on the polar components. The problem is non-linear and non-convex. An analytical resolution is performed. The condition of existence of the "ζ-solution" can be written analytically:

r 1 | T | r 0 R ≶ 1 ⇔ R 1 (T 0 -(-1) K R 0 ) | T |≶ 2(R 2 1 -(-1) K R 0 T 1 )R (3.5.26)
The sensitivity analysis and the optimal values of the polar components are given in [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF] for each of the sub-problem. The strategy consists in comparing the optimal values in order to search for the global minimum value of energy. Solutions of optimization problems I to V are given respectively in [Julien 2010], tables 3.3, 3.4, 3.5, 3.6, 3.7. The optimal values of the polar components depend on the value of X. X = R |T | , is the ratio between the spherical and the deviatoric part of stress tensor (T and R respectively). X varies in [0, +∞[, where the extremal values correspond respectively to a purely spherical or a purely deviatoric state of plane stress. Thus, the optimal values of the polar components depend on the nature of the stress field.

Closed form dolution of the optimal polar invariants and material orientation to minimize the elastic energy

To sum up, the strategy of minimization of the elastic energy with respect to the anisotropic properties of an orthotropic material is made in three steps. The elastic energy is expressed in function of the polar components in stiffness (T 0 , T 1 , R 0 , R 1 , Φ 1 , K) and the polar components of stress represented by the parameter X = R |T | where T and R are the spherical and deviatoric part of stress.

The minimization of the elastic energy with respect to the material orientation Φ 1 is the first step. The results found with the polar method are consistant with the results found with [START_REF] Cheng | On sufficiency conditions for optimal design based on extremum principles of mechanics[END_REF]: there are two optimal values of Φ 1 , depending on the existence or the Chapter 3. Polar method for complementary energy minimization in 2D elasticity Table 3.5 -Optimal values of stiffness polar parameters {Φ 1 , K, R 0 , R 1 }, and complementary energy W for a given stress tensor with polar parameters R and T [Julien 2010, Table 3.8].

X = R |T | Φ opt 1 K R opt 0 R opt 1 W opt 0 T 0 2T 1 T 0 T 1 +∞ Dir{Max(| σI | , | σII |)} 0 or 1 0 K = 0 : 0 ≤ R opt 0 < T0 K = 1 : 0 ≤ R opt 0 < T0 -2T1X 2 2T1X 2 -T0 < R opt 0 < T0 T - 0 T1X T - 0 X T 2 4T 1 R 2 4T - 0 non-existence of the "ζ-solution"
. This leads to two expressions of the elastic energy depending on the value of Φ 1 . The second step is to minimize the elastic energy with respect to the polar parameters (R 0 , R 1 , K). Since the orthotropy shapes and the conditions on the polar components change in each region of the admissible design space, five independent sub-problems can be distinguished. Each sub-problem is solved analytically by computing the gradient of the objective functions and by considering the conditions on the polar components. The optimal values of the polar components and the elastic energy are obtained for each sub-problem. The optimal values depend on the value of X. Two limit values of X are exhibited:

(X I lim ) 2 = T 0 2T 1 (X II lim ) 2 = T 0 T 1 (3.5.27)
The last step consists in comparing the values of the minimum energy for the five sub-problems. For each range of X, the values of the minimum energy are compared and the global minimum of the elastic energy is identified. Corresponding optimal values of the polar components are then deduced.

Table 3.5 summarizes the optimal values of the material orientation, the shape of orthotropy, the polar invariants and the complementary energy depending on the values of X. The optimal orthotropic material orientation is aligned with the principal direction of the stress tensor with maximal absolute value. In some cases, the optimal value of R 0 is defined by an interval (that depends on the value of R |T | , T 0

2T 1 and T 0 T 1 ). Two values of the optimal material orientation can be found when the optimization is not performed with respect to (R 0 , R 1 , K). In some cases, it can be aligned with the principal direction of the stress or offset by a certain angle. However, when the optimization is performed with respect to all the polar components (R 0 , R 1 , K, Φ 1 ), the optimal orientation is necessarily along the principal direction of the stress which has the greatest absolute value.

For two ranges of the parameter X, the optimal values of R 0 lies within an interval. Therefore, there exists an infinite number of orthotropic materials that are optimal, with a unique optimal value of R 1 . When an optimal orthotropic material is subjected to an essentially spherical stress state, the value of the minimum complementary energy depends only on the spherical part of the stresses, and the induced deformations are purely spherical. Conversely, if the deviatoric part of the stress tensor is predominant, the minimum energy actually reached depends only on this deviatoric part of the stresses, and the deformation response obtained is also purely deviatoric.

e.

Conclusion

Design of material is of crucial importance as it becomes possible to tailor the anisotropy distribution in order to match a given criterion. However the design of anisotropic materials is cumbersome as their behavior is complex. In this chapter, we present the polar method that is a simple way for studying the anisotropy behavior. Its advantage is the representation of the material anisotropy by invariants. By using the polar method, the design of material can be performed analytically. The second part of this chapter presents the analytical resolution of a material design problem. The problem of complementary energy minimization was solved analytically [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF]]. The choice of complementary energy minimization is related to a particular optimization algorithm (alternate directions algorithm, see section 4.4). The polar method is very interesting in the design of material. Indeed, it is possible to study easily elastic symmetries, giving physical meaning of the polar components. The thermodynamic limit (positive definiteness condition) of the polar components characterize the design space. The possibility of separating the isotropic part from the anisotropic part of the elasticity tensor is also the strength of the polar method. The minimization is performed with respect to the anisotropic components. It is natural to keep the isotropic part constant when dealing with composite laminates with identical elementary layers, as their isotropic components are equal to those of the elementary layer.

The polar method and the method of minimizing the elastic energy will be used in the next chapter in order to optimize concurrently the material density distribution and the material anisotropy repartition for 2D structures.

Introduction

Topology optimization has reached a high level of maturity for isotropic materials. It is a powerful class of methods to optimize the layout of material within a prescribed domain with respect to mechanical constraints. [START_REF] Sigmund | Topology optimization approaches: A comparative review[END_REF] and [START_REF] Deaton | A survey of structural and multidisciplinary continuum topology optimization: post 2000[END_REF] survey developments of topology optimization. However few works optimize concurrently mechanical constitutive behavior and the layout of the structure. Indeed, taking anisotropy into account in the optimization process is complex. Anisotropy is a complex behavior. Therefore, topology design of structures made of anisotropic materials is difficult as their representation is complex.

The aim of this chapter is to propose an optimization methodology for concurrent optimization of material density and material anisotropy for 2D structures. The method requires an adequate choice of the design variables, an adequate optimization algorithm (see chapter 2) and a special formulation of the optimization problem. For pedagogy reason, and so that the chapter is self sufficient, section 4.2 reminds the design variables presented in chapters 2 and 3. The optimization problem of stiffness maximization is formulated in section 4.3. The key point of the method is to reformulate this optimization problem into a double minimization of the complementary energy. Therefore, variational formulations and energetic theorems are expressed. The alternate directions algorithm presented in chapter 2 is adapted to concurrent optimization of material density and material anisotropy in section 4.4. The use of density variable and polar invariants permits to write complementary energy with explicit expressions. Thus, analytical resolutions of complementary energy minimization are performed with respect to polar invariants and density (section 4.5). The analytical expressions of the polar parameters presented in chapter 3 are reminded in section 4.5.1.

Design variables

Considering simultaneously the topology and the material anisotropy in structural optimization is difficult. Thus, the choice of the design variables is crucial in order to achieve simultaneous optimization of topology and material anisotropy. For this purpose, the topology of the structure and the material anisotropy are parameterized separately. On the one hand, the topology is parameterized by the SIMP method. On the other hand, the polar invariants parameterize the material anisotropy through the elasticity tensor. Combining these parameterizations permits to consider the topology and the material anisotropy.

SIMP parameterization (density)

First, the layout of the structure is parameterized. The optimal spatial distribution of the material determines the optimal shape of the structure. For this puprose, the presence or absence of material in each point of the structure defines the material spatial distribution. To have the topology parameterized, the adequate design variables should determine if there is solid material or void.

As mentioned in section 2.3, a density method is used to parameterize the topology of the structure. It uses a continuous density variable ρ(x) that determines the presence (1) or absence (0) of the material. To have grey areas suppressed, penalization techniques interpolate the density variable to be either 0 or 1. The SIMP method is used to penalize the density variable. The SIMP method makes ρ(x) to be either close to 0 or to 1 in the optimal design by using an exponent p ≥ 1. The optimized stiffness tensor C(x) and compliance tensor S(x) iis written as follows, in function of the considered material stiffness tensor C 0 (x) and compliance tensor S 0 (x) (Eq. (4.2.1))

C(x) = ρ(x) p C 0 ⇔ S(x) = 1 ρ(x) p S 0 (4.2.1)
Taking the penalization parameter p to be equal to 1 leads to a convex compliance minimization problem [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF]]. The solution will not be a pure solid-void design as intermediate densities will appear. The penalization parameter needs to be greater than 1 in order to enforce almost discrete design. But this leads to a non-convex problem exhibiting several local minima. Generally, the exponent p is taken to be equal to 3. However, a continuation strategy suggests to raise the penalization parameters, for instance from 1 to 3 in steps of 0.25 along the optimization procedure [START_REF] Aage | Giga-voxel computational morphogenesis for structural design[END_REF]]. The continuation strategy permits to find a strong local minimum as the solution reaches the global minimum when p = 1. Chapter 5 discusses further about the choice of the values of the penalization parameter.

Polar invariants (anisotropy)

In this section, the material anisotropy is parameterized. For a given load and boundary conditions, the stress varies in each point of the structure. Some areas are mainly stressed in shearing and others are stressed in traction or compression. The material should be adapted to the local stresses applied on it. Therefore the optimal material anisotropy varies throughout the structure and requires a distributed parameterization.

In the present work, the material is chosen to be at least orthotropic and thermodynamically admissible (i.e. with a positive definite elasticity tensor) under the assumption of plane stress. The stiffness properties of the considered anisotropic material are represented by its elasticity tensor. Homogenized proprerties of orthotropic materials are used to characterize the elasticity tensor coefficients. Since spatial variations of the material anisotropy are allowed, the set of elasticity tensor homogenized coefficients changes in each point of the structure.

The anisotropy material can be parameterized by several methods. Allaire et al. [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]] used homogenization method to parameterize sequential laminates made of a mixture of isotropic material and void. Peeters et al. used lamination parameters to parameterize a laminated composite in [D. [START_REF] Peeters | Combining topology and lamination parameter optimisation[END_REF]. Laminated structures are parameterized by polar invariants in [START_REF] Jibawy | Hierarchical structural optimization of laminated plates using polar representation[END_REF][START_REF] Burger | Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength[END_REF]. Since homogenized properties are considered, homogenization method are not required. As a general orthotropic material is used in this work, lamination parameters are not adequate as they characterize only laminated composites. Hence either cartesian coefficients or polar invariants of the elasticity tensor could be used.

Using Cartesian representation is cumbersome to parameterize a spatially distributed anisotropy. Indeed, when the material anisotropy is spatially distributed, the principal axis of the material changes as well. Therefore, in each point of the structure, the elasticity tensor should be expressed in a reference frame that can be different from the principal axis of the material. However, changing frame by the Cartesian representation is complex. Indeed, intricate transformations involving fourth order trigonometric functions are necessary. In order to avoid this problem, the representation of elasticity tensors by invariants is considered. This method simplifies greatly the dependence of the elasticity tensors with respect to the considered frame. The polar method permits to write the elasticity tensor with its intrinsic properties using tensor invariants and the change of reference frame becomes simple. A change of frame is simply done by rotating an angle with respect to the reference frame. That is why the polar invariants are chosen to parameterize the stiffness tensor for an orthotropic material. The polar method is presented with more details in chapter 3 section 3.4.

Chapter 4. A method for the simultaneous optimization of topology and material anisotropy for 2D structures

Verchery proposed a transformation of coordinates in the field of complex variables to express a fourth order tensor in polar representation [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF]]. For a given fourth order tensor of the elasticity type, there are six polar components: two real scalars T 0 and T 1 , two modules R 0 and R 1 and two polar angles Φ 0 and Φ 1 . The polar invariants are the quantity T 0 , T 1 , R 0 , R 1 , whereas the angular difference Φ 0 -Φ 1 is the last polar invariant. Equations (4.2.2) show the relationships between the polar components (T 0 , T 1 , R 0 , R 1 , Φ 0 and Φ 1 ) and the Cartesian ones of the stiffness tensor Q [START_REF] Vannucci | A special planar orthotropic material[END_REF]].

Q 1111 = T 0 + 2T 1 + R 0 cos4Φ 0 + 4R 1 cos2Φ 1 Q 1122 = -T 0 + 2T 1 -R 0 cos4Φ 0 Q 1112 = R 0 sin4Φ 0 + 2R 1 sin2Φ 1 Q 2222 = T 0 + 2T 1 + R 0 cos4Φ 0 -4R 1 cos2Φ 1 Q 2212 = -R 0 sin4Φ 0 + 2R 1 sin2Φ 1 Q 1212 = T 0 -R 0 cosΦ 0 (4.2.2)
and conversely

8T 0 = Q 1111 -2Q 1122 + 4Q 1212 + Q 2222 8T 1 = Q 1111 + 2Q 1122 + Q 2222 8R 0 e 4iΦ 0 = Q 1111 + 4iQ 1112 -2Q 1122 -4Q 1212 -4iQ 1222 + Q 2222 8R 1 e 2iΦ 1 = Q 1111 + 2iQ 1112 + 2iQ 1222 + Q 2222 (4.2.
3)

The ability of the polar method to separate isotropic with anisotropic parts makes its originality and strength (in comparison to lamination parameters, which only measure anisotropy). Each Cartesian component of the reduced stiffness tensor is expressed with isotropic terms (T 0 , T 1 ) that do not depend on the orientation of the material, and anisotropic terms (R 0 e 4iΦ 0 , R 1 e 2iΦ 1 ) that depend on the orientations Φ 0 and Φ 1 of the material. R 0 and R 1 represent the magnitudes of the anisotropic part of the tensor. Angles Φ 0 and Φ 1 characterize the angular position of each anisotropic component within the chosen reference frame. In the polar representation, the change of frame is simply done by changing only the two polar angles. For instance, when switching from a frame 1 -2 to a frame x -y rotated by an angle δ, only the angles Φ 0 and Φ 1 change and become respectively Φ 0 -δ and Φ 1 -δ.

Figure 4.1 shows the decomposition of the reduced stress tensor's first Cartesian component Q 1111 for a composite made of long and straight carbon fibers in an epoxy matrix (E L = 181 GPa, E T = 10.3 GPa, G LT = 7.17 GPa and ν LT = 0.28). The stiffness is expressed as the sum of terms that do not depend on the material orientation, T 0 and T 1 , and terms that depend on the material orientation, R 0 and R 1 . The R 0 and R 1 terms can take negative values (dashed lines, R - 0 , R - 1 ) or positive values (continuous lines R + 0 , R + 1 ) due to the cosine function (see Eq. 4.2.2). They are respectively π 4 and π 2 periodic. The orthotropic material orientation is equal to 0 • . The apparent stiffness Q 1111 is maximum at 0 • as the R 0 and R 1 terms are both positive in this direction. It is minimum at 90 • because the R 1 term is negative. When R 1 vanishes, there are only π 4 -periodic terms: the material is square symmetric.

The isotropic parts do not influence the anisotropy of the material. Indeed, shape of anisotropy are only guided by anisotropic parameters. Furthermore, if the isotropic parts were optimized, the solutions would be obvious because they would tend to an infinite value. This trivial solution is the stiffest material. Therefore, we need to restrict the values of isotropic parts in order to restrict the design domain of the material. We will assume that (T 0 , T 1 ) remain constant. In composite laminated plates made of identical unidirectional layers (with the same material and same thickness in each layer), the homogenized isotropic part (T 0 , T 1 ) of the laminate is exactly equal to the isotropic part (T EL 0 , T EL 1 ) of the elementary layer (EL). Due to symmetry, the condition for elastic orthotropy is Φ 0 -Φ 1 = K Π 4 , with K = 0, 1. K is a parameter that defines the orthotropy shape: K = 0 corresponds to a shape that Pedersen called low shear orthotropy, and K = 1 corresponds to high shear orthotropy [START_REF] Cheng | On sufficiency conditions for optimal design based on extremum principles of mechanics[END_REF]. The angle Φ 1 characterizes the direction of the principal orthotropy axes within the chosen reference frame.

T 0 T 1 R 0 + R 0 - R 1 + R 1 - (b) Polar invariant terms T 0 , T 1 , R 0 , R 1 of Q 1111
The material optimization will then be performed with respect to anisotropic parts (R 0 e 4iΦ 0 , R 1 e 2iΦ 1 ), orthotropy shape K and material orientation Φ 1 . The optimization is carried out in terms of the polar parameters of stiffness. Finally, except for the isotropic part that we will assume constant, the orthotropic material used in this work is taken to be as general as possible, i.e. the optimized orthotropic material is thermodynamically admissible. A material thermodynamically admissible means that the stiffness tensor is positive definite. The thermodynamical bounds of the polar invariants of the elasticity tensor are given in [START_REF] Vannucci | A special planar orthotropic material[END_REF]]:

T 0 > R 0 T 1 (T 2 0 -R 2 0 ) > 2R 2 1 (T 0 -R 0 cos4(Φ 0 -Φ 1 )) (4.2.4)
with, by definition

R 0 ≥ 0 R 1 ≥ 0 (4.2.5)
as R 0 and R 1 are moduli of complex numbers.

Maximization of the global structural stiffness

Once the parameterization of design variables has to be defined, the optimization problem to be solved is posed. The design of mechanical systems involves many physical phenomena that Chapter 4. A method for the simultaneous optimization of topology and material anisotropy for 2D structures should be considered. Considering stiffness, strength, buckling, displacements, frequencies and alternative physics such as fluid flow and non linear behavior are essential in topology optimization. They could be formulated as objectives or constraints. However, dealing with most of the cited problems can be very complex (for instance for material failure). The structural problem treated in this chapter is stiffness maximization with a mass constraint. We address this classical formulation of structural optimization (global stiffness maximization problem) as dealing concurrently with topology and material anisotropy is intricate. The optimization problem could then be enriched gradually by consideration of additional mechanical phenomena. Engineers usually prefer to minimize mass by imposing constraints on the global structural stiffness. Nonetheless, a similar problem can be solved by maximizing the global structural stiffness and by imposing constraints on the mass. In the second problem formulation, the procedure to reach the solution of the industrial problem is to change the mass value constraint until the imposed stiffness in the first problem is found. The aim of this section is to formulate the optimization problem. Compliance minimization problem is defined and optimization constraints are expressed. In the case of linear elasticity, minimization of the compliance can be addressed with stress based formulation [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]], or a strain based formulation [START_REF] Rozvany | Layout Optimization of Structures[END_REF]. In this work, a stress based formulation is used.

The variational formulation in displacements and stresses are derived from the elasticity problem. They permit to use the energy theorems in order to define the relation between the compliance and the complementary energy. This relationship will be necessary for the definition of the optimization problem. Indeed, the key point of the optimization methodology is to reformulate the structural stiffness maximization into a double minimization of the complementary energy.

Elasticity problem formulation

The framework of the problem is linear elasticity. We make assumptions of small strains and small displacements. The stress σ and displacement field u are solutions of the elasticity problem:

       divσ + f = 0 in Ω σ.n = F on Γ 1 σ = C : (u) in Ω u = u d on Γ 0 (P) tensor (u) = 1 2 (∇ u + ∇u T )
is the strain tensor. The boundary of domain Ω is split into two parts: Γ 0 where a displacement u d is imposed, and Γ 1 where a surface load F is applied. f is the volume load and u, the displacement vector. Figure 4.2 illustrates the domain, the imposed forces and displacements.

The next sections present variational formulations in displacements and stresses [START_REF] Duvaut | Mécanique des milieux continus[END_REF]]. They are used to define the optimization methodology. The problem formulation relies on the complementary energy theorem.

Variational formulation in displacements

Let's introduce V the space of kinematically admissible fields v:

V = v|v = (v 1 , v 2 , v 3 ) ; v i ∈ H 1 (Ω) ; v = u d on Γ 0
The variational formulation in displacements of the problem (P) is: If u is a displacement field that is a solution of (P), then:

u ∈ V a(u, v -u) = L(v -u) ∀v ∈ V (4.3.1a) (4.3.1b) with          a(u, v) = Ω (u) : C : (v)dV L(v) = Γ 1 F.vdS + Ω f.vdV (4.3.2a) (4.3.2b)

Variational formulation in stresses

Let's introduce the set of statically admissible stress fields Σ ad :

Σ ad = τ ij , (i, j = 1, 2, 3)|τ ij = τ ji , ∂τ ij ∂x j + f i = 0 in Ω, τ ij n j = F i on Γ 1
The variational formulation in stresses of the problem (P) is:

If σ is a stress field that is a solution of (P), then:

σ ∈ Σ ad A (σ, τ -σ) = L(τ -σ) ∀τ ∈ Σ ad (4.3.3a) (4.3.3b) with          A (σ, τ ) = Ω σ : S : τ dV L(τ ) = Γ 0 (τ .n).u d dS (4.3.4a) (4.3.4b)
Chapter 4. A method for the simultaneous optimization of topology and material anisotropy for 2D structures

Energetic theorems

In order to link external work with deformation energy, potential and complementary energies are expressed and the energetic theorems are used. The two next subsections state the potential and complementary energy theorems. Afterwards, relationship between potential and complementary energy is set.

Potential energy theorem

Let's introduce the potential energy I:

I(u) = 1 2 a(u, u) -L(u) (4.3.5)
Theorem 4.3.1. Let u ∈ V be a cinematically admissible displacement field. If u is solution of (P ) then

I(u) ≤ I(v) ∀v ∈ V (4.3.6)

Complementary energy theorem

Let's introduce the complementary energy J:

J(σ) = 1 2 A(σ, σ) -L(σ) (4.3.7)
The complementary energy theorem is written:

Theorem 4.3.2. Let σ ∈ Σ ad be a statically admissible stress field. If σ is solution of (P ) then

J(σ) ≤ J(τ ) ∀τ ∈ Σ ad (4.3.8)

Relationship between potential and complementary energy

For (u, σ) ∈ V x Σ ad , solution of (P ), we have:

I(u) + J(σ) = 0 (4.3.9) (4.
3.9), (4.3.5) and (4.3.7) together with a(u, u) = A(σ, σ) implies that

L(u) -L(σ) = 2J(σ) (4.3.10)

Minimization of the complementary energy

By expressing variational formulations in displacements and stresses, the works of external and reaction forces are related to the complementary energy involving stress and elasticity tensor. This step is the key point of the problem formulation in order to express it as a double minimization of the complementary energy. For a couple (u, σ) solution of the elasticity problem (P), we obtain the following relationship from equation (4.3.10):

L(u) -L(σ) = 2J(σ) (4.3.11)
where L(u) = Ω f.udV + Γ 1 F.udS is the work due to external forces, L(σ) = Γ 0 u d .σ.ndS is the work due to reaction forces on boundary Γ 0 and J(σ) is the complementary energy.

For non-zero imposed displacements, the minimization of the complementary energy with respect to the design variables is written as follows:

min {β∈[β min ,βmax]} (L(u) -L(σ)) (4.3.12)
where β represents formally the bounded optimization parameters of the problem. This minimization problem can be interpreted as follows:

• The minimization of the first term L(u) corresponds to the minimization of the compliance i.e. of the work of external forces, which amounts to maximizing the structural stiffness.

• The minimization of the second term -L(σ) corresponds to the maximization of the work due to forces on boundary Γ 0 . That is, the structure must be stiff in such a way that it opposes as much as possible the movement imposed on the boundary.

• L(u) -L(σ) is interpreted as a generalized compliance of the structure, it takes into account imposed forces and displacements.

Hence, there is equivalence between a generalized compliance minimization problem and complementary energy minimization problem. Using the complementary energy theorem, we obtain:

min {β∈[β min ,βmax]} (L(u) -L(σ)) = min {β∈[β min ,βmax]} min τ SA 2J(τ ) (4.3.13)

Case of imposed displacements equal to zero

When the imposed displacements vanish, the term L(σ) is equal to zero. Hence, for imposed displacements equal to zero, compliance L(u) is equal to the double of complementary energy. Furthermore, the complementary energy reduces to the elastic energy:

J(σ) = 1 2 Ω σ : S : σdV (4.3.14)
The minimization of the compliance L(u) can be formulated as the minimization of the complementary energy: Thus, the minimization of the compliance with respect to the design variables is written as a double minimization of the complementary energy with respect to design variables and with respect to statically admissible stress fields. Compared to the general case where imposed displacements and imposed forces are non null, the work due to forces on boundary are null in the case of zero imposed displacement. Therefore, simplifications arise: the complementary energy is identical to the elastic energy.

min {β∈[β min ,βmax]} L(u) = min {β∈[β min ,βmax]} 2J(σ) (4.3.15) min {β∈[β min ,βmax]} Ω f.udV + Γ 1 F.udS = min {β∈[β min ,βmax]} Ω σ : S : σdV. ( 4 

Case of imposed forces equal to zero

When the imposed forces vanish, the first term L(u) is equal to zero. The minimization of the complementary energy is written as follows:

min {β∈[β min ,βmax]} -L(σ) (4.3.19)
We obtain:

max {β∈[β min ,βmax]} L(σ) = min {β∈[β min ,βmax]} min τ SA 2J(τ ) (4.3.20)
When the imposed forces are equal to zero, the maximization of the work due to forces on boundary Γ 0 is equivalent to the double minimization of the complementary energy.

Structural stiffness maximization problem formulation with constrained volume

Objective function

The generalized compliance introduced in (4.3.13), the work done by external forces and by reaction forces on boundary, measures the global structural stiffness. Therefore, the objective function is the generalized compliance and is written as:

Criterion = L(u) -L(σ) = Ω f.udV + Γ 1 F.udS - Γ 0 u d .σ.ndS. (4.3.21)
The optimization is made with respect to the density and the anisotropic part of the stiffness tensor polar invariants:

min {ρ,R 0 ,R 1 ,K,Φ 1 } Ω f.udV + Γ 1 F.udS - Γ 0 u d .σ.ndS. (4.3.22)
Optimization constraints: material volume and thermodynamical admissibility

The optimization constraints are written in terms of the total volume amount of the structure and of the polar invariants by expressing the positive definiteness bounds. During the optimization, a target volume V 0 is defined for the structure. The volume V is equal to the material density ρ integrated over the domain Ω. At each step of the optimization, the volume must satisfy the optimization constraint:

Ω ρdx = V 0 . (4.3.23)
The material to be designed is imposed to be orthotropic. For an orthotropic material:

Φ 0 -Φ 1 = K π 4 with K = 0, 1. (4.3.24)
The orthotropic material used in this chapter is taken to be as general as possible: the optimized orthotropic material is thermodynamically admissible, which means that the stiffness tensor is positive definite. The analytical bounds of the polar invariants are shown in Eq. ( 4.2.4).

Optimization problem formulation

The maximization of the global structural stiffness (i.e. the minimization of the generalized compliance (4.3.13)) is written as the minimization of the complementary energy J(σ).Equations (4.3.25) summarize the formulation of the global stiffness maximization problem with respect to density and material anisotropy, for a linear elastic orthotropic material, with a constraint on the total volume.

min {ρ,R 0 ,R 1 ,K,Φ 1 } 2J(σ)
subject to:

                   Ω ρdx = V 0 T 0 > R 0 T 1 (T 2 0 -R 2 0 ) > 2R 2 1 (T 0 -(-1) K R 0 ) K ∈ {0, 1} R 0 ≥ 0 R 1 ≥ 0 σ is solution of the elasticity problem (P) (4.3.25) Remark 4.3.1.
In the rest of the thesis, we will only consider numerical examples with imposed displacements equal to zero, but the methodology is valid with non zero imposed displacements.

The alternate directions algorithm

Chapter 2 presents the main algorithms used for topology optimization. In this work, the optimization problem is solved numerically using the alternate directions algorithm introduced by Allaire [START_REF] Allaire | Optimal design for minimum weight and compliance in plane stress using extremal microstructures[END_REF][START_REF] Allaire | Shape optimization by the homogenization method[END_REF]]. This algorithm is similar to optimality criteria methods. Using the complementary energy theorem, the previous optimization problem can be written in the form of a double minimization problem.
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min {ρ,R 0 ,R 1 ,K,Φ 1 } min τ SA 2J(τ )
subject to:

               Ω ρdx = V 0 T 0 > R 0 T 1 (T 2 0 -R 2 0 ) > 2R 2 1 (T 0 -(-1) K R 0 ) K ∈ {0, 1} R 0 ≥ 0 R 1 ≥ 0 (4.4.1)
The method consists in solving the double minimization problem (4.4.1) with a fixed point method. The optimality conditions are computed. At each iteration of the optimization, the minimization with respect to the design variables {ρ, R 0 , R 1 , K, Φ 1 } is first performed, then the minimization with respect to stress field τ is operated. The minimizations are treated alternatively and separately. Since the design variables {ρ, R 0 , R 1 , K, Φ 1 } are subjected only to algebraic constraints, the minimization with respect to them can be put inside the integral:

min τ SA Ω min {ρ,R 0 ,R 1 ,K,Φ 1 } τ : S : τ dV -2L(τ ) (4.4.2)
The numerical algorithm then alternates between local minimization of the objective function with respect to the design variables, at fixed stress, and global minimization with respect to stress field, at fixed design variables. Figure 4.3 shows the flowchart of the algorithm. The algorithm consists of the following main steps:

1. Initialization -Iteration 0.

(a) The model is set and the design variables {ρ, R 0 , R 1 , K, Φ 1 } are initialized.

