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Overview

My main contribution to condensed matter physics is at the intersection between na-
nophysics and quantum many-body problems. During my PhD and my early post-doc
period, I worked in the fields of strongly correlated systems (polarons and Wigner crystal)
and statistical physics (quantum and classical premelting); since 2007, however, my main
research interests have been in the field of mesoscopic quantum physics.

I am currently interested in engineered quantum systems such as quantum electronic
devices, superconducting circuits and qubits, and nanomechanical systems. My research
objectives are: (i) exploring strategies for creating, detecting and eventually controlling
quantum states in these engineered coherent systems; and (ii) understanding the inter-
play between quantum coherence and interactions. Using a variety of theoretical methods
- from path integral and diagrammatic techniques to density matrix equations - I am
investigating problems that deal with nonequilibrium quantum states, nonlinear effects,
quantum dissipation and decoherence dynamics.

My scientific path is summarized in the table below.

Method: Topic:
path Josephson —» superconducting circuits / quantum dissipation
integral junctions
Topic:
Topic: quantum
polarons and transport — quantum transport and electron vibration
electron-phonon Method: interaction
interaction Keldysh
techniques
Topic: — quantum dissipative phase
many-body transitions
systems Method:
(Wigner Master —»  decoherence in spin lattices
crystals) equations
?p":‘: g nonlinear and nonequilibrium
anharmonic dynamics in nanoresonators
effects
Topic: Andreev states and topology
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My recent activities can be divided into the following research lines:
(a) quantum transport and electron-vibration interaction;

(b) quantum dynamics in superconducting Josephson systems;

)
)
(¢) quantum dissipation and decoherence in many-body systems;
(d) Andreev bound states and topological effects;

)

(e) nonequilibrium dynamics in nonlinear nanoresonators.

In this manuscript I only present an overview of my works on topic (a) in Chapter 1
and on topic (b) in Chapter 2. A publication list of my works on these topics is given
on page 7. I briefly outline topic (c¢) in my last chapter, Chapter 3, which focuses on my
future research projects.

Chapter 1 and 2 have a similar introductory structure. The initial sections contain a
short overview of the topic - Sections 1.1 and 2.1 - as well as of the state of the art of the
experimental nanodevices - Sections 1.2 and 2.2.

I review the theoretical methods employed in the problems addressed by each correspond-
ing chapter: the Keldysh nonequilibrium Green functions in Section 1.3 and the (imagi-
nary) path integral method in Section 2.3. These sections do not seek to be a rigorous
and formal introductions to the theoretical techniques; on the contrary, they are intended
as a pedagogical overview of the basic concepts.

In Section 1.4, I assess the main results of my publications 2 through 5, whereas Section
1.5 contains the primary findings of my works 6 and 7. In the final section of this chapter
(1.6) I outline a recent work, the first on the publication list.

Section 2.4 is a succinct (simple) justification of the standard theoretical modelling of
Josephson junction systems. On this topic, for the sake of brevity, I only recapitulate
works 13 and 14 in Section 2.5 and 8 and 10 in Section 2.6.

I have learned one good rule from successful theorists, which is to keep things as
simple as possible. The idea is not to solve the most complicated problem with the
most sophisticated methods. Rather, I always aim to capture the essential features in a
simplified model and to work out the crucial aspects in the simplest possible way.
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Chapter 1

Electron-vibration interaction in
quantum dots

1.1 Context and scientific background

Electronic transport through nanoscale devices is characterized by a variety of interesting
phenomena [1,2]. One of these is the interplay between quantum transport at the level of
a single electron and the mechanical motion of localized vibrations in various nanoscale
devices.

Nanoelectromechanical systems (acronym NEMS) [3-5] include single-molecule junc-
tions [6-8], suspended carbon nanotube quantum dots (CNT-QDs) [9-14], single-electron
transistors [15-19], superconducting single-electron transistors [20-22], single-electron shut-
tles [23-25] and quantum dots in other suspended nanostructures [26,27]. In such nan-
odevices, the motion of the resonator can not only be detected but also manipulated
via electron transport. At the same time, the mechanical motion strongly influences the
transport itself.

In simple terms, one can describe an electromechanical device as a conductor coupled
(capacitively or inductively) to a mechanical resonator. For example, consider a conduct-
ing nanowire suspended above a (central) gate electrode to which a gate voltage is applied.
The actuation and the detection of the vibrational eigenmodes of the nanowire are imple-
mented via the electrostatic force between the gate and the charge on the nanowire. The
flexural displacement of the nanowire thus modulates the gate capacitance. Interestingly,
in one class of experiments it is not important to determine the detailed microscopic model;
it is sufficient to assume that the conductor is a black box characterized by a transconduc-
tance, viz. the conductance depends on the gate capacitance. Even within this framework,
NEMS have important applications as ultrasensitive detectors at the nanoscale [28] and
constitute a platform for the investigation of fundamental questions about classical non-
linear dynamics and nonequilibrium fluctuations [29].

In another class of experiments, the quantum nature of the conductor is important.

11
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current
CONTACTS
QUANTUM DOTS (normal metal,
superconductor,
ferromagnet, etc.
QUANTUM OSCILLATOR

Figure 1.1: General theoretical model discussed in the text. A central quantum dot is in contact
with two lateral leads of various type (normal metal, superconductor, ferromagnet) and interacts
with a quantum harmonic oscillator. The latter object can represent either a vibrational mode of
a molecule or of a nanomechanical resonator or an electromagnetic mode of a photon cavity.

Here, the current is due to a temporally discrete set of events whereby electrons can
tunnel quantum-mechanically, one-by-one, from the source to the drain electrode through,
for instance, a central island. Moreover, the action of the quantum conductor alters the
vibrational motion in a fundamental way, such that the transport itself is correlated to
the vibrational states. For example, because the probability for quantum mechanical
tunnelling is exponentially sensitive to the tunnelling distance, it follows that the position
of a metallic island oscillating between two electrodes is crucial: even small oscillations
can significantly amplify the probability of transmission and, in the meantime, excitations
of the vibration can be generated by the tunnelling of electrons from the leads, e.g. the
so-called shuttle mechanism [24,25].

More generally, charge-vibration interaction leads to a plethora of novel and unex-
pected behaviors of the nanoresonators. Electromechanical backaction effects - such as
oscillator frequency shift and electromechanical damping - have been reported in exper-
iments for the flexural modes in suspended carbon nanotube quantum dots [11, 12, 14]
and in quantum dots coupled to a piezoelectric nanoresonator [27]. Further increasing
the coupling strength, current suppression is expected due to the Franck-Condon block-
ade mechanism, which has been experimentally observed [9]. Mechanical bistabilities
and blocked-current states are also theoretically predicted beyond a critical threshold of
the charge-vibration coupling strength for low-frequency classical nanoresonators [30-32].
Other theoretical studies have reported self-sustained mechanical oscillations [33].

In many of the experiments and theoretical studies mentioned above, the oscillator
acts as a classical moving object interfaced with a quantum conductor. However, this
does not necessarily have to be the case. In quantum nanomechanical systems, one has the
possibility of studying the quantum mechanical behavior of macroscopic moving objects,
using nanoscaled resonators near the ground state of motion. Simply put, this regime can
occur when the temperature 7' is much smaller the vibrational quantum energy associated
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with a single vibrational mode of frequency w, namely kT < hw with kg denoting the
Boltzmann constant and & the Planck constant. In this case, a full quantum theoretical
approach is required [5]. This is also the domain of the single molecule devices. Here, the
quantum tunnelling of electrons from the lateral electrodes (source and drain) through
the central quantum dot can excite localized vibrational modes, such as the longitudinal
or radial (breathing) modes in suspended carbon quantum dots [9,10].

Before concluding this introduction, it is worthy mentioning that single-electron quan-
tum conductors coupled to other types of localized resonators, such as microwave photon
cavities, have now become a commonly studied system [34-37]. These hybrid structures,
which combine electronic and photonic degrees of freedom in on-chip circuit-QED archi-
tectures, are currently undergoing rapid development. This opens the path to exploration
of the correlations between the charge transport and the nonequilibrium regime of the
photon cavity [38-40].

1.2 Electromechanical systems with quantum dots: experi-
mental overview

Suspended carbon nanotube quantum dots (CNT-QDs) are particularly interesting elec-
tromechanical systems. These suspended nanostructures have outstanding mechanical
properties as carbon nanoresonators can have frequencies in the range f ~ MHz-GHz
and yet large quantum zero-point fluctuations ug ~ 10 pm, making them ideal candidates
for observing quantum mechanical effects. With regard to their transport properties, the
state of the art in suspended CNT-QD has achieved accurate control of the number of the
electrons in the quantum dot, of the tunnelling barriers as well as of the position of the
dot in the nanotube, see Fig. 1.2. Quantized vibrational modes appear in low temperature
transport spectroscopy (longitudinal and breathing modes) [9,10,41,42]. In contrast, flex-
ural modes have been mainly investigated experimentally and theoretically in the context
of classical resonators coupled to quantum dots [43].

To achieve the quantum regime of the mechanical motion, a crucial requirement is
cooling the system to a temperature much lower than the characteristic frequency, viz.
kpT < hw. In this way, starting from the ground state, one aims to have access to
and control of only a few low-energy excitations of the quantum oscillator. Ground-state
cooling, i.e. the average vibrational quanta n < 1, has been achieved in certain nanome-
chanical devices, for instance, in oscillators of GHz frequency using standard dilution
refrigeration techniques [44].

This goal still remains to be achieved in the flexural mechanical modes of suspended
CNTs, which are related to the oscillations of the center of mass of the entire mechanical
object. This accomplishment is hindered by the difficulty of cooling such low-frequency
modes to temperatures of quantum regime. The flexural modes have typical values around
hundreds of MHz or below. This implies that the electromechanical devices would have to
be cooled to extremely cryogenic temperature below a few millikelvin which is a demanding
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Figure 1.2: Left: Schematic picture of a suspended carbon nanotube quantum dot between two
conducting contacts, with the flexural modes labelled by the index & and with u(z) as the local
displacement (from [11]). Center: Scanning electron microscopy image of a typical device, with
the arrow showing the position of a nanotube (from [11]). Right: Scanning electron microscopy of
a carbon nanotube (length ~ 0.9um) suspended above five gate electrodes (from [14]). A quantum
dot is formed when a few electrons are confined in a small region of the suspended carbon nanotube
using the underlying gate electrodes.

task in the field of low-temperature electronic circuitry.

In the next sections, I discuss two proposals for controlling the vibrational states of
a suspended carbon nanotube using either spin-vibration interaction with spin-polarized
current or charge-vibration interaction in a normal-superconductor quantum dot.

Experiments in recent years have achieved a relevant coupling regime for flexural
modes, such that the intrinsic mechanical damping can be much smaller than the induced
electromechanical damping [14,45]. The latter condition is important to attain quantum
ground state cooling of the mechanical motion, as I explain in the following section.

Furthermore, suspended CNT-QDs are versatile systems, and they can be in contact
with electrodes of different types. For instance, spin-current injection has been experi-
mentally reported in CNT-QDs in a spin-valve geometry with gate field control and with
ferromagnetic nanocontacts [46]. Moreover, the coherent coupling between the electron
spin and its orbital magnetic moment has been studied theoretically and proved experi-
mentally [47]. Although a priori, for vanishing magnetic field and spin-orbit interaction,
the localized electronic levels of a CNT-QD shell are at least fourfold degenerate owing to
the spin and circumferential orbital degree of freedom, the magnetic field and the spin-
orbit interaction remove this degeneracy. This feature opens up the possibility of tuning
individual spin levels in suspended CNT-QD and of coupling the spin with the mechanical
flexural modes [48,49].

In addition, a set-up involving CNT-QDs with the nanotube embedded between a
normal metal and a superconductor has also been experimentally implemented [50,51].

In normal-superconductor quantum dots, one would expect the role of the supercon-
ducting contact to be unessential when the superconducting gap is much smaller than the
typical vibrational frequency A < hw as the vibrational frequency sets the energy scale of
the inelastic tunneling of electrons. The interesting and relevant regime is thus expected
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for A ~ hw or A > hw, which corresponds to a demanding condition in single-molecule
junctions characterized by typical high-frequency vibrations due to the low mass of the
molecules. This regime can occur naturally in CNT-QDs for a quantum dot coupled to
the flexural modes with a lower frequency range.

1.3 Overview of the theoretical technique

The technique of the Keldysh Green’s functions is a useful theoretical method for analyz-
ing problems of quantum transport in the presence of interaction and in nonequilibrium
regime. Many books present a complete introduction to this method, including that of
Rammer [52]. In this section, I present a short overview. For the notations, I refer to the
book of Rammer [52] (and set h = 1, except for the conductance quantum).

1.3.1 The Keldysh nonequilibrium Green’s functions

Let us assume that in the distant past g, the system was in a state specified by a (many-
body) density matrix p(tg) = po. Setting the Hamiltonian as H = Hy + H; with H;
assumed to be the perturbation, we set H 1 = 0 before the time ¢3. At time ty the
perturbation Hj is switched on. Then, the precise form of pg is of no importance as long
as we consider the steady regime of the system at a time t sufficiently far away from
to (eventually tg — —oo). The physical explanation is that over this large time elapse
dissipative irreversible processes occur such that the system losses memory of the initial
state. For instance, this is the case for a central dot coupled to two lateral leads. Here
the dot represents an open quantum system coupled to the two fermionic reservoirs at
temperature T such that, even if the interactions are not present in the leads (which form
a continuum anyways), the state of the dot becomes uncorrelated to its initial state after
some time. .
i ffo dt' Hr(t')

)

The unitary time evolution operator in the interaction picture is U[(t, to) = Te
whereas the operators are characterized by the Heisenberg evolution according to an un-
perturbed Hamiltonian H,, for instance, H () = ettt f Ie_mot'. T is the time ordering
on the time axis, namely T'A(t)A(ts) = 0(t; —t2) A(t1) A(te)+0(ta—t1) A(ta) A(t1) (1" is the
time anti-ordering). The density matrix evolves as j(t) = Uy(t, —oo)[)OU}r(t, —00). Then,
the expectation value of an observable is calculated at a time ¢ (O) = Tr [O I(t)ﬁl(t)} , Or
more explicitly

(O) = Tr [U}(t,—oo)é,(t)ﬁl(t,—oo)ﬁo = (T %W O )y (11)

In the equation above, I have introduced the close time path which starts at ¢y and
proceeds along the real time axis to time ¢ (upper branch) and then goes back to ¢y (lower
branch). This path is the so-called Keldysh close time contour ¢ depicted in Fig. 1.3(a)
upon which one can define a time ordering operator T, acting on it. One can generalize
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the previous expression to the two operators (correlators) function, for instance, for the
Green’s functions defined as

Grp(t,t)) = —i(Toe "IN & (ol (1)) = —i(T, 5. ¢, (D&, (1) (1.2)

where ¢\ and é;r\ are the annihilation and creation fermionic operator with respect to a
single particle set basis A, p in the interaction picture. I have also introduced the notation
S, for the exponential operator appearing in Eq. (1.2). A similar definition holds for the
phonon propagator with the operator 4 = b+ bT where b and b are the annihilation and
creation bosonic operators

D(t,¢') = —i{T. Scalt)al (1)) . (1.3)

By introducing the Keldysh close time contour and the time ordering on it, the Keldysh
Green functions method appears formally equivalent to the zero-temperature diagram-
matic method for calculating the ground state of many-body systems or the Matsubara
method for evaluating the response functions of many-body systems at thermal equilib-
rium [52]. However, such formalism enables us to describe nonequilbrium states and even
at finite temperature. The price we must pay is that the Green’s functions are matrices
since the time ¢ and ¢’ in the Eq. (1.2) and Eq. (1.3) can belong to the upper or lower
branch of the Keldysh close time contour. As a simple example, I consider the case of a
single electron level of an isolated quantum dot without any interaction, with d the anni-
hilation fermionic operator for the dot’s level. Then the Keldysh Green’s function matrix
reads as

(g gl Y ( @ddi@y —(d @)
.= (i o ) =1 Gonay @ dody ) 09

where the signs + and — refers to the fact that the times ¢,¢ can belong to the upper (+)
or lower (—) branch.

Both the Wick theorem and the Dyson equation can be reformulated on the Keldysh
close time contour, provided that one defines the Green’s functions as matrices with respect
to the position of the two times ¢ and ¢’ in the lower or upper branch.

1.3.2 Exactly solvable model of a quantum dot

In this section, I describe the method of Keldysh nonequilibrium Green’s functions in
more detail for the specific case of the impurity model, namely a quantum dot between
two fermionic reservoirs, Fig. 1.3(b). The latter systems are bulk leads, described as two
Fermi gases at thermal equilibrium and characterized by a temperature T. To simplify
the notation, I discuss spinless fermions. The Hamiltonian of the entire system is given

by s
HO—ZZ €y — Mv) € chl,k—l—ZZ(t dck+hc>+50dd (1.5)

v=l,r k Vlrk

Htun
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[ d r
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Figure 1.3: (a) The Keldysh closed time contour with the positive branch and negative branch
for the initial time tg — —oo. (b) Sketch of the exactly solvable impurity model in the simplest
case: a quantum dot d coupled to the two lateral norma leads (I left and r right). (c¢) Schematic
diagrammatic of the perturbation theory for the model in (b). The tunneling is treated as the
perturbation (cross). The exact electron Green’s function Gy is the solid (thick) line whereas the
thin lines are the bare Green’s functions g4, g, g, for vanishing tunneling (see text). The tunneling
amplitudes are t; and ¢,. (d) The Dyson equation for the dot Green function G = G4 (solid line)
of the quantum dot coupled to the lateral leads. (e) The self energy Xy, is given simply by the
sum of two terms related to the bare Green’s functions of the leads (see text).

where the first term is the Hamiltonian for the left and right leads the second term is the
tunnelling Hamiltonian and the third term is the dot’s level. The operators ézk (¢,) and
df (CZ) are creation (annihilation) operators for the corresponding electronic states in the
leads and the dot.

