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“People who wish to analyze nature without using mathematics

must settle for a reduced understanding”.

Richard Phillips Feynman
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UNIVERSITY CADI AYYAD

Abstract
High School of Technology of Essaouira

Doctor of Philosophy in applied mathematics

Modeling and mathematical analysis of complex systems: Kinetic and macroscopic
approaches and applications in biology and vehicular traffic

by Mohamed Zagour

This thesis deals with modeling and mathematical analysis of complex systems on the
basis of kinetic and macroscopic approaches. The ultimate aims are to propose and to
study a new kinetic and macroscopic-fluid models. Moreover, we show the possibil-
ity of passing from kinetic to macroscopic regimes. Specifically, we are concerned with
the modeling and the mathematical analysis of the biological interacting populations liv-
ing in a complex fluid medium in the first place. For this, we propose two new cross-
diffusion-fluid systems. Next, we derive these systems from a new kinetic-fluid models
by adopting micro-macro decomposition method. In the second place, we are interested
to the modeling and mathematical analysis of vehicular traffic according to a kinetic the-
ory for active particles approach. We propose a general mathematical structure which
includes the features of the complex system under consideration and which appears to
be the most important aspects of the dynamics to be retained by the modeling approach.
Namely heterogeneity of the driver-vehicle subsystem, aggregation dynamics for vehi-
cles with closed each other velocity, passing probability, variable properties of the road-
environment where the dynamics occur and role of the external actions. To cut it short,
each field of application contains three main parts:
• Part of modeling and derivation: In the first application, we propose a suitable kinetic-
fluid models describing the evolution of the competing populations living in a complex
fluid medium. We derive our proposed cross-diffusion-fluid systems from these mod-
els by using micro-macro decomposition method. In the second application, we propose
a general mathematical kinetic structure accounting for all different possible type of in-
teractions. Modeling each appeared terms in these mathematical structures leads to a
derived models which permit to obtained macroscopic quantities such as the density, the
flux and the mean velocity.
• Part of mathematical analysis: This part is devoted to prove the existence of weak so-
lutions of the cross-diffusion-fluid systems by using Schauder fixed-point method for the
first proposed system and nonlinear Galerkin method for the second proposed system.
• Part of computational analysis: Here, we adopt a suitable numerical methods and we
present different simulations toward the validation of our proposed models and meth-
ods.
Keywords: Kinetic-fluid derivation, cross-diffusion, Brinkman equations, Navier-Stokes sys-
tems, micro-macro decomposition, asymptotic preserving scheme, Schauder’s fixed-point, non-
linear Galerkin method, finite volume method, finite element method, vehicular traffic, kinetic
theory for active particles, games theory, local and mean field interactions.
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Résumé:

Cette thèse porte sur la modélisation et l’analyse mathématique de systèmes com-
plexes sur la base d’approches cinétiques et macroscopiques. Les objectifs ultimes sont
de proposer et d’étudier de nouveaux modèles cinétiques et macroscopiques-fluides. De
plus, nous montrons la possibilité de passer de régimes cinétiques à macroscopiques.
Nous nous intéressons plus particulièrement à la modélisation et à l’analyse mathéma-
tique des populations en interaction biologique qui vivent dans un milieu fluide com-
plexe. Pour cela, nous proposons deux nouveaux systèmes de fluide à diffusion croisée.
Ensuite, nous dérivons ces systèmes d’un nouveau modèle cinétique-fluide en adoptant
la méthode de décomposition micro-macro. En second lieu, nous nous intéressons à la
modélisation et à l’analyse mathématique du trafic vehiculaire selon une approche ciné-
tique des particules actives. Nous proposons une structure mathématique générale qui
inclut les caractéristiques du système complexe considéré et qui semble être l’aspect le
plus important de la dynamique à retenir par l’approche de modélisation. Notament,
l’hétérogénéité du sous-système conducteur-véhicule, la dynamique d’agrégation pour
les véhicules dont les vitesses sont proches les unes des autres, la probabilité de dépasse-
ment, les propriétés variables de l’environnement routier où la dynamique se produit et
le rôle des actions externes. Pour faire court, chaque application contient trois parties
principales:

•Partie de la modélisation et de la dérivation: dans la première application, nous pro-
posons un modèle cinétique-fluide approprié décrivant l’évolution des populations en
interactions vivant dans un milieu fluide complexe. Nous avons dérivé les systèmes de
diffusion croisée proposés à partir de ces modèles en utilisant la méthode de décomposi-
tion micro-macro. Dans la seconde application, nous proposons une structure mathéma-
tique générale prenant en compte tous les types d’interactions possibles. La modélisation
de chacun des termes apparus dans ces structures mathématiques conduit à des modèles
dérivés qui permettent d’obtenir des quantités macroscopiques telles que la densité, le
flux et la vitesse moyenne.

•Partie de l’analyse mathématique: Cette partie est dédiée à la preuve de l’existence
de solutions faibles des systèmes de diffusion-croisée-fluide en utilisant la méthode des
points fixes de Schauder pour le premier système proposé et la méthode de Galerkin non
linéaire pour le deuxième système proposé.

•Partie de l’analyse numerique: nous adoptons ici des méthodes numériques appro-
priées et présentons différentes simulations pour la validation des modèles/ méthodes
que nous proposons.
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Chapter 1

General Introduction

“Mathematical modeling is the art of translating problems from an application area into tractable
mathematical formulations whose theoretical and numerical analysis provides insight answers
and guidance useful for the originating application ”1. Thus, in the last few decades modeling of
complex systems has been the subject of many investigations leading to an increasing number of
research scientific papers. Furthermore, a wide set of possible applications, such as cross-diffusion
systems, vehicular traffic and others, has directed the attention of mathematicians towards re-
search domains usually populated by engineers, biologists or researchers with other expertise.
Bearing these facts in mind, this thesis attempts to propose a new kinetic and macroscopic models
leading to a much more better explanations and realistic results for the interacting populations
living in complex flow and vehicular traffic applications.

1.1 Introduction to the complex system in biology

During the last few decades, cross-diffusion systems have attracted a growth intention
of mathematicians and biologists. Mainly for their ability to predict some interesting fea-
tures in the studied field, for instance population dynamic in ecology. In mathematical
biology applications, cross diffusion systems arise to model segregation phenomena be-
tween competing species. In real life, we observe that prey (for e.g. phytoplankton) has
the tendency to keep away from predator (for e.g. zooplankton) at the same time predator
has the tendency to get closer to the prey, see Figure 1.1-(a) and the following references
[77, 84, 59] for more details. We observe also that many species live in complex flow so
that species are transported in direction of the flow. Conversely, the velocity of the flow is
under the influence of external forces including the density of species,see Figure 1.1-(b).
Thus, it is interesting to study the dynamic of the interacting species on the basis of the
coupled cross-diffusion-fluid model. In this thesis, we propose two new models: a non-
linear cross-diffusion system coupled with augmented Brinkman problem and nonlocal
cross-diffusion system for multi-populations coupled within the incompressible Navier-
Stokes. More in details, we deals with three main parts to study the aforesaid models:
• kinetic-fluid derivation: This first part aims to derive a general macroscopic mod-
els from kinetic-fluid equations. We start by presenting the kinetic-fluid models with
a suitable scaling and their properties. Next, we perform the micro-macro decomposi-
tion method to obtain the equivalent formulation to the kinetic-fluid equations. Finally,
we derive a general macroscopic models from the equivalent micro-macro formulation.
Then by the suitable choices of different operators, we get the purpose cross-diffusion-
fluid models.
• Mathematical analysis: This part deals with the proof of existence of weak solutions
to the derived models. For the nonlinear cross-diffusion model coupled with Brinkman

1Prof. Dr. Arnold Neumaier, Fakultät für Mathematik, Universität Wien
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(a) (b)

FIGURE 1.1: Food chain of land (a) and sea (b) species.2

problem, we use Schauder fixed-point. For the nonlocal cross-diffusion system for multi-
populations coupled within the incompressible Navier-Stokes, we use the nonlinear Galerkin
method.
• Computational analysis: Here, we deal with the discrete asymptotic preserving scheme.
Indeed, we propose a numerical scheme uniformly stable along the transition from ki-
netic to macroscopic regimes (thus their computational complexity does not depend on
the Knudsen parameter which models the distance between species). On the other hand,
we show various numerical results which reflect some biological phenomena. For in-
stance, interactions between preys and predators, fluid effect on the interacting species
and external forces effects on the fluid dynamic and on the interacting species...

FIGURE 1.2: Illustration of asymptotic preserving schemes.

We mention that this thesis deals with the asymptotic preserving (AP) schemes. The
idea of AP can be illustrated in Figure 1.2. Assume we start with a multi-scale kinetic
model P ε depending on Knudsen parameter ε. As Knudsen parameter tends to zero the
model is approximated by a macroscopic model P0 which is independent of ε. Denote
by P ε

h the numerical discretization of P ε, where h = (∆t, ∆x, ∆v) is the numerical pa-
rameter such as mesh size and or time step. The asymptotic limit of P ε

h, as ε tends to
zeros with h fixed, if exists, is denoted by P0

h . The scheme P ε
h is called AP if P0

h is a
good (consistent and stable) approximation of P0. In this thesis, we adopt micro-macro
decomposition method. The idea of this technique is to write the unknown distribution
function as a sum of an equilibrium and a deviation. It permits to reformulate the sin-
gularly perturbed kinetic system into an equivalent micro-macro formulation which is

2Source: (a) www.pltwa.com/uploads/2/7/8/2/27828107/food_webs_activity_plan.pdf
(b) Encyclopidia Britanica, Inc.

www.pltwa.com/uploads/2/7/8/2/27828107/food_webs_activity_plan.pdf
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a regular perturbation of the derivative model. Thus, solving numerically the equiva-
lent micro-macro formulation instead of the perturbed kinetic system will permit to shift
automatically the limit problem, if the perturbation parameter ε is too small.

1.2 Introduction to the complex system in vehicular traffic

Nowadays, prediction and control of traffic attracts the intention of mathematicians re-
searchers and engineers. With the increasing number of vehicles, the urban traffic system
faces many problems, like, e.g., cities congestion and environmental pollution, see Figure
1.4. Indeed, traffic congestion induces not only long wasted time lost by users but also
additional pollution of various kinds. In fact, it generates both an economic cost and en-
vironmental damage. An additional problem worth mentioning is the need to reduce car
crashes, a human and social cost that is related not only to inadequate driving, but also
to the planning of the flow conditions.

We believe that mathematical models can help to understand the dynamics of the
traffic and give insight into questions like-what causes congestion, what determines the
time and location of traffic break down, how does a congestion propagate. Thus, the aims
of applied mathematicians and engineers has been to develop traffic models in order to
predict the evolution of traffic flow. This in turn helps in answering how to handle urgent
traffic issues and supports strategies of organizing traffic flow. Moreover, the organized
traffic may reduce the travel time due to an optimized traffic distribution.

The existing literature of traffic flow is vast and characterized by various contribu-
tions taking into account modeling aspects, qualitative analysis of the existing models
and simulations related to applications. Various types of models of traffic vehicular dif-
fering on the level of description can be found in the literature, see the reviews [18, 17,
66, 57]. The mathematical approach can be developed at the three observation and rep-
resentation scales, namely microscopic, macroscopic, and statistical over the microscopic
state, see Figure 1.3. Different mathematical structures correspond to each type of repre-
sentation:

FIGURE 1.3: The three observation scales.

• Microscopic models focus on the behavior of individual vehicles, and study how one
vehicle dynamically interacts with another. These models attempt to describe the overall
characteristics of the system by integrating the characteristic of each individual vehicle.
Mathematical models at the microscopic scale have a structure analogous to that of New-
tonian dynamics. The model describes the acceleration of vehicles as the output of the
action of surrounding vehicles. Microscopic models have three categories: car-following
models, cellular automata models and sub-microscopic models. Car-following models
analyze the vehicle following behavior in one lane. Cellular automata models view in-
dividual vehicles as self-driven particles, which is a collection of particles respond to a
random perturbation by the motion of the other nearby particles. Sub-microscopic mod-
els describe more details, such as driver’s psychological reactions, response to the traffic
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(a) (b)

FIGURE 1.4: Vehicular traffic congestion in Casablanca city, Morocco.3

and car lights, etc.

• Macroscopic models mainly describe the spatio-temporal association rules of the traf-
fic flow features, including traffic flow rate, velocity and density. The theoretical basis
of dynamic macroscopic models is the fluid dynamics model, which is also known as
the continuum model of traffic flow. Equations in fluid dynamics are a set of partial dif-
ferential equations known as the Euler equations, expressing the conservation of mass,
momentum and energy. The basic idea is to look at large scales so to consider cars as
small particles and their density as the main quantity to be considered. They are espe-
cially used in the modeling framework of the large networks. Their current applications
cover the traffic simulation for planning and infrastructure design.

• Kinetic models named also mesoscopic or statistical models present an intermediate
step between the above two approach of model, they specific vehicle behavior in prob-
abilistic terms. Thus, traffic is represented by small groups of vehicle for which the ac-
tivities and interactions are described at a low level of detail. Mesoscopic models consist
in the derivation of a Boltzmann type evolution equation for the statistical distribution
function on the position and velocity of vehicles within a framework close to that of gas-
kinetic theory. More details about kinetic models in next Chapter 4.

Thereafter, we focus on the kinetic approach due to its several advantages versus
microscopic and macroscopic models. Indeed, kinetic theory is able to capture the com-
plexity problems of vehicular traffic like the assumption of continuity of the distribution
function and the assumption of homogeneity of the behavior of the driver, which have
been criticized by [40]. Moreover, on the one hand they can be more fundamentally justi-
fied than the standard macroscopic models, leading to a better justification of the macro-
scopic models and potentially to more accurate results. On the other hand, compared to
microscopic models, kinetic theory requires a lower number of equations, which makes
them more accessible by computational and mathematical analysis.

It is worth stating three key aspects of the complexity of vehicular traffic flow that
models should cope with.
• Ability to express strategy. Systems driver-vehicle have a self-organization abilities
affected by the state of surrounding environment. The individual behavior of the driver-
vehicle is heterogeneously distributed among vehicles.

3Source: (a) www.actu-maroc.com/embouteillages-attendus-pour-les-departs-en-vacances
(b) www.aujourdhui.ma/societe/circulation-et-stationnement-dans-les-grandes-villes

www.actu-maroc.com/embouteillages-attendus-pour-les-departs-en-vacances
www.aujourdhui.ma/societe/circulation-et-stationnement-dans-les-grandes -villes
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• Interactions and multiscale effects. Interactions among vehicles are microscopic inter-
actions. Probably the most striking effect of these interactions is the spontaneous emer-
gence of self-organized flow patterns, that can be clearly seen at larger scales. The in-
fluence of smaller on larger scales can be viewed as micro-to-macro scaling. The opposite
influence is possible. This induces outer-to-inner multiscale couplings, which make vehi-
cles interactions nonlinearly additive.
• Large deviations and loss of determinism. The expression of the strategic ability and
the characteristics of the interactions among vehicles described above can be considered
under either a deterministic or a stochastic perspective. The former is appropriate in nor-
mal conditions, when a standard rational attitude can be identified, over which large
deviations are not expected. Conversely, the latter is particularly suited for addressing
cases in which irrational behaviors cannot be excluded, which might induce large devia-
tions.

1.3 Organization of the report

The thesis is organized in two main parts: Each part contains two chapters and each
chapter will be introduced by a short motivational section.

First part: This part deals with the biological interacting populations application.

Chapter 2. We summarize the results published in the paper [24]. As it mentioned above,
several competing species are living in a complex fluid medium. Thus, it is so important
to model this real observation. This is in fact the main objective in [24], where we propose
and we study a new nonlinear model describing dynamical interaction of two species
within viscous flow. Our proposed model is a nonlinear cross-diffusion system coupled
with Brinkman problem written in terms of velocity fluid u, vorticity ω, pressure p, and
describing the flow patterns driven by an external source depending on the densities of
species c and s. Our proposed system is as follows

System 1



ct + u · ∇c− div
[(

Dc(c) + 2 a11 c + a12 s
)
∇c + a12 c∇s

]
= Hc(c, s), in ΩT,

st + u · ∇s− div
[(

Ds(s) + a21 c + 2 a22 s
)
∇s + a21 s∇c

]
= Hs(c, s), in ΩT,

K−1u +
√

µ curl ω +∇p = Q(c, s)g + F, in ΩT,
ω−√µ curl u = 0, in ΩT,
div u = 0, in ΩT,(

cu− (Dc(c) + 2 a11 c + a12 s)∇c− a12 c∇s
)
· η = 0, on ∂ ΩT,(

su− (Ds(s) + a21 c + 2 a22 s)∇s− a21 s∇c
)
· η = 0, on ∂ ΩT,

u · η = u∂, ω× η = ω∂, on ∂ ΩT,
c(t = 0, x) = c0(x), s(t = 0, x) = s0(x), in Ω,

where Dc(c), Ds(s) are the nonlinear diffusitive functions and aij > 0 for i, j = 1, 2 is
known as self and cross-diffusion rates. The parameter µ is the fluid viscosity in the
considered regime, it is assumed independent of the densities of species c and s, K(x) is
the permeability tensor rescaled with viscosity, Q(c, s)g represents the force exerted by
the densities on the fluid motion, and F(t, x) is an external force applied to the porous
medium. The functions Hc and Hs are the reaction terms. A typical example of Hc and
Hs is given by Lotka-Voltera (logistic) type growth term.
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In the first part, we derive a macroscopic models from the following kinetic-fluid
equations by using the micro-macro decomposition method:

Model 1



(
ε∂t + ξ · ∇x

)
f ε
1 = 1

εT1[ f ε
2 ]( f ε

1) + G1( f ε
1 , f ε

2 , u, ξ),(
ε∂t + ξ · ∇x

)
f ε
2 = 1

εT2[ f ε
1 ]( f ε

2) + G2( f ε
1 , f ε

2 , u, ξ),

K−1u +
√

µ curl ω +∇p = Q
( ∫

V f ε
1dξ,

∫
V f ε

2dξ
)

g + F,

ω−√µ curl u = 0,
div u = 0,

where f1, f2 are the generalized distribution functions which depend on time t, position
x ∈ Ω ⊂ Rd and velocity ξ ∈ V ⊂ Rd. The Knudsen parameter ε measures the distance
of the system to its equilibrium. Specifically, when ε is small, the system is close to an
equilibrium state, while for large ε, the system is far from equilibrium. Moreover, T1[ f2],
T2[ f1] and Gi, i = 1, 2 are, respectively, the turning and interaction operators. Comparing
to the work by [11], the novelty in our work is that we derive the cross-diffusion system
with nonlinear diffusitive functions instead of a diffusion with constants. Moreover, our
system is coupled to the augmented Brinkman problem.

On the basis of Schauder fixed-point theory, we prove the existence of weak solu-
tions for the derived model in the second part. The last part is devoted to develop a
one dimensional finite volume approximation for the kinetic-fluid model, which are uni-
formly stable along the transition from kinetic to macroscopic regimes. Our computation
method is validated with various numerical tests.

Chapter 3. We summarize the results in our paper [7]. Motivated by our work in [24],
here we propose and we study a generalized system. Our proposed system is contains
a nonlocal diffusion and a nonlinear cross-diffusion describing the dynamic of interact-
ing multi-populations living in a complex medium governed with the incompressible
Navier-Stokes equation (non-stationary fluid flow). Our proposed system is written as
follows

System 2



∂tui + v.∇xui − divx

(
dui

( ∫
Ω

uidx
)
∇xui +

n

∑
j=1
Aj

i(u1, ..., un)∇xuj

)
= Fi, in ΩT ,

∂tv− ν∆v + (v.∇x)v +∇x p + Q(u1, ..., un)∇xφ = 0, divx v = 0, in ΩT ,

v = 0 and
(

dui

( ∫
Ω

uidx
)
∇xui +

n

∑
j=1
Aj

i(u1, ..., un)∇xuj

)
· η = 0, on ∂ ΩT ,

ui(t = 0, x) = ui,0(x), v(t = 0, x) = v0(x), in Ω,

for i = 1, ..., n. ui is the density of i− th population, dui is the nonlocal diffusivitie func-
tions assumed to be depend on the whole of each population in the domain rather than
on the local density, Aj

i (i, j = 1, ..., n) is the nonlinear cross-diffusion matrix elements, v
is the fluid velocity, p is the fluid pressure, ν is the fluid viscosity, Q(u1, ..., un)∇φ rep-
resents the external force applied to the incompressible fluid and n is the unit outward
normal to Ω on ∂Ω. Finally, Fi is the reaction terms for i = 1, ..., n.
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The first part of this chapter is devoted to the derivation of the proposed system from
the following nonlocal kinetic-fluid model

Model 2


ε∂t f ε

i + ξ · ∇xFi( f ε
i ) =

1
εTi[ f ε

1 , ..., f ε
i−1, f ε

i+1, ..., f ε
n]( fi) + Gi( f ε

1 , ..., f ε
n, ξ, v),

∂tv− ν∆xv + (v · ∇x)v +∇x p + Q
( ∫

V f ε
1dξ, ...,

∫
V f ε

ndξ
)
∇xφ = 0, div xv = 0,

f ε
i (t = 0, x, ξ) = f ε

i,0(x, ξ), v(t = 0, x) = v0(x).

The derivation is based on micro-macro decomposition method which leads to an
equivalent system coupled the microscopic and macroscopic equations. Comparing with
[24], here we deal with the derivation from a nonlocal kinetic-fluid model for multi-
interacting populations living in a fluid generated by the incompressible Navier-Stokes
equations.

In the second part, we prove the existence of weak solutions of the proposed nonlocal
cross-diffusion-fluid system. The proof is based on the nonlinear Galerkin method, a pri-
ori estimates and compactness arguments. We develop numerical approximations for the
equivalent model of the kinetic-fluid system and for the macroscopic model in the next
part in order to show the asymptotic preserving scheme property. In other words, when
the distance between species (mean free path) is too small, the profiles of the densities
given by the two schemes (micro-macro and macroscopic schemes) are almost the same.
On the other hand, we reproduce some numerical results of phenomena taking into ac-
count the effects of non-locality of diffusivity functions and of the fluid. The last part is
devoted to the computational analysis of the nonlocal cross-diffusion-fluid model in two
dimension.

Second part: This part is devoted to vehicular traffic flow application.

Chapter 4. We begin with a detailed review of the main vehicular traffic kinetic models
available in the pertinent literature.

Chapter 5. We summarize the results proposed in the paper [28]. We propose and we
study a new general mathematical structure for vehicular traffic according to a kinetic
theory approach. The mathematical structure proposed in this work includes the features
of the complex system under consideration which, according to the authors’ opinion,
appear to be the most important aspects of the dynamics to be retained by the modeling
approach. Namely heterogeneity of the driver-vehicle subsystem, aggregation dynamics
for vehicles with closed each other velocity, passing probability, variable properties of
the road-environment where the dynamics occur and role of the external actions. Our
proposed model is as follows

∂t f (t, x, v, u) + v∂x f (t, x, v, u) + ∂v(F [ f ](t, x, v, u) f (t, x, v, u))

=
∫
[0,1]3

η[ f ]A[ f ; α](v∗ → v|v∗, v∗, u) f (t, x, v∗, u) f (t, x, v∗, u∗)dv∗ dv∗ du∗

− f (t, x, v, u)
∫
[0,1]2

η[ f ] f (t, x, v∗, u∗)dv∗ du∗

+µ[ f ]
(

fe(x, ve(x))− f (t, x, v, u)
)
,

where x and v are the dimensionless position and velocity variables, and u is a variable
which denotes the quality of the micro-system. f is the distribution function over the
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state at the microscopic scale. The remained terms in the above model are

• F [ f ] is the overall acceleration of all vehicles which obtained by integration corre-
sponding to the action of all vehicles in the sensitive zone Ω`.

• η[ f ] is the encounter rate which models the number of interactions per unit time
between candidate and test particles with field particles;

• A[ f ](v∗ → v|u) is the transition probability density which defines the probability
density that a candidate particle falls into the state of with the field particles;

• µ[ f ] models the intensity of the action while ve(x) is the speed imposed by the
external action.

We model the interactions at the microscopic scale by methods of game theory, thus lead-
ing to the derivation of mathematical models within the framework of the kinetic theory.
Short and long range interactions are modeled to depict change of velocity related to
passing and clustering phenomena. Numerical results are provided to compute the fun-
damental diagrams predicted by the spatially homogeneous problem and emerging of
two clusters predicted by the spatially inhomogeneous problem.
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Part I

Kinetic-fluid derivation and
mathematical analysis of

cross-diffusion-fluid models
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Chapter 2

Kinetic-fluid derivation and
mathematical analysis of
cross-diffusion-Brinkman system

This chapter aims to summarize our work [24] in which we propose a new nonlinear system
describing dynamical interaction of two species within viscous flow. The proposed system is a
cross-diffusion system coupled with Brinkman problem written in terms of velocity fluid, vor-
ticity and pressure, and describing the flow patterns driven by an external source depending on
the distribution of species. In the first part, we derive a macroscopic systems from the kinetic-
fluid equations by using the micro-macro decomposition method. Basing on Schauder fixed-point
theory, we prove the existence of weak solutions for the derived system in the second part. The
last part is devoted to develop a one dimensional finite volume approximation for the kinetic-fluid
model, which are uniformly stable along the transition from kinetic to macroscopic regimes. Our
computation method is validated with various numerical tests.

2.1 Introduction

In this paper [24], we are interested to the viscous flow in porous medium which is al-
ways modelled by Brinkman equations stating momentum and the conservation of mass
of the fluid. We note that Brinkman problem is a parameter dependent combination of
Darcy and Stokes models, so that the flow is dominated by Darcy regime and by Stokes
elsewhere. Motivated by this phenomena, we propose a nonlinear cross-diffusion sys-
tem include additional terms accounting for the advection of each species with the fluid
velocity, coupled with Brinkman problem written in terms of fluid velocity, vorticity and
pressure, and describing the flow patterns driven by an external source depending on the
distribution of species.