(b) The corresponding stress field is computed through a finite element analysis.

2. Local minimizations with respect to design variables are solved, with fixed stress field. At each element, optimal polar parameters and density are computed by solving the local minimization problem of the complementary energy. This step takes into account the volume constraint.

3. Global minimization is carried out with respect to the stress field. The design variables remain fixed and their values correspond to those obtained at the end of step 2. This step updates the stress field for the optimal values of the design variables. For given design variables, stress field is computed by solving the elasticity problem (P). The complementary energy theorem (4.3.8) is used. This step corresponds to a finite element analysis calculation of the stress field. Any finite element solver would be appropriate. In this work, MSC Nastran is used because it is the software used in Stelia Aerospace offices.

4. The algorithm iterates on step 2 and step 3 until a convergence criterion is reached. When the objective function becomes stationary and the change in design variables is smaller than a preset threshold, convergence is achieved.

The alternate directions algorithm is convenient for optimizing concurrently topology and material anisotropy in the case of a compliance optimization problem. Its simplicity is the Although the alternative direction algorithm has many advantages, some difficulties may arise. For instance, it is complex to consider other criterion than compliance such as material failure, buckling, etc. It is also difficult to take into account optimization constraints. The algorithm is specific to each objective function and constraint function. It should be adpated to the considered objective and constraint functions by studying their consitutive equations. Allaire et al. adapted the algorithm for problem with multiple loads case in [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]] and for eigenfrequency problem in [START_REF] Allaire | Optimizing supports for additive manufacturing[END_REF]]. Finally, it cannot manage discrete variables needed for design of manufacturable laminates for instance.
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Local minimization of the complementary energy

Minimizations of the complementary energy with respect to design variables are performed locally, at each point of the structure, with a fixed stress state. This step takes into account the constraint on the volume which depends only on the density variable ρ. The "local" minimization problem becomes:

min {ρ,R 0 ,R 1 ,K,Φ 1 } 1 ρ p σ : C -1 (R 0 , R 1 , K, Φ 1 ) : σ -2L(σ) ∀x ∈ Ω subject to:                    Ω ρdx = V 0 ρ ∈ [ρ min , 1] T 0 > R 0 T 1 (T 2 0 -R 2 0 ) > 2R 2 1 (T 0 -(-1) K R 0 ) K ∈ {0, 1} R 0 ≥ 0 R 1 ≥ 0 (4.5.1)
The minimization with respect to the density is performed locally at each element. However, the constraint on the volume Ω ρdx = V 0 involves the density of all elements, and is therefore non local. Polar parameters R 0 , R 1 , K, Φ 1 do not depend on the density variable ρ. Therefore, the local minimization can be done in two steps. Firstly, the minimization is performed with respect to the polar parameters R 0 , R 1 , K, Φ 1 . The resolution is carried out analytically (see section 3.5). Secondly, the minimization is solved with respect to the density variable ρ, for a fixed set of polar parameters R 0 , R 1 , K, Φ 1 that was obtained in the first step. The minimization with respect to the density variable can be solved analytically as well.

The key point of the method corresponds to the analytical resolution of the local minimization of the complementary energy with respect to the design variables. This section has two purposes: first, it shows that we can separate minimizations with respect to density and polar parameters; second, it gives analytical solutions of design variables that minimize the complementary energy.

Since density variable and polar parameters are independent, and since the term L(σ) is constant, the local minimization in (4.5.1) becomes:

min ρ min {R 0 ,R 1 ,K,Φ 1 } 1 ρ p σ : C -1 (R 0 , R 1 , K, Φ 1 ) : σ -2L(σ) (4.5.2)
Furthermore, the minimization with respect to the polar parameters can be written as follows:

min ρ 1 ρ p min {R 0 ,R 1 ,K,Φ 1 } σ : C -1 (R 0 , R 1 , K, Φ 1 ) : σ -2L(σ) (4.5.
3)

The minimization with respect to the material anisotropy is first performed, then the minimization with respect to the density is carried out.

Minimization with respect to anisotropy

In this section, the orthotropic properties that minimize the complementary energy for a given load are computed. Plane stress field remains fixed. The minimization with respect to the polar parameters is detailed in chapter 3.

For a given orthotropic material, the stiffness behavior is characterized by the polar components (T 0 , T 1 , R 0 , R 1 , K, Φ 1 ). In particular, K describes the shape of orthotropy and the angle Φ 1 represents the direction of the principal orthotropy axes within the chosen reference frame. The stress field is expressed with its polar components (T, R, Φ), where T is the stress field spherical part, R is the stress field deviatoric part and Φ represents the principal direction axes. The use of the polar method gives a concise and explicit formulation of the elastic energy:

W = 1 2 σ : C -1 : σ = 4 ∆ {2(T 0 T 1 -R 2 1 )R 2 + (T 2 0 -R 2 0 )T 2 + 2(R1 2 -(-1) K T 1 R 0 )R 2 cos4(Φ 1 -Φ) -4R 1 (T 0 -(-1) K R 0 )T Rcos2(Φ 1 -Φ))} (4.5.4) with ∆ = 16T 1 (T 2 0 -R 2 0 ) -32R 2 1 (T 0 -R 0 cos4(Φ 0 -Φ 1 )) (4.5.5)
The quantity to be minimized in (4.5.3) is twice the elastic energy in (4.5.4). The minimization is solved with respect to the stiffness polar parameters. The isotropic part (T 0 , T 1 ) is fixed, and the anisotropic part (R 0 , R 1 , K, Φ 1 ) is optimized.

• Φ 1 represents the principal direction of orthotropy in stiffness. Note that Φ 1 = φ 1 + π 2 , where φ 1 is the principal direction of orthotropy in compliance.

• The polar moduli R 0 , R 1 are positive quantities

• The parameter K defines shapes of orthotropy

The minimization is performed for a general orthotropic material. The constraints on the polar parameters are the thermodynamical bounds shown in (4.2.4). Additionally, the moduli R 0 and R 1 are positive quantities. Because L(σ) is constant in this step, the minimization problem to be solved is:

min {R 0 ,R 1 ,K,Φ 1 } W (R 0 , R 1 , K, Φ 1 ) subject to:            T 0 -R 0 > 0 T 0 -(-1) K R 0 T 1 [T 0 + (-1) K R 0 ] -2R 2 1 > 0 K ∈ {0, 1} R 0 ≥ 0 R 1 ≥ 0 (4.5.6)
The minimization strategy uses two steps to solve the minimization problem in (4.5.6) [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF][START_REF] Vincenti | Optimal Orthotropy for Minimum Elastic Energy by the Polar Method[END_REF]. First, the minimization is solved with respect to the orthotropy axis orientation (angle Φ 1 ). Then, the minimization is performed with respect to the parameters R 0 , R 1 and K that define shapes of orthotropy.

Chapter 4. A method for the simultaneous optimization of topology and material anisotropy for 2D structures

Minimization with respect to the material orientation

The optimal values of the material orientation φ 1 and Φ 1 are summarized respectively in tables 4.1 and 4.2. The complete demonstration of the minimization is shown in section 3.5. The optimal material orientation in stiffness is aligned with the direction of the principal stress which has the highest absolute value. The optimal material orientation in stiffness is not aligned with the direction of the principal stress. Its value is the highest absolute value of the principal stress added with a certain angle depending on the material properties and on the spherical and deviatoric part of the stress tensor.

Table 4.1 -Optimal orthotropy direction of the compliance tensor for the complementary energy minimization k odd k even

r 1 |T | r 0 R ≥ 1 φ opt 1 =Dir{min(| σ I |, | σ II |)} φ opt 1 =Dir{min(| σ I |, | σ II |)} r 1 |T | r 0 R < 1 φ opt 1 =Dir{min(| σ I |, | σ II |)} φ opt 1 =Dir{min(| σ I |, | σ II |)} ± 1 2 arccos r 1 |T | r 0 R
Table 4.2 -Optimal orthotropy direction of the stiffness tensor for the complementary energy minimization k odd k even

r 1 |T | r 0 R ≥ 1 Φ opt 1 =Dir{max(| σ I |, | σ II |)} Φ opt 1 =Dir{max(| σ I |, | σ II |)} r 1 |T | r 0 R < 1 Φ opt 1 =Dir{max(| σ I |, | σ II |)} Φ opt 1 =Dir{max(| σ I |, | σ II |)} ± 1 2 arccos r 1 |T | r 0 R
Minimization with respect to the material anisotropy moduli

Once the minimization of the complementary energy with respect to the material orientation is solved, we perform the minimization with respect to the polar parameters R 0 , R 1 that represent the magnitude of the anisotropic components of the elastic stiffness tensor, and with respect to the parameter K that defines the shape of orthotropy. The conditions on the polar components define the optimization constraints. The complete demonstration is shown in section 3.5. Table 4.3 summarizes the optimal values of the material orientation, the orthotropy shape, the polar invariants and the complementary energy depending on the stress field. The optimal orthotropic material orientation is aligned with the principal direction of the stress tensor with maximal absolute value. The optimal values of the polar invariants depend on the ratio X = R

|T |

(R and T are respectively the deviatoric part and the spherical part of the stress tensor). In some cases, the optimal value of R 0 is defined by an interval (that depends on the value of R |T | , T 0 2T 1 and T 0 T 1 ). 

X = R |T | Φ opt 1 K R opt 0 R opt 1 W opt c 0 T 0 2T 1 T 0 T 1 +∞ Dir{Max(| σI | , | σII |)} 0 or 1 0 K = 0 : 0 ≤ R opt 0 < T0 K = 1 : 0 ≤ R opt 0 < T0 -2T1X 2 2T1X 2 -T0 < R opt 0 < T0 T - 0 T1X T - 0 X T 2 4T 1 R 2 4T - 0
In the optimization step with respect to material orientation only, it may be that the optimal material orientation is not aligned with the principal direction of stress. However, when the optimization is performed with respect to polar invariants R 0 , R 1 and orthotropy shape parameter K in addition to material orientation, the optimal material orientation is necessarily along the direction of the principal stress which has the highest absolute value.

When an optimal orthotropic material is subjected to an essentially spherical stress state, the value of the minimum complementary energy depends only on the spherical part of the stresses, and the induced deformations are purely spherical. Conversely, if the deviatoric part of the load is predominant, the minimum energy actually reached depends only on the deviatoric part of the stresses, and the deformation response obtained is also purely deviatoric.

Minimization with respect to the density

Once the minimization with respect to the material anisotropy is carried out, the minimization with respect to density is performed. Plane stress field is fixed. Additionally, the optimal anisotropy parameters are fixed. The constraint on the volume fraction is considered in this step, as the volume fraction depends on the element density. The condition ρ ∈ [ρ min , 1] must also be satisfied. Because L(σ) is constant in this step, the minimization problem with respect to density, for fixed plane stress field and fixed anisotropy parameters reads:

min ρ 1 ρ p σ : C -1 (R opt 0 , R opt 1 , K opt , Φ opt 1 ) : σ ∀x ∈ Ω subject to Ω ρdx = V 0 ρ ∈ [ρ min , 1] (4.5.7)
In order to take the volume constraint into account in the local minimizations, we introduce the following local minimization problem:

min ρ 1 ρ p σ : C -1 (R opt 0 , R opt 1 , K opt , Φ opt 1 ) : σ + kρ subject to ρ ∈ [ρ min , 1] (4.5.8)
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where k ∈ R + * . The optimization problem (4.5.8) is solved by looking for the extremal values of the objective function, and the optimal value of density ρ opt (k) is found as:

ρ opt (k) = max   ρ min , min   1, p σ : C -1 opt (R opt 0 , R opt 1 , K opt , Φ opt 1 ) : σ k 1 p+1     (4.5.9)
In order to enforce the global volume constraint in (4.5.7), the following function is introduced:

f (k) := Ω ρ opt (k)dV -V 0 (4.5.10)
The value k opt of problem (4.5.8) is found by solving the equation f (k) = 0. Because f (k) is a monotonic decreasing function, a dichotomy method can be used with a very low numerical cost, as f (k) is defined analytically.

Proof of convergence

Convergence is one of the main advantages of the alternate directions algorithm. [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF]] proves its convergence for optimization of sequential laminates. [B. Desmorat 2013a] gives a proof of convergence of the algorithm in the case of compliance optimization considering an initial stress field. This section presents its convergence proof for concurrent optimization of density and anisotropy. The complementary energy is a positive quantity. To prove that the algorithm is convergent, we need to proove that the objective function decreases at each iteration.

For this purpose, we prove that the objective function decreases at the local minimizations level and afterwards at the global minimization level. Let's denote (n + 1) the current iteration, and

σ (n) , ρ (n) , R (n) 0 , R (n) 1 , K (n) , Φ (n) 
1 , the stress density and polar parameters fields at the previous iteration (n). The local minimization problem is defined in (4.5.1), and is recalled here for the stress field σ (n) at iteration (n) of the algorithm:

min {ρ,R 0 ,R 1 ,K,Φ 1 } 1 ρ p σ (n) : C -1 (R 0 , R 1 , K, Φ 1 ) : σ (n) -2L(σ (n) ) ∀x ∈ Ω subject to:                    Ω ρdx = V 0 ρ ∈ [ρ min , 1] T 0 > R 0 T 1 (T 2 0 -R 2 0 ) > 2R 2 1 (T 0 -(-1) K R 0 ) K ∈ {0, 1} R 0 ≥ 0 R 1 ≥ 0 (4.6.1)
In section 4.5, the optimal design variables (ρ opt (x),

R opt 0 , R opt 1 , K opt ), Φ opt 1 ) for all x ∈ Ω denoted (ρ (n+1) , R (n+1) 0 , R (n+1) 1 , K (n+1) , Φ (n+1) 1
) are described. This optimum is such that:

1 (ρ (n+1) ) p σ (n) : C -1 (ρ (n+1) , R (n+1) 0 , R (n+1) 1 , K (n+1) , Φ (n+1) 1 ) : σ (n) ≤ 1 (ρ (n) ) p σ (n) : C -1 (ρ (n) , R (n) 0 , R (n) 1 , K (n) , Φ (n) 1 ) : σ (n) ∀x ∈ Ω (4.6.2) 4.7. Conclusion 57 which implies that Ω 1 (ρ (n+1) ) p σ (n) : C -1 (ρ (n+1) , R (n+1) 0 , R (n+1) 1 , K (n+1) , Φ (n+1) 1 ) : σ (n) dV ≤ Ω 1 (ρ (n) ) p σ (n) : C -1 (ρ (n) , R (n) 0 , R (n) 1 , K (n) , Φ (n) 1 ) : σ (n) dV (4.6.3) and thus Ω 1 (ρ (n+1) ) p σ (n) : C -1 (ρ (n+1) , R (n+1) 0 , R (n+1) 1 , K (n+1) , Φ (n+1) 1 ) : σ (n) dV -2L(σ (n) ) ≤ Ω 1 (ρ (n) ) p σ (n) : C -1 (ρ (n) , R (n) 0 , R (n) 1 , K (n) , Φ (n) 1 ) : σ (n) dV -2L(σ (n) ) (4.6.4)
The global minimization to be solved at this step, with fixed optimization parameters is:

min τ SA Ω 1 (ρ (n+1) ) p τ : (C -1 ) (n+1) : τ dV -2L(τ ) (4.6.5)
where ρ (n+1) and (C -1

) (n+1) = C -1 (ρ (n+1) , R (n+1) 0 , R (n+1) 1 , K (n+1) , Φ (n+1) 1 
) are respectively the optimal density field and the optimal compliance tensor field obtained from the local minimizations step. These quantities are fixed so that the corresponding stress field can be computed by finite element analysis. The complementary energy theorem 4.3.2, with the choice of a statically admissible stress field τ = σ (n) , implies that:

Ω 1 (ρ (n+1) ) p σ (n+1) : (C -1 ) (n+1) : σ (n+1) dV -2L(σ (n+1) ) ≤ Ω 1 (ρ (n+1) ) p σ (n) : (C -1 ) (n+1) : σ (n) dV -2L(σ (n) ) (4.6.6)
Combining equations (4.6.4) and (4.6.6) gives:

Ω 1 (ρ (n+1) ) p σ (n+1) : (C -1 ) (n+1) : σ (n+1) dV -2L(σ (n+1) ) ≤ Ω 1 (ρ (n) ) p σ (n) : (C -1 ) (n) : σ (n) dV -2L(σ (n) ) (4.6.7)
Hence, the criterion is a positive quantity that decreases at each iteration (local minimization and global minimization). The algorithm necessarily converges to a limit that is a stationary point of the criterion. Depending on the problem, this limit is generally a local minimum.

Conclusion

A methodology is proposed to optimize concurrently the topology and the material anisotropy distribution. The material used is a thermodynamically admissible orthotropic material. The global stiffness of the structure is maximized under a volume constraint. This corresponds to the minimization of the generalized compliance that measures the structural global stiffness. The generalized compliance includes the case of non null imposed force, non null imposed displacement, zero imposed force and zero imposed displacement. The framework of the problem is linear elasticity under the assumption of small strains and small dispalcements. The use of the Chapter 4. A method for the simultaneous optimization of topology and material anisotropy for 2D structures variational formulations of the elasticity problem permits to write the generalized compliance as a function of the complementary energy by using energy theorems. The key point of the method is to write the minimization problem of the generalized compliance with respect to the design variables as a double minimization of the complementary energy with respect to the stress field and to the design variables.

The numerical algorithm used to solve the double minimization is the alternate directions algorithm (see chapter 2. The algorithm alternates between local minimization (performed in each element of the structure) of the objective function with respect to the design variables, and global minimization with respect to the stress field. The originality in this chapter is the combination of the SIMP parameterization with the polar method to parameterize the topology and the material anisotropy in order to seek concurrently the optimal material density distribution and anisotropy repartition with the positive definiteness constraint (and constant isotropic part of the stiffness tensor). By using these two parameterizations, the complementary energy is expressed explicitly with respect to the design variables. Closed form solutions of the optimal design variables are obtained. The global minimization with respect to the stress field corresponds to a finite element analysis.

In order to verify the numerical effectiveness of the method to allocate the optimal material density and anisotropy, numerical experiments on test cases are performed in the next chapter. The idea is to validate numerically the method.

Introduction

The purpose of this chapter is twofold. First, prescribing the user a set of recommendations for an efficient use of the optimization method proposed in chapter 4. Second, validating numerically the method on academic 2D test cases, i.e. verifying if the method is capable of determining concurrently the material density and anisotropy distributions.

Section 5.2 proposes an optimization strategy in order to perform efficiently the concurrent optimization. To steer the solution into an almost 0/1 solution, the penalization coefficient is chosen carefully. Since the problem is non convex, a suitable initialization of the material density and the material anisotropy distribution is recommended. The influence of the filter radius and its use for mesh independency is studied. Furthermore, special attention is required when interfacing Matlab with MSC Nastran in the implementation of the method. It is shown in section 5.3 that the orientation of a uniform orthotropic material influences the optimal shape. The optimal shape with a distributed material orientation is obtained in section 5.3. The optimal shape for an aluminum and a carbon/epoxy quasi-isotropic design of a cantilever beam with the same mass are compared and discussed. They are also compared with a structure where the optimization design variables are the density and the material orientation per element. We denote this solution as a steered unidirectional material, as the fiber direction can vary throughout the structure. The full advantage of the anisotropy is exploited when optimizing the material orientation and the anisotropy moduli. This can be performed sequentially or concurrently with the material density. Section 5.4 compares the two optimization methods for simple and complex load cases and geometries.

In this chapter, the problem of the compliance (zero imposed displacement) minimization of a 2D cantilever beam under volume fraction constraint is used as an example (V 0 = 0.5). The design domain is a rectangle. Its size is 40 mm x 20 mm discretized with a structured mesh with 80 x 40 elements, unless otherwise stated. The cantilever beam is clamped at the left side and loaded at the middle of the right side on several nodes (Figure 5.1). The optimization is performed for a linear elastic orthotropic material in 2D. The design variables are the density variable (ρ) and the polar parameters (R 0 , R 1 , K, Φ 1 ). The problem to be solved is the compliance (annotated C in this section) minimization with respect to the density and with respect to the polar parameters that describe the anisotropy of the thermodynamically admissible orthotropic material, for an imposed amount of volume:

5.2. Optimization strategy 61 min {ρ,R 0 ,R 1 ,K,Φ 1 } C(ρ, R 0 , R 1 , K, Φ 1 ) subject to:                        Ω ρdx = V 0 ρ ∈ [ρ min , 1] T 0 > R 0 T 0 T 1 > R 2 1 T 1 (T 2 0 -R 2 0 ) > 2R 2 1 (T 0 -(-1) K R 0 ) K ∈ {0, 1} R 0 ≥ 0 R 1 ≥ 0 (5.1.1)

Optimization strategy

This section gives an optimization strategy and a guideline for the user of the proposed optimization method. The problem is non convex, and therefore admits several local minima. The optimal solution is very sensitive to the initialization. Particular attention should be paid on the density and the anisotropy distribution initialization. A strategy of initializing the model is proposed to address this issue. The strategy of initialization use the continuation strategy in the context of which the initialization of density and anisotropy distribution is discussed. In order to get a pure solid/void design, the penalization of the density is carried out carefully. This penalization depends on the choice of the penalization parameter in the SIMP method. Therefore, a continuation strategy of penalization is proposed. The above two points are closely linked to the use of the penalization parameter p. Checkerboard instabilities and mesh dependency arise when performing the optimization. A filtering method is proposed in order to overcome these numerical problems. The strategy lies on the choice of a filter radius. Finally, we present details about the implementation of the method and in particular the set up of the finite element model in MSC Nastran for efficient handling of the material orientation.

The optimization strategy given in this section is defined for the concurrent optimization of the material density distribution and the material anisotropy repartition. However, it could be applied on either the optimization of density only, or either the determination of the material anisotropy only.

Continuation and initialization strategy

The non-convex problem of concurrent optimization of material density distribution and material anisotropy repartition leads to several local minima. Thus, the final topology is sensitive to the initialization of the density distribution and the initialization of the material anisotropy repartition. For different initializations of anisotropy distribution, different solutions on the optimal topology are obtained, and therefore on the optimal distribution of anisotropy as well. Figure 5.2 shows two different topologies for two different initializations of material anisotropy distribution. The solution on the top is initialized with a unidirectional material oriented at 0 • with respect to the x-axis. The solution in the bottom is initialized with a unidirectional material oriented at 90 • with respect to the x-axis. Therefore, when initializing with an anisotropic material, the solution is guided by the anisotropy distribution.

This initialization sensitivity can be addressed by taking an initial value of p equal to one. For concurrent optimization of material density and anisotropy, there is no proof that the problem is convex. However, numerical experiments suggest that, when taking p = 1 in a first step, the solution is a global optimum. Indeed, we observed that the solution remains the same, regardless of the initialization of the density and the material anisotropy distribution. The use of the SIMP method permits to penalize the density to tend to 0 or 1. In order to penalize the density efficiently, i.e. to obtain an optimal structure with almost solid/void topology, the value of p should be chosen carefully. For classical topology optimization (determination of the optimal distribution of density), [START_REF] Bendsøe | Topology optimization: theory, methods, and applications[END_REF] showed that in order to get solid/void designs, also called "0-1 solutions" in 2D, the value of p should be greater than three. A continuation strategy was proposed in a [START_REF] Aage | Giga-voxel computational morphogenesis for structural design[END_REF]. It consists in raising slowly p, for instance, from one to three in steps of 0.25. This continuation strategy permits to find a strong local minimum as the solution goes through the global minimum, when p = 1 [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF]]. Indeed, when p = 1, the problem is convex and the solution is then a global minimum.

In the case of concurrent optimization of material density and anisotropy, the density converges harder. Indeed, the computation of optimal distribution of density involves the elasticity tensor which depends on the material anisotropy. The material anisotropy varies throughout the structure. Therefore, the algorithm needs many more iterations in order to converge. A higher penalization of the stiffness is then needed. After the step p = 1, the exponent p is taken to be equal to 3 to get a 0/1 layout, as in the work of [B. Desmorat 2013b]. A refinement on the value of p is done afterwards where p is increased to further remove intermediate density. When changing the value of p, compromises should be done between the number of step change of p and the largest value of p. Indeed, the number of change of p should be minimum in order to minimize the numerical cost. Furthermore, the value of p should be large enough but not too large since a smooth change on the value of p is necessary in order to avoid abrupt changes on the optimal topology at the end of the step p = 3. Therefore, the p is taken to be equal to 5.

Figure 5.2 shows two identical topologies (right), for two different initializations of the material distribution (left). The material is initialized with an isotropic one in Figure 5.3(a). The initial material is a unidirectional composite oriented at 0 • with respect to the x-axis, in Figure 5.3(c). Furthermore, the density is initialized with a specific distribution. Its initialization is the symmetry of the optimal shape of 5.5. The numerical results show that, when taking the penalty parameter p equal to 1, in an initial step, the optimal solution (topology and anisotropy) is insensitive to the initialization on the density and the anisotropy. Taking p = 1 in a first step is then very interesting as we go beyond initialization sensitivity. Nonetheless, it requires a large number of iterations. Indeed, for this step, a strict convergence criterion is needed in order to ensure that the final solution is the optimal solution that is the closest to the global minimum. The algorithm needs hundreds of iterations for this step. Since we want to handle complex test cases with hundreds of thousands of elements, we cannot use the continuation strategy because it is very expensive.

To reduce this numerical cost, an alternative strategy is proposed. We note that the step p = 1 can be suppressed by defining a special initialization of the density distribution and the material anisotropy repartition. By selecting an adequate initialization, the final solution is identical to the strong local minimum that is the optimal solution where an initial step p = 1 is solved. Since, the solution is guided by the initial anisotropy distribution, the material is initialized with a uniform isotropic material. Furthermore, for classical topology optimization of density only, the solution remains the same when initializing with a uniform value of the density. Therefore, in the concurrent optimization, we choose to use the same initialization. The density is initialized with a uniform value set to 1 in every element of the mesh.

Figure 5.4 shows the optimal topology of the cantilever beam when initializing with a uniform density and a uniform isotropic material. The solution is very close to that obtained in Figure 5.3. We observe that there is no significant difference between the first method (p = 3, then p = 5) and the second one (p = 1, p = 3 then p = 5), in the optimal topology, in the distribution of optimal material anisotropy and in the compliance value (in the case of the cantilever beam, when the density is initialized with uniform value and the material is initialized with an isotropic one). Moreover, the number of iterations is three times lower for the first method with p = 3 then p = 5. The second method requires many more iterations to converge as the steps are more numerous. The evolution of the compliance and the volume are displayed in function of the iteration number in Figure 5.6. The volume remains constant at 50 %. The compliance decreases until it stabilizes at each step (p = 3, p = 5), except when the value of p is increased as the structure becomes less stiff. The first step consists in finding the global shape of the optimal structure. Therefore, the global termination does not need to be stringent: 1% change on the compliance and 0.1% change on the density are considered sufficient. Global termination of the second step is set to 0.1% on the compliance and to 0.01% on the local density values. For density optimization, the algorithm places the material where it is the most loaded. At the end of the step p = 3, the topology is already outlined i.e. most of the layout is fixed (Figure 5.5(a)). When increasing the value of p (p = 3 to p = 5), the topology does not change but it becomes sharper (Figure 5.5(b)).

In comparison with the initial isotropic cantilever with 100% volume amount, the optimal orthotropic one with 50% volume amount is 60 % stiffer. Indeed, the anisotropic part of this last one is optimized. Thus, modulus of the material is better stiffened in some directions. The algorithm converges after 263 iterations. In this case, the concurrent optimization of density and material anisotropy is 5 times slower than a classic topology optimization of density. In comparison with topology optimization of density, concurrent optimization requires more iterations to converge as taking into account material anisotropy in the optimization process makes the density penalize slower to a 0/1 layout. This can be caused by the computation of density that involves the elasticity tensor which depends on the material anisotropy. The high number of required iterations may also be explained by the large number of variables. Therefore, the strategy of initializing with a uniform density and an isotropic material and performing a concurrent optimization with p > 1, gives the same result as the strategy of initializing with a specific distribution of density and anisotropy and solving first the problem with p = 1 before performing a concurrent optimization with p > 1. Consequently, the continuation and initialization strategy we recommend is as follows: we take the exponent p to be equal to three, afterwards p is increased to five; moreover, we initialize with an isotropic material and with a uniform density distribution in each point of the structure.

