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Abstract

The ability to anticipate future events is a key component of intelligence. Video
prediction has been studied in recent years as a means to provide machines
with this ability. Predictive models of the environment hold promise for allow-
ing the transfer of recent reinforcement learning successes to many real-world
contexts, by decreasing the number of interactions needed with the real world.
Video prediction has been studied in recent years as a particular case of such
predictive models, with broad applications in robotics and navigation systems.
While RGB frames are easy to acquire and hold a lot of information, they are
extremely challenging to predict, and cannot be directly interpreted by down-
stream applications. Here we introduce the novel tasks of predicting semantic
and instance segmentation of future frames. The abstract feature spaces we con-
sider are better suited for recursive prediction and allow us to develop models
which convincingly predict segmentations up to half a second into the future.
Predictions are more easily interpretable by downstream algorithms and remain
rich, spatially detailed and easy to obtain, relying on state-of-the-art segmenta-
tion methods.

We first focus on the task of semantic segmentation, for which we propose
a discriminative approach based on adversarial training. Then, we introduce
the novel task of predicting future semantic segmentation, and develop an au-
toregressive convolutional neural network to address it. Finally, we extend our
method to the more challenging problem of predicting future instance segmenta-
tion, which additionally segments out individual objects. To deal with a varying
number of output labels per image, we develop a predictive model in the space
of high-level convolutional image features of the Mask R-CNN instance segmen-
tation model. We are able to produce visually pleasing segmentations at a high
resolution for complex scenes involving a large number of instances, and with
convincing accuracy up to half a second ahead.
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Résumé

Les modèles prédictifs ont le potentiel de permettre le transfert des succès
récents en apprentissage par renforcement à de nombreuses tâches du monde
réel, en diminuant le nombre d’interactions nécessaires avec l’environnement.
La tâche de prédiction vidéo a attiré un intérêt croissant de la part de la
communauté ces dernières années, en tant que cas particulier d’apprentissage
prédictif, dont les applications en robotique et dans les systèmes de navigations
sont vastes. Tandis que les trames RGB sont faciles à obtenir et contiennent
beaucoup d’information, elles sont extrêmement difficile à prédire, et ne peu-
vent être interprétées directement par des applications en aval. C’est pourquoi
nous introduisons ici une tâche nouvelle, consistant à prédire la segmentation
sémantique ou d’instance de trames futures. Les espaces de descripteurs que
nous considérons sont mieux adaptés à la prédiction récursive, et nous permet-
tent de développer des modèles de segmentation prédictifs performants jusqu’à
une demi-seconde dans le futur. Les prédictions sont interprétables par des ap-
plications en aval et demeurent riches en information, détaillées spatialement et
faciles à obtenir, en s’appuyant sur des méthodes état de l’art de segmentation.

Dans cette thèse, nous nous attachons d’abord à proposer pour la tâche
de segmentation sémantique, une approche discriminative se basant sur un
entrainement par réseaux antagonistes. Ensuite, nous introduisons la tâche
nouvelle de prédiction de segmentation sémantique future, pour laquelle nous
développons un modèle convolutionnel autoregressif. Enfin, nous étendons notre
méthode à la tâche plus difficile de prédiction de segmentation d’instance future,
permettant de distinguer entre différents objets. Du fait du nombre de classes
variant selon les images, nous proposons un modèle prédictif dans l’espace des
descripteurs d’image convolutionnels haut niveau du réseau de segmentation
d’instance Mask R-CNN. Cela nous permet de produire des segmentations vi-
suellement plaisantes en haute résolution, pour des scènes complexes compor-
tant un grand nombre d’objets, et avec une performance satisfaisante jusqu’à
une demi seconde dans le futur.
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Chapter 1

Introduction

1.1 The ability to anticipate future events

Recent years have seen tremendous progress in various fields of artificial intel-
ligence. In computer vision, deep learning approaches have revolutionized the
field of recognition, with impressive achievements e.g . in classification (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2015; Szegedy et al., 2015; He et al., 2016),
detection (Girshick et al., 2016) and semantic segmentation (Farabet et al., 2013;
Long et al., 2015). While important challenges remain in providing a machine
with the ability to perceive its environment, these advances have encouraged the
research community to move forward and consider new and bold research direc-
tions towards developing other components necessary for intelligent behaviour.

Drawing inspiration from human intelligence is a rational route towards this
goal. It is widely acknowledged that babies learn by observing and interacting
with their environment. Rooted at the intersection between control theory,
experimental psychology, computational neuroscience and statistics, the field
of reinforcement learning (RL) is precisely concerned with learning behaviours
and concepts through interactions with a given environment, and has also seen
prodigious breakthroughs enabled by deep learning. In the context of games
such as Backgammon (Tesauro, 1995), Atari (Mnih et al., 2013), Go (Silver
et al., 2016), and recently StarCraft II (Vinyals et al., 2019), deep RL has
enabled models to learn behaviours that surpass human performance.

However, all of these breakthroughs have occurred in environments that can
be simulated. The main reason for this is that current RL algorithms require an
immense number of interactions with the environment during learning. While
this is possible in simulated environments, where interactions are cheap and can
be sped up, in the real world, they are often slow, expensive and even dangerous.
Learning invariably includes phases of exploration, where potentially completely
random actions are taken, which can lead to catastrophic situations. For ex-
emple, learning a model for autonomous driving using generic reinforcement
learning algorithms directly on roads would involve crashing a huge number of

1



2 CHAPTER 1. INTRODUCTION

vehicles and endangering other users of the road, before it could reach – let
alone surpass – human performance. Instead, current methods for autonomous
driving require an important amount of prior expert knowledge specific to this
task. Such knowledge is difficult to acquire and to incorporate optimally into
a model. Just like hand-engineered vision features have been outperformed by
far by deep features, deep RL has the potential to bring massive improvements
to this field; or to any other robotic tasks, without having to renew, task after
task, the same level of investment and effort by communities of experts.

The ability to anticipate future events is a key component of intelligence. In
fact, our brain are essentially predictive machines, according to a currently dom-
inant hypothesis in cognitive science (Bubic et al., 2010; Hohwy, 2013; Clark,
2013). Model-based RL consists in methods that rely on predictive models of
the environment for learning, decision-making and/or planning. Such methods
hold promise of allowing the transfer of recent RL successes to many real-world
contexts, by decreasing the number of interactions needed with the real world,
and this in various ways. First, simply because such predictive models of the
world, also called forward models, can be used to replace simulators: instead
of being programmed, the simulator is learned, and allows the same cheap and
fast interactions. This can be seen as a form of data augmentation of the train-
ing set. Second, a forward model can be directly used in planning and control
algorithms, e.g . using dynamic programming algorithms or model predictive
control. Third, forward models have been used to formulate intrinsic reward
signals, such as curiosity, to improve the exploration process and its efficiency,
inspired by the observation by psychologists that curiosity is an important and
widespread mechanism in the development of human knowledge, that fosters
learning and exploring even in the absence of obvious external rewards (Silvia,
2012).

Finally, forward models can leverage the high dimensional observations they
receive from the environment, to develop representations for it. Analogous to
the fact that the scientific process heavily relies on experiments, checking that
results are consistent with expectations given a proposed model, and correcting
the model in case of inconsistency, forward models can be used to obtain an
auxiliary learning signal and improve the intermediate representation they rely
on (Mathieu, 2017). The underlying postulate is that a model that has learned
to perform video prediction well will necessarily have developed a strong rep-
resentation of the environment. This representation can then be shared across
tasks and environments of similar nature. This applies beyond the RL setting,
for learning predictive models from raw video: in both cases, exerting the ability
to anticipate future events can in turn benefit the ability to perceive a dynam-
ically evolving environment, without requiring human annotations. Tasks that
leverage unlabeled data by predicting one part of the data given the other are
called self-supervised tasks.
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1.2 Video prediction

The task of video prediction is simply defined: given a sequence of frames ex-
tracted from a video, the goal is to predict a plausible future sequence. Condi-
tioned on actions, it is an instance of forward-modeling with broad applications.
Indeed, a video camera is a cheap sensor that acquires a rich, high-dimensional
signal, and it is therefore a technology of choice for enabling any robot to cap-
ture the state of the environment. In combination with the reasons developed
in the previous section, this has led to vivid and growing interest in recent years
from the research community for the task of video prediction.

However, video prediction is excruciatingly challenging. The first challenge
this task holds is its inherent uncertainty. From a probabilistic perspective, the
task of video prediction can be viewed as learning a model that allows us to
approximately sample from the distribution over the future output sequences,
conditioned on the input sequence. In general, these conditional distributions
have several modes and hence require more sophisticated methods than the clas-
sical regression losses that have been used in supervised learning. Generative
modeling has also seen the emergence of methods that are able to leverage pow-
erful deep learning techniques (Goodfellow et al., 2014; Kingma and Welling,
2014; van den Oord et al., 2016). In particular, recent developments of gener-
ative adversarial networks have distinguished themselves by the unprecedented
quality of the generations, astonishing in realism (Karras et al., 2018; Brock
et al., 2019). These methods have been applied to the setting of video predic-
tion, but in general must settle for a trade-off between the diversity and the
realism of the generated sequences. In this respect, video prediction is also a
great playground, of fundamental interest, to develop methods that can model
high-dimensional, complex and multi-modal, conditional distributions, which
arise in a large number of other domains.

A second important challenge of the task resides in the multiple factors of
variation in videos, that combine together and vary in time in a complex and
intricate manner. These factors include: the presence, position, appearance and
pose of various objects; characteristics of the scene, such as illumination and
layout; and finally view-point and ego-motion of the camera. To capture the
full distribution of plausible future sequences, models must not only disentan-
gle these factors, but also anticipate how they can evolve and combine them
adequately.

While RGB frames are easy to acquire and hold a lot of information, they
are extremely challenging to predict. Furthermore, once predicted, they cannot
be directly interpreted, which is why any machine learning pipeline will first
proceed to feature extraction. Considering RGB intensities as low level features,
we can question whether these features are the best trade-off between rich,
spatially detailed representations of the state of the environment and ease of
predictability, as well as ease of interpretability by downstream algorithms.

Let us recall the motivations that we have developed for forward modeling,
to show in more detail that they do not require modeling of such low-level
features. In the case where a predictive model is used to generate simulated
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sequences, or for dynamic programming, current methods rely on extracting
high-level features prior to predicting how good a state is, the reward that is
to be obtained, or which action to take. These high-level features will need to
undo some of the work we have put in when modeling each factor, since they
may need to be invariant to some, e.g . illumination changes or appearance. In
general, they will need to be semantically meaningful and possibly spatially
detailed, e.g . to allow predictions relating to trajectories or interactions with
objects. Control algorithms can also be used advantageously in abstract feature
spaces, see e.g . (Watter et al., 2015). Concerning the use of forward models
for intrinsic motivation, the curiosity-driven exploration approach proposed by
Pathak et al., 2017 is also formulated in a high level feature space, bypassing
the difficulties of directly predicting pixels, and, critically, learned to ignore the
aspects of the environment the agent cannot affect. Directly using observation
space for computing curiosity is shown to be significantly worse than using the
learned embedding.

Predicting the RGB intensities of future frames seems therefore both overly
complicated and in many ways not optimal. This is why, in this work, we set out
to study candidates, in term of feature spaces, that make prediction easier, are
more easily interpretable by downstream algorithms and remain rich, spatially
detailed and easy to obtain.

1.3 Prediction in high-level feature spaces

Motivated by this, our goal in this thesis is to study video prediction in high-
level, semantically meaningful and spatially detailed feature spaces, and to
develop predictive models in these settings. These high-level representations
should be sufficient to model important concepts, relating to object dynamics,
scene dynamics and interactions between objects, which are necessary and suf-
ficient for decision-making and planning in a wide variety of scenarios. While
ultimately, modeling RGB features may enable learning more complete repre-
sentations of the environment – under the condition that models can learn to
model them well enough – we believe that focusing on such high-level represen-
tations will lead to methods that will be more widely applicable.

Semantic segmentation is one of the most complete forms of visual scene un-
derstanding. In this task, the goal is to label each pixel with the corresponding
semantic label, e.g . grass, car, dog, street, etc. Human annotations are expen-
sive to acquire, and this is even worse if we need annotations for each video
frame. However, like several other recognition tasks, this task has seen impor-
tant progress thanks to deep learning approaches. Methods have become ex-
tremely accurate on challenging datasets, with a large number of object classes,
instances per image and in high resolution images. We therefore rely on state-
of-the art semantic segmentation models to label all frames in videos. These
automatically generated annotations meet the criteria that we have formulated,
and constitute the first learning space for our predictive models.

However, semantic segmentation does not account for individual objects,
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but rather lumps them together by assigning them to the same category label.
Instance segmentation overcomes this shortcoming, by additionally associating
with each pixel an instance label. It seems reasonable to assume that such an
explicit notion of instance is important to model the concepts mentioned above,
and accurately anticipate object motion and deformations by keeping track of
their properties. Therefore, we extend our previous approach to predicting
future instance segmentation.

1.4 Outline

The rest of this thesis is organised as follows. In Chapter 2, we begin by intro-
ducing the tasks of semantic and instance segmentations, as well as influential
methods that have been proposed to address them. Then, we review the domi-
nant frameworks in the field of generative modeling, to prepare for the presenta-
tion of video prediction methods. Finally, we provide additional context on how
model-based RL employ forward models of the environment, and present the
main directions that have been explored to address the task of video prediction,
as well as applications of video prediction models.

In Chapter 3, we focus on the task of semantic segmentation itself, and pro-
pose a discriminative approach for semantic segmentation based on adversarial
training. Inspired by recent successes in the field of generative modeling, we
propose an adversarial training approach to train semantic segmentation mod-
els.

In Chapter 4, we introduce the novel task of predicting future frames in the
space of semantic segmentation. Compared with the original video prediction
task, we show that this task is better suited for autoregressive modeling and for
predicting further into the future. We propose an autoregressive model which
convincingly predicts segmentations up to half a second into the future. We
conduct our experiments on a dataset for urban scene understanding, that con-
sists of videos of much higher complexity than had been previously attempted
by video prediction approaches, e.g . in terms of number of instances present on
each image.

In Chapter 5, we extend our method to the more challenging problem of
predicting future instance segmentation by forecasting convolutional features.
To deal with a varying number of output labels per image, we develop a predic-
tive model in the space of fixed-sized convolutional features of the Mask R-CNN
instance segmentation model. We apply the “detection head” of Mask R-CNN
on the predicted features to produce the instance segmentation of future frames.
Besides producing semantically richer predictions, we show that this improves
the quality of segmentations of individual object instances. Compared with
concurrent video prediction approaches, our task allows us to produce visually
pleasing segmentations at a high resolution for complex scenes involving a large
number of instances, and with reasonable segmentation accuracy up to half a
second ahead. Finally, in Chapter 6, we summarize our main contributions and
present perspectives for future work.
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Chapter 2

Background

2.1 Image segmentation

Image segmentation consists in breaking an image into meaningful regions, to
represent it in a simplified and high-level form. As such, this task is extremely
ambiguous, as we illustrate in Figure 2.1. We can try to characterize what
makes a region “meaningful”. Different definitions lead to different types of
segmentation problems. Semantic segmentation consists in producing regions of
pixels belonging to objects of the same category. Instance segmentation is more
informative than semantic segmentation, in that regions should correspond to
object instances of predefined categories. Both of these tasks are much less
ambiguous and have seen tremendous progress in the past decade, thanks to
large scale discriminative deep learning approaches.

Figure 2.1: Segmentation annotations performed by different subjects, from the
Berkeley Segmentation Dataset 500 (Arbelaez et al., 2011). Important differ-
ences are due to the ambiguity of the task. To avoid distraction caused by
inconsistencies between labels across annotations, we show edges between an-
notated regions rather than label-based colouring.

7



8 CHAPTER 2. BACKGROUND

In the work we present in Chapter 4, we predict the segmentation of future
frames as a proxy task towards providing the ability to anticipate future events.
To do so, we build on recent progress both in semantic segmentation and in-
stance segmentation. In the following, we present some of the most influential
methods in both fields.

2.1.1 Semantic segmentation

Semantic segmentation is a visual scene understanding task formulated as a
dense classification problem, where the goal is to predict a category label at
each pixel in the input image. Just like in classification, the set of categories of
interest are predefined beforehand and fixed.

More formally, given an image x, we wish to assign a label yi to each spatial
position i, representing the class of the object the pixel belongs to. We call Y
the set of possible classes.

A distinction can be made between “things” and “stuff” to differentiate
between classes of which the instances have “a specific size and shape”, from
those that are “defined by a homogeneous or repetitive pattern of fine-scale
properties” but have “no specific or distinctive spatial extent or shape”, as
described by Forsyth et al., 1996. In other words, things have a well-defined
shape and can for example be counted, whereas stuff cannot. The two kinds are
generally needed to densely classify an image; for example, an image of a garden
could be split into regions corresponding to on one side, the stuff classes, e.g .
grass, sky, and on the other, the thing classes, e.g . tree, toy, dog. This distinction
is sometimes used as a prior of the model e.g . in the works of Zheng et al., 2014;
Heitz and Koller, 2008; Sun et al., 2014; Ladicky et al., 2010.

In most datasets, one of these categories is kept as a catch-all-remaining for
all pixels that do not belong to any of the other categories, e.g . “background”
or “other”. A “void” class is sometimes introduced to indicate that the corre-
sponding areas should not be used for learning; possibly because they have not
been annotated for lack of time, or as an alternative to the catch-all-remaining
class. In this case, predictions made for the pixels belonging to this class are
not taken into account.

While most approaches focus on RGB data, extensions naturally apply for
grayscale, stereo, RGB-D, as well as for 3D and video data where the main con-
cerns are efficiency and cTime-Contrastive Networks: Self-Supervised Learning
from Videoerency of the predictions.

Semantic segmentation can be seen as performing recognition and segmen-
tation jointly. Segmentation as a low level task, requires methods to leverage
fine and local details, for instance relying on image gradients. Recognition tasks
on the other hand, typically involve building features that are invariant to view
point, illumination and intra-class variations of (possibly deformable) objects,
as well as being robust to occlusions. A very common strategy to achieve this
is to aggregate local features into more robust representations, precisely losing
some of the local information that is required by the low level task of segmen-
tation. This makes one of the very specific challenges of the task of semantic
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segmentation. Methods for recognition and segmentation have been tailored to
these antagonistic goals; hence marrying them to benefit from their combined
strengths, leveraging both local and global information, requires careful design.

One advantage of this task is that it is less ambiguous than segmentation
alone, where several segmentations are often admissible. Ambiguity can still
arise in the cases of semantic segmentation, from conditions in which the image
was captured (e.g . over- or under-exposure, lens flare, blur, vignetting and so
on). It can also result from wrong or ambiguous annotations, e.g . in the case
of a photo of an object on a bus (should the photo be segmented as well or is
it part of the bus ?), or in presence of (semi-)transparent occlusions like the
silhouette of a person inside a vehicule. Imprecise annotations can additionally
be caused by extremely complex occlusion borders, due to an animal seeking
camouflage in a bush or a mesh fence over the image for example. Several other
ambiguous scenarios could be encountered; however, these cases are rare and
therefore they are usually ignored, so the task is generally assumed to be well-
defined. This makes it well suited for discriminative approaches, which have
made up the bulk of successful methods in the past two decades. Specifically,
in recent years, as most other recognition tasks, the field has been dominated
by deep learning approaches, typically relying on convolutional neural networks
(CNNs).

Most of these approaches can be roughly described as belonging to one of
two families: approaches that first segment the image, then classify the segments
(Verbeek and Triggs, 2007; Csurka et al., 2008; He and Zemel, 2009; Gould et al.,
2009; Kumar and Koller, 2010; Munoz et al., 2010; Lempitsky et al., 2011;
Tighe and Lazebnik, 2013); and approaches that go in the reverse direction by
first classifying each spatial position, and possibly refining the predictions, to
account for spatial relationships (Shotton et al., 2006; Winn and Shotton, 2006;
Krähenbühl and Koltun, 2011; Long et al., 2015; Chen et al., 2015; Schwing
and Urtasun, 2015; Zheng et al., 2015; Noh et al., 2015; Yu and Koltun, 2016;
Saxena and Verbeek, 2016). Hybrid approaches have also been explored, such
as the works of Ladicky et al., 2009; Larlus and Jurie, 2009 and Farabet et al.,
2013 The first family of methods were initially dominating, in particular due
to their greater efficiency since feature extraction and prediction was restricted
to a few thousands of segments at most. The second family of methods have
been gradually favoured in recent years, as they naturally lend themselves to
end-to-end learning with CNNs, and because dense prediction can be afforded
efficiently by such methods. In both cases, conditional random fields (CRFs),
presented below, provide a very natural framework for this task and have been
extensively used.

We will focus on giving a self-contained presentation of some of the influential
work in this area, including the approaches we build on. For a more exhaustive
presentation, we refer the reader to the complementary works of Zhu et al., 2016
and Garcia-Garcia et al., 2017. The first is concerned with giving a broad picture
of methods that have been proposed for segmentation tasks and the second
focuses on the developments of recent deep learning approaches for semantic
and instance segmentation.
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First, we provide context on CRFs and describe how they can be applied for
semantic segmentation. We also point to several formulations to illustrate the
various forms that these models can take and the compromises one must make
in their design. Next, we describe some of the strategies that have been used to
leverage both global and local information in deep learning approaches.

Conditional random fields

A conditional random field is a probabilistic undirected graphical model that
was introduced in 2001 by Lafferty et al., 2001 to discriminatively model a la-
tent set of variables Y given an observed set of variables X. The core idea is to
combine the strength of discriminative classification with graphical modeling.
Discriminative classification generally leads to good performance but does not
provide a formalism for specifying the relationships between the output vari-
ables. Graphical modeling on the other hand, allows us to do just that, either
by specifying a set of conditional independence assumptions or equivalently a
factorization that has to be admitted by the family of distributions we are con-
sidering. Conditional random fields lie at the intersection of these approaches,
and enable us to incorporate prior knowledge into the model, to obtain better
predictions than would be obtained by classifiers independently predicting each
component of Y . We refer the interested reader to a full definition of these
models in Appendix A.

Kumar and Hebert, 2003 were the first to use conditional random fields in
computer vision. They applied these models to binary semantic segmentation,
to detect man-made structures in images. As is standard when using random
fields, they use two types of pairwise potentials: the first one encourages a
smooth labelling, while the second adapts to the presence of discontinuities in
the intensity values of the considered spatial positions. The connectivity is a
simple 4-neighbourhood model.

For certain classes of pairwise potentials introduced by Krähenbühl and
Koltun, 2011, mean-field inference is tractable in fully-connected CRFs with
millions of variables, relying on the use of recent filter-based techniques. Such
fully-connected CRFs have been found extremely effective in practice to recover
fine details in the output maps. Chen et al., 2015 jointly leverage the strengths
of these models with the discriminative power of a re-purposed CNN pre-trained
for classification. They use the convolutional network to make coarse but glob-
ally accurate predictions, that can be refined by the CRF. Moreover, using a
differentiable formulation of the mean-field iterations, Schwing and Urtasun,
2015 and Zheng et al., 2015 concurrently show that it is possible to train the
CNN underlying the unary potentials in an integrated manner that takes into
account the CRF inference during training.

Higher-order potentials have also been shown to be effective. He et al., 2004
introduce higher-order potentials learned from the data to eliminate impossible
combinations e.g . water-above-sky. This incorporates the prior knowledge that
physical laws restrict the set of possible layouts and spatial relationships between
objects and stuff, depending on their nature, while allowing the actual combina-
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tions to be learned from the data. Kohli et al., 2009 propose robust higher-order
potentials based on label consistency across superpixels. Recent work by Arnab
et al., 2016 has shown how specific classes of higher order potentials can be
integrated in CNN-based segmentation models. While the parameters of these
higher-order potentials can be learned, they are limited in number.

Deep learning methods

While early CNN-based semantic segmentation approaches were explicitly pass-
ing image patches through the CNN, see e.g . (Farabet et al., 2013), current
state-of-the-art method indifferently use a fully convolutional approach (Long
et al., 2015). This is more efficient, since it avoids redundant computation
of low-level filters many times on pixels in overlapping patches. The extremely
promising results demonstrated by the sole use of convolutional neural networks
in the work of Long et al., 2015, lead a great number of works to focus on further
improvement in the designs of architectures, so that the compromise between
local and global information may be entirely learned from the data.

The field of view (FoV) (or receptive field) of a deep learning architecture is
defined as the set of elements of the input image that can affect a prediction at
any given spatial position, ignoring border effects. For example, an architecture
that consists of a single convolutional layer has a FoV of size equal to the kernel
size. The size of the FoV is an important characteristic, that helps us analyse
how much context can be taken into account by an architecture. The size of the
FoV increases linearly when stacking convolutional layers, and exponentially for
pooling layers.

Since the work of Long et al., 2015, and just like in most other recognition
tasks, it is widely acknowledged that competitive performance requires first
pretrainining architectures for classification on a large dataset, such as Ima-
geNet. This has favoured contributions that judiciously repurpose architectures
initially designed for classification, to ease the fusion of global and local infor-
mation, while avoiding dramatical changes to the architecture, so as to take the
most advantage of the pretraining stage.

We present in the following several methods in this direction. We note that
the presented methods can – and have been – used jointly.

Learned up-sampling Typical architectures involve a number of pooling
steps, which can increase the receptive field size rapidly after several steps.
As a result, however, the resolution of the output maps reduces, which means
that a low-resolution label map is obtained. To obtain a label map of matching
resolution, up-sampling is therefore necessary. This can be done using bi-linear
interpolation or learned up-sampling filters (Long et al., 2015; Noh et al., 2015;
Ronneberger et al., 2015).

Multi-scale architectures Multi-scale approaches are often used in com-
puter vision, e.g . in coarse-to-fine approaches or to work across object scales.
A generic approach is to apply a shared model to different scales of a Laplacian
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pyramid of the input image and aggregate the predictions into a final prediction
(Farabet et al., 2013). In CNNs, the very hierarchical nature of the feature repre-
sentation leads to a more efficient set of multi-scale approaches. Intuitively, the
high level features should provide coarse and semantically correct predictions,
while the lower levels should provide less robust but better spatially localized
cues. Aggregating intermediate predictions relying on these different levels can
be done by relying on the use of skip connections, i.e. shallow convolutional
maps from the features to intermediate predictions, [so called] because they
take a shorter computational path from the current features to the output of
the network, skipping the deeper path. Long et al., 2015 use skip connections to
make parallel predictions corresponding to different levels of features and finally
aggregate them. Ronneberger et al., 2015 iteratively refine the initial coarse pre-
dictions by leveraging the intermediate predictions coming from the lower level,
giving rise to a “U-Net” where the name refers to the shape of the resulting
architecture. A related family of methods use multi-resolution networks, e.g .
(Saxena and Verbeek, 2016; Zhou et al., 2015).

Shift-and-stitch and dilated convolutions The shift-and-stitch algorithm
is a simple algorithm which involves shifting the input by one pixel S times
in each spatial direction, where S denotes the network’s sub-sampling ratio, to
obtain slightly different predictions and interlace them together into a final pre-
diction of the same size as the original input. This method has a high cost, but
can be sped up using the “atrous” algorithm, avoiding redundant computation
by adapting the kernels of the convolutional layers, as detailed by Long et al.,
2015. This algorithm can be equivalently formulated in terms of dilated convo-
lutions (Chen et al., 2015). In both works, it allows the authors to repurpose
the classification architecture with large field of view into an architecture that
performs dense prediction, with the same field of view.

We provide here the description given by Yu and Koltun, 2016 for dilated
convolutions. To describe the computation that is done in a dilated convolution,
we avoid considerations at the borders, and consider an infinite single channel
feature map F . We can see it instead as a discrete function F : Z2 → R.
Similarly, calling Ωr = Z2 ∩ J−r, rK, a filter k of size (2r + 1)2 can be seen as
a function k : Ωr → R. The discrete convolution operator ∗ of F with k gives
a new discrete function (or infinite feature map) F ∗ k, defined in each point p
by:

(F ∗ k)(p) =
∑
Sr

F (s)k(t), (2.1)

where Sr = {(s, t) ∈ Z2 × Ωr|s+ t = p}.
Dilated convolutions are a generalization of this operator, where for dilation

parameter l, Sr = {(s, t) ∈ Z2 × Ωr|s + lt = p}. With l = 1, we recover the
original definition. The definition of this operator for multi-channel feature maps
follows directly from this. An intuitive illustration is provided in Figure 2.2
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(a) (b) (c)

Figure 2.2: Dilated convolutions support exponential expansion of the receptive
field without loss of resolution. Calling F0 and F1 respectively the input and
output feature maps, F1 is produced from F0 (a) by a 1-dilated convolution:
each element in F1 has a receptive field of 3× 3. (b) by a 2-dilated convolution;
each element in F2 has a receptive field of 7× 7. (c) by a 4-dilated convolution;
each element in F3 has a receptive field of 15× 15. The number of parameters
associated with each layer is identical. When stacking layers of dilated convo-
lutions, the receptive field grows exponentially while the number of parameters
grows linearly. Figure from (Yu and Koltun, 2016).

Provided the adequate image-to-row algorithm (which now depends on the
dilation parameter), dilated convolutions can leverage the same algorithms for
fast matrix computation as normal convolutions ; there is simply an increase in
computational complexity due to the fact that the resolution of feature maps is
now maintained throughout the network.

Although the resolution of the input is recovered, this does not solve the
problem that precise localization of borders is bound to be lost due to the
pooling layers. Therefore, Yu and Koltun, 2016 propose a simpler and more
accurate alternative. They note that dilated convolutions can be used to entirely
replace pooling layers. Specifically they replace each of the two last pooling
layer with pooling kernel of size p and its subsequent convolution layer by a
dilated convolution layer with dilation parameter p. This allows the field of
view to expand exponentially, but without aggregating values at different spatial
positions.

