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A B S T R A C T

The quantity of images that populate the Internet is dramatically increasing.
It becomes of critical importance to develop the technology for a precise and
automatic understanding of visual contents. As image recognition systems are
becoming more and more relevant, researchers in artificial intelligence now seek
for the next generation vision systems that can perform high-level scene under-
standing.

In this thesis, we are interested in Visual Question Answering (VQA), which
consists in building models that answer any natural language question about
any image. Because of its nature and complexity, VQA is often considered as
a proxy for visual reasoning. Classically, VQA architectures are designed as
trainable systems that are provided with images, questions about them and
their answers. To tackle this problem, typical approaches involve modern Deep
Learning (DL) techniques. In the first part, we focus on developping multi-
modal fusion strategies to model the interactions between image and question
representations. More specifically, we explore bilinear fusion models and exploit
concepts from tensor analysis to provide tractable and expressive factorizations of
parameters. These fusion mechanisms are studied under the widely used visual
attention framework: the answer to the question is provided by focusing only on
the relevant image regions. In the last part, we move away from the attention
mechanism and build a more advanced scene understanding architecture where
we consider objects and their spatial and semantic relations. All models are
thoroughly experimentally evaluated on standard datasets and the results are
competitive with the literature.
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R É S U M É

La quantité d’images présentes sur internet augmente considérablement, et il
est nécessaire de développer des techniques permettant le traitement automatique
de ces contenus. Alors que les méthodes de reconnaissance visuelle sont de plus
en plus évoluées, la communauté scientifique s’intéresse désormais à des systèmes
aux capacités de raisonnement plus poussées.

Dans cette thèse, nous nous intéressons au Visual Question Answering (VQA),
qui consiste en la conception de systèmes capables de répondre à une question
portant sur une image. Classiquement, ces architectures sont conçues comme
des systèmes d’apprentissage automatique auxquels on fournit des images, des
questions et leur réponse. Ce problème difficile est habituellement abordé par
des techniques d’apprentissage profond. Dans la première partie de cette thèse,
nous développons des stratégies de fusion multimodales permettant de modéliser
des interactions entre les représentations d’image et de question. Nous explorons
des techniques de fusion bilinéaire, et assurons l’expressivité et la simplicité des
modèles en utilisant des techniques de factorisation tensorielle. Dans la seconde
partie, on s’intéresse au raisonnement visuel qui encapsule ces fusions. Après
avoir présenté les schémas classiques d’attention visuelle, nous proposons une
architecture plus avancée qui considère les objets ainsi que leurs relations mu-
tuelles. Tous les modèles sont expérimentalement évalués sur des jeux de données
standards et obtiennent des résultats compétitifs avec ceux de la littérature.
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I N T R O D U C T I O N

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Joint image/text understanding . . . . . . . . . . . . . . . 2

1.1.2 Visual Question Answering . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Industrial context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Context

Over the past decade, the field of Artificial Intelligence (AI) has experienced a
growing interest. Machines are provided with more and more cognitive capacities,
enabling applications like speech recognition, automatic translation or image
understanding. These technological advances may have huge societal impacts
on fields such as mobility (autonomous driving), health (automatic diagnosis),
consumption (digital marketing), or even social interactions.

One of the most important field in AI is Computer Vision (CV), which aims at
automatically understanding the visual content of images or videos. Until the
2010’s, a first mandatory step to numerous CV tasks was the calculation of visual
features that describe the image. Based on strong mathematical modeling, they
are handcrafted to be invariant to several image transformations such as scale or
lighting variations.

At the annual ImageNet classification challenge held in 2012, these traditional
techniques have been outperformed by Deep Learning (DL) methods (Figure 1.1).
Given enough training data, deep networks can learn a meaningful representation
of the image together with the classification. Since then, DL-based models have
shown outstanding results in various complex vision tasks such as object detection,
semantic segmentation, image colorisation or even 3d shapes generation.

This opens the field for even more challenging applications involving multiple
modalities, where deep networks can be designed to process images and texts. At
the core of these multi-modal systems lies the question of modeling interactions
between different sources, and more generally of automatically reasoning about
the visual data. These complex problems are tackled by both academic and
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2 introduction

Figure 1.1 – Historic error on ImageNet. This plot shows the top5 error obtained
by the annual winner of ImageNet image classification challenge.
A significant performance gap was achieved by a DL architecture
(a ConvNet) in 2012 with respect to traditional CV approaches. The
illustration was taken from (Bottou et al. 2016).

industrial actors, which makes this research domain a rich and extremely active
field.

1.1.1 Joint image/text understanding

In the last decade, an increasing quantity of multi-modal data has become
available, through web platforms such as e-commerce websites or social media. A
lot of work has been done by the Machine Learning (ML) community to develop
theoretical and practical principles that help analyse such heterogeneous content.
In particular, studying the interactions between images and free-form texts has
seen a growing interest.

One specific problem that appears in such setups is the multi-modal align-
ment. Given a corpus of visual data where each image is associated to a textual
description of its content, multi-modal alignment aims at finding a common
representation for both modalities. In this so-called multi-modal space, images
and texts are comparable, and it is possible to obtain a quantitive measure of
how similar an image and a text are. Early work for aligning image and text
representation spaces are based on the statistical model of Canonical Correlation
Analysis (CCA) (Hotelling 1936; Hardoon et al. 2004). Images and texts are seen
as multivariate random variables, and CCA estimates a set of projections that
maximize the correlation between true image/text pairs. Later on, CCA has been
integrated into the DL framework in (F. Yan et al. 2015), where the Deep CCA is
designed to be compliant with the efficient training of DL systems. Another line
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Figure 1.2 – Illustration of a multi-modal representation space. Image and sen-
tence vectors are projected into the same space through the learning
of a multi-modal metric. In this space, an image and its descrip-
tion are brought close together, and unrelated image/text pairs are
separated. The illustration was taken from (Socher et al. 2014).

of work chooses to cast multi-modal alignment as a metric learning problem. In
(Socher et al. 2014), a specific loss function called the triplet loss learns image and
texts projections into a common vector space. This loss is used to bring closer
together images and their textual descriptions, while pulling away unrelated
image/text pairs. Interestingly, the language embedding is computed by a special
type of neural network that operates over the text’s Semantic Dependency Tree
(see Figure 1.2). The same type of triplet loss is used in (Kiros et al. 2015), with
a less explicitly structured language representation (the Skip-thought encoding,
presented in Section 2.2.2).

Creating these common representation spaces between images and texts has
opened the field for more challenging applications, such as automatic image
captioning. It consists in learning to automatically generate a linguistically correct
sentence that describes an image. Given a large corpus where each image is
described by a sentence, a language model learns to maximize the likelihood of
the description conditionned on the image. Learning to estimate this probability
is often done in an autoregressive fashion, where the model tries to predict
the next word given all previous words and the image that is passed as input
(Kiros et al. 2014a). This caption generation task can even benefit from having a
common multi-modal representation space, as it has been shown in (Kiros et al.
2014b) (see Figure 1.3). More ambitious, the reverse problem of generating images
from textual descriptions has also been tackled, using the recently introduced
Generative Adversarial Network (GAN) framework (Goodfellow et al. 2014; Reed
et al. 2016; H. Zhang et al. 2017b).
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Figure 1.3 – Illustration of a caption generation. An image and its associated
description are projected into the same representation space. Then,
any vector from this space can be passed as the input of a neural
language model that generates a sentence, one word at a time. The
illustration was taken from (Kiros et al. 2014b).

1.1.2 Visual Question Answering

This trend of interlinking image and text modalities within a joint learning
process, whether for alignment or data generation, has opened the perspective on
deeper image and language understanding problems for ML researchers. In this
thesis, we focus our efforts on what is among the most challenging vision and
language applications: Visual Question Answering (VQA). It consists in building
systems capable of answering any natural language question about any image (see
Figure 1.4). VQA involves a high-level understanding of multiple modalities, in a
context where neither image nor text can be considered independantly from one
another. The system should model the relations between an image and a textual
question, and extract meaningful interactions that can help provide an answer.
Interestingly, VQA falls within the broader field of human-machine interactions,
and is a first step to vision-based interactive systems.

The VQA problem was formulated for the first time, to our knowledge, in
(Malinowski et al. 2014a). As it has been noticed later in (Malinowski et al.
2014b; Antol et al. 2015), answering questions about images involves addressing
multiple non-trivial issues. The system should be able to understand a large
and varied quantity of semantic concepts, from both perceptual and linguistic
modalities. Moreover, as the quantity of understood concepts grows, semantic
boundaries between some of those concepts may become ambiguous and fuzzy,
which should be accounted for in the model. Besides, a VQA model is also
expected to have commonsense knowledge about the world. This capacity may
be necessary to answer questions about what use to make of an object. Other
complex types of questions require high-level scene understanding or visual
reasoning capacities (Johnson et al. 2017a). They include object detection, fine-
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Figure 1.4 – Illustration of the VQA task. If a human was asked to answer this
question, he would need to go through multiple steps. After precisely
understanding the question, he would need to 1) find the ladies; 2)
locate each one’s fur; 3) find which fur is blue; 4) associate the blue
fur with the lady who is wearing it; 5) find out if she is also wearing
glasses; and finally 6) answer yes.

grain recognition, attribute identification, visual relationship recognition, counting,
comparing objects with respect to certain caracteristics, or even performing logical
operations. In the example shown in Figure 1.4 the question “Is the lady with the
blue fur wearing glasses?“ calls for these types of visual reasoning capacities. Finally,
the problem of quantifying the performance of VQA models is not straightforward.
As the goal is to mimic human response, it is necessary to deal with ambiguities,
which can stem from many phenomena that are inherent to human judgement. For
all these reasons, answering questions about images constitutes a major challenge
for researchers in ML, and more generally in AI.

Most of the research conducted in VQA involves DL techniques, for their effec-
tiveness and their ability to leverage large quantities of data. For each modality,
representations are provided by powerful models, which may have been pre-
viously trained to understand the semantics behind the data they encode (see
Section 2.2). For the image representation, a ConvNet provides a vector (or possibly
many) that contains information about the image content, the different objects that
are depicted in the picture, and the attributes each one carries. As for the question
representation, a recurrent model reads the sentence and computes another vector
that incorporates information about the words and their contexts. Designing a
VQA model consists in finding the structures that are appropriate to understand
each modality with respect to the other, learn the relevant interactions between
image and question representations, and predict the correct answer.
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1.2 Contributions

In this thesis, we tackle the problem of VQA from a DL perspective. We first
attack the issue of learning a multi-modal fusion module, central to VQA, that
merges vectors by extracting their relevant correlations. In particular, we focus
our efforts on the powerful solution provided by bilinear models, and study them
under a tensor viewpoint. It constitutes the work we present in Chapter 3 and
Chapter 4. At a higher level, answering questions about images requires more
than simple multi-modal fusions. The different objects, their visual appearance,
how they interact with each other, the spatial layout in which they are disposed,
etc., should be understood by the model. In Chapter 5, we explore modeling the
structure in the representation of the visual scene, and thus mimick some type of
visual reasoning within the VQA system architecture itself.

This thesis is based on the material published in the following papers:

• Hedi Ben-Younes*, Rémi Cadène*, Nicolas Thome, and Matthieu Cord (2017).
“MUTAN: Multimodal Tucker Fusion for Visual Question Answering”. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV);

• Hedi Ben-Younes, Rémi Cadène, Nicolas Thome, and Matthieu Cord (2019).
“BLOCK: Bilinear Superdiagonal Fusion for Visual Question Answering and
Visual Relationship Detection”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI);

• Hedi Ben-Younes*, Rémi Cadène*, Nicolas Thome, and Matthieu Cord
(2019). “MUREL: Multimodal Relational Reasoning for Visual Question
Answering”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)

1.3 Industrial context

This thesis has been realized in collaboration with Heuritech, a french startup
specialized in social media analysis for the fashion industry. It develops systems
that extract information from user-generated posts, and aggregates this infor-
mation into interactive dashboards for brands and retailers. Automatic image
understanding is at the core of the company’s technology, and constitutes its
principal research focus.

Most of the social media content that is relevant for the fashion industry is
visual. It mainly consists in images, posted by influencers or simple users, that are
focused around pieces of garment. Analyzing these pictures involves detecting
the fashion-related objects, understanding their nature, finding their attributes
(such as color, texture, ...), and even sometimes identifying the exact brand and



1.3 industrial context 7

model name of the product. DL systems are an appealing approach for their
performance, robustness and flexibility. This is why the research effort on visual
recognition at Heuritech is mostly turned towards DL.

Even if the visual modality provides the more direct information for fashion-
related content, viewing a social media post only as a picture may be restrictive.
A caption is often associated to the image, with user-defined hashtags. Other
users can show interest through likes and comments. Sometimes meta-data can
be retrieved, such as the geo-localisation or the time at which the picture was
taken. All these other signals may carry information under the light of which the
image content could be understood. For Heuritech, exploring and developing
methods for merging several modalities within ML systems is of high interest, and
has been studied in the work of this thesis.
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As we stated in the introduction, deep multi-modal representations have been
recently developped for numerous purposes. The work of this thesis is focused
on Visual Question Answering (VQA), which consists in designing and training
Machine Learning (ML) models to answer any free-form question, about any
natural image. Architectures for VQA usually follow a generic template, depicted
in Figure 2.1. Mono-modal encoders first provide high-level representations of
visual and linguistic data. They constitute input modules to the actual VQA system,
designed to fuse both modalities and reason about their interactions in order to
provide an answer.

Learning to fuse both image and question representations to predict the answer
is actually the core of Deep Learning (DL)-based VQA systems. Two functional
components can be distinguished from each other, as they operate at different
architectural levels. The final system performance heavily depends on these two
components, and they constitute the research in VQA models almost exhaustively.
First, the multi-modal fusion component operates at the vector level. It aims at
learning an elementary function that takes two vectors as input and provides

9
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Question: Is the lady with the blue
fur wearing glasses ?

Yes

Image
representation 

Text
representation 

Prediction

Visual reasoning 

: multi-modal fusion

Inputs VQA System Output

Figure 2.1 – Big picture of a VQA system. Two mono-modal understanding sys-
tems provide meaningful representations of image (in blue) and
question (in red). These two representations are used as inputs to the
visual reasoning architecture (in green), whose structure determines
the high level capacities of the model. It is based on possibly many
multi-modal fusion layers (in orange), each learning to extract the
relevant interactions between its input. Finally, a representation of
the image/question pair is passed to the output module (in gray)
which provides an answer.

an output that extracts the relevant interactions between its inputs. The second
important layer is the architectural design itself, which is often referred to as
visual reasoning. It expresses the high-level capacities of the model, and conveys
the inductive biases that the model can exploit using the training data. For
instance, some models are designed to focus their attention on a subset of the
image before predicting the answer. Others iterate multiple times over the image
to refine their internal understanding of the scene, or can benefit from pairwise
relations between objects, etc.

In this chapter, we review the related works that is relevant to study and
build VQA systems. First, in Section 2.1 we give the generic setup for training a
VQA architecture. As visual and linguistic representations constitue elementary
modules used in all the VQA architectures, we review their design and training
in Section 2.2. Then, we relate how the crucial problem of multi-modal fusion
for VQA is tackled in Section 2.3. In Section 2.4, we review the different model
structures, and how they induce behaviours that are akin to some types of
reasoning processes. The different datasets that we use throughout this thesis are
presented in Section 2.5. Finally, we expose our contributions and position them
with respect to the existing literature in Section 2.6.
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2.1 VQA architecture

In Figure 2.1 we show the architecture of a classical VQA system. An image
representation (blue rectangle) is provided by a deep visual features extractor that
yields one or many vectors. In parallel, a textual representation (red rectangle) is
the output of a language model that goes through the question. Then, both these
representations are merged (green rectangle), with possibly complex strategies
based on multi-modal fusion and high-level reasoning schemes such as iterative
processing or visual attention mechanisms. Finally, a prediction module (gray
rectangle) provides its estimation of the answer to the question. The modules
that compose the VQA system are usually designed to be end-to-end trainable
on a dataset set D = {(vi, qi, ai)}i=1:N. It contains ground-truth data where the
question qi on the image vi has answer ai ∈ A.

A VQA model can be seen as a parametric function fΘ that takes (image, ques-
tion) pairs as input and yields an answer prediction. Using the training data D,
we can define an empirical loss function that quantifies how far the predictions of
fΘ are from the true answers:

L(Θ,D) = 1
N

N

∑
i=1

l ( fΘ (vi, qi) , ai) (2.1)

where l measures the difference between the model prediction fΘ(vi, qi) and the
ground truth ai.

As a result of the free-form answer annotation process, answers in A are
possibly composed of multiple words. For this reason, early attempts (Malinowski
et al. 2016; Gao et al. 2015) model the answer space as sentences, and learn to
sequentially decodes each word of the true answer. However, the most widely
adopted framework to represent the answer space is classification. In this setup,
the scope of possible answers is fixed, each answer corresponds to a class, and
the model computes a probability distribution over the set of classes given an
image/question pair. As proposed in (M. Ren et al. 2015; Ma et al. 2016), the
classes are obtained by taking the most frequent answers in the training set,
regardless of whether they contain one or multiple words.

Following this setup, the VQA model outputs a probability distribution over
possible answers fΘ(v, q) ∈ [0, 1]|A|, where each coordinate contains the estimated
probability of the corresponding answer. To train the model, we use the cross-
entropy loss function defined as:

l( fΘ(vi, qi), ai) = − log fΘ(vi, qi)[ai] (2.2)

The goal of the training stage is to find the parameters Θ? that minimize the
empirical loss:
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Θ? = argmin
Θ
L(Θ,D) (2.3)

In order to prevent the network from overfitting the training dataset D, we use
an external validation set V to apply the early-stopping strategy. It constists in
learning on the training set until the empirical loss stops decreasing on V . This
technique, widely used in DL, acts as a regularizer.

2.2 Mono-modal representations

We aim at building models that are able to answer questions about images.
Thus, a VQA model takes as input an image and a question, that are processed by
mono-modal modules. The nature of these visual and textual representations will
have a direct impact on the design and performance of a VQA system.

2.2.1 Image representation

Since the success of DL methods at the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) (Russakovsky et al. 2015) challenge in 2012, these architec-
tures keep improving the state-of-the-art on a large part of all the Computer
Vision (CV)-related tasks: image classification, instance and semantic retrieval,
semantic segmentation, object detection, and others. At the very basis of DL is
the feedforward neural network. This model progressively maps raw inputs (e.g.
image pixels) to outputs (e.g. a distribution over classes) through multiple transfor-
mation layers, usually consisting in an affine projection followed by a non-linear
activation function. A model that stacks many layers one after the other is referred
to as a Deep Neural Network (DNN), and is able to perform highly non-linear
complex mappings. The transformation performed by each layer is parametrized,
and their optimal value is obtained by minimizing a problem-dependant loss
function. A DNN being differentiable, optimizing its parameters is usually done by
gradient-based methods such as Stochastic Gradient Descent (SGD). Computing
the gradient of the loss function with respect to each parameter of the DNN is
almost exclusively done with the backpropagation algorithm (LeCun et al. 1989).

Convolutional Neural Networks (ConvNets) (Fukushima 1980; LeCun et al. 1989;
Krizhevsky et al. 2012) are a special kind of neural networks where the linear
operation within each layer is a convolution, which makes these architectures
well suited to process image data. Indeed, convolutions provide an effective way
to share parameters between local feature extractors that go through the whole
image, taking into account spatial coherence of the visual content. Similarly
to classical DNNs, deep ConvNets stack multiple convolution layers separated by
non-linear activation functions such as Rectified Linear Unit (ReLU) (Krizhevsky
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et al. 2012). Local pooling operations may also be integrated in the architecture,
which make the representations invariant to local perturbations, and provide a
control over their spatial size. As these models typically contain a huge number
of parameters, large datasets are required if we want to train them. This is why
these deep ConvNets are usually trained on ImageNet (Russakovsky et al. 2015), a
dataset of 1 million images, each manually assigned to a label from a vocabulary
of a thousand classes.

Collecting and labelling data is costly, which may limit the size of available
data of a given task. However, a network trained on ImageNet (Russakovsky
et al. 2015) has been shown to provide image representations that are generic
enough to transfer to other tasks (Razavian et al. 2014; Azizpour et al. 2016). This
property makes it possible to pre-train a ConvNet on ImageNet and slightly modify
its weights (=fine-tuning) to adapt it to a new dataset, for which we have less
labelled data.

In many VQA architectures, the image is represented using a pre-trained network
as a features extractor. Each image is presented at the input of the network, and
the forward pass is computed up until the penultimate layer, which outputs an
internal representation that the ConvNet constructs for this image. This vector is
used to characterize the image, and will be passed to the question answering
system. In early VQA works, this single vector approch was very popular for its
simplicity (Malinowski et al. 2016; Gao et al. 2015; M. Ren et al. 2015; Ma et al.
2016; Kim et al. 2016).