In order to state our problem, let Ω ⊂ R3 be a simply connected, and bounded porous
domain saturated with a Newtonian incompressible fluid, where also the two species are
present. The physical scenario of interest can be therefore described by a coupled system
written in terms of the fluid velocity u, the rescaled fluid vorticity ω, the fluid pressure
p, and the densities of two species c and s. The cross-diffusion-Brinkman system can be
written for (t, x) in ΩT := (0, T)×Ω:

ct + u · ∇xc− ∆x

[(
Dc(c) + a11 c + a12 s

)
c
]
= Hc(c, s),

st + u · ∇xs− ∆x

[(
Ds(s) + a21 c + a22 s

)
s
]
= Hs(c, s),

K−1u +
√

µ curl ω +∇x p = Q(c, s)g + F,
ω−√µ curl u = 0,
div u = 0,

(2.1.1)
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where Dc(c), Ds(s) are the nonlinear diffusitive functions and aij > 0 for i, j = 1, 2 is
known as self and cross-diffusion rates. The parameter µ is the fluid viscosity in the
considered regime, it is assumed independent of the densities of species c and s, K(x) is
the permeability tensor rescaled with viscosity, Q(c, s)g represents the force exerted by
the densities on the fluid motion, and F(t, x) is an external force applied to the porous
medium. The functions Hc and Hs are the reaction terms. A typical example of Hc and
Hs is given by Lotka-Voltera (logistic) type growth term: Hc(c, s) = c(a1 − b1 c− d1 s),

Hs(c, s) = s(a2 − b2 c− d2 s),
(2.1.2)

where a1 and a2 are the Malthusian growth coefficients, and b1, d2 and b2, d1 are the
coefficients of intra- and inter-species competition, respectively. Note that our system
reads for suitably smooth functions c and s as follows

ct + u · ∇xc− div x

[(
Dc(c) + 2 a11 c + a12 s

)
∇c + a12 c∇xs

]
= Hc(c, s), in ΩT,

st + u · ∇xs− div x

[(
Ds(s) + a21 c + 2a22 s

)
∇s + a21 s∇xc

]
= Hs(c, s), in ΩT,

K−1u +
√

µ curl ω +∇x p = Q(c, s)g + F, in ΩT,
ω−√µ curl u = 0, in ΩT,
div u = 0, in ΩT.

(2.1.3)
Our system (2.1.3) is complemented with the following boundary conditions in ΣT :=
(0, T)× ∂Ω and initial data:(

cu− (Dc(c) + 2 a11 c + a12 s)∇xc− a12 c∇xs
)
· η = 0, (t, x) ∈ ΣT,(

su− (Ds(s) + a21 c + 2a22 s)∇xs− a21 s∇xc
)
· η = 0, (t, x) ∈ ΣT,

u · η = u∂, ω× η = ω∂, (t, x) ∈ ΣT,
c(t = 0, x) = c0(x), s(t = 0, x) = s0(x), x ∈ Ω,

(2.1.4)

where η is the unit outward normal to Ω on ∂Ω. Note that in the case (ai,j)1≤i,j≤2 :=
0, our system can be reduced to the recent system by [2], in which the authors pro-
posed reaction-diffusion system representing the bacteria-chemical mass exchange, cou-
pled with Brinkman problem.
To the best of our knowledge, there are few papers proposing the augmented velocity-
vorticity-pressure formulation (augmented Brinkman model) without reaction-diffusion
system coupling. It was initially proposed in [89], where the authors added vorticity as
a new unknown variable. In [1, 5], the authors proposed the analysis of this system us-
ing mixed finite element method for standard and non-standard boundary conditions,
respectively. Later, in [72], the authors have studied numerically an advection-diffusion-
reaction system coupled with an incompressible viscous flow. When the fluid is at rest
(u = 0), several works have been proposed in the literature to investigate the theoretical
and numerical analysis of the cross-diffusion system. For instance, the works in [23, 92]
include the analysis of the weak solution and the global existence of solution. More-
over, the authors in [87] specified the conditions for the existence of unstable equilibrium
points. On the other hand, many numerical methods are proposed to approximate the so-
lution. We refer the reader to finite difference method in [33], finite element method in [9],
deterministic particle method in [49], finite volume method in [6, 3, 4] and positivity-
preserving Euler-Galerkin method in [34]. We want to mention here that this is the first
attempt to derive macroscopic system with nonlinear diffusitive terms. Moreover, in our
contribution we present a new system (Cross-diffusion-Brinkman system) that combine
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interaction of the species in the presence of fluid.
In this chapter, we derive a general cross-diffusion systems coupled with the Brinkman

problem from the kinetic-fluid using micro-macro decomposition method. In particular,
we are interesting to derive our cross-diffusion-Brinkman system (3.1.1). The idea of
micro-macro decomposition is to write the unknown distribution function as a sum of
an equilibrium and a deviation. We note that this method permits to reformulate the
singularly perturbed kinetic system into an equivalent micro-macro formulation which
is a regular perturbation of the derivative system. Thus, solving numerically the equiva-
lent micro-macro formulation instead of the perturbed kinetic system will permit to shift
automatically the limit problem, if the perturbation parameter (Knudsen parameter or
sometimes it refers as mean free path) is too small. Several contributions have investi-
gated the asymptotic limit in the following cases: diffusion limit in [71, 26, 22], anomalous
diffusion limit in [39, 35], hyperbolic system in [78] and Keller-Segel systems of pattern
formation in biological tissues in [11, 16, 27]. Note that there are different approaches
to construct such scheme for kinetic systems in various contexts. For instance, the au-
thors in [13, 14] developed the approach of continuum mechanics based on micro-macro
derivation in biological tissue and [20] for incompressible Navier-Stokes, (see the inter-
esting overview [8] for more details). Another approach can be found in [52, 65], where
the authors used the domain decomposition method for the linear transport equation.

The outline of this Chapter is the following: In Section 2.2, we present the kinetic
model and its properties. Next, we perform the micro-macro formulation, which is the
ingredient key in the construction of our numerical method. Section 2.3 is devoted to
proving the existence of weak solutions for derived macroscopic system. Our numerical
method is demonstrated in Section 2.4 with various numerical tests.

2.2 Derivation of cross-diffusion-Brinkman systems

This section aims to derive general macroscopic systems using micro-macro decompo-
sition method following the line of the paper [11]. Note that the authors in this paper
have derived a macroscopic systems of Keller-Segel type, which describe the chemotaxis
phenomenon [62]. First, we present the properties of the kinetic system which lead to
an equivalent micro-macro formulation. Next, we derive formally a general macroscopic
nonlinear coupled system. We finish this subsection by deriving our cross-diffusion-
Brinkman system (2.1.3). We want to mention here that the novelty in this first part is
that we derive the cross-diffusion system with nonlinear diffusitive functions coupled
with Brinkman problem.

2.2.1 The kinetic-fluid model

In order to derive a general macroscopic cross-diffusion-Brinkman system from the kinetic-
fluid model, we consider the parabolic-parabolic scaling. Thus, the kinetic-fluid model is
as follows 

(
ε∂t + ξ · ∇x

)
f ε
1 = 1

εT1[ f ε
2 ]( f ε

1) + G1( f ε
1 , f ε

2 , u, ξ),(
ε∂t + ξ · ∇x

)
f ε
2 = 1

εT2[ f ε
1 ]( f ε

2) + G2( f ε
1 , f ε

2 , u, ξ),

K−1u +
√

µ curl ω +∇x p = Q
( ∫

V f ε
1dξ,

∫
V f ε

2dξ
)

g + F,

ω−√µ curl u = 0,
div u = 0,

(2.2.1)
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where f1, f2 are the generalized distribution functions which depend on time t, position
x ∈ Ω ⊂ Rd and velocity ξ ∈ V ⊂ Rd ( V assumed to be bounded and symmetric). The
remaining macroscopic variables and parameters, namely u, µ, ω, p, Q, g, and F, are de-
fined in the introduction. The Knudsen parameter ε measures the distance of the system
to its equilibrium. Specifically, when ε is small, the system is close to an equilibrium
state, while for large ε, the system is far from equilibrium. Moreover, T1[ f2], T2[ f1] and
Gi, i = 1, 2 are, respectively, the turning and interaction operators, assumed to satisfy the
following properties:

• The turning operators are decomposed as follows

T1[ f2](h) = T 1
1 (h) + εT 2

1 [ f2](h), T2[ f1](h) = T 2
1 (h) + εT 2

2 [ f1](h), (2.2.2)

where T i
j for i, j = 1, 2 are given by

T i
j (h) =

∫
V

[
Ti

j (ξ
∗, ξ)h(t, x, ξ∗)− Ti

j (ξ, ξ∗)h(t, x, ξ)

]
dξ∗, (2.2.3)

where Ti
j (ξ, ξ∗) is the probability kernel for the new velocity ξ ∈ V, given that the

previous velocity was ξ∗. The dependence on f2 ( resp. f1 ) of the operator T 2
1 [ f2]

( resp. T 2
2 [ f1] ) stems from T1

2 ( resp. T2
2 ). We assume that T 1

1 is independent on
f2 and T 1

2 is independent on f1. In what follows, we shall consider T 1
1 (h) = L1(h)

and T 1
2 (h) = L2(h).

• We assume that∫
V
L1(h)dξ =

∫
V
T 2

1 [ f2](h)dξ =
∫

V
L2(h)dξ =

∫
V
T 2

2 [ f1](h)dξ = 0. (2.2.4)

• There exists a bounded velocity distribution Mi(ξ) > 0, (i = 1, 2) independent of t
and x, such that

T1
1 (ξ, ξ∗)M1(ξ

∗) = T1
1 (ξ
∗, ξ)M1(ξ), T1

2 (ξ, ξ∗)M2(ξ
∗) = T1

2 (ξ
∗, ξ)M2(ξ) (2.2.5)

holds. Furthermore, Mi are normalized and the flow produced by these equilibrium
distributions vanishes∫

V
Mi(ξ)dξ = 1,

∫
V

ξ Mi(ξ)dξ = 0, i = 1, 2. (2.2.6)

The probability kernels T1
1 (ξ, ξ∗) and T1

2 (ξ, ξ∗) are bounded, and there exist con-
stants σi > 0, i = 1, 2, such that

T1
1 (ξ, ξ∗) ≥ σ1M1(ξ), T1

2 (ξ, ξ∗) ≥ σ2M2(ξ), (2.2.7)

for all (ξ, ξ∗) ∈ V ×V.

• Moreover, we assume that the interaction operators Gi (i = 1, 2) satisfy the follow-
ing properties:

Gi( f1, f2, u, ξ) = Gi1( f1, f2, u, ξ) + εGi2( f1, f2, ξ), (2.2.8)

where ∫
V

Gi1( f1, f2, u, ξ)dξ = 0, (2.2.9)
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for i = 1, 2.

Thanks to technical calculations in [30], the operators Li (i = 1, 2) have the following
properties (the proof of the following lemma can be found in [11]):

Lemma 2.2.1 Assume that the hypothesis (3.2.6), (3.2.7) and (3.2.8) hold. Then, the following
properties of the operators L1 and L2 hold true:

1) The operator Li is self-adjoint in the space L2
(

V,
dξ

Mi

)
.

2) For h ∈ L2, the equation Li(g) = h, (i = 1, 2) has a unique solution g ∈ L2
(

V,
dξ

Mi

)
,

satisfying ∫
V

g(ξ) dξ = 0 if and only if
∫

V
h(ξ) dξ = 0.

3) The equation Li(g) = ξ Mi(ξ), has a unique solution which be denoted by θi(ξ), for i =
1, 2.

4) The kernel of Li is N(Li) = vect(Mi(ξ)), i = 1, 2.

2.2.2 The equivalent micro-macro formulation

In this subsection, we rewrite each kinetic equation in (2.2.1) as an equivalent system
coupling a hydrodynamic part with a kinetic part. For this, we decompose fi, (i = 1, 2)
into a main part that is close to the equilibrium in diffusive regimes, and another part
that vanishes in its limit, i.e

f1(t, x, ξ) = M1(ξ)c(t, x) + εg1(t, x, ξ), f2(t, x, ξ) = M2(ξ)s(t, x) + εg2(t, x, ξ),

where
c(t, x) =

∫
V

f1(t, x, ξ)dξ, s(t, x) =
∫

V
f2(t, x, ξ)dξ.

We will use frequently the notation 〈.〉which denote the integral with respect to the vari-
able ξ. We observe that 〈gi〉 = 0, for i = 1, 2. Inserting f1 and f2 in the kinetic model
(2.2.1) and using the properties of the kernel operators, we get

∂t(M1c) + ε∂tg1 +
1
ε

ξM1 · ∇xc + ξ · ∇xg1 =
1
ε
L1(g1) +

1
ε
T 2

1 [ f2](M1(ξ)c)

+T 2
1 [ f2](g1) +

1
ε

G11( f1, f2, u, ξ) + G12( f1, f2, ξ), (2.2.10)

∂t(M2s) + ε∂tg2 +
1
ε

ξM2 · ∇xs + ξ · ∇xg2 =
1
ε
L2(g2) +

1
ε
T 2

2 [ f1](M2(ξ)s)

+T 2
2 [ f1](g2) +

1
ε

G21( f1, f2, u, ξ) + G22( f1, f2, ξ), (2.2.11)

K−1u +
√

µ curl ω +∇x p = Q(c, s)g + F, ω−√µ curl u = 0, div u = 0. (2.2.12)

The micro-macro formulation equivalent to system (3.2.1) is obtained by two steps. In
the first step, we use a projection technique to separate the macroscopic densities (c(t, x),
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s(t, x)) and microscopic quantities (g1(t, x, ξ), g2(t, x, ξ)). For that, let PMi denote the or-
thogonal projection onto N(Li), for i = 1, 2. It follows

PMi(h) = 〈h〉Mi, for any h ∈ L2
(

V,
dξ

Mi

)
,

for i = 1, 2. Regarding the orthogonal projections PM1 , PM2 , we have the following result:

Lemma 2.2.2 (cf. [11]) For the projection PM1 , PM2 , we have the following properties :

(I − PM1)(M1c) = (I − PM2)(M2s) = PM1(g1) = PM2(g2) = 0,

(I − PM1)(ξM1 · ∇xc) = ξM1 · ∇xc, (I − PM2)(ξM2 · ∇xs) = ξM2 · ∇xs,

(I − PM1)(T 2
1 [ f2](M1(ξ)c) = T 2

1 [ f2](M1(ξ)c),

(I − PM2)(T 2
2 [ f1](M2(ξ)s)) = T 2

2 [ f1](M2(ξ)s),

(I − PM2)(T 2
2 [ f1](h)) = T 2

2 [ f1](h), (I − PM1)(T 2
1 [ f2](h)) = T 2

1 [ f2](h),

(I − PM1)(Li(h)) = Li(h), (I − PMi)(Gi1( f1, f2, u, ξ)) = Gi1( f1, f2, u, ξ), i = 1, 2.

Taking the operators I− PM1 and I− PM2 into (2.2.10) and (2.2.11), respectively, and using
Lemma 2.2.2, yield the following microscopic equations:

ε∂tg1 +
1
ε

ξM1 · ∇xc + (I − PM1)(ξ · ∇xg1) =
1
ε
L1(g1) +

1
ε
T 2

1 [ f2](M1(ξ)c) (2.2.13)

+T 2
1 [ f2](g1) +

1
ε

G11( f1, f2, u, ξ) + (I − PM1)G12( f1, f2, ξ),

ε∂tg2 +
1
ε

ξM2 · ∇xs + (I − PM2)(ξ · ∇xg2) =
1
ε
L2(g2) +

1
ε
T 2

2 [ f1](M2(ξ)s) (2.2.14)

+T 2
2 [ f1](g2) +

1
ε

G21( f1, f2, u, ξ) + (I − PM1)G22( f1, f2, ξ).

For the second step, we integrate (2.2.10) with respect to ξ

∂tc
∫

V
M1dξ + ε∂t

∫
V

g1dξ +
1
ε

∫
V

ξM1dξ · ∇xc +
∫

V
ξ · ∇xg1dξ =

1
ε

∫
V
L1(g1)dξ

+
1
ε

∫
V
T 2

1 [ f2](M1(ξ)c)dξ +
∫

V
T 2

1 [ f2](g1)dξ

+
1
ε

∫
V

G11( f1, f2, u, ξ)dξ +
∫

V
G12( f1, f2, ξ)dξ.

Thanks to (2.2.4), (2.2.6) and (2.2.9) and the fact that 〈g1〉 = 〈g2〉 = 0, we obtain the
following macroscopic equation:

∂tc + 〈ξ · ∇xg1〉 = 〈G12( f1, f2, ξ)〉. (2.2.15)

Similarly to (2.2.15), we obtain from (2.2.11)

∂ts + 〈ξ · ∇xg2〉 = 〈G22( f1, f2, ξ)〉. (2.2.16)

Finally, thanks to (2.2.13), (2.2.14), (2.2.15), and (2.2.16), the micro-macro formulation
reads
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ε∂tg1 +
1
ε ξM1 · ∇xc + (I − PM1)(ξ · ∇xg1) =

1
εL1(g1)

+
1
ε
T 2

1 [ f2](M1(ξ)c) + T 2
1 [ f2](g1)

+
1
ε

G11( f1, f2, u, ξ) + (I − PM1)G12( f1, f2, ξ),

∂tc + 〈ξ · ∇xg1〉 = 〈G12( f1, f2, ξ)〉,

ε∂tg2 +
1
ε ξM2 · ∇xs + (I − PM2)(ξ · ∇xg2) =

1
εL2(g2)

+
1
ε
T 2

2 [ f1](M2(ξ)s) + T 2
2 [ f1](g2)

+
1
ε

G21( f1, f2, u, ξ) + (I − PM2)G22( f1, f2, ξ),

∂ts + 〈ξ · ∇xg2〉 = 〈G22( f1, f2, ξ)〉,

K−1u +
√

µ curl ω +∇x p = Q(c, s)g + F,
ω−√µ curl u = 0,
div u = 0.

(2.2.17)

Note that system (2.2.17) is the micro-macro formulation of the kinetic-fluid model
(2.2.1). The following proposition shows that system (2.2.17) and the model (2.2.1) are
equivalent.

Proposition 2.2.1 i) Let ( f1, f2, u, ω, p) be a solution of the kinetic system (2.2.1). Then the
functions (c, g1, s, g2, u, ω, p) (where c = 〈 f1〉, s = 〈 f2〉, g1 = 1

ε ( f1 − M1c), g2 = 1
ε ( f2 −

M2s)) are a solution to coupled system (2.2.17) with the associated initial data

c(t = 0) = c0 = 〈 f10〉, g1(t = 0) = g10 =
1
ε
( f10 −M1c0), (2.2.18)

s(t = 0) = s0 = 〈 f20〉, g2(t = 0) = g20 =
1
ε
( f20 −M2s0), (2.2.19)

ii) Conversely, if (c, g1, s, g2, u, ω, p) satisfies system (2.2.17) with initial data (c0, g10, s0, g20)
such that 〈g10〉 = 〈g20〉 = 0, then ( f1 = M1c + εg1, f2 = M2s + εg2, u, ω, p) is a solution
to kinetic model (2.2.1) with initial data f10 = M1c0 + εg10, f20 = M2s0 + εg20 and we have
c = 〈 f1〉, s = 〈 f2〉 and 〈g1〉 = 〈g2〉 = 0.

Remark 2.2.1 The proof of i) is already detailed above. For the proof of ii) we refer the reader to
proof of Theorem 1 in [11].

In order to derive the macroscopic systems from the micro-macro formulation (2.2.17),
we need more assumptions on the turning operators T 2

1 , T 2
2 (recall that T 2

1 and T 2
2 are

given in (2.2.3)-(2.2.7)) and the interactions terms Gi1, Gi2. Moreover, we assume that
these terms satisfy the following asymptotic behavior when ε→ 0:
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T 2
1 [M2(ξ)s + εg2] = T 2

1 [M2(ξ)s] + O(ε), T 2
2 [M1(ξ)c + εg1] = T 2

2 [M1(ξ)c] + O(ε),
(2.2.20)

and for i = 1, 2,

Gi1(M1(ξ)c + εg1, M2(ξ)s + εg2, u, ξ) = Gi1(M1(ξ)c, M2(ξ)s, u, ξ) + O(ε), (2.2.21)

G2i(M1(ξ)c + εg1, M2(ξ)s + εg2, ξ) = G2i(M1(ξ)c, M2(ξ)s, ξ) + O(ε). (2.2.22)

2.2.3 Derivation of macroscopic systems

This subsection is devoted to derive a macroscopic systems from the micro-macro formu-
lation (2.2.17) of the kinetic-fluid system (2.2.1) as ε goes to 0. First, we use (2.2.20)-(2.2.22)
and (2.2.17), to obtain

L1(g1) = ξM1 · ∇xc− T 2
1 [M2(ξ)s](M1(ξ)c)− G11(M1c, M2s, u, ξ) + O(ε),

L2(g2) = ξM2 · ∇xs− T 2
2 [M1(ξ)c](M2(ξ)s)− G21(M1c, M2s, u, ξ) + O(ε).

Observe that from Lemma 2.2.1, (2)), L1 and L2 are and invertible. This implies

g1 = (L1)
−1(ξM1 · ∇xv)− (L1)

−1(T 2
1 [M2(ξ)s](M1(ξ)c)) (2.2.23)

−(L1)
−1(G11(M1c, M2s, u, ξ)) + O(ε),

and

g2 = (L2)
−1(ξM2 · ∇xs)− (L2)

−1(T 2
2 [M1(ξ)c](M2(ξ)s)) (2.2.24)

−(L2)
−1(G21(M1c, M2s, u, ξ)) + O(ε).

Inserting (2.2.23) and (2.2.24) into the second and the fourth equations in (2.2.17), yield
the following coupled macroscopic system:



∂tc +
〈

ξ.∇x(L1)
−1(ξM1 · ∇xc)

〉
−
〈

ξ.∇x(L1)
−1(T 2

1 [M2(ξ)s](M1(ξ)c))
〉

−
〈

ξ.∇x(L1)
−1(G11(M1c, M2s, u, ξ))

〉
=
〈

G12(M1c, M2s, ξ)
〉
+ O(ε),

∂ts +
〈

ξ.∇x(L2)
−1(ξM2 · ∇xs)

〉
−
〈

ξ.∇x(L2)
−1(T 2

2 [M1(ξ)c](M2(ξ)s))
〉

−
〈

ξ.∇x(L2)
−1(G21(M1c, M2s, u, ξ))

〉
=
〈

G22(M1c, M2s, ξ)
〉
+ O(ε),

K−1u +
√

µ curl ω +∇x p = Q(c, s)g + F, ω−√µ curl u = 0, div u = 0.
(2.2.25)

The next lemma gives the calculations of the terms with the inverse of the operators
L1 and L2 appearing in system (2.2.25).

Lemma 2.2.3 (cf. [11]) Assume that the operators L1, L2, G11 and G21 are satisfy the assump-
tions above. Then, we have the following identities :〈

ξ.∇x(L1)
−1(ξM1 · ∇xc)

〉
= div x

(
〈ξ ⊗ θ1(ξ)〉 · ∇xc

)
,
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〈
ξ.∇x(L2)

−1(ξM2 · ∇xs)
〉
= div x

(
〈ξ ⊗ θ2(ξ)〉 · ∇xs

)
,

〈
ξ.∇x(L1)

−1(T 2
1 [M2(ξ)s](M1(ξ)c))

〉
= div x

〈
θ1(ξ)

M1(ξ)
cT 2

1 [M2(ξ)s](M1(ξ))

〉
,

〈
ξ.∇x(Li)

−1(Gi1(M1c, M2s, u, ξ))
〉
= div x

〈
θi(ξ)

Mi(ξ), ξ
Gi1(M1c, M2s, u, ξ)

〉
, i = 1, 2.

In addition, here we need the following identity〈
ξ.∇x(L2)

−1(T 2
2 [M1(ξ)c](M2(ξ)s))

〉
= div x

〈
θ2(ξ)

M2(ξ)
sT 2

2 [M1(ξ)c](M2(ξ))

〉
,

where θ1 and θ2 are given in Lemma 2.2.1.

Finally, thanks to system (2.2.25) and Lemma 2.2.3 we get the following macroscopic
system:

∂tc + div x (c α1(s) + Γ1(c, s, u)− dc · ∇xc)− H1(c, s) + O(ε) = 0,

∂ts + div x(s α2(c) + Γ2(c, s, u)− ds · ∇xs)− H2(c, s) + O(ε) = 0,

K−1u +
√

µ curl ω +∇x p = Q(c, s)g + F, ω−√µ curl u = 0, div u = 0,
(2.2.26)

where dc, ds, α1(s), α2(c), Γ1(c, s, u), Γ2(c, s, u), H1(c, s) and H2(c, s) are given by

dc = −
∫

V
ξ ⊗ θ1(ξ)dξ, ds = −

∫
V

ξ ⊗ θ2(ξ)dξ, (2.2.27)

α1(s) = −
∫

V

θ1(ξ)

M1(ξ)
T 2

1 [M2(ξ)s](M1(ξ))dξ, α2(c) = −
∫

V

θ2(ξ)

M2(ξ)
T 2

2 [M1(ξ)c](M2(ξ))dξ,

(2.2.28)

Γi(c, s, u) = −
∫

V

θi(ξ)

Mi(ξ)
Gi1(M1c, M2s, u, ξ)dξ, i = 1, 2, (2.2.29)

H1(c, s) =
∫

V
G12(M1c, M2s, ξ)dξ, H2(c, s) =

∫
V

G22(M1c, M2s, ξ)dξ. (2.2.30)

2.2.4 Derivation of cross-diffusion-Brinkman system

In this subsection, we consider the case where the set for velocity is the sphere of radius
r > 0, V = rSd−1 and x ∈ Ω ⊂ R2. We assume that the probability kernel T1

i is given by

T1
i =

σi

|V| , for i = 1, 2.

This implies

Li( f ) = − σi

|V|

(
f |V| − 〈 f 〉

)
, for i = 1, 2.

Observe that Mi(ξ) = 1
|V| satisfies (2.2.6). For this choice of Mi, θi(ξ) = − ξ

σi |V| is a
solution of Li(θi(ξ)) = ξMi(ξ), for i = 1, 2. Now, we let T2

1 [g] and T2
2 [g] such that

T2
1 [g] = a12

β1

|V| ξ.∇xg and T2
2 [g] = a21

β2

|V| ξ.∇xg,
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where β1 = σ1
r2 d |V| and β2 = σ2

r2 d |V|. It follows

T 2
1 [M2s](M1) = −a12

β1M2

|V|2 ξ · ∇xs and T 2
2 [M1c](M2) = −a21

β2M1

|V|2 ξ · ∇xc.

