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Résumé:

Cette thèse porte sur la modélisation et l'analyse mathématique de systèmes complexes sur la base d'approches cinétiques et macroscopiques. Les objectifs ultimes sont de proposer et d'étudier de nouveaux modèles cinétiques et macroscopiques-fluides. De plus, nous montrons la possibilité de passer de régimes cinétiques à macroscopiques. Nous nous intéressons plus particulièrement à la modélisation et à l'analyse mathématique des populations en interaction biologique qui vivent dans un milieu fluide complexe. Pour cela, nous proposons deux nouveaux systèmes de fluide à diffusion croisée. Ensuite, nous dérivons ces systèmes d'un nouveau modèle cinétique-fluide en adoptant la méthode de décomposition micro-macro. En second lieu, nous nous intéressons à la modélisation et à l'analyse mathématique du trafic vehiculaire selon une approche cinétique des particules actives. Nous proposons une structure mathématique générale qui inclut les caractéristiques du système complexe considéré et qui semble être l'aspect le plus important de la dynamique à retenir par l'approche de modélisation. Notament, l'hétérogénéité du sous-système conducteur-véhicule, la dynamique d'agrégation pour les véhicules dont les vitesses sont proches les unes des autres, la probabilité de dépassement, les propriétés variables de l'environnement routier où la dynamique se produit et le rôle des actions externes. Pour faire court, chaque application contient trois parties principales:

•Partie de la modélisation et de la dérivation: dans la première application, nous proposons un modèle cinétique-fluide approprié décrivant l'évolution des populations en interactions vivant dans un milieu fluide complexe. Nous avons dérivé les systèmes de diffusion croisée proposés à partir de ces modèles en utilisant la méthode de décomposition micro-macro. Dans la seconde application, nous proposons une structure mathématique générale prenant en compte tous les types d'interactions possibles. La modélisation de chacun des termes apparus dans ces structures mathématiques conduit à des modèles dérivés qui permettent d'obtenir des quantités macroscopiques telles que la densité, le flux et la vitesse moyenne.

•Partie de l'analyse mathématique: Cette partie est dédiée à la preuve de l'existence de solutions faibles des systèmes de diffusion-croisée-fluide en utilisant la méthode des points fixes de Schauder pour le premier système proposé et la méthode de Galerkin non linéaire pour le deuxième système proposé.
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Test with local diffusitive functions:

The first and second columns present, respectively, the dynamics of the densities u 1 (t; x) and u 2 (t; x) obtained from local micro-macro scheme with ε = 10 -k , k = 0, 1, 2, 3, 6, 9 against local cross-diffusion scheme with v = 0 at t = 0.001, 0.003, 0.005, 0.007. . .

Test with nonlocal diffusitive functions:

The first and second columns present, respectively, the dynamics of the densities u 1 (t; x) and u 2 (t; x) obtained from nonlocal micro-macro scheme with ε = 10 -k , k = 0, 1, 2, 3, 6, 9 against nonlocal cross-diffusion scheme with v = 0 at successive time t = 0.001, 0.003, 0.005, 0.007. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Test with fluid effect: The first and second columns present, respectively, the dynamics of the densities u 1 (t; x) and u 2 (t; x) obtained from local micromacro scheme with ε = 10 -k , k = 0, 1, 2, 3, 6, 9 against local cross-diffusionfluid scheme with v = 2.5 at successive time t = 0.001, 0.002, 0.003, 0.005. . 

Introduction to the complex system in biology

During the last few decades, cross-diffusion systems have attracted a growth intention of mathematicians and biologists. Mainly for their ability to predict some interesting features in the studied field, for instance population dynamic in ecology. In mathematical biology applications, cross diffusion systems arise to model segregation phenomena between competing species. In real life, we observe that prey (for e.g. phytoplankton) has the tendency to keep away from predator (for e.g. zooplankton) at the same time predator has the tendency to get closer to the prey, see Figure 1.1-(a) and the following references [START_REF] Okubo | Diffusion and ecological problems: mathematical models[END_REF][START_REF] Shigesada | Biological invasions: theory and practice[END_REF][START_REF] Jüngel | Diffusive and nondiffusive population models[END_REF]] for more details. We observe also that many species live in complex flow so that species are transported in direction of the flow. Conversely, the velocity of the flow is under the influence of external forces including the density of species,see Figure 1.1-(b). Thus, it is interesting to study the dynamic of the interacting species on the basis of the coupled cross-diffusion-fluid model. In this thesis, we propose two new models: a nonlinear cross-diffusion system coupled with augmented Brinkman problem and nonlocal cross-diffusion system for multi-populations coupled within the incompressible Navier-Stokes. More in details, we deals with three main parts to study the aforesaid models:

• kinetic-fluid derivation: This first part aims to derive a general macroscopic models from kinetic-fluid equations. We start by presenting the kinetic-fluid models with a suitable scaling and their properties. Next, we perform the micro-macro decomposition method to obtain the equivalent formulation to the kinetic-fluid equations. Finally, we derive a general macroscopic models from the equivalent micro-macro formulation. Then by the suitable choices of different operators, we get the purpose cross-diffusionfluid models.

• Mathematical analysis: This part deals with the proof of existence of weak solutions to the derived models. For the nonlinear cross-diffusion model coupled with Brinkman problem, we use Schauder fixed-point. For the nonlocal cross-diffusion system for multipopulations coupled within the incompressible Navier-Stokes, we use the nonlinear Galerkin method.

• Computational analysis: Here, we deal with the discrete asymptotic preserving scheme. Indeed, we propose a numerical scheme uniformly stable along the transition from kinetic to macroscopic regimes (thus their computational complexity does not depend on the Knudsen parameter which models the distance between species). On the other hand, we show various numerical results which reflect some biological phenomena. For instance, interactions between preys and predators, fluid effect on the interacting species and external forces effects on the fluid dynamic and on the interacting species... We mention that this thesis deals with the asymptotic preserving (AP) schemes. The idea of AP can be illustrated in Figure 1.2. Assume we start with a multi-scale kinetic model P ε depending on Knudsen parameter ε. As Knudsen parameter tends to zero the model is approximated by a macroscopic model P 0 which is independent of ε. Denote by P ε h the numerical discretization of P ε , where h = (∆t, ∆x, ∆v) is the numerical parameter such as mesh size and or time step. The asymptotic limit of P ε h , as ε tends to zeros with h fixed, if exists, is denoted by P 0 h . The scheme P ε h is called AP if P 0 h is a good (consistent and stable) approximation of P 0 . In this thesis, we adopt micro-macro decomposition method. The idea of this technique is to write the unknown distribution function as a sum of an equilibrium and a deviation. It permits to reformulate the singularly perturbed kinetic system into an equivalent micro-macro formulation which is 1.2. Introduction to the complex system in vehicular traffic 3 a regular perturbation of the derivative model. Thus, solving numerically the equivalent micro-macro formulation instead of the perturbed kinetic system will permit to shift automatically the limit problem, if the perturbation parameter ε is too small.

Introduction to the complex system in vehicular traffic

Nowadays, prediction and control of traffic attracts the intention of mathematicians researchers and engineers. With the increasing number of vehicles, the urban traffic system faces many problems, like, e.g., cities congestion and environmental pollution, see Figure 1.4. Indeed, traffic congestion induces not only long wasted time lost by users but also additional pollution of various kinds. In fact, it generates both an economic cost and environmental damage. An additional problem worth mentioning is the need to reduce car crashes, a human and social cost that is related not only to inadequate driving, but also to the planning of the flow conditions.

We believe that mathematical models can help to understand the dynamics of the traffic and give insight into questions like-what causes congestion, what determines the time and location of traffic break down, how does a congestion propagate. Thus, the aims of applied mathematicians and engineers has been to develop traffic models in order to predict the evolution of traffic flow. This in turn helps in answering how to handle urgent traffic issues and supports strategies of organizing traffic flow. Moreover, the organized traffic may reduce the travel time due to an optimized traffic distribution.

The existing literature of traffic flow is vast and characterized by various contributions taking into account modeling aspects, qualitative analysis of the existing models and simulations related to applications. Various types of models of traffic vehicular differing on the level of description can be found in the literature, see the reviews [START_REF] Bellomo | On the modeling of traffic and crowds: a survey of models, speculations, and perspectives[END_REF][START_REF] Bellomo | On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling[END_REF][START_REF] Klar | Mathematical models for vehicular traffic[END_REF][START_REF] Helbing | Traffic and related self-driven many-particle systems[END_REF]. The mathematical approach can be developed at the three observation and representation scales, namely microscopic, macroscopic, and statistical over the microscopic state, see Figure 1.3. Different mathematical structures correspond to each type of representation: • Microscopic models focus on the behavior of individual vehicles, and study how one vehicle dynamically interacts with another. These models attempt to describe the overall characteristics of the system by integrating the characteristic of each individual vehicle. Mathematical models at the microscopic scale have a structure analogous to that of Newtonian dynamics. The model describes the acceleration of vehicles as the output of the action of surrounding vehicles. Microscopic models have three categories: car-following models, cellular automata models and sub-microscopic models. Car-following models analyze the vehicle following behavior in one lane. Cellular automata models view individual vehicles as self-driven particles, which is a collection of particles respond to a random perturbation by the motion of the other nearby particles. Sub-microscopic models describe more details, such as driver's psychological reactions, response to the traffic Chapter 1. General Introduction and car lights, etc.

• Macroscopic models mainly describe the spatio-temporal association rules of the traffic flow features, including traffic flow rate, velocity and density. The theoretical basis of dynamic macroscopic models is the fluid dynamics model, which is also known as the continuum model of traffic flow. Equations in fluid dynamics are a set of partial differential equations known as the Euler equations, expressing the conservation of mass, momentum and energy. The basic idea is to look at large scales so to consider cars as small particles and their density as the main quantity to be considered. They are especially used in the modeling framework of the large networks. Their current applications cover the traffic simulation for planning and infrastructure design.

• Kinetic models named also mesoscopic or statistical models present an intermediate step between the above two approach of model, they specific vehicle behavior in probabilistic terms. Thus, traffic is represented by small groups of vehicle for which the activities and interactions are described at a low level of detail. Mesoscopic models consist in the derivation of a Boltzmann type evolution equation for the statistical distribution function on the position and velocity of vehicles within a framework close to that of gaskinetic theory. More details about kinetic models in next Chapter 4.

Thereafter, we focus on the kinetic approach due to its several advantages versus microscopic and macroscopic models. Indeed, kinetic theory is able to capture the complexity problems of vehicular traffic like the assumption of continuity of the distribution function and the assumption of homogeneity of the behavior of the driver, which have been criticized by [START_REF] Daganzo | Requiem for second-order fluid approximations of traffic flow[END_REF]. Moreover, on the one hand they can be more fundamentally justified than the standard macroscopic models, leading to a better justification of the macroscopic models and potentially to more accurate results. On the other hand, compared to microscopic models, kinetic theory requires a lower number of equations, which makes them more accessible by computational and mathematical analysis.

It is worth stating three key aspects of the complexity of vehicular traffic flow that models should cope with.

• Ability to express strategy. Systems driver-vehicle have a self-organization abilities affected by the state of surrounding environment. The individual behavior of the drivervehicle is heterogeneously distributed among vehicles.

• Interactions and multiscale effects. Interactions among vehicles are microscopic interactions. Probably the most striking effect of these interactions is the spontaneous emergence of self-organized flow patterns, that can be clearly seen at larger scales. The influence of smaller on larger scales can be viewed as micro-to-macro scaling. The opposite influence is possible. This induces outer-to-inner multiscale couplings, which make vehicles interactions nonlinearly additive.

• Large deviations and loss of determinism. The expression of the strategic ability and the characteristics of the interactions among vehicles described above can be considered under either a deterministic or a stochastic perspective. The former is appropriate in normal conditions, when a standard rational attitude can be identified, over which large deviations are not expected. Conversely, the latter is particularly suited for addressing cases in which irrational behaviors cannot be excluded, which might induce large deviations.

Organization of the report

The thesis is organized in two main parts: Each part contains two chapters and each chapter will be introduced by a short motivational section.

First part: This part deals with the biological interacting populations application.

Chapter 2. We summarize the results published in the paper [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF]. As it mentioned above, several competing species are living in a complex fluid medium. Thus, it is so important to model this real observation. This is in fact the main objective in [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF], where we propose and we study a new nonlinear model describing dynamical interaction of two species within viscous flow. Our proposed model is a nonlinear cross-diffusion system coupled with Brinkman problem written in terms of velocity fluid u, vorticity ω, pressure p, and describing the flow patterns driven by an external source depending on the densities of species c and s. Our proposed system is as follows

System 1                                      c t + u • ∇c -div D c (c) + 2 a 11 c + a 12 s ∇c + a 12 c ∇s = H c (c, s), in Ω T , s t + u • ∇s -div D s (s) + a 21 c + 2 a 22 s ∇s + a 21 s ∇c = H s (c, s), in Ω T , K -1 u + √ µ curl ω + ∇p = Q(c, s)g + F, in Ω T , ω - √ µ curl u = 0, in Ω T , div u = 0, in Ω T , cu -(D c (c) + 2 a 11 c + a 12 s)∇c -a 12 c∇s • η = 0, on ∂ Ω T , su -(D s (s) + a 21 c + 2 a 22 s)∇s -a 21 s∇c • η = 0, on ∂ Ω T , u • η = u ∂ , ω × η = ω ∂ , on ∂ Ω T , c(t = 0, x) = c 0 (x), s(t = 0, x) = s 0 (x), in Ω,
where D c (c), D s (s) are the nonlinear diffusitive functions and a ij > 0 for i, j = 1, 2 is known as self and cross-diffusion rates. The parameter µ is the fluid viscosity in the considered regime, it is assumed independent of the densities of species c and s, K(x) is the permeability tensor rescaled with viscosity, Q(c, s)g represents the force exerted by the densities on the fluid motion, and F(t, x) is an external force applied to the porous medium. The functions H c and H s are the reaction terms. A typical example of H c and H s is given by Lotka-Voltera (logistic) type growth term.

Chapter 1. General Introduction

In the first part, we derive a macroscopic models from the following kinetic-fluid equations by using the micro-macro decomposition method:

Model 1                      ε∂ t + ξ • ∇ x f ε 1 = 1 ε T 1 [ f ε 2 ]( f ε 1 ) + G 1 ( f ε 1 , f ε 2 , u, ξ), ε∂ t + ξ • ∇ x f ε 2 = 1 ε T 2 [ f ε 1 ]( f ε 2 ) + G 2 ( f ε 1 , f ε 2 , u, ξ), K -1 u + √ µ curl ω + ∇p = Q V f ε 1 dξ, V f ε 2 dξ g + F, ω - √ µ curl u = 0, div u = 0,
where f 1 , f 2 are the generalized distribution functions which depend on time t, position x ∈ Ω ⊂ R d and velocity ξ ∈ V ⊂ R d . The Knudsen parameter ε measures the distance of the system to its equilibrium. Specifically, when ε is small, the system is close to an equilibrium state, while for large ε, the system is far from equilibrium. Moreover,

T 1 [ f 2 ], T 2 [ f 1 ] and G i , i = 1,
2 are, respectively, the turning and interaction operators. Comparing to the work by [START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF], the novelty in our work is that we derive the cross-diffusion system with nonlinear diffusitive functions instead of a diffusion with constants. Moreover, our system is coupled to the augmented Brinkman problem.

On the basis of Schauder fixed-point theory, we prove the existence of weak solutions for the derived model in the second part. The last part is devoted to develop a one dimensional finite volume approximation for the kinetic-fluid model, which are uniformly stable along the transition from kinetic to macroscopic regimes. Our computation method is validated with various numerical tests. Chapter 3. We summarize the results in our paper [START_REF] Atlas | Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system[END_REF]. Motivated by our work in [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF], here we propose and we study a generalized system. Our proposed system is contains a nonlocal diffusion and a nonlinear cross-diffusion describing the dynamic of interacting multi-populations living in a complex medium governed with the incompressible Navier-Stokes equation (non-stationary fluid flow). Our proposed system is written as follows

System 2                              ∂ t u i + v.∇ x u i -div x d u i Ω u i dx ∇ x u i + n ∑ j=1 A j i (u 1 , ..., u n )∇ x u j = F i , in Ω T , ∂ t v -ν∆v + (v.∇ x )v + ∇ x p + Q(u 1 , ..., u n )∇ x φ = 0, div x v = 0, in Ω T , v = 0 and d u i Ω u i dx ∇ x u i + n ∑ j=1 A j i (u 1 , ..., u n )∇ x u j • η = 0, on ∂ Ω T , u i (t = 0, x) = u i,0 (x), v(t = 0, x) = v 0 (x), in Ω,
for i = 1, ..., n. u i is the density of ith population, d u i is the nonlocal diffusivitie functions assumed to be depend on the whole of each population in the domain rather than on the local density, A j i (i, j = 1, ..., n) is the nonlinear cross-diffusion matrix elements, v is the fluid velocity, p is the fluid pressure, ν is the fluid viscosity, Q(u 1 , ..., u n )∇φ represents the external force applied to the incompressible fluid and n is the unit outward normal to Ω on ∂Ω. Finally, F i is the reaction terms for i = 1, ..., n.

The first part of this chapter is devoted to the derivation of the proposed system from the following nonlocal kinetic-fluid model

Model 2            ε∂ t f ε i + ξ • ∇ x F i ( f ε i ) = 1 ε T i [ f ε 1 , ..., f ε i-1 , f ε i+1 , ..., f ε n ]( f i ) + G i ( f ε 1 , ..., f ε n , ξ, v), ∂ t v -ν∆ x v + (v • ∇ x )v + ∇ x p + Q V f ε 1 dξ, ..., V f ε n dξ ∇ x φ = 0, div x v = 0,
f ε i (t = 0, x, ξ) = f ε i,0 (x, ξ), v(t = 0, x) = v 0 (x).
The derivation is based on micro-macro decomposition method which leads to an equivalent system coupled the microscopic and macroscopic equations. Comparing with [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF], here we deal with the derivation from a nonlocal kinetic-fluid model for multiinteracting populations living in a fluid generated by the incompressible Navier-Stokes equations.

In the second part, we prove the existence of weak solutions of the proposed nonlocal cross-diffusion-fluid system. The proof is based on the nonlinear Galerkin method, a priori estimates and compactness arguments. We develop numerical approximations for the equivalent model of the kinetic-fluid system and for the macroscopic model in the next part in order to show the asymptotic preserving scheme property. In other words, when the distance between species (mean free path) is too small, the profiles of the densities given by the two schemes (micro-macro and macroscopic schemes) are almost the same. On the other hand, we reproduce some numerical results of phenomena taking into account the effects of non-locality of diffusivity functions and of the fluid. The last part is devoted to the computational analysis of the nonlocal cross-diffusion-fluid model in two dimension.

Second part:

This part is devoted to vehicular traffic flow application.

Chapter 4. We begin with a detailed review of the main vehicular traffic kinetic models available in the pertinent literature.

Chapter 5. We summarize the results proposed in the paper [START_REF] Calvo | Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions[END_REF]. We propose and we study a new general mathematical structure for vehicular traffic according to a kinetic theory approach. The mathematical structure proposed in this work includes the features of the complex system under consideration which, according to the authors' opinion, appear to be the most important aspects of the dynamics to be retained by the modeling approach. Namely heterogeneity of the driver-vehicle subsystem, aggregation dynamics for vehicles with closed each other velocity, passing probability, variable properties of the road-environment where the dynamics occur and role of the external actions. Our proposed model is as follows

∂ t f (t, x, v, u) + v∂ x f (t, x, v, u) + ∂ v (F [ f ](t, x, v, u) f (t, x, v, u)) = [0,1] 3 η[ f ]A[ f ; α](v * → v|v * , v * , u) f (t, x, v * , u) f (t, x, v * , u * )dv * dv * du * -f (t, x, v, u) [0,1] 2 η[ f ] f (t, x, v * , u * )dv * du * +µ[ f ] f e (x, v e (x)) -f (t, x, v, u) ,
where x and v are the dimensionless position and velocity variables, and u is a variable which denotes the quality of the micro-system. f is the distribution function over the Chapter 1. General Introduction state at the microscopic scale. The remained terms in the above model are • F [ f ] is the overall acceleration of all vehicles which obtained by integration corresponding to the action of all vehicles in the sensitive zone Ω .

• η[ f ] is the encounter rate which models the number of interactions per unit time between candidate and test particles with field particles;

• A[ f ](v * → v|u) is the transition probability density which defines the probability density that a candidate particle falls into the state of with the field particles;

• µ[ f ] models the intensity of the action while v e (x) is the speed imposed by the external action.

We model the interactions at the microscopic scale by methods of game theory, thus leading to the derivation of mathematical models within the framework of the kinetic theory. Short and long range interactions are modeled to depict change of velocity related to passing and clustering phenomena. Numerical results are provided to compute the fundamental diagrams predicted by the spatially homogeneous problem and emerging of two clusters predicted by the spatially inhomogeneous problem.

Part I

Kinetic-fluid derivation and mathematical analysis of cross-diffusion-fluid models

Chapter 2

Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system

This chapter aims to summarize our work [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF] in which we propose a new nonlinear system describing dynamical interaction of two species within viscous flow. The proposed system is a cross-diffusion system coupled with Brinkman problem written in terms of velocity fluid, vorticity and pressure, and describing the flow patterns driven by an external source depending on the distribution of species. In the first part, we derive a macroscopic systems from the kineticfluid equations by using the micro-macro decomposition method. Basing on Schauder fixed-point theory, we prove the existence of weak solutions for the derived system in the second part. The last part is devoted to develop a one dimensional finite volume approximation for the kinetic-fluid model, which are uniformly stable along the transition from kinetic to macroscopic regimes. Our computation method is validated with various numerical tests.

Introduction

In this paper [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF], we are interested to the viscous flow in porous medium which is always modelled by Brinkman equations stating momentum and the conservation of mass of the fluid. We note that Brinkman problem is a parameter dependent combination of Darcy and Stokes models, so that the flow is dominated by Darcy regime and by Stokes elsewhere. Motivated by this phenomena, we propose a nonlinear cross-diffusion system include additional terms accounting for the advection of each species with the fluid velocity, coupled with Brinkman problem written in terms of fluid velocity, vorticity and pressure, and describing the flow patterns driven by an external source depending on the distribution of species.

In order to state our problem, let Ω ⊂ R 3 be a simply connected, and bounded porous domain saturated with a Newtonian incompressible fluid, where also the two species are present. The physical scenario of interest can be therefore described by a coupled system written in terms of the fluid velocity u, the rescaled fluid vorticity ω, the fluid pressure p, and the densities of two species c and s. The cross-diffusion-Brinkman system can be written for (t, x) in Ω T := (0, T) × Ω:

               c t + u • ∇ x c -∆ x D c (c) + a 11 c + a 12 s c = H c (c, s), s t + u • ∇ x s -∆ x D s (s) + a 21 c + a 22 s s = H s (c, s), K -1 u + √ µ curl ω + ∇ x p = Q(c, s)g + F, ω - √ µ curl u = 0, div u = 0, (2.1.1)
Chapter 2. Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system where D c (c), D s (s) are the nonlinear diffusitive functions and a ij > 0 for i, j = 1, 2 is known as self and cross-diffusion rates. The parameter µ is the fluid viscosity in the considered regime, it is assumed independent of the densities of species c and s, K(x) is the permeability tensor rescaled with viscosity, Q(c, s)g represents the force exerted by the densities on the fluid motion, and F(t, x) is an external force applied to the porous medium. The functions H c and H s are the reaction terms. A typical example of H c and H s is given by Lotka-Voltera (logistic) type growth term:

   H c (c, s) = c(a 1 -b 1 c -d 1 s), H s (c, s) = s(a 2 -b 2 c -d 2 s), (2.1.2) 
where a 1 and a 2 are the Malthusian growth coefficients, and b 1 , d 2 and b 2 , d 1 are the coefficients of intra-and inter-species competition, respectively. Note that our system reads for suitably smooth functions c and s as follows

               c t + u • ∇ x c -div x D c (c) + 2 a 11 c + a 12 s ∇c + a 12 c ∇ x s = H c (c, s), in Ω T , s t + u • ∇ x s -div x D s (s) + a 21 c + 2a 22 s ∇s + a 21 s ∇ x c = H s (c, s), in Ω T , K -1 u + √ µ curl ω + ∇ x p = Q(c, s)g + F, in Ω T , ω - √ µ curl u = 0, in Ω T , div u = 0, in Ω T .
(2.1.3) Our system (2.1.3) is complemented with the following boundary conditions in Σ T := (0, T) × ∂Ω and initial data:

cu -(D c (c) + 2 a 11 c + a 12 s)∇ x c -a 12 c∇ x s • η = 0, (t, x) ∈ Σ T , su -(D s (s) + a 21 c + 2a 22 s)∇ x s -a 21 s∇ x c • η = 0, (t, x) ∈ Σ T , u • η = u ∂ , ω × η = ω ∂ , (t, x) ∈ Σ T , c(t = 0, x) = c 0 (x), s(t = 0, x) = s 0 (x), x ∈ Ω, (2.1.4)
where η is the unit outward normal to Ω on ∂Ω. Note that in the case (a i,j ) 1≤i,j≤2 := 0, our system can be reduced to the recent system by [START_REF] Anaya | On a vorticity-based formulation for reaction-diffusion-Brinkman systems[END_REF], in which the authors proposed reaction-diffusion system representing the bacteria-chemical mass exchange, coupled with Brinkman problem. To the best of our knowledge, there are few papers proposing the augmented velocityvorticity-pressure formulation (augmented Brinkman model) without reaction-diffusion system coupling. It was initially proposed in [START_REF] Vassilevski | A mixed formulation for the brinkman problem[END_REF], where the authors added vorticity as a new unknown variable. In [START_REF] Anaya | A priori and a posteriori error analysis of a fully-mixed scheme for the brinkman problem[END_REF][START_REF] Anaya | An augmented velocity-vorticitypressure formulation for the Brinkman equations[END_REF], the authors proposed the analysis of this system using mixed finite element method for standard and non-standard boundary conditions, respectively. Later, in [START_REF] Lenarda | Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows[END_REF], the authors have studied numerically an advection-diffusionreaction system coupled with an incompressible viscous flow. When the fluid is at rest (u = 0), several works have been proposed in the literature to investigate the theoretical and numerical analysis of the cross-diffusion system. For instance, the works in [START_REF] Bendahmane | Weak and classical solutions to predator-prey system with cross-diffusion[END_REF][START_REF] Wen | Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics[END_REF] include the analysis of the weak solution and the global existence of solution. Moreover, the authors in [START_REF] Tian | Instability induced by cross-diffusion in reaction-diffusion systems[END_REF] specified the conditions for the existence of unstable equilibrium points. On the other hand, many numerical methods are proposed to approximate the solution. We refer the reader to finite difference method in [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong cross diffusion[END_REF], finite element method in [START_REF] Barrett | Finite element approximation of a nonlinear cross-diffusion population model[END_REF], deterministic particle method in [START_REF] Gambino | A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion[END_REF], finite volume method in [START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF][START_REF] Anaya | A numerical analysis of a reactiondiffusion system modelling the dynamics of growth tumors[END_REF][START_REF] Anaya | Numerical analysis for a three interacting species model with nonlocal and cross diffusion[END_REF] and positivitypreserving Euler-Galerkin method in [START_REF] Chen | Analysis of a parabolic cross-diffusion population model without self-diffusion[END_REF]. We want to mention here that this is the first attempt to derive macroscopic system with nonlinear diffusitive terms. Moreover, in our contribution we present a new system (Cross-diffusion-Brinkman system) that combine interaction of the species in the presence of fluid.

In this chapter, we derive a general cross-diffusion systems coupled with the Brinkman problem from the kinetic-fluid using micro-macro decomposition method. In particular, we are interesting to derive our cross-diffusion-Brinkman system (3.1.1). The idea of micro-macro decomposition is to write the unknown distribution function as a sum of an equilibrium and a deviation. We note that this method permits to reformulate the singularly perturbed kinetic system into an equivalent micro-macro formulation which is a regular perturbation of the derivative system. Thus, solving numerically the equivalent micro-macro formulation instead of the perturbed kinetic system will permit to shift automatically the limit problem, if the perturbation parameter (Knudsen parameter or sometimes it refers as mean free path) is too small. Several contributions have investigated the asymptotic limit in the following cases: diffusion limit in [START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF][START_REF] Bennoune | An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit[END_REF][START_REF] Bellouquid | An asymptotic preserving scheme for kinetic models for chemotaxis phenomena[END_REF], anomalous diffusion limit in [START_REF] Crouseilles | Numerical schemes for kinetic equations in the anomalous diffusion limit. Part I: The case of heavy-tailed equilibrium[END_REF][START_REF] Chen | Analysis of a parabolic cross-diffusion population model without self-diffusion[END_REF], hyperbolic system in [START_REF] Outada | From kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF] and Keller-Segel systems of pattern formation in biological tissues in [START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF][START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF][START_REF] Burini | Hilbert method toward a multiscale analysis from kinetic to macroscopic models for active particles[END_REF]. Note that there are different approaches to construct such scheme for kinetic systems in various contexts. For instance, the authors in [START_REF] Bellomo | Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems[END_REF][START_REF] Bellomo | On the asymptotic theory from microscopic to macroscopic growing tissue models: an overview with perspectives[END_REF] developed the approach of continuum mechanics based on micro-macro derivation in biological tissue and [START_REF] Bellouquid | On the asymptotic analysis of the BGK model toward the incompressible linear Navier-Stokes equation[END_REF] for incompressible Navier-Stokes, (see the interesting overview [START_REF] Banasiak | Methods of small parameter in mathematical biology[END_REF] for more details). Another approach can be found in [START_REF] Golse | A domain decomposition analysis for a two-scale linear transport problem[END_REF][START_REF] Klar | Asymptotic-induced domain decomposition methods for kinetic and drift diffusion semiconductor equations[END_REF], where the authors used the domain decomposition method for the linear transport equation.

The outline of this Chapter is the following: In Section 2.2, we present the kinetic model and its properties. Next, we perform the micro-macro formulation, which is the ingredient key in the construction of our numerical method. Section 2.3 is devoted to proving the existence of weak solutions for derived macroscopic system. Our numerical method is demonstrated in Section 2.4 with various numerical tests.

Derivation of cross-diffusion-Brinkman systems

This section aims to derive general macroscopic systems using micro-macro decomposition method following the line of the paper [START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF]. Note that the authors in this paper have derived a macroscopic systems of Keller-Segel type, which describe the chemotaxis phenomenon [START_REF] Keller | The keller-segel model of chemotaxis[END_REF]. First, we present the properties of the kinetic system which lead to an equivalent micro-macro formulation. Next, we derive formally a general macroscopic nonlinear coupled system. We finish this subsection by deriving our cross-diffusion-Brinkman system (2.1.3). We want to mention here that the novelty in this first part is that we derive the cross-diffusion system with nonlinear diffusitive functions coupled with Brinkman problem.

The kinetic-fluid model

In order to derive a general macroscopic cross-diffusion-Brinkman system from the kineticfluid model, we consider the parabolic-parabolic scaling. Thus, the kinetic-fluid model is as follows

                     ε∂ t + ξ • ∇ x f ε 1 = 1 ε T 1 [ f ε 2 ]( f ε 1 ) + G 1 ( f ε 1 , f ε 2 , u, ξ), ε∂ t + ξ • ∇ x f ε 2 = 1 ε T 2 [ f ε 1 ]( f ε 2 ) + G 2 ( f ε 1 , f ε 2 , u, ξ), K -1 u + √ µ curl ω + ∇ x p = Q V f ε 1 dξ, V f ε 2 dξ g + F, ω - √ µ curl u = 0, div u = 0, (2.2.1)
Chapter 2. Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system where f 1 , f 2 are the generalized distribution functions which depend on time t, position x ∈ Ω ⊂ R d and velocity ξ ∈ V ⊂ R d ( V assumed to be bounded and symmetric). The remaining macroscopic variables and parameters, namely u, µ, ω, p, Q, g, and F, are defined in the introduction. The Knudsen parameter ε measures the distance of the system to its equilibrium. Specifically, when ε is small, the system is close to an equilibrium state, while for large ε, the system is far from equilibrium. Moreover,

T 1 [ f 2 ], T 2 [ f 1 ]
and G i , i = 1, 2 are, respectively, the turning and interaction operators, assumed to satisfy the following properties:

• The turning operators are decomposed as follows

T 1 [ f 2 ](h) = T 1 1 (h) + εT 2 1 [ f 2 ](h), T 2 [ f 1 ](h) = T 2 1 (h) + εT 2 2 [ f 1 ](h), (2.2.2) 
where T i j for i, j = 1, 2 are given by

T i j (h) = V T i j (ξ * , ξ)h(t, x, ξ * ) -T i j (ξ, ξ * )h(t, x, ξ) dξ * , (2.2.3)
where T i j (ξ, ξ * ) is the probability kernel for the new velocity ξ ∈ V, given that the previous velocity was ξ * . The dependence on f 2 ( resp. f 1 ) of the operator

T 2 1 [ f 2 ] ( resp. T 2 2 [ f 1 ] ) stems from T 1 2 ( resp. T 2 2 ). We assume that T 1 1 is independent on f 2 and T 1 2 is independent on f 1 .
In what follows, we shall consider

T 1 1 (h) = L 1 (h) and T 1 2 (h) = L 2 (h).
• We assume that

V L 1 (h)dξ = V T 2 1 [ f 2 ](h)dξ = V L 2 (h)dξ = V T 2 2 [ f 1 ](h)dξ = 0. ( 2 

.2.4)

• There exists a bounded velocity distribution M i (ξ) > 0, (i = 1, 2) independent of t and x, such that

T 1 1 (ξ, ξ * )M 1 (ξ * ) = T 1 1 (ξ * , ξ)M 1 (ξ), T 1 2 (ξ, ξ * )M 2 (ξ * ) = T 1 2 (ξ * , ξ)M 2 (ξ) (2.2.5)
holds. Furthermore, M i are normalized and the flow produced by these equilibrium distributions vanishes

V M i (ξ)dξ = 1, V ξ M i (ξ)dξ = 0, i = 1, 2. (2.2.6)
The probability kernels T 1 1 (ξ, ξ * ) and T 1 2 (ξ, ξ * ) are bounded, and there exist constants σ i > 0, i = 1, 2, such that

T 1 1 (ξ, ξ * ) ≥ σ 1 M 1 (ξ), T 1 2 (ξ, ξ * ) ≥ σ 2 M 2 (ξ), (2.2.7) 
for all (ξ, ξ * ) ∈ V × V.