Incorporating spatial information. Unfortunately, information about spatial
layout is hardly reachable from this single vector approach. Many questions in
VQA may involve a fine understanding of the scene, and require to manipulate
some spatial concepts such as on top of, left, right, etc. This is why modern VQA
systems use more than a single vector to represent the image. One fairly simple
technique is the Fully Convolutional Network (FCN) approach (Long et al. 2015;
He et al. 2016). Instead of yielding a single vector that represents the whole image,
an FCN preserves the spatial information throughout the network and provides a
set of spatialy-grounded representation vectors organized in a 2-d grid (see the
left image in Figure 2.2). All the vectors are computed simultaneously, in a single
forward pass. As it has been done in (Long et al. 2015), one can easily transform a
regular ConvNet into an FCN by increasing the size of input images and reshaping
all the linear projections matrices into 1× 1 convolutions. These FCN features
have been extensively used in VQA as bags of vectors (Z. Yang et al. 2016; Fukui
et al. 2016; Kim et al. 2017; Z. Yu et al. 2017). In rarer cases, the grid structure in
the representation is leveraged by the VQA model to increase dependance of the
output on the spatial layout of the image (Xiong et al. 2016; Z. Chen et al. 2017).

Since 2017, the standard in visual representations for VQA are the bottom-up
features (Anderson et al. 2018). As illustrated in Figure 2.2, the fixed-grid structure
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Figure 2.2 – Bottom-up features On the left, the fixed-grid illustrates the region
that each feature vector in an FCN represents. On the right, each
salient object in the image constitues an input region to the VQA
system. The illustration was taken from (Anderson et al. 2018).

is replaced by a set of object-focused regions. The bottom-up mechanism, based
on Faster-RCNN (S. Ren et al. 2015), proposes image regions and associates each
one with a representation vector. This model is trained on a separate dataset to
detect objects, predict their class but also their attributes such as a color, a texture,
a size, etc. Objects are detected in two stages. First, a small network called Region
Proposal Network (RPN) is slid over convolutional features at an intermediate
level of the ConvNet, and predicts a class-agnostic objectness score for several
anchor boxes. After a step of Non-Maximum Suppression (NMS) with Intersection
over Union (IoU) threshold, the top boxes are kept to be used as input for the
second stage. In this stage, features that correspond to each region are extracted
with a method called Region of Interest (RoI) pooling, and these vectors are used
to classify each box proposal. In both stages, a refinement of the bounding box
coordinates is also learnt. At the time of writing, these features are the ones that
provide the best results in VQA (Y. Zhang et al. 2018; Jiang et al. 2018; Kim et al.
2018). Moreover, using these representations is also time-efficient: the typical
number of regions per image is 36 for the bottom-up features, whereas it can
reach 196 for FCN grids of size 14× 14.

In our work, we propose several deep models based on ConvNet representations
for their simplicity and compactness, and on FCN features to compare against
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leading methods (Chapter 3). As the work on bottom-up features (Anderson et al.
2018) was published in 2017, we use them in our contributions that came after
and that are presented in Chapter 4 and Chapter 5.

2.2.2 Textual embedding

In classical VQA systems, a sentence encoder provides an algebraic representa-
tion of the question. This representation should encode precise and fine-grain
semantic information about questions with variable length. Multiple models
exist for such encoders, with different complexity and expressivity. Their choice
and design hold a critical position in question understanding, and in the final
performance of the VQA model.

To manipulate texts in natural language, we first need to define the atomic
linguistic element. We could consider characters, words, bi-grams of words, etc. In
the context of VQA, the usual atomic linguistic unit is words. Before representing
arbitrarily long sentences, we need to define how words can be processed by ML
models.

Word representation. The simplest way to represent a word is by its one-hot
encoding. Given a finite list of words that constitute a vocabularyW , each word
w is assigned to an integer index iw. The one-hot encoding of a word w in the
vocabularyW is a binary vector vw whose size is the same asW , and where the
k-th dimension is defined as follows:

vw[k] =
{

1 if k = iw
0 else

(2.4)

This very high-dimensional vector is usually substituted by the more compact
word embeddings, which provide a learnable representation of words. Each word
w is assigned to a vector of parameters xw ∈ Rd, referred to as the embedding of
w. The dimension d is a hyperparameter, whose typical value is between 50 and
500. These vectors are initialized randomly, or using pre-trained models such
as Word2Vec (Mikolov et al. 2013) or Glove (Pennington et al. 2014). Depending
on the task on which these vectors have been trained, semantic and syntactic
properties of words can be captured in their associated embedding. In particular,
the euclidean distance between two embedding vectors reflect some type of
semantic similarity between their associated words.

Bag of words. One of the simplest ways to represent an arbitrarily long sentence
as a fixed-size vector is to view the sentence as a bag of words. The first step is
to tokenize the text into a list of elementary language units (in our case, they are
words): q = [w1, ..., wT]. Then the bag of words representation simply averages
the word embeddings as follows:
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q =
1
T

T

∑
i=1
xwi (2.5)

This representation has been used in early works of VQA (Antol et al. 2015; H. Xu
et al. 2016; Zhou et al. 2015). In (Shih et al. 2016), a variant of this model separates
different parts of information by splitting the question into 4 bins: the first bin
contains the first two words of the question, the second bin contains the nominal
subject, the third is composed of all other noun words, and the last one is made
of all the remaining words. Word vectors are averaged within each bin, and all
the 4 vectors are concatenated.

Recurrent networks. While these bag of word models are easy to implement,
their effectiveness is limited by the fact that word order is not taken into account.
More elaborate models are required to learn a fixed-dimensional representation
of variable-length sequences. Recurrent Neural Networks (RNNs) (Elman 1990;
Bodén 2001) have been developped to model time dependencies in sequences. In
particular, they have been used to represent sentences (Mikolov et al. 2010) as they
provide order-dependant representations. These networks operate over an input
space, e.g. the word vectors, and an internal state that summarizes what has been
processed by the network so far. Given a sequence of word vectors [x1, ...,xT], the
RNN iteratively updates its internal hidden state s using a simple transformation:

ht = f (Wh→hht−1 +Wx→hxt) (2.6)

where f is a non-linear activation function. Additionally, an output layer can
provide predictions for each timestep yt = g(Wh→yht), where g is a problem-
dependant activation function. The parameters of an RNN are trainable end-to-end
with backpropagation. The output vectors [y1, ..., yT] can be used to calculate
a loss with respect to some ground-truth value, or they can also be forwarded
to another neural network. In Figure 2.3, we show different possible types of
input-output designs summarized in (Karpathy 2015).

In practice, the classical RNN exhibits some problems regarding the propagation
of gradients during learning, and seems to be unable to handle long-term depen-
dencies. These phenomena, referred to as vanishing and exploding gradients,
have been studied in (Bengio et al. 1994; Pascanu et al. 2013). To circumvent these
issues, more elaborate recurrent models have been developped. In particular,
the Long-Short Term Memory (LSTM) network was proposed in (Hochreiter et al.
1997a), and made popular by (Greff et al. 2015; Christopher Olah 2015). The
core idea of this model is the cell state ct, that stores information from previous
timesteps. The network can choose to remove information from the cell, update
its value using the input, and output its content towards the hidden state ht.
Mathematically, three gating operators are computed as functions of the input xt
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Figure 2.3 – Input-output designs of RNNs. On the left, the many-to-one archi-
tecture may be used for sentence classification. On the center, the
many-to-many scheme is often chosen for neural langage translation
models, where it is required to have full understanding of the whole
sentence before starting to predict its traduction. Finally on the right,
this setup provides a representation for each input token, useful for
tasks such as part-of-speech tagging. Source: (Karpathy 2015)

and the previous hidden state ht−1: the input gate it, the forget gate ft and the
output gate ot:

it = σ (Wi[ht−1,xt] + bi) (2.7)
ft = σ

(
W f [ht−1,xt] + b f

)
(2.8)

ot = σ (Wo[ht−1,xt] + bo) (2.9)

where σ is the sigmoid function, whose output is in [0, 1]. The network proposes
a cell vector c̃t in the form

c̃t = f (Wc[ht−1,xt] + bc) (2.10)

and this vector is used to update the network’s cell and compute ct following
the equation

ct = ft ∗ ct−1 + it ∗ c̃t (2.11)

Intuitively, ft selects the components of ct−1 that should be kept (ft close to
1) and those that should be forgotten (ft close to 0). Similarly, it chooses the
components of c̃t that should be passed on to ct. Finally, following the same
gating mechanism, the internal hidden state ht is updated by

ht = ot ∗ tanh(ct) (2.12)

Other recurrent models have been developped using similar gating processes.
Among them, the Gated Recurrent Unit (GRU) (Cho et al. 2014; Chung et al. 2014)
is one the most popular, certainly because its performs as well as LSTMs for less
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Figure 2.4 – Skip-thought model.

parameters. In this simplified model, the cell state c is removed and the input and
forget gates are merged into a single update gate. The equations of the GRU are as
follows:

zt = σ (Wz[ht−1,xt]) (2.13)
rt = σ (Wr[ht−1,xt]) (2.14)

h̃t = f (Wz[rt ∗ ht−1,xt]) (2.15)
ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (2.16)

The vast majority of VQA models use either LSTM or GRU to encode variable
length sentences in a vectorial form. They keep only the last hidden state, or they
use more elaborate models to aggregate the list of all output vectors, one for each
timestep (Z. Yu et al. 2017; Z. Yu et al. 2018).

As we saw in Section 2.2.1, image models can be pre-trained on the ImageNet
dataset to learn to extract relevant visual feature vectors. Similar pre-training
schemes exist for language models. In particular, the Skip-thought encoder (Kiros
et al. 2015) learns the weights of a GRU neural network using a large quantity
of unlabelled textual data. As is illustrated in Figure 2.4, a GRU first encodes a
sentence into a unique vector, which is supposed to contain all the information
about the sentence. This vector is then fed to a second GRU that will try to
decode the previous sentence and the next sentence occuring in the text. This
self-supervised model, inspired by Word2Vec (Mikolov et al. 2013), offers an
effective pre-training scheme for sentence representations, and is often used to
encode the question in VQA models (Kim et al. 2017; Z. Yu et al. 2017).

In this thesis, the question is systematically represented using the last internal
state of GRU network pretrained on the Skip-thought task. Our models could
surely benefit from the very recent advances in sentence representation such as
ELMo (Peters et al. 2018) or Transformer-based architectures (Devlin et al. 2018;
Radford et al. 2019).



2.3 multi-modal fusion 19

2.3 Multi-modal fusion

2.3.1 Fusion in VQA

Multi-modal fusion is a critical component of VQA systems. Whether it consists
in the whole system or a sub-part of it, we often need to build a learnable function
that takes as input two vectors and outputs a single representation. Moreover,
this representation is required to account for complex interactions between both
modalities. This is why the VQA task has been a fertile playground for researchers
on multi-modal fusion. More formally, given the question embedding q ∈ Rdq

and an image representation v ∈ Rdv , how do we design a learnable function f ,
parametrized by θ, that provides an output y ∈ Rdo such that y = f (q, v; θ) ?

Early works have modeled interactions between multiple modalities with first-
order models. The IMG+BOW model in (M. Ren et al. 2015) is the first to use a
concatenation to merge a global image representation with a question embedding,
obtained by summing all the learned word embeddings from the question. In
(Shih et al. 2016), (image, question, answer) triplets are scored in an attentional
framework. Each local feature is given a score corresponding to its similarity with
textual features. These scores are used to weight region multimodal embeddings,
obtained from a concatenation between the region’s visual features and the
textual embeddings. The hierarchical co-attention network (J. Lu et al. 2016), after
extracting multiple textual and visual features, merges them with concatenations
and sums. To improve the expressive power in the multi-modal fusion, (Jabri et al.
2016) place a succession of fully-connected layers behind the concatenation of
textual and visual features.

However, most of the recent work on multi-modal fusion is focused on bilinear
models, as they are a core component of many state-of-the-art VQA models. They
express each coordinate in the output as a function of pairwise products between
dimensions of the two input vectors. In (Fukui et al. 2016), they use the fact
that a bilinear model can be seen as a linear model whose inputs are all the
possible products between dimensions of q and v: y = W [q ⊗ v], where ⊗
is the outer product, and [.] corresponds to the vectorization operation. The
Multimodal Compact Bilinear (MCB) pooling is introduced to make the model
tractable, and the calculation of the outer product avoided thanks to count-
sketching techniques (Charikar et al. 2002). However, the best performing methods
tackle this complexity issue from a tensor analysis viewpoint. In the recent
Multimodal Low-rank Bilinear (MLB) pooling (Kim et al. 2017), the number of
parameters in the bilinear model is controlled using the concept of tensor rank.
They write the interaction between image and text vectors as a Hadamard product
(or element-wise multiplication) between vectors: y = W o ((W qq) ∗ (W vv)).
More recently, the Multi-modal Factorized Bilinear (MFB) fusion (Z. Yu et al. 2017)
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writes each output dimension as a scalar function of the shape y[k] = q>Wkv,
and reduce the model complexity by constraining the rank of each matrix Wk.

As we can see, the task of VQA provides an attractive application for developping
effective and efficient multi-modal fusions. In the following, we review other
significant works that use bilinear models and tensor structurations for other
purposes than VQA.

2.3.2 Bilinear models

In all the aforementionned contributions, the tensors we manipulate correspond
to parameters of a model that we want to learn using standard DL tools, such as
SGD optimizers and back-propagation. In this context, we focus on the represen-
tation power and computational complexity reduction. It is worth mentionning
that a long line of work on tensor structurations aims at reducing tensors that
correspond to data. In these cases, inferring an interpretable structure through
the decomposition is often desired. In the next paragraph, we briefly review some
of these contributions.

Tensor decompositions in data analysis In the last century, multi-way tensor
analysis has been an active field of research. In many problems where the data
is acquired directly as different views, multilinear algebra provides an efficient
framework for analyzing and understanding the complex underlying phenomena.
In fluorescence spectroscopy analysis (Andersen et al. 2003), a low-rank model
is used to understand complex chemometrics data, where different samples
are measured at several emission wavelengths for several excitation wavelength,
thus forming a three-way array. Tensor decomposition are also used to analyze
Electroencephalography (EEG) data, in the form of a three-way array of size time
samples × frequency × channel (Miwakeichi et al. 2004). An extensive review on
tensor analysis for chemometrics is provided in (Bro 2006), where they cover
other applications such as kinetics, magnetic resonance or chromatography. Blind
source separation of statistically independant signals can be solved using a low-
rank decomposition (Comon 2014), whereas more complex models can match the
structure of correlated sources (Cichocki et al. 2015). In (Goovaerts et al. 2015),
a low-rank model is used to detect irregular heartbeats in a three-way array of
size channels × time steps × heartbeats. Tensor decompositions have also been used
as data compression tools, as in (Wang et al. 2008) where a video is compressed
using a Tucker model (that we present later in Chapter 3) on the third-order
tensor of size height × width × f rames. The image classification problem has
also been viewed through the lens of tensor decompositions. In (Vasilescu et al.
2002), the tensor framework is used to analyse face images of different persons
under varying viewpoints, expressions and illumnations. Later, (S. Yan et al. 2007)
propose a tensor-based multilinear discriminant analysis algorithm to classify face
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images. Finally, web data analysis has also benefitted from the development of
tensor decompositions, as these data are often intrinsically multi-modal (Evrim
Acar et al. 2005; Bader et al. 2007; Sun et al. 2005; G. Kolda et al. 2005). More
details about the above references can be found in (Cichocki et al. 2015; Mørup
2011; E. Acar et al. 2009).

Compressing learning modules An important family of work uses multi-linear
algebra and tensor structures to reduce the complexity of DL models. In (Lebedev
et al. 2014), tensor decompositions are used to simplify and compress convolution
kernels. The convolution filter banks of a trained ConvNet are decomposed into
their canonical components using a low-rank approximation. After this architec-
tural change, the network remains differentiable, which allows fine-tuning after
the parameter compression. This technique shows important speed-up, under
low performance drop. In (Y. Yang et al. 2017a), an application of tensor decom-
positions for efficient parameter sharing in multi-task learning is presented. The
matrix weights of different task-specific networks are considered as elements of a
decomposition of the same underlying tensor, which allows an implicit sharing
of trainable parameters and improves performance over having multiple single
task independant learnings. More recently, (Ye et al. 2018) simplify the large
linear projections W .x contained in an LSTM network (Hochreiter et al. 1997b)
by reshaping the matrix W and the input vector x into multi-way arrays W
and X . The tensor W is then compressed using the block-term decomposition,
introduced in (De Lathauwer 2008). Compared to the classical LSTM, the com-
pressed architecture converges faster, to a more accurate model, and with less
parameters. In Chapter 4, we develop a multi-modal fusion module based on
this tensor decomposition. All these works on compressing deep architectures
through tensor reduction confirm the intuition that modern DL models (ConvNets,
LSTMs and multi-task networks) are over-parametrized. Tensor decompositions
constitute a promising research path towards lighter and more efficient models.

Multi-modal fusion Another research track on tensor decomposition for DL is
focused on multi-modal fusion, in other contexts than VQA. Given two inputs,
represented as vectors x ∈ Rx and y ∈ Ry, what type of trainable function
f , parametrized by θ, can be used to merge them in a single output vector
z = f (x, y; θ) ∈ Rz ? One popular family of functions are bilinear models, which
can be characterized by a three-way tensor T ∈ Rx×y×z. Each entry Ti,j,k is a
learnable parameter that weights a specific product xiyj for an output dimensions
zk. While very expressive, the number of parameters grows cubically with the
number of dimensions in the inputs and output vectors. A naive implemen-
tation of such models is thus intractable for most deep learning applications.
Leveraging the power of bilinear models for DL systems is however possible if
the tensor T is simplified through efficient structuration. In (Kiros et al. 2014a),
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a conditional language model is trained to generate the textual description of
an image, represented by the vector x. More precisely, the model predicts the
next word wn as a low-rank bilinear fusion between the r̂, which represent the
previous words (w1, ..., wn−1), and x. Another type of tensor decomposition is
used in (G. Hu et al. 2017) for face recognition. In this work, a bilinear model
merges a visual attributes vector with face recognition features, thus leveraging
the robustness of attributes prediction to improve face authentication. The tensor
fusion framework has also impacted multi-domain and multi-task learning. In
(Y. Yang et al. 2017b) a bilinear fusion between an input vector and a task indicator
is used to express a task-specific linear model. To share parameters between tasks
or domains, multiple tensor decompositions are evaluated and compared, always
showing better performance than training each domain independently. Recently,
(Rose Yu et al. 2017) use p-order arrays of parameters in recurrent networks to
model interactions between multiple consecutive hidden states, and thus perform
long-term forecasting on traffic and climate time-series.

A major part of the work in this thesis falls within this line of research. We study
bilinear models to learn the relevant correlations between image and question
representations. We develop techniques based on decompositions of higher order
tensors to make bilinear models tractable in a DL context. Moreover, we show the
links and the interconnections between our methods and previous work on second
order fusions. As we delve deeper into tensor decompositions for multi-modal
fusion, we explore other applicative contexts than VQA where this type of fusion
proves to be beneficial.

2.4 Towards visual reasoning

We saw in Section 2.2 that the input modules of a VQA system often take the
form of a DL representation extractor. In particular, an image may be represented
as a single vector, or a bag of vectors where each embedding is spatially grounded
in the image. Then we introduced the different types of fusion layers in Section 2.3,
trained to provide a representation that models the interaction between two vector
spaces. In this section, we are interested in how different VQA architectures induce
different structures in the model. These structures can be seen as providing visual
reasoning capacities to the systems, and are crucial to their performance.

2.4.1 Visual attention

One of the most widely used architecture for VQA is the question-guided visual
attention mechanism. This technique was introduced in (Bahdanau et al. 2015) for
neural machine translation and in (K. Xu et al. 2015) for image caption generation.
When the input is presented as a set of vectors {vi}i=1..N , the attention mechanism
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Figure 2.5 – Visual attention for VQA Each image vector is fused with the ques-
tion embedding to provide a scalar value. These scores are used
to weight the image region vectors and form the final question-
dependant image representation.
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Figure 2.6 – Multi-glimpse attention for VQA Multiple attention maps (here 2

glimpses) are computed in parallel and are used to pool the region
vectors independantly. The pooled vectors are concatenated and
fused with the question to predict the answer.
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learns to discard some of these vectors that are irrelevant to complete a certain
task, with respect to a context vector c. For each vector vi, an attention score ai is
computed as a function of vi and c, which accounts for how relevant the input
i is, given the context c. In the most common and simple case of soft-attention,
these scores are used to weight-sum pool the input vectors and provide the final
context-dependant representation. In Figure 2.5, we show the attention-based
architecture for VQA, where the attention is computed over the set of image region
vectors, and the context is provided by a question embedding.

A multi-glimpse version of this soft-attention is used in (Fukui et al. 2016),
where K attention maps are computed in parallel. Each parametrizes a different
weighted sum pooling to provide a per-glimpse image representation. The final
question-dependant image representation is the concatenation of the K glimpses.
This multi-glimpse soft-attention, depicted in Figure 2.6, is used in (Fukui et al.
2016; Kim et al. 2017; Z. Yu et al. 2017; Z. Yu et al. 2018).