To push the performance of their model, Yu and Koltun, 2016 additionally
propose a context aggregation module, consisting of a stack of dilated convolu-
tional layers, with increasing dilation parameter. This module is appended to
the base network to increase its FoV significantly, leading to substancial perfor-
mance gains on Pascal VOC 2012. Their final architecture for this dataset is
called Dilation8, in reference to the eight layers of the context module. In the
case of the Cityscapes dataset, due to the high image resolution of the Cityscapes
dataset, they use a ten-layer context module, so the complete model is called
Dilation10. We use this architecture in the work we present in Chapter 4.
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Recurrent Networks Another line of work investigates the use of recurrent
networks to predict globally coherent segmentations. Pinheiro and Collobert,
2014 propose to learn a convolutional network that is applied autoregressively to
its own predictions, to iteratively refine initial predictions, by learning to correct
its own errors. This architecture enables the network to have a large field of view,
whil keeping the capacity of the model small. Byeon et al., 2015 propose 2D-
Long Short-Term Memory (LSTM) layers, which they stack in their architecture,
interleaved with convolutional layers. Here the recurrence is on the spatial
dimension and is motivated by the modeling of complex spatial dependencies,
through iterative propagation of the information of nearby predictions across
four directions, from top-left, top-right, bottom-left and bottom-right. The
outputs of the four LSTMs are aggregated in the convolutional layers. Visin
et al., 2016 proposes a similar and simpler approach, where bidirectional LSTMs
are used to model either horizontal or vertical relationships, in an alternating
fashion. Because each LSTM processes each column (or row) independently,
computation can be parallelized across columns (or rows). The obtained ReSeg
network is used on top of a network pretrained for classification (in their case
VGG) and learned upsampling layers map the predictions back to full resolution
outputs.

2.1.2 Instance segmentation

Semantic segmentation provides a detailed semantic description of the scene.
However, it does not distinguish between different object instances of the same
class. The task of instance segmentation has been proposed to address this
short-coming, by requiring for each pixel, the prediction of an additional label,
corresponding to the instance the pixel belongs to.

An alternative view on this task is that it is an extension of object detec-
tion, where instead of predicting a bounding box for each detection, we require
the method to predict a segmentation of the detected object. An important
difference between the two views, is that the second one allows competing la-
bels for a given spatial position. Depending on the down-stream application,
post-processing may be required to determine unique predictions.

A note that instance segmentation usually focuses on object classes and ne-
glects stuff classes, as previously defined in the context of semantic segmentation
(see Section 2.1.1), leading to a partially segmented image. Joint methods for
instance segmentation of objects and semantic segmentation of stuff have been
explored, e.g . (Dai et al., 2015), and recently under the name of panoptic seg-
mentation (Kirillov et al., 2017; Li et al., 2018c;b;d; de Geus et al., 2018; Kirillov
et al., 2019; Xiong et al., 2019; Yang et al., 2019).

Detection-based versus segmentation-based

These two views have led approaches to build on methods developed either in
the context of detection or of semantic segmentation. To remain coherent with
terms used in the literature, we will call them respectively detection-based and
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segmentation-based. We note however that this terminology can be slightly con-
fusing, since the order between modules that aim to classify, segment or localise
varies among methods of the same class, as we will see for example for object-
centric methods. To better understand the difference, it can be helpful to notice
that fundamentally, these classes of approaches differ in that detection-based
approaches define object-centric losses, while segmentation-based approaches
define pixel-centric losses. As a result, prior to post-processing, the outputs
produced by the former are a (large) number of object-level feature volumes,
while the latter produce a unified image-level feature volume.

Detection-based approaches In recent years, the field has been dominated
by approaches that extend a detection-based framework, usually relying on ob-
ject proposals. Hariharan et al., 2014 build on R-CNN (Girshick et al., 2016),
but replace object proposal with region proposal, using a bottom-up, class ag-
nostic process. For each proposal, features are extracted by a CNN from both
the foreground region and its bounding box and classified using a SVM. Next,
like most object detection pipelines, the method employs non maximum sup-
pression (NMS), a post-processing step that consists in removing duplicate pre-
dictions for the same object, based on their intersection over union (IoU) with
predictions of higher confidence. Following this, remaining region proposals are
further refined in an iterative procedure between top-down classification and
bottom-up segmentation methods. In follow up work, Hariharan et al., 2015
introduce hypercolumns to improve the segmentation refinement step: they use
skip connections from each layer to the output, so that each pixel is described
by features coming from low to high level layers, prior to classification. They
also propose a more efficient framework, that proceeds first with an entire de-
tection procedure, expands the set of retained boxes, segments them and scores
features computed on the segmentation again. The gain in efficiency allows
them to use a more recent deep architecture as feature extractor. The combi-
nation of their proposed hypercolumns, the deeper feature extractor, and the
rescoring procedure, leads to a very large boost in performance. Dai et al.,
2015 instead reverse feature extraction with masking: feature extraction is per-
formed on the entire image, and each segment proposal is used to mask the
features. Masked features are each passed to a multilayer perceptron (MLP)
for classification. Interestingly, their framework is able to handle objects and
stuff jointly. Li et al., 2016 also focus on improving the segmentation refinement
step in a detection-followed-by-segmentation approach. They do so by learning
a segmentation network that can be iteratively applied to refine predictions,
serving as a learned, unconstrained inference procedure, similar in spirit to the
approach of Pinheiro and Collobert, 2014 for semantic segmentation. Dai et al.,
2016 are the first to propose an end-to-end learnable deep architecture for this
task. They propose a cascaded structure, composed of three networks, that
share their convolutional features. The first network is tasked with proposing
class agnostic bounding boxes. Given these, the second extracts corresponding
fixed-size representations and predicts a pixel-level mask. Finally, the fixed-size
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representations, as well as masked copies, are given to a MLP for classification
of each instance. To achieve end-to-end differentiability, in particular of the two
latter networks with respect to the bounding box predictions, they introduce
a differentiable warping layer to extract the fixed size representation. Overall
their system is two orders of magnitude faster than previous approaches, and
achieves a substantial boost in performance. Finally, He et al., 2017 build on
Faster R-CNN (Ren et al., 2015) by adding a branch for predicting an object
mask. To faithfully preserve spatial locations, they replace the RoI Pooling
layer employed in the R-CNN family with a module called RoI Align, designed
to allow pixel-to-pixel alignment between input and output. This method has
enabled an outstanding boost in performance, and we build on it in the work
we present in Chapter 5. We review this approach in detail in Section 2.1.2.

Object proposal methods, used in such proposal-based approaches, aim to
maximize recall. They lead to a large number of redundant predictions, requir-
ing post-processing steps to be filtered out. To avoid such post-processing steps,
some works explore recurrent approaches, where at each time step, a new object
is detected and segmented, and a score is predicted for use in a stopping condi-
tion. Romera-Paredes and Torr, 2016 are the first to propose this set up, and
formulate a simple loss, that combines two terms. The first aims to maximize
the maximum over matchings of the sum over pairs of matched predicted and
ground truth masks of a soft version of the IoU. The second is trained to predict
the termination of the sequence when the number of predictions matches the
number of ground truth masks. Ren and Zemel, 2017 build on this framework,
and propose a recurrent architecture that relies on an external memory which
keeps track of the already segmented objects. Recurrence is both on the number
of objects, and on the number of steps that the method employs, to refine its
attention and look at several locations, before predicting a box location. In both
of these works, the predicted bounding box coordinates are used to extract a
patch, that is segmented and used to predict the termination score.

Segmentation-based approaches As we have mentioned earlier, a variety
of works take the reverse direction, by starting from a semantic segmentation
approach, and proposing methods to split the segmentations into instances. Liu
et al., 2017a propose a sequential grouping of the foreground pixels predicted
by semantic segmentation, by learning three successive networks. The first is
tasked with predicting horizontal and vertical object breakpoints. Predictions
are grouped into line segments, filling instances, that are grouped by a recur-
rent network into connected components. To deal with fragmented instances,
e.g . due to occlusions, another recurrent network is used to merge the compo-
nents into instances. Each instance is labeled by a simple majority vote over
the spatial positions inside its mask. Arnab and Torr, 2017 propose a hybrid
approach, where a semantic segmentation approach is augmented with a CRF,
that produces a map of instance labels. Since the number of instances varies
across images, this CRF is dynamically instanciated, using a fixed detection
module to predict the number of instances, and whose predictions are used as
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input to several unary potentials of the model. A fixed number of interations
leads to the instance predictions, each labeled with the class originally predicted
by the detector. Bai and Urtasun, 2017 propose to predict a modified watershed
energy landscape such that each basin corresponds to a single instance, while all
ridges are at the same height, using a convolutional network. This network is
trained end-to-end to map predicted semantic segmentation and the input image
to the energy map. A cut at a single energy level yields connected components,
forming the instance predictions. Finally, Kong and Fowlkes, 2018 propose an
end-to-end learnable framework for pixel-level grouping problems. A first stage
embeds pixels, such that pixels belonging to the same group have high simi-
larity, and pixels belonging to different groups have sufficiently low similarity.
A second stage performs a fixed number of Mean Shift Clustering (Comaniciu
and Meer, 2002) iterations on the embedding. These are differentiable, so the
whole system can be trained end-to-end. Used as an object proposal method, far
fewer proposals yield much higher recall than previous object proposal methods,
including learned methods. This could therefore be used in a detection-based
framework for instance segmentation. Instead, they propose to train the model
to additionally predict semantic segmentation maps, leveraged in the majority
voting strategy to transfer label predictions to the instances.

Discussion Detection-based approaches are naturally favoured by detection-
based metrics, which are used for evaluation for some of the most common and
challenging benchmarks, such as Microsoft COCO or Cityscapes.In particular,
this metric does not require, nor evaluate the ability of the algorithm to re-
solve competing predictions for a given spatial position. Instead, it relies on
the requirement that predicted masks should come with a confidence score. Ar-
guably, such metrics are therefore unfair to segmentation-based metrics, and
segmentation-based metrics have been proposed to address this. Instance seg-
mentation methods should be compared based on a metric chosen according to
whether competing predictions are a concern or not. If competing predictions
are allowed, it should be noted that one of the strength of detection-based ap-
proaches, is that the tasks of classifying the object and segmenting it are usually
decoupled. As a consequence, mask quality is not affected by competing classes,
e.g . at the intersection between objects of different classes. He et al., 2017 show
experimentally that predicting multinomial masks rather than binary masks for
each class results in severe loss of performance.

Additionally, one can consider an amodal variant of the task of instance
segmentation, as proposed by Zhu et al., 2017, where the full extent of the
object is to be segmented – including potentially occluded parts. While this
task is much more ambiguous than the original modal formulation, it may be
a better high level representation, since it decouples factors of instance shapes
and occlusions. In this case, detection-based approaches have a clear, natural
advantage over segmentation-based approaches, since the latter are designed to
produce a single prediction at each spatial position.

Nevertheless, pixel-centric losses usually enjoy simplicity, the tuning of fewer
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Figure 2.3: Instance segmentation predictions produced by Mask R-CNN on the
COCO test set. Masks are shown in colour, and bounding box, category, and
confidences are also shown. Figure from (He et al., 2017).

hyperparameters and fewer post-processing steps. Methods combining these
strengths would therefore be desirable.

Mask R-CNN

Here we give a self-contained presentation of the Mask R-CNN framework, the
current dominant detection-based approach. This framework was extensively
demonstrated to be amenable to extremely impressive performance in the task
of instance segmentation. In Figure 2.3, we show some predictions produced by
this method on the COCO dataset (Lin et al., 2014). To give a complementary
perspective to the one brought by the original papers, we describe the full ap-
proach on its own, without exhaustively mentioning earlier designs. For a good
overview of the detection methods of the R-CNN family, we refer the reader to
(Kalogeiton, 2017).

Framework Methods belonging to the R-CNN family for detection or in-
stance segmentation implement a two-stage approach. The first stage performs
region proposal, to predict bounding box coordinates for a large number of re-
gions that are likely to contain an object, in a class-agnostic manner. Such
predictions are called regions of interest (RoIs). They serve as a way to focus
the capacity of the recognition pipeline of the second stage on relatively few
promising areas of the image, in comparison with a sliding window technique.
For each RoI, the second stage classifies the potential object, refines the bound-
ing box coordinates to localize it, and in the case of Mask R-CNN, predicts
a binary mask segmenting it. The two stages are complementary: while the
first stage aims for rough localization, with high recall for the smallest number
of proposals possible, the second devotes computation to fine localization and
recognition on the selected regions. A note that both stages can share a deep
convolutional network for feature extraction, with preliminary results indicating
that this does not reduce performance.



2.1. IMAGE SEGMENTATION 19

RoIAlignRoIAlign

class
box

convconv convconv

(a) (b)

Figure 2.4: (a) The Mask R-CNN framework for instance segmentation. (b)
RoIAlign: The dashed grid represents a feature map, the solid lines an RoI
(with 2×2 bins in this example), and the dots the 4 sampling points in each bin.
The value of each sampling point is computed by bilinear interpolation from the
nearby grid points on the feature map. Both figures from (He et al., 2017).

Earlier approaches relied on low-level computer vision techniques for region
proposal. Since its introduction as part of the Faster R-CNN framework by Ren
et al., 2015, a Region Proposal Network (RPN) has been widely used instead
to learn to perform this task, and as in the case of Mask R-CNN. Specifically,
given a set of fixed-size bounding boxes, called anchors, of various ratios and
scales, the network is trained to predict at each spatial position and anchor (i) a
score, representing the probability that the anchor at this location contains an
object, and (ii) coordinates, predicted relative to the anchor, as a coarse initial
localization.

In the second stage, like its predecessors, Mask R-CNN extracts a fixed-size
representation corresponding to each RoI. This representation is used as input to
three detection branches, consisting of independent subnetworks and predicting
respectively a class, bounding box coordinates (also relative to the RoI) and a
segmentation mask. See Figure 2.4(a) for an illustration. At this stage, two
elements contribute significantly to the performance of the system. The first is
the introduction of their proposed RoIAlign layer, for the extraction of the fixed-
size representation, given the image features and the coordinates of the RoI. This
representation is obtained by bilinearly interpolating the nearby image features
at regularly sampled locations in the RoI, as illustrated in Figure 2.4(b). Once
the fixed-size mask has been predicted, it is resized back to RoI size. Hence,
this operation is able to finely preserve the alignment between the content of the
RoI and the predicted mask, in contrast with its predecessor RoI pooling (Ren
et al., 2015), which first quantised the floating-number RoI coordinates to the
granularity of the feature map, divided it into sub-windows that were themselves
quantised, and finally pooled the feature values over each sub-window to obtain
the desired representation. As a consequence, in comparison, RoIAlign brings
huge improvements in mask accuracy; as well as a noticeable boost in box
accuracy. The second element consists in decoupling between classification and
segmentation. Rather than performing semantic segmentation of the RoI, a
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binary mask is predicted, either in a class agnostic fashion, or using class-specific
weights, determined by the predicted class, with minor performance gain for
the second option. Compared with semantic segmentation, this prevents masks
from competing across classes, and is shown to lead to a very large boost in
performance.

Training As is now standard in computer vision, the two stages rely on fea-
tures extracted by a deep convolutional network, whose architecture follows that
of the current best performing architecture for image classification, in this case,
ResNet or ResNeXt, and that has been pretrained on ImageNet. We note that
the recent work of He et al., 2018b has recently challenged the conventional
wisdom that pre-training on ImageNet helps achieve better performance than
random initialization, and was shown to mainly improve training speed. In
the case of Mask R-CNN, anchor boxes are labeled as positive if they intersect
with any ground truth box with at least an IoU of 0.5, and negative otherwise.
Similar heuristics have been used by its predecessors.

Given these labels, the region proposal network is trained using for each RoI
i the combination of a classification loss and a regression loss:

LRPNi ({pi}, {ti}) = Lbce(pi, p
∗
i ) + p∗iLreg(ti, t

∗
i ), (2.2)

where Lbce is the binary cross entropy, {pi} and {ti} are respectively the pre-
dicted labels and relative coordinates for i, and {p∗i } and {t∗i } the corresponding
ground truths and Lreg is the smooth `1 loss.

Note that the regression loss is only computed on RoIs labeled positively.
Normalisation factors were originally used in (Ren et al., 2015) but have been
removed since for simplification.

Minibatches are created in an image-centric way, by sampling an equal num-
ber Nr of RoIs per image, across a fixed number Ni of images, and respecting
a given ratio between positives and negatives, e.g . 1:3, to avoid high imbalance
towards negatives.

Coordinates are parameterized relatively to the anchor box, as follows:

tx = (x− xa)/wa, ty = (y − ya)/ha, (2.3)

tw = log(w/wa), th = log(h/ha), (2.4)

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha, (2.5)

t∗w = log(w∗/wa), t∗h = log(h∗/ha), (2.6)

where x, y, w and h denote the box’s center coordinates and its witdh and
height, and x, xa, x∗ denote respectively predicted, anchor and ground truth
box, and likewise for the other notations.

The detection branches are also trained using a multi-task loss, to supervise
each output, over each sampled RoI i. To simplify the expression, we drop the
index i, yielding the following expression:
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Figure 2.5: (a) Detection at single scale. (b) Detection is performed at each
level of an image pyramid, more accurate but leading to increased computation.
(c) Feature Pyramid Networks, both fast and accurate. Feature maps are indi-
cate by blue outlines and thicker outlines denote semantically stronger features.
Figure adapted from (Lin et al., 2017).

LDH = Lcls(l, u) + [u ≥ 1]Lloc(r
u, r∗) + [u ≥ 1]Lmask(mu,m∗), (2.7)

where u is the ground truth class, equal to 0 for the catch-all background class;
Lcls is the multi-class cross-entropy (MCE), Lloc is also a smooth `1 loss and
Lmask is the average binary cross entropy over the RoI. Note that again, the two
latter losses are only used if the RoI is labeled positively. l, ru and mu denote
the predicted label, coordinates and masks, using the ground truth class u to
choose the adequate predictions during training, when the branches are learned
in class-specific fashion; r∗ and m∗ denote the corresponding ground truths.
Coordinates are parametrized similarly to Equations (2.3) to (2.6), except that
they are relative to the RoI’s coordinates.

The authors preconize to perform training in an approximate end-to-end
manner: the gradients of the detection branches with respect to the coordinates
of the RoIs are not backpropagated in the RPN. This slightly improves the
performance with respect to stage-wise training.

Inference During inference, the proposals are filtered with NMS, and the Np
(e.g . 1000) most confident RoIs are fed to the classification and localization
branches. The predicted class is used to select the class-dependent box pre-
diction. NMS is performed again on the refined bounding boxes, this time in
terms of the classification score, and only the Nb (e.g . 100) most confident are
kept, for segmentation, to keep the overhead of the mask prediction small. The
refined bounding box predictions are used to extract improved fixed size rep-
resentations, as input to the mask branch, and the final mask is again chosen
according to the predicted class. Finally, the predicted masks are resized and
binarised with threshold θm = 0.5.

Multi-scale feature extraction Multi-scale approaches are extremely com-
mon in object detection, since objects can appear at a large range of scales.
A widespread, simple procedure is to apply the detection approach on image
pyramids, at the expense of a linear increase in computation with the chosen
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number of scales. Lin et al., 2017 propose a generic approach to adapt a feature
extractor to compute feature pyramids efficiently, forming a Feature Pyramid
Network (FPN) A classification network is augmented with a top-down path
to iteratively predict features at increasing resolutions. These features are not
trained to match the features that would be obtained by applying the feature
extractor on images of each resolution, but directly trained for the down-stream
task (object proposal and/or instance segmentation). We illustrate this in Fig-
ure 2.5, comparing single scale detection, the multi-scale approach using a pyra-
mid of images and FPNs. Both the RPN architecture and the detection branches
are attached to each level of the FPN, sharing their weights. Training different
weights was shown to lead to similar performance. As a consequence, features
at the different levels effectively contain similar semantics. With the use of a
FPN, the RPN needs anchors of different ratios only, because with its dupli-
cation across the different levels, its outputs effectively correspond to different
image scales as well. Finally, to choose the feature level to extract from, feature
extraction proceeds as if the feature pyramid had really been produced from an
image pyramid, relying on the strategy introduced by He et al., 2014: given a
RoI, the level is chosen such that the corresponding scaled candidate window
at that (virtual) image resolution is most similar to the size of images used for
pretraining the feature extractor on ImageNet (i.e. usually 224.)

FPNs have become a popular choice of feature extractor for object detection,
and this architecture is used in the best performing instance of Mask R-CNN
that was presented, both in speed and accuracy.

2.2 Deep generative modeling

A significant challenge of video prediction is to handle the inherent uncertainty
of the task. As a consequence, an important line of work in video prediction
focuses on applying and extending ideas developed in the context of image
generative modeling to this setting.

Recent years have seen the emergence of methods that are able to leverage
powerful deep learning techniques to learn generative models of images that
have distinguished themselves by the unprecedented quality of the generations,
astonishing in realism. Generations sampled from BigGAN, a state-of-the-art
approach proposed by Brock et al., 2019 and based on generative adversarial
networks (see Section 2.2.1), are show in Figure 2.6. In the present section, we
review the dominant frameworks in this field, to prepare for the presentation of
video prediction approaches in Section 2.3.3.

2.2.1 Generative adversarial networks

Generative adversarial networks (GANs) are an adversarial approach to learn
deep generative models, proposed by Goodfellow et al., 2014. In this approach,
two networks are trained jointly to compete against each other in a two-player
minimax game. A generator G maps latent variables z drawn from a simple
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Figure 2.6: Class-conditional samples generated by BigGAN. Figure from
(Brock et al., 2019).

distribution pz to the image space, thereby defining an implicit distribution pg
on image x. A discriminator D maps images sampled either from the data
distribution pdata or from the model’s distribution pg to [0, 1].

The goal is to find the two functions G and D that optimize the following
objective:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.8)

For a fixed generator G, this objective can be interpreted as maximum likelihood
training of the discriminator D, to classify between images coming from the real
distribution as positives, and images coming from the generator as negatives.
In this adversarial game, D tries to distinguish between the real data and the
generated data, whereas the generator G’s goal is to create samples that make
the task as hard as possible for the discriminator. The global optimum of
this objective is reached when pg = pdata, where the generator has learned to
synthesize images that are perfectly indistinguishable from the real images, so
that the best discriminator can only predict 0.5 for all samples.

Usually, deep generative models relying on latent variables must resort ei-
ther to approximate inference to estimate the log likelihood, as for variational
autoencoders (see Section 2.2.2), or to approximation of its gradient, as for an
earlier class of models called deep Boltzmann machines (Salakhutdinov and Hin-
ton, 2009). The approach is motivated by the fact that the discriminator can be
seen as defining a “variational” loss function, in the sense that the loss function
of the generative model is defined by auxiliary parameters that are not part of
the generative model, thereby entirely sidestepping these approximations.

The authors propose to parametrize D and G using MLPs and to optimize
this objective using a algorithm that iterates between ascending the discrimi-
nator’s stochastic gradient and descending the generator’s stochastic gradient.
In practice, an alternative objective is used for the generator, because it is ob-
served to provide stronger gradients. Rather than minimizing log(1−D(G(z))),
G is trained to maximize logG(D(z)). In other words, it is explicitly trained to
maximize the probability that the discriminator will label the generated images
as real ones.
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Wasserstein GAN

Goodfellow et al., 2014 show that given an optimal discriminator, the criterion
of the generator is equivalent to the Jensen-Shannon divergence between the
true data distribution and the model distribution. Arjovsky et al., 2017 advo-
cate for optimizing the Wasserstein distance rather than the Jensen-Shannon
divergence for density modeling. Their approach, termed Wasserstein GAN
(WGAN), brings small modifications of the original GAN training algorithm, to
approximately optimize the formulation given by the Kantorovich-Rubinstein
duality:

W (pdata, pg) = sup
||f ||L≤1

Ex∼pdata(x)[f(x)]− Ex∼pg [f(x)], (2.9)

where the supremum is over all the 1-Lipschitz functions f : X → R. Instead
of classifying the samples, the discriminator is hence trained to embed them
far appart in R, enforcing the values on the real samples to be large, and the
values on the fake samples to be small, while the generator aims to reduce this
distance, by maximizing the values taken on the fake samples. In practice,
WGAN does not search over all the 1-Lipschitz functions f : X → R, but over
the family given by the discriminator’s architecture, and uses weight clipping for
the discriminator, as a crude, but simple, way to enforce the Lipschitz constraint.
They show that this leads to improved stability of training and correlation
between the loss value and the generator’s sample quality.

2.2.2 Variational autoencoders

Variational autoencoders (VAEs) were introduced concurrently by Kingma and
Welling, 2014 and Rezende et al., 2014, to marry variational inference with deep
learning. They owe their name to the training procedure, which we present after
the generative process and summarize in Figure 2.7.

Generative process The generative model first draws a latent representation
z from a chosen, simple prior distribution pz. The likelihood pθ(·|z) is chosen
to be a normal distribution, usually isotropic, with learned or fixed parameter
σ, and whose mean µθ(z) is output by a neural network that takes z as input.
This neural network is called a probabilistic decoder, as it maps the latent
representation to a distribution over images x, and is parametrized by θ.

Learning The objective function is derived from a variational inference ap-
proach to maximum likelihood estimation, chosen such that stochastic gradient
descent can be used to learn the generative model over large datasets. First, the
incomplete likelihood pθ for a given sample x(i), under the described model is
intractable, as computing it would require marginalizing the complete likelihood
over the latent variable, as follows:



2.2. DEEP GENERATIVE MODELING 25

pθ(x
(i)) =

∫
z

pθ(x
(i), z)dz =

∫
z

pθ(x
(i)|z)pz(z)dz. (2.10)

Additionally, the posterior distribution pθ(·|x(i)) is also intractable, so we cannot
use the EM algorithm. Instead, provided any distribution q over z, a tractable
lower bound can be formulated, relying on the following derivation:

DKL(q(z)||pθ(z|x(i))) =

∫
z

q(z) log
q(z)

pθ(z|x(i))
dz (2.11)

=

∫
z

q(z) log
q(z)pθ(x

(i))

pθ(x(i)|z)pz(z)
dz (2.12)

= −Eq[log pθ(x
(i)|z)] + log pθ(x

(i)) +DKL(q(z)||pz(z)),
(2.13)

where DKL denotes the Kullback-Leibler (KL) divergence. Equation 2.12 uses
Bayes’ rule, and 2.13 relies on the fact that:∫

z

log pθ(x
(i))q(z)dz = log pθ(x

(i))

∫
q(z)dz = log pθ(x

(i)). (2.14)

Rearranging the terms in Equation 2.13 yields:

log pθ(x
(i))−DKL(q(z)||pθ(z|x(i))) = Eq[log pθ(x

(i)|z)]−DKL(q(z)||pz(z)).
(2.15)

Given that the KL divergence is always non negative, we know that the right
hand size is a lower bound on the incomplete data log likelihood log pθ(x

i). This
bound is called the variational lower bound (VLB). We also see that the bound
would be tight if pθ(·|x(i)) = q. Variational inference approximates the posterior
in a predefined parametric family of simpler distributions qφ, parametrized by φ.
Whereas classic variational inference optimizes the parameters φ for each data
point x(i), VAEs use a form of amortized inference (Gershman and Goodman,
2014), and learn an inference network that computes φ as a function of x.
This improves the efficiency of inference, since it obviates the optimization step,
offloading this to the inference network, that is trained at a cost that is amortized
over the training samples. In the case of a VAE, the approximate posterior
is chosen to be a Gaussian distribution with diagonal covariance, and given
a sample x(i), the network learns to predict the mean and covariance of the
distribution qφ(·|x(i)) that approximates the posterior.

The objective, denoted by L(θ, φ;x(i)) is now:

L(θ, φ;x(i)) = Eqφ [log pθ(x
(i)|z)]−DKL(qφ(z|x(i))||pz(z)), (2.16)

To learn the two models, jointly, we need to estimate the gradient of this ob-
jective over a minibatch, with respect to the parameters (θ, φ). The gradient
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Figure 2.7: Training a VAE involves jointly training an encoder and a decoder.
Red blocks are non-differentiable sampling operations. Blue blocks represent
loss terms. Figure adapted from (Doersch, 2016).

of the second term can be computed analytically, but the first is more trouble-
some, due to the fact that the expectation is taken over a distribution that is
parametrized by φ. To address this, VAEs introduce the reparametrization trick,
relying on the fact that for a random variable z following a normal distribution
N (µ, σ2I), and provided that we sample ε from a standard normal distribution,
we have, for any function f :

Ez[f(z)] = Eε[f(µ+ σε)]. (2.17)

This implies that we can derive a simple differentiable Monte Carlo estimator
1
L

∑L
l=1 f(µ + σε(l)) for the first term. In practice, a single sample is usually

used in the estimation. Note that this trick can be extended to several families
of distributions, e.g . families with tractable inverse CDF or “location-scale”
families.

The resulting training procedure is summarized in Figure 2.7. From this, it
is clear why the model is called a variational autoencoder: during training, each
sample in a minibatch is encoded, its outputs serving to parametrize an approx-
imate posterior, from which a latent representation is sampled, later decoded
into the mean image. Because of the choice of a Gaussian distribution for the
likelihood, the first term acts as a reconstruction loss, while the KL term acts
as regularization on the encoder’s outputs.

Attend, Infer and Repeat

Eslami et al., 2016 propose a structured image generative model, termed At-
tend, Infer and Repeat (AIR), based on VAEs. This model uses one latent
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representation for each object present in the image, rather than a single one
for the image as a whole. It is therefore a particularly interesting candidate for
extension to video prediction, as such extensions could possess a built-in ability
to track object properties. In this model, the inference network is a recurrent
network that learns to predict parameters for the distributions of the presence
of an additional object, of its position, and of its latent representation. The gen-
erator mirrors the inference network and reconstructs the image by summing
the decoded patches adequately using the presence and position variables. The
two networks are trained using the VLB. Gradients with respect to the parame-
ters for the continuous latent variables are obtained with the reparametrization
trick, and for the discrete with a likelihood ratio estimator, similar to (Mnih and
Gregor, 2014). For binary images, or coloured images consisting of transpar-
ent objects against a uniform black background, this model learns to count the
number of objects in the scene and localize them in an unsupervised manner.