Density filtering

Numerical instabilities such as checkerboard instabilities and mesh dependency may occur when applying the alternate directions algorithm for topology optimization. These instabilities are intrinsically linked to the non-existence of a single optimal shape in the general case of shape optimization (see [START_REF] Sigmund | Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[END_REF]Allaire 2007]). Checkerboard instabilities can generally be suppressed by using heuristic filters. One of the following approaches is usually used: higher order finite elements, patch techniques that introduce super-elements on which densities are projected (with total density conservation), sensitivity filter (patch technique with sensitivity projections on adjacent elements). Working in the Gauss points suppress also checkerboard instabilities. Moreover, heuristic filters were adapted for mesh dependency.

In this work, a numerical heuristic approach proposed in [B. [START_REF] Desmorat | Structural rigidity optimization with frictionless unilateral contact[END_REF]] is used to avoid mesh sensitivity issue and checkerboard instabilities. The concept is to take into account, the influence of neighbor elements inside a predefined filter radius. By doing so, the evolution of the density becomes smoother and there is no abrupt discontinuity in its distribution. The local minimization with respect to the density is replaced by a non local minimization that takes the energy of the influencing neighbor elements into account. We remind that in the local minimizations step (see section 4.5.2), the following minimization problem was introduced:

min ρ 1 ρ p σ : C -1 : σ + kρ subject to ρ ∈ [ρ min , 1] (5.2.1)
where k ∈ R + * . Its solution is:

ρ opt (k) = max   ρ min , min   1, p σ : C -1 : σ k 1 p+1     (5.2.2)
The local elastic energy is replaced by the weighted sum of elastic energy of all influencing neighbor elements, that are selected inside a given filter radius. Figure 5.7 illustrates the filter radius r centered in the considered element i. All neighbor elements inside the filter radius r influence the considered element i. The influence of one element is weighted in function of its distance to the considered element. The nearest neighbor element has the greatest influence on the element under consideration and vice versa. Each influence of neighbor element is weighted by an operator α ij , that takes into account the filter radius r and the distance of the neighbor elements to the element under consideration:

α ij = (r -dist(i, j))H(r -dist(i, j))
where H is the Heaviside function and dist(i, j) = C i C j , (C l=1,...,N ) is the center of the lth element and N is the mesh element number. For an element i, the local energy minimization in (5.2.1) becomes a non local energy minimization, where the weighted sum of all neighbor elements energy is minimized:

min ρ i 1 ρ p i E i + kρ i with E i = 1 1 ρ p i N j=1 α ij N j=1 1 ρ p j α ij σ j : C -1 j : σ j (5.2.
3) E i is assumed to be constant, i.e. independent of ρ l (l = 1, ..., N ). The new optimal value of the element i density is:

ρ i * = max ρ min , min 1, pE i k 1 p+1 (5.2.4)
In the work of [B. [START_REF] Desmorat | Structural rigidity optimization with frictionless unilateral contact[END_REF], in iteration (n + 1), the density field ρ l (l = 1, ..., N ) used to compute E i is the density field computed in the previous iteration (n). In this work, since ρ i * depends on the densities ρ j * , j ∈ 1, ..., N of neighbor elements, the density field ρ l=1,...,N used to compute E i is the density field solution of the minimization problem (5.2.1). The proposed strategy is therefore as follows: first the non-filtered optimal density field solution is computed, then the resulting solution is smoothed by using the filtering method above, i.e. solving (5.2.3) with the new values of ρ.

The filter radius defines a circular neighborhood. The filtering method does not favor any particular direction in considering neighbor elements. It takes into account neighbor elements only by their distance from the element under consideration. If r is small enough, the optimal density of the classical local criterion is found again. To deal with checkerboard instabilities, the filtering method is used. By using the proposed filtering method, mesh dependency vanishes for structured meshes with element size inferior to 1/3 of the filter radius r.

In figure 5.8(b)), two meshes with different element size are used. The filter radius used is 1.8 mm. The optimal topologies of both cantilever beam with coarse mesh (element size: 0.5 mm) and fine mesh (element size: 0.25mm) are identical. The solution with finer mesh is 3.5 % stiffer than the solution with coarse mesh. Indeed, the topology of the solution with finer mesh is more precise. It is smoother as the details are more stressed.

The choice of the filter radius is also linked to the dimensions of the structure. Indeed, the optimal shape of the structure depends on the value of the filter radius. The filter radius is interpreted as the minimum bar width that can appear in the optimal density distribution. Indeed, the influence of the neighbor elements are weighted linearly with its distance from the considered element. Therefore, the most influencing elements are those that are inside the circle where the diameter is the filter radius. The choice of the filter radius depends on the minimum value of the bars that we want to have in the optimal topology of the structure.

Figure 5.9(a) and 5.9(b) show two different optimal shapes when using two different values of the radius filter, for concurrent optimization of the topology and the anisotropy distributions. Since the optimal shapes are different, the distributions of anisotropy are different as well. Indeed, the anisotropy distribution depends on the stress field that depends on the topology. However, we observed numerically that the topology does not change continuously with the filter radius. For many ranges of r, the optimal topology remains unchanged. These ranges depend on the considered test case. The large filter radius gives topology with thicker bars. The structure in 5.9(a) is as stiff as the structure in 5.9(b). However, the material density distribution is more detailed as thinner bars appear. The density distribution is less constrained in the optimization with small radius filter as there are less elements that influence the behavior of the considered element.

The optimal topology, in figure 5.9(b), with the large filter radius (3.6 mm) is similar to the optimal topology of the cantilever beam made of isotropic material with the small filter radius (1.8 mm), in figure 5.12. This suggests that the concurrent optimization of material density and anisotropy gives a more detailed optimal topology. Indeed, for the same filter radius, in comparison with the topology optimization, the concurrent optimization gives optimal topology with finer bar width. However, when increasing the filter radius, the two optimization methods give the same optimal shape. .9 -Influence of filter radius on the optimal topology of the cantilever beam with 50 % volume amount Remark 5.2.1. Even if there are some discontinuity in the anisotropy distribution (see figure 5.17(d)), the anisotropy is not filtered in this work. The strategy of filtering the anisotropy could be similar to the strategy of filtering the density. Instead of minimizing the energy of the considered element, a non local energy that considers all influencing neighbor elements energy could be minimized. We remind the local minimization of the elastic energy with respect to the polar parameters in section 4.5.1:

min {R 0 ,R 1 ,K,Φ 1 } 1 2 σ : C -1 (R 0 , R 1 , K, Φ 1 ) : σ subject to:            T 0 -R 0 > 0 T 1 [T 0 + (-1) K R 0 ] -2R 2 1 > 0 K ∈ {0, 1} R 0 ≥ 0 R 1 ≥ 0 (5.2.5)
The optimal solution of the polar parameters are given in 4.3. Similarly to the filtering method of the density, the local elastic energy could be replaced by the weighted sum of elastic energy of all influencing neighbor elements, that are selected inside a given filter radius. Either new types of operator or the operator α ij can be used in order to define the influence weight of the neighbor elements. For the considered element i, the non local minimization problem could be:

min {R 0,i ,R 1,i ,K i ,Φ 1,i } 1 N j=1 α ij N j=1 α ij σ j : C -1 ({R 0,i , R 1,i , K i , Φ 1,i }) : σ j subject to:            T 0,i -R 0,i > 0 T 1,i [T 0,i + (-1) K i R 0,i ] -2R 2 1,i > 0 K i ∈ {0, 1} R 0,i ≥ 0 R 1,i ≥ 0 (5.2.6)
However, the method developed in this work is valid only for the minimization of a local energy. It would be interesting to solve the minimization of the non local energy with respect to the material anisotropy, in order to filter the anisotropy distribution.

Interfacing the optimizer with the FE solver MSC Nastran

The alternate directions algorithm has been implemented in Matlab and interfaced with MSC Nastran SOL 101 Version 2014 [MSC Nastran Quick Reference Guide 2014]. Matlab is used to perform the iteration loops of the optimization. Local minimizations with respect to the design variables are managed by Matlab. Global minimizations that are finite element analyses are performed with MSC Nastran SOL 101, since the scope of this work is linear elasticity. In the dialogue between the two Softwares, Matlab needs the output stress of the finite element analyses, and MSC Nastran needs the stiffness tensors, computed by Matlab, as input.

On the one hand, the stiffness tensors computed in function of the optimal design variables, at each finite element, has to be introduced in the MSC Nastran model. On the other hand, a value of stress at each element is needed, in order to compute the optimal values of design variables that are defined at each element. Consequently, the stress tensor is collected per design element. The stress state could be requested at the Gauss points, however in this work, the stress state is requested at the center of each element in order to reduce numerical cost.

The stiffness tensor and the stress tensor output need to be expressed in the same reference frame. In MSC Nastran, some considerations on the material reference and on the coordinate system of output stress need to be done, as some subtleties appear. Considering material orientation in MSC Nastran is crucial. The material anisotropy is distributed throughout the structure. Therefore, the material orientation is different at each point of the structure. It is necessary to write all elasticity tensors with respect to a fixed common reference frame. This reference frame should also be the same as the coordinate system of output stress.

In this paragraph, 2D elements with four nodes (CQUAD4) are used to illustrate the necessity of considering the material orientation in MSC Nastran. The method could be generalized to shell elements with three nodes (CTRIA3). In MSC Nastran, the stress is output by default in the element coordinate system. However, the element coordinate system depends on the geometric position of the nodes and on the arragement of the connecting points (G1, G2, G3, G4). Figure 5.10 illustrates the element coordinate system in Nastran for a CQUAD4 element. When a perfect quadrilateral structured mesh is used and the same connectivity is applied for each element, the element coordinate system is the same at each element and therefore adequate to output stress. But when the mesh is not structured, the element coordinate system varies at each element of the structure. Therefore, outputting stress in element coordinate system is not recommended.

The stress could also be output in the material coordinate system. This method seems to be the most suitable method as we want to write the elasticity tensor and the stress tensor in the same frame. In order to output the stress in the material coordinate system, the parameter OMID in PARAM is set to yes, in control cards: PARAM, OMID, YES. The first option available in order to choose the material coordinate system is to provide a real value THETA in the CQUAD4 card (see figure 5.10). THETA is the orientation, in degrees, of the x-axis of the material coordinate system with respect to the element coordinate system. Using THETA is then not adequate as the element coordinate system varies in each element of the structure when the mesh is not structured. The second option is to define a user coordinate system, in MCID option, that represents the material coordinate system. The x-axis of the material coordinate system is determined by projecting the first axis of the MCID coordinate system onto the surface of the shell element. In this work, we use the global reference coordinate system defined by MCID=0. By doing so, the stress and the elasticity tensors are expressed with respect to a unique reference frame that is the reference coordinate system. Remark 5.2.2. The stiffness tensors of some elements can remain fixed, so that the optimization algorithm can manage non design elements. The identification number of these elements are set to a special number in order to distinguish them from the design elements. The algorithm is programmed so that the design variables of these elements do not change.

Density and material orientation optimization

Influence of the material anisotropy on the optimal shape

In the present section, we show systematically the influence of the orthotropic material orientations on the optimal shapes. 180 topology optimizations of a unidirectional composite made of long and straight carbon fibers in an epoxy matrix were carried out for material orientations varying from 0 • to 180 • in steps of 1 • . The material orientation is uniform over the structure. The material properties used in this section are shown in table 5.1. The corresponding polar components of the stiffness tensor are also presented. The problem to be solved is the compliance (C) minimization given in (5.1.1). The minimization is performed with respect to the density only. The set of polar parameters used is fixed and defines the unidirectional material.

Five different optimal shapes are shown in Figure 5.11 with orthotropic materials oriented in five different directions (0 • , 18 • , 45 • , 90 • ,-45 • ). The optimal shape changes continuously with respect to the material orientation. Compared with the 0 • -case, the optimal shape in the 90 • -case has less material near the load introduction as the material is oriented in the same direction of the load. Optimal shape in the 45 • -case is symmetric to the optimal shape in the -45 • -case: the orientations are symmetrical beside x-axis. The compliance evolution in a polar representation is also shown in the figure with respect to the material orientation: the material oriented at 0 • corresponds to the lowest value and corresponds therefore to the stiffest structure.

This section illustrates that the material anisotropy influences the optimal shape. One shape of the structure may not be optimal for two different given materials. Conversely, one material may not be optimal for two different shapes. These results show the necessity of seeking the optimal shape and the optimal distribution of anisotropy of the considered structure all at once. When using anisotropic materials, considering their directionality is advantageous. Section 5.3.2 illustrates that it is interesting to replace a metallic material with a composite one. 

Replacing a metallic material with a composite material

Compared with metallic structures, composite ones have higher stiffness-to-weight and strengthto-weight ratios. This section illustrates the interest of substituting optimal metallic structure with optimal composite structures. For the same weight, the compliance of the optimal cantilever beam made of aluminum is compared with the compliance of the optimal cantilever beam made of carbon epoxy. Three topology optimizations of the cantilever beam are performed. In the two first optimizations, the material anisotropy is uniform and the optimal density distribution is determined. First, a structure made of aluminum (E = 62 000 MPa, ν = 0.3, density = 2.70g/cm 3 ) with 30 % volume amount is optimized. Second, a structure made of quasi-isotropic laminate that has the same weight than the structure made of aluminum is optimized. The corresponding volume amount is 50 %. The last optimization consists in optimizing concurrently the density and the material orientation by using a unidirectional composite made of carbon epoxy T300/5208. We remind that, in this work, this solution is called a steered unidirectional material, as the fiber direction can vary throughout the structure. We impose also a 50 % volume amount. The quasi-isotropic laminate is layered with 8 plies, each 0.19 mm thick. The stacking sequence we used is [0 • , 90 • , -45 • , +45 • ] S . The homogenized properties of the composite laminate are used to perform the topology optimization. They are computed by the classical lamination theory. Since the resulting laminate is quasi-isotropic, the corresponding polar parameters are composed of the isotropic parts of the elementary layer. Indeed, for composite laminates with identical elementary layers, the isotropic part (T 0 , T 1 ) of the laminate is identical to the isotropic part of the elementary layer (T EL 0 , T EL 1 ). Their values are given in Table 5.1. The Young modulus, the shear modulus and the Poisson ration corresponding to the quasi-isotropic laminate are respectively E = 69 671.15 MPa, G = 26 880 MPa, ν = 0.296.

The problem solved in the two first topology optimizations is given in equations (5.1.1), where the only design variable is the density. The polar parameters that describe the isotropic materials remain fixed. The problem solved in the third topology optimization is the compliance minimization with respect to the density and to the orthotropic material direction (see equations 5.1.1). The polar parameters (R 0 , R 1 , K) that quantify the anisotropy remain fixed, but the material orientation varies throughout the structure. In each element, the material is a unidirectional composite material represented by an orthotropic material. The fibers are then steered to its optimal direction. In the rest of the thesis, the solution with concurrent optimized density distribution and optimized material orientation repartition is called steered unidirectional material. For this kind of material that exhibits an orthotropy shape with K = 0, k = 0, the optimal material orientation is along the direction of the highest absolute value of the principal stress (see section 3.5). The material is stiffened along the direction of the highest magnitude of loading.

Comparison between optimal topologies and magnitudes of displacement are shown in figure 5.12. In order to impose the same structure's mass, a lower volume amount constraint needs to be applied on the structure made of aluminum as its density is greater than that of the composite structure. The optimal topologies are identical as the materials used in both optimizations are isotropic. Figure 5.12(e) shows the optimal topology of the cantilever beam made of carbon epoxy where the material orientation is optimized concurrently with the density. The optimal shape is different from that of structure made of aluminum or the quasi-isotropic material ( 5.12(a) and 5.12(c)). Furthermore, optimal shapes of 0 • to 179 • -oriented unidirectional structures are different from the optimal shape in figure 5.12(e). The reason why we obtain different topology is that the material anisotropy is different from isotropic material and uniform unidirectional orthotropic material, because the material orientation is distributed. Therefore, the topology changes as well as the material anisotropy influences the optimal topology as illustrated in section 5.3.1.

Table 5.2 compares the compliance and maximum values of displacements between the solutions of the three optimizations. By substituting the metallic structures with composite ones, the compliance and the maximum magnitude of displacement decreases significantly. In comparison with the aluminum solution, the quasi-isotropic one is 42% stiffer. The steered unidirectional material solution is 74 % stiffer than the aluminum solution and 63 % stiffer than the quasi-isotropic one. Furthermore, the maximum value of displacement magnitude of the steered unidirectional material solution is 73 % lower than that of the aluminum solution and 60 % lower than that of the QI one. Inside the structure made of steered unidirectional material, the material orientation is distributed. Figure 5.13 shows the optimal distribution of the orthotropy direction Φ opt 1 . It is aligned with the direction of principal stress (see section 3.5). Since the stress field is continuous throughout the structure, the material orientation is continuous as well, except in the areas that are loaded in shear, due to the symmetry axis of the structure. Furthermore, the distribution of the material orientation is symmetric. The optimal orientation follows the shape of the structure. For fiber placement, the steered unidirectional material is oriented according to the shape of the structure. The solution made of 0 • oriented unidirectional composite (Figure 5.11) is stiffer than the quasi-isotropic solution. However, this last one is stiffer than the solution made of 90 • oriented unidirectional composite (Figure 5.11). By using a quasi-isotropic material or a uniformly oriented material, the advantage of the directionality of properties is not exploited. Optimizing material orientation in addition to density permits to take advantage of the directionality of properties. Therefore, a stiffer solution than a quasi-isotropic solution is obtained in the steered unidirectional material. The steered unidirectional material solution is also stiffer than the aluminum solution.

The importance of substituting isotropic composite structures with anisotropic composite structures is as significant as the importance of substituting metallic structures with isotropic composite structures. Indeed the difference between compliances of the first and second structure is similar to the gap between the compliance of the second and the third structure. One step further to take full advantage of the material anisotropy behavior is to consider, in the optimization process, the material anisotropy moduli in addition to the density and the material orientation.

Discussion on commercial software capabilities

This section discusses the capacity of commercial softwares such as MSC Nastran and Altair's OptiStruct. These two commercial softwares are the most used at Stelia Aerospace for topology optimization. They can consider a broad range of physical criteria such as stiffness, strength, buckling, frequencies, thermo-mechanical, heat transfer or acoustic. Manufacturing constraints are also taken into account in the optimization methods. However, the topology optimization SOL 200 in MSC Nastran can only handle imposed isotropic material [MSC Nastran Quick Reference Guide 2018]. In OptiStruct, the topology optimization can be performed with either an isotropic or an anisotropic material. For the optimization of anisotropic composite materials, these softwares use parametric optimizations rather than topology optimization. In these kind of optimizations, it is possible to use very complex equations. It is also possible to declare a great number of different variables. However, the required sensitivity analyses are costly, and they are not capable of dealing with design variables at each element of the structure. OptiStruct can perform topology optimization with anisotropic materials, but in that case, the anisotropy is fixed (not a design variable). Therefore, MSC Nastran and OptiStruct cannot concurrently optimize the material density and the material anisotropy. The method developed in this work can, for stiffness maximization.

Figure 5.14 compares two optimal topologies of the cantilever beam obtained with MSC Nastran and OptiStruct. The material used is an isotropic material. When a classical optimization topology is performed, i.e. the material density distribution of a structure made of isotropic material is optimized ((5.1.1) with fixed polar parameters of the material), the two softwares give similar topologies as the method developed in this work (see figure 5.12(c)). In MSC Nastran and OptiStruct, the minimum dimension of the bar is set and is identical to the filter radius used in our method. Compared to the compliance of our solution, the compliances of the two commercial softwares solution is 3 % greater.

Figure 5.15 shows two optimal topologies of the cantilever beam obtained with OptiStruct, for a unidirectional composite oriented at 0 • and 90 • . The obtained topology of the structure made of a unidirectional composite oriented at 0 • is identical to that in the method developed in this work (see figure 5.11). The gap between the two compliances is 10 %, with a lower compliance obtained with our method. The optimal topology of the structure made of a unidirectional composite oriented at 90 • is quite different to that in our method (see figure 5.11). The gap between the two compliances is 15 %, with a lower compliance obtained with our method. This large gap may be caused by the shapes that are different. 

Sequential versus concurrent optimization of a cantilever beam

The optimization presented in section 5.3.2 could be enriched by optimizing not only the density (ρ) and the material orientation (Φ 1 ), but also the magnitude of anisotropy (R 0 , R 1 ) and the shape of orthotropy (K). Sequential optimization consists in optimizing first the shape of a structure with a fixed isotropic material, and optimizing afterwards the anisotropy of its material with the obtained shape. In the contrary, concurrent optimization consists in finding the optimal shape with the optimal material anisotropy all at once. The problem solved for both optimizations is given in equations ( 5.1.1). The sequential optimization requires two steps of optimization. The first is an optimization with respect to material density for an isotropic material. In the problem formulation (5.1.1), the design variable is only the density ρ. The polar parameters (R 0 , R 1 , K, Φ 1 ) are fixed with a value of R 0 and R 1 equal to zero as the material used is an isotropic one. The optimization in the second step is performed with respect to the material anisotropy for a fixed shape. In the problem formulation in equations 5.1.1, the design variable are the polar parameters (R 0 , R 1 , K, Φ 1 ). The density is fixed to the optimal distribution determined in the first step. The concurrent optimization requires only one step of optimization as the material density and the material anisotropy distribution are determined concurrently. Therefore, the design variables are the density and the polar parameters.

The comparison between the two methods is performed for the cantilever beam. The initialization strategy is identical for both methods. As defined in the optimization strategy in section (5.2), the initial density is uniform and set to 1 in every element of the mesh: the initial volume amount is 100%. The initial material is made of an isotropic material where the values of T 0 and T 1 correspond to the isotropic part of a monolayer composite made of long and straight carbon fibers in an epoxy matrix: T 0 = 26.88 GPa, T 1 = 24.74 GPa (see Table 5.1). The design domain of the design variables (R 0 , R 1 , K, Φ 1 ) are the positive definiteness conditions defined in (5.1.1) with the values of T 0 and T 1 given before. The filter radius is 1.8 mm. A finer mesh (0.25 mm x 0.25 mm) is used in this section in order to plot the distribution of stress field.

The two different optimizations give two different solutions. Figure 5.16 shows that the optimal shapes are dissimilar. Since the shape is optimized with a fixed isotropic material in the sequential optimization, whereas the optimal topology is optimized simultaneously with the optimal anisotropy distribution in the concurrent optimization, it is coherent that the obtained shapes from the two methods are different. This result confirms that the optimal shape depends on the material anisotropy. Figure 5.17 shows that the optimal distributions of anisotropy are different as the optimal shapes are different. R 0 distribution is uniform and its value is 25 GPa. The optimal value of R 1 depends on the stress field. The stress fields are different in the optimal shapes: the locations of the area loaded in shear and in a privileged direction are distinct. Therefore, R 1 distributions are different. Figure 5.18 compares the displacement magnitude fields and deformed configurations. The maximum values of the displacement magnitude are very close.

(a) Optimal shape of the cantilever beam for sequential optimization (Element size: 0.5 mm / Filter radius: 1.8 mm) (b) Optimal shape of the cantilever beam for concurrent optimization (Element size: 0.5 mm / Filter radius: 1.8 mm) Figure 5.16 -Comparison between the optimal shapes of sequential and concurrent optimization for the cantilever beam (filter radius: 1.8 mm) Table 5.3 gives the compliance values for both methods. Between the first and the second step in the sequential optimization, the compliance drops by 60 %. The reason is that the material anisotropy is optimized in the second step. Hence, comparing to the initial isotropic structure, the anisotropic one is stiffer. Comparison between the sequential and the concurrent optimization gives a gap of 0.07% in terms of compliance, where the solution from the simultaneous optimization is slightly stiffer. The reason of this small gap may be related to the simplicity of the geometry, boundary conditions and loading in 2D. It would be interesting to treat a more intricate problem with complex load and boundary conditions. The concurrent optimization requires four times more iterations than the sequential optimization to converge. Indeed, the sequential optimization is divided in two steps in which some design variables remain fixed. Therefore, the iteration numbers are lower as the number of design variables are lower, for each step. Furthermore, the density converges slower to a black and white solution in the concurrent optimization. This could be explained by the computation of the density that involves the elasticity tensor which depends on the polar parameters.

A finer representation of the cantilever beam optimal topology for concurrent optimization is shown in figure 5.19. Figure 5.19(a) pictures the density when it is above a threshold (0.8). This gives a global shape of the structure. Figure 5.19(b) plots the density distribution without thershold. Among the elements that compose the 50 % volume amount imposed, 92 % of the elements have density higher than 0.9. These elements define the principal bars of the structure.

The two finest bars have density between 0.8 and 0.9. In the design of the final structure, these fine bars could either be suppressed or kept. In these bars, the density converges slowly, these areas with intermediate densities are hard to penalize. This can be caused by the computation of density that involves the elasticity tensor which depends on the material anisotropy. The optimal material orthotropy distribution depends on the nature of the stress field. The components of the stress tensor σ 11 , σ 12 and σ 22 are displayed in figure 5.20. The components are plotted in the local frame of material orthotropy direction (one frame per element). The large bars on the top and on the bottom are loaded respectively in traction and compression along the principal direction of the material (11). These bars are not stressed in shear. The thinner bars in the middle are loaded along the direction normal to the principal direction of the material ( 22). When a bar intersects another one, the magnitude of shear is maximum.

In the optimal shape, the orthotropy is distributed: the material orthotropy changes continuously inside the structure. The optimal orthotropy direction Φ opt 1 is presented in Figure 5.21. It is aligned with the direction of the principal stress (highest absolute value). As the stress field is continous, the direction changes continuously throughout the structure, except on the areas where a bar intersect another one. In these areas, the material is loaded in shear. However, the discontinuity in the material direction does not imply the discontinuity in the apparent stiffness. The apparent stiffness is described by the polar moduli R 0 , R 1 . Indeed, the apparent stiffness has the same value in Φ 1 modulo π 4 .

The distribution of the moduli R 0 and R 1 are respectively illustrated in Figures 5.17 can therefore vanish (see chapter 3 section 3.4). In the areas where R 1 are minimum, the shear is maximum. Actually, the value of R 1 depends on the deviatoric and spheric stress ratio: if the ratio is low, shear is predominant and R 1 should be low; and vice versa. Figure 5.22(b) shows the polar representation of the reduced tensor's first Cartesian component Q 1111 which is the apparent stiffness for the area loaded in shear (R 1 = 0). In these areas, the material is loaded in shear. Therefore , the optimal material is stiffened in two orthogonal directions. Even if the spatial distribution of the direction Φ 1 is not continuous in these areas, the apparent stiffness distribution is continuous in the optimal design. The angle 0 • corresponds to the x-axis of the reference frame. Figures 5.22(c) and 5.22(d) show the corresponding polar components where the stiffness is expressed as a sum of isotropic terms that do not depend on the material orientation (T 0 , T 1 ), and terms that depend on the material orientation (R 0 , R 1 ). The anisotropic part depends mainly on the moduli (R 0 ,R 1 ) and the material orientation Φ 1 . The two anisotropic terms in the elasticity tensor expressions are R 0 cos4(Φ 1 -δ), and R 1 cos2(Φ 1 -δ). δ is the angle between the reference frame and a rotated axis where we want to compute the terms. These terms could be positive R + 0 , R + 1 or negative R - 0 , R - 1 . Since R 1 is quasi-null, only R 0 influences the anisotropy of the material. The term that depends on R 0 is π 2 periodic, therefore the material is stiffened in two orthogonal directions. Figure 5.23(b) shows the reduced tensor's first Cartesian component Q 1111 in any orientation for one element loaded in one direction. When stress is predominant in one direction, the material is also stiffened in one direction. Figures 5.23(c) and 5.23(d) show the corresponding polar components where the stiffness is expressed as a sum of isotropic terms that do not depend on the material orientation (T 0 , T 1 ), and terms that depend on the material orientation (R 0 , R 1 ). 

Bridge test case

In order to evaluate the difference between the concurrent optimization solution and the sequential optimization solution, for complex load case and geometry, a more complex structure is optimized: a bridge. The design domain is a rectangle clamped in some elements at the bottom (Figure 5.24), and a load pressure is applied on a deck. The domain size is 304 m x 75 m discretized with a rectangular 76 x 40 mesh. The elements pictured in black are not designed. The volume constraint is fixed at 20% of the total volume. The initial density is set to 1 in every element of the mesh. The bridge optimization is an OptiStruct test case. First, an optimization of the bridge made of steel is performed in order to compare the solution obtained with the developed method with the solution from OptiStruct. The optimal topologies are identical in figure 5.25. The compliance are also similar: 0.109 J/m for the OptiStruct solution, and 0.108 J/m for the alternate directions algorithm. The OptiStruct algorithm needs 24 iterations whereas the alternated direction algorithm needs 57 iterations.