Let us assume that in the distant past tg, the whole system formed by the dot and
the leads is described by the density matrix pg = p; pr pg With p; and p, as the density
matrices of a Fermi gas at temperature 1" and chemical potential u,. Before time tg, a
bias-voltage is applied across the two leads, with no tunnelling between the dot and the
leads. At time %g, the tunnelling with the quantum dot is switched on. Considering the
tunnelling term as the perturbation (interaction) on the dot in contact with two lateral
leads, we write the Green’s function of the dot as

Ga(t,t) = —i(T, e e Hunl) G (1)l (1)) . (1.6)

By expanding the exponential, one generates a series of different terms of increasing order
in the tunnelling amplitudes ¢,. Since we average on the thermal fermionic distribution
of the leads, the first non-vanishing term is second order in the tunnelling. By applying
Wick’s theorem we obtain, for example, the following pairing

(T. d (t) [d(t1) &, (t)ey(t2) d ()] d () o Galt,tr) Gik(tr, t2) Galta,t') | (1.7)

where the times t; and to vary on the close path and g (t1,t2) is the Keldysh Green’s
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function of the fermionic state k£ on the left lead I. Proceeding in this way, one obtains

Galt,t') = ga(t,t") + ?{fdtldb galt;tr) | D1t gur(te,t) | galta, t) +....  (1.8)
v,k

The factor two coming from the exponential is compensated by the number of permutations
of the indices of the internal time ¢1,¢5. This is also true at any order: the factorial term
(n!) at the denominator is compensated by the number of possible terms that can be
obtained by permuting the internal time ¢y, ..., ¢,. This second order result illustrates very
well the simple rules for constructing the diagrams at any order, as depicted graphically
in Fig. 1.3(c). The graphic rules are: (i) consider only an even number of combinations
of the tunnelling Hamiltonian for the left and right leads, (ii) after the bare dot Green’s
function gg (without tunnelling,) one must insert a bare Green’s function g, of the left
or right lead and sum over k, and (iii) each tunnelling event is represented by a cross
corresponding to a factor \tl,]2. Then, one can graphically realize the validity of the Dyson
equation - Fig. 1.3(c) - which reads explicitly as

Calt.t) = gultst) + § pardts gult,r) (Sulta,12)) Guttan). (19)

and the self energy defined with respect to the tunnelling Hamiltonian Hyy is simply
f]t(tl, t2) = Lk \tl,\2§,,k (t1,t2). In summary, using the perturbative expansion and draw-
ing the diagrarﬁs as in Fig.1.3(c), we have shown that the self energy is formed simply by
the sums of two terms as a consequence of the fact that the electron can tunnel only to
one lead per time before returning to the dot.

Using the matrix formalism, one reduces the integration on the complex contour to
the integration on the real axis

Ga(t,t) = ga(t, 1) //dtldtg Ga(t,t1) 6. By (t1,t2) 6, Galta, t'), (1.10)

where &, is the diagonal Pauli matrix. The latter equation suggests the use of a rotation
known as the Larkin-Ovchinnikov rotation defined by the matrix L that removes the
Pauli matrix in the Dyson equation such that one must simply carry out a matrix product
operation:

Ga(t,t)) = LGa(t, ¢\ LT = gq(t, 1) //dtldtg Ja(t, t1) Se(t1, ta) Galta, t) (1.11)

1
1
components: the retarded, the advanced and the Keldysh components.

- (dR ) gt . (GEt) GE(t,t) - (2R t) SE@wt)
gd_<d 0 g?;‘(t,t’)) ’Gd_( 0 G%‘(t,t’)) ’Zt_< 0 Ef(t,t’)>'
(

with L = < > /v2 and LL' = 1. The new matrices are triangular with three
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The Dyson equation 1.11 now reads as a time convolution product, and in the frequency
space, it corresponds to

Ga(w) = ga(w) + ga(w) Xi(w) Ga(w) . (1.13)

To obtain the self energy we must sum over the k vector of the Green’s functions for the
leads v = [, r which are given by

o) = s ali(e) = —2mid( — ) L= 20,0 (1.14)

and the fermi function of the leads f,(w) = 1/(1 + ¢#“=H)). In this exactly solvable
problem, the self energy has only a single diagram:

. ' 1 911~ 2Flfl(w)+rrfr(w)
S(w) = 3 (Iulgun(w) + It o)) = —iT (O | T } (1.15)
- -

where Iset I'=17+1,, T, = ﬁpV]tV\Q and I have utilized the wide-band approximation in
which one neglects the energy dependence in the density of the states of the normal metal,
assuming that its characteristic energy variation is larger than the energy scales involved
in the problem (temperature, bias voltages, tunnelling rates).

Incorporating Eq. (1.15) into Eq. (1.13), one obtains the exact electron Green’s function
of the quantum dot coupled to the two leads. This quantity plays a crucial role in the
transport. For instance, one can show that the current is given by

1= fiw o [G@)] (7)ol | (1.16)

with e denoting the electron charge. The equation 1.16 is known as the Meir-Wingreen
formula, and it is valid if the interactions are confined in the central part of the system (the
dot) with proportional coupling for the tunnelling amplitudes between the dot and the
leads [53]. The effective energy-dependent transmission function appearing in Eq. (1.16)
reads as

I, 1

T ((JJ—€0)2—|—F2‘

Im [GF(w)] (1.17)
Applying a large bias voltage p; — p, = €V > (kgT,T) and |u, — 9| > (kpT,T), the

current saturates to
Il

I =e .
max Fl + Fr

(1.18)

The latter result can be obtained by a simple rate equation in which one electron can
tunnel into the dot from the left lead with rate I'; and can exit the dot to the right lead
with rate I',.
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1.3.3 Extended Green’s functions: spin degree and superconductivity

The previous example can be generalized to treat other systems with an arbitrary number
of tunnelling junctions and with contacts of different types. In the general case, it is im-
portant to consider the spin degree of freedom (for example, with ferromagnetic leads) and
the particle/hole nature of excitations in the leads (for example, for dots with supercon-
ducting contacts). As long as the full Hamiltonian is quadratic in the fermionic operators
(in the case of the superconductor with the mean-field BCS Hamiltonian), the problem
of the transport (current, noise, charge occupation, etc.) can be solved exactly: the self
energies are formed by a single term, and the Dyson equations can be solved exactly.

For instance, in the case of spin-dependent transport, we must increase the dimension
of the Keldysh Green’s functions and consider the spin index as follows:

AT T Fdod ey (Fdo
~oo' _ [ 94 Y4 — <7j0‘{¢(t)‘{ () <TCC{T(t)C{ )
Z (ﬁfﬁ¢> <<n%m#w»<n%mﬁw»> (19
or simply
ﬁf:—{ﬁ[(gg)(ﬂwwﬂwﬂ>:%éﬂ%@@ww (1.20)

where we have introduced the spin dependent spinor 1&2 = (c@,d}t) Here each of the

functions such as (7, CCZT(t)di(t’ ) is a matrix (the time on the upper or lower branch of the
Keldysh close time contour).

In a similar way, one introduces a spinor notation to address the problem with super-
conducting contacts where the quasi-particle excitations are (coherent) linear combinations
of the electron and hole states of the normal phase. As shown in the following sections,
one of the leads can be described by the BCS Hamiltonian with the pairing potential A.
A superconductor is characterized by the so-called anomalous averages, for instance, the
Green’s function <ch§¢(t)a? Lt )> # 0 does not vanish. In this case, it is useful to introduce

the spinor for each individual spin channel
dT(t) ey g4t P 2t
<ﬂ@>(%@wmw) = —i (T, 0, ()T} () (1.21)

where the index v, 1 = e, h (electron-hole) and the spinor 'l = (di, d i)-

G = —i <TC

1.3.4 Diagrams with electron-vibration interaction

Finally, in this section, we analyze the case of the quantum dot with the charge-vibration
interaction. Again, I illustrate the general approach for the simplest case of a single level
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Figure 1.4: (a) Diagram of the Dyson equation for the renormalized electron Green’s function
G (double solid lines) in the spresence of electron-vibration interaction. (b) The self energy ¥ is
calculated to the lowest order in the coupling ~ A2 corresponding to the rainbow diagram and
the tadpole diagram, related to the bare dot Green’s function G and the bare phonon Green’s
function Dy (wavy line). (c) Diagram of the Dyson equation for the renormalized phonon Green’s
function D (double wavy line). (d) The phonon self energy II is calculated to the lowest order
in the coupling ~ A? corresponding to the bubble diagram related to the correlator of the dot’s
operator coupled to the resonator, see Eq. (1.36), e.g. the non-symmetrized noise.

of a dot linearly coupled to a harmonic oscillator,

Hopn = Ho +wob'd + Adtd (13 +6T), (1.22)

Hint

with Hy given by Eq. (1.5). We now consider the Green’s functions obtained for the
full tunnelling problem (for instance, for the dot G4) as the unperturbed functions. The
perturbative term is Hipy. Using the perturbation expansion to the time evolution operator
and applying Wick’s theorem, one can write the perturbative series as a function of the
coupling constant A. Due to the pairing rule for the bosonic propagator, the non-vanishing
terms are only the terms even in A. Thus, the first leading term is of order A\?>. For
example, the electron Green’s function in the dot has the following form in the real time
representation:

Ga(t, t') = Gq(t, 1) //dtldtg Galt,t1) 6 [A2Gd(t1,t2)f)g(t1,t2)} 6. Ga(ta, t') + ...
a(t,t) //dtldtg Galt,t1) 6 [E’“bw(t,t’)} 6. Galta, t) + ... . (1.23)

Here, Gy still denotes the exact Green’s function of the dot coupled via tunneling to the
leads, whereas Dy is the bare phonon propagator. In Eq. (1.23), we write a first term
that represents the electron self energy - the irreducible representation of the interacting
diagram at the order A2. The latter quantity is given by the product of G4 with Dy
and is known as the rainbow diagram. A second possible kind of diagram is the tadpole
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diagram, see Fig. 1.4(b). The latter diagram corresponds physically to the average force
that induces a displacement on the position of the oscillator from zero (4) = 0 to a finite
value (i) = A2(dtd ) y—o # 0. Using the perturbative expansion in the electron-vibration
interaction, it is possible to show that the current can be decomposed as follows:

I=10 41O 4 (1.24)

and the condition 7**) > 1Y) justifies the perturbation theory a priori.
For the phonon Green’s function, the perturbation expansion leads to the following
result:

D(t,t") = Dy(t,t) //dtldtg Do(t,t1) 6 [/\QGd(tl,tz)éd(tQ,tl)] 6. Do(ta, t') +...
o(t, 1) //dtldtg Do(t,t1) 6 [fl,\z(t,t’)} 6. Dolta, t') + ... . (1.25)

In this case, the leading order of the phonon self energy II is given by a bubble diagram
formed of two fermionic propagators forming a loop, see Fig. 1.4(c,d). This corresponds
to the calculation of a Green’s function with four fermionic operators, and it is indeed
related to the correlator of the dot’s operator coupled to the vibration, in this case the
charge occupation of the single level (df(t)d () d'd ). Thus, the associated Dyson equation
of the phonon propagator in the lowest order in A reads as

D(t, ') = Do(t,t) //dtldtg Do(t,t1) 6 [ﬂ,\g(t,t’)] 6. D(t,t). (1.26)

Using the Larkin-Ovchinnikov rotation, in the frequency space, we have

D(w) = Do(w) + Do(w) y2(w) D(w) . (1.27)

We note that the phonon self energy IT,2 in the triangular form, after the Larkin-Ovchinnikov
rotation, is related to special combinations of the convolution products (in the frequency
space) of the two electron Green’s functions forming the bubble diagram.

By utilizing the electron Green’s function (G4, one can obtain the phonon self energy.
In this way the renormalized phonon propagator D is the solution of the Dyson equation
Eq. (1.27). For example, the retarded component reads as

w? — wi — 2wl (w) “—~ w— swo + Rell#(wy)] — i Im ITF (wp) ’

DR (w) = (1.28)

where we used the symmetry of the self energy Re IT%(wg) = Re IT(—wq) and Im IT¥(wp) =
—Im 1% (—wp). By comparison with the bare phonon propagator
1

Dft = li _ 1.29
0 (@) nl—%sziw—swo—i-in’ (1.29)
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with 7 denoting an infinitesimally small (damping) constant, one can conclude that the
interaction with the dot’s charge results in two effects. The first one is a renormalization of
the oscillator’s frequency. As seen in Eq. (1.28), the real part of the retarded component
of the phonon self energy renormalizes the oscillator’s frequency, namely wy — wg +
Re I1#(wp). Hereafter, we will implicitly assume such a renormalization. The second effect
is that the renormalized phonon Green’s function acquires a finite imaginary part in the
denominator, which corresponds to a damping of the mechanical oscillator. Hence, one
defines the electro-phonon damping of the oscillator as

v =—ImIT*(w). (1.30)

The approximated expression appearing in Eq. (1.28) that allowed us to introduce the
damping ~ is valid in the underdamped regime when the friction is weak enough v < wy,
such that one approximates the phonon propagator as the sum of two Lorentzians centered
at :I:cug.

We conclude this section by reporting the result for the Keldysh component of the
phonon propagator in the underdamping (Markovian) regime. One can show that

HK(W())

DX (w) ~ _ 1.31
() S:Ziw—swo—i-z"y ( )

This quantity plays a special role. From it, one can obtain the nonequilibrium average
phonon occupation of the quantum oscillator, namely

(5 ) = 8%Im DX (w) — L ~ L (HKS”O)> - % (1.32)

1.4 Ground state cooling by electron transport

1.4.1 Active cooling: state of the art

Active ground-state cooling was obtained in an opto-mechanical setup in which one me-
chanical mode of the resonator was coupled to a microwave electromagnetic cavity, using
the so-called side-band method [54,55]. The mechanism of side-band cooling is based, in
a scattering picture, on the enhancement of phonon absorption due to the matching of
the mechanical resonator’s frequency wy with the detuning between the cavity frequency
and the frequency of laser pumping the cavity. Alternatively, several interesting theoret-
ical proposals for the attainment of active cooling through electron transport have been
analyzed [56-61]. I I emphasize that active cooling by pure electron transport has been
experimentally achieved thus far using a superconducting single electron transistor [20].

In this section, I discuss two proposals for cooling a resonator using electron transport.

The first system is a spin-valve quantum dot with ferromagnetic nanocontacts [46].
The spin of discrete electron levels in the dot is theoretically predicted to couple to the
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flexural vibrations due to the presence of an external magnetic gradient [48] or due to the
mediation of the intrinsic spin-orbit interaction [49]. I combined these two ingredients and
proposed the system outlined in Fig. 1.5(a,b) (articles 4 and 5 on the publications list).

The second system is a quantum dot connected to one superconducting contact and a
normal metal, as shown in Fig. 1.5(c,d). In this system, for energy scales involved in the
transport and smaller than the superconducting gap A, finite current flows via Andreev re-
flection (AR) in which, for instance, an incoming electron from the normal lead is reflected
as a hole with the concurrent formation of a Cooper pair in the superconductor. In the
presence of an interaction of the quantum dot with bosonic modes of the environment, AR
can be inelastic, and experimental observations of such inelastic reflections in CNT-QD
have been reported [51]. I analyzed a microscopic model of charge-vibration interaction in
the QD with phonon emission or absorption in the vibration-assisted Andreev reflection
(articles 2 and 3 on the publications list).

1.4.2 Electromechanical model

Quantum dots in real devices can be modeled as a single-impurity Holstein model in which
one assumes a linear coupling between the electron occupation on the quantum dot and the
oscillation amplitude of one or more oscillators representing the local vibrations [62—-66].
Here I generalize this model and consider the following Hamiltonian:

H= 3 (Bt o) + Y cono + AFa b+ +aoblh . (139
V:l,’l” U:Tvi

where ﬁy is the Hamiltonian for the left and right lead (v = [,r) and ﬁmmn is the
tunnelling Hamiltonian between the dot and the lead v. The nature of these contacts will
be specified in the next two sections for two different cases. The operators b and b' are the
(bosonic) creation and annihilation operators of the harmonic oscillator of frequency wy,
and d, and a?j, are the corresponding fermionic operators for the dot’s levels. The coupling
strength of the interaction is A. The operator E is the force acting on the oscillator. We
will study the case in which Ey corresponds to the x component of the local spin operator
ﬁ’d = §; = d16f¢ + cila?T in Section 1.4.3, whereas in Section 1.4.5 we analyze the case in
which Fd corresponds to the dot charge Fd =Ny = dic% + (ﬂd |-
Furthermore, we assume the weak coupling limit regime given by

A< wo. (1.34)

This means that the variation of the charge or the spin in the dot induces a displacement
of the energy of the order of A\, which is small compared to the level separation of the
harmonic oscillator. In this case, the bare levels and states of the harmonic oscillator are
meaningful starting points in the presence of the electron-vibration interaction and current
flowing through the dot. We focus on the sharp resonance transport regime, such that we
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Figure 1.5: (a) The spin of the quantum dot states is coupled to the flexural modes of the nanotube
suspended between two ferromagnetic contacts of opposite polarization. (b) Microscopic model of
(a). The dot corresponds to two spin levels with a Zeeman splitting and a single flexural mode to
an oscillator. The spin-vibration interaction leads to vibration-assisted inelastic spin-flip processes
accompanied by the exchange (e.g. absorption) of energy with the oscillator. (c) The charge of the
quantum dot states is coupled to the flexural modes of the suspended nanotube between a normal
metal N and a superconductor S with gap A. (d) Microscopic model of (¢). The dot corresponds
to two spin-degenerate levels and a single flexural mode to an oscillator. At bias voltage V' smaller
than the superconducting gap, the charge-vibration interaction leads to vibration-assisted inelastic
Andreev reflections accompanied by the exchange (e.g. absorption) of energy with the oscillator.

also require another condition for the typical tunneling rate I' controlling the hopping of
the electrons from the leads to the dot:

I' < wyp. (1.35)

Because the inverse of the tunneling rate h/T" is related to the dwell time of the electron
in the dot, the latter condition is known as the anti-adiabatic limit.

Assuming weak coupling and the anti-adiabatic limit, we calculate two important quan-
tities: the nonequilibrium occupancy of the harmonic oscillator 7. and the inelastic current
through to the dot I;, due to the electron- vibration interaction in the leading order of
A2. These quantities have been computed in articles 2-5 on the publications list using the
Keldysh Green’s function technique and for arbitrary ranges of other transport parame-
ters. Here, I introduce a simple heuristic approach to derive these quantities, focusing on
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specific transport regimes to emphasize the underlying mechanism of cooling via electron
transport.

When a voltage bias is applied, the electrons tunneling through quantum dot behave as an
effective environment characterized by an electromechanical damping v and a force noise
acting on the oscillator. Then the crucial quantity is the unperturbed, non-symmetrized
noise of the electron force operator (charge or spin) of the dot

+oo | R .

S(w) = / dt ™" (Fy(t)Fy(0))5_g (1.36)
—00

with (...),_, denoting the quantum statistical average taken over the electron system for

A = 0. Using S(w), it is possible to show that the electromechanical damping reads as

v = A [S(wo) — S(—wo)] = 14 — - (1.37)

Indeed, the absorption of an energy quantum wy is connected to the intrinsic non-symmetrized
noise at the positive frequency of the open dot (non-interacting with the vibration),
whereas the emission of an energy quantum wg is connected to the non-symmetrized
noise at the negative frequency. A simple way to understand the relationship between
the non-symmetrized noise and the probability of absorption or emission of a phonon of
energy wy is based on Fermi’s Golden rule. For the probability per unit time of one phonon
absorption (+) or emission (—), the Golden rule gives us

- 2
p=2m> > Py Pil{nF Lbs| Hing n,1hi)| 6 [wo & (E; — Ey)] (1.38)
n o qf
where 1); and ¢y are the initial and final states of the open dot, with energies E; and Ey,
and P; is the probability of occupation of the initial state, whereas P, is the probability
of occupation of the Fock state Jn) . Using the integral representation for the d-function
and the interaction H;,; = AFy(b+ bT), one obtains for the case of absorption

A A +(>O .
pr = N3 0Py ST P (il Faliby) (] Eald) / dt ot B (130)
n 7’7f -
+o00
= A7 / dteiwot<ﬁd(t)ﬁd(0)>m:ﬁ%, (1.40)

in which I have used the completeness of the dot’s states and n = ), nP,. A similar
calculation for the emission of one phonon leads to

po=(m+1) 7. (1.41)

In order to calculate the steady-state nonequilibrium occupation n due to the charge-
vibration interaction, we neglect in a first approximation the thermal bath and use a
phenomenological equation rate

dn _
n:ﬁ’y+—(ﬁ+1)’y_—>ﬁ: 7

0=— — =
dt Y+ — V-

(1.42)

Il
3l
S
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The result for n in Eq. (1.42) clearly indicates that ground state cooling with 7, < 1 can
be achieved for vy > v_. In other words, one must create a strong asymmetry between
the two processes in order to cool the oscillator. Hereafter, we call the coefficients 4 the
intrinsic rates or simply rates for the phonon emission and absorption, since they are a
property of the intrinsic system without the interaction with the resonator.