2.2.3 Autoregressive models

In contrast with the previous classes of models, autoregressive models do not
assume the existence of a latent representation, that would parametrize all fac-
tors of variation of the data. Instead, these models rely on the general product
rule of probability:

p(x) =

D∏
d=1

p(xd|x1:d−1) (2.18)

where D denotes the dimension of the data, xd the d − th element of x and
x1:−d−1 all of the preceding elements, according to any arbitrary order of the
dimensions.

Autoregressive models parametrize each conditional distribution with a neu-
ral network. This approach was first proposed by Neal, 1992, relying on a fully
visible network for each spatial position. Later, it was revisited by Bengio and
Bengio, 1999, relying on single hidden-layer neural networks. In their case, this
led to computational and memory costs squared in the input dimension. The
architecture proposed by Larochelle and Murray, 2011 shares weights in the first
layer of the neural network, bringing both costs down to linear. Finally, van den
Oord et al., 2016 recently revived these ideas, proposing two deep architectures,
PixelRNN and PixelCNN, whose parameters are shared across spatial positions.
They are hence more expressive than previous approaches. Log-likelihood can
be computed exactly for autoregressive models, and their architecture obtains
state-of-the-art log-likelihood scores on held-out data.

While they introduce no independence assumption, the fact that autoregres-
sive models lack a latent representation means that they do not lend themselves
well to learning high-level representations in a self-supervised manner. These
models also entail a slow sequential sampling process at test time. Perhaps as a
consequence, these models have seen fewer applications in the context of video
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prediction. Additionally, they are known to struggle to capture large struc-
tures. Hybrid approaches, combining autoregressive models with VAEs, have
been explored in the works of Chen et al., 2017; Gulrajani et al., 2017; Lucas
and Verbeek, 2018, to encode global image structure into latent variables while
autoregressively modeling low level detail.

2.3 Anticipating future events

The ability to anticipate future events is an important prerequisite towards
intelligent behaviour. In recent years, video prediction has been increasingly
studied as a proxy task towards the goal of providing machines with this ability.
In the field of reinforcement learning, forward modeling hold promise for more
data-efficient algorithms, by leveraging a common representation of the world
that can be learned using the rich observations provided by the environment
and shared across tasks. In Section 2.3.1, we briefly review the basics of re-
inforcement learning, and present several model-based approaches. In Section
2.3.2, we present various ways in which forward modelling, and more generally
self-supervision, can leverage observations and improve an agent’s knowledge of
the environment. In Section 2.3.3, we focus specifically on the task of video pre-
diction and present the main directions that have been explored to address this
task. Finally, in Section 2.3.4, we show that beyond these long term motivations,
video prediction has allowed interesting applications.

2.3.1 A model of the world for planning and decision-
making

Reinforcement learning basics

Reinforcement learning is a learning paradigm where an agent learns concepts
and behaviours by interacting with an environment in which it evolves. At any
time t, the environment provides the agent with observations corresponding
to the current state xt from state space X , as well as a scalar reward signal
rt. In response, the agent chooses its actions {at}t in a pre-defined action
space A. An action leads to a new state of the environment and triggers new
observations (xt+1, rt+1), possibly in a non-deterministic fashion. The goal of
a reinforcement learning (RL) algorithm is for the agent to learn to take the
actions that maximize its expected cumulative reward. RL algorithms specify
a method for determining the policy to follow, in the form of a mapping π from
states to actions; or to a probability distribution over actions, in the case of a
non-deterministic policy. The algorithm aims to provide the policy yielding the
greatest expected cumulative reward. Such a policy is called an optimal policy.

Classical RL algorithms rely deeply on the Markov assumption, that the
future depends only on the current state and action (Sutton and Barto, 1998).
In the simplest situation, we have a reasonable model of the way the environment
evolves, conditionally to the action that was taken in a particular state, and of
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the resulting observations. We call these the dynamics of the system. Together,
the Markov assumption and the specification of the state space X , the action
space A, the transition probabilities p(xt+1|xt, at) and the reward function (or
probability distribution) r(xt+1, xt, at), form a Markov decision process (MDP)
(Bellman, 1957), a formalism that is widely used. Usually, we consider that the
transition probabilities and the reward do not depend on time; the MDP is then
called stationary.

In this context, methods based on Dynamic Programming can be used to
obtain an optimal policy. These methods define either or both of the following
value functions. The state value function V π maps each possible value x of
the state xt to the expected cumulative reward, given that we are in state x at
time t and that we follow policy π. Likewise, the state-action value function Qπ

maps each possible value (x, a) of the state-action pair (xt, at) to the expected
cumulative reward, given that we take action a in state x at time t and that
we then follow policy π. The optimal policy π∗ is a policy that maximizes the
considered value function. The optimal value function is the value function
for the optimal policy. The Bellman equations (Bellman, 1957) leverage the
definitions of the value functions to express them in a recurrent relationship,
involving the immediate reward and the expected value function for the next
state, taking the form of a weighted average of the possible values, where the
weights are given by the transition probabilities. This yields several algorithms
for evaluating a given policy or for finding the optimal one.

In reinforcement learning settings however, usually we do not have such a
model of the dynamics. We then have two possibilities: 1) we can attempt to
learn one – this is called forward modeling ; or 2) we can try to side-step this
difficulty entirely, and directly learn a) a good policy or b) a value function from
which to derive a policy. The first kind of methods are called model-based, while
the second are called model-free.

Model-free approaches

To side-step the difficulty of learning a forward model, model-free approaches
can instead attempt to learn directly a good policy. For example, policy gradient
relies on a differentiable parametrization of the policy and estimates the gradient
of a suitable objective function (e.g . the value function of the first state) with
respect to the policy’s parameters using the likelihood ratio estimator (Glynn,
1990). This gradient is used to perform gradient-based learning of the policy.
Alternatively, model-free approaches can attempt to learn a good approximation
to the optimal Q-function Q∗, from which a policy can be obtained by taking
the action maximizing Q∗. This is called Q-learning and was originally proposed
by Watkins and Dayan, 1992.

In fact, the likelihood ratio estimator also requires approximating Q∗. A sim-
ple approach is to use a Monte Carlo estimate, leading to the REINFORCE al-
gorithm (Williams, 1992). Instead, an approximation to the optimal Q-function
can be learned jointly with the policy, to reduce variance (but inducing bias),
leading to a family of methods called Actor-Critic methods; see (Sutton and
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Barto, 1998) for an extensive presentation.

Model-based approaches

It is generally acknowledged that when a large amount of samples can be used for
training, model-based methods tend to perform worse than model-free methods,
due to the intermediate modeling of the dynamics which can induce additional
errors. Conversely, if it is possible to learn a good model efficiently, model-
based methods can make up for the lack of data. For example, Deisenroth
et al., 2009 show that compared to a state-of-the-art model-free approach, higher
data-efficiency is achieved by learning the unknown transition dynamics for the
pendulum swing up, a classical non linear control problem. Wahlström et al.,
2015 show on the same task that model-based approaches can be scaled to
high-dimensional inputs. Rather than using angle measurements, they propose
to learn a forward model in the embedding learned by an autoencoder on raw
images of the pendulum. They use this forward model in an online closed-loop
control algorithm, that is able to reach the desired position of the pendulum,
also provided in the form of an image. While this task may seem relatively
restricted, it is an instance of a more general setting where an agent only has
access to high-dimensional observations such as images, rather than direct access
to a low-dimensional state, and must learn from a few trials. Such a setting is
highly relevant to robotics, since it simply requires monitoring the robot with a
video camera, from which the robot has to learn to solve tasks autonomously.
In a similar flavour, Watter et al., 2015 propose to learn a forward model in
the latent space of a VAE. They additionally constrain the latent space to be
such that the dynamics are locally linear, thereby allowing more accurate use,
on several complex problems, of effective control algorithms that rely on local
linearization. More recently, Henaff et al., 2019 use an action-conditioned video
prediction model to train a policy network, by unrolling the forward model and
the policy network in time, and optimizing a differentiable objective at each
time step, whose gradients are backpropated through time. The challenge is
that the predictive model can produce arbitrary predictions outside the domain
it was trained on, and hence cause actions leading to wrongly optimistic states.
To avoid this, the authors add a reward concerned with encouraging actions
that lead to low uncertainty predictions for the forward model.

Another advantage of model-based methods is that the forward model can
be shared across different tasks. This might be similar to how humans learn to
perform new tasks, by relying on their past experience and the representation
they have built of the world and of its dynamics, to learn efficiently. Finn and
Levine, 2017 demonstrate that an action-conditioned video prediction approach
proposed in earlier work (Finn et al., 2016) can be used by a robot to plan the
sequence of actions necessary to move objects into a desired position. The goal is
specified by the user as a list of pixel initial locations (assumed to be part of the
object) and a list of corresponding desired locations. The method leverages the
implicit pixel flow predicted by the video prediction approach and supervised
only by the video prediction task loss, by optimizing the maximum likelihood
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of the desired location over the action sequences. Without any additional su-
pervision, it is thus able to produce non-trivial action sequences. Furthermore
it is shown to handle objects not seen during training.

Combinations of model-free and model-based approaches have been explored,
where the forward model is used to improve upon a traditionally model-free
methods, instead of being used inside a dynamic programming or control algo-
rithm. For example, relaxing the requirement of full knowledge of the transition
distributions, suppose that we have a generative model that can be used to
generate simulated trajectories of actions and states. During training, such tra-
jectories can be used in addition to real trajectories, in traditionally model-free
approaches, as proposed in the famous Dyna algorithm (Sutton, 1991). Weber
et al., 2017 augment an actor-critic method with a model-based path, which
encodes simulated trajectories for each possible action, and provides these en-
codings as additional input to the policy network, leading to improved data
efficiency and performance compared with the initial model-free method. In
contrast to Dyna, the model is not used for data-augmentation, but to provide
additional inputs, and therefore also used at test time. Simulation-based search
also relies on simulated trajectories, but use the current state as the initial state
for each simulation. This allows sampling-based estimation of the value func-
tion for a number of state-action pairs (st, ak)Kk=1, and the action maximizing
the value function in this set is chosen and carried out. A similar idea is used
in Monte Carlo Tree Search (Coulom, 2006), one of the core ingredients of the
celebrated AlphaGo algorithm proposed by Silver et al., 2016.

2.3.2 Learning about the world through self-supervision

Model-based methods naturally provide a way to leverage the observations they
receive from the environment. Besides applications in planning and control,
the ability to anticipate future events can improve an agent’s knowledge and
representation of the environment.

First, a forward model can be used in several ways to improve exploration
in a RL algorithm. For example, Oh et al., 2015 develop an action-conditional
predictive model of video frames in Atari Games and use it in an informed
exploration strategy, choosing the action leading to the predicted frame most
dissimilar to the frames previously seen in a past moving temporal window.
They show that this leads to improved performance for Deep Q-Network (Mnih
et al., 2013) in several Atari games compared with random exploration.

In fact, it is possible to learn interesting behaviours even in the absence
of an external reward signal. In this case, one or several reward signals are
formulated and computed from the observations {xt}t that the system receives.
Such rewards are called intrinsic, as opposed to the extrinsic rewards considered
in the classical case. The setting that relies only on intrinsic rewards, also called
intrinsic motivations, is the analogue of unsupervised learning for reinforcement
learning. We note however that while the formulation of such intrinsic rewards
often relies on a forward model of the dynamics, this is not a requirement:
this setting can also employ purely model-free approaches, as in the work of
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Mohamed and Rezende, 2015.
Curiosity driven exploration is an extremely promising avenue for learning

useful skills, in addition to or even in the absence of extrinsic rewards. Curiosity
is an intrinsic reward defined by the error in a forward model’s predictions. By
considering this reward, the agent is encouraged to take actions from which
it can learn the most, and indirectly encouraged to avoid actions that lead to
terminal states (e.g . fatal ones) as well as to learn navigation skills that enable it
to explore its environment. For instance, Pathak et al., 2017 show that compared
with random exploration, the curiosity intrinsic reward they consider leads to
better performance and fewer necessary interactions with the environment in
sparse extrinsic reward settings like the Vizdoom environment. In the no reward
setting, curiosity allows the agent to navigate efficiently (eg. without bumping
into walls in the Vizdoom environment). In the Super Mario World, it learns
to avoid fatal events, which would otherwise bound the cumulative intrinsic
reward of the agent: getting killed due to a bad move is easily predictable
and additionally shortens the time during which the agent can be “surprised”.
Additionally, this exploration policy is shown to generalize well in the next
level. Their method thus enables the agent to learn basic and generalizable
skills, including in the absence of an explicit goal. When such a goal is given,
these skills can be efficiently specialized towards it.

Intrinsic motivation is also motivated in general by similarities with the way
humans and animals learn. A good overview of several approaches, and how
they relate to concepts in developmental psychology, can be found in (Oudeyer
and Kaplan, 2007).

Beyond the formulation of intrinsic rewards, self-supervision can serve to
define more general loss terms, to leverage the observations coming from the
environment as additional free supervision, of potentially much higher dimen-
sionality than the reward signal. The postulate that is made is that such loss
terms will lead the model to develop a representation of the environment that
will serve the variety of tasks for which it obtains only sparse and low dimen-
sional reward signal. Mirowski et al., 2017 investigate two auxiliary loss terms
by augmenting a state-of-the-art model-free policy-gradient method with two
streams, that respectively output a depth map and prediction of loop closures of
the agent’s ego-motion. Both are learned in a supervised fashion. These streams
share a representation with the policy network and their role is to improve it,
so as to increase data-efficiency and task performance. Dosovitskiy and Koltun,
2017 do away with a reward-based formulation and cast the problem of learning
to act into a self-supervised problem, where the agent is simply trained to pre-
dict the consequences of its actions, and actions are explicitly chosen according
to which consequences are sought. They differentiate between high-dimensional
sensory signal, and low-dimensional measurements; their key assumption being
that any goal can be expressed as a function of the measurements. They train a
model to predict the future measurements, at several fixed time intervals, given
the current sensory signal, measurement and goal at hand. During training,
exploration is achieved by following an ε-greedy policy: with probability ε, the
next action is chosen randomly, and otherwise it is chosen greedily with respect
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to the goal at hand. The ε value is annealed from 1 according to a fixed sched-
ule: in the beginning, the policy is entirely random, and gradually, the trade-off
is shifted towards exploitation. Remarkably, this simple formulation leads to
state-of-the-art performance, particularly on complex tasks. They show good
generalization properties of the trained models across goals and environments.
Their approach supports training without a fixed goal and dynamically chang-
ing goals at test time. These results form a direct motivation to our goal of
developing models that can better anticipate future events.

Applications of the learned representation in video recognition tasks

Self-supervised tasks have also been proposed to develop useful representations
of video beyond the reinforcement learning setting. Srivastava et al., 2015 show
that the representation learned through video prediction leads to improved per-
formance for human action classification. Agrawal et al., 2015 propose to learn
feature representation through the task of predicting the camera motion from
pairs of images, and evaluate the obtained representations for various computer
vision tasks. They show that in medium data regimes, these representations
compare favourably with class-based supervision. Walker et al., 2016 learn to
predict dense trajectories from still images, and show that the learned represen-
tation obtains competitive results on the Pascal VOC 2012 test dataset, without
supervised image pre-training. In particular, they outperform the supervised
method on the human class, which is well represented in the video dataset used
to learn the representation, UCF 101. Vondrick et al., 2016b learn a GAN on
videos, using a 3D convolutional discriminator on the generated videos. They
show that the discriminator can be fine-tuned for action classification with 1/8th

of the data required by the same randomly initialized architecture to reach the
same performance. Sermanet et al., 2018 learn a representation that is invari-
ant to viewpoint and agent appearance, but varies with pose, by leveraging
unlabelled videos recorded from multiple viewpoints. They show that this rep-
resentation is useful for imitation learning. Vondrick et al., 2018 learn models
for visual tracking by leveraging the temporal coherency of colour in video.
Specifically, a predictive model is trained to copy the colour intensities from a
reference frame to future gray-scale frames, using the original coloured frames as
supervision. They show that the model learns to effectively track visual regions,
foreground and human pose. Their method outperforms unsupervised baselines
relying on optical flow, suggesting that the model is learning useful motion and
instance features.

2.3.3 Video prediction methods

In the previous sections, we have shown that action-conditioned forward models
can be used in a variety of ways: (i) to improve knowledge of the environ-
ment, through more efficient exploration or through better representations; (ii)
to learn important skills; (iii) for use in planning and control. Arguably, a pre-
dictive model can always be conditioned on an action, by slight modification
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to the architecture. Video prediction methods can therefore – and have been –
proposed independently, without requiring a RL environment for training and
evaluation. In the present section, we review several research directions that
have been explored to address this problem.

Generative modeling of videos

A significant challenge of video prediction is to handle the inherent uncertainty
of the task: For a given input sequence, there is generally a continuous spectrum
of plausible output sequences. Worst, two perfectly plausible output sequences
could be very far apart in pixel space, while a combination of the two, e.g . by
weighted mean, would usually not correspond to a plausible sequence.

Following the terminology of Sutton and Barto, 1998, we could try to learn a
distribution model mapping any value of the input sequence to the correspond-
ing conditional probabilitiy distribution over the output sequences. From a
probabilistic perspective, the task of video prediction can be viewed as learning
a sample model that allows us to directly obtain samples from these distribu-
tions. This is easier than learning a distribution model – and is already by itself
extremely challenging, as we will illustrate in the rest of this section. One of
the core challenges we are underlining here is that in general, these conditional
distributions will have several modes and their respective expectation will likely
not correspond to one of of them. This forms a fundamental reason why we
cannot expect to apply traditional supervised regression methods by themselves
to solve this task.

As a consequence, an important line of work in video prediction focuses on
applying ideas developed in the context of image generative modeling, either
to learn such stochastic sample models or at least to formulate better training
objectives for deterministic models.

In practice and in line with this analysis, Mathieu et al., 2016 observe that
training with a squared `2 loss leads to blurry predictions. To address this,
they propose a combination of losses: a `1 loss, whose optimal solution is the
pixelwise conditional median, leading to sharper predictions than the `2 loss,
a gradient difference loss (GDL), defined as the `1 loss over the gradients of
the image, and a loss term based on adversarial training. Zhou and Berg, 2016
employed a similar training strategy for future frame predictions in time-lapse
videos. Following this work, it has become common to use an adversarial loss
term for this task, see for example the works of Bhattacharjee and Das, 2017;
Vondrick and Torralba, 2017; Liu et al., 2018.

Vondrick et al., 2016b apply the GAN framework to generative modeling of
videos. They use this model for single frame conditioned video prediction, by
jointly learning an encoder with the GAN, that maps the input image to the
latent space. This encoder is supervised by a squared `2 loss between the input
and the first generated image. Jang et al., 2018 propose a GAN framework
conditioned on an appearance variable on one hand, and a motion variable,
including action labels, on the other. Tulyakov et al., 2018 learn a disentangled
representation for appearance and motion – without requiring labels – thanks
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to the generator architecture they propose. We further detail these approaches
in a dedicated section.

Xue et al., 2016 rely on a VAE framework to learn a probabilistic model
of the frame difference between the next and current frames, given the cur-
rent. Babaeizadeh et al., 2018 propose a VAE-based model to model the future
frame, given several past frames. An inference network predicts the parameters
of an approximate posterior distribution over the latent representation, given
the whole video. They rely on an architecture proposed by Finn et al., 2016,
and condition it on a latent sample that comes from the posterior at train time,
and from the prior at test time. They also propose a time-varying formulation
where a new latent representation is sampled at each time step, both at train
and test time. They show that their architecture is able to perform diverse pre-
dictions. They evaluate the best out of N predictions, and show that the metric
increases significantly with N . Additionally, they show that on average, only
3 samples are enough to predict outcomes with higher quality than the deter-
ministic baseline. Denton and Fergus, 2018 propose a closely related approach,
but in contrast, use a more flexible inference mechanism, by inferring a different
posterior distribution for every time step, conditioned on the past, instead of
a single approximate distribution conditioned on the whole video. Addition-
ally, they propose a learnable prior distribution, that is conditioned on the past
frames, to replace the fixed prior. Indeed, the level of uncertainty should de-
pend on the context: For instance, prediction aboard a vehicule driving in a
city like Paris is always highly uncertain, but less so when one is driving on the
beltway than in charming historical neighbourhoods with narrow streets and
numerous intersections like Le Marais. Many sources of uncertainty should be
expected: upcoming intersections are usually visible, just as are large potential
occluders like trucks, or pedestrians waiting on the side of the road. Overall,
Denton and Fergus, 2018 show that their method leads to sharper images, and
can be trained using a simple training procedure, while Babaeizadeh et al., 2018
reported a three-stage procedure to reach the desired diversity.

In comparison with VAE-based approaches, GAN-based approaches produce
more realistic results but struggle with diversity. We are not aware of any GAN
based method that can produce diverse predictions from more than a single
frame of history. The works of Jang et al., 2018; Xiong et al., 2018; Tulyakov
et al., 2018 all condition on a single frame, and in this case, motion is largely
underdetermined. All works relying on more than a single frame of context
produce deterministic predictions (Xiong et al., 2018; Vondrick and Torralba,
2017). Avoiding mode collapse and mode dropping in GANs is an active research
topic, see for example the works of Salimans et al., 2016; Che et al., 2017; Metz
et al., 2017; Zhang et al., 2017; Nguyen et al., 2017; Srivastava et al., 2017;
Tolstikhin et al., 2017; Ghosh et al., 2018; Lucas et al., 2018; Hoang et al., 2018;
Lin et al., 2018; Xiao et al., 2018; Elfeki et al., 2018; Shmelkov et al., 2019.
Applications of such methods could potentially lead to improvements in the
diversity of video predictions made by GANs.

Inspired by the work of Larsen et al., 2016 in the space of images, Lee
et al., 2018 therefore propose to combine the strength of VAE- and GAN- based
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approaches. They formulate a conditional VAE framework, similar to (Denton
and Fergus, 2018), and add adversarial loss terms on both the reconstructions
and the generations. This yields small improvements both in terms of diversity
and realism compared to the VAE baseline.

Ranzato et al., 2014 introduce the task of next frame prediction and ad-
dress it using an autoregressive model on image patches. Inspired by language-
modeling approaches relying on the rule chain of probability, given a history of
patches, they propose to learn to predict a multinomial probability distribution
over a vocabulary of patches, learned beforehand by clustering. Specifically,
for each patch to predict, they first quantizing a larger surrounding patch in
the past frames, embed it and feed it to a recurrent network, trained using
the MCE to predict the index of the nearest neighbour of the future patch in
the learned vocabulary. More closely inspired by recent autoregressive image
models, Kalchbrenner et al., 2017 propose to predict the discrete multinomial
distribution over the raw pixel intensity of each pixel, given all pixels in pre-
ceding frames, or above and to left in the current frame. Their architecture
first models temporal dependencies with framewise convolutional encodings fed
to a convolutional LSTM (ConvLSTM) (Shi et al., 2015). Next, the image
autoregressive model of van den Oord et al., 2016 , conditioned on the previ-
ous outputs, is employed to capture dependencies across the spatial and colour
dimensions.

A variety of learned perceptual losses

Inspired by approaches proposed in the context of style transfer (Gatys et al.,
2016; Johnson et al., 2016) and image generation (Lamb et al., 2016; Dosovit-
skiy and Brox, 2016), several works propose various types of perceptual losses,
i.e. reconstruction losses that are applied, not in the space of RGB intensities
but instead in that of features extracted by a network that has been pretrained
for an adequate auxiliary task. Liu et al., 2018 propose a loss that enforces
consistency between the predictions of Flownet (Dosovitskiy et al., 2015a), a
network pretrained for optical flow estimation of pairs of images. They take as
input in both cases the last input frame and, on one hand, the predicted frame
and on the other, the ground truth frame. Li et al., 2018e predict multiple
time-step optical flow first, followed by a flow-to-frame synthesis phase. This
second phase is trained using a perceptual loss, relying on VGG (Simonyan and
Zisserman, 2015) for the feature extraction. Jang et al., 2018 propose a per-
ceptual ranking module for conditional generation, that combines the idea of
perceptual and deep ranking losses (Wang et al., 2014; Schroff et al., 2015), in
a self-supervised setting. Specifically, they train two conditional discriminators,
responsible respectively for motion and appearance. Each discriminator is used
as a feature extractor. Following the ideas developed by Gatys et al., 2015, the
Gram matrix of these features is used to represent the input. It is not directly
the distance between the two representations that is optimized, as would be
done in a standard perceptual loss, but a ranking loss relying on this distance,
that aims to enforce similarity between real and fake videos conditioned on the
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same variable and dissimilarity when conditioned on different variables. Xiong
et al., 2018 propose a related adversarial ranking loss, in the context of a two-
stage GAN approach. While the first stage is learned using the combination of
a reconstruction and adversarial loss terms, the second uses in addition their
proposed learned perceptual ranking loss. Specifically, the refinement network
of the second stage is trained to minimize the distance on such Gram matrices
between the fake videos from the second stage and the real videos, while in-
creasing the distance between the fake videos from the first and second stages.
A conceptual difference with the previous work is that they in turn train the
discriminator to maximize the ranking loss, in addition to its usual discrimina-
tive objective. The refinement network is shown to largely improve the motion
dynamics of the generations in comparison with the first stage only and they
show visually pleasing long term generations of time-lapse videos of 32 frames.

Disentangling the factors of variation for a structured representation

Another challenge of video prediction lies in the multiple factors of variation
in videos: position of different instances present in the scene, as well as their
pose and appearance; position and viewpoint of the camera; illumination and
content of the scene; and so on – all of which combine together and vary in time
in a complex and intricate manner.

The postulate that the task of video prediction will necessarily lead to use-
ful and meaningful representations implies that some kind of internal semantic
representation of the scene will be developed. To put it more concretely, to
anticipate the motion of an object, a perfect method will probably need to rec-
ognize some high level characteristics of the object and of the environment. Such
characteristics could be the object’s class and scene’s layout. Like in recogni-
tion tasks, this abstract representation will need to be invariant to many of the
aforementioned factors of variation; but additionally, a plausible evolution of
each of these factors will need to be anticipated and their combination will need
to allow the fine and dense prediction of a plausible set of future frames.

To break it down into a set of easier problems, a number of works aim at
disentangling some of these factors of variation so as to learn a better repre-
sentation, that can lead to improved prediction. Besides, when the motivation
is to learn a good representation, it is also a way to design explicitly the rep-
resentation so that each part is invariant to the other factors – which is often
desirable.

Several works rely on the assumption that the semantic content of the scene
stays roughly identical throughout the sequence, and decompose the represen-
tation into a content and a time varying representing, corresponding to motion
or pose. Villegas et al., 2017a propose a two-stream architecture, where mo-
tion and content are separately encoded: the first stream takes as input the
sequence of frame differences, and processes them with a ConvLSTM to encode
the dynamics, while the second stream requires only the last observed frame,
to encode the general content of the scene using a CNN. Denton and Birodkar,
2017 propose to separately encode content and pose information extracted from
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each frame. To this end, they introduce an adversarial loss to prevent the pose
features from being discriminable from one video to another, and constrain the
content representation to vary slowly in time. This is another example of the
strategy mentioned above. Tulyakov et al., 2018 also learn disentangled repre-
sentations for content and motion, using a GAN framework. Different from the
previous works, they sample a single content representation for each sequence,
and map a random vector for each frame using recurrent network, to give a
path in the motion representation space. Representations are concatenated and
decoded per image. Two discriminators, one acting on each frame and an-
other on each video, complement each other to train the generator. They show
that their framework allows to keep one representation fixed while sampling the
other, yielding convincing videos and allowing more controlled generation than
previous GAN-based frameworks (Vondrick et al., 2016b).

Disentangling foreground and background has also been explored: Vondrick
et al., 2016b rely on the assumption that the background is static, and use
one stream to generate a fixed background image, and another to generate
dynamic foreground and mask sequences, used to blend the foreground onto the
background to obtain the final video.

A third direction is structured object-oriented representation learning. In
principle this can be viewed as an extension of disentanglement between fore-
ground and background. Kosiorek et al., 2018 propose a temporal extension
of the object-centric VAE-based generative model of Eslami et al., 2016. This
approach allows them to detect and track objects in an unsupervised fashion,
to perform video prediction and to use the latent variables for solving high level
simple tasks. They are still restricted to videos that consist of binary images.
Zhu et al., 2018a propose an object-oriented action-conditioned video prediction
method that decomposes the environment into objects and models inter-object
relationships to model the dynamics. This method first performs semantic seg-
mentation of the current image into a fixed number of dynamic and static classes
of objects. These classes are not specifed explicitly beforehand; rather it is up
to the model to learn to distinguish between different types of objects, based
on the effect they have on other objects and on their own dynamics, thanks to
specific weights dedicated to each channel for modeling the dynamics. Rely-
ing on these predictions, another network is charged with predicting a motion
vector for each dynamic object, used to warp the image and compose it with a
prediction of the background. A variety of auxiliary losses are used to enforce
certain priors and help the training procedure.

Predicting intermediate image transformations

Several authors reparametrize the problem to predict transformations instead
of raw pixel values. Following Reda et al., 2018, we distinguish between two
kinds of transformations: kernel-based and vector-based. Kernel-based methods
predict the kernel weights of convolutional layers – or of the analogous opera-
tion with untied weights across spatial position. These operations can be used
directly on the image or on features extracted from it. Vector-based methods
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are based on spatial transformer networks (STNs) (Jaderberg et al., 2015): a
sampling grid is created based on the predicted parametric transformation (e.g .
affine or pixelwise displacement), and then used to sample the input values to
form the output.

Ranzato et al., 2014 and Mathieu et al., 2016 implement an optical flow
baseline, that consists in warping the first two frames using the optical flow
computed between them. Conceptually, it is a vector-based approach where
the transformation is given for each pixel by the flow field. This method is
shown to work well for the next frame, but subsequent frames contain significant
artifacts. In Section 4.4.2, we will present an improvement of this baseline, first
by introducing a conceptually different and much more accurate method for
transforming frames; second by also transforming the optical flow to account
for the displacement of physical points when predicting multiple steps.