(a) Optimal shape of the bridge made of steel, Op-tiStruct (b) Optimal shape of the bridge made of steel, alternate directions algorithm Figure 5.25 -Comparison between the optimal shapes of OptiStruct algorithm and alternate directions algorithm for the bridge made of steel Second, sequential and concurrent optimization are compared for the bridge test case. As for the cantilever beam, the initial material is an isotropic material where the values of T 0 and T 1 correspond to the isotropic part of a monolayer composite made of long and straight carbon fibers in an epoxy matrix: T 0 = 26.88 GPa, T 1 = 24.74 GPa (see Table 5.1).

Figure 5.27 compares the optimal shapes of the bridge from sequential and concurrent optimization. As for the cantilever beam, the shapes resulting from the two methods are different. Furthermore, the concurrent optimized bridge has reduced size against the sequential one. This smaller bulk is an interesting result. We observe a small inclination on the angles of the bars in the center of the bridge, when an isotropic material is used. However, when the material orientation is designed concurrently with the density, we observe that the support structures (in the center of the bridge) are vertical. Furthermore, the arc is thicker in the case of concurrent optimization. This suggests a more efficient use of material: a thicker, lower arc can take more load than a thin one that goes very high.

The compliance of the bridge resulting from the concurrent optimization is 8% lower than that from the sequential optimization (Table 5.4). Furthermore, the maximum value of displacement magnitude of the bridge resulting from the concurrent optimization is 20% lower than that from the sequential optimization. Comparing with the cantilever case, the loads and boundary conditions are more complex. Thus, the gap between the compliances is higher. 

Discussion

In the concurrent optimization numerical application, it may happen that in some areas, the density converges slower to 0 or 1. For instance, in the case of the cantilever beam, the finest bars in Figure 5.19 have intermediate densities between 0.8 and 0.9. It requires hundreds of iterations to make them tend to one. This could be caused by the computation of the density that involves the elasticity tensor which depends on the material anisotropy. An interesting way to overcome this convergence problem of density was proposed in [D.M.J [START_REF] Peeters | Design Optimisation of Practical Variable Stiffness and Thickness Laminates[END_REF]. The variables linked to the anisotropy are fixed for several iterations. For a predefined number of iterations and for a set of anisotropy design parameters, the topology could be designed. When the imposed number of iterations dedicated to topology design only is reached, the polar parameters are updated with the density variable. The process is iterated until the convergence criterion is satisfied.

The advantage of the concurrent optimization compared with the sequential one is that there is no a priori on the initialization: there is no need to guess the initial shape that should be used to optimize the anisotropic material. Indeed, the optimization process takes simultaneously into account the shape and the anisotropic material distribution. Moreover, the relevance of the concurrent optimization is proved when optimizing complex models (complex loads and boundary conditions), since its resulting solution is stiffer than the resulting solution of the sequential optimization. And since the material distribution influences the optimal shapes, optimizing them all at once is necessary.

The difference between the optimal topologies of a structure made of uniform isotropic material, uniform anisotropic material, steered unidirectional material and optimized material orientation and material moduli, emphasizes this influence of the material anisotropy on the optimal shape. Since, the material anisotropy influences the optimal shape, shapes of metallic structures are not appropriate for anisotropic composite structures. [D. [START_REF] Peeters | Combining topology and lamination parameter optimisation[END_REF] observed the same influence of the anisotropy on the optimal shape. Two different shapes were obtained in the case of a quasi-isotropic (QI) structure and in the case of a composite laminate structure, with distributed anisotropy, obtained by a combination of topology optimization and composite optimization with lamination parameters.

The above problems are cited in order of complexity in the optimization, by gradually adding degree of freedom on the anisotropy properties. The last problem that consists in optimizing the material orientation and the material anisotropy, is the most complete as the design domain of the anisotropic properties is the largest one. It gives also the most interesting solution because it gives the stiffest solution. The material is fully adapted to the local loadings. In other words, the material anisotropy is used to its full potential.

The algorithm determines an ideal material. It gives the most optimal material that can be reached inside the conditions existence domain of a general orthotropic material. This ideal material goes beyond quasi-isotropic, steered unidirectional material and stacked laminates. Indeed, the research domain of the material properties, used in this work, is larger than the design domain of composite laminates. This last one is called "geometric bounds" in [START_REF] Barsotti | Wrinkling of Orthotropic Membranes: An Analysis by the Polar Method[END_REF]]. Therefore, the algorithm determines an optimal material that may be unknown, not manufacturable and is therefore exotic.

Figure 5.28 displays, in magenta, the elastic bounds that are the conditions of existence of the orthotropic materials with their isotropic part that corresponds to that of a carbon epoxy material (see table 5.1). The geometric bounds that are the existence domain of laminates made of carbon epoxy layers is represented in black in the Figure . The corresponding isotropic material with isotropic part of a carbon epoxy material is represented with an orange diamond. For this material, the anisotropic parts are null. Inside the geometric bounds, we display specific laminates that are angle-ply, cross-ply laminates, for membrane behavior. On the one hand, angle-ply laminates, or alternating layer laminates (α, -α), are characterized by one orientation α, where α is any real number. They can be balanced, i.e. for each ply oriented at α, there is a ply oriented at -α within the laminate. As a result, balanced angle-plies are always made up of an even number of layers. This balance guarantees membrane orthotropy. On the other hand, cross-ply laminations, or orthogonal layer laminates, are characterized by perpendicular fiber directions. These two orientations then naturally define preferred directions for the resulting laminate, and thus the orthotropy of the material. In the material direction, the orientations of the layers can take the values 0 • and 90 • . A unidirectional material (represented with a blue square in the Figure ) is an angle-ply laminate with α = 0 and is also a cross-ply with only 0 • oriented layers. The angle-ply {45 • , -45 • } and the cross-ply n 0 and n 90 are represented respectively with dark pink disk and purple square. Both the materials are square symmetric (R 1 = 0).

Outside the geometric bounds of composite laminates, the material could be exotic with curious values of the Young moduli and Poisson ratio. Each couple ((-1) K R 0 , R 1 ) inside the elastic bounds corresponds to a set of moduli (E L , E T , G LT , ν LT ). For mechanical interpretations, their values are displayed in figure 5.29. Outside the geometric bounds, the longitudinal modulus could be very large and could be 10 % larger than the value of the longitudinal modulus of a unidirectional material made of carbon epoxy. Furthermore, the transverse modulus could be 10 % larger than that of the laminate that has the highest transverse modulus (90 • oriented layers). When R 1 is null, the longitudinal and the transverse moduli have the same order of magnitude. The material is then stiffened in the same order in the two orthogonal directions. The value of the shear modulus can vanish, when R 0 = T 0 . Moreover, the value of the Poisson ratio could be very large (46 or -49), especially close to the elastic bounds.

The optimal materials obtained from the concurrent optimization of the cantilever beam are outside the geometric bounds. The corresponding materials are then unknown. They are described by the optimal polar parameters displayed in green in Figure 5.28. The optimal values are very close to the elastic bounds with the maximum value of R 0 . For this range of polar parameters, the optimal materials are not reached by composite laminates made of carbon epoxy. The maximum longitudinal modulus is, for instance, 10% greater than that of a unidirectional material made of carbon epoxy. For instance, the optimal longitudinal modulus may be achieved by a laminate with a different material with higher longitudinal modulus. Their corresponding shear modulus is null, as the material is adapted to the principal directions of stress. This zero optimal value of the shear modulus is also found in [START_REF] Allaire | Shape optimization by the homogenization method[END_REF] where orthotropic sequential laminates are used. Furthermore, for some elements, the Poisson ration can attain the value of 46, that is very large. It is difficult to find a manufacturable material with a Poisson ratio that is very large, or with a zero shear modulus.

Chapter 5. Application of the method on 2D test cases
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Conclusion

The numerical test cases handled in this chapter illustrates the efficiency of the method. Its capability to determine concurrently the material density and anisotropy is shown. The novelty of this work is based on the concurrent determination of material density and anisotropy distribution that commercial softwares cannot currently deal with. An optimization strategy is presented in order to perform efficiently the numerical optimization. This chapter illustrates the interest of exploiting the anisotropy distribution in topology optimization. For the same weight, we showed that a cantilever beam made of optimized material orientation is stiffer than a structure made of an isotropic material (quasi-isotropic laminate and aluminium). In order to take full advantage of the directionality of properties, all anisotropic parts of the material (moduli, orthotropy shape and material orientation) are optimized. But we have shown that the material anisotropy influences the optimal shape. Hence, it is important to optimize concurrently the material density and anisotropy distribution. This kind of topology optimization is realized by the method developed in this work.

This chapter validates the method for optimization of 2D structures. The next chapter extends the method for 3D structures.

Introduction

The aim of this chapter is to extend the method developed in 2D, in chapter 4, for 3D structures. The methodology in 3D is inspired by the methodology used in 2D. This chapter is short because the main part of the method remains unchanged compared to the 2D method that is presented in chapter 4. The novelty of this work is the concurrent determination of the material density distribution and the material anisotropy repartition for 3D structures. Instead of using an orthotropic material in a planar behavior as in the method developed in 2D, the material used is a transversely isotropic material.

Consequently, the material behavior is no longer planar, the parameterization of the elasticity tensor changes. New set of invariants is defined describing the material behavior. Since the expression of the elasticity tensor with the new set of invariants is different from its expression in 2D, the expression of the elastic energy changes as well. Therefore the local minimization of the elastic energy changes as well. Indeed, the local minimization consists in minimizing the elastic energy with respect to the design variables that include the invariants that describe the material behavior.

This short chapter describes the methodology of optimizing concurrently the material density and anisotropy distribution in the 3D case.

A transversely isotropic material has an isotropic behavior in one plane and properties that are symmetric with respect to rotation around the axis perpendicular to the plane of isotropy. A carbon fiber embedded in an epoxy matrix is an example of a transversely isotropic material. The transverse isotropy axis is along the direction of the fiber. The isotropic behavior is on the plane orthogonal to the direction of the fiber. In all the meridian planes, i.e. those containing the transverse isotropy axis, the elastic behavior is the same and is 2D orthotropic. Figure 6.1 shows schematically a material made of fiber embedded in a matrix. The plane containing the isotropic behavior is represented in green. One meridian plane with a 2D orthotropic behavior is highlighted in red. In the case of carbon/epoxy material, the Young's modulus is maximum in the direction of the symmetry axis. However, it is not always the case as the maximum of Young's modulus could be in other direction for different materials [START_REF] Barsotti | Wrinkling of Orthotropic Membranes: An Analysis by the Polar Method[END_REF]]. Vannucci showed that the highest Young's modulus could be in an other direction than along the symmetry axis. Either principal stiffness or compliance direction could be aligned with the transverse isotropy direction.

Composite laminates that exhibit transverse isotropy behavior are mainly quasi-isotropic and unidirectional materials. Using a transversely isotropic material is interesting to start with, as its application could sweep a class of existing material.

Parameterization

SIMP (density)

As in the 2D case, the layout of the structured is parameterized by a density field variable ρ(x), in order to determine the presence (ρ(x) = 1) or absence (ρ(x) = 0) of a material in each point x of the structure (section 4.2). The density variable is continuous, ρ(x) takes any value in [ρ min , 1]. In order to suppress intermediate densities so that the optimal solution exhibits a 0/1 layout, the SIMP method is used [START_REF] Bendsøe | Optimal shape design as a material distribution problem[END_REF]]. The optimized stiffness tensor C(x) and compliance Figure 6.1 -Illustration of a transversely isotropic material composed of a fiber embedded in a matrix tensor S(x) is written as follows, in function of the considered material stiffness tensor C 0 (x) and compliance tensor S 0 (x):

C(x) = ρ(x) p C 0 ⇔ S(x) = 1 ρ(x) p S 0 (6.2.1)

Invariants (anisotropy)

The anisotropy of the material is parameterized at each point of the structure. The stiffness properties of the material are described by its elasticity tensor. In this work, the material is transversely isotropic. As in the 2D case (section 4.2), the elasticity tensor is parameterized by invariants in order to address the complexity involved in the study of anisotropic behavior. Therefore, the dependence of the elasticity tensors with respect to a considered frame is greatly simplified. This allows us to integrate the anisotropy into the optimization process, in a similar way as in 2D. However, since the material is transversely isotropic, the set of invariants is different than in 2D. New set of invariants, noted γ in this chapter, needs to be used. The choice of these invariants is detailed in chapter 7.

Maximization of the global structural stiffness

This work is focused on the structural problem stiffness maximization under a maximal volume fraction. Minimizing the generalized compliance (equation (4.3.13)) is equivalent to maximizing the global structural stiffness. Furthermore, thanks to the equality between the generalized compliance and the double of the complementary energy, the global stiffness maximization problem reads as follows: min {ρ,γ} 2J(σ) subject to:

   Ω ρdx = V 0 γ ∈ [γ min , γ max ]
σ is solution of the elasticity problem (P ) (6.3.1) 96 Chapter 6. Simultaneous optimization of topology and material anisotropy in 3D: extension strategy from the 2D case where γ represents formally the bounded invariants that describe the anisotropy behavior, and 2J(σ) = Ω σ : S : σdV -Γ 0 (σ.n).u d dS. The problem formulation (6.3.1) is equivalent to:

min {ρ,γ} min τ SA 2J(τ ) subject to Ω ρ(x)dx = V 0 γ ∈ [γ min , γ max ] (6.3.2)
6. 4 The alternate directions algorithm

The double minimization problem in (6.3.2) is solved with the alternate directions algorithm (see section 4.4). The algorithm alternates between successive local minimizations with respect to the design variables and global minimizations with respect to the stress field. The algorithm used in 2D does not change in 3D. The main difference is related to the choice of the invariants to parameterize the material stiffness tensor. This choice allows to solve the local minimization analytically. The global minimizations are solved with finite element linear analyses. Figure 6.2 recalls the flowchart of the alternate directions algorithm detailed in section 4.4. One advantage of the alternate directions algorithm is its convergence: the proof of convergence (section 4.6) remains valid in the 3D case since the decrease of the objective function does not depend on the dimension of the problem.

Local minimization of the complementary energy

The principle used in the 2D method of solving analytically first the local minimization with respect to material anisotropy, and then solving the local minimization with respect to density, is kept in the 3D case. The local minimizations problem reads:

min {ρ,γ} 1 ρ p σ : C -1 (γ) : σ -2L(σ) ∀x ∈ Ω subject to    Ω ρdx = V 0 ρ ∈ [ρ min , 1] γ ∈ [γ min , γ max ]
(6.5.1)

Minimization with respect to anisotropy

Since the invariants that describe a transversely isotropic material in 3D are different from the polar invariants, used to describe orthotropic material in 2D. A new resolution of the local minimization of the elastic energy with respect to the material anisotropy is necessary. This resolution is detailed in section 7.3. Because L(σ) is constant in this step, the minimizations problems of the complementary energy for a transversely isotropic material with respect to the anisotropic invariants read: 1 2 σ : C -1 (γ) : σ

Minimization with respect to density

The minimization with respect to density is performed in a second step. This step is carried out in 2D in section 4.5.2. The procedure of finding the optimal value of the density variable remains the same. The optimization problem to be solved in this step is explicited in (6.5.2). Because L(σ) is constant in this step, the minimization of the complementary energy with respect to density, for fixed stress field and fixed anisotropy parameters, reads:

min ρ 1 ρ p σ : C -1 (γ opt ) : σ ∀x ∈ Ω subject to Ω ρdx = V 0 ρ ∈ [ρ min , 1] (6.5.2) 
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The constraint on the volume is considered in this step as the volume depends on the element density. Since it is a global constraint, whereas the minimizations are performed locally, a unique positive real k ∈ R + * is introduced for all elements that take into account the volume constraint (see chapter 4 section 4.5.2).

Conclusion

The method proposed to optimize simultaneously material distributed density and anisotropy in 3D is globally similar to the method developed in 2D and presented in part II of this document.

The main difference is related to the choice of the invariants to parameterize the material stiffness tensor. The present work focuses on transversely isotropic material in 3D. The choice of the invariants and the corresponding resolution of the local minimizatin of the elastic energy are developed in chapter 7. 100 Chapter 7. Local minimization of the elastic energy for a transversely isotropic material in 3D

Introduction

This chapter focuses on the extension of the method in 3D. The heart of the method extension in 3D is the resolution of the elastic energy minimization with respect to the transversely isotropic material. Since it is more complex to study the anisotropy in 3D than in 2D, a simple way of representing the anisotropy behavior is needed, in order to take into account the 3D anisotropy in the concurrent optimization. In section 7.2, we present a parameterization of a 3D transversely isotropic elasticity tensor with five scalar invariants. By doing so, the elastic energy is expressed using an explicit formulation. Nonetheless, suitable invariants are required in order to perform the elastic energy minimization in the simplest way. This section selects the invariants that simplifies the minimization. First, the selection is based on the physical meaning of the invariants in order to interpret the problem. Second, since a general transversely isotropic material is used, the facility to express the positive definiteness condition is important as well. Finally, because the minimization is performed with respect to the stiffness invariants, the selection lies as well on the simple relationship between the stiffness and the compliance invariants. This relationship is also important in order to express the complementary energy with respect to the stiffness invariants in the simplest way.

Using these invariants selected in section 7.2, the elastic energy minimization problem is solved in section 7.3. The optimal invariant values that minimize the elastic energy are computed for fixed material orientation. Afterwards, the optimal material orientation is searched for. The analytical resolution gives explicit expressions of the invariants optimal values.

Selection of invariants describing a transversely isotropic material

In 2D, the anisotropy is parameterized by the polar method [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Vannucci | A special planar orthotropic material[END_REF]]. The polar method defines a parameterization of the elasticity tensor using invariants. By doing so, the study of anisotropy becomes simple as it is straightforward to describe the elasticity tensor in any frame. In this work, the same concept of using invariants to parameterize the elasticity tensor is used in 3D.

Verchery used a transformation of coordinates in a field of complex variables to define the polar invariants in 2D. In 3D, anisotropy is more intricate. Furthermore, it is not possible to write the 3D invariants in a field of complex variables as these latter are valid only for 2D. [Forte and Vianello 2014] decomposed the elasticity tensor, in 2D, in order to construct explicit relationships between invariants obtained with harmonic decomposition and the polar parameters. [B. [START_REF] Desmorat | Tensorial Polar Decomposition of 2D fourth-order tensors[END_REF]] rewrote Verchery polar decomposition in a tensorial form entitled Tensorial Polar Decomposition, in 2D. The concept is to write the fourth-order tensor in function of second-order tensors and to define invariants and symmetry classes by using an harmonic decomposition of the elasticity tensor.

Similarly, we use the harmonic decomposition, in 3D, in order to determine invariants that describe a transversely isotropic material. The harmonic decomposition of the 3D elasticity tensor is first performed. Second, a set of invariants that is adequate for elastic energy minimization, i.e, permitting the minimization in the simplest way is chosen. The selection of the invariants lies on their intuitive physical meaning and on simple expressions of the thermodynamic bounds. Furthermore, since the minimization is performed in terms of stiffness invariants, expression of the relationship between stiffness and compliance invariants is necessary. Therefore, the selection is also based on the nature of the relationship between stiffness and compliance invariants. Finally, since the behavior in planes containing the transverse isotropy direction is 2D orthotropic, we study the link between the polar invariants and the 3D invariants within the tensorial representation of the elasticity tensor.

Parameterization of a transversely isotropic elasticity tensor using harmonic decomposition

The strategy used to parameterize a transversely isotropic elasticity tensor with invariants is performed in two steps. First, the harmonic decomposition of a triclinic elasticity tensor is carried out. By considering transversely isotropic elasticity tensors, some simplifications arise in the expression of the harmonic tensors involved in the harmonic decomposition. Finally, the harmonic part of the elasticity tensor is expressed by means of two second-order tensors (symmetric deviatoric) by using classical invariant theory [START_REF] Olive | Factorisation harmonique et reconstruction du tenseur d'élasticité[END_REF].

Harmonic decomposition of an elasticity tensor

The harmonic decomposition [START_REF] Schouten | Tensor analysis for physicists[END_REF][START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF][START_REF] Spencer | A OPTnote on the decomposition of tensors into traceless symmetric tensors[END_REF][START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Baerheim | Harmonic decomposition of the anisotropic elasticity tensor[END_REF][START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]] is a well-known tool for the study of the symmetry classes of tensors. The harmonic decomposition of an elasticity tensor defines three symmetric harmonic tensor spaces: a real scalar space H 0 , a space of second-order harmonic tensors h ∈ H 2 (i.e. traceless (deviatoric) totally symmetric tensors), and a space of fourth-order harmonic tensors H ∈ H 4 i.e. traceless totally symmetric tensor (H ijkl = H jikl = H klij and H ijkl = H ikjl , tr 12 H = k H kkij = 0, tr 13 H = k H kikj = 0). Harmonic decomposition of any symmetric fourth order tensor T , such as a triclinic elasticity tensor, is its decomposition

H 0 ⊕H 0 ⊕H 2 ⊕H 2 ⊕H 4
in terms of two constants λ and μ, of two second order tensors c , b ∈ H 2 and of one fourth order tensor H ∈ H 4 . The elasticity tensor T admits the following harmonic decomposition [START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Forte | Symmetry classes for elasticity tensors[END_REF]:

T = λ 1 ⊗ 1 + 2μ 1 ⊗ 1 + 1 ⊗ c + c ⊗ 1 + 1 ⊗ b + b ⊗ 1 + 1 ⊗ b + b ⊗ 1 + H (7.2.1)
Invariants λ and μ generalize Lamé constants to anisotropy ( 1 ⊗ 1 = I is the fourth order identity tensor). The two harmonic second order tensors c and b derive from the dilatation tensor di = tr 12 T and from the Voigt tensor vo = tr 13 T [START_REF] Baerheim | Harmonic decomposition of the anisotropic elasticity tensor[END_REF][START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]. [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF]] used a different harmonic decomposition involving rari-constant (totally symmetric) and anti-rari-constant (asymmetric) terms. Rather in this work, we wish to express the elastic energy explicitly with respect to spherical and deviatoric parts of the stress (or strain) tensors involved. Instead of expression (7.2.1), we will use the harmonic decomposition [START_REF] Auffray | HDR: Géométrie des espaces de tenseurs, application à l'élasticité anisotrope classique et généralisée[END_REF]]:

T = α 1 ⊗ 1 + 2β J + 1 ⊗ c + c ⊗ 1 + 2 1 ⊗ b + b ⊗ 1 - 2 3 (1 ⊗ b + b ⊗ 1) + H (7.2.2) 102 Chapter 7.
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with J = 1 ⊗ 1 -1 3 1 ⊗ 1 and: di = tr 12 T vo = tr 13 T α = tr di 9 β = 1 30 (-tr di + 3 tr vo) c = di 3 b = 1 7 (-2di + 3vo ) (7.2.3) (7.2.4) (7.2.5) (tr 12 T ) ij = T kkij (tr 13 T ) ij = T kikj
For the case of transversely isotropic material, some simplifications arise. Let d be the direction of transverse isotropy. We note :

M := d ⊗ d (7.2.6)
By computing the second order tensors in (7.2.3) when a transversely isotropic material is used, we have:

di ∝ vo ∝ c ∝ b ∝ M (7.2.7)
meaning that the above second order tensor are proportional. Therefore, equation ( 7.2.2) can be written as:

T =α1 ⊗ 1 + 2βJ + c 1 (1 ⊗ M + M ⊗ 1) + 2c 2 (1 ⊗ M + M ⊗ 1) - 2 3 (1 ⊗ M + M ⊗ 1) + H (7.2.8)
where c 1 and c 2 are invariants. The harmonic part of the elasticity tensor needs to be expressed in terms of invariants as well. For this purpose, the next section expresses it with lower order tensors.

Expression of 3D harmonic tensor for the transversely isotropic behavior case [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] determined the symmetry classes of elasticity tensors using the harmonic decomposition. Applications to harmonic fourth order tensors are given in [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]].

[R. [START_REF] Desmorat | 3D extension of Tensorial Polar Decomposition. Application to (photo-)elasticity tensors[END_REF] factorized the harmonic part of the elasticity tensor by means of two second order tensors (symmetric deviatoric), for a triclinic tensor. The idea is to express the harmonic tensor with lower order tensors in order to simplify its study and its expression. For the transversely isotropic behavior case, [START_REF] Olive | Factorisation harmonique et reconstruction du tenseur d'élasticité[END_REF]] expressed the harmonic part of the elasticity tensor as follows:

H = 63 25 1 J 3 (H) d 2 (H) * d 2 (H) (7.2.9) with d 2 (H) = tr 13 H 2 d 3 (H) = tr 13 H 3 J 3 (H) = tr d 3 (H)
where, for two second order tensors h 1 and h 2 , the product * is defined as:

h 1 * h 2 = (h 1 h 2 ) 0 = h 1 h 2 - 2 7 1 (h 1 h 2 + h 2 h 1 ) + 2 35 tr(h 1 h 2 ) 1 1.
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103 where X Y = 1 6 (X ⊗ Y + Y ⊗ X + 2X ⊗ Y + 2Y ⊗ X)
, and (S) 0 is the harmonic part of the totally symmetric fourth order tensor S.

Furthermore, for a transversely isotropic fourth order harmonic part H of the transversely isotropic elasticity tensor, d 2 (H) is transversely isotropic:

d 2 (H) ∝ M (7.2.10)
By combining equations (7.2.9) and ( 7.2.10), H is found proportional to M * M . Moreover, as M is a transversely isotropic second order harmonic tensor, we have:

M * M = M ⊗ M - 2 15 J - 2 7 1 ⊗ M + M ⊗ 1 - 2 3 (1 ⊗ M + M ⊗ 1) (7.2.11) 
Thus:

H = c 3 M * M = c 3 M ⊗ M - 2 15 J - 2 7 1 ⊗ M + M ⊗ 1 - 2 3 (1 ⊗ M + M ⊗ 1) (7.2.12)
where c 3 is a real number (constant).