One can generalize Eq. (1.42) by taking into account the (unavoidable) interaction of
the oscillator with a thermal bath with an intrinsic damping rate vg. Then, the general
steady occupation of the oscillator is given by the competition between the interaction of
the oscillator with the effective environment - the quantum dot - and the thermal bath

ﬁ:’Vﬁc‘FVOnB’ (1.43)
7+ %
with np denoting the Bose distribution at frequency wgy and temperature 7. Thus, ground
state cooling n < 1 also requires that the electromechanical damping dominates over the
intrinsic damping vy np < y7n.. The latter inequality means that vo/v7 < n./np < 1
which is a realistic condition for suspended CNT-QD characterized by huge quality factors
Qo = wo /70 ~ 10°.

Finally, I conclude this section by summarizing the result for the inelastic current asso-
ciated with the electron-vibration interaction. This current results from vibration-assisted
tunnelilng processes in which an electron hops from a lead to the dot, s exchanging energy
with the oscillator. Both phonon emission and phonon absorption make a contribution to
the inelastic current. Hence, based on the discussion in the previous section, one would
intuitively expect the following expression for the inelastic current:

L= q" [y-(A+1) + 7:7] . (1.44)

In Section 1.4.3, I discuss the result for the case of a quantum dot coupled to the vibration
via the dot’s spin, F; = §,. In this case, for the fully spin-polarized electrons in the
ferromagnetic leads and in the limit of large applied voltage V', the inelastic current indeed
takes the form given by Eq. (1.44) with ¢* = e. Similarly, in Section 1.4.5, I discuss the
case of a quantum dot coupled to the vibration via the dot’s charge, Fd = ng. Again,
in the regime of subgap transport in which the current is mainly determined by Andreev
reflections and in the limit of large applied voltage V' (but still eV < A with A denoting
the superconducting gap), the inelastic current reduces to Eq. (1.44) with ¢* = 2e since two
electrons are involved in the current in order to form a Cooper pair in the superconductor.

1.4.3 Spin-vibration interaction and inelastic spin-flip tunneling

Hereafter, we focus on the range of parameters around the cross point of the two spin
levels (see articles 4 and 5). In this case, the quantum dot is described by two spin levels
with an effective Zeeman splitting Ae, = e — € which is tunable by a uniform field B.,
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Figure 1.6: Schematic picture of the average phonon occupancy as a function of the bias voltage
V and the average dot’s energy ¢¢ (controlled by a gate voltage V). Left: In the nanomechanical
spin-valve, the figure represents the case of fully polarized leads at the resonance wy = Ae,. At
fixed configuration of the Zeeman splitting in the dot and polarization of the leads, the phonon
absorption is enhanced at positive voltage (see text). At the negative voltage, the opposite regime
occurs. Right: In the system with a superconducting lead, at positive high voltage (see text), the
Andreev reflections are essentially given by incoming electrons from the normal lead to the dot.
The phonon absorption is enhanced when the reflected hole appears at the same energy of the
incoming electron (see text). This is possible if, for example, the electron enters the dot at energy
€0 = —wp/2, such that it enters the superconductor at energy €. = wp/2 after the absorption of a
phonon. Then, the hole is reflected at energy e, = —wg/2. The opposite regime occurs when the
electron enters the dot at energy £ = wg/2.

namely

Z EoNy = Z <€0 + UAQEZ> dtd,, (1.45)

— =1l

and the average energy ¢g = (e4 +¢;) /2. To model the spin-valve CNT-QD embedded
between ferromagnetic leads and to simplify the discussion, I restrict the analysis to the
case of fully polarized leads such that we can identify a =1 <+ o0 =] and f =r < 0 =1 in
the Hamiltonian

S (i + Hoian) = 323 [erathotir + totlods + 15 diey] . (1:46)
v=I,r o=, k

I also assume symmetric contacts such that the tunneling rates I‘lT =It=T.In simple
terms, for fully polarized leads, the current can flow through the system only if the spin
is flipped when the electrons pass through the dot. This process occurs inelastically with
the absorption or the emission of one single phonon (weak coupling regime). Basically, the
system acts as a nanomechanical spin-valve in which spin-polarized electrons tunnelling
through the dot’s levels can exchange energy with the oscillator by flipping their spins.
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At large bias voltage V' compared to the other energies (temperature 7', the tunnelling
rate I and the separation of the energy spin level €, from the chemical potentials) the elec-
trons practically flow from the left to the right, as shown in the upper inset of Fig. 1.6(a).
In the electromechanical damping v = v, —~_, the coefficients ~, correspond to the rates
for vibration-assisted inelastic processes in which a spin flip occurs for one electron tun-
neling from the left lead to the right accompanied by the absorption (s = +) or emission
(s = —) of a vibrational energy quantum wy

e = N2 /iw Ti(w) fi(w) [1=fr(w £ wp)] ~ A*T? /dw Ty (w) , (1.47)

where f;,(w) = 1/{1 + exp[(w — pu,)/T]} the Fermi functions of the lead, yy; — pt, = eV
(approximately fj(w) ~ 1 and f,(w) ~ 0 for high voltage), whereas the transmission
functions are given by

1 2 2

B e e TR e

(1.48)

The equation 1.47 can be evaluated analytically. We report the result for the resonance
case €4 — €| = wp, which reads as

A2 2 r\?2
Wop T S <wO) ; (1.49)

from which we extract the minimum values of the phonon occupations that can be achieved,
namely npin ~ V- /74 = (F/wo)z. The situation changes at negative voltage, where we
find a region of increase for the phonon occupation n > 1 for v, 2 ~v_ and an instability
region when 74 < y—. These two regions are beyond the validity of the perturbative
approach, and the phase diagram represents only a qualitative description.

The results of Eqgs. (1.47,1.48,1.49) enlighten the ultimate mechanism for the cooling.
The two Lorentzian functions in the integral of Eq. (1.47) completely overlap for the case
of the absorption rate s = 4 in the cooling region. In other words, the inelastic spin-flip
occurs through the two peaked spin levels of the dot’s density of states. Conversely, in the
case of emission s = —, the two Lorentzian functions in the integral of Eq. (1.47) are well
separated: phonon emission is still possible but arises through only one peak associated
with the spin down, whereas the passage through the spin up can be seen as a cotunnelling
process (a virtual occupation of the level) whose amplitude scales as ~ (T'/ wo)2 < 1.

The behavior of the inelastic current is intuitively understandable in the limit case in
which the oscillator is strongly affected by the quantum dots and the steady-state phonon
occupation saturates to n ~ n.. In this regime, the current clearly reflects the behavior of
the phonon occupancy. At large positive voltage, in the cooling regime, we have n. < 1
and v- < 4+

)\2
IV~ ey =1 <2w2> (1.50)
0
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with Iy = el’. In the cooling regime, the inelastic current is strongly suppressed with
respect to the elastic current. At negative voltage with v 2 v_ we have 1, > 1 such that
we can approximate

IV<0~ ey, (1.51)

Because the phonon occupation scales as fi. ~ y_/(y+ — 7—), it increases indefinitely as
long as v+ — ~v— until the instability line 74 —~v_ = 0. In summary, a strong asymmetry
emerges in the inelastic current that reflects the behavior of the nonequilibrium average
phonon occupation 7.

1.4.4 Andreev reflection: qualitative picture

Before discussing the quantum dot with charge vibration, I review the quantum transport
occurring at the interface between a normal metal and a superconductor and, in particular,
when a quantum dot is embedded between these two different contacts.

In discussing the current through the system, one must start by considering the proba-
bility of tunneling of electrons and holes from the normal metal to the superconductor. In
the system with normal-superconductor interfaces, one distinguishes between two different
mechanisms of transport.

The first mechanism is based on the semiconducting model, and it is associated with
the quasi-particle excitations. A single electron excitation of energy higher than the gap
e—pus > A, with A denoting the superconducting gap and pg the chemical potential of the
superconductor, can in principle tunnel into the superconductor, with some transmission
probability related to the details of the barrier at the interface. At the same level, a hole
excitation of energy ug — ¢ > A in the normal metal can tunnel into the superconductor.
At small but finite temperature kT < A, viz. electrons and holes are present in the
normal metal above and below the chemical potential, the net charge current is zero when
the chemical of the normal metal equals that of the superconductor uy = ps. By applying
a finite voltage, for instance uy = eV +pug, one creates an asymmetry in the flux and a net
charge current flows through the interface. This description is similar to the tunneling of
one electron from a metal to a (gapped) semiconductor. As a consequence, in the limit of
kpT — 0, the current can flow only if the particle excitations have enough energy, namely
for applied voltage |eV| > A. This leads to a sharp feature in the I vs V' characteristic.
In the limit " — 0 and |eV| < A, no current is expected according to this scenario.

In the latter regime, known as sub-gap regime eV < A, the second mechanism of
transport occurs: the Andreev reflection (AR). This leads to a substantial current at the
interface between a superconductor and a normal conductor.

The basis of such processes lies in the impossibility of electrons from the normal region
of penetrating into the superconductor due to the energy gap formed in the latter: in
order to enter into the superconducting condensate (formed by Cooper pairs), another
electron must be picked up from the normal metal, leaving a (reflected) hole in it. Simply
put, the AR corresponds to an effective injection of two electrons of opposite spin into the
superconductor at the chemical potential yg. When we consider a quantum dot with two
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spin-degenerate levels, the net effect is that this process is characterized by an effective
energy-dependent transmission function for the two electrons entering the superconductor.

The model Hamiltonian for the normal lead and the superconductor with the tunnelling
to the quantum dot reads as

3 [HV + H%tun] -y % [; (Eko = 1) & Choy + tuehondy + Susél, e+
v=N,S v=N,S o,k
(1.52)
The superconducting lead v = S is described by the mean-field BCS Hamiltonian with
the superconducting pairing A. The dot is formed by a spin degenerate level

Z EoNe = €0 Z did, . (1.53)

=14 .

The Hamiltonian is quadratic in the fermionic field and the Green’s functions can be
solved exactly by generalizing the formalism of the Keldysh Green’s functions with the
use of the spinor for the electron and hole excitations, as explained in the previous section.
Hereafter, we primarily focus on the strong subgap regime defined by the condition that
the gap is the largest energy scale in the problem. In this case, the transport through the
system is captured by the effective low energy Hamiltonian,

At Hsp+20 Y didy — Has =20 Y did, — Vs (dldl +d,d,.) (154
o=T,1 o=T,1

Here, the parameter I'g is given by I's = 7Tp|t5|2 - with p the density of state of the
superconducting lead in the normal phase. Above the critical temperature, the supercon-
ductor behaves as a normal metal and the parameter I'g corresponds to the tunnelling
rate between the lead and the dot. However, in the superconducting phase and in the
large superconducting gap limit defined by Eq. (1.54), the parameter I'g plays the role of
coupling strength for the intradot pairing due to the proximity to the superconductor.
One can compute the Green’s functions and calculate the current through the system (at
the normal lead). The result for this subgap current is given by

dw
Lan=e [32 Tanw) [£@) (1= fu)) = o) 0= f@) ], (159)
with fe(w) = (1 +exp[%%ev])_l as the conventional Fermi function and fj(w) =

1 — fe(—w) as the hole distribution. Hereafter, I set the chemical potential of the su-
perconductor g = 0. The transmission function for the AR is

8% T% _ 8% T%
|(w =0 +iTn) (w+eo+iTn) —T2[>  |w? = E2 —T% + 2ily|*’

Tar(w) = (1.56)

with the Andreev energy defined as Ei =+ I%. In the large gap limit (neglecting the
tunnelling with the normal lead), the eigenstates of the Hamiltonian Hgg are given by the
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singly occupied states of the dot (spin up and down) and the coherent superposition of
the double occupied state (singlet) and the vacuum with energy +F 4.

In the limit of high voltage eV > I's,I'n, |eo|, kT (but still eV <« A), we find that
the electronic states are all occupied in the normal lead fe(w) ~ 1, which means that the
hole state are all empty f;(w) ~ 0. By integrating Eq. (1.57) within this approximation,
one obtains
_ eINTg eINI%
OB 412 T 2+Ty

Lig (1.57)

where the approximated expression is valid for I'y < I's. The result Eq. (1.57) can be
again obtained via a rate equation in which one assumes the dot is coherently pumped in
the singlet state (doubly occupied) - coupled to the vacuum - that eventually decays into
a single occupied state [67].

1.4.5 Charge-vibration interaction and inelastic Andreev reflection

The model Hamiltonian for a superconductor /normal metal quantum dot was introduced
in the previous section. In the strong subgap regime, defined by the condition that the gap
A is the largest energy scale in the problem, the charge transport through the quantum
dot occurs via AR, whose transmission amplitude is independent of A. In this case, the
relevant quantities are the tunnelling rates from the normal lead to the dot I'y and the
parameter I'g.

An electron at energy much lower than the energy gap and tunnelling on the quan-
tum dot from the normal metal can be either inelastically reflected as electron (normal
reflection, NR) or inelastically reflected as hole (Andreev reflection, AR). Thus the elec-
tromechanical damping is associated with these two inelastic processes v = Ynr + YAR-
However, the normal reflection can drive the oscillator only to the thermal equilibrium: in
these processes, the oscillator sees only one fermionic reservoir at a unique temperature 7.
Hence, inelastic normal reflection forms an additional mechanism of normal damping, and
vNR sums up to the intrinsic damping 7. By contrast, the inelastic ARs can drive the
resonator towards a nonequilibrium steady state. From now on, we focus on the inelastic
Andreev reflection processes. sConsidering the high voltage limit (but still eV < A),
the current is given by the impinging electrons that are reflected as holes. Then, the
emission/absorption rates read as

e = s\ /dw Ti(w) folw) [1=fr(w £ wo)] =~ N2 T% /dw Ty (w) (1.58)
where the transmission function for the inelastic Andreev reflection is

2
Ti(w) = %K}e (W) F* (w + swp) — F (w) G5 (w + swo)|?, (1.59)
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and the Green’s functions are defined as

wxeg+iI'y
(wHeg+iIn) (w—eo+il'y) —T%’
Is

Flo) = (WHeo+iTn) (w—eo+ilN) —T%" (161)

Gep(w) = Gy/m =

(1.60)

As shown in the previous section, the quantity ~ I'};|F (w)]2 plays the role of transmission
function in the formula for the elastic current associated with ARs through the dot (for
instance, an incoming electron at energy w). Thus one can regard it as the effective
amplitude for the AR. The other two functions G/, (w) are the electron and hole Green’s
functions of the dot in tunneling contact with the superconductor, and they play the role
of transmission functions of the tunnelling electron (for instance, an incoming electron at
energy w), in the limit case I's < I'y. In other words, the transmission function Eq. (1.59)
consists of a coherent sum of two amplitudes that are associated with the two possible
paths in which the phonon is emitted or absorbed before or after an AR. The integral of
the transmission function in the last term of Eq. (1.58) can be computed analytically and,
at g = —wp/2, it reads as

vy = AT%, (1.62)
- = A {"fjur%v} : (1.63)

with
N A2 Ty (E?4 +e8 oy 5F§V> o

(B3 +T3) (4 +T%) [(wo/2 = Ba +T%| |(wo/2+ Ea)* + T

Remarkably, the rate for phonon emission is strongly suppressed such that the resonator
approaches the ground state with minimum phonon occupation npin = v— /74 o (I'n/wo)?,
see Fig. 1.6(b). At the symmetric point €9 = wp/2, the rate for phonon absorption is
strongly reduced, and we are in the full region of instability v, < 7v_, see Fig. 1.6(b).
The final result found in Egs. (1.62, 1.63) is a consequence of the form of the transmission
function Eq. (1.59). In other words, ground state cooling is achieved due to the destructive
interference of the two amplitudes associated with the charge transmission with phonon
emission.

With regards to the system discussed above, I show the behavior of the inelastic current
in the limit case in which the oscillator is strongly affected by the quantum dots and the
steady-state phonon occupation saturates to n ~ 7i.. In contrast to the system discussed
in Section 1.4.3, the current has a sharp dependence on the dot’s energy levels gq. I give
an example assuming the case I's < |g¢],wp and |eg| &= wp/2. In the cooling regime,
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with eg < 0, we have n, < 1 and y_ < 74, and we can approximate I;, ~ 2e~_. For
€0 & —wp/2, the inelastic current shows a peak

8A2TZIS,

Lin (0 = —wp/2) =1, ~ 2e .
" wi [(&?0 +wo/2)? + F%V]

(1.65)

In the regime €9 > 0 with 74 2 v— we have n, > 1, such that we can approximate
I, ~ 2eyn.. Close to g9 ~ wp/2 (but far away from the instability region), we can
approximate the peak of the inelastic current as

PN KIS <'ﬁc(w0 /2)) ‘

Lin (20 = wo/2) = I} ~ 2e
" wo [(50 —wo/2)* + F?v}

(1.66)

In a such nonequilibrium regime of the oscillator, the peak around gy &~ wp/2 is higher
than the peak at g & —wg/2 since the first peak is enhanced by the phonon occupation
Ne(wo/2) > 1 and by the factor (1/nmin) > 1. s

To summarize, in the case of a quantum dot with charge-vibration interaction inducing
inelastic Andreev reflections, the effect of the coupling with the resonator appears in the
sub-gap transport as sharp, vibrational side-band peaks that are not broadened by the
temperature of the normal leads. Then, the strong asymmetry of these two peaks clearly
indicates the nonequilibrium state of the oscillator.

1.5 Quantum nanomechanical interferometer

In articles 6 and 7 on the publications list, I studied a nanoresonator with a magnetic
electron-vibration coupling operating as a quantum nanomechanical interferometer, in
which interference emerges in the electron transport due to the quantum nature of the
resonator.

As mentioned above, NEMS are interesting for fundamental research because they
can approach the quantum regime at low temperature. A central question is how we can
detect quantum states of these mechanical nanoresonators. To address this issue, I studied
a model of a nanoelectromechanical system that allows the determination of the quantum
nature of the resonator’s state by transport measurements. Specifically, I studied the
magneto-conductance of the suspended CNT-QD oscillating in the presence of a magnetic
field perpendicular to the axis of the nanotube. In the following section, I will explain
how this system can readily be used to probe the quantum fluctuations of a suspended
vibrating nanotube.