• Moreover, we assume that the interaction operators G i (i = 1, 2) satisfy the following properties:

G i ( f 1 , f 2 , u, ξ) = G i1 ( f 1 , f 2 , u, ξ) + εG i2 ( f 1 , f 2 , ξ), (2.2.8)
where

V G i1 ( f 1 , f 2 , u, ξ)dξ = 0, (2.2.9) for i = 1, 2.
Thanks to technical calculations in [START_REF] Chalub | Kinetic models for chemotaxis and their drift-diffusion limits[END_REF], the operators L i (i = 1, 2) have the following properties (the proof of the following lemma can be found in [START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF]): Lemma 2.2.1 Assume that the hypothesis (3.2.6), (3.2.7) and (3.2.8) hold. Then, the following properties of the operators L 1 and L 2 hold true:

1) The operator L i is self-adjoint in the space L 2 V, dξ M i .

2) For h ∈ L 2 , the equation

L i (g) = h, (i = 1, 2) has a unique solution g ∈ L 2 V, dξ M i , satisfying V g(ξ) dξ = 0 if and only if V h(ξ) dξ = 0.
3) The equation L i (g) = ξ M i (ξ), has a unique solution which be denoted by θ i (ξ), for i = 1, 2.

4) The kernel of

L i is N(L i ) = vect(M i (ξ)), i = 1, 2.

The equivalent micro-macro formulation

In this subsection, we rewrite each kinetic equation in (2.2.1) as an equivalent system coupling a hydrodynamic part with a kinetic part. For this, we decompose f i , (i = 1, 2) into a main part that is close to the equilibrium in diffusive regimes, and another part that vanishes in its limit, i.e

f 1 (t, x, ξ) = M 1 (ξ)c(t, x) + εg 1 (t, x, ξ), f 2 (t, x, ξ) = M 2 (ξ)s(t, x) + εg 2 (t, x, ξ), where c(t, x) = V f 1 (t, x, ξ)dξ, s(t, x) = V f 2 (t, x, ξ)dξ.
We will use frequently the notation . which denote the integral with respect to the variable ξ. We observe that g i = 0, for i = 1, 2. Inserting f 1 and f 2 in the kinetic model (2.2.1) and using the properties of the kernel operators, we get

∂ t (M 1 c) + ε∂ t g 1 + 1 ε ξ M 1 • ∇ x c + ξ • ∇ x g 1 = 1 ε L 1 (g 1 ) + 1 ε T 2 1 [ f 2 ](M 1 (ξ)c) +T 2 1 [ f 2 ](g 1 ) + 1 ε G 11 ( f 1 , f 2 , u, ξ) + G 12 ( f 1 , f 2 , ξ), (2.2.10) ∂ t (M 2 s) + ε∂ t g 2 + 1 ε ξ M 2 • ∇ x s + ξ • ∇ x g 2 = 1 ε L 2 (g 2 ) + 1 ε T 2 2 [ f 1 ](M 2 (ξ)s) +T 2 2 [ f 1 ](g 2 ) + 1 ε G 21 ( f 1 , f 2 , u, ξ) + G 22 ( f 1 , f 2 , ξ), (2.2.11) K -1 u + √ µ curl ω + ∇ x p = Q(c, s)g + F, ω - √ µ curl u = 0, div u = 0. (2.2.12)
The micro-macro formulation equivalent to system (3.2.1) is obtained by two steps. In the first step, we use a projection technique to separate the macroscopic densities (c(t, x), Chapter 2. Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system s(t, x)) and microscopic quantities (g 1 (t, x, ξ), g 2 (t, x, ξ)). For that, let P M i denote the orthogonal projection onto N(L i ), for i = 1, 2. It follows

P M i (h) = h M i , for any h ∈ L 2 V, dξ M i , for i = 1, 2.
Regarding the orthogonal projections P M 1 , P M 2 , we have the following result:

Lemma 2.2.2 (cf. [START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF]) For the projection P M 1 , P M 2 , we have the following properties :

(I -P M 1 )(M 1 c) = (I -P M 2 )(M 2 s) = P M 1 (g 1 ) = P M 2 (g 2 ) = 0, (I -P M 1 )(ξ M 1 • ∇ x c) = ξ M 1 • ∇ x c, (I -P M 2 )(ξ M 2 • ∇ x s) = ξ M 2 • ∇ x s, (I -P M 1 )(T 2 1 [ f 2 ](M 1 (ξ)c) = T 2 1 [ f 2 ](M 1 (ξ)c), (I -P M 2 )(T 2 2 [ f 1 ](M 2 (ξ)s)) = T 2 2 [ f 1 ](M 2 (ξ)s), (I -P M 2 )(T 2 2 [ f 1 ](h)) = T 2 2 [ f 1 ](h), (I -P M 1 )(T 2 1 [ f 2 ](h)) = T 2 1 [ f 2 ](h), (I -P M 1 )(L i (h)) = L i (h), (I -P M i )(G i1 ( f 1 , f 2 , u, ξ)) = G i1 ( f 1 , f 2 , u, ξ), i = 1, 2.
Taking the operators I -P M 1 and I -P M 2 into (2.2.10) and (2.2.11), respectively, and using Lemma 2.2.2, yield the following microscopic equations:

ε∂ t g 1 + 1 ε ξ M 1 • ∇ x c + (I -P M 1 )(ξ • ∇ x g 1 ) = 1 ε L 1 (g 1 ) + 1 ε T 2 1 [ f 2 ](M 1 (ξ)c) (2.2.13) +T 2 1 [ f 2 ](g 1 ) + 1 ε G 11 ( f 1 , f 2 , u, ξ) + (I -P M 1 )G 12 ( f 1 , f 2 , ξ), ε∂ t g 2 + 1 ε ξ M 2 • ∇ x s + (I -P M 2 )(ξ • ∇ x g 2 ) = 1 ε L 2 (g 2 ) + 1 ε T 2 2 [ f 1 ](M 2 (ξ)s) (2.2.14) +T 2 2 [ f 1 ](g 2 ) + 1 ε G 21 ( f 1 , f 2 , u, ξ) + (I -P M 1 )G 22 ( f 1 , f 2 , ξ).
For the second step, we integrate (2.2.10) with respect to ξ

∂ t c V M 1 dξ + ε∂ t V g 1 dξ + 1 ε V ξ M 1 dξ • ∇ x c + V ξ • ∇ x g 1 dξ = 1 ε V L 1 (g 1 )dξ + 1 ε V T 2 1 [ f 2 ](M 1 (ξ)c)dξ + V T 2 1 [ f 2 ](g 1 )dξ + 1 ε V G 11 ( f 1 , f 2 , u, ξ)dξ + V G 12 ( f 1 , f 2 , ξ)dξ.
Thanks to (2.2.4), (2.2.6) and (2.2.9) and the fact that g 1 = g 2 = 0, we obtain the following macroscopic equation: 

∂ t c + ξ • ∇ x g 1 = G 12 ( f 1 , f 2 , ξ) . ( 2 
∂ t s + ξ • ∇ x g 2 = G 22 ( f 1 , f 2 , ξ) . ( 2 
                                                                               ε∂ t g 1 + 1 ε ξ M 1 • ∇ x c + (I -P M 1 )(ξ • ∇ x g 1 ) = 1 ε L 1 (g 1 ) + 1 ε T 2 1 [ f 2 ](M 1 (ξ)c) + T 2 1 [ f 2 ](g 1 ) + 1 ε G 11 ( f 1 , f 2 , u, ξ) + (I -P M 1 )G 12 ( f 1 , f 2 , ξ), ∂ t c + ξ • ∇ x g 1 = G 12 ( f 1 , f 2 , ξ) , ε∂ t g 2 + 1 ε ξ M 2 • ∇ x s + (I -P M 2 )(ξ • ∇ x g 2 ) = 1 ε L 2 (g 2 ) + 1 ε T 2 2 [ f 1 ](M 2 (ξ)s) + T 2 2 [ f 1 ](g 2 ) + 1 ε G 21 ( f 1 , f 2 , u, ξ) + (I -P M 2 )G 22 ( f 1 , f 2 , ξ), ∂ t s + ξ • ∇ x g 2 = G 22 ( f 1 , f 2 , ξ) , K -1 u + √ µ curl ω + ∇ x p = Q(c, s)g + F, ω - √ µ curl u = 0, div u = 0.
(2.2.17) Note that system (2.2.17) is the micro-macro formulation of the kinetic-fluid model (2.2.1). The following proposition shows that system (2.2.17) and the model (2.2.1) are equivalent.

Proposition 2.2.1 i) Let ( f 1 , f 2 , u, ω, p) be a solution of the kinetic system (2.2.1). Then the functions (c, g 1 , s, g 2 , u, ω, p) (where c = f

1 , s = f 2 , g 1 = 1 ε ( f 1 -M 1 c), g 2 = 1 ε ( f 2 - M 2 s
)) are a solution to coupled system (2.2.17) with the associated initial data

c(t = 0) = c 0 = f 10 , g 1 (t = 0) = g 10 = 1 ε ( f 10 -M 1 c 0 ), (2.2.18) 
s(t = 0) = s 0 = f 20 , g 2 (t = 0) = g 20 = 1 ε ( f 20 -M 2 s 0 ), (2.2.19) 
ii) Conversely, if (c, g 1 , s, g 2 , u, ω, p) satisfies system (2.2.17) with initial data (c 0 , g 10 , s 0 , g 20 ) such that g 10 = g 20 = 0, then ( f

1 = M 1 c + εg 1 , f 2 = M 2 s + εg 2 , u, ω, p) is a solution to kinetic model (2.2.1) with initial data f 10 = M 1 c 0 + εg 10 , f 20 = M 2 s 0 + εg 20 and we have c = f 1 , s = f 2 and g 1 = g 2 = 0.
Remark 2.2.1 The proof of i) is already detailed above. For the proof of ii) we refer the reader to proof of Theorem 1 in [START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF].

In order to derive the macroscopic systems from the micro-macro formulation (2.2.17), we need more assumptions on the turning operators T 2 1 , T 2 2 (recall that T 2 1 and T 2 2 are given in (2.2.3)-(2.2.7)) and the interactions terms G i1 , G i2 . Moreover, we assume that these terms satisfy the following asymptotic behavior when ε → 0: Inserting (2.2.23) and (2.2.24) into the second and the fourth equations in (2.2.17), yield the following coupled macroscopic system:

                             ∂ t c + ξ.∇ x (L 1 ) -1 (ξ M 1 • ∇ x c) -ξ.∇ x (L 1 ) -1 (T 2 1 [M 2 (ξ)s](M 1 (ξ)c)) -ξ.∇ x (L 1 ) -1 (G 11 (M 1 c, M 2 s, u, ξ)) = G 12 (M 1 c, M 2 s, ξ) + O(ε), ∂ t s + ξ.∇ x (L 2 ) -1 (ξ M 2 • ∇ x s) -ξ.∇ x (L 2 ) -1 (T 2 2 [M 1 (ξ)c](M 2 (ξ)s)) -ξ.∇ x (L 2 ) -1 (G 21 (M 1 c, M 2 s, u, ξ)) = G 22 (M 1 c, M 2 s, ξ) + O(ε), K -1 u + √ µ curl ω + ∇ x p = Q(c, s)g + F, ω - √ µ curl u = 0, div u = 0.
(2.2.25) The next lemma gives the calculations of the terms with the inverse of the operators L 1 and L 2 appearing in system (2.2.25). Lemma 2.2.3 (cf. [START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF]) Assume that the operators L 1 , L 2 , G 11 and G 21 are satisfy the assumptions above. Then, we have the following identities :

ξ.∇ x (L 1 ) -1 (ξ M 1 • ∇ x c) = div x ξ ⊗ θ 1 (ξ) • ∇ x c , ξ.∇ x (L 2 ) -1 (ξ M 2 • ∇ x s) = div x ξ ⊗ θ 2 (ξ) • ∇ x s , ξ.∇ x (L 1 ) -1 (T 2 1 [M 2 (ξ)s](M 1 (ξ)c)) = div x θ 1 (ξ) M 1 (ξ) cT 2 1 [M 2 (ξ)s](M 1 (ξ)) , ξ.∇ x (L i ) -1 (G i1 (M 1 c, M 2 s, u, ξ)) = div x θ i (ξ) M i (ξ), ξ G i1 (M 1 c, M 2 s, u, ξ) , i = 1, 2.
In addition, here we need the following identity

ξ.∇ x (L 2 ) -1 (T 2 2 [M 1 (ξ)c](M 2 (ξ)s)) = div x θ 2 (ξ) M 2 (ξ) sT 2 2 [M 1 (ξ)c](M 2 (ξ)) ,
where θ 1 and θ 2 are given in Lemma 2.2.1.

Finally, thanks to system (2.2.25) and Lemma 2.2.3 we get the following macroscopic system:

           ∂ t c + div x (c α 1 (s) + Γ 1 (c, s, u) -d c • ∇ x c) -H 1 (c, s) + O(ε) = 0, ∂ t s + div x (s α 2 (c) + Γ 2 (c, s, u) -d s • ∇ x s) -H 2 (c, s) + O(ε) = 0, K -1 u + √ µ curl ω + ∇ x p = Q(c, s)g + F, ω - √ µ curl u = 0, div u = 0, (2.2.26) where d c , d s , α 1 (s), α 2 (c), Γ 1 (c, s, u), Γ 2 (c, s, u), H 1 (c, s) and H 2 (c, s) are given by d c = - V ξ ⊗ θ 1 (ξ)dξ, d s = - V ξ ⊗ θ 2 (ξ)dξ, (2.2.27 
)

α 1 (s) = - V θ 1 (ξ) M 1 (ξ) T 2 1 [M 2 (ξ)s](M 1 (ξ))dξ, α 2 (c) = - V θ 2 (ξ) M 2 (ξ) T 2 2 [M 1 (ξ)c](M 2 (ξ))dξ, ( 2 
.2.28)

Γ i (c, s, u) = - V θ i (ξ) M i (ξ) G i1 (M 1 c, M 2 s, u, ξ)dξ, i = 1, 2, (2.2.29) H 1 (c, s) = V G 12 (M 1 c, M 2 s, ξ)dξ, H 2 (c, s) = V G 22 (M 1 c, M 2 s, ξ)dξ.
(2.2.30)

Derivation of cross-diffusion-Brinkman system

In this subsection, we consider the case where the set for velocity is the sphere of radius r > 0, V = rS d-1 and x ∈ Ω ⊂ R 2 . We assume that the probability kernel T 1 i is given by

T 1 i = σ i |V| , for i = 1, 2.
This implies

L i ( f ) = - σ i |V| f |V| -f , for i = 1, 2. Observe that M i (ξ) = 1 |V| satisfies (2.2.6). For this choice of M i , θ i (ξ) = -ξ σ i |V| is a solution of L i (θ i (ξ)) = ξ M i (ξ), for i = 1, 2. Now, we let T 2 1 [g] and T 2 2 [g] such that T 2 1 [g] = a 12 β 1 |V| ξ.∇ x g and T 2 2 [g] = a 21 β 2 |V| ξ.∇ x g,
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where

β 1 = σ 1 r 2 d |V| and β 2 = σ 2 r 2 d |V|. It follows T 2 1 [M 2 s](M 1 ) = -a 12 β 1 M 2 |V| 2 ξ • ∇ x s and T 2 2 [M 1 c](M 2 ) = -a 21 β 2 M 1 |V| 2 ξ • ∇ x c.
Therefore, we get

α 1 (s) = - β 1 a 12 σ 1 |V| 2 V ξ ⊗ ξdξ • ∇ x s, = -a 12 ∇ x s, and 
α 2 (v) = - β 2 a 21 σ 2 |V| 2 V ξ ⊗ ξdξ • ∇ x c = -a 21 ∇ x c.
Moreover, we use (2.2.27) to obtain

d c = 1 σ 1 |V| V ξ ⊗ ξdξ = r 2 dσ 1 I, d s = 1 σ 2 |V| V ξ ⊗ ξdξ = r 2 dσ 2 I. (2.2.31) Now, we define G i,1 , for i = 1, 2 by        G 1 1 (M 1 c, M 2 s, u, ξ) = dσ 1 r 2 |V| M 1 c u -M 1 (2a 11 c + dc (c)) -a 12 M 2 s ξ. ∇ x c, G 2 1 (M 1 c, M 2 s, u, ξ) = dσ 2 r 2 |V| M 2 s u -a 21 M 1 c -M 2 (2a 22 s + ds (s)) ξ. ∇ x s, (2.2 
.32) where dc (c) and ds (s) are a nonlinear positive functions. It is not difficult to see that V G i1 dξ = 0 and therefore satisfies condition (2.2.9) (recall that ξ M i = 0), for i = 1, 2. Next, we use the definitions of Γ 1 and Γ 2 in (2.2.29), to obtain from (2.2.32) and (2.2.31) (recall that

θ i = -ξ σ i |V| ) Γ 1 (c, s, u) = d r 2 |V| 2 V ξ ⊗ ξdξ • cu -(2a 11 c + a 12 s + dc (c))∇ x c = cu -(2a 11 c + a 12 s + dc (c))∇ x c, (2.2.33) Γ 2 (c, s, u) = d r 2 |V| 2 V ξ ⊗ ξdξ • su -(a 21 c + 2a 22 s + ds (s))∇ x s = su -(a 21 c + 2a 22 s + ds (s))∇ x s.
(2.2.34) Now collecting the previous results with div x u = 0 and (2.2.26), we arrive to the macroscopic cross-diffusion-Brinkman system of the order O(ε) 

             c t + u • ∇c -div x (D c (c) + 2a 11 c + a 12 s)∇ x c + a 12 c∇ x s = H 1 (c, s) + O(ε), s t + u • ∇s -div x (D s (s) + a 21 c + 2a 22 s)∇ x s + a 21 s∇ x c = H 2 (c, s) + O(ε), K -1 u + √ µ curl ω + ∇ x p = Q(c, s)g + F, ω - √ µ curl u = 0, div x u = 0, ( 2 
       G 1 2 (M 1 c, M 2 s , ξ) = H 1 (c, s) |V| , G 2 2 (M 1 c, M 2 s , ξ) = H 2 (c, s) |V| . ( 2 

Mathematical analysis of the cross-diffusion-Brinkman system

Before stating our result concerning the weak solutions, we collect some preliminary material, including relevant notations and conditions imposed on the data of our problem.

Let Ω be a bounded, open subsets of R 3 with a smooth boundary ∂Ω; η is the unit outward normal to Ω on ∂Ω. Next, |Ω| is the Lebesgue measure of Ω. We denote by H 1 (Ω) the Sobolev space of functions u :

Ω → R for which u ∈ L 2 (Ω) and ∇ x u ∈ L 2 (Ω; R 3 ). For 1 ≤ p ≤ +∞, • L p (Ω) is the usual norm in L p (Ω); then L p + (Ω) = {u : Ω -→ R + measurable and Ω |u(x)| p dx < +∞}, L ∞ + (Ω) = {u : Ω -→ R + measurable and sup x∈Ω |u(x)| < +∞}.
If X is a Banach space, a < b and 1 ≤ p ≤ +∞, L p (a, b; X) denotes the space of all measurable functions u : (a, b) -→ X such that u(•) X belongs to L p (a, b).

Next T is a positive number and Ω t := Ω × (0, t) and Σ t := ∂Ω × (0, t),

for 0 < t ≤ T.
Regarding the permeability tensor, we suppose that K ∈ [C( Ω)] 3×3 is symmetric and uniformly positive definite. Moreover, there exists C > 0 such that

v t K -1 (x)v ≥ C|v| 2 ∀ v ∈ R 3 , ∀ x ∈ Ω. (2.3.1)
The diffusivities are assumed positive, coercive, and continuous

D i : [0, 1] → R + is continuous, 0 < D min ≤ D i (u) ≤ D max < ∞, u ∈ R, (2.3.2) 
for i ∈ {s, c}. In addition we assume that Q is a continuous function and there exists constant a

C Q > 0 such that |Q(c, s)| ≤ C Q (1 + |c| + |s|) for all c, s ∈ R. (2.3.3)
Initial data are assumed nonnegative and in L 2 c 0 , s 0 ≥ 0, c 0 , s 0 ∈ L 2 (Ω).

(2.3.4)

In the proof of the existence of the weak solution, we will use the following assumption (ellipticity condition) 8a 11 a 21 ≥ a 2 12 and 8a 22 a 12 ≥ a 2 21 .

(2.3.5)
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X := {v ∈ H 0 (div; Ω) : Ω q div v dx = 0, ∀q ∈ L 2 0 (Ω)} = {v ∈ H 0 (div; Ω) : div v = 0 a.e. in Ω}.
We endow the space H(curl; Ω) with the following µ-dependent norm:

z 2 H(curl;Ω) := z 2 0,Ω + µ curl z 2 0,Ω .
Moreover, we recall the following inf-sup condition (see for e.g. [START_REF] Gatica | A simple introduction to the mixed finite element method[END_REF] for more details): there exists C Ω > 0 only depending on Ω, such that sup 

v∈H(div;Ω) v =0 Ω q div v dx v H(div;Ω) ≥ C Ω q 0,Ω ∀q ∈ L 2 0 (Ω). ( 2 
∈ L ∞ (0, T; L 2 (Ω)) ∩ L 2 (0, T; H 1 (Ω)) u ∈ L 2 (0, T; H(div ; Ω)), ω ∈ L 2 (0, T; H(curl; Ω)), p ∈ L 2 (0, T; L 2 0 (Ω)) and T 0 ∂ t c, ϕ c dt + Ω T D c (c) + 2 a 11 c + a 12 s ∇ x c + a 12 c ∇ x s -cu •∇ x ϕ c dx dt = Ω T H c (c, s)ϕ c dx dt, T 0 ∂ t s, ϕ s dt + Ω T D s (s) + a 21 c + 2a 22 s ∇ x s + a 21 s ∇ x c -su •∇ x ϕ s dx dt = Ω T H s (c, s)ϕ s dx dt, Ω T K -1 u • v dx dt + √ µ Ω T curl ω • v dx dt - Ω T p div x v dx dt = Ω T (Q(c, s)g + F) • v dx dt, √ µ Ω T curl z • u dx dt - Ω T ω • z dx dt = 0, - Ω T q div x u dx dt = 0, for all ϕ c , ϕ s ∈ L 2 (0, T; W 1,∞ (Ω)), v ∈ L 2 (0, T; H 0 (div; Ω)), z ∈ L 2 (0, T; H 0 (curl; Ω)), q ∈ L 2 (0, T; L 2 0 (Ω)).
•, • denotes the duality pairing between W 1,∞ (Ω) and (W Remark 2.3.1 Note that a major difficulty for our system (2.1.3) is the strong coupling in the highest derivatives. Therefore, standard parabolic theory is not directly applicable to our system due to the cross-diffusion-Brinkman terms. We point out that this system is strongly nonlinear and so no maximum principle applies. Moreover, we have not been able to prove uniqueness of weak solutions because of the presence of nonlinear lower-order terms (cross-diffusion terms).

Existence of solutions for the approximate problems

This subsection is devoted to proving existence of solutions to the approximate problem (2.3.7) below of system (2.1.3). The existence proof is based on the Shauder fixed-point theorem, a priori estimates, and the compactness method. The approximation systems read for (t, x) ∈ (0, T] × Ω:

       c t + u • ∇ x c -div x D c (c) + 2 a 11 f + ε (c) + a 12 f + ε (s) ∇ x c + a 12 f + ε (c) ∇ x s = H c,ε (c + , s + ), s t + u • ∇ x s -div x D s (s) + a 21 f + ε (c) + 2a 22 f + ε (s) ∇ x s + a 21 f + ε (s) ∇ x c = H s,ε (c + , s + ), K -1 u + √ µ curl ω + ∇ x p = Q(s, c)g + F, ω - √ µ curl u = 0, div x u = 0, (2.3 
.7) subject to the boundary conditions and initial data given by (2.1.4). Herein, ε > 0 is a small number,

     H c,ε (a) = H c 1 + ε |H c | and H s,ε (a) = H s 1 + ε |H s | , f ε (a) = a 1 + ε |a| and b + = max (0, b) for any a, b ∈ R.
Note that under condition (2.3.5), the matrix

M(c, s) =     2 a 11 f + (c) + a 12 f + (s) Id 3 1 2 a 12 f + (c) + a 21 f + (s) Id 3 1 2 a 12 f + (c) + a 21 f + (s) Id 3 a 21 f + (c) + 2 a 22 f + (s) Id 3    
is uniformly nonnegative. Indeed, its characteristic polynomial factors out [START_REF] Bendahmane | A reaction-diffusion system with cross-diffusion modelling the spread of an epidemic disease[END_REF] for more details). We shall frequently use this to prove the existence (and nonnegativity) of weak solutions.

P(λ) = 1 4 3 4λ 2 -4 2a 11 f + (c) + a 12 f + (s) + a 21 f + (c) + 2a 22 f + (s) λ + R 3 . Setting f + (s) = κ f + (c), κ ≥ 0, one gets R = 4 f + (c) 2 Q(κ), where 
Q(κ) = (8a
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Existence result to the fixed problem

In this subsection, we omit the dependence of the solutions on the parameter ε. We prove, for each fixed ε > 0, the existence of solutions to the fixed problem (2.3.7), by applying the Schauder fixedpoint theorem. Since we use Schauder fixed-point theorem, we need to introduce the following closed subset of the Banach space L 2 (Ω T , R n ):

A = {U = (c, s) ∈ L 2 (Ω T , R 2 ) : U L ∞ (0,T;L 2 (Ω,R 2 ))∩L 2 (0,T;H 1 (Ω,R 2 )) ≤ C A }, (2.3.8) 
where C A > 0 is a constant that will be defined below. With (c, s) ∈ A fixed, let (c, s, u, ω, p) be the unique solution of the system in

Ω T        c t + u • ∇ x c -div x D c (c) + 2 a 11 f + ε (c) + a 12 f + ε (s) ∇ x c + a 12 f + ε (c) ∇ x s = H c,ε (c + , s + ), s t + u • ∇ x s -div x D s (s) + a 21 f + ε (c) + 2a 22 f + ε (s) ∇ x s + a 21 f + ε (s) ∇ x c = H s,ε (c + , s + ), K -1 u + √ µ curl ω + ∇ x p = Q(c, s)g + F, ω - √ µ curl u = 0, div x u = 0.
(2.3.9)

The fixed-point method

Now, we introduce a map L : A → A such that L(c, s) = (c, s), where (c, s) solve (2.3.9). By using the Schauder fixed-point theorem, we prove that the map L have a fixed point for (2.3.9). We start with the following result where the proof can be found in [START_REF] Gatica | A simple introduction to the mixed finite element method[END_REF] Theorem 1.3:

Theorem 2.3.2 Let (X ,
•, • X ) be a Hilbert space. Let A : X × X → R be a bounded symmetric bilinear form, and let G : X → R be a bounded functional. Assume that there exists β > 0 such that

sup y∈X y =0 A(x, y) y X ≥ β x X ∀ x ∈ X .
Then, there exists a unique x ∈ X , such that

A(x, y) = G(y) ∀ y ∈ X .
Moreover, there exists C > 0, independent of the solution, such that

x X ≤ C G X .
Observe that from Brinkman equation in (2.3.9) we solve the following problem:

Find (u, ω) ∈ X × H(curl; Ω) such that Ω K -1 u • v dx + √ µ Ω curl ω • v dx = Ω (Q(c, s)g + F) • v dx, ∀v ∈ X, √ µ Ω curl z • u dx - Ω ω • z dx = 0, ∀z ∈ H 0 (curl; Ω).
Next we exploit Theorem 2.3.2 and we work exactly as in the proofs of [1, Theorem 2.2 and Corollary 2.1] to get the following lemma for a fixed (c, s) ∈ A and for any t > 0.

Lemma 2.3.1 Assume that (c, s) ∈ A. Then, the variational problem

Ω K -1 u • v dx + √ µ Ω curl ω • v dx - Ω p div x v dx = Ω (Q(c, s)g + F) • v dx, √ µ Ω curl z • u dx - Ω ω • z dx = 0, - Ω q div x u dx = 0, (2.3.10) admits a unique solution (u, ω, p) ∈ H(div; Ω) × H(curl; Ω) × L 2 0 (Ω). Moreover, there exists C > 0 independent of µ such that u H(div;Ω) + ω H(curl;Ω) + p 0,Ω ≤ C (1 + c 0,Ω + s 0,Ω ) g ∞,Ω + F 0,Ω + u ∂ -1/2,∂Ω + ω ∂ -1/2,∂Ω . (2.3.11)
Now, let us show that L is a continuous mapping. For this, letting (c , s ) be sequence in A. Next, we let (c,

s) ∈ A be such that (c , s ) → (c, s) in L 2 (Ω T , R 2 ) as → ∞. Define (c , s ) = L(c , s ).
The goal is to show that (c , s ) converges to L(c, s) in L 2 (Ω T , R 3 ). Next, we need the following lemma:

Lemma 2.3.2
The solution (c , s ) to system (2.3.9) satisfies:

(i) The sequence (c , s ) is bounded in L 2 (0, T; H 1 (Ω, R 2 )) ∩ L ∞ (0, T; L 2 (Ω, R 2 )). (ii) The sequence (c , s ) is relatively compact in L 2 (Ω T , R 3 ). Proof 2.3.1 (i)
We multiply the first and the second in (2.3.9) by c and s respectively, integrate over Ω and using the uniform nonnegativity of M(c , s ), yields

1 2 d dt Ω |c | 2 + |s | 2 dx + D min Ω |∇ x c | 2 + |∇ x s | 2 dx + Ω 2 a 11 |∇ x c | 2 + a 12 ∇ x c • ∇s + a 21 |∇s | 2 f + ε (c ) dx + Ω a 12 |∇ x c | 2 + a 21 ∇ x c • ∇ x s + 2 a 22 |∇ x s | 2 f + ε (s ) dx = 1 2 d dt Ω |c | 2 + |s | 2 dx + D min Ω |∇ x c | 2 + |∇ x s | 2 dx + Ω (∇ x c , ∇ x s ) T M(c , s ) (∇ x c , ∇ x s ) dx = Ω H c,ε (c + , s + )c dx + Ω H s,ε (c + , s + )s dx ≤ C Ω |c | 2 + |s | 2 dx,
(2.3.12) for some constant C > 0. Herein, we have used assumption (2.3.2) and

Ω c u • ∇ x c dx + Ω s u • ∇ x s dx = 1 2 Ω u • ∇ x (c ) 2 dx + 1 2 Ω u • ∇ x (s ) 2 dx = 0.
In view of (2.3.5) (recall that the matrix M(c , s ) is nonnegative under condition (2.3.5)) and Gronwall's inequality it follows from (2.3.12) that,

sup t∈(0,T) Ω (|c | 2 + |s | 2 dx ≤ exp(CT) c 0 + s 0 L 2 (Ω) , (2.3.13) 
which proves the first part of (i). From (2.3.12) and (2.3.13) we may also conclude that,

Ω T (|∇ x c | 2 + |∇ x s | 2 ) dx dt ≤ T exp(CT) D min c 0 + s 0 L 2 (Ω) , (2.3.14) 
yielding (i).

(ii) Finally multiplying the first, the second and the third equation (2.3.9) by ϕ c , ϕ s ∈ L 2 (0, T; H 1 (Ω)), respectively and using the boundedness of f + ε , H c,ε , H s,ε , and

(2.3.14) there exists a constant C(ε) > 0 such that T 0 ∂ t c , ϕ c dt + T 0 ∂ t s , ϕ s dt ≤ C(ε) ϕ c L 2 (0,T;H 1 (Ω)) + ϕ s L 2 (0,T;H 1 (Ω)) , (2.3.15)
so we get (ii). Then, (ii) is a consequence of (i) and the uniform boundedness (2.3.15) 

of (c , s ) in L 2 (0, T; (H 1 (Ω, R 2 )) )
Chapter 2. Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system Remark 2.3.2 Note that it is easy to deduce from Lemma 2.3.2 that the constant C A > 0 (consult (2.3.8)) is defined as follows:

C A = (D min + T) exp(CT) D min c 0 + s 0 L 2 (Ω)
for some constant C > 0.