Selection of adequate invariants that parameterize transverse isotropy for elastic energy minimization

This section selects the adequate invariants that are used to parameterize a transversely isotropic elasticity tensor in 3D for the purpose of minimizing the elastic energy. Starting from the harmonic decomposition of the elasticity tensor and the decomposition of the harmonic part of the elasticity tensor, the elasticity tensor is written with a special set of invariants. Using (7.2.8) and (7.2.12), the elasticity tensor for a transversely isotropic material can be written as:

T = α1 ⊗ 1 + 2 βJ + c 1 (1 ⊗ M + M ⊗ 1) + 2c 2 1 ⊗ M + M ⊗ 1 - 2 3 (1 ⊗ M + M ⊗ 1) + c 3 M ⊗ M (7.2.13) with β = β - 1 15 c 3 c2 = c 2 - 1 7 c 3
This expression of the elasticity tensor is advantageous as it is expressed in function of invariants (α, β, c 1 , c2 , c 3 ) and a product of second order tensors that contains the transverse isotropy direction. However, these invariants are not adequate for the elastic energy minimization as their physical meanings are not intuitive, the expression of the thermodynamic bounds are complex and the relationship between stiffness and compliance invariants is cumbersome. In this work, the concept is to simplify as much as possible the understanding of the physical meaning, the design space of the invariants that is defined by the thermodynamic bounds and the relationship principal directions of the material, in the Kelvin basis K, reads as follows:

T =         1 3 (2l + 3m + n + κ) 1 3 (2l -3m + n + κ) 1 3 (-l + n -2κ) 0 0 0 1 3 (2l -3m + n + κ) 1 3 (2l + 3m + n + κ) 1 3 (-l + n -2κ) 0 0 0 1 3 (-l + n -2κ) 1 3 (-l + n -2κ) 1 3 (-4l + n + 4κ) 0 0 0 0 0 0 2µ 0 0 0 0 0 0 2µ 0 0 0 0 0 0 2m         K (7.2.15)
Where the Kelvin basis K reads:

K :                                k 1 = e 1 ⊗ e 1 k 2 = e 2 ⊗ e 2 k 3 = e 3 ⊗ e 3 k 4 = √ 2 2 (e 2 ⊗ e 3 + e 3 ⊗ e 2 ) k 5 = √ 2 2 (e 1 ⊗ e 3 + e 3 ⊗ e 1 ) k 6 = √ 2 2 (e 1 ⊗ e 2 + e 2 ⊗ e 1 )
The expression of T exhibits two shear moduli:

• µ is the axial shear modulus

• m is the transverse shear modulus

Energy expression

The intrinsic and matrix expression of the elasticity tensor do not exhibit evident physical meaning of κ and l. In order to study the physical interpretation of invariants, for a 2D elastic material, [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]] expressed the deviatoric energy, the coupling energy and the spherical energy. Similarly, in this work, we study the physical meaning of κ and l by expressing the energy with its spherical part (i.e. in terms of trs), deviatoric part (i.e. in terms of s ) and spheric/deviatoric coupling part (i.e. in terms of trs and s ). For this purpose, the elastic energy is expressed. Starting from equation (7.2.14), it reads:

s : T : s = n 3 (trs) 2 + 2 3 (m + 2µ)s : s -2l(trs)(M : s ) + 4(µ -m)M : s 2 + (m + 3κ -4µ)(M : s ) 2 (7.2.16)
Hence, l is the cross modulus i.e. the modulus in the spherical/deviatoric coupling part of the energy. The physical meaning of κ is still not clear. In order to obtain its physical meaning, an alternative description of the energy is thus necessary.
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• The spherical part of symmetric second order tensor s is obtained using the so called spherical projector:

s (0) 0 = P (0) 0 : s with P (0) 0 = 1 3 1 ⊗ 1
• For a given vector d, the deviatoric part s can be moreover decomposed as:

s H 0 ⊕ H 1 ⊕ H 2 s = s (2) 0 + s (2) 1 + s (2) 2 s 
(2)

0 = P (2) 0 : s s (2) 1 = P (2) 1 : s s (2) 2 = P (2)
2 : s where projectors P (2) 0 , P (2) 1 , P (2) 2 are introduced as:

P (2) 0 = 3 2 M ⊗ M P (2) 1 = 2 3 J + 1 ⊗ M + M ⊗ 1 - 2 3 (1 ⊗ M + M ⊗ 1) -2M ⊗ M P (2) 2 = 1 3 J -(1 ⊗ M + M ⊗ 1) + 2 3 (1 ⊗ M + M ⊗ 1) + 1 2 M ⊗ M
The projectors P (0) 0 , P (2) 0 , P (2) 1 , P

2 are such that:

       P (0) 0 + P (2) 0 + P (2) 1 + P (2) 2 = 1 P (j)
i : P (l) k = 0 ∀i, k ∈ {0, 1, 2} and j, l ∈ {0, 2} P (j) i : P (j) i = P (j) i ∀i ∈ {0, 1, 2} and j ∈ {0, 2}

In the canonical basis, the second order tensors s, s

(0) 0 , s (2) 
0 , s

1 , s

2 are written as follows, let d = e 3 .

s =   s 11 s 12 s 13 s 12 s 22 s 23 s 13 s 23 s 33   B s (0) 0 = s 11 + s 22 + s 33 3   1 0 0 0 1 0 0 0 1   B s (2) 0 = s 11 + s 22 -2s 33 6   1 0 0 0 1 0 0 0 -2   B s (2) 1 =   0 0 s 13 0 0 s 23 s 13 s 23 0   B s (2) 2 =   s 11 -s 22 2 s 12 0 s 12 s 22 -s 11 2 0 0 0 0   B
Furthermore, let introduce P 1a H such that:

P 1a H = 1 ⊗ M + M ⊗ 1 (7.2.17)
The intrinsic expression of the elasticity tensor T in equation ( 7.2.14) becomes:

T = nP (0) 0 + 2κP (2) 0 -lP 1a H + 2µP (2) 1 + 2mP (2) 2 (7.2.18) 7.2.
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s : T : s = ns (0) 0 : s (0) 0 -2l(tr s (0) 0 )(M : s (2) 0 ) + 2κs (2) 0 : s (2) 0 + 2µs (2) 1 : s (2) 1 + 2ms (2) 2 : s (2) 2 (7.2.19)
The physical meaning of κ as well as more precise meaning of l can be deduced from equation (7.2.19): κ is the modulus for s (0) 2 , i.e. the transversely isotropic deviatoric part of s (κ invariant by rotation around axis of transverse isotropy). l is the cross modulus between the spherical part of s and the part M : s

(2) 0 . Figure 7.1 sums up the physical meanings of the selected 3D invariants. 

Expression of thermodynamic bounds and stiffness/compliance invariants relationship

Using invariants allows to write the positive definiteness condition of the elastic material in a simple way. This section writes the positive definiteness condition of a transversely isotropic material in terms of the invariants introduced previously in section 7.2.1. The positive definiteness Chapter 7. Local minimization of the elastic energy for a transversely isotropic material in 3D

of the tensor can be proved by expressing the tensor T in the Clebsch-Gordan basis C defined by:

C :                                          k C 1 = √ 2 2 (e 1 ⊗ e 1 -e 2 ⊗ e 2 ) k C 2 = √ 2 2 (e 1 ⊗ e 2 + e 2 ⊗ e 1 ) k C 3 = √ 2 2 (e 1 ⊗ e 3 + e 3 ⊗ e 1 ) k C 4 = √ 2 2 (e 2 ⊗ e 3 + e 3 ⊗ e 2 ) k C 5 = √ 6 6 (e 1 ⊗ e 1 + e 2 ⊗ e 2 -2e 3 ⊗ e 3 ) k C 6 = √ 3 3 (e 1 ⊗ e 1 + e 2 ⊗ e 2 + e 3 ⊗ e 3 )
In this basis, the Clebsch-Gordan representation T of T reads:

T =         2m 0 0 0 0 0 0 2m 0 0 0 0 0 0 2µ 0 0 0 0 0 0 2µ 0 0 0 0 0 0 2κ √ 2l 0 0 0 0 √ 2l n         C (7.2.20) 
As it can be seen, the use of the invariants (n, m, µ, κ, l) allows to write the matrix of the transversely isotropic tensor in a very simple way. The tensor conditions of positive definiteness (thermodynamical bounds) are:

       m > 0 µ > 0 κ > 0 nκ > l 2
Furthermore, the inverse of T is a positive definite fourth order tensor as well. The invariants (ñ, m, μ, κ, l) of T -1 are expressed in function of the invariants of T :

ñ = κ κn -l 2 l = - l 2(κn -l 2 ) κ = n 4(κn -l 2 ) μ = 1 4µ m = 1 4m (7.2.21)
as we have,

T -1 =         2 m 0 0 0 0 0 0 2 m 0 0 0 0 0 0 2μ 0 0 0 0 0 0 2μ 0 0 0 0 0 0 2κ √ 2 l 0 0 0 0 √ 2 l ñ         C =          1 2m 0 0 0 0 0 0 1 2m 0 0 0 0 0 0 1 2µ 0 0 0 0 0 0 1 2µ 0 0 0 0 0 0 n 2(κn-l 2 ) - √ 2l 2(κn-l 2 ) 0 0 0 0 - √ 2l 2(κn-l 2 ) κ κn-l 2          C
The use of the selected set of invariants (n, m, µ, κ, l) considerably simplifies the expression of the elasticity tensor, the positive definiteness bounds and the relationships between the invariants in stiffness and compliance. The very simple expression obtained leads to the selection of this set of invariants in order to perform the energy minimization.

Remark 7.2.1. The matrix form in (7.2.20) is identical to that in the work of [START_REF] Lipton | On the behavior of elastic composites with transverse isotropic symmetry[END_REF]]. However, the basis used to express the transversely isotropic tensor is not identical to the basis used in this thesis work. Furthermore, the invariants (n, κ, l) in the work of [START_REF] Lipton | On the behavior of elastic composites with transverse isotropic symmetry[END_REF]] that are identical to that of [START_REF] Walpole | Fourth-Rank Tensors of the Thirty-Two Crystal Classes: Multiplication Tables[END_REF]] are different from that used in this work. 7.2.4 Link between the selected 3D invariants and the 2D polar invariants

In case of transverse isotropic elastic symmetry, the elastic behavior is planar orthotropic in all the meridian planes, i.e. those containing the transverse isotropy axis [START_REF] Vannucci | Analytical bounds for damage induced planar anisotropy[END_REF]]. In the work of [START_REF] Vannucci | Analytical bounds for damage induced planar anisotropy[END_REF]] the extrema of Young's modulus are computed for materials belonging to the hexagonal class, that exhibit transverse isotropy. The work shows that the computation of the extrema of the Young's modulus can be greatly simplified by using the polar method. The 3D original problem is turned into a planar one by exploiting the cylindrical symmetry of the elasticity tensor. Eight cases were highlighted corresponding to different kind of real materials with different crystal arrangements. Chapter 3 presents the polar method that parameterizes a general 2D anisotropic elastic material with polar invariants, and more specifically an orthotropic material in 2D. This section shows that, since 3D transversely isotropic behavior and 2D orthotropic behavior are strongly related, it is possible to link the selected 3D invariants and the 2D polar invariants. For this purpose, first the 2D orthotropic elasticity tensor is expressed in terms of polar invariants. Second, the Kelvin representation of a transversely isotropic tensor in 3D is expressed in terms of the components of the Kelvin representation of the orthotropic tensor in 2D. Finally, the relationships between the 3D and 2D invariants are given.

In the representation below, the third axis e 3 defines the symmetry axis of the transversely isotropic material.

Matrix expression of an orthotropic tensor in 2D

In this section, the 2D tensor is written in the frame {x 1 , x 2 } where x 1 is orthogonal to the transverse isotropy axis e 3 of the transversely isotropic material. x 2 is parallel to e 3 . k is the shape of orthotropy in 2D in a meridiane plane. h defines the orientation of the principal direction of the stiffness tensor (0 or π 2 ) with 2D orthotropy with respect to the direction of transverse isotropy. This means that when h = 0, the principal direction of compliance tensor is along the symmetry axis of the transversely isotropic material. Otherwise, the principal direction in compliance is orthogonal to the cited axis. The reduced stiffness tensor, in the Kelvin representation, reads as follows in function of the polar components:

Ĉ2D =   T 0 + 2T 1 + R 0k + 4R 1h -T 0 + 2T 1 -R 0k 0 -T 0 + 2T 1 -R 0k T 0 + 2T 1 + R 0k -4R 1h 0 0 0 2(T 0 -R 0k )   K 2D
where R 0k = (-1) k R 0 and R 1h = (-1) h R 1 .

Matrix expression of a transversely isotropic tensor in 3D

In 3D, the Kelvin representation of the normal form of a transversely isotropic tensor with transverse isotropic direction e 3 reads:
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Ĉ3D =         C 3D 11 C 3D 12 C 3D 13 0 0 0 C 3D 12 C 3D 11 C 3D 13 0 0 0 C 3D 13 C 3D 13 C 3D 33 0 0 0 0 0 0 2C 3D 44 0 0 0 0 0 0 2C 3D 44 0 0 0 0 0 0 2( C 3D 11 -C 3D 12 2 )         K (7.2.22)
Using the transverse isotropic symmetry, Ĉ3D is expressed in function of Ĉ2D :

Ĉ3D =         C 2D 11 C 3D 12 C 2D 12 0 0 0 C 3D 12 C 2D 11 C 2D 12 0 0 0 C 2D 12 C 2D 12 C 2D 22 0 0 0 0 0 0 2C 2D 33 0 0 0 0 0 0 2C 2D 33 0 0 0 0 0 0 2( C 2D 11 -C 3D 12 2 )         K (7.2.23)

Relationship between 3D invariants and 2D polar invariants

From (7.2.22) and ( 7.2.23), a relationship between 3D invariants (n, m, µ, κ, l) and 2D polar components

(T 0 , T 1 , R 0k , R 1h ) is found. Introducing the shear modulus G 12 = C 2D 11 -C 3D 12 2
, we get:

                       n = 1 3 (-4G 12 + R 0k + 12R 1h + T 0 + 18T 1 ) m = G 12 µ = -R 0k + T 0 l = - 2 3 (G 12 -R 0k -6R 1h -T 0 ) κ = 1 3 (-G 12 + 4R 0k + 4T 0 )                          T 0 = 1 8 (m + 4µ + 3κ) T 1 = 1 24 (-4l + 3m + 4n + κ) R 0k = 1 8 (m -4µ + 3κ) R 1h = 1 8 (2l + m -κ) G 12 = m
The polar invariant parameterization is useful for exhibiting the symmetry of the 2D behavior in a plane containing the transverse isotropy axis, for instance the square symmetry R 1 = 0 or the R 0 -orthotropy (see section 3.4.4).

Features of the representation of the transversely isotropic elasticity tensor with the selected invariants

The set of invariants (n, m, µ, κ, l) is selected to parameterize the transversely isotropic elasticity tensor for the following three main reasons. First, their use separates isotropic part from anisotropic part of the elasticity tensor in its intrinsic representation. This facilitates the minimization of the elastic energy with respect to material anisotropy as the isotropic part remains fixed. Second, they exhibit intuitive physical meaning. Therefore, interpretation of the elastic energy minimization problem is easier. Finally, the relationship between the stiffness and compliance invariants and the positive definiteness conditions of the elastic tensor (i.e. the thermodynamical bounds) are straightforward thanks to the use of these invariants. The expression of the elastic energy in function of the stiffness invariants are simple. Starting from a simple expression of the elastic energy eases its minimization. Moreover, the optimization constraints that are the thermodynamical bounds are expressed with simple functions. This facilitates also the process of minimization.

Elastic energy minimization with respect to the selected invariants

In this work, the design of the material anisotropy is carried out by minimizing the elastic energy.

In the previous section, the goal was to select the most suitable set of invariants that describes a transversely isotropic material. The aim of this section is to find the transversely isotropic material that minimizes the elastic energy with respect to the stiffness invariants, for a fixed stress field.

The concept is to determine optimal value of the invariants and the transversely isotropic material axis that reaches the minimum energy.

Formulation of the elastic energy minimization problem

The problem to be solved is the elastic energy minimization with respect to the selected stiffness invariants and with respect to the transverse isotropy direction for a given stress. This section defines the objective function that is the elastic energy, the design variables and the optimization constraints.

Objective function

Let us consider a transversely isotropic material described by the invariants (n, m, µ, κ, l) of the stiffness tensor C and the invariants (ñ, μ, m, κ, l) of the compliance tensor S = C -1 . The elastic energy reads:

W =σ : S : σ =ñσ (0) 0 : σ (0) 0 -2 l(tr σ (0) 0 )(M : σ (2) 0 ) + 2κσ (2) 0 : σ (2) 0 + 2μσ (2) 
1 : σ

1 + 2 mσ

(2)

2 : σ

(2) 2 (7.3.1) Thanks to the relationship between stiffness and compliance invariants in equations (7.2.21), (7.3.1) can be written in function of stiffness invariants:

W = κ κn -l 2 σ (0) 0 : σ (0) 0 + l κn -l 2 (tr σ (0) 0 )(M : σ (2) 0 ) + n 2(κn -l 2 ) σ (2) 0 : σ (2) 0 + 1 2µ σ (2) 1 : σ (2) 1 + 1 2m σ (2) 2 : σ (2) 2 (7.3.2)
The expression of W in (7.3.2) defines the objective function. The formulations of W in (7.3.2) and (7.3.1) are equivalent. However, using (7.3.2) is simpler as the minimization is carried out with respect to the stiffness invariants.

Design variables

The design variables are the 3D stiffness invariants. The concept is to find the values of the stiffness invariants that minimize the elastic energy. Let's recall here the expression of the stiffness Chapter 7. Local minimization of the elastic energy for a transversely isotropic material in 3D

tensor in terms of invariants (n, κ, l, m, µ):

C = n 3 1 ⊗ 1 + 2 3 (m + 2µ)J -l(1 ⊗ M + M ⊗ 1) + 2(µ -m) 1 ⊗ M + M ⊗ 1 - 2 3 (1 ⊗ M + M ⊗ 1) + (m + 3κ -4µ)M ⊗ M (7.3.3)
The aim of the optimization is to design the anisotropic part of the stiffness properties. Using the selected invariants allows to separate the isotropic part from the anisotropic part. Similarly to the 2D method in which the isotropic part remains fixed, the terms n and m + 2µ in (7.3.3), that are the isotropic part of the stiffness tensor, are assumed to remain fixed. Indeed, the invariants that define the isotropic part of the stiffness tensor are not bounded. Their optimal values are thus infinity since it is the stiffest material. Infinite value of the material properties is not interesting as the material is not manufacturable. Therefore, in order to work with a realistic material, the values of the isotropic part are fixed. Only the anisotropic part is designed (the terms that depend on the material orientation d included in M ). In addition to the stiffness invariants, the material orientation itself is also considered as a design variable. Indeed, the material orientation describes also the material anisotropy, in this case, transverse isotropy. To sum up, the objective function W is minimized with respect to the following variables:

• the invariants µ, m, κ, l

• the principal direction of transverse isotropy d

Optimization constraints

Since a general transversely isotropic material is used, the set of invariants must satisfy the positive definiteness conditions of the elasticity tensor (thermodynamical bounds in equation (7.2.3)).

Optimization problem

The optimization problem for the minimization of the elastic energy, of a transversely isotropic material, for a given stress field, reads:

min {m,µ,κ,l,d} W (m, µ, κ, l, d) subject to          m > 0 µ > 0 nκ -l 2 > 0 m + 2µ = C 0 (7.3.4)
Where C 0 is a constant that corresponds to the second isotropic term (m + 2µ) of C.

Minimization strategy

The material orientation d and the stiffness invariants (m, µ, κ, l) are independent. Consequently, the minimization is performed in two steps. The minimization with respect to the material orientation is separated from the minimization with respect to the invariants. The strategy of minimization is as follows:

• For a fixed transversely isotropy direction d, the elastic energy is first minimized with respect to the stiffness invariants (m, µ, κ, l):

W opt m,µ,κ,l = min {m,µ,κ,l} W (m, µ, κ, l)

• Secondly, the optimal energy found in the first step is minimized with respect to the material orientation d:

W opt m,µ,κ,l,d = min d W opt m,µ,κ,l (d)
The minimization is carried out locally, i.e. in each element of the structure.

Minimization with respect to the stiffness invariants

This section shows the minimization of the elastic energy with respect to the stiffness invariants (m, µ, κ, l), for any fixed transverse isotropy direction d. The stress field remains fixed. The invariants describe a general transversely isotropic material. They are constrained by the thermodynamic bounds. In order to find the optimal values of the stiffness invariants that minimize the elastic energy, and the minimum value of this energy, sensitivity analyses are performed. The minimization problem to be solved is written as follows:

(P 1 ) : min {m,µ,κ,l} W (m, µ, κ, l) subject to 7.3.5) In the expression of W that is given in equation (7.3.2), some terms depend only on the shear moduli m, µ, and some other ones depend only on the moduli κ and l. Since these terms are positive quantities, the minimization of W can be split into two minimizations of positive quantities W m,µ and W κ,l that are expressed as follows:

               m > 0 µ > 0 κ > 0 nκ -l 2 > 0 m + 2µ = C 0 ( 
W m,µ (m, µ) = 1 2µ σ (2) 1 : σ (2) 1 + 1 2m σ (2) 2 : σ (2) 2 W κ,l (κ, l) = κ κn -l 2 σ (0) 0 : σ (0) 0 + l κn -l 2 (tr σ (0) 0 )(M : σ (2) 0 ) + n 2(κn -l 2 ) σ (2) 0 : σ (2) 0
Therefore, the problem P 1 is split into two sub-problems P 1 a and P 1 b that are treated separately in the following:

(P 1 a ) : min m,µ W m,µ (m, µ) subject to      µ > 0 m > 0 2µ + m = C 0 (P 1 b ) : min κ,l W κ,l (κ, l) subject to κ > 0 κn -l 2 > 0 Chapter 7.
Local minimization of the elastic energy for a transversely isotropic material in 3D

Resolution of the problem (P 1 a )

Lemma 7.3.1. The solution of the problem (P 1 a ) is:

µ opt = C 0 √ α 1 2 √ α 1 + √ 2 √ α 2 m opt = C 0 -2µ opt W opt m,µ = 2 √ 2 √ α 1 √ α 2 + 2α 1 + α 2 2C 0 with α 1 = σ (2) 1 : σ (2)
1 and α 2 = σ

(2)

2 : σ (2) 2 . 
Proof. (Lemma 7.3.1).

Let α 1 = σ

(2)

1 : σ (2)
1 and α 2 = σ

(2)

2 : σ (2)
2 . By using the equality m = C 0 -2µ, we define:

f 1 (µ) := W m,µ (µ, C 0 -2µ) = α 1 2µ + α 2 2(C 0 -2µ) (7.3.6)
The first derivative of f 1 reads:

∂f 1 (µ) ∂µ = - α 1 2µ 2 + α 2 (C 0 -2µ) 2 (7.3.7)
The first derivative vanishes for: 7.3.8) In order to determine if those values correspond to local minima and if they satisfy the constraint optimization. The sign of µ, m and the second derivative of f 1 are studied.

         µ 1 = C 0 √ α 1 2 √ α 1 + √ 2 √ α 2 µ 2 = C 0 √ 2 √ α 1 √ α 2 + 2α 1 4α 1 -2α 2 ( 
• If α 1 > 0, µ 1 > 0 and m = C 0 -2µ 1 = C 0 √ 2 √ α 2 2 √ α 1 + √ 2 √ α 2 > 0.
The second derivative of f 1 reads:

∂ 2 f 2 (µ) ∂µ (µ 1 ) = C 3 0 2 √ α 1 + √ 2 √ α 2 4 √ 2 √ α 1 √ α 2 > 0
This function is always positive and µ 1 is therefore a local minimum.

• If α 1 > 0, let suppose µ 2 > 0 this implies that 2α 1 -α 2 > 0. Thus m 2 = C 0 - 2µ 2 = - C0( √ 2 √ α 1 √ α 2 +α 2)
2α 1 -α 2 < 0. Therefore, µ 2 is not solution as m 2 does not satisfy the optimization constraints.

The continuous function f 1 (µ) has only one extremum in ]0, +∞[. This extremum is a local minimum, so that it corresponds to the global minimum.

For the special case where α 1 = 0, f 1 becomes:

f 1 (µ) = α 2 2(C 0 -2µ) (7.3.9)
In order to minimize f 1 , the value of µ should be its minimum possible value. Since µ is lower bounded by 0, its optimal value is thus µ → 0 + .

Resolution of the problem (P 1 b )

Lemma 7.3.2. The solution of the problem (P 1 b ) depend on the value of the stress field:

• if tr σ = 0:

κ opt ∈] nβ 2 2 4β 2 1 , +∞[ l opt = 1 2 β 2 β 1 n W κ,l opt = β 2 1 3n
• if tr σ = 0:

κ opt = +∞ l opt ∈ R W κ,l opt = 0
with β 1 = tr σ and β 2 = -3M : σ .

Proof. (Lemma 7.3.2).

The expression of W κ,l reads:

W κ,l (κ, l) = 4β 2 1 κ -4β 1 β 2 l + β 2 2 n 12(κn -l 2 ) (7.3.10)
The first derivatives of W κ,l read: 7.3.11) • If tr σ = 0 i.e. β 1 = 0:

         ∂W κ,l (κ, l) ∂κ = - (β 2 n -2β 1 l) 2 12 (κn -l 2 ) 2 ∂W κ,l (κ, l) ∂l = - (β 2 l -2β 1 κ)(2β 1 l -β 2 n) 6 (κn -l 2 ) 2 ( 
∇W κ,l = 0 ⇔ l = l 1 := n 2 β 2 β 1
In this case,

W κ,l (κ, l 1 ) = β 2 1 3n and W κ,l (κ, l) -W κ,l (κ, l 1 ) = (-2lβ 1 + nβ 2 ) 2 12n(nκ -l 2 ) ≥ 0 ∀(κ, l) such that κn -l 2 > 0
Therefore, any couple (κ, l 1 ) such that κ > • If tr σ = 0 i.e. β 1 = 0:

The function W κ,l reads:

W κ,l = β 2 2 n 12 (κn -l 2 )
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and the first derivatives read:

         ∂W κ,l (κ, l) ∂κ = - (β 2 n) 2 12 (κn -l 2 ) 2 ∂W κ,l (κ, l) ∂l = β 2 2 ln 6 (κn -l 2 ) 2
Because ∂W κ,l (κ,l) ∂κ < 0 ∀(κ, l) such that κn -l 2 > 0, the global minimum is obtained for κ = +∞ and any value l ∈ R, and it is equal to zero.

When the isotropic part n and (m + 2µ) of the stiffness elasticity tensor are fixed, the optimal values of the moduli m and µ are upper bounded. However, the moduli (κ, l) are not upper bounded and optimal infinite values are found in some stress cases: for the specific case tr σ = 0, the only optimal value of the modulus κ is +∞. Existing materials cannot have an infinite modulus. To stay in the field of realistic materials, we add a physical constraint on the modulus κ. It is upper bounded with a predefined value κ 0 . By doing so, the cross modulus l is also bounded. We introduce a new optimization problem slightly different from (7.3.5):

(P 1,new ) : min {m,µ,κ,l} W (m, µ, κ, l) subject to                    m > 0 µ > 0 κ > 0 nκ -l 2 > 0 m + 2µ = C 0 κ ≤ κ 0 (7.3.12)
The minimization of W can be split into two minimizations of positive quantities W m,µ and W κ,l . The new problem P 1,new is split into two sub-problems P 1,new a and P 1,new b that could be treated separately:

(P 1,new a ) : min m,µ W m,µ (m, µ) subject to      µ > 0 m > 0 2µ + m = C 0 (P 1,new b ) : min κ,l W κ,l (κ, l) subject to      κ > 0 κn -l 2 > 0 κ ≤ κ 0
The problems (P 1,new a

) and (P 1 a ) are identical and therefore have the same optimal values of m, µ and W m,µ (m, µ). The problem (P 1,new b ) is slightly different from the problem (P 1 b ), as the physical constraint on the modulus κ is added. Therefore, we solve this last optimization problem. ) is:

• If nβ 2 2 < 4β 2 1 κ 0 : κ opt ∈] β 2 2 4β 2 1 n , κ 0 ] l opt = n 2 β 2 β 1 W κ,l opt = β 2 1 3n • If nβ 2 2 > 4β 2 1 κ 0 : κ opt = κ 0 l opt = 2 β 1 β 2 κ 0 W κ,l opt = β 2 2 12κ 0 • If nβ 2 2 = 4β 2 1 κ 0 κ opt = κ 0 l opt =          n 2 β 2 β 1 - if β 1 β 2 > 0 n 2 β 2 β 1 + if β 1 β 2 < 0 W κ,l opt = β 2 1 3n +
with β 1 = tr σ and β 2 = -3M : σ .

Proof. (Lemma 7.3.3).

The expression of W κ,l reads:

W κ,l (κ, l) = 4β 2 1 κ -4β 1 β 2 l + β 2 2 n 12(κn -l 2 ) (7.3.13)
The first derivatives of W κ,l read:

         ∂W κ,l (κ, l) ∂κ = - (β 2 n -2β 1 l) 2 12 (κn -l 2 ) 2 ∂W κ,l (κ, l) ∂l = - (β 2 l -2β 1 κ)(2β 1 l -β 2 n) 6 (κn -l 2 ) 2 (7.3.14)
• If tr σ = 0 i.e. β 1 = 0:

∇W κ,l = 0 ⇔ l = l 1 := n 2 β 2 β 1
Because of the optimization constraints l 2 n < κ < κ 0 , l = l 1 satisfies the optimization constraints if and only if

l 2 1 n < κ 0 . With l 2 1 n < κ 0 , we have W κ,l (κ, l 1 ) = β 2 1 3n 118 
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W κ,l (κ, l) -W κ,l (κ, l 1 ) = (-2lβ 1 + nβ 2 ) 2 12n(κn -l 2 )
is a positive quantity. Therefore, for l 2 1 n < κ 0 , any couple (κ, l 1 ) such that n < κ ≤ κ 0 , so that κ opt = κ 0 . Thus, ∂W κ,l (κ, l) ∂l

(κ 0 ,l) = 0 ⇔ l = l 2 := 2β 1 κ 0 β 2 and ∂ 2 W κ,l (κ, l) ∂l 2 (κ 0 ,l 2 ) = β 4 1 6κ 2 0 (β 2 2 n -4β 2 1 κ 0 ) is strictly positive as κ 0 < l 2 1 n ⇔ β 2 2 n -4β 2 1 κ 0 > 0. Therefore, for κ 0 < l 2 1
n , the couple (κ 0 , l 2 ) corresponds to the global minimum of the problem (P 1,new b ) which is equal to

β 2 2 12κ 0 . If κ 0 = l 2 1 n , the first derivative ∂W κ,l (κ,l) ∂κ
is strictly negative for all (κ, l) such that l 2 n < κ ≤ κ 0 , so that κ opt = κ 0 . Thus, ∂W κ,l (κ, l) ∂l

(κ 0 ,l) = - 4β 3 1 β 2 3(2lβ 1 + nβ 2 ) 2
The denominator does not vanish for l 2 n < κ 0 as the admissibility condition with κ = κ 0 and κ 0 = l 2 1 n reads:

(2lβ 1 + nβ 2 )(2lβ 1 -nβ 2 ) < 0
Thus, the first derivative ∂W κ,l (κ,l) ∂l (κ 0 ,l)

does not vanish for all l such that l 2 < nκ 0 , and its sign is the sign of (-β 1 β 2 ). Therefore, the global minimum is obtained for:

κ opt = κ 0 l opt =          n 2 β 2 β 1 - if β 1 β 2 > 0 n 2 β 2 β 1 + if β 1 β 2 < 0 W κ,l opt = β 2 1 3n + • If tr σ = 0 i.e. β 1 = 0:
The function W κ,l reads:

W κ,l = β 2 2 n 12 (κn -l 2 )
and the first derivatives read:

         ∂W κ,l (κ, l) ∂κ = - (β 2 n) 2 12 (κn -l 2 ) 2 ∂W κ,l (κ, l) ∂l = β 2 2 ln 6 (κn -l 2 ) 2
Table 7.1 -Optimal values of the stiffness invariants {m, µ, κ, l}, and elastic energy W m,µ,κ,l for a given stress tensor

m opt µ opt κ opt l opt W opt m,µ,κ,l 4β 2 1 κ 0 < nβ 2 2 | 4β 2 1 κ 0 = nβ 2 2 | 4β 2 1 κ 0 > nβ 2 2 C 0 -2µ opt C 0 √ α 1 2 √ α 1 + √ 2 √ α 2 κ 0 ] nβ 2 2 4β 2 1 ; κ 0 ] 2 β 1 β 2 κ 0 1 2 β 2 β 1 n - if β 1 β 2 > 0 1 2 β 2 β 1 n + if β 1 β 2 < 0 1 2 β 2 β 1 n 2 √ 2 √ α 1 √ α 2 +2α 1 +α 2 2C 0 + β 2 2 12κ 0 2 √ 2 √ α 1 √ α 2 +2α 1 +α 2 2C 0 + β 2 1 3n + 2 √ 2 √ α 1 √ α 2 +2α 1 +α 2 2C 0 + β 2 1 3n 122 
Chapter 7. Local minimization of the elastic energy for a transversely isotropic material in 3D minimizes the energy. We note W n and W κ 0 the two cited expressions of the minimum energy:

W n = β 2 1 3n + 2 √ 2 √ α 1 √ α 2 + 2α 1 + α 2 2C 0 W κ 0 = β 2 2 12κ 0 + 2 √ 2 √ α 1 √ α 2 + 2α 1 + α 2 2C 0
These quantities are written in function of the direction vector components (x, y, z), and in function of the components of the stress tensor. Since the expression of the energy is cumbersome in function of (x, y, z), the components that minimize the energy are determined numerically.