1.5.1 Aharonov-Bohm effect and qualitative description

In this section, I provide a qualitative picture of the quantum nano-mechanical interfer-
ometer based on the Aharonov-Bohm effect.
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Figure 1.7: Schematic figures to illustrate the quantum nanomechanical interferometer. Left:
For an electron passing through the two-slit barrier, interference occurs as varying an externally
(perpendicular) applied magnetic field B. Interference arises from the fact that the two possible
paths have a phase difference proportional to the magnetic flux enclosed by the two paths g = BS
with S the surface. This is known as the Aharonov-Bohm effect, and the phase difference is given
by dp = @5 /P, with &5 = h/e denoting the flux quantum. Center: Vibrating nanotube in the
quantum (delocalized) ground state. Starting from the left contact, an electron can arrive at the
opposite side by traveling through different paths that eventually interfere as a result of an applied
magnetic field. These paths are associated with the probability of finding the fundamental mode
of the nanotube at some amplitude, namely the square modulus of the wavefunction |¥(u)|*. The
latter extends over a length scale of ug ~ (1/ mwo)l/ % (zero-point fluctuations). The net effect is
a magneto-conductance G(?) (see text). Right: Example of the magneto-conductance G scaled
with Gouae = 4€2/h at zero temperature and for different values of wy/T" (here, I' = I'; = T,.) as
varying the dot’s level gy (viz. the gate voltage). Note that the total conductance is given by
G = G+ ¢*G?), with ¢ < 1 (see text).

This effect is a variant of the double slit experiment that is used to illustrate the
particle-wave duality in quantum mechanics. For an electron moving in free space through
the two-slit barrier, interference appears on the detecting screen at different positions.
Alternatively, at a fixed position, one again observes interference fringes as varying an
externally applied magnetic field B, perpendicular to the plane of the motion. One can
control the interference of two electron paths only via the applied magnetic field, when an
electron propagates in a multiply connected region.

In nanoscale devices, the electron trajectories can be efficiently confined in space. In
mesoscopic nanoconductors, such as nanorings, the Aharonov-Bohm effect can manifest
as a periodic magnetic flux dependence of the conductance of an electron moving from one
lead to the opposite lead attached to the ring. In this case, the electron, with the same
start and end points, travels along two different routes. Then, the transmission amplitude
is given by the sum of ¢, + t,, with ¢, representing the transmission via the upper
path/branch of the ring and ¢, for the lower path. The overall transmission probability
is obtained as the square of the sum |tup + tw|® = [tupl® + [tiw]” + 2/tupl|tiw| cos ¢, with ¢
denoting the phase difference between the upper and lower branches. Applying a magnetic
flux leads to an additional phase accumulated when the electron propagates through the

5 5 |2
two arms. One can write the overall transmission probability as tupe’%o + tlwe_’Tw with
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dp = ®p/Pg, denoting ®p the magnetic flux threading the loop and &y = h/e the flux
quantum. If the ring thickness is assumed to be very thin compared to the diameter, the
areas enclosed by the outer and inner circumferences are approximatively the same. We
then have a well-defined single flux. The linear conductance of the system is related to the
transmission probability from left to right and, in the ideal symmetric case, one expects

¥ o |2
- for weak transmission - G(B) = G(O))e’?q; + 6_27({;) ; that is the conductance oscillates

with the magnetic field (or the flux) with a single period given by ®g.

We now consider the propagation of the electron through a conducting, free-oscillating
carbon nanotube suspended between two electrical contacts and hosting a quantum dot.
If we view the conducting nanotube as a classical object (almost at rest in the limit of
vanishing temperature), then no AB effect can occur in the system, since we have a single
trajectory. Remarkably, an AB effect arises if the suspended nanowire behaves properly as
a quantum object. In this case, the mechanical ground state is a quantum superposition of
displaced oscillator states. When an electron crosses the device, its wavefunction acquires
an Aharonov-Bohm phase that depends on the position of the displaced oscillator. The
total transmission results from the interference of all electronic trajectories associated with
the quantum delocalization of the suspended wire. Assuming that the linear conductance
is related to a single event of transmission from left to right, in analogy to the formula of
the magneto-conductance of the AB-ring, one would expect

2
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(1.67)
with u the amplitude (displacement) of the antinode of the fundamental mode, ¥(u) the
quantum ground state wavefunction (Gaussian), the constant ¢ = gBLug/®y with g a
geometrical factor related to the waveform of the fundamental mode, and ug the average
quantum fluctuations of the quantum ground state. The factor ¢ is the effective magnetic
flux (in units of the flux quantum) through the area swept out by the nanotube of length
L and the ground-state quantum fluctuations ug. For realistic parameters one estimates
that ¢ < 1.

1.5.2 Resonant transport

The prediction of the magneto-conductance Eq. (1.67) emerging from the quantum me-
chanical motion was first obtaind in the tunnel regime (namely, a single-shot electron
passage) for a suspended CNT-QD by Shekhter et al. [68]. A similar proposal - employ-
ing an Aharonov-Bohm-type setup - was analyzed in [69] to measure the spectrum of the
momentum.

Though simple and transparent from a technical point of view, the tunnel regime for
the Aharonov-Bohm effect induced by the quantum fluctuations is not optimal for the
experimental observation for two reasons: (i) the current is very low, and (ii) electrons
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Figure 1.8: A single-level dot between two leads. Left: In the out-of-resonance regime (the dot’s
level is far away from the energy range set by the two chemical potentials), the electron has a small
probability of tunneling from left to right (via cotunnelling, a virtual empty state). In a scattering
picture, this corresponds to a single passage from left to right. Right: In the resonant transport
regime, the dot’s level is well within the two chemical potentials, and the dot is fully open. In a
scattering picture, the electron has a substantial probability of being reflected. As a net effect,
there is an enhancement of the overall probability of transmission, even if the individual amplitude
of tunneling is small (in analogy to the Fabry-Perot interferometer in optics).

can interfere only once, since a single crossing occurs through the device; as a consequence,
the net effect is weak (¢ < 1). Furthermore, the experimental conditions are stringent:
for a nanotube of length . = 1um, one finds a zero-point motion of tens of pm, which
implies the use of a magnetic field on order of tens of Tesla to achieve variation in the
magneto-conductance of a few percent.

Hence, in article 7, I considered the resonant transport through a single electron state of
the nanotube. At resonance, the electron channel is fully open. One might expect that the
magnetoconductance signal for the suspended nanotube would be greatly enhanced: the
electron bounces many times inside the structure before leaving it, thus allowing multiple
interference, see Fig. 1.8. Therefore, even if the phase acquired at each passage is small,
the accumulated phase can be large.

The quantum nanomechanical interferometer system can be properly described by the
following model Hamiltonian

=3 o= m) ey + 30 3 (L0 d ey 4 ) +egdld + wobh |

v=Il,r k v=Il,r k
(1.68)
with ¢, = ¢ for the left lead and ¢, = —¢. We single out the fundamental bending
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mode with eigenfrequency wg. The parameter ¢ is therefore the electro-vibration cou-
pling constant of the problem. The magnetic field enters the Hamiltonian through the
Aharonov-Bohm phase ¢, with 4 = b + BT, which depends on the quantum displacement
operator of the nanotubes’ flexural mode. By performing a calculation using the Keldysh
nonequilibrium Green’s function technique at lowest order in the electron-phonon coupling
¢, 1 found that the shape of the resonance as a function of the gate voltage is modified
by the magnetic field. As an example of the results, the linear conductance of the system

reads as
dl

G=—| =GO%c)+¢’G (), (1.69)

av |y _o
where the unperturbed conductance G (g) = 4e2IT',. /(11 — £0)? + I'?] for one resonant
level and the function G (g) < 0. Compared to the previous result Eq. (1.67), there is a
parametric enhancement of the effect at the resonant transport regime. The exact (long)
expression for the function G (gg) is reported in my article 7. In the limit of zero tem-

perature T'= 0K and far from the resonance |9 — p| > I, one finds that G (gg) — GEO)

and the formula G(?)(gg) recovers the previous result with G(?)(gg) — GEO), see Eq. (1.67).
An example of the behavior of the function G?(g¢) is shown in Fig. 1.7(right). One can
observe that, beyond the reduction of the conductance, at resonance and for vanishing
temperature, the shape of the conductance resonant peak is also modified, since G2(gq)
has non-monotonic dependence on €y. This prominent feature constitutes a measurable
signature of the quantum delocalization of the vibrating nanotube.

In any realistic device, both the electrostatic and magnetic effects are present. In a
second study, I therefore investigated the interplay and the differences between these two
interactions, the magneto-elastic and the (polaron) electrostatic interaction (my article
6). They both affect the charge transport, but in different ways. These effects may be
relevant for determining the current-voltage characteristics through suspended nanotubes.
Thus, charge transport could be efficiently used to demonstrate the quantum nature of
the mechanical vibrations of these tiny objects.

1.6 Effects of the charge-vibration interaction in the current
noise

At finite temperature, in a nanoscale conductor as a quantum dot, the thermal noise of
the current arises from the fluctuations of the occupation number of energy levels forming
the spectrum of the femionic leads.

Electron transport through a nanosystem also displays a current with a different kind
of noise when a bias voltage is applied. Indeed, the charge current is in principle time-
dependent due to the discreteness of the charge unavoidably appearing in nanoscale con-
ductors, such as in quantum dots. Such current fluctuations associated with the discrete-
ness of the electrical charge are known as “shot noise” [70,71]. For example, in a tunnel
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junction (a thin insulating layer or electric potential between two electrical contacts) elec-
trons are emitted from the source lead and have some probability of being transmitted to
the drain lead via quantum tunnelling through the barrier.

Generally, the time-fluctuations of the charge current manifest in a finite-frequency
current noise S(w). This finite frequency noise must be naturally related to the photons
emission, as suggested by classical electromagnetism (according to which electromagnetic
radiation can indeed be produced by charge fluctuations). More precisely, as a quan-
tum object, the current is associated with a time-dependent operator in the Heisenberg
representation I (t). Hence, the noise spectral density, defined as

S(w) = /cltei“t<f(t)f(())> , (1.70)

acquires a frequency-antisymmetric component because of the noncommuting current op-
erators at different times. As a quantum property, the nonsymmetrized finite frequency
noise S(w) is related to the rate of emission and absorption of photons at the frequency
w [1]. The part of the noise at negative frequencies corresponds to the absorption rate of
photons, whereas at positive frequency, the noise is linked to the rate of emitted photons.
Therefore, this quantity plays a crucial role in molecular nanojunctions exploited as a
source of photons.

In article 1 on my publications list, I investigated the effects of local charge-vibration
interaction in the nonsymmetrized current noise S(w) of the Holstein model, a single
electronic level that is coupled to two metallic leads and to a single vibrational mode - see
Eq. (1.5) and Eq. (1.22). Using the Keldysh Green’s functions technique, we calculated the
nonsymmetrized current noise to the leading order in the charge-vibration interaction A,
including vertex corrections. In this way, the noise is naturally divided into an unperturbed
term (A = 0) and a correction (of order A\?), the latter related to interaction with the
vibration

Sw) = SOw) + N25M (w), (1.71)

with S((w) related to energy exchange (virtual or real emission/absorption) of a single
quantum energy of the vibration. S (w) encodes the information about the possibility of
absorbing or emitting a photon by the whole system formed by the mesoscopic conductor
(the quantum dot) and the local vibration. The noise associated with the vibrational-
charge interaction shows a complex pattern as a function of the frequency and of the
parameters controlling the transmission through the dot, namely I';,I',,g9. Several fea-
tures, ranging from enhancement to suppression of the noise, occur in different regions of
parameters and different frequency scales. A detailed discussion of the general behavior
of SM(w) is provvided in article 1 on the publication list. Here, I note that, depending
on the different types of diagrams whose examples are shown in Fig. (1.9), the correction
to the noise spectrum S (w) can be decomposed as

S (W) = Spp(w) + Spe(w) (1.72)
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Figure 1.9: Examples of diagrams of the current-current correlator, for the times 7 and 7' on
the Keldysh close time contour. Left: An example of the mean-field diagrams. The solid black
line denotes the dot’s Green function. The dotted black line is the lead self energy. The wavy
line represents the phonon propagator. The empty rectangular box can be one of two diagrams
including the phonon propagator: the rainbow diagram or the tadpole diagram. The times 71
and 7o are internal times to be integrated. Right: Examples of the vertex diagrams. The times
T1,Ta, T3 and 74 are internal times to be integrated.

with Sy, f(w) containing the mean field diagram and S,.(w) given by the vertex diagrams,
see Fig. (1.9). In turn, it is also possible to divide the mean field term into an elastic
correction and an inelastic term:

Smf(w) = Sec(w) + Sin(w) . (1.73)

In this section, I report an example of the results: the weak tunneling coupling regime
between the open dot and the leads such that the transport occurs through a sharp reso-
nant level with the dot’s energy level g > 0, in the limit of vanishing temperature 7' = 0K.
For the sake of brevity, I focus the analysis of S™)(w) only on the positive frequency (=
the probability of photon emission by the system) as a function of gg for the vibrational
frequency wy < eV, with eV as the bias voltage.

I recall first the behavior of the noise S(%)(w) in the absence of charge-vibration in-
teraction in the dot. Setting the average chemical potential p = 0, we assume that the
voltage is applied on the left lead p; = eV, whereas u, = g = 0. In this case, electrons
emitting photons can tunnel only from left to right. A priori, one would expect that an
electron moving from the lead left would have as an upper energy w = eV. This is indeed
the case for the tunnelling junction. By contrast, in the sharp resonant transport regime
realized in quantum dots, the electron can mainly tunnel from the left lead to the quan-
tum dot at e, such that the (approximated) maximum energy for emitting a photon is
Winaz = €V — gp, see Fig. 1.10(left). Far away from the chemical potentials of the leads
leV — o), leo| > T, the current is almost constant; similarly, S(®(w) is almost a plateau
for energy far away from the boundaries (0,eV): as expected for Poissonian processes, the
noise is related to the average current. Note that the noise S(®) (w) is strongly reduced but
not vanishing in the range eV — ¢g < w < eV for finite tunneling rates. The asymptotic
step behavior is only approached in the limit I';,, — 0.

I discuss briefly the behavior of S™)(w) which is reported in Fig. 1.10(right) as a
function of the gate voltage £y and the frequency w. The mean field terms Se.(w) and
Sin(w) have a finite contribution in an extended range of the frequency, whereas the vertex
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Figure 1.10: Left: Schematic picture of an electron tunneling from left to right emitting a photon
of frequency w. In quantum dots with discrete levels, resonant transport occurs and the maximum
energy that electrons can emit is, roughly speaking, wi,qz = €V — €9 when only one level is within
the bias voltage window. When a tunnelling electron emits a photon of frequency w and a phonon
of energy wy into the localized vibration, then the maximum energy of the photon emitted is
Wimaz ~ €V — g9 — wp. Center: Behavior of the current noise Sp(w) without charge-vibration
interaction. Parameters: ¢g = 0.1eV, I =T', = 0.0leV and T'= 0 K. Right: The leading order
correction S7(w) of the finite frequency noise of the current (red line) for wy = 0.25€V. This is
composed of three terms. The first two terms are obtained by the mean-field diagrams Sy, ¢(w)
which can be divided into an inelastic term S;,(w) (dashed blue line) and an elastic correction
Sec(w) (dashed green line). The dashed orange line is the contribution from the vertex diagrams

Spe(w).

correction Sy.(w) is strongly localized in correspondence to characteristic lines that are
associated with the resonant transport regime.

The inelastic correction Sj,(w) shows a clear cut-off (smeared on range I') at the
energy weyt ~ eV — g9 — wp, see Fig. 1.10(center). The latter quantity corresponds to the
maximum energy that an electron can emit as a photon if a phonon of energy wg has also
been emitted into the vibration. The three terms sum up in the total function M (w) (red
line) in Fig. 1.10(right). Roughly speaking, the three contributions compensate for one
another: the interesting frequency range, where S (1)(w) has a relevant correction, appears
after the threshold w = eV —g¢. In this frequency range, we have S (w) & Se.(w), which
turns out to be a negative correction in the range eV —wy — g < w < eV — &g.

In general, we found that the features of the current noise associated with the charge-
vibration interaction are strongly governed by all system parameters. A thorough under-
standing of the lowest-order feature is in any case worthwhile, given the complexity of the
physical processes involved in nanocontacts containing a single molecule. The analytic
results in the different regimes can serve as a reference for comparison with numerical
calculations of realistic molecular nanojunction devices. In particular, these devices are
considered to be promising candidates for single-photon sources at the nanoscale [72]. In
this context, the current noise is then the central quantity, since it is directly related to
the emitted photon spectrum.



42

1 Electron-vibration interaction in quantum dots




Chapter 2

Quantum dissipation in Josephson
junction systems

2.1 Context and scientific background

The Josephson junction is one of the most widely used superconducting devices in low-
temperature condensed-matter experiments. A single Josephson junction serves as a build-
ing block for various sensors and electronic components [73, 74].

On a more fundamental level, the electromagnetic macroscopic degrees of freedom
(charge, current, flux) exhibit quantum behavior at very low temperatures (50 mK ~ GHz)
in superconducting circuits based on Josephson junctions [75,76]. Hence, they play an
important role in quantum computation and information, as they are the fundamental
component of the superconducting quantum bits (qubits) [77]. The reason is that super-
conductivity provides a typical example of how a complex physical system can behave
in an extremely simple collective manner that conceals the microscopic complexity. In
a superconductor, the conducting electrons are coupled together in Cooper pairs, and
this allows them to form a large-scale condensate, which is a single macroscopic quantum
state [78]. Because of this collective behavior, it turns out that it is possible to build
superconducting circuits that behave very simply, even at a quantum-mechanical level,
despite the fact that they are made up of billions of atoms. A first and striking example
is the LC' oscillator, which is formed by an inductance L and capacitance C' in parallel.
In such systems, cooled down to very low temperatures, the collective degree of freedom
(viz. the charge fluctuations) does not interact with any other degrees of freedom in the
circuit (such as atomic vibrations, etc) - or, at least, it is practically uncoupled - and the
circuit can behave as a quantum mechanical oscillator.

However this degree of freedom can often interact strongly with the environment and,
as a consequence, its dynamics is affected by dissipation, noise and decoherence. Without
any designed adjustment, these systems can operate in a regime in which the quantum
effects are fragile. This is not generally a disadvantage. Indeed, Josephson junctions -
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with small capacitance - have become paradigmatic systems for studying the decoherence
and dissipation of a quantum system coupled to the external world and for analyzing the
transition from quantum to classical states [79-83]. Specifically, the quantum dynamics
of a single Josephson junction can be described by an effective quantum particle coupled
to a bath (i.e. quantum Brownian motion with the Caldeira-Leggett model) [84-88].

2.2 Josephson junction circuits: an experimental overview

Josephson junctions are a versatile circuit element with widespread use in quantum meso-
scopic systems, thanks to their intrinsic low dissipation and amenable nonlinearity. This
nonlinearity makes it an optimal element in the design of coherent quantum structures.
These junctions are the building blocks of superconducting qubits [77,89], hybrid systems
(opto- and mechanical- nanodevices) [90] and Josephson photonic circuits, namely Joseph-
son junctions coupled to superconducting microwave cavities [91-99].

The standard example is the circuit QED, which has opened up many new possibili-
ties for the study of the strong interaction between light and matter [100-102]. In these
systems, on-chip microwaves cavities consisting of superconducting transmission line res-
onators are coupled to superconducting Josephson qubits, the latter playing the role of
artificial atoms. Owing to the significant tunability of the parameters and accurate con-
trol techniques, such devices have paved the way towards lasing [103], the synthesis of
arbitrary quantum states of the cavity [104] and the generation of single-photon sources
in the microwave domain [105].