On one hand, most patches in video are near-copies of patches in nearby
existing frames, it should be easier to transform given frames rather than predict
future frames directly. On the other, baselines relying on optical flow estimation
are prone to errors, due to several reasons. First, they can arise due to challenges
in optical flow estimation. Second, when relying on a vector-based approach, it is
the future optical flow that must be estimated, which is harder than optical flow
estimation. Third, some pixe predictions cannot be handled alone by optical
flow, e.g . in the case of disocclusions (occurences where previously occluded
regions become visible) or of content entering the scene. To avoid pitfalls of
both direct RGB prediction and optical-flow-based methods, a natural approach
is hence to predict intermediate pseudo-flow, used to tranform the inputs and
only supervised by the video prediction task loss. With this motivation, Liu
et al., 2017b propose to use a deep learning approach to learn to predict deep
voxel flow, a 3D pseudo-optical flow field across space and time, that is used
for trilinear extrapolation across the input video volume to produce the next
frame. An interesting aspect of their method is that thanks to the 3D nature
of their predictions, it can leverage more than the past two frames, to which
the 2D optical flow fields are limited. They show that their multi-scale variant
leads to sharper predictions than a direct RGB prediction method like that of
Mathieu et al., 2016.

Inspired by layered motion representations (Wang and Adelson, 1993), Xue
et al., 2016 propose a cross-convolutional network that encodes images and mo-
tion information as feature maps and convolutional kernels respectively. Specif-
ically, the network encodes both the current frame and the difference between
current and future frames to predict the weights of convolutional layers, each
used on a different scale of a pyramid of feature maps extracted on various scales
of the current frame. It is assumed that during learning, feature maps will learn
to characterize image layers while the corresponding kernels will correspond to
their motion.

Concurrently, Finn et al., 2016 introduce three transformation-based archi-
tectures for action-conditioned video prediction. The motivation is that this
reformulation should lead models to focus on learning physics, rather than ad-
ditionally modeling object appearance. The Dynamic Neural Advection (DNA)
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network predicts a kernel, with weights summing to one, for each spatial posi-
tion, so that the predicted pixel value is a convex combination of nearby pixel
values in the current frame. A convolutional variant (CDNA) is proposed, sim-
ilar to the work of Xue et al., 2016. The network predicts N kernels, but uses
them directly on the input image; N + 1 masks summing to 1 at each position
are additionally predicted, to compose the obtained images and the input, to
produce the prediction. In case of static background, this allows the architecture
to copy-paste several pixels easily. Finally, the Spatial Transformer Predictor
outputs the parameters of multiple affine transformations, each applied to the
input image, this time in a vector-based fashion. Similarly, masks are predicted
for composition with the original image. All architecture are shown to have
similar performance. Transformation are performed in a pixelwise manner for
DNA, whereas CDNA and STP are argued to be more object-centric, as the
transformations could correspond to motion of different objects. It is shown
that these models are better able to generalize to unseen objects, compared to
models that reconstruct the pixels directly.

Vondrick and Torralba, 2017 propose a related kernel-based approach. Dif-
ferent from CDNA, weights are not shared accross location, and they are applied
to the input frame directly, to generate future frames by transforming the input
pixels.

The work of Zhu et al., 2018a for object-centric representations is most sim-
ilar to the spatial transformer predictors proposed by Finn et al., 2016, in that
the input image is directly transformed in a vector-based fashion and composed
with the background using a predicted mask. However, the architecture is more
explicitly designed to model object motion and relationships between objects.
Additionally, the model is expected to learn to detect static objects thanks to
the effect they have on the dynamic objects.

Xu et al., 2018 explore similar ideas for a ConvLSTM, to allow the network
to preserve fine details of objects like poles or traffic lights over multiple time
step predictions. Kernel weights are predicted dynamically, based on past in-
put features, and used to transform respectively input features, hidden state
dynamics and memory cell dynamics. These dynamics are accumulated in the
form of sequences of difference of past values. Finally the module combines the
obtained representation to produce the usual input, forget, new memory cell
state, output and new hidden state values.

Reda et al., 2018 propose a Spatially-displaced convolutional module, that
combines the strength of kernel-based and vector-based transformers. Both types
of transformation-based approaches are shown to improve upon a convolution-
based encoder-decoder architecture like that of Villegas et al., 2017a, which
tends to produce blurry results and checkerboard effects due to the deconvolu-
tions. They observe that on one hand, kernel-based approaches produce visually
pleasing results but do not scale for large motion, since they require increasing
the kernel size. On the other hand, vector-based approaches do not have this
issue, but lead to artifacts in the presence of disocclusions, in the form of speck-
led noise. The combination leads to crisp frames and consistent motion, in high
resolution images. As a result, error propagation is much slower.
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Processing a sequence of input frames

To process a sequence of input frames, one of the simplest approaches is to
concatenate input frames along along the channel dimension to form the input.
This approach has been widely used, e.g . in Mathieu et al., 2016; Vondrick
and Torralba, 2017; Liu et al., 2017b; Bhattacharjee and Das, 2017. A concern
with this is that important long-range information will be missing, when it is
not comprised in the temporal context given as input to the model. Therefore,
a number of works consider classical recurrent architectures that have been
successful in previous sequence-to-sequence tasks, such as LSTMs (Hochreiter
and Schmidhuber, 1997) or Gated Recurrent Units (GRUs) (Cho et al., 2014)
and their convolutional extensions, respectively proposed by Shi et al., 2015 and
N. Ballas, 2016. Another advantage of recurrent architectures is that they can
be used flexibly on input sequences on varying length.

Srivastava et al., 2015 propose to stack LSTMs to form both an encoder and
a decoder. Similarly, Finn et al., 2016 introduce a predictive autoencoder, com-
posed of several layers of ConvLSTMs and deconvolutional LSTMs, with skip
connections from the encoder to the decoder. This is also the base architecture
of Babaeizadeh et al., 2018; Lee et al., 2018. Some works propose instead to use
a LSTM in the representation space learned by an autoencoder (Zhou and Berg,
2016; Denton and Birodkar, 2017); or alternatively, a ConvLSTM if this space
retains a spatial extent (Jang et al., 2018; Denton and Fergus, 2018; Xu et al.,
2018). Finally, Tulyakov et al., 2018 employ a GRU to map random samples
to a coherent random path in the motion space, which is then decoded with a
fixed content representation in a GAN framework.

Multi-step prediction and compounding error

First, given a next frame prediction approach, a simple approach for multi
time-step prediction is to use the model autoregressively: we drop the first
input frame and append the newly predicted frame to the inputs, and use this
as input for the subsequent prediction. This method is flexible in the number
of time-steps to predict and has been used by various works (Mathieu et al.,
2016; Villegas et al., 2017a; Reda et al., 2018; Jayaraman et al., 2019), but it
is prone to error-accumulation: errors made in predictions will cause additional
errors in the next predicted frames, leading to poor predictions after a number
of time-steps that depends on the difficulty of the dataset. Back-propagation
through time can be used to mitigate this problem.

Just like in the case of multiple inputs, one can also simply modify the model
so that is learns to predict a batch of future frames instead of a single frame;
simply amounting to multiply the number of output channels by the number
of frames desired. This model does not lead to compounding errors, precisely
due to its main weakness: it is not built to leverage the temporal structure
of the data and share weights across time-steps. It is therefore an expensive
way (in terms of capacity) of addressing the issue. Additionally, prediction is
restricted to the chosen number of time steps. Examples of methods relying on
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this include the works of Mathieu et al., 2016; Walker et al., 2016; Liu et al.,
2017b; Bhattacharjee and Das, 2017.

Both in the cases of multiple inputs and outputs, 3D convolutions (Tran
et al., 2015) provide a more flexible trade-off than the previous batch approach
between model capacity and modeling of temporal long-range dependencies. In-
deed, in the temporal domain, they are to the batch approach, what convolutions
are to fully connected layers in the spatial domain. Hence, for a fixed dimension
of output representation, their local temporal connectivity allows them to use a
number of parameters that only depends on their kernel size, while the previous
approach directly depends on the number of input or output frames. Just like
convolutions however, they must be stacked to obtain a sufficient temporal field
of view. Xiong et al., 2018; Li et al., 2018e rely on 3D convolutional autoen-
coders, while Vondrick et al., 2016a proposes a 3D GAN architecture. Reda
et al., 2018 also uses a 3D convolutional autoencoder, but in single time-step
setting, and chooses recursive prediction for multi-time step.

A note that contrary to convolutional networks that can be used on images
of arbitrary size, to make predictions of proportional spatial dimensions, in this
context, 3D convolutional networks are trained and used for a fixed number of
input and output frames. This is due to the fact that the predictions are not
equivariant in time, as they are in space: important differences in the last input
frames will affect the predictions a lot more than if they occur in the first input
frames. This is a specificity of the problem of video prediction, compared with
video recognition tasks for example.

At the intersection between batch and 3D approaches, Vondrick and Tor-
ralba, 2017 decouple the spatial and temporal processing: first they employ a
resolution-preserving convolutional encoder for the input clip, then they upsam-
ple temporally the representation using a temporal up-convolutional network.

Error propagation can be argued to be less severe in the case of recurrent
networks, depending on the architecture. In some architectures, the recurrent
layers require the encoding of the previous predictions as input, as in (Finn
et al., 2016; Xu et al., 2018; Denton and Fergus, 2018; Babaeizadeh et al.,
2018; Lee et al., 2018). In others, they do not, e.g . it is the case of Zhou
and Berg, 2016; Denton and Birodkar, 2017; Jang et al., 2018; Tulyakov et al.,
2018. In both cases, error-propagation should eventually happen in time, but the
learned representation can be such that prediction is easier in this space, so that
this phenomenon happens more slowly. In the first case, error-propagation can
additionally happen in depth, i.e. throughout the encoding process, similarly to
the original problem met in autoregressive prediction.

Oliu et al., 2018 propose “bijective Gated Recurrent Units”, a variation on
GRUs that defines a bidirectional mapping between input and output by du-
plicating the logic gates of the standard GRU. This “backward” function can
be seen as a learned inverse on the standard “forward” function. Such modules
can be stacked to obtain a recurrent autoencoder, mitigating error propaga-
tion for multiple time step prediction by avoiding the re-encoding of predic-
tions. Additionally this leads computational and time savings. The authors
also demonstrate interesting interpretability properties.
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Villegas et al., 2017b address the problem of compounding errors in long
term recursive pixel-level prediction, by proposing a hierarchical, two-stage ap-
proach, quite different in spirit from the previous approaches. First, prediction
is performed at a high level, in a semantic space. Next, each future frame is
predicted using an analogy: the future frame should be to the high level rep-
resentation what the last input frame is to the last input representation. They
apply this generic two-stage framework in the context of videos of human motion
with static background. A pretrained CNN extracts the high level representa-
tions in the form of a sequence of vectors corresponding to estimated human
poses (requiring image-level annotations). For the second step, they use the
analogy-based CNN of Reed et al., 2015: two encoders embed in a shared space
on one hand the given image, and on the other the corresponding pose and the
desired pose; while a decoder maps the result of the desired pose, minus the
given pose, plus the given image (or rather their representations) to the desired
image.

Following the same philosophy, Vondrick and Torralba, 2017 propose to pre-
dict, for each time step, the kernel weights for transformation of the last input
frame. This is in contrast with several transformation based architectures, which
directly process the preceding frame. This requires larger capacity architectures,
to account for larger potential motion, they argue that this is less a concern in
the context of video prediction, since supervision can be obtained easily.

Jayaraman et al., 2019 propose an original reformulation of the task: they
propose to predict of a future frame without committing to a time offset at which
the frame would be to occur. To this end, they propose a minimum-over-time
loss, which chooses as groundtruth frame, the frame belonging to the ground
truth sequence, which minimizes the reconstruction loss for a given prediction.
They extend this loss for autoregressive prediction. By predicting such “low
uncertainty frames”, the predictions are shown to be less blurry, leading to less
compounding errors. When used in the context of intermediate frame prediction,
they are likely to correspond to intermediate state that must be traversed in
any case. The authors show that these predictions can be used in the context
of hierarchical planning, as visual subgoals.

Leveraging context while preserving fine spatial structure

In general, concerning dense prediction tasks, the greater the context an ap-
proach can leverage, the more accurate its predictions will be; however, this
must not come at the price of sacrificing fine local details and structure in the
input, which would lead to unrealistic predictions. As we have seen in the con-
text of semantic segmentation, methods must therefore fuse global and local
information adequately. Hence many of the techniques presented in Section
2.1.1 to address these antagonistic goals remain relevant here.

The most common approach is to use an autoencoder with skip connec-
tions, similar to U-Net (Ronneberger et al., 2015). See for instance the works of
Finn et al., 2016; Villegas et al., 2017a; Liu et al., 2017b; Denton and Birodkar,
2017; Lee et al., 2018; Babaeizadeh et al., 2018; Denton and Fergus, 2018; Jang
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et al., 2018; Xiong et al., 2018; Liu et al., 2018; Reda et al., 2018. Alterna-
tively, some works propose a multi-scale approach. Mathieu et al., 2016 run
a resolution-preserving network on a down-sampled version of the inputs. The
coarse prediction is upsampled and concatenated to the inputs at the original
resolution if only two scales are used, or down-sampled to the second smallest
chosen scale otherwise. A second network is used to predict refinements to the
coarse prediction, forming the final prediction in the case of two scales, or yet
another intermediate prediction to refine otherwise. This can be extended to
any number of scales and refinement networks can be shared across scales. Loss
terms are defined for each scale and optimized jointly. Xue et al., 2016 also
use a multi-scale approach for their cross-convolutional network: features are
extracted and kernels are predicted at each scale of a pyramid of images. After
cross-convolution, the transformed feature maps are upsampled accordingly and
combined.

Resolution-preserving architectures, leveraging dilated convolutions, have
also been explored. Vondrick and Torralba, 2017 employ a dilated convolutional
network on the concatenated frames to capture long-range spatial, followed by a
temporal up-convolutional network that transforms the obtained feature maps
into transformation parameters. These are used to transform the last input
image into each of the multi time-step predictions. Kalchbrenner et al., 2017
also use a resolution-preserving convolutional encoder, followed by a ConvLSTM
module and an image conditional autoregressive model.

Wang et al., 2017 propose a variant on stacked ConvLSTMs, where the
memory is not constrained inside each LSTM unit, but instead shared across the
stacked recurrent layers, as well as across the states. The rational is that more
low and mid- level information related to visual appearance can be stored and
are directly accessible by the higher layers for prediction, forming an alternative
to skip connections. Although this allows preserving fine spatial details, the
proposed architecture has a relatively small field of view, since the field of view
expands only linearly with the number of layers, so it could still benefit from
some of the previous approaches.

In fact, Byeon et al., 2018 observe that an unfortunate property of Con-
vLSTMs is that the field of view diminishes from the first input frame to the
last input frame. This is undesirable, as it means that closer time frames con-
tribute less information to the prediction. To address this issue, they introduce
a video prediction model that takes into account the full context for the predic-
tion at each spatial position. They do so by blending together the predictions
of LSTM modules with pyramidal connection topology (Stollenga et al., 2015),
each spanning one of the five possible directions: left to right, right to left,
top to bottom, bottom to top and past to current. In comparison with con-
volutional (non recurrent) architectures, depth is used only to increase power
of the representation, rather than to increase the context that the network has
access to. Computation between the different LSTMs can be parallelised. Their
architecture alone, with standard reconstruction loss and no disentangling of
the representation, yields state-of-the-art result on next frame prediction across
several challenging datasets.
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Video prediction in other feature spaces

A number of works depart from prediction in the space of RGB intensities
to forecast different features of the video. Often these reformulations retain
motivations of the original task, but address a less challenging problem; so that
the methods are more directly applicable. If necessary, in many cases, mapping
back to the RGB space could be done, e.g . with the analogy-based approach
proposed by Villegas et al., 2017b or with a direct mapping like in Li et al.,
2018e.

Several methods propose to predict motion features. Walker et al., 2015
learn to predict the future motion of every pixel in the form of dense optical
flow from a single frame, and show preliminary results when the network is
used for long-range prediction of future motion. In subsequent work, Walker
et al., 2016 perform forecasting with a VAE, predicting diverse future pixel
trajectories up to one second, from static images. Similarly, Luo et al., 2017
employ a ConvLSTM architecture to predict sequences of up to eight frames of
optical flow in RGB-D videos.

Future prediction of more abstract representations has also been considered
in a variety of contexts, and very early on. Srivastava et al., 2015 already
propose to perform prediction, either in the space of RGB patches, or in that of
the activations of the VGG network (Simonyan and Zisserman, 2015), or in that
of the temporal stream of the two-stream architecture for activity recognition
(Simonyan and Zisserman, 2014). Kitani et al., 2012 predict future trajectories
of people from semantic segmentation of an observed video frame, modeling
potential destinations and transitory areas that are preferred or avoided. Lan
et al., 2014 predict future human actions from automatically detected atomic
actions. Lee et al., 2017 predict future object trajectories from past object
tracks and object interactions. Vondrick et al., 2016a predict the activations
of the last hidden layer of AlexNet (Krizhevsky et al., 2012) in future frames,
and use these to anticipate objects and actions. Gui et al., 2018 use a recurrent
encoder framework to forecast human motion up to a second in the future.
Bhattacharyya et al., 2018 jointly predict ego-motion and people trajectories
over the next second, in the form of bounding boxes. They additionally predict
the uncertainty of their predictions. Vu et al., 2018 learn video representations
relying on a novel memory module, and use them both to detect objects in
video and to anticipate their positions in future frames. Abu Farha et al., 2018
anticipate future actions over long term horizons of up to five minutes. Pavllo
et al., 2018 predict human pose sequences with improved short-term accuracy
by predicting a quaternion representation for the joint rotations. An extension
of their framework is proposed in Pavllo et al., 2019.

2.3.4 Applications of video prediction

Besides emerging applications in RL of forward modeling, and applications of
self-supervised learning in video recognition tasks (see Sections 2.3.1 and 2.3.2),
video prediction has seen other interesting applications.
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Liu et al., 2018 show an application of video prediction in the context of
anomaly detection. Their method learns to predict the next frame and thresh-
olds a score based on the similarity between the prediction and the ground-truth
frames to predict whether a frame is normal or not. This is because unusual
events, such as the presence of bicycles or the occurence of a fight in a walking
zone, will be harder to predict, so the corresponding frames’ scores should be
low. They show that this method obtains state-of-the-art performance on three
benchmarks.

In the partial observation strategy game of StarCraft, Synnaeve et al., 2018
learn a predictive model of the full game state, both present and future, given
past and current partial observations. The predictions are given to their rule
based bot, minimally adapted to take them into account. While they seem to
hurt a module concerned with choosing tactics, predictions five seconds into
the future improve the performance of build actions, leading to a significant
improvement in win rate.

Several works investigate the use of predictive models to forecast complex
spatio-temporal phenomena like those occurring in natural physical processes.
ConvLSTMs were initially proposed by Shi et al., 2015 in the context of pre-
cipitation nowcasting, that aims to predict the future rainfall intensity in a
local region over a relatively short period of time. They use this module in
a predictive autoencoder architecture, consisting of two stacks of ConvLSTM
layers, and obtain state-of-the-art performance. Bezenac et al., 2018 propose a
transformation-based predictive model incorporating prior scientific knowledge
to forecast sea surface temperature, which itself has applications in weather
forecasting. Ziat et al., 2017 propose a recurrent model and evaluate it on
various spatio-temporal forecasting tasks: disease spread, wind speed and ori-
entation, sea surface temperature and car traffic forecasting. These applications
can be seen as video prediction in particular domains, and directly benefit from
advances on this task.



Chapter 3

Semantic Segmentation
using Adversarial Training

We are interested in semantic segmentation as a high level, yet spatially detailed
representation for the content of images. In this chapter, we present an adver-
sarial training approach to train semantic segmentation models, published at the
NIPS Workshop on Adversarial Training, 2016 (Luc et al., 2016). Specifically,
we train a convolutional semantic segmentation network along with a discrim-
inator, trained to classify whether segmentation maps come from the ground
truth or from the segmentation network. The motivation for our approach is
that it can detect and correct higher-order inconsistencies between ground truth
segmentation maps and the ones produced by the segmentation net. Our exper-
iments show that our adversarial training approach leads to improved accuracy
on the Stanford Background and PASCAL VOC 2012 datasets.

In Section 3.1, we give the motivations for our method. We discuss related
work on adversarial training approaches, as well as recent segmentation models,
in Section 3.2. We present our adversarial training approach and network archi-
tectures in Section 3.3 and our experimental results in Section 3.4. We conclude
with a discussion in Section 3.5.

3.1 Introduction

As presented in Section 2.1.1, current state-of-the-art methods rely on CNN ap-
proaches, following early work using CNNs for this task by Grangier et al., 2009
and Farabet et al., 2013. Despite many differences in the CNN architectures,
a common property across all these approaches is that all label variables are
predicted independently from each other. This is the case at least during train-
ing; various post-processing approaches have been explored to reinforce spatial
contiguity in the output label maps since the independent prediction model does
not capture this explicitly.

We also discussed that conditional random fields have been extensively used
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Figure 3.1: Overview of the proposed approach. Left: The segmentation net
takes RGB image as input, and produces per-pixel class predictions. Right:
The discriminator takes label map as input and produces class label (1=ground
truth, or 0=synthetic). It optionally also takes RGB image as input.

to reinforce spatial contiguity in the output label maps since the independent
prediction model does not capture this explicitly. Various forms for the graph
connectivity and the pairwise or higher order potentials have been explored,
where the former largely determines the expressivity of the latter, to lead to a
tractable inference procedure.

We are interested in enforcing higher-order consistency without being limited
to a very specific class of high-order potentials. Instead of seeking to directly in-
tegrate higher-order potentials in a CRF model, we explore an approach based
on adversarial training inspired by GANs We optimize an objective function
that combines a conventional multi-class cross-entropy loss with an adversar-
ial term. The adversarial term encourages the segmentation model to produce
label maps that cannot be distinguished from ground-truth ones by a discrimi-
natively trained binary classification model. Since the discriminator can assess
the joint configuration of many label variables, it can enforce forms of higher-
order consistency that cannot be enforced using pair-wise terms, nor measured
by a per-pixel cross-entropy loss. Our approach is illustrated in Figure 3.1.

The contributions of our work are the following:

1. We present, to the best of our knowledge, the first application of adver-
sarial training to semantic segmentation.

2. The adversarial training approach enforces long-range spatial label conti-
guity, without adding complexity to the model used at test time.

3. Our experimental results on the Stanford Background and Pascal VOC
2012 dataset show that our approach leads to improved labeling accuracy.
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3.2 Related work

Adversarial training As discussed in Section 2.2.1, generative adversarial
networks (GANs) (Goodfellow et al., 2014) have led to state of the art results
for generative image modeling. In follow-up work, Radford et al., 2016 present a
number of architectural design choices that enable stable training of GANs that
are able to synthesize realistic images. Similar to Goodfellow et al., 2014, they
use deep “deconvolutional” networks that progressively construct the image
by up-sampling, using essentially a reverse CNN architecture. Denton et al.,
2015 use a Laplacian pyramid approach to learn a sequence of GAN models
that successively generate images with finer details. Extensions of GANs for
conditional modeling have been explored, e.g . for image tag prediction (Mirza
and Osindero, 2014), face image generation conditioned on attributes (Gauthier,
2015), and for caption-based image synthesis (Reed et al., 2016).

Deep conditional generative models have also been defined in a non-stochastic
manner, where for a given conditioning variable a single deterministic output
is generated. For example, Dosovitskiy et al., 2015b developed deep generative
image models where the conditioning variables encode the object class, view-
point, and colour-related transformations. In this case a conventional regression
loss can be used, since inference or integration on the conditioning variables is
not needed. Dosovitskiy et al., 2015b train their models using an `2 regression
loss on the target images.

In other examples, the conditioning variable takes the form of one or more
input images. In Section 2.3.3, we presented several approaches that use a de-
terministic model for the problem of predicting the next frame in video given
several preceding frames (Mathieu et al., 2016; Vondrick and Torralba, 2017;
Xiong et al., 2018). Pathak et al., 2016 considered the problem of image in-
painting, where the missing part of the images has to be predicted from the
observed part. Such models are closely related to deep convolutional semantic
segmentation models that deterministically produce a label probability map,
conditioned on an input RGB image. In the latter two cases, a regression loss
is combined with an adversarial loss term. The motivation in both cases is that
per-pixel regression losses typically result in too blurry outputs, since they do
not account for higher-order regularities in the output. Since the discriminator
has access to large portions or the entire output image, it can be interpreted as
a learned higher-order loss, which obviates the need to manually design higher-
order loss terms. The work of Tarlow and Zemel, 2012 is related to this approach
as they also suggested to learn with higher-order loss terms, while not including
such higher-order terms in the predictive model to ensure efficient prediction.

Semantic Segmentation In our work, we build on recent advances in deep
learning architectures for semantic segmentation, such as the ones presented
in Section 2.1.1. Specifically, we investigate the robustness our approach with
respect to segmentation architectures, using on one hand the multi-scale ar-
chitecture of Farabet et al., 2013 and on the other the dilated convolutional
architecture of Yu and Koltun, 2016.
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As we have outlined in Section 2.1.1, most work that combines CNN unary
label predictions with CRFs is based on models with pairwise or higher-order
terms with few trainable parameters, e.g . (Arnab et al., 2016; Schwing and
Urtasun, 2015; Zheng et al., 2015). An exception is the work of Lin et al., 2016
which uses a second CNN to learn data dependent pairwise terms. Another
approach that exploits high-capacity trainable models to drive long-range label
interactions is to use recurrent networks (Pinheiro and Collobert, 2014), where
each iteration maps the input image and current label map to a new label map.

In comparison to these approaches our work has the following merits: (i)
The discriminator has a high capacity, and is thus flexible enough to detect
mismatches in a wide range of higher-order statistics between the model predic-
tions and the ground-truth, without having to manually define these. (ii) Once
trained, our model is efficient since it does not involve any higher-order terms
or recurrence in the model itself.

3.3 Adversarial training for semantic segmenta-
tion networks

Inspired by GANs, our approach trains two networks, a segmentation model and
a discriminator to compete against each other, as a way to enforce higher-order
consistency in the predictions. We begin by describing our general framework
for adversarial training of semantic segmentation models in Section 3.3.1. Next,
we present the architectures used in our experiments in Section 3.3.2.

3.3.1 Adversarial training

We propose to use a hybrid loss function that is a weighted sum of two terms.
The first is a multi-class cross-entropy term that encourages the segmentation
model to predict the right class label at each pixel location independently. This
loss is standard in state-of-the-art semantic segmentation models, see e.g . (Chen
et al., 2015; Lin et al., 2016; Long et al., 2015; Noh et al., 2015). We use s(x)
to denote the class probability map over C classes of size H ×W × C that the
segmentation model produces given an input RGB image x of size H ×W × 3.

The second loss term is based on an auxiliary discriminative convolutional
network. This loss term is large if the discriminator can differentiate the output
of the segmentation network from ground-truth label maps. Since the discrimi-
native CNN has a field-of-view that is either the entire image or a large portion
of it, mismatches in the higher-order label statistics can be penalized by the
adversarial loss term. Higher-order label statistics (such as e.g . the shape of a
region of pixels labeled with a certain class, or whether the fraction of pixels in a
region of a certain class exceeds a threshold) are not accessible by the standard
per-pixel factorized loss function. We use a(x,y) ∈ [0, 1] to denote the scalar
probability with which the discriminator predicts that y is the ground truth
label map of x, as opposed to being a label map produced by the segmentation
model s(·).
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Given a data set of N training images xn and a corresponding label maps
yn, we define the loss as

`(θs,θa) =

N∑
n=1

`mce(s(xn),yn)− λ
[
`bce(a(xn,yn), 1) + `bce(a(xn, s(xn)), 0)

]
,

(3.1)

where θs and θa denote the parameters of the segmentation model and discrim-
inator respectively, and λ is a positive scalar used to balance the loss terms. In
the above, `mce(ŷ,y) = −∑H×W

i=1

∑C
c=1 yic ln ŷic denotes the multi-class cross-

entropy loss for predictions ŷ, which equals the negative log-likelihood of the
target segmentation map y represented using a 1-hot encoding. Similarly, we
use `bce(ẑ, z) = −

[
z ln ẑ + (1 − z) ln(1 − ẑ)

]
, the binary cross-entropy loss. We

minimize the loss with respect to the parameters θs of the segmentation model,
while maximizing it w.r.t. the parameters θa of the discriminator.

Training the discriminator. Since only the second term depends on the dis-
criminator, training the discriminator is equivalent to minimizing the following
binary classification loss

N∑
n=1

`bce(a(xn,yn), 1) + `bce(a(xn, s(xn)), 0). (3.2)

In our experiments we let a(·) take the form of a CNN. Below, in Section 3.3.2,
we describe several variants for the discriminator’s architecture, exploring dif-
ferent possibilities for the combination of the inputs and the field-of-view of the
discriminator.

Training the segmentation model. Given the discriminator, the training
of the segmentation model minimizes the multi-class cross-entropy loss, while at
the same time degrading the performance of the discriminator. This encourages
the segmentation model to produce segmentation maps that are hard to distin-
guish from ground-truth ones for the discriminator. The terms of the objective
function Eq. (3.1) relevant to the segmentation model are

N∑
n=1

`mce(s(xn),yn)− λ`bce(a(xn, s(xn)), 0). (3.3)

We follow Goodfellow et al., 2014, and replace the term−λ`bce(a(xn, s(xn)), 0)
with +λ`bce(a(xn, s(xn)), 1) when updating the segmentation model in practice.
In other words: instead of minimizing the probability that the discriminator pre-
dicts s(xn) to be synthetic label map for xn, we maximize the probability that
the discriminator predicts it to be a ground truth map for xn. It is easy to
show that `bce(a(xn, s(xn)), 0) and −`bce(a(xn, s(xn)), 1) share the same set
of critical points. The rationale for this modified update is that it leads to a
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stronger gradient signal when the discriminator makes accurate predictions on
the synthetic/ground-truth nature of the label maps. Preliminary experiments
confirmed that this is indeed important in practice to speedup training.