For the sake of simplicity, the reference frame used is the principal directions of stresses. Moreover, in order to simply express the energy in function of the stress tensor components, the stress tensor is decomposed into the sum of it spherical and deviatoric parts:

σ = σ m 1 + σ (7.3.18)
Since the trace of σ is null, we define two components (σ dI , σ dII ), such that the deviatoric part of the stress is expressed as follows, in the frame of principal directions of stresses: 7.3.19) where we suppose, with no loss of generality that | σ dI |>| σ dII |>| σ dIII |. With this convention and σ dI = 0, simplifications of this tensor expression can further be made by introducing the parameter k = σ dII σ dI : 7.3.20) where k is such that, by convention, -1 ≤ k ≤ -0.5. The idea is, afterwards, to express analytically the terms (α 1 , α 2 , β 1 , β 2 ) in function of the direction vector components (x, y, z) and the stress components (σ m , σ dI , k). Let's introduce the following terms:

σ =   σ dI 0 0 0 σ dII 0 0 0 -(σ dI + σ dII )   ( 
σ = σ dI   1 0 0 0 k 0 0 0 -(1 + k)   ( 
               t 1 = σ 2 dI + σ dI σ dII + σ 2 dII t 2 = σ 2 dI -2σ dI σ dII -2σ 2 dII t 3 = -2σ 2 dI -2σ dI σ dII + σ 2 dII t 4 = σ 2 dI + 4σ dI σ dII + σ 2 dII t 5 = (x 2 σ dI + y 2 σ dII -z 2 (σ dI + σ dII )) 2                                  tn 1 = t 1 σ 2 dI = 1 + k + k 2 tn 2 = t 2 σ 2 dI = 1 -2k -2k 2 tn 3 = t 3 σ 2 dI = -2 -2k + k 2 tn 4 = t 4 σ 2 dI = 1 + 4k + k 2 tn 5 = t 5 σ 2 dI = (x 2 + y 2 k -z 2 (1 + k)) 2
The expressions of the energy become: The first expression of the energy (7.3.21) is minimized with respect to the material orientation in this section. Since σ 2 m 3n is constant, the energy W n can be written as the sum of a constant term and a term that depends on the material orientation (vector d, (x, y, z)) and the proportion k:

W n (x, y, z) = 3σ 2 m n + σ 2 dI 12C 0 f (x, y, z, k) (7.3.23)
Minimizing W n is thus equivalent to minimizing f with respect to the components (x, y, z). The minimization is performed numerically. For a fixed value of k ∈ [-1, -0.5], the value of f is computed for all sets of (x, y, z). Thus, its minimum value is identified and the optimal value of (x, y, z) is deducted. Illustrations are shown in figure 7.2: the shape of the function f is pictured in a spherical representation. The value of the function f is plotted for each possible direction in space, in the frame of principal directions of stress. I, II and III are the principal directions of the stress. Red color represents the highest value of f , and blue one corresponds to its lowest value. For a clearer visualization, we illustrate in the figure 7.2(b), only one-eighth of the shape in 7.2(a) (top, rear). In these figures, we show the shape of the energy for only one value of k. However, we observed that the shape and the location of the minimum do not change in the range of k ∈ [-1, -0.5].

There are four local minima of the energy. The three of them that are highlighted with a star in figure 7.2(b), give lower energy than the fourth one that is circled in black. They are along the principal directions of stress. Among these three local minima, the energy is minimum in the direction I and maximum in direction III. We took the convention such that the absolute values of the stress deviator components are maximum in the first direction and minimum in the third one. The minimum value of the energy is reached when the material direction vector is along the first direction of the principal stress (highlighted with red star in figure 7.2(b)). Therefore, the optimal transverse isotropy direction corresponds to the direction of the largest eigenvalue in absolute value of the stress tensor deviator. The optimal value of the energy becomes:

W opt n = 1 4 (σ dI + 2σ dII ) 2 C 0 + 3 σ 2 m n (7.3.24)
Case 2: Optimal value of the material orientation and minimum value of the energy W κ 0

The second expression of the energy (7.3.22) is now minimized with respect to the material orientation. The energy can be written as follows:

W κ 0 (x, y, z) = σ 2 dI 3f 1 (x, y, z, k) 4κ + 1 12C 0 f 2 (x, y, z, k) (7.3.25)
We introduce λ such that κ = λC 0 :

W κ 0 (x, y, z) = σ 2 dI 4C 0 3f 1 (x, y, z, k) λ + 1 3 f 2 (x, y, z, k) = σ 2 dI 4C 0 f (x, y, z, k, λ) (7.3.26)
The strategy of finding the orientation that minimizes the energy is the same as in the previous section. It is made numerically, by computing for a fixed value of (k, λ), and by deducing the optimal orientation. However, this case is more complex as the expression of W κ 0 depends on an additional parameter that is λ. We distinguish three cases:

λ > 1 (κ 0 > C 0 ), λ = 1 (κ 0 = C 0 ), 3 7 < λ < 1 ( 3 7 C 0 < κ 0 < C 0 ).
In each case, we show the the shape of the energy for only one value of k, and one value of λ. However, we observed that the shape and the location of the minimum do not change for any value of k ∈ [-1, -0.5] and for any value of λ. We do not treat the case λ < 3 7 (κ 0 < 3 7 C 0 ) as we are not able to find the global minimum of the energy. However the three cases mentioned above are the cases that interests us. Indeed the materials that interests us, and more generally, most of the existing materials achieve the condition 3 7 C 0 < κ 0 .

1. λ > 1 (κ 0 > C 0 )
For a fixed value of λ > 1 and k ∈ [-1, -0.5], we plot the value of the energy f for every material orientation in space. Figure 7.3 shows the full representation of f and its partial visualization. As in the first case, there are four local minima. The three of them, that are highlighted with stars, are the energy of transversely isotropic materials where the direction are along the principal directions of stress (e I , e II , e III ). The global minimum energy is reached when this direction is along the first direction of principal stress deviator (highlighted with red star in figure 7.3). To sum up, when a material with optimal invariants values is used, in which the modulus κ 0 is higher than the shear modulus C 0 , its optimal orientation is along the direction of the largest eigenvalue in absolute value of the stress tensor deviator. The optimal value of the energy becomes:

W opt κ 0 = 1 4 (σ dI + 2σ dII ) 2 C 0 + 3 σ 2 dI 4κ 0 (7.3.27) 2. λ = 1 (κ 0 = C 0 )
For a fixed value of λ = 1 and k ∈ [-1, -0.5], we plot the value of the energy f for every material orientation in space.

Figure 7.4 illustrates the shape of f in its full and partial visualizations. Four local minima are identified. The three of them, highlighted with stars, are the energy of transversely isotropic materials oriented along the principal directions of stress (e I , e II , e III ). These three configurations give the global minimum energy: the three values of the energy are identical. Therefore, aligning the material orientation with one of the principal direction of stress gives the minimum value of energy. When a material, with optimal invariants values is used, in which the modulus κ is equal to the shear modulus C 0 , all the principal directions of stress are optimal transverse isotropy directions. The optimal value of the energy becomes:

W opt κ 0 = σ 2 dI + σ dI σ dII + σ 2 dII κ 0 (7.3.28) 3. λ < 1 (κ 0 < C 0 )
For a fixed value of λ < 1 and k ∈ [-1, -0.5], we plot the value of the energy f for every material orientation in space. The full representation of f and its partial visualization are shown in figure 7.5. The global minimum energy is reached when the material is oriented in the third direction of the principal stress (highlighted with red star in figure 7.5(b)). We took the convention such that the absolute values of the stress deviator components are maximum in the first direction and minimum in the third one (| σ dI |>| σ dII |>| σ dIII | and W κ 0 (e I ) < W κ 0 (e II ) < W κ 0 (e III )). Therefore, in this case, the optimal material orientation corresponds to the direction of the smallest eigenvalue in absolute value of the stress tensor deviator. When a material, with optimal invariants values is used, in which the modulus κ is smaller than the shear modulus C 0 , its optimal orientation is along the direction of the smallest eigenvalue in absolute value of the stress tensor deviator. The optimal value of the energy becomes: 

W opt κ 0 = 1 4 (σ dI -σ dII ) 2 C 0 + 3 (σ dI + σ dII
= µ + 2m
, where C 0 is a linear combination between the transverse and axial shear moduli. For instance, for a unidirectional composite made of long and straight carbon fibers in an epoxy matrix, the modulus κ 0 is three times larger than the modulus C 0 . Indeed, if we take E L = 112 GPa, E T = 8.2 GPa, ν LT = 0.3, G LT = 4.5 GPa, and G T T = 2.9 GPa; the modulus κ 0 is 37.7 GPa, whereas the value of C 0 is 11.9 GPa. For most existing materials, the first case is the most likely case to happen. It says that the optimal material orientation is along the principal direction of stress that has the largest eigenvalue, in absolute value, of the stress tensor deviator component.

Remark 7.3.5. The material orientation d is not necessarily the principal stiffness direction. [START_REF] Barsotti | Wrinkling of Orthotropic Membranes: An Analysis by the Polar Method[END_REF] showed that the highest Young's modulus could be in an other direction than along the symmetry axis. Either principal stiffness or compliance direction could be aligned with the transverse isotropy direction.

Table 7.2 summarizes the optimal values of the transverse isotropy direction and of the stiffness invariants, for a given stress tensor. The corresponding minimum elastic energy is given. In the expression of minimum value of the energy, σ dM ax corresponds to the component with the highest absolute value, σ dM in corresponds to the component with the lowest absolute value and σ dM is the remaining component of the stress deviator tensor. The optimal value of the axial shear modulus is always zero. This optimal value of the shear modulus is similar to what was observed in the work of [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]]. In the cited work, 3D sequential laminates that minimize the elastic energy are searched for. Allaire found a configuration of these sequential laminates that corresponds to a null value of shear modulus, especially when the laminate is a rank-2 laminate.

The optimal value of the transverse shear moduli is equal to the imposed constant C 0 , that is maximum allowed value. The cases κ 0 > C 0 , κ 0 = C 0 and κ 0 < C 0 are distinguished in the optimal values of l, d and W . It is interesting to note that the optimal material orientation depends on the value of the components of the stress tensor deviator, rather than the components of the stress tensor itself.

Chapter 7. Local minimization of the elastic energy for a transversely isotropic material in 3D 
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Conclusion

This chapter is dedicated to the extension of the concurrent optimization of material density distribution of density and anisotropy in 3D. A transversely isotropic material is first parameterized with invariants. Adequate invariants are selected, in order to perform the analytical minimization in the simplest possible way. The selected invariants are very interesting for energy minimization. Indeed, the isotropic and the anisotropic parts of the elastic stiffness tensor can be easily separated that simplifies the minimization of the energy with respect to the material anisotropy. Second, they exhibit physical meaning and simple expression of the existence conditions of the material.

Once the invariants are chosen, the elastic energy is minimized with respect to the stiffness invariants in a first step, and afterwards with respect to the material orientation that minimizes the energy obtained in the first step. Closed form solutions of the optimal values of the invariants are obtained. These optimal values depend on the nature of the stress field. Their values depend on the stress field. The optimal value of the material orientation depends on the nature of the stress field and has been obtained by numerical experiments (an analytical proof for the optimal values of the material orientation is still to be obtained).

The extension of the 3D concurrent optimization of material density and anisotropy is essentially based on the analytic expressions of the minimum elastic energy with respect to the selected invariants. The density parameterization and the numerical algorithm remains the same as in 2D. The only change is on the local minimization of the energy, that is solved in this chapter. The next chapter validates numerically the method using section 7.3. It verifies the capability of the method to allocate the optimal material density and anisotropy by conducting numerical experiments on simple and complex test cases.

Introduction

In this chapter the optimization method is applied on two 3D test cases. Its aim is twofold. First, recommendations for efficient application of the method are prescribed to the user. Second, the capability of the method to handle simple and complex test cases is shown on a cantilever beam and on a detailed finite element model (DFEM) of a door lintel, provided by STELIA Aerospace. Section 8.2 proposes an optimization strategy for an efficient numerical optimization of simple and complex test cases. The strategy is very similar to that of the 2D method in section 5.2, for the initialization and the continuation strategy and for the filtering method. Additional guidelines are proposed in order to deal with the problems encountered with complex test cases. Section 8.3 deals with the optimization of a 3D cantilever beam. The topology optimization is, first performed with respect to the density only. The influence of the anisotropy on the optimal shape is shown by carrying out topology optimizations with uniformly distributed anisotropic materials. The topology optimization is afterwards performed with gradually increasing complexity: the material orientation and then the 3D invariants are added as design variables in the optimization process. Sequential and concurrent optimizations are compared. Section 8.4 shows that the numerical method can handle complex test cases. For this purpose an industrial test case problem is solved.

Optimization strategy

This section proposes some guidelines for the user in order to use efficiently the proposed method. The initialization, the continuation strategy and the use of a filtering method are discussed. The solution is sensitive to the initialization of the density and the anisotropy distributions. In order to address this issue, an initialization strategy is proposed. To reach an almost solid/void solution, the penalization of the material density is chosen carefully through a continuation strategy. The above two points are addressed by the careful choice of the penalization parameter p. A filtering method is also required in order to avoid checkerboard instabilities and mesh dependency. The optimal values of the shear moduli are at the bound of the positive definiteness of the elastic material. Therefore, regularization of the value of the shear moduli is necessary. Specific numerical issues that arise in the case of large structures are also discussed.

The proposed strategy is illustrated on a simple test case. Stiffness maximization of a threedimensional cantilever beam is solved. The volume constraint is fixed at 20 % of the full working domain. The domain size is 20 mm x 5 mm x 10 mm discretized with a structured mesh with 80 x 20 x 40 = 64 000 elements. The right side of the box, highlighted in red, is clamped and a distributed force in the y-direction is applied at the middle of the left side on 10 x 6 element faces (Figure 8.1). The problem to be solved is the generalized compliance (annotated C in this section) minimization with respect to the density and with respect to the invariants that describe the anisotropy of the thermodynamically admissible orthotropic material, for an imposed volume fraction: min {ρ,m,µ,κ,l,d} C(ρ, m, µ, κ, l, d) subject to:

                   V = V 0 ρ ∈ [ρ min , 1] m > 0 µ > 0 nκ -l 2 > 0 m + 2µ = C 0 κ ≤ κ 0 (8.2.1)
The volume is constrained to be equal to a volume fraction V 0 . The isotropic parts n and m + 2µ are fixed and are respectively equal to n and C 0 . The bulk modulus κ is upper bounded by a fixed value κ 0 . 

Initialization and continuation strategy

The problem of minimizing the generalized compliance with respect to the material density distribution and the material anisotropy repartition is not convex. Therefore, the final solution is sensitive to the initial material density distribution and to the initial material anisotropy repartition. Several local minima exist. Chapter 5 section 5.2 develops an initialization strategy for 2D optimization. The overall strategy in 3D is very similar.

We observed that the resolution of the problem with the penalization parameter p = 1, in a first step, is less sensitive to the initialization (see section 5.2). For optimization of density only, the problem is convex when p = 1. For concurrent optimization of density and anisotropy distribution, the problem is not (see for instance Figure 7.3). However, numerical experiments suggest that the solution is always the same when taking p = 1 in a first step before penalizing the density with larger value of p. As we look for a 0/1 layout in the final solution, the density must be penalized with a parameter p greater than 1. Therefore, a continuation strategy is needed. It consists in increasing gradually the value of p. By doing so, grey areas vanish (see section 6.2). The value of p is taken to be equal to 3, in order to define most of the optimal layout. Afterwards, the value of p Chapter 8. Application of the method on 3D test cases is increased to 5 to sharpen the topology. This choice is the best compromise between an efficient penalization of the density with a large value of p = 5 and a minimum number of change of p.

By doing this continuation strategy p = 1, p = 3, p = 5, the solution becomes less sensitive to the initialization. However, this continuation strategy requires a large number of iterations, especially with the step p = 1. Indeed, the convergence criterion of this step should be strict in order to ensure that the solution resulting from this step is close to the global minimum. Minimizing numerical cost is very important, especially when dealing with complex industrial test case. In order to reduce numerical cost, the first step p = 1 is suppressed. As in the 2D optimization strategy (section 5.2), we observe that by choosing a special initialization of the material density and anisotropy distribution, the first step p = 1 can be suppressed. We initialize with a uniform distribution of material density and with a uniform isotropic material, then solve the problem for p = 3 and p = 5. By doing so, the resulting solution is identical to the strong local minimum obtained with the full continuation strategy (p = 1, p = 3, p = 5). Figure 8.2 shows the percentage of elements in function of the value of the density at the end of the step p = 3 and at the end of the step p = 5. The graphics illustrate that the number of elements that have intermediate density (0.1 < ρ < 0.9) at the end of the first step dicreases and becomes insignificant at the end of the second step. It suggests that at the end of the step p = 3, most of the optimal layout is defined and that the optimization has converged with respect to p = 3 (no more improvement). The first step consists in finding the global shape of the optimal structure. The step p = 5 permits to sharpen the topology by removing furthre intermediate densities, and does not improve significantly the design in terms of compliance. The evolution of the compliance and the volume are displayed in function of the iteration number in Figure 8.3. The volume remains constant at 20 %. At each step of the optimization (p = 3, p = 5), the compliance decreases. When the value of p changes, the compliance increases as the structure becomes less stiff. The chosen termination criteria of the steps are identical to those in the 2D method (section 5.2). The global termination of the first step does not need to be stringent: the change on the compliance is set to 1% and the change on the density is set to 0.1%. Termination of the second step is set to 0.1% on the compliance and to 0.01% on the local density values. The initial compliance corresponds to a structure made of isotropic material, with 100 % volume fraction. This initial compliance is greater than the final compliance that corresponds to a structure made of transversely isotropic material, with 20 % volume fraction. Therefore, even if the volume fraction is smaller in the second case, the structure is stiffer. This is explained by the anisotropic part of the material used that is optimized. This suggests that it is more interesting to take advantage of the anisotropy of the material rather than to keep an isotropic material and use a bigger volume fraction. For instance, in the use of composite laminates, it is more interesting to tailor the orientation of the material rather than to add the thickness of the layers.

The concurrent optimization requires more iterations to converge than a classical toppology optimization of density (performed with the same algorithm). For the optimization of the 3D cantilever beam, the concurrent optimization requires 56 iterations, whereas the classical topology optimization of density requires 43 iterations to converge. Unlike in the 2D case (section 5.2), the difference between the number of iterations required for classical topology optimization and for concurrent optimization is small. 

Density filtering

Checkerboard instabilities may also occur in 3D. The method of filtering the density presented in section 5.2.2 is used. The method considers non local energy during the local minimization with respect to density variable with fixed stress field. During the local minimization of the elastic energy, the local elastic energy is replaced by the weighted sum of the elastic energy density of the neighboring elements. Influencing neighbor elements inside a sphere defined by a radius are considered in the non local energy. The filter radius is defined so that at least three elements are inside the radius. As noticed in the 2D case, we observed that when the number of elements is enough inside a given filter radius, the optimal density distribution is independent of the mesh size. Generally, at least, three elements are required inside the filter radius. Furthermore, the optimal shape of the structure depends on the value of the filter radius.

Regularization of the shear moduli

The optimal transversely isotropic elasticity tensor is singular at each iteration. Indeed, the optimal value of the axial shear modulus µ is null, whereas the optimal value of the transverse shear modulus m is its maximum value C 0 . The optimal values of the selected invariants are summarized in Table 7.2. In the optimization problem, the isotropic parts (n and m + 2µ) of the transverse isotropic elasticity tensor is fixed (see equation (7.3.3)). The sum m + 2µ is then imposed to be equal to C 0 that is the isotropic shear modulus.

In order to circumvent this singularity problem, a correction method is used. The correction amounts to replacing the axial shear modulus by δC 0 , where δ is "small". [START_REF] Allaire | Shape optimization by the homogenization method[END_REF] proposed other regularization techniques for singularity problems due to null values of the elasticity tensor coefficients, for instance by adding a small value to each term of the elasticity tensor. Numerical experiments suggest that when the value of δ is too small, the algorithm converges slower. Furthermore, the solution is less stiff than when taking a greater δ. In practice, we use δ = 10 -1 .

In order to satisfy the optimization constraint m + 2µ = C 0 , the value of m is modified as well. Therefore, the numerical adjustment is applied on the value of the two shear moduli:

µ reg = δC 0 m reg = (1 -2δ)C 0 (8.2.2)

Optimization strategy for complex test case

Additional optimization strategy is required when dealing with complex test cases. The complexity of the finite element model may lead to a ill conditioning of the matrix of the finite element analysis. This complexity is encountered for instance when connecting shell elements with 3D elements in the finite element model. This problem complexity is for instance encountered in the industrial test case optimization carried out in section 8.4.

Several sources can cause the numerical problem. The smallest admissible value of the density could be too "small". The finite element analysis may crash when the proportion of elements that has a too small value is big. For simple structures, the smallest admissible value used is ρ min = 10 -3 . This value could be inadequate for complex models. A solution to circumvent this problem is to increase the smallest admissible value. Increasing this value to ρ min = 10 -2 or ρ min = 10 -1 may be sufficient. When the smallest value of density is too large, a careful interpretation of the optimal solution may be required, as this large smallest admissible value changes the nature of the elements that are supposed to represent "void" material.

The second source of the problem may be the constraint on the volume fraction that could be too small. Indeed, when the volume fraction is small, most of the elements have negligeable stiffness, leading to an ill conditioning of the matrix of the finite element analysis. Computational runs suggest that the smallest admissible value of the imposed volume fraction should be greater than 5 %. We recommend at least a 10 % imposed volume fraction in order to avoid numerical problem linked to the finite element analysis and to carry out a better interpretation of the optimal solution. Furthermore, a small imposed volume fraction requires a very fine mesh as accuracy on the stress path defined by the loaded elements is necessary.

3D cantilever beam optimization

In this section, an academic test case is treated. The method is applied to a 3D cantilever beam. We first highlight the influence of the anisotropy in the 3D case, by performing several topology density optimizations with fixed material anisotropy. Afterwards, the topology optimization of the density is gradually enriched with the optimization of the material orientation and with the optimization of the anisotropy invariants of the transversely isotropic material.

Influence of the anisotropy on the optimal shape

Three topology optimizations of the cantilever beam made of long and straight carbon fibers in an epoxy matrix were carried out for three fiber orientations. The first material orientation is along the x-axis, the second is along the z-axis, and the third is along the vector cos( π 4 ), sin( π 4 ), cos( π 3 ) . The material orientation is uniform over the structure. The material properties used in this section are shown in table 8.1. The corresponding invariants of the stiffness tensor are also presented. The problem to be solved is the minimization of the compliance (C), in (8.2.1), with respect to the density (ρ) only, for a fixed set of 3D invariants (n, m, µ, κ, l) and for a 20 % imposed volume fraction. 8.4, 8.5 and 8.6 show the three optimal topologies for the three material orientations used. Elements with density above a threshold 0.9 are represented in grey. The three different optimal topologies show that, as observed in the 2D case (section 5.3.1), the material anisotropy influences the optimal shape of the structure. The nature of the loadings and boundary conditions are very similar in the 2D case and in the 3D case. The difference lies on the extrusion with variable thickness of the cantilever beam geometry in the y-direction in the 3D case. Hence, the optimal topologies of the 2D cantilever beam in Figure 5.11 corresponding to 0 • and 90 • -oriented material are the projection of the first two optimal topologies in Figures 8.4 and 8.5, of the 3D cantilever beam. The orientation of the material in the third case cos( π 4 ), sin( π 4 ), cos( π 3 ) is out of the plane containing the force direction. Therefore, the optimal topology cannot be obtained with extrusion of a 2D solution. Among the three solutions above, the one with a material along the x-axis is the stiffest (6.4 10 -4 mJ). The structure with a material oriented along the z-axis is 10 % stiffer (2.11 10 -3 mJ) than the last structure (2.3 10 -3 mJ). 

Optimization of topology and material orientation

In this section, we take advantage of the directionality of the material. The material density is optimized concurrently with the material orientation distribution (d). The material properties used are those of Table 8.1. The values of the invariants remain fixed during the optimization process, but the material orientation at each element varies. The problem is formulated in (8.2.1). The optimization variables are the material density ρ and the material orientation d. The invariants (n, m, µ, κ) remain fixed.

The optimal value of the material orientation is computed numerically. The numerical procedure shows that, for the material defined by the set of invariants in Table 8.1, the optimal transverse isotropy direction corresponds to the direction of the largest eigenvalue in absolute value of the stress tensor deviator. The analytical expression of the optimal material orientation has not been found yet, in the case that the values of the invariants are fixed during the optimization and only the material orientation is optimized. Indeed, the derivation of the energy (see equation 7.3.2), with respect to the material orientation is cumbersome. The numerical calculation of the optimal material direction is only performed for one set of invariants at a time. Therefore, when a different material (thus different values of invariants) is used, new computation of the optimal material orientation should be done.

Figure 8.7 displays the optimal shape of the structure. A layer of elements is highlighted in blue for material orientation representation that corresponds to the elements shown in Figure 8.8. The optimal shape obtained with concurrent optimization of material density and material orientation, is different from the optimal shapes of structures made of uniform material. The first structure is similar to a shell structure whereas the other ones are similar to truss structure. By taking advantage of the directionality of the material, the structure is 68 % stiffer. Figure 8.8 illustrates the distributed material orientation. It is continuous throughout the structure as it is aligned along the stress principal direction that is continous. However, abrupt changes of direction are observed at the middle height of the structure. This is caused by the nature of the stress, that is preponderant in shear in these elements. 

Sequential versus concurrent optimization of a 3D cantilever beam

One can take full advantage of the material anisotropy by optimizing not only the material orientation (d), but also the 3D invariants (n, m, µ, κ, l) that describe the material. On the one hand, the sequential optimization consists first in optimizing the shape of the structure, with an isotropic material, and second in optimizing the anisotropy (invariants and material orientation) with the obtained shape. On the other hand, the concurrent optimization consists in determining concurrently the optimal distribution of material density and material anisotropy. A comparison between the two optimal solutions is carried out. The sequential optimization requires two steps of optimization. The problem is formulated in (8.2.1). The first step is performed by optimizing the material density distribution only, with an isotropic material. Therefore, in this step, the design variable is only the density ρ while the 3D invariants remain fixed. The second step is performed by optimizing the material anisotropy repartition only, with the optimal shape obtained in the first step. In this step, the design variables the 3D invariants (m, µ, κ, l) and the material orientation d, while the density ρ remains fixed. In the concurrent optimization, the material density and the material anisotropy distributions are optimized simultaneously. In the problem formulated in (8.2.1), the design variables are the density ρ, the 3D invariants (m, µ, κ, l) and the material orientation d.