The different glimpses can also be computed in an iterative fashion, as in the
Stacked Attention Network (SAN) proposed in (Z. Yang et al. 2016). At step k,
a query vector is computed with the recurrence law uk = ṽk + uk−1. In this
equation, ṽk represents the attended visual representation at step k over the set
of region vectors {vi}. The weights that are used to do the sum pooling pk are a
function of the previous query vector uk−1. The final query vector uK is used to
predict the answer with a classification layer. A similar method is proposed in (H.
Xu et al. 2016), where the iterative visual attention is based on similarities between
question words and image regions. All these methods rely on the soft version of
attention mechanisms, which is the most widely used because of its simplicity.
In the recent work of (Malinowski et al. 2018) they demonstrate with the Hard
Attention Network (HAN) that this soft-attention mechanism can efficiently be
replaced by a hard selection of multiple regions in the image that are relevant for
a given question. They exploit a phenomenon studied in (Chris Olah et al. 2018)
which states that the revelance of a region vector is correlated with its L2-norm.

2.4.2 Image/question attention

Besides computing attention over image regions, some work also consider the
same type of attention over question words. In (Z. Yu et al. 2017; Z. Yu et al. 2018),
attention over question words is computed independantly from the image. An
LSTM network provides a representation per word. This sequence of vector passes
through a one-dimensional ConvNet that outputs a scalar value per word. Thanks
to the structure in the ConvNet, the score for a word depends on its neighbours.
The question embedding is defined as a sum of the word representations weighted
by their attention scores. In (J. Lu et al. 2016), they propose to use a co-attention
network, where an attention over the words is guided by the image, and an
attention over image regions is guided by the question. This co-attention is done
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for multiple hierarchical levels of semantics in the question representation. This
idea of two modalities that mutually condition each other’s attention maps is
also used in (Nam et al. 2017), where an iterative process progressively refines
these soft-attention processes. At a given step, image and question vectors are
the output of two attention processes conditionned on the same context vector,
which is itself a function of image and question vectors at the previous step. In the
recent work of (Kim et al. 2018), the Bilinear Attention Network (BAN) refines even
more the attention process as it defines a saliency score between each question
word and each image region. The attention score between a word token and an
image region is expressed as a bilinear function of their respective representations,
and a single vector encodes simultaneously both input modalities. This vector is
updated multiple times in an iterative fashion.

2.4.3 Exploiting relations between regions

In the aformentionned methods, all the regions are usually considered indepen-
dantly from their context. This could prevent the network from learning to answer
questions related to the spatial layout of objects, or to the semantic relations
between them. This is why methods that exploit relations between objects for
VQA constitute a growing line of research. In (Z. Chen et al. 2017), a structured
attention mechanism is used to encode cross-region relations. They remark that
the weighted sum used in classical attention schemes can be seen as computing the
expectation of a region selection process. They model the joint probability of this
process with a grid-structured Conditional Random Field (CRF) which considers
a region’s 4-neighbourhood. For each region, a unary potential is computed as
a score that measures the likelihood of selecting it, with respect to a question.
Similarly, pairwise potentials are calculated for each pair of neighbouring regions.
Finally, approximate inference algorithms take as input these unary and pairwise
scores to compute the marginal probability of selecting each region.

It is however not straightforward to adapt this type of local propagation methods
to representations that have a non-regular spatial arrangement. In particular, mod-
ern VQA architectures rely on the powerful bottom-up features (see Section 2.2.1),
in which region vectors are associated to bounding boxes, whose position and
size vary from an image to another. The relational modeling has been adapted
to these object detection features by (Norcliffe-Brown et al. 2018). They develop
a method that generalizes the convolution to features that are not disposed in a
regular grid but in a graph, where each node corresponds to a region. First, the
bottom-up representation of each region is fused with the question embedding
to provide a per-region multi-modal representation. This set of vectors defines a
semantic neighbourhood structure, and the value of the edge between two regions
corresponds to the scalar product between their representations. Over this graph,
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spatial convolutions based on gaussian kernels are used to propagate the node
information and make each region vector aware of its local context.

Modeling relations in VQA can also be done in a vectorial manner, as in (Santoro
et al. 2017). Given a set of region vectors, the Relation Network (RN) computes a
representation for each pair of objects. This vector encodes the ways in which two
objects are related, with respect to a specific question. All these pair embeddings
are summed to provide an aggregated image-level representation, which is based
on pairwise relations of objects. Finally, this aggregated relational information is
given to an MLP that predicts the answer.

2.4.4 Composing neural architectures

An interesting idea has seen a growing interest within the VQA community.
It states that to answer a question, we should first re-write this question as
a program that takes as input the image, and that returns the answer. This
program is composed of modules, able to accomplish some elementary perceptual
tasks. Not only do we need to learn each perceputal module, we also want to
learn to assemble these modules into programs. In (Andreas et al. 2016b), the
Neural Module Network (NMN) is proposed as a general architecture for discretly
composing heterogeneous, jointly-trained neural modules into deep networks.
Each module, corresponding to a composable vision primitive, manipulates
attention maps over the image. They are associated with concepts such as find[c]
which takes as input the image and yields an attention map that locates the
argument c (e.g. dog, red, ...), or transform[c] which applies the transformation
c to an attention map (e.g. above, ...). The network is assembled using a parsed
version of the question. The parser transforms a sentence like “ What color is the tie?
“ into a network with the structure describe[color](find[tie]). By the same
authors, the Dynamic Neural Module Network (D-NMN) (Andreas et al. 2016a)
generates multiple network layout candidates for a question. These layouts are
scored according to the question with a neural network f , and the best scoring
layout is selected to perform the forward-backward pass on the image. Selecting
a network is a non-differentiable operation, which implies that the layout scorer f
cannot be learned by simple backpropagation. Here, tools from the reinforcement
learning community are used to compute the gradients on the layout scorer’s
parameter, and efficiently learn to choose a layout from candidate layouts, given a
question.

To support this line of research, the CLEVR Dataset (Johnson et al. 2017a) has
been conceived. In this dataset, very complex questions are asked about images
coming from a simple visual world. In the example we show in Figure 2.7, the
visual scene is composed of simple objects such as cubes, spheres and cylinders.
They exist in a discrete and limited set of colors, shapes and textures. Opposed to
this very simple visual world, the questions require strong reasoning capacities,
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Figure 2.7 – CLEVR Dataset In this example, the questions require visual reason-
ing capacities such as attribute identification, counting, comparison,
spatial relationships, and logical operations.

such as spatial relationship, logical operations or attribute identifications. Impor-
tantly, each one of these natural language questions is associated to a functional
program that can be executed on the scene graph representing an image, yielding
the answer to the question. This allowed the development of methods that rely on
such program annotations to train VQA models.

In (Johnson et al. 2017b), these programs are used as a supervision to an
LSTM sequence-to-sequence model. It reads the question and learns to generate
the associated program. Each instruction in this program corresponds to a
module, similarly to the NMN. However, in contrast to (Andreas et al. 2016b), the
different modules have the same generic architecture, instead of using different
handcrafted computations for each module. Even though they use ground-truth
program annotation at training time, they also backpropagate the error from
answer prediction down to the LSTM that generates the network layout, using
the same technique as (Andreas et al. 2016a). Similar work was done by (R. Hu
et al. 2017), where an LSTM sequence-to-sequence network reads the question,
and generates a sequence of instructions. For each decoded instruction, it also
generates an attention of the question words, which acts as attributes to the
instruction. In the work of (Mascharka et al. 2018), they use the same program
generator as the one provided by (Johnson et al. 2017b). However, they improve
the design of each specific module by making them manipulate almost exclusively
attention maps. This property makes the network’s predictions interpretable and
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transparent. Finally, in the recent work of (Yi et al. 2018), both the question and the
image are parsed to provide structured representations. Similar to previous works,
the question is transformed into a functional program using an encoder-decoder
LSTM. Moreover, the image is represented as a set of objects along with their
attributes (size, color, shape, texture) and their 3D position using a Mask-RCNN
segmenter (He et al. 2017). Instead of assigning each instruction from the question
to a trainable neural module, the program executor is implemented as a collection
of deterministic functional modules that are not trained.

While very appealing, these approches that rely on assembling neural modules
based on the question have two major downsides. First, their performance
strongly depends on whether or not program annotations are used to learn
the program generator. In real-world VQA data, it can be very expensive to
generate this type of annotations. Second, their performance can be matched or
surpassed by much simpler models that implicitly learn to reason about images,
without requiring program annotations. In particular, the very simple Featurewise
Linear Modulation (FiLM) proposed in (Perez et al. 2018) modifies the visual
feature map with an affine transformation whose parameters are a function of the
question. This affine modulation is done at multiple levels to allow complex visual
reasoning. For both reasons, these methods based on compositional reasoning
remain challenging to use in real-data contexts.

Visual reasoning constitutes the second focus of the work presented in this
thesis. We use the multi-glimpse attention as a baseline architecture to support
our contributions on multi-modal fusion. Over this model, we propose several
enhancements that are related to the region selection process (Section 2.4.1), the
interaction modeling between objects (Section 2.4.3) and the iterative reasoning
scheme (Section 2.4.4).

2.5 Datasets for VQA

We evaluate our propositions on the main VQA benchmarks. As this field is
rather new and changes rapidly, all our contributions may not be evaluated on
the same datasets.

• VQA Dataset
Proposed in (Antol et al. 2015), this large scale dataset is built over images
from MS-COCO (Tsung-Yi Lin et al. 2014), where each picture is manually
annotated with 3 questions. These questions are then answered by 10 distinct
annotators, yielding a list of 10 ground-truth answers. The answers are free-
form open-ended text, where it is possible to answer anything in natural
language. The dataset is composed of 248,349 (image,question) pairs for
training, 121,512 for validation and 244,302 for testing. The ground-truth
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answers are publicly available for train and val splits, but not for the test
split. The test score are evaluated on a remote server that compares the
predictions to the hidden ground-truths.
To evaluate the performance on this dataset, the authors proposed to use the
Open-Ended (OE) Accuracy. This metric compares an answer â, proposed
by the model, to the list of 10 ground-truth answers [a1, ..., a10] given by
annotaters. It is defined as

OE(â, [a1, ..., a10]) = min

(
1,

10

∑
i=1

1ai ,â

3

)
(2.17)

where 1i,j is 1 for i = j, and 0 otherwise. This metric assesses whether the
model answer is on par with at least three annotators out of ten.
One problem with this dataset has been identified as the textual bias issue,
and has been explained as follows:

Inherent structure in our world and bias in our language tend to be a
simpler signal for learning than visual modalities, resulting in models that
ignore visual information, leading to an inflated sense of their capability.
(Goyal et al. 2017).

As an example, in the VQA Dataset, questions that begin with the words
“What sport is” have answer “tennis” in 41% of the examples. This phe-
nomena implies that models can already achieve good performance simply
through linguistic pattern matching, without even looking at the visual
modality.

• VQA 2.0 Dataset
Built over the VQA Dataset, this second version was proposed in (Goyal
et al. 2017) to correct problems related to textual biases. This dataset is
specifically designed to be harder than the previous version for models that
do not take into account the visual modality. More precisely, it contains
pairs of instances where both images are similar, on which the same question
is asked, and for which the two answers are different. It contains 443,757

(image,question) pairs on the train set, 214,354 on the val set and 447,793 on
the test set. Similarly to the first version, answer annotations for the test split
are unavalaible, and evaluation is done on an external server.

• TDIUC
Proposed in (Kafle et al. 2017), this dataset is composed of 1,654,167 questions
asked about 167,437 images. Though the answer space is also open-ended,
it only contains 1,618 unique classes. The particularity of this dataset is
that the questions are divised into explicitly-defined question types, which
allows to measure the strenghts and weaknesses of a VQA system. Metrics
that accompagny TDIUC are devised to assess for a model’s robustness
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with respect to answer imbalance, as well as to account for perfromance
homogeneity across multiple question types.

• VQA Changing Priors
The more recent dataset on which we evaluate our work is VQA-CP (Agrawal
et al. 2018). It tackles the problem of generalization by proposing a setting
where for every question-type, train and test have different answer distribu-
tions. For example, questions starting by What color... are often answered
by white, red, blue in the train set, and by black, pink, gray in the test set.
Two versions are proposed: VQA-CP v1 built from re-arranging train and
val splits from the VQA Dataset, VQA-CP v2 similarly from the VQA 2.0
Dataset.

2.6 Outline and contributions

Falling within the related works presented in this chapter, our work is an
attempt to address some of the main problems that arise when building VQA
models. Throughout this thesis, we rely on high quality vision and language
feature extractor to form the input modules of our system (blue and red blocks
in Figure 2.1). The first axis of this work is focused on designing multi-modal
fusion modules (orange blocks in Figure 2.1) that learn to extract and represent
the relevant correlations between two vector spaces. We explore the powerful
solution provided by bilinear models for fusion between modalities, relying on
the widely used visual attention framework. This attentional architecture is an
entry point to the second axis of our work, where we challenge the idea of explicit
region selection induced by the question-guided attention model.

• Chapter 3 mutan: multimodal tucker fusion for vqa

In this chapter, we present the framework of bilinear models to learn a
multi-modal fusion of vector inputs. Our method differs from MCB (Fukui
et al. 2016) as it is not based on random projections but on the decomposition
of tensors. It also differs from MLB (Kim et al. 2017), where the tensor is
factorized into low-rank elements. Instead, we rely on the Tucker structure
(Tucker 1966), which explicitly assigns trainable parameters to pairwise
products between dimensions. We insert this merging function into the
commonly used multi-glimpse visual attention for VQA, which is depicted
in Figure 2.6. Taking as input the feature maps of an FCN, each region is
scored to estimate how relevant it is to answer a given question. This score
is then used to aggregate the visual features and provide a question-guided
image representation.
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• Chapter 4 block: bilinear superdiagonal fusion for vqa and

vrd

Building upon MUTAN, we develop a more advanced bilinear fusion strat-
egy that leverages the notion of block-term ranks for higher-order tensors.
This algebraic concept generalizes both notions of rank and mode-ranks,
at the heart of low-rank and Tucker decompositions. We constrain the
tensor of learnable weights using its block-term ranks, which imposes a
block-diagonal structure on the core three-way array that parametrizes the
interactions between modalities. We show how this structure brings the best
of both MLB and MUTAN fusion techniques: it enables to model pairwise
interactions between high dimensional mono-modal projections without
exploding the number of parameters. To demonstrate the effectiveness of
this bilinear merging strategy, we integrate BLOCK into two DL systems for
complex visual tasks. The first is a question-based attention VQA architec-
ture, similar to the one showed in Figure 2.6 except it takes as input the more
efficient bottom-up features (see Section 2.2.1). The second one is a simple
yet effective architecture for Visual Relationship Detection (VRD), where the
features of two boxes are fused through a BLOCK module to predict the
relationship predicate that links them.

• Chapter 5 murel : multimodal relational reasoning for vqa

Finally, we move away from the classical question-guided visual attention
framework with MuRel. While the focus of the two previous contributions
was on modeling the interactions between two vector spaces, this work
tackles the problem of designing VQA architectures for visual reasoning.
Departing from the attentional model of Figure 2.5, the interactions be-
tween each region and a question are represented as vectors instead of
scalar saliency weights. Moreover, following the line of work presented in
Section 2.4.3, we exploit pairwise relations between regions to make each
representation aware of its spatial and semantic context. This multi-modal
fusion between the question embedding and content-aware region vectors
is embedded into an iterative process that refines the representations, and
allows to efficiently predict the answer.

Finally, even if the major part of our work is focused on VQA, the contributions
proposed in this thesis may apply to broader contexts. In particular, our work on
multi-modal fusion between vectors can be applied to any context where we want
to fuse information from multiple sources within a DL model. As an example, we
show in Chapter 4 an application of our fusion techniques to the task of VRD.
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Chapter abstract

Learning to merge information from two vector spaces is a critical component of
Visual Question Answering (VQA) systems. While many Deep Learning (DL)
models handle this problem by concatenating the two vectors, we are interested
in more powerful solutions.
In this chapter, we tackle the problem of multi-modal fusion using bilinear
models. After introducing their general form, we present our approach that
combines Tucker decomposition of tensors and matrix rank sparsity. We show
how the Tucker decomposition framework generalizes some of the latest bilinear
fusions used for VQA, and evaluate our approach on the VQA Dataset.
The work in this chapter, at equal contribution with Rémi Cadène, has led to
the publication of a conference paper:

• Hedi Ben-Younes*, Rémi Cadène*, Nicolas Thome, and Matthieu Cord
(2017). “MUTAN: Multimodal Tucker Fusion for Visual Question An-
swering”. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV).
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3.1 Introduction

To process images and questions, Visual Question Answering (VQA) models
rely on high-level semantic representations of the data. As we saw in Section 2.2,
information from raw images and texts can be extracted by Deep Learning (DL)
models, designed to provide a vector encoding of their input. VQA models
are tailored to learn answering questions about images using these high-level
mono-modal representations. These models involve at least two well-identified
challenges that need to be met, which are detailed in Chapter 2. First, we should
develop efficient and expressive multi-modal fusion modules (see Section 2.3)
that learn to merge two vector representations by modeling potentially complex
interaction between features. These modules are then assembled together to form
a visual reasoning architecture (see Section 2.4) that defines high-level capacities
of the model. The focus of this chapter is on the first problem of learning a fusion
module between vector spaces. As we detailed in Section 2.3, this fusion can
be achieved by simple linear operators, potentially followed by deep networks.
However, most recent approaches tackle this problem using bilinear models.

In this chapter, we present the general formulation of bilinear fusion models.
These powerful approaches express the fusion between two vectors as a second
order function where the coefficients are learnable parameters. With this for-
mulation, the fusion explicitly encodes interactions as it parametrizes pairwise
products between vector dimensions. Though these methods are appealing, the
number of parameters in these models prevents their use in a naive way, especially
in DL contexts where we manipulate vector spaces of relatively high dimensions.
Motivated by this complexity concern, we develop MUTAN, a bilinear fusion
scheme where the interaction modeling is structured based on the Tucker decom-
position of tensors. This structure helps us model rich interactions between image
and textual modalities while controlling the model tractability. We also explore
combining this tensor-based structure with a matrix-based rank sparsification, to
reduce even more the complexity.

In Section 3.2, we present our fusion strategy based on the Tucker decomposition
of tensors, and discuss its links to other bilinear fusions developped for VQA. In
particular, we show how the framework of Tucker decompositions allows to
generalize previous work on multi-modal fusion. We experimentally validate our
proposition in Section 3.3 and compare our performance to previous state-of-the-
art on the VQA Dataset.

3.2 Bilinear models

As commonly done in VQA, images v and questions q are firstly embedded into
vectors. In this chapter, the image is represented using a ResNet-152 (He et al.
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2015), which is a specific Convolutional Neural Network (ConvNet) architecture.
The resulting representation is the vector v ∈ Rdv . As for the question, we use the
last state of a Gated Recurrent Unit (GRU) network, as described in Section 2.2.2,
which provides q ∈ Rdq . Vision and language representations v and q are then
fused using a bilinear fusion operator to produce a vector y ∈ Rdo , with do = |A|
the number of possible answers. This vector encodes the predicted score for each
of them. Following the notations in Section 2.1, the final output of the system is a
normalized version of y:

fΘ(v, q) = softmax (y) (3.1)

Each dimension in fΘ(v, q) is the probability that the model assigns to a possible
answer. The index that provides the maximal value in fΘ(v, q) is considered as
the answer predicted by the system.

Linear fusion. Prior to studying the bilinear model, we first write the linear
model for fusion between q and v. It is completely defined by a matrix W ∈
Rdo×(dq+dv), and operates the fusion through the following transformation:

y =W [q;v] (3.2)

where [q;v] denotes the concatenation of both vectors. This equation states that
each output dimension k is a weighted sum of all the input dimensions:

y[k] =
dq

∑
i=1
W [k, i]q[i] +

dv

∑
j=1
W [k, dq + j]v[j] (3.3)

The main drawback of this formulation is that each modality is viewed indepen-
dantly from the other. The model does not have the structural capacity to consider
the visual content in its interactions with the question asked about it.

Bilnear model. Just as a linear model is defined by a matrix, a bilinear model is
defined by a third-order tensor T ∈ Rdq×dv×do . This multi-way array of learnable
weights is used to parametrize the fusion as follows:

y = (T ×1 q)×2 v (3.4)

where ×i designates the i-mode product between tensors. We can make ex-
plicit the calculation performed by these mode products by writing the output
coordinate k of y:

y[k] =
dq

∑
i=1

dv

∑
j=1
T [i, j, k]q[i]v[j] (3.5)
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Each output coordinate is a weighted sum over all possible pairwise products
of dimension couples in q and v.

The principal issue that we face when working with these functions is that they
quickly become intractable when dimensions dq, dv and do are high. The number
of free parameters in the tensor is defined as

|T | = dqdvdo (3.6)

Under common dimensions for image and language representations, and with a
reasonably large number of possible answers, this complexity is prohibitive. In
our case, dv = 2048 as the output of the ResNet-152, our GRU provides vectors of
dimension dq = 2400, and the we have do = 2000 possible answers. This leads to
|T | ∼ 9, 8.109 free parameters. Such a huge number of parameters is a problem
both for learning and for Graphics Processing Unit (GPU) memory consumption:
storing 9.8 billion float32 scalars requires approximately 39Go, while top-grade
GPU hold about 24Go. Naively applying a bilinear fusion on image and question
representations is not manageable, which is why we need to find ways to reduce
the complexity.

To circumvent this issue, we attack the problem of complexity from a tensor
decomposition perspective. As we develop in Section 3.2.1, we shrink the number
of free parameters in T by imposing a structure on its weights. In particular, we
use exploit the Tucker decomposition of tensors to simplify the model and make
it tractable.