Therefore, we get

α1(s) = −
β1 a12

σ1|V|2

( ∫
V

ξ ⊗ ξdξ

)
· ∇xs, = −a12∇xs,

and

α2(v) = −
β2 a21

σ2|V|2

( ∫
V

ξ ⊗ ξdξ

)
· ∇xc = −a21∇xc.

Moreover, we use (2.2.27) to obtain

dc =
1

σ1|V|

( ∫
V

ξ ⊗ ξdξ

)
=

r2

dσ1
I, ds =

1
σ2|V|

( ∫
V

ξ ⊗ ξdξ

)
=

r2

dσ2
I. (2.2.31)

Now, we define Gi,1, for i = 1, 2 by
G1 1(M1c, M2s, u, ξ) =

dσ1

r2|V|

(
M1 c u−M1(2a11c + d̃c(c)) − a12M2s

)
ξ. ∇xc,

G2 1(M1c, M2s, u, ξ) =
dσ2

r2|V|

(
M2 s u− a21M1c − M2(2a22s + d̃s(s))

)
ξ. ∇xs,

(2.2.32)
where d̃c(c) and d̃s(s) are a nonlinear positive functions. It is not difficult to see that∫

V Gi1dξ = 0 and therefore satisfies condition (2.2.9) (recall that 〈ξMi〉 = 0), for i = 1, 2.
Next, we use the definitions of Γ1 and Γ2 in (2.2.29), to obtain from (2.2.32) and (2.2.31)
(recall that θi = − ξ

σi |V| )

Γ1(c, s, u) = d
r2|V|2

( ∫
V ξ ⊗ ξdξ

)
·
(

cu− (2a11c + a12s + d̃c(c))∇xc
)

= cu− (2a11c + a12s + d̃c(c))∇xc,
(2.2.33)

Γ2(c, s, u) = d
r2|V|2

( ∫
V ξ ⊗ ξdξ

)
·
(

su− (a21c + 2a22s + d̃s(s))∇xs
)

= su− (a21c + 2a22s + d̃s(s))∇xs.
(2.2.34)

Now collecting the previous results with div x u = 0 and (2.2.26), we arrive to the macro-
scopic cross-diffusion-Brinkman system of the order O(ε)

ct + u · ∇c− div x

(
(Dc(c) + 2a11c + a12s)∇xc + a12c∇xs

)
= H1(c, s) + O(ε),

st + u · ∇s− div x

(
(Ds(s) + a21c + 2a22s)∇xs + a21s∇xc

)
= H2(c, s) + O(ε),

K−1u +
√

µ curl ω +∇x p = Q(c, s)g + F, ω−√µ curl u = 0, div xu = 0,
(2.2.35)

where Dc(c) = r2

d σ1
+ d̃c(c) and Ds(s) = r2

d σ2
+ d̃s(s). In order to derive cross-diffusion-

Brinkman system with the explicit form of Hc, Hs, we define the interactions operators
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G12 and G22 by 
G1 2(M1c, M2s , ξ) =

H1(c, s)
|V| ,

G2 2(M1c, M2s , ξ) =
H2(c, s)
|V| .

(2.2.36)

Finally, we use (2.2.30) to deduce H1 = Hc and H2 = Hs. Note that we can choose
different explicit forms depending on the field of interest (for example, Lotka-Voltera
reaction terms as in [6]).

2.3 Mathematical analysis of the cross-diffusion-Brinkman sys-
tem

Before stating our result concerning the weak solutions, we collect some preliminary ma-
terial, including relevant notations and conditions imposed on the data of our problem.
Let Ω be a bounded, open subsets of R3 with a smooth boundary ∂Ω; η is the unit out-
ward normal to Ω on ∂Ω. Next, |Ω| is the Lebesgue measure of Ω. We denote by H1(Ω)
the Sobolev space of functions u : Ω → R for which u ∈ L2(Ω) and ∇xu ∈ L2(Ω; R3).
For 1 ≤ p ≤ +∞, ‖ · ‖Lp(Ω) is the usual norm in Lp(Ω); then

Lp
+(Ω) = {u : Ω −→ R+ measurable and

∫
Ω
|u(x)|p dx < +∞},

L∞
+(Ω) = {u : Ω −→ R+ measurable and sup

x∈Ω
|u(x)| < +∞}.

If X is a Banach space, a < b and 1 ≤ p ≤ +∞, Lp(a, b; X) denotes the space of all
measurable functions u : (a, b) −→ X such that ‖ u(·) ‖X belongs to Lp(a, b).
Next T is a positive number and

Ωt := Ω× (0, t) and Σt := ∂Ω× (0, t),

for 0 < t ≤ T.
Regarding the permeability tensor, we suppose that K ∈ [C(Ω̄)]3×3 is symmetric and
uniformly positive definite. Moreover, there exists C > 0 such that

vtK−1(x)v ≥ C|v|2 ∀ v ∈ R3, ∀ x ∈ Ω. (2.3.1)

The diffusivities are assumed positive, coercive, and continuous

Di : [0, 1] 7→ R+ is continuous, 0 < Dmin ≤ Di(u) ≤ Dmax < ∞, u ∈ R, (2.3.2)

for i ∈ {s, c}. In addition we assume that Q is a continuous function and there exists
constant a CQ > 0 such that

|Q(c, s)| ≤ CQ(1 + |c|+ |s|) for all c, s ∈ R. (2.3.3)

Initial data are assumed nonnegative and in L2

c0, s0 ≥ 0, c0, s0 ∈ L2(Ω). (2.3.4)

In the proof of the existence of the weak solution, we will use the following assumption
(ellipticity condition)

8a11a21 ≥ a2
12 and 8a22a12 ≥ a2

21. (2.3.5)
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Next, we consider the kernel of the bilinear form
∫

Ω
q div u dx, that is

X := {v ∈ H0(div; Ω) :
∫

Ω
q div v dx = 0, ∀q ∈ L2

0(Ω)}

= {v ∈ H0(div; Ω) : div v = 0 a.e. in Ω}.

We endow the space H(curl; Ω) with the following µ-dependent norm:

‖z‖2
H(curl;Ω) := ‖z‖2

0,Ω + µ‖ curl z‖2
0,Ω.

Moreover, we recall the following inf-sup condition (see for e.g. [50] for more details):
there exists CΩ > 0 only depending on Ω, such that

sup
v∈H(div;Ω)

v 6=0

∣∣∣∣∣
∫

Ω
q div v dx

∣∣∣∣∣
‖v‖H(div;Ω)

≥ CΩ‖q‖0,Ω ∀q ∈ L2
0(Ω). (2.3.6)

Now we define what we mean by weak solutions of the system (2.1.3). We also supply
our main existence result.

Definition 2.3.1 We say that (c, s, u, ω, p) is a weak solution to problem (2.1.3), if c and s are
nonnegative,

c, s ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1(Ω))

u ∈ L2(0, T; H(div ; Ω)), ω ∈ L2(0, T; H(curl; Ω)), p ∈ L2(0, T; L2
0(Ω))

and ∫ T

0
〈∂tc, ϕc〉dt +

∫∫
ΩT

[(
Dc(c) + 2 a11 c + a12 s

)
∇xc + a12 c∇xs− cu

]
·∇x ϕc dx dt

=
∫∫

ΩT

Hc(c, s)ϕc dx dt,∫ T

0
〈∂ts, ϕs〉dt +

∫∫
ΩT

[(
Ds(s) + a21 c + 2a22 s

)
∇xs + a21 s∇xc− su

]
·∇x ϕs dx dt

=
∫∫

ΩT

Hs(c, s)ϕs dx dt,∫∫
ΩT

K−1u · v dx dt +
√

µ
∫∫

ΩT

curl ω · v dx dt−
∫∫

ΩT

p divx v dx dt

=
∫∫

ΩT

(Q(c, s)g + F) · v dx dt,

√
µ
∫∫

ΩT

curl z · u dx dt−
∫∫

ΩT

ω · z dx dt = 0,

−
∫∫

ΩT

q divx u dx dt = 0,

for all ϕc, ϕs ∈ L2(0, T; W1,∞(Ω)), v ∈ L2(0, T; H0(div; Ω)), z ∈ L2(0, T; H0(curl; Ω)),
q ∈ L2(0, T; L2

0(Ω)). 〈·, ·〉 denotes the duality pairing between W1,∞(Ω) and (W1,∞(Ω))′.

Theorem 2.3.1 Assume conditions (2.3.1), (2.3.2), (2.3.5) and (2.3.6) hold. If c0 ∈ L2
+(Ω),

s0 ∈ L2
+(Ω), then the problem (2.1.3) possesses a weak solution.
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To prove Theorem 2.3.1, we first prove existence of solutions to the approximate problem
(2.3.7) below by applying the Schauder fixed-point theorem (in an appropriate functional
setting). Then, having proved existence for the aproximate system, the final goal is to
send the regularization parameter ε to zero to fabricate weak solutions of the original
systems (2.1.3). Convergence is achieved by means of a priori estimates and compactness
arguments.

Remark 2.3.1 Note that a major difficulty for our system (2.1.3) is the strong coupling in the
highest derivatives. Therefore, standard parabolic theory is not directly applicable to our system
due to the cross-diffusion-Brinkman terms. We point out that this system is strongly nonlinear
and so no maximum principle applies. Moreover, we have not been able to prove uniqueness of
weak solutions because of the presence of nonlinear lower-order terms (cross-diffusion terms).

2.3.1 Existence of solutions for the approximate problems

This subsection is devoted to proving existence of solutions to the approximate problem
(2.3.7) below of system (2.1.3). The existence proof is based on the Shauder fixed-point
theorem, a priori estimates, and the compactness method. The approximation systems
read for (t, x) ∈ (0, T]×Ω:


ct + u · ∇xc− div x

[(
Dc(c) + 2 a11 f+ε (c) + a12 f+ε (s)

)
∇xc + a12 f+ε (c)∇xs

]
= Hc,ε(c+, s+),

st + u · ∇xs− div x

[(
Ds(s) + a21 f+ε (c) + 2a22 f+ε (s)

)
∇xs + a21 f+ε (s)∇xc

]
= Hs,ε(c+, s+),

K−1u +
√

µ curl ω +∇x p = Q(s, c)g + F, ω−√µ curl u = 0, div xu = 0,
(2.3.7)

subject to the boundary conditions and initial data given by (2.1.4). Herein, ε > 0 is a small
number, 

Hc,ε(a) =
Hc

1 + ε |Hc|
and Hs,ε(a) =

Hs

1 + ε |Hs|
,

fε(a) =
a

1 + ε |a| and b+ = max (0, b) for any a, b ∈ R.

Note that under condition (2.3.5), the matrix

M(c, s) =


(

2 a11 f+(c) + a12 f+(s)
)

Id3
1
2

(
a12 f+(c) + a21 f+(s)

)
Id3

1
2

(
a12 f+(c) + a21 f+(s)

)
Id3

(
a21 f+(c) + 2 a22 f+(s)

)
Id3


is uniformly nonnegative. Indeed, its characteristic polynomial factors out

P(λ) =
1
43

(
4λ2 − 4

(
2a11 f+(c) + a12 f+(s) + a21 f+(c) + 2a22 f+(s)

)
λ + R

)3

.

Setting f+(s) = κ f+(c), κ ≥ 0, one gets R = 4 f+(c)2Q(κ), where

Q(κ) = (8a11a21 − a2
12) + (16a11a22 + 2a12a21)κ + (8a22a12 − a2

21)κ
2.

We conclude that if 8a11a21 ≥ a2
12 and 8a22a12 ≥ a2

21, then M(c, s) is uniformly nonnegative. Hence
the utility of assumption (2.3.5). (see [25] for more details). We shall frequently use this to prove
the existence (and nonnegativity) of weak solutions.
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2.3.2 Existence result to the fixed problem

In this subsection, we omit the dependence of the solutions on the parameter ε. We prove, for each
fixed ε > 0, the existence of solutions to the fixed problem (2.3.7), by applying the Schauder fixed-
point theorem. Since we use Schauder fixed-point theorem, we need to introduce the following
closed subset of the Banach space L2(ΩT , Rn):

A = {U = (c, s) ∈ L2(ΩT , R2) : ‖U‖L∞(0,T;L2(Ω,R2))∩L2(0,T;H1(Ω,R2)) ≤ CA}, (2.3.8)

where CA > 0 is a constant that will be defined below. With (c, s) ∈ A fixed, let (c, s, u, ω, p) be
the unique solution of the system in ΩT

ct + u · ∇xc− div x

[(
Dc(c) + 2 a11 f+ε (c) + a12 f+ε (s)

)
∇xc + a12 f+ε (c)∇xs

]
= Hc,ε(c+, s+),

st + u · ∇xs− div x

[(
Ds(s) + a21 f+ε (c) + 2a22 f+ε (s)

)
∇xs + a21 f+ε (s)∇xc

]
= Hs,ε(c+, s+),

K−1u +
√

µ curl ω +∇x p = Q(c, s)g + F, ω−√µ curl u = 0, div xu = 0.
(2.3.9)

2.3.3 The fixed-point method

Now, we introduce a map L : A → A such that L(c, s) = (c, s), where (c, s) solve (2.3.9). By using
the Schauder fixed-point theorem, we prove that the map L have a fixed point for (2.3.9).

We start with the following result where the proof can be found in [50] Theorem 1.3:

Theorem 2.3.2 Let (X , 〈·, ·〉X ) be a Hilbert space. LetA : X ×X → R be a bounded symmetric bilinear
form, and let G : X → R be a bounded functional. Assume that there exists β̄ > 0 such that

sup
y∈X
y 6=0

A(x, y)
‖y‖X

≥ β̄ ‖x‖X ∀ x ∈ X .

Then, there exists a unique x ∈ X , such that

A(x, y) = G(y) ∀ y ∈ X .

Moreover, there exists C > 0, independent of the solution, such that

‖x‖X ≤ C‖G‖X ′ .

Observe that from Brinkman equation in (2.3.9) we solve the following problem: Find (u, ω) ∈
X×H(curl; Ω) such that∫

Ω
K−1u · v dx +

√
µ
∫

Ω
curl ω · v dx =

∫
Ω
(Q(c, s)g + F) · v dx, ∀v ∈ X,

√
µ
∫

Ω
curl z · u dx−

∫
Ω

ω · z dx = 0, ∀z ∈ H0(curl; Ω).

Next we exploit Theorem 2.3.2 and we work exactly as in the proofs of [1, Theorem 2.2 and Corol-
lary 2.1] to get the following lemma for a fixed (c, s) ∈ A and for any t > 0.

Lemma 2.3.1 Assume that (c, s) ∈ A. Then, the variational problem∫
Ω

K−1u · v dx +
√

µ
∫

Ω
curl ω · v dx−

∫
Ω

p divx v dx =
∫

Ω
(Q(c, s)g + F) · v dx,

√
µ
∫

Ω
curl z · u dx−

∫
Ω

ω · z dx = 0,

−
∫

Ω
q divx u dx = 0,

(2.3.10)
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admits a unique solution (u, ω, p) ∈ H(div; Ω)×H(curl; Ω)× L2
0(Ω). Moreover, there exists C > 0

independent of µ such that

‖u‖H(div;Ω) + ‖ω‖H(curl;Ω) + ‖p‖0,Ω ≤ C
(
(1 + ‖c‖0,Ω + ‖s‖0,Ω)‖g‖∞,Ω + ‖F‖0,Ω

+‖u∂‖−1/2,∂Ω + ‖ω∂‖−1/2,∂Ω
)
.

(2.3.11)

Now, let us show that L is a continuous mapping. For this, letting (c`, s`)` be sequence inA. Next,
we let (c, s) ∈ A be such that (c`, s`)` → (c, s) in L2(ΩT , R2) as `→ ∞. Define (c`, s`) = L(c`, s`).
The goal is to show that (c`, s`) converges to L(c, s) in L2(ΩT , R3). Next, we need the following
lemma:

Lemma 2.3.2 The solution (c`, s`) to system (2.3.9) satisfies:

(i) The sequence (c`, s`)` is bounded in L2(0, T; H1(Ω, R2)) ∩ L∞(0, T; L2(Ω, R2)).

(ii) The sequence (c`, s`)` is relatively compact in L2(ΩT , R3).

Proof 2.3.1 (i) We multiply the first and the second in (2.3.9) by c` and s` respectively, integrate over Ω
and using the uniform nonnegativity of M(c`, s`), yields

1
2

d
dt

∫
Ω

(
|c`|2 + |s`|2

)
dx + Dmin

∫
Ω

(
|∇xc`|2 + |∇xs`|2

)
dx

+
∫

Ω

[
2 a11 |∇xc`|2 + a12∇xc` · ∇s` + a21 |∇s`|2

]
f+ε (c`)dx

+
∫

Ω

[
a12 |∇xc`|2 + a21∇xc` · ∇xs` + 2 a22 |∇xs`|2

]
f+ε (s`)dx

=
1
2

d
dt

∫
Ω

(
|c`|2 + |s`|2

)
dx + Dmin

∫
Ω

(
|∇xc`|2 + |∇xs`|2

)
dx

+
∫

Ω
(∇xc`,∇xs`)T M(c`, s`) (∇xc`,∇xs`)dx =

∫
Ω

Hc,ε(c+` , s+` )c` dx +
∫

Ω
Hs,ε(c+` , s+` )s` dx

≤ C
∫

Ω

(
|c`|2 + |s`|2

)
dx,

(2.3.12)
for some constant C > 0. Herein, we have used assumption (2.3.2) and∫

Ω
c` u · ∇xc` dx +

∫
Ω

s` u · ∇xs` dx =
1
2

∫
Ω

u · ∇x(c`)2 dx +
1
2

∫
Ω

u · ∇x(s`)2 dx = 0.

In view of (2.3.5) (recall that the matrix M(c`, s`) is nonnegative under condition (2.3.5)) and Gronwall’s
inequality it follows from (2.3.12) that,

sup
t∈(0,T)

∫
Ω
(|c`|2 + |s`|2

)
dx ≤ exp(CT)‖c0 + s0‖L2(Ω), (2.3.13)

which proves the first part of (i).
From (2.3.12) and (2.3.13) we may also conclude that,∫ ∫

ΩT

(|∇xc`|2 + |∇xs`|2)dx dt ≤ T exp(CT)
Dmin ‖c0 + s0‖L2(Ω), (2.3.14)

yielding (i).
(ii) Finally multiplying the first, the second and the third equation (2.3.9) by ϕc, ϕs ∈ L2(0, T; H1(Ω)),

respectively and using the boundedness of f+ε , Hc,ε, Hs,ε, and (2.3.14) there exists a constant C(ε) > 0
such that∣∣∣∣∫ T

0
〈∂tc`, ϕc 〉 dt

∣∣∣∣+ ∣∣∣∣∫ T

0
〈∂ts`, ϕs 〉 dt

∣∣∣∣ ≤ C(ε)
(
‖ϕc‖L2(0,T;H1(Ω)) + ‖ϕs‖L2(0,T;H1(Ω))

)
, (2.3.15)

so we get (ii). Then, (ii) is a consequence of (i) and the uniform boundedness (2.3.15) of (c`, s`)` in
L2(0, T; (H1(Ω, R2))′)
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Remark 2.3.2 Note that it is easy to deduce from Lemma 2.3.2 that the constant CA > 0 (consult (2.3.8))
is defined as follows:

CA =
(Dmin + T) exp(CT)

Dmin ‖c0 + s0‖L2(Ω)

for some constant C > 0.

From Lemma 2.3.2, there exist functions (c`, s`) ∈ L2(0, T; H1(Ω, R2)) such that, up to extract-
ing subsequences if necessary,

(c`, s`)→ (c, s) in (L2(ΩT))
2 strongly,

and from this the continuity of L on A follows. We observe that, from Lemma 2.3.2, L(A) is
bounded in the set

E =
{

u ∈ L2(0, T; H1(Ω, R2)) : ∂tu ∈ L2(0, T; (H1(Ω, R2))′)
}

. (2.3.16)

By a standard Aubin-Lions-Simon compactness lemma (see for e.g. [85],Theorem 5 or [74]),
E ↪→ L2(ΩT , R2) is compact, thus L is compact. Now, by the Schauder fixed point theorem, the
operator L has a fixed point (cε, sε) such that L(cε, sε) = (cε, sε). Then there exists a solution
(cε, sε, uε, ωε, pε) of∫ T

0
〈∂tcε, ϕc〉dt +

∫∫
ΩT

[(
Dc(cε) + 2 a11 f+ε (cε) + a12 f+ε sε)

)
∇xcε + a12 f+ε (cε)∇xs

−cεuε

]
·∇x ϕc dx dt =

∫∫
ΩT

Hc,ε(c+ε , s+ε )ϕc dx dt,∫ T

0
〈∂tsε, ϕs〉dt +

∫∫
ΩT

[(
Ds(sε) + a21 f+ε (cε) + 2a22 f+ε (sε)

)
∇xsε + a21 f+ε (sε)∇xcε

−cεuε

]
·∇x ϕs dx dt =

∫∫
ΩT

Hs,ε(c+ε , s+ε )ϕs dx dt,∫∫
ΩT

K−1uε · v dx dt +
√

µ
∫∫

ΩT

curl ωε · v dx dt−
∫∫

ΩT

pε divx v dx dt

=
∫∫

ΩT

(Q(cε, sε)g + F) · v dx dt,

√
µ
∫∫

ΩT

curl z · uε dx dt−
∫∫

ΩT

ωε · z dx dt = 0,

−
∫∫

ΩT

q divx uε dx dt = 0,

(2.3.17)

for all ϕc, ϕs ∈ L2(0, T; H1(Ω)), v ∈ L2(0, T; H0(div; Ω)), z ∈ L2(0, T; H0(curl; Ω)),
q ∈ L2(0, T; L2

0(Ω)).

2.3.4 Existence of weak solutions

Note that from Subsection 2.3.3, we know there exist sequences (cε, sε, uε, ωε, pε)ε>0 solution to
(2.3.7). We have now the following series of a priori estimates.

Lemma 2.3.3 Assume conditions (2.3.1), (2.3.2) and (2.3.5) hold. If c0, s0 ∈ L2
+(Ω) then the solution

(cε, sε, uε, ωε, pε) is nonnegative. Moreover, there exist constants c1, . . . , c5 > 0 not depending on ε such
that

‖(cε, sε)‖L∞(0,T;L2(Ω,R2)) ≤ c1, (2.3.18)

‖Hc,ε(cε, sε)‖L1(ΩT)
+ ‖Hs,ε(cε, sε)‖L1(ΩT)

≤ c2, (2.3.19)

‖∇xcε‖L2(ΩT)
+ ‖∇xsε‖L2(ΩT)

≤ c3, (2.3.20)

‖uε‖H(div;Ω) + ‖ωε‖H(curl;Ω) + ‖pε‖0,Ω ≤ c4, (2.3.21)

‖∂tcε‖L2(0,T;(W1,∞(Ω))′) + ‖∂tsε‖L2(0,T;(W1,∞(Ω))′) ≤ c5. (2.3.22)
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Proof.
In the weak formulation (2.3.17) we take ϕc = −c−ε , ϕs = −s−ε , and we integrate over Ω

instead ΩT , we get from (2.3.2) and (2.3.5)

1
2

d
dt

∫
Ω

(∣∣c−ε ∣∣2 + ∣∣s−ε ∣∣2 )dx ≤ 0. (2.3.23)

Herein, we used

−
∫

Ω
c−ε uε · ∇xcε dx−

∫
Ω

s−ε uε · ∇xsε dx =
1
2

∫
Ω

uε · ∇x(c−ε )
2 dx +

1
2

∫
Ω

uε · ∇x(s−ε )
2 dx = 0.

This yields the nonnegativity of (cε, sε).
By the (weak) lower semicontinuity properties of norms, the estimates (2.3.13) and (2.3.14) hold
with (c`, c`) replaced by (cε, sε). Moreover, the constants c1, c3 are independent of ε (consult the
proof of Lemma 2.3.2). Observe that for j = c, s∣∣Hj,ε(cε, sε)

∣∣ ≤ C(|cε|2 + |sε|2),

for some constant C > 0. Using this, (2.3.19) is a consequence of (2.3.18).
Next, we use (2.3.18) and Lemma 2.3.1 to deduce (2.3.21). Finally using the weak formulation
(2.3.17), we deduce from (2.3.18) and (2.3.20): for all ϕc ∈ L2(0, T; W1,∞(Ω))∣∣∣∣∫ T

0
〈∂tcε, ϕc〉 dt

∣∣∣∣
≤ Dmax‖∇xcε‖L2(ΩT)

‖∇x ϕc‖L2(ΩT)
+ ‖cε‖L∞(0,T;L2(Ω))‖u`‖L2(ΩT)

‖∇x ϕc‖L2(0,T;W1,∞(Ω))

+C
(
‖cε‖L∞(0,T;L2(Ω)) + ‖sε‖L∞(0,T;L2(Ω))

)
×
(

u` + ‖∇xsε‖L2(ΩT)

)
‖∇x ϕc‖L2(0,T;L∞(Ω))

+C′
(

1 + ‖cε‖L∞(0,T;L2(Ω)) + ‖sε‖L∞(0,T;L2(Ω))

)
×
(

1 + ‖cε‖L2(ΩT)
+ ‖sε‖L2(ΩT)

)
‖ϕc‖L2(0,T;L∞(Ω))

≤ C′′‖ϕc‖L2(0,T;W1,∞(Ω)),
(2.3.24)

for some constant C, C′, C′′ > 0 independent of ε. From this we deduce the bound

‖∂tcε‖L2(0,T;(W1,∞(Ω))′) ≤ C′′. (2.3.25)

Reasoning along the same lines for cε yields (2.3.25) for sε .

In view of Lemma 2.3.3 and Aubin-Lions-Simon compactness lemma, we can assume there
exist limit functions (c, s) such that as ε→ 0 the following convergences hold (modulo extraction
of subsequences, which we do not bother to relabel):

(cε, sε)→ (c, s) a.e. in ΩT , strongly in L2(ΩT , R2) and weakly in L2(0, T; H1(Ω, R2)),

Hj,ε(cε, sε)→ Hj,c(c, s) a.e. in ΩT and strongly in L1(ΩT),

uε → u weakly in L2(0, T; H0(div; Ω)),

ωε → ω weakly in L2(0, T; H0(curl; Ω)),

pε → p weakly in L2(0, T; L2
0(Ω)).