Another important aspect is the possibility to wire up different junctions to form more
complex quantum circuits, such as 1D chains formed by many junctions. One-dimensional
Josephson junction chains are a paradigmatic model for studying the quantum correlations
and quantum phase transitions in open, dissipative many-body systems [106]. Josephson
junction chains are formed by linear arrays of N superconducting islands, separated by
weak Josephson tunnel junctions.

In general, Josephson junction chains exhibit rich and interesting many-body physical
properties, that can be influenced relatively accurately by circuit design and fabrication
parameters. They have been proposed for the realization of a qubit topologically protected
against decoherence [107,108], for the realization of a tunable parametric amplifier in nar-
row frequency ranges [109] and for the realization of a fundamental current standard in
quantum metrology [110]. Significant successes have also been achieved in the fabrication
of low-loss high-impedance environments in the form of superinductors [111-113].

Josephson junction chains have constituted the platform of choice for the investigation
of quantum fluctuations of the phase induced by charge interactions, i.e. quantum phase
slips [114-119], as well as quantum fluctuations of the charge induced by Josephson tun-
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neling [120-123]. In the phase regime, where the Josephson energy E; = hl./(2¢), with I,
denoting the junction critical current, dominates over the charging energy of the junction
Ec = €%/(2Cy), with C} as the junction capacitance, Josephson junction chains have been
investigated as custom-designed electromagnetic environments, metamaterials implemen-
tations [124-127], resonators with tunable non-linearity [128] and in the design of resonant
modes in an electromagnetic environment [129].

2.3 Overview of the theoretical technique

The study of quantum dissipation and decoherence dynamics in atomic and mesoscopic
systems is driven by the perspective of engineering the reservoirs in order to preserve
quantum coherence [130]. This is a crucial point towards the exploitable manipulation
and control of individual quantum systems [131-133] and for the realization of future
quantum applications. Understanding the influence of the environment on the dynamics
of physical systems is hence of paramount importance in the development of quantum-
based technologies. However, this issue is also interesting for fundamental research oriented
towards fundamental tests of quantum theory [83].

A variety of approaches aiming at a quantum mechanical description of dissipation
have been developed. Omne of the most common approaches is based on the quantum
mechanical Langevin equations and the master equations for the density matrix [130,134,
135]. However, the simplicity of the abovementioned method is balanced out by the fact
that concrete results can only be obtained, in general, in a perturbative treatment of the
coupling of the system to the environmental bath; the methods are easily implemented
in the Markovian limit when the relaxation time of the system is large compared to the
(short) time scale of the decay of the correlations in the bath. Alternatively, the functional
integral approach (or path integral) of dissipative quantum systems allows for the study
of the dynamics at arbitrary damping and arbitrary time scales of the dynamics of the
bath. This method was pioneered by Feynman and Vernon [136].

2.3.1 The Caldeira-Leggett model

In this section, I outline the Caldeira-Leggett model [84]. To facilitate concrete results

and to simplify the notation, I discuss the case of a quantum particle with two conjugates

operators, position and momentum [§,p] = ih. The environment consists of a set of

independent harmonic oscillators. The Caldeira-Leggett model for the quantum Brownian
%

motion has the form
And 2
H="4V(g n n 2.1
V@Y g gt (G- ety ) ] 2.)

with the interaction with the environment described by the ensemble of independent har-
monic oscillators with the conjugate operators [Qy, Py] = ihd,,/. Using the equations
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of motion in the Heisenberg picture O(t) = et/"Qe= /M,

quantum Langevin equation:
dp(t ] ~ +oo dq(t
¢

0

one obtains a generalized

(2.2)

in which we have introduced %y as the initial time for the interaction and the response

function as )

n(t) = 9T(nt) Z A cos(wnt) . (2.3)

2
n myWy

For times ¢ > to, the force operator F (t) describes the quantum noise. Assuming the
continuum limit of the harmonic oscillators, one recovers dissipation in the system. To
give an example, the response function describing the ohmic dissipation (with a Drude
large frequency cutoff w,) is given by

n(t) =0(t) v wee™",  n(w) =~/(1+iw/w), (2.4)

in which v is the damping coefficient (with dimensions of a frequency). The response
function n(t) satisfies causality and the Kramers-Kronig relations. Note that the function
n(t) — 0 for large times wt > 1. Assuming as initial state the total density matrix factor-
ized as py, = popPrath, With po the initial state of the particle and ppe¢ the thermal density
matrices for the bath, ppen o exp(=8)_, wn&ILdn), [8 = h/(kpT)] then the correlation

functions of the noise operators read in the Fourier space (F(w) = [dt exp(—iwt)F(t)) as

(F(w)F (W) = (2m)%0(w + ') S(w), (2.5)

where we have introduced the noise spectral function

)\2
S(w)zz huwy, <2man> [(np(wn) +1)0(w + wy) + np(wn)d(w —wy)] - (2.6)

The noise spectral function can be related to the response function of the bath:

2
Rebie)) = 57, 8w ) + e+ ). (2.7)
In summary, the quantum Langevin equation describing the dissipative dynamics of the
single particle can be obtained by simply closing the equations of motion for the case of
linear coupling to the bath. The same approach can be extended in the case of quantum
circuits by replacing the position operators with the phases, the momentum with the
charge, and so on. An example of this approach in complex quantum circuits is described in
my work 9 on the publication list, which sought to implement a tunable ohmic environment
at finite frequency.
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2.3.2 Path integral in quantum statistical mechanics

In this section, I illustrate the basis of the path integral method in the imaginary time in
a heuristic, non-rigorous way. I refer to the books of Feynman [136] and Kleinert [137] for
a complete introduction.

As we have seen in the previous section, the standard formulation of quantum dissipa-
tion theory is based on the use of a Hamiltonian composed of system-reservoir, namely
a total Hamiltonian of the form H = H s+ lﬁlbath + flmt with H s for the system of inter-
est (viz. the quantum particle), Hyup, for the bath and H;,y for the interaction. If one
combines this starting point with the Caldeira-Leggett model, in which we have a linear
interaction with the bosonic operators of the bath (an ensemble of harmonic oscillators),
then the path integral turns out to be particularly convenient, since one can integrate out
the irrelevant degrees of freedom and construct an object (i.e. the partition function) of
the system of interest.

We again start by considering a particle with position ¢§ and momentum p moving in
potential V(§) at thermal equilibrium. The density matrix is given by the Gibbs-Boltzman
distribution p o« exp(—BH) with the Hamiltonian H = K + V, with K = p2/(2m),
V= V(G). The latter quantity has a form similar to that of the time evolution operator
replaced with an imaginary time —i3. One can factorize the exponential operator in NV
time slices as exp(—SH) = Hg;ol exp(—ATH) with A7 = 8/N. Inserting the identity
representation 1 = [dq |q) (q| between the product of the exponential operators, one can
write the thermodynamical partition function as

N-1
_ 197 _ 1 ]
2= [ago (ool #7 Jaw) = T fdan (gnial 87 a1)
n=0

Nt dgndp LA Fra T
= T1 /[ Gl a1 g, (2.8)
n=0

with the periodic boundary condition gy = ¢y and using the form for the the identity

representation 1 = [dp|p) (p| /(2rh). The equation 2.8 s exact, but there is still the

problem of calculating the quantity inside the integral (p,| e~ ATH/h |z, ), as in the starting

equation. One cannot generally calculate this matrix element exactly. The problem here is
that the Hamiltonian is formed by the kinetic energy operator and the potential operator
which do not commute. The important difference is that the evolution time At (or the
effective temperature) is a much smaller quantity than the time . Using the Baker-
Campbell-Hausdorff formula for two operators, one can show that (Zassenhaus formula)

SN N . N2 n PN S ot
ARV o K - par APV G RV VRV o)
with [...,...] for the commutator between two operators. The equation 2.9 suggests

that, in the lowest order of A7, one can neglect high-order terms and simply treat the
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two operators as commuting. Strincly speaking, A7 is not a dimensionless constant, and
one should better estimate the expansion. Furthermore, keeping only the first two terms
that are linear in the exponent A7 is not strictly speaking correct, since they also contain
higher-order terms. As observed by Feynman, the crucial point here is in the limit N — oo,
which implies that the time slice becomes infinitesimal A7 — 0, and this expansion has
to meaningful in some sense [136,138]. A rigorous demonstration was later provided by
Trotter, who showed that for two (bounded) operators, the following identity holds [139]

PN S o\ IV
6_%[K+V] = ]\}u’n (e_ATKe_ATV) . (210)
—00

It is sufficient to know that, in quantum physics, the Trotter formula holds for the most
physically interesting problems of quantum dissipative systems [137]. Formally using the
Trotter formula, one can write

dgnd AT i ATy
Z= lim H// D s lon) {onl e T Kem 7 Jg)

N—o00
p2
— lim H dqndpn hpn dn+1— (In) TT [ﬁJrV(qn)}
N N—o0 2mh

_Ar |1, (9nt174n 2 "
e Iy A

We have used the fact that the states |p,) and |q,,) are eigenstates of K and V, respectively.
In the last equation, we have integrated out the momentum, and one can recognize that the
function in the exponent is the time-discretized version of the action S with the associated
Lagrangian. This defines the last expression in Eq. (2.11).

Eq. (2.11) can be generalized to the case of many particles - for instance, one particle
interacting with a set of harmonic oscillators, namely the Caldeira-Leggett model - see
Eq. (2.1). Concretely, the operational task in the path integral formulation is to solve a
multidimensional integral and afterwards to calculate the product in the limit N — oo.

Beyond the direct calculation of the time-discretization formula, another common ap-
proach involves transformation in the frequency space. This requires an unitary transfor-
mation (unitary Jacobian) on the discrete variables forming the vector ¢ = (qo, ¢1,.-.,qn-1).
Setting N = N/2—1 when N is even and N = (N —1)/2 when N is odd, a possible unitary
transformation reads as

—1)2$N N-1 —zwn
T ( . 21l e
"N v SEEDERTICOENE

=
1f N even (
(2.12)
with the complex variable z, = (zff¢+izl™)/V/2, by setting z*¢ = 28¢ , and 2l™ = —z17* .

Note that the dimension of the vector (independent variables) does not change, N — N.
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Using this transformation for the case of the partition function of a free particle in a box
of size L, one obtains:

N N-1
z — 1 Rej .Im 3 21
0= N (V 27T77,AT) H / dmo/ H drgdry de i (2.13)

(ﬁ# )

with

N
—i 2 _ LM Re\2 Imy2
So= 5o [4h + ;_1: 2(1 cos<N >> [(xf )+ (f )} . (2.14)

(£ N)

Performing the Gaussian integral, one achieves

N N
m — 2mhAT 1 /2whAT 1 L
20= ( 27ThAT> ( NL) < m ) 5 E 2[1—005(27T£)] :E
4

I—I

(2.15)
with Ap = y/m/(27hB) denoting the thermal De Broglie wavelength and using the result

N 1
[ 210\ ] E o/
{2 _1—COS (N)_} Izlx 6_1_11 {2 [l—cos <N>}} =N for N even
N—1

(2.16)
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Combining the time slice A7 with the trigonometric term, one can define the Matsubara

27l 2
W= 1 2(;2( 7)) (2;5> , for N> 1. (2.18)
Remarkably, in the limit N — oo, the two products of the two sequences with the term
~ [1 = cos(2n¢/N)] and with the term ~ (27¢/N)? converge to the same result.

Moving from the free particle case, one can repeat similar calculations with a given
potential. In this case, it is convenient to scale the partition function of the system with Z
and to express the latter quantity in terms of a product of the terms with the Matsubara
frequencies. By means of rescaling the variables in the frequency domain, one can show
that the following formula holds:

dZg ala:z edxz —LSla
Z =2 /\/W/H 5 nSHad] (2.19)
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where the action is expressed in terms of the complex variables Z, = i’fe + ia?gm repre-
senting the Fourier transform &, = Oﬂ %x(ﬂeiw”.

Eq. (2.19) is the starting point of the calculations in the Caldeira-Leggett model to
integrate out the bath of harmonic oscillators linearly coupled to the particle. The repre-
sentation of the path integral in terms of the frequency domain is useful in the perturba-
tive method to construct various diagrams. It is also useful for the variational (harmonic)
approximations, in which one replaces the nonlinear potential with a simple quadratic
potential whose elastic constant is treated as a variational parameter.

2.4 Josephson effect: a simple picture

In this section, I briefly review the basics of the superconductivity theory, a simple de-
scription of the Josephson effect and, finally, the Josephson junctions.

Superconductivity allows a macroscopic quantum coherent flow of electrons at suffi-
ciently low temperature. The key property of a superconductor is the existence of the
Cooper pair condensate. These pairs are correlated, bound states of two conduction elec-
trons with opposite spins and opposite momenta, that form due to the weak attraction
between electrons resulting from the interaction with lattice oscillations (phonons).

In a superconductor, the so-called anomalous average is not zero (¢ (7)14(7)) # 0
reflecting the fact that the Cooper pairs form a bosonic condensate with a macroscopic
population (number of Cooper pairs) in a given state. The ground state of a supercon-
ductor is the BCS state (Bardeen-Cooper-Schrieffer), given by

wss) = [T (us +oeeelyely ) 10) (2.20)
k

with wug, v real positive number satisfying the relation uz + v,% = 1. The BCS state
is a coherent superposition of states with even numbers of electronss. The quantity v
describes the wavefunction of the single Cooper pair, whereas the occupation of the singlet
state of opposite momenta is taken into account on average (mean-field approximation)
in the BCS state. The key important quantity is the overall phase ¢, which plays the role
of the phase of the macroscopic wavefunction of the Cooper pairs forming the condensate.
More specifically, the (complex) order parameter in a superconductor plays the role of a
macroscopic wavefunction of a Cooper pair (1| (7)1 (7)) o< Y(7) = y/ns/2exp(ie) with
ns the electron density of the condensate and ¢ the phase of the BCS wavefunction.
Remarkably, many of the superconducting properties can be simply derived only by
using the wavefunction ¥(7), as in basic quantum mechanics. For instance, assuming
uniform density ns, by applying the formula for the current probability associated to W(7)
one can determine that the superfluid velocity is related to the phase gradient vs o Vi
(with ng = constant). At a more fundamental level, one can intuitively see why phase
fluctuations dp(7) play an important role, in contrast to the density modulation dng(7)
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in the low-temperature system (I' < T¢). The density fluctuations are associated with a
variation in the number of Cooper pairs forming the condensate and a finite, large energy
(the gap) is required to break them. By contrast, the phase fluctuations are associated to
the small change of velocity (kinetic energy) of the Cooper pairs.

The phase difference is also the crucial quantity ruling the Josephson effect: the flow of
a superconducting current between two superconducting leads interrupted by, for example,
an insulating thin tunneling barrier. Due to quantum tunnelling, a Cooper pair can
penetrate through the barrier, and as a result, the wavefunctions of the two condensates
- at the left and the right of the barrier 7 hybridize, leading to the Josephson effect.
Following the approach introduced by Feynman, one can describe the system formed by
two leads as a two-component wavefunction of different phases ¢, and ¢ g that is governed
by an effective tunneling Hamiltonian. Such a phenomenological model leads directly to
the Josephson current (dc Josephson effect),

I; = Igsin(pL — ¢R) , (2.21)

with I; the non-dissipative current flowing across the barrier. Here, I here is the maximal
current sustained by the junction which depends on the microscopic model and details.
The result Eq. (2.21) is valid in the lower order in the tunneling, i.e. low transparency. By
maintaining a difference between the two chemical potentials of the two superconducting
leads puy, — ur = 2eV, one also obtains the ac-Josephson effect that rules the dynamics of
the phase difference:

_ hd(pr —¢r)

Vv _ 2.22
2e dt ( )

The underlying physics of the Josephson effect is based on the general behavior of a macro-
scopic quantum condensate whose mass flow is hindered by a constriction (the junction).
Such physics is universal: it does not occur only in superconducting circuits with weak
links but can also manifest in other systems, such as helium superfluids flowing through
nanoscale apertures [140,141] and Bose-Einstein condensates in optical traps [142].

I conclude this section by outlining the standard quantum model to describe Josephson
junctions. One can start from the Anderson relation regarding the phase of the BCS
wavefunction and the number of particles. From Eq. (2.20), the state with a fixed number
of N Cooper pairs can be extracted

1 2 i
Ny = = /0 dp N |g) (2.23)

T o
in which I have simplified the notation ¢pcs = ¢ in comparison to Eq. (2.20). In other
words, the state with fixed number of Cooper pairs has completely indefinite phase. The
two different superconducting quantum states in Eq. (2.20) and Eq. (2.23) are similar to

what we find in a quantum rotor, where the phase of the particle position is described by
the angle operator ¢ and, in the case of a free rotor, the eigenstates of the Hamiltonian
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are the state of given angular momentum N (integer number), since the variable phase is
compact (¢ + 27 describes the same state as ). Then, according to quantum mechanics,
one can define the phase and number operator that satisfies the relation

[e_w, N} —e % with e¥PNe ™ =N-1, (2.24)

with the operator e~*? acting as >, |N — 1) (N|. This quantum phase-number uncer-
tainty relation is at the basis of the quantum behavior of the Josephson junction of small
capacitance. In an isolated (ideal) Josephson junction, one sets the phase difference op-
erator AQ = ¢;, — ¢ as well as the number difference operator AN = N; — Ng. In
this way, one can heuristically obtain the standard model Hamiltonian that describes the
Josephson tunnelling junction

(20*(aR)"
el

2

Z|AN ) (AN| + c.c. —Q——EJCOS(AQ) . (2.25)
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where C' is the junction capacitance (playing the role of the mass of the rotor) and E;
the Josephson energy (playing the role of the potential energy of the pendulum). The
model Eq. (2.25) is justified rigorously by a theoretical calculation based on a microscopic
tunnelling Hamiltonian between two BCS superconductors including the charge interaction
at the junction [82]. The important degree of freedom in a Josephson junction is thus the
difference between the phases of the two superconducting electrodes.

If the junction has a sufficiently large (mass) capacitance, the dynamics is determined
by a classical equation of motion that describes the balance of currents. However, in a
small-capacitance junction, a quantum mechanical description is needed [82]. The quan-
tum regime requires low temperature (viz. small capacitance), such that the charging
energy ~ €2/C > kgT [78,82]. Simply put, one recovers a classical description of the
pendulum - affected by dissipation and noise - if the temperature is larger than the typical
variation in the kinetic energy [88].

The Hamiltonian Eq. (2.25) serves as the starting point to address the problem of
quantum Brownian motion when one takes into account that the Josephson junction is
affected by dissipative interaction with an external electromagnetic environment. In many
theoretical approaches, on the basis that the temperature is much smaller than the su-
perconducting energy gap and the system is at thermal equilibrium, the population of
quasi-particles is assumed to be exponentially small, and one focuses on the dissipation
related to the external resistors wired to the junction in the circuit. Although it is now
known that a nonequilibirum residual quasi-particle distribution can be present in real
devices, with drastic effects on the performance of the superconducting qubits [143-146],
it turns out that the model of large gap (or no quasi-particle dissipation) as given by
Eq. (2.25) is expected to be appropriate for studying the quantum dissipative dynamics
(quantum Brownian motion) as long as the external dissipation dominates over the effects
of the quasi-particles - for instance, if an external resistance shunted in parallel to the
Josephson junction is smaller than the resistance associated with the quasi-particles.
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2.5 Quantum phase slips

One-dimensional Josephson junction chains are an experimental realization of the 1D
quantum phase model that represents a paradigmatic statistical model for illustrating
quantum phase transitions [147] and the mapping from a 1D quantum system to a 1D+1
classical one [148]. The theory (for a chain of infinite length, viz. the thermodynamic
limit) predicts a quantum phase transition [149]. This corresponds to a superconductor-
insulator transition and occurs due to the competition of the Josephson coupling, which
enhances global phase coherence, and the electrostatic interaction, which inhibits Cooper
pair tunnelling and promotes the charge localization.