3.2.1 Tucker decomposition

The Tucker decomposition (Tucker 1966) of a 3-way tensor T ∈ Rdq×dv×do

expresses T as a product between factor matrices Wq,Wv and Wo, and a core tensor
D in such a way that:

T =
((
D ×1Wq

)
×2Wv

)
×3Wo (3.7)

with Wq ∈ Rdq×tq , Wv ∈ Rdv×tv and Wo ∈ Rdo×to , and D ∈ Rtq×tv×to . In this
model, tq, tv and to are called mode-1, mode-2 and mode-3 ranks (see Figure 3.1).
Interestingly, Equation 3.7 states that the weights in T are inter-dependant: they
are obtained through combinations of a restricted number of parameters. More
precisely, ∀i ∈ [1, dq], j ∈ [1, dv], k ∈ [1, do]:

T [i, j, k] =
tq

∑
l=1

tv

∑
m=1

to

∑
n=1
D[l, m, n]Wq[i, l]Wv[j, m]Wo[k, n] (3.8)

This decomposition helps us reducing the size of the model. With this parametriza-
tion based on the Tucker decomposition, the number of parameters becomes
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Wo

=

 Wq

Wv

Figure 3.1 – Tucker decomposition The Tucker decomposition of a three-way
array factorizes the tensor as a product between three matrices (one
for each mode) and a smaller tensor.

|T | = dqtq + dvtv + doto + tqtvto. (3.9)

This number can be controlled through the hyperparameters tq, tv and to.
In more traditional uses of this type of decomposition-based methods, such as

the ones reviewed in the first paragraph of Section 2.3.2, the multi-way array T
does not correspond to a tensor of trainable parameters, but is actually provided
as data. This data tensor could for instance represent observations acquired
through sensors that measure multiple phenomena, and for which the multi-way
array structure is well suited. In this context, tensor decompositions are actually
used to find the optimal elements or factors, such that they explain best the
tensor T . In particular, the Tucker decomposition is employed to understand,
reduce or compress the information stored in T . Note that in our case, the
Tucker decomposition is not used to reduce an existing tensor. Instead, we use the
structure implied by the decomposition to avoid explicitly computing the tensor,
as we directly define it from its Tucker elements.

3.2.2 Multimodal Tucker Fusion

As we parametrize the weights of the tensor T with its Tucker decomposition
of the Equation 3.7, we can rewrite the bilinear model of Equation 3.4 using
the matrices Wq,Wv,Wo and the tensor D. First, input vectors q and v are
transformed following:

q̃ = q>Wq (3.10)

ṽ = v>Wv (3.11)
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These mono-modal projections are of size tq for q̃ and tv for ṽ. Then, a bilinear
fusion parametrized by D is applied on these two projections:

z = (D ×1 q̃)×2 ṽ ∈ Rto (3.12)

z can be seen as a multi-modal representation of the input pair (q, v). This vector
sums up the correlations between image and question vectors that are relevant to
predict the correct answer. z is then projected into the prediction space using the
matrix Wo:

y = z>Wo ∈ Rdo (3.13)

Eventually, this Tucker structure on the interaction tensor comes down to having
a full bilinear interaction between lower-dimensional projections of q and v. Finally,
the output fΘ(v, q) is obtained by the softmax the normalization on y as shown
in Equation 3.1.

To increase the modeling capacities of our tensor-based fusion, we include
non-linearities in the model. More specifically, inspired by (Kim et al. 2017), we
use

q̃ = tanh(q>Wq) (3.14)

ṽ = tanh(v>Wv) (3.15)

In our experiments, using these non-linearities provides slightly better results.
As we will see in Chapter 4, they can be replaced by more efficient power
normalizations on the multi-modal vector z.

Interpretation Using the Tucker decomposition, the interaction modeling weights
T are factorized into four components, each having a specific role. Matrices Wq
and Wv project the question and the image vectors into spaces of respective
dimensions tq and tv. These dimensions directly impact the modeling complexity
that will be allowed for each modality. High values of tq and tv enable to learn
rich mono-modal projections. Then, the tensor D models interactions between
components of q̃ and ṽ. It learns to project the array of all possible products
q̃[i]ṽ[j] into a vector z of size to. This dimension controls the complexity allowed
for the modeling of interactions between modalities. Finally, the matrix Wo per-
forms the final classification and scores this pair embedding z for each class in
A.

3.2.3 MUTAN fusion

The parametrization provided by the Tucker decomposition enables a control
of the model complexity, according to Equation 3.9. In this equation, the limiting
factor is the size of the core tensor D:
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|D| = tqtvto, (3.16)

which invites us to have low values for tq, tv and to. However, reducing too much
these values would result in coarse mono-modal projections q̃ and ṽ, lying in very
low-dimensional spaces and causing a bottleneck in the modeling.

To further balance between expressivity and number of parameters, we need to
break the complexity in D with respect to the projection dimensions tq, tv and to.
When we perform the to bilinear combinations between q̃ and ṽ of Equation 3.12,
each dimension k ∈ J1, toK in z can be written as:

z[k] = q̃>D[:, :, k]ṽ (3.17)

According to this equation, the correlations between elements of q̃ and ṽ are
weighted by the parameters of D[:, :, k]. Reducing the number of parameters could
possibly be achieved by sparsifying D[:, :, k]. A first solution consists in adding
an L1 penalty to these matrices. This would force some parameters to be set to
exactly 0 as training goes by. Unfortunately, this solution requires to consider all
elements in D as free trainable parameters, which will eventually be removed
after training, but that we must keep in our model during the learning phase.

Instead of a raw sparsity on the parameters, we choose to solve this problem
from a structure perspective. More precisely, we state that each D[:, :, k] is gen-
erated by summing a small number of very simple elementary matrices. This
corresponds to defining D[:, :, k] as a sum of rank-one elements:

D[:, :, k] =
R

∑
r=1
mk

r .nk>
r (3.18)

where mk
r ∈ Rtq and nk

r ∈ Rtv . This formulation implies that for each k ∈ [1, do]:

Rank(D[:, :, k]) ≤ R (3.19)

with equality when the set of matrices {mk
r .nk>

r }r=1:R is linearly independant.
Under this structured sparsity constraint on slices of D, Equation 3.17 becomes:

z[k] = q̃>
(

R

∑
r=1
mk

r .nk>
r

)
ṽ, (3.20)

which can equivalently be written as

z[k] =
R

∑
r=1

(
q̃>mk

r

) (
ṽ>nk

r

)
. (3.21)

For each r, we can stack the vectors mk
r into a matrix Mr ∈ Rtq×to such that

Mr[:, k] = mk
r . Similarly, we can build Nr ∈ Rtv×to such that Nr[:, k] = nk

r .
Equation 3.21 can then be re-written as
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z[k] =
R

∑
r=1

(
q̃>Mr

)
[k].
(
ṽ>Nr

)
[k], (3.22)

where q̃>Mr ∈ Rto and ṽ>Nr ∈ Rto . Finally, the structured sparsity constraint
defined in Equation 3.18 implies that z corresponds to as a sum over R vectors:

z =
R

∑
r=1
zr (3.23)

such as for each r ∈ [1, R],

zr = (q̃>Mr) ∗ (ṽ>Nr) (3.24)

where ∗ stands for element-wise vector multiplication.

Interpretation Adding this rank constraint on D leads to expressing the output
vector z as a sum over R vectors zr. To obtain each of these vectors, we project q̃
and ṽ into a common space and merge them with an elementwise product. We
can interpret z as encoding an OR interaction over multiple AND gates between
projections of q̃ and ṽ. z[k] can described in terms of logical operators as:

zr[k] =
(
q̃ similar to mk

r

)
AND

(
ṽ similar to nk

r

)
(3.25)

z[k] = z1[k] OR ... OR zR[k] (3.26)

This decomposition gives an insight of how the fusion is carried out in our
MUTAN model. In our experiments, we show that all the vectors zr for r in J1, RK
behave differently depending on the type of question. Particularly, we exhibit
some cases where some r’s specialize over specific question types.

3.2.4 Model unification and discussion

We show how two fusion models that were state-of-the-art at the time of
publication of this work, MLB and MCB, can be seen as special cases of our MUTAN
fusion. As reviewed in Section 2.3, each of these models uses a different type of
bilinear interaction between q and v, hence instantiating a specific parametrization
of the weight tensor T . These parametrizations actually consist in a Tucker
decomposition with specific constraints on the elements D,Wq,Wv and Wo.
More importantly, when we cast MCB and MLB into the framework of Tucker
decompositions, we show that the structural constraints imposed by these two
models state that some parameters are fixed, while they are free to be learnt in
our full Tucker fusion. This is illustrated in Figure 3.2, Figure 3.3, Figure 3.4 and
Figure 3.5, where we show in color the learnable parameters.
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Figure 3.2 – Multimodal Compact Bilinear (MCB). Wq and Wv are fixed diago-
nal matrices, D is a sparse fixed tensor, only the output factor matrix
Wo is learnt.
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Figure 3.3 – Multimodal Low-rank Bilinear (MLB). The 3 factor matrices are
learnt but the core tensor is D set to identity.
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Figure 3.4 – Tucker. Wq, Wv, Wo and D are learnt. The interaction modeling
tensor D is full.
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R

Figure 3.5 – MUTAN. Wq, Wv, Wo and D are learnt. The interaction modeling
tensor D is simplified and structured with a rank-R decomposition
on its mode-3 slices.
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MCB We can show that the MCB pooling (Fukui et al. 2016) can be written as
a bilinear model where the weight tensor T mcb is decomposed into its Tucker
decomposition, with specific structures on the decompositions’ elements. The
intramodal projection matrices Wmcb

q and Wmcb
v are diagonal matrices where

the non-zero coefficients take their values in {−1; 1}: Wmcb
q = Diag (sq) and

Wmcb
v = Diag (sv), where sq ∈ Rdq and sv ∈ Rdv are random vectors sampled

at the instanciation of the model but kept fixed afterwards. The core tensor D
is sparse and its values follow the rule: Dmcb[i, j, k] = 1 if h(i, j) = k (and 0
else), where h : J1, dqK× J1, dvK → J1, doK is randomly sampled at the beginning
of training and no longer changed. Please note that this is a mathematical
formulation of MCB, and that the actual implementation leverages properties
of the functions defined by h, sq and sv that allow efficient computation via
convolutions and Fast Fourier Transform (FFT).

As was noticed in (Kim et al. 2017), all the learnt parameters in MCB are located
after the fusion. The combinations of dimensions from q and from v that are
supposed to interact with each other are randomly sampled beforehand (through
h). To compensate for the fact of fixing the parameters sq, sv and h, they must set
a very high to dimension (typically 16,000). This set of combinations is taken as a
feature vector for classification.

MLB The low-rank bilinear interaction used in (Kim et al. 2017) defines T as a
sum of R rank-1 tensors. This corresponds to a Candecomp/Parafac (CP) decom-
position of the tensor T such as its rank is equal to R. It is well-known that the
low-rank decomposition of a tensor is a special case of the Tucker decomposition,
such as T mlb = JIR;Wq,Wv,WoK where tq = tv = to = R, and IR is the identity
tensor of size R × R × R. Two major constraints are imposed when reducing
Tucker decomposition to low-rank decomposition. First, the three dimensions
tq, tv and to are structurally set to be equal. The dimension of the space in which a
modality is projected (tq and tv) quantifies the model’s complexity. Our intuition
is that since the image and language spaces are different, they may require to be
modeled with different levels of complexity, hence different projection dimensions.
The second constraint is on the core tensor, which is set to be the identity. A
dimension k of q̃mlb is only allowed to interact with the same dimension of ṽmlb,
which might be restrictive. We will experimentally show the beneficial effect of
removing these constraints.

We would like to point out the differences between MLB and the structured
sparsity per slice presented in Section 3.2.3. There are two main differences
between the two approaches. First, our rank reduction is made on the core tensor
of the Tucker decomposition D, while in MLB they constrain the rank of the global
tensor T . This lets us keep different dimensionalities for the projected vectors q̃
and ṽ. The second difference is we do not reduce the tensor on the third mode, but
only on the first two modes corresponding to the image and question modalities.
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Figure 3.6 – Attention-based MUTAN architecture for VQA The question is pro-
cessed by a GRU encoder to provide a single vector, and the image
passes through a fully convolutional ConvNet to yield a 14× 14× dv
features map. Both these representations are fused with a MUTAN
bilinear model, within an attentional framework.

The implicit parameters in D are correlated inside a mode-3 slice but independent
between the slices.

3.2.5 MUTAN architecture

Multi-glimpse attention. We embed our MUTAN fusion module in the multi-
glimpse attention mechanism, presented in Section 2.4.1. It takes as input a
question embedding q ∈ Rdq and the visual representation V ∈ Rh×w×dv provided
by a Fully Convolutional Network (FCN) network (see Section 2.2.1). An attentional
system with G glimpses, computes G independant attention maps αg ∈ Rh×w.
Each coefficient αg[i, j] is obtained by a MUTAN fusion between the question
representation and the corresponding region vector. More precisely:

αg[i, j] = MUTANg(q,V [i, j]) (3.27)

where V [i, j] ∈ Rdv is the representation at the grid position (i, j). Please note
that we have one MUTAN fusion module for each of the the G glimpses. Within
each glimpse, the attention map is normalized with a softmax activation function:

sg[i, j] =
exp(αg[i, j])

∑h,w
k=1,l=1 exp(αg[k, l])

(3.28)

These normalized scalar maps are used to aggregate the visual features, such that

vg =
h

∑
i=1

w

∑
j=1
sg[i, j]V [i, j] (3.29)
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The vectors outputed by each glimpse are finally concatenated such that

v = [v1, ..., vG] ∈ RGdv (3.30)

This representation serves as input to the last MUTAN module that outputs the
answer prediction:

y = MUTAN(q, v) (3.31)

An attentional architecture with G = 1 is shown in Figure 3.6. Later in Chapter 5,
we discuss the relevance and effectiveness of this architecture, and propose an
alternative way of interlinking image and language representations.

Learning The transformations performed by the MUTAN fusion is a composi-
tion of linear projections, element-wise multiplications and vectorial additions.
The model is differentiable, and trainable by backpropagation. All the parameters
in the MUTAN architecture are trained end-to-end: the MUTAN fusion module
between v and q, but also the MUTAN fusions that generate the attention weights.

As we recall in Section 3.2.1, the traditional use of these tensor decompositions
methods is, given a tensor of data T , find the elements of the decomposition
D,W1,W2 and W3 that best reconstruct T . In this context, a classical practice
is to impose an orthogonality constraint on the matrices. This improves inter-
pretability of the decomposition and makes the optimization process easier. In our
application, we do not decompose a tensor but we compose it as the elements of
its factorization. In that respect, the orthogonality constraints are not considered
in our work.

3.3 Experiments

We now evaluate our multi-modal fusion framework MUTAN on the task of
VQA. To do so, we use the most widely benchmarked dataset available at the time
when we conducted this work, which is the VQA Dataset (Antol et al. 2015). For
details about the dataset and the evaluation metrics, please report to Section 2.5.

Image pre-processing As in (Fukui et al. 2016) and (Kim et al. 2017), we pre-
process the images before training our VQA models as follow. We load and resize
the image such as the smaller side has size 448, keeping the proportions of the
image. Then, we crop at the center and obtain a region of size 448× 448. We feed
it to a ResNet-152 (He et al. 2015), pre-trained on ImageNet (Krizhevsky et al.
2012). We extract the features before the last Rectified Linear Unit (ReLU), which
produces feature maps of size 14× 14× 2048.

Question pre-processing We use a similar preprocessing as (Fukui et al. 2016)
or (Kim et al. 2017) for the questions. We keep the questions which are associated
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to the 2000 most frequent answers. These questions are lower-cased and we
remove all the ponctuation marks. We use the space character to split the raw
string sentences into word sequences. Then, we replace all the words which
are not in the vocabulary of our pre-trained GRU by a special "unknown" word
("UNK"). Finally, we pad all the sequences of words with zero-padding to match
the maximum sequence length of 26 words. We use TrimZero as in (Kim et al.
2017) to avoid the zero values from the padding.

Optimization We use the classical implementation of Adam (Kingma et al. 2014)
with a learning rate of 10−4, without learning rate decay. Parameters in the GRU
are fine-tuned, whereas the image network is kept fixed. During the optimization
process, we use a batch size of 100 for experiments in Section 3.3.1, and 512 for
those in Section 3.3.2. We use early stopping as a regularizer: during training,
we save the model parameters after each epoch. To evaluate our model on the
evaluation server, we choose the best epoch according to the accuracy computed
on the val split when available. As in (Fukui et al. 2016; Kim et al. 2017), some
models are trained on the union of train and val splits (trainval split). In this setup,
we use the test-dev split as a validation set and are obliged to submit several times
on the evaluation server. Note that we are limited to 10 submissions per day.
In practice, we submit 3 to 4 times per models for epochs associated to training
accuracies between 63% to 70%.

3.3.1 Comparison with leading methods

To compare the performance of our proposed approach to other leading works,
we associate the MUTAN fusion with recently introduced techniques for VQA,
which are described below.

Answer sampling Each (image,question) pair in the VQA dataset is annotated
with 10 ground truth answers, corresponding to the different annotators. Each
time our model sees an (image,question) pair, we randomly choose an answer
among the labels as ground-truth. We keep only the answers occuring more than
3 times within those 10.

Data augmentation We use Visual Genome (Krishna et al. 2017) as a data
augmentation to train our model, keeping only the examples whose answer is in
our vocabulary A extracted from the VQA Dataset. This triples the size of our
training set.

Ensembling MUTAN(3) is made of a MUTAN trained on the trainval split with 2

glimpses, an other MUTAN with 3 glimpses and a third MUTAN with 2 glimpses
trained on the trainval split with the Visual Genome data augmentation. All
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three have been trained with the same hyper-parameters besides the number of
glimpses. MUTAN(5) is made of the three same MUTAN models of MUTAN(3)
and two MLB models which can be viewed as a special case of our MUTAN. The
first MLB has 2 glimpses and was trained on the trainval split. The second MLB
has 4 glimpses and was trained on the trainval split with the visual genome data
augmentation. The final results of both ensembles are obtained by averaging the
logits, extracted before the final softmax activation of all their models.

Results State-of-the-art comparison results are gathered in Table 3.1. First, we
can notice that attention-based bilinear models (MCB and MLB) have a strong edge
over other methods with a less powerful fusion scheme. MUTAN outperforms all
the previous methods on test-dev and test-std. This validates the relevance of the
proposed fusion scheme, which models precise interactions between modalities.
The good performances of MUTAN (5) also confirms its complementarity with
MLB, MLB learns informative mono-modal projections, wheras MUTAN is explicitly
devoted to accurately model multi-modal interactions.

Finally, we see that MUTAN (3), an ensemble of 3 MUTAN-based models (with-
out MLB) also outperforms state-of-the-art results at the moment of publication.
We can point out that this improvement is reached with is an ensembling of 3

models, which is smaller than the previous state-of-the-art MLB results containing
an ensembling of 7 models. Please note that MLB(7) and MCB(7) also use the Visual
Genome data augmentation.

3.3.2 Further analysis

Experimental setup In this section, we examine under different aspects the
fusion between q and v with the Tucker decomposition of tensor T . For practical
considerations, we only consider a global visual vector, computed as the average
of the 14× 14 region vectors given by the ResNet-152. We also do not use the
answer sampling: we train the models to always predict the most frequent answer
among the 10 ground-truth responses. Neither do we apply the model ensembling
technique explained in Section 3.3.1. All the models are trained on the VQA train
split, and the scores are reported on val.

Impact of a plain tensor The goal is to see how important are all the parameters
in the core tensor D, which models the correlations between projections of q and
v. We train multiple Tucker, where we fix all projection dimensions to be equal to
each other: tq = tv = to = t and t ranges from 20 to 220. In Figure 3.7, we compare
these Tucker with a model trained with the same projection dimension, but where
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test-dev test-std
Y/N No. Other All All

SMem 2-hop (H. Xu et al. 2016) 80.87 37.32 43.12 57.99 58.24

AYN (Malinowski et al. 2016) 78.39 36.45 46.28 58.39 58.43

SAN (Z. Yang et al. 2016) 79.3 36.6 46.1 58.7 58.9
D-NMN (Andreas et al. 2016a) 81.1 38.6 45.5 59.4 59.4
ACK (Wu et al. 2016) 81.01 38.42 45.23 59.17 59.44

MRN (Kim et al. 2016) 82.28 38.82 49.25 61.68 61.84

HieCoAtt (J. Lu et al. 2016) 79.7 38.7 51.7 61.8 62.1
MCB (7) (Fukui et al. 2016) 83.4 39.8 58.5 66.7 66.5
MLB (7) (Kim et al. 2017) 84.57 39.21 57.81 66.77 66.89

MUTAN (3) 84.54 39.32 57.36 67.03 66.96

MUTAN (5) 85.14 39.81 58.52 67.42 67.36

Table 3.1 – State-of-the-art comparison We evaluate MUTAN against other meth-
ods from the literature. We train on the VQA Dataset train+val, and
add the data from VisualGenome (Krishna et al. 2017). Performance is
reported on test-dev and test-std splits; (n) designates an ensemble of n
models.