(2.3.26)



28
Chapter 2. Kinetic-fluid derivation and mathematical analysis of

cross-diffusion-Brinkman system

for j = c, s. Additionally, (∂tcε, ∂tsε, )→ (∂tc, ∂ts) weakly in L2(0, T; (W1,∞(Ω, R2))′) as ε→ 0.
An application of Young and Hölder inequalities we get

‖ fε(cε)− c‖L2(ΩT)
≤
√

2‖cε − c‖L2(ΩT)
+
√

2‖ εcεc
1 + εcε

‖L2(ΩT)

≤
√

2‖cε − c‖L2(ΩT)
+
√

2‖ εcεc
(1 + εcε)2/3(εcε)1−2/3 ‖L2(ΩT)

≤
√

2‖cε − c‖L2(ΩT)
+
√

2ε2/3‖c2/3
ε c‖L2(ΩT)

≤
√

2‖cε − c‖L2(ΩT)
+
√

2ε2/3‖cε‖2/3
L∞(0,T;L2(Ω))

×‖c‖L2(0,T;L6(Ω)).

(2.3.27)

Thanks to the Sobolev embedding (H1(Ω) ⊂ L6(Ω)) we deduce from (2.3.27)

fε(cε)→ c a.e. in ΩT and strongly in L2(ΩT). (2.3.28)

In the same way we get

fε(sε)→ s a.e. in ΩT and strongly in L2(ΩT). (2.3.29)

Finally, by passing to the limit ε→ 0 in the weak formulation (2.3.17), with ϕc, ϕs ∈ L2(0, T; W1,∞(Ω)),
v ∈ L2(0, T; H0(div; Ω)), z ∈ L2(0, T; H0(curl; Ω)) and q ∈ L2(0, T; L2

0(Ω)), we obtain in this way
that the limit (c, s, u, ω, p) is a solution of system problem (2.1.3) in the sense of Definition 2.3.1.

2.4 Numerical analysis of micro-macro cross-diffusion-Brinkman
system

In this section we develop an asymptotic preserving scheme (AP). We propose a numerical scheme
uniformly stable along the transition from kinetic to macroscopic regimes. Inspired by the con-
tinuous derivation, we use the time semi-implicit discretization for the micro-macro formula-
tion (2.2.17) which is equivalent to the kinetic-fluid model (2.2.1). After the full discretization of
(2.2.17), we show various numerical tests to validate the proposed approach.

2.4.1 A time semi-implicit discretization

First, we present a time discretization to our coupled system (2.2.17). We denote by ∆t a fixed time
step and by tk := k∆t a discrete time with k ∈N. The approximations of c(t, x), s(t, x), g1(t, x, ξ),
g2(t, x, ξ), u(t, x), ω(t, x) and p(t, x) at the time step tk are denoted by ck := c(tk, x), sk := s(tk, x),
gk

i := gi(tk, x, ξ), uk := u(tk, x), ωk := ω(tk, x) and pk := p(tk, x) for i = 1, 2. The semi-implicit
scheme for microscopic equations in system (2.2.17) reads



gk+1
1 − gk

1
∆t

+
1
ε2 ξM1 · ∇xck +

1
ε
(I − PM1)(ξ · ∇xgk

1) =
1
ε2L1(gk+1

1 )

+
1
ε2 T

2
1 [M2(ξ)sk](M1(ξ)ck) +

1
ε
T 2

1 [M2(ξ)sk](gk
1)

+
1
ε2 G11(M1(ξ)ck, M2(ξ)sk, uk, ξ) +

1
ε
(I − PM1)G12(M1(ξ)ck, M2(ξ)sk, ξ),

gk+1
2 − gk

2
∆t

+
1
ε2 ξM2 · ∇xsk +

1
ε
(I − PM2)(ξ · ∇xgk

2) =
1
ε2L2(gk+1

2 )

+
1
ε2 T

2
2 [M1(ξ)ck](M2(ξ)sk) +

1
ε
T 2

2 [M1(ξ)ck](gk
2)

+
1
ε2 G21(M1(ξ)ck, M2(ξ)sk, uk, ξ) +

1
ε
(I − PM2)G22(M1(ξ)ck, M2(ξ)sk, ξ).

(2.4.1)
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In the hydrodynamic equations of system (2.2.17), we take g1 and g2 at the time tk+1. The result is

ck+1 − ck

∆t
+ 〈ξ · ∇xgk+1

1 〉 = 〈G12(M1(ξ)ck, M2(ξ)sk, ξ)〉,

sk+1 − sk

∆t
+ 〈ξ · ∇xgk+1

2 〉 = 〈G22(M1(ξ)ck+1, M2(ξ)sk, ξ)〉.

K−1uk+1 +
√

µ curl ωk+1 +∇x pk+1 = Q(ck+1, sk+1)g + F,

ωk+1 −√µ curl uk+1 = 0, div xuk+1 = 0.

(2.4.2)

Proposition 2.4.1 The numerical scheme given by (2.4.1)-(2.4.2) is consistent with equations (2.2.25)
when ε goes to 0.

Proof 2.4.1 The asymptotic behavior of scheme (2.4.1)-(2.4.2) is obtained similarly as the continuous case.
Since the operator −Li is self-adjoint and positive, the operator (I − ∆t

ε2 Li) is also invertible for all ∆t ≥ 0
for i = 1, 2. Hence (2.4.1) gives

gk+1
1 =

(
I − ∆t

ε2 L1

)−1[
gk

1 +
∆t
ε2

(
T 2

1 [M2sk](M1ck + εgk
1) + G11(M1ck, M2sk, uk, ξ)

−ξM1 · ∇xck)+ ∆t
ε
(I − PM1)

(
G12(M1ck, M2sk, ξ)− ξ · ∇xgk

1
)] (2.4.3)

and

gk+1
2 =

(
I − ∆t

ε2 L2

)−1[
gk

2 +
∆t
ε2

(
T 2

2 [M1ck](M2(ξ)sk + εgk
2) + G21(M1ck, M2sk, uk, ξ)

−ξM2 · ∇xsk)+ ∆t
ε
(I − PM2)

(
G22(M1ck, M2sk, ξ)− ξ · ∇xgk

2
)]

.

(2.4.4)

We use the limited development with respect to ε to get
(

I− ∆t
ε2 Li

)−1
= − ε2

∆tL
−1
i +O(ε3), for i = 1, 2

and the fact that L1 and L2 are linear and invertible. Then, we develop the right hand side of (2.4.3) and
(2.4.4) with regard to ε when ε→ 0 and we take the same order of ε. We have:

gk+1
1 = L−1

1

(
ξM1 · ∇xck − T 2

1 [M2sk](M1ck)− G11(M1ck, M2sk, uk, ξ)

)
+ O(ε),
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gk+1
2 = L−1
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(
ξM2 · ∇xsk − T 2

2 [M1ck](M2sk)
)
− G21(M1ck, M2sk, uk, ξ)

)
+ O(ε).

Inserting gk+1
1 and gk+1

2 into (2.4.2), we obtain

ck+1 − ck

∆t
+
〈

ξ · ∇xL−1
1
[
ξM1 · ∇xck − T 2

1 [M2sk](M1ck)− G11(M1ck, M2sk, uk, ξ)
]〉

=
〈

G12(M1ck, M2sk, ξ)
〉
+ O(ε),

(2.4.5)

and

sk+1 − sk

∆t
+
〈

ξ · ∇xL−1
2
[
ξM2 · ∇xsk − T 2

2 [M1ck](M2sk)− G21(M1ck, M2sk, uk, ξ)
]〉

=
〈

G22(M1ck+1, M2sk, ξ)
〉
+ O(ε),

(2.4.6)

which is consistent with system (2.2.25) when ε goes to 0.
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2.4.2 Full discretization

In this subsection, we present our method in one-dimensional case into the domain [−a, a] for
fixed a ∈ R. Let T = {Kj, j = 1, . . . , Nx} be an admissible mesh in the meaning of Definition 5.5
page 125 in Ref. [46]. The control volume is given by Kj =]xj− 1

2
, xj+ 1

2
[ with xj =

1
2 (xj− 1

2
+ xj+ 1

2
)

and its length is denoted by hj = xj+ 1
2
− xj− 1

2
for j = 1, . . . , Nx. For the velocity space, we

consider ξ` = ξmin + `∆ξ, for ` = 0, ..., Nξ − 1 where ∆ξ = 1
Nξ

(ξmax − ξmin) with ξmax = −ξmin.
We shall assume that g = F = 0. Thus, the fluid velocity is a given function depending only on
time, namely u(t) = ∂x p. The methodology is as follow: the macroscopic equations in (2.4.2) are
computed in the control volume Kj while the microscopic equations in (2.4.1) should be computed
in the interface of Kj. Precisely, the macroscopic densities are as follows

c(tk, x)|Kj ≈ ck
j , s(tk, x)|Kj ≈ sk

j ,

and the microscopic ones are given by

g1(tk, xj+ 1
2
, ξ`)|∂Kj

≈ gk
1,j+ 1

2 ,`
, g2(tk, xj+ 1

2
, ξ`)|∂Kj

≈ gk
2,j+ 1

2 ,`

for j = 1, ..., Nx and ` = 1, ..., Nξ . Now, we integrate the macroscopic equations in (2.4.2) over the
control volume Kj, we approximate the time derivatives by differential quotients and using an
upwind choice for g1 and g2 to arrive to

ck+1
j −ck

j
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〈
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〉
,

pk
j+1−pk

j
hj

= uk.

(2.4.7)

For the microscopic equations in (2.4.1), we compute the unknowns functions g1 and g2 in the
interface of Kj (or integrating over the control volume Ij+ 1

2
):
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(2.4.8)

In the following proposition, we show that our scheme proposed in the micro-macro formulation
(2.4.8)-(2.4.7) is uniformly stable along the transition from kinetic to macroscopic regimes.
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Proposition 2.4.2 The time and space approximations (2.4.8)-(2.4.7) of the micro-macro formulation in
the limit (ε goes to zero), satisfy the following discretization:
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(2.4.9)
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(2.4.10)
which is consistent with system (2.2.25).

2.4.3 Boundary conditions

For the numerical solution of the kinetic equation (2.2.1), the following inflow boundary condi-
tions are usually prescribe for the distribution functions f1 and f2:

fi(t, xmin, ξ) = fi,l(ξ), ξ > 0 fi(t, xmax, ξ) = fi,r(ξ), ξ < 0, for i = 1, 2.

We shall denote w1 = c and w2 = s. The inflow boundary conditions can be rewritten in the
micro-macro formulation by

wi(t, x0)Mi +
ε

2
(gi(t, x 1

2
, ξ) + gi(t, x− 1

2
, ξ)) = fi,l(ξ), ξ > 0,
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ε

2
(gi(t, xNx+

1
2
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2
, ξ)) = fi,r(ξ), ξ < 0,

for i = 1, 2. For the other velocities, we consider the following artificial Neumann boundary
conditions:
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2
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2
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1
2
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2
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for i = 1, 2. Furthermore, the ghost points can be computed for i = 1, 2 as follows:
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2
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(2.4.11)

gk+1
i,Nx+

1
2 ,`


2
ε ( fi,r(ξ`)− wk+1

i,Nx
Mi)− gk+1

i,Nx− 1
2
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(2.4.12)
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It then follows from (2.4.7) that for i = 1, 2 :
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εh0

< ξ+` Mi,` >)wk+1
i,0 = wk

i,0 −
∆t
h0

〈
(ξ` + ξ+` − ξ−` )gk+1

i, 1
2 ,`
− 2ξ+`

ε fi,l(ξ`)
〉

+∆t
〈

Gi2,`(M1,`ck
0, M2,`sk

0)
〉
,

(1− 2∆t
εhNx

< ξ−` Mi,` >)wk+1
i,Nx

= wk
i,Nx
− ∆t

hNx

〈 2ξ−`
ε fi,r(ξ`)− (ξ` − ξ+` + ξ−` )gk+1

i,Nx− 1
2 ,`

〉
+∆t

〈
Gi2,`(M1,`ck

Nx
, M2,`sk

Nx
)
〉
.

(2.4.13)

2.4.4 Numerical results

In this subsection, we present some numerical experiments in order to validate our approach.
In the following tests, the computational domain in space is [−1; 1] while the velocity space is
V = [−1; 1] with 64 discrete points, which yields good enough accuracy for numerical results [29].
We adopt a set of parameters, namely the coefficients of intra- and inter-specific competition, used
in the book by [84] (adopted also by [6] ): a1 = 0.61/year, a2 = 0.82/year, b1 = 0.4575, b2 = 0.31,
d1 = 9.5 and d2 = 8.2. The diffusion coefficients are constants (Dc = 1 and Ds = 1). Moreover,
we consider a11 = a22 = 0.5 and a12 = a21 = 1 which satisfy the conditions (2.3.5). The initial
densities correspond to the c-predator species and the s-prey species are given by

c0(x) = 0.65 and s0(x) = exp(−30x2).

The initial cell distribution function is as follow

f1(0; x; ξ) = c0(x)M1(ξ) and f2(0; x; ξ) = s0(x)M2(ξ),

where Mi(ξ) = 1
|V| for i = 1, 2. Next, we consider the macroscopic cross-diffusion-Brinkman

system in one dimension. We discretize this system by using finite volume method
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(2.4.14)
where

∂
(m)
x zk

j =
zk

j+1 − zk
j

hj
and ∂

(m)
x zk

0 = ∂
(m)
x zk

Nx
= 0,

for 1 ≤ j ≤ Nx − 1. In Figure 2.1, we present the plots in log scale of the error estimates given by

e∆x(h) =
|h∆x(t)− h2∆x(t)|1
|h2∆x(0)|1

to test the convergence of our scheme. This can be considered as an estimation of the relative
error in l1 norm, where h∆x is the numerical solution computed from a uniform grid of size ∆x =
xmax − xmin

Nx
. The computations are performed with Nx = {80, 160, 320, 640}, ∆t = 10−6 at t =

0.01 for ε = {1, 10−2, 10−3, 10−6}.
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FIGURE 2.1: Convergence order of the method for ε ∈ {1, 10−2, 10−3, 10−6}
at time t = 0.01 (M = 1) for the density c in the left and the density s in the

right obtained from micro-macro scheme.

In Figure 2.2, we compute our numerical scheme for different values of times t = 0.02, 0.03,
0.07, 0.1 and for ε = 10−k where k ∈ {0, 1, 2, 3, 6} against the macroscopic system in the case:
u = 0 and c0 = 0.65, s0 = exp(30x2). Moreover in Figure 2.3, we consider u = 1 and c0 = 0.65,
s0 = exp(30(x + 0.5)2). These figures show that our (AP) scheme is stable in the limit. We observe
that the profile of the densities c and s given by the two schemes are almost the same when ε→ 0
and this illustrates the result in Proposition 2.4.2. Moreover, we observe that the cross-diffusion
effect induces the formation of patterns (by using Turing mechanisms) in the presence of the fluid.
Moreover, we notice that the distribution of prey and predator is affected by the fluid transport.
In Figures 2.4, 2.5 and 2.6, we illustrate the evolution of the densities c and s using micro-macro
scheme for ε = 10−6 at final time T = 0.01 with different values of u (u = 0, u = 1 and u = −1).
We note here that the species are diffusing according to the sign of the velocity u.

2.5 Conclusion and perspectives

In this chapter, we have proposed a new nonlinear macroscopic system coupled with the aug-
mented Brinkman problem in a viscous flow in porous media. Specifically, the micro-macro de-
composition has been applied to the kinetic system coupled with Brinkman problem (2.2.1) to
derive asymptotic preserving numerical scheme. In other parts, we have proved the existence
of weak solutions of the derived system (2.1.3) by using Schauder fixed-point theory. Finally, it
has shown that the presented numerical scheme enjoys the asymptotic preserving property, in
other words: when Knudsen parameter ε is small, our scheme is asymptotically equivalent to
a standard numerical scheme for the derived macroscopic system. In this work, we developed
our numerical results in one dimension using finite volume method for both macroscopic system
(cross-diffusion-Brinkman) and micro-macro formulation. We believe that our technique can be
extended to two dimensions. One only has to well choose the meshes, specifically for the non-
structural ones.
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FIGURE 2.2: The Subfigures (a), (b), (c), (d) present time dynamics of
predators densities c(t; x), while Subfigures (e), (f), (g), (h) present time
dynamics of preys densities s(t; x) at t = 0.02, 0.04, 0.07, 0.1 obtained from
the AP scheme with ε = 10−k, k = 0; 1; 2; 3; 6 and comparison with cross-
diffusion-Brinkman system on the domain [−1; 1] and initial conditions are

given by c0 = 0.65 and s0 = exp(30x2) in the case: u = 0.
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FIGURE 2.3: The Subfigures (a), (b), (c), (d) present time dynamics of
predators densities c(t; x), while Subfigures (e), (f), (g), (h) present time
dynamics of preys densities s(t; x) at t = 0.02, 0.04, 0.07, 0.1 obtained from
the AP scheme with ε = 10−k, k = 0; 1; 2; 3; 6 and comparison with cross-
diffusion-Brinkman system on the domain [−1; 1] and initial conditions are

given by c0 = 0.65 and s0 = exp(30(x + 0.5)2) in the case: u = 1.
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(a) (b)

FIGURE 2.4: Evolution of the densities c(t; x) and s(t; x) using micro-macro
scheme for ε = 10−6 in the case u = 0.

(a) (b)

FIGURE 2.5: Evolution of the densities c(t; x) and s(t; x) using micro-macro
scheme for ε = 10−6 in the case u = 1 .

(a) (b)

FIGURE 2.6: Evolution of the densities c(t; x) and s(t; x) using micro-macro
scheme for ε = 10−6 in the case u = −1.
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Chapter 3

Kinetic-fluid derivation and
mathematical analysis of nonlocal
cross-diffusion-fluid system

In this chapter, we propose a generalized nonlocal cross-diffusion-fluid model describing the dynamic of in-
teracting multi-populations living in a complex medium. First, we derive our nonlocal cross-diffusion-fluid
system from a nonlocal kinetic-fluid model by performing the micro-macro decomposition method. Second,
we prove the existence of weak solutions for the proposed model by applying the nonlinear Galerkin method
within a priori estimates and compactness arguments. Based on micro-macro decomposition, we propose
and we develop an asymptotic preserving numerical schemes. Finally, we deal with the computational
results of the proposed model.

3.1 Introduction

In chapter 2, we have considered two interacting species living in the stationary fluid governed by
the augmented Brinkman system. In this chapter, we mainly propose and we study a generalized
nonlocal cross-diffusion-fluid system. On the one hand, our proposed system deals with nonlocal
diffusitive functions and with nonlinear cross-diffusion matrix accounting for multi-interacting
populations. On the other hand, it is strongly coupled to a generalized fluid governed by the
incompressible Navier-Stokes equation [70, 86].

In order to state our problem, we consider Ω ∈ Rd, d = 2, 3, a simply connected domain saturated
with a Newtonian incompressible fluid, where also the multi-populations are present. The phys-
ical scenario of interest can be described by the following coupled nonlocal cross-diffusion-fluid
system

∂tui + v · ∇ui − div
(

dui

( ∫
Ω

ui dx
)
∇ui +

n

∑
j=1
Aj

i(u1, . . . , un)∇uj

)
= Fi(u1, . . . , un),

∂tv− ν∆v + (v · ∇)v +∇p + Q(u1, . . . , un)∇φ = 0, div v = 0,

(3.1.1)

in ΩT := (0, T)×Ω, for i = 1, . . . , n. We augment this system along with the boundary conditions

v = 0,
(

dui

( ∫
Ω

ui dx
)
∇ui +

n

∑
j=1
Aj

i(u1, . . . , un)∇uj

)
· η = 0 on ΣT := (0, T]× ∂Ω, (3.1.2)

and the initial conditions

ui(t = 0, x) = ui,0(x), v(t = 0, x) = v0(x) for x ∈ Ω, (3.1.3)

for i = 1, . . . , n. Herein, u1, . . . , un are the populations densities, v is the fluid velocity, p is the
fluid pressure, dui is the nonlocal diffusitive functions, Aj

i (i, j = 1, . . . , n) is the nonlinear cross-
diffusion matrix elements, Fi (i = 1, . . . , n) is the reaction terms, φ stands for the gravitational
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potential produced by the action of physical forces on the populations, Q(u1, . . . , un)∇φ repre-
sents the external force applied to the incompressible fluid where Q is an operator depending on
the populations densities, ν is the fluid viscosity and η is the unit outward normal to Ω on ∂Ω. We
recall that the nonlocal diffusitive functions assumed to be depend on the whole of each popula-
tion in the domain rather than on the local density. In the other words, the diffusion of individuals
is guided by the global state of the population in the medium. For instance, we assume that the
nonlocal diffusion is an increasing function of its argument to model populations having the ten-
dency to leave crowded zones. Otherwise, we use the nonlocal decreasing diffusitive function to
model species attracted by the growing population. We want to mention that the coupling in our
model (3.1.1) appears through the convection term v · ∇ui and the external force Q(u1, . . . , un)∇φ.

Note that in the absence of the fluid flow i.e v = 0, system (3.1.1) reduces to a classical cross-
diffusion system (see for e.g [4]). In this case, if the cross-diffusion matrix is neglected, we obtain
from (3.1.1) a classical nonlocal diffusion system (see for e.g [32, 37]). However, several contri-
butions are proposed in the case of a constant diffusitive function, see for e.g [3, 6, 23, 36, 44, 60,
87, 92] where a detailed theoretical and numerical studies has been established. Indeed in [23],
the authors included the analysis of the weak solutions, the paper in [87] specified the conditions
for the existence of unstable equilibrium points, the authors in [92] proved the global existence
of solution and recently, the global in time of weak solutions using entropy and duality methods
are proved in [36, 44, 60]. Regarding the numerical study of cross-diffusion system without fluid,
we refer the reader to finite difference method in [33], finite element method in [9], deterministic
particle method in [49], finite volume method in [6, 3, 4] and positivity-preserving Euler-Galerkin
method in [34]. Now, under the presence of fluid flow (v 6= 0) we obtain reaction-diffusion-fluid
models (see for e.g [45, 51, 53, 91, 13, 31, 75, 88, 94, 93]). In passing, we mention the recent work on
cross-diffusion-Brinkman system in [24] (stationary fluid case). The authors in this paper proved
the existence of weak solutions using Schauder fixed-point method under a specific assumptions
on the cross-diffusion matrix term (ellipticity condition). Comparing to the paper [24], in this
chapter we study a nonlocal cross-diffusion system of multi-populations dynamics completed by
the presence of a non-stationary incompressible fluid. In this chapter, we prove the existence of
weak solutions by using nonlinear Galerkin method within an a priori estimates and compactness
arguments. We mention that the assumed conditions on the cross-diffusion matrix make it possi-
ble to have the existence of weak solutions of the cross-diffusion-fluid system with the elements
of nonlinear matrix of power up to three of cross-diffusion.

In this chapter, we are also concerned with the derivation of macroscopic systems from ki-
netic models. As it is know, this can be achieved mathematically by the asymptotic analysis,
see for e.g diffusion limit [26, 42, 71], derivation of hyperbolic models in [48, 78], of chemotaxis
models [14, 16, 11, 27, 8], of incompressible Navier-Stokes [20], of Cucker-Smale models [80] and
anomalous diffusion limit [39]. Numerically, this is a challenging question because it is too much
expensive in time. However, some encouraging results are obtained overtook this drawback by
adopt the asymptotic preserving scheme based on micro-macro decomposition method (see for
e.g [24, 26, 71]). Note that all this works derived macroscopic systems from local kinetic mod-
els and they limited their studies to kinetic models within two components. Comparing to the
existence works, in this chapter, we deal with the derivation of system (3.1.1) from a nonlo-
cal kinetic-fluid model for multi-interacting populations living in a fluid generated by the in-
compressible Navier-Stokes equations. We also propose and develop an asymptotic preserving
numerical schemes which is stable in the limit along the transition from kinetic to macroscopic
regimes.

This chapter is organized as follows: In Section 3.2, we present our nonlocal kinetic-fluid
model and its properties. We use micro-macro decomposition method to obtain an equivalent
system of model (3.2.1) bellow. Moreover, we derive a general macroscopic-fluid model. We fin-
ish this section by a suitable modeling of the terms appeared in model (3.2.1) and we derive our
model (3.1.1). Section 3.3 is devoted to prove the existence of weak solutions of the proposed non-
local cross-diffusion-fluid system. The proof is based on the nonlinear Galerkin method, apriori
estimates and compactness arguments. In Section 3.4, we propose and develop numerical ap-
proximations in 1D for micro-macro formulation and for the macroscopic model. The objective is
to show the asymptotic preserving scheme property and simultaneously to illustrate the effects of
nonlocal diffusion, of cross-diffusion and of advection terms. Finally, Motivated by the obtained
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numerical simulations, we investigate the computational analysis of the proposed model in 2D.

3.2 From improved kinetic-fluid model to generalized nonlocal
cross-diffusion-fluid systems

In this section, we derive a macroscopic-fluid models from a nonlocal kinetic-fluid model using
micro-macro decomposition method. Firstly, we present the properties of the aforesaid model.
On the basis of the micro-macro decomposition technique, we give an equivalent appropriate
system. Then, we formally derive a class of macroscopic-fluid models. Herein, we consider a
nonlocal kinetic-fluid model describing multi-interacting populations living in a fluid governed
by the incompressible Navier-Stokes equations.

3.2.1 The improved kinetic-fluid model

This subsection is devoted to state our improved kinetic-fluid model and to present its properties.
We propose the following nonlocal kinetic-fluid model for i = 1, . . . , n

ε∂t fi + ξ · ∇xFi( fi) =
1
ε
Ti[ f1, . . . , fi−1, fi+1, . . . , fn]( fi) + Gi( f1, . . . , fn, ξ, v),

∂tv− ν∆v + (v · ∇)v +∇p + Q
( ∫

V
f1dξ, . . . ,

∫
V

fndξ
)
∇φ = 0, div v = 0,

fi(t = 0, x, ξ) = fi,0(x, ξ), v(t = 0, x) = v0(x),

(3.2.1)

where ( fi(t, x, ξ))n
i=1 is the distribution function describing the statistical evolution of species,

where t > 0, x ∈ Rd and ξ ∈ V are respectively, time, position and velocity. The term Fi( fi) is the
nonlocal function, Ti is the stochastic operator representing a random modification of direction of
species and the operator Gi (i = 1, . . . , n) describing the gain-loss balance of species. The mean
free path ε measures the distance between species. We recall that we adopt the parabolic-parabolic
scaling limit, see for more details [16, 27]. Herein, the nonlocal function Fi is defined by

Fi( fi)(t, x, ξ) = Φi

( ∫
Ω

∫
V

fi(t, x, ξ) dξ dx
)

fi(t, x, ξ) i = 1, . . . , n.