3.3.2 Network architectures

We now detail the architectures we used for our preliminary experiments on the
Stanford Background dataset and large-scale experiments on the Pascal VOC
2012 segmentation benchmark.

Stanford Background dataset. For this dataset we used the multi-scale seg-
mentation network of Farabet et al., 2013, and train it patch-wise from scratch.
The discriminator takes as input a label map, and the corresponding RGB im-
age. The label map is either the ground truth corresponding to the image, or
produced by the segmentation net. The ground truth label maps are down-
sampled to match the output resolution of the segmentation net, and fed in a
1-hot encoding to the discriminator. We apply local contrast normalization to
the RGB images before feeding them to either the discriminator or segmentation
network. The architecture of the discriminator is shown in Figure 3.2. At first,
two separate branches process the image and the label map, to allow different
low level representations for the two different signals. We follow the observation
of Pinheiro et al., 2016 that it is preferable to have roughly the same number
of channels for each input signal, so as to avoid that one signal dominates the
other when fed to subsequent layers. When fusing the two signal branches, we
represent both inputs using 64 channels. The signals are then passed into an-
other stack of convolutional and max-pooling layers, after which the binary class
probability is produced by a sigmoid activation. The discriminator applies two
max-pooling operators to the label maps. It is applied in a fully convolutional
fashion to the inputs, resulting in a number synthetic/ground-truth predictions
of the discriminator that is 4× 4 = 16 times smaller than the number of predic-
tions generated by the segmentation network.

Pascal VOC 2012 dataset. For this dataset we used the state-of-the-art
Dilated-8 architecture of Yu and Koltun, 2016, and fine-tune the pre-trained
model. This architecture is built upon the VGG-16 architecture of Simonyan
and Zisserman, 2015, but does not include the two last max-pooling layers to
maintain a higher resolution. The convolutions that follow the modified pool-
ing operators are dilated with a factor of two for each preceding suppressed
max-pooling layer. Following the last convolutional layer, a “context module”
composed of eight convolutional layers with increasing dilation factors, is used
to expand the network’s field-of-view while maintaining the resolution of the
feature maps. We explore three variants for the discriminator input, which we
call respectively Basic, Product and Scaling.

In the first approach, Basic, we directly input the probability maps generated
by the segmentation network. Preliminary experiments in this set-up show no
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Figure 3.2: Discriminator architecture used for the Stanford Background
dataset. The left and right branch processes respectively the class segmen-
tations and the RGB image.

difference when adding the corresponding RGB image, we therefore do not use it
for simplicity. One concern for this choice of the inputs is that the discriminator
can potentially trivially distinguish the ground truth and generated label maps
by detecting if the map consists of zeros and ones (one-hot coding of ground
truth), or of values between zero and one (output of segmentation network).

In the second case, Product, we use the label maps to segment the input RGB
image, and use it as input for the discriminator. In particular, we multiply the
input image with each of the class probability maps (or ground truth), leading
to a discriminator input with 3C channels. See Figure 3.3 for illustration. Prior
to multiplication, the RGB image is mean-centered per pixel, in the same way
as it is for input to the segmenting model.

In the third case, Scaling, we replace the 1-hot coding of the ground-truth
label maps y with distributions over the labels y that put at least mass τ
at the correct label, but are otherwise as similar as possible (in terms of KL
divergence) to the distributions produced by the segmenting network. For each
spatial position i, given its ground-truth label l, we set the probability for that
pixel and that label to be yil = max(τ, s(x)il), where s(x)il is the corresponding
prediction of the segmentation net. For all other labels c we set yic = s(x)ic(1−
yil)/(1− s(x)il), so that the label probabilities in y sum to one for each pixel.
In our experiments we have used τ = 0.9.

We also need to handle the presence of unlabeled pixels in the ground-truth
for the input to the discriminator. We adopt an approach similar to what is done
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Figure 3.3: Illustration of using the product of the RGB input and the output
of the segmentation network to generate input for the discriminator. The image
is down-sampled by the stride of the segmentation network. The probability
maps are then multiplied element-wise with each colour channel. These outputs
are concatenated and form the input to the discriminator.

in image-wise training of the segmentation model with the cross entropy loss.
We zero-out the values at the spatial positions of unlabeled pixels in both the
ground-truth and the output of the segmentation network. We also zero-out the
corresponding gradient values during the backward pass corresponding to the
second term of Eq. 3.3. Indeed, those gradients do not correspond to predictions
produced by the segmentation net, but to the presence of zeros introduced by
this procedure, and should therefore be ignored.

We experiment with two architectures for the discriminator with different
fields-of-view. The first architecture, we call LargeFOV, has a field-of-view of
34× 34 pixels in the label map, whereas the second one, SmallFOV, has a field-
of-view of 18×18. Note that this corresponds to a larger image region since the
outputs of the segmentation net are eight times down-sampled with respect to
the input image. We expect LargeFOV to be more effective to detect differences
in patterns of relative position and co-occurrence of class labels over lager areas.
Whereas we expect SmallFOV to focus on more fine local details, such as the
sharpness and shape of class boundaries and spurious class labels.

Finally, we test a high capacity variant as well as a lighter one of each
architecture. The smaller capacity variants have less channels per layer and
respectively called LargeFOV-light and SmallFOV-light. Figure 3.4 summarizes
the architectures used. The number of parameters of each model also depends
on the input encoding.

3.4 Experimental evaluation results

Datasets. In our experiments we used two datasets. The Stanford Back-
ground dataset by Gould et al., 2009 contains 715 images of eight classes of
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Figure 3.4: Summary of the architectures used for the discriminator, from left
to right : LargeFOV-light, LargeFOV, SmallFOV-light, SmallFOV, with layers
organized from top to bottom, along with the approximate number of param-
eters for each model. This number depends on the number of channels of the
input (C channels for Basic and Scaling encodings, 3C channels for Product
encoding.)
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sky tree road grass water building mountain fg. object

input ground truth no adversarial with adversarial

Figure 1: Segmentations on Stanford Background. Class probabilities without (first row) and with
(second row) adversarial training. In the last row the class labels are superimposed on the image.

1

Figure 3.5: Segmentations on Stanford Background. Class probabilities without
(first row) and with (second row) adversarial training. In the last row the class
labels are superimposed on the image.

scene elements. We used the splits introduced by Gould et al., 2009: 573 im-
ages for training, 142 for testing. We train the multi-scale network of Farabet
et al., 2013 using the same hyper-parameters. We have further split the training
set into eight subsets, and we train on all subsets but one, which we use as our
validation set to choose an appropriate weight λ, learning rate for the discrimi-
nator and to select the final model. The discriminator is trained using a weight
λ = 2 and learning rate 10−3. We compute the three standard performance
measures: per class accuracy, per pixel accuracy, and the mean Intersection
over Union (IoU) as defined by Everingham et al., 2015.

The second dataset is Pascal VOC 2012. As is common practice, we train our
models on the dataset augmented with extra annotations from Hariharan et al.,
2011, which gives a total of 10, 582 training images. For validation and test, we
use the challenge’s original 1, 449 validation images and 1, 456 test images.

In addition to the standard IoU metric, we also evaluate our models using
the BF measure introduced by Csurka et al., 2013, to measure accuracy along
object contours. This measure extends the Berkeley contour matching score
of Martin et al., 2004, a commonly used metric in segmentation, to semantic
segmentation. It is based on the closest match between boundary points in the
prediction and the ground-truth segmentation. The tolerance in the distance
error, used to decide whether a point has a match or not, is a factor θ times the
length of the image diagonal. We choose θ such that this distance error tolerance
is 5 pixels for the smallest image diagonal. In the original annotations of the
dataset, however, the labels around the border of the objects are not given,
since they are marked as ’void’ and ignored in evaluation. Instead, to measure
the mean BF, we use the 1,103 images out of 1,449 images of the validation set
which were annotated on all pixels by Hariharan et al., 2011.
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Figure 3.6: Per-class accuracy across training ephochs on the Stanford Back-
ground dataset on train data (left) and validation data (right), with and without
adversarial training.

Per-class acc. Pixel acc. Mean IoU

Standard 66.5 73.3 51.3
Adversarial 68.7 75.2 54.3

Table 3.1: Segmentation accuracy on the Stanford Background dataset.

Results on the Stanford Background dataset. In Figure 3.5 we give an
illustration of the segmentations generated using this network with and without
adversarial training. The adversarial training better enforces spatial consistency
among the class labels. It smoothens and strengthens the class probabilities over
large areas, see e.g . the probability maps for sky and grass, but also sharpens
class boundaries, and removes spurious class labels across small areas.

In Figure 3.6 we display the evolution of the per-class prediction accuracy
on the train and validation sets, using either standard or adversarial training.
Note that the adversarial strategy results in less overfitting, i.e. generating a
regularization effect, resulting in improved accuracy on validation data. This
is also reflected in all three performance metrics on the test set, as reported in
Table 3.1.

Results on Pascal VOC 2012. In order to set the learning rates of both the
segmentation and discriminator, as well as the trade-off weight of the losses λ, we
conduct a small grid search for each combination of discriminator architecture
and input encoding.

To train the two networks, we first experimented with pre-training the dis-
criminator before using the adversarial loss to fine-tune the segmentation net-
work, so as to ensure that the adversarial loss is meaningful. This, however,
led to the training to be rapidly instable after just a few epochs in many ex-
periments. We found that training instead using an alternating scheme is more
effective. We experimented with a fast alternating scheme, where we alternate
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Basic Product Scaling

mIOU mBF mIOU mBF mIOU mBF

LargeFOV 72.0 47.2 72.0 47.7 72.0 47.9
SmallFOV 72.0 47.6 71.9 46.4 71.9 47.1
LargeFOV-light 72.0 47.0 72.0 47.7 72.0 47.4
SmallFOV-light 71.9 47.2 71.9 47.4 72.0 46.9

Table 3.2: Performance using different architectures and input encodings for the
discriminator on the Pascal VOC 2012 validation set.

between updating the segmenting network’s and the discriminator’s weights at
every iteration of SGD and a slow one, where we alternate only after 500 itera-
tions of each. We found the second scheme to lead to the most stable training,
and used it for the results on the validation set reported in Table 3.2. For
details on the hyper-parameter search, and the final hyper-parameters used for
each model, we refer the reader to the supplementary material of our publication
(Luc et al., 2016).

We compare the results of adversarial training with a baseline consisting of
fine-tuning of Dilated8 using the cross-entropy loss only. For the baseline we
obtained a mean IoU of 71.8 and mean BF of 47.4. As shown in Table 3.2,
we observe small but consistent gains for most adversarial training setups. In
particular, the LargeFOV architecture is the most effective overall. Moreover,
it is interesting to note that the different discriminator input encodings lead
to comparable results. In fact, we found that for the basic input encoding,
the discriminator does not succeed in perfectly separating ground-truth and
predicted label maps, it rather has a discrimination accuracy that is comparable
to that obtained with the other input encodings.

Using the evaluation server we also tested selected models on the Pascal VOC
2012 test set. For the baseline model we obtain (73.1), while for LargeFOV-
Product and LargeFOV-Scaling we obtained 73.3 and 73.2 respectively. This
confirms the small but consistent gains that we observed on the validation data.

3.5 Discussion

We have presented an adversarial approach to learn semantic segmentation mod-
els. In the original work of Goodfellow et al., 2014 the discriminator is used to
define a proxy loss for a generative model in which the calculation of the cross-
entropy loss is intractable. In contrast, the CNN-based segmentation models we
use allow for tractable computation of the exact multi-class cross-entropy loss.
In our work we use the discriminator as a “variational” loss, with adjustable
parameters, to regularize the segmentation model by enforcing higher-order con-
sistency in the factorized prediction model of the label variables. Methodologi-
cally, this approach is related to work by Roweis et al., 2002, where variational
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inference was used in tractable linear-Gaussian mixture models to enforce consis-
tency across multiple local dimension reduction models, and to work by Tarlow
and Zemel, 2012 which learn models with higher-order loss terms, while not
including such higher-order terms in the predictive model to ensure efficient
inference.

To demonstrate the regularization property of adversarial training, we con-
ducted experiments on the Standford Background dataset and the Pascal VOC
2012 dataset. Our results show that the adversarial training approach leads to
improvements in semantic segmentation accuracy on both datasets. The gains
in accuracy observed on the Stanford Background dataset are more pronounced.
This is most likely due to higher risk of over fitting using this smaller data set,
and also due to the more powerful segmentation architectures used for the Pascal
VOC 2012 dataset.
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Chapter 4

Predicting Future Semantic
Segmentation

The ability to anticipate the future is an important attribute of intelligence. It is
also of utmost importance in real-time systems, e.g . in robotics or autonomous
driving, which depend on visual scene understanding for decision making. While
prediction of the raw RGB pixel values in future video frames has been studied
in previous work, in our work, we introduce the novel task of predicting seman-
tic segmentations of future frames. Given a sequence of video frames, our goal
is to predict segmentation maps of not yet observed video frames that lie up to
a second or further in the future. We develop an autoregressive convolutional
neural network that learns to iteratively generate multiple frames. Our results
on the Cityscapes dataset show that directly predicting future segmentations is
substantially better than predicting and then segmenting future RGB frames.
Prediction results up to half a second in the future are visually convincing and
are much more accurate than those of a baseline based on warping semantic seg-
mentations using optical flow. The work presented in this chapter was published
at ICCV 2017 (Luc et al., 2017).

In Section 4.1, we motivate our novel task and introduce our work in more
detail. We discuss related work on video prediction in Section 4.2. We present
our approach in Section 4.3 and our baselines and experimental results in Sec-
tion 4.4. We conclude in Section 4.5.

4.1 Introduction

Anticipating future events is a key component of intelligent decision-making. In
Chapter 2, we described how reinforcement learning (RL) approaches can lever-
age video prediction models for planning (Finn et al., 2016), control (Wahlström
et al., 2015), simulation of sequences for data augmentation (Sutton, 1991) or
additional inputs to a policy network (Weber et al., 2017). Decision making
can also rely on intermediate prediction of the consequences of actions in a

61
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given setting (Dosovitskiy and Koltun, 2017). Finally, such forward models can
be used to formulate intrinsic reward signals, such as curiosity (Pathak et al.,
2017); as well as to improve exploration (Oh et al., 2015). In a nutshell, video
prediction has become an important research direction towards increasing the
data-efficiency of RL algorithms. Doing so is crucial to transfer the impressive
successes of RL methods, to this day demonstrated in simulated environments,
to real-world applications, where interactions with the environment are typi-
cally slow, expensive or even dangerous, e.g . in the case of robotic systems and
autonomous vehicles.

While humans can predict vehicle or pedestrian trajectories effortlessly and
at the reflex level, it remains an open challenge for current computer vision
systems. An application which directly benefits from our work is autonomous
driving. In this domain, approaches are either based on a number of semantic
decompositions such as road and obstacle detection, or directly learn a map-
ping from visual input to driving instructions end-to-end. Recent work from
Mobileye (Shalev-Shwartz and Shashua, 2016) demonstrated an advantage of
the semantic abstraction approach in lowering the required amount of training
data and decreasing the probability of failure. Other work by Shalev-Shwartz
et al., 2016 uses future prediction to facilitate long-term planning problems and
forms a direct motivation for our work.

As discussed in Chapter 2, the task of predicting future RGB video frames
given preceding ones has recently received significant attention. Modeling raw
RGB intensities is, however, overly complicated as compared to predicting fu-
ture high-level scene properties, while the latter is sufficient for many applica-
tions. Such high-level future prediction has been studied in various forms, e.g .
by explicitly forecasting trajectories of people and other objects in future video
frames (Alahi et al., 2014; Fouhey and Zitnick, 2014; Hoai and De la Torre,
2014; Kitani et al., 2012; Lan et al., 2014; Pei et al., 2011). In the work we
present here, we do not explicitly model objects or other scene elements, but
instead model the dynamics of semantic segmentation maps of object categories
with convolutional neural networks. Semantic segmentation is one of the most
complete forms of visual scene understanding, where the goal is to label each
pixel with the corresponding semantic label (e.g ., tree, pedestrian, car, etc.).
In our work, we build upon the recent progress in semantic segmentation, gen-
erative modeling and video prediction (Farabet et al., 2013; Long et al., 2015;
Chen et al., 2015; Yu and Koltun, 2016; Goodfellow et al., 2014; Mathieu et al.,
2016; Patraucean et al., 2016; Arjovsky et al., 2017), and develop models to pre-
dict the semantic segmentation of future video frames, given several preceding
frames. See Figure 4.1 for an illustration.

The pixel-level annotations needed for semantic segmentation are expensive
to acquire, and this is even worse if we need annotations for each video frame. To
alleviate this issue we rely on the state-of-the-art semantic image segmentation
model of (Yu and Koltun, 2016) to label all frames in videos, and then learn
our future segmentation prediction models from these automatically generated
annotations.

We systematically study the effect of using RGB frames and/or segmen-
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Figure 4.1: Our models learn semantic-level scene dynamics to predict semantic
segmentations of unobserved future frames given several past frames.

tations as inputs and targets for our models and the impact of various loss
functions. Our experiments on the Cityscapes dataset (Cordts et al., 2016) sug-
gest that it is advantageous to directly predict future frames at the abstract
semantic-level, rather than to predict the low-level RGB appearance of future
frames and then to apply a semantic segmentation model on these. By moving
away from raw RGB predictions and modeling pixel-level object labels instead,
the network’s modeling capacity seems better allocated to learn basic physics
and object interaction dynamics.

In this work we make two contributions:

• We introduce the novel task of predicting future frames in the space of
semantic segmentation. Compared with prediction of the RGB intensities,
we show that we can predict further into the future, and hence model more
interesting distributions.

• We propose an autoregressive model which convincingly predicts segmen-
tations up to 0.5 seconds into the future. The mean IoU of our predictions
reaches two thirds of the one obtained by the method used to automati-
cally generate the dense video annotations.

Our approach does not require extremely costly temporally dense video an-
notation and its genericity allows different architectures for still-image segmen-
tation and future segmentation prediction to be swapped in.

4.2 Related Work

Amongst the video prediction methods presented in Section 2.3.3, works that
propose to shift the video prediction task to another output space are partic-
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ularly relevant to the work we present here. Kitani et al., 2012 predict fu-
ture trajectories of people from semantic segmentation of an observed video
frame, modeling potential destinations and transitory areas that are preferred
or avoided. Lan et al., 2014 predict future human actions from automatically
detected atomic actions. Lee et al., 2017 predict future object trajectories from
past object tracks and object interactions. Several methods produce motion fea-
tures, such as dense optical flow Walker et al., 2015; Luo et al., 2017 or future
pixel trajectory Walker et al., 2016. Future prediction of more abstract repre-
sentations has also been considered in a variety of contexts: Srivastava et al.,
2015 and Vondrick et al., 2016a propose to predict the high level activations of
networks trained for image or video classification. Our work distinguishes itself
by predicting in a space of features that are both semantically strong, like the
high level features of a classification network, and detailed spatially, like the
motion features.

Our work is also related to approaches that attempt to mitigate rapid er-
ror propagation in video prediction. In concurrent work, Villegas et al., 2017b
propose a hierarchical two-stage approach, where prediction is first performed
in a high-level semantic space, and mapped back to the pixel space using an
analogy-based approach. Oliu et al., 2018 propose a new recurrent module
that learns simultaneously an approximate inverse function to itself. Stacked
together, these modules form a recurrent autoencoder that does not require re-
encoding previous predictions for predicting multiple time-steps. Orthogonal
to these directions, we study a novel video prediction task, and show exper-
imentally that this task is better suited for autoregressive modeling and for
predicting further ahead into the future.

Perceptual losses, introduced in Section 2.3.3, are also related to our ap-
proach. While the recent works of Li et al., 2018e; Liu et al., 2018 rely on
pre-trained networks to formulate semantically stronger reconstruction losses,
we learn a model in a semantically strong space, using standard reconstruction
losses.

Finally, several authors developed methods related to our work to improve
the temporal stability of semantic video segmentation. Jin et al., 2017a train
a model to predict the semantic segmentation of the immediate next image
from the preceding input frames, and fuse this prediction with the segmenta-
tion computed from the next input frame. Patraucean et al., 2016 employ a
convolutional RNN to implicitly predict the optical flow, and use these to warp
and aggregate per-frame segmentations. In contrast, our work is focused on pre-
dicting future segmentations without seeing the corresponding frames. Nilsson
and Sminchisescu, 2018 use a convolutional RNN model with a spatial trans-
former component (Jaderberg et al., 2015) to accumulate the information from
past and future frames in order to improve prediction of the current frame seg-
mentation. In contrast, our work is focused on predicting future segmentations
without seeing the corresponding frames. Most importantly, we target a longer
time horizon than a single frame.

The approach we develop for predicting future semantic segmentation builds
on the work of Mathieu et al., 2016, state-of-the-art at the time of publication,
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and our best performing architecture uses dilated convolutions introduced by
Chen et al., 2015 in the context of semantic segmentation.

4.3 Predicting future frames and segmentations

We start by presenting different scenarios to predict RGB pixel values and/or
segmentations of the next video frame in Section 4.3.1. Then, in Section 4.3.2,
we describe two extensions of the single-frame prediction model to predict fur-
ther into the future.

4.3.1 Single-frame prediction models

Pixel-level supervision is laborious to acquire for semantic image segmentation,
and even more so for its video counterpart. To circumvent the need for datasets
with per-frame annotations, we use the state-of-the-art Dilation10 semantic im-
age segmentation network of Yu and Koltun, 2016, presented in detail in Sec-
tion 2.1.1, to provide input and target semantic segmentations for all frames in
each video. We use the resulting temporally dense segmentation sequences to
learn our models.

Let us denote with Xi the i-th frame of a video sequence and denote the
sequence of frames from Xt to XT as Xt:T . We denote by Si the semantic
segmentation of frame Xi given the Dilation10 network. We represent the seg-
mentations Si using the final softmax layer’s pre-activations, rather than the
probabilities it produces. This is motivated by recent observations in network
distillation that the softmax pre-activations carry more information (Ba and
Caruana, 2014; Hinton et al., 2014). For single-frame future prediction, we con-
sider five different models that differ in whether they take RGB frames and/or
segmentations as their inputs and targets: model X2X takes X1:t and predicts
Xt+1, model S2S takes S1:t and predicts St+1, models XS2X and XS2S take
(X1:t, S1:t) and predict respectively Xt+1 and St+1, and finally model XS2XS
takes (X1:t, S1:t) and predicts (Xt+1, St+1).

Architectures. The X2X model is a next frame prediction model, for
which we use the multi-scale network of Mathieu et al., 2016, with two spatial
scales. Denoting with C the number of output channels, each scale module is a
four-layer convolutional network alternating convolutions and ReLU operations,
outputting feature maps with 128, 256, 128 and C channels each, and filters of
size 3 for the smaller scale, and 5, 3, 3, 5 for the larger scale. The last non-linear
function is a hyperbolic tangent, to ensure that the predicted RGB values lie
in the range [−1, 1]. The output at the coarser scale is upsampled, and used as
input to the next scale module together with a copy of the input RGB frames
at that scale. This module then outputs a refinement that is summed with the
previous upsampled coarse prediction to form the final prediction.

For models that predict segmentations St+1, we removed the last hyperbolic
tangent non-linearities for the corresponding output channels, since the softmax
pre-activations are not limited to a fixed range. Apart from this difference, the
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Figure 4.2: Multi-scale architecture of the S2S model that predicts the semantic
segmentation of the next frame given the segmentation maps of the NI previous
frames.

S2S model, that predicts the next segmentation from past ones, has the same
architecture as the X2X model.

The multi-scale architecture of the S2S model is illustrated in Figure 4.2.
The other models (XS2X, XS2S, and XS2XS), which take both RGB frames and
segmentation maps as input, also use the same internal architecture and differ
only in the number of channels in their input and output.

Loss function. Following Mathieu et al., 2016, for all models, the loss
function between the model output Ŷ and the target output Y is the sum of an
`1 loss and a gradient difference loss (GDL):

L(Ŷ , Y ) = L`1(Ŷ , Y ) + Lgdl(Ŷ , Y ). (4.1)
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Using Yij to denote the pixel elements in Y , and similarly for Ŷ , the losses are
defined as:

L`1(Ŷ , Y ) =
∑
i,j

∣∣Yij − Ŷij∣∣, (4.2)

Lgdl(Ŷ , Y ) =
∑
i,j

∣∣∣∣∣Yi,j − Yi−1,j∣∣− ∣∣Ŷi,j − Ŷi−1,j∣∣∣∣∣
+
∣∣∣∣∣Yi,j−1 − Yi,j∣∣− ∣∣Ŷi,j−1 − Ŷi,j∣∣∣∣∣, (4.3)

where | · | denotes the absolute value function. The `1 loss tries to match all
pixel predictions independently to their corresponding target values. The GDL,
instead, penalizes errors in the gradients of the prediction. This loss is relatively
insensitive to low-frequency mismatches between prediction and target (e.g .,
adding a constant to all pixels does not affect the loss), and is more sensitive
to high-frequency mismatches that are perceptually more significant (e.g . errors
along the contours of an object). We present a comparison of this loss with a
multi-class cross entropy loss in Section 4.4.

4.3.2 Predicting deeper into the future

To predict further into the future than a single frame, we consider two extensions
of the previous models. The first is to expand the output of the network to
comprise a batch of m frames, i.e. to output Xt+1:t+m and/or St+1:t+m. We
refer to this as the “batch” approach. The drawback of this approach is that
it ignores the recurrent structure of the problem. That is, it ignores the fact
that St+1 depends on S1:t in the same manner as St+2 depends on S2:t+1. As
a result, the capacity of the model is split to predict the m output frames, and
the number of parameters in the last layer scales linearly with the number of
output frames.

In our second approach, we leverage the recurrence property, and iteratively
apply a model that predicts a single step into the future, using its prediction
for time t + 1 as an input to predict at time t + 2, and so on. This allows us
to predict arbitrarily far into the future in an autoregressive manner, without
resources scaling with the number of time-steps we want to predict. We refer to
this approach as “autoregressive”. See Figure 4.3 for a schematic illustration of
the two extensions for multiple time-step predictions.

In contrast with the batch mode however, the autoregressive mode is prone
to error accumulation: mistakes at each time-step affect all later time-steps. One
can see this as a domain shift between training, where only inputs provided by
the dataset are used, and inference, where its predictions are fed back in, and
could be quite different from the training samples. To mitigate this issue, we
fine-tune these models using backpropagation through time (BPTT) (Werbos,
1988). This way, the network can learn to take into account its own mistakes,
and to make predictions that will not cause improper outputs in the following
steps. To reduce the domain shift, an alternative would be to adapt scheduled
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St−3 St−2 St−1 St St+1 St+2 St+3

Lt+1 Lt+2 Lt+3

St−3 St−2 St−1 St St+1 St+2 St+3

Lt+1 Lt+2 Lt+3

Figure 4.3: Illustration of the autoregressive (top) and batch (bottom) models.
The autoregressive model shares parameters over time; dependency links are
coloured accordingly.

sampling (Bengio et al., 2015), a form of curriculum learning that randomly
chooses at training, whether to use as inputs the outputs of the network or
the samples of the dataset, and gently grows the proportion of the network
outputs during training. We evaluate both the models trained for single-frame
prediction, as well as those fine-tuned using BPTT.

4.4 Experiments

We first describe the dataset and evaluation metrics in Section 4.4.1 and our
baselines in Section 4.4.2. We then present results on short-term (i.e. single-
frame) prediction, mid-term prediction (0.5 sec.), and long-term prediction (10
sec.).

4.4.1 Dataset and evaluation metrics

The Cityscapes dataset (Cordts et al., 2016) contains 2,975 training, 500 valida-
tion and 1,525 testing video sequences of 1.8 second. Each sequence consists of
30 frames, and a ground truth semantic segmentation is available for the 20-th
frame. The segmentation outputs of the Dilation10 network (Yu and Koltun,
2016) are produced at a resolution of 128× 256 and we perform all experiments
at this resolution. For this purpose, we also downsample RGB frames and
ground truth to this resolution. We report performance of our models on the
Cityscapes validation set, and mid-term performance for our best performing
models on the test set.
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We assess performance using the standard mean intersection over union
(IoU) measure, computed w.r.t. the ground truth segmentation of the 20-th
frame in each sequence (IoU GT). We also compute the IoU measure w.r.t. the
segmentation produced using the Dilation10 network for the 20-th frame (IoU
SEG). The IoU SEG metric allows us to validate our models w.r.t. the target
segmentations from which they are trained. Finally, we compute the mean IoU
across categories that can move in the scene: person, rider, car, truck, bus,
train, motorcycle, and bicycle (IoU-MO, for “moving objects”).

To evaluate the quality of the frame RGB predictions, we compute the peak
signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM)
measures (Wang et al., 2004). The PSNR only depends on the inverse of the
mean square error. The SSIM measures similarity between two images, ranging
between −1 for very dissimilar inputs to +1 when the inputs are the same. It is
based on comparing local patterns of pixel intensities normalized for luminance
and contrast.

Unless specified otherwise, we train our models using a frame interval of
3, corresponding to 0.18 sec., and taking 4 frames and/or segmentations as
input. That is, the input sequence consists of frames {Xt−9, Xt−6, Xt−3, Xt},
and similarly for segmentations. We performed patch-wise training with 64×64
patches for the largest scale resolution, enabling equal class frequency sampling
as in Farabet et al., 2013, using mini-batches of four patches and a learning rate
of 0.01.

4.4.2 Baselines

We include two baselines in our experiments. The first baseline copies the last
input frame to the output. The second baseline is an optical flow baseline,
which we present in detail next. Comparison with tracking-based approaches
is difficult since (i) segmentation is performed densely and lacks the notion
of object instances used by object trackers, and (ii) “stuff” categories (road,
vegetation, etc.), useful for drivable area detection in the context of autonomous
driving, are not suitable for modeling with tracking-based approaches.