D is replaced by the identity tensor 1. One can see that Tucker gives much better
results than identity tensor, even for very small core tensor dimensions. This
shows that Tucker is able to learn powerful correlations between modalities 2.

Impact of rank sparsity We want to study the impact of introducing the rank
constraint in the core tensor D. We fix the input dimensions tq = 210 and tv = 210,
and vary the output dimension to for multiple rank constraints R. As we can
see in Figure 3.8, controlling the rank of slices in D allows to better model the
interactions between the unimodal spaces. The different colored lines show the
behavior of MUTAN for different values of R. Comparing R = 60 (blue line) and
R = 20 (green line), we see that a lower rank allows to reach higher values of to
without overfitting. The number of parameters in the fusion is lower, and the
accuracy on the val split is higher.

Fusion scheme comparison To point out the performance variation due to
the fusion modules, we first compare MUTAN to leading methods for bilinear

1. This is strictly equivalent to MLB (Kim et al. 2017) without attention. However, we are fully
aware that it takes between 1000 and 2000 dimensions of projection to be around the operating
point of MLB. With our experimental setup, we just focus on the effect of adding parameters to our
fusion scheme.

2. Notice that for each t, Tucker has t3 parameters. For instance, for t = 220, Tucker adds
10.6M parameters over identity.
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Figure 3.7 – Comparing Tucker and CP structures For different number of projec-
tion dimensions, we observe that a model trained using the Tucker
decomposition performs better than a model with the CP decomposi-
tion. Models are trained on VQA Dataset train split and performance
is reported on val.

fusion, under the same experimental framework. We use the same visual features,
language models, text pre-processing and optimizers. This allows us to isolate
the influence of multi-modal fusion. We compare multiple merging scheme in
Table 3.2:

• Concat: a baseline where v and q are merged by simply concatenating them;

• MCB: we choose an output dimension of 16,000, as indicated in their article;

• MLB: we choose an output dimension of 1,200, as indicated in their article;

• Tucker: MUTAN model without the rank sparsity constraint, i.e. with a full
tensor as D. We choose all the projection dimensions to be equal to each
other: tq = tv = to = 160. These parameters are chosen considering the
results on val split.

• MUTAN: the full Tucker decomposition with rank sparsity strategy on the
matrix slices of D. We choose all the projection dimensions to be equal to
each other: tq = tv = to = 360, and a rank R = 10. These values were chosen
so that MUTAN and Tucker have the same number of parameters.
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Figure 3.8 – Impact of rank sparsity We show performance variations with re-
spect to to, for different values of R. The yellow labels indicate the
number of parameters in the fusion. Models are trained on VQA
Dataset train split and performance is reported on val.

To implement MCB and MLB, we use the code made available by the authors at
https://github.com/jnhwkim/cbp and https://github.com/jnhwkim/MulLowBiVQA.
This allows us to use their model on top of our mono-modal features, which are
slightly different than theirs. Moreover, the code for our models can be found at
https://github.com/cadene/vqa.pytorch.

As we can see in Table 3.2, Tucker performs slightly better than MLB, which
validates the fact that modeling full bilinear interactions between low dimensional
projections is relevant, compared with having strong mono-modal transformations
with a simple fusion scheme (element-wise product). With the structured sparsity
constraint, MUTAN obtains the best results, validating our intuition of having
a nice tradeoff between the projection dimensions and a reasonable number of
useful bilinear interaction parameters in the core tensor D. Finally, a naive late
fusion MUTAN+MLB further improves performances (about +1pt on test-dev). It
validates the complementarity between the two types of tensor decomposition,
confirming the results of the experiments in Section 3.3.1 with the attentional
setup.

Qualitative observations In MUTAN, the vector z, which encodes the (im-
age,question) pair, is expressed as a sum over R vectors zr (see Equation 3.17).

https://github.com/jnhwkim/cbp
https://github.com/jnhwkim/MulLowBiVQA
https://github.com/cadene/vqa.pytorch
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test-dev val

Model |θ| Y/N No. Other All All
Concat 8.9 79.25 36.18 46.69 58.91 56.92

MCB 32 80.81 35.91 46.43 59.40 57.39

MLB 7.7 82.02 36.61 46.65 60.08 57.91

Tucker 4.9 81.44 36.42 46.86 59.92 57.94

MUTAN 4.9 81.45 37.32 47.17 60.17 58.16
MUTAN+MLB 17.5 82.29 37.27 48.23 61.02 58.76

Table 3.2 – Fusion scheme comparison. We evaluate different fusion mechanisms
under the same setup. Models are trained on the VQA Dataset train
split, and results are reported on the test-dev and val splits. |θ| indicates
the number of learnable parameters (in million).

We want to study the R different latent projections that have been learnt during
training, and assess whether the representations have captured different semantic
properties of inputs. We quantify the differences between each of the R spaces
using the VQA question types. We first train a model on the train split, with
R = 20, and measure its performance on the val set. Then, we set to zero all of the
zr vectors except one, and evaluate this ablated system on the validation set. In
Figure 3.9, we compare the full system to the R ablated systems for 4 different
question types. The dotted line shows the accuracy of the full system, while the
different bars show the accuracy of the ablated system for each R. Depending
on the question type, we observe 3 different behaviors of the ranks. When the
question type’s answer support is small, we observe that each rank has learnt
enough to reach almost the same accuracy as the global system. This is the case
for questions starting by "Is there", whose answer is almost always "yes" or "no".
Other question types require information from all the latent projections, as in
the case of "What is the man". This leads to cases where all projections perform
equally and significantly worst when taken individually than when combined
to get the full model. At last, we observe that specific projections contribute
more than others depending on the question type. For example, latent variable
16 performs well on "what room is", and is less informative to answer questions
starting by "what sport is". The opposite behavior is observed for latent variable
17.

We run the same kind of analysis for the MUTAN fusion in the attention
mechanism. We train an attentional MUTAN with G = 1 glimpse. In Figure 3.10,
we show for two images the different attentions that we obtain when turning
off all the projections but one. For the first image, we can see that a projection
focuses on the elephant, while another focuses on the woman. Both these visual
informations are necessary to answer the question "Where is the woman ?". The
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(a) "Is there" (b) "What room is"

(c) "What is the man" (d) "What sport is"

Figure 3.9 – Per-rank performance of ablated system on multiple question
types Visualizing the performances of ablated systems according
to the R variables. Full system performance is showed in dotted line.

same behavior is observed for the second image, where a projection focuses on
the smoke while another gives high attention to the train.

3.4 Conclusion

In this chapter, we introduced our first strategy (MUTAN) developped for the
VQA task. We propose a module that learns to represent interactions between
visual and textual information using a bilinear model. It is built on the Tucker
decomposition, which factorizes the interaction tensor into interpretable elements.
The hyperparameters of the model are the tensor mode-ranks, through which we
affect the complexity of the bilinear interaction. We also design a low-rank matrix
constraint to increase the efficiency of the model. Interestingly, we show how the
Tucker decomposition framework generalizes previous fusion models developped
for VQA.
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(a) Question: Where is the woman ? - Answer: on the elephant

(b) Question: Where is the smoke coming from ? - Answer: train

Figure 3.10 – Visualization of per-rank saliency maps The original image is
shown on the left. The center and right images show heatmaps
obtained when turning off all the projections but one, for two differ-
ent projections. Each projection focuses on a specific concept needed
to answer the question.

We evaluate our approach on the VQA Dataset, which was the most widely
used dataset at the time of the submission of this work. We show how the
MUTAN-based attentional architecture compares favorably to leading VQA meth-
ods, providing highly competitive results in the ensembling setup. Besides, we
validate the influence of structural parameters of our model such as the tensor
mode-ranks or the low-rank sparsity constraint. We also run a comparison of
MUTAN to other fusion methods. This experiment shows that we can reach more
accurate models with less parameters, thus demonstrating the strength of our
parametrization.

While the VQA Dataset provides a way to evaluate an overall performance
of VQA systems, other datasets allow for more a precise analysis. In particular,
the TDIUC dataset separates questions into subtasks, enabling a fine-grained
assessment of the strengths and weaknesses of a model. Quantitative evaluation,
in the remainder of this thesis, is also carried on these newer and more detailed
datasets.
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In the next chapter, we further investigate bilinear models through tensor
structuration. We study in Chapter 4 an efficient factorization that breaks the
complexity in the core tensor while ensuring expressivity of the model.
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Chapter abstract

Bilinear models are powerful approaches for multi-modal fusion in a Deep
Learning (DL) setup. However, they come with computational issues due to
the tensorial nature of their parameters. As we saw in Chapter 3, Tucker
decompositions provide a convenient framework for tensor reduction. They
factorize the interaction by introducing a smaller core tensor that explicitly
models correlations between mono-modal projections. Unfortunately, this
methods projects each modality in a representation space whose dimension
must be low if we want to keep the fusion tractable, which can cause a
bottleneck in the model.
In this chapter, we delve deeper into tensor decompositions for learning power-
ful and tractable bilinear fusion models. We develop a fusion module based on
the block-term decomposition, whose expression encompasses the Tucker formu-
lation, as well as other tensor structures. This fusion module is embedded into a
multi-glimpse attentional architecture for Visual Question Answering (VQA),
enhanced with the latest advances in terms of visual representations. We
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demonstrate competitive performance with this system on two widely used
datasets. Additionally, we showcase the interest of these fusion models for
another challenging Computer Vision (CV) problem which is Visual Relation-
ship Detection (VRD). We design a simple architecture for this task based on
multi-modal fusion and provide promising results.
The work in this chapter has led to the publication of a conference paper:

• Hedi Ben-Younes, Rémi Cadène, Nicolas Thome, and Matthieu Cord
(2019). “BLOCK: Bilinear Superdiagonal Fusion for Visual Question
Answering and Visual Relationship Detection”. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI).

4.1 Introduction

Simplifying the expression of third order tensors is essential to make bilinear
fusion models tractable in Deep Learning (DL) applications. In Chapter 3, we
showed that the Tucker decomposition could factorize the full interaction by
defining a bilinear fusion between lower-dimensional projections. Doing so,
it separates the model complexity from its dependance on input and output
dimensions. However, as we saw in Section 3.2.3, the presence of this core tensor
imposes to have very small dimensions for the mono-modal projections, which
could harm the system performance and cause a bottleneck in the model. To
circumvent this issue, we simplified the core tensor with a structured sparsity
constraint based on low-rank matrix factorization.

In this chapter, we explore an alternative structuration of the fusion parameters
where we fix all values of the core tensor to be exactly 0 outside a pre-defined
block diagonal. This structure breaks the complexity of the bilinear fusion as
it models interactions between groups of dimensions from input projections, thus
enabling expressive interaction modeling while keeping high dimensional mono-
modal projections. Interestingly, this structure corresponds to the block-term
decomposition (De Lathauwer 2008), where tensor complexity is defined by the
notion of block-term ranks. This notion encapsulates both concepts of rank and
mode ranks, at the basis of Candecomp/Parafac (CP) and Tucker decompositions.
We capitalize on this complexity analysis to provide a new way to control the
trade-off between the expressiveness and complexity of the fusion model.

In Section 4.2, we present the BLOCK model and show how it is related
to previous work on bilinear fusion. Compared to MUTAN in Chapter 3, we
show how BLOCK gives a more general framework of tensor factorizations. In
particular, it allows to model rich multi-modal fusions between high dimensional
projections. In Section 4.3, we demonstrate the practical effectiveness of BLOCK on
the Visual Question Answering (VQA) task. Our fusion module is embedded into
a multi-glimpse attentional architecture that leverages the power of the recently



4.2 block fusion model 57

introduced bottom-up features (see Section 2.2.1). Furthermore, we explore in
Section 4.4 the challenging problem of Visual Relationship Detection (VRD), for
which we propose a simple and effective system based on the BLOCK fusion
model.

4.2 BLOCK fusion model

In this section, we present the BLOCK fusion strategy and discuss its connection
to other bilinear fusion methods from the literature. We quickly recall the general
form of bilinear models that we presented in Section 3.2. Please note that we
slightly change some the notations in this chapter in comparison with Chapter 3.
We remove the notations q ∈ Rdq and v ∈ Rdv , as the fusion module we develop
now is not used exclusively used for merging a question q and an image v.

In its general form, a bilinear fusion model takes as input two vectors x1 ∈ RI

and x2 ∈ RJ , and projects them to a K-dimensional space with tensor products:

y = T ×1 x
1 ×2 x

2 (4.1)

where y ∈ RK. Each component of y is a quadratic form of the inputs: ∀k ∈ [1, K],

y[k] =
I

∑
i=1

J

∑
j=1
T [i, j, k].x1[i].x2[j] (4.2)

A bilinear model is completely defined by its associated tensor T ∈ RI×J×K, the
same way as a linear model is defined by its associated matrix.

4.2.1 BLOCK model

In order to reduce the number of parameters and constrain the complexity of
the model, we express T using the block-term decomposition. As we discuss later,
it generalizes the CP and Tucker decompositions, which are used in previous work
to make bilinear models tractable. The decomposition of T in rank (L,M,N) terms
is defined as:

T =
R

∑
r=1
Dr ×1Ar ×2Br ×3Cr (4.3)

where ∀r ∈ [1, R], Dr ∈ RL×M×N, Ar ∈ RI×L,Br ∈ RJ×M and Cr ∈ RK×N. This
decomposition is called block-term because it can be written as

T = Dbd ×1A×2B ×3C (4.4)
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Figure 4.1 – BLOCK framework. The third-order interaction tensor is decom-
posed in R rank-(L,M,N) terms. We give here the two equivalent rep-
resentations of the block-term decomposition, presented in this paper.
On the left, we show the formulation with the block-superdiagonal
tensor decomposition that corresponds to 4.4. On the right, we ex-
press it as a sum of small decompositions, as written in Equation 4.3.
Through the R number of blocks and the dimensions of the A,B and
C projections, we can handle the trade-off between model complexity
and expressivity.

In this equation, matrices A ∈ RI×LR, B ∈ RJ×MR and C ∈ RK×NR are defined
as

A = [A1, ...,AR] (4.5)
B = [B1, ...,BR] (4.6)
C = [C1, ...,CR] (4.7)

and the tensor Dbd ∈ RLR×MR×NR is the block-diagonal concatenation of the
tensors Dr:

Dbd = diag (D1, ...DR) . (4.8)

This equality between the two expressions is illustrated in Figure 4.1. In this
figure, we display different sizes for each block to show the freedom allowed in
the model choice. However, early experiments on variable block sizes did not
show any practical interest compared to fixed-sized blocs.

Similarly to what we did in Section 3.2.2 with the Tucker decomposition, we
now parametrize the tensor T with its block-term decomposition defined in
Equation 4.3. We can rewrite the bilinear model in Equation 4.1 using the matrices
{Ar}r=1..R, {Br}r=1..R, {Cr}r=1..R and the tensors {Dr}r=1..R. First, input vectors
x1 and x2 are transformed following:

x̂1 = x1>A ∈ RLR (4.9)

x̂2 = x2>B ∈ RMR (4.10)
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Figure 4.2 – BLOCK multi-modal fusion. First, x1 and x2 are projected with
matrices A and B to produce x̂1 and x̂2. Then, the block-sparsity
enforced in Dbd allows to model efficiently the interactions between
both projections, and to finally produce y.

These two projections are merged with a fusion parametrized by the block-
superdiagonal tensor Dbd. Each block Dr ∈ RL×M×N in Dbd parametrizes a fusion
between chunks of size L from x̂1 and of size M from x̂2. Each chunk-vs-chunk
fusion produces a vector of size zr ∈ RN such that:

zr = Dr ×1 x̂
1[rL : (r + 1)L]×2 x̂

2[rM : (r + 1)M] (4.11)

Finally, all the zr vectors are concatenated to form

z = [z1, ..., zR] ∈ RNR (4.12)

The final prediction vector is y ∈ RK, which consists in a projection of the
multi-modal representation z with the matrix C:

y = Cz ∈ RK (4.13)

The whole computation of y with respect to x1 and x2 is depicted in Figure 4.2.
Notably, we take inspiration from (Tsung-Yu Lin et al. 2015) to add a normaliza-

tion of z that consists in a combination of signed square-root and L2-normalization.
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More precisely, instead of Equation 4.12, the multi-modal representation z is com-
puted as:

z ← [z1, ...zR] ∈ RNR (4.14)

z ← sign(z)
√
|z| (4.15)

z ← z

‖z‖2
(4.16)

This normalization was firstly introduced in (perronnin10eccv) to reduce sparsity
in high-dimensional vectors, as absolute values that are close to 0 are increased by
the square root. While we did not conduct experiments to measure the sparsity in
z, we found this normalization to be effective in practice.

Discussion. When working with a linear model whose input and output dimen-
sions are large, a usual technique to limit the number of parameters is to restrict
the hypothesis space by constraining the rank of its associated matrix. The formal
notion of matrix rank quantifies how complex a linear model is allowed to be.
However, when it comes to imposing a structural constraint on the complexity of
a bilinear model, multiple algebraic concepts can be used. We give two examples
that are related to the block-term decomposition.

The CP decomposition (Carroll et al. 1970; Harshman et al. 2001) of a tensor
T ∈ RI×J×K expresses it as the linear combination of rank-1 terms

T =
R

∑
r=1
ar ⊗ br ⊗ cr (4.17)

where ⊗ denotes the outer product, and the vectors ar ∈ RI , br ∈ RJ and
cr ∈ RK represent the elements of the decomposition. With this formulation, each
coefficient of T can be expressed as

T [i, j, k] =
R

∑
r=1
ar[i]br[j]cr[k] (4.18)

For a given tensor, its rank is defined as the minimal number of vector triplets that
can generate it as their sum. Thus, restricting the hypothesis space for T to the
set of tensors defined by Equation 4.17 guarantees that the rank is upper-bounded
by R. Applying this constraint on T , Equation 4.1 is simplified into

y = C
((
x1>A

)
∗
(
x2>B

))
(4.19)

where ∗ denotes element-wise multiplication and

A = [a1, ...,aR] ∈ RI×R (4.20)

B = [b1, ..., bR] ∈ RJ×R (4.21)

C = [c1, ..., cR] ∈ RK×R (4.22)
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This decomposition can be seen as a special case of the block-term decomposition
where L = M = N = 1, reducing Dbd to a super-diagonal identity tensor.

The rank-(L,M,N) Tucker decomposition of T ∈ RI×J×K expresses it as a
product between a tensor and three matrices:

T = D ×1A×2B ×3C (4.23)

where D ∈ RL×M×N, A ∈ RI×L, B ∈ RJ×M and C ∈ RK×N. With this formula-
tion, each coefficient of T can be explicited:

T [i, j, k] =
L

∑
l=1

M

∑
m=1

N

∑
n=1
D[l, m, n]A[i, l]B[j, m]C[k, n] (4.24)

As detailed in (De Lathauwer 2008), the Tucker decomposition assumes a con-
straint on the three matricizations of T , which are the matrices that result from
the concatenation of all tensor slices along a certain axis. More formally, they are
defined as TJK×I ∈ RJK×I , TKI×J ∈ RKI×J and TI J×K ∈ RI J×K such that for each
index triplet i ∈ 1..I, j ∈ 1..J and k ∈ 1..K,

TJK×I [(j− 1)K + k, i] = T [i, j, k] (4.25)
TKI×J [(k− 1)I + i, j] = T [i, j, k] (4.26)
TI J×K[(i− 1)J + j, k] = T [i, j, k] (4.27)

Restricting the hypothesis space of T to the set of tensors defined by Equation 4.23

guarantees that

Rank (TJK×I) ≤ L (4.28)
Rank (TKI×J) ≤ M (4.29)
Rank (TI J×K) ≤ N (4.30)

These ranks are called the mode ranks of T . Applying this constraint to T ,
Equation 4.1 can be re-written as:

y = C
(
D ×1

(
x1>A

)
×2

(
x2>B

))
(4.31)

This decomposition can be seen as a special case of the block-term decomposition
where there is only R = 1 block in the core tensor.

As studied in (De Lathauwer 2008), the notion of tensor complexity should be
expressed not only in terms of rank or mode ranks, but using the number of blocks
and the mode ranks of each block. It appears that CP and Tucker decompositions
are two extreme cases, where only one of the two quantities is used. For the CP,
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the number of blocks corresponds to the rank, but each block is of size (1,1,1).
The mono-modal projections can be high-dimensional and thus integrate rich
transformation of the input, but the interactions between both projections is
relatively poor as a dimension from one projection is only allowed to interact
with a single dimension from the other projection. For the Tucker decomposition,
there is only one block of size (L,M,N). The interaction modeling is very rich since
all inter-correlations between feature dimensions of the different modalities are
considered. However, this quantity of possible interactions limits the dimensions
of the projected space, which can cause a bottleneck in the model that we have
already identified in Section 3.2.3.

BLOCK being built on the block-term decomposition, we constrain the tensor
using a combination of both concepts, which provides a richer modeling of the
interactions between modalities. This richness is ensured by the R tensors Dr, each
parametrizing a bilinear function that takes as inputs chunks of x̃1 and x̃2. As this
interaction modelling is done by chunks and not for every possible combination
of components in x̃1 and x̃2, we can reach high dimensions in the projections
A and B without exploding the number of parameters in Dbd. This property of
having a fine interaction modeling between high dimensional projections is very
desirable in our context where we need to model complex interactions between
high-level semantic spaces. As we show in the experiments, performance of a
bilinear model depends on both the number and the size of the blocks Dr that
parametrize the system.