From Lemma 2.3.2, there exist functions (c , s ) ∈ L 2 (0, T;

H 1 (Ω, R 2 )) such that, up to extract- ing subsequences if necessary, (c , s ) → (c, s) in (L 2 (Ω T )) 2 strongly,
and from this the continuity of L on A follows. We observe that, from Lemma 2.3.2, L(A) is bounded in the set

E = u ∈ L 2 (0, T; H 1 (Ω, R 2 )) : ∂ t u ∈ L 2 (0, T; (H 1 (Ω, R 2 )) ) . (2.3.16)
By a standard Aubin-Lions-Simon compactness lemma (see for e.g. [START_REF] Simon | Compact sets in the space l p (0; t; b)[END_REF],Theorem 5 or [START_REF] Lions | Quelques méthodes de r ésolution des problèmes aux limites non linéaires[END_REF]),

E → L 2 (Ω T , R 2 ) is compact, thus L is compact. Now, by the Schauder fixed point theorem, the operator L has a fixed point (c ε , s ε ) such that L(c ε , s ε ) = (c ε , s ε ). Then there exists a solution (c ε , s ε , u ε , ω ε , p ε ) of T 0 ∂ t c ε , ϕ c dt + Ω T D c (c ε ) + 2 a 11 f + ε (c ε ) + a 12 f + ε s ε ) ∇ x c ε + a 12 f + ε (c ε ) ∇ x s -c ε u ε •∇ x ϕ c dx dt = Ω T H c,ε (c + ε , s + ε )ϕ c dx dt, T 0 ∂ t s ε , ϕ s dt + Ω T D s (s ε ) + a 21 f + ε (c ε ) + 2a 22 f + ε (s ε ) ∇ x s ε + a 21 f + ε (s ε ) ∇ x c ε -c ε u ε •∇ x ϕ s dx dt = Ω T H s,ε (c + ε , s + ε )ϕ s dx dt, Ω T K -1 u ε • v dx dt + √ µ Ω T curl ω ε • v dx dt - Ω T p ε div x v dx dt = Ω T (Q(c ε , s ε )g + F) • v dx dt, √ µ Ω T curl z • u ε dx dt - Ω T ω ε • z dx dt = 0, - Ω T q div x u ε dx dt = 0, (2.3.17) for all ϕ c , ϕ s ∈ L 2 (0, T; H 1 (Ω)), v ∈ L 2 (0, T; H 0 (div; Ω)), z ∈ L 2 (0, T; H 0 (curl; Ω)), q ∈ L 2 (0, T; L 2 0 (Ω)).

Existence of weak solutions

Note that from Subsection 2.3.3, we know there exist sequences (c ε , s ε , u ε , ω ε , p ε ) ε>0 solution to (2.3.7). We have now the following series of a priori estimates.

Lemma 2.3.3 Assume conditions (2.3.1), (2.3.2) and (2.3.5) hold. If c 0 , s 0 ∈ L 2 + (Ω) then the solution (c ε , s ε , u ε , ω ε , p ε ) is nonnegative. Moreover, there exist constants c 1 , . . . , c 5 > 0 not depending on ε such that (c ε , s ε ) L ∞ (0,T;L 2 (Ω,R 2 )) ≤ c 1 , (2.3.18) H c,ε (c ε , s ε ) L 1 (Ω T ) + H s,ε (c ε , s ε ) L 1 (Ω T ) ≤ c 2 , (2.3.19) ∇ x c ε L 2 (Ω T ) + ∇ x s ε L 2 (Ω T ) ≤ c 3 , (2.3.20) u ε H(div;Ω) + ω ε H(curl;Ω) + p ε 0,Ω ≤ c 4 , (2.3.21) ∂ t c ε L 2 (0,T;(W 1,∞ (Ω)) ) + ∂ t s ε L 2 (0,T;(W 1,∞ (Ω)) ) ≤ c 5 . (2.3.22)
Proof.

In the weak formulation (2.3.17) we take ϕ c = -c - ε , ϕ s = -s - ε , and we integrate over Ω instead Ω T , we get from (2.3.2) and (2.3.5)

1 2 d dt Ω c - ε 2 + s - ε 2 dx ≤ 0. (2.3.23)
Herein, we used

- Ω c - ε u ε • ∇ x c ε dx - Ω s - ε u ε • ∇ x s ε dx = 1 2 Ω u ε • ∇ x (c - ε ) 2 dx + 1 2 Ω u ε • ∇ x (s - ε ) 2 dx = 0.
This yields the nonnegativity of (c ε , s ε ).

By the (weak) lower semicontinuity properties of norms, the estimates (2.3.13) and (2.3.14) hold with (c , c ) replaced by (c ε , s ε ). Moreover, the constants c 1 , c 3 are independent of ε (consult the proof of Lemma 2.3.2). Observe that for j = c, s 

H j,ε (c ε , s ε ) ≤ C(|c ε | 2 + |s ε | 2 ), for some constant C > 0.
ϕ c ∈ L 2 (0, T; W 1,∞ (Ω)) T 0 ∂ t c ε , ϕ c dt ≤ D max ∇ x c ε L 2 (Ω T ) ∇ x ϕ c L 2 (Ω T ) + c ε L ∞ (0,T;L 2 (Ω)) u L 2 (Ω T ) ∇ x ϕ c L 2 (0,T;W 1,∞ (Ω)) +C c ε L ∞ (0,T;L 2 (Ω)) + s ε L ∞ (0,T;L 2 (Ω)) × u + ∇ x s ε L 2 (Ω T ) ∇ x ϕ c L 2 (0,T;L ∞ (Ω)) +C 1 + c ε L ∞ (0,T;L 2 (Ω)) + s ε L ∞ (0,T;L 2 (Ω)) × 1 + c ε L 2 (Ω T ) + s ε L 2 (Ω T ) ϕ c L 2 (0,T;L ∞ (Ω)) ≤ C ϕ c L 2 (0,T;W 1,∞ (Ω)) ,
(2.3.24) for some constant C, C , C > 0 independent of ε. From this we deduce the bound

∂ t c ε L 2 (0,T;(W 1,∞ (Ω)) ) ≤ C . (2.3.25)
Reasoning along the same lines for c ε yields (2.3.25) for s ε .

In view of Lemma 2.3.3 and Aubin-Lions-Simon compactness lemma, we can assume there exist limit functions (c, s) such that as ε → 0 the following convergences hold (modulo extraction of subsequences, which we do not bother to relabel):

                           (c ε , s ε ) → (c, s) a.e. in Ω T , strongly in L 2 (Ω T , R 2 ) and weakly in L 2 (0, T; H 1 (Ω, R 2 )), H j,ε (c ε , s ε ) → H j,c (c, s) a.e. in Ω T and strongly in L 1 (Ω T ), u ε → u weakly in L 2 (0, T; H 0 (div; Ω)), ω ε → ω weakly in L 2 (0, T; H 0 (curl; Ω)), p ε → p weakly in L 2 (0, T; L 2 0 (Ω)). (2.3.26)
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for j = c, s. Additionally, (∂ t c ε , ∂ t s ε , ) → (∂ t c, ∂ t s) weakly in L 2 (0, T; (W 1,∞ (Ω, R 2 )) ) as ε → 0.
An application of Young and Hölder inequalities we get

f ε (c ε ) -c L 2 (Ω T ) ≤ √ 2 c ε -c L 2 (Ω T ) + √ 2 εc ε c 1 + εc ε L 2 (Ω T ) ≤ √ 2 c ε -c L 2 (Ω T ) + √ 2 εc ε c (1 + εc ε ) 2/3 (εc ε ) 1-2/3 L 2 (Ω T ) ≤ √ 2 c ε -c L 2 (Ω T ) + √ 2ε 2/3 c 2/3 ε c L 2 (Ω T ) ≤ √ 2 c ε -c L 2 (Ω T ) + √ 2ε 2/3 c ε 2/3 L ∞ (0,T;L 2 (Ω)) × c L 2 (0,T;L 6 (Ω)) .
(2.3.27)

Thanks to the Sobolev embedding (H 1 (Ω) ⊂ L 6 (Ω)) we deduce from (2.3.27)

f ε (c ε ) → c a.e.
in Ω T and strongly in L 2 (Ω T ).

(2.3.28)

In the same way we get

f ε (s ε ) → s a.e. in Ω T and strongly in L 2 (Ω T ). (2.3.29)
Finally, by passing to the limit ε → 0 in the weak formulation (2.3.17), with

ϕ c , ϕ s ∈ L 2 (0, T; W 1,∞ (Ω)), v ∈ L 2 (0, T; H 0 (div; Ω)), z ∈ L 2 (0, T; H 0 (curl; Ω)) and q ∈ L 2 (0, T; L 2 0 (Ω))
, we obtain in this way that the limit (c, s, u, ω, p) is a solution of system problem (2.1.3) in the sense of Definition 2.3.1.

Numerical analysis of micro-macro cross-diffusion-Brinkman system

In this section we develop an asymptotic preserving scheme (AP). We propose a numerical scheme uniformly stable along the transition from kinetic to macroscopic regimes. Inspired by the continuous derivation, we use the time semi-implicit discretization for the micro-macro formulation (2.2.17) which is equivalent to the kinetic-fluid model (2.2.1). After the full discretization of (2.2.17), we show various numerical tests to validate the proposed approach.

A time semi-implicit discretization

First, we present a time discretization to our coupled system (2.2.17). We denote by ∆t a fixed time step and by t k := k∆t a discrete time with k ∈ N. The approximations of c(t, x), s(t, x), g 1 (t, x, ξ), g 2 (t, x, ξ), u(t, x), ω(t, x) and p(t, x) at the time step t k are denoted by

c k := c(t k , x), s k := s(t k , x), g k i := g i (t k , x, ξ), u k := u(t k , x), ω k := ω(t k , x) and p k := p(t k , x) for i = 1, 2.
The semi-implicit scheme for microscopic equations in system (2.2.17) reads

                                           g k+1 1 -g k 1 ∆t + 1 ε 2 ξ M 1 • ∇ x c k + 1 ε (I -P M 1 )(ξ • ∇ x g k 1 ) = 1 ε 2 L 1 (g k+1 1 ) + 1 ε 2 T 2 1 [M 2 (ξ)s k ](M 1 (ξ)c k ) + 1 ε T 2 1 [M 2 (ξ)s k ](g k 1 ) + 1 ε 2 G 11 (M 1 (ξ)c k , M 2 (ξ)s k , u k , ξ) + 1 ε (I -P M 1 )G 12 (M 1 (ξ)c k , M 2 (ξ)s k , ξ), g k+1 2 -g k 2 ∆t + 1 ε 2 ξ M 2 • ∇ x s k + 1 ε (I -P M 2 )(ξ • ∇ x g k 2 ) = 1 ε 2 L 2 (g k+1 2 ) + 1 ε 2 T 2 2 [M 1 (ξ)c k ](M 2 (ξ)s k ) + 1 ε T 2 2 [M 1 (ξ)c k ](g k 2 ) + 1 ε 2 G 21 (M 1 (ξ)c k , M 2 (ξ)s k , u k , ξ) + 1 ε (I -P M 2 )G 22 (M 1 (ξ)c k , M 2 (ξ)s k , ξ).
(2.4.1)
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In the hydrodynamic equations of system (2.2.17), we take g 1 and g 2 at the time t k+1 . The result is 

                           c k+1 -c k ∆t + ξ • ∇ x g k+1 1 = G 12 (M 1 (ξ)c k , M 2 (ξ)s k , ξ) , s k+1 -s k ∆t + ξ • ∇ x g k+1 2 = G 22 (M 1 (ξ)c k+1 , M 2 (ξ)s k , ξ) . K -1 u k+1 + √ µ curl ω k+1 + ∇ x p k+1 = Q(c k+1 , s k+1 )g + F, ω k+1 - √ µ curl u k+1 = 0, div x u k+1 = 0. ( 2 
(I -∆t 2 L i ) is also invertible for all ∆t ≥ 0 for i = 1, 2. Hence (2.4.1) gives g k+1 1 = I - ∆t ε 2 L 1 -1 g k 1 + ∆t ε 2 T 2 1 [M 2 s k ](M 1 c k + εg k 1 ) + G 11 (M 1 c k , M 2 s k , u k , ξ) -ξ M 1 • ∇ x c k + ∆t ε (I -P M 1 ) G 12 (M 1 c k , M 2 s k , ξ) -ξ • ∇ x g k 1 (2.4.3) and g k+1 2 = I - ∆t ε 2 L 2 -1 g k 2 + ∆t ε 2 T 2 2 [M 1 c k ](M 2 (ξ)s k + εg k 2 ) + G 21 (M 1 c k , M 2 s k , u k , ξ) -ξ M 2 • ∇ x s k + ∆t ε (I -P M 2 ) G 22 (M 1 c k , M 2 s k , ξ) -ξ • ∇ x g k 2 .
(2.4.4)

We use the limited development with respect to ε to get I -∆t

ε 2 L i -1 = -ε 2 ∆t L -1 i + O(ε 3
), for i = 1, 2 and the fact that L 1 and L 2 are linear and invertible. Then, we develop the right hand side of (2.4.3) and (2.4.4) with regard to when → 0 and we take the same order of ε. We have:

g k+1 1 = L -1 1 ξ M 1 • ∇ x c k -T 2 1 [M 2 s k ](M 1 c k ) -G 11 (M 1 c k , M 2 s k , u k , ξ) + O(ε), and 
g k+1 2 = L -1 2 ξ M 2 • ∇ x s k -T 2 2 [M 1 c k ](M 2 s k ) -G 21 (M 1 c k , M 2 s k , u k , ξ) + O(ε). Inserting g k+1 1 and g k+1 2 into (2.4.2), we obtain c k+1 -c k ∆t + ξ • ∇ x L -1 1 ξ M 1 • ∇ x c k -T 2 1 [M 2 s k ](M 1 c k ) -G 11 (M 1 c k , M 2 s k , u k , ξ) = G 12 (M 1 c k , M 2 s k , ξ) + O(ε), (2.4.5) 
and

s k+1 -s k ∆t + ξ • ∇ x L -1 2 ξ M 2 • ∇ x s k -T 2 2 [M 1 c k ](M 2 s k ) -G 21 (M 1 c k , M 2 s k , u k , ξ) = G 22 (M 1 c k+1 , M 2 s k , ξ) + O(ε), (2.4.6) 
which is consistent with system (2.2.25) when ε goes to 0.
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Full discretization

In this subsection, we present our method in one-dimensional case into the domain [-a, a] for fixed a ∈ R. Let T = {K j , j = 1, . . . , N x } be an admissible mesh in the meaning of Definition 5.5 page 125 in Ref. [START_REF] Eymard | Finite volume methods[END_REF]. The control volume is given by K

j =]x j-1 2 , x j+ 1 2 [ with x j = 1 2 (x j-1 2 + x j+ 1 2
) and its length is denoted by h j = x j+ 1 2 x j-1 2 for j = 1, . . . , N x . For the velocity space, we consider ξ = ξ min + ∆ξ, for = 0, ..., N ξ -1 where ∆ξ = 1 N ξ (ξ maxξ min ) with ξ max = -ξ min . We shall assume that g = F = 0. Thus, the fluid velocity is a given function depending only on time, namely u(t) = ∂ x p. The methodology is as follow: the macroscopic equations in (2.4.2) are computed in the control volume K j while the microscopic equations in (2.4.1) should be computed in the interface of K j . Precisely, the macroscopic densities are as follows

c(t k , x)| K j ≈ c k j , s(t k , x)| K j ≈ s k j ,
and the microscopic ones are given by

g 1 (t k , x j+ 1 2 , ξ )| ∂K j ≈ g k 1,j+ 1 2 , , g 2 (t k , x j+ 1 2 , ξ )| ∂K j ≈ g k 2,j+ 1 2 ,
for j = 1, ..., N x and = 1, ..., N ξ . Now, we integrate the macroscopic equations in (2.4.2) over the control volume K j , we approximate the time derivatives by differential quotients and using an upwind choice for g 1 and g 2 to arrive to

                 c k+1 j -c k j ∆t + ξ g k+1 1,j+ 1 2 , -g k+1 1,j-1 2 , h j = G 12 (M 1, c k j , M 2, s k j , ξ ) , s k+1 j -s k j ∆t + ξ g k+1 2,j+ 1 2 , -g k+1 2,j-1 2 , h j = G 22 (M 1, c k+1 j , M 2, s k j , ξ ) , p k j+1 -p k j h j = u k . (2.4.7)
For the microscopic equations in (2.4.1), we compute the unknowns functions g 1 and g 2 in the interface of K j (or integrating over the control volume I j+ 1 2

):

                                                                     g k+1 1,j+ 1 2 , -g k 1,j+ 1 2 , ∆t + 1 ε (I -P M 1,j ) ξ + g k 1,j+ 1 2 , -g k 1,j-1 2 , h j + ξ - g k 1,j+ 3 2 , -g k 1,j+ 1 2 , h j = 1 ε 2 L 1, (g k+1 1,j+ 1 2 , ) -ξ M 1, c k j+1 -c k j h j + T 2 1, [M 2, s k j+ 1 2 ](M 1, c k j+ 1 2 ) +G 11, (M 1, c k j+ 1 2 , M 2, s k j+ 1 2 , u k , ξ ) + 1 ε T 2 1, [M 2, s k j+ 1 2 ](g k 1,j+ 1 2 , ) + (I -P M 1, )G 12, (M 1, c k j+ 1 2 , M 2, s k j+ 1 2 , ξ ) , g k+1 2,j+ 1 2 , -g k 2,j+ 1 2 , ∆t + 1 ε (I -P M 2, ) ξ + g k 2,j+ 1 2 , -g k 2,j-1 2 , h j + ξ - g k 2,j+ 3 2 , -g k 2,j+ 1 2 , h j = 1 ε 2 L 2, (g k+1 2,j+ 1 2 , ) -ξ M 2, s k j+1 -s k j h j + T 2 2, [M 1, c k j+ 1 2 ](M 2, s k j+ 1 2 ) +G 21, (M 1, c k j+ 1 2 , M 2, s k j+ 1 2 , u k , ξ ) + 1 ε T 2 2, [M 1, c k j+ 1 2 ](g k 2,j+ 1 2 , ) + (I -P M 2, )G 22 (M 1, c k j+ 1 2 , M 2, s k j+ 1 2 , ξ ) . (2.4.8)
In the following proposition, we show that our scheme proposed in the micro-macro formulation (2.4.8)-(2.4.7) is uniformly stable along the transition from kinetic to macroscopic regimes.

Proposition 2.4.2

The time and space approximations (2.4.8)-(2.4.7) of the micro-macro formulation in the limit (ε goes to zero), satisfy the following discretization:

c k+1 j -c k j ∆t + 1 h j ξ L -1 1, ξ M 1, c k j+1 -c k j h j -L -1 1, ξ M 1, c k j -c k j-1 h j + 1 h j ξ L -1 1, T 2 1 [M 2, s k j+ 1 2 ](M 1, c k j+ 1 2 ) -L -1 1, T 2 1, [M 2, s k j-1 2 ](M 1, c k j-1 2 ) + 1 h j ξ L -1 1, G 11, (M 1, c k j+ 1 2 , M 2, s k j+ 1 2 , u k , ξ )) -L -1 1, G 11, (M 1, c k j-1 2 , M 2, s k j-1 2 , u k , ξ )) = G 12, (M 1, c k j , M 2, s k j , ξ ) + O(ε), (2.4 
.9) and

s k+1 j -s k j ∆t + 1 h j ξ L -1 2, ξ M 2, s k j+1 -s k j h j -L -1 2, ξ M 2, s k j -s k j-1 h j + 1 h j ξ L -1 2, T 2 2, [M 1, c k j+ 1 2 ](M 2, s k j+ 1 2 ) -L -1 2, T 2 2, [M 1, c k j-1 2 ](M 2, s k j-1 2 ) + 1 h j ξ L -1 2, G 21, (M 1, c k j+ 1 2 , M 2, s k j+ 1 2 , u k , ξ )) -L -1 2, G 21, (M 1, c k j-1 2 , M 2, s k j-1 2 , u k , ξ )) = G 22, (M 2, c k+1 j , M 2, s k j , ξ ) + O(ε), (2.4 
.10) which is consistent with system (2.2.25).

Boundary conditions

For the numerical solution of the kinetic equation (2.2.1), the following inflow boundary conditions are usually prescribe for the distribution functions f 1 and f 2 :

f i (t, x min , ξ) = f i,l (ξ), ξ > 0 f i (t, x max , ξ) = f i,r (ξ), ξ < 0, for i = 1, 2.
We shall denote w 1 = c and w 2 = s. The inflow boundary conditions can be rewritten in the micro-macro formulation by

w i (t, x 0 )M i + ε 2 (g i (t, x 1 2 , ξ) + g i (t, x -1 2 , ξ)) = f i,l (ξ), ξ > 0, w i (t, x N x )M i + ε 2 (g i (t, x N x + 1 2 , v) + g i (t, x N x -1 2 , ξ)) = f i,r (ξ), ξ < 0, for i = 1, 2.
For the other velocities, we consider the following artificial Neumann boundary conditions:

g i (t, x 1 2 , ξ ) = g i (t, x -1 2 , ξ ), ξ < 0, g i (t, x N x + 1 2 , ξ ) = g i (t, x N x -1 2 , ξ ), ξ > 0, for i = 1, 2.
Furthermore, the ghost points can be computed for i = 1, 2 as follows:

g k+1 i,-1 2 , =        2 ε ( f 1,l (ξ ) -w k+1 i,0 M i ) -g k+1 i, 1 2 ,
, ξ > 0,

g k+1 i, 1 2 ,
, ξ < 0;

(2.4.11)

g k+1 i,N x + 1 2 ,        2 ε ( f i,r (ξ ) -w k+1 i,N x M i ) -g k+1 i,N x -1 2 , ξ < 0, g k+1 i,N x -1 2 ,
, ξ > 0.

(2.4.12)
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It then follows from (2.4.7) that for i = 1, 2 :

                 (1 + 2∆t εh 0 < ξ + M i, >)w k+1 i,0 = w k i,0 -∆t h 0 (ξ + ξ + -ξ -)g k+1 i, 1 2 , - 2ξ + ε f i,l (ξ ) +∆t G i2, (M 1, c k 0 , M 2, s k 0 ) , ( 1 
-2∆t εh Nx < ξ -M i, >)w k+1 i,N x = w k i,N x -∆t h Nx 2ξ - ε f i,r (ξ ) -(ξ -ξ + + ξ -)g k+1 i,N x -1 2 , +∆t G i2, (M 1, c k N x , M 2, s k N x ) .
(2.4.13)

Numerical results

In this subsection, we present some numerical experiments in order to validate our approach.

In the following tests, the computational domain in space is [-1; 1] while the velocity space is V = [-1; 1] with 64 discrete points, which yields good enough accuracy for numerical results [START_REF] Carrillo | An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis[END_REF].

We adopt a set of parameters, namely the coefficients of intra-and inter-specific competition, used in the book by [START_REF] Shigesada | Biological invasions: theory and practice[END_REF] (adopted also by [START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF] ): The initial cell distribution function is as follow

a 1 = 0.61/year, a 2 = 0.82/year, b 1 = 0.4575, b 2 = 0.31, d 1 = 9.
f 1 (0; x; ξ) = c 0 (x)M 1 (ξ) and f 2 (0; x; ξ) = s 0 (x)M 2 (ξ),
where

M i (ξ) = 1 |V| for i = 1, 2.
Next, we consider the macroscopic cross-diffusion-Brinkman system in one dimension. We discretize this system by using finite volume method

                                             c k+1 j -c k j ∆t = D c c k j+1 -c k j h j h i+ 1 2 - c k j -c k j-1 h i-1 2 h j - (∂ (m) x c k j+1 )(c + s) k j+1 -(∂ (m) x c k j-1 )(c + s) k j-1 h j - c k j+1 -c k j h j u k + 2 (∂ (m) x s k j+1 )c k j+1 -(∂ (m) x s k j-1 )c k j-1 h j + H 1 (c k j , s k j ), s k+1 j -s k j ∆t = D s s k j+1 -s k j h j h i+ 1 2 - s k j -s k j-1 h i-1 2 h j - (∂ (m) x s k j+1 )(c k+1 + s k ) j+1 -(∂ (m) x s k j-1 )(c k+1 + s k ) j-1 h j - s k j+1 -s k j h j u k + 0.5 (∂ (m) x c k+1 j+1 )s k j+1 -(∂ (m) x c k+1 j-1 )s k j-1 h j + H 2 (c k+1 j , s k j ), u k+1 = p k j+1 -p k j h j .
(2.4.14) where

∂ (m) x z k j = z k j+1 -z k j h j and ∂ (m) x z k 0 = ∂ (m) x z k N x = 0, for 1 ≤ j ≤ N x -1.
In Figure 2.1, we present the plots in log scale of the error estimates given by

e ∆x (h) = |h ∆x (t) -h 2∆x (t)| 1 |h 2∆x (0)| 1
to test the convergence of our scheme. This can be considered as an estimation of the relative error in l 1 norm, where h ∆x is the numerical solution computed from a uniform grid of size ∆x = x maxx min N x . The computations are performed with N x = {80, 160, 320, 640}, ∆t = 10 -6 at t = 0.01 for ε = {1, 10 -2 , 10 -3 , 10 -6 }. 

ǫ = 1 ǫ = 10 -2 ǫ = 10 -3 ǫ = 10 -6
FIGURE 2.1: Convergence order of the method for ε ∈ {1, 10 -2 , 10 -3 , 10 -6 } at time t = 0.01 (M = 1) for the density c in the left and the density s in the right obtained from micro-macro scheme.

In Figure 2.2, we compute our numerical scheme for different values of times t = 0.02, 0.03, 0.07, 0.1 and for ε = 10 -k where k ∈ {0, 1, 2, 3, 6} against the macroscopic system in the case: u = 0 and c 0 = 0.65, s 0 = exp(30x 2 ). Moreover in Figure 2.3, we consider u = 1 and c 0 = 0.65, s 0 = exp(30(x + 0.5) 2 ). These figures show that our (AP) scheme is stable in the limit. We observe that the profile of the densities c and s given by the two schemes are almost the same when ε → 0 and this illustrates the result in Proposition 2.4.2. Moreover, we observe that the cross-diffusion effect induces the formation of patterns (by using Turing mechanisms) in the presence of the fluid. Moreover, we notice that the distribution of prey and predator is affected by the fluid transport. In Figures 2.4, 2.5 and 2.6, we illustrate the evolution of the densities c and s using micro-macro scheme for ε = 10 -6 at final time T = 0.01 with different values of u (u = 0, u = 1 and u = -1).

We note here that the species are diffusing according to the sign of the velocity u.

Conclusion and perspectives

In this chapter, we have proposed a new nonlinear macroscopic system coupled with the augmented Brinkman problem in a viscous flow in porous media. Specifically, the micro-macro decomposition has been applied to the kinetic system coupled with Brinkman problem (2.2.1) to derive asymptotic preserving numerical scheme. In other parts, we have proved the existence of weak solutions of the derived system (2.1.3) by using Schauder fixed-point theory. Finally, it has shown that the presented numerical scheme enjoys the asymptotic preserving property, in other words: when Knudsen parameter ε is small, our scheme is asymptotically equivalent to a standard numerical scheme for the derived macroscopic system. In this work, we developed our numerical results in one dimension using finite volume method for both macroscopic system (cross-diffusion-Brinkman) and micro-macro formulation. We believe that our technique can be extended to two dimensions. One only has to well choose the meshes, specifically for the nonstructural ones.

Chapter 2. Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system The Subfigures (a), (b), (c), (d) present time dynamics of predators densities c(t; x), while Subfigures (e), (f), (g), (h) present time dynamics of preys densities s(t; x) at t = 0.02, 0.04, 0.07, 0.1 obtained from the AP scheme with ε = 10 -k , k = 0; 1; 2; 3; 6 and comparison with crossdiffusion-Brinkman system on the domain [-1; 1] and initial conditions are given by c 0 = 0.65 and s 0 = exp(30x 2 ) in the case: u = 0. c), (d) present time dynamics of predators densities c(t; x), while Subfigures (e), (f), (g), (h) present time dynamics of preys densities s(t; x) at t = 0.02, 0.04, 0.07, 0.1 obtained from the AP scheme with ε = 10 -k , k = 0; 1; 2; 3; 6 and comparison with crossdiffusion-Brinkman system on the domain [-1; 1] and initial conditions are given by c 0 = 0.65 and s 0 = exp(30(x + 0.5) 2 ) in the case: u = 1. Chapter 3

Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system

In this chapter, we propose a generalized nonlocal cross-diffusion-fluid model describing the dynamic of interacting multi-populations living in a complex medium. First, we derive our nonlocal cross-diffusion-fluid system from a nonlocal kinetic-fluid model by performing the micro-macro decomposition method. Second, we prove the existence of weak solutions for the proposed model by applying the nonlinear Galerkin method within a priori estimates and compactness arguments. Based on micro-macro decomposition, we propose and we develop an asymptotic preserving numerical schemes. Finally, we deal with the computational results of the proposed model.

Introduction

In chapter 2, we have considered two interacting species living in the stationary fluid governed by the augmented Brinkman system. In this chapter, we mainly propose and we study a generalized nonlocal cross-diffusion-fluid system. On the one hand, our proposed system deals with nonlocal diffusitive functions and with nonlinear cross-diffusion matrix accounting for multi-interacting populations. On the other hand, it is strongly coupled to a generalized fluid governed by the incompressible Navier-Stokes equation [START_REF] Ladyzhenskaya | Mathematical theory of viscous incompressible flow[END_REF][START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF].

In order to state our problem, we consider Ω ∈ R d , d = 2, 3, a simply connected domain saturated with a Newtonian incompressible fluid, where also the multi-populations are present. The physical scenario of interest can be described by the following coupled nonlocal cross-diffusion-fluid system

         ∂ t u i + v • ∇u i -div d u i Ω u i dx ∇u i + n ∑ j=1 A j i (u 1 , . . . , u n )∇u j = F i (u 1 , . . . , u n ), ∂ t v -ν∆v + (v • ∇)v + ∇p + Q(u 1 , . . . , u n )∇φ = 0, div v = 0, (3.1.1)
in Ω T := (0, T) × Ω, for i = 1, . . . , n. We augment this system along with the boundary conditions

v = 0, d u i Ω u i dx ∇u i + n ∑ j=1 A j i (u 1 , . . . , u n )∇u j • η = 0 on Σ T := (0, T] × ∂Ω, (3.1.2)
and the initial conditions

u i (t = 0, x) = u i,0 (x), v(t = 0, x) = v 0 (x) for x ∈ Ω, (3.1.3) 
for i = 1, . . . , n. Herein, u 1 , . . . , u n are the populations densities, v is the fluid velocity, p is the fluid pressure, d u i is the nonlocal diffusitive functions, A j i (i, j = 1, . . . , n) is the nonlinear crossdiffusion matrix elements, F i (i = 1, . . . , n) is the reaction terms, φ stands for the gravitational Chapter 3. Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system potential produced by the action of physical forces on the populations, Q(u 1 , . . . , u n )∇φ represents the external force applied to the incompressible fluid where Q is an operator depending on the populations densities, ν is the fluid viscosity and η is the unit outward normal to Ω on ∂Ω. We recall that the nonlocal diffusitive functions assumed to be depend on the whole of each population in the domain rather than on the local density. In the other words, the diffusion of individuals is guided by the global state of the population in the medium. For instance, we assume that the nonlocal diffusion is an increasing function of its argument to model populations having the tendency to leave crowded zones. Otherwise, we use the nonlocal decreasing diffusitive function to model species attracted by the growing population. We want to mention that the coupling in our model (3.1.1) appears through the convection term v • ∇u i and the external force Q(u 1 , . . . , u n )∇φ.