Under the assumptions that Φi = 1 and i = 1, 2, the reduced model has been studied by [24, 11].
The micro-macro decomposition method is based on the following assumptions. The interaction
operators Gi satisfy the following properties

Gi( f1, . . . , fn, ξ, v) = G1
i ( f1, . . . , fn, ξ, v) + ε G2

i ( f1, . . . , fn, ξ, v), (3.2.2)

where ∫
V

G1
i ( f1, . . . , fn, ξ, v)dξ = 0, i = 1, . . . , n. (3.2.3)

Next, the turning operator Ti is decomposed as follows

Ti[ f1, . . . , fi−1, fi+1, . . . , fn]( fi) = T 1
i ( fi) + ε T 2

i [ f1, . . . , fi−1, fi+1, . . . , fn]( fi), (3.2.4)

where T 1
i ( fi) represents the dominant part of the turning kernel and assumed independent of

f1, . . . , fi−1, fi+1, . . . , fn. The operator T j
i for i = 1, . . . , n and j = 1, 2 are given by

T j
i ( fi) =

∫
V

(
T j∗

i fi(t, x, ξ∗)− T j
i fi(t, x, ξ)

)
, dξ∗, (3.2.5)

where T j
i is the probability kernel for the new velocity ξ ∈ V given that the previous velocity was

ξ∗. The kernel operator T1∗
i is defined by T1∗

i = T1
i (ξ
∗, ξ) and the operator T2

i may depend on the
distribution function f1, . . . , fi−1, fi+1, . . . , fn and their derivatives. Moreover, we assume that the
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operators Ti satisfy∫
V
Ti dξ =

∫
V
T 1

i ( fi)dξ =
∫

V
T 2

i [ f1, . . . , fi−1, fi+1, . . . , fn]( fi)dξ = 0, i = 1, . . . , n. (3.2.6)

Moreover, we assume that there exists a bounded velocity distribution Mi(ξ) > 0 for i = 1, . . . , n
independent of t and x such that

T1
i (ξ, ξ∗)Mi(ξ

∗) = T1
i (ξ
∗, ξ)Mi(ξ), (3.2.7)

holds. The flow produced by these equilibrium distributions vanishes and Mi are normalized, i.e.∫
V

ξ Mi(ξ)dξ = 0,
∫

V
Mi(ξ)dξ = 1, i = 1, . . . , n. (3.2.8)

Regarding the probability kernels, we assume that T1
i (ξ, ξ∗) is bounded, and there exist a constant

σi > 0 (i ∈ {1, . . . , n}), such that

T1
i (ξ, ξ∗) ≥ σi Mi(ξ), (3.2.9)

for all (ξ, ξ∗) ∈ V ×V.
In what follows, we shall consider Li = T 1

i for i = 1, . . . , n. Using the same arguments as in
[10, 30], the operator Li has the following properties.

Lemma 3.2.1 By assuming that the hypothesis (3.2.6), (3.2.7) and (3.2.8) are satisfied. Then, the following
properties of the operators Li for i = 1, . . . , n hold true:

i) The operator Li is self-adjoint in the space L2
(

V,
dξ

Mi

)
.

ii) For f ∈ L2, the equation Li(g) = f has a unique solution g ∈ L2
(

V,
dξ

Mi

)
, satisfying

∫
V

g(ξ) dξ = 0 ⇐⇒
∫

V
f (ξ) dξ = 0.

iii) The equation Li(g) = ξ Mi(ξ), has a unique solution denoted by θi(ξ) for i = 1, . . . , n.

iv) The kernel of Li is N(Li) = vect(Mi(ξ)) for i = 1, . . . , n.

3.2.2 Micro-macro formulation

This subsection is devoted to obtain an equivalent micro-macro system of nonlocal kinetic-fluid
model (3.2.1). The obtained equivalent system contains microscopic and macroscopic compo-
nents.
The main idea of the micro-macro method is to decompose the distribution function fi for i =
1, . . . , n as follows

fi(t, x, ξ) = Mi(ξ)ui(t, x) + εgi(t, x, ξ),

where
ui(t, x) = 〈 fi(t, x, ξ)〉 :=

∫
V

fi(t, x, ξ) dξ.

We have 〈gi〉 = 0 and Φi

( ∫
Ω
〈 fi(t, x, ξ)〉dx

)
= Φi

( ∫
Ω

ui dx
)

:= Φi(ui) for i = 1, . . . , n. Inserting

fi in nonlocal kinetic-fluid model (3.2.1) and using the above assumptions and properties of the
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interaction and the turning operators, we get

∂t(Mi(ξ)ui) + ε∂tgi +
1
ε

ξMi(ξ) · ∇(Φi(ui)ui) + ξ · ∇(Φi(ui)gi) =
1
ε
Li(gi)

+
1
ε
T 2

i [ f1, . . . , fi−1, fi+1, . . . , fn](Mi(ξ)ui) + T 2
i [ f1, . . . , fi−1, fi+1, . . . , fn](gi)

+
1
ε

G1
i ( f1, . . . , fn, ξ, v) + G2

i ( f1, . . . , fn, ξ, v),

∂tv− ν∆v + (v · ∇)v +∇p + Q
(
u1, . . . , un

)
∇φ = 0, div v = 0.

(3.2.10)
The micro-macro decomposition method is based on two steps. First, we use the projection
technique to separate the macroscopic density ui(t, x) and microscopic quantity gi(t, x, ξ) for
i = 1, . . . , n. For that, we consider PMi the orthogonal projection onto N(Li), for i = 1, . . . , n.
It follows

PMi (h) = 〈h〉Mi, for any h ∈ L2
(

V,
dξ

Mi

)
, i = 1, . . . , n.

Regarding the orthogonal projections PMi for i = 1, . . . , n, we have the following result.

Lemma 3.2.2 We have the following properties for the projection PMi , i = 1, . . . , n

(I − PMi )
(

Mi(ξ)ui
)
= PMi (gi) = 0,

(I − PMi )
(
ξMi(ξ) · ∇(Φi(ui))ui

)
= ξMi(ξ) · ∇(Φi(ui)ui),

(I − PMi )
(
T 2

i [ f1, . . . , fi−1, fi+1, . . . , fn](Mi(ξ)ui)
)
= T 2

i [ f1, . . . , fi−1, fi+1, . . . , fn](Mi(ξ)ui),

(I − PMi )
(
T 2

i [ f1, . . . , fi−1, fi+1, . . . , fn](gi)
)
= T 2

i [ f1, . . . , fi−1, fi+1, . . . , fn](gi),

(I − PMi )(Li(gi)) = Li(gi),

(I − PMi )G
1
i ( f1, . . . , fn, ξ, v) = G1

i ( f1, . . . , fn, ξ, v).

Second, we integrate (3.2.10) with respect to ξ. Thanks to these two steps, we obtain the following
micro-macro formulation for i = 1, . . . , n

∂tgi +
1
ε2 ξMi(ξ) · ∇(Φi(ui)ui) +

1
ε
(I − PMi )(ξ · ∇(Φi(ui)gi)) =

1
ε2Li(gi)

+
1
ε2 T

2
i [ f1, . . . , fi−1, fi+1, . . . , fn](Mi(ξ)ui) +

1
ε
T 2

i [ f1, . . . , fi−1, fi+1, . . . , fn](gi)

+
1
ε2 G1

i ( f1, . . . , fn, ξ, v) +
1
ε
(I − PMi )G

2
i ( f1, . . . , fn, ξ, v),

∂tui + Φi(ui) 〈ξ · ∇gi〉 = 〈G2
i ( f1, . . . , fn, ξ, v)〉,

∂tv− ν∆v + (v · ∇)v +∇p + Q(u1, . . . , un)∇φ = 0, div v = 0.
(3.2.11)

The following proposition shows that micro-macro formulation (3.2.11) is equivalent to non-
local kinetic-fluid equation (3.2.1).

Proposition 1 i) Let ( f1, . . . , fn, v, p) be a solution of nonlocal kinetic-fluid model (3.2.1). Then
(u1, . . . , un, g1, . . . , gn, v, p) (where ui = 〈 fi〉 and gi = 1

ε ( fi − Miui)) is a solution to coupled system
(3.2.11) associated with the following initial data for i = 1, . . . , n

ui(t = 0) = ui,0 = 〈 fi,0〉, gi(t = 0) = gi,0 =
1
ε
( fi,0 −Miui,0), and v(t = 0) = v0, (3.2.12)

ii) Conversely, if (u1, . . . , un, g1, . . . , gn, v, p) satisfies system (3.2.11) associated with the following initial
data (u1,0, . . . , un,0, g1,0, . . . , gn,0, v0) such that 〈gi,0〉 = 0 for i = 1, . . . , n. Then ( f1, . . . , fn, v, p) (where
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fi = Miui + εgi) is a solution to nonlocal kinetic-fluid model (3.2.1) with initial data fi,0 = Miui,0 + εgi,0
and we have ui = 〈 fi〉 and 〈gi〉 = 0, for i = 1, . . . , n.

Next, in order to develop asymptotic analysis of system (3.2.11), we assume that T 2
i and Gj

i satisfy
the following asymptotic behavior ε→ 0

T 2
i [M1u1 + εg1, . . . , Mi−1ui−1 + εgi−1, Mi+1ui+1 + εgi+1, . . . , Mnun + εgn]

= T 2
i [M1u1, . . . , Mi−1ui−1, Mi+1ui+1, . . . , Mnun] + O(ε)

(3.2.13)

Gj
i
(

M1(ξ)u1 + εg1, . . . , Mn(ξ)un + εgn, ξ, v
)
= Gj

i
(

M1(ξ)u1, . . . , Mn(ξ)un, ξ, v
)
+ O(ε), (3.2.14)

for i = 1, . . . , n and j = 1, 2.

3.2.3 Derivation of general macroscopic models

Here, we show that micro-macro formulation (3.2.11), which is equivalent to kinetic equation
(3.2.1), allows to obtain a general macroscopic models as ε goes to 0. Indeed, using (3.2.13), (3.2.14)
and (3.2.11), we obtain for i = 1, . . . , n

Li(gi) = ξMi(ξ) ·∇
(

Φi(ui)ui

)
−T 2

i [M1(ξ)u1, . . . , Mi−1(ξ)ui−1, Mi+1(ξ)ui+1, . . . , Mn(ξ)un](Mi(ξ)ui)

−G1
i (M1(ξ)u1, . . . , Mn(ξ)un, ξ, v) + O(ε).

From Lemma 3.2.1, property ii), the operator Li is invertible. This implies

gi = L−1
i

(
ξMi · ∇

(
Φi(ui)ui

))
−L−1

i

(
T 2

i [M1u1, . . . , Mi−1ui−1, Mi+1ui+1, . . . , Mnun](Miui)
)

−L−1
i

(
G1

i (M1u1, . . . , Mnun, ξ, v)
)
+ O(ε), i = 1, . . . , n. (3.2.15)

Next, inserting (3.2.15) into the second equation in (3.2.11) yields the following macroscopic sys-
tem

∂tui + Φi(ui)
〈

ξ · ∇L−1
i

(
ξMi(ξ) · ∇(Φi(ui)ui)

)〉
−Φi(ui)

〈
ξ · ∇L−1

i

(
T 2

i [M1(ξ)u1, . . . , Mi−1(ξ)ui−1, Mi+1(ξ)ui+1, . . . , Mn(ξ)un](Mi(ξ)ui)
)〉

−Φi(ui)
〈

ξ · ∇L−1
i

(
G1

i (M1(ξ)u1, . . . , Mn(ξ)un, ξ, v)
)〉

=
〈

G2
i (M1(ξ)u1, . . . , Mn(ξ)un, ξ, v)

〉
+ O(ε),

∂tv− ν∆v + (v · ∇)v +∇p + Q(u1, . . . , un)∇φ = 0, div v = 0.
(3.2.16)

The following lemma gives the calculations of the terms with the inverse of the operators Li for
i = 1, . . . , n appearing in system (3.2.16).

Lemma 3.2.3 Assume that the operators Li and G1
i for i = 1, . . . , n satisfy the assumptions above. Then,

we have the following identities〈
ξ.∇L−1

i

(
ξMi(ξ) · ∇(Φi(ui)ui)

)〉
= div

(
〈ξ ⊗ θi(ξ)〉 · ∇(Φi(ui)ui)

)
,

〈
ξ · ∇L−1

i

(
T 2

i [M1(ξ)u1, . . . , Mi−1(ξ)ui−1, Mi+1(ξ)ui+1, . . . , Mn(ξ)un](Mi(ξ)ui)
)〉

= div
〈

θi(ξ)

Mi(ξ)
uiT 2

i [M1(ξ)u1, . . . , Mi−1(ξ)ui−1, Mi+1(ξ)ui+1, . . . , Mn(ξ)un](Mi(ξ)ui))

〉
,

〈
ξ · ∇L−1

i

(
G1

i (M1(ξ)u1, . . . , Mn(ξ)un, ξ, v)
)〉

= div
〈

θi(ξ)

Mi(ξ)
G1

i (M1(ξ)u1, . . . , Mn(ξ)un, ξ, v)
〉

,

where θi are given in Lemma 3.2.1 for i = 1, . . . , n.
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Finally, thanks to system (3.2.16) and Lemma 3.2.3, we obtain the following macroscopic system
∂tui + div

(
βi(ui) αi(u1, . . . , ui−1, ui+1, . . . , un) + Γi(u1, . . . , un, v)−Ψi(ui) · ∇ui

)
= Hi(u1, . . . , un, v) + O(ε),

∂tv− ν∆v + (v · ∇)v +∇p + Q(u1, . . . , un)∇φ = 0, div v = 0,

(3.2.17)

where the functions Ψi, βi, αi, Γi and Hi are given by

Ψi(ui) = −
〈

ξ ⊗ θi(ξ)
〉
(Φi(ui))

2, (3.2.18)

βi(ui) = ui Φi(ui), (3.2.19)

αi(u1, . . . , ui−1, ui+1, . . . , un) = −
〈 θi(ξ)

Mi
T 2

i [M1u1, . . . , Mi−1ui−1, Mi+1ui+1, . . . , Mnun](Mi)
〉

,

(3.2.20)

Γi(u1, . . . , un, v) = −
〈 θi(ξ)

Mi
G1

i (M1u1, . . . , Mnun, ξ, v)
〉

Φi(ui), (3.2.21)

Hi(u1, . . . , un, v) =
〈

G2
i (M1u1, . . . , Mnun, ξ, v)

〉
, for i = 1, . . . , n. (3.2.22)

3.2.4 Derivation of nonlocal cross-diffusion-fluid system

We consider the case where the set for velocity is a sphere of radius r > 0, V = rSd−1. We assume
that ( f1, . . . , fn, v, p) solution of system (3.2.1) with the following nonlocal function

Φi(s) =
√

Di(s), i = 1, . . . , n. (3.2.23)

We mention that biologically Di are strictly positive function for all i = 1, . . . , n. From Eq. (3.2.18),
we obtain

Ψi(ui) =
1

σi|V|
〈ξ ⊗ ξ〉Di

( ∫
Ω

ui(t, x) dx
)

. (3.2.24)

Next, we assume that the probability kernel T1
i is given by

T1
i =

σi
|V| , for i = 1, . . . , n.

This implies

Li(gi) = −
σi
|V|

(
gi |V| − 〈gi〉

)
= −σi gi for i = 1, . . . , n.

Notice that Mi(ξ) = 1
|V| satisfies assumption (3.2.8). For this particular choice of Mi, we have

θi = − ξ
σi |V|

is a solution of Li(θi(ξ)) = ξMi(ξ) for i = 1, . . . , n. The other probability kernel T2
i is

given by

T2
i [ f1, . . . , fi−1, fi+1, . . . , fn, ξ, ξ∗] = − µi

Φi|V|2 ∑
j,j 6=i
K f j

Mj

(ξ, ξ∗) · ∇
( f j

Mj

)
,

where µi =
σi
r2 d |V| and the function K f j

Mj

satisfies the following asymptotic

K
uj+ε

gj
Mj

= Kuj + O(ε), ε→ 0.

From Eq. (3.2.5), we obtain

T 2
i [M1u1, . . . , Mi−1ui−1, Mi+1ui+1, . . . , Mnun](Mi) = −

µi
Φi|V|2 ∑

j,j 6=i
χj(ξ, uj) · ∇uj,
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where
χj(ξ, uj) =

〈
Kuj(ξ, ξ∗)Mi(ξ)−Kuj(ξ

∗, ξ)Mi(ξ
∗)
〉

.

Therefore, from Eqs. (3.2.19) and (3.2.20), we have

βi(ui) αi(u1, . . . , ui−1, ui+1, . . . , un) = − ∑
j,j 6=i
Ci(ui, uj)∇uj. (3.2.25)

It only remains now to model G1
i and G2

i for
G1

i ( f1, . . . , fn, ξ, v) = − dσi
Φi r2|V|

(
Bi( f1, . . . , fn) ξ Mi · ∇ fi − fi ξ Mi · v

)
G2

i ( f1, . . . , fn, ξ, v) = Fi

( f1

|V| , . . . ,
fn

|V|

)
, for i = 1, . . . , n.

(3.2.26)

Then, we use the definitions of Γi in (3.2.21) and of Hi in (3.2.22) to obtain from (3.2.26)

Γi(u1, . . . , un, v) = − d
r2|V|2 〈ξ ⊗ ξ〉 ·

(
Bi(u1, . . . , un)∇ui − uiv

)
= −Bi(u1, . . . , un)∇ui + uiv,

(3.2.27)
Hi(u1, . . . , un) = Fi(u1, . . . , un). (3.2.28)

Finally, setting

dui

( ∫
Ω

ui dx
)
=

1
σi|V|

〈ξ ⊗ ξ〉Di

( ∫
Ω

ui(t, x) dx
)
=

r2

d σi
Di

( ∫
Ω

ui(t, x) dx
)

,

n

∑
j=1
Aj

i(u1, . . . , un)∇uj = ∑
j,j 6=i
Cj(ui, uj)∇uj + Bi(u1, . . . , un)∇ui,

and collecting the previous results with div v = 0 and (3.2.17), we obtain the nonlocal cross-
diffusion-fluid system (3.1.1) of the order O(ε)

∂tui + v · ∇ui − div
(

dui

( ∫
Ω

ui dx
)
∇ui +

n

∑
j=1
Aj

i(u1, . . . , un)∇uj

)
= Fi(u1, . . . , un) + O(ε), in ΩT ,

∂tv− ν∆v + (v · ∇)v +∇p + Q(u1, . . . , un)∇φ = 0, div v = 0, in ΩT ,

ui(t = 0, x) = ui,0(x), v(t = 0, x) = v0(x), in Ω,

v = 0 and

(
dui

( ∫
Ω

ui dx
)
∇ui +

n

∑
j=1
Aj

i(u1, . . . , un)∇uj

)
·η = 0, on ΣT .

(3.2.29)
for i = 1, . . . , n.

3.3 Mathematical analysis

Let Ω be a bounded, open subsets of Rd, d = 2, 3 with a smooth boundary ∂Ω and |Ω| is the
Lebesgue measure of Ω. We denote by H1(Ω) the Sobolev space of functions u : Ω → R for
which u ∈ L2(Ω) and ∇u ∈ L2(Ω; Rd). For 1 ≤ p ≤ +∞, ‖ · ‖Lp(Ω) is the usual norm in Lp(Ω).
If X is a Banach space, a < b and 1 ≤ p ≤ +∞, Lp(a, b; X) denotes the space of all measurable
functions u : (a, b) −→ X such that ‖ u(·) ‖X belongs to Lp(a, b). Moreover, we define the
following vectorial space

L2(Ω) =
{

u = (u1, . . . , un) / ui ∈ L2(Ω) ∀i ∈ {1, . . . , n}
}

,

H1(Ω) =
{

u = (u1, . . . , un) / ui ∈ H1(Ω) ∀i ∈ {1, . . . , n}
}

,
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D(Ω) =
{

u = (u1, . . . , un) / ui ∈ D(Ω) ∀i ∈ {1, . . . , n}
}

,

W1,∞(Ω) =
{

u = (u1, . . . , un) / ui ∈W1,∞(Ω) ∀i ∈ {1, . . . , n}
}

.

Now, we introduce basic spaces in the study of the Navier-Stokes equation. Let the spaces V , V; H
defined as:

V = {v ∈ D(Ω), div v = 0}, V = VH1
0(Ω)

, H = VL2(Ω)
.

The coupled system of interest (3.2.29) can be written as

∂tu + (v · ∇)u− div
(

D(u)∇u +A(u)∇u
)
= F(u), in ΩT ,

∂tv− ν∆v + (v.∇)v +∇p + Q(u)∇φ = 0, div v = 0, in ΩT ,

u(t = 0, x) = u0(x), v(t = 0, x) = v0(x), in Ω,

v = 0 and
(

D(u)∇u +A(u)∇u
)

η = 0, on ΣT ,

(3.3.1)

where u = (u1, . . . , un)T is the densities of populations, v = (v1, . . . , vd)
T is the velocity of the

fluid and p is the scalar function describing the pressure of the fluid. The diagonal matrix D(u) =

(D(u)i,j)1≤i,j≤n satisfy D(u)i,i = dui

( ∫
Ω

ui dx
)

for i ∈ {1, . . . , n} is a nonlocal diffusion matrix

and A is a nonlinear cross-diffusion matrix.
In the proof of the existence of weak solutions, we will use the following assumptions.
We assume that for i ∈ {1, . . . , n}, the function dui : R → R+ is continuous and satisfying the
following:

di ≤ dui (r) ≤ d̄i ∀r ∈ R and ∀i ∈ {1, . . . , n} (3.3.2)

where di and d̄i are strictly positive constants.
Regarding the cross-diffusion matrix A = (Ai,j)1≤i,j≤n, we assume that

∀u1, . . . , un ≥ 0 Aj
i(u1, ..ui−1, 0, ui+1, . . . , un) = 0 ∀ i, j ∈ {1, .., n} i 6= j (3.3.3)

∀u1, . . . , un ≥ 0 ∀ v ∈ Rn
(
A(u1, .., un)ψ, ψ

)
≥ 1

C
‖A(u1, .., un)‖ ‖ψ‖2, (3.3.4)

where
(
· , ·
)

is the usual scalar product on Rn, and

∀u1, . . . , un ≥ 0 ‖A(u1, .., un)‖ ≤ C(1 +
n

∑
i=1
|ui|r) with r <

{
4, if d = 2

10/3, if d = 3. (3.3.5)

Assumptions (3.3.3), (3.3.4) allow for nonnegative solutions; assumption (3.3.4) also expresses the
positivity of the cross-diffusion matrix; and (3.3.5) is a kind of growth assumption on A. For the
reaction terms Fi, we assume they are continuous functions and there exists a constant CF such
that

∀u1, . . . , un ≥ 0, Fi(u1, . . . , ui−1, 0, ui+1, . . . , un) ≥ 0 and
n

∑
i=1

Fi(u1, .., un) ui ≤ CF(1 +
n

∑
i=1

u2
i ).

(3.3.6)
Regarding the function Q, we assume it is a continuous function and there exists constant CQ > 0
such that

|Q(u1, . . . , un)| ≤ CQ(1 +
n

∑
i=1
|ui|) for all u1, . . . , un ∈ R. (3.3.7)

Moreover, we assume that

∇φ ∈
(
Ld+2(Ω)

)d and φ is independent of time

stands for the gravitational potential produced by the action of physical forces on the species.
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Finally, we assume that initial conditions are

u0 ≥ 0, u0 ∈ L2(Ω), v0 ∈ H. (3.3.8)

Now we define what we mean by weak solution of the system (3.1.1). We also supply our main
existence result.

Definition 3.3.1 We say that (u, v) is a weak solution to problem (3.2.29), if u is nonnegative,

u ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1(Ω)),

v ∈ L2(0, T; V) ∩ C
(
[0, T]; H

)
, ∂tv ∈ L1(0, T; V′)

and the following identities hold

−
∫∫

ΩT

u · ∂tΨ1 dx dt−
∫∫

ΩT

(v · ∇)u ·Ψ1 dx dt +
∫∫

ΩT

D(u)∇u : ∇Ψ1 dx dt

+
∫∫

ΩT

A(u)∇u : ∇Ψ1 dx dt =
∫

Ω
u0(x) ·Ψ1(0, x)dx +

∫∫
ΩT

F(u) ·Ψ1 dx dt,
(3.3.9)

∫ T

0
〈∂tv, Ψ2〉V′ ,V dt + ν

∫
Ω
∇v : ∇Ψ2 dx dt +

∫∫
ΩT

(v · ∇)v ·Ψ2 dx dt

+
∫∫

ΩT

Q(u)∇φ ·Ψ2 dx dt = 0,
(3.3.10)

for all test functions Ψ1 = (ψ1,u, . . . , ψn,u)T ∈ D([0, T)× Ω̄) and Ψ2 = (ψ1,v, . . . , ψd,v)
T ∈ C0

c (0, T; V)

where C0
c (0, T; V) denotes the space of continuous functions with compact support and values in V.

Theorem 3.3.2 Assume conditions (3.3.3)-(3.3.6) hold. If assumption (3.3.8) is satisfied, then the problem
(3.3.1) has a weak solution in the sense of Definition 3.3.1.

Proof 3.3.1 (Proof of Theorem 3.3.2) The proof of the existence of weak solution is based on the nonlin-
ear Galerkin method. Although we solve the problem in a finite-dimensional space firstly and we are looking
estimates that allows us to pass to the limit. We decompose the proof of Theorem 3.3.2 into three parts: first,
we write the approximate solution, then we give a priori estimates and finally we pass to the limit.