4.3 BLOCK fusion for VQA task

Now that we developed our BLOCK fusion strategy, we evaluate its performance
and analyze its behaviour on the task of VQA. In Section 4.3.1 we present the
overall architecture in which we embed the BLOCK fusion module. In Section 4.3.2,
we quantitively compare BLOCK with other fusion models. Finally, in Section 4.3.3,
we show that our BLOCK-based system performs favorably against leading VQA
systems.

4.3.1 VQA architecture

We build our VQA model based on the classical attentional architecture used
in Chapter 3, enriched by our proposed merging scheme. Instead of the Fully
Convolutional Network (FCN) representations used in Chapter 3, we take ad-
vantage of the new bottom-up image vectors provided by (Teney et al. 2018),
consisting of a set of detected objects and their representation (see Section 2.2.1 for
more details). For the question representation, we use a similar Gated Recurrent
Unit (GRU) encoder than the one we used in Chapter 3, except that we keep
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Figure 4.3 – Architecture for VQA. Architecture for VQA that embeds the BLOCK
bilinear fusion. To make this system more efficient, we integrate the
fusion in an attentional framework.

all the output vectors (one for each word). All the vectors are pooled with the
recent self-attention mechanism proposed in (Z. Yu et al. 2018). This question
vector is used as a context to guide the visual attention over the bounding box
representations. Saliency scores are produced using a BLOCK fusion between
each region vector and the question embedding. Finally, another BLOCK fusion
module merges the question with the aggregated image representation to produce
a distribution over possible answers. The architecture is depicted in Figure 4.3.

Details For the BLOCK layers, we set L = M = N = 80, R = 20 and constrain
the rank of each mode-3 slices of each block to be less than 10 with the technique
we developped in Section 3.2.3. We found these hyperparameters with a a cross-
validation on the val set. As we detailed in Section 2.1, we consider the 3000

most frequent answers as independant classes and train our system with a cross-
entropy loss. We use the answer sampling technique explained in Section 3.3.1.
We optimize the parameters of our model using Adam (Kingma et al. 2014) with
a learning rate of 1e−4, without learning rate decay or gradient clipping, and with
a batch size of 200. We early stop the training of our models according to their
accuracy on a holdout set.

4.3.2 Fusion analysis

In Table 4.1, we compare BLOCK to 8 different fusion schemes available in the
literature on the commonly used VQA 2.0 Dataset (Goyal et al. 2017), presented in
Section 2.5. We train all the models on trainval minus a small subset used for early-
stopping, and report the performance on test-dev set. For each fusion strategy, we
run a grid search over its hyperparameters and keep the model that performs
best on our validation set. We report the size of the model, corresponding to the
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number of parameters in the last fusion module: the one that lies between the
attended image features, the question embedding, and the answer prediction. We
briefly describe the different fusion schemes used for the comparison:

– (1) the two vectors are projected on a common space, and their summation is
projected to predict the answer;

– (2) the vectors are concatenated and passed at the input of a 3-layer Multi-
Layer Perceptron (MLP);

– (3) a bilinear interaction based on a count-sketching technique that projects
the outer product between inputs on a multimodal space, as in (Fukui et al. 2016)
(MCB);

– (4) a bilinear interaction where the tensor is expressed as a Tucker decomposi-
tion, as in Chapter 3;

– (5) a bilinear interaction where the tensor is expressed as a CP decomposition,
as in (Kim et al. 2017) (MLB);

– (6) a bilinear interaction where each 3rd mode slice matrix of the tensor is
constrained by its rank, as in (Ruichi Yu et al. 2017) (MFB);

– (7) a bilinear interaction where the tensor is expressed as a Tucker decomposi-
tion, and where its core tensor has the same rank constraint as (6), as in Chapter 3

(MUTAN);
– (8) a higher order fusion composed of cascaded (6), as in (Z. Yu et al. 2018)

(MFH);
– (9) our BLOCK fusion.
From the results in Table 4.1, we see that the simple sum fusion (1) provides a

very low baseline. We also note that the MLP (2) does not provide the best results,
despite its non-linear structure. The MLP has practical difficulties to reach a
solution that looks for interactions between modalities, as this prior is not induced
by its structure.

Instead, top performing methods are based on a bilinear model. The structure
imposed on the parameters highly influences the final performance. We can
see that (3), which simplifies the bilinear model using random projections, has
efficiency issues due to the count-sketching technique.

These issues are alleviated by the other bilinear methods, which use the tensor
decomposition framework to practically implement the interaction. Our BLOCK
method (9) gives the best results. As we saw, the block-term decomposition
generalizes both CP and Tucker decompositions, which is why it is not surprising
to see it surpass them. Interestingly, it even surpasses (8) which is based on a
higher-order interaction modeling, while using 30M less parameters. This strongly
indicates that controlling a bilinear model through its block-term ranks provides
an efficient trade-off between modeling capacities and number of parameters.

To further validate this hypothesis, we evaluate a BLOCK fusion with only
3M parameters. This model reaches an Open-Ended (OE) Accuracy of 64.91%.
Unsurprisingly, it does not surpasses all the methods against which we compare.
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Description |Θ| All Yes/no Number Other

(1) Sum 8M 58.48 71.89 36.56 52.09

(2) Concat+MLP 13M 63.85 81.34 43.75 53.48

(3) B + count-sketching 32M 61.23 79.73 39.13 50.45

(4) B + Tucker decomp. 14M 64.21 81.81 42.28 54.17

(5) B + CP decomp. 16M 64.88 81.34 43.75 53.48

(6) B + 3rd mode rank 24M 65.56 82.35 41.54 56.74

(7) (4) and (6) 14M 65.19 82.22 42.1 55.94

(8) Higher order fusion 48M 65.72 82.82 40.39 56.94

(9) B + Block-term decomp. 18M 66.41 82.86 44.76 57.3

Table 4.1 – Fusion scheme comparison on VQA. Comparison of the fusion
schemes on VQA 2.0 Dataset test-dev set. |Θ| is the number of pa-
rameters learned in the fusion modeling. All is the overall Open Ended
accuracy (higher is better). Yes/no, Numbers and Others are subsets
that correspond to answers types. In the descriptions, the letter B
corresponds to a bilinear model.

However, it obtains competitive results, improving over 5 out of 8 methods that all
use far more parameters. This result shows the efficiency of the parametrization
offered by the block-term decomposition.

4.3.3 Comparison to leading VQA methods

We compare our model with state-of-the-art VQA architecture on two datasets:
the widely used VQA 2.0 Dataset and TDIUC. TDIUC is currently the biggest
VQA dataset in terms of number of images, with a training set of 1,115,299 image-
question-answer triplets and a testing set of 538,868 triplets. The Arithmetic Mean
of Per-Type accuracies (A-MPT) and Harmonic Mean of Per-Type accuracies (H-MPT)
metrics account for how well the model behaves across the different question
types, and their normalized versions Arithmetic Normalized Mean of Per-Type
accuracies (A-NMPT) and Harmonic Normalized Mean of Per-Type accuracies
(H-NMPT) assess the robustness of the model with respect to answer imbalance.

As we show in Table 4.2, our model is able to outperform the preceding ones
on TDIUC by a large margin for every metrics, especially those which account
for bias in the data. We notably report a gain of +1.7 in accuracy, +3.95 in A-MPT,
+5.05 in H-MPT, +16.12 in A-NMPT, +15.45 in H-NMPT, over the best scoring model
in each metric. The high results in the harmonic metrics (H-MPT and H-NMPT)
suggest that BLOCK performs well across all question types, while the high scores
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Model Accuracy A-MPT H-MPT A-NMPT H-NMPT

Ques. only (Kafle et al. 2017) 62.74 39.31 25.93 21.46 8.42

NMN* (Andreas et al. 2016b) 79.56 62.59 51.87 34.00 16.67

MCB* (Fukui et al. 2016) 81.86 67.90 60.47 42.24 27.28

RAU* (Noh et al. 2016) 84.26 67.81 59.00 41.04 23.99

BLOCK 85.96 71.84 65.52 58.36 39.44

Table 4.2 – Comparison to previous work on TDIUC. Models are trained on the
TDIUC training set, and results are reported on the test set. * scores
reported from (Kafle et al. 2017).

Model VQA2 Test-dev VQA2 Test-std

All Yes/no Num. Other All Yes/no Num. Other

MCB* - - - - 62.27 78.82 38.28 53.36

Bottom-up 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26

MFH 65.80 - - - - - - -
Counter 68.09 83.14 51.62 58.97 68.41 83.56 51.39 59.11

BLOCK 67.58 83.6 47.33 58.51 67.92 83.98 46.77 58.79

Table 4.3 – Comparison to previous work on VQA 2.0. The models were trained
on the union of VQA 2.0 trainval split and VisualGenome (Krishna
et al. 2017) train split. All is the overall OpenEnded accuracy (higher
is better). Yes/no, Numbers and Others are subsets that correspond
to answers types. Only single model scores are reported. * scores
reported from (Goyal et al. 2017)

in the normalized metrics (A-NMPT and H-NMPT) denote that our model is robust
to answer imbalance type of bias in the dataset.

In Table 4.3, we see that our fusion model obtains competitive results on VQA
2.0 Dataset compared to previously published methods. We are outperformed by
Counter (Y. Zhang et al. 2018), whose proposition rely on a completely different
architecture. Still, our model performs better than Bottom-up (Teney et al. 2018)
and Multi-modal Factorized Higher-order (MFH) (Z. Yu et al. 2018), with whom
we share the global VQA architecture. In further details, we point out that BLOCK
surpasses (Z. Yu et al. 2018) reaching a +1.78 improvement in the overall accuracy
on test-dev, even though the latter encompasses the current state-of-the-art fusion
scheme. Furthermore, we use the same image features than (Teney et al. 2018)
and are able to achieve a +2.26 gain on test-dev and +2.25 on test-std.
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4.4 BLOCK fusion for VRD task

To demonstrate the genericity and the effectiveness of BLOCK, we evaluate
its performance on a simple model for Visual Relationship Detection (VRD). The
task of VRD aims at predicting triplets of the type "subject-predicate-object" where
subject and object are localized objects, and predicate is a label corresponding to the
relationship that links them (for example: "man-riding-bicycle", "woman-holding-
phone"). To predict this relationship, multiple types of information are available,
for both the subject and object regions: classes, bounding box coordinates, visual
features, etc. However, this context being more recent than VQA, fusion techniques
are less formalized and more ad-hoc. In (H. Zhang et al. 2017a), the relation is
predicted by a substractive fusion between subject and object representations,
each consisting in a linear function of relative coordinates, class distributions and
visual features. (Y. Li et al. 2017) predicts the relationship by a complex message
passing structure between subject and object representations, and (Dai et al. 2017)
uses a formulation inspired from Conditional Random Fields to perform joint
recognition between the subject, object and predicate classes. We adopt in the
following a very simple architecture, to put emphasis on the fusion module
between different information sources.

We train and evaluate our model on widely the VRD Dataset (C. Lu et al. 2016).
It is composed of 5,000 images with 100 object categories and 70 predicates. It
contains 37,993 relationships with 6,672 unique triplets and an average of 24.25

predicates per object category. The dataset is divided between 4,000 images for
training and 1,000 for testing. Three different settings are commonly used to
evaluate a model on VRD:

(1) Predicate prediction: the coordinates and class labels are given for subject
and object regions in both training and evaluation phases, and the goal is to
predict the predicate. This setup assesses the ability of the model to predict a
relationship, regardless of the object detection stage;

(2) Phrase detection: no bounding boxes are given in the evaluation phase. A
predicted triplet <subject, predicate, object> is said to match a ground-truth if the
three labels match and if the union region of its bounding boxes matches the
union region of the ground-truth triplet, with IoU above 0.5;

(3) Relationship detection: more challenging than (2), a predicted triplet is said
to match a ground-truth if the predicted subject matches with the ground-truth
subject and the predicted object matches with the ground-truth object.

An illustration for each of these evaluation settings is provided in Figure 4.4.
For each of these settings, performance is usually measured with Recall@50 and
Recall@100.

In Section 4.4.1, we present our BLOCK-based architecture for VRD. In Sec-
tion 4.4.2, we use this architecture to compare BLOCK to all the fusion modules
we listed in Section 4.3.2. We also conduct an intrinsic study of the behaviour of
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Figure 4.4 – VRD settings. Illustration of the different evaluation settings in VRD.
This illustration was taken from (C. Lu et al. 2016).

BLOCK with respect to hyperparameter variations. Finally in Section 4.4.3, we
show that our system performs well against other leading VRD methods.

4.4.1 VRD Architecture

Our VRD architecture is shown in Figure 4.5. It takes as inputs a subject and
an object bounding box. Each of them is represented as their 4-dimensional box
spatial coordinates xs

s and xs
o (normalized between 0 and 1), their object class

embeddings xc
s and xc

o, and their semantic visual features x f
s and x f

o . To predict
the relationship predicate, we use one fusion module for each type of features
following Equation 4.32.

x = [ f s (xs
s,x

s
o) , f c (xc

s ,xc
o) , f f

(
x

f
s ,x f

o

)
] (4.32)

where f can be implemented as BLOCK, or any other multimodal fusion. Each
fusion module outputs a vector of dimension d, all concatenated into a 3d-
dimensional vector that will serve as an input to a linear layer predictor y =Wx.
The system is trained with back-propagation on a binary-crossentropy loss.

Another important component of the VRD system is the object detector. We
first train a Faster-RCNN on the object boxes of the VRD Dataset. For Predicate
prediction, we use it as a features extractor to obtain the x f vectors for ground
truth bounding boxes. For Phrase detection and Relationship detection, we use it
to extract the bounding boxes with their associated features.
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Figure 4.5 – Architecture for VRD. Our very simple architecture for VRD classifies
a pair of regions by representing three types of interaction between
regions: spatial coordinates, visual features and object class. For
each of these three types of signals, interactions are modeled with a
BLOCK layer.

Negative pairs. The VRD Dataset is composed of localized pairs of subject-
object regions, associated to a class relationship label. Importantly, the annotations
do not contain negative pairs of objects that are not linked together by any relation.
For the task of Predicate prediction, the test data consists in true input pairs,
for which we ask the model to select a predicate among the classes. Thus, the
absence of negative pairs in training is not a problem. However, for Phrase and
Relationship detection, the input regions in the test phase are predictions of an
object detector. In this case, the VRD model has to predict a predicate for all the
pairs of detected objects. For these two tasks, it is important that the model learns
also on negative pairs. This is why for each train image, we randomly sample
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Description |Θ| Predicate Phrase Relationship
Prediction Detection Detection

R@50 R@100 R@50 R@100 R@50 R@100

(1) Linear 2.5M 82.99 89.68 14.44 16.94 9.73 11.34

(2) Non-linear 2M 84.47 91.6 21.9 24.69 15.79 17.83

(3) B + count-sketching 2M 82.23 89.07 13.42 15.8 9.17 10.79

(4) B + Tucker decomp. 3M 83.25 89.77 11.23 14.09 7.37 9.00

(5) B + CP decomp. 4M 85.96 91.66 23.67 26.50 16.41 18.59

(6) B + 3rd mode rank 15M 85.21 91.06 25.31 28.03 17.83 19.77

(7) (4) and (6) 30M 85.65 91.33 25.77 28.65 18.53 20.38

(8) Higher order fusion 16M 85.58 91.3 26.09 28.73 18.81 20.63

(9) Block-term decomp. 5M 86.58 92.58 26.32 28.96 19.06 20.96

Table 4.4 – Fusion scheme comparison on VRD. Comparative study of the differ-
ent multimodal fusion strategies on the VRD test-set. The reported
metrics are the Recall@K in %.

half of all possible pairs that are not assigned to any label and assign them an to
all-zeros label vectors. We add this set of negative pairs to the positive data pairs.

4.4.2 Fusion analysis

To show the effectiveness of the BLOCK bilinear fusion, we run the same type of
experiment we did in the previous section. For each fusion technique, we use the
architecture described in Equation 4.32 where we replace f by the corresponding
function. We cross-validate the hyperparameters of each fusion technique and
keep the best model each time. In Table 4.4, we see that BLOCK still outperforms
all previous methods on each of the three tasks. We can remark that for this task,
the non linear MLP perform relatively well compared to the other methods. It is
likely that an MLP can model the interactions at stake for VRD more easily than
those for VQA. However, we can improve over this strong baseline using a BLOCK
fusion.

In the next experiments, we validate the power of our BLOCK fusion, and
analyze how it behaves under different setups. We randomly split the training
set into three train/val sets, and plot the mean and standard deviation of the
Recall@50 calculated over them. In Figure 4.6a, we freeze the dimension of the
block-superdiagonal tensor to RL = RM = RN = 500 and vary the number of
blocks used to fill this tensor. When R = 1, which corresponds to the Tucker de-
composition, the number of parameters in the core tensor is equal to 5003 = 125M,
making the system arduously trainable on our dataset. On the opposite, when
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(a) (b)

Figure 4.6 – Performance of analysis of BLOCK. We analyze how the perfor-
mance of BLOCK is impacted as we change some structural pa-
rameters of the super-diagonal tensor. Models are trained on the
VRD Dataset train, minus a holdout validation set over which we
report the scores. Figure 4.6a: The size of the core tensor is fixed to
RL = RM = RN = 500. Figure 4.6b: The total number of parameters
in the block-diagonal tensor is fixed to 555K.

R = 500, the number of parameters is controlled, but the mono-modal projections
are only allowed to interact through an element-wise multiplication, which makes
the interaction modeling relatively poor. The block-term decomposition provides
an in-between working regime, reaching an optimum when R ≈ 20.

In Figure 4.6b, we keep the number of parameters fixed. As the number of
chunks increases, the dimensions of the mono-modal projections also increases.
Once again, an optimum is reached when R ≈ 20. These results confirm our
hypothesis that the way the parameters are distributed within the tensor, in terms
of size and number of blocks, has a real impact on the system’s performance.

4.4.3 Comparison to leading VRD methods

In Table 4.5, we compare our system to the state-of-the-art methods on VRD.
On predicate prediction, our fusion outperforms all previous methods on R@50,
including (Ruichi Yu et al. 2017) that uses external data. On R@100, the BLOCK
fusion is only marginally outperformed by (Ruichi Yu et al. 2017), but we per-
form better than all methods that don’t use extra data. These results validate
the efficiency of the block-term decomposition to predict a predicate by fusing
information coming from ground truth subject and object boxes. On phrase
detection, our BLOCK fusion achieves better results than all previous models
in R@50. Notably, the scores obtained for phrase detection are lower than for
predicate prediction, since the ground truth regions are not provided in this setup.
Finally, on relationship detection, BLOCK surpasses all previous methods without
extra data in R@50, and gives similar performance than (Dai et al. 2017) in R@100.
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Model External Predicate Phrase Relationship
data Prediction Detection Detection

R@50 R@100 R@50 R@100 R@50 R@100

(Ruichi Yu et al. 2017) 3 85.64 94.65 26.32 29.43 22.68 31.89

(Y. Li et al. 2017) 7 - - 22.78 27.91 17.32 20.01

(Liang et al. 2017) 7 - - 21.37 22.60 18.19 20.79

(H. Zhang et al. 2017a) 7 44.76 44.76 19.42 22.42 14.07 15.20

(C. Lu et al. 2016) 7 47.87 47.87 16.17 17.03 13.86 14.70

(Peyre et al. 2017) 7 52.6 52.6 17.9 19.5 15.8 17.1
(Dai et al. 2017) 7 80.78 81.90 19.93 23.45 17.73 20.88

BLOCK 7 86.58 92.58 26.32 28.96 19.06 20.96

Table 4.5 – Comparison to previous work on VRD Dataset. Results are reported
on the VRD test set.

The scores for relationship detection are lower than for phrase detection: in this
setup, a prediction is positive if both subject and object boxes match the ground
truth. On contrary, in phrase detection, the comparison between prediction and
ground truth is done on the union between subject and object regions. Lastly,
unlike some of the methods reported in Table 4.5, we do not fine-tune or adapt
the detection network to the visual relationship tasks.

4.5 Conclusion

In this chapter, we present our second strategy (BLOCK) for multi-modal fusion.
In the continuity of our work in Chapter 3, we develop a bilinear model structured
using the block-term decomposition. Through its block-diagonal structure, it
offers the possibility to extract the relevant correlations between high dimensional
mono-modal projections. Moreover, BLOCK optimizes the trade-off between
complexity and modeling capacities through the block-term ranks of the tensor,
which explicitly controls the sparsity in the core tensor. Interestingly, this algebraic
concept encompasses both notions of rank and mode-ranks, thus combining the
strengths of the CP and Tucker decompositions.

Building on the visual attention framework and on the recently introduced
bottom-up image representation, our system compares favorably with leading VQA
methods. To further validate our fusion, we experimentally compare BLOCK to 8
different multi-modal fusion models, showing high performance and parameter
efficiency.
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Besides, we demonstrate the genericity of our method by designing a simple
yet effective architecture for VRD which is based on multi-modal fusion. We show
that BLOCK compares well to other fusion methods in VRD, in a similar way as
in VQA. Additionaly, we experimentally analyze the dependancy of BLOCK with
respect to structural parameters of the decomposition.