Note that in the absence of the fluid flow i.e v = 0, system (3.1.1) reduces to a classical crossdiffusion system (see for e.g [START_REF] Anaya | Numerical analysis for a three interacting species model with nonlocal and cross diffusion[END_REF]). In this case, if the cross-diffusion matrix is neglected, we obtain from (3.1.1) a classical nonlocal diffusion system (see for e.g [START_REF] Chang | Nonlinear nonlocal evolution problems[END_REF][START_REF] Chipot | Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems[END_REF]). However, several contributions are proposed in the case of a constant diffusitive function, see for e.g [START_REF] Anaya | A numerical analysis of a reactiondiffusion system modelling the dynamics of growth tumors[END_REF][START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF][START_REF] Bendahmane | Weak and classical solutions to predator-prey system with cross-diffusion[END_REF][START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF][START_REF] Desvillettes | Entropy, duality, and cross diffusion[END_REF][START_REF] Jüngel | Entropy Methods for Diffusive Partial Differential Equations[END_REF][START_REF] Tian | Instability induced by cross-diffusion in reaction-diffusion systems[END_REF][START_REF] Wen | Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics[END_REF] where a detailed theoretical and numerical studies has been established. Indeed in [START_REF] Bendahmane | Weak and classical solutions to predator-prey system with cross-diffusion[END_REF], the authors included the analysis of the weak solutions, the paper in [START_REF] Tian | Instability induced by cross-diffusion in reaction-diffusion systems[END_REF] specified the conditions for the existence of unstable equilibrium points, the authors in [START_REF] Wen | Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics[END_REF] proved the global existence of solution and recently, the global in time of weak solutions using entropy and duality methods are proved in [START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF][START_REF] Desvillettes | Entropy, duality, and cross diffusion[END_REF][START_REF] Jüngel | Entropy Methods for Diffusive Partial Differential Equations[END_REF]. Regarding the numerical study of cross-diffusion system without fluid, we refer the reader to finite difference method in [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong cross diffusion[END_REF], finite element method in [START_REF] Barrett | Finite element approximation of a nonlinear cross-diffusion population model[END_REF], deterministic particle method in [START_REF] Gambino | A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion[END_REF], finite volume method in [START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF][START_REF] Anaya | A numerical analysis of a reactiondiffusion system modelling the dynamics of growth tumors[END_REF][START_REF] Anaya | Numerical analysis for a three interacting species model with nonlocal and cross diffusion[END_REF] and positivity-preserving Euler-Galerkin method in [START_REF] Chen | Analysis of a parabolic cross-diffusion population model without self-diffusion[END_REF]. Now, under the presence of fluid flow (v = 0) we obtain reaction-diffusion-fluid models (see for e.g [START_REF] Deteix | A coupled prediction scheme for solving the navierstokes and convection-diffusion equations[END_REF][START_REF] Gaultier | Equations de navier-stokes couplées à des équations de la chaleur: résolution par une méthode de point fixe en dimension infinie[END_REF][START_REF] Grošelj | How turbulence regulates biodiversity in systems with cyclic competition[END_REF][START_REF] Volper | Elliptic Partial Differential Equations[END_REF][START_REF] Bellomo | Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems[END_REF][START_REF] Chamoun | A coupled anisotropic chemotaxis-fluid model : The case of two sidedly degenerate diffusion[END_REF][START_REF] Lorz | Coupled chemotaxis fluid model[END_REF][START_REF] Tuval | Bacterial swimming and oxygen tansport near contact lines[END_REF][START_REF] Winkler | Stabilization in a two-dimensional chemotaxis-navier-stokes system[END_REF][START_REF] Winkler | Global weak solutions in a three-dimensional chemotaxis-navier-stokes system[END_REF]). In passing, we mention the recent work on cross-diffusion-Brinkman system in [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF] (stationary fluid case). The authors in this paper proved the existence of weak solutions using Schauder fixed-point method under a specific assumptions on the cross-diffusion matrix term (ellipticity condition). Comparing to the paper [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF], in this chapter we study a nonlocal cross-diffusion system of multi-populations dynamics completed by the presence of a non-stationary incompressible fluid. In this chapter, we prove the existence of weak solutions by using nonlinear Galerkin method within an a priori estimates and compactness arguments. We mention that the assumed conditions on the cross-diffusion matrix make it possible to have the existence of weak solutions of the cross-diffusion-fluid system with the elements of nonlinear matrix of power up to three of cross-diffusion.

In this chapter, we are also concerned with the derivation of macroscopic systems from kinetic models. As it is know, this can be achieved mathematically by the asymptotic analysis, see for e.g diffusion limit [START_REF] Bennoune | An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit[END_REF][START_REF] Degond | Macroscopic fluid models with localized kinetic upscaling effects[END_REF][START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF], derivation of hyperbolic models in [START_REF] Filbet | Derivation of hyperbolic models for chemosensitive movement[END_REF][START_REF] Outada | From kinetic theory of multicellular systems to hyperbolic tissue equations: asymptotic limits and computing[END_REF], of chemotaxis models [START_REF] Bellomo | On the asymptotic theory from microscopic to macroscopic growing tissue models: an overview with perspectives[END_REF][START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF][START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF][START_REF] Burini | Hilbert method toward a multiscale analysis from kinetic to macroscopic models for active particles[END_REF][START_REF] Banasiak | Methods of small parameter in mathematical biology[END_REF], of incompressible Navier-Stokes [START_REF] Bellouquid | On the asymptotic analysis of the BGK model toward the incompressible linear Navier-Stokes equation[END_REF], of Cucker-Smale models [START_REF] Poyato | Euler-type equations and commutators in singular and hyperbolic limits of kinetic cucker-smale models[END_REF] and anomalous diffusion limit [START_REF] Crouseilles | Numerical schemes for kinetic equations in the anomalous diffusion limit. Part I: The case of heavy-tailed equilibrium[END_REF]. Numerically, this is a challenging question because it is too much expensive in time. However, some encouraging results are obtained overtook this drawback by adopt the asymptotic preserving scheme based on micro-macro decomposition method (see for e.g [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF][START_REF] Bennoune | An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit[END_REF][START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF]). Note that all this works derived macroscopic systems from local kinetic models and they limited their studies to kinetic models within two components. Comparing to the existence works, in this chapter, we deal with the derivation of system (3.1.1) from a nonlocal kinetic-fluid model for multi-interacting populations living in a fluid generated by the incompressible Navier-Stokes equations. We also propose and develop an asymptotic preserving numerical schemes which is stable in the limit along the transition from kinetic to macroscopic regimes. This chapter is organized as follows: In Section 3.2, we present our nonlocal kinetic-fluid model and its properties. We use micro-macro decomposition method to obtain an equivalent system of model (3.2.1) bellow. Moreover, we derive a general macroscopic-fluid model. We finish this section by a suitable modeling of the terms appeared in model (3.2.1) and we derive our model (3.1.1). Section 3.3 is devoted to prove the existence of weak solutions of the proposed nonlocal cross-diffusion-fluid system. The proof is based on the nonlinear Galerkin method, apriori estimates and compactness arguments. In Section 3.4, we propose and develop numerical approximations in 1D for micro-macro formulation and for the macroscopic model. The objective is to show the asymptotic preserving scheme property and simultaneously to illustrate the effects of nonlocal diffusion, of cross-diffusion and of advection terms. Finally, Motivated by the obtained 3.2. From improved kinetic-fluid model to generalized nonlocal cross-diffusion-fluid systems 39

numerical simulations, we investigate the computational analysis of the proposed model in 2D.

From improved kinetic-fluid model to generalized nonlocal cross-diffusion-fluid systems

In this section, we derive a macroscopic-fluid models from a nonlocal kinetic-fluid model using micro-macro decomposition method. Firstly, we present the properties of the aforesaid model. On the basis of the micro-macro decomposition technique, we give an equivalent appropriate system. Then, we formally derive a class of macroscopic-fluid models. Herein, we consider a nonlocal kinetic-fluid model describing multi-interacting populations living in a fluid governed by the incompressible Navier-Stokes equations.

The improved kinetic-fluid model

This subsection is devoted to state our improved kinetic-fluid model and to present its properties.

We propose the following nonlocal kinetic-fluid model for i = 1, . . . , n

                 ε∂ t f i + ξ • ∇ x F i ( f i ) = 1 ε T i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ]( f i ) + G i ( f 1 , . . . , f n , ξ, v), ∂ t v -ν∆v + (v • ∇)v + ∇p + Q V f 1 dξ, . . . , V f n dξ ∇φ = 0, div v = 0, f i (t = 0, x, ξ) = f i,0 (x, ξ), v(t = 0, x) = v 0 (x), (3.2.1) 
where ( f i (t, x, ξ)) n i=1 is the distribution function describing the statistical evolution of species, where t > 0, x ∈ R d and ξ ∈ V are respectively, time, position and velocity. The term F i ( f i ) is the nonlocal function, T i is the stochastic operator representing a random modification of direction of species and the operator G i (i = 1, . . . , n) describing the gain-loss balance of species. The mean free path ε measures the distance between species. We recall that we adopt the parabolic-parabolic scaling limit, see for more details [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF][START_REF] Burini | Hilbert method toward a multiscale analysis from kinetic to macroscopic models for active particles[END_REF]. Herein, the nonlocal function F i is defined by

F i ( f i )(t, x, ξ) = Φ i Ω V f i (t, x, ξ) dξ dx f i (t, x, ξ) i = 1, . . . , n.
Under the assumptions that Φ i = 1 and i = 1, 2, the reduced model has been studied by [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF][START_REF] Bellomo | From a multiscale derivation of nonlinear crossdiffusion models to keller-segel models in a navier-stokes fluid[END_REF]. The micro-macro decomposition method is based on the following assumptions. The interaction operators G i satisfy the following properties

G i ( f 1 , . . . , f n , ξ, v) = G 1 i ( f 1 , . . . , f n , ξ, v) + ε G 2 i ( f 1 , . . . , f n , ξ, v), (3.2.2) 
where

V G 1 i ( f 1 , . . . , f n , ξ, v)dξ = 0, i = 1, . . . , n. (3.2.3)
Next, the turning operator T i is decomposed as follows

T i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ]( f i ) = T 1 i ( f i ) + ε T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ]( f i ), (3.2.4)
where T 1 i ( f i ) represents the dominant part of the turning kernel and assumed independent of f 1 , . . . , f i-1 , f i+1 , . . . , f n . The operator T j i for i = 1, . . . , n and j = 1, 2 are given by

T j i ( f i ) = V T j * i f i (t, x, ξ * ) -T j i f i (t, x, ξ) , dξ * , (3.2.5)
where T j i is the probability kernel for the new velocity ξ ∈ V given that the previous velocity was ξ * . The kernel operator T 1 * i is defined by T 1 * i = T 1 i (ξ * , ξ) and the operator T 2 i may depend on the distribution function f 1 , . . . , f i-1 , f i+1 , . . . , f n and their derivatives. Moreover, we assume that the Chapter 3. Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system operators T i satisfy

V T i dξ = V T 1 i ( f i )dξ = V T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ]( f i )dξ = 0, i = 1, . . . , n. (3.2.6)
Moreover, we assume that there exists a bounded velocity distribution M i (ξ) > 0 for i = 1, . . . , n independent of t and x such that

T 1 i (ξ, ξ * )M i (ξ * ) = T 1 i (ξ * , ξ)M i (ξ), (3.2.7) 
holds. The flow produced by these equilibrium distributions vanishes and M i are normalized, i.e.

V ξ M i (ξ)dξ = 0, V M i (ξ)dξ = 1, i = 1, . . . , n. (3.2.8)
Regarding the probability kernels, we assume that T 1 i (ξ, ξ * ) is bounded, and there exist a constant σ i > 0 (i ∈ {1, . . . , n}), such that

T 1 i (ξ, ξ * ) ≥ σ i M i (ξ), (3.2.9) for all (ξ, ξ * ) ∈ V × V.
In what follows, we shall consider L i = T 1 i for i = 1, . . . , n. Using the same arguments as in [START_REF] Bellomo | On the onset of non-linearity for diffusion models of binary mixtures of biological materials by asymptotic analysis[END_REF][START_REF] Chalub | Kinetic models for chemotaxis and their drift-diffusion limits[END_REF], the operator L i has the following properties. Lemma 3.2.1 By assuming that the hypothesis (3.2.6), (3.2.7) and (3.2.8) are satisfied. Then, the following properties of the operators L i for i = 1, . . . , n hold true:

i) The operator L i is self-adjoint in the space L 2 V, dξ M i . ii) For f ∈ L 2 , the equation L i (g) = f has a unique solution g ∈ L 2 V, dξ M i , satisfying V g(ξ) dξ = 0 ⇐⇒ V f (ξ) dξ = 0.
iii) The equation L i (g) = ξ M i (ξ), has a unique solution denoted by θ i (ξ) for i = 1, . . . , n.

iv) The kernel of L i is N(L i ) = vect(M i (ξ)) for i = 1, . . . , n.

Micro-macro formulation

This subsection is devoted to obtain an equivalent micro-macro system of nonlocal kinetic-fluid model (3.2.1). The obtained equivalent system contains microscopic and macroscopic components.

The main idea of the micro-macro method is to decompose the distribution function f i for i = 1, . . . , n as follows

f i (t, x, ξ) = M i (ξ)u i (t, x) + εg i (t, x, ξ),
where

u i (t, x) = f i (t, x, ξ) := V f i (t, x, ξ) dξ.
We have interaction and the turning operators, we get

g i = 0 and Φ i Ω f i (t, x, ξ) dx = Φ i Ω u i dx := Φ i (u i ) for i = 1, . . . , n. Inserting
                           ∂ t (M i (ξ)u i ) + ε∂ t g i + 1 ε ξ M i (ξ) • ∇(Φ i (u i )u i ) + ξ • ∇(Φ i (u i )g i ) = 1 ε L i (g i ) + 1 ε T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ](M i (ξ)u i ) + T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ](g i ) + 1 ε G 1 i ( f 1 , . . . , f n , ξ, v) + G 2 i ( f 1 , . . . , f n , ξ, v), ∂ t v -ν∆v + (v • ∇)v + ∇p + Q u 1 , . . . , u n ∇φ = 0, div v = 0. (3.2.
10) The micro-macro decomposition method is based on two steps. First, we use the projection technique to separate the macroscopic density u i (t, x) and microscopic quantity g i (t, x, ξ) for i = 1, . . . , n. For that, we consider P M i the orthogonal projection onto N(L i ), for i = 1, . . . , n. It follows

P M i (h) = h M i , for any h ∈ L 2 V, dξ M i , i = 1, . . . , n.
Regarding the orthogonal projections P M i for i = 1, . . . , n, we have the following result.

Lemma 3.2.2

We have the following properties for the projection P M i , i = 1, . . . , n

(I -P M i ) M i (ξ)u i = P M i (g i ) = 0, (I -P M i ) ξ M i (ξ) • ∇(Φ i (u i ))u i = ξ M i (ξ) • ∇(Φ i (u i )u i ), (I -P M i ) T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ](M i (ξ)u i ) = T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ](M i (ξ)u i ), (I -P M i ) T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ](g i ) = T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ](g i ), (I -P M i )(L i (g i )) = L i (g i ), (I -P M i )G 1 i ( f 1 , . . . , f n , ξ, v) = G 1 i ( f 1 , . . . , f n , ξ, v).
Second, we integrate (3.2.10) with respect to ξ. Thanks to these two steps, we obtain the following micro-macro formulation for i = 1, . . . , n Proposition 1 i) Let ( f 1 , . . . , f n , v, p) be a solution of nonlocal kinetic-fluid model (3.2.1). Then (u 1 , . . . , u n , g 1 , . . . , g n , v, p) (where u i = f i and g

                                   ∂ t g i + 1 ε 2 ξ M i (ξ) • ∇(Φ i (u i )u i ) + 1 ε (I -P M i )(ξ • ∇(Φ i (u i )g i )) = 1 ε 2 L i (g i ) + 1 ε 2 T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ](M i (ξ)u i ) + 1 ε T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n ](g i ) + 1 ε 2 G 1 i ( f 1 , . . . , f n , ξ, v) + 1 ε (I -P M i )G 2 i ( f 1 , . . . , f n , ξ, v), ∂ t u i + Φ i (u i ) ξ • ∇g i = G 2 i ( f 1 , . . . , f n , ξ, v) , ∂ t v -ν∆v + (v • ∇)v + ∇p + Q(u 1 , . . . , u n )∇φ = 0, div v = 0. ( 3 
i = 1 ε ( f i -M i u i )
) is a solution to coupled system (3.2.11) associated with the following initial data for i = 1, . . . , n

u i (t = 0) = u i,0 = f i,0 , g i (t = 0) = g i,0 = 1 ε ( f i,0 -M i u i,0 ), and v(t = 0) = v 0 , (3.2.12)
ii) Conversely, if (u 1 , . . . , u n , g 1 , . . . , g n , v, p) satisfies system (3.2.11) associated with the following initial data (u 1,0 , . . . , u n,0 , g 1,0 , . . . , g n,0 , v 0 ) such that g i,0 = 0 for i = 1, . . . , n. Then ( f 1 , . . . , f n , v, p) (where Chapter 3. Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system

f i = M i u i + εg i
) is a solution to nonlocal kinetic-fluid model (3.2.1) with initial data f i,0 = M i u i,0 + εg i,0 and we have u i = f i and g i = 0, for i = 1, . . . , n.

Next, in order to develop asymptotic analysis of system (3.2.11), we assume that T 2 i and G j i satisfy the following asymptotic behavior ε → 0

T 2 i [M 1 u 1 + εg 1 , . . . , M i-1 u i-1 + εg i-1 , M i+1 u i+1 + εg i+1 , . . . , M n u n + εg n ] = T 2 i [M 1 u 1 , . . . , M i-1 u i-1 , M i+1 u i+1 , . . . , M n u n ] + O(ε) (3.2.13) G j i M 1 (ξ)u 1 + εg 1 , . . . , M n (ξ)u n + εg n , ξ, v = G j i M 1 (ξ)u 1 , . . . , M n (ξ)u n , ξ, v + O(ε), (3.2 
.14) for i = 1, . . . , n and j = 1, 2.

Derivation of general macroscopic models

Here, we show that micro-macro formulation (3.2.11), which is equivalent to kinetic equation (3.2.1), allows to obtain a general macroscopic models as ε goes to 0. Indeed, using (3.2.13), (3.2.14) and (3.2.11), we obtain for i = 1, . . . , n

L i (g i ) = ξ M i (ξ) • ∇ Φ i (u i )u i -T 2 i [M 1 (ξ)u 1 , . . . , M i-1 (ξ)u i-1 , M i+1 (ξ)u i+1 , . . . , M n (ξ)u n ](M i (ξ)u i ) -G 1 i (M 1 (ξ)u 1 , . . . , M n (ξ)u n , ξ, v) + O(ε)
. From Lemma 3.2.1, property ii), the operator L i is invertible. This implies

g i = L -1 i ξ M i • ∇ Φ i (u i )u i -L -1 i T 2 i [M 1 u 1 , . . . , M i-1 u i-1 , M i+1 u i+1 , . . . , M n u n ](M i u i ) -L -1 i G 1 i (M 1 u 1 , . . . , M n u n , ξ, v) + O(ε), i = 1, . . . , n. (3.2.15) 
Next, inserting (3.2.15) into the second equation in (3.2.11) yields the following macroscopic system

                       ∂ t u i + Φ i (u i ) ξ • ∇L -1 i ξ M i (ξ) • ∇(Φ i (u i )u i ) -Φ i (u i ) ξ • ∇L -1 i T 2 i [M 1 (ξ)u 1 , . . . , M i-1 (ξ)u i-1 , M i+1 (ξ)u i+1 , . . . , M n (ξ)u n ](M i (ξ)u i ) -Φ i (u i ) ξ • ∇L -1 i G 1 i (M 1 (ξ)u 1 , . . . , M n (ξ)u n , ξ, v) = G 2 i (M 1 (ξ)u 1 , . . . , M n (ξ)u n , ξ, v) + O(ε), ∂ t v -ν∆v + (v • ∇)v + ∇p + Q(u 1 , . . . , u n )∇φ = 0, div v = 0. (3.2.

16)

The following lemma gives the calculations of the terms with the inverse of the operators L i for i = 1, . . . , n appearing in system (3.2.16).

Lemma 3.2.3 Assume that the operators L i and G 1

i for i = 1, . . . , n satisfy the assumptions above. Then, we have the following identities

ξ.∇L -1 i ξ M i (ξ) • ∇(Φ i (u i )u i ) = div ξ ⊗ θ i (ξ) • ∇(Φ i (u i )u i ) , ξ • ∇L -1 i T 2 i [M 1 (ξ)u 1 , . . . , M i-1 (ξ)u i-1 , M i+1 (ξ)u i+1 , . . . , M n (ξ)u n ](M i (ξ)u i ) = div θ i (ξ) M i (ξ) u i T 2 i [M 1 (ξ)u 1 , . . . , M i-1 (ξ)u i-1 , M i+1 (ξ)u i+1 , . . . , M n (ξ)u n ](M i (ξ)u i )) , ξ • ∇L -1 i G 1 i (M 1 (ξ)u 1 , . . . , M n (ξ)u n , ξ, v) = div θ i (ξ) M i (ξ) G 1 i (M 1 (ξ)u 1 , . . . , M n (ξ)u n , ξ, v) ,
where θ i are given in Lemma 3.2.1 for i = 1, . . . , n.

3.2.
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Finally, thanks to system (3.2.16) and Lemma 3.2.3, we obtain the following macroscopic system

             ∂ t u i + div β i (u i ) α i (u 1 , . . . , u i-1 , u i+1 , . . . , u n ) + Γ i (u 1 , . . . , u n , v) -Ψ i (u i ) • ∇u i = H i (u 1 , . . . , u n , v) + O(ε), ∂ t v -ν∆v + (v • ∇)v + ∇p + Q(u 1 , . . . , u n )∇φ = 0, div v = 0, (3.2.17)
where the functions Ψ i , β i , α i , Γ i and H i are given by

Ψ i (u i ) = -ξ ⊗ θ i (ξ) (Φ i (u i )) 2 , ( 3 
.2.18)

β i (u i ) = u i Φ i (u i ), (3.2.19 
)

α i (u 1 , . . . , u i-1 , u i+1 , . . . , u n ) = - θ i (ξ) M i T 2 i [M 1 u 1 , . . . , M i-1 u i-1 , M i+1 u i+1 , . . . , M n u n ](M i ) , (3.2.20) 
Γ i (u 1 , . . . , u n , v) = - θ i (ξ) M i G 1 i (M 1 u 1 , . . . , M n u n , ξ, v) Φ i (u i ), (3.2.21) 
H i (u 1 , . . . , u n , v) = G 2 i (M 1 u 1 , . . . , M n u n , ξ, v) , for i = 1, . . . , n. (3.2.22)

Derivation of nonlocal cross-diffusion-fluid system

We consider the case where the set for velocity is a sphere of radius r > 0, V = rS d-1 . We assume that ( f 1 , . . . , f n , v, p) solution of system (3.2.1) with the following nonlocal function

Φ i (s) = D i (s), i = 1, . . . , n. (3.2.23) 
We mention that biologically D i are strictly positive function for all i = 1, . . . , n. From Eq. (3.2.18), we obtain

Ψ i (u i ) = 1 σ i |V| ξ ⊗ ξ D i Ω u i (t, x) dx . (3.2.24)
Next, we assume that the probability kernel T 1 i is given by

T 1 i = σ i |V| , for i = 1, . . . , n.
This implies

L i (g i ) = - σ i |V| g i |V| -g i = -σ i g i for i = 1, . . . , n.
Notice that M i (ξ) = 1 |V| satisfies assumption (3.2.8). For this particular choice of M i , we have

θ i = -ξ σ i |V| is a solution of L i (θ i (ξ)) = ξ M i (ξ) for i = 1, . . . , n.
The other probability kernel T 2 i is given by

T 2 i [ f 1 , . . . , f i-1 , f i+1 , . . . , f n , ξ, ξ * ] = - µ i Φ i |V| 2 ∑ j,j =i K f j M j (ξ, ξ * ) • ∇ f j M j ,
where

µ i = σ i r 2 d |V| and the function K f j M j
satisfies the following asymptotic

K u j +ε g j M j = K u j + O(ε), ε → 0.
From Eq. (3.2.5), we obtain

T 2 i [M 1 u 1 , . . . , M i-1 u i-1 , M i+1 u i+1 , . . . , M n u n ](M i ) = - µ i Φ i |V| 2 ∑ j,j =i χ j (ξ, u j ) • ∇u j ,
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χ j (ξ, u j ) = K u j (ξ, ξ * )M i (ξ) -K u j (ξ * , ξ)M i (ξ * ) .
Therefore, from Eqs. (3.2.19) and (3.2.20), we have

β i (u i ) α i (u 1 , . . . , u i-1 , u i+1 , . . . , u n ) = -∑ j,j =i C i (u i , u j ) ∇u j . (3.2.25)
It only remains now to model 

G 1 i and G 2 i for        G 1 i ( f 1 , . . . , f n , ξ, v) = - dσ i Φ i r 2 |V| B i ( f 1 , . . . , f n ) ξ M i • ∇ f i -f i ξ M i • v G 2 i ( f 1 , . . . , f n , ξ, v) = F i f 1 |V| , . . . , f n |V| , for i = 1, . . . , n. (3 
Γ i (u 1 , . . . , u n , v) = - d r 2 |V| 2 ξ ⊗ ξ • B i (u 1 , . . . , u n )∇u i -u i v = -B i (u 1 , . . . , u n )∇u i + u i v, (3.2.27) H i (u 1 , . . . , u n ) = F i (u 1 , . . . , u n ).
(3.2.28) Finally, setting

d u i Ω u i dx = 1 σ i |V| ξ ⊗ ξ D i Ω u i (t, x) dx = r 2 d σ i D i Ω u i (t, x) dx , n ∑ j=1 A j i (u 1 , . . . , u n )∇u j = ∑ j,j =i C j (u i , u j ) ∇u j + B i (u 1 , . . . , u n )∇u i ,
and collecting the previous results with div v = 0 and (3.2.17), we obtain the nonlocal crossdiffusion-fluid system (3.1.1) of the order O(ε)

                               ∂ t u i + v • ∇u i -div d u i Ω u i dx ∇u i + n ∑ j=1 A j i (u 1 , . . . , u n )∇u j = F i (u 1 , . . . , u n ) + O(ε), in Ω T , ∂ t v -ν∆v + (v • ∇)v + ∇p + Q(u 1 , . . . , u n )∇φ = 0, div v = 0, in Ω T , u i (t = 0, x) = u i,0 (x), v(t = 0, x) = v 0 (x), in Ω, v = 0 and d u i Ω u i dx ∇u i + n ∑ j=1 A j i (u 1 , . . . , u n )∇u j •η = 0, on Σ T .
(3.2.29) for i = 1, . . . , n.

Mathematical analysis

Let Ω be a bounded, open subsets of R d , d = 2, 3 with a smooth boundary ∂Ω and |Ω| is the Lebesgue measure of Ω. We denote by H 1 (Ω) the Sobolev space of functions u :

Ω → R for which u ∈ L 2 (Ω) and ∇u ∈ L 2 (Ω; R d ). For 1 ≤ p ≤ +∞, • L p (Ω) is the usual norm in L p (Ω).
If X is a Banach space, a < b and 1 ≤ p ≤ +∞, L p (a, b; X) denotes the space of all measurable functions u : (a, b) -→ X such that u(•) X belongs to L p (a, b). Moreover, we define the following vectorial space

L 2 (Ω) = u = (u 1 , . . . , u n ) / u i ∈ L 2 (Ω) ∀i ∈ {1, . . . , n} , H 1 (Ω) = u = (u 1 , . . . , u n ) / u i ∈ H 1 (Ω) ∀i ∈ {1, . . . , n} , D(Ω) = u = (u 1 , . . . , u n ) / u i ∈ D(Ω) ∀i ∈ {1, . . . , n} , W 1,∞ (Ω) = u = (u 1 , . . . , u n ) / u i ∈ W 1,∞ (Ω) ∀i ∈ {1, . . . , n} .
Now, we introduce basic spaces in the study of the Navier-Stokes equation. Let the spaces V, V; H defined as:

V = {v ∈ D(Ω), div v = 0}, V = V H 1 0 (Ω) , H = V L 2 (Ω) .
The coupled system of interest (3.2.29) can be written as

                       ∂ t u + (v • ∇)u -div D(u)∇u + A(u)∇u = F(u), in Ω T , ∂ t v -ν∆v + (v.∇)v + ∇p + Q(u)∇φ = 0, div v = 0, in Ω T , u(t = 0, x) = u 0 (x), v(t = 0, x) = v 0 (x), in Ω, v = 0 and D(u)∇u + A(u)∇u η = 0, on Σ T , (3.3.1) 
where u = (u 1 , . . . , u n ) T is the densities of populations, v = (v 1 , . . . , v d ) T is the velocity of the fluid and p is the scalar function describing the pressure of the fluid. The diagonal matrix

D(u) = (D(u) i,j ) 1≤i,j≤n satisfy D(u) i,i = d u i Ω u i dx for i ∈ {1, . . . , n} is a nonlocal diffusion matrix
and A is a nonlinear cross-diffusion matrix.

In the proof of the existence of weak solutions, we will use the following assumptions. We assume that for i ∈ {1, . . . , n}, the function d u i : R → R + is continuous and satisfying the following:

d i ≤ d u i (r) ≤ di ∀r ∈ R and ∀i ∈ {1, . . . , n} (3.3.2) 
where d i and di are strictly positive constants.

Regarding the cross-diffusion matrix A = (A i,j ) 1≤i,j≤n , we assume that ∀u 1 , . . . ,

u n ≥ 0 A j i (u 1 , ..u i-1 , 0, u i+1 , . . . , u n ) = 0 ∀ i, j ∈ {1, .., n} i = j (3.3.3) ∀u 1 , . . . , u n ≥ 0 ∀ v ∈ R n A(u 1 , .., u n )ψ, ψ ≥ 1 C A(u 1 , .., u n ) ψ 2 , (3.3.4)
where • , • is the usual scalar product on R n , and ) is a kind of growth assumption on A. For the reaction terms F i , we assume they are continuous functions and there exists a constant C F such that ∀u 1 , . . . ,

∀u 1 , . . . , u n ≥ 0 A(u 1 , .., u n ) ≤ C(1 + n ∑ i=1 |u i | r ) with r < 4, if d = 2 10/3, if d = 3. ( 3 
u n ≥ 0, F i (u 1 , . . . , u i-1 , 0, u i+1 , . . . , u n ) ≥ 0 and n ∑ i=1 F i (u 1 , .., u n ) u i ≤ C F (1 + n ∑ i=1 u 2 i ).
(3.3.6) Regarding the function Q, we assume it is a continuous function and there exists constant

C Q > 0 such that |Q(u 1 , . . . , u n )| ≤ C Q (1 + n ∑ i=1 |u i |) for all u 1 , . . . , u n ∈ R. (3.3.7)
Moreover, we assume that ∇φ ∈ L d+2 (Ω) d and φ is independent of time stands for the gravitational potential produced by the action of physical forces on the species.
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Finally, we assume that initial conditions are

u 0 ≥ 0, u 0 ∈ L 2 (Ω), v 0 ∈ H. (3.3.8)
Now we define what we mean by weak solution of the system (3.1.1). We also supply our main existence result.

Definition 3.3.1 We say that (u, v) is a weak solution to problem (3.2.29), if u is nonnegative, u ∈ L ∞ (0, T; L 2 (Ω)) ∩ L 2 (0, T; H 1 (Ω)), v ∈ L 2 (0, T; V) ∩ C [0, T]; H , ∂ t v ∈ L 1 (0, T; V )
and the following identities hold

- Ω T u • ∂ t Ψ 1 dx dt - Ω T (v • ∇)u • Ψ 1 dx dt + Ω T D(u)∇u : ∇Ψ 1 dx dt + Ω T A(u)∇u : ∇Ψ 1 dx dt = Ω u 0 (x) • Ψ 1 (0, x) dx + Ω T F(u) • Ψ 1 dx dt, (3.3.9) T 0 ∂ t v, Ψ 2 V ,V dt + ν Ω ∇v : ∇Ψ 2 dx dt + Ω T (v • ∇)v • Ψ 2 dx dt + Ω T Q(u)∇φ • Ψ 2 dx dt = 0, (3.3.10) 
for all test functions 2) The proof of the existence of weak solution is based on the nonlinear Galerkin method. Although we solve the problem in a finite-dimensional space firstly and we are looking estimates that allows us to pass to the limit. We decompose the proof of Theorem 3.3.2 into three parts: first, we write the approximate solution, then we give a priori estimates and finally we pass to the limit.

Ψ 1 = (ψ 1,u , . . . , ψ n,u ) T ∈ D([0, T) × Ω) and Ψ 2 = (ψ 1,v , . . . , ψ d,v ) T ∈ C 0 c (0, T; V) where C 0 c (0, T; V)
First step: approximate solution. We choose sequences {ψ 1,u , ψ 2,u , . . . }, {ψ 1,v , ψ 2,v , . . .