First step: approximate solution. We choose sequences {ψ1,u, ψ2,u, . . . }, {ψ1,v, ψ2,v, . . . } in D(Ω)
such that ∪∞

m=1Vm,u, ∪∞
m=1Vm,v with Vm,u = span{ψ1,u, ψ2,u, . . . , ψm,u}

( resp. Vm,v = span{ψ1,v, ψ2,v, . . . , ψm,v}) is dense in (Hs(Ω))n ( resp. (Hs(Ω))d with s large enough
such that (Hs(Ω))r is continuously embedded in (C1(Ω))r for r > 0. We consider the following sequence
for approximating solutions of the problem (3.3.1):

um(t, x) =
m

∑
k=1

bm
k (t)ψk,u(x), vm(t, x) =

m

∑
k=1

cm
k (t)ψk,v(x), (3.3.11)

where for 1 ≤ k ≤ m the functions bm
k : [0, T) → R and cm

k : [0, T) → R are supposed to be measurable
bounded functions. For the initial conditions, we choose the coefficients as

bm
k (0) :=

∫
Ω

u0ψk,u(x)dx, cm
k (0) :=

∫
Ω

v0ψk,v(x)dx

such that as m→ ∞, we have

um(0, .)→ u0, vm(0, .)→ v0 in L2(Ω). (3.3.12)

where um(0, .) :=
m

∑
k=1

bm
k (0)ψk,u(.) and vm(0, .) :=

m

∑
k=1

cm
k (0)ψk,v(.).
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For 1 ≤ k ≤ m the coefficients bm
k and cm

k are obtained from the following system∫
Ω

∂tum · ψk,u dx−
∫

Ω
(vm · ∇)um · ψk,u dx +

∫
Ω

D(um)∇um : ∇ψk,u dx

+
∫

Ω
A
(
um,+)∇um : ∇ψk,u dx =

∫
Ω

F
(
um,+) · ψk,u dx,

(3.3.13)

∫
Ω

∂tvm · ψk,v dx + ν
∫

Ω
∇vm : ∇ψk,v dx +

∫
Ω
(vm · ∇)vm · ψk,v dx +

∫
Ω

Q
(
um)∇φ · ψk,v dx = 0,

(3.3.14)
or equivalently (by suing the orthonormality of the bases)

(
bm

k (t)
)′

= Fk

(
t, bm

1 (t), . . . , bm
m(t), cm

1 (t), . . . , cm
m(t)

)
,

(
cm

k (t)
)′

= Gk

(
t, bm

1 (t), . . . , bm
m(t), cm

1 (t), . . . , cm
m(t)

)
,

bm
k (0) =

∫
Ω

u0ψk dx, cm
k (0) =

∫
Ω

v0ψk dx,

(3.3.15)

Herein,

A
(
um,+) = (Aj

i
( m

∑
k=1

bm
k (t)ψk,u(x)

)+)
1≤i,j≤n

, F
(
um,+) = (Fj

( m

∑
k=1

bm
k (t)ψk,u(x)

)+)
1≤j≤n

,

and

Fk

(
t, bm

1 , . . . , bm
m, cm

1 , . . . , cm
m

)
:=
∫

Ω
(vm · ∇)um · ψk,u dx−

∫
Ω

D(um)∇um : ∇ψk,u dx

−
∫

Ω
A
(
um,+)∇um : ∇ψk,u dx +

∫
Ω

F
(
um,+) · ψk,u dx,

Gk

(
t, bm

1 , . . . , bm
m, cm

1 , . . . , cm
m

)
:= −ν

∫
Ω
∇vm : ∇ψk,v dx−

∫
Ω
(vm · ∇)vm · ψk,v dx

−
∫

Ω
Q
(
um)∇φ · ψk,v dx

for 1 ≤ k ≤ m, where s+ = max(s, 0). Then, thanks to the existence result of ordinary differential equa-

tions (cf. [54]), system (3.3.15) has a continuous solution
(

cm
k (t), bm

k (t)
)m

k=1
on an interval (0, τ′), τ′ > 0

and may depend on m. Using a standard arguments, it is not difficult to show that the local solution con-
structed above can be extended to the whole interval [0, T) independent of m.
Note that from (3.3.13) and (3.3.14), the Faedo-Galerkin solutions satisfy the following weak formulations
for each fixed t > 0:∫

Ω
∂tum · ψu dx−

∫
Ω
(vm · ∇)um · ψu dx +

∫
Ω

D(um)∇um : ∇ψu dx

+
∫

Ω
A
(
um,+)∇um : ∇ψv dx =

∫
Ω

F
(
um,+) · ψu dx,

(3.3.16)

∫
Ω

∂tvm ·ψv dx+ ν
∫

Ω
∇vm : ∇ψv dx+

∫
Ω
(vm ·∇)vm ·ψv dx+

∫
Ω

Q
(
um)∇φ ·ψv dx = 0, (3.3.17)

for all test functions ψu ∈ D([0, T)× Ω̄) and ψv ∈ C0
c (0, T; V)

To passing to the limit in (3.3.16)-(3.3.17) and proving the existence of u and v, we need the following
a priori estimates lemma.

Second step: a priori estimates
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Lemma 3.3.3 Let u0 ∈ L2(Ω)+ and v0 ∈ H, then the problem (3.3.16)- (3.3.17) has a weak solution
um ∈ L2(0, T; H1(Ω)

)
, vm ∈ L2(0, T; V

)
satisfying:∫

Ω
|um|2 dx +

∫∫
ΩT

|∇um|2 dx dt ≤ C,∫∫
ΩT

(
max

1≤i,j≤n
|Aj,m

i (um
1 , . . . , um

n )|
) n

∑
i=1
|∇um

i |2 dx dt ≤ C,∫
Ω
|vm|2 dx + ν

∫∫
ΩT

|∇vm|2 dx dt ≤ C,

(3.3.18)

where C is a strictly positive constant independent of m.

Proof 3.3.2 Substituting ψu = −um,− in (3.3.16) and integrating over (0, τ), we get

1
2

∫
Ω
|um,−(τ, x)|2 dx−

∫ τ

0

∫
Ω
(vm · ∇)um · um,− dx dt +

∫ τ

0

∫
Ω

D(um)|∇um,−|2 dx dt

+
∫ τ

0

∫
Ω
A
(
um,+)|∇um,−|2 dx dt =

∫ τ

0

∫
Ω

F
(
um,+) · um,− dx dt +

1
2

∫
Ω
|u−0 |

2 dx.

Since div vm = 0 and vm = 0 on ∂Ω, we have

−
∫

Ω
(vm · ∇)um · um,− =

1
2

∫
Ω
∇(um)2vm = −1

2

∫
Ω

div(vm)(um)2 +
1
2

∫
∂Ω

vm(um)2T
η = 0.

Using the positivity conditions (3.3.2), (3.3.3) and (3.3.6) on D(um), A and F, respectively, we have∫
Ω
|um,−(τ, x)|2 dx ≤

∫
Ω
|u−0 |

2 dx.

Since u0 is nonnegative, we deduce that um,− = 0. Thus the nonnegativity of um.
Now, substituting ψu = um in (3.3.16) and integrating over (0, τ) with τ < T to obtain

1
2

∫
Ω
|um(τ, x)|2 dx−

∫ τ

0

∫
Ω
(vm · ∇)um · um dx dt +

∫ τ

0

∫
Ω

D(um)|∇um|2 dx dt

+
∫ τ

0

∫
Ω
A
(
um)|∇um|2 dx dt =

∫ τ

0

∫
Ω

F
(
um) · um dx dt +

1
2

∫
Ω
|u0(x)|2 dx.

Using (3.3.4), (3.3.2) and (3.3.6), we obtain

1
2

∫
Ω
|um(τ, x)|2 dx +

n

∑
i=1

di

∫ τ

0

∫
Ω
|∇um

i |2 dx dt +
∫ τ

0

∫
Ω

max
1≤i,j≤n

|Aj
i(u

m
1 , . . . , um

n )|
n

∑
i=1
|∇um

i |2 dx dt ≤ CF

∫ τ

0

∫
Ω
|um(t, x)|2 dx dt +

1
2

∫
Ω
|u0(x)|2 dx + CF n T |Ω|.

(3.3.19)

Setting Θm(τ) =
∫

Ω
|um(τ, x)|2dx in (3.3.19), we observe that

0 ≤ Θm(τ) ≤
∫

Ω
|u0(x)|2 dx + 2 CF n T |Ω|+ 2 CF

∫ τ

0
Θm(t)dt.

Herein, we have used the positivity of the second and the third integrals in (3.3.19). Now, using Gronwall’s
inequality, we get

0 ≤ Θm(τ) ≤
[ ∫

Ω
|u0(x)|2dx + 2 CF n T |Ω|

]
exp(2 CF τ), ∀τ ∈ (0, T).

This implies that ∫
Ω
|um(τ, x)|2dx ≤ C for all τ ∈ (0, T).
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Consequently

sup
τ∈(0,T)

∫
Ω
|um(τ)|2 dx +

∫∫
ΩT

|∇um|2 dx dt ≤ C, (3.3.20)

where the constant C > 0 depends only on T and u0.
Now, we take ψv = vm in (3.3.17) and we integrate over (0, τ) with τ < T to obtain

1
2

∫
Ω
|vm(τ, x)|2 dx + ν

∫ τ

0

∫
Ω
|∇vm|2 dx dt +

∫ τ

0

∫
Ω
(vm · ∇)vm · vm dx dt

+
∫ τ

0

∫
Ω

Q
(
um)∇φ · vm dx dt =

1
2

∫
Ω
|v0(x)|2 dx.

Since
∫ τ

0

∫
Ω
(vm · ∇)vm · vm dx dt = 0, this implies

1
2

∫
Ω
|vm(τ, x)|2 dx +ν

∫ τ

0

∫
Ω
|∇vm|2 dx dt ≤ 1

2

∫
Ω
|v0(x)|2 dx−

∫ τ

0

∫
Ω

Q(um)∇φ · vm dx dt.

(3.3.21)
Using (3.3.7) and Young inequality, we have

I :=
∣∣∣ ∫ τ

0

∫
Ω

Q(um)∇φ vm dx dt
∣∣∣ ≤ CQ

(
|Ωτ |+

∫ τ

0

∫
Ω

∣∣um(τ, x)∇φ vm∣∣dx dt
)

≤ CQ

(
|Ωτ |+

d
2(d + 2)

∫ τ

0

∫
Ω
|um|2

d+2
d dx dt +

1
d + 2

∫ τ

0

∫
Ω
|∇φ|d+2 dx dt +

1
2

∫ τ

0

∫
Ω
|vm|2 dx dt

)
.

Thanks to Gagliardo-Nirenberg inequality, we get

∫ τ

0

∫
Ω
|um|2

d+2
d dx dt ≤

(
sup

τ∈(0,T)

∫
Ω
|um|2 dx

) 1
2
∫ τ

0

∫
Ω
|∇um|2 dx dt.

Next, we use this to arrive

I ≤ CQ

(
|Ωτ |+

d
2(d + 2)

(
sup

τ∈(0,T)

∫
Ω
|um|2 dx

) 1
2
∫ τ

0

∫
Ω
|∇um|2 dx dt +

1
d + 2

∫ τ

0

∫
Ω
|∇φ|d+2 dx dt

+
1
2

∫∫
Ωτ

|vm|2 dx dt
)

.

Exploiting the assumption ∇φ ∈ (Ld+2(Ω))d and using estimate (3.3.20) in (3.3.21), we obtain

1
2

∫
Ω
|vm(τ, x)|2 dx + ν

∫ τ

0

∫
Ω
|∇vm|2 dx dt ≤

CQ

2

∫ τ

0

∫
Ω
|vm(t, x)|2 dx dt

+
1
2

∫
Ω
|v0(x)|2 dx + C̃Q(T, u0, |Ω|, φ). (3.3.22)

Similarly, setting χm(τ) =
∫

Ω
|vm(τ, x)|2 dx in (3.3.22), we arrive at

0 ≤ χm(τ) ≤
∫

Ω
|v0(x)|2 dx + 2C̃Q(T, u0, |Ω|, φ) + 2 CQ

∫ τ

0
χm(t)dt.

An application of Gronwall’s inequality, we obtain

0 ≤ χm(τ) ≤
[ ∫

Ω
|v0(x)|2 dx + 2C̃Q(T, u0, |Ω|, φ)

]
exp(2 CQ τ), ∀τ ∈ (0, T).

This implies that ∫
Ω
|vm(τ, x)|2 dx ≤ C for all τ ∈ (0, T).
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Consequently, we deduce from this, (3.3.22) and we collect the previous results on um to obtain

max
0<τ<T

∫
Ω
|vm(τ, x)|2 dx + ν

∫ T

0

∫
Ω
|∇vm|2 dx ≤ C,

max
0<τ<T

∫
Ω
|um(τ, x)|2 dx +

∫ T

0

∫
Ω
|∇um|2 dx ≤ C,∫ T

0

∫
Ω

max
1≤i,j≤n

|Aj,m
i (um

1 , . . . , um
n )|

n

∑
i=1
|∇um

i |2 dx ≤ C.

(3.3.23)

Therefore, we deduce that vm is uniformly bounded in L∞(0, T; H
)
∩ L2

(
0, T; V

)
and um is uniformly

bounded in L∞(0, T; L2(Ω)
)
∩ L2

(
0, T; H1(Ω)

)
. Thus, we obtain the assertion of the lemma.

Third step: passing to the limit. The existence of a nonnegative weak solutions for system (3.2.29)
will be shown by proving convergence of the solution of approximate problem. Using the sharp Sobolev
embedding and thanks to (3.3.5) we observe that for i, j ∈ {1, .., n}, Aj,m

i (um
1 , . . . , um

n ) are bounded in

L1(ΩT). Moreover, the estimate (3.3.23) give the L2(ΩT) estimate of
√
|Aj,m

i (um
1 , . . . , um

n )| ∇um
i . By the

Cauchy-Schwarz inequality we deduce uniform L1(ΩT) estimate of Aj,m
i (um

1 , . . . , um
n )∇um

i . Moreover,
from the assumption on F, we get easily the uniform bound of F(um) in L1(ΩT). On the other hand, using
estimate (3.3.18), we get

sup
|µ|≤δ

∫ T

0

∫
Ω
|um

i (x + µ)− um
i (x)|dx dt ≤ θ(δ), with θ(δ)→ 0 as δ→ 0.

Thanks to the Kruzhkov compactness lemma (cf. [69]), we deduce that um
i is relatively compact in L1(ΩT)

and there exists a subsequence will be noted um
i such that um

i converges strongly to ui in L1(ΩT) and a.e.
in ΩT .
From Lemma 3.3.3, we have vm is uniformly bounded in L∞(0, T; H

)
∩ L2

(
0, T; V

)
. Therefore, there

exists v ∈ L∞(0, T; H
)
∩ L2(0, T; V

)
such as, m→ ∞

vm ⇀ v weakly-? in L∞(0, T; H
)

and vm ⇀ v weakly in L2(0, T; V
)
.

Moreover, thanks to the compacity Theorem of Aubin-Simon (see for e.g. [85]), the space

{vm ∈ L2(0, T; V); ∂tvm ∈ L1(0, T; V′)}

is compactly injected in L2(0, T; H). Consequently, we have

vm → v strongly in L2(0, T; H). (3.3.24)

In the next step, we pass to the limit in the weak approximate formulation. First, we have

Aj,m
i (um

1 , . . . , um
n )∇um

i → A
j
i(u1, . . . , un)∇ui weakly in (L1(ΩT))

d. (3.3.25)

Indeed, using the Vitali theorem, we deduce that Aj,m
i (um

1 , . . . , um
n ) converges to Aj

i(u1, . . . , un) strongly
in L1(ΩT). Now we rewriting the cross-diffusion terms as

sign
(
Aj,m

i (um
1 , . . . , um

n )
)√
|Aj,m

i (um
1 , . . . , um

n )|
(√
|Aj,m

i (um
1 , . . . , um

n )| ∇um
i

)
.

Thanks to the strong L2(ΩT) convergence of
√
|Aj,m

i (um
1 , . . . , um

n )| to
√
|Aj

i(u1, . . . , un)|, we obtain
(3.3.25). Using the optimal Sobolev embedding H1(Ω) ⊂ L2?(Ω), we deduce that um is uniformly
bounded in L2(0, T; L2?(1+r/2)(Ω)). Then, thanks to the interpolation with L1(0, T; L2(Ω)), we can take
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a higher value of r in (3.3.5). On the other hand, we have∫ T

0

∫
Ω
(vm · ∇)um · ψ1 dx dt =

∫ T

0

∫
Ω

um(vm)T∇ψ1 dx dt −→
∫ T

0

∫
Ω

uvT∇ψ1 dx dt. (3.3.26)

Indeed,
I I =

∫∫
ΩT

(um − u)(vm)T∇ψ1 dx dt−
∫∫

ΩT

u(vm − v)T∇ψ1

)
dx dt.

From the dominated convergence theorem of Lebesgue and the strong convergence (3.3.24), we have

I I ≤‖ (um − u)T∇ψ1 ‖L2(ΩT)
‖ vm ‖L2(ΩT)

+ ‖ vm − v ‖L2(ΩT)
‖ uT∇ψ1 ‖L2(ΩT)

−→ 0.

Now, we define B(v) := (v · ∇)v, then equation (3.3.10) can be written as follows

d
dt
〈v, ψ〉 = 〈−ν∆v + B(v) + Q(u)∇φ, ψ〉, ∀ψ ∈ V. (3.3.27)

In the one hand, the operator −∆ : V → V′ is linear and continuous and v ∈ L2(0, T; V), this implies
−∆v ∈ L2(0, T; V′). On the other hand, Q(u)∇φ ∈ L2(0, T; V′) and b(v, v, w) = 〈B(v), w〉 is trilinear
continuous on V, see [86]. So that ‖ B(v) ‖V′≤‖ v ‖V, then B(v) ∈ L1(0, T, V′). Consequently,
∂tv ∈ L1(0, T, V′).
Finally, we pass to the limit in (3.3.16) and (3.3.17), we obtain the weak formulation (3.3.9)-(3.3.10) in the
sense of Definition 3.3.1. This completes the proof of Theorem 3.3.2.

The pressure. To introduce the pressure p, we set

V(t) =
∫ t

0
v(s) ds, R(t) =

∫ t

0
(v · ∇)v(s) ds, K(t) =

∫ t

0
Q(u)(s)∇φ ds.

It is clear that V, K, R ∈ C(0, T; (H1(Ω))′). Integrating (3.3.27) over [0, T] yields,

〈v(t)− v0 − ν∆V(t) + R(t) + K(t), ψ〉 = 0, ∀t ∈ [0, T], ∀ψ ∈ V.

By application of the Rham Theorem [86], we find, for each t ∈ [0, T], the existence of some
function P(t) ∈ L2

0(Ω) such that

v(t)− v0 − ν∆V(t) + R(t) + K(t) +∇P = 0,

where L2
0(Ω) =

{
w ∈ L2(Ω),

∫
Ω

w dx = 0
}

. Therefore, ∇P ∈ C(0, T; H−1(Ω)), thus P ∈
C(0, T; L2

0(Ω)). By derivation with respect to t in the sense of distributions, we obtain

∂tv− ν∆v + (v · ∇)v + Q(u)∇φ +∇p = 0,

where p = ∂tP ∈W−1,∞(0, T; L2
0(Ω)).

3.4 Computational analysis

In this section we develop and we propose an asymptotic preserving numerical schemes (AP).
In other words, the uniform stability with respect to the parameter ε and the consistence with
cross-diffusion-fluid limit. Simultaneously, we reproduce some interesting phenomena such as
the formation of patterns induced by cross-diffusion terms, and convection of species caused by
the fluid motion. Motivated by the obtained numerical simulation in 1D, we close this section
with a various numerical tests in 2D.

3.4.1 A time semi-implicit discretization

Here, we present a time discretization of micro-macro formulation (3.2.11). Let denote by ∆t a
fixed time step and by tk := k∆t a discrete time where k ∈ N. The approximations of gi(t, x, ξ),
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ui(t, x), Φi(ui), v(t, x) and p(t, x) at the time step tk are denoted, respectively, by gk
i := gi(tk, x, ξ),

uk
i := ui(tk, x), Φk

i := Φi(uk
i ), vk := v(tk, x), and pk := p(tk, x) for i = 1, ..., n. We consider the

semi-implicit scheme given by

gk+1
i − gk

i
∆t

+
1
ε2 ξMi(ξ) · ∇x(Φk

i uk
i ) +

1
ε
(I − PMi )(ξ · ∇x(Φk

i gk
i )) =

1
ε2Li(gk+1

i )

+
1
ε2 T

2
i [M1(ξ)uk

1, ..., Mi−1(ξ)uk
i−1, Mi+1(ξ)uk

i+1, ..., Mn(ξ)uk
n](Mi(ξ)uk

i )

+
1
ε
T 2

1 [M1(ξ)uk
1, ..., Mi−1(ξ)uk

i−1, Mi+1(ξ)uk
i+1, ..., Mn(ξ)uk

n](gk
i )

+
1
ε2 G1

i (M1(ξ)uk
i , ..., Mn(ξ)uk

n, ξ, vk) +
1
ε
(I − PMi )G

2
i (M1(ξ)uk

1, ..., Mn(ξ)uk
n, ξ, vk),

uk+1
i − uk

i
∆t

+ 〈ξ · ∇x(Φk
i gk+1

i )〉 = 〈G2
i (M1(ξ)uk+1

1 , ..., Mi−1(ξ)uk+1
i , Mi(ξ)uk

i , ..., Mn(ξ)uk
n, ξ, vk)〉,

vk+1 − vk

∆t
− ν∆vk+1 + vk+1 · ∇xvk +∇x pk+1 + Q(uk+1

1 , ..., uk+1
n )∇xφ = 0, divx vk+1 = 0.

(3.4.1)

Proposition 2 The numerical scheme given by (3.4.1) is consistent with equations (3.2.16) when ε goes
to 0.

Remark 1 In the micro equations of system (3.4.1), we have considered that only the turning operators Li
for i = 1, ..., n are implicit while other terms are explicit. Indeed, the objective is to ensure the stability as ε
goes to 0. We refer the interested reader to [24] for the idea of the proof of Proposition 2.

3.4.2 Computational analysis 1D

Here, we present our method in one dimension into the domain [−a, a] for fixed a ∈ R+
∗ by using

the finite volume method. Fir this, we denote by Kj =]xj− 1
2
, xj+ 1

2
[ the control volume where

xj =
1
2 (xj− 1

2
+ xj+ 1

2
) and its length is denoted by hj = xj+ 1

2
− xj− 1

2
for j = 1, ..., Nx, (Nx is the total

number of cells). For the velocity space, we consider ξ` = ξmin + `∆ξ for ` = 0, ..., Nξ − 1 where
∆ξ = 1

Nξ
(ξmax − ξmin) with ξmax = −ξmin. Our approach consists to compute the macroscopic

densities in Kj while the microscopic quantities are computed on ∂Kj as follow

ui(tk, x)|Kj ≈ uk
i,j, and gi(tk, xj+ 1

2
, ξ`)|∂Kj

≈ gk
i,j+ 1

2 ,`
, for i = 1, ..., n, j = 1, ..., Nx, ` = 1, ..., Nξ .

The rest terms in (3.2.11) are approximated by Li ≈ Li,`, Mi(ξ) ≈ Mi,`, G1
i ≈ G1

i,` and G2
i ≈ G2

i,`.
We mention that the fluid velocity v is a function depending only on the time variable t due to the
incompressibility condition div v = 0 in 1D. Thus, we shall denote it by v(tk) ≈ vk in the rest of
this section. The full discretization of micro-macro formulation (3.2.11) is given by the following
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gk+1
i,j+ 1

2 ,`
− gk

i,j+ 1
2 ,`

∆t
+

Φk
i

ε
(I − PMi,`)

(
ξ+`

gk
i,j+ 1

2 ,`
− gk

i,j− 1
2 ,`

hj
+ ξ−`

gk
i,j+ 3

2 ,`
− gk

i,j+ 1
2 ,`

hj

)
=

1
ε2

[
Li,`(gk+1

i,j+ 1
2 ,`
)−Φk

i ξ`Mi,`
uk

i,j+1 − uk
i,j

hj
+ G1

i,`(M1,`uk
1,j+ 1

2
, ..., Mn,`uk

n,j+ 1
2
, ξ`, vk)

+T 2
i,`[M1,`uk

1,j+ 1
2
, ..., Mi−1,`uk

i−1,j+ 1
2
, Mi+1,`uk

i+1,j+ 1
2
, ..., Mn,`uk

n,j+ 1
2
](Mi,`uk

i,j+ 1
2
)

]
+

1
ε

[
T 2

i,`[M1,`uk
1,j+ 1

2
, ..., Mi−1,`uk

i−1,j+ 1
2
, Mi+1,`uk

i+1,j+ 1
2
, ..., Mn,`uk

n,j+ 1
2
](gk

i )

+(I − PMi,`)G
2
i,`(M1,`uk

1,j+ 1
2
, ..., Mn,`uk

n,j+ 1
2
, ξ`, vk)

]
,

uk+1
i,j − uk

i,j

∆t
+

〈
Φk

i ξ`

gk+1
i,j+ 1

2 ,`
− gk+1

i,j− 1
2 ,`

hj

〉
=
〈

G2
i,`(M1,`uk

1,j, ..., Mi,`uk
i,j, ...Mn,`uk

n,j, ξ, vk)
〉
,

vk+1 − vk

∆t
+

pk+1
j+1 − pk+1

j

hj
+ Q(uk+1

1,j , ..., uk+1
n,j )

φj+1 − φj

hj
= 0,

(3.4.2)
for i = 1, ..., n, j = 1, ..., Nx and ` = 0, ..., Nξ − 1. The macroscopic quantities in ∂Kj computed as

follows ui,j+ 1
2
=

ui,j+ui,j+1
2 and ui,j− 1

2
=

ui,j+ui,j−1
2 .