In the next chapter, we question the relevance of the multi-glimpse attention
architecture that learns multiple question-guided region selection functions in
parallel. We develop an iterative model that progressively learns to refine each
local representation, mimicking some type of multi-step reasoning.
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Chapter abstract

In this chapter, we focus on the visual reasoning problem in Visual Question
Answering (VQA). We move away from the classical multi-glimpse attention
architecture, proposed in Chapter 3 and Chapter 4, to build an iterative scheme
that reasons about the visual scene. Our architecture, called MuRel, relies
on our work on multi-modal fusion to merge question embedding with each
local visual representation. Additionally, we model pairwise relations between
regions to make their representation context-aware. We evaluate our model on
three recent and challenging datasets for VQA.

The work in this chapter, at equal contribution with Rémi Cadène, has led to
the publication of a conference paper:

• Hedi Ben-Younes*, Rémi Cadène*, Nicolas Thome, and Matthieu Cord
(2019). “MUREL: Multimodal Relational Reasoning for Visual Question
Answering”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
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5.1 Introduction

In the previous chapters, we studied how image and language representations
could be fused together in an end-to-end learning fashion. Using tensor decompo-
sitions, we developped efficient multi-modal techniques capable of representing
the relevant correlations between two vector spaces, corresponding to visual and
textual embeddings. In addition to these fusion problems, the visual reasoning
architecture is also crucial for Visual Question Answering (VQA). As developped
in Section 2.4, a successful VQA model needs to extract the relevant information
from the image, understand the objects in presence, the attributes that characterize
them, the relations between them, their spatial layout, etc. This analysis has to
be conducted under the light of a given natural language question, and guided
towards the goal of providing an answer.

There are two widely used approaches on which we focus for this thesis. The
first one is the multi-glimpse attention, which computes several question-guided
visual attention maps in parallel, independantly from each other (see Figure 5.1).
This is the approach we used to build the VQA architectures in Chapter 3 and
Chapter 4. In this chapter, we are interested in the second type of approaches,
where the visual reasoning is built iteratively. Indeed, complex questions may
require that image and text modalities interact multiple times, each step providing
intermediate results that condition the behaviour of the next. An illustration of
such iterative process is shown in Figure 5.2, where the attention modules are
structured in a chain. Each module attends over the image regions with respect
to a context vector, which is provided by the previous attention layer. The first
context vector is set to be the question embedding. Passing attention information
from layer to layer makes each attention module aware of what has already been
seen by the model. This type of multi-step reasoning scheme is at the basis of the
Stacked Attention Network (SAN) that we detail in Section 2.4.1.

In this chapter, we develop a VQA architecture that falls within this family of
iterative visual reasoning. We first present the MuRel cell, an atomic reasoning
primitive that enables to represent rich interactions between a question and a set
of image regions. It incorporates the question information into an ensemble of
localized visual representations using a bilinear fusion scheme. Moreover, we
model pairwise relations between region vectors to make each region aware of
its context. We then embed this MuRel cell into the MuRel network, an iterative
reasoning process which progressively refines the internal network representations
to answer the question. The rationale of MuRel is illustrated in Figure 5.3: for
the question "what is she eating", our model focuses on two main regions (the
head and the donut) with important visual cues and semantic relations between
them to provide the correct answer "donut". The visual reasoning process that
our MuRel system embodies is formed by this multi-step relational module that
discards useless information to focus on the relevant regions.
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Figure 5.1 – Multi-glimpse attention. In this figure, two attention modules pro-
cess the set of region vectors with respect to the question. Each
of these glimpses provides a question-based image representation,
both computed in parallel. Finally, the outputs of the glimpses are
concatenated to provide the final image representation.
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Figure 5.2 – Stacked attention. Here, the two modules are inter-dependant. The
first module conditions its attention on the question embedding, As
for the following ones, their context vector is directly the output of
the previous module. This allows the system to perform iterative
reasoning, each time looking at the image while knowing what has
already been seen.
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Figure 5.3 – Visualization of the MuRel approach. Our MuRel network for VQA
is an iterative process based on a rich vectorial representation between
the question and visual information explicitly modeling pairwise
region relations. MuRel is thus able to express complex analysis prim-
itives beyond attention maps: here the two regions corresponding
to the head and the donuts are selected based on their visual cues
and semantic relations to properly answer the question "what is she
eating?".

In Section 5.2 we introduce the different components of our visual reasoning
architecture for VQA. We present the MuRel cell in Section 5.2.1, a neural module
that learns to perform elementary reasoning operations by blending question
information into the set of spatially-grounded visual representations. Next, in
Section 5.2.2, we leverage the power of this cell using the MuRel network, a VQA
architecture that iterates through a MuRel cell to reason about the scene with
respect to a question. Finally, we experimentally demonstrate the effectiveness of
the MuRel approach in Section 5.3, both quantitatively and qualitatively.

5.2 MuRel approach

The MuRel approach is complementary to the points explored in the previous
chapters. We do not focus on the multi-modal fusion of vectors but on exploiting
these fusion modules to build a higher level architecture. In particular, in Chap-
ter 3 and Chapter 4, we adopted the standard multi-glimpse attention approach as
it had already demonstrated positive results in previous work. The approach de-
velopped in this chapter is based on an iterative modeling of the visual reasoning
for VQA.

Notations. The image is represented by a set of vectors {vi}i∈[1,N], where
each vi ∈ Rdv corresponds to the visual representation of a detected object.
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Figure 5.4 – MuRel cell. In the MuRel cell, the bilinear fusion represents rich and
fine-grained interactions between question and region vectors q and
si. All the resulting multi-modal vectors mi pass through a pairwise
modeling block to provide a context-aware embedding xi per region.
The cell’s output ŝi is finally computed as a sum between si and xi,
acting as residual function of si.

These representations are provided by the bottom-up visual features, presented
in Section 2.2.1. Additionally, we use the spatial coordinates of each region
bi = [x, y, w, h], where (x, y) are the coordinates of the top-left point of the box,
and h and w correspond to the height and the width of the box. Note that x and
w (respectively y and h) are normalized by the width (resp. height) of the image.
For the question representation, we the same encoder as in Chapter 4, which is
based on a Gated Recurrent Unit (GRU) network with self-attention. It provides a
sentence embedding q ∈ Rdq .

5.2.1 MuRel cell

The MuRel cell takes as input a bag of N visual features si ∈ Rdv , along with
their bounding box coordinates bi. The link between these visual features si
and the representations given by the object detector vi will be made clear in
Section 5.2.2. As shown in Figure 5.4, it is a residual function consisting of
two modules. First, an efficient bilinear fusion module merges question and
region feature vectors to provide a local multi-modal embedding. This fusion is
directly followed by a pairwise modeling component, designed to update each
multi-modal representation with respect to its own spatial and visual context.

Multi-modal fusion The first layer of our MuRel cell is designed to merge
the question information within each visual representation si, and to model the
relevant interactions between both modalities. To do so, we use the efficient
bilinear fusion strategy developped in Chapter 4, which is based on the block-
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term decomposition of tensors. This bilinear fusion model learns to focus on the
relevant correlations between input dimensions, while keeping a relatively low
number of parameters. Each input vector si is fused with the question embedding
q using the same BLOCK module:

mi = B (si, q; Θ) (5.1)

where Θ are the trainable parameters of the fusion module. We set the number of
dimensions in mi to dv to facilitate the use of residual connections throughout
our architecture.

Each dimension m of mi can be written as a bilinear function of the form

mi[m] = ∑
s,q
T [s, q, m]si[s]q[q] (5.2)

In this bilinear model, the tensor T is factorized into the list of parameters
Θ that consist in the mono-modal projections and the block-sparse third-order
tensor, which are the elements of the block-term decomposition. Please refer to
Chapter 4 for more details.

In classical attention models, the fusion between image region si and question
features q learns to predict a saliency score, which encodes whether or not a
region is relevant with respect to a given question. On contrary, the MuRel cell
represents local multi-modal information within a richer vectorial form mi which
can encode more complex correlations between both modalities. This allows to
store more specific information about what precise characteristic of a particular
region is important in a given textual context.

Pairwise interactions Answering certain types of question may require analyz-
ing multiple objects and their mutual interactions. This is necessary, for example,
to answer questions about relative spatial positioning or semantic relationships.
Modeling relations between objects within a VQA architecture is generating an
increasing interest among the research community (see Section 2.4.3). A region
should be represented by a vector that is aware of the spatial and semantic contexts
in which it appears. As we use the bottom-up features, which are structured as a
bag of localized vectors (see Section 2.2.1), modeling the visual context of each re-
gion is not straightforward. Similarly to the recent work of (Norcliffe-Brown et al.
2018), we opt for a pairwise relationship modeling where each region receives a
message based on its relations to its neighbours. In their work, the neighbours
of a region correspond to the K most similar regions, whereas in the MuRel cell
the neighbourhood is composed of every region in the image. Besides, instead
of using scalar pairwise attention and graph convolutions with Gaussian kernels
as they do, we merge spatial and semantic representations to build relationship
vectors.
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For every region i, we compute a context vector ei as an aggregation of all the
pairwise links ri,j coming into i. We define it as ei = maxj ri,j, where ri,j is a
vector containing information about the content of both regions, but also about
their relative spatial positioning. We use the element-wise max operator in the
aggregation function to reduce the noise that can be induced by average or sum
poolings, which oblige all the regions to interact with each other. To encode the
relationship vector, we use the following formulation:

ri,j = B
(
bi, bj; Θb

)
+ B

(
mi,mj; Θm

)
(5.3)

Note that this formulation is very close to the one we use in Equation 4.32

to detect visual relationships. Through the B(., .; Θb) operator, the cell is free
to learn spatial concepts such as on top of, left, right, etc. In parallel, B(., .; Θs)
encodes correlations between multi-modal vectors (si, sj), each corresponding
to a fusion between locally-grounded semantic representations and the question
embedding. By summing up both spatial and semantic fusions, the network can
learn high-level relational concepts such as wear, hold, etc.

For every region, the vector ei encodes the context in which the region appears
as an aggregation of messages ri,j provided by its neighbours. It additively
updates the multi-modal vector mi to provide a local context-aware multi-modal
representation xi:

xi =mi + ei (5.4)

This formulation of the pairwise modelling is close to the Graph Networks
(Battaglia et al 2018), where the notion of relational inductive biases is formalized.

Finally, the output of the MuRel cell is computed as a residual function of its
input, to avoid the vanishing gradient problem. Each visual features vector si is
updated following the rule: ŝi = si + xi.

The chain of operations that updates the set of localized region embeddings
{si}i∈[1,N] using the multi-modal fusion with q and the pairwise modeling opera-
tor is noted:

{ŝi} = MurelCell ({si}; {bi}, q) (5.5)

5.2.2 MuRel network

To mimick a simple form of multi-step reasoning, we embed the MuRel cell into
an iterative process which merges the question information into context-aware
visual embeddings. As we can see in Figure 5.5, a MuRel cell passes multiple
times over the region vectors {si}, each time refining the representations with
contextual and question information. For each step t = 1..T where T is the total
number of steps fixed beforehand, a MuRel cell processes and updates the state
vectors following Equation 5.6:
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 â

 q  v

Figure
5.

5
–

M
uR

el
netw

ork.
T

he
M

u
R

el
netw

ork
m

erges
the

qu
estion

em
bed

d
ing

q
into

sp
atially-grou

nd
ed

visu
al

rep
resentations

{
v

i }
by

iterating
throu

gh
a

single
M

u
R

elcell.
T

his
m

od
u

le
takes

as
inp

u
t

a
set

of
localized

vectors
{
s

i }
and

updates
their

representation
using

a
m

ulti-m
odalfusion

com
ponent.M

oreover,itm
odels

all
the

possible
pairw

ise
relations

betw
een

regions
by

com
bining

spatialand
sem

antic
inform

ation.
To

construct
the

im
p

ortance
m

ap
at

step
t,

w
e

cou
nt

the
nu

m
ber

of
tim

e
each

region
p

rovid
es

the
m

axim
al

valu
e

of
m

ax
i {
s

ti }
(over

the
2
0
4
8

dim
ensions).



5.2 murel approach 83

{st
i} = MurelCell

(
{st−1

i }; {bi}, q
)

(5.6)

The state vectors are initialized with the features coming from the feature
extraction step. For each region i, s0

i = vi.
The MuRel network represents each region regarding the question, but also

using its own visual context. This representation is done iteratively, through
multiple steps of a MuRel cell. The residual nature of this module makes it possible
to align multiple cells without being subject to gradient vanishing. Moreover,
the weights of our model are shared across the cells, which enables compact
parametrization and good generalization.

At the final step t = T, the representations {sT
i } are aggregated with a element-

wise max pooling operation to provide a single vector

s = max
i
sT

i ∈ Rdv (5.7)

This scene representation contains information about the objects and their
relations, spatial and semantic, with respect to a given question. A score for every
possible answer is computed as a fusion between s and the question vector q:
ŷ = B

(
s, q; Θy

)
. This vector is then normalized using a softmax, which provides

a distribution fΘ(v, q) over possible answers, conditionned on an image and a
question. Finally, â is the answer with maximum score in ŷ.

Visualizing MuRel network. We can use the architecture of our model to define
visualiztion schemes that are finer than mere attention maps. At the end of the
processing done by the MuRel network, the region features {sT

i } are aggregated
using a max operation, yielding a dv−dimensional vector s. Associated to this
aggregation, we compute what we call a contribution map that measures to which
extent each region contributes to the final vector. In parallel to the max, we
also keep the region that provides this maximal value for each dimension. This
information is stored in cT = argmaxi{sT

i } ∈ [1, N]dv . We can then measure the
occurrence frequency of each region in this vector c. This frequency provides an
estimation of the contribution of each reagion to the final vector s. Interestingly,
the vector that contains argmax values can be computed at each step t, and not
exclusively at the last one. Intuitively, calculating ct for t < T measures what
the contribution map would have been if the iterative process had stopped at
this point. In other words, it indicates which regions are considered important
by the model at a given reasoning step. As we can see in Figure 5.3,Figure 5.5
and Figure 5.6, these relevance scores match human intuition and can be used to
explain the decisions of the model. Importantly, we recall that the network has not
been trained with any kind of selection mechanism, and that these visualization
are inferred from the internal activations of the model.
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We develop a similar technique to visualize the pairwise relationships that are
involved in the predictions of the model. At a given reasoning step t, we first
identify the region i? which is the most impacted by the pairwise modeling. We
define it as the region with maximal ‖ ei

xi
‖2 (cf. Equation 5.4). In all our visualiza-

tions, this bounding box is shown in green. We then measure the contribution
of every other vector to this region i?, again using occurrence frequencies in a
vector of argmax values ci? = argmaxj ri? ,j. We show in red the regions whose
contribution to i? is above a certain threshold (0.2 in our visualizations). If there
is no such region, the green box is not shown.

Connection to FiLM network. We can draw a comparison between our MuRel
network and the FiLM network proposed in (Perez et al. 2018). Beyond the fact that
their model is built for the synthetic CLEVR Dataset (Johnson et al. 2017a) and ours
processes real data, some connections can be found between both models. In their
work, the image passes through multiple residual cells with different parameters,
whereas we only have one cell through which we iterate. In FiLM, the multi-modal
interaction is modeled with a feature-wise affine modulation, while we use the
BLOCK strategy that we developped in Chapter 4, which is more efficient. Finally,
both MuRel and FiLM leverage the spatial structure of the image representation
to model the relations between regions. In FiLM, the image local features are
disposed in a fixed spatial grid, as the visual representation is provided with a
Fully Convolutional Network (FCN). This structure on image features encourages
to model relations between regions through the neighbourhood structure induced
by the spatial grid. In FiLM, this is done by having 3× 3 convolution inside each
of their residual blocks. The representation of each region then depends on its
closest neighbours, defined by the locally-connected graph of the grid structure.
In our MuRel network, the image is represented as a set of localized features.
Vectors are not disposed in a fixed grid but in arbitrary positions that vary from
an image to another. This makes the relational modeling not trivial. As we want
to model relations between regions that are potentially far apart, we consider that
the set of regions forms a complete graph, where each region is connected to all
the others.

5.3 Experiments

5.3.1 Experimental setup

Datasets Our experiments are conducted on three recent datasets The most
commonly used is certainly the VQA 2.0 Dataset (Goyal et al. 2017). As explained
in Section 2.5, it comes with a train set, a val set and an online test set. For the
fine grained analysis of MuRel, we train the models on the train split and provide
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the results on the val split, whereas. To compare MuRel against state-of-the-art
approaches, we train on the concatenation of train and val and report the results
on the test set. To measure the generalization capacities of MuRel, we evaluate
its performance on VQA Changing Priors v2 (VQA-CP) (Agrawal et al. 2018).
VQA-CP v2 uses the same data as the VQA 2.0 Dataset, with a different train/test
split. In particular, both splits are explicitly set to have different conditionnal
distributions of answer on question-types, which makes it a very challenging
dataset. Finally, we use the TDIUC dataset (Kafle et al. 2017) to construct a
detailed analysis of the behaviour of MuRel on 12 well-defined types of question.
TDIUC is currently the biggest dataset for VQA.

Setup The architecture setup is similar to the one we use in Chapter 4. The
image is represented as the set of 36 bottom-up features provided by (Anderson
et al. 2018), and the question by a pre-trained GRU on the Skip-thought task.
Inspired by the recent work of (Jiang et al. 2018), we use Adam as optimizer
(Kingma et al. 2014) with a warm-up learning scheduler. Unless we explicitly
state otherwise, the number of iterations through the MuRel cell is set T = 3.

5.3.2 Qualitative results

Following the method we explain in Section 5.2.2, we are able to visualize the
behaviour of a MuRel network. Here, we train a MuRel network with 3 cells on
the train split of VQA 2.0 Dataset and visualize it on examples taken from the
unseen val set. In Figure 5.6, we highlight the regions that contribute the most to
the global scene representation, and show in green and red those that are the most
involved in the pairwise modeling. Both region contributions and pairwise links
match human intuition. On the first line, the most relevant relations according to
our model are between the player’s hand, which contains the WII controller, and
the screen, which contains information about the true answer. In the third line,
the model answered kite using the relation between the man’s hand and the kite
he is holding. Finally, these visualizations help understand some failure cases of
the model. In the last line, the feature extraction gives two boxes around the green
jacket on the left. Our model is confused by this double detection and mistakenly
believes that "the jacket on the right" is the rightest detection of the left jacket.
This type of problem could be alleviated if we modified our model by taking
inspiration from (Y. Zhang et al. 2018), which learns to correct double detections.

The visualization shown in Figure 5.7 illustrates the behaviour of MuRel for
multiple questions on a single image. As we can see, the contribution maps
heavily depend on the textual modality. The common point of all the questions is
that they involve objects related to the woman. Each time, MuRel highlights the
important object, as well as the most relevant pairwise link.
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What is on the top 
of her head? hat  ✔

yes   ✔

donut   ✔

Is she wearing
a ring ?

What is she eating ? 

Step #1 Step #2 Step #3

Figure 5.7 – Impact of the question on contribution maps. We observe that for
a given image, different questions assign different contribution maps
for regions and pairwise relations. They are on par with an intuitive
idea of what could be useful to answer each question.

Not only does the model provide an answer, it also gives information about
objects and pairs of regions it found the most helpful to provide this answer. As
VQA models are often subject to linguistic bias (Goyal et al. 2017; Agrawal et al.
2018), this type of visualization help increasing the reliability of a prediction, and
is a step towards more interpretable models.

Entropy of the implicit attention. Interestingly, we remark in Figure 5.6 that
iterations through the MuRel cell tend to gradually discard regions, keeping only
the most relevant ones. We want to quantify this phenomenon, and study the
behaviour of the MuRel network regarding its implicit region selection process.
During training, we compute the contribution maps of every instance of the
dataset. We recall that this map provides a score for each region bounded between
0 and 1, such that they all sum to 1. Thus, it can be viewed as a probability
distribution over regions. As we want to measure to which extent the contribution
maps are focused around a few regions, we choose to compute the entropy of the
distributions in the regions contribution. Low values mean that the contribution
process is peaked around very few regions, and high values denote a uniform
repartition of the contribution over regions. In Figure 5.8, we plot the mean
entropy of the region contributions in the train and val splits during training at
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Figure 5.8 – Entropies of the implicit attention of each cell during training.

each epoch. We observe that entropies converge to different levels depending on
the cell. The value of this level is similar for both train and val sets. Moreover,
we see that the higher entropy is reached by the first cell, and it decreases as we
iterate through the cell. Intuitively, the network is more and more selective as
the representations flow towards the top of the model. It could be interesting to
deeper study the effects of this phenomenon. In particular, we did not measure
whether the regions selected by a cell are a subset of the previous ones or if they
are different. Besides, it is not clear to which extent this increasing selectivity is
desirable, if we should encourage this behaviour, or on contrary prevent it from
happening.

5.3.3 Model validation

The experiments conducted in this subsection aim at validating our contribu-
tions. We first compare the MuRel approach to the attention-based architecture
used in Chapter 4. Then, we run an ablation study on the different components of
MuRel. Finally, we evaluate how the number of steps over a MuRel cell impacts
the performance of the VQA system.