In article 13 on the publication list, I studied the effects of nonlinear quantum phase fluc-
tuations, also known as quantum phase slips, in a closed Josephson junction chain (ring)
of finite length (NN junctions) and threaded by a magnetic flux ®p, see Fig. 2.1(a). Using
the path integral technique, in the superconducting phase in which the Josephson energy
is larger than the charging energy, I calculated the quantum phase slip amplitude. As
discussed in detail below, the presence of quantum phase slips changes the ground state
energy of the ring, which is directly related to the flux-dependent supercurrent circulating
through it I(®p), see Fig. 2.1(c,d). The main result is that these quantum phase fluctu-
ations in finite systems lead to a remarkable reduction in the maximal supercurrent, see
Fig. 2.1(d). I found a non-monotonic behavior of I,,,4, increasing the length N. These
theoretical results have foreseeable and realistic applications in experimental devices stud-
ied in the laboratory that are formed by a finite number N of junctions.

The physics of quantum phase slips is also important in bosonic cold atoms trapped in
ring-shaped optical lattice potentials [150-155].

A fundamental contribution on this topic was the work by Matveev et al. [115], who
studied quantum phase-slip (QPS) processes in a superconducting nanoring containing a
large but finite number of Josephson junctions N > 1. In my work 13, I went beyond
this study to take into account the collective nature of a quantum phase slip, as explained
in detail in the next section. In particular, I show relevant finite size effects in a chain of
intermediate size, and I also consider the decisive role of the ground capacitance Cy that
was neglected in [115].

Quite simply, a quantum phase slip can be described as a winding by almost 27 (tun-
nelling) of the phase difference of a single junction, accompanied by a small harmonic
displacement of the phase difference in the other N — 1 junctions, see Fig. 2.1(b). This
is a quantum tunnelling between two distinct classical states of the ring with different
supercurrents, at given magnetic flux, with which a quantum amplitude is associated.
Tunnelling here is possible due to the finite junction mutual capacitance C, which plays
the role of inertia. The dynamics N — 1 junctions are described by a set of harmonic
modes (forming the continuum spectrum of the gapless Mooij-Schén modes at finite Cy
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Figure 2.1: (a) Ring formed by N superconducting islands separated by N Josephson junctions
and threaded by a magnetic flux ®p. E; is the Josephson energy, C' the junction capacitance and
Cy the ground capacitance. ¢,, and @,, are, respectively, the superconducting phase and the charge
of the n— island. (b) The arrows show the phase differences Ap,, = ¢n4+1 — @n. In the absence
of quantum phase fluctuations, the ground state has a uniform distribution of A<p£{”) = 6,, that
characterizes the classical state m of the ring. After a quantum phase slips occurs, with the center
in one (red) junction, the distribution changes and the ring is in a different classical state (for
instance, m+1). (c) Qualitative behavior of the ground state energy as a function of the magnetic
flux &5 without quantum phase slips (black line) and including quantum phase slips (red line).
The parameter vy, = Nv is the total phase slip amplitude (see text). (d) Qualitative behavior
of the supercurrent of the ground state as a function of @5 scaled with Iy the maximum classical
supercurrent in a ring of size N without quantum phase slips. In the presence of quantum phase
slips, the maximum supercurrent is reduced (red dot).

for N — o00). At finite Cp, this environment contribution leads to a logarithmic divergence
in the formula of the phase slip amplitude increasing the chain length. In my article 13,
I showed that this logarithmic divergence appears in the semiclassical action of the path
integral that controls the quantum phase slip amplitude. Non-logarithmic contributions
to the semiclassical action have also been calculated recently [156].

The theoretical model is a homogeneous ring formed by N superconducting islands, sep-
arated by N Josephson tunnel junctions, see Fig. 2.1(a). The electrostatic interaction
between the metallic islands is modeled by a neighboring capacitance C' and by a local
ground capacitance Cp, with Ec = €2/2C and Ey = €2/2C the corresponding charging
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energies. The quantum phase model is [106]

Z QnCiQum — E; Z cos (Acpn 2;\;2?) : (2.26)

an

For each island, the BCS condensate phase ¢,, and the excess charge Qn on the nth island
represent the two conjugate variables of the system [¢,,, Qn] = 2¢i. C is the capacitance
matrix with matrix elements Cmm = (Co+2C)0nm — C(dp+1,m + On—1,m), with the index
n = —1 corresponding to N — 1 and n = 0 corresponding to N. The relative phase-
difference across the nth junction is A@, = ¢n+1 — ¢ for which we have the constraint
27]:[;01 Ap, = 2mm, where m is an integer [78]. The ground state energy of the ring is
directly related to the supercurrent circulating within it

OEgs (Pp)

Igs(Pp) = Py

(2.27)
Egs and Igg depend periodically on the external magnetic flux ®p.

In the classical limit, achieved by neglecting the electrostatic interaction in Eq. (2.26), a
given configuration of the phases corresponds to a real physical state only if the constraint
is satisfied. The minima of the Josephson potential energy in Eq. (2.26), satisfying the
constraint, are the classical states of the ring and correspond to uniform distributions of
the phase difference A(p;m) = 0., = 2rm/N with integer m. They have energy E,, and
supercurrent I,,. For fixed flux, the classical ground state has the lowest classical energy
Eé‘s) = min,, £, with supercurrent Iéé) = aE / 0®p. Qualitative behaviors are shown
as solid black lines in Fig. 2.1(c,d).

For finite C, Yy, the electrostatic interaction acts as an inertial term on the phases
such that quantum fluctuations occur. A priori, a quantum phase slip is a collective
process corresponding to the quantum tunneling in a multidimensional space of dimension
N between two distinct minima of the Josephson potential energy, for instance, between
the classical states m and m + 1. However, due to the constraint relating the phases and
the fact that such quantum fluctuations are rare (as I explain below), the multidimensional
tunneling is reduced to one-dimensional tunneling in which we have only a few relevant
trajectories connecting the two states. A possible trajectory is, for instance, when the
local phase difference Ay, at the junction ny (the center of the phase slip) winds by an
amount of 27(1 4+ 1/N) and the whole set of phase differences {Apy} (n # ng) shifts in
order to preserve the constraint, see Fig. 2.1(b). Such a trajectory is characterized by a
quantum amplitude v.

In the limit E; > E¢, Fy, a simple analysis is possible, since the quantum amplitude
for this tunnelling event is exponentially small in the ratio E;/E¢ (or E;/Ey for not overly
long chains, see below), and v can be computed using the path integral method. However,
the total amplitude connecting the classical states is related to the sum of the amplitudes
associated with the different trajectories. This total amplitude is simply v, = Nv, since
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the system is homogenous and the single trajectory (phase slip event) can occur in any of
the junctions, viz. the amplitudes of the single trajectory add up coherently.

The ground state can be obtained by solving the low-energy tight-binding Hamiltonian
[115]

Epcm — Nv(ems1 + ¢m-1) = Egs cm - (2.28)

As a consequence, the quantum ground state corresponds to a superposition of different
classical states, and this leads to a reduction in the supercurrent. This effect is always
dominant close to half flux quantum, where degeneracy of the classical ground states
occurs. In summary, by knowledge of v, we can compute the magnetic flux dependence of
the supercurrent of the ground state of the ring in the presence of quantum phase slips.

2.5.1 Single phase slip amplitude

The single quantum phase slip amplitude v can be computed using the path integral
method (more technically, the semiclassical instanton method) in the limit where the
Josephson coupling energy F; dominates over the charging energies, such that the am-
plitude for QPS to occur is exponentially small. In the phase slip trajectory, the phase
differences of the other junctions will vary only slightly ~ 1/N. Hence, we can apply
the harmonic approximation to describe the dynamics in the junctions n # ng. In this
way, the Euclidean action used in the path integral is formed by three terms: the first
one is related to the junction ng (the center of the phase slip) with a nonlinear potential,
the second one describes the harmonic modes in the rest of the ring n # ng, and the
third one is the linear coupling between ng and n # ng. This is similar to the action of
the Caldeira-Leggett model, in which the electromagnetic environment is formed by a set
of independent harmonic oscillators acting as an external bath on the winding junction.
Then, in the path integral formalism, the harmonic variables can be integrated out and
the partition function reads as

2~ 207 fDlp(r] S, (2.20

where Z}(Lg,_m is a partition function of N —2 harmonic oscillators, and the effective action

for the winding phase difference 6 is given by

Bl R2 [ NC  Co\s Ej(6m—0)? 1 (8 (8, , )
Seff_/odT[ez@(Af_l+2>9 ~Eeos(o)+ 4 =R fir ar G = o0,
(2.30)

with 6,, = 27®p/Po+m and the non-local in time kernel G(7), which can be expressed in
terms of the Fourier series G(7) = >_,(1/8)Grexp(iwer) with wy = 27¢//3 the Matsubara
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frequencies and Gy given by

2 kmax 1 4 cos (%)
] ] (2.31)

2 )
T e () ()

with A = m,/C/Cy and kpmaz = (N — 3)/2 for odd N or kpez = (N — 2)/2 for even N.
Using a transformation, one can show that G(w) = w?G’(w), whichs means that the non-

local term can be written as ~ G'(1 — 7/)0(7)8(7’). In other words, this term is invariant
under a shift of the winding phase 8 — 6 4+ const..

2.5.2 Scaling of the supercurrent

For vanishing ground capacitance Cj, the kernel vanishes (Gy = 0) in Eq. (2.30), and the
effective Lagrangian Eq. (2.30) reduces to the first term: a phase tunnelling in a potential
with a renormalized capacitance (mass). In the limit N — oo finite size corrections vanish,
and we recover the simple action for the single Josephson junction of capacitance C.
From Eq. (2.30), we see that a finite value for N increases the inertial mass C*/C of
the winding phase, leading to a reduction in the charging energy
E, 1

=1- . 2.32
e N (2.32)

For the potential in the first term of Eq. (2.30) V(0) = —E; cos 0 + Ej (6, — 0)?/[2(N —
1)], one can show that it is a symmetric double well at half flux quantum (close to the
degeneracy point of two classical states). Even if V() is not purely sinusoidal, it is
very well approximated by a renormalized cosine potential with a renormalized Josephson
energy (energy barrier separating the two wells):

E; 1 s 72 s
— =—|1 (—)——N—l ~1—-—. 2.33
E; 2[ Feos )~ ozl )} AN (2.33)
Another effect that enhances the tunnelling amplitude is the reduction in the distance
between the two minima of the effective potential V' (0), s
AG* 1
=1-—. 2.34
2 N ( )
The three different effects given by Egs. (2.32), (2.33) and (2.34) combine in the final
expression for the renormalized effective amplitude of the quantum tunnelling between
the two degenerate minima:

By

(8E?}E0) ie e

§1-

VN = Ag*ﬁ(

* E*
2 4 1 (482 ), /8L Nos
8EEE) e (57) e 1y =
T

(2.35)
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The amplitude Eq. (2.35) decreases with the length N, indicating that the latter effects
(reduced barrier height and distance between minima) dominate the capacitance renor-
malization. Because the ground state energy is ruled by the product vy N, the maximum
supercurrent has a non-monotonic dependence on the total length N.

Increasing the length (more precisely for N2v ~ 272E;), the maximum supercurrent

shifts from the half flux quantum (the point of classical degeneracy). The current-phase
relation is strongly modified passing from a sawtooth to a sinusoidal function [115], see
Fig. 2.1(d). The potential V' (0) is asymmetric, and one must calculate the renormalized
amplitude v,,.
However, by increasing the length N of the system, the finite size effects discussed above at
half quantum flux vanish as 1/N. In my work I showed that the finite-size corrections due
to the asymmetry of the barrier vanish more rapidly, specifically as 1/N?2. Consequently,
one can neglect the difference between r,s and vy. To demonstrate the latter result, I
used the fact that, for an asymmetric potential, the tunnelling energy splitting between
the two levels can be expressed as a geometrical average

Vgs == VLVR , (236)

where vy, and vg represent the tunnelling energy splitting for two symmetric double-well
potentials s obtained by mirroring the asymmetric double-well potential of interest. De-
spite the fact that quantum tunnelling has been studied since the advent of quantum
mechanics, I could not find in the literature (or textbooks) a simple formula for tunneling
in generic asymmetric double-well potentials (without dissipation). I therefore derived the
analytical formula Eq. (2.36) based on the Wentzel-Kramers-Brillouin semiclassical ap-
proach for this kind of problem. This is reported in my article 14 on the publications list.
In this work I also examined two different examples of asymmetric potentials: the cases
in which the two localized levels are degenerate, and that in which they are not degenerate.

Restoring the ground capacitance Cy in the problem, we focus on the analysis of the
case at half flux quantum 6 = 7. Using the semiclassical instanton approach [157,158],
the QPS amplitude reads as

v = Aexp [—Sé;l}/h} , (2.37)
where Sé;l} is the effective action evaluated at the classical path 6,(7), the asymptotic
path that minimizes the action and connects the two relevant minima in the limit 8 — oo,
i.e., the instanton solution. The prefactor A is related to the quantum fluctuations around
this minimum path [137]. The classical path in a cosine potential in the presence of a non-
local in time kernel in the action is generally not solvable. To analyze the scaling behavior
of the phase slip amplitude, I used a parabolic approximation by using an effective double
well described by two parabolas that mimic the potential V(). In this case, the classical
path can be calculated exactly even with the kernel non-local in time [159]. For further
technical details, I refer to my paper 13.
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Figure 2.2: Schematic picture of the maximum supercurrent in Josephson junction rings (scaled
with the maximum classical value I, = wl;/N without quantum phase slips) as a function of the
size N. E; is the Josephson energy and E¢ is the charging energy associated with the junction
capacitance. (a) Vanishing ground capacitance Cy = 0. Finite size effects give rise to a nonmono-
tonic dependence at large ratio E;/FE¢. (b) Finite ground capacitance Cy = C/2 (Eg = 2E¢).
Depending on the ratio E;/Ec = 2E;/ Ey the scaling of the supercurrent has a different asymptotic
behavior as increasing N.

In Fig. 2.2, I report a summary that outlines the main results. In Fig. 2.2(a) the
case Cp = 0 is shown. In this limit, when N > 1, finite size effects vanish ,and vy
converges to the constant vy, such that Nvy increases with the length and the maximum
supercurrent I,y vanishes exponentially, see Fig. 2.2(a), at large N > 1. However, as we
have discussed above, in finite systems we find a reduction of the effective QPS amplitude
vy by increasing the size N, and the final outcome is that the maximum supercurrent
Inax shows a non-monotonic behavior as a function of IV for sufficiently large values of
the ratio Fj/E¢.

An example of the behavior at Cy # 0 is given in Fig. 2.2(b). When the capacitance to
ground Cj is restored, the winding junction and the N — 1 harmonic junctions interact
directly. This leads to the appearance of an ensemble of dispersive electrodynamics modes,
similar to the case of a Josephson junction coupled to a (finite length) LC-transmission
line.

The tunneling phase couples to these modes in much the same way as a quantum particle
to a harmonic bath in the Caldeira-Leggett model. In particular, one can show that the
low-frequency modes with linear dispersion give rise to a finite friction for the tunnelling
phase dynamics in the limit N — oo.

At finite N, the coupling with the low-frequency modes strongly affects the quantum phase
slip amplitude. Indeed, one obtains the following scaling for the phase slip amplitude:
v~ 1y/N®for N > 1 where a (EJ/E0)1/2. Depending on the value of o, the total phase
slip amplitude Nv(N) ~ N~ that determines the low-energy properties of the system
(ground state and its supercurrent) either tends to zero, when a > 1, or grows linearly,
when a < 1, indicating that the system either displays superconducting or insulating
behavior, as can be seen in Fig. 2.2(b). This behavior is reminiscent of the dissipative
phase transition [85] occurring in a single junction in an electromagnetic environment
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[157,158]. For intermediate sizes of the ring, finite size effects occur, yielding a non-
monotonic behavior of the maximum supercurrent in the insulating regime, similar to
what happens in the case Cy = 0.

2.6 Dissipative frustration in quantum systems

2.6.1 Noncommuting dissipative interactions

Remarkably, an open quantum system coupled to two independent environments by canon-
ically conjugate operators shows an enhancement of the quantum fluctuations. This result
can be understood by considering the two baths as two detectors continuously coupled to
the system and measuring two noncommutating observables simultaneously. This frustra-
tion of decoherence and dissipation can be attributed to the noncommuting nature of the
conjugate coupling operators that prevents the selection of an appropriate pointer basis
to which the quantum system could relax.

For the quantum damped harmonic oscillator, it is known that the quantum fluctua-
tions of the operator to which the bath is coupled are squeezed and those of its conjugate
variable are enhanced in such a way that the Heisenberg uncertainty principle holds [88].
In my work 10 on the publications list, I considered a symmetric environmental coupling
for the position ¢ and for the momentum p of a quantum harmonic oscillator in the case
of ohmic dissipation with a Drude large frequency cut-off. I obtained analytical formulas
that allow detailed analysis of the enhancement of the quantum fluctuations and the role of
the temperature as well as that of the high-frequency cut-off of the bath’s spectrum. The
analytic results show that such quantum fluctuations (squeezed or enhanced) are observ-
able at low temperatures T' < 1%, where T™ is the typical temperature below which finite
temperature corrections are negligible and the fluctuations of the particle are controlled
by the quantum contribution.

I generalized the Caldeira-Leggett model considering two baths forming two separate
sets of harmonic oscillators. The starting model Hamiltonian is

g — 2€m 2 ~ 2mq’n qu,nw%n q,n mq,nwg,n
1 /. Mo \2 1 .
p,, — B0 — 2 0?2 2.38
+ zn: M ( pn mwp,nwo) + o Mpn¥p,n<pn ( )

with the two conjugate operators [§, p] = ih and the interaction with the environment de-
scribed by two ensembles of independent harmonic oscillators with the conjugate operators

[Qy7n,ﬁy7n/] = ihd, 10y ns Where v = g, p are the two bath indices. Using the equations

of motion in the Heisenberg picture O(t) = Ht/hQe=iHt/h  one obtains a generalized
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quantum Langevin equation:

dp(t . oo dq(t’
dp(t) _ —mwiq(t) + E,(t) — [ dt' gyt —t")m q(,> , (2.39)
dt o dt
d2q(t)  dp(t) - oo N 1 dp(t)
= L LBt dt' ny(t —t') — 2.40
m i = T+ E0+ [t —) ST (2.40)

in which we have introduced ¢y as the initial time for the interaction and the two response
functions of the two baths with a form similar to Egs. (2.3) and (2.4) and characterized
by the two damping parameters v, and 7,. To simplify, I assumed the same high frequency
cut-off we.