The baseline relying on optical flow implemented in (Ranzato et al., 2014;
Mathieu et al., 2016) leads to systematic failure cases, due to the fact that the
past flow field is used in place of the inaccessible future flow field to warp the
last input. In the following, we analyse these failures, and then we propose an
improved optical flow baseline that avoids this by projecting each pixel forward,
based on its past displacement.

Both baselines rely on the optical flow field Ft→t−1 computed from Xt, the
RGB frame at time t, to Xt−1, the RGB frame at time t−1. The flow fields are
computed using Full Flow (Chen and Koltun, 2016), a state of the art optical
flow estimation method, using the default parameters given by the authors on
the MPI Sintel Flow Dataset (Butler et al., 2012).
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Figure 4.4: From left to right: two input frames and three predictions, framed
in red, obtained from the warping baselines, “t + 1 - centric” (top) and “t -
centric” (bottom). Static pixels that are about to be occluded by the moving
objects are systematically mis-predicted to hold their previous values in the
original baseline - see the pixels in front of the left car on the top row - leading
moving objects to shrink instead of moving. This is corrected in our improved
baseline, shown in the bottom row.

Initial flow baseline

Here we describe the baseline used by Ranzato et al., 2014 and Mathieu et al.,
2016 for next frame prediction in the space of RGB intensities relying on optical
flow, to introduce our notations and differentiate this baseline explicitly from
the one we develop. Let us consider a spatial position p of the frame we wish
to predict Xt+1. The original baseline sets X̂t+1(p) by bilinearly interpolating
the values of Xt surrounding spatial position p+ d, where d = Ft→t−1(p). The
issue is that one should be using the flow vector d′ = Ft+1→t(p) instead, which
we cannot access since we are trying to predict Xt+1. The displacements d
and d′ are in general not equal, since the physical point corresponding to d
may have been replaced by another, which potentially does not have the same
displacement. For instance, this is the case for still points that are about to be
occluded by moving objects. In this case, d is zero, whereas d′ could correspond
to a fast moving point. A qualitative example is shown is Figure 4.4, where the
values for the pixels in front of the moving car are not replaced by those of the
car as they should be. Note that this is a systematic failure case of the baseline,
which concerns all pixels which are about to be occluded by a moving object.
We call this baseline “t + 1 - centric”, as it can be viewed as looping over the
spatial positions of the prediction X̂t+1.

Improved baseline for future semantic segmentation

We propose an improved baseline which does not have this shortcoming. Con-
sidering a spatial position p in the last input frame Xt, we project its value into
the next frame by using the opposite of the flow vector at p as an estimation
for the displacement of the corresponding physical point between time steps t
and t+ 1, setting

X̂t+1([p+ d]) = Xt(p), (4.4)

where d = −Ft→t−1(p) and where [·] denotes rounding.
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Method PSNR SSIM IoU IoU-MO
GT (SEG) GT (SEG)

Copy last input 20.6 0.65 49.4 (54.6) 43.4 (48.2)
Warp last input 23.7 0.76 59.0 (67.3) 54.4 (63.3)

Model X2X 24.0 0.77 23.0 (22.3) 12.8 (11.4)
Model S2S — — 58.3 (64.9) 53.8 (59.8)
Model XS2X 24.2 0.77 22.4 (22.5) 10.8 (10.0)
Model XS2S — — 58.2 (64.6) 53.7 (59.9)
Model XS2XS 24.0 0.76 55.5 (61.1) 50.7 (55.8)

Model S2S-adv. — — 58.3 (65.0) 53.9 (60.2)
Model S2S-dil — — 59.4 (66.8) 55.3 (63.0)

Table 4.1: Short-term prediction (0.18 sec.) accuracy of baselines and of our
models taking either RGB frames (X) and/or segmentations (S) as input and
output, on the Cityscapes validation set. For reference: the 59.4 IoU corresponds
to 91.8% per-pixel accuracy.

In case of competing values for position [p+d], we prioritize these correspond-
ing to the largest flow to favor displacement of moving and close-by objects, as
opposed to still and far objects or stuff. This baseline is called “t - centric”

We apply the same transformation procedure to the flow field Ft→t−1 to get
F̂t+1→t, which we use to predict Xt+2 and so on. We solve a Dirichlet boundary
value problem to interpolate the missing values that were not determined by the
warping in Equation 4.4. As in our other experiments, we employed a frame
interval of 3. Decreasing the frame interval down to 1 leads to worse performance
for mid-term prediction (43.5 instead of 44.3 IoU GT for a frame rate of 3)
because of error propagation, as more predictions are needed to reach 0.54 sec.

4.4.3 Short-term prediction

In our first experiment, we compare the five different input-output representa-
tions. We also include the baseline results. Our models take in input frames 8,
11, 14 and 17 and predict outputs for frame 20, that is 0.18 sec. ahead. For mod-
els that do not directly predict future segmentations, we generate segmentations
using the Dilation10 network based on the predicted RGB frames.

In Figure 4.5, we show qualitative results of the predictions for one of the
validation sequences. From the quantitative result in Table 4.1 we make several
observations. First, in terms of RGB frame prediction (PSNR and SSIM), the
performance is comparable for the three models X2X, XS2X, and XS2XS, and
improves over the two baselines. This shows that our models learn non-trivial
scene dynamics in the RGB pixel space, and that adding semantic segmentations
either at input and/or output does not have a substantial impact on this ability.

Second, in terms of the IoU segmentation metrics, the models that directly
predict future segmentations (S2S, XS2S, XS2XS) perform much better than the
models that only predict the RGB frames. This suggests that artifacts in the
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Input: Xt−3 Input: Xt Ground truth: Xt+3

Input: St−3 Input: St Ground truth: St+3

X2X: Xt+3 XS2X: Xt+3 XS2XS: Xt+3

S2S: St+3 XS2S: St+3 XS2XS: St+3

X2X: St+3 XS2X: St+3 Dilation10: St+3

Figure 4.5: Short-term predictions of RGB frame Xt+3 and segmentation St+3

using our different models, compared to ground truth, and Dilation10 oracle
that has seen Xt+3.
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Model IoU GT IoU SEG IoU-MO GT

Dilation10 oracle 68.8 100 64.7

S2S, 2 scales, `1+GDL 58.3 64.9 53.8

S2S, 1 scale, `1+GDL 57.7 63.9 52.6

S2S, 2 scales, `1 57.6 64.0 53.2

S2S, 2 scales, MCE 55.5 60.9 49.7

Table 4.2: Ablation study with the S2S model on the Cityscapes validation set
and comparison to a Dilation10 oracle that predicts the future segmentation
using the future RGB frame as input.

RGB frame predictions degrade the performance of the Dilation10 network. See
also the corresponding RGB frame predictions in Figure 4.5.

Third, the XS2XS model, which predicts both segmentations and RGB
frames performs somewhat worse than the models that only predict segmen-
tations (S2S and XS2S), suggesting that some of the modeling capacity is com-
promised by jointly predicting the RGB frames.

Finally, we report the results of an experiment where we fine-tune the S2S
model using adversarial training (S2S-adv). We found that this does not lead
to a significant improvement over normal training. While we expect “blur” to
occur in the predicted segmentation maps, as in the case of RGB predictions,
we believe that it results only in small deformations of the segmentations in the
final label map, (after the argmax operation), that are hard to quantify and
observe qualitatively.

Table 4.2 presents results of an ablation study of the S2S model, assessing
the impact of the different loss functions, as well as the impact of using one
or two scales. We include the results obtained using the Dilation10 model as
an “oracle”, that predicts the future segmentation based on the future RGB
frame, which is not accessible to our other models. This oracle result gives the
maximum performance that could be expected, since this oracle was used to
provide the training data - we can thus only expect our models to have at best
comparable performance with this oracle. All variants of the S2S model were
trained during about 960,000 iterations, taking about four days of training on a
single GPU. The results show that using two scales improves the performance,
as does the addition of the gradient difference loss. Training with the `1 and/or
GDL loss on the softmax pre-activations gives better results as compared to
training using the multi-class cross-entropy (MCE) loss on the segmentation
labels. This is in line with observations made in network distillation (Ba and
Caruana, 2014; Hinton et al., 2014).

Finally, we perform further architecture exploration for the S2S model, which
performed best. Our multiscale S2S model based on standard convolutions has a
field of view of 30 over input resolution 128×256. We propose a simpler, deeper,
and more efficient architecture with dilated convolutions (Yu and Koltun, 2016),
to expand the field of view while retaining accurate localization for the predic-



74 CHAPTER 4. PREDICTING FUTURE SEMANTIC SEGMENTATION

x

Conv n× d → 32q, k = 7

Conv 32q → 64q, k = 5

Conv 64q → 64q, k = 5 , d = 2

Conv 64q → 128q, k = 3 , d = 4

Conv 128q → 64q, k = 5 , d = 8

Conv 64q → 32q, k = 5

Conv 32q → d, k = 3

S2S(x)

Figure 4.6: Architecture for S2S-dil model, taking the segmentations of n = 4
frames in input, each of channel dimension C. Each inner convolutional layer
is followed by a ReLU. Each convolutional layer has a kernel of size k × k and
dilation parameter d. q is a hyperparameter used to scale the number of feature
maps linearly for simple control over the model capacity. Stride is always one
and padding is chosen so as to maintain the size of the input.

tions. We summarize its architecture in Figure 4.6.
With q = 4, this architecture has 8.2M parameters and obtains overall best

performance of 60.4. Finally, to retain the possibility of fine-tuning this archi-
tecture in an autoregressive fashion on a single GPU, we scale the parameters
back down to 0.9M, corresponding to a choice of q = 1.25. We call this model
S2S-dil and report its performance in Table 4.1.

4.4.4 Mid-term prediction

We now address the more challenging task of predicting the mid-term future,
i.e. the next 0.5 second. In these experiments we take in input frames 2, 5, 8,
and 11, and predict outputs for frames 14, 17 and 20. We compare different
strategies: batch models, autoregressive models (AR), and models with autore-
gressive fine-tuning (AR fine-tune). We compare these strategies to our two
baselines consisting in copying the last input, and the second one relying on
optical flow. For the optical flow baseline, after the first prediction, we also
warp the flow field so that the flow is applied to the correct locations at the
next time-step, and so on. For models XS2X and XS2S, the autoregressive mode
is not used because either the frame or the segmentation input are missing for
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Xt�3, St�3 Xt, St Xt+9, St+9, GT

St+3 computed from Xt+3 GT at t + 6 at t + 9

Optical flow at t + 3 at t + 6 at t + 9

Batch predictions at t + 3 at t + 6 at t + 9

Autoregressive pred. at t + 3 at t + 6 at t + 9

AR fine-tune pred. at t + 3 at t + 6 at t + 9

Figure 4.7: Comparison between optical flow baseline, batch, autoregressive,
and autoregressive fine-tuned S2S model predictions. First row: last inputs and
ground truth segmentation. Second row: target segmentations obtained using
the Dilation10 network. Other rows show predictions overlaid with the true
future frames.
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Xt�3, St�3 Xt, St Xt+9, St+9, GT

St+3 computed from Xt+3 GT at t + 6 at t + 9

Optical flow at t + 3 at t + 6 at t + 9

Batch predictions at t + 3 at t + 6 at t + 9

Autoregressive pred. at t + 3 at t + 6 at t + 9

AR fine-tune pred. at t + 3 at t + 6 at t + 9

Figure 4.8: Comparison between optical flow baseline, batch, autoregressive,
and autoregressive fine-tuned S2S model predictions. First row: last inputs and
ground truth segmentation. Second row: target segmentations obtained using
the Dilation10 network. Other rows show predictions overlaid with the true
future frames.
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Frame 14 Frame 20

Model PSNR SSIM PSNR SSIM

Copy last input 20.4 0.64 18.0 0.55

Warp last input 23.5 0.76 19.4 0.59

X2X, AR 23.9 0.76 19.2 0.61

XS2XS, AR 23.8 0.76 19.3 0.61

X2X, batch 23.8 0.76 20.6 0.65

XS2X, batch 23.9 0.76 20.7 0.65

XS2XS, batch 23.8 0.76 20.7 0.64

Table 4.3: Mid-term (0.54 sec.) RGB frame prediction results for frame 20 on
the Cityscapes validation set using different models in batch and autoregressive
mode.

predicting from the second output on.
The results for RGB frame prediction in Table 4.3 show that for frame 14,

all models give comparable results, consistently improve over the copy baseline
and perform somewhat better than the warping baseline. For frame 20, the
batch models perform best. On the contrary, when predicting segmentations,
we find that the autoregressive models perform better than the batch models,
as reported in Table 4.4. This is probably due to the fact that the single-step
predictions are more accurate for segmentation, which makes them more suit-
able for autoregressive modeling. For RGB frame prediction, errors accumulate
quickly, leading to degraded autoregressive predictions. Among the batch mod-
els, using the images as input (XS2S model) helps slightly. Predicting both
the images and segmentation (XS2XS model) performs worst, the image predic-
tion task presumably taking up resources otherwise available for modeling the
dynamics of the sequence.

Model S2S is the most effective, as it can be applied in autoregressive mode,
and outperforms XS2XS in this setting. In Figures 4.7 and 4.8, we compare
different versions of this model: batch, autoregressive, and autoregressive fine-
tuned. Visually, the first sequence shows some improvements using the autore-
gressive fine-tuned model, by more accurately matching contours of the moving
cars than the other strategies. Results are also compared with our optical
flow baseline. The second sequence displays typical failures of the optical flow
baseline, where certain values cannot be estimated because they correspond to
points that were not present in the input, e.g . those at the back of the incoming
car, and must be filled using a standard region filling algorithm. All segmen-
tations are overlaid with the true video sequence to facilitate assessment of the
predictions.

Difficult cases for our methods include dealing with occlusions and with fast
ego-motion. Figures 4.9 and 4.10 show two failures cases of our S2S model (fine-
tuned in autoregressive mode), where the model respectively underestimates the
speed of the camera and fails to predict a future occlusion.

Finally, we measure performance on the Cityscapes test set for mid-term
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Model IoU GT IoU SEG IoU-MO GT

Copy last input 36.9 39.2 26.8

Warp last input 44.3 47.2 37.0

S2S, AR 45.3 47.2 36.4

S2S, AR, fine-tune 46.7 49.7 39.3

XS2XS, AR 39.3 40.8 27.4

S2S, batch 42.1 44.2 32.8

XS2S, batch 42.3 44.6 33.1

XS2XS, batch 41.2 43.5 31.4

S2S-adv, AR 45.1 47.2 37.3

S2S-dil, AR 46.5 48.6 38.8

S2S-dil, AR, fine-tune 47.8 50.4 40.8

Table 4.4: Mid-term (0.54 sec.) segmentation prediction results on the
Cityscapes validation set. For reference: the 47.8 IoU corresponds to 87.9%
per-pixel accuracy.

Model IoU GT IoU SEG IoU-MO GT

Dilation10 oracle 67.1 100 61.5

Warp last input 45.9 49.5 39.1

S2S, AR, fine-tune 47.8 51.8 40.2

S2S-dil, AR, fine-tune 48.0 52.0 40.4

Table 4.5: Mid-term (0.54 sec.) segmentation prediction for frame 20 using our
best S2S models on the Cityscapes test set.

prediction of our optical flow baseline and of our two models S2S, AR, fine-
tune and S2S-dil, AR, fine-tune. We use the same setup as we used on the
validation set: we take in input frames 2, 5, 8, and 11, and predict outputs
for frames 14, 17 and 20 of each sequence. Results for frame 20 are shown in
Table 4.5. For reference, we also show the performance reported by the authors
of the Dilation10 architecture on the test set. Consistent with observations on
the validation set, we observe significant improvements of the S2S models over
the optical flow baseline. The gains on the IoU GT metrics are slightly less
pronounced, but still very close to those obtained on the validation set, while
the oracle performance suffers a large decrease (from 64.7 to 61.5 on moving
objects). The IoU SEG metric on the other hand seems to be much less affected
and even enjoys an important boost in comparison with the one measured on
the validation set. These results hint at the importance of choosing an oracle
that has good generalization properties.
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Xt�3, St�3 Xt, St Xt+9, GT

St+3 computed from Xt+3 GT at t + 6 at t + 9

AR fine-tune pred. at t + 3 at t + 6 at t + 9

Figure 4.9: Failure case of the autoregressive fine-tuned S2S model. First row:
last inputs and ground truth. Second row: future segmentations obtained using
the Dilation10 network computed using the future RGB frames. Third row:
S2S, AR, fine-tune predictions overlaid with the true future frames. In this
example, the speed of the camera is underestimated by our model, resulting in
large errors in the segmentation of the closest car.
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Xt�3, St�3 Xt, St Xt+9, GT

St+3 computed from Xt+3 GT at t + 6 at t + 9

AR fine-tune pred. at t + 3 at t + 6 at t + 9

Figure 4.10: Failure case of the autoregressive fine-tuned S2S model. First row:
last inputs and ground truth. Second row: future segmentations obtained using
the Dilation10 network computed using the future RGB frames. Third row:
S2S, AR, fine-tune predictions overlaid with the true future frames. In this
example, the occlusion of the pedestrian by the vehicle coming from the right
is not predicted by our system. The green blobs that appear in the vehicle
correspond to the “bus” category. This second mistake is hard to avoid because
it also appears in the Dilation10 input segmentations.
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Figure 4.11: Mean IoU SEG of long-term segmentation prediction for the AR
and AR fine-tune S2S models.
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Figure 4.12: Last input segmentation, and ground truth segmentations at 1, 4,
7, and 10 seconds into the future (top row), and corresponding predictions of
the autoregressive S2S model trained with fine-tuning (bottom row).

4.4.5 Long-term prediction

To evaluate the limits of our S2S autoregressive models on arbitrarily long se-
quences, we use them to make predictions of up to ten seconds into the future.
To this end, we evaluate our models on ten sequences on 238 frames extracted
from the long Frankfurt sequence of the Cityscapes validation set. Given four
segmentation frames with a frame interval of 17 images, corresponding to ex-
actly one second, and hence much increased in comparison with the one used
at train time, we apply our models to predict the ten next ones. In Figure 4.11
we report the IoU SEG performance as a function of time. In this extremely
challenging setting, the predictive performance quickly drops over time. Fine-
tuning the model in autoregressive mode improves its performance, but only
gives a clear advantage over the input-copy baseline for predictions at one and
two seconds ahead. We also applied our model with a frame interval of 3 to
predict up to 55 steps ahead, but found this to perform much worse. Figure 4.12
shows an example of predictions compared to the actual future segmentations.
The visualization shows that our model averages the different classes into an
average future, which is perhaps not entirely surprising, given the deterministic
nature of our model. Sampling different possible futures using a GAN or VAE
approach might be a way to resolve this issue.

4.4.6 Cross-dataset generalization

To evaluate the generalization capacity of our approach, we test our S2S model
on the Camvid dataset (Brostow et al., 2008), specifically on the test set of
233 images with 11 classes grouping employed in (Badrinarayanan et al., 2017).
Ground truth segmentations are provided for every second on 30 fps video se-
quences. We first generate the Dilation10 segmentations - without fine-tuning
the oracle to the CamVid dataset - using a frame interval of 5, roughly cor-
responding to a frame interval of 3 on Cityscapes. We note that the class
correspondence between Cityscapes and CamVid is not perfect; for instance we
associate the class “tree” to “vegetation”. As reported in Table 4.6, our models
have very good mid-term performance on this dataset, considering the oracle
results. For reference, Yu and Koltun, 2016 reports an IoU of 65.3 using a
fine-tuned Dilation8.



82 CHAPTER 4. PREDICTING FUTURE SEMANTIC SEGMENTATION

Dilation10 Copy last Warp last S2S

oracle input input AR ft

Cityscapes 67.1 – 45.9 47.8

Camvid 55.4 40.8 43.7 46.8

Table 4.6: IoU GT of oracle and mid-term (0.54 sec.) predictions on test sets
of Cityscapes and Camvid.

4.5 Conclusion

We introduced a new visual understanding task of predicting future semantic
segmentation. This task led us to develop models that predict semantically
rich information, for use in downstream applications, much more accurately
than a two-stage procedure that first predicts future RGB frames and then seg-
ments these. We systematically studied the effect of using RGB frames and/or
segmentations as inputs and targets for our models and the impact of various
loss functions. Against our expectations, we found that for single time-step
prediction, training a model to predict segmentations led to significantly better
performance than training it to jointly predict future segmentations and frames.
This suggests that rather than helping the model with extra supervision, the
video prediction task is instead hurting performance by compromising some of
the model capacity. For prediction beyond a single frame, we considered batch
models that predict all future frames at once, and autoregressive models that
sequentially predict the future frames. While batch models were more effective
in the RGB intensities space because of otherwise large error propagation, the
more flexible autoregressive mode was more accurate in the semantic segmen-
tation space, thanks to slower error accumulation in this setting. This new task
is hence better suited for autoregressive modeling and for predicting further
ahead in the future, thanks to which we can aim to model more interesting
distributions.

In this respect, there is still room for improvement. Where the Dilation10
network for semantic image segmentation gives around 69 IoU, this drops to
about 59 when predicting 0.18 sec. ahead and to about 48 for 0.54 sec. Most
predicted object trajectories are reasonable, but do not always correspond to
the actual observed trajectories. GAN or VAE models may be useful to address
the inherent uncertainty in the prediction of future segmentations.

Since our publication, several works have taken up the task of predicting fu-
ture semantic segmentation. Jin et al., 2017b propose a model that jointly pre-
dicts future semantic segmentation and future optical flow. These two tasks are
expected to complement each other: structure motion prediction is made possi-
ble by decomposing the optical flow into different groups according to semantic
segmentation, and semantic segmentation can in turn leverage pixel-wise cor-
respondence brought by optical flow estimation. Their architecture is designed
to leverage this mutually beneficial relationship. Other approaches focus on
future semantic segmentation alone, and make architectural contributions. To
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preserve rich structure and complex motion, Xu et al., 2018 separately treat low
and high frequency components of the frame and propose a convolutional LSTM
module with temporal-adaptive kernels. Nabavi et al., 2018 propose an autoen-
coding architecture that relies on a ConvLSTM module for prediction in the
code space. Vora et al., 2018 propose a geometry-based approach, and design
a deep architecture that leverages intermediate predictions from sub-modules
responsible for (single image) semantic segmentation, depth and ego-motion.
The two latter modules are trained in an unsupervised fashion, requiring no ad-
ditional supervision. Terwilliger et al., 2019 aggregate past optical flow features
using a ConvLSTM to predict future optical flow. These predictions are used
by a learnable warp layer to produce future semantic segmentation. This set up
is both efficient and surprisingly accurate. Finally, Bhattacharyya et al., 2019
propose a Bayesian learning framework that encourages the learning of diverse
models to accurately capture the multi-modal nature of the future scenes. Each
model corresponds to a set of weights, so that sampling different weights for the
model allows generating different predictions for a given input sequence. Their
framework accurately captures model uncertainty and significantly improves the
accuracy of mean predictions. Considering the top K predictions yields an addi-
tional boost in performance, suggesting that the predictions are diverse as well
as being accurate.

This task has seen new applications since as well. Motivated in part by
our approach, Zhang et al., 2018 investigate the use of convnets to predict the
future states of tumor growth, by predicting future labels of tumor segmen-
tation. For them, the process of gathering the equivalent of a video dataset,
let alone an annotated one, is extremely challenging, since it requires gather-
ing each sequence over multiple years, to capture the tumor evolution. Hence,
first learning strong, semantically meaningful features on an image dataset is
critical. Their approach obtains substantial improvements over a state-of-the-
art mathematical model- based approach in both accuracy and efficiency. In
follow-up work, Zhang et al., 2019 extend this approach to the 3D domain to
predict future tumor volumes. Zhu et al., 2018b propose to use the semantic
segmentation predicted by a video prediction model as pseudo ground truth to
improve semantic segmentation models. They rely on a boundary label relax-
ation technique that makes training robust to annotation noise and propagation
artifacts along object boundaries. This leads to a nice boost in accuracy across
several datasets for autonomous driving.

We provide the code for our Torch-based implementation at https://github.
com/facebookresearch/SegmPred, and invite the reader to watch videos of our
predictions at https://thoth.inrialpes.fr/people/pluc/iccv2017.

https://github.com/facebookresearch/SegmPred
https://github.com/facebookresearch/SegmPred
https://thoth.inrialpes.fr/people/pluc/iccv2017
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Chapter 5

Predicting Future Instance
Segmentation

The ability to anticipate future events is an important prerequisite towards in-
telligent behaviour. In Chapter 2, we motivated the task of video prediction, as
a proxy task towards this goal. In the previous chapter, we proposed to shift this
task to the space of semantic segmentation, as a high level, semantically rich and
spatially detailed representation, which can be directly useful for downstream
applications such as autonomous driving. We showed that this new task was
better suited for predicting further ahead into the future, and that forecasting
at the semantic level was more effective than forecasting RGB frames and then
segmenting these. In this chapter, we consider the more challenging problem of
future instance segmentation, which additionally segments out individual ob-
jects. To deal with a varying number of output labels per image, we develop a
predictive model in the space of fixed-sized convolutional features of the Mask
R-CNN instance segmentation model. We apply the “detection head” of Mask
R-CNN on the predicted features to produce the instance segmentation of fu-
ture frames. Experiments show that this approach significantly improves over
strong baselines based on optical flow and repurposed instance segmentation
architectures. The work presented in this chapter was previously published at
ECCV 2018 (Luc et al., 2018).

In Section 5.1, we further motivate our approach. We discuss related work
on video prediction and instance segmentation in Section 5.2. We present our
approach in Section 5.3 and our baselines, experiemental setup and results in
Section 5.4. We conclude in Section 5.5.

5.1 Introduction

Predictive models have important applications in decision-making contexts, such
as autonomous driving, where rapid control decisions can be of vital importance
(Shalev-Shwartz and Shashua, 2016; Shalev-Shwartz et al., 2016) and where
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(a) optical flow baseline
(b) our instance segmentation

(this chapter)

(c) our semantic segmentation
(previous chapter)

(d) our semantic segmentation
(this chapter)

Figure 5.1: Predicting half a second into the future. Instance modeling signifi-
cantly improves the segmentation accuracy of the individual pedestrians.

interactions with the real-world are slow, expensive and dangerous, as discussed
in Section 2.3. In such contexts, however, the goal is often not to predict the
raw RGB values of future video frames, but to make predictions about future
video frames at a semantically meaningful level, e.g . in terms of presence and
location of object categories in a scene. In the previous chapter, we showed that
for prediction of future semantic segmentation, modeling at the semantic level
is much more effective than predicting raw RGB values of future frames, and
then feeding these to a semantic segmentation model.

Although spatially detailed, semantic segmentation does not account for in-
dividual objects, but rather lumps them together by assigning them to the same
category label, e.g . the pedestrians in Figure 5.1(c). As discussed in Section 2.1,
instance segmentation overcomes this shortcoming by additionally associating
with each pixel an instance label, as show in Figure 5.1(b). This additional level
of detail is crucial for downstream tasks that rely on instance-level trajectories,
such as encountered in control for autonomous driving. Moreover, ignoring the
notion of object instances prohibits by construction any reasoning about object
motion, deformation, etc. Including it in the model can therefore greatly improve
its predictive performance, by keeping track of individual object properties, c.f.
Figure 5.1 (c) and (d).

Since the instance labels vary in number across frames, and do not have
a consistent interpretation across videos, the approach presented in Chapter 4
does not apply to this task. Instead, we build upon Mask R-CNN, the recent
state-of-the-art instance segmentation model of He et al., 2017 presented in
Section 2.1.2, that extends an object detection system by predicting with each
object bounding box a binary segmentation mask of the object. In order to
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forecast the instance-level labels in a coherent manner, we predict the fixed-
sized high level convolutional features used by Mask R-CNN. We obtain the
future object instance segmentation by applying the Mask R-CNN “detection
head” to the predicted features.

Our approach offers several advantages: (i) we handle cases in which the
model output has a variable size, as in object detection and instance segmen-
tation, (ii) we do not require labeled video sequences for training, as the inter-
mediate CNN feature maps can be computed directly from unlabeled data, and
(iii) we support models that are able to produce multiple scene interpretations,
such as surface normals, object bounding boxes, and human part labels, such as
the model proposed by Kokkinos, 2017, without having to design appropriate
encoders and loss functions for all these tasks to drive the future prediction.
Our contributions are the following:

• we introduce of the new task of future instance segmentation, which is
semantically richer than previously studied anticipated recognition tasks,

• we propose a self-supervised approach based on predicting high dimen-
sional CNN features of future frames, which can support many anticipated
recognition tasks,

• experimental results show that our feature learning approach improves
over strong baselines, relying respectively on optical flow and repurposed
instance segmentation architectures.

5.2 Related work

Video prediction. Like the previous chapter, the work presented in this chap-
ter is highly related to video prediction methods introduced in Section 2.3.3 and
especially approaches that perform prediction in other output spaces, such as
the ones described in Sections 4.2 and 4.5. The work of Vondrick et al., 2016a,
who predict high level CNN features of future video frames to anticipate actions
and object appearances in video, is particularly relevant to ours. However, while
they only predict image-level labels, we consider the more complex task of pre-
dicting future instance segmentation, requiring fine spatial detail. To this end,
we forecast spatially dense convolutional features, where Vondrick et al., 2016a
were predicting the activations of much more compact fully connected CNN
layers. Our work demonstrates the scalability of CNN feature prediction, from
4K-dimensional to 32M-dimensional features, and yields results with a surpris-
ing level of accuracy and spatial detail.

In Chapter 4, we predicted future semantic segmentation in video by taking
the softmax pre-activations of past frames as input, and predicting the soft-
max pre-activations of future frames. While this approach is relevant for future
semantic segmentation, where the softmax pre-activations provide a natural
fixed-sized representation, it does not extend to instance segmentation since
the instance-level labels vary in number between frames and are not consistent
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across video sequences. To overcome this limitation, we develop predictive mod-
els for fixed-sized convolutional features, instead of making predictions directly
in the label space. Our feature-based approach has many advantages over the
previous approach: segmenting individual instances, working at a higher res-
olution and providing a framework that generalizes to other dense prediction
tasks. In other work (Couprie et al., 2018), not presented here, we also investi-
gate a method for predicting joint future semantic and instance segmentation,
of moving objects by encoding instance and semantic segmentation information
in a single representation based on distance maps. Object positions are extrap-
olated, and the resulting seeds are used to produce instance segmentation from
the predictions using a watershed algorithm. While it requires shorter training
time and incorporates a tracking algorithm, it is less accurate than the work we
present here for future instance segmentation.