For both sequential and concurrent optimization, the initial density is uniform and set to 1 in every element of the mesh: the initial volume fraction is 100 %. The material is initialized with a uniform isotropic material. The properties of the isotropic material are given in Table 8.2. These properties are extracted from the isotropic part of the material given in Table 8.1. The 3D invariants of the isotropic part of the material are obtained by computing the 3D invariants of the material first, with equation (7.2.15). Second, the isotropic part is deduced from the computed 3D invariants in the first step: the modulus n is the same, however the shear modulus of the isotropic material is obtained by imposing m iso = µ iso = κ iso = m+2µ

3 . The corresponding young modulus, shear modulus and poisson ratio are deduced from the 3D isotropic invariants. The upper bound κ 0 is taken as the value of κ of the material in Table 8.1. The filter radius is 0.8mm. The mesh size is 0.25 mm x 0.25 mm x 0.25 mm. 8.3 compares the optimal compliance between the two optimizations. Between the first and the second step in the sequential optimization, the compliance drops by 90 %. The optimization of the material anisotropy, in the second step, stiffens significantly the structure, as the material is adapted to the local stress state. The isotropic part does not change, and the anisotropic part is tailored. The optimal structure resulted from the concurrent optimization is 2 % stiffer than the optimal structure obtained with the sequential optimization. The gap is small and may be due to the nature of the model and the loadings that are very simple. Furthermore, the numerical cost of the concurrent optimization is higher to that of the sequential optimization. The maximum values of displacement are also compared in Table 8.3. Between the first and the second step in the sequential optimization, the maximum displacement drops by 90 %. Between the solution from the sequential optimization and that from the concurrent optimization, there is a gap of 4.4 % in the maximum magnitude of displacement. 

Concurrent Shape and material anisotropy distribution 1.791 10 -4 1.81 10 -4 56 Figure 8.9 shows the optimal topologies for the sequential optimization and the concurrent optimization. The element is pictured in grey when the density is above a threshold set to 0.9. Among the elements that compose the 20 % volume fraction imposed, 97 % of them have density higher than 0.9. The shape of the optimal structure from the sequential optimization is a truss, whereas the optimal solution from the is a variable thickness shell. This suggests that truss appearance is favored in the optimal topology when an isotropic material is imposed. However, Chapter 8. Application of the method on 3D test cases .9 -Optimal topologies of the three-dimensional cantilever beam for sequential optimization (left) and for concurrent optimization (right), with 20 % volume fraction, element size: 0.25 mm / Filter radius: 0.8 mm, some elements are highlighted in blue for material orientation and anisotropy distribution illustration the optimal topology is more like a variable thickness shell when the density is concurrently optimized with the transversely isotropic material.

The anisotropy distribution depends on the optimal shape, and more precisely on the distribution of the stress. Since the optimal shape is different, the stress distribution is different as well, and therefore the anisotropy distribution. Figure 8.10(a) illustrates the optimal distribution of the material orientation for the set of elements highlighted in blue in Figure 8.9. For each element, a line oriented in the optimal direction of the material is displayed.

Since the optimal values of m, µ and κ are uniform (respectively equal to C 0 , 0, κ 0 ) and has the same value at each element of the structure, their distribution is not illustrated. The numerical optimal value of m is its maximum value (1 -2δ)C 0 . The numerical optimal value of µ is δ, in which δ = 10 -1 (see section 8.2). Figure 8.11 displays the distribution of l for the two optimizations. l is the cross modulus between the spherical part of s and the part M : s

(2) 0 . The isotropic case is obtained when l = 0 and κ = µ = m. However, in the optimal values of the invariants: κ = µ, κ = m and µ = m. Therefore, the optimal material is not isotropic. Since the values of κ, m, µ are uniform among the structure, the anisotropy varies throughout the structure in function of l. When l = 0, the term M : s

(2) 0 do not influence the anisotropic part of the material. Otherwise, the above term influences the anisotropic part of the material.

Compared to the optimal structure obtained with the concurrent optimization of material density and material orientation, the optimal structure from concurrent optimization of material density and material anisotropy (invariants and material direction) is 14 % stiffer. The adaptation of the material properties that are represented by the invariants, to the local stress, in addition to the material orientation gives a significant gain on the stiffness of the structure.

This section illustrates that it is interesting to optimize concurrently the material density distribution and the material anisotropy repartition in a structural optimization. Indeed, more performant structure is obtained in terms of global stiffness, compared to topology optimization with no exploitation of the material anisotropy by using a uniform isotropic or fixed anisotropic material. Furthermore, it shows the numerical capability of the method to determine the optimal distribution of density and material anisotropy for an academic test case. The next section shows its capability for a complex test case that is an industrial test case. 

Construction of the design volume

In this work, we call the reference model, the reduced model of the box containing the original door lintel and the twist stabilization web. Furthermore, we call the reference lintel, the set of the original door lintel and the twist stabilization web that needs to be replaced. In order to replace the reference lintel, this last one is suppressed from the reference model (see Figure 8.13,left).

A maximum surface area that can be covered by the new optimized door lintel is then defined. This area is represented in grey in the right figure of Figure 8.13, and is bounded by the surface covered by the lintel and the twist stabilization web of the reference model. Once the surface area of optimization defined, we set a design volume of the new optimized lintel. Since we do not want to have any a priori about the optimal shape, the maximum size is taken as large as possible that the lintel can occupy (see Figure 8.14), its height is 40 mm higher from the frames. In a first step, this maximum design volume in Figure 8.14 is used. It is meshed with 27191 hexahedral elements. But we will see later that this maximum design volume needs to be reduced. The reference lintel is bolted to the fuselage and to the frames. Since it is difficult to bolt the new 3D lintel to these structures, an alternative way of connecting them is mandatory. In order to connect the new 3D lintel with the fuselage model and the frames, we chose the BCONTACT card in Nastran. It consists in joining two coincident surfaces with a perfect contact (the two surfaces are glued and it transfers displacement and loads at the interface). Since two frames cross the lintel, an interaction between them needs to be defined. Therefore, we had to create surfaces of the 3D lintel that are coincident to the two frames that cross the lintel (see Figure 8.14). The 3D lintel is uniquely meshed but have 3 parts separated by the created surfaces near the frames. By doing so, we obtain surfaces that could be attached with the frames through the contact option. The interacting surfaces can be meshed dissimilarly with non coincident nodes. In addition to this, the 3D lintel is tied with the two frames at the end of the 3D lintel. 

Titanium lintel

The problem to be solved is the generalized compliance minimization problem given in (8.2.1). The minimization is performed with respect to the density only. The continuation strategy, the initialization and the filtering method used in this section are presented in section 8.2. The filter radius is taken so that there are three elements inside the filter radius. In the optimization of the large model, numerical experiments suggest that the finite element analysis goes better when the smallest admissible value of the density is set to ρ min = 10 -2 , instead of ρ min = 10 -3 .

The topology of the 3D lintel, defined with the maximum design volume in Figure 8.14, is optimized. When the design domain for the topology optimization is filled with material made of titanium, the total mass is 40 times that of the reference lintel. In order to achieve a lower mass than that of the reference lintel, a very small percentage constraint on the volume (2.66%) is necessary. However, a very small constraint on the volume percentage is not recommended. Indeed, the optimal solution is not accurate as the mesh is not fine enough. Furthermore, numerical problems arise especially in the finite element analyses (see section 8.2.4) . Therefore, a smaller design volume needs to be defined in order to apply an acceptable constraint on the volume (we recommend at least 10 %). To determine a smaller maximum design volume, successive optimizations of the 3D lintel, with the design volume in Figure 8.14, are performed by gradually reducing the constraint on the volume: 50 %, 30 %, 15 %, 3 %. By doing so, the solutions give a guideline in the choice of the smaller design volume as the algorithm puts the material where it is needed the most.

In a first step, the volume fraction constraint is fixed at 50 % of the total volume. The optimal topology of the 3D lintel is shown in Figure 8.16 for two view angles: front view (top) and inclined view (bottom). The element is pictured in grey when its density is above a threshold (0.9). The algorithm essentially removes the material inside the structure (its core). The optimal 3D lintel is thus similar to a box. Figure 8.15 displays the normalized compliances, with respect to optimization iterations, of the box (whole model) and the lintel. The maximum iteration number is set to 80, for the optimization of the lintel, as the model is complex and is therefore numerical costly. They both decrease through the iterations until they stabilize. In the optimization method, only the decrease of the compliance of the whole model is taken into account in the convergence criterion. Compared with the compliance of the reference model, that of the 3D optimized lintel with 50 % volume fraction is 17,5 % lower. Therefore, the obtained optimal model is much stiffer than the reference model. The mass of the optimized lintel needs to be reduced in order to have the same compliance as that of the reference model. 8.18, 8.19 show respectively the optimal topologies of the 3D lintel for 30 %, 15 % and 3 % volume constraint. The 30 % solution is similar to the 50 % solution, as it is like a caisson. Furthermore, in the face along the skin of the fuselage and in the face opposed to it, the shape is like truss. Vertical trusses appear also along the frames. The 15 % and 3 % solutions exhibit optimal topologies that are stuck with the skin of the fuselage: no material is needed on the top of the design volume. The 3 % solution is stiffen mostly the zone near the door and the zone near the rear frame that are the most loaded. Therefore, two new design volumes are defined such that the height of the first design volume (Figure 8.14) is reduced by 50 % and by 90 % that are respectively meshed with 79810 and 36572 hexahedral elements. The two new design volumes are presented respectively in Figure 8.20 at the middle (design volume 2) and at the bottom (design volume 3). The figure at the top corresponds to the largest design volume (design volume 1) used so far. With the design volume 2, we need to apply a volume fraction constraint of 5 % to achieve the same mass as the reference lintel. However this volume fraction is too low, therefore we apply a volume fraction constraint of 10 %. Figure 8.21 shows the optimal topology of the 3D lintel with a volume of 10 % of the design volume 2. The optimal topology is flat along the skin of the fuselage with an arch-shaped reinforcement. In the top of the design volume 2, a truss appear in the optimal topology in order to transfer the effort from the rear frame to the door. The corresponding compliance of the model is 9 % lower than that of the reference model. The corresponding mass is twice that of the reference lintel.

In order to keep the same compliance as the reference model and to reduce the mass of the reference lintel, the 3D lintel with the smallest design volume (design volume 3) is optimized. We impose a volume fraction of 10 %. The corresponding optimal topology is shown in Figure 8.22. In the optimal topology, the algorithm puts material essentially near the door in order to stiffen this zone. The reference lintel is also placed in this zone in order to stiffen what is above the door. Furthermore, the algorithm puts material in the zone near the rear frame halfway along the lintel length. Indeed, this zone needs to be stiffen as well. The corresponding compliance of the model, is 0.3 % higher than that of the reference model. However the corresponding mass of the solution solution is 60 % lighter than the reference lintel. Therefore, when the compliance is considered, the algorithm gives an optimal topology, with lower mass, that is different from the reference lintel. We will further discuss about these results later on. 

Carbon epoxy lintel

For mass reduction, we want to replace the reference lintel in titanium with a lintel made of composite anisotropic material. Indeed, compared with metallic structures, composite ones have higher stiffness-to-weight and strength-to-weight ratios. In this section, the optimized 3D lintel made of titanium (10 % of the design volume 3) is replaced by a 3D lintel made of steered unidirectional carbon epoxy material that is transversely isotropic in 3D behavior. The volume constraint is set to 20 % of the design volume 3 so that the compliance of the resulting model is identical to the compliance of the reference model and to the model with a 3D lintel made of titanium. The material properties and its invariants are presented in table 8.1. The density is optimized concurrently with the material orientation. The generalized compliance minimization problem is solved with respect to the material density and the material orientation, and the invariants (m, µ, κ, l) remain fixed. This lintel made of steered unidirectional carbon epoxy material is 20 % lighter than the 3D lintel made of titanium.

Figure 8.23 displays the optimal topology of the 3D lintel made of steered unidirectional material. Its shape is different from that of the 3D lintel made of titanium with 10 % volume of the smallest maximum bulk. The compliance of its corresponding model is identical to that of the reference model (-0.86 %). Figure 8.24 illustrates the distributed material orientation, in red line at each element, for three different zones. The algorithm gives an expected distribution of the material orientation as observed in the academic test case of the cantilever beam. The distribution of the material orientation is discontinuous in the areas where the upper part of the lintel crosses its down part. This discontinuity is observed at the left side of the lintel that is highlighted in orange, and at the right side of the lintel that is highlighted in blue. In other areas, the material orientation is continuous as it follows the direction of the principal stress. Furthermore, the material orientation distribution follows the shape of the "bars" of the structure. In order to use full potential of the transversely isotropic material, its invariants are optimized in addition to the material orientation and to the material density distribution. For this purpose, the problem solved is the minimization of the generalized compliance with respect to the invariants (m, µ, l, κ), to the orientation d and to the density ρ. The imposed volume fraction is 20 % of the design volume 3, as in the optimization of the lintel made of steered unidirectional material. Indeed, the isotropic part of the steered unidirectional material is used in this concurrent optimization.

The optimal topology is shown in Figure 8.25. It is a flat reinforcement in the shape of an arch. When optimizing the invariants in addition to the material orientation, the optimal topology is different from the solution where only the material orientation is optimized. Indeed, the obtained shape in the optimization of topology and material orientation is an arch as well. However, the upper part of the arch from concurrent optimization (Figure 8.25) is wider than that of the 3D lintel made of steered unidirectional material (Figure 8.23). Furthermore, the width of the lower part of the arch from concurrent optimization is smaller than that of the solution made of steered unidirectional material. The upper part is more stiffened in the concurrent optimization solution than in the solution made of steered unidirectional material. In the contrary, the lower part is more stiffened in the solution made of steered unidirectional material than in the concurrent optimization solution.

Figure 8.26 shows the optimal material orientation (in red line at each element) and the optimal distribution of the cross modulus l. The model with a 3D lintel obtained with the concurrent optimization is 1.2 % stiffer than that of the reference model. The compliance of the model with a 3D lintel made of textitsteered unidirectional material is 0.3 % lower than that of the model with a 3D lintel obtained with the concurrent optimization. Figure 8.25 -Optimal topology of the 3D lintel obtained from concurrent optimization of material density and anisotropy, with 20 % volume fraction of the smallest bulk Remark 8.4.1. Numerical problems may arise in the finite element analyses, especially when taking the anisotropy into account in the optimization. Indeed, not only the density influences the stiffness tensor but also the material anisotropy. Abrupt changes may then arise. When the Figure 8.26 -Optimal distribution of material orientation of the 3D lintel obtained from concurrent optimization of material density and anisotropy, with 20 % volume fraction of the smallest bulk finite element analyses stop for numerical issues such as bad matrix conditioning, the minimum admissible value of the density is set to ρ min = 10 -1 . By doing so, the finite element analyses go better.

Discussion

The industrial problem in this section aims to replace the reference lintel with a 3D optimized lintel. Three solutions are proposed. First, a 3D lintel made of titanium is proposed: its mass is 60 % lower than that of the reference lintel and the corresponding model is as stiff as the reference model. Second, we present a 3D lintel made of steered unidirectional carbon epoxy material with a 70 % lower mass with a structure as stiff as the reference model. Finally, we propose a 3D lintel obtained by concurrent optimization of material density distribution and material anisotropy repartition, where the corresponding model is 1 % stiffer than the reference model. Table 8.4 summarizes the three optimizations of the 3D lintel, where m r is the mass of the reference lintel and C r is the compliance of the reference model. For a general summary of the optimizations performed in this work, Figure 8.27 plots the normalized compliances of each optimized model in function of the normalized mass of the corresponding lintel. We observe that for a very close value of the mass to that of the reference lintel, the proposed solution is much stiffer. Furthermore, for a very close value of the compliance to that of the reference model, the proposed solution is much lighter.

The three solutions seem very interesting because the mass is much lower and the same compliance as the reference model is obtained. However, the local behaviors of the three proposed solutions are different from that of the reference model. The local responses, redistributions of forces and displacements are different. The magnitude of displacement in the area of the lintel just above the door is 20 % greater than that of the reference model. The maximum magnitude of displacement of the three proposed solutions, just next to the door (represented in black), is 50 % greater than that of the reference model. This could be explained by the optimal shape of the three proposed solutions that are along the skin of the fuselage, unlike the reference lintel that is orthogonal to the skin of the fuselage. Therefore, the lintel is no more tied to the structures that ensure the sealing arround the door. However, these structures have no structural function. We can thus neglect the large gap of the displacement in this zone as the sealing structures have very little influence on the global stiffness of the structure.

The global stiffness behavior of the three proposed solutions is therefore identical to that of the reference model. However, the local behavior is very different. The reason is that only the global stiffness behavior is taken into account in the optimization method. No local constraint is taken into account. In order to take into account the whole behavior of the reference model, other physical phenomena in addition to the compliance need to be added to the optimization. For instance, a constraint on the maximum magnitude of displacement in some particular nodes is necessary. A constraint on the resistance of the material needs also to be taken into account. Furthermore, with a load case of compression, buckling should also be considered. Taking into account multiple load case is also interesting for a more complete resolution of the dimensioning of the lintel.

The problem solved in this work is a simplification of the complete problem. The function of the lintel to stiffen the fuselage to prevent it from breaking is ensured. However, other functions, for instance to block the rotation of the frames are not ensured. Indeed, the proposed solutions are along the skin of the fuselage and its optimal topology is not orthogonal to the skin of the fuselage unlike the reference lintel. Nonetheless, the objective of the work is not necessarily to consider the function of the lintel but essentially the global stiffness of the whole model. It would be interesting to further consider additional function of the lintel. The manufacturability of the structure is also important for the realization of the final structure. For instance, the solution with a 3D lintel made of titanium is 20 mm thick, which is very difficult to manufacture. 

Conclusion

This chapter shows the capability of the numerical method to determine concurrently the optimal topology and the optimal material anisotropy distribution of 3D structures, that is the novelty of this thesis. Specific optimization strategy is therefore needed, in order to perform efficiently the numerical optimization. Indeed, numerical problems arise, especially when dealing with complex test cases. The strategy gives guidelines to deal with problems such as initialization sensitivity, penalization of the density, mesh dependency, checkerboard instabilities, singularity of the elasticity tensors. The test cases handled in this chapter show that the method is capable of optimizing simple and complex 3D structures.

We have been able to minimize the mass of an aircraft door lintel for the same compliance. The optimization is made on a detailed finite element model (DFEM) provided by STELIA Aerospace. Three solutions are proposed for the replacement of the current door lintel.

Chapter 9 Conclusion and perspectives

In an industrial context, we propose a tool to replace highly loaded structures with lighter ones made of anisotropic materials. For this purpose, we address the problematic of the topology optimization of structures made of anisotropic materials. The novelty of this work is the development of a method for concurrent optimization of material density and anisotropy distributions for structures made of a general material (inside the thermodynamic bounds). Orthotropic materials are considered in 2D, moreover, the main contribution is the proposition of the method for 3D structures using a transversely isotropic material. Indeed, existing methods seek either the anisotropy distribution with a fixed and predefined shape, or topology and anisotropy distribution, for specific materials that reduce the research domain. On the contrary, in this work, no a priori on the shape and the choice of the material is assumed. The method starts with a maximal 3D design volume and prescribed boundary conditions and loadings.

It is possible to develop such method through to the combination of several ingredients: adequate parameterization of the topology and the material anisotropy, suitable algorithm for structural optimization and a problem formulation that is simple. The maximization of the global structural stiffness is solved, by reformulating it into a double minimization of the complementary energy with respect to the design variables (local minimization) and with respect to the stress (global minimization). The combination of the SIMP method to parameterize the topology and the use of invariants (polar invariants for orthotropic materials in 2D, and 3D invariants for transversely isotropic material in 3D) to parameterize the elasticity tensor is a very efficient method in order to deal with the concurrent optimization of the topology and the material anisotropy. Indeed, by doing so, the local minimizations of the complementary energy with respect to the design variables are performed analytically. The alternate directions algorithm is an adequate optimization algorithm to solve the concurrent optimization problem. Since the integration of anisotropy behavior into structural optimization is difficult, the advantage of this algorithm is its simplicity. Furthermore, its numerical cost is low compared to the main structural optimization algorithms. However, it is difficult to consider other criterion than a global criterion that is the global structural stiffness.

Numerical application of the method on test cases shows its effectiveness. Indeed, starting from a maximum design volume with no a priori, the method is capable to determine concurrently the optimal density and the optimal anisotropy distributions, for 2D and 3D structures. The algorithm puts the material where it is needed the most and determines what type of anisotropy is the most suitable. The optimal topology defines the optimal load path. The optimal material anisotropy distribution depends on the local stress state. The optimal orientation of the material is aligned with one principal direction of the stress. The numerical test cases are processed by gradually adding complexity to the optimization. The algorithm can handle a classical topology Chapter 9. Conclusion and perspectives optimization of density only, an optimization of the material anisotropy only with a predefined shape, a concurrent optimization of the density and the material orientation, and a concurrent optimization of the density, the material orientation and the material anisotropy measured by the invariants.

With some guidelines that eases the use of the numerical method, the method can handle simple (academic) 2D and 3D test cases. The method is very interesting as it is effective for handling complex (industrial) test cases as well. Indeed, in this work, we show the optimization of an aircraft door lintel that is a real structure modeled by a detailed finite element model (DFEM) provided by STELIA Aerospace. We propose several solutions in order to replace the current lintel with lighter structures that has the same global structural stiffness, for the load case of pressure. However, for real structures, taking into account only one load case is not sufficient. Furthermore, taking into account the global structural stiffness only is not enough. Other physical phenomena need to be integrated in the optimization, in order to propose more realistic solutions.

The method is developed on a conceptual level. The method uses a general orthotropic material in 2D and a general transversely isotropic material in 3D (inside the conditions of existence of the elasticity tensor). The method could be enriched by using an orthotropic material or even a completely anisotropic material in 3D. By doing so, the method covers a very general material that could be adequate especially for multiple load cases.

The obtained ideal material in the developed method is described by elasticity tensor coefficients that represent an homogenized material. The resulting material is unknown and is not necessarily feasible. At the moment, 3D printing is a manufacturing method on the rise. New possibilities on manufacturing new materials with complex composition may emerge. With the potential of 3D printing, perhaps it would be possible to find a manufacturable material that is close to the ideal solution given by the present method. Thus, it would be interesting to deduce the properties of the closest manufacturable material from the homogeneous coefficients of the ideal material. For this purpose, a post processing step that searches for the microstructure of the material would be very interesting.

A post processing of the topology is also necessary. The optimal topology is defined by the assembly of voxels. Therefore, the boundaries of the shape are imprecise, unclear and not smooth. It would be interesting to specify the geometric surfaces of the optimal shape. It would also be interesting to identify the zones of the optimal shape that are massive, thin (structure like-shell) and slender (structure like-truss). By doing so, not only the kind of material could be specified in each zone, but a specific structural optimization on each zone could be carried out in order to obtain a more detailed solution. For instance, metallic materials or 3D woven composites may be suitable for the massive zones. On the zones with thin parts, composite laminates may be adequate, and therefore a composite optimization could be carried out.

An adaptation of the method to composite materials would enrich it as well. For instance, in the optimization of the material orientation of a unidirectional material, a manufacturing constraint on the minimal curvature constraint could be imposed in order to obtain a manufacturable structure. To go a little further, the method could be extended for feasible materials. For example, for composite laminates, this could be done by defining a feasible domain that is called geometrical bounds for composite structures. For polar invariants in 2D, the geometrical bounds are given in [START_REF] Barsotti | Wrinkling of Orthotropic Membranes: An Analysis by the Polar Method[END_REF]]. The composite laminates that exhibit transversely isotropic behavior are mainly the quasi-isotropic and the unidirectional materials. It could be interesting to study the bounds that define the classes of transversely isotropic materials. For the 3D invariants used in this work, one could for instance, define the bounds for the unidirectional materials by sweeping a range of fibre volume fraction. A methodology to define these bounds could be the definition of a database of existing materials. The corresponding invariants are therefore computed and an identification of the bounds could be performed. The geometrical bounds of the 3D invariants could be computed, but first, the method should be performed with orthotropic material.

The method could also be extended for laminated-shell structures. Since the membranebending coupling is complex to consider, it could be taken into account by enumerating a database of possible stacking sequences.

Finally, since the ultimate goal of this thesis is to provide a tool and methodology for concurrent optimization of the material density and the material anisotropy for aeronautic structures, and thus for real structures, the criterion on the global structural stiffness alone is not sufficient. A global criterion captures only the global behavior of the structures. For a more complete method, local criteria such as maximum displacement in some points need to be taken into account. Furthermore, highly loaded structures are subjected to several physical phenomena. Buckling and material failure are very important as well and therefore need to be taken into account in the optimization method.

In this work, we studied the feasibility of integrating the failure of the material in the optimization method. We attempted to consider a stress constraint using the alternate directions algorithm. Since taking into account a large number of constraints is very difficult with this algorithm, we used stress constraint aggregation. However, the local minimizations and the global constraint on the stress are difficult to relate. Several attempts were carried out to a link between the local minimizations and the global constraint. Nevertheless, these attempts have not led to an efficient method. The integration of the stress constraint is complex when using the alternate directions algorithm. Therefore, it may be interesting to use other algorithms. The algorithm of MMA (Method of Moving Asymptot) may be a very interesting lead. Real structures are subjected to not only one load case but multiple load cases. Thus, we also should pay attention to multiple load cases. For such configuration, a transversely isotropic material that exhibits a privileged direction may not be sufficient. The optimal material might be a fully anisotropic one.

The work done during this project opens up a wide range of perspectives that are very interesting. The developed method is promising as it shows interesting results on numerical experiments. Moreover, its strength is the implementation permitting to dispose of a tool capable to propose ideal solutions for complex structures. Therefore, we could anticipate innovative manufacturing of anisotropic materials with the emergence of 3D printing or additive manufacturing.
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  compare les formes optimales de la poutre console 3D obtenues par optimisation séquentielle et optimisation simultanée. Les Figures 3 et 4 montrent respectivement la distribution de l'orientation optimale du matériau et la distribution d'un invariant d'anisotropie.

  Poutre console en aluminium avec une fraction volumique de 30 %. (b) Poutre console en aluminium avec une fraction volumique de 30 %. Poutre console en stratifié quasi-isotrope avec une fraction volumique de 50 %. (d) Poutre console en stratifié quasi-isotrope avec une fraction volumique de 50 %. Poutre console en matériau unidirectionnel carbon/epoxy dont l'orientation est optimisée, avec une fraction volumique de 50 %.(f) Poutre console en matériau unidirectionnel carbon/epoxy dont l'orientation est optimisée, avec une fraction volumique de 50 %.

Figure 1 -Figure 2 -Figure 4 -

 124 Figure 1 -Comparaison entre les formes optimales (gauche) et les champs de déplacement total (droite) de la poutre console fabriquée en aluminium, stratifié quasi-isotrope et matériau unidirectionnel carbon/epoxy dont l'orientation est optimisée. Les trois poutres ont la même masse. La densité est seuillée à 0.8. La déformée est 20 fois agrandie.

Figure 2 . 1 -

 21 Figure 2.1 -Main different structural optimization categories: sizing optimization (a), shape optimization (b) and topology optimization (c). The initial designs are shown on the left and the final designs are shown on the right [Bendsøe 1989].

Figure 2 . 2 :

 22 Figure 2.2: Représentation des composantes cartésiennes et polaires d'un vecteur (a) et d'un tenseur du second ordre (b) dans un repère tourné d'un angle δ

Figure 2 . 2 :

 22 Figure 2.2: Représentation des composantes cartésiennes et polaires d'un vecteur (a) et d'un tenseur du second ordre (b) dans un repère tourné d'un angle δ

  Figure 3.1 -Cartesian and polar representation of a vector 3.1(a) and a second order tensor 3.1(b) in a frame rotated by an angle δ, [Julien 2010, Figure 2.2]

Figure 2 . 6 :Figure 2 . 7 :

 2627 Figure 2.6: Domaines d'existence des formes d'orthotropie d'un matériau orthotrope

  First Cartesian component Q 1111 of the reduced stiffness tensor Q

Figure 4 .

 4 Figure 4.1 -Representation of the first component Q 1111 of the reduced stiffness tensor, in any orientation (4.1(a)), and its decomposition into a sum of polar invariant terms (4.1(b)).

Figure 4 . 2 -

 42 Figure 4.2 -Domain Ω, imposed forces and displacements

Figure 4 .

 4 Figure 4.3 -The alternate directions algorithm for concurrent optimization of material density and anisotropy

Figure 5 . 1 -

 51 Figure 5.1 -Boundary conditions and loading for the Cantilever beam optimization problem

  (a) Initialization with uniform density (1) and unidirectional 0 • oriented material (b) Optimal topology when initializing with 5.2(a) / Optimization steps: p = 3, p = 5 / Compliance: 14.42 mJ / Iterations: 325. (c) Initialization with uniform density (1) and unidirectional 90 • oriented material (d) Optimal topology when initializing with 5.2(c) / Optimization steps: p = 3, p = 5 / Compliance: 14.3 mJ / Iterations: 300.