Assuming as initial state the total density matrix factorized as py, = popgpp With po
the initial state of the oscillator and pq;, the thermal density matrices for the two baths
pv x exp(—p Zn wy,nd;ndy,n), the correlation functions of the noise operators read as

(Fy(w1)Fy(w2)) = (2m)20 (w1 + wa)

Suq + <;‘;>25W,] Sy (w1) (2.41)

with the noise spectral function S, (w;) similar to Eq. (2.6) for v = ¢, p.

Assuming typ — —oo, the generalized quantum Langevin equations (2.39) and (2.40)
can be solved using the Fourier transform, and it is possible to compute the correlation
functions of the oscillators for arbitrary products of the position and momentum. In
particular, the two fluctuations of the position and momentum, after some algebra, are

@) _[@/ag]__ L [t 1T wh+iwnp(w)
|5 | = [l | == [ oo (55 | 3235000 )
(2.42)
with the normalization ¢3 = h/(2mw) and p3 = mhwy/2 and the Heisenberg’s uncertainty
relation in the form (Q2)(P2) > 1. The denominator is given by

w2
D(w) = wf = w? + iwlg(w) + np(w)] — wfgnq(w)np(w) : (2.43)

Provided that the poles of the functions D(z) - with z complex - always have the same
sign for the imaginary part, then we can calculate the integral using the residues theorem
for a closed curve lying only in one half of the complex plane that contains only the poles
of function coth(Sw/2). The latter correspond to the Matsubara frequencies z = iwy =
i27k /B with integer k

Q71 2 4 I 1 W2 + Wiy (—icr)
[ <P2> ] ~ Bwo * Bwo ; D(—iwy) [ w% +wk77§(—iwk) . (2.44)

The formulas for the two quadratures are symmetric under interchange of the two response
functions n, <> 7, i.e.

~

<Q2> = o(ng,Mp) = 0q, <]52> = 0 (Np,Ng) = 0p.- (2.45)
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Due to this symmetry, hereafter we discuss the function o,. It should be noted that the
result (2.44) can be also obtained using the path integral. This confirms the initial as-
sumption that the poles of the functions D(z) always have the same sign for the imaginary
part (as it is also possible to show explicitly in the ohmic case).

Formula 2.44 is valid for an arbitrary spectral environmental function. For the ohmic
case, the Eq. (2.44) reads explicitly as

+
_ 2 4 f w (we + wi)? + Ypwiwe(we + W)
Bwo  Pwo = (wi + wi)(we + wi)? + (Y4 + ) wpwe(we + wi) + wi(%)w?

. (2.46)

Oq

The sum over the Matsubara frequencies Eq. (2.46) can be carried out analytically if one
introduces the frequencies €2; as the negative roots of the quartic polynomial in w, of the
denominator appearing in Eq. (2.46).

For sufficiently high temperature, such that 5€;/(27) < 1 for i = 1,...,4, the theo-
retical formula recovers the result of the equipartition theorem (the classical limit). Going
further in the high-temperature expansion, one can obtain quantum corrections to the
classical result that are proportional to the thermal de Broglie wavelength

kgT 1 [ &2 T
2 —
| _ 1 1 2.47
(q >hzgh—T mwg + 6 <2mk‘BT) ( " WS ) ( )

Even if the temperature is relatively high kT > hwg, quantum corrections due to the
dissipative interaction can become parametrically relevant in the presence of the interac-
tion with a second bath via the momentum operator for ypw./w3 ~ 1. The result (2.47)
represents the dual expression of the standard, damped harmonic oscillator with ohmic-
Drude dissipation, for which we have <p2>high,—T o~ <p2>(cl) + mrygweh?/(12kpT) [88] in the
limit we > (wo, 7q)-

In the opposite low-temperature regime, defined by 5Q;/(27) > 1 fori =1,...,4, one
obtains quadratic corrections in 7"

o o1 (v, \ (kT \?

Thus, for sufficiently low temperature 7' < T}, defined by

T; = min

2774

(hlu), || 220 m}o] (i=1,....4), (2.49)

we can neglect the finite temperature effects for the fluctuations of the position operator
¢. By interchanging the damping coefficients vy, <+ 7,, a similar expression holds for the
temperature threshold T} for the quantum regime and for the quantum fluctuations 02 of
the momentum operator p.
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In the limit of low temperature, we can focus on the ground state fluctuations in
the different regimes. When one dissipative coupling overhelms the second dissipative
interaction, one recover the results of a harmonic oscillator coupled to a single bath. This
limit is defined by 7, < (wo/we)*vq/4 (viz. the bath coupled to the oscillator via the
position ¢ dominates) or equivalently by v, < (wo/ wc)nyp /4 (viz. the bath coupled to the
oscillator via the momentum p dominates). In these regimes, one of the two fluctuations
of the oscillator is quenched (Q?) < 1 or (P?) < 1: the quantum fluctuations of the
quadrature coupled to the bath are squeezed and those of the conjugate variable are
enhanced. The more interesting regime is when dissipation leads to the enhancement of
both quantum fluctuations, (Q2) > 1 and (P?) > 1. This occurs in the cross-over regime
when both dissipative interactions are relevant.

Far away from the single bath regime, |y, — 74| < 2wo, all frequencies are complex, and
it is possible to show that the relaxation dynamics of the harmonic oscillator is always
underdamped, i.e. the dynamical correlation functions always exhibit an oscillatory decay
even for large damping. In the limit wg, 74,7, < we, I obtained the following analytic
expression for the zero-temperature fluctuations

Te AT
2 v, w, (1 + % qm)
0 P c 2
~ 1 t In(1 F
o A | e <n< ) + parctan(p) +1In(1+ p )> + @

0 ‘1 o AF%@‘
(2.50)
with p = \/FgVp/wo, I' = (g + )/ (2wo) and Al'qp, = (74 — 7p)/(2wo) and
arctan 1—AT2 /T for AL, | <1
Fop = ( q,p/ ) |ATg (2.51)

arctanh ( A2, —1/ I‘) for |AL, | > 1

In the regime in which the two dissipative interaction compete, Eq. (2.50) shows that the
fluctuations have a nonmonotic behavior as increasing the dissipation, keeping constant
the ratio 7p,/7,, This result was obtained numerically in [160], whereas I provided an
analytic formula. The regime of enhancement of quantum fluctuations corresponds to
the case in which both fluctuations of ¢ and p grow with increasing dissipative coupling
constant 7, and 7,. An example is shown in Fig. 2.3. We note that the curve v, =, is
identical for the position and momentum fluctuations; the other curves appear different,
as we plot the fluctuations as a function of the parameter v, only.

In summary, I show that in the intermediate range of damping defined by (v, ) ~ wo,
it is possible to achieve a strong enhancement of the quantum fluctuations due to the
competition between two dissipative interactions through two noncommuting operators.
Such dissipative frustration can result in a remarkable effect in the phase diagram of a
many-body system, as explained in the next section.



64 2 Quantum dissipation in Josephson junction systems
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Figure 2.3: Results for the harmonic oscillator of frequency wy with two noncommuting dissipa-
tive interactions characterized by the two damping parameters: v, (damping related to dissipative
coupling through the position) and 7, (damping related to dissipative coupling through the mo-
mentum). The scaled zero-temperature quantum fluctuations of (a) ¢ and (b) p in the large cutoff
expansion, as a function of the (position) damping 7,. The different curves are for three different
ratios of the two damping parameters v,/v, = 2.5,1,0.4. The cutoff frequency is w./wo = 80.

2.6.2 Phase diagram of Josephson junction chains

In my work 8 on the publications list, I studied the phase diagram of the dissipative quan-
tum phase transition in a 1D phase model in the presence of dissipative frustration. This
system can be simply realized with Josephson junction chains. The main result is that the
critical line separating the two phases of the phase diagram is nonmonotonic. Moreover,
interesting features occur in two thermodynamics quantities: the purity, which quantifies
the degree of correlation between the system and the environment, and the logarithmic
negativity, an entanglement measure that encodes the internal quantum correlations.

We consider a Josephson junction chain in the self-charging limit where we disregard
capacitances between the islands. This is not relevant for the discussion of the effects of
the dissipative frustration on the quantum phase transition in the chain. In this case, the
Hamiltonian simplifies to

N-1

A=Y

n=0

A9
& — Ejcos(Ady)

2.52

and periodic boundary conditions ¢y = . In the harmonic regime E; > FEj, the in-
trinsic zero-temperature (quantum) fluctuations of the system are governed by the ratio
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g = +/E;/(8E)) (increasing g, the phase fluctuations decrease). As explained above, the
one-dimensional Josephson junction chains show a quantum phase transition, which can
be mapped to a classical two-dimensional Berlinski-Kosterlitz-Thouless (BKT) transition,
at a critical point g.. For g < g., the phases are uncorrelated and the Josephson junction
chain is an insulator. For g > g¢., the chain is superconducting with a (quasi-long) range
ordering.

To discuss the effect of the dissipative frustration, we use the Caldeira-Leggett model
and consider local ohmic baths coupled to each phase difference A¢,, and local ohmic baths
coupled to each charge Qn of the superconducting islands. Fig. 2.4(a) shows a possible
realization of such a system. The shunt resistance between the superconducting islands
R leads to a (conventional) dissipation affecting the phase difference, and the resistance
to the ground Ry leads to the (unconventional) charge dissipation.

Using the imaginary time path integral formalism, one can represent the partition
function as Z.g = 1—[51\/:—01 $.Dlon(r)] €75 {en(MU/P | with the Euclidean action

N-1 .p
S=8;+ Z /OdT [Z;O@?L(T) — Ejcos (Agon(T))] , (2.53)

where the dissipative part, with the function F'(7) affecting the phase difference, and the
function F(7) affecting the total charge, reads as

_N_l 1 ore / ’ N2, L brp /= no- . ’
Su=3 | [ [ art” B 8ntr) = 8o 5 [ [ arie! Fe ) ne) i)
(2.54)

Using the Matsubara frequencies w; = 27l/ in the frequency space, the function F(1)
consists of F} o< (Rq/Rs)|w|, whereas the function associated with the charge dissipation
corresponds to Fj o —RyColwi|/(1 + RyColwy]). It is natural to define a dissipative pa-
rameter for conventional dissipation as o = R,/ R, and for unconventional dissipation as
a = Ry/R,, with R, = h/2e? being the quantum of resistance.

As the partition function of the whole action is not exactly solvable due to the cosine
interaction, we use a self-consistent harmonic approximation (SCHA [161]. In this ap-
proach, the cosine is approximated by an effective parabolic interaction with variational
interaction strength. The SCHA allows determination of a qualitative phase diagram of
the Josephson chain. By varying the parameters o, @ and g we can determine a critical
value for a phase transition.

The quantum fluctuations of a system affected by dissipative couplings to noncommu-
ting observables can exhibit a non-monotonic behavior as a function of the damping, as
explained in the previous section.
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Figure 2.4: (a) 1D chain of superconducting islands with Josephson coupling of energy E; and
a capacity to the ground Cjy. The shunt resistance R corresponds to a dissipative coupling for
the difference between the superconducting phases Ay, = @n+1 — @n, whereas the resistance
to the ground R, yields a dissipative coupling in the charge @,. The dimensionless parameters
for the coupling strengths of the two dissipative interactions are, respectively, a = R,/Rs and
& = Ry/R,, with R, the quantum of resistance. (b) Qualitative quantum phase diagram with
dissipative frustration, o ~ &. (c¢) Qualitative results for the purity and the logarithmic negativity
(as an entanglement measure) as functions of g = v/ E;/(8Ey) for @ =0 and &/a = 0.3.

We analyze this dissipative frustration by fixing the ratio a/«. If the quantum fluc-
tuations are too large the phase transition to an insulator occurs. Consequently, this
nonmonotonic behavior of the phase fluctuations in the presence of dissipative frustration
can lead to a situation in which the system is superconducting for small and large damping
but in the intermediate regime is an insulator. Hence, a non-monotonic phase transition
line emerges in the phase diagram, see Fig. 2.4(b).

In addition to affecting the phase diagram, dissipation also influences quantum cor-
relations. To study these effects, we calculated the purity as a measure of correlations
between the system and the environment and the logarithmic negativity as a measure of
entanglement in the Josephson junction chain. As the qualitative behavior of the two
quantities is the same, we summarize the results in a single schematic plot in Fig. 2.4(c).

The purity is defined as P = Tr (pgc), where ps. is the reduced density matrix describ-
ing the one-dimensional chain within the SCHA. In the non-dissipative case, the chain
remains in a pure state and P = 1, whereas for a statistical mixture P < 1. Fig. 2.4(c)
shows P as a function of the parameter g. For conventional dissipation (a = 0), the purity
decreases for lower values of g (i.e. enhancing phase fluctuations). Here, conventional
dissipation counteracts the increase in the phase fluctuations and leads to an incoherent
mixing of the states. In the presence of both dissipative couplings (a # 0), the purity
increases with decreasing g. The unconventional part of the dissipation acts in favor of an
enhancement of phase fluctuations and leads to a more pure state.

We also computed the bipartite entanglement for two subsystems A and B of the ring,
namely we have calculated the logarithmic negativity via a partial transposition of the
density matrix ps. — pla. We cut the ring in two parts, with Na + Ng = N. The
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superscript T4 denotes the transposition of the part of ps. corresponding to subsystem
A. We calculate the covariance matrix o[pl4] and with this the logarithmic negativity for
Gaussian states Enr[pse] = — Y, logy (min[l, (2¢x)]), where ¢ represent the symplectic
eigenvalues of the covariance matrix [162].

The amount of entanglement generally depends on the partition of the Josephson junc-

tion ring. However, in all the cases, we found a common feature, namely that the purity
has the same qualitative behavior as reported in Fig. 2.4(c).
We can explain this result according to the following argument. The Josephson coupling
naturally determines correlations in the system. In the same way, the conventional (phase)
dissipation enforces correlations, since it favors the phase coherence in the chain. Hence,
an increase of the quantum phase fluctuations (a decrease of g) results in a reduction in
the correlations. However, quantum correlations cannot be present at all in the pure clas-
sical limit, namely when all the phases are aligned. This fact indicates that the quantum
correlations are determined by a subtle interplay between the Josephson coupling and the
electrostatic interaction. Indeed, the unconventional (charge) dissipation operates in a way
very similar to the electrostatic interaction enhancing the quantum phase fluctuations in
the system. This explains the different, qualitative scaling of the amount of entanglement
in the presence of unconventional (charge) dissipation.

In summary, dissipative frustration on the superconductor-insulator phase transition in
a chain of Josephson junctions is achieved via the coupling to the environment through two
noncommuting observables. The critical line is nonmonotonic when the ratio of the two
dissipative coupling strengths is fixed. This peculiar behavior can be traced back to the
nonmonotonic zero-temperature fluctuations yielded by dissipative frustration. Because
dissipative frustration is a purely quantum effect, it is interesting to analyze the influence
of dissipation on system-environment correlations and on the internal quantum correla-
tions. Indeed, the purity and the logarithmic negativity as functions of the parameter ¢
show different scaling behavior. These results demonstrate that dissipative frustration can
lead to interesting effects and novel features in the physics of open quantum many-body
systems.
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Chapter 3

Future research projects: a few
examples

My theoretical questions are inspired by the physics of engineered quantum systems, such
as nanoelectromechanical systems, superconducting quantum circuits and qubits, and hy-
brid photonic systems.

Such systems are fascinating because of their complexity: they typically operate far
from equilibrium and can be very strongly nonlinear, allowing us to explore a wide range
of quantum dynamical properties.

Another important aspect is that such systems realize artificial many-body systems
in which the interacting units must be considered as open/dissipative quantum systems,
since their interaction with the environment cannot be neglected.

I am currently interested in: (i) exploring strategies for creating, detecting and even-
tually controlling quantum states in engineered coherent systems, and (ii) the theoretical
understanding of the interplay between quantum coherence, interactions and nonlinearity.

3.1 Electron-vibration interaction: mesoscopic QED

The subject of quantum transport in systems characterized by electron-phonon or electron-
photon coupling is a topic in which I have acquired relevant experience in recent years and
upon which I plan to base my future research activity.

Cavity QED allowed the study of the light-matter interaction at the most fundamen-
tal level. Other systems are based on this architecture, such as superconducting qubits
coupled to microwave cavities (circuit QED), in which an artificial atom is integrated into
nanocircuits on a chip.

69
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Figure 3.1: Examples of nanoscale hybrid systems formed by quantum dots coupled to local-
ized resonators. (a) Cartoon of a photon microwave cavity coupled to a dot. (b) Optical mi-
crograph of a semiconductor double quantum dot embedded in a high-quality-factor microwave
cavity (from [163]). (c) Cartoon of a mechanical nanoresonator coupled to a dot. (d) Scanning
electron microscope image of a device formed by a gate-defined quantum dot integrated into a
piezoelectricity-based mechanical resonator (from [27]).

S
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More recently, a new architecture has been realized with experimental mesoscopic de-
vices in which the superconducting qubit is replaced by a quantum conductor (mesoscopic
QED). These hybrid circuits with quantum conductors coupled to localized harmonic os-
cillators - such as microwave photon cavities [34-36] or mechanical resonators [14, 20, 27]
- have become commonly studied systems across a number of experiments. A schematic
picture of the prototypal system/model is given in Fig. 3.1. A new aspect here is the
single-electron quantum transport that occurs in the mesoscopic conductor, with vari-
ous phenomena (Coulomb blockade, interference effects, etc.). Quantum dots are natural
candidates for exploring the rich physics of electron-vibration interaction given their tun-
ability. Their versatility is also a key issue, as it is possible to connect quantum dots at
different types of electrodes (normal metal, superconductor or ferromagnet) [35,51]. These
systems - which are well controlled and characterized - can be used as ideal platforms to
study fundamental questions in condensed matter at the interface between nonlinear quan-
tum dynamics and nonequilibrium regime.

More specifically, these hybrid nanoscale systems combine different types of quantum
degrees of freedom and serve as ideal platforms to explore correlations between charge
transport and the emitted radiation or the induced mechanical vibrations. I aim to explore
several theoretical issues, for example: (i) the nonequilibrium (potentially quantum) states
of the oscillator; (ii) the effect of back-action of the oscillator on the transport properties;
(iii) the generation of quantum (entangled) states in many oscillator systems; and (iv)
nonlinear (anharmonic) effects in quantum oscillators. In this context, a starting model
Hamiltonian that captures the essential aspects of the problem is given by

H= Hleads + Htun + Hdot + Hres + Hz'nt ; (3-1)

with Hjeqqs denoting the Hamiltonian of the leads/contacts, Hyy, the tunnelling part and
Hgo¢ the dot’s Hamiltonian interacting with the resonator H,.s via Hjp,.
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3.1.1 Example of recent results

Hybrid systems combine elemental components with distinct tunable properties, offer-
ing a way to explore novel mechanisms of coherent energy exchange. Ultimately, these
systems can encode a single-atom laser that exhibits unique features compared to conven-
tional lasers such as the absence of threshold, self-quenching and sub-Poissonian statistics.
Single-atom lasers have been realized in cavity QED [164], in circuit QED [103] and re-
cently in double quantum dots coupled to microwave cavities [34,163].