Our work also relates to concurrent works that aim to produce high res-
olution predictions, while preserving fine spatial structure. To preserve rich
structure and complex motion, Xu et al., 2018 propose a two-stream architec-
ture that treats low and high frequency components of each frame separately,
relying on transformation learning in recurrent modules. However, they conduct
experiments at a maximum resolution of 256 × 256, including for prediction of
future semantic segmentation. Reda et al., 2018 propose spatially-displaced
convolutions, that combine the strengths of vector- and kernel-based transfor-
mation learning, discussed in Section 2.3.3. This architecture is shown to yield
visually pleasing results, but is evaluated either on multi-step prediction at a
low resolution, or on single next frame prediction at a high resolution. Our
task of predicting future instance segmentation allows us to take on these chal-
lenges jointly, producing visually pleasing segmentations at a high resolution
of 1024 × 2048, for complex scenes involving a large number of instances, and
with reasonable segmentation accuracy up to half a second ahead. To this end,
our approach leverages a multi-scale, resolution-preserving architecture, relying
on dilated convolutions (Chen et al., 2015), building on the architectures of
Mathieu et al., 2016 and of the previous chapter. Additionally, our outputs are
directly interpretable by downstream applications.

Instance segmentation approaches. Our approach can be used in conjunc-
tion with any deep network to perform instance segmentation. In Section 2.1.2,
we described a variety of approaches for instance segmentation that have been
explored in the past, including iterative object segmentation using recurrent
networks (Romera-Paredes and Torr, 2016; Ren and Zemel, 2017), watershed
transformation (Bai and Urtasun, 2017), object proposals (Hariharan et al.,
2014; 2015; Dai et al., 2015; 2016; He et al., 2017), bottom-up grouping (Liu
et al., 2017a) or clustering (Kong and Fowlkes, 2018) and dynamically instanci-
ated CRFs (Arnab and Torr, 2017). In the work presented in this chapter, we
build upon Mask R-CNN (He et al., 2017), which at the time of publication, had
outperformed the state-of-the-art by a large margin. This method extends the
Faster R-CNN object detector (Ren et al., 2015) by adding a network branch
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to predict segmentation masks and extracting features for prediction in a way
that allows precise alignment of the masks when they are stitched together to
form the final output. In the distinction that we made Section 2.1.2 between
detection-based approaches and segmentation-based approaches that learn us-
ing respectively object-centric and pixel-centric losses, this method belongs to
the first class of approaches. This distinction also helps understand why the
method proposed in Chapter 4 does not apply directly here. In this chapter,
we show that it can be successfully extended to the class of detection-based
approaches.

5.3 Predicting features for future instance seg-
mentation

In Section 2.1.2, we gave a detailed review of the Mask R-CNN instance seg-
mentation framework. In this section, we summarize it briefly and present how
we can use it for anticipated recognition by predicting internal CNN features of
future frames.

5.3.1 Instance segmentation with Mask R-CNN

The Mask R-CNN model of He et al., 2017 consists of three main stages. First,
a CNN “backbone” architecture is used to extract high level feature maps.
Second, a region proposal network (RPN) takes these features to produce regions
of interest (ROIs), in the form of coordinates of bounding boxes susceptible
of containing instances. The bounding box proposals are used as input to a
RoIAlign layer, which interpolates the high level features in each bounding box
to extract a fixed-sized representation for each box. Third, the features of each
RoI are input to the detection branches, which produce refined bounding box
coordinates, a class prediction, and a fixed-sized binary mask for the predicted
class. Finally, the mask is interpolated back to full image resolution within
the predicted bounding box and reported as an instance segmentation for the
predicted class. We refer to the combination of the second and third stages as
the “detection head”.

He et al., 2017 use a Feature Pyramid Network (FPN) (Lin et al., 2017)
as backbone architecture, which extracts a set of features at several spatial
resolutions from an input image. The feature pyramid is then used in the
instance segmentation pipeline to detect objects at multiple scales, by running
the detection head on each level of the pyramid. Following Lin et al., 2017,
we denote the feature pyramid levels extracted from an RGB image X by P2

through P5, which are of decreasing resolution (H/2l × W/2l) for Pl, where
H and W are respectively the height and width of X. The features in Pl are
computed in a top-down stream by up-sampling those in Pl+1 and adding the
result of a 1×1 convolution of features in a layer with matching resolution in
a bottom-up convolutional stream pretrained for classification, e.g . ResNet (He
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Figure 5.2: Top: Features in the FPN backbone are obtained by upsampling
features in the top-down path, and combining them with features from the
bottom-up path at the same resolution. Bottom: For future instance segmen-
tation, we extract FPN features from frames t − τ to t, and predict the FPN
features for frame t+ 1. We learn separate feature-to-feature prediction models
for each FPN level: F2Fl denotes the model for level l.

et al., 2016). We refer the reader to the top panel of Figure 5.2 for a schematic
illustration, and to (He et al., 2017; Lin et al., 2017) for more details.

5.3.2 Forecasting convolutional features

Given a video sequence, our goal is to predict instance-level object segmenta-
tions for one or more future frames, i.e. for frames where we cannot access the
RGB pixel values. Similar to previous work that predicts future RGB frames
(Mathieu et al., 2016; Ranzato et al., 2014; Srivastava et al., 2015; Kalchbrenner
et al., 2017) and future semantic segmentations, such as the approach presented
in the previous chapter, we are interested in models where the input and output
of the predictive model live in the same space, so that the model can be applied
recursively to produce predictions for more than one frame ahead. The instance
segmentations themselves, however, do not provide a suitable representation for
prediction, since the instance-level labels vary in number between frames, and
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are not consistent across video sequences. To overcome this issue, we instead
resort to predicting the highest level feature volume in the Mask R-CNN ar-
chitecture that describes the image as a whole. In particular, using the FPN
backbone in Mask R-CNN, we want to learn a model that given the feature
pyramids extracted from frames Xt−τ to Xt, predicts the feature pyramid for
the unobserved RGB frame Xt+1.

Architecture. The features at the different FPN levels are trained to be
input to a shared detection head, and are thus of similar nature. However,
since the resolution changes across levels, the spatio-temporal dynamics are
distinct from one level to another. Therefore, we propose a multi-scale approach,
employing a separate network to predict the features at each level, of which we
demonstrate the benefits in Section 5.4.1. The per-level networks are trained and
function completely independently from each other. This allows us to parallelize
the training across multiple GPUs. Alternative architectures in which prediction
across different resolutions is tied are interesting, and could be the focus of future
work. For each level, we concatenate the features of the input sequence along
the feature dimension. We refer to the “feature to feature” predictive model for
level l as F2Fl. The overall architecture is summarized in the bottom panel of
Figure 5.2.

Each of the F2Fl networks may be itself multi-scale, as in (Mathieu et al.,
2016) and Chapter 4, depending on the scale hyperparameter chosen by cross-
validation, to efficiently enlarge the field of view while preserving high-resolution
details. More precisely, for a given level l, F2Fl consists of sl subnetworks F2Fsl ,
where s ∈ {1, ..., sl}, each implemented by a resolution-preserving CNN. The
network F2Fsll first processes the input downsampled by a factor of 2sl−1. Its
output is up-sampled by a factor of 2, and concatenated to the input downsam-
pled by a factor of 2sl−2. This concatenation constitutes the input of F2Fsl−1l

which predicts a refinement of the initial coarse prediction. The same procedure
is repeated until the final scale subnetwork F2F1

l . The design of subnetworks
F2Fsl is inspired by the S2S-dil model presented in Section 4.4.3, and recalled
in Figure 5.3(a), leveraging dilated convolutions to further enlarge the field of
view. In the following, since there is no ambiguity with other architectures, we
drop the “-dil” notation and refer to it as S2S. Our architecture is shown in
Figure 5.3(b). It differs in the number of feature maps per layer, the convo-
lution kernel sizes and the dilation parameters, to make it more suited for the
larger input dimension. Each subnetwork is fed with an input having a channel
dimension n × p, where n is the number of input frames, including the coarse
prediction output by the previous subnetwork, and p is the channel dimension
of the input and target feature space. In our experiments we have n = 4 (or
n = 5 including the previous coarse prediction), and p = 256.

Training. We first train the F2F5 model to predict the coarsest features
P5, precomputed offline. Since the features of the different FPN levels are fed to
the same recognition head network, the next levels are similar to the P5 features.
Hence, we initialize the weights of F2F4, F2F3, and F2F2 with the ones learned
by F2F5, before fine-tuning them. For this, we compute features on the fly, due
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x

Conv n× C → 32q, k = 7

Conv 32q → 64q, k = 5

Conv 64q → 64q, k = 5 , d = 2

Conv 64q → 128q, k = 3 , d = 4

Conv 128q → 64q, k = 5 , d = 8

Conv 64q → 32q, k = 5

Conv 32q → C, k = 3

S2S(x)

x

Conv n× p → 2p, k = 1

Conv 2p → 2p, k = 3 , d = 2

Conv 2p → 2p, k = 3 , d = 2

Conv 2p → p, k = 3 , d = 4

Conv p → p, k = 3 , d = 8

Conv p → p, k = 3 , d = 2

Conv p → p, k = 7

F2F
s
l (x)

Field of view: 65 Field of view: 43

(a) (b)

Figure 5.3: Architecture design of (a) S2S-dil introduced in Chapter 4, simply
referred to as S2S in this chapter and (b) F2Fsl . Each architecture takes the
segmentations or features x for n = 4 frames in input, each respectively of
channel dimension C or p. Each inner convolutional layer is followed by a ReLU.
Each convolutional layer has a kernel of size k× k and dilation parameter d. In
S2S, q is a hyperparameter used to scale the number of feature maps linearly for
simple control over the capacity of the S2S model, set to 1.5 as in the previous
chapter. Stride is always one and padding is chosen so as to maintain the size
of the input.

to memory constraints. Each of the F2Fl networks is trained using an `2 loss,
since preliminary results showed improvement in this case over the `1 loss.

For multiple-time-step prediction, we can fine-tune each subnetwork F2Fl
autoregressively using backpropagation through time, similar to the previous
chapter, to take into account error accumulation over time. In this case, given
a single sequence of input feature maps, we train with a separate `2 loss on
each predicted future frame. In our experiments, all models are trained in this
autoregressive manner, unless specified otherwise.

5.4 Experimental evaluation

In this section we first present our experimental setup and baseline models, and
then proceed with quantitative and qualitative results, that demonstrate the
strengths of our F2F approach.
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5.4.1 Experimental setup: dataset and evaluation metrics

Dataset. In our experiments, we use the Cityscapes dataset (Cordts et al.,
2016) which contains 2,975 train, 500 validation and 1,525 test video sequences
of 1.8 second each, recorded from a car driving in urban environments. Each
sequence consists of 30 frames of resolution 1024×2048. Ground truth semantic
and instance segmentation annotations are available for the 20-th frame of each
sequence.

We employ a Mask R-CNN model pre-trained on the MS-COCO dataset
(Lin et al., 2014) and fine-tune it in an end-to-end fashion on the Cityscapes
dataset, using a ResNet-50-FPN backbone (He et al., 2016). The coarsest FPN
level P5 has resolution 32×64, and the finest level P2 has resolution 256×512.

Following our setup for future semantic segmentation (Section 4.4), we tem-
porally subsample the videos by a factor three, and take four frames as input.
That is, the input sequence consists of feature pyramids for frames {Xt−9, Xt−6,
Xt−3, Xt}. We denote by short-term and mid-term prediction respectively pre-
dicting Xt+3 only (0.18 sec.) and predicting Xt+3 through Xt+9 (0.54 sec.). We
additionally evaluate long-term predictions, corresponding predicting to Xt+3

through Xt+27 and 1.6 sec. ahead on the two long Frankfurt sequences of the
Cityscapes validation set.

Conversion to semantic segmentation. For direct comparison to pre-
vious work, we also convert our instance segmentation predictions to semantic
segmentation. To this end, we first assign to all pixels the background label.
Then, we iterate over the detected object instances in order of ascending confi-
dence score. For each instance, consisting of a confidence score c, a class k, and
a binary mask m, we either reject it if it is lower than a threshold θ and accept it
otherwise, where in our experiments we set θ = 0.5. For accepted instances, we
update the spatial positions corresponding to mask m with label k. This step
potentially replaces labels set by instances with lower confidence, and resolves
competing class predictions.

Evaluation metrics. To measure the instance segmentation performance,
we use the standard Cityscapes metrics. The average precision metric AP50
counts an instance as correct if it has at least 50% of intersection over union
(IoU) with the ground truth instance it has been matched with. The sum-
mary AP metric is given by average AP obtained with ten equally spaced IoU
thresholds from 50% to 95%. Performance is measured across the eight classes
with available instance-level ground truth: person, rider, car, truck, bus, train,
motorcycle, and bicycle.

We measure semantic segmentation performance across the same eight classes.
In addition to the IoU metric, computed w.r.t. the ground truth segmentation
of the 20-th frame in each sequence, we also quantify the segmentation accuracy
using three standard segmentation measures used by Yang et al., 2008, namely
the probabilistic Rand index (RI) (Parntofaru and Hebert, 2005), global con-
sistency error (GCE) (Martin et al., 2001), and variation of information (VoI)
(Meilǎ, 2005). Good segmentation results are associated with high RI, low GCE
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and low VoI. Since there is no ambiguity in terms of the ground truth used for
the IoU metric, we drop the “-MO” notation in this chapter.

Implementation details. We cross-validate the number of scales, the
optimization algorithm and hyperparameters per level of the pyramid. For each
level of the pyramid a single scale network was selected, except for F2F2, where
we employ 3 scales. The F2F5 network is trained for 60K iterations of SGD with
Nesterov Momentum of 0.9, learning rate 0.01, and batch size of 4 images. It
is used to initialize the other networks, which are trained for 80K iterations of
SGD with Nesterov Momentum of 0.9, batch size of 1 image and learning rates
of 5 × 10−3 for F2F4 and 0.01 for F2F3. For F2F2, which is much deeper than
the models used at the other levels of the pyramid, due to the number of scales,
we used Adam with learning rate 5× 10−5 and default parameters.

5.4.2 Baseline models

As a performance upper bound, we report the accuracy of a Mask R-CNN
oracle that has access to the future RGB frame. As a lower bound, we also
use a trivial copy baseline that returns the segmentation of the last input RGB
frame. In the following, we present two optical flow baselines, called Warp and
Shift ; a variant of the S2S model for discrete label maps; and Mask H2F, a
baseline that repurposes and finetunes the Mask R-CNN architecture to predict
future segmentation given the input frames. For completeness, we also include
two weaker baselines, based on nearest neighbour search and on predicting the
future RGB frames, and then segmenting them.

Optical flow baselines. We designed two baselines using the optical flow
field computed from the last input RGB frame to the second last, as well as
the instance segmentation predicted at the last input frame. As in Chapter 4,
the flow fields are computed using Full Flow (Chen and Koltun, 2016) using
the default parameters given by the authors on the MPI Sintel Flow Dataset
(Butler et al., 2012).

The Warp approach consists in warping each instance mask independently
using the flow field inside this mask. We initialize a separate flow field for each
instance, equal to the flow field inside the instance mask and zero elsewhere.
For a given instance, the corresponding flow field is used to project the values
of the instance mask in the opposite direction of the flow vectors, yielding a
new binary mask, using the t-centric method described in Section 4.4.2. To
this predicted mask, we associate the class and confidence score of the input
instance it was obtained from. To predict more than one time-step ahead, we
also update the instance’s flow field in the same fashion, to take into account
the previously predicted displacement of physical points composing the instance.
The predicted mask and flow field are used to make the next prediction, and
so on. Maintaining separate flow fields allows competing flow values to coexist
for the same spatial position, when they belong to different instances whose
predicted trajectories lead them to overlap.

Prior to any post-processing, this baseline’s predictions present some arti-
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facts, as shown in Figure 5.4(a), in particular when objects are moving fast
towards the camera. In this case, the optical flow should lead the predicted
mask to become larger. But by construction, the number of pixels composing
the masks can only stay equal or decrease in the warping process. Masks are
therefore broken in parts corresponding to uniform areas of the flow field, and
this phenomenon worsens with the number of steps. In order to remove these
artifacts, we employ mathematical morphology operators to post-process the
predictions. We employ a morphological closing, followed by a closing of holes
on the masks. This addresses the problem in an effective manner, as shown in
Figure 5.4(b).

t+1 t+3

(a)

(b)

(c)

Figure 5.4: Qualitative comparison of future masks obtained using the Warp
approach: (a) w.o. post-processing, (b) with closing operations, and (c) with
full post-processing.

For mid-term predictions, we perform these operations on the output before
it is used as input, at each time step. We use bilinear interpolation to estimate
flow values at the added positions of the binary mask. This post-processing of
the flow adds small spurious artifacts at the border of the the masks, visible in
particular in Figure 5.4(b), right. These are easily removed using morphological
openings, see Figure 5.4(c).

Warping the flow field when predicting multiple steps ahead suffers from
error accumulation. To avoid this, we test another baseline, Shift , which shifts
each mask with the average flow vector computed across the mask. To predict
T time steps ahead, we simply shift the instance T times.

Future semantic segmentation using discrete label maps. For com-
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parison with the future semantic segmentation approach presented in Chapter 4,
which ignores instance-level labels, we train our S2S model on the label maps
produced by Mask R-CNN. As before, we down-sample the Mask R-CNN label
maps to 128× 256. Unlike the soft label maps from the Dilation10 network (Yu
and Koltun, 2016) used in the previous chapter, our converted Mask R-CNN
label maps are discrete. For autoregressive prediction, we discretize our in-
termediate predictions by replacing the softmax network output with a one-hot
encoding of the most likely class at each position. For autoregressive fine-tuning,
we use a softmax activation with a low temperature parameter at the output
of the S2S model, to produce near-one-hot probability maps in a differentiable
way, enabling backpropagation through time.

Future segmentation using the Mask R-CNN architecture. As
another baseline, we fine-tune Mask R-CNN to predict either short-term or
mid-term future segmentation given the last 4 observed frames, denoted as the
Mask H2F baseline. As initialization, we replicate the weights of the first layer
learned on the COCO dataset across the 4 frames, and divide them by 4 to keep
the features at the same scale.

Prediction in RGB space followed by segmentation. To show that
prediction in the feature space is more effective than in the RGB space, we use
Mask R-CNN to segment future RGB frames predicted using the X2X model
presented in Section 4.3. We evaluate performance in two settings, with and
without fine-tuning Mask R-CNN on the predicted (blurry) RGB frames of the
training set, rather than the normal RGB frames. For fine-tuning, we keep
the same optimization hyperparameters used for fine-tuning on the original
Cityscapes dataset.

Nearest neighbour baseline. This baseline takes the P5 features of the
last observed frame, finds the nearest training frame in `2 distance on the fea-
tures, and outputs the future segmentation of the matched frame. This segmen-
tation corresponds to the ground-truth annotation if it is available, otherwise
it is produced by the Mask R-CNN oracle. The searching set comprises the
input frames used to train S2S and F2F, i.e. frames 2, 5, 8, 11 of each training
sequence.

5.4.3 Results

Future instance segmentation. We first report results for the two weaker
baselines we investigated, based on prediction of future RGB frames followed by
segmentation, and on nearest neighbour search. When segmenting the predicted
RGB frames, the resulting AP50 on the validation set of the Cityscapes dataset
for short-term prediction is 6.9%, while the AP is 3.6%. This is much weaker
than even the trivial copy baseline, which reaches 24.1% AP50 and 10.1% AP
in the same setting. When fine-tuning Mask R-CNN on the predicted RGB
frames, we obtain 19.2% AP50 and 8.6%, closer to, but still below the copy
baseline. We show qualitative results in Figure 5.5.

The nearest neighbour baseline obtains even poorer results, with an AP50
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Figure 5.5: Short-term prediction in RGB space, followed by instance segmen-
tation prediction using a Mask R-CNN model fine-tuned to this setting.

last input closest match distance map prediction

Figure 5.6: Nearest neighbour baseline. For each example, we show the last
input frame, its closest match, the corresponding squared pixelwise `2 distance
heat map and the predicted instance segmentations, visualized over the actual
future frame.

of 0.3% and IoU of 7.9%. This is due to the limited size of the dataset, and the
large number of instances present in each frame: each image contains on average
7 humans and 12 vehicles (Cordts et al., 2016). Although the nearest neighbour
baseline sometimes accurately matches large instances, the other objects lead
to a great number of false positives and false negatives, severely degrading the
performance. We show examples where this occurs in Figure 5.6.

In Table 5.1 we report the performance of the Warp baseline corresponding
to the illustrations in Figure 5.4: (a) before any post-processing is applied (Warp
w.o. post-processing), (b) with closing operations only (Warp w.o. opening),
and (c) with full post-processing (Warp). These results show that the post
processing operations we employ significantly improve performance.

The Shift baseline leads to qualitatively better masks than the Warp baseline
in cases where the optical flow field is not accurate enough. This approach,
however, is unable to scale the objects, and is therefore unsuitable for long-
term prediction when objects significantly change in scale as their distance to
the camera changes. We illustrate this in Figure 5.7, in an example where a
train is approaching the camera. At the first prediction, the mask predicted by
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Mid-term

AP50 AP IoU

Warp w.o. post-processing 5.7 1.6 32.2

Warp w.o. opening 10.9 4.0 40.6

Warp 11.1 4.1 41.4

Table 5.1: Ablation study on the Cityscapes validation set for the post-
processing operations employed by the Warp optical flow baseline.

t+1 t+3

Figure 5.7: Comparison between the masks predicted by Shift , in white, and
Warp, the union of the white and green zones. Predictions are shown for short
and mid-term.

Shift has nicer contours than that of Warp. However, one can already see that
the Warp mask is a bit larger. By the third prediction, we see that this has
become much more accentuated. Disentangling the camera motion from that
of the instances and incorporating additional geometric priors to additionally
scale masks might improve the results of the Shift approach, and could be the
basis for future work.

In Table 5.2 we present instance segmentation results of our future feature
prediction approach (F2F) and compare it to the performance of the oracle,
copy, optical flow and Mask H2F baselines. The copy baseline performs very
poorly (24.1% in terms of AP50 vs. 65.8% for the oracle), which underlines the
difficulty of the task. The two optical flow baselines perform comparably for
short-term prediction, and are both much better than the copy baseline. As
expected, for mid-term prediction, the Warp approach outperforms Shift . The
Mask H2F baseline performs poorly for short-term prediction, but its results
degrade slower with the number of time steps predicted, and it outperforms the
Warp baseline for mid-term prediction. As Mask H2F outputs a single time
step prediction, either for short or mid-term predictions, it is not subject to
accumulation of errors, but each prediction setting requires training a specific
model. Our F2F approach gives the best results overall, reaching more than
37% of relative improvement over our best mid-term baseline. While our F2F
autoregressive fine-tuning makes little difference in case of short-term prediction
(40.2% vs. 39.9% AP50 respectively), it gives a significant improvement for mid-
term prediction (17.5% vs. 19.4% AP50 respectively).

In Figure 5.8(a), we show how the AP metric varies with the IoU threshold,
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Short-term Mid-term

AP50 AP AP50 AP

Mask R-CNN oracle 65.8 37.3 65.8 37.3

Copy last segmentation 24.1 10.1 6.6 1.8

Optical flow – Shift 37.0 16.0 9.7 2.9

Optical flow – Warp 36.8 16.5 11.1 4.1

Mask H2F * 25.5 11.8 14.2 5.1

F2F w/o ar. fine tuning 40.2 19.0 17.5 6.2

F2F 39.9 19.4 19.4 7.7

Table 5.2: Instance segmentation accuracy on the Cityscapes validation set for
short-term (0.18 sec.) and mid-term (0.54 sec.) prediction. * Separate models
were trained for short-term and mid-term predictions.

(a) Short-term - Individual classes scores (b) Overall

Figure 5.8: Instance segmentation APθ across different IoU thresholds θ. (a)
Short-term prediction per class; (b) Average across all classes for short-term
(top) and mid-term prediction (bottom).

for short-term prediction across the different classes and for each method. For
individual classes, F2F gives the best results across thresholds, except for very
few exceptions. In Figure 5.8(b), we show average results over all classes for
short-term and mid-term prediction. We see that F2F consistently improves
over the baselines across all thresholds, particularly for mid-term prediction.

Table 5.3 shows the positive impact of using each additional feature level,
denoted by Pi–P5 for i = 2, 3, 4. We also report performance when using all
features levels, predicted by a model trained on the coarsest P5 features, shared
across levels, denoted by P5 //. The drop in performance w.r.t. the column
P2-P5 underlines the importance of training specific networks for each feature
level.

We provide instance segmentation results on the Cityscapes test set in Ta-
ble 5.4 for mid-term prediction, as obtained from the online evaluation server.
For reference, we also computed the Mask R-CNN oracle results and the results
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Levels P5 P4–P5 P3–P5 P2–P5 P5 //

IoU 15.5 38.5 54.7 60.7 38.7

AP50 2.2 10.2 24.8 40.2 16.7

Table 5.3: Ablation study: short-term (0.18 sec.) prediction on the Cityscapes
val. set.

of baselines Warp and Mask H2F. The results are comparable to those on the
validation set, and we again observe that the predictions of our F2F model are
far more accurate than those of the baselines.

Mid-term

AP50 AP

Mask R-CNN oracle 58.1 31.9

Optical flow – Warp 11.8 4.3

Mask H2F 12.2 4.6

F2F 17.5 6.7

Table 5.4: Mid-term (0.54 sec.) instance segmentation results on Cityscapes
test set.

Short-term Mid-term

IoU ↑ RI ↑ VoI ↓ GCE ↓ IoU ↑ RI ↑ VoI ↓ GCE ↓

Oracle (Chapter 4) 64.7 — — — 64.7 — — —

S2S (Chapter 4) 55.3 — — — 40.8 — — —

Oracle 73.3 94.0 20.8 2.3 73.3 94.0 20.8 2.3

Copy 45.7 92.2 29.0 3.5 29.1 90.6 33.8 4.2

Shift 56.7 92.9 25.5 2.9 36.7 91.1 30.5 3.3

Warp 58.8 93.1 25.2 3.0 41.4 91.5 31.0 3.8

Mask H2F * 46.2 92.5 27.3 3.2 30.5 91.2 31.9 3.7

S2S 55.4 92.8 25.8 2.9 42.4 91.8 29.7 3.4

F2F 61.2 93.1 24.8 2.8 41.2 91.9 28.8 3.1

Table 5.5: Short-term (0.18 sec.) and mid-term (0.54 sec.) semantic segmenta-
tion of moving objects (8 classes) performance on the Cityscapes validation set.
* Separate models were trained for short-term and mid-term predictions.

Future semantic segmentation. We additionally provide a comparative
evaluation on semantic segmentation in Table 5.5. First, we observe that our
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discrete implementation of the S2S model performs slightly better than the one
we evaluated in the previous chapter, thanks to our better underlying segmen-
tation model (Mask R-CNN vs. the Dilation10 model of Yu and Koltun, 2016).
Second, we see that the Mask H2F baseline performs weakly in terms of seman-
tic segmentation metrics for both short and mid-term prediction, especially in
terms of IoU. This may be due to frequently duplicated predictions for a given
instance, see Section 5.4.3. Third, the advantage of Warp over Shift appears
clearly again, with a 5% boost in mid-term IoU. Finally, we find that F2F ob-
tains clear improvements in IoU over all methods for short-term segmentation,
ranking first with an IoU of 61.2%. Our F2F mid-term IoU is comparable to
those of the S2S and Warp baseline, while being much more accurate in depict-
ing contours of the objects as shown by consistently better RI, VoI and GCE
segmentation scores. 1

Warp Mask H2F F2F

(1
)

(2
)

(3
)

Fig. 1: Mid-term instance segmentation predictions (0.5 sec. future) for 3 se-
quences, from left to right: Warp baseline, Mask H2F baseline and F2F.

Figure 5.9: Mid-term instance segmentation predictions (0.54 sec.) for 3 se-
quences, from left to right: Warp baseline, Mask H2F baseline and F2F.

Qualitative Results. Figures 5.9 and 5.10 show representative results of
our approach, both in terms of instance and semantic segmentation prediction,
as well as results from the Warp and Mask H2F baselines for instance seg-
mentation and S2S for semantic segmentation. We visualize predictions with a
threshold of 0.5 on the confidence of masks. The Mask H2F baseline frequently
predicts several masks around objects, especially for objects with ambiguous
trajectories, like pedestrians, and less so for more predictable categories like
cars. We speculate that this is due to the object-centric loss that the network
is optimizing, which does not discourage this behaviour, and due to which the
network is learning to predict several plausible future positions, as long as they
overlap sufficiently with the ground-truth position. This does not occur with the
other methods, which are either optimizing a per-pixel loss or are not learned
at all. F2F results are often better aligned with the actual layouts of the objects
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than the Warp baseline, showing that our approach has learned to model dy-
namics of the scene and objects more accurately than the baseline. As expected,
the predicted masks are also much more precise than those of the S2S model,
which is not instance-aware. 1

(1) (2) (3)

S
2
S

F
2
F

Figure 5.10: Mid-term semantic segmentation predictions (0.54 sec.) for 3 se-
quences. For each case we show from top to bottom: S2S model and F2F model.

Warp F2F

Figure 5.11: Mid-term predictions of instance and semantic segmentation with
the Warp baseline and our F2F model. Inaccurate instance segmentations can
result in accurate semantic segmentation areas; see orange rectangle highlights.