} in D(Ω) such that ∪ ∞ m=1 V m,u , ∪ ∞ m=1 V m,v with V m,u = span{ψ 1,u , ψ 2,u , . . . , ψ m,u } ( resp. V m,v = span{ψ 1,v , ψ 2,v , . . . , ψ m,v }) is dense in (H s (Ω)) n ( resp.
(H s (Ω)) d with s large enough such that (H s (Ω)) r is continuously embedded in (C 1 (Ω)) r for r > 0. We consider the following sequence for approximating solutions of the problem (3.3.1):

u m (t, x) = m ∑ k=1 b m k (t)ψ k,u (x), v m (t, x) = m ∑ k=1 c m k (t)ψ k,v (x), (3.3 

.11)

where for 1 ≤ k ≤ m the functions b m k : [0, T) → R and c m k : [0, T) → R are supposed to be measurable bounded functions. For the initial conditions, we choose the coefficients as b m k (0 

) := Ω u 0 ψ k,u (x) dx, c m k (0) := Ω v 0 ψ k,v (x) dx such that as m → ∞, we have u m (0, .) → u 0 , v m (0, .) → v 0 in L 2 (Ω). ( 3 
Ω ∂ t u m • ψ k,u dx - Ω (v m • ∇)u m • ψ k,u dx + Ω D(u m )∇u m : ∇ψ k,u dx + Ω A u m,+ ∇u m : ∇ψ k,u dx = Ω F u m,+ • ψ k,u dx, (3.3.13) Ω ∂ t v m • ψ k,v dx + ν Ω ∇v m : ∇ψ k,v dx + Ω (v m • ∇)v m • ψ k,v dx + Ω Q u m ∇φ • ψ k,v dx = 0, (3.3 
.14) or equivalently (by suing the orthonormality of the bases)

                   b m k (t) = F k t, b m 1 (t), . . . , b m m (t), c m 1 (t), . . . , c m m (t) , c m k (t) = G k t, b m 1 (t), . . . , b m m (t), c m 1 (t), . . . , c m m (t) , b m k (0) = Ω u 0 ψ k dx, c m k (0) = Ω v 0 ψ k dx, (3.3 

.15)

Herein,

A u m,+ = A j i m ∑ k=1 b m k (t)ψ k,u (x) + 1≤i,j≤n , F u m,+ = F j m ∑ k=1 b m k (t)ψ k,u (x) + 1≤j≤n , and 
F k t, b m 1 , . . . , b m m , c m 1 , . . . , c m m := Ω (v m • ∇)u m • ψ k,u dx - Ω D(u m )∇u m : ∇ψ k,u dx - Ω A u m,+ ∇u m : ∇ψ k,u dx + Ω F u m,+ • ψ k,u dx, G k t, b m 1 , . . . , b m m , c m 1 , . . . , c m m := -ν Ω ∇v m : ∇ψ k,v dx - Ω (v m • ∇)v m • ψ k,v dx - Ω Q u m ∇φ • ψ k,v dx
for 1 ≤ k ≤ m, where s + = max(s, 0). Then, thanks to the existence result of ordinary differential equations (cf. [START_REF] Hartman | Asymptotic integrations of linear differential equations[END_REF]), system (3. on an interval (0, τ ), τ > 0 and may depend on m. Using a standard arguments, it is not difficult to show that the local solution constructed above can be extended to the whole interval [0, T) independent of m. Note that from (3.3.13) and (3.3.14), the Faedo-Galerkin solutions satisfy the following weak formulations for each fixed t > 0:

Ω ∂ t u m • ψ u dx - Ω (v m • ∇)u m • ψ u dx + Ω D(u m )∇u m : ∇ψ u dx + Ω A u m,+ ∇u m : ∇ψ v dx = Ω F u m,+ • ψ u dx, (3.3.16) Ω ∂ t v m • ψ v dx + ν Ω ∇v m : ∇ψ v dx + Ω (v m • ∇)v m • ψ v dx + Ω Q u m ∇φ • ψ v dx = 0, (3.3.17)
for all test functions ψ u ∈ D([0, T) × Ω) and ψ v ∈ C 0 c (0, T; V) To passing to the limit in (3.3.16)-(3.3.17) and proving the existence of u and v, we need the following a priori estimates lemma. 

Second step: a priori estimates

u m ∈ L 2 0, T; H 1 (Ω) , v m ∈ L 2 0, T; V satisfying: Ω |u m | 2 dx + Ω T |∇u m | 2 dx dt ≤ C, Ω T max 1≤i,j≤n |A j,m i (u m 1 , . . . , u m n )| n ∑ i=1 |∇u m i | 2 dx dt ≤ C, Ω |v m | 2 dx + ν Ω T |∇v m | 2 dx dt ≤ C, (3.3.18)
where C is a strictly positive constant independent of m.

Proof 3.3.2 Substituting ψ u = -u m,-in (3.3.16) and integrating over (0, τ), we get

1 2 Ω |u m,-(τ, x)| 2 dx - τ 0 Ω (v m • ∇)u m • u m,-dx dt + τ 0 Ω D(u m )|∇u m,-| 2 dx dt + τ 0 Ω A u m,+ |∇u m,-| 2 dx dt = τ 0 Ω F u m,+ • u m,-dx dt + 1 2 Ω |u - 0 | 2 dx.
Since div v m = 0 and v m = 0 on ∂Ω, we have

- Ω (v m • ∇)u m • u m,-= 1 2 Ω ∇(u m ) 2 v m = - 1 2 Ω div(v m )(u m ) 2 + 1 2 ∂Ω v m (u m ) 2 T η = 0.
Using the positivity conditions (3.3.2), (3.3.3) and (3.3.6) on D(u m ), A and F, respectively, we have

Ω |u m,-(τ, x)| 2 dx ≤ Ω |u - 0 | 2 dx.
Since u 0 is nonnegative, we deduce that u m,-= 0. Thus the nonnegativity of u m . Now, substituting ψ u = u m in (3.3.16) and integrating over (0, τ) with τ < T to obtain

1 2 Ω |u m (τ, x)| 2 dx - τ 0 Ω (v m • ∇)u m • u m dx dt + τ 0 Ω D(u m )|∇u m | 2 dx dt + τ 0 Ω A u m |∇u m | 2 dx dt = τ 0 Ω F u m • u m dx dt + 1 2 Ω |u 0 (x)| 2 dx.
Using (3.3.4), (3.3.2) and (3.3.6), we obtain

1 2 Ω |u m (τ, x)| 2 dx + n ∑ i=1 d i τ 0 Ω |∇u m i | 2 dx dt + τ 0 Ω max 1≤i,j≤n |A j i (u m 1 , . . . , u m n )| n ∑ i=1 |∇u m i | 2 dx dt ≤ C F τ 0 Ω |u m (t, x)| 2 dx dt + 1 2 Ω |u 0 (x)| 2 dx + C F n T |Ω|. (3.3.19) Setting Θ m (τ) = Ω |u m (τ, x)| 2 dx in (3.3.19), we observe that 0 ≤ Θ m (τ) ≤ Ω |u 0 (x)| 2 dx + 2 C F n T |Ω| + 2 C F τ 0 Θ m (t) dt.
Herein, we have used the positivity of the second and the third integrals in (3.3.19). Now, using Gronwall's inequality, we get

0 ≤ Θ m (τ) ≤ Ω |u 0 (x)| 2 dx + 2 C F n T |Ω| exp(2 C F τ), ∀τ ∈ (0, T).
This implies that

Ω |u m (τ, x)| 2 dx ≤ C for all τ ∈ (0, T). Consequently sup τ∈(0,T) Ω |u m (τ)| 2 dx + Ω T |∇u m | 2 dx dt ≤ C, (3.3.20)
where the constant C > 0 depends only on T and u 0 . Now, we take ψ v = v m in (3.3.17) and we integrate over (0, τ) with τ < T to obtain

1 2 Ω |v m (τ, x)| 2 dx + ν τ 0 Ω |∇v m | 2 dx dt + τ 0 Ω (v m • ∇)v m • v m dx dt + τ 0 Ω Q u m ∇φ • v m dx dt = 1 2 Ω |v 0 (x)| 2 dx. Since τ 0 Ω (v m • ∇)v m • v m dx dt = 0, this implies 1 2 Ω |v m (τ, x)| 2 dx +ν τ 0 Ω |∇v m | 2 dx dt ≤ 1 2 Ω |v 0 (x)| 2 dx - τ 0 Ω Q(u m )∇φ • v m dx dt.
(3.3.21) Using (3.3.7) and Young inequality, we have

I := τ 0 Ω Q(u m )∇φ v m dx dt ≤ C Q |Ω τ | + τ 0 Ω u m (τ, x)∇φ v m dx dt ≤ C Q |Ω τ | + d 2(d + 2) τ 0 Ω |u m | 2 d+2 d dx dt + 1 d + 2 τ 0 Ω |∇φ| d+2 dx dt + 1 2 τ 0 Ω |v m | 2 dx dt .
Thanks to Gagliardo-Nirenberg inequality, we get

τ 0 Ω |u m | 2 d+2 d dx dt ≤ sup τ∈(0,T) Ω |u m | 2 dx 1 2 τ 0 Ω |∇u m | 2 dx dt.
Next, we use this to arrive

I ≤ C Q |Ω τ | + d 2(d + 2) sup τ∈(0,T) Ω |u m | 2 dx 1 2 τ 0 Ω |∇u m | 2 dx dt + 1 d + 2 τ 0 Ω |∇φ| d+2 dx dt + 1 2 Ω τ |v m | 2 dx dt .
Exploiting the assumption ∇φ ∈ (L d+2 (Ω)) d and using estimate (3.3.20) in (3.3.21), we obtain

1 2 Ω |v m (τ, x)| 2 dx + ν τ 0 Ω |∇v m | 2 dx dt ≤ C Q 2 τ 0 Ω |v m (t, x)| 2 dx dt + 1 2 Ω |v 0 (x)| 2 dx + CQ (T, u 0 , |Ω|, φ). (3.3.22) Similarly, setting χ m (τ) = Ω |v m (τ, x)| 2 dx in (3.3.22), we arrive at 0 ≤ χ m (τ) ≤ Ω |v 0 (x)| 2 dx + 2 CQ (T, u 0 , |Ω|, φ) + 2 C Q τ 0 χ m (t) dt.
An application of Gronwall's inequality, we obtain

0 ≤ χ m (τ) ≤ Ω |v 0 (x)| 2 dx + 2 CQ (T, u 0 , |Ω|, φ) exp(2 C Q τ), ∀τ ∈ (0, T).
This implies that Ω |v m (τ, x)| 2 dx ≤ C for all τ ∈ (0, T).
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max 0<τ<T Ω |v m (τ, x)| 2 dx + ν T 0 Ω |∇v m | 2 dx ≤ C, max 0<τ<T Ω |u m (τ, x)| 2 dx + T 0 Ω |∇u m | 2 dx ≤ C, T 0 Ω max 1≤i,j≤n |A j,m i (u m 1 , . . . , u m n )| n ∑ i=1 |∇u m i | 2 dx ≤ C. (3.3.23)
Therefore, we deduce that v m is uniformly bounded in L ∞ 0, T; H ∩ L 2 0, T; V and u m is uniformly bounded in L ∞ 0, T; L 2 (Ω) ∩ L 2 0, T; H 1 (Ω) . Thus, we obtain the assertion of the lemma.

Third step: passing to the limit. The existence of a nonnegative weak solutions for system ( 

(Ω T ) estimate of A j,m i (u m 1 , . . . , u m n ) ∇u m i .
Moreover, from the assumption on F, we get easily the uniform bound of F(u m ) in L 1 (Ω T ). On the other hand, using estimate (3.3.18), we get

sup |µ|≤δ T 0 Ω |u m i (x + µ) -u m i (x)| dx dt ≤ θ(δ), with θ(δ) → 0 as δ → 0.
Thanks to the Kruzhkov compactness lemma (cf. [START_REF] Kruzhkov | Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications[END_REF]), we deduce that u m i is relatively compact in L 1 (Ω T ) and there exists a subsequence will be noted u m i such that u m i converges strongly to u i in L 1 (Ω T ) and a.e. in Ω T . From Lemma 3.3.3, we have v m is uniformly bounded in L ∞ 0, T; H ∩ L 2 0, T; V . Therefore, there exists v ∈ L ∞ 0, T; H ∩ L 2 0, T; V such as, m → ∞ v m v weakly-in L ∞ 0, T; H and v m v weakly in L 2 0, T; V .

Moreover, thanks to the compacity Theorem of Aubin-Simon (see for e.g. [START_REF] Simon | Compact sets in the space l p (0; t; b)[END_REF]), the space

{v m ∈ L 2 (0, T; V); ∂ t v m ∈ L 1 (0, T; V )}
is compactly injected in L 2 (0, T; H). Consequently, we have

v m → v strongly in L 2 (0, T; H). ( 3 

.3.24)

In the next step, we pass to the limit in the weak approximate formulation. First, we have

A j,m i (u m 1 , . . . , u m n ) ∇u m i → A j i (u 1 , . . . , u n ) ∇u i weakly in (L 1 (Ω T )) d . (3.3.25)
Indeed, using the Vitali theorem, we deduce that A j,m i (u m 1 , . . . , u m n ) converges to A j i (u 1 , . . . , u n ) strongly in L 1 (Ω T ). Now we rewriting the cross-diffusion terms as

sign A j,m i (u m 1 , . . . , u m n ) |A j,m i (u m 1 , . . . , u m n )| |A j,m i (u m 1 , . . . , u m n )| ∇u m i .
Thanks to the strong

L 2 (Ω T ) convergence of |A j,m i (u m 1 , . . . , u m n )| to |A j i (u 1 , . . . , u n )|
, we obtain (3.3.25). Using the optimal Sobolev embedding H 1 (Ω) ⊂ L 2 (Ω), we deduce that u m is uniformly bounded in L 2 (0, T; L 2 (1+r/2) (Ω)). Then, thanks to the interpolation with L 1 (0, T; L 2 (Ω)), we can take a higher value of r in (3.3.5). On the other hand, we have

T 0 Ω (v m • ∇)u m • ψ 1 dx dt = T 0 Ω u m (v m ) T ∇ψ 1 dx dt -→ T 0 Ω uv T ∇ψ 1 dx dt. (3.3.26) Indeed, I I = Ω T (u m -u)(v m ) T ∇ψ 1 dx dt - Ω T u(v m -v) T ∇ψ 1 dx dt.
From the dominated convergence theorem of Lebesgue and the strong convergence (3.3.24), we have

I I ≤ (u m -u) T ∇ψ 1 L 2 (Ω T ) v m L 2 (Ω T ) + v m -v L 2 (Ω T ) u T ∇ψ 1 L 2 (Ω T ) -→ 0.
Now, we define B(v) := (v • ∇)v, then equation (3.3.10) can be written as follows

d dt v, ψ = -ν∆v + B(v) + Q(u)∇φ, ψ , ∀ψ ∈ V. (3.3.27)
In the one hand, the operator -∆ : V → V is linear and continuous and v ∈ L 2 (0, T; V), this implies -∆v ∈ L 2 (0, T; V ). On the other hand, Q(u)∇φ ∈ L 2 (0, T; V ) and b(v, v, w) = B(v), w is trilinear continuous on V, see [START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF]. So that B(v The pressure. To introduce the pressure p, we set

) V ≤ v V , then B(v) ∈ L 1 (0, T, V ). Consequently, ∂ t v ∈ L 1 (0, T, V ).
V(t) = t 0 v(s) ds, R(t) = t 0 (v • ∇)v(s) ds, K(t) = t 0 Q(u)(s)∇φ ds. It is clear that V, K, R ∈ C(0, T; (H 1 (Ω)) ). Integrating (3.3.27) over [0, T] yields, v(t) -v 0 -ν∆V(t) + R(t) + K(t), ψ = 0, ∀t ∈ [0, T], ∀ψ ∈ V.
By application of the Rham Theorem [START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF], we find, for each t ∈ [0, T], the existence of some function

P(t) ∈ L 2 0 (Ω) such that v(t) -v 0 -ν∆V(t) + R(t) + K(t) + ∇P = 0,
where L 2 0 (Ω) = w ∈ L 2 (Ω), Ω w dx = 0 . Therefore, ∇P ∈ C(0, T; H -1 (Ω)), thus P ∈ C(0, T; L 2 0 (Ω)). By derivation with respect to t in the sense of distributions, we obtain

∂ t v -ν∆v + (v • ∇)v + Q(u)∇φ + ∇p = 0,
where p = ∂ t P ∈ W -1,∞ (0, T; L 2 0 (Ω)).

Computational analysis

In this section we develop and we propose an asymptotic preserving numerical schemes (AP).

In other words, the uniform stability with respect to the parameter ε and the consistence with cross-diffusion-fluid limit. Simultaneously, we reproduce some interesting phenomena such as the formation of patterns induced by cross-diffusion terms, and convection of species caused by the fluid motion. Motivated by the obtained numerical simulation in 1D, we close this section with a various numerical tests in 2D. 

A time semi-implicit discretization

:= g i (t k , x, ξ), u k i := u i (t k , x), Φ k i := Φ i (u k i ), v k := v(t k , x)
, and p k := p(t k , x) for i = 1, ..., n. We consider the semi-implicit scheme given by

                                   g k+1 i -g k i ∆t + 1 ε 2 ξ M i (ξ) • ∇ x (Φ k i u k i ) + 1 ε (I -P M i )(ξ • ∇ x (Φ k i g k i )) = 1 ε 2 L i (g k+1 i ) + 1 ε 2 T 2 i [M 1 (ξ)u k 1 , ..., M i-1 (ξ)u k i-1 , M i+1 (ξ)u k i+1 , ..., M n (ξ)u k n ](M i (ξ)u k i ) + 1 ε T 2 1 [M 1 (ξ)u k 1 , ..., M i-1 (ξ)u k i-1 , M i+1 (ξ)u k i+1 , ..., M n (ξ)u k n ](g k i ) + 1 ε 2 G 1 i (M 1 (ξ)u k i , ..., M n (ξ)u k n , ξ, v k ) + 1 ε (I -P M i )G 2 i (M 1 (ξ)u k 1 , ..., M n (ξ)u k n , ξ, v k ), u k+1 i -u k i ∆t + ξ • ∇ x (Φ k i g k+1 i ) = G 2 i (M 1 (ξ)u k+1 1 , ..., M i-1 (ξ)u k+1 i , M i (ξ)u k i , ..., M n (ξ)u k n , ξ, v k ) , v k+1 -v k ∆t -ν∆v k+1 + v k+1 • ∇ x v k + ∇ x p k+1 + Q(u k+1 1 , ..., u k+1 n )∇ x φ = 0, div x v k+1 = 0. (3.4.1)

Proposition 2

The numerical scheme given by (3.4.1) is consistent with equations (3.2.16) when ε goes to 0.

Remark 1

In the micro equations of system (3.4.1), we have considered that only the turning operators L i for i = 1, ..., n are implicit while other terms are explicit. Indeed, the objective is to ensure the stability as ε goes to 0. We refer the interested reader to [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF] for the idea of the proof of Proposition 2.

Computational analysis 1D

Here, we present our method in one dimension into the domain [-a, a] for fixed a ∈ R + * by using the finite volume method. Fir this, we denote by

K j =]x j-1 2 , x j+ 1 2
[ the control volume where

x j = 1 2 (x j-1 2 + x j+ 1 2
) and its length is denoted by h j = x j+ 1 2 x j-1 2 for j = 1, ..., N x , (N x is the total number of cells). For the velocity space, we consider ξ = ξ min + ∆ξ for = 0, ..., N ξ -1 where ∆ξ = 1 N ξ (ξ maxξ min ) with ξ max = -ξ min . Our approach consists to compute the macroscopic densities in K j while the microscopic quantities are computed on ∂K j as follow

u i (t k , x)| K j ≈ u k i,j , and g i (t k , x j+ 1 2 , ξ )| ∂K j ≈ g k i,j+ 1 
2 , , for i = 1, ..., n, j = 1, ..., N x , = 1, ..., N ξ .

The rest terms in (3.2.11) are approximated by

L i ≈ L i, , M i (ξ) ≈ M i, , G 1 i ≈ G 1 i, and G 2 i ≈ G 2 i, .
We mention that the fluid velocity v is a function depending only on the time variable t due to the incompressibility condition div v = 0 in 1D. Thus, we shall denote it by v(t k ) ≈ v k in the rest of this section. The full discretization of micro-macro formulation (3.2.11) is given by the following coupled system

                                                         g k+1 i,j+ 1 2 , -g k i,j+ 1 2 , ∆t + Φ k i ε (I -P M i, ) ξ + g k i,j+ 1 2 , -g k i,j-1 2 , h j + ξ - g k i,j+ 3 2 , -g k i,j+ 1 2 , h j = 1 ε 2 L i, (g k+1 i,j+ 1 2 , 
) -

Φ k i ξ M i, u k i,j+1 -u k i,j h j + G 1 i, (M 1, u k 1,j+ 1 2 , ..., M n, u k n,j+ 1 2 , ξ , v k ) +T 2 i, [M 1, u k 1,j+ 1 2 , ..., M i-1, u k i-1,j+ 1 2 , M i+1, u k i+1,j+ 1 2 , ..., M n, u k n,j+ 1 2 ](M i, u k i,j+ 1 2 ) + 1 ε T 2 i, [M 1, u k 1,j+ 1 2 , ..., M i-1, u k i-1,j+ 1 2 , M i+1, u k i+1,j+ 1 2 , ..., M n, u k n,j+ 1 2 ](g k i ) +(I -P M i, )G 2 i, (M 1, u k 1,j+ 1 2 , ..., M n, u k n,j+ 1 2 , ξ , v k ) , u k+1 i,j -u k i,j ∆t + Φ k i ξ g k+1 i,j+ 1 2 , -g k+1 i,j-1 2 , h j = G 2 i, (M 1, u k 1,j , ..., M i, u k i,j , ...M n, u k n,j , ξ, v k ) , v k+1 -v k ∆t + p k+1 j+1 -p k+1 j h j + Q(u k+1 1,j , ..., u k+1 n,j ) φ j+1 -φ j h j = 0, (3.4.
2) for i = 1, ..., n, j = 1, ..., N x and = 0, ..., N ξ -1. The macroscopic quantities in ∂K j computed as

follows u i,j+ 1 2 = u i,j +u i,j+1 2 
and u i,j-

1 2 = u i,j +u i,j-1 2
. The micro-macro formulation scheme (3.4.2) is consistent with macroscopic system (3.2.16) in the limit thanks to the following proposition: Proposition 3 The time and space approximations (3.4.2) of micro-macro formulation (3.2.11) in the limit (ε goes to 0) satisfy the following discretization:

                                             u k+1 i,j -u k i,j ∆t + Φ k i h j ξ L -1 i, ξ M i, u k i,j+1 -u k i,j h j -L -1 1, ξ M i, u k i,j -u k i,j-1 h j + Φ k i h j ξ L -1 i, T 2 i, [M 1, u k 1,j , ..., M i-1, u k i-1,j , M i+1, u k i+1,j , ..., M n, u k n,j ](M i, u k i,j+ 1 2 ) -L -1 i, T 2 i, [M 1, u k 1,j , ..., M i-1, u k i-1,j , M i+1, u k i+1,j , ..., M n, u k n,j ](M i, u k i,j-1 2 ) + Φ k i h j ξ L -1 i, G 1 i, (M 1, u k i,j+ 1 2 , ..., M n, u k n,j+ 1 2 , v k , ξ )) -L -1 i, G 1 i, (M 1, u k i,j-1 2 , ..., M n, u k n,j-1 2 , v k , ξ )) = G j i, 2 (M 1, u k i,j+ 1 2 , ..., M n, u k n,j+ 1 2 , ξ ) + O(ε), v k+1 -v k ∆t + p k+1 j+1 -p k+1 j h j + Q(u k+1 1,j , ..., u k+1 n,j ) φ j+1 -φ j h j = 0, (3.4.
3) for i = 1, ..., n, j = 1, ..., N x and = 0, ..., N ξ -1 is consistent with macroscopic system (3.2.16).

Boundary layers conditions

Here, we deals with the treatment of boundary conditions which is considered as one of the most important problems. For the numerical solution of kinetic-fluid equation (3.2.1), the following inflow boundary conditions are usually prescribed for the distribution functions

f i (t, x min , ξ) = f i,l (ξ), ξ > 0 f i (t, x max , ξ) = f i,r (ξ), ξ < 0, for i = 1, ..., n. (3.4.4)
We define the inflow boundary conditions of the former from those described in (3.4.4) by

u i (t, x 0 )M i (ξ) + ε 2 (g i (t, x 1 2 , ξ) + g i (t, x -1 2 , ξ)) = f i,l (ξ), ξ > 0, (3.4.5) u i (t, x N x )M i (ξ) + ε 2 (g i (t, x N x + 1 2 , ξ) + g i (t, x N x -1 2 , ξ)) = f i,r (ξ), ξ < 0, (3.4.6) 
Chapter 3. Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system for i = 1, ..., n. For the other velocities, we consider the following artificial Neumann boundary conditions:

g i (t, x 1 2 , ξ ) = g i (t, x -1 2 , ξ ), if ξ < 0, and g i (t, x N x + 1 2 , ξ ) = g i (t, x N x -1 2 , ξ ), if ξ > 0,
for i = 1, ..., n. Furthermore, using Eqs. (3.4.5) and (3.4.6) the ghost points can be computed as follows:

g k+1 i,-1 2 , =        2 ε ( f 1,l (ξ ) -u k+1 i,0 M i, ) -g k+1 i, 1 2 ,
, ξ > 0,

g k+1 i, 1 2 ,
, ξ < 0;

(3.4.7)

g k+1 i,N x + 1 2 , =        2 ε ( f i,r (ξ ) -u k+1 i,N x M i, ) -g k+1 i,N x -1 2 , ξ < 0, g k+1 i,N x -1 2 ,
, ξ > 0, (3.4.8) for i = 1, ..., n. Finally, using (3.4.2) to obtain for i = 1, ..., n

(1 + Φ k i 2∆t εh 0 < ξ + M i, >)u k+1 i,0 = u k i,0 -Φ k i ∆t h 0 (ξ + ξ + -ξ -)g k+1 i, 1 2 , - 2ξ + ε f i,l (ξ ) +∆t G 2 i, (M 1, u k 1,0 , ..., M n, u k n,0 ) , ( 1 
-Φ k i 2∆t εh Nx < ξ -M i, >)u k+1 i,N x = u k i,N x -Φ k i ∆t h Nx 2ξ - ε f i,r (ξ ) -(ξ -ξ + + ξ -)g k+1 i,N x -1 2 , +∆t G 2 i, (M 1, u k 1,N x , ..., M n, u k n,N x ) .
(3.4.9)

Numerical simulations

We provide some numerical simulations to validate the asymptotic preserving scheme property, such as the uniform stability with respect to the parameter ε and the consistence with crossdiffusion-fluid limit. On the other hand, we show a comparison between local and nonlocal diffusion. Furthermore, we demonstrate cross-diffusion and also the fluid flow effects on the interacting species.

In our numerical simulations, we care out two different tests where the velocity space is V = [-1; 1] with the number of grids N ξ = 164 which can provide good enough accuracy for numerical simulations, see [START_REF] Carrillo | An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis[END_REF], and the time step is ∆t = 10 -5 .

Test 1: Two interacting populations. We investigate the numerical simulations of a system describing the evolution of two competing species living a medium governed by the incompressible Navier-Stokes flow. The aforesaid system can be written as follow

       ∂ t u 1 + v • ∇ x u 1 -div x d u 1 ( Ω u 1 dx)∇ x u 1 + A 1 1 ∇ x u 1 + A 2 1 ∇ x u 2 = F 1 (u 1 , u 2 ), ∂ t u 2 + v • ∇ x u 2 -div x d u 2 ( Ω u 2 dx)∇ x u 2 + A 1 2 ∇ x u 1 + A 2 2 ∇ x u 2 = F 2 (u 1 , u 2 ), ∂ t v -ν∆v + (v • ∇ x )v + ∇ x p + Q(u 1 , u 2 )∇ x φ = 0, div x v = 0. (3.4.10)
In model (3.4.10) u 1 and u 2 denote densities of predator and prey, respectively. The cross-diffusion term matrix A = (A j i ) 1≤i,j≤2 is defined by

A(u 1 , u 2 ) = 2 a 11 u 1 + a 12 u 2 a 12 u 1 a 21 u 2 a 21 u 1 + 2a 22 u 2
where a ij > 0 for i, j = 1, 2 is known as self and cross-diffusion rates. It is clear that the above cross-diffusion matrix satisfies condition (3.3.3). The ellipticity condition (3.3.4) is verified if 8a 11 a 21 ≥ a 2 12 and 8a 22 a 12 ≥ a 2 21 , see [START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF]. We consider the following Lotka-Voltera terms

F 1 (u 1 , u 2 ) = u 1 (a 1 -b 1 u 1 -c 1 u 2 ), F 2 (u 1 , u 2 ) = u 2 (a 2 -b 2 u 1 -c 2 u 2 ),
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where a 1 , a 2 , b 1 , b 2 , c 1 and c 2 are the coefficients of intra-and inter-specific competitions. For the numerical simulations, we consider the following space domain x = [-2, 2] with the number of cells N x = 200 and the periodic boundary condition. Moreover, we adopt a set of parameters, namely the coefficients of intra-and inter-specific competitions, used in [START_REF] Shigesada | Biological invasions: theory and practice[END_REF] (adopted also by [START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF][START_REF] Bendahmane | Kinetic-fluid derivation and mathematical analysis of the cross-diffusion-brinkman system[END_REF]): a 1 = 0.61, a 2 = 0.82, b 1 = 0.4575, b 2 = 0.31, c 1 = 9.5 and c 2 = 8.2. Furthermore, we choose a 11 = a 21 = a 22 = 0.5 and a 12 = 1 within which cross-diffusion matrix satisfies conditions (3.3.3) and (3.3.4). Finally, the initial densities correspond to the species densities u 1 and u 2 are given by

u 1,0 (x) = 6, u 2,0 (x) = 3 - 3 ∑ z=1 (1 + exp (-50( 2(x + x z ) 2 -σ z ))) -1 ,
where

x 1 = 1, x 2 = 0.3, x 3 = -0.4, σ 1 = σ 3 = 0.25 and σ 2 = 0.2. The initial distribution function is as follow f i,0 (x, ξ) = u i,0 (x)
|V| for i = 1, 2. In order to compare local and nonlocal diffusion effects, we consider the choice of local diffusitive functions given by Φ 1 = Φ 2 = 0.01 and the choice of the following nonlocal diffusitive functions d u i (z) = 0.01 z 2 for i = 1, 2.

In Figures 3.1 and 3.2, we show the obtained numerical simulations of micro-macro formulation scheme of local and nonlocal diffusitive functions with ε = 10 -k where k ∈ {0, 1, 2, 3, 6, 9} against local and nonlocal cross-diffusion macroscopic scheme respectively, at successive times t = 0, 0.001, 0.003, 0.005, 0.007. First, it is shown that our (AP) scheme is stable along the transition from kinetic to macroscopic regimes in the limit when ε → 0 which illustrates the result in Proposition 3. Moreover, we can see that our (AP) scheme converges better in time. On the other hand, we observe the formation of patterns induced from the cross-diffusion terms. Finally, we notice that species have the tendency to stay in the crowded zones in the case of local diffusion while they have the tendency to leave crowded zones in case of nonlocal diffusitive functions.

In order to demonstrate the fluid flow effect on predator-prey interactions, we consider the same data as in the case of nonlocal diffusitive functions with a constant fluid velocity v = 2.5. Figure 3.3 provides the obtained results for micro-macro against cross-diffusion-fluid schemes at successive time t = 0.001, 0.002, 0.003, 0.005. It is shown that our (AP) scheme is stable and converges better in time. Moreover, we observe the previous reproduced phenomenon by the nonlocal cross-diffusion terms and that the two densities are transported in the direction of velocity sign. The first and second columns present, respectively, the dynamics of the densities u 1 (t; x) and u 2 (t; x) obtained from local micro-macro scheme with ε = 10 -k , k = 0, 1, 2, 3, 6, 9 against local cross-diffusion-fluid scheme with v = 2.5 at successive time t = 0.001, 0.002, 0.003, 0.005.

Test 2: Three interacting populations. Here, we investigate the numerical simulations of a system describing the evolution of three interacting populations living in a fluid medium given by

               ∂ t u 1 + v • ∇ x u 1 -div x d u 1 ( Ω u 1 dx)∇ x u 1 + A 1 1 ∇ x u 1 + A 2 1 ∇ x u 2 = F 1 (u 1 , u 2 , u 3 ), ∂ t u 2 + v • ∇ x u 2 -div x d u 2 ( Ω u 2 dx)∇ x u 2 + A 1 2 ∇ x u 1 + A 2 2 ∇ x u 2 + A 3 2 ∇u 3 = F 2 (u 1 , u 2 , u 3 ), ∂ t u 3 + v • ∇ x u 3 -div x d u 3 ( Ω u 3 dx)∇ x u 3 + A 2 3 ∇ x u 2 + A 3 3 ∇ x u 3 = F 3 (u 1 , u 2 , u 3 ), ∂ t v -ν∆v + (v • ∇ x )v + ∇ x p + Q(u 1 , u 2 , u 3 )∇ x φ = 0, div x v = 0, ( 3 
.4.11) where u 1 (t, x) is the population density of the species at the lowest level of the food chain (preys), u 2 (t, x) is the population density of the species that preys upon u 1 (predator), and u 3 (t, x) is the population density of the species that preys upon u 2 (superpredator). the cross-diffusion matrix A = (A

j i ) 1≤i,j≤3 is defined as in [4] A(u 1 , u 2 , u 3 ) =   α 1 u 1 + u 2 u 1 0 u 2 u 1 + α 2 u 2 + u 3 u 2 0 u 3 u 2 + α 3 u 3  
where α 1 , α 2 , α 3 > 0 is known as self-diffusion rates. Note that the above cross-diffusion matrix A is uniformly nonnegative under the following conditions:

α 1 > 1 2 , α 2 > 1 and α 3 > 1 2
, see [START_REF] Anaya | Numerical analysis for a three interacting species model with nonlocal and cross diffusion[END_REF]. The reaction terms take a nonlinear forms [START_REF] Hasting | Chaos in a three-species food chain[END_REF] as follows

           F 1 (u 1 , u 2 , u 3 ) = (1 -u 1 )u 1 -a 1 u 1 1+b 1 u 1 u 2 , F 2 (u 1 , u 2 , u 3 ) = a 1 u 1 1+b 1 u 1 u 2 -a 2 u 2 1+b 2 u 2 u 3 -c 1 u 2 , F 3 (u 1 , u 2 , u 3 ) = a 2 u 2 1+b 2 u 2 u 3 -c 2 u 3 , (3.4.12)
where a 1 , a 2 , b 1 , b 2 , c 1 and c 2 are the coefficients of intra-and inter-specific competition. In our numerical simulations, we adopt the following set of parameters: 

a 1 = a 2 = 80, b 1 = b 2 = 2, c 1 = 0.
u 1,0 (x) = 3, u 2,0 (x) = 1 - 2 ∑ z=1 (1 + exp (-50( 2(x + x z ) 2 -σ z ))) -1 , u 3,0 (x) = 1,
where x 1 = 0.25, x 2 = -0.25, and σ 1 = σ 2 = 0.18, . The initial distribution function is as follow

f i,0 (x, ξ) = u i,0 (x) |V| i = 1, 2, 3.
In Figure 3.4, we present the obtained numerical results for three interacting species from micromacro scheme against cross-diffusion scheme at successive time t = 0.001, 0.005, 0.01, 0.06. We observe that the densities u 1 , u 2 and u 3 obtained from the two schemes have almost the same profiles in the limit when the mean free path ε = 10 -k , with k = 0, 1, 2, 3, 6, 9, tend to zeros. This confirm that our (AP) scheme is uniformly stable along the transition from kinetic regime to macroscopic one. Moreover, we can see that our (AP) scheme converges better in time. On the other hand, we observe the effect of the nonlocal diffusion and of the cross-diffusion terms on the dynamic of the three populations. Specifically, superpredators moves toward the zones occupied by predators at the same time predators spread out to the areas where preys are located. From left to right column, the obtained numerical solutions of u 1 , u 2 , u 3 from the nonlocal (AP) scheme with ε = 10 -k , k = 0, 1, 2, 3, 6, 9, against of the nonlocal cross-diffusion model with v = 0 at successive time t = 0.001, 0.005, 0.01, 0.06.