Recently, together with my PhD student (Mantovani), I studied a spin-valve quantum
dot system that can encode an efficient single-atom laser characterized by a dynamical
multistability [40], see Fig. 3.2. This represents a significant theoretical advance , since
multistability is a peculiar phenomenon that arises in nonlinear driven systems out of
equilbrium. Just for comparison, for example, multistability was achieved in cavity QED
only by using a controlled steady stream of excited two level atoms interacting sequentially
with the field and in a fixed amount of time [165]. Because the electron passage through
the dot is a random process, a priori multistability is not evident in quantum dots. We have
also demonstrated that multistability is theoretically associated with the breaking down of
one of the standard approximations, the so-called Rotating Wave Approximation (RWA),
opening new theoretical perspectives for a large class of quantum nanoscale systems (I
note that in cavity QED, for instance, multistability occurs but within the RWA).

Research into the behavior of systems beyond the RWA has attracted immense interest
recently, though usually this requires the difficult-to-access regime of extremely strong
coupling strengths.

In this work [40], I showed that the laser-like dynamics facilitates the breakdown of
the RWA at much weaker couplings, thereby opening up a promising route for the study
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Figure 3.2: Left: spin-polarized electrons are injected from a ferromagnetic contact into a quan-
tum dot. The resonator (photon cavity or nanomechanical resonator) interacts with the dot’s spin.
The system realizes a highly efficient single-atom laser with dynamical multistability. Center: In
a bistable regime, for instance, the resonator can oscillate in two possible ways, characterized by
different amplitudes in the semiclassical picture. These correspond to the two maxima in the dis-
tribution of the Fock states. Right: Because the charge current is determined by the resonator’s
state, the current behaves like a telegraph when monitored over time, as a manifestation of the
lasing bistability regime occurring in the resonator (see [40] for more details).
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of unconventional coherent interactions.

3.1.2 Future projects
(A) Switching dynamics in a bistable quantum dot laser

In the abovementioned theoretical works on dynamical multistability in a quantum dot
(spin-valve) laser, we solved a density matrix equation for the system of interest (formed
by the dot and the oscillator), having traced out the leads. The steady-state solution of
such an equation (with the rich phase diagram including different types of multistabili-
ties) was found either numerically or analytically in some limit cases, with an excellent
agreement between the two methods. When a (classical or quantum) system becomes,
for example, dynamically bistable, a natural theoretical issue is the description of the
switching dynamics between the two possible steady states of vibration. These switching
dynamics were not investigated in the previous work, which was limited to the analysis of
the average steady-state distribution of the resonator?s energy (Fock number distribution).

In an upcoming project, I plan to analyze the switching dynamics in a bistable quan-
tum dot (spin-valve) laser, Fig. 3.3(left). This requires going beyond the computation of
the steady-state density matrix to properly take into account the role of the shot-noise
associated with the single tunnelling event beyond the average charge current. This ob-
jective can be accomplished by deriving a quantum Fokker-Planck equation in the phase
space representation (for instance, the Glauber-Sudarshan P(«) representation). By op-
portunely extending this method in order to include the degrees of freedom of the dot,
from preliminary calculations, one can show that such a distribution becomes a tensor
P,y (a). The label s and s’ refer to the three possible state of the dot (spin up, spin down
and empty, since double occupancy is forbidden by the strong local Coulomb repulsion).
The next step is to find a strategy to solve the set of coupled nonlinear equations for
the functions Py («r) under the assumption of some adiabatic regime (for instance, slow
relaxation time of the resonator).

I have worked on a similar problem - the switching dynamics of a classical nanome-
chanical Duffing resonator - in collaborations with Prof. Mark Dykman (Michigan State
University) and I thereby acquired a certain experience that I now aim to exploit for the
quantum case. For instance, I studied the switching dynamics of a driven Duffing nonlin-
ear resonator in the presence of nonlinear dissipation (friction and noise) [166] , which was
not previously investigated in the literature. In particular, we found that the nonlinear
friction leads to a strong variation of the critical switching point between the two stable
states of the Duffing resonator in the bistability regime.

(B) Lasing in multiple-dot systems and time-dependent transport

The previous results concern the spin-valve system in which I proposed to encode a spin-
vibration interaction (for instance, through the presence of a strong magnetic field in the
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Figure 3.3: Left: Cartoon of a distribution function in the phase space representation of a
quantum harmonic oscillator, with the two quadratures x; and x5, in a bistability regime. The
objective of one project is to address the switching dynamics between two stable states. Right:
Schematic picture of a multiple quantum dot system interacting with a microwave photon cavity.
The central double quantum dot is coupled to the resonator and tunnelling-coupled to lateral
(injecting) quantum dots. The latter dots are connected to source (L) and drain (R) electrodes.
The energy levels of the dots are tuned via the gate electrodes.

space occupied by the nanomechanical resonator, see Chapter 1). Although it is within
the reach of the state of the art of these devices, thus far single-atom lasing has only
been achieved in double dots characterized by a dipole interaction (via a double gate
capacitance) with the microwave photon cavity. However, the efficiency realized is low
and, indeed, lasing has been accomplished in a cavity coupled at least to two double
dots [34] or by applying a time-dependent signal in addition to the dc bias voltage [163].
This can be explained by many reasons, such as the unavoidable interaction with the
surrounding phonons of the nanocontacts embedding the quantum dots.

Beyond specific issues of technological origin, lasing in the double dots is also intrinsi-
cally limited by the unavoidable elastic tunneling associated with the partial delocalization
of the electron orbitals. This implies a balance between the pumping efficiency and the co-
herent coupling to the resonator. Simply put, the elastic (non-emitting) tunnelling events
through the higher-energy dot level are perfectly blocked when the two levels of the two
separated dots are not hybridized. However, in this case, lasing is also absent, since no
tunnelling can occur at all between the two dots in series.

My next project seeks to overcome this effect by proposing a multiple-dot system.
Exploiting the fact that resonant transport can occur in quantum dots, the energy levels
of, for instance, four dots in series can be arranged in an optimal configuration in order to
suppress the elastic tunnelling transmission and enhance the coherent interaction of the
charge with the cavity. In a simple scenario, the system is formed by a central double
dot, which is coupled to the cavity via the gates, and by other two lateral dots that stay
between the central double dot and the left and right lead, respectively, see Fig. 3.3(right).
These additional dots act as energy filters for a tunnelling electron, such that this electron
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has a greater probability of leaving the central double dot - by tunnelling out to the right
lead - only after having emitted a photon.

On the basis of my previous studies, I am convinced that such a system is a promising way
to achieve an efficient single-atom laser. One possible theoretical goal is to demonstrate
that lasing in a multiple-dot system occurs in a range of interaction coupling strength ()
in which there is no lasing for the case of a simple double dot with the same coupling
strength.

Another interesting perspective is to introduce an additional ingredient in the study of the
four-dot system: the use of a time-dependent gate for the lateral dots, see Fig. 3.3(right).
This idea is inspired by the results of lasing in cavity QED. Here, high-efficiency lasing (up
to multistability of the resonator) is achieved by pumping a steady stream of excited two-
level atoms interacting sequentially with the field of the cavity at a fixed, tailored amount
of time [165]. The underlying microscopic mechanism is based on a kind of matching
of the interacting time of the atom with the period of the coherent cycles involving, for
instance, the excited state of the atom and n photons in the cavity and the ground state
and n+ 1 photons. In the same spirit, an engineered time-dependent protocol was used to
generate an arbitrary single Fock state [104]. I have the perspective of realizing a similar
mechanism in the multiple quantum dot system with the suitable use of a time-dependent
control of the energy levels in order to adjust the injection (and extraction) of the electron
in the central double dot interacting with the cavity. I have already planned a work-
package for this project that I have proposed to my PhD student working on this topic
(M. Mantovani).

(C) Entanglement between two resonators using a Cooper beam splitter

In mesoscopic QED, one of the theoretical challenges is the identification of fundamental
mechanisms leading to the formation of quantum states or nonclassical correlations by
electron transport. Within this perspective, my future plans have the objective of study-
ing proposals for producing quantum entangled states between two remote resonators via
electron transport.

The interaction between the vibration and the electron spin - which I explored in my pre-
vious work - is unique and can lead to peculiar effects that do not arise, for instance, in the
case of charge-vibration interaction. Indeed, coupling the vibration with the spin repre-
sents a natural proposal for generating quantum entangled states between two mechanical
oscillators. The latter goal can be achieved by exploiting the spin entanglement in a BCS
superconductors Cooper pair, viz. a singlet state. These states represent one of the most
simple and accessible entangled quantum systems on demand in quantum nanoelectronic
devices.

One of my future projects has the objective of theoretically demonstrating entangle-
ment between the two resonators induced by the spin-vibration. Specifically, I plan to
study a three-terminal devices (the so-called Cooper-pair beam splitter), see Fig. 3.4. In
this device, pairwise entangled spins can be injected in two separated dot levels. The split-
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Figure 3.4: Left: A schematic picture of the so-called Cooper pair splitter: the pair of electrons
forming the spin singlet are transferred from the superconductor to the two quantum dots. Right:
Possible realization with two suspended carbon nanotube quantum dots.

ting of the singlet can be enforced by local (intra-dot) Coulomb interactions that inhibit
the transfer of the Cooper pair in a single dot. Technically speaking, this process is called
crossed Andreev reflection: the two electrons forming a singlet state are transferred from
the superconductor to the two separated quantum dots. Each individual spin then locally
interacts with one resonator. Owing to this direct interaction and to the entangled state
of the electrons, one expects the formation of entangled states between the two resonators.

A first simple way to approach this problem is to focus on the large superconducting
gap regime (the gap A much larger than other energy scales). Then, one can consider
the effective pairing Hamiltonian in each dot, as described in the section 1.4.4. Another
simplification that facilitates identification of the solution but keeps all the essential aspects
is to assume a large bias limit for the normal lateral leads playing the role of simple sinks
for the electrons forming the singlet. In this regime, one can tackle the problem by setting
up the effective master equation - in the Lindblad form - and solving it numerically or
analytically in some opportune limit.

(D) Entanglement between two resonators using quantum transport

I conclude this section by overviewing a second project on the topic of quantum correlations
between two resonators generated by quantum (nonlocal) electron transport.

The basic model is outlined in Fig. 3.5. I aim to study a parallel double quantum
dot device operating as a single electron splitter interferometer, with each dot linearly
coupled to a local photon cavity. I want to explore how quantum correlation between
the two oscillators is generated by the coherent transport of a single electron passing
simultaneously through the two different dots.

The theoretical target is the computation of the covariance of the correlation func-
tions between the two resonators. Assuming that the interaction strength between the
dot’s charge and each resonator is weak, I will use the perturbative approach based on
the Keldysh nonequilibrium Green’s functions to compute the bosonic correlator functions
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Figure 3.5: Left: Schematic picture of two parallel double dots between two leads. In coherent
transport regime, a single electron propagates simultaneously through the two dots and interacts
with the two remote resonators (microwave photon cavities). In simple terms, after an elemental
passage, entanglement is created between the two resonators. Right: Examples of the vertex
diagrams needed to compute the correlation functions of the two resonators (see text). The wavy
lines are the bosonic propagators (red and black for the two different resonators), and the solid
lines are the dot Green?s functions according to the color code: black for the diagonal part G11
of the dot 1, red for the diagonal part Gao on the dot 2, and green for the off-diagonal Green?s
function G2 between the dot 1 and 2.

involving the two oscillators. This implies that one must carry out a calculation up to
the fourth order in the dot-oscillator interaction strength, taking into account vertex dia-
grams, Fig. 3.5 (right). Diagrams to the second order in the coupling ~ A\? cannot contain
any correlations between the two resonators, since the electron sees only one of the two
resonators in the virtual (elastic) or real (inelastic) exchange of energy.
Quantum correlations are demonstrated and quantified by analyzing the correlation func-
tions of the two resonators and testing the violation of the Cauchy-Schwarz inequality. This
requires calculations of the type called vertex diagrams, whose examples are reported in
Fig. 3.5 (right), to the fourth order in the coupling constant ~ A\*.

I have already planned a work-package for this project that I have proposed to my
PhD student working on this topic (F. Hellbach).

3.2 Decoherence and dissipation in many-body systems

Owing to recent experimental progress, the study of artificial quantum many-body sys-
tems, or synthetic quantum matter, has attracted great interest. Mesoscopic systems
such as bosons in optical lattices or superconducting circuits made by qubits (spins) are
the most remarkable experimental platforms. Other typical examples are optomechanical
systems formed by photonic cavities and nanomechanical resonators integrated in hybrid
devices.

These systems pave the way for the study of theoretical issues of many-body problems
in nonequilibrium states, such as quantum quenching, quantum phase-transitions in the
presence of external driving, dissipative phase transitions or, more generally, nonequilib-
rium quantum phase transitions in driven-dissipative systems and anomalous scaling in
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relaxation dynamics.

Moreover, these mesoscopic systems - with intermediate size between the macroscopic and
the microscopic - also have another important property that distinguishes them from the
strongly correlated bulk systems: their interaction with the environment cannot be ne-
glected. This means that they must be theoretically treated as open, dissipative quantum
systems. This is indeed the typical case for the superconducting qubits formed by macro-
scopic circuits and the optomechanical systems formed by photon cavities and mechanical
resonators. Understanding the effects of the environment on the quantumness of such sys-
tems is also an important issue for the control and manipulation of the individual coherent
systems. Devising methods to control and suppress decoherence is therefore a key issue
for various present and future applications in quantum measuring devices and in quantum
computation.

In the past, quantum dissipative dynamics and decoherence have been theoretically an-
alyzed primarily in individual open systems (for example, the spin-boson model); only
in recent years has there been a novel interest in addressing this problem in many-body
systems. A clear understanding of the effects of an environment on correlated quantum
many-body systems is presently lacking.

3.2.1 Example of recent results

In a first work [167], together with my two PhD students (H. Weisbrich and C. Saussol), I
studied the decoherence dynamics of a quantum Ising lattice of finite size with a transverse
dissipative interaction: namely, the coupling with the bath is assumed to be perpendicular
to the direction of the spin interaction and parallel to the external transverse magnetic
field.

In the limit of a small transverse field, the eigenstates and spectrum are obtained by a
strong coupling expansion, from which we derived the Lindblad equation in the Markovian
limit. At temperatures lower than the energy gap and for weak dissipation, the decoherence
dynamics can be addressed by taking only the two degenerate ground states and the first
excited subspace into account. The latter is formed by pairs of domain walls (or kinks),
which are quantum delocalized along the chain due to the small magnetic field. We found
that some of these excited states form a relaxation-free subspace; that is, they do not
decay to the ground states.

In a more recent work [168], together with one of my PhD students (H. Weisbrich), I
studied the decoherence and relaxation dynamics of topological states in an extended class
of quantum Ising chains that can present a multidimensional ground-state subspace, see
Fig. 3.6. The leading interaction between the spins and the environment was assumed to be
the local fluctuations of the transverse magnetic field. By deriving the Lindblad equation
using the many-body states, we investigated the relation between decoherence, energy
relaxation and topology. In particular, in the topological phase and at low temperature,
we analyzed the dephasing rates between the different degenerate ground states.
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Figure 3.6: Left: Model of the interacting spin chain with local coupling to the environment.
Each spin is coupled to a local bath via the spin component parallel to the magnetic field of the
Ising model. Right: Example of extended Ising model: in addition to the usual nearest-neighbor
two-body interaction (with coupling constant I or Jl(,l) ) the chain has a next nearest neighbor
interaction that couples, for example, two spins at position n — 1 and n + 1 in the x- (or y-
Jecomponent and the z-component of the intermediate spin at position n (see [168] for details).

3.2.2 Future projects

The abovementioned works [167] and [168] define one possible scheme of addressing this
topic, namely by starting from an integrable spin lattice model and treating the dissipative
coupling with the environment in the Markovian regime (Lindblad) using an opportune
perturbative expansion.

My research program on this topic will focus on the study of decoherence and nonequi-
librium quantum dynamics in (i) spin lattices with engineered interactions and (ii) spin
lattices with engineered dissipation

Concerning the first point, my work plan is to consider spin lattices in which each spin is
coupled to a dissipative bath, as occurs in experimental systems such as superconducting
qubits, and to discuss the effect of the interactions between the spins and those of an ex-
ternal driving on the spin lattice. I aim to investigate tailored quasi-1D lattices with some
topological constraints and/or geometrical frustrations. An example of interesting geom-
etry is a chain of triangular plaquettes with antiferromagnetic interaction, see 3.7 (left).
The research hypothesis is that the strong quantum correlations among qubits created by
interaction and enhanced by topology/geometry can compete with dissipative interaction
with the environment such that decoherence dynamics can be drastically slowed down. In
other words, the goal is to enhance the internal quantum correlation among the spins in
order to compete with the detrimental, dissipative effects of the environment.

To outline the research strategy, the first steps will be: (i) analysis of the model
without dissipation (possibly to search for an exact solution) and (ii) derivation of the
Lindblad equation, assuming the Markovian limit, on the basis of the many-body states.
The dissipative interaction with the environment is assumed according to the natural
situation occurring in experimental devices. For example, each spin can can be considered
to be coupled to its local thermal bath. This approach is motivated by the perspective of
realizing these lattices with real superconducting qubits in which the dissipative interaction
with the bath is completely generic and affects all spins of the system, generally in an
uncorrelated way.



3.2 Decoherence and dissipation in many-body systems 79

Figure 3.7: Left: Example of a chain of spin formed by triangular plaquettes with antiferromag-
netic interaction. Due to the geometric frustration, different ways of pairing the nearest-neighbor
spins are possible. Right: Example of engineered dissipation: two spin (qubits) coupled to a
driven microwave cavity of frequency w.. The sum of the two energy levels of the spin (qubit
frequencies) wg 1 + wq,2 match the detuning between the frequency wy, of the pumping laser of the
cavity, viz. wp —we = wg,1 + wq,2. This leads to an enhancement of correlated energy relaxation
in which the two qubits can relax simultaneously by emitting a photon into the cavity.

Regarding the second research direction, in general, dissipation - the coupling of a system
with its environment - produces decoherence, with the tendency to destroy and erase the
interesting quantum effects responsible for the power of quantum computation. However,
it can also have exactly the opposite effect: it acts as a resource for quantum computation
without the requirement to attain a purely coherent quantum dynamics. This corresponds
to the strategy of engineered dissipation. I plan to develop projects on this topic with
the objective of controlling the dynamics of superconducting qubits embedded in designed
electromagnetic environments. The ultimate goal in this approach is to design in an
opportune way the interaction between the lattice of spin and the environment such that
the latter can drive the spins towards the desired final (quantum) state.

An example of elemental units producing nontrivial dissipation is a system formed by two
spins, both coupled to a driven microwave resonator, see Fig. 3.7(right). In this case,
one can envisage the implementation of nonlocal dissipation that translates into nonlocal
dissipative Lindblad operators. The latter ingredient is crucial for encoding non-trivial
dissipation that can stabilize nonclassical states.

Finally, I again intend to analyze the possibility of experimentally implementing these
ideas with superconducting qubits based on Josephson junctions coupled to microwave
cavities, with the ultimate perspective of increasing the decoherence time through designed
dissipation.

I have already planned a work-package for this project that I have proposed to my PhD
student working on this topic (H. Weisbrich).
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