The micro-macro formulation scheme (3.4.2) is consistent with macroscopic system (3.2.16) in the
limit thanks to the following proposition:

Proposition 3 The time and space approximations (3.4.2) of micro-macro formulation (3.2.11) in the limit
(ε goes to 0) satisfy the following discretization:

uk+1
i,j − uk

i,j

∆t
+

Φk
i

hj

〈
ξ`

[
L−1

i,`

(
ξ`Mi,`

uk
i,j+1 − uk

i,j

hj

)
−L−1

1,`

(
ξ`Mi,`

uk
i,j − uk

i,j−1

hj

)]〉
+

Φk
i

hj

〈
ξ`

[
L−1

i,`

(
T 2

i,`[M1,`uk
1,j, ..., Mi−1,`uk

i−1,j, Mi+1,`uk
i+1,j, ..., Mn,`uk

n,j](Mi,`uk
i,j+ 1

2
)
)

−L−1
i,`

(
T 2

i,`[M1,`uk
1,j, ..., Mi−1,`uk

i−1,j, Mi+1,`uk
i+1,j, ..., Mn,`uk

n,j](Mi,`uk
i,j− 1

2
)
)]〉

+
Φk

i
hj

〈
ξ`

[
L−1

i,`

(
G1

i,`(M1,`uk
i,j+ 1

2
, ..., Mn,`uk

n,j+ 1
2
, vk, ξ`))

)
−L−1

i,`

(
G1

i,`(M1,`uk
i,j− 1

2
, ..., Mn,`uk

n,j− 1
2
, vk, ξ`))

)]〉
=
〈

Gj
i,`2(M1,`uk

i,j+ 1
2
, ..., Mn,`uk

n,j+ 1
2
, ξ`)

〉
+ O(ε),

vk+1 − vk

∆t
+

pk+1
j+1 − pk+1

j

hj
+ Q(uk+1

1,j , ..., uk+1
n,j )

φj+1 − φj

hj
= 0,

(3.4.3)
for i = 1, ..., n, j = 1, ..., Nx and ` = 0, ..., Nξ − 1 is consistent with macroscopic system (3.2.16).

Boundary layers conditions

Here, we deals with the treatment of boundary conditions which is considered as one of the most
important problems. For the numerical solution of kinetic-fluid equation (3.2.1), the following
inflow boundary conditions are usually prescribed for the distribution functions

fi(t, xmin, ξ) = fi,l(ξ), ξ > 0 fi(t, xmax, ξ) = fi,r(ξ), ξ < 0, for i = 1, ..., n. (3.4.4)

We define the inflow boundary conditions of the former from those described in (3.4.4) by

ui(t, x0)Mi(ξ) +
ε

2
(gi(t, x 1

2
, ξ) + gi(t, x− 1

2
, ξ)) = fi,l(ξ), ξ > 0, (3.4.5)

ui(t, xNx )Mi(ξ) +
ε

2
(gi(t, xNx+

1
2
, ξ) + gi(t, xNx− 1

2
, ξ)) = fi,r(ξ), ξ < 0, (3.4.6)
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for i = 1, ..., n. For the other velocities, we consider the following artificial Neumann boundary
conditions:

gi(t, x 1
2
, ξ`) = gi(t, x− 1

2
, ξ`), if ξ` < 0, and gi(t, xNx+

1
2
, ξ`) = gi(t, xNx− 1

2
, ξ`), if ξ` > 0,

for i = 1, ..., n. Furthermore, using Eqs. (3.4.5) and (3.4.6) the ghost points can be computed as
follows:

gk+1
i,− 1

2 ,`
=


2
ε ( f1,l(ξ`)− uk+1

i,0 Mi,`)− gk+1
i, 1

2 ,`
, ξ` > 0,

gk+1
i, 1

2 ,`
, ξ` < 0;

(3.4.7)

gk+1
i,Nx+

1
2 ,`

=


2
ε ( fi,r(ξ`)− uk+1

i,Nx
Mi,`)− gk+1

i,Nx− 1
2
, ξ` < 0,

gk+1
i,Nx− 1

2 ,`
, ξ` > 0,

(3.4.8)

for i = 1, ..., n. Finally, using (3.4.2) to obtain for i = 1, ..., n

(1 + Φk
i

2∆t
εh0

< ξ+` Mi,` >)uk+1
i,0 = uk

i,0 −Φk
i

∆t
h0

〈
(ξ` + ξ+` − ξ−` )gk+1

i, 1
2 ,`
− 2ξ+`

ε fi,l(ξ`)
〉

+∆t
〈

G2
i,`(M1,`uk

1,0, ..., Mn,`uk
n,0)
〉
,

(1−Φk
i

2∆t
εhNx

< ξ−` Mi,` >)uk+1
i,Nx

= uk
i,Nx
−Φk

i
∆t

hNx

〈 2ξ−`
ε fi,r(ξ`)− (ξ` − ξ+` + ξ−` )gk+1

i,Nx− 1
2 ,`

〉
+∆t

〈
G2

i,`(M1,`uk
1,Nx

, ..., Mn,`uk
n,Nx

)
〉
.

(3.4.9)

Numerical simulations

We provide some numerical simulations to validate the asymptotic preserving scheme property,
such as the uniform stability with respect to the parameter ε and the consistence with cross-
diffusion-fluid limit. On the other hand, we show a comparison between local and nonlocal
diffusion. Furthermore, we demonstrate cross-diffusion and also the fluid flow effects on the
interacting species.

In our numerical simulations, we care out two different tests where the velocity space is
V = [−1; 1] with the number of grids Nξ = 164 which can provide good enough accuracy for
numerical simulations, see [29], and the time step is ∆t = 10−5.

Test 1: Two interacting populations. We investigate the numerical simulations of a system de-
scribing the evolution of two competing species living a medium governed by the incompressible
Navier-Stokes flow. The aforesaid system can be written as follow

∂tu1 + v · ∇xu1 − divx

(
du1(

∫
Ω

u1dx)∇xu1 +A1
1∇xu1 +A2

1∇xu2

)
= F1(u1, u2),

∂tu2 + v · ∇xu2 − divx

(
du2(

∫
Ω

u2dx)∇xu2 +A1
2∇xu1 +A2

2∇xu2

)
= F2(u1, u2),

∂tv− ν∆v + (v · ∇x)v +∇x p + Q(u1, u2)∇xφ = 0, divx v = 0.

(3.4.10)

In model (3.4.10) u1 and u2 denote densities of predator and prey, respectively. The cross-diffusion
term matrix A = (Aj

i)1≤i,j≤2 is defined by

A(u1, u2) =

(
2 a11 u1 + a12 u2 a12 u1

a21 u2 a21 u1 + 2a22 u2

)
where aij > 0 for i, j = 1, 2 is known as self and cross-diffusion rates. It is clear that the above
cross-diffusion matrix satisfies condition (3.3.3). The ellipticity condition (3.3.4) is verified if
8a11a21 ≥ a2

12 and 8a22a12 ≥ a2
21, see [24]. We consider the following Lotka-Voltera terms

F1(u1, u2) = u1(a1 − b1u1 − c1u2), F2(u1, u2) = u2(a2 − b2u1 − c2u2),
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where a1, a2, b1, b2, c1 and c2 are the coefficients of intra- and inter-specific competitions. For the
numerical simulations, we consider the following space domain x = [−2, 2] with the number of
cells Nx = 200 and the periodic boundary condition. Moreover, we adopt a set of parameters,
namely the coefficients of intra- and inter-specific competitions, used in [84] (adopted also by
[6, 24]): a1 = 0.61, a2 = 0.82, b1 = 0.4575, b2 = 0.31, c1 = 9.5 and c2 = 8.2. Furthermore, we
choose a11 = a21 = a22 = 0.5 and a12 = 1 within which cross-diffusion matrix satisfies conditions
(3.3.3) and (3.3.4). Finally, the initial densities correspond to the species densities u1 and u2 are
given by

u1,0(x) = 6, u2,0(x) = 3−
3

∑
z=1

(1 + exp (−50(
√

2(x + xz)2 − σz)))
−1,

where x1 = 1, x2 = 0.3, x3 = −0.4, σ1 = σ3 = 0.25 and σ2 = 0.2. The initial distribution function
is as follow fi,0(x, ξ) =

ui,0(x)
|V| for i = 1, 2. In order to compare local and nonlocal diffusion effects,

we consider the choice of local diffusitive functions given by Φ1 = Φ2 = 0.01 and the choice of
the following nonlocal diffusitive functions dui (z) = 0.01 z2 for i = 1, 2.

In Figures 3.1 and 3.2, we show the obtained numerical simulations of micro-macro formula-
tion scheme of local and nonlocal diffusitive functions with ε = 10−k where k ∈ {0, 1, 2, 3, 6, 9}
against local and nonlocal cross-diffusion macroscopic scheme respectively, at successive times
t = 0, 0.001, 0.003, 0.005, 0.007. First, it is shown that our (AP) scheme is stable along the tran-
sition from kinetic to macroscopic regimes in the limit when ε → 0 which illustrates the result in
Proposition 3. Moreover, we can see that our (AP) scheme converges better in time. On the other
hand, we observe the formation of patterns induced from the cross-diffusion terms. Finally, we
notice that species have the tendency to stay in the crowded zones in the case of local diffusion
while they have the tendency to leave crowded zones in case of nonlocal diffusitive functions.

In order to demonstrate the fluid flow effect on predator-prey interactions, we consider the
same data as in the case of nonlocal diffusitive functions with a constant fluid velocity v = 2.5.
Figure 3.3 provides the obtained results for micro-macro against cross-diffusion-fluid schemes
at successive time t = 0.001, 0.002, 0.003, 0.005. It is shown that our (AP) scheme is stable
and converges better in time. Moreover, we observe the previous reproduced phenomenon by
the nonlocal cross-diffusion terms and that the two densities are transported in the direction of
velocity sign.
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FIGURE 3.1: Test with local diffusitive functions: The first and sec-
ond columns present, respectively, the dynamics of the densities u1(t; x)
and u2(t; x) obtained from local micro-macro scheme with ε = 10−k,
k = 0, 1, 2, 3, 6, 9 against local cross-diffusion scheme with v = 0 at

t = 0.001, 0.003, 0.005, 0.007.
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FIGURE 3.2: Test with nonlocal diffusitive functions: The first and sec-
ond columns present, respectively, the dynamics of the densities u1(t; x)
and u2(t; x) obtained from nonlocal micro-macro scheme with ε = 10−k,
k = 0, 1, 2, 3, 6, 9 against nonlocal cross-diffusion scheme with v = 0 at

successive time
t = 0.001, 0.003, 0.005, 0.007.
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FIGURE 3.3: Test with fluid effect: The first and second columns present,
respectively, the dynamics of the densities u1(t; x) and u2(t; x) obtained
from local micro-macro scheme with ε = 10−k, k = 0, 1, 2, 3, 6, 9 against

local cross-diffusion-fluid scheme with v = 2.5 at successive time
t = 0.001, 0.002, 0.003, 0.005.
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Test 2: Three interacting populations. Here, we investigate the numerical simulations of a system
describing the evolution of three interacting populations living in a fluid medium given by

∂tu1 + v · ∇xu1 − divx

(
du1(

∫
Ω

u1dx)∇xu1 +A1
1∇xu1 +A2

1∇xu2

)
= F1(u1, u2, u3),

∂tu2 + v · ∇xu2 − divx

(
du2(

∫
Ω

u2dx)∇xu2 +A1
2∇xu1 +A2

2∇xu2 +A3
2∇u3

)
= F2(u1, u2, u3),

∂tu3 + v · ∇xu3 − divx

(
du3(

∫
Ω

u3dx)∇xu3 +A2
3∇xu2 +A3

3∇xu3

)
= F3(u1, u2, u3),

∂tv− ν∆v + (v · ∇x)v +∇x p + Q(u1, u2, u3)∇xφ = 0, divx v = 0,
(3.4.11)

where u1(t, x) is the population density of the species at the lowest level of the food chain (preys),
u2(t, x) is the population density of the species that preys upon u1 (predator), and u3(t, x) is the
population density of the species that preys upon u2 (superpredator). the cross-diffusion matrix
A = (Aj

i)1≤i,j≤3 is defined as in [4]

A(u1, u2, u3) =

 α1u1 + u2 u1 0
u2 u1 + α2u2 + u3 u2
0 u3 u2 + α3u3


where α1, α2, α3 > 0 is known as self-diffusion rates. Note that the above cross-diffusion matrix
A is uniformly nonnegative under the following conditions: α1 > 1

2 , α2 > 1 and α3 > 1
2 , see [4].

The reaction terms take a nonlinear forms [55] as follows
F1(u1, u2, u3) = (1− u1)u1 − a1u1

1+b1u1
u2,

F2(u1, u2, u3) =
a1u1

1+b1u1
u2 − a2u2

1+b2u2
u3 − c1u2,

F3(u1, u2, u3) =
a2u2

1+b2u2
u3 − c2u3,

(3.4.12)

where a1, a2, b1, b2, c1 and c2 are the coefficients of intra- and inter-specific competition. In our
numerical simulations, we adopt the following set of parameters: a1 = a2 = 80, b1 = b2 = 2, c1 =
0.4 and c2 = 0.01. The cross-diffusion parameters are given by α1 = 1, α2 = α3 = 1.5. Finally, the
nonlocal diffusion terms are given by dui (z) = di z, for i = 1, 2, 3, where d1 = 0.1, d2 = d3 = 0.01.
The initial densities correspond to u1, u2 and u3 are given by

u1,0(x) = 3, u2,0(x) = 1−
2

∑
z=1

(1 + exp (−50(
√

2(x + xz)2 − σz)))
−1, u3,0(x) = 1,

where x1 = 0.25, x2 = −0.25, and σ1 = σ2 = 0.18, . The initial distribution function is as follow

fi,0(x, ξ) =
ui,0(x)
|V| i = 1, 2, 3.

In Figure 3.4, we present the obtained numerical results for three interacting species from micro-
macro scheme against cross-diffusion scheme at successive time t = 0.001, 0.005, 0.01, 0.06. We
observe that the densities u1, u2 and u3 obtained from the two schemes have almost the same
profiles in the limit when the mean free path ε = 10−k, with k = 0, 1, 2, 3, 6, 9, tend to zeros.
This confirm that our (AP) scheme is uniformly stable along the transition from kinetic regime to
macroscopic one. Moreover, we can see that our (AP) scheme converges better in time. On the
other hand, we observe the effect of the nonlocal diffusion and of the cross-diffusion terms on the
dynamic of the three populations. Specifically, superpredators moves toward the zones occupied
by predators at the same time predators spread out to the areas where preys are located.
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FIGURE 3.4: From left to right column, the obtained numerical solutions of
u1, u2, u3 from the nonlocal (AP) scheme with ε = 10−k, k = 0, 1, 2, 3, 6, 9,
against of the nonlocal cross-diffusion model with v = 0 at successive time

t = 0.001, 0.005, 0.01, 0.06.
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3.4.3 Computational analysis 2D

Motivated by the obtained numerical simulation in 1D, here we investigate two dimensions com-
putational analysis of nonlocal cross-diffusion-fluid system (3.1.1) for three interacting popula-
tions. First, we numerically demonstrate the effect of nonlocal diffusion together with cross-
diffusion, as well as fluid flow in an explicit form of the fluid velocity on the interactions of pop-
ulations by using finite volume method. Secondly, we show the effect of external forces (obstacle
interior de domain and the force of gravity) on the dynamic of fluid flow and simultaneously on
the behavior of interacting populations by using finite element method.

Effect of the nonlocal cross-diffusion-fluid

We show the effect of nonlocal cross-diffusion and fluid flow in an explicit form of the fluid veloc-
ity on the distribution of the interacting populations. The system under consideration is written
as follows implemented with initial and boundary conditions

∂tu1 + v · ∇xu1 − divx

(
du1(

∫
Ω

u1dx)∇xu1 +A1
1∇xu1 +A2

1∇xu2

)
= F1, in ΩT ,

∂tu2 + v · ∇xu2 − divx

(
du2(

∫
Ω

u2dx)∇xu2 +A1
2∇xu1 +A2

2∇xu2 +A3
2∇xu3

)
= F2, in ΩT ,

∂tu3 + v · ∇xu3 − divx

(
du3(

∫
Ω

u3dx)∇xu3A2
3∇xu2 +A3

3∇xu3

)
= F3, in ΩT ,

v(0, x) = v0, u1(0, x) = u1,0, u2(0, x) = u1,0, u3(0, x) = u3,0, in Ω,
∂u1

∂η
=

∂u2

∂η
=

∂u3

∂η
= 0, v = 0, on ΣT .

(3.4.13)
In order to solve numerically system (3.4.13), we adopt the finite volume method in 2D. For

that, we consider a family Th of admissible meshes of the domain Ω consisting of disjoint open
and convex polygons called control volumes, see [46]. In the rest of this subsection, we shall use
the following notation: the parameter h is the maximum diameter of the control volumes in Th.
K is a generic volume in T, |K|is the 2-dimensional Lebesgue measure of K and N(K) is the set of
the neighbors of K. Moreover, for all L ∈ N(K), we denote by σK,L the interface between K and
L where L is a generic neighbor of K. ηK,L is the unit normal vector to σK,L outward to K. For an
interface σK,L, |σK,L| will denote its 1-dimensional measure. dK,L denote the distance between xK
and xL, where the points xK and xL are respectively the center of K and L. On the other hand,
we assume that a discrete function on the mesh Th is a set (wK)K ∈ T and we identify it with
the piecewise constant function wh on Ω such that wh |K= wK. Furthermore, we consider an
admissible discretization of (0, T) × Ω consisting of an admissible mesh Th of Ω and of a time
step size ∆th > 0 (both ∆th and the size maxK∈th diam(K) tend to zero as h → 0). Next, we define
the discrete gradient ∇hwh as the constant per diamond TK,L function by(

∇hwh

)
|TK,L = ∇K,Lwh :=

wL − wK
dK,L

ηK,L.

Finally, we define the average of source terms Fn+1
i,K by Fn+1

i,K = Fi(u1(tn, x), u2(tn, x), u3(tn, x)), for

i = 1, 2, 3. And we make the following choice to approximate the diffuse terms Aj,n+1
i,K,L

Aj,n+1
i,K,L = A

(
min{un+1+

1,K , un+1+
1,L }, min{un+1+

2,K , un+1+
2,L , min{un+1+

3,K , un+1+
3,L }

)
,

where un+1+
i,J = max(0, un+1

i,J ) for i = 1, 2, 3 and J = K, L. The computation starts from the initial

cell averages uK
i,0 = 1

|K|
∫

K ui,0(x) dx for i = 1, 2, 3. In order to advance the numerical solution

from tn to tn+1 = tn + ∆t, we use the following implicit finite volume scheme: determine un+1
i,K for
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K ∈ T, i = 1, 2, 3 such that

|K| u
n+1
1,K −un

1,K
∆t + ∑

L∈N(K)
G(un+1

1,K , un+1
1,L ; vn+1

K,L )− du1

(
∑

K0∈Th

m(K0)un
1,K0

)
∑

L∈N(K)

|σK,L |
dK,L

(un+1
1,L − un+1

1,K )

− ∑
L∈N(K)

|σK,L |
dK,L

[
A1,n+1

1,K,L (un+1
1,L − un+1

1,K ) +A2,n+1
1,K,L (un+1

2,L − un+1
2,K )

]
= |K|Fn+1

1,K ,

|K| u
n+1
2,K −un

2,K
∆t + ∑

L∈N(K)
G(un+1

2,K , un+1
2,L ; vn+1

K,L )− du2

(
∑

K0∈Th

m(K0)un
2,K0

)
∑

L∈N(K)

|σK,L |
dK,L

(un+1
2,L − un+1

2,K )

− ∑
L∈N(K)

|σK,L |
dK,L

[
A1,n+1

2,K,L (un+1
1,L − un+1

1,K ) +A2,n+1
2,K,L (un+1

2,L − un+1
2,K ) +A3,n+1

2,K,L (un+1
3,L − un+1

3,K )
]
= |K|Fn+1

2,K ,

|K| u
n+1
3,K −un

3,K
∆t + ∑

L∈N(K)
G(un+1

3,K , un+1
3,L ; vn+1

K,L )− du3

(
∑

K0∈Th

m(K0)un
3,K0

)
∑

L∈N(K)

|σK,L |
dK,L

(un+1
3,L − un+1

3,K )

− ∑
L∈N(K)

|σK,L |
dK,L

[
A2,n+1

3,K,L (un+1
2,L − un+1

2,K ) +A3,n+1
3,K,L (un+1

3,L − un+1
3,K )

]
= |K|Fn+1

3,K ,

(3.4.14)
for all K ∈ Th, n ∈ Nh. The convective flux G is given by G(wK, wL; vK,L) = v+

K,LwK − v−K,LwL

where v+
K,L and v−K,L are positive and negative parts of vK,L, respectively. We take into account

implicitly the homogeneous Neumann boundary condition. If vK,L = 0, we refer the reader to
[6, 4] for more details. To solve the corresponding nonlinear system arising from the implicit
finite volume scheme (3.4.14), we have used the Newton method. We mention that the linear
systems involved in Newton’s method are solved by the GMRES method.

In the next two tests, the initial densities u1 and u3 correspond to a constants u1,0 = 0.75,
u3,0 = 0.215, while the initial density u2,0 is concentrated in small pockets at two spatial points.
The spatial domain corresponds to a simple square Ω = (−1, 1)× (−1, 1) and uniform mesh is
given by a Cartesian grid Nx = Ny = 128. Finally, we consider the same reaction terms Fi in
(3.4.12) with a different choice of the coefficients a1 = 10, a2 = 0.1, b1 = b2 = 2, c1 = 0.4 and
c2 = 0.01.

Test 1: the nonlocal cross-diffusion effect. Here, we are interested to show the effect of nonlocal
cross-diffusion on the distributions of interacting populations. For that, we consider that they
are depending linearly on the whole of each population in the domain. Specifically, the nonlocal
functions are given by du1(z) = 0, 1z and du2(z) = du3(z) = 0.01z, for all z ∈ R+. The cross-
diffusion parameters are chosen as follows α1 = 10, α2 = α3 = 1.5, and the fluid velocity is
neglected (v = 0). Figure 3.5 provides the obtained numerical simulations of the three densities
u1, u2, and u3 at successive times t = 0, 0.2, 0.4, 0.6. Initially, we observe the effect of the non-
local diffusion over the behavior of population and also the rapid movement of superpredators
towards the regions occupied by predators. Moreover, we can see that predators spread out to the
regions where preys are located. On the other hand, in order to well demonstrate the sensitivity
with respect to the cross-diffusion matrix Aj

i for i, j = 1, 2, 3, on the behavior of three interacting
populations, we consider different values of the cross-diffusion parameters α1, α2 and α3.

Figure 3.6 shows the obtained numerical simulations for T = 0.05 with different values of αi,
i = 1, 2, 3. It is shown that the distribution of interacting populations and the spatial patterns are
changing whenever we made different choices of cross-diffusion parameters.

Test 2: the nonlocal cross-diffusion-fluid effect. The objective of this test is to demonstrate the
fluid effect on the interacting populations. For this, we consider sample choice of the fluid veloc-
ity v(x, y) = (1− x)(1 + x)(1− y)(1 + y). The made choice of the velocity fluid has a purpose
to satisfy the theoretical assumption on it. We adopt the following set of parameters α1 = 10,
α2 = α3 = 1.5 and the diffusitive functions dui for i = 1, 2, 3 are chosen as in the first case in Test
1.

Figure 3.7 shows the influence of interacting populations in the presence of fluid flow. More-
over, it is clearly seen the effect of diffusion over the three populations.
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(a)

(b)

(c)

(d)

FIGURE 3.5: Test 1: snapshot of the three densities u1, u2 and u3 at succes-
sive time t = 0, 0.2, 0.4, 0.6 with v = 0.
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α1 = 50, α2 = 50, α3 = 10

α1 = 50, α2 = 50, α3 = 100

α1 = 50, α2 = 100, α3 = 10

α1 = 100, α2 = 100, α3 = 100

FIGURE 3.6: Cross-diffusion effect: patterns of the three interacting popu-
lations with different cross-diffusion parameters at final time t = 0.1.
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(a)

(b)

(c)

(d)

FIGURE 3.7: Test 2: snapshot of the three densities u1, u2 and u3 at succes-
sive time t = 0, 0.2, 0.4, 0.6 with v(x, y) = (1− x)(1 + x)(1− y)(1 + y).
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Effect of external forces on the fluid dynamic and on the distribution of populations

After showing the nonlocal cross-diffusion-fluid effects on the three interacting populations. Here,
conversely we are interested to demonstrate the effect of gravity as an external forces on the fluid
dynamic and on the behavior of the interacting populations. Moreover, we consider a spatial
domain within obstacle. Thus, we are interested to solve numerically the following system im-
plemented with initial and boundary conditions

∂tv− ν∆v + (v · ∇)v +∇p + ρ∇φ = 0, div v = 0, in ΩT ,

∂tu1 + v · ∇u1 − div
(

du1

(∫
Ω

u1 dx
)
∇u1

)
= µ1 u1(1− ρ)− µ2 u1 u2, in ΩT ,

∂tu2 + v · ∇u2 − div
(

du2

(∫
Ω

u2 dx
)
∇u2

)
= µ1 u2(1− ρ)− µ2 u2 u1, in ΩT ,

∂tu3 + v · ∇u3 − div
(

du3

(∫
Ω

u3 dx
)
∇u3

)
= µ1 u3(1− ρ)− µ2 u3 u2, in ΩT ,

v(0, x) = v0, u1(0, x) = u1,0, u2(0, x) = u2,0, u3(0, x) = u3,0, in Ω,
∂u1

∂η
=

∂u2

∂η
=

∂u3

∂η
= 0, on Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

u1 = u2 = u3 = 0, v(x, y) = (0, 0)T , on Γ5,

v(x, y) =
( ∂v

∂η
= 0 , 0

)T
, on Γ1 ∪ Γ3,

v(x, y) =
(

0,
∂v
∂η

= 0
)T

, on Γ2,

v(x, y) = (4 y (1− y), 0)T , on Γ4,

(3.4.15)

where µ1 and µ2 are the selection and reproduction rates, respectively and ρ = u1 + u2 + u3 is the
total population density, see [53] for more details about the modeling of used reaction terms. The
spatial domain Ω corresponds to a rectangle (0, 12)× (0, 5) and contains an obstacle, see Figure
3.8.

FIGURE 3.8: Schematic of the spatial domain Ω with boundary conditions.

Here, all computations have been implemented using the software package FreeFem++ [56].
The code uses a finite element method based on the weak formulation of the reaction diffusion
system (3.4.15) in an iterative manner as follows

1) Solve Navier-Stokes equations (3.4.15)1 and the incompressibility condition (3.4.15)2 with
the Characteristic Galerkin method. We mention that we have used a classical Taylor-Hood
element technic, i.e. the fluid velocity v is approximated by P2 finite elements and the
pressure p is approximated by P1 finite elements.