In Figure 5.11 we provide additional examples to better understand why the
difference between F2F and the Warp baseline is smaller for semantic segmen-
tation metrics than for instance segmentation metrics. When several instances
of the same class are close together, inaccurate estimation of the instance masks
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may still give acceptable semantic segmentation. This typically happens for
groups of pedestrians and rows of parked cars. If an instance mask is split
across multiple objects, this will further affect the AP measure than the IoU
metric. The same example also illustrates common artifacts of the Warp base-
line that are due to error accumulation in the propagation of the flow field.

5.4.4 Discussion

Failure cases. To illustrate some of the remaining challenges in predicting
future instance segmentation we present several failure cases of our F2F model
in Figure 5.12. In Figure 5.12(a), the masks predicted for the truck and the
person are incoherent, both in shape and location. More consistent predictions
might be obtained with a mechanism for explicitly modeling occlusions. Cer-
tain motions and shape transformations are hard to predict accurately due to
the inherent ambiguity in the problem. This is, e.g ., the case for the legs of
pedestrians in Figure 5.12(b), for which there is a high degree of uncertainty on
the exact pose. Since the model is deterministic, it predicts a rough mask due
to averaging over several possibilities. This may be addressed by modeling the
intrinsic variability using GANs, VAEs, or autoregressive models (Kalchbrenner
et al., 2017; Goodfellow et al., 2014; Kingma and Welling, 2014), presented in
Section 2.2.

(a) (b)

Figure 5.12: Failure modes of mid-term prediction with the F2F model, high-
lighted with the red boxes: (a) incoherent masks and (b) lack of detail in highly
deformable object regions, such as legs of pedestrians.

Long term prediction. In Figure 5.13, we show a prediction of F2F up to
1.5 sec. in the future in a sequence of the long Frankfurt video of the Cityscapes
validation set, where frames are temporally subsampled by a factor three as
before, resulting in a framerate of 5.6 Hz. To allow temporal consistency between
predicted objects, we apply an adapted version of the method of Gkioxari and
Malik, 2015 as a post-processing step. We define the linking score as the sum
of confidence scores of subsequent instances and of their IoU. We then greedily
compute the paths between instances which maximize these scores using the
Viterbi algorithm. We thereby obtain object tracks along the (unseen) future
video frames. Some object trajectories are forecasted reasonably well up to a
second, such as the motorbike rider, while others are lost by that time such
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as the motorbike. We also compute the AP with the ground truth of the long
Frankfurt video. For each method, we give the best result of either predicting 9
frames with a frame interval of 3, or the opposite. For Mask H2F, only the latter
is possible, as there are no such long sequences available for training. We obtain
an AP of 0.5 for the flow and copy baseline, 0.7 for F2F and 1.5 for Mask H2F.
All methods lead to very low scores, highlighting the severe challenges posed by
this problem.

0.5 sec 1 sec 1.5 sec0.5 sec 1 sec 1.5 sec

1 sec. 1.5 sec.

Figure 5.13: Long-term predictions (1.5 seconds) from our F2F model.

5.5 Conclusion

We introduced a new anticipated recognition task: predicting instance segmen-
tation of future video frames. This task is defined at a semantically meaningful
level rather the level of raw RGB values, and adds instance-level information as
compared to predicting future semantic segmentation. We proposed a generic
and self-supervised approach for anticipated recognition based on predicting
the convolutional features of future video frames. In our experiments we ap-
ply this approach in combination with the Mask R-CNN instance segmentation
model. We predict the internal “backbone” features which are of fixed dimen-
sion, and apply the “detection head” on these features to produce a variable
number of predictions. Our results show that future instance segmentation can
be predicted much better than naively copying the segmentations from the last
observed frame, and that our future feature prediction approach significantly
outperforms two strong baselines, the first one relying on optical-flow-based
warping and the second on repurposing and fine-tuning the Mask R-CNN ar-
chitecture for the task. When evaluated on the more basic task of semantic
segmentation without instance-level detail, our approach yields performance
quantitatively comparable to earlier approaches, while having qualitative ad-
vantages.

Our work shows that with a feed-forward network we are able to obtain sur-
prisingly accurate results. More sophisticated architectures have the potential
to further improve performance. Predictions may be also improved by explic-
itly modeling the temporal consistency of instance segmentation, and predicting
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multiple possible futures rather than a single one.
We invite the reader to watch videos of our predictions at http://thoth.

inrialpes.fr/people/pluc/instpred2018, and we provide the code for our
Pytorch implementation at https://github.com/facebookresearch/instpred.

http://thoth.inrialpes.fr/people/pluc/instpred2018
http://thoth.inrialpes.fr/people/pluc/instpred2018
https://github.com/facebookresearch/instpred
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Chapter 6

Conclusion

Video prediction has been increasingly studied in recent years as a particular
case of predictive learning, with broad applications in robotics and navigation
systems. However, the task of predicting future RGB frames is excruciatingly
challenging. Besides the challenge of handling the inherent uncertainty of the
task, predicting future RGB frames involves disentangling all factors of varia-
tions of videos, anticipating each factor’s evolution and combining them ade-
quately to form RGB frames. Furthermore, the predicted RGB frames cannot
be directly interpreted by downstream applications. These applications will in
general extract high-level features prior to prediction, which will be invariant to
some of the modeled factors. Such a pipeline therefore seems suboptimal.

For this reason, in this thesis, our goal was to study video prediction directly
in high-level feature spaces, where prediction would be easier and directly inter-
pretable by downstream algorithms. We also required that these feature spaces
should remain rich in information and spatially detailed, so that they could be
sufficient to model important concepts, relating to object and scene dynamics,
as well as interactions between objects. These concepts are in turn necessary
and sufficient for decision-making and planning in a wide variety of scenarios.

We considered semantic segmentation, as one of the most complete forms
of visual understanding, presenting the intended characteristics. In Chapter 3,
we first proposed a discriminative approach based on adversarial training for
the task of semantic segmentation on still images. Observing that state-of-the-
art segmentation models are trained with a per-pixel loss, and inspired by the
success of generative adversarial networks, the motivation for our approach was
that the discriminator could serve as a learned loss to regularize the segmen-
tation model, by enforcing forms of higher-order consistency at training time,
without adding complexity to the model used at test time.

Next, in Chapter 4, we introduced the task of predicting the semantic seg-
mentation of future frames and proposed an autoregressive convolutional model
to address. Leveraging the recent progress in the field, we used a state-of-the-art
system to segment frames in a video dataset, so that the segmentations could
serve as the inputs and targets of our predictive model.

107
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While it is spatially detailed, semantic segmentation does not distinguish
between distinct object instances belonging to the same class. Instance seg-
mentation overcomes this shortcoming by additionally associating with each
pixel an instance label. This additional level of detail is crucial to allow pre-
dictions relating to trajectories or interactions with objects, such as those met
in robotics and autonomous navigation systems. For this reason, in Chapter 5,
we extended our method to the more challenging problem of predicting future
instance segmentation. To deal with a varying number of output labels per
image, we developed a predictive model in the space of high-level convolutional
image features of the Mask R-CNN instance segmentation model, and we use
the predictions to produce the instance segmentation of future frames.

6.1 Summary of contributions

We summarize our contributions here.

1. In Chapter 3, we present, to the best of our knowledge, the first applica-
tion of adversarial training to semantic segmentation. This approach en-
forces long-range spatial label contiguity, without adding complexity to the
model used at test time. We propose and evaluate three input schemes for
the discriminators, two of them designed to reduce the disparity between
discrete ground truth segmentations and continous predicted segmenta-
tions. Our experimental results on the Stanford Background and Pascal
VOC 2012 dataset show that our approach leads to improved labeling ac-
curacy, with more pronounced gains for the smaller Stanford Background
dataset. This work was published at the NIPS Workshop on Adversar-
ial Training (Luc et al., 2016), and inspired a large body of works (190
citations at the time of writing).

2. In Chapters 4 and 5, we introduce the tasks of predicting future semantic
and instance segmentation, which yield predictions that are spatially de-
tailed, directly interpretable by downstream applications and semantically
richer than any video prediction task we are aware of. Both tasks can be
evaluated using metrics, inherited from the original recognition tasks on
still images, and over which there is more consensus than over the metrics
used in video prediction and image generation. We also observed that
instance segmentation metrics were better at evaluating trajectories than
semantic segmentation metrics, when multiple instances of the same class
are close to each other.

3. In Chapter 4, we showed that error accumulation was slower for prediction
of future semantic segmentation than for its RGB counterpart, support-
ing the fact that this task is better suited for recursive prediction and
for prediction further into the future. We also found that when training
a predictive segmentation model for single time-step prediction, adding
an auxiliary task of predicting future RGB frames significantly hurt the
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future segmentation performance. This suggests that rather than help-
ing the model with extra supervision, the video prediction task is instead
compromising some of the model capacity, supporting our initial hypothe-
sis that the severe challenges associated with such low-level prediction are
hindering the model’s ability to learn the concepts that are more impor-
tant for decision-making and planning.

4. In Chapters 4 and 5, we introduced strong models for these two tasks,
based on advances in semantic segmentation, instance segmention and
video prediction. These models are able to produce convincing predictions
up to half a second into the future, on the Cityscapes dataset for urban
scene understanding, that consists of videos of much higher complexity
than have been attempted by video prediction approaches, especially in
terms of number of instances per frame. We also showed important gains
compared with a number of baselines relying on optical flow, repurpos-
ing and fine-tuning a state-of-the-art instance segmentation network. In
Chapter 5, our multiscale approach allowed us to produce segmentations
at a high resolution and up to half a second into the future, while video
prediction approaches at comparable resolutions only evaluate the imme-
diate next frame setting.

5. For both tasks introduced in Chapters 4 and 5, we showed that predicting
directly in these semantically rich spaces is dramatically more accurate
than predicting future RGB frames and then segmenting these. In the
case of future instance segmentation, we showed that this holds when the
segmentation model is fine-tuned on the predicted frames, due both to the
restricted low resolution setting that can be afforded by RGB prediction
and to the severe degradation of frames.

6. Finally, the methods presented in Chapters 4 and 5 do not require ex-
tremely costly, temporally dense video annotation, and instead rely on
state-of-the-art segmentation models trained using image-level only an-
notations. Chapter 4 demonstrates the effectiveness of our general self-
supervised approach in the case where the underling segmentation network
produces unified image-level feature volumes (in the case of semantic seg-
mentation), while Chapter 5 extends it to the more involved case where
it produces object-level feature volumes (in the case of detection-based
semantic segmentation). This demonstrates the wide applicability of our
general approach, which allows different architectures for future segmen-
tation prediction and still image segmentation to be swapped in, whether
they are detection-based or segmentation-based. Additionally, the ap-
proach presented in Chapter 5 supports models that are able to produce
multiple scene interpretations, such as surface normals, object bounding
boxes, and human part labels, like the model proposed by (Kokkinos,
2017), without having to design appropriate encoders and loss functions
for all these tasks to drive the future prediction. Other anticipated recog-
nition tasks are also possible, such as human pose estimation. The work
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presented in Chapter 4 was published at ICCV 2017 (Luc et al., 2017) and
has already attracted significant interest (70 citations at the time of writ-
ing). Finally, the work presented in Chapter 5 was published at ECCV
2018 (Luc et al., 2018) and has been cited 7 times.

6.2 Perspectives

In this section, we propose some future perspectives based on the work presented
in this thesis and recent advances in the field of computer vision and machine
learning.

Handling uncertainties

We demonstrated the ability of our models to predict half a second ahead at a
high resolution, in complex scenes that could occur in the context of autonomous
driving. Predicting half a second ahead leaves relatively little uncertainty in
general, which is why our deterministic models are able to produce convincing
segmentations. Nevertheless, as described in Section 2.3.3, video prediction is
inherently uncertain, and the degree of uncertainty naturally increases with the
length of the offset at which we wish to predict. To improve the quality of
the predictions and handle longer term prediction, it is necessary to learn a
model that allows us to approximately sample from the different modes of the
condition distribution over the future output sequence.

As described in Section 2.3.3, an important line of work in video prediction
has focused on applying and extending ideas from generative modeling. Vari-
ational autoencoders (VAEs) (Kingma and Welling, 2014) have been shown to
produce diverse results (Babaeizadeh et al., 2018; Denton and Fergus, 2018),
while Generative adversarial networks (GANs) (Goodfellow et al., 2014) usually
lead to sharper predictions (Vondrick et al., 2016b; Jang et al., 2018; Tulyakov
et al., 2018) but struggle with diversity, in the setting where more than one
input frame is used. At this point, it is useful to recall that in Chapter 4, the
use of an adversarial loss had little impact in the setting of predicting future
semantic segmentation, presumably due to the fact that blur in the predicted
segmentation maps do not significantly affect the final segmentations, obtained
by taking for each spatial position the label with highest probability. As a con-
sequence, at least for short- and mid- term prediction, a VAE-based approach
could be of more interest. Alternatively, exploring the application in the context
of video prediction of work aiming to reduce mode collapse and mode dropping
of GANs would be an interesting direction, e.g . (Lucas et al., 2018; Elfeki et al.,
2018; Shmelkov et al., 2019).

Even when ignoring considerations relating to multi-modality, the integra-
tion of predictive models such as ours in critical applications like autonomous
driving would require a quantification of the uncertainty of the model’s pre-
dictions, so that downstream applications could modulate their reliance on the
predictions. In some cases, inputs will be very similar to the training samples,
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in which case the uncertainty should be small; while in others, inputs will be far
from the samples the model has been trained on, and the uncertainty should be
large. While the first source of uncertainty, due to the multiple modes, is inde-
pendent of how much data the model has been trained on, the second could be
decreased by increasing the size and the diversity of the dataset, as well as the
model’s capacity. Bhattacharyya et al., 2019 propose a Bayesian learning frame-
work for our future semantic segmentation task, that is able to address both
types of uncertainties. This framework leads to state-of-the-art results, with
good diversity properties. Prediction of future instance segmentation could also
largely benefit from the application of such methods.

Finally, while being extremely powerful models for image generation, from
a scene understanding perspective, VAEs and GANs are limited in the sense
that they learn an unstructured representation that lacks the explicit modeling
of fundamental notions such as objects and their appearance, occlusion, and
placement in the scene. While supervised (deep) learning models are able to
locate and recognize objects with great precision, discovering and harnessing
object-level structure of scenes in unsupervised generative models is a still a
challenge, despite recent efforts (Eslami et al., 2016; Yang et al., 2017). The
framework proposed by Eslami et al., 2016, described in Section 2.2.2, is partic-
ularly interesting, as the inference network learns without supervision to model
a number of objects that is unknown and that can vary from image to image.
This is at the cost of a relatively high-variance training procedure, even on a
rather simplistic setting for 2D images, where occlusions between objects are
not modeled and where objects are placed against a uniform black background.
Kosiorek et al., 2018 propose a temporal extension of this framework, under
the same restrictive assumptions. It is also important to improve the image
generative model, imposing less restrictive assumptions, such as uniform back-
grounds. Our preliminary experiments indicate that a separate background and
foreground model can be learned using a masking schedule, that exploits the
fact that objects are usually localized in a limited part of the image, while an
important proportion of the background can be roughly inferred, given the rest
of the image. At the beginning of training, the background model learns to
reconstruct the image provided only half of it, while the foreground model has
access to the whole image. Second, occlusion handling could involve predict-
ing a permutation on the objects, specifying an order in which the objects can
be decoded and pasted on the image canvas. The discrete permutation variable
modeling the occlusion ordering can be modeled using the Gumbel-Sinkhorn ap-
proach of Mena et al., 2018. Finally, combinations with supervised approaches
would be interesting. For exemple, we could replace the recurrent inference
network with a recurrent instance segmentation method such as the works of
Romera-Paredes and Torr, 2016; Ren and Zemel, 2017 or with a Region Pro-
posal Network (RPN) (Ren et al., 2015), in both cases pretrained, to see how
far image modeling capabilities can be pushed, and whether this could allow
the RPN to learn to detect objects of unseen classes, without bounding box
annotations.
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Predicting multiple instance tracks

Downstream algorithms could benefit from a yet a richer type of prediction,
consisting of instance tracks for the whole video, rather than per-image lists of
instances. In Chapter 5, as a preliminary step towards this goal, we explored
a simple tracking algorithm originally proposed by Gkioxari and Malik, 2015.
At the introduction of the video object detection challenge ImageNet Vid (Rus-
sakovsky et al., 2015), the dominant approach consisted in performing image
detection, followed by tracking and/or box-level post-processing (Han et al.,
2016; Kang et al., 2016; Lee et al., 2016). Similar approaches could be used on
top of our future instance segmentations, together with instance segmentations
extracted from the input frames.

While deep learning tracking methods initially required learning a discrim-
inative classifier online (Ma et al., 2015; Wang et al., 2015; Danelljan et al.,
2015), very recently, siamese networks have provided a very efficient and per-
forming paradigm (Bertinetto et al., 2016; Tao et al., 2016). In the approach
proposed by Bertinetto et al., 2016, an embedding function is used on both the
reference crop and each of the input frames. At each time step, the feature
maps are cross-correlated, leading to a similarity map for each input frame, in-
dicating where the target object’s likely localization. The embedding function
is learned discriminatively on positive and negative pairs. This framework has
seen considerable improvements, with the works of Li et al., 2018a; Zhu et al.;
He et al., 2018a; Yang et al., 2018; Wang et al., 2019. Of particular interest to
us, Li et al., 2018a train a RPN (Ren et al., 2015) to propose regions that are
likely to contain the target object, based on the embeddings of the reference
crop and the input image. The very recent framework proposed by Wang et al.,
2019 extends this with a parallel branch predicting a binary mask for each pro-
posal, obtaining state-of-the-art performance. While this framework does not
rely on intermediate detections, investigating the applicability of our method
provides another exciting avenue, using this time the learned embedding space
as inputs and targets, and relying on the predicted features to obtain future
mask proposals. Conditioning the feature prediction on the RPN intermediate
outputs (“sampled” by choosing the top scoring proposal) could help improve
the consistency of trajectories.

Other approaches for video object detection instead extend two-stage detec-
tion pipelines to video volumes: video tube proposals are first produced, and
then given as input to recognition branches (Kang et al., 2017; Vu et al., 2018);
in a similar spirit to previous work for action detection (Oneata et al., 2014;
Gemert et al., 2015; Kalogeiton et al., 2017). Features up to a certain level are
still extracted per frame, before being aggregated temporally, and used for the
tube proposal prediction and recognition. These methods could also be the ba-
sis for an extension of our method, where prediction would occur in the highest
image feature level. Temporal aggregation over the input and predicted features
would then allow video level prediction.
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Appendix A

Conditional Random Fields

Let X and Y be two sets of random variables, with each random variable in Y
taking its values in a finite set of labels Y. We assume that X is observed, and
our goal is to infer Y .

A very straight-forward definition can be given in terms of factor graphs,
and motivates intuitively the use of CRFs in vision applications. A factor graph
is a bipartite graph G = (V, F,E) – i.e. a graph whose nodes are partitioned
into two subsets V and F , and whose edges each connect one node of V to a
node in F – used to describe of family of distributions over the multivariate
random variable Z. Such a family is called an undirected graphical model.

We say that a distribution p(z) factorizes according to the factor graph
G = (V, F,E) if each variable node in V indexes one of the components of Z
and if there exists a set of local functions {Ψa}a ∈ F such that

∀z, p(z) =
1

Z
∏
a∈F

Ψa(zN (a)), (A.1)

where N (a) ⊆ V denotes the neighbours of a in G. Hence the nodes belonging
to F are called factor nodes. Here, Z is the partition function or normalization
constant, ensuring the fact that

∑
z∈Z p(z) = 1. From this we can deduce its

expression:

Z =
∑
z

∏
a∈F

Ψa(zN (a)). (A.2)

Let us now partition Z into the set of observed variables X and the set of
variables to predict Y . Let G = (V, F,E) be a factor graph, such that we can
partition V into VX and VY to index respectively the components of X and Y ,
and such that

∀a ∈ F,N (a) 6⊂ VX . (A.3)

G defines a conditional random field over (X,Y ) if the conditional distribution
p(y|x) factorizes according to G, i.e. if
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∀x, y ∈ X × Y, p(y|x) =
1

Z(x)

∏
a∈F

Ψa(xa, ya), (A.4)

where (xa, ya) = {xs; s ∈ N (a)} ∪ {ys; s ∈ N (a)}) and where again, we can
express Z(x) as

Z(x) =
∑
y

∏
a∈F

Ψa(xa, ya)). (A.5)

The idea behind a conditional random field is to avoid altogether the difficul-
ties arising from modeling the complex relationships between observed variables,
and instead focus on modeling directly what is of interest to us, i.e. predicting
y from x by modeling p(y|x). This is why we restrict ourselves to the factor
graphs that do contains factors involving only variables in X and use them to
represent p(y|x) instead of the joint distribution p(x, y).

Note that a resulting difference with a general undirected probabilistic model
defined by a factor graph is that the partition function now depends on x, and is
computed by summing over the y variables only. In some cases, this means that
its computation will be tractable, where in contrast, a corresponding generative
model might have been either too complex for inference to be tractable or too
simplistic to be accurate.

Instead of parametrizing the factors directly though, in vision it is common
to define instead potentials, which together sum to the energy E(x, y) of the
configuration y. The Gibbs distribution of this energy gives us the conditional
distribution we are modeling:

P (Y |x) =
e−βE(x,Y )

Z(x)
, (A.6)

where

Z(x) =
∑
y

e−βE(x,y). (A.7)

The use of a classifier suggests a first obvious set of potentials, called the
unary potentials or the data terms, corresponding to the initial classifier’s pre-
dictions for each individual label ys given the set of features extracted from x.
Typically, we use the log-probabilities given by the classifier (e.g . when using
multinomial logistic regression, we can directly use the softmax pre-activations).
This ensures that the predictions will be those given by the original classifier if
no other potentials were used.

Several additional sets of potentials and their parametrization have been
proposed, as we will detail in the following. Commonly, pairwise potentials are
used, e.g . between two neighbouring labels in an image. HIgher-order potentials
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are more rarely used. These model interactions among larger numbers of labels,
e.g . to model that most labels in a superpixel take the same value.

The parameters of a CRF are usually estimated using the maximum like-
lihood framework. Usually, computing the partition function Z is intractable.
Indeed, consider one of the most basic connectivity pattern for a graph over
the spatial positions, called the 4N-neighbourhood, where pairwise interactions
are defined between each site and its four closest sites. In this case, even the
most sophisticated procedures for exact inference e.g . Junction Tree Algorithm
cannot be applied, since it would require building a tree equivalent to the graph,
by grouping the variables in the leaves. Doing this in a grid-like structure gives
us a one-node tree containing the whole graph, so does not reduce the com-
plexity of the problem. Approximate inference is therefore necessary, and can
be used in one of two ways, as developed by Sutton and McCallum, 2012. The
first way is by defining an easier objective, called a surrogate, ideally such that
the maximum of this objective and of the true log likelihood will match. In
this case, inference is necessary to approximate the partition function. The sec-
ond way is by directly approximating the gradients to the log likelihood using
approximated marginals. Indeed, the latter can be expressed as :

∇θa log p(y|x) =
∑
a∈F
∇θa logψa(xa, ya; θa)−∇θa logZ(x), (A.8)

and

∇θa logZ(x) =
1

Z(x)
∇θa

∑
y

∏
a′∈F

ψ′a(x′a, y
′
a; θ′a) (A.9)

=
1

Z(x)

∑
y

∏
a′∈F\a

ψ′a(x′a, y
′
a; θ′a)∇θaψa(xa, ya; θa) (A.10)

=
∑
y

p(y|x)

ψa(xa, ya; θa)
∇θaψa(xa, ya; θa) (A.11)

=
∑
y

p(y|x)∇θa logψa(xa, ya; θa) (A.12)

=
∑
ya

p(ya|x)∇θa logψa(xa, ya; θa). (A.13)

We see that we can substitute approximate marginals in Eq A.13 to obtain
approximate gradients to the log likelihood, and use them in gradient based
optimization methods. Note that when parameters are shared across cliques of
the same type – as is common – we simply aggregate the obtained gradients
across cliques.

Formulating a surrogate objective has the advantage that we know exactly
what we are optimizing, which is necessary for certain optimization algorithms
and useful from an analysis perspective. On the other hand, direct approxima-
tion of the gradients is more flexible because it allows the use of any approximate
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inference algorithms, but conversely the learning procedure cannot in general
be formulated as the optimization of a surrogate likelihood function.



Appendix B

Semantic Segmentation
Metrics

Mean Intersection-over-Union The most common metric for evaluating
performance is the mean intersection over union (mIoU), which is most clearly
expressed in function of the confusion matrix M . It is defined as:

mIOU =
1

|Y|
∑
c

Mcc∑
iMic +

∑
iMci −Mcc

. (B.1)

It has a very simple interpretation. Consider a class c, and the set of pixels
predicted to belong to that class, versus the set of pixels actually belonging to
that class according to the ground truth. The ratio of the sizes of the intersection
and the union of these two sets can be at most 1, if the two sets are equal. Hence
the closer it is to 1, the more accurate the predictions are. One averages this
ratio over classes to obtain the final performance metric.

The reasons there is a consensus on using this metric instead of a simpler
one, such as the accuracy, are the following. First, it is important to average the
performance over the classes, because in most datasets, there is large imbalance
between a catch-all-remaining class (e.g . “background” or “other”) and the
other classes. Second, when considering the average per-class accuracy, which
would be the next obvious candidate, the problem is now that the metric is now
biased towards methods that make coarse predictions, because that will in most
cases significantly increase the accuracy of all classes, except for the single catch-
all-remaining class, which will only be slightly decreased. Replacing accuracy
with IoU solves this issue.

BF measure The BF measure, introduced by Csurka et al., 2013 is another
metric of interest to us. It is complementary to the IoU, in that it focuses
specifically on the quality of the contour, which significantly contributes to
the perceived segmentation quality in some applications. This metric extends
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a popular metric used in segmentation called the Berkeley contour matching
score of Martin et al., 2004. Specifically, it measures how close the two contours
are, by computing the proportion of points in the predicted boundary that are
close enough to the ground truth boundary as a measure of precision, and the
proportion of points in the ground truth boundary that are close enough to the
predicted segmentation as a measure of recall, and summarize these into a F1
measure, which is aggregated across classes and images. Formally, for an image
indexed by i, consider the union Sic of classes present in either the ground truth
or the predicted segmentations. For each class c in Sic, calling Bi,cgt the boundary

of the ground truth map for class c in image i, and Bi,cps that of the binarized

predicted segmentation, and given an distance error tolerance parameter θi, the
precision P i,c and recall Ri,c are defined as:

P i,c =
1

|Bi,cps |
∑
p∈Bi,cps

[d(p,Bi,cgt < θi)], (B.2)

Ri,c =
1

|Bi,cgt |
∑
p∈Bi,cgt

[d(p,Bi,cps < θi)], (B.3)

where d is the Euclidean distance, and [x] denotes the Iverson brackets, equal
to 1 if x is true and 0 otherwise. The tolerance in the distance error θi, used
to decide whether a point has a match or not, is a computed as a fixed factor θ
times the length of the image diagonal, so that the metric does not depend on
the image size and can be computed across images of different sizes.

These can be used to compute a F1i,c score:

F1i,c =
2P i,cRi,c

P i,c +Ri,c
. (B.4)

These scores are averaged over the set of classes Sic to obtain a F1i score for each
image, which are again averaged over the images to obtain the final performance
metric BF.
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fields for image labeling. In CVPR, 2004.

G. Heitz and D. Koller. Learning spatial context: Using stuff to find things. In
ECCV, 2008.

M. Henaff, A. Canziani, and Y. LeCun. Model-predictive policy learning with
uncertainty regularization for driving in dense traffic. In ICLR, 2019.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural net-
work. In NIPS Deep Learning Workshop, 2014.

M. Hoai and F. De la Torre. Max-margin early event detectors. IJCV, 107(2):
191–202, 2014.

Q. Hoang, T. D. Nguyen, T. Le, and D. Phung. MGAN: Training generative
adversarial nets with multiple generators. In ICLR, 2018.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

J. Hohwy. The predictive mind. Oxford University Press, New-York, NY, US,
2013.

M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial trans-
former networks. In NIPS, 2015.

Y. Jang, G. Kim, and Y. Song. Video prediction with appearance and motion
conditions. In ICML, 2018.

D. Jayaraman, F. Ebert, A. A. Efros, and S. Levine. Time-agnostic prediction:
Predicting predictable video frames. In ICLR, 2019.

X. Jin, X. Li, H. Xiao, X. Shen, Z. Lin, J. Yang, Y. Chen, J. Dong, L. Liu,
Z. Jie, J. Feng, and S. Yan. Video scene parsing with predictive feature
learning. 2017a.

X. Jin, H. Xiao, X. Shen, J. Yang, Z. Lin, Y. Chen, Z. Jie, J. Feng, and S. Yan.
Predicting scene parsing and motion dynamics in the future. In NIPS, 2017b.



BIBLIOGRAPHY 127

J. Johnson, A. Alahi, and F.-F. Li. Perceptual losses for real-time style transfer
and super-resolution. In ECCV, 2016.

N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka, O. Vinyals,
A. Graves, and K. Kavukcuoglu. Video pixel networks. In ICML, 2017.

V. Kalogeiton. Localizing spatially and temporally objects and actions in videos.
PhD thesis, University of Edinburgh ; INRIA Grenoble, 2017.

V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid. Action tubelet de-
tector for spatio-temporal action localization. In ICCV, 2017.

K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets
with convolutional neural networks. In CVPR, 2016.

K. Kang, H. Li, T. Xiao, W. Ouyang, J. Yan, X. Liu, , and X. Wang. Object
detection in videos with tubelet proposal networks. In CVPR, 2017.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. In ICLR, 2018.

D. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár. Panoptic segmenta-
tion. arXiv:1801.00868, 2017.

A. Kirillov, R. B. Girshick, K. He, and P. Dollár. Panoptic feature pyramid
networks. arXiv:1901.02446, 2019.

K. Kitani, B. Ziebart, J. Bagnell, and M. Hebert. Activity forecasting. In
ECCV, 2012.
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