Computational analysis 2D

Motivated by the obtained numerical simulation in 1D, here we investigate two dimensions computational analysis of nonlocal cross-diffusion-fluid system (3.1.1) for three interacting populations. First, we numerically demonstrate the effect of nonlocal diffusion together with crossdiffusion, as well as fluid flow in an explicit form of the fluid velocity on the interactions of populations by using finite volume method. Secondly, we show the effect of external forces (obstacle interior de domain and the force of gravity) on the dynamic of fluid flow and simultaneously on the behavior of interacting populations by using finite element method.

Effect of the nonlocal cross-diffusion-fluid

We show the effect of nonlocal cross-diffusion and fluid flow in an explicit form of the fluid velocity on the distribution of the interacting populations. The system under consideration is written as follows implemented with initial and boundary conditions

                       ∂ t u 1 + v • ∇ x u 1 -div x d u 1 ( Ω u 1 dx)∇ x u 1 + A 1 1 ∇ x u 1 + A 2 1 ∇ x u 2 = F 1 , in Ω T , ∂ t u 2 + v • ∇ x u 2 -div x d u 2 ( Ω u 2 dx)∇ x u 2 + A 1 2 ∇ x u 1 + A 2 2 ∇ x u 2 + A 3 2 ∇ x u 3 = F 2 , in Ω T , ∂ t u 3 + v • ∇ x u 3 -div x d u 3 ( Ω u 3 dx)∇ x u 3 A 2 3 ∇ x u 2 + A 3 3 ∇ x u 3 = F 3 , in Ω T , v(0, x) = v 0 , u 1 (0, x) = u 1,0 , u 2 (0, x) = u 1,0 , u 3 (0, x) = u 3,0 , in Ω, ∂u 1 ∂η = ∂u 2 ∂η = ∂u 3 ∂η = 0, v = 0, on Σ T .
(3.4.13) In order to solve numerically system (3.4.13), we adopt the finite volume method in 2D. For that, we consider a family T h of admissible meshes of the domain Ω consisting of disjoint open and convex polygons called control volumes, see [START_REF] Eymard | Finite volume methods[END_REF]. In the rest of this subsection, we shall use the following notation: the parameter h is the maximum diameter of the control volumes in T h . K is a generic volume in T, |K|is the 2-dimensional Lebesgue measure of K and N(K) is the set of the neighbors of K. Moreover, for all L ∈ N(K), we denote by σ K,L the interface between K and L where L is a generic neighbor of K. η K,L is the unit normal vector to σ K,L outward to K. For an interface σ K,L , |σ K,L | will denote its 1-dimensional measure. d K,L denote the distance between x K and x L , where the points x K and x L are respectively the center of K and L. On the other hand, we assume that a discrete function on the mesh T h is a set (w K ) K ∈ T and we identify it with the piecewise constant function w h on Ω such that w h | K = w K . Furthermore, we consider an admissible discretization of (0, T) × Ω consisting of an admissible mesh T h of Ω and of a time step size ∆t h > 0 (both ∆t h and the size max K∈t h diam(K) tend to zero as h → 0). Next, we define the discrete gradient ∇ h w h as the constant per diamond T K,L function by

∇ h w h | T K,L = ∇ K,L w h := w L -w K d K,L η K,L .
Finally, we define the average of source terms

F n+1 i,K by F n+1 i,K = F i (u 1 (t n , x), u 2 (t n , x), u 3 (t n , x))
, for i = 1, 2, 3. And we make the following choice to approximate the diffuse terms A

j,n+1 i,K,L A j,n+1 i,K,L = A min{u n+1 + 1,K , u n+1 + 1,L }, min{u n+1 + 2,K , u n+1 + 2,L , min{u n+1 + 3,K , u n+1 + 3,L } , where u n+1 + i,J
= max(0, u n+1 i,J ) for i = 1, 2, 3 and J = K, L. The computation starts from the initial cell averages u K i,0 = 1 |K| K u i,0 (x) dx for i = 1, 2, 3. In order to advance the numerical solution from t n to t n+1 = t n + ∆t, we use the following implicit finite volume scheme: determine u n+1 i,K for Chapter 3. Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system

K ∈ T, i = 1, 2, 3 such that |K| u n+1 1,K -u n 1,K ∆t + ∑ L∈N(K) G(u n+1 1,K , u n+1 1,L ; v n+1 K,L ) -d u 1 ∑ K 0 ∈T h m(K 0 )u n 1,K 0 ∑ L∈N(K) |σ K,L | d K,L (u n+1 1,L -u n+1 1,K ) -∑ L∈N(K) |σ K,L | d K,L A 1,n+1 1,K,L (u n+1 1,L -u n+1 1,K ) + A 2,n+1 1,K,L (u n+1 2,L -u n+1 2,K ) = |K|F n+1 1,K , |K| u n+1 2,K -u n 2,K ∆t + ∑ L∈N(K) G(u n+1 2,K , u n+1 2,L ; v n+1 K,L ) -d u 2 ∑ K 0 ∈T h m(K 0 )u n 2,K 0 ∑ L∈N(K) |σ K,L | d K,L (u n+1 2,L -u n+1 2,K ) -∑ L∈N(K) |σ K,L | d K,L A 1,n+1 2,K,L (u n+1 1,L -u n+1 1,K ) + A 2,n+1 2,K,L (u n+1 2,L -u n+1 2,K ) + A 3,n+1 2,K,L (u n+1 3,L -u n+1 3,K ) = |K|F n+1 2,K , |K| u n+1 3,K -u n 3,K ∆t + ∑ L∈N(K) G(u n+1 3,K , u n+1 3,L ; v n+1 K,L ) -d u 3 ∑ K 0 ∈T h m(K 0 )u n 3,K 0 ∑ L∈N(K) |σ K,L | d K,L (u n+1 3,L -u n+1 3,K ) -∑ L∈N(K) |σ K,L | d K,L A 2,n+1 3,K,L (u n+1 2,L -u n+1 2,K ) + A 3,n+1 3,K,L (u n+1 3,L -u n+1 3,K ) = |K|F n+1 3,K , (3.4 
.14) for all K ∈ T h , n ∈ N h . The convective flux G is given by G(w K , w L ; v K,L ) = v + K,L w K -v - K,L w L where v +
K,L and v - K,L are positive and negative parts of v K,L , respectively. We take into account implicitly the homogeneous Neumann boundary condition. If v K,L = 0, we refer the reader to [START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF][START_REF] Anaya | Numerical analysis for a three interacting species model with nonlocal and cross diffusion[END_REF] for more details. To solve the corresponding nonlinear system arising from the implicit finite volume scheme (3.4.14), we have used the Newton method. We mention that the linear systems involved in Newton's method are solved by the GMRES method.

In the next two tests, the initial densities u 1 and u 3 correspond to a constants u 1,0 = 0.75, u 3,0 = 0.215, while the initial density u 2,0 is concentrated in small pockets at two spatial points. The spatial domain corresponds to a simple square Ω = (-1, 1) × (-1, 1) and uniform mesh is given by a Cartesian grid N x = N y = 128. Finally, we consider the same reaction terms F i in (3.4.12) with a different choice of the coefficients Test 1: the nonlocal cross-diffusion effect. Here, we are interested to show the effect of nonlocal cross-diffusion on the distributions of interacting populations. For that, we consider that they are depending linearly on the whole of each population in the domain. Specifically, the nonlocal functions are given by d u 1 (z) = 0, 1z and d u 2 (z) = d u 3 (z) = 0.01z, for all z ∈ R + . The crossdiffusion parameters are chosen as follows α 1 = 10, α 2 = α 3 = 1.5, and the fluid velocity is neglected (v = 0). Figure 3.5 provides the obtained numerical simulations of the three densities u 1 , u 2 , and u 3 at successive times t = 0, 0.2, 0.4, 0.6. Initially, we observe the effect of the nonlocal diffusion over the behavior of population and also the rapid movement of superpredators towards the regions occupied by predators. Moreover, we can see that predators spread out to the regions where preys are located. On the other hand, in order to well demonstrate the sensitivity with respect to the cross-diffusion matrix A j i for i, j = 1, 2, 3, on the behavior of three interacting populations, we consider different values of the cross-diffusion parameters α 1 , α 2 and α 3 . 

a 1 = 10, a 2 = 0.1, b 1 = b 2 = 2, c 1 = 0.
v(x, y) = (1 -x)(1 + x)(1 -y)(1 + y).
The made choice of the velocity fluid has a purpose to satisfy the theoretical assumption on it. We adopt the following set of parameters α 1 = 10, α 2 = α 3 = 1.5 and the diffusitive functions d u i for i = 1, 2, 3 are chosen as in the first case in Test 1.

Figure 3.7 shows the influence of interacting populations in the presence of fluid flow. Moreover, it is clearly seen the effect of diffusion over the three populations. where δ i is a random function for i = 1, 2, 3. The nonlocal diffusion terms and the fluid viscosity are chosen as follows d u 1 (z) = 0.1 z, d u 2 (z) = d u 3 (z) = 0.01 z for all z ∈ R and ν = 10 -3 . We recall that ∇φ = V s (ρ sρ f ) g -→ z where V s and ρ s are, respectively, the volume and the density of populations, ρ f is the fluid density and g is the gravitational force. In fact, the vector -∇φ is the resultant of gravity forces ( -→ P = -ρ s V s g -→ z ) and the Archimedes thrust ( -→ F a = ρ f V s g -→ z ). In our tests, the populations are denser than the fluid and therefore a gravi- tational flow is created in the direction of the vector --→ z . Herein, we investigate two different cases:

Case 1: absence of the gravitational force. In the first place, we illustrate the behavior of the nonlocal reaction-diffusion-fluid system (3.4.15) without the force gravity, i.e ∇ x φ = (0, 0). Figure 3.9 shows the obtained numerical simulations of the three interacting populations densities u 1 , u 2 and u 3 , and the dynamic of the fluid flow presented by the fluid velocity v and the pressure p. It's clear that populations are transported in the direction of the fluid. On the other hand, we observe that the fluid flow is not influenced by the presence of the populations in the medium. However, it is affected by the presence of the obstacle in the domain.

Case 2: the presence of gravitational force. In the second place, we illustrate the behavior of the nonlocal reaction-diffusion-fluid system (3.4.15) with the presence of the gravity force, i.e ∇ x φ = (0, 0). Thus, we obtain the strong coupling system (3.4.15).

In Figure 3.10, we show the numerical simulations of the three densities u 1 , u 2 and u 3 and the dynamic of the fluid flow. Clearly, we observe that the three interacting populations and the fluid are influenced by the presence of the gravitational force. We observe also the effect of the presence of the obstacle.

Conclusion

In this chapter, we have proposed a nonlocal cross-diffusion-fluid model for multi-interacting populations. The proposed model has been derived from a nonlocal kinetic-fluid model by using the micro-macro decomposition technic. Next, we have proved the existence of weak solutions for the proposed model by nonlinear Galerkin method. It has been shown that our proposed (AP) schemes are uniformly stable along the transition from kinetic to macroscopic regimes. At the same time, we have demonstrated the nonlocal diffusion, cross-diffusion and the fluid effects on two and three interacting populations. Finally, inspired by the obtained numerical simulation in 1D, we have provided various numerical simulations in 2D.

Chapter 4

Representation and mathematical structures for one lane flow

This chapter is intended to give a brief overview of the basic mathematical structures for one lane vehicular traffic. It starts with the kinetic representation, in which we define the independent variables and dependent variables needed to describe the system. Then, macroscopic observable quantities can be obtained under suitable integrability assumption. Section 4.3 is devoted to state the mathematical structure of Boltzmann models with binary interaction, the models with Enskog-like interactions and Boltzmann models with averaged binary interactions. In section 4.4 we present discrete model by [START_REF] Delitala | Mathematical modelling of vehicular traffic: A discrete kinetic theory approach[END_REF]. Section 4.5 is devoted to describe the kinetic theory for active particles. Specifically, the model by [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] where the authors take into account the behavior of the system driver-vehicle by adding the activity variable. The last section 4.6 aim to present the model by [START_REF] Fermo | A fully-discrete-state kinetic theory approach to modeling vehicular traffic[END_REF] where the authors propose a full discrete model.

Kinetic theory approach

Kinetic modeling in a Boltzmann framework applied to traffic flow was first initiated by [START_REF] Prigogine | Kinetic Theory of Vehicular Traffic[END_REF]. Their model is based on local binary interactions framework with unidirectional flow and on the assumption that the driver is assumed willing to adjust the vehicle's velocity toward a certain desired velocity distribution. This model is only applicable in the situation of low traffic density. Indeed, in the inhomogeneous traffic flow situation, a serious drawback appears, for instance, since the velocities are positive, the traffic jams are not allowed to propagate backwards in negative direction, and this is in contrast to real traffic flow observations. Furthermore, the situation for kinetic equations in gas dynamics is completely different, because the velocity can be assumed positive and negative. Consequently, we can not expect to obtain a strict derivation of fluid dynamics equation from the aforesaid models. In order to correct this drawbacks, it is necessary to take in consideration the effects of the finite distance between the vehicles in analogy way to Enskog's theory for dense gas, see [START_REF] Klar | Kinetic derivation of macroscopic anticipation models for vehicular traffic[END_REF] where the authors used this argument in the context of microscopic interactions for the term of interactions.

After the pioneer work by [START_REF] Prigogine | Kinetic Theory of Vehicular Traffic[END_REF], various contributions have been proposed by several authors starting from the critical analysis and substantial improvement proposed by [START_REF] Fontana | On boltzmann like treatments for traffic flow[END_REF] toward the most developments proposed, see for instance [START_REF] Nelson | A kinetic model of vehicular traffic and its associated bimodal equilibrium solution[END_REF][START_REF] Klar | Mathematical models for vehicular traffic[END_REF][START_REF] Klar | Enskog-like kinetic models for vehicular traffic[END_REF]. These models are based on a Boltzmanntype collision term in which the cross section, giving the probability of interaction between two particles, is replaced with a probability distribution depending on the local traffic conditions, see [START_REF] Nelson | A kinetic model of vehicular traffic and its associated bimodal equilibrium solution[END_REF]. In contrast to work by [START_REF] Prigogine | Kinetic Theory of Vehicular Traffic[END_REF], the equation proposed by [START_REF] Nelson | A kinetic model of vehicular traffic and its associated bimodal equilibrium solution[END_REF] is strictly based on a microscopic model fulfilling the criterion of having a one parameter family of local equilibrium distributions depending only on the local density of cars. As in [START_REF] Nelson | A kinetic model of vehicular traffic and its associated bimodal equilibrium solution[END_REF], the work by [START_REF] Klar | Mathematical models for vehicular traffic[END_REF] derived a kinetic equation based on a microscopic model without going back to the phenomenological relation terms as in [START_REF] Prigogine | Kinetic Theory of Vehicular Traffic[END_REF].

We would like to claim that the interactions integrals appeared in the models based in the continuous velocity typically do not provide the analytical expression of the equilibrium distribution and they are very demanding from computational point of view. To overtake these drawbacks, a several approaches has been proposed in literature. The first approach considered Vlasov-Fokker-Planck type model in which the integrals are replaced by differential operators, see [START_REF] Herty | Fokker-Planck asymptotics for traffic flow models[END_REF] and recently [START_REF] Visconti | Multivalued fundamental diagrams of traffic flow in the kinetic Fokker-Planck limit[END_REF]. The second one considered simplified kinetic models with a small number of velocities, namely based on the discrete-velocity [START_REF] Delitala | Mathematical modelling of vehicular traffic: A discrete kinetic theory approach[END_REF][START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF][START_REF] Bellomo | On the multiscale modeling of vehicular traffic: from kinetic to hydrodynamics[END_REF].

It is attractive to state the two relevant complexity problems in the modeling of traffic flow by the engineer [START_REF] Daganzo | Requiem for second-order fluid approximations of traffic flow[END_REF]. The first criticism observation is the assumption of continuity of the distribution function. Indeed, the number of vehicles is not large enough to justify this assumption. The second criticism observation is the assumption of homogeneity of the behavior of the system driver-vehicle. Indeed, the behavior of this system is not the same. Consequently, new models should take into account these criticisms observations. The method of discrete kinetic theory by [START_REF] Delitala | Mathematical modelling of vehicular traffic: A discrete kinetic theory approach[END_REF] appears pertinent to avoid the first complexity problem. Indeed, the authors developed this method using the discreteness of the velocity variable, which allowed for a finite number of velocity only. In order to correct the second criticism observation, the paper by [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] proposed a mathematical structure based on the method of kinetic theory of active particles. This method on the one hand converts the Boltzmann's integral-differential equation into a set of partial differential equations. On the other hand it relaxes the continuum hypothesis and includes the granular nature of vehicular traffic. Recent work [START_REF] Puppo | Analysis of a multi-population kinetic model for traffic flow[END_REF] proposed a spatially homogeneous model with discrete velocity by taking into account the heterogeneous nature of the flow of vehicles along a road. Namely, the authors considered mixture of two classes of populations instead of one class as in [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF]. They considered the class of cars which is shorter and faster, and the class of trucks which is longer and slower.

More recently, the authors in [START_REF] Puppo | Kinetic models for traffic flow resulting in a reduced space of microscopic velocities[END_REF] proposed a kinetic model based on continuous velocity space in the spatially homogeneous case with binary interactions. Their approach differs from the kinetic model proposed in [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] because they assumed continuous velocity spaces. The obtained result in their work suggest that a small number of velocities is sufficient for the kinetic modeling of traffic. Moreover, the acceleration remains controlled by the parameter ∆v, in contrast to models based on a lattice of velocities, in which the possible outcomes of an interaction and the acceleration of vehicles depend on the particular lattice chosen [START_REF] Delitala | Mathematical modelling of vehicular traffic: A discrete kinetic theory approach[END_REF][START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF]. On the other hand, they found the explicit expression of the asymptotic distribution which leads to deriving new macroscopic equations using the closure provided by the kinetic model. We think that the most important result in their work is the derivation of the fundamental diagrams with a phase transition without the need of prescribing heuristic speed-density relations.

On the kinetic theory representation

In this section we are concerned about the kinetic theory representation where ee define the needed variables to state the mathematical structures. Let us consider a one-directional flow of vehicles along a road with length . We would like to mention that when the independent and dependent variables are in a suitable dimension form, they represent the relevant phenomena related to traffic flow and therefore some specific models will be described. Moreover, writing the model in terms of dimensionless variables is useful towards computational analysis and allows to extract suitable scaling parameters which can be properly used towards a qualitative understanding of the proprieties of the model.

In order to define dimensionless quantities, one has to identify characteristic time T and length of road , as well as maximum density ρ M and maximum mean velocity V M . Specifically,

• ρ M is the maximum density of vehicles corresponding to bumper-to-bumper traffic jam.

• V M is the maximum admissible mean velocity which may be reached by vehicles in the empty road.

It is spontaneous to assume V M T = , which means that T is the time necessary to cover the whole road length at the maximum mean velocity V M . After the above preliminaries, we can now define dimensionless independent and dependent variables. The dimensionless independent variables are • t ∈ R + is the dimensionless time variable obtained by referring the real time to a suitable critical time T c to properly be defined by a qualitative analysis of the differential model. Generally, it is convenient to identify the critical time T c as the ratio between and V M .

• x = x r is the dimensionless space variable obtained by dividing the real space by the length of the lane, where x r is the real dimensional space.
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Moreover, suitable reference variables can be introduced to define the dependent variables.

• Of course a fast isolated vehicle can reach velocities larger that V M . In particular a limit velocity can be defined as

V = (1 + µ)V M , µ > 0,
taking into account that no vehicle can reach a velocity higher than V , simply for mechanical reasons. Both V M and µ may depend on the characteristics of the lane. Say, a country lane or a highway, as well as on the type of vehicles, for example, a slow car, a fast car, etc.

In the representation by kinetic theory methods, the whole system is defined by the statistical distribution function of position x and velocity v of the vehicles. This distribution function over the dimensionless microscopic state is defined by

f = f (t, x, v) : R + × [0, 1] × [0, 1] → R + .
f (t, x, v)dxdv gives the number of vehicles which, at time t, is in the phase space domain

[x, x + dx] × [v, v + dv].
The distribution function f is normalized with respect to ρ M so that all derived variables can be given in a dimensionless form. In the kinetic representation, macroscopic observable quantities can be obtained, under suitable integrability assumptions, as momenta of the distribution f , normalized with respect to the maximum density ρ M in order that all variables are given in a dimensionless form. Specifically,

• the dimensionless density is given by

ρ(t, x) = 1+µ 0 f (t, x, v)dv,
• the total number of vehicles at time t is computes as following

N(t) = 1 0 1+µ 0 f (t, x, v)dvdx,
• the flux is giving by

q(t, x) = 1+µ 0 v f (t, x, v)dv,
• the dimensionless local mean velocity is ξ(t, x) = q(t, x) ρ(t, x) .

• Higher order momenta are related to other macroscopic variables, such as the average kinetic energy E and the variance of the velocity σ

E(t, x) = 1 2 1+µ 0 v 2 f (t, x, v)dv, σ(t, x) = 1 ρ(t, x) 1+µ 0 [v -ξ(t, x)] 2 f (t, x, v)dv.

Mathematical structures

Kinetic approach derivation follows lines similar to those of kinetic of gas-theory. Indeed, it needs the modeling of pair interactions at microscopic level. Let us consider pair interactions between a test vehicle with the state (x, v) and the field vehicle with state (y, w). As in the kinetic theory, different ways of modeling local interactions generate different types of evolution equations. The difference with respect to the classical theory is that interactions do not follow the rules of classical mechanics; but instead, the driving strategy is expressed by the vehicle-driver systems.

Models which are available in the literature have occasionally been derived by heuristic arguments. This section provides a description of some conceivable frameworks which can be used toward modeling of vehicular traffic. In particular, the following ones will be concisely described in the next subsections: i) Boltzmann models with binary interactions, ii) models with Enskog-like interactions, iii) Boltzmann models with averaged binary interactions.

Boltzmann models with binary interactions

Localized binary interaction models are based on microscopic modeling, which assume binary interactions between the test and the field vehicles localized at point x of the field vehicle. The paper by [START_REF] Bellomo | On the modeling of traffic and crowds: a survey of models, speculations, and perspectives[END_REF] suggests the following formal structure

∂ f ∂t + v ∂ f ∂x = J[ f , f ](t, x, v) = 1+µ 0 1+µ 0 η(v * , v * )A(v * , v * ; v) f (t, x, v * ) f (t, x, v * ) dv * dv * -f (t, x, v) 1+µ 0 η(v, v * ) f (t, x, v * ) dv * , (4.3.1) 
where the right-hand side gives the difference between the inflow and outflow of vehicles in the control volume of the phase space. Moreover,

• η(v * , v * ) or η(v, v * ) is the encounter rate between the test vehicle with velocity v * and the field vehicle with velocity v * . It gives the number of interactions between pairs of vehicles per unit time in the unit space.

• A(v * , v * ; v) is the transition probability density that a candidate or test vehicle with velocity v * interacting with a vehicle with velocity v * ends up with velocity v. The density A must be equal to zero for v 1 + µ.

The above description may lead to good results in homogeneous traffic flow situations; of course the description is satisfactory if the microscopic modeling is correct. If the above equation (4.3.1) are used for the description of inhomogeneous traffic flow situations, a serious drawback appears due to the positivity of the velocities v. There is no mechanism in the equations to allow perturbations to propagate backward in the negative-x direction. This can be seen by the following trivial argument: Considering a full space problem, the integral form of the kinetic equation is

f (t, x, v) = f (0, x -vt, v) + t 0 J[ f , f ](s, x + v(s -t), v)ds.
This shows that the distribution function f at x and t depends only on the distribution function at the values x x , s t, since v is positive. A perturbation cannot propagate backward in the negative x direction. In particular, traffic jams occurring for dense traffic situations are not allowed to travel backward. This is in striking contrast to real traffic flow observations. Moreover, the above remark has consequences for the connection between kinetic and fluid dynamic traffic flow equations. Namely, one can not expect to obtain a strict derivation of fluid dynamic equations from the above kinetic equation (4.3.1). In general, to describe correctly the behavior of dense traffic with a kinetic equation and to obtain a consistent derivation of fluid dynamic equations. It is necessary to include the effects of the finite size extension of the vehicles. This can be done as we will show in the next subsection in analogy to Enskog's theory for a dense gas.

Models with Enskog-like interactions

Enskog-like models have a structure analogous to the Boltzmann-like models with binary interactions. The main difference is that the effects of the finite size of the vehicles are taken into account. Namely, the field vehicle is not localized in the same place x as the candidate or test vehicle, but at a certain distance from x that can be chosen depending on the velocities of the interacting pair. Moreover, the Enskog-type modeling introduces a pair correlation function depending on the local densities in the positions of the interacting pairs as follows, see [START_REF] Klar | Enskog-like kinetic models for vehicular traffic[END_REF] 

f (2) (t, x, v, y, w) ∼ K(d i (v, w), ρ(t, x)) f (t, x, v) f (t, y, w), (4.3.2) 
where the function K is the correlation function between test and field vehicles depending, in a phenomenological way, on the reaction thresholds d i of the driver, at least braking and accelerating thresholds. Interactions of the test vehicle are assumed to happen only when a threshold distance is crossed, and are supposed to be localized with a field vehicle in the position

y i = y i (v, w) = x + d i (v, w).
The structure (4.3.1) can be rewritten in the following form

∂ f ∂t + v ∂ f ∂x = 2 ∑ i=1 J i [ f , f ](t, x, v) = 2 ∑ i=1 1+µ 0 1+µ 0 η(v * , w * )A i (v * , w * ; v) f (2) (t, x, v * , (x + d i (v * , w * )), w * )dv * dw * -f (t, x, v) 2 ∑ i=1 1+µ 0 η(v, w * ) f (2) (t, x, v, (x + d i (v, w * )), w * )dw * . (4.3.3)
Reconsidering the arguments in Subsection 4.3.1, one obtains

f (t, x, v) = f (0, x -vt, v) + t 0 2 ∑ i=1 J i [ f , f ](s, x + v(s -t), v)ds.
In this case one observes, due to the definition of J i [ f , f ], that the distribution function at x, t depends not only on the distribution function at x x, s t, but also on the distribution function at x > x. Thus, this allows backward propagating disturbances.

Boltzmann models with averaged binary interactions

The review by [START_REF] Bellomo | On the modeling of traffic and crowds: a survey of models, speculations, and perspectives[END_REF] also introduces structure for models where a suitable function ϕ(x, y) models the weight of the action on the driver of the test or candidate vehicle at x due to the field vehicle at y within the visibility area D = [xδr, x + δ f ] of the vehicle at x. Where δr and δ f are, respectively, the rear and frontal visibility distance. For y ∈ D the weight ϕ(x, y) must be such that y ↑⇒ ϕ ↓, The corresponding mathematical structure is written as follows

∂ f ∂t + v ∂ f ∂x = D 1+µ 0 1+µ 0 η(v * , v * )A(v * , v * ; v) f (t, x, v * ) f (t, x, v * )ϕ(x, y) dv * dv * dy -f (t, x, v) D 1+µ 0 η(v, v * ) f (t, x, v * )ϕ(x, y) dv * dy. (4.3.5)
It is immediate to show that Eq. (4.3.5), assuming that ϕ(y) = δ(yx) (or ϕ(y) = δ(yx + d)), where δ denotes Dirac's delta function, gives a localized interaction models. Analogous reasoning can be applied to Enskog-type models.

It is worth stating that the above mathematical frameworks are criticized in [START_REF] Bellomo | On the modeling of traffic and crowds: a survey of models, speculations, and perspectives[END_REF]. Indeed, these mathematical frameworks did not take into account the complexity features. Precisely, as previously mentioned, the assumption of continuity of the distribution function and the assumption of homogeneity of the driver-vehicle systems. These critical analysis from an engineer's point of view on traffic phenomena modeling is given by the sharp paper of [START_REF] Daganzo | Requiem for second-order fluid approximations of traffic flow[END_REF]. A few sentences can be extracted from this paper:

(i) Shock waves and particle flows in fluid dynamics refer to thousands of particles, while only a few vehicles are involved in traffic jams.

(ii) A vehicle is not a particle but a system linking driver and mechanics, so that one has to take into account the reaction of the driver, who may be aggressive, timid, prompt, etc. This criticism also applies to kinetic type models.

(iii) Increasing the complexity of the model increases the number of parameters to be identified.

The aim of the next sections is to take into account these criticism observations.

Discrete velocity models

The objective of this section is to overtake the first criticism (i). Namely, the continuity assumption of the function distribution. Indeed, continuity assumption can not be applied to vehicular flows considering that the inter-vehicular distances cannot be neglected, while methods of mathematical kinetic theory need a number of particles much greater than those involved in the road.

To achieve this goal, it is pertinent to proceed by the discrete velocity methods which are based on the assumption that particles can only attain a finite number of velocities. Thus, developing discrete velocity models in kinetic theory appears to be particularly interesting, considering that vehicles are often observed to move along highways with group velocities, thus creating clusters of vehicles related to certain sets of velocities.

Referring to paper by [START_REF] Delitala | Mathematical modelling of vehicular traffic: A discrete kinetic theory approach[END_REF], the authors observe that vehicles traveling along a road do not continuously span the whole set of admissible velocities; rather, they tend to move in clusters. This lead them to consider a mathematical structure that corresponds to average stochastic games. Technically, developing a discrete velocity model of traffic flow means selecting a discrete number of velocities as follows

I v = {v 0 = 0, ..., v i , ..., v n = 1} ⊂ D v = [0, 1],
where velocities have been divided by the maximal admitted velocity V , D v is the dimensionless velocity domain, and n is the number of points. In principle, the only requirement on n is that, it should be a positive integer different from zero i.e. n ∈ N, n > 0. Each v i is interpreted as a velocity classes encompassing a certain range of velocities v which are not individually distinguished. The discretization introduced above is not a simple mathematical procedure. Instead, it plays a specific role in the modeling of the system. Namely, it represents possible ways to consider the strongly granular nature of traffic. On the other hand, we observe that vehicles traveling along a road do not give rise to a continuous velocity distribution, since they tend to move in clusters which can be identified and distinguished from each other by a discrete set of speed values. The corresponding discrete representation is obtained by linking the discrete distribution functions to each velocity v i , i = 1, ..., n. Precisely, the distribution function f is expressed as a linear combination of Dirac functions in the variable v with coefficients depending on time t and space x.

f (t, x, v) = n ∑ i=1 f i (t, x)δ(v -v i ), (4.4.1) 
where f i (t, x) = f (t, x, v i ) gives the distribution of vehicles in the point x having at time t a velocity comprised in the i-th velocity class. Naturally, the above discrete velocity approach implies that vehicles with velocity larger than V can be disregarded. In other words, it is technically assumed that the presence of vehicles with velocity much larger than the maximum mean velocity corresponding to the given density is negligible. However, in a discrete velocity framework, such a detail is actually not very relevant, since vehicles are grouped and classified on the basis of velocity classes {v i } n i=1 . So that those which travel at speeds higher than V M are simply included in the extreme class v n . On the other hand, technically v 1 = 0 which coincides with the left endpoint of the interval D v . The other classes are then recovered as

v i+1 = v i + (∆v) i , i = 1, ..., n -1,
where (∆v) i represents the amplitude of the i-th velocity class. The authors have been consider an uniformly spaced velocity grid over D v , which implies a constant step

∆v = |D v | n -1 ,
where |D v | is the length of the interval D v . It results also that

v i = (i -1)∆v, i = 1, ..., n, with v n = |D v |. Note that if one takes D v = [0, 1 + µ]
with µ sufficiently small, then the resulting amplitude ∆v = 1+µ n-1 of the velocity classes little differs from the case D v , which produces ∆v = 1 n-1 . Consequently, one can choose to refer to the unit dimensionless velocity domain D v = [0, 1] by simply assuming that vehicles possibly traveling at speeds higher than 1 are included in the extreme velocity class v n = 1. The authors explicitly assumed a uniformly spaced velocity grid of the form

v i = i -1 n -1 , i = 1, ..., n
with the constant grid step ∆v = 1 n -1 .