Comparison to Attention-based model In Table 5.1, we compare MuRel against
a strong attentional model, based on the bilinear fusion approach developped
in Chapter 4. For a fair comparison, both models are trained on the same train
set, on top of the same bottom-up features, and have an equivalent amount of
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Model VQA 2.0 VQA CP v2 TDIUC

Attention baseline 63.44 38.04 86.96

MuRel 65.14 39.54 88.20

Table 5.1 – Comparing MuRel to Attention. Comparison of the MuRel strategy
against a strong Attention-based model on the VQA 2.0 val, VQA-CP
v2 and TDIUC datasets. We report the OE-Accuracy for VQA 2.0 and
VQA-CP v2, and the classical accuracy for TDIUC. Both models have
an equivalent number of parameters (∼60 million) and are trained on
the same features following the same experimental setup.

learned parameters(∼60 millions including those from the GRU encoder). MuRel
reaches a higher accuracy on the three datasets. We report a significant gain of
+1.70 on VQA 2.0 and +1.50 on VQA CP v2. Not only these results validate the
ability of MuRel to better model interactions between the question and the image,
but also to generalize when the distribution of the answers per question-types
are completely different between the training and test, as in VQA CP v2. The
gain of +1.24 on TDIUC demonstrates the richer modeling capacity of MuRel in a
fine-grained context of 12 well delimited question types.

Ablation study In Table 5.2, we evaluate the gains provided by different compo-
nent of MuRel. In the first line, we show the result of a vanilla MuRel. It performs
a single iteration through the MuRel cell (T = 1) and no pairwise module (Equa-
tion 5.4 becomes xi =mi). In the second line, the model still performs a single
MuRel cell iteration, but we activate the pairwise module. As we can see, this
leads to higher accuracy on all the datasets. In fact, between line 1 and 2, we
report a gain of +0.44 on VQA 2.0, +0.24 on VQA CP v2 and +0.36 on TDIUC. In
the third line, we remove the pairwise module and activate the iterations through
the cell. Between line 1 et 3, we report a gain of +0.59 on VQA 2.0, +0.49 on VQA
CP v2 and +0.42 on TDIUC. Please note that this modification does not add any
parameter to the model. We simply iterate multiple times over a single MuRel
cell. Finally, the pairwise module and the iterative process are added to obtain
the complete MuRel network. This instance in line 4 reaches the highest accuracy
on the three datasets, indicating the relevance of our method.

Number of iterations In Figure 5.9, we analyze the behaviour of the iterative
process performed by the MuRel network. We train four different MuRel networks
on the VQA 2.0 train split, each with a different number of iterations over the
MuRel cell. Performance is reported on val split. Again, we remind that the four
networks have exactly the same amount of parameters. The performance varies
only because of the number of times we iterate over a single cell. We report an
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Pairwise Iter. VQA 2.0 VQA CP v2 TDIUC

7 7 64.13 38.88 87.50

3 7 64.57 39.12 87.86

7 3 64.72 39.37 87.92

3 3 65.14 39.54 88.20

Table 5.2 – Ablation study of MuRel. Experimental validation of the pairwise
module and the iterative processing on the VQA 2.0 val, VQA-CP v2

and TDIUC datasets.

Figure 5.9 – Number of iterations. Impact of the number of steps in the iterative
process on the different question types of VQA 2.0 val.

increase of performance until 3 steps on the global (Overall accuracy), yes/no
questions and “other” answers. Interestingly, the performance on questions whose
answer is a number keeps increasing. Counting is a challenging task for an end-to-
end Deep Learning (DL) system. Not only does it need to detect every occurence
of the counted object, it also needs to keep an information about quantity in the
final image representation s. The complexity of this question may require deeper
relational modeling, and thus benefit from a higher number of iterations over the
MuRel cell.
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5.3.4 State of the art comparison

We now compare our MuRel network to state-of-the-art approaches on three
commonly used datasets for VQA: the VQA 2.0 Dataset, VQA-CP v2 and TDIUC.

VQA 2.0 In Table 5.3, we compare MuRel to the most recent contributions
on the VQA 2.0 Dataset. For fairness considerations, all the scores correspond
to models trained on the VQA 2.0 train+val split, using the bottom-up visual
features (Anderson et al. 2018). Interestingly, our model surpasses both MUTAN,
presented in Chapter 3 and trained by (Bai et al. 2018), and Multimodal Low-rank
Bilinear (MLB) (Kim et al. 2017), which correspond to some of the most powerful
approaches involving visual attention and bilinear models. This tends to indicate
that VQA models can benefit from retaining local information in multi-modal
vectors instead of scalar coefficients. Moreover, our model greatly improves over
the recent method proposed in (Norcliffe-Brown et al. 2018). In this work, pairwise
attention scores between regions define a structure, over which a set of spatial
graph convolutions updates local representations depending on their neighbours.
This result shows the strength of our spatial-semantic pairwise modeling between
all possible pairs of regions. Even though we did not extensively tune the
hyperparameters of our model, our overall score on the test-dev split is highly
competitive with state-of-the-art methods. In particular, we are comparable to
Pythia (Jiang et al. 2018) who won the VQA Challenge 2018. Please note that
they improve their overall scores up to 70.01% when they include multiple types
of visual features and more training data. Our performance is also on par with
(Y. Zhang et al. 2018), whose model is specifically tailored for answering counting
questions. We would like to mention that their model is trained with a different
version of the bottom-up features where each image is described by a variable
number of regions (10 to 100). This setup, as measured (Teney et al. 2018), provides
better results than the fixed-size 36 regions we use. Implementing the support
for a variable number of regions would possibly improve our results. Also, we
did not report in Table 5.3 the score of 69.52% obtained by Bilinear Attention
Network (BAN) (Kim et al. 2018) as they train their model on extra data from the
Visual Genome dataset (Krishna et al. 2017).

TDIUC One of the core aspect of VQA models is their ability to address various
tasks. The TDIUC dataset enables a detailed analysis of the strengths and limi-
tations of a model by measuring its performance on different types of question.
We show in Table 5.4 a detailed comparison of recent models to our MuRel. We
obtain state-of-the-art results on the Overall Accuracy and the Arithmetic Mean of
Per-Type accuracies (A-MPT), and surpass by a significant margin the second best
model proposed by (Shi et al. 2018). Interestingly, we improve over this model
even though it uses a combination of bottom-up and fixed-grid features, as well



92 murel: multimodal relational reasoning for vqa

test-dev test-std
Model Yes/No Num. Other All All

Bottom-up
81.82 44.21 56.05 65.32 65.67

(Anderson et al. 2018)
Graph Att.

- - - - 66.18

(Norcliffe-Brown et al. 2018)
MUTAN†

82.88 44.54 56.50 66.01 66.38

(Chapter 3)
MLB†

83.58 44.92 56.34 66.27 66.62

(Kim et al. 2017)
DA-NTN

84.29 47.14 57.92 67.56 67.94

(Bai et al. 2018)
Pythia

- - - 68.05 -
(Jiang et al. 2018)

Counter
83.14 51.62 58.97 68.09 68.41

(Y. Zhang et al. 2018)

MuRel 84.77 49.84 57.85 68.03 68.41

Table 5.3 – State-of-the-art comparison on the VQA 2.0 dataset. Results on test-
dev and test-std splits. All these models were trained on the same
training set (VQA 2.0 train+val), using the Bottom-up features provided
by (Anderson et al. 2018). No ensembling methods have been used. †
have been trained by (Bai et al. 2018).

as a supervision on the question types (hence its 100% result on the Absurd task).
MuRel notably surpasses all previous methods on the Positional reasoning (+5.9
over Multimodal Compact Bilinear (MCB)), Counting (+8.53 over QTA) questions.
These improvements are likely due to the pairwise structure induced within
the MuRel cell, which makes the answer prediction depend on the spatial and
semantic relations between regions. The effectiveness of our per-region context
modelling is also demonstrated by our the improvement on Scene recognition
questions. For these questions, representing the image as a collection of inde-
pendent objects shows lower performance than grounding each of them in its
spatial and semantic context. Interestingly, our results on the Harmonic Mean
of Per-Type accuracies (H-MPT) are lower than state-of-the-art. For MuRel, this
harmonic metric is significantly harmed by our low score of 21.43% on the Utility
and Affordances task. These questions require to understand the possible usages
and possibilities given by objects depicted in the scene. An example of such
questions is Can you eat the yellow object?. It is quite unlikely to tackle this task
properly only through a Computer Vision (CV) approach, without including some
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RAU* MCB* QTA
MuRel

(Noh et al. 2016) (Fukui et al. 2016) (Shi et al. 2018)

Bottom-up 7 7 3 3

Scene Reco. 93.96 93.06 93.80 96.11
Sport Reco. 93.47 92.77 95.55 96.20
Color Attr. 66.86 68.54 60.16 74.43
Other Attr. 56.49 56.72 54.36 58.19

Activity Reco. 51.60 52.35 60.10 63.83
Pos. Reasoning 35.26 35.40 34.71 41.19

Object Reco. 86.11 85.54 86.98 89.41
Absurd 96.08 84.82 100.00 99.8

Util. and Afford. 31.58 35.09 31.48 21.43

Object Presence 94.38 93.64 94.55 95.75
Counting 48.43 51.01 53.25 61.78
Sentiment 60.09 66.25 64.38 60.65

Overall A-MPT 67.81 67.90 69.11 71.56
Overall H-MPT 59.00 60.47 60.08 59.30

Overall Accuracy 84.26 81.86 85.03 88.20

Table 5.4 – State-of-the-art comparison on the TDIUC dataset. * trained by
(Kafle et al. 2017).

kind of external knowledge about the objects and their utility. For this reason, we
advocate that this performance drop on Utility and Affordances is acceptable.

VQA-CP v2 This dataset has been proposed to evaluate and reduce the question-
oriented bias in VQA models. In particular, the distributions of answers with
respect to question types differ from train to test splits. In Table 5.5, we report the
scores of two recent baselines (Agrawal et al. 2018; Malinowski et al. 2018), on
which we improve significantly. In particular, we demonstrate an important gain
over GVQA (Agrawal et al. 2018), which embeds a multi-hop attention scheme
within an architecture that behaves differently whether it sees a Yes/No question
or not. However, since both methods do not use the powerful bottom-up features,
the fairness of the comparison can be questioned. So we also train an attention
model with a BLOCK fusion (Chapter 4) using these bottom-up region representa-
tion. We observe that MuRel provides a substantial gain over this strong attention
baseline. Given the distribution mismatch between train and test splits, models
that learn linguistic biases instead of reasoning about the image are systematically
penalized on their test scores. This property of VQA-CP v2 implies that the
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Model
Bottom

Yes/No Num. Other All
up

HAN (Malinowski et al. 2018) 7 52.25 13.79 20.33 28.65

GVQA (Agrawal et al. 2018) 7 57.99 13.68 22.14 31.30

Attention 3 41.56 12.19 43.29 38.04

MuRel 3 42.85 13.17 45.04 39.54

Table 5.5 – State-of-the-art comparison on the VQA-CP v2 dataset. The Atten-
tion model was trained by us using the Bottom-up features.

pairwise iterative structure of MuRel is less prone to question-based overfitting
than classical attention architectures.

5.4 Conclusion

In this chapter, we focused on the problem of visual reasoning for VQA. Our
system (MuRel) is based on rich representations of visual image regions that are
progressively merged with the question embedding. We make the representation
of each region dependant of its context through non-local pairwise modeling of
relations. Moreover, internal activations of the MuRel network provide a basis to
define visualization schemes, helpful to interpret the decisions of the model.

We validate our approach on three challenging datasets: VQA 2.0, VQA-CP v2

and TDIUC. We exhibite various ablation studies, clearly demonstrating the gain of
our contributions. We show how the vector-based architecture of MuRel competes
strongly against to the widely used attention framework. We also demonstrate the
relevance of using pairwise relations between regions, and performing multiple
iterations over a cell. Our final MuRel network is very competitive and performs
favorably against state-of-the-art models, consistently over the three datasets.
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6.1 Summary of Contributions

In this thesis, we tackle the recent and challenging problem of Visual Question
Answering (VQA). We took an approach based on Deep Learning (DL), and identi-
fied several limitations of classical models. Our contribution can be organized in
two points detailed below.

Multi-modal fusion. The problem of modeling the interactions between two
modalities is fundamental for VQA systems. Even if images and questions are ana-
lyzed by cutting-edge encoders, with the latest and most efficient DL techniques, it
is still necessary to learn how both modalities should be fused together to answer
the question. Following recent literature on the topic, we develop multi-modal
fusion strategies that are based on bilinear models.

In Chapter 3, we remark the tensorial structure that these models induce in
their parameters and point out the complexity issues raised by these second
order strategies. We propose MUTAN, an multi-modal fusion layer where the
three-way array of trainable parameters is compressed and simplified using the
Tucker decomposition, which structurally restricts the mode ranks of the tensor.
This leads to an efficient calculation of the fusion between two vectors under a
reduced number of learnable weights. To show the effectiveness of MUTAN, we
incorporate it into the widely used visual attention architecture for VQA, which
learns to smoothly select the image regions that are useful to answer a specific
question.

We delve deeper into bilinear fusion models in Chapter 4, where we leverage
the general block-term decomposition of tensors to learn even more expressive
fusion models. This decomposition imposes a block-superdiagonal structure of the
third-order tensor, which breaks down the complexity while improving the model
capacities. In particular, it allows to represent multi-modal interactions between
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high-dimensional projections of mono-modal vectors. Similarly to Chapter 3, we
demonstrate the strength of BLOCK in VQA by integrating it into the attention
setup. We also show that bilinear fusion models, and especially BLOCK, can be
used for other applications that require learning a fusion module. In particular,
we design a very simple yet effective architecture for Visual Relationship Detection
(VRD) based on BLOCK, and show how it surpasses previous methods.

Visual reasoning. Both contributions in Chapter 3 and Chapter 4 are focused on
designing trainable fusion modules that are able to learn and extract the relevant
correlations between two input vectors. Their effectiveness in the context of VQA
is highlighted by the visual attention model, which learns the contribution of each
region as a fusion between the question embedding and the corresponding local
representation. In Chapter 5, we move away from this widely used architecture
and question its relevance to attack problems that require strong spatial and
semantic reasoning capacities. In MuRel, we model the fusion between each
region and the question with a bilinear module that outputs a vector instead of a
single scalar. Moreover, these local multi-modal representations are designed to
be dependant on context informations that we model by pairwise representations
of regions. This process is encapsulated in an iterative process, that progressively
updates each local representation and finally provides an answer prediction.

6.2 Perspectives for Future Work

At the end of our work, it seems that multiple directions are promising research
paths to improve VQA systems.

Data. Previous to designing and learning models, a training dataset must be
constructed. For VQA, the data collection is far from being an easy task. When
working on real data, in an open domain for both questions and answers, a
manual annotation process is often required. It has multiple drawbacks, which
constitute interesting research problems.

• The annotation process can produce undesirable effects on the resulting
dataset. A lot of work on datasets for VQA is related to the problem of
textual bias, which has lead to the creation of VQA 2.0 Dataset and VQA-CP
(see Section 2.5). In particular, the recent VQA-CP explicitly sets a difference
between train and test answer distributions, conditionned on the question type.
This very hard setup may be too extreme, and harm the system learnability.
This unsolved problem of detecting, characterizing and overcoming bias in
the data is more general than VQA, and attacking this problem would benefit
many real-world applications.
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• Asking annotators to provide questions about images without restriction is
likely to result in a huge variety of examples. Using this raw data, it can be
difficult to measure the performance of a model for different sub-tasks. To
answer the question “What color is the second car on the left”, a model should
have the ability to detect cars, differentiate left from right, count from the left
until the second and extract its color. A VQA system designed to be aware of
objects and their contexts is expected to behave well on this type of examples.
But how could we expect it to answer questions like “What is the name of
the person at the right of the US president”, which requires face recognition
modules and extra knowledge about politics? Unfortunately, many questions
in modern datasets for VQA require this type of non-visual awareness, which
make Computer Vision (CV)-based models difficult to evaluate.

Some recent work propose to narrow down the domain of images and/or
questions, in order to develop and evaluate specific VQA capacities. For
instance, the KVQA dataset (Sanket Shah et al. 2019) contains questions
with named entities related to politics (people, locations, occupations, etc.),
and is associated to a knowledge graph composed of relational triplets (e.g.
<Elizabeth Warren - dateOfBirth - 22 June 1949>). With this dataset, we can
develop models that are specifically tailored to reason about images and world
knowledge. Another example of specific datasets is TallyQA (Acharya et al.
2019), focused on the problem of counting objects in an image. A particular
interest of this dataset around complex counting questions, such as “How
many people are wearing glasses? “ , which requires to filter the people in the
image with respect to a specific condition before counting them.

In parallel to designing datasets that focus on specific model capacities, other
work are related to specific input domains. We can cite for instance the VizWiz
dataset (Gurari et al. 2018), designed to help blind and visually impaired
people in their daily life, or DVQA (Kafle et al. 2018) which asks questions
about charts and data visualization plots.

I believe that building VQA datasets with a well-defined, delimited and precise
area of interest could help build and benchmark systems that could serve in
real world applications.

• To evaluate specific abilities of VQA model, one possible solution is to build
synthetic datasets. The most famous example is certainly the CLEVR dataset
(Johnson et al. 2017a), where the questions focus on spatial and relational
reasoning capacities. Supposedly, achieving high scores on this dataset re-
quires the capacity to reason about the image, the objects, the spatial layout,
store and access an internal memory and perform logical operations. This
is why an important part VQA models that attack this dataset are complex
architectures designed for these specific purposes. However, as these methods
can be outperformed by simpler models (Perez et al. 2018), we are invited
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to relativise the difficulty of this CLEVR task. I believe more work is to be
done on the hard problem of building synthetic datasets for VQA, and even
more to build models that can transfer from synthetic to real visual reasoning
application.

Models. Following the contributions of this thesis on multi-modal fusion and
visual reasoning, we now present possible future works on models for VQA.

• Under the light of the work presented in this thesis, particularly the contribu-
tions in Chapter 3 and Chapter 4, the framework of bilinear functions seems
to be relevant to learn a merging module between several modalities. These
bilinear models are defined by a third order tensor, where the parameters of
the function are stored. To obtain simple tractable functions, we impose a
structure on this tensor. Many types of structures exist and have been explored
in our work. It is possible to restrict the tensor rank (Kim et al. 2017), the
mode-ranks (MUTAN, Chapter 3), or the more elaborate block-term ranks
(BLOCK, Chapter 4). For each of these ways of constraining the hypothesis
space, the idea is roughly similar: it consists in breaking down the complexity
and reducing the number of parameters by replacing the large tensor by a
factorization composed of simpler elements. I believe that deeper study is
required about learning in this context of factorized parameters. For example,
in the case of the Tucker decomposition

T = D ×1A×2B ×3C , (6.1)

we can postmultiply A by nonsingular matrix F , B by nonsingular matrix
G, C by nonsingular matrix H and replace D by D ×1 F

−1 ×2 G
−1 ×3 H

−1

without changing the resulting tensor. While these two decompositions are
considered equivalent from a signal analysis perspective (De Lathauwer 2008),
this non-uniqueness property of the decomposition could have some effects
on the optimization and learning algorithms, which may worth investigation.
Besides, recent work started to propose fusion modules based on third or
fourth order functions (Z. Yu et al. 2018). In their general form, these models
involve more than third-order tensors, with even greater complexity issues than
our bilinear models. I think these higher order models could benefit from the
framework of tensor decompositions.

• Apart from increasing modeling capacities of multi-modal fusion layers, there
is still room for improvement in designing VQA systems that can reason about
their inputs. I believe that providing systems with spatial and relational
reasoning capacities is crucial for answering complex visual questions. In
Chapter 5, we designed MuRel as a step towards better global scene under-
standing, as it models objects and their pairwise relations with respect to a
given question. However, there is still room for improvement in this area. VQA
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systems could benefit from smarter structure, where a region is only linked
to a certain subset of other regions. Building this graph-structured represen-
tation and using it in a VQA context is an exciting problem. Graph-based
methods could improve performance on spatial and relational questions, but
also increase the system interpretability.

• In some cases, accessing an external knowledge base of facts and links between
concepts could help the VQA process. For instance, say we have in image
that depicts a table with multiple objects on it. Answering the question
”Which object on the table is used for cutting? “ is hardly answerable without
some type of access to the information ”knife is used to cut“. To the best of
our knowledge, this complex problem is currently tackled only by a small
number of articles like (Wu et al. 2016; Sanket Shah et al. 2019). I believe
more work is to be done on providing VQA system with the ability to query
structured knowledge bases, from which it could retrieve facts that could help
its answering process.

As these problems are being attacked, real-world VQA systems are becoming
more and more relevant and reliable. In my opinion, the next step in the field
of human-machine interaction systems is Visual Dialog (Das et al. 2017). More
complex than VQA, this setup does not involve a single question about an image
but a full dialog between a human user and the machine. Not only does the
system need to understand the question with respect to an image, it should
also have a notion of history regarding which the system would answer the
question. Obtaining powerful dialog systems would open the door to fascinating
applications. More generally than VQA, machines that mesure their environment
and understand its semantics would be able to interact with users under minimal
friction, thus providing humans with new interpretation capacities of the world.
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