Figure 5 . 2 -

 52 Figure 5.2 -Initialization with uniform density distribution and unidirectional material (left) and its respective optimal topology (right), for the concurrent optimization of material density distribution and material anisotropy repartition

  Figure 5.3 -Two different initializations (left) resulting with two identical optimal topologies (right): initialization of the distribution of the density with the symmetry of the optimal shape of 5.4(b), and initialization of the anisotropy distribution with an isotropic material (left, top) and with a unidirectional material (left, bottom); and its respective optimal topology (right)

  topology when initializing with 5.4(a) / Optimization steps: p = 3, p = 5 / Compliance: 13.84 mJ / Iterations: 287.

Figure 5 . 4 -

 54 Figure 5.4 -Initialization with isotropic material and uniform density equal to 1 (left) and its optimal topology (right)

  (a) Topology of the cantilever beam at the end of the first step p = 3, element size: 0.5 mm / fitler radius: 1.8 mm (b) Topology of the cantilever beam at the end of the second step p = 5, element size: 0.5 mm / fitler radius: 1.8 mm
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 5556 Figure 5.5 -Topologies of the cantilever beam at the end of each step p = 3, p = 5

Figure 5 . 7 -

 57 Figure 5.7 -Filter radius r centered in the considered element i

Figure 5 . 8 -

 58 Figure 5.8 -Optimal topologies, for two mesh sizes, of the cantilever beam with 50 % volume amount, threshold on the densities: 0.8

  Figure 5.9 -Influence of filter radius on the optimal topology of the cantilever beam with 50 % volume amount

Figure 5 .

 5 Figure 5.10 -CQUAD4 element geometry and coordinate system in Nastran [MSC Nastran Quick Reference Guide 2014]

Figure 5 .

 5 Figure 5.11 -Optimal compliance with respect to material orientation in a polar representation (middle, bottom) and five optimal shapes corresponding to 0 • (left, top), 18 • (middle top), 45 • (right, top), 90 • (left, bottom) and -45 • (right, bottom) material uniform orientations for the cantilever beam problem with a unidirectional composite material (load and boundary conditions shown in Figure 5.1).

  Cantilever beam made of quasi-isotropic laminate with 50 % volume amount. (d) Cantilever beam made of quasi-isotropic laminate with 50 % volume amount.

  Cantilever beam made of steered unidirectional carbon/epoxy material with 50 % volume amount.(f) Cantilever beam made ofsteered unidirectional carbon/epoxy material with 50 % volume amount.

Figure 5 .

 5 Figure 5.12 -Comparison between optimal topologies (left) and displacement magnitude fields (right) of the cantilever beam made of aluminum, quasi-isotropic laminate, and steered unidirectional carbon/epoxy material. The three cantilever beams have the same weight. The density is thersholded at 0.8. The deformed configuration is 20 times magnified.

Figure 5 .

 5 Figure 5.13 -Optimal distribution of material orientation of the cantilever beam with 50% volume amount for concurrent optimization of topology and material orientation (element size: 0.5 mm/Filter radius: 1.8 mm)

Figure 5 .

 5 Figure 5.14 -Optimal topologies, of the cantilever beam with 50 % volume amount, for MSC Nastran and OptiStruct

  Figure 5.17 -Comparison between anisotropy distributions of solutions from sequential and concurrent optimization for the cantilever beam

  Figure 5.19 -Optimal topology of the cantilever beam with 50 % volume amount for concurrent optimization of material density and anisotropy of the cantilever beam (Element size: 0.25 mm / Filter radius: 1.8 mm)

  Figure 5.20 -Components of the stress tensor plotted in the principal direction of orthotropy in each element of the structure (local frame).

  Figure 5.21 -Optimal distribution of orthotropy direction of the cantilever beam with 50 % volume amount for concurrent optimization of material density and anisotropy of the cantilever beam (Element size: 0.5 mm / Filter radius: 1.8 mm)

Figure 5 .Figure 5 .

 55 Figure 5.22 -Reduced stiffness tensor's first Cartesian component Q 1111 and its polar components T 0 , T 1 , R 0 , R 1 in any orientation for the area loaded in shear (R 1 = 0).

Figure 5 .

 5 Figure 5.24 -Load and boundary conditions for the bridge optimization problem

  Figure 5.26 -Comparison between the optimal shapes of sequential and concurrent optimization for the bridge(filter radius: 5.5 mm)

Figure 5 .

 5 Figure 5.28 -Representation of thermodynamic domain of orthotropic materials and orthotropic laminates made of carbon epoxy T300/5204 layers. The optimal values of polar parameters for the cantilever beam case (Figures 5.17(b) and 5.17(d)) are shown in green.

  Figure 5.28 -Representation of thermodynamic domain of orthotropic materials and orthotropic laminates made of carbon epoxy T300/5204 layers. The optimal values of polar parameters for the cantilever beam case (Figures 5.17(b) and 5.17(d)) are shown in green.

  Figure 5.28 -Representation of thermodynamic domain of orthotropic materials and orthotropic laminates made of carbon epoxy T300/5204 layers. The optimal values of polar parameters for the cantilever beam case (Figures 5.17(b) and 5.17(d)) are shown in green.
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 5 Figure 5.29 -Longitudinal, transversal shear moduli, Poisson ratio inside the elastic bounds in function of the polar parameters R 1 and (-1) K R 0
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 62 Figure 6.2 -The alternate directions algorithm for concurrent optimization of material density and anisotropy

Figure 7 .

 7 Figure 7.1 -Illustration of physical meanings of the selected 3D invariants (n, m, µ, κ, l)

  The solution of the problem (P 1,new b

  first derivative ∂W κ,l (κ,l) ∂κ is strictly negative ∀(κ, l) such that l 2

  The values of the energy are thus arranged inversely with the arrangement of the absolute values of the stress deviator components (| σ dI |>| σ dII |>| σ dIII | and W n (e I ) < W n (e II ) < W n (e III )).

Chapter 7 .Figure 7 . 2 -

 772 Figure 7.2 -Representation of the energy W n , in any orientation (7.2(a)), and a zoom of the one-eighth of the shape (7.2(a)).

Figure 7 . 3 -Figure 7 . 4 -

 7374 Figure 7.3 -Representation of the energy W κ 0 , in any orientation (7.3(a)), and a zoom of the one-eighth of the shape (7.3(b)), when λ > 1 (κ 0 > C 0 ).

Figure 7 . 5 -

 75 Figure 7.5 -Representation of the energy W κ 0 , in any orientation (7.5(a)), and a zoom of the one-eighth of the shape (7.5(b)), when 3 7 < λ < 1 ( 3 7 C 0 < κ 0 < C 0 ).
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 8 Figure 8.1 -Boundary conditions and loading for the three-dimensional Cantilever beam optimization problem

Figure 8 . 2 -

 82 Figure 8.2 -Percentage of elements in function of the value of ρ at the end of the first step p = 3 (left) and at the end of the second step p = 5 (right)

Figure 8 . 3 -

 83 Figure 8.3 -Compliance and volume with respect to optimization iterations for concurrent optimization of material density and anisotropy of the 3D cantilever beam, with 20 % volume fraction, element size: 0.25 mm/Filter radius: 0.8 mm

Figures

  Figures 8.4, 8.5 and 8.6 show the three optimal topologies for the three material orientations used. Elements with density above a threshold 0.9 are represented in grey. The three different optimal topologies show that, as observed in the 2D case (section 5.3.1), the material anisotropy influences the optimal shape of the structure. The nature of the loadings and boundary conditions are very similar in the 2D case and in the 3D case. The difference lies on the extrusion with variable thickness of the cantilever beam geometry in the y-direction in the 3D case. Hence, the optimal topologies of the 2D cantilever beam in Figure5.11 corresponding to 0 • and 90 • -oriented material are the projection of the first two optimal topologies inFigures 8.4 and 8.5, of the 3D cantilever beam. The orientation of the material in the third case cos( π 4 ), sin( π 4 ), cos( π 3 ) is out of the plane containing the force direction. Therefore, the optimal topology cannot be obtained with extrusion of a 2D solution. Among the three solutions above, the one with a material along the x-axis is the stiffest (6.4 10 -4 mJ). The structure with a material oriented along the z-axis is 10 % stiffer (2.11 10 -3 mJ) than the last structure (2.3 10 -3 mJ).

Figure 8 . 4 -Figure 8 . 5 -

 8485 Figure 8.4 -Optimal topology of the three-dimensional cantilever beam corresponding to a material orientation along the x-axis, with 20 % volume fraction, element size: 0.25 mm / Filter radius: 0.8 mm

Figure 8 . 7 -Figure 8 . 8 -

 8788 Figure 8.7 -Optimal topology of the three-dimensional cantilever beam with 20 % volume fraction for concurrent optimization of topology and material orientation (element size: 0.25 mm/Filter radius: 0.8 mm), some elements are highlighted in blue for material orientation illustration

  Figure 8.9 -Optimal topologies of the three-dimensional cantilever beam for sequential optimization (left) and for concurrent optimization (right), with 20 % volume fraction, element size: 0.25 mm / Filter radius: 0.8 mm, some elements are highlighted in blue for material orientation and anisotropy distribution illustration

Figure 8 .Figure 8 .

 88 Figure 8.10 -Optimal distribution of material orientation of the 3D cantilever beam for the sequential optimization (top) and for the concurrent optimization (bottom), with 20 % volume fraction for concurrent optimization of topology and material anisotropy distribution (element size: 0.25 mm/Filter radius: 0.8 mm)
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 88 Figure 8.13 -Removal of the lintel and the twist stabilization web (left) and definition of a maximum surface area that can be covered by the optimized door lintel (right)

Figure 8 .

 8 Figure 8.15 -Normalized compliances, with respect to optimization iterations, of the box (whole model) and the lintel

  Figures 8.17, 8.18, 8.19 show respectively the optimal topologies of the 3D lintel for 30 %,

Figure 8 .Figure 8 .

 88 Figure 8.17 -Optimal topology of the three-dimensional lintel made of titanium, with 30 % volume fraction

Figure 8 . 2 Figure 8 .

 828 Figure 8.21 -Optimal topology of the three-dimensional lintel made of titanium, with 10 % volume fraction of the design volume 2

Figure 8 .Figure 8 .

 88 Figure 8.23 -Optimal topology of the 3D lintel made of steered unidirectional material, with 20 % volume fraction of the design volume 3
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 84 Summary of the three optimizations of the door

Figure 8 .

 8 Figure 8.27 -Normalized compliances in function of the normalized mass for several optimizations of the lintel by using different design volumes and optimization types
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Table 3 .

 3 4 -Description of the five optimization sub-problems to be solved

	Problem Conditions on the polar components	K	k	Criterion:

Table 4 .

 4 3 -Optimal values of the stiffness polar parameters {Φ 1 , K, R 0 , R 1 }, and complementary energy W c for a given stress tensor with polar parameters R and T[Julien 2010, Table 3.8].

Table 5 .

 5 

	1 -Material properties and the corresponding polar components of composite carbon
	epoxy T300/5204 [Julien 2010]		
	Moduli	Values Polar components Values
	Longitudinal Young modulus [MPa] 181 000 T 0 [MPa]	26 880
	Transverse Young modulus [MPa]	10 300 T 1 [MPa]	24 740
	Shear modulus [MPa]	7170 R 0 [MPa]	19 710
	Poisson ratio [-]	0.28 R 1 [MPa]	21 430
		K [-]	0

Table 5 .

 5 2 -Compliance, maximum value of displacement magnitude and iteration numbers for the optimal cantilever beams made of aluminum, quasi-isotropic laminate, and steered unidirectional material

	Solution	Compliance	Maximum value of	Number of
		[mJ/mm]	displacement [mm]	iteration
	Aluminum	62.5 (0 %)	0.322 (0 %)	76
	Quasi-isotropic laminate	35.95 (-42.48 %)	0.185 (-42.54 %)	56
	steered unidirectional ma-	16.78 (-73.5 %)	0.0855 (-73.45 %)	99
	terial			

Table 5 .

 5 3 -Compliances, maximum values of displacement magnitude and iterations resulting from sequential (2 steps) and concurrent (1 step) optimization for the cantilever beam optimization

	Optimization Steps			Compliance	Maximum value of	Iterations [-]
					[mJ/mm]	displacement [mm]
	Sequential	isotropic material Shape with	fixed	35.95	0.185	56
		Material	anisotropy	13.85	0.071	10
		distribution with fixed		
		shape				
		Shape and material	13.84	0.07	263
	Concurrent	anisotropy distribution		

Table 5 . 4

 54 

	Optimization Steps			Compliance	Maximum value of	Iterations [-]
					[J/m]	displacement [m]
	Sequential	isotropic material Shape with	fixed	2.07	0.023	57
		Material	anisotropy	1.047	0.015	10
		distribution with fixed		
		shape				
		Shape and material	0.96	0.012	120
	Concurrent	anisotropy distribution		

-Compliances, maximum values of displacement and iterations resulting from sequential (2 steps) and concurrent (1 step) optimization for the bridge optimization

  + 4(x 2 tn 2 + y 2 tn 3 + z 2 tn 4 ) -21tn 5 12C 0 + x 2 tn 2 + y 2 tn 3 + z 2 tn 4 -3tn 5 )(4tn 1 -4(x 2 tn 2 + y 2 tn 3 + z 2 tn 4 ) + 3tn 5 ) + 4(x 2 tn 2 + y 2 tn 3 + z 2 tn 4 ) -21tn 5 12C 0 + x 2 tn 2 + y 2 tn 3 + z 2 tn 4 -3tn 5 )(4tn 1 -4(x 2 tn 2 + y 2 tn 3 + z 2 tn 4 ) + 3tn 5 ) 12C 0

	7.3. Elastic energy minimization with respect to the selected invariants	123
	W n = 20tn 1 + 4σ 2 σ 2 m 3n + σ 2 dI dI 2(2tn 1 12C 0	
		(7.3.21)
	W κ 0 = σ 2 dI 20tn 1 + 4σ 2 3tn5 4κ 0 + σ 2 dI dI 2(2tn 1 (7.3.22)
	Case 1: Optimal value of the material orientation and minimum
	value of the energy W n	

  7.3. Elastic energy minimization with respect to the selected invariants 127 Remark 7.3.4. Most of existing materials (that are used in industry) are defined by the first case, i.e. κ 0 > C 0

Table 7 .

 7 2 -Optimal values of transverse isotropy direction d and the stiffness invariants {m, µ, κ, l}, and minimum elastic energy W m,µ,κ,l,d for a given stress tensor

	m opt	µ opt	κ opt	l opt	d opt	W opt m,µ,κ,l

Table 8 .

 8 

	1 -Material properties and the corresponding 3D invariants of a carbon epoxy unidirec-
	tional material		
	Moduli	Values 3D invariants Values
	Longitudinal Young modulus [MPa] 157 400 n [MPa]	75 853
	Transverse Young modulus [MPa]	11 900 κ [MPa]	52 901
	Shear modulus [MPa]	5060 µ [MPa]	5060
	Transversal shear modulus [MPa]	4270 m [MPa]	4270
	Transversal Poisson ratio [-]	0.393 l [MPa]	-49 277

Table 8 .

 8 2 -Material properties and the corresponding 3D invariants of the isotropic part of the material in Table8.1

	Moduli	Values 3D invariants Values
	Young modulus [MPa] 135 341 n [MPa]	75 853
	Shear modulus [MPa]	4796 κ [MPa]	4796
	Poisson ratio [-]	0.41 µ [MPa]	4796
		m [MPa]	4796
		l [MPa]	0

Table

  

Table 8 .

 8 

	3 -Compliances, maximum values of displacement and iterations resulting from sequential
	(2 steps) and concurrent (1 step) optimization for the3D cantilever beam optimization
	Optimization Steps			Compliance	Maximum value of	Iterations [-]
					[mJ]	displacement [mm]
	Sequential	isotropic material Shape with	fixed	2 10 -3	2.04 10 -3	43
		Material	anisotropy	1.833 10 -4 1.89 10 -4
		distribution with fixed		
		shape				

Un enjeu majeur de l'industrie aéronautique actuelle est de minimiser le coût et la masse des structures. Dans cette optique, l'optimisation topologique constitue une approche pertinente et en plein essor. Celle-ci vise à déterminer en phase de design conceptuel la forme idéale de la structure. En pratique, l'optimisation topologique consiste le plus souvent à déterminer la distribution de matière optimale pour un encombrement donné et un ensemble de chargements prédéfinis. La plupart des travaux publiés en la matière traitent de matériaux isotropes, essentiellement des métaux. Toutefois, les composites sont de plus en plus utilisés pour l'allègement des structures. En effet, leurs ratios masse-rigidité et masse-résistance sont supérieurs à ceux des alliages légers usuels de l'aéronautique. Les composites offrent de nouveaux degrés de liberté pour l'optimisation car il est alors possible d'optimiser la distribution d'anisotropie. Cependant, très peu de travaux traitent de l'optimisation topologique des structures faites de matériaux anisotropes. On peut alors se demander comment réaliser l'optimisation topologique des structures faites de matériaux

(a) Sequential optimization (b) Concurrent optimization
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 Chapter 7.Local minimization of the elastic energy for a transversely isotropic material in 3D

between stiffness and compliance invariants. For this purpose, we use five invariants (n, m, µ, κ, l) that are linear combinations of (α, β, c 1 , c2 , c 3 ). We have the following relationships:

Equation (7.2.13) becomes:

Equation (7.2.14) exhibits separation of the isotropic and anisotropic terms. The isotropic part of (7.2.14) is composed of the term in n and in (m + 2µ). The anisotropic part of (7.2.14) are the terms that depend on M as it constains the direction of transverse isotropy. The separation of isotropic from anisotropic part is a matter of interest as it eases the optimization with respect to anisotropy. This permits easily to fix the isotropic part and to optimize only with respect to the anisotropic part.

Determination of the physical meaning of the selected 3D invariants

Using the selected invariants (n, m, µ, κ, l) to parameterize the transversely isotropic elasticity tensor simplifies the physical interpretation of the energy minimization problem. Indeed, physical meaning of some of these invariants is intuitive. Therefore, this section studies the physical meaning of the selected 3D invariants.

In the intrinsic expression of the elasticity tensor with lower order tensors (see equation (7.2.14)), we can directly see that n is the bulk modulus (term in 1 ⊗ 1). For the remaining four invariants, two methods are used to determine their physical meaning. First, the tensor is written in matrix representation in order to identify the physical meaning of two of them. Second, the elastic energy is expressed to determine the energetic physical meaning of the other invariants.

Matrix representation of the transversely isotropic elasticity tensor

This section presents the elasticity tensor matrix representation for a transversely isotropic material. The symmetry axis is along the vector e 3 . The matrix representation of the elasticity tensor in the Because ∂W κ,l (κ,l) ∂κ < 0 ∀(κ, l) such that l 2 n < κ ≤ κ 0 , the optimal value for κ is κ opt = κ 0 . Thus, ∂W κ,l (κ, l) ∂l

is strictly positive. Therefore, the couple (κ 0 , 0) corresponds to the global minimum of the problem (P 1,new b

) which is equal to

Solutions of the optimization problem

To sum up, the problem (P 1 ) is split into two subproblems (P 1 a ) and (P 1 b ). The two subproblems are solved separately with respect to the invariants (m, µ) and (κ, l). Since the objective functions of each subproblem are positive quantities, the values that minimize them are also the values that minimize their sum that is the objective function of the original problem (P 1 ). Therefore, the solutions of the problem (P 1 ) are given by putting together those of the two subproblems. The optimal moduli (κ, l), solutions of the problem (P 1 ) can be infinite for special cases. Indeed, these invariants are not upper bounded, unlike the shear moduli (m, µ) that are upper bounded by imposing a fixed isotropic part (m + 2µ) of the stiffness elasticity tensor. However, material with infinite moduli does not exist. To be in the field of realistic materials, a physical constraint on the modulus κ is imposed. It is upper bounded with a predefined value κ 0 . Therefore, a new physical optimization problem (P 1,new ) is solved.

We remind the problem (P 1,new ): 7.3.15) Where:

Optimal values of the invariants and the elastic energy depend on the value of the stress field. We 120 Chapter 7. Local minimization of the elastic energy for a transversely isotropic material in 3D take:

.1 summarizes the optimal values of the stiffness invariants and the elastic energy. These expresssions are not valid when σ (2) 1 : σ (2) 1 andσ (2) 2 : σ (2) 2 are null at the same time. Indeed, the part of the energy that depends on the shear moduli µ and m is null. Their values are thus optimal for any value that is included in the design domain. These expressions are not valid when tr σ

0 are null at the same time. Indeed, in this case, the part of energy, that depends on the moduli (κ, l), is null. Any value of κ and l that is inside the thermodynamic bound and the physical constraint is thus optimal.

Otherwise, the optimal values of the stiffness invariants and the elastic energy depend on (tr σ) 2 , which involves the spherical part of the stress tensor, and (M : σ ) 2 which involves the deviatoric part of the stress tensor and the transverse isotropy direction. The cross modulus depends also on the nature of the stresses, and have a unique optimal value. The optimal values of κ lie in an interval, when the transversely isotropic material is subjected to an essentially spherical stress state. Therefore, there exists an infinite number of transversely isotropic materials that are optimal, with a unique optimal value of m, µ, l. They correspond to a minimum of the elastic energy. The set of these optimal invariants defines shapes of transversely isotropic materials. Several real materials could exhibit this optimal transverse isotropy shape.

The advantage of using the invariants is that the minimization problem can be performed analytically. Not only is the resolution achieved in a very simple way, but it also gives closed form solutions (explicit formulations) of the invariants and the corresponding minimum value of the elastic energy. These formulations are valid for any direction of the transversely isotropic material. The next step is to determine the optimal direction that minimizes the optimal value of the elastic energy computed in this section.

Minimization with respect to the material orientation

The objective of this section is to perform the minimization of the elastic energy obtained in the first step with respect to the direction of transverse isotropy. The idea is to determine the optimal direction that minimizes this elastic energy (W opt m,µ,κ,l (d) in (7.3.17)).

It's known from the work of [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]] and [START_REF] Julien | Conception Optimale de l'Anisotropie dans les Structures Stratifiées à Rigidité Variable par la Méthode Polaire-Génétique[END_REF][START_REF] Vincenti | Optimal Orthotropy for Minimum Elastic Energy by the Polar Method[END_REF]] that the optimal orientation of an orthotropic material in 2D is along the principal directions of stress. In this work, we want to express the optimal orientation of the material in function of the principal direction of stress, in the case of a 3D transversely isotropic material. The minimum value of the energy in the previous section depends on the nature of the stresses. When 4β 2 1 κ 0 ≥ β 2 2 , the second term of the minimum energy depends on the bulk modulus n only. Otherwise, the second term depends on the invariant κ 0 . Therefore, there are two expressions of the minimum energy. For each expression, we seek the direction of the transverse isotropy that Chapter 8. Application of the method on 3D test cases

Aircraft door lintel optimization

The industrial problem presented in this section consists in replacing a highly loaded structure of the fuselage: the door surrounding lintel. Since the global behavior of the airplane must not be changed, the objective is to lighten the structure as much as possible, while maintaining the same stiffness behavior of the aircraft. For this purpose, topology optimization is performed in order to determine the optimal material distribution and the optimal material anisotropy repartition. For the replacement of the current lintel made of titanium, we study three ways to redesign the lintel.

In this section, the topology of the 3D door lintel is optimized with gradually adding degrees of freedom on the material anisotropy in the optimization algorithm. First, a 3D lintel made of titanium is optimized so that the global compliance of the box is identical to that of the reference model. Second, a 3D lintel made of steered unidirectional material, where the material orientation is optimized concurrently with the material density distribution. Finally, a 3D lintel is optimized concurrently with respect to the material density distribution and the material anisotropy repartition. In the last two optimizations, the same mass as the optimized 3D lintel is used.

The target is therefore the compliance of the reference model with minimum mass. However, the formulation of the problem in the alternate directions algorithm is the minimization of the compliance with a volume fraction constraint. As explained in chapter 4 section 4.3, we perform several optimizations by changing the imposed volume fraction in order to achieve the compliance target. By doing so, the mass is minimized and the compliance is imposed.

Description of the finite element model

The door surrounding lintel is in itself a structure above the door of the fuselage. The lintel prevents the door hole of the fuselage from opening during the cruise phase due to the internal pressure. Figure 8.12 shows a part of the fuselage surrounding the door, the lintel is illustrated in magenta. The figure is an inside view of the fuselage. The lintel is crossed by door frames shown with blue arrows in the figure. The function of these door frames is to stiffen what is around the door to prevent the door hole from opening. Therefore, the lintel helps the frames as well. These door frames are twisted as the fuselage presents a double curvature on the nose of the aircraft. Therefore, a twist stabilization web (shown in magenta in the figure) helps the door lintel to distribute the forces and to stabilize the frames that are twisted. The door lintel and the twist stabilization web form a whole. Thus, in this work, they both are removed from the model and replaced by a unique optimized door lintel, in order to build a volume work.

The finite element model used in this work is a detailed finite element model (DFEM) of a door lintel. For numerical cost reason, the DFEM of the fuselage surrounding the door is reduced into a smaller finite element model. Significant work was carried out at the office of STELIA aerospace, in collaboration with its team, in order to define the small model that is representative of the fuselage arround the door and that is as small as possible. On the complete model of the door, superelements are used so that the loading applied on the fuselage are equivalent to that applied on the door model. The same principle is used in the reduced model of the door. For this purpose, superelements are used of the door in order to apply a realistic loading for the condensed model in accordance with the loadings of the complete model of the door. The most dimensional case for the door contour sustained by set of the lintel and the twist stabilization web is the cruise phase of the aircraft. Therefore, a pressure load case is applied. The reference model is composed of 150 000 shell elements. One finite analysis in MSC Nastran, with 4 CPU, takes 10 minutes. When the lintel and the twist stabilization web are removed, there are 92 000 remaining elements.

Simultaneous optimization of topology and material anisotropy for aeronautic structures

This thesis deals with the lightweight design of aeronautical structures. On the one hand, topology optimization, that determines the optimal distribution of the material, is a response to this concern. On the other hand, anisotropic materials offer new degrees of freedom for structural optimization. The aim of this study is to propose a methodology to find concurrently the material spatial distribution and the material anisotropy repartition, for 3D structures using a transversely isotropic material. For this purpose an optimization strategy is developed for 2D structures and extended for 3D structures. In order to handle in the optimization the complexity brought by the anisotropy of the material behavior, the elasticity tensor is parameterized by invariants. The shape of the structure is parameterized by the SIMP method using a density variable that determines the presence or absence of material. The problem is solved using the alternate direction algorithm which is well-suited to take into account concurrently topology and material anisotropy. The algorithm alternates between local minimizations and global minimizations. Thanks to the use of invariants, the local minimizations are solved analytically. The global minimizations correspond to finite element calculations. The method is applied to global structural stiffness maximization problems for classical test cases. A complex industrial test case is also considered with the optimization of a fuselage door surrounding lintel modeled by a detailed finite element model (DFEM) provided by STELIA Aerospace.
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Optimisation simultanée de la forme et de l'anisotropie de structures aéronautiques

Ce travail de thèse s'inscrit dans le cadre de l'allègement des structures aéronautiques. Dans cette optique, d'une part, l'optimisation topologique est une approche pertinente et en plein essor, celle-ci détermine la distribution optimale de matière. D'autre part, les matériaux anisotropes offrent des nouveaux degrés de liberté pour l'optimisation. L'objectif de cette thèse est de développer une méthode d'optimisation permettant de déterminer simultanément la distribution de matière et la distribution d'anisotropie optimales d'une structure 3D utilisant un matériau isotrope transverse. Pour ce faire, une stratégie d'optimisation est développée pour les structures 2D et étendue aux structures 3D. Afin de simplifier l'intégration de l'anisotropie dans l'optimisation, le tenseur d'élasticité est paramétré par des invariants. La forme de la structure est paramétrée par la méthode SIMP utilisant une variable de densité qui détermine la présence ou l'absence de matériau. La résolution numérique est faite avec l'algorithme des directions alternées qui est bien adapté à la prise en compte simultanée de la topologie et de l'anisotropie dans l'optimisation. L'algorithme alterne entre des minimisations locales et minimisations globales. Grâce à l'usage d'invariants, la résolution des minimisations locales est analytique. Les minimisations globales correspondent à des calculs éléments finis. La méthode est appliquée à des problèmes de maximisation de la raideur globale de la structure pour des cas tests classiques. Un cas test industriel complexe est également traité : l'optimisation d'un linteau de porte de fuselage modélisé par un modèle éléments finis détaillé fourni par STELIA Aerospace. 
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