Using the representation of the distribution function f given by Eq. (4.4.1), the following expressions for the classical macroscopic average quantities are easily derived:

• the vehicle density

ρ(t, x) = n ∑ i=1 f i (t, x);
• the vehicle flux

q(t, x) = n ∑ i=1 v i f i (t, x) = ρ(t, x)ξ(t, x),
where ξ is the mean velocity;

• the variance of the velocity

σ(t, x) = 1 ρ(t, x) n ∑ i=1 [v i -ξ(t, x)] 2 f i (t, x).
The mathematical model by [START_REF] Delitala | Mathematical modelling of vehicular traffic: A discrete kinetic theory approach[END_REF] is a set of evolution equations for the densities which can be formally written as follows

∂ f i ∂t + v i ∂ f i ∂x = n ∑ h=1 n ∑ k=1 D w η[f](t, y)A i h,k [f; α](t, y) f h (t, x, ) f k (t, y)w(x, y)dy -f i (t, x) n ∑ k=1 D w η[f](t, y) f k (t, y)w(x, y)dy, (4.4.2) 
for i = 1, ..., n, where D w = [x, x + L] is the visibility zone where L > 0, and f = ( f 1 , ..., f n ). Moreover,

• η[f] is the interaction rate, which gives the number of interactions per unit time among the vehicles,

• A i h,k [f; α] defines the table of games, which models the microscopic interactions among the vehicles by giving the probability that a vehicle with speed v h adjusts its velocity to v i after an interaction with a vehicle traveling at speed v k .

• w(x, y) represents the function weighting the interactions over the visibility zone; it is required to satisfy

w(x, y) ≥ 0, ∀x ∈ [0, 1], y ∈ D w , D w w(x, y)dy = 1, ∀y ∈ D w ,
• α is phenomenological parameter, whose lower and higher values are related to bad and good road conditions respectively.

Furthermore, the authors assume that both the interaction rate and the table of games depend on the local density ρ with the following additional requirement

A i h,k [f; α] ≥ 0, n ∑ i=1 A i h,k [f; α] = 1 ∀h, k ∈ {1, ..., n}. (4.4.3)
It is worth stating that numerical simulations of the spatially inhomogeneous problem have been carried out by addressing three representative cases, which highlight the ability of the model to reproduce correctly some interesting features of vehicular traffic flow. In particular, the merging of two clusters of vehicles with concomitant appearance of stop-and-go waves and the backward propagation of a queue, possibly in presence of a bottleneck, with a vehicle density profile which in this second case closely follows that of the bottleneck, and which in both cases never overcomes the maximum value fixed by the road capacity. Moreover, the above kinetic model (4.4.1) has been derived according to the generalized kinetic theory, where interactions at the microscopic level do not follow laws of classical mechanics. However, they are the same for all interacting vehicles. In other words, the behavior of the vehicle-driver system follows specific strategies that modify classical mechanical rules, but they are not heterogeneously distributed among the vehicles.

Kinetic Theory of Active Particles

The Kinetic Theory of Active Particles, hereafter sometimes abbreviated as KTAP, is a mathematical method that has been developed to model the dynamics of large living systems, see [START_REF] Bellomo | A quest towards a mathematical theory of living systems[END_REF]. Motivations to use KTAP's methods to model vehicular traffic are offered by the criticisms (ii) and (iii) cited above in Subsection (2.3.3) by [START_REF] Daganzo | Requiem for second-order fluid approximations of traffic flow[END_REF]. The basic idea of KTAP is to consider each drivervehicle as an active particle of a large complex system, to model the heterogeneous behavior of the micro-systems that compose the overall system. As previously mentioned, [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] proceeded by the KTAP's method. The authors consider a modeling approach which takes into account not only the lack of continuity of the distribution function with respect to the velocity variable v but also with respect to the activity variable u. In order to describe this method, the authors discretized the variables v and u by introducing the following sets Iv and I u I v = {v 1 = 0, ..., v i , ..., v n = 1}, I u = {u 1 = 0, ..., u j , ..., u m = 1}.

where n and m are, respectively, the number of discretization points of the velocity v and the activity u.

The authors used a fixed uniform grids of velocity and activity defined as follows

v i = i -1 n -1 , u j = 1 - j -1 m , ∀i = 1, ..., n, ∀j = 1, ..., m. (4.5.1) 
Moreover, the distribution function is defined as a sum of Dirac distributions in the variable v and u, with coefficients depending on t and x

f (t, x, v, u) = n ∑ i=1 m ∑ j=1 f ij (t, x)δ(v -v i )δ(u -u j ), (4.5.2) 
where f ij (t, x) = f (t, x, v i , u j ).

Thus, according to this mathematical representation, the following expressions for the classical macroscopic average quantities are easily derived

• the dimensionless local density 

ρ(t, x) = n ∑ i=1 m ∑ j=1 f ij (t, x),
ξ(t, x) = 1 ρ(t, x) n ∑ i=1 m ∑ j=1 v i f ij (t, x),
and q(t, x) = ξ(t, x)ρ(t, x).

• while the local speed variance is given by

σ(t, x) = 1 ρ(t, x) n ∑ i=1 m ∑ j=1 [v i -ξ(t, x)] 2 f ij (t, x).
• Similarly, one can compute the local mean value and variance of the activity variable

a(t, x) = 1 ρ(t, x) n ∑ i=1 m ∑ j=1 u j f ij (t, x), and 
Var(a) = 1 ρ(t, x) n ∑ i=1 m ∑ j=1 [u j -a(t, x)] 2 f ij (t, x).
The authors introduce the discrete probability density

A ij hk,pq (v h → v i , u k → u j |v h , v p , u k , u q , ρ(t, y)), (4.5.3) 
which denotes the probability density that the candidate particle (v h , u k ) falls into the state (v i , u j ) of the test particle after an interaction with a field particle (v p , u q ), with the property that The evolution of the system is ruled by nonlinearly additive interactions described by stochastic games. The corresponding mathematical structure by [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] is written as follows

∂ f ij ∂t + v i ∂ f ij ∂x = n ∑ h,p=1 m ∑ k,q=1 x+L x η[ρ(t, y), x] ×A ij hk,pq (v h → v i , u k → u j |v h , v p , u k , u q , ρ(t, y)) f hp (t, x, ) f kq (t, y)dy -f ij (t, x) n ∑ p=1 m ∑ q=1 x+L x η[ρ(t, y), x] f pq (t, y)dy, (4.5.5) 
where L > 0 is the visibility zone length, and

• η[ρ(t, y), x] is the encounter rate. The authors consider the following expression

η[ρ(t, y), x] = Ψ[ρ(t, y)]w(x, y),
where w(x, y) is the weighted function; it is required to satisfy w(x, y) ≥ 0,

D w w(x, y)dy = 1, ∀x ∈ [0, 1], ∀y ∈ [x, x + L],
and

Ψ[ρ(t, y)] = 1 + 1 α ρ 2 ,
• α is a phenomenological parameter modeling the traffic condition. Technically, α → 0 models bad condition and α → 1 models good condition.

• u ∈ [0, 1] is the activity variable, which identifies the quality of the driver-vehicle microsystem. u = 0 corresponds to the worst quality and u = 1 corresponds to the best quality.

The authors presented some numerical simulations in the case of the spatially homogeneous and inhomogeneous problems that show the ability of the above model (4.4.1) to reproduce some empirical data. Namely, in the first case, the numerical simulations are devoted to reproduce the so called fundamental diagrams [START_REF] Kerner | The physics of traffic[END_REF]. Such diagrams relate the density of cars to either their average speed or their flux, this way providing synthetic insights into the gross phenomenology of vehicular traffic flow expected in stationary conditions. In the second case, the authors consider a special case of merging of two clusters.

To make it short, the idea of the aforesaid models by [START_REF] Delitala | Mathematical modelling of vehicular traffic: A discrete kinetic theory approach[END_REF] and [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] is to relax the hypothesis that the speed distribution is continuous by introducing in the domain D v a lattice of discrete speeds. Consequently, the granular character of the car flow is at least partially taken into account from the point of view of the speed distribution. We will propose a deep revisiting of the paper by [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] in the Chapter 5.

A fully-discrete-state kinetic model by Fermo and Tosin

This section is devoted to introduce a mathematical framework starting from the discrete velocity kinetic method. In order to accomplish the program of a fully-discrete-state kinetic theory of vehicular traffic, we refer to the paper by [START_REF] Fermo | A fully-discrete-state kinetic theory approach to modeling vehicular traffic[END_REF], in which the position x and velocity v are discrete. The authors follow line of aforesaid framework [START_REF] Delitala | Mathematical modelling of vehicular traffic: A discrete kinetic theory approach[END_REF] for the discretization of the velocity v. The basic idea is to introduce a partition of the spatial domain. It is worth anticipating that partitioning the spatial domain D x in a number of cells of finite size is a more realistic way to detect the positions of the vehicles along the road. Indeed, it is consistent with the intrinsic granularity of the flow, which does not allow for a statistical description of their spatial distribution more accurate than a certain minimum level of details. In addition, it enables one to account easily for some effects due to the finite size of the vehicles even in a context where the actual representation is not focused on each of them. Technically, a useful partition of the spatial domain D x is in pairwise disjoint cells I i , whose union is D x = [0, L], where L > 0 is the length of the road. Namely,

D x = m i=1 I i , I i 1 ∩ I i 2 = ∅, ∀i 1 = i 2 , (4.6.1)
where m ∈ N is the number of cells I i needed for covering D x , which depends on the size i of each I i . Moreover, cells assumed have a constant size , chosen in a such a way that L ∈ N, therefore m = L .

The authors consider f ij = f ij (t) the distribution function of vehicles that, at time t, are located in the i-th cell with a speed in the j-th class. The total number N ij of vehicles in I i with speed v j is N ij = f ij l. Then, the total number N i of vehicles in I i is

N i = n ∑ j=1 N ij = n ∑ j=1 f ij .
One can get the total number N of vehicles along the road by further summing over i,

N = m ∑ i=1 N i = m ∑ i=1 n ∑ j=1 f ij .
The system is described by a distribution function

f (t, x, v) = m ∑ i=1 n ∑ j=1 f ij (t)χ I i (x)δ(v -v j ), (4.6.2) 
χ I i being the characteristic function of the cell

I i χ I i (x) = 1 if x ∈ I i , χ I i (x) = 0 if x / ∈ I i .
In practice, f is an atomic distribution with respect to the variable v, like in the discrete velocity framework, and is piecewise constant with respect to the variable x. Particularly, this latter characteristic implies that vehicles are thought of as uniformly distributed within each cell. Usual macroscopic variables of traffic, such as the vehicle density ρ, flux q, and average speed ξ are obtained from Eq. (4.6.2) as distributional moments of f with respect to v: the density, the flux and the mean velocity quantities are defined by

ρ(t, x) = n ∑ i=1 m ∑ j=1 f ij (t) χ I i (x), q(t, x) = n ∑ i=1 m ∑ j=1 f ij (t) χ I i (x), ξ(t, x) = q(t, x) ρ(t, x) .
According to [START_REF] Fermo | A fully-discrete-state kinetic theory approach to modeling vehicular traffic[END_REF], the corresponding model is written as follows Moreover,

d f ij dt + v i φ i,i+1 f ij (t) -φ i-1,i f i-1,j (t) = n ∑ h,k=1 η hk (i)A j hk (i) f ih (t) f ik (t) -f ij (t) n ∑ k=1 η jk (i) f ik (t)
• φ i,i+1 is the flux limiters, which limits the number of vehicles that can actually travel across the cells on the basis of the occupancy of the destination cells.

φ i,i+1 = 1-ρ i+1 ρ i , if ρ i + ρ i+1 > 1, 1, if ρ i + ρ i+1 ≤ 1,
where ρ i is the density of the i-th cell.

• η hk (i), η jk (i) are the encounter rate, they present frequency interaction between (I i , v h ) and (I i , v k ) η hk (i) = η 0 ρ i , with η 0 = constant.

• A j hk (i) is the table of games, it presents the probability that (I i , v h ) interacting with (I i , v k ) becomes (I i , v j ). the following conditions must hold

A j hk (i) ≥ 0, n ∑ j=1 A j hk (i) = 1,
∀h, j, k ∈ {1, ..., n} ∀i ∈ {1, ..., m}.

It is worth anticipating that the resulting model Eq. (4.6.3) is not a cellular automaton in spite of the discreteness of the space state. In fact, vehicles are not assimilated to fictive particles jumping from their current site to a neigh-boring one with prescribed probability. They actually flow through the cells with their true speed according to a transport term duly implemented in the time evolution equations of their distribution functions. So that finally the evolution of the system is not seen as a stepwise algorithmic update of the lattice of microscopic states.

The validity of the above model (4.6.3), and indirectly also that of the methodological approach which generated it, can be assessed through exploratory numerical simulations addressing typical phenomena of vehicular traffic. For this reason, the authors consider the case of space dynamics at traffic lights and the case of space dynamics for road works.

Chapter 5

Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions

This chapter is devoted to summarize our paper [START_REF] Calvo | Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions[END_REF]. In this paper, we deals with the modeling of vehicular traffic according to a kinetic theory approach, where the microscopic state of vehicles is described by position, velocity and activity, namely a variable suitable to model the quality of the driver-vehicle micro-system. Interactions at the microscopic scale are modeled by methods of game theory, thus leading to the derivation of mathematical models within the framework of the kinetic theory. Short and long range interactions are modeled to depict change of velocity related to passing and clustering phenomena.

Introduction

This chapter specifically refers to [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF], where a kinetic type model has been proposed with the following main features:

1. The approach is developed at the mesoscopic scale to account for the heterogeneous behavior of the driver-vehicle micro-system;

2. The velocity variable is assumed to be discrete to overcome the difficulty that the number of micro-systems might not large enough to assure continuity of the probability distributions over the microstates;

3. The quality of the road-environment conditions is modeled by a parameter that has an influence on the dynamics of interactions. Such parameter takes values in the interval [0, 1], where the extremes of the domain correspond to worst and best conditions respectively.

The paper by [START_REF] Calvo | Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions[END_REF] is based on the kinetic theory for active particles [START_REF] Bellomo | On the difficult interplay between life, "complexity", and mathematical sciences[END_REF] and starts from the achievements obtained in [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF], which are definitely interesting, such as the ability to reproduce the fundamental diagrams, namely mean velocity and flow versus local density, as well as clustering phenomena of vehicles with closed speeds. This work aims at providing further developments of interest for the applications. In more detail, the following modeling topics are treated: Interactions, both local and long distance, between vehicles accounting on perceived (rather than real ones) quantities of the flow of vehicles, role of variable road conditions, and dynamics under external actions such as presence of tollgates. In addition, we consider a continuous velocity distribution rather than discrete velocities. Discrete velocities, our approach, can be introduced only for computational purposes.

These new modeling features introduced in this work make it as a deep revisiting of that proposed in [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF].

More precisely, the contents are as follows: Section 5.2 derives a new mathematical structure suitable to include the aforementioned features in addition to those already included in [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF]; Section 5.3 shows how specific models can be derived by inserting in the said structure models of interactions obtained by a detailed phenomenological interpretation of physical reality. Section 5.4 presents a number of sample simulations which aim at exploring the ability of the model to predict emerging behaviors that appear in the complexity of vehicular traffic. Chapter 5. Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions

Mathematical structures

The derivation of models according to the kinetic theory of active particles is in two steps: The first step consists in deriving a mathematical structure suitable to capture the most important features of the system under consideration, while the second step consists in deriving specific models of vehicular traffic by inserting into the said structure models of interactions at the microscopic scale. This section develops an approach to the first step by deriving a new general structure appropriate to include the specific features defined in Section 5.1. The overall content is presented through a sequence of subsections from the representation of the system to the derivation of the structure which is innovative with respect to the existing literature [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] as it includes modeling local and long distance interactions, as well as the interaction with external actions. This structure is deemed to offer the conceptual basis for the derivation of specific models.

Representation

Let us consider a one dimensional flow of vehicles along a road of length . Dimensionless position and velocity variables are denoted by x and v and are referred to and v , respectively, where v is a limit velocity such that no vehicle, simply for mechanical reasons, can pass it even in favourable environmental conditions. Moreover, it is useful to introduce a dimensionless time variable t obtained by dividing the real time by the time t c needed by the fastest vehicle to move along the whole length of the road t c = /v . Dimensionless variables are used also for macroscopic gross quantities. For instance, the local number density ρ = ρ(t, x) is obtained by dividing the real density by ρ M , which is the maximum density of vehicles, corresponding to bumper-tobumper traffic jam.

The analysis developed in what follows is based on the assumption that the state of the drivervehicle subsystem is defined, at the microscopic scale, by the variables (x, v, u) ∈ [0, 1] 3 , where u, according to the kinetic theory of active particles [START_REF] Bellomo | On the difficult interplay between life, "complexity", and mathematical sciences[END_REF], is a variable which denotes the quality of the micro-system. More precisely u = 0 corresponds to the worst quality, namely motion is prevented, while u = 1 to the best quality corresponding to an experienced driver operating in a high quality vehicle.

According to [START_REF] Bellomo | On the difficult interplay between life, "complexity", and mathematical sciences[END_REF], the driver-vehicle subsystem is an active particle, while the internal variable is heterogeneously distributed over the active particles. In addition, the quality of the road, including environmental conditions, are accounted for by a parameter α ∈ [0, 1] such that α = 0 corresponds to the worst quality that prevents motion, while α = 1 corresponds to the best conditions. In general α can depend on space α = α(x) to account for the presence of curves, local restrictions, speed limits, etcetera.

The overall state of the system is described by the distribution function over the state at the microscopic scale:

f = f (t, x, v, u) : R + × [0, 1] × [0, 1] × [0, 1] → R + , (5.2.1) 
which is made to refer to ρ M so that, if f is locally integrable, f (t, x, v, u) dx dv du denotes the dimensionless density of vehicles which, at time t, are in the phase elementary domain

[x, x + dx] × [v, v + dv] × [u, u + du].
In particular, the local density, also referred to ρ M , is given by

ρ(t, x) = 1 0 1 0 f (t, x, v, u) dv du, (5.2.2) 
while the total number of vehicles at time t is computed by integration over space. Precisely,

N(t) = 1 0 1 0 1 0 f (t, x, v, u) dx dv du. ( 5 

.2.3)

In the same way, the local dimensionless mean velocity and the flow can be computed, respectively, as follows:

ξ(t, x) = 1 ρ(t, x) 1 0 1 0 v f (t, x, v, u) dv du (5.2.4)
models. This structure is obtained by a balance of particles in the elementary volume of the space of the microscopic state which includes position, velocity (namely the variables of the phase space) and the activity. This balance of particles includes the free transport term, the transport due to long range interactions, the dynamics of short range interaction, and the trend to the speed required by the external actions. The dynamics of short range interactions include a "gain" term of vehicles that enter in the aforementioned elementary volume and a "loss" term of vehicles that leave it. The resulting structure can be written, at a formal level, as follows:

∂ t f + v ∂ x f + F[ f ] = J[ f ] + T [ f ], (5.2.15) 
where f = f (t, x, v, u) and v∂ x f is the free flow transport term, while F, J, and T correspond, respectively, to mean field interactions, short range interactions, and interaction with external actions. Classical calculation of the kinetic theory leads to the following result

∂ t f (t, x, v, u) + v∂ x f (t, x, v, u) + ∂ v (F [ f ](t, x, v, u) f (t, x, v, u)) = [0,1] 3 η[ f ]A[ f ; α](v * → v|v * , v * , u) f (t, x, v * , u) f (t, x, v * , u * )dv * dv * du * -f (t, x, v, u) [0,1] 2 η[ f ] f (t, x, v * , u * )dv * du * (5.2.16) +µ[ f ] f e (x, v e (x)) -f (t, x, v, u) .

Critical analysis

The mathematical structure proposed in this work include the features of the complex system under consideration which, according to the authors' opinion, appear to be the most important aspects of the dynamics to be retained by the modeling approach. Namely heterogeneity of the driver-vehicle subsystem, aggregation dynamics for vehicles with closed each other velocity, passing probability, variable properties of the road-environment where the dynamics occur and role of the external actions.

The structure can operate as a general framework for the derivation of models which can be obtained by inserting into the structure models of interaction at the microscopic scale. These models can be obtained by a phenomenological interpretation of empirical data. The most important reference to this aim is the book by Kerner [START_REF] Kerner | The physics of traffic[END_REF], see also [START_REF] Kerner | A theory of traffic congestion at heavy bottleneck[END_REF], which provides an interesting variety of empirical data valid in uniform flow conditions as well as in transient conditions. The main difficulty is that empirical data are available in steady flow conditions, while individual behaviors in unsteady conditions are quite different from those in steady conditions. However, a sharp interpretation of data can hopefully lead to models that can be validated by the information delivered by empirical data.

Validation is generally understood as the ability of models to reproduce quantitatively steady flow conditions, in particular the fundamental diagrams, and emerging behaviors at a qualitative level.

From mathematical structures to models

This section develops a possible approach to the derivation of specific models of vehicular traffic by inserting into the structure (5.2.16) models of interactions at microscopic scale. This objective is pursued by looking at the modeling of the interaction terms that characterize such structure, namely ϕ, η, A, µ and f e , such that a good agreement with empirical data, concerning both the fundamental diagram and the emerging behaviors in unsteady flow conditions, is provided.

Modeling accelerations

The acceleration term ϕ in Eq. (5.2.11) accounts for mean field interactions, where the test vehicle is subject to an action of the vehicles in its sensitivity zone Ω which can induce a consensus [START_REF] Visconti | Multivalued fundamental diagrams of traffic flow in the kinetic Fokker-Planck limit[END_REF] Chapter 5. Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions toward a common velocity v * . A phenomenological interpretation of reality is as follows: The test vehicle is sensitive to these actions if the distance between its speed and the common velocity is below a certain critical threshold d c ; it decays with the distance between the test and field vehicle; takes the sign of v *v and depends on u and on the quality of the road α.

A simple formalization of the formalization given above yields:

     |v * -v| ≤ d c : ϕ(x, x * , v, v * |u) = α v u(x * -x)(v * -v), |v * -v| > d c : ϕ(x, x * , v, v * |u) = 0. (5.3.1) Since x * ∈ Ω , one has x ≤ x * ≤ x + v , then 0 ≤ x * -x v ≤ 1. Now, taking z * = x * -x v , yields F [ f ](t, x, v|u) = v 1 0 1 0 1 0 ϕ(x, v z * + x, v, v * ) f (t, v z * + x, v * , u * )dz * dv * du * . F [ f ](t, x, v|u) = α u v 1 0 1 0 1 0 z * (v * -v) f (t, v z * + x, v * , u * )dz * dv * du * = α u v (I 1 (t, x) -v I 2 (t, x)) , (5.3.2) 
where

I 1 (t, x) = 1 0 1 0 1 0 z * v * f (t, v z * + x, v * , u * )dz * dv * du * ,
and

I 2 (t, x) = 1 0 1 0 1 0 z * f (t, v z * + x, v * , u * )dz * dv * du * .
Computing the derivative of F with respect to v, yields

∂ v (F [ f ])(t, x|u) = -α u v I 2 (t, x).
(5.3.3)

Modeling the perceived density

The concept of perceived density was introduced in [START_REF] Angelis | Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems[END_REF], where it was suggested that this quantity is greater (smaller) than the real one whenever positive (negative) density gradients appear. The following expression can be adopted according to [START_REF] Bellomo | On the multiscale modeling of vehicular traffic: from kinetic to hydrodynamics[END_REF]:

ρ p [ f ] = ρ + ∂ x ρ 1 + (∂ x ρ) 2 (1 -ρ) H(∂ x ρ) + ρ H(-∂ x ρ) , (5.3.4) 
where H(•) is the heaviside function H(• ≥ 0) = 1, while H(• < 0) = 0. Thus, the perceived density, positive gradients increase the value of ρ p from ρ to the maximum admissible value ρ = 1, while negative gradients decrease it from ρ to the lowest admissible value ρ = 0 such that

∂ x ρ → +∞ ⇒ ρ p → 1, ∂ x ρ = 0 ⇒ ρ p = ρ, ∂ x ρ → -∞ ⇒ ρ p → 0.

Modeling the encounter rate

The encounter rate η[ f ] refers the rate of interactions per unit time between candidate and test particles with field particles. One can assume that this term grows with the local perceived density starting from a minimal value corresponding to driving in vacuum conditions η 0 . The following expression can be proposed:

η[ f ] = η 0 (1 + γ η ρ p [ f ]), (5.3.5) 
where γ η is the growth coefficient and ρ p is the perceived density.

Modeling short range interactions

Let us now consider the term A which models short range interactions. This term defines the probability density that a candidate particle with the state {x, v * , u} falls into the state of the test particle {x, v, u} after interaction with the field particles with the state {x, v * , u * }. These notations indicate that the activity variable is not modified by the interaction which, however, modifies the speed.

The modeling approach proposed in our work is based on the following assumptions:

1. Short range interactions do not modify the activity variable, but only the speed.

2. A depends on the velocities of the interacting pairs, on the perceived density, on the activity, and on the quality of the road, A

[ f ](v * → v|v * , v * , u, α, ρ p )
, where the dynamics is enhanced by α u, while it is limited by the perceived density. In addition, it is totally prevented if ρ p = 1.

3. We assume that the candidate particle after interacting with the field particle reach new velocity v ∈ [v m , v M ] where v m and v M , respectively, are the minimum and the maximum velocities given by

v m = max{0, min{v * , v * } -κ(1 -αu)ρ p (|v * -v * | + exp(-|v * -v * |))}, v M = min{1, max{v * , v * } + καu(1 -ρ p )(|v * -v * | + exp(-|v * -v * |))}
where κ = 1 200 is a constant allowed to make v m close to the min{v * , v * } and v M close to the max{v * , v * }. Note that these choices of v m and v M guaranteed the condition v

M -v m > 0 even if v * = v * .
It is natural that we have the following two cases to distinguish:

Interaction with faster particles

If v * ≤ v * , the candidate particle has a trend, in probability, to increase its speed. This probability decreases with vv m with v ∈ [v m , v M ]. We propose the following probability density, which generalize the table of games defined in [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] where the velocity and the activity variables are discrete,

A[ f ](v * → v) = (1 -αu(1 -ρ p )) e -|v-v * | 2 σ 1 v M v m e -|v-v * | 2 σ 1 dv + αu(1 -ρ p ) (v M -v) 2 v M v m (v M -v) 2 dv (5.3.6)
where σ 1 is a small constant given by σ 1 = καu(1ρ p ). Note that the probability density (5.3.6) has the same nonlinear behavior as of the table of games in [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF]. More precisely, in good road conditions α and good activity u, the candidate particle has attendance to accelerate and reach new velocities greater than its pre-interaction velocity v * . On the other hand, decreasing the value of α or u decreases the probability to accelerate (see Figure 5.1).

Interaction with slower particles

If v * > v * , the candidate particle has a trend, in probability, to decrease its speed. In order to get the similar behavior as in the discrete table of games by [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF], we propose that our probability distribution is a dichotomy function which can be written as follows:

A[ f ](v * → v) = αu(1 -ρ p ) e -|v-v * | 2 σ 2 v M v m e -|v-v * | 2 σ 2 dv + (1 -αu(1 -ρ p )) v M -v v M v m (v M -v)dv , ( 5.3.7) 
where σ 2 is a small constant given by σ 2 = κ(1αu(1ρ p )). Note that if α or u tend to zeros, the probability to decelerate is greater than the probability to maintain the velocity. On the contrary, Chapter 5 Bearing in mind these two cases, the probability density is defined as follows:

A[ f ](v * → v ∈ [v m , v M ]) =                        (1 -P) e -|v-v * | 2 σ 1 v M v m e -|v-v * | 2 σ 1 dv + P (v M -v) 2 v M v m (v M -v) 2 dv , v * ≤ v * P e -|v-v * | 2 σ 2 v M v m e -|v-v * | 2 σ 2 dv + (1 -P) v M -v v M v m (v M -v)dv , v * > v *
(5.3.8)
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where P = αu(1ρ p ). Accordingly, the probability density (5.3.8) can be rewrites as follows

A[ f ](v * → v) = H(v * -v * ) (1 -P) e -|v-v * | 2 σ 1 v M v m e -|v-v * | 2 σ 1 dv + P (v M -v) 2 v M v m (v M -v) 2 dv + (1 -H(v * -v * )) P e -|v-v * | 2 σ 2 v M v m e -|v-v * | 2 σ 2 dv + (1 -P) v M -v v M v m (v M -v)dv χ [v m ,v M ] (v).
(5.3.9)

Modelling external action

Let us now consider the modeling of external action which indicate a prescribed speed as it occurs, as an example, in the presence of tollgates. The structure of this term is reported in Eq. (5.2.14), where f e is a given function (for instance a step-wise function) of the prescribed velocity v e = v e (x). Therefore, the simplicity of Eq. (5.2.14) simply means that only the rate µ needs to be modelled. Following the same rationale applied to η, the following can be used:

µ[ f ] = η 0 (1 + γ µ ρ p [ f ]
), (5.3.10) where γ µ is the growth coefficient and ρ p is the perceived density.

Parameters and critical analysis

This section has proposed a simple modeling of the interaction terms to be implemented into the structure delivered by Eq. (5.2.16). The model includes the following parameters which related to specific different phenomena in vehicular traffic flows:

• α which models the quality of the road-weather conditions;

• v which is length of the sensitivity zone Ω . It depends on quality of the road-weather conditions α ( v = αL);

• η 0 which is the minimal value corresponding to driving in vacuum conditions;

• γ η and γ µ which are, respectively, the growth coefficients of the encounter rate η and the intensity of the action µ.

Bering the proposed modeling of the interaction terms in mind, one gets the following derived model It is worth mentioning that in this work we proposed a generalized probability density (5.3.9) by taking inspiration on the table of games with the discrete variables of velocity and activity case proposed by [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF]. Moreover, we considered the nonlinear interactions by taking into account the perceived density ρ p and the mean field interactions, which are one of the paradigms of the complexity in vehicular traffic field. We would like to stress that only a few works can be found in the field proposing a modeling of the probability density based on the continuous velocity variable. Namely, the authors in [START_REF] Puppo | Kinetic models for traffic flow resulting in a reduced space of microscopic velocities[END_REF] proposed two models of A: the first is the quantified acceleration model, in which the post-interactions after an acceleration is obtained by a velocity jump. The second model is actually based on the paper by [START_REF] Klar | Enskog-like kinetic models for vehicular traffic[END_REF] which assumed that the interaction result between the candidate and field particles is uniformly distributed in a velocity interval.

∂ t f (t, x, v|u) + v∂ x f (t, x, v|u) + F [ f ](t, x, v|u)∂ v ( f (t, x, v|u)) = [0,1] 3 η[ f ]A[ f ](v * → v) f (t
The scheme under consideration has been numerically solved by using Runge-Kutta of order 4 method. We adopt the following set of variables: u = 1, n = 31, η 0 = 1, γ η = 1 α . Moreover, we perform a different situations of road conditions by choosing different values of α. Namely, we consider α 1 = 0.95, α 2 = 0.7 and α 3 = 0. Figure 5.3 shows the obtained numerical results for different values of road conditions (α = 0.95, 0.7, 0.2) for the density ρ against the flux q. We notice that for low density, the flux exhibits linear behaviour. While for high density, it decreases to zero and shows a critical change known as phase transition between the free and congested flow regime as it has been described experimentally by [START_REF] Kerner | A theory of traffic congestion at heavy bottleneck[END_REF]. Finally, it is clear that the free flow phase reduces as the environmental conditions worsen, see Figure 5.4.

In Figure 5.5, we present the obtained numerical results for different values of road conditions (α = 0.95, 0.7, 0.2) for the density ρ against the kinetic energy E. We observe that the kinetic energy increasing linearly in free flow situation. It decreases nonlinearly to zeros in the congested flow. Figure 5.6 shows the obtained numerical results for different values of road conditions (α = 0.95, 0.7, 0.2) for the density ρ against the mean velocity ξ. The average speed takes the maximum value for the low density. As the density increases, the average speed decreases in a nonlinear way to zeros which corresponds to the traffic jam.

We would like to mention the primordial role of road conditions α in the proposed probability density (5.3.9), which has been modelled to depict the quality of the environment. It has been considered one of the paradigms of the complexity in vehicular traffic field (see [START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF]). On the other hand, the obtained results are achieved without artificial insertion of the velocity diagram into the model itself ( [START_REF] Colombo | Hyperbolic phase transitions in traffic flow[END_REF]).

Spatially inhomogeneous problem

In order to show the ability of our model to depict some phenomena in vehicular traffic flow field. Here, we are interested to the numerical method of the spatially inhomogeneous problem, where the mean field interactions is neglected. Thus, the model (5.3.11) is reduced to the following advection equation implemented with initial condition and the periodic boundary condition:

                                 ∂ t f (t, x, v, u) + v∂ x f (t, x, v, u) = J[ f , f ] = G[ f , f ] + f L[ f ] + T [ f ] = [0,1] 2 η[ρ p (t, x)]A[ρ p (t, x)] f (t, x, v * ) f (t, x, v * )dv * dv * -f (t, x, v) 1 0
η[ρ p (t, x)] f (t, x, v * )dv * +µ[ρ p ]( f e (x, v(e))f (t, x, v, u)), f (t = 0, x, v, u) = f 0 (x, v, u), f (t, 0, v, u) = f (t, 1, v, u), (5.4.3) where η and A this time depend on the perceived density ρ p . µ is the intensity of the action given by Eq. (5.3.10) and f e is a given function.

We introduce the following gridpoints:

x i = i dx, v j = j + 0.5 N v
, u s = s + 0.5 N u , t n = n dt, dt = CFL dx, for i = 1, ..., N x , j = 0, ..., N v -1, s = 0, ..., N u - f (t = 0, x i , v j , u s ) = f n ijs , f (t, 0, v j , u s ) = f (t, 1, v j , u s ),

for i = 1, ..., N x , j = 1, ..., N v , s = 1, ..., N u and n = 1, ..., T. The discrete distribution function is given by f n ijs = f (t n , x i , v j , u s ). 

Application: emerging of two clusters

In this example, we aim to reproduce the numerical simulations of the emerging of two clusters of vehicles travelling with different speeds on a closed road and having different density. We assume that there is no external force and that the first cluster travels with the maximum velocity v M = 1, and has the following initial density ρ(0, x) = 100 sin 2 (10π(x -0.2)(x -0. We show in Figure 5.8 the numerical results in good road conditions (α = 0.95). We observe that fast group of vehicles reach the slow ones, as indicated in (Figure 5.7(b)), having a mixing period (Figure 5.7(c)). Finally, fast group overtake the slow ones (Figure 5 

Chapter 6

Conclusion and perspectives

Summary

This thesis has been devoted to the modeling and mathematical analysis of complex systems in biology and vehicular traffic on the basis of kinetic theory and macroscopic-fluid approaches. The aims were to propose and to study a new mathematical models which improve some interesting characteristics of already existing models. On the other hand, these proposed models are suitable for mathematical modeling investigations. In the first part, we successfully proposed two new macroscopic systems and two new kinetic-fluid models describing the interacting biological species living in complex medium. The second part of this thesis dealt with vehicular traffic flow on the basis of kinetic theory of active particles. Here also, we are successfully proposed and studied a new general mathematical structure according to a kinetic theory approach. It includes the features of the complex system under consideration which appear to be the most important aspects of the dynamics to be retained by the modeling approach. Namely heterogeneity of the driver-vehicle subsystem, aggregation dynamics for vehicles with closed each other velocity, passing probability, variable properties of the road-environment where the dynamics occur and role of the external actions. The most important achievements in this thesis can be summarized as follows:

• Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system. We have proposed a new nonlinear cross-diffusion system coupled to a stationary fluid. The micromacro decomposition has been applied to derive this system from kinetic-fluid model. Moreover, we have proved the existence of weak solutions of the derived system by using Schauder fixedpoint theory. Finally, it has shown that the presented numerical scheme enjoys the asymptotic preserving property. In other words, when Knudsen parameter ε is small, our scheme is asymptotically equivalent to a standard numerical scheme of the derived cross-diffusion-fluid system.

• Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system.

We have proposed a new generalized nonlocal cross-diffusion model for multi-interacting populations coupled to non-stationary fluid. The proposed model has been derived from an improved nonlocal kinetic-fluid model by using the micro-macro decomposition technique. On the basis of nonlinear Galerkin method, we have proved the existence of weak solutions for the proposed system. Moreover, we have developed an asymptotic preserving numerical schemes (AP). Simultaneously, we have reproduced some interesting phenomena such as the pattern-formation induced by cross-diffusion terms and convection of species caused by the fluid motion. Motivated by the obtained numerical simulation in 1D, we shown the effect of nonlocal diffusion together with cross-diffusion, as well as fluid flow in an explicit form of the fluid velocity on the interactions of populations. Finally, we have demonstrated the effect of external forces (obstacle interior de domain and the force of gravity) on the dynamic of fluid flow and simultaneously on the behavior of interacting populations.

• Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions. We have proposed a mew mathematical structure on the basis of the kinetic theory for active particles. The purpose was to provide further developments of interest for the applications and to treat the following modeling topics: Interactions, both local and long distance, 102 Chapter 6. Conclusion and perspectives between vehicles accounting on perceived (rather than real ones) quantities of the flow of vehicles, role of variable road conditions, and dynamics under external actions such as presence of tollgates.

Looking ahead for perspectives

In our opinion, this thesis opens up several research perspectives.

• Development of asymptotic preserving numerical schemes in 2D. A natural extension of our presented works in chapters 2-3 would be the development of an asymptotic preserving numerical schemes in 2D. We think that our proposed numerical schemes en the basis of the finite volume method can be extended to this aim, one only has to well choose the meshes. However, one has to overtake the drawback of the computational cost.

• Anisotropic model with degenerate diffusion. In fact, we have in mind many models that can be studied by an improved developed techniques. The future works include the derivation and mathematical analysis of the following anisotropic model with degenerate diffusion

       ∂ t u 1 -div a(x)∇u 1 + b(x) ∇u 2 = H 1 (u 1 , u 2 ), ∂ t u 2 -div c(x)∇u 1 + d(x) ∇u 2 = H 2 (u 1 , u 2 ).
• Other numerical applications for vehicular traffic flow. A natural extension of our work in chapter 5 would be the development of other numerical applications. As it mentioned, our proposed model (5.2.16) brings together all the following modeling topics: Interactions, both local and long distance, between vehicles accounting on perceived (rather than real ones) quantities of the flow of vehicles, role of variable road conditions, and dynamics under external actions such as presence of tollgates. We have successfully reproduced the fundamental diagrams in the homogeneous case and the emerging of two clusters. However, we think that it is so interesting to seek for other applications such as the bottleneck, tallgates and stop and go waves phenomena. We stress that one has to reduce the complexity of the numerical cost.

• On the modeling of multilane traffic flow by kinetic theory for active particles [START_REF] Karami | On the modeling of multilane traffic flow by kinetic theory for active particles[END_REF]. Another possible extension of the kinetic model proposed in chapter 5 is the derivation of new models being able to describe the multilane traffic flow. This was the aim of an article in preparation where we propose the following model • η [ρ (t, x * ), x] is the encounter rate, it depends on the probability distributions by means of the density ρ in the -lane.

∂ t f ij (t, x) + v i ∂ x f ij (t, x) = J ij [ f ](t, x) = L ∑ r,
• A i,j, hk,pq,rs [v h → v i , u k → u j , y r → y l |v h , v p , u k , u q , y r , y s , ρ (t, x * )] defines the table of games, which denotes the probability density that the candidate particle (v h , u k , y r ) falls into the state (v i , u j , y l ) of the test particle after an interaction with a field particle (v p , u q , y s ).

1. 1

 1 Food chain of land and sea species . . . . . . . . . . . . . . . . . . . . . . . 1.2 Illustration of asymptotic preserving schemes. . . . . . . . . . . . . . . . . 1.3 The three observation scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Vehicular traffic congestion in Casablanca city . . . . . . . . . . . . . . . . 2.1 Convergence order of the method for ε ∈ {1, 10 -2 , 10 -3 , 10 -6 } at time t = 0.01 (M = 1) for the density c in the left and the density s in the right obtained from micro-macro scheme. . . . . . . . . . . . . . . . . . . . . . . 2.2 The Subfigures (a), (b), (c), (d) present time dynamics of predators densi-

x 3 . 4

 34 From left to right column, the obtained numerical solutions of u 1 , u 2 , u 3 from the nonlocal (AP) scheme with ε = 10 -k , k = 0, 1, 2, 3, 6, 9, against of the nonlocal cross-diffusion model with v = 0 at successive time t = 0.001, 0.005, 0.01, 0.06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Test 1: snapshot of the three densities u 1 , u 2 and u 3 at successive time t = 0, 0.2, 0.4, 0.6 with v = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Cross-diffusion effect: patterns of the three interacting populations with different cross-diffusion parameters at final time t = 0.1. . . . . . . . . . . 3.7 Test 2: snapshot of the three densities u 1 , u 2 and u 3 at successive time t = 0, 0.2, 0.4, 0.6 with v(x, y) = (1x)(1 + x)(1y)(1 + y). . . . . . . . . . . . 3.8 Schematic of the spatial domain Ω with boundary conditions. . . . . . . . 3.9 Evolution of the three interacting populations and snapshot of the fluid velocity and the pressure in the case: ∇φ = (0, 0). . . . . . . . . . . . . . . 3.10 Evolution of the three interacting populations and snapshot of the fluid velocity and the pressure in the case: ∇φ = (0, 1). . . . . . . . . . . . . . . 5.1 The probability density (discrete velocity) proposed by [21] vs our probability density (continuous velocity) in the case: 0.3 = v * < v * = 0.7, u = 1 and ρ p = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 The probability density (discrete velocity) proposed by [21] vs our probability density (continuous velocity) in the case: 0.7 = v * > v * = 0.3, u = 1 and ρ p = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Fundamental diagram: flux q vs density ρ. . . . . . . . . . . . . . . . . . . 5.4 Free flow phase and fundamental diagram: flux q vs density ρ. . . . . . . . 5.5 Fundamental diagram: kinetic energy E vs density ρ. . . . . . . . . . . . . 5.6 Fundamental diagram: mean velocity ξ vs density ρ. . . . . . . . . . . . . 5.7 Evolution of two clusters in the case of bad road condition (α = 0.3). . . . 5.8 Evolution of two clusters in the case of good road condition (α = 0.95). .

  xi

FIGURE 1 . 1 :

 11 FIGURE 1.1: Food chain of land (a) and sea (b) species. 2
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 12 FIGURE 1.2: Illustration of asymptotic preserving schemes.
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 13 FIGURE 1.3: The three observation scales.
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 14 FIGURE 1.4: Vehicular traffic congestion in Casablanca city, Morocco.3

  5 and d 2 = 8.2. The diffusion coefficients are constants (D c = 1 and D s = 1). Moreover, we consider a 11 = a 22 = 0.5 and a 12 = a 21 = 1 which satisfy the conditions (2.3.5). The initial densities correspond to the c-predator species and the s-prey species are given by c 0 (x) = 0.65 and s 0 (x) = exp(-30x 2 ).

FIGURE 2 . 3 :

 23 FIGURE 2.3: The Subfigures (a), (b), (c), (d) present time dynamics of predators densities c(t; x), while Subfigures (e), (f), (g), (h) present time dynamics of preys densities s(t; x) at t = 0.02, 0.04, 0.07, 0.1 obtained from the AP scheme with ε = 10 -k , k = 0; 1; 2; 3; 6 and comparison with crossdiffusion-Brinkman system on the domain [-1; 1] and initial conditions are given by c 0 = 0.65 and s 0 = exp(30(x + 0.5) 2 ) in the case: u = 1.
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 2425 FIGURE 2.4: Evolution of the densities c(t; x) and s(t; x) using micro-macro scheme for ε = 10 -6 in the case u = 0.
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  kinetic-fluid model (3.2.1) and using the above assumptions and properties of the 3.2. From improved kinetic-fluid model to generalized nonlocal cross-diffusion-fluid systems 41

.2. 11 )

 11 The following proposition shows that micro-macro formulation (3.2.11) is equivalent to nonlocal kinetic-fluid equation (3.2.1).

.3. 5 )

 5 Assumptions (3.3.3), (3.3.4) allow for nonnegative solutions; assumption (3.3.4) also expresses the positivity of the cross-diffusion matrix; and (3.3.5

Theorem 3 . 3 . 2 1 . 3 . 3 . 1 (

 3321331 denotes the space of continuous functions with compact support and values in V. Assume conditions (3.3.3)-(3.3.6) hold. If assumption (3.3.8) is satisfied, then the problem (3.3.1) has a weak solution in the sense of Definition 3.3.Proof Proof of Theorem 3.3.

.3. 12 )

 12 where u m (0, .) := m ∑ k=1 b m k (0)ψ k,u (.) and v m (0, .) := m ∑ k=1 c m k (0)ψ k,v (.).

For 1 ≤

 1 k ≤ m the coefficients b m k and c m k are obtained from the following system

  3.15) has a continuous solution c m k (t), b m k (t) m k=1

Chapter 3 .Lemma 3 . 3 . 3

 3333 Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system Let u 0 ∈ L 2 (Ω) + and v 0 ∈ H, then the problem(3.3.16)-(3.3.17) has a weak solution

  Finally, we pass to the limit in(3.3.16) and (3.3.17), we obtain the weak formulation (3.3.9)-(3.3.10) in the sense of Definition 3.3.1. This completes the proof of Theorem 3.3.2.
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 33 FIGURE 3.3: Test with fluid effect: The first and second columns present, respectively, the dynamics of the densities u 1 (t; x) and u 2 (t; x) obtained from local micro-macro scheme with ε = 10 -k , k = 0, 1, 2, 3, 6, 9 against local cross-diffusion-fluid scheme with v = 2.5 at successive time t = 0.001, 0.002, 0.003, 0.005.

  4 and c 2 = 0.01. The cross-diffusion parameters are given by α 1 = 1, α 2 = α 3 = 1.5. Finally, the nonlocal diffusion terms are given by d u i (z) = d i z, for i = 1, 2, 3, where d 1 = 0.1, d 2 = d 3 = 0.01. The initial densities correspond to u 1 , u 2 and u 3 are given by
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 34 FIGURE 3.4: From left to right column, the obtained numerical solutions of u 1 , u 2 , u 3 from the nonlocal (AP) scheme with ε = 10 -k , k = 0, 1, 2, 3, 6, 9, against of the nonlocal cross-diffusion model with v = 0 at successive time t = 0.001, 0.005, 0.01, 0.06.

4 and c 2

 2 = 0.01.

Figure 3 .

 3 Figure 3.6 shows the obtained numerical simulations for T = 0.05 with different values of α i , i = 1, 2, 3. It is shown that the distribution of interacting populations and the spatial patterns are changing whenever we made different choices of cross-diffusion parameters. Test 2: the nonlocal cross-diffusion-fluid effect. The objective of this test is to demonstrate the fluid effect on the interacting populations. For this, we consider sample choice of the fluid velocityv(x, y) = (1x)(1 + x)(1y)(1 + y).The made choice of the velocity fluid has a purpose to satisfy the theoretical assumption on it. We adopt the following set of parameters α 1 = 10, α 2 = α 3 = 1.5 and the diffusitive functions d u i for i = 1, 2, 3 are chosen as in the first case in Test 1.
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 3101 FIGURE 3.6: Cross-diffusion effect: patterns of the three interacting populations with different cross-diffusion parameters at final time t = 0.1.
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  = 1, ∀h, p ∈ {1, ..., n} ∀k, q ∈ {1, ..., m}.(4.5.4)
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 52 FIGURE 5.2: The probability density (discrete velocity) proposed by[START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] vs our probability density (continuous velocity) in the case: 0.7 = v * > v * = 0.3, u = 1 and ρ p = 0.6.
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 54 FIGURE 5.4: Free flow phase and fundamental diagram: flux q vs density ρ.
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 56 FIGURE 5.6: Fundamental diagram: mean velocity ξ vs density ρ.

  3)), x ∈ [0.2, 0.3],the other one travels with the velocity v M -3 dv and has the following initial density ρ(0, x) = 50 sin 2 (10π(x -0.5)(x -0.6)), x ∈ [0.5, 0.6].
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 5 Figure 5.7 shows the result of simulation in bad road conditions (α = 0.2). We notice that the fast group of vehicles after have reached the slow ones (Figure 5.7(b)), have a mixing period (Figure 5.7(c)). Finally, two groups merge and transport as a one group (Figure 5.7(d)).We show in Figure5.8 the numerical results in good road conditions (α = 0.95). We observe that fast group of vehicles reach the slow ones, as indicated in (Figure5.7(b)), having a mixing period (Figure5.7(c)). Finally, fast group overtake the slow ones (Figure5.7(d)).

  

  

  

  

  

  

  

  

  .2.35) where D c (c) = r 2 d σ 1 + dc (c) and D s (s) = r 2 d σ 2 + ds (s). In order to derive cross-diffusion-Brinkman system with the explicit form of H c , H s , we define the interactions operators G 12 and G 22 by

  1,∞ (Ω)) .

	To prove Theorem 2.3.1, we first prove existence of solutions to the approximate problem
	(2.3.7) below by applying the Schauder fixed-point theorem (in an appropriate functional
	setting). Then, having proved existence for the aproximate system, the final goal is to
	send the regularization parameter ε to zero to fabricate weak solutions of the original
	systems (2.1.3). Convergence is achieved by means of a priori estimates and compactness
	arguments.
	Theorem 2.3.1 Assume conditions (2.3.1), (2.3.2), (2.3.5) and (2.3.6) hold. If c 0 ∈ L 2 + (Ω), s 0 ∈ L 2 + (Ω), then the problem (2.1.3) possesses a weak solution.

  11 a 21a 2 12 ) + (16a 11 a 22 + 2a 12 a 21 )κ + (8a 22 a 12a 2 21 )κ 2 .

	We conclude that if 8a 11 a 21 ≥ a 2 12 and 8a 22 a 12 ≥ a 2 21 , then M(c, s) is uniformly nonnegative. Hence the utility of assumption (2.3.5). (see

  The numerical scheme given by (2.4.1)-(2.4.2) is consistent with equations (2.2.25) when ε goes to 0. The asymptotic behavior of scheme (2.4.1)-(2.4.2) is obtained similarly as the continuous case. Since the operator -L i is self-adjoint and positive, the operator

	Proof 2.4.1

.4.2) Proposition 2.4.1

  .2.26) Then, we use the definitions of Γ i in (3.2.21) and of H i in (3.2.22) to obtain from (3.2.26)

  3.2.29) will be shown by proving convergence of the solution of approximate problem. Using the sharp Sobolev embedding and thanks to (3.3.5) we observe that for i, j ∈ {1, .., n}, A (Ω T ). Moreover, the estimate (3.3.23) give the L 2 (Ω T ) estimate of |A

	j,m i (u m 1 , . . . , u m n ) are bounded in
	L 1 j,m i (u m 1 , . . . , u m n )| ∇u m i . By the
	Cauchy-Schwarz inequality we deduce uniform L 1

  Chapter 3. Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system u i (t, x), Φ i (u i ), v(t, x) and p(t, x) at the time step t k are denoted, respectively, by g k i

Here, we present a time discretization of micro-macro formulation

(3.2.11)

. Let denote by ∆t a fixed time step and by t k := k∆t a discrete time where k ∈ N. The approximations of g i (t, x, ξ),
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  < i < m -1, the equation are well defined; 2. if i = 1, φ 0,1 , f 0,1 are provided as left boundary conditions; 3. if i = m, φ m,m+1 has to be the right conditions.

	, (4.6.3)
	where
	1. if 2

  . Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions The probability density (discrete velocity) proposed by[START_REF] Bellouquid | Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach[END_REF] vs our probability density (continuous velocity) in the case: 0.3 = v * < v * = 0.7, u = 1 and ρ p = 0.6.if α and u tend to maximum value, the candidate particle has tendency to maintain it velocity (see Figure5.2).
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  , x, v * , u) f (t, x, v * , u * )dv * dv * du * (5.3.11) f (t, x, v|u) [0,1] 2 η[ f ] f (t, x, v * , u * )dv * du * + α u v f (t, x, v|u) I 2 (t, x) +µ[ f ] f e (x, v e (x))f (t, x, v|u) .

  2. 
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FIGURE 5.3: Fundamental diagram: flux q vs density ρ.
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  1. Where CFL is Courant-Friedrichs-Lewy condition. The full discrete scheme of inhomogeneous model (5.4.3) is given by

	   	f n+1 ijs -f n ijs dt	+	Φ n i,j,s -Φ n i-1,j,s dx	= G n i,j,s -f n ijs L n i,j,s + T n i,j,s
	  				

  The discritized gain and lose terms are given byA n (v, v * , v * , u, u * ) dv dv * dv * du du * , and T n i,j,s = µ n i [ρ p ](( f e ) ijf n ijs ).The flux Φ is chosen in order to get the conservation of mass and it given as follow Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions where φ is the flux-limiter[START_REF] Leveque | Numerical methods for conservation laws[END_REF]. In our case, we consider Superbee flux-limiter defined by φ(θ) = max(max(0, min(1, 2θ)), min(θ, 2)).

	98 Chapter 5. Parameters	Values
			Activity u	1
			Road conditions α	0.3, 0.95
			Number of space points N x	101
			Number of velocity cells N v	31
			CFL condition	0.7
			Growth coefficients of the encounter rate γ η	1/α
	G n i,j,s =	N v ∑ h,p=1	N u ∑ k=1	η n i [ρ p ] A n i,j,h,p,s,k [ρ p ] f n ihs f n ipk dv 2 du, L n i,j,s =	N v ∑ p=1	k=1 N u ∑	η n i [ρ p ] f n ips dv du,
	where						
	A n i,j,h,p,s,k = N 3 v N 2 u	(	( Nv , h j+1 Nv , h+1 Nv , j Nv , p Nv ) p+1 Nv )	( s+1 Nu , k+1 Nu ) ( s Nu , k Nu )
				Φ n i,j,s = v j ( f n i-1,j,s -f n i-2,j,s ) + v j	dx 2	1 -	v j dt dx	(Ψ 1 -Ψ 2 ),
	where						
	Ψ 1 =	f n i,j,s -f n i-1,j,s dx	f n i-1,j,s -f n i-2,j,s f n ijs -f n i-1,j,s	φ, Ψ 2 =	f n i-1,j,s -f n i-2,j,s dx	f n i-2,j,s -f n i-3,j,s f n i-2,j,s i-1,j,s -f n	φ,

TABLE 5 .

 5 1: Values of the used parameters.

  .7(d)).FIGURE 5.7: Evolution of two clusters in the case of bad road condition (α = 0.3).
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t=2 FIGURE 5.8: Evolution of two clusters in the case of good road condition (α = 0.95).

  ), x] f s p,q (t, x * )dx * , for i = 1, . . . , n, j = 1, . . . , m, and = 1, . . . , L. In the proposed model above• x * ∈ J ξ = [x, x + ξ],with J ξ represents the visibility zone;

	s=1	n ∑ h,p=1	m ∑ k,q=1 p,q (t, x s=1 x+ξ x η r [ρ r (t, x * ), x]A i,j, hk,pq,rs f r h,k (t, x) f s n ∑ p=1 m ∑ q=1 x+ξ x η [ρ (t, x

* )dx * f ij (t, x) L ∑ *
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Source: (a) www.pltwa.com/uploads/2/7/8/2/27828107/food_webs_activity_plan.pdf (b) Encyclopidia Britanica, Inc.

Source: (a) www.actu-maroc.com/embouteillages-attendus-pour-les-departs-en-vacances (b) www.aujourdhui.ma/societe/circulation-et-stationnement-dans-les-grandes-villes

(a) (b)

(a) (b) (c) (d) FIGURE 3.5: Test 1: snapshot of the three densities u 1 , u 2 and u 3 at successive time t = 0, 0.2, 0.4, 0.6 with v = 0.

(a) (b) (c) (d) FIGURE 3.7: Test 2: snapshot of the three densities u 1 , u 2 and u 3 at successive time t = 0, 0.2, 0.4, 0.6 with v(x, y) = (1x)(1 + x)(1y)(1 + y).

Evolution of the density u 1 at successive time t = 5, 10, 15. Evolution of the density u 2 at successive time t = 5, 10, 15. Evolution of the density u 3 at successive time t = 5, 10, 15. Snapshot of the fluid velocity v at successive time t = 5, 10, 15. Snapshot of the pressure p at successive time t = 5, 10, 15.FIGURE 3.10: Evolution of the three interacting populations and snapshot of the fluid velocity and the pressure in the case: ∇φ = (0, 1).
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FIGURE 3.9: Evolution of the three interacting populations and snapshot of the fluid velocity and the pressure in the case: ∇φ = (0, 0).

Chapter 3. Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system

Effect of external forces on the fluid dynamic and on the distribution of populations

After showing the nonlocal cross-diffusion-fluid effects on the three interacting populations. Here, conversely we are interested to demonstrate the effect of gravity as an external forces on the fluid dynamic and on the behavior of the interacting populations. Moreover, we consider a spatial domain within obstacle. Thus, we are interested to solve numerically the following system implemented with initial and boundary conditions

v(x, y) = (4 y (1y), 0) T , on Γ 4 , (3.4.15) where µ 1 and µ 2 are the selection and reproduction rates, respectively and ρ = u 1 + u 2 + u 3 is the total population density, see [START_REF] Grošelj | How turbulence regulates biodiversity in systems with cyclic competition[END_REF] for more details about the modeling of used reaction terms. The spatial domain Ω corresponds to a rectangle (0, 12) × (0, 5) and contains an obstacle, see Figure 3.8. Here, all computations have been implemented using the software package FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF]. The code uses a finite element method based on the weak formulation of the reaction diffusion system (3.4.15) in an iterative manner as follows the Characteristic Galerkin method. We mention that we have used a classical Taylor-Hood element technic, i.e. the fluid velocity v is approximated by P 2 finite elements and the pressure p is approximated by P 1 finite elements.

2) Approximate the densities u 1 , u 2 and u 3 by P 2 finite elements and solve firstly equation (3.4.15) 3 , then (3.4.15) 4 and finally (3.4.15) 5 . We mention that have used UMFPACK package and θ-scheme with θ = 0.49.

In all simulations bellow, we consider the following initial conditions:

Part II

Mathematical modeling of vehicular traffic by kinetic theory approach of active particles and q(t, x) = ξ(t, x)ρ(t, x).

(5.2.5) Moreover, higher order momenta such as the average kinetic energy E and the variance of the velocity σ can be computed, respectively, as follows:

and

Similarly, one can compute the local mean value and variance of the activity variable:

and

(5.2.9)

The derivation of models might be based on the assumption that interactions do not modify the variable u, namely the probability distributions over the mechanical variables and over u are independent:

(5.2.10)

However, the dynamics of the mechanical variable depends on the activity variable.

Interaction domains and perceived quantities

The car-driver subsystem, namely the active particles, has a visibility zone

where v is the visibility length on front of the vehicle, that depends on the quality of the environment, namely on α = α(x). In more detail, we assume v = α L, where L << is the visibility length in the case of best quality of the road, namely α = 1.

In addition, it has a sensitivity zone, Ω = [x, x + s ], necessary to perceive the flow conditions in Ω . In general Ω ⊆ Ω v . However also the opposite case has to be taken into account whenever local conditions of the road prevent visibility. This matter will be discussed in the critical analysis of the last section, while calculations are here developed assuming that the visibility zone includes the sensitivity zone. In general, Ω can depend on f , which induces an additional nonlinearity.

The driver develops its driving strategy by taking into account perception of the state of the other vehicles both in Ω and in a much shorter domain, say Ω s within which active particles are supposed to perceive an approximate estimate of the local gradients ∂ x ρ, and hence of a perceived density ρ p [ f ] higher than the real one in the presence of positive gradients, and lower than the real one in the presence of negative gradients. We define long range interactions in the former case and short range interactions in the latter case.

In general, the approach of the kinetic theory for active particles is such that interactions are modeled by evolutionary stochastic games. Three types of particles are involved, namely candidate particles (vehicles) with the micro-state {x, v * , u * }, field particles (vehicles) with the state {x * , v * , u * }, and the test particle which is representative of the whole system. Candidate particles are localized in x and can acquire, in probability, the state of the test particle, while field particles are localized in Ω s for short range interactions and in Ω for long range interactions.

The rationale toward modeling proposed in the following is based on the assumption that the activity variable of candidate and test particles is not modified by interactions.

Mean field interactions

The test vehicle is subject to an action of the vehicles in its sensitivity zone which can induce a consensus toward a common velocity, as an example the mean speed within the visibility domain Chapter 5. Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions as well as a clustering effect. The test vehicle is sensitive to these actions if the distance between its speed and the common velocity is below a certain critical threshold.

In general, mean field interactions can be modeled by individual based acceleration term ϕ(x, x * , v, v * , u, u * ) that is applied to the test vehicle (x, v, u) by a field vehicle (x * , v * , u * ) in the sensitivity domain Ω of the test vehicle. Therefore, the overall acceleration of all vehicles is obtained by integration corresponding to the action of all vehicles in Ω . Hence:

where

Short range interactions

Short range interactions occur, as mentioned, in a small domain Ω s sufficient for a candidate particle to perceive the density gradients ρ p . Moreover, it is assumed that the probability distribution of field particles can be approximated by the probability distribution in x. Therefore, the state of candidate, test, and field particles is as follows:

(5.2.12)

The description of short range interactions requires the modeling of two additional quantities:

• The encounter rate η[ f ]: which models the number of interactions per unit time between candidate and test particles with field particles.

• The transition probability density A[ f ](v * → v|u) which defines the probability density that a candidate particle falls into the state of with the field particles.

The actual modeling of short range interactions is based on the assumption that these quantities depend not only on the microscopic state of the interacting particles, but also on the distribution function f . This dependence induces a nonlinearity in models of interactions at the microscopic scale, which is put in evidence by square brackets. This dependence involves, as we shall see, both f and gradients of f . In addition, these interaction terms are allowed to depend on the quality of the road modeled by a parameter α ∈ [0, 1], where α = 0 corresponds to the worse conditions that prevent motion and α = 1 to the best conditions.

In addition A is required to satisfy the probability density condition:

for all possible inputs v * , v * , u.

Interactions with the external actions

The test vehicle can be subject to external actions which control its velocity. As an example tollgates indicate the maximal speed when the vehicle approaches to the tollgate. Similarly the exit from the tollgate indicates how the speed can increase to the standard values.

The simplest way to model this term consists in using a BGK-type trend:

.2.14)

where µ[ρ] models the intensity of the action, which increases with ρ, while v e (x) is the speed imposed by the external action.

A more general alternative would be modeling this action as by the term Eq. (5.2.11). However, this task does not appear practical as empirical data on this matter are not available.

A mathematical structure toward modeling

This subsection shows how all models of actions that have been described above can be inserted into a proper mathematical structure deemed to offer the conceptual basis for the derivation of Chapter 5. Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field interactions

Simulations toward validation of models

This section is devoted to the computational analysis toward validation of spatially homogeneous and inhomogeneous problems. In the first subsection, after the description of numerical scheme of the spatially homogeneous problem, we will reproduce Kerner's fundamental diagrams for different values of the road conditions. The second subsection aims to reproduce some numerical simulations for the spatially inhomogeneous problem, namely we will show emerging of two clusters in the case of good and bad road conditions.

Spatially homogeneous problem

The spatially homogeneous problem provides some information on the trend of the system toward the equilibrium state (called fundamental diagrams), which can be duly compared with the measurements performed under uniform flow conditions (see e.g. [START_REF] Kerner | A theory of traffic congestion at heavy bottleneck[END_REF]). We account for the spatial homogeneity by assuming that the kinetic distribution function is independent of the variable representing the space x. Consequently ∂ x f = 0, this implies ρ p = ρ. Moreover, we neglect the mean field interactions and the external forces. Thus, the distribution function f is given by

Under the above assumptions, model 5.3.11 is reduced to the following ordinary differential equation implemented with initial condition:

(5.4.1)

Recalling the probability density propriety (5.2.13), the above model (5.4.1) satisfies the ``mass conservation´´hypothesis, i.e.

dρ dt = 0, as it is required in spatially homogeneous conditions. Consequently, model (5.4.1) can be written as follows

(5.4.2)

For the existence and uniqueness of the solution of the spatially homogeneous model (5.4.2), we refer the reader to the Appendix A.

As it is mentioned above, the numerical simulations of Eq. (5.4.2) have been carried out to obtain the fundamental diagrams relating the flux q(ρ), the kinetic energy E(ρ) and the average velocity ξ(ρ) to the vehicle density ρ at the equilibrium. We divide the velocity and activity variables into a certain number of cells and calculate the transition rates between the cells given by the above ordinary differential equation. We assume that the velocities and activities grid points are chosen uniformly:

The discrete scheme over the variables v and u of model (5.4.2) is given by

is the discrete passing probabilities calculate in each average of cells. Thus, it given by

Appendix A

Mathematical analysis of the spatially homogeneous problem

In this appendix, we prove the existence and uniqueness of solution in the spatially homogeneous case associated to model (5.2.16). Thus, the distribution function f is given by

Consequently, the Initial Value Problem (IVP) is given by

(A.0.1)

Remarks:

• The distribution function f is independent of the variable x. Consequently ∂ x f = 0, which gives ρ p = ρ. Moreover, by integrating over v the IVP (A.0.1) once get the integral of source term equals 0, then gets ρ(t) = ρ 0 .

• The encounter rate is defined by η[ρ 0 ] = η 0 (1 + γ η ρ 0 ). Then, there exists a constant C η such that 0 < η[ρ 0 ] ≤ C η .

• The probability density is defined by

where

We introduce the following space X T = C([0, T]; L 1 ([0, 1])) for some T > 0, equipped with the norm 

The proof of this theorem is based on the two following Lemmas:

After integrating Eq.(3.4.12) over the interval [0, t], t ∈ [0, T], it can be written in the form of integral equation f = N( f )

where

From the Lemma A.1.2, we have the following estimates

In order to apply the Banach fixed point method, the operator N should verify the following estimates

By comparing the estimates (9) -(11), the solution of the following equation

In the oder hand, one can choose to solve

The operator N is a contraction on a ball in X T of radius r, then there exists a unique local solution f of Eq. (3.4.12) on [0, T].

In order to finish to proof of the theorem it remains the positivity of the solution. After multiplying Eq.(3.4.12) by exp(R) and integrating over [0, t], we get N( f )(t, v) = f (t, v) = exp(-η[ρ 0 ]ρ 0 t) f 0 (v) + Therefore a unique solution f (t, v) to the problem (3.4.12) in the whole interval (0, 2T] is found. Iterating this procedure on all intervals of the form (kT, (k + 1)T], k ∈ N, we can construct the global solution on R + .