2) Approximate the densities u1, u2 and u3 by P2 finite elements and solve firstly equation
(3.4.15)3, then (3.4.15)4 and finally (3.4.15)5. We mention that have used UMFPACK package
and θ-scheme with θ = 0.49.

In all simulations bellow, we consider the following initial conditions:

ui,0 = 2.5 δi + 0.25, i = 1, 2, 3, v0 = (0, 0)T ,
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where δi is a random function for i = 1, 2, 3. The nonlocal diffusion terms and the fluid viscosity
are chosen as follows du1(z) = 0.1 z, du2(z) = du3(z) = 0.01 z for all z ∈ R and ν = 10−3.

We recall that ∇φ = Vs(ρs − ρ f ) g−→z where Vs and ρs are, respectively, the volume and
the density of populations, ρ f is the fluid density and g is the gravitational force. In fact, the

vector −∇φ is the resultant of gravity forces (
−→
P = −ρs Vs g−→z ) and the Archimedes thrust

(
−→
Fa = ρ f Vs g−→z ). In our tests, the populations are denser than the fluid and therefore a gravi-

tational flow is created in the direction of the vector −−→z . Herein, we investigate two different
cases:

Case 1: absence of the gravitational force. In the first place, we illustrate the behavior of the
nonlocal reaction-diffusion-fluid system (3.4.15) without the force gravity, i.e ∇xφ = (0, 0).

Figure 3.9 shows the obtained numerical simulations of the three interacting populations den-
sities u1, u2 and u3, and the dynamic of the fluid flow presented by the fluid velocity v and the
pressure p. It’s clear that populations are transported in the direction of the fluid. On the other
hand, we observe that the fluid flow is not influenced by the presence of the populations in the
medium. However, it is affected by the presence of the obstacle in the domain.

Case 2: the presence of gravitational force. In the second place, we illustrate the behavior of
the nonlocal reaction-diffusion-fluid system (3.4.15) with the presence of the gravity force, i.e
∇xφ 6= (0, 0). Thus, we obtain the strong coupling system (3.4.15).

In Figure 3.10, we show the numerical simulations of the three densities u1, u2 and u3 and
the dynamic of the fluid flow. Clearly, we observe that the three interacting populations and the
fluid are influenced by the presence of the gravitational force. We observe also the effect of the
presence of the obstacle.

3.5 Conclusion

In this chapter, we have proposed a nonlocal cross-diffusion-fluid model for multi-interacting
populations. The proposed model has been derived from a nonlocal kinetic-fluid model by using
the micro-macro decomposition technic. Next, we have proved the existence of weak solutions
for the proposed model by nonlinear Galerkin method. It has been shown that our proposed (AP)
schemes are uniformly stable along the transition from kinetic to macroscopic regimes. At the
same time, we have demonstrated the nonlocal diffusion, cross-diffusion and the fluid effects on
two and three interacting populations. Finally, inspired by the obtained numerical simulation in
1D, we have provided various numerical simulations in 2D.
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Evolution of the density u1 at successive time t = 5, 10, 15.

Evolution of the density u2 at successive time t = 5, 10, 15.

Evolution of the density u3 at successive time t = 5, 10, 15.

Snapshot of the fluid velocity v at successive time t = 5, 10, 15.

Snapshot of the pressure p at successive time t = 5, 10, 15.

FIGURE 3.9: Evolution of the three interacting populations and snapshot
of the fluid velocity and the pressure in the case: ∇φ = (0, 0).
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Evolution of the density u1 at successive time t = 5, 10, 15.

Evolution of the density u2 at successive time t = 5, 10, 15.

Evolution of the density u3 at successive time t = 5, 10, 15.

Snapshot of the fluid velocity v at successive time t = 5, 10, 15.

Snapshot of the pressure p at successive time t = 5, 10, 15.

FIGURE 3.10: Evolution of the three interacting populations and snapshot
of the fluid velocity and the pressure in the case: ∇φ = (0, 1).
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Part II

Mathematical modeling of vehicular
traffic by kinetic theory approach of

active particles
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Chapter 4

Representation and mathematical
structures for one lane flow

This chapter is intended to give a brief overview of the basic mathematical structures for one lane vehicular
traffic. It starts with the kinetic representation, in which we define the independent variables and depen-
dent variables needed to describe the system. Then, macroscopic observable quantities can be obtained under
suitable integrability assumption. Section 4.3 is devoted to state the mathematical structure of Boltzmann
models with binary interaction, the models with Enskog-like interactions and Boltzmann models with aver-
aged binary interactions. In section 4.4 we present discrete model by [43]. Section 4.5 is devoted to describe
the kinetic theory for active particles. Specifically, the model by [21] where the authors take into account
the behavior of the system driver-vehicle by adding the activity variable. The last section 4.6 aim to present
the model by [47] where the authors propose a full discrete model.

4.1 Kinetic theory approach

Kinetic modeling in a Boltzmann framework applied to traffic flow was first initiated by [81].
Their model is based on local binary interactions framework with unidirectional flow and on the
assumption that the driver is assumed willing to adjust the vehicle’s velocity toward a certain
desired velocity distribution. This model is only applicable in the situation of low traffic density.
Indeed, in the inhomogeneous traffic flow situation, a serious drawback appears, for instance,
since the velocities are positive, the traffic jams are not allowed to propagate backwards in nega-
tive direction, and this is in contrast to real traffic flow observations. Furthermore, the situation
for kinetic equations in gas dynamics is completely different, because the velocity can be assumed
positive and negative. Consequently, we can not expect to obtain a strict derivation of fluid dy-
namics equation from the aforesaid models. In order to correct this drawbacks, it is necessary
to take in consideration the effects of the finite distance between the vehicles in analogy way to
Enskog’s theory for dense gas, see [68] where the authors used this argument in the context of
microscopic interactions for the term of interactions.

After the pioneer work by [81], various contributions have been proposed by several authors
starting from the critical analysis and substantial improvement proposed by [79] toward the most
developments proposed, see for instance [76, 66, 67]. These models are based on a Boltzmann-
type collision term in which the cross section, giving the probability of interaction between two
particles, is replaced with a probability distribution depending on the local traffic conditions,
see [76]. In contrast to work by [81], the equation proposed by [76] is strictly based on a mi-
croscopic model fulfilling the criterion of having a one parameter family of local equilibrium
distributions depending only on the local density of cars. As in [76], the work by [66] derived
a kinetic equation based on a microscopic model without going back to the phenomenological
relation terms as in [81].

We would like to claim that the interactions integrals appeared in the models based in the
continuous velocity typically do not provide the analytical expression of the equilibrium dis-
tribution and they are very demanding from computational point of view. To overtake these
drawbacks, a several approaches has been proposed in literature. The first approach considered
Vlasov-Fokker-Planck type model in which the integrals are replaced by differential operators,
see [58] and recently [90]. The second one considered simplified kinetic models with a small
number of velocities, namely based on the discrete-velocity [43, 21, 15].
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It is attractive to state the two relevant complexity problems in the modeling of traffic flow
by the engineer[40]. The first criticism observation is the assumption of continuity of the distri-
bution function. Indeed, the number of vehicles is not large enough to justify this assumption.
The second criticism observation is the assumption of homogeneity of the behavior of the system
driver-vehicle. Indeed, the behavior of this system is not the same. Consequently, new mod-
els should take into account these criticisms observations. The method of discrete kinetic theory
by [43] appears pertinent to avoid the first complexity problem. Indeed, the authors developed
this method using the discreteness of the velocity variable, which allowed for a finite number of
velocity only. In order to correct the second criticism observation, the paper by [21] proposed a
mathematical structure based on the method of kinetic theory of active particles. This method on
the one hand converts the Boltzmann’s integral-differential equation into a set of partial differen-
tial equations. On the other hand it relaxes the continuum hypothesis and includes the granular
nature of vehicular traffic. Recent work [82] proposed a spatially homogeneous model with dis-
crete velocity by taking into account the heterogeneous nature of the flow of vehicles along a
road. Namely, the authors considered mixture of two classes of populations instead of one class
as in [21]. They considered the class of cars which is shorter and faster, and the class of trucks
which is longer and slower.

More recently, the authors in [83] proposed a kinetic model based on continuous velocity
space in the spatially homogeneous case with binary interactions. Their approach differs from
the kinetic model proposed in [21] because they assumed continuous velocity spaces. The ob-
tained result in their work suggest that a small number of velocities is sufficient for the kinetic
modeling of traffic. Moreover, the acceleration remains controlled by the parameter ∆v, in con-
trast to models based on a lattice of velocities, in which the possible outcomes of an interaction
and the acceleration of vehicles depend on the particular lattice chosen [43, 21]. On the other
hand, they found the explicit expression of the asymptotic distribution which leads to deriving
new macroscopic equations using the closure provided by the kinetic model. We think that the
most important result in their work is the derivation of the fundamental diagrams with a phase
transition without the need of prescribing heuristic speed-density relations.

4.2 On the kinetic theory representation

In this section we are concerned about the kinetic theory representation where ee define the
needed variables to state the mathematical structures. Let us consider a one-directional flow
of vehicles along a road with length `. We would like to mention that when the independent and
dependent variables are in a suitable dimension form, they represent the relevant phenomena re-
lated to traffic flow and therefore some specific models will be described. Moreover, writing the
model in terms of dimensionless variables is useful towards computational analysis and allows
to extract suitable scaling parameters which can be properly used towards a qualitative under-
standing of the proprieties of the model.

In order to define dimensionless quantities, one has to identify characteristic time T and
length of road `, as well as maximum density ρM and maximum mean velocity VM. Specifically,

• ρM is the maximum density of vehicles corresponding to bumper-to-bumper traffic jam.

• VM is the maximum admissible mean velocity which may be reached by vehicles in the
empty road.

It is spontaneous to assume VMT = `, which means that T is the time necessary to cover the
whole road length ` at the maximum mean velocity VM. After the above preliminaries, we can
now define dimensionless independent and dependent variables. The dimensionless indepen-
dent variables are

• t ∈ R+ is the dimensionless time variable obtained by referring the real time to a suitable
critical time Tc to properly be defined by a qualitative analysis of the differential model.
Generally, it is convenient to identify the critical time Tc as the ratio between ` and VM.

• x =
xr

`
is the dimensionless space variable obtained by dividing the real space by the length

` of the lane, where xr is the real dimensional space.
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Moreover, suitable reference variables can be introduced to define the dependent variables.

• Of course a fast isolated vehicle can reach velocities larger that VM. In particular a limit
velocity can be defined as

V` = (1 + µ)VM, µ > 0,

taking into account that no vehicle can reach a velocity higher than V`, simply for mechan-
ical reasons. Both VM and µ may depend on the characteristics of the lane. Say, a country
lane or a highway, as well as on the type of vehicles, for example, a slow car, a fast car, etc.

In the representation by kinetic theory methods, the whole system is defined by the statistical
distribution function of position x and velocity v of the vehicles. This distribution function over
the dimensionless microscopic state is defined by

f = f (t, x, v) : R+ × [0, 1]× [0, 1]→ R+.

f (t, x, v)dxdv gives the number of vehicles which, at time t, is in the phase space domain [x, x +
dx]× [v, v + dv]. The distribution function f is normalized with respect to ρM so that all derived
variables can be given in a dimensionless form.
In the kinetic representation, macroscopic observable quantities can be obtained, under suitable
integrability assumptions, as momenta of the distribution f , normalized with respect to the max-
imum density ρM in order that all variables are given in a dimensionless form. Specifically,

• the dimensionless density is given by

ρ(t, x) =
∫ 1+µ

0
f (t, x, v)dv,

• the total number of vehicles at time t is computes as following

N(t) =
∫ 1

0

∫ 1+µ

0
f (t, x, v)dvdx,

• the flux is giving by

q(t, x) =
∫ 1+µ

0
v f (t, x, v)dv,

• the dimensionless local mean velocity is

ξ(t, x) =
q(t, x)
ρ(t, x)

.

• Higher order momenta are related to other macroscopic variables, such as the average ki-
netic energy E and the variance of the velocity σ

E(t, x) =
1
2

∫ 1+µ

0
v2 f (t, x, v)dv, σ(t, x) =

1
ρ(t, x)

∫ 1+µ

0
[v− ξ(t, x)]2 f (t, x, v)dv.

4.3 Mathematical structures

Kinetic approach derivation follows lines similar to those of kinetic of gas-theory. Indeed, it needs
the modeling of pair interactions at microscopic level. Let us consider pair interactions between
a test vehicle with the state (x, v) and the field vehicle with state (y, w). As in the kinetic theory,
different ways of modeling local interactions generate different types of evolution equations. The
difference with respect to the classical theory is that interactions do not follow the rules of classi-
cal mechanics; but instead, the driving strategy is expressed by the vehicle-driver systems.

Models which are available in the literature have occasionally been derived by heuristic ar-
guments. This section provides a description of some conceivable frameworks which can be used
toward modeling of vehicular traffic. In particular, the following ones will be concisely described
in the next subsections:
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i) Boltzmann models with binary interactions,

ii) models with Enskog-like interactions,

iii) Boltzmann models with averaged binary interactions.

4.3.1 Boltzmann models with binary interactions

Localized binary interaction models are based on microscopic modeling, which assume binary
interactions between the test and the field vehicles localized at point x of the field vehicle. The
paper by [18] suggests the following formal structure

∂ f
∂t

+ v
∂ f
∂x

= J[ f , f ](t, x, v)

=
∫ 1+µ

0

∫ 1+µ

0
η(v∗, v∗)A(v∗, v∗; v) f (t, x, v∗) f (t, x, v∗) dv∗ dv∗

− f (t, x, v)
∫ 1+µ

0
η(v, v∗) f (t, x, v∗) dv∗, (4.3.1)

where the right-hand side gives the difference between the inflow and outflow of vehicles in the
control volume of the phase space. Moreover,

• η(v∗, v∗) or η(v, v∗) is the encounter rate between the test vehicle with velocity v∗ and the
field vehicle with velocity v∗. It gives the number of interactions between pairs of vehicles
per unit time in the unit space.

• A(v∗, v∗; v) is the transition probability density that a candidate or test vehicle with velocity
v∗ interacting with a vehicle with velocity v∗ ends up with velocity v. The density A must
be equal to zero for v > 1 + µ.

The above description may lead to good results in homogeneous traffic flow situations; of
course the description is satisfactory if the microscopic modeling is correct. If the above equation
(4.3.1) are used for the description of inhomogeneous traffic flow situations, a serious drawback
appears due to the positivity of the velocities v. There is no mechanism in the equations to allow
perturbations to propagate backward in the negative-x direction. This can be seen by the follow-
ing trivial argument: Considering a full space problem, the integral form of the kinetic equation
is

f (t, x, v) = f (0, x− vt, v) +
∫ t

0
J[ f , f ](s, x + v(s− t), v)ds.

This shows that the distribution function f at x and t depends only on the distribution function
at the values x′ 6 x , s 6 t, since v is positive. A perturbation cannot propagate backward in
the negative x direction. In particular, traffic jams occurring for dense traffic situations are not
allowed to travel backward. This is in striking contrast to real traffic flow observations. More-
over, the above remark has consequences for the connection between kinetic and fluid dynamic
traffic flow equations. Namely, one can not expect to obtain a strict derivation of fluid dynamic
equations from the above kinetic equation (4.3.1). In general, to describe correctly the behavior of
dense traffic with a kinetic equation and to obtain a consistent derivation of fluid dynamic equa-
tions. It is necessary to include the effects of the finite size extension of the vehicles. This can be
done as we will show in the next subsection in analogy to Enskog’s theory for a dense gas.

4.3.2 Models with Enskog-like interactions

Enskog-like models have a structure analogous to the Boltzmann-like models with binary interac-
tions. The main difference is that the effects of the finite size of the vehicles are taken into account.
Namely, the field vehicle is not localized in the same place x as the candidate or test vehicle, but
at a certain distance from x that can be chosen depending on the velocities of the interacting pair.
Moreover, the Enskog-type modeling introduces a pair correlation function depending on the
local densities in the positions of the interacting pairs as follows, see [67]

f (2)(t, x, v, y, w) ∼ K(di(v, w), ρ(t, x)) f (t, x, v) f (t, y, w), (4.3.2)
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where the function K is the correlation function between test and field vehicles depending, in a
phenomenological way, on the reaction thresholds di of the driver, at least braking and acceler-
ating thresholds. Interactions of the test vehicle are assumed to happen only when a threshold
distance is crossed, and are supposed to be localized with a field vehicle in the position

yi = yi(v, w) = x + di(v, w).

The structure (4.3.1) can be rewritten in the following form

∂ f
∂t

+ v
∂ f
∂x

=
2

∑
i=1

Ji[ f , f ](t, x, v)

=
2

∑
i=1

∫ 1+µ

0

∫ 1+µ

0
η(v∗, w∗)Ai(v∗, w∗; v) f (2)(t, x, v∗, (x + di(v∗, w∗)), w∗)dv∗dw∗

− f (t, x, v)
2

∑
i=1

∫ 1+µ

0
η(v, w∗) f (2)(t, x, v, (x + di(v, w∗)), w∗)dw∗. (4.3.3)

Reconsidering the arguments in Subsection 4.3.1, one obtains

f (t, x, v) = f (0, x− vt, v) +
∫ t

0

2

∑
i=1

Ji[ f , f ](s, x + v(s− t), v)ds.

In this case one observes, due to the definition of Ji[ f , f ], that the distribution function at x, t
depends not only on the distribution function at x′ 6 x, s 6 t, but also on the distribution
function at x′ > x. Thus, this allows backward propagating disturbances.

4.3.3 Boltzmann models with averaged binary interactions

The review by [18] also introduces structure for models where a suitable function ϕ(x, y) models
the weight of the action on the driver of the test or candidate vehicle at x due to the field vehicle
at y within the visibility area D = [x − δr, x + δ f ] of the vehicle at x. Where δr and δ f are,
respectively, the rear and frontal visibility distance. For y ∈ D the weight ϕ(x, y) must be such
that

y ↑⇒ ϕ ↓,
∫

D
ϕ(x, y)dy = 1. (4.3.4)

The corresponding mathematical structure is written as follows

∂ f
∂t

+ v
∂ f
∂x

=
∫

D

∫ 1+µ

0

∫ 1+µ

0
η(v∗, v∗)A(v∗, v∗; v) f (t, x, v∗) f (t, x, v∗)ϕ(x, y) dv∗ dv∗ dy

− f (t, x, v)
∫

D

∫ 1+µ

0
η(v, v∗) f (t, x, v∗)ϕ(x, y) dv∗ dy. (4.3.5)

It is immediate to show that Eq. (4.3.5), assuming that ϕ(y) = δ(y− x) (or ϕ(y) = δ(y− x + d)),
where δ denotes Dirac’s delta function, gives a localized interaction models. Analogous reason-
ing can be applied to Enskog-type models.

It is worth stating that the above mathematical frameworks are criticized in [18]. Indeed, these
mathematical frameworks did not take into account the complexity features. Precisely, as previ-
ously mentioned, the assumption of continuity of the distribution function and the assumption
of homogeneity of the driver-vehicle systems. These critical analysis from an engineer’s point of
view on traffic phenomena modeling is given by the sharp paper of [40]. A few sentences can be
extracted from this paper:

(i) Shock waves and particle flows in fluid dynamics refer to thousands of particles, while only a few
vehicles are involved in traffic jams.

(ii) A vehicle is not a particle but a system linking driver and mechanics, so that one has to take into
account the reaction of the driver, who may be aggressive, timid, prompt, etc. This criticism also
applies to kinetic type models.
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(iii) Increasing the complexity of the model increases the number of parameters to be identified.

The aim of the next sections is to take into account these criticism observations.

4.4 Discrete velocity models

The objective of this section is to overtake the first criticism (i). Namely, the continuity assump-
tion of the function distribution. Indeed, continuity assumption can not be applied to vehicular
flows considering that the inter-vehicular distances cannot be neglected, while methods of math-
ematical kinetic theory need a number of particles much greater than those involved in the road.
To achieve this goal, it is pertinent to proceed by the discrete velocity methods which are based
on the assumption that particles can only attain a finite number of velocities. Thus, developing
discrete velocity models in kinetic theory appears to be particularly interesting, considering that
vehicles are often observed to move along highways with group velocities, thus creating clusters
of vehicles related to certain sets of velocities.

Referring to paper by [43], the authors observe that vehicles traveling along a road do not
continuously span the whole set of admissible velocities; rather, they tend to move in clusters.
This lead them to consider a mathematical structure that corresponds to average stochastic games.
Technically, developing a discrete velocity model of traffic flow means selecting a discrete number
of velocities as follows

Iv = {v0 = 0, ..., vi, ..., vn = 1} ⊂ Dv = [0, 1],

where velocities have been divided by the maximal admitted velocity V`, Dv is the dimensionless
velocity domain, and n is the number of points. In principle, the only requirement on n is that, it
should be a positive integer different from zero i.e. n ∈N, n > 0. Each vi is interpreted as a veloc-
ity classes encompassing a certain range of velocities v which are not individually distinguished.
The discretization introduced above is not a simple mathematical procedure. Instead, it plays a
specific role in the modeling of the system. Namely, it represents possible ways to consider the
strongly granular nature of traffic. On the other hand, we observe that vehicles traveling along
a road do not give rise to a continuous velocity distribution, since they tend to move in clusters
which can be identified and distinguished from each other by a discrete set of speed values.
The corresponding discrete representation is obtained by linking the discrete distribution func-
tions to each velocity vi, i = 1, ..., n. Precisely, the distribution function f is expressed as a linear
combination of Dirac functions in the variable v with coefficients depending on time t and space
x.

f (t, x, v) =
n

∑
i=1

fi(t, x)δ(v− vi), (4.4.1)

where fi(t, x) = f (t, x, vi) gives the distribution of vehicles in the point x having at time t a
velocity comprised in the i-th velocity class.

Naturally, the above discrete velocity approach implies that vehicles with velocity larger than
V` can be disregarded. In other words, it is technically assumed that the presence of vehicles with
velocity much larger than the maximum mean velocity corresponding to the given density is
negligible. However, in a discrete velocity framework, such a detail is actually not very relevant,
since vehicles are grouped and classified on the basis of velocity classes {vi}n

i=1. So that those
which travel at speeds higher than VM are simply included in the extreme class vn. On the other
hand, technically v1 = 0 which coincides with the left endpoint of the interval Dv. The other
classes are then recovered as

vi+1 = vi + (∆v)i, i = 1, ..., n− 1,

where (∆v)i represents the amplitude of the i-th velocity class. The authors have been consider
an uniformly spaced velocity grid over Dv, which implies a constant step

∆v =
|Dv|
n− 1

,
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where |Dv| is the length of the interval Dv. It results also that

vi = (i− 1)∆v, i = 1, ..., n,

with vn = |Dv|. Note that if one takes Dv = [0, 1 + µ] with µ sufficiently small, then the resulting
amplitude ∆v = 1+µ

n−1 of the velocity classes little differs from the case Dv, which produces ∆v =
1

n−1 . Consequently, one can choose to refer to the unit dimensionless velocity domain Dv = [0, 1]
by simply assuming that vehicles possibly traveling at speeds higher than 1 are included in the
extreme velocity class vn = 1. The authors explicitly assumed a uniformly spaced velocity grid of
the form

vi =
i− 1
n− 1

, i = 1, ..., n

with the constant grid step ∆v =
1

n− 1
.

Using the representation of the distribution function f given by Eq. (4.4.1), the following expres-
sions for the classical macroscopic average quantities are easily derived:

• the vehicle density

ρ(t, x) =
n

∑
i=1

fi(t, x);

• the vehicle flux

q(t, x) =
n

∑
i=1

vi fi(t, x) = ρ(t, x)ξ(t, x),

where ξ is the mean velocity;

• the variance of the velocity

σ(t, x) =
1

ρ(t, x)

n

∑
i=1

[vi − ξ(t, x)]2 fi(t, x).

The mathematical model by [43] is a set of evolution equations for the densities which can be
formally written as follows

∂ fi
∂t

+ vi
∂ fi
∂x

=
n

∑
h=1

n

∑
k=1

∫
Dw

η[f](t, y)Ai
h,k[f; α](t, y) fh(t, x, ) fk(t, y)w(x, y)dy

− fi(t, x)
n

∑
k=1

∫
Dw

η[f](t, y) fk(t, y)w(x, y)dy, (4.4.2)

for i = 1, ..., n, where Dw = [x, x + L] is the visibility zone where L > 0, and f = ( f1, ..., fn).
Moreover,

• η[f] is the interaction rate, which gives the number of interactions per unit time among the
vehicles,

• Ai
h,k[f; α] defines the table of games, which models the microscopic interactions among the

vehicles by giving the probability that a vehicle with speed vh adjusts its velocity to vi after
an interaction with a vehicle traveling at speed vk.

• w(x, y) represents the function weighting the interactions over the visibility zone; it is re-
quired to satisfy

w(x, y) ≥ 0, ∀x ∈ [0, 1], y ∈ Dw,
∫

Dw
w(x, y)dy = 1, ∀y ∈ Dw,

• α is phenomenological parameter, whose lower and higher values are related to bad and
good road conditions respectively.
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Furthermore, the authors assume that both the interaction rate and the table of games depend on
the local density ρ with the following additional requirement

Ai
h,k[f; α] ≥ 0,

n

∑
i=1
Ai

h,k[f; α] = 1 ∀h, k ∈ {1, ..., n}. (4.4.3)

It is worth stating that numerical simulations of the spatially inhomogeneous problem have been
carried out by addressing three representative cases, which highlight the ability of the model to
reproduce correctly some interesting features of vehicular traffic flow. In particular, the merging
of two clusters of vehicles with concomitant appearance of stop-and-go waves and the backward
propagation of a queue, possibly in presence of a bottleneck, with a vehicle density profile which
in this second case closely follows that of the bottleneck, and which in both cases never overcomes
the maximum value fixed by the road capacity. Moreover, the above kinetic model (4.4.1) has been
derived according to the generalized kinetic theory, where interactions at the microscopic level do
not follow laws of classical mechanics. However, they are the same for all interacting vehicles.
In other words, the behavior of the vehicle-driver system follows specific strategies that modify
classical mechanical rules, but they are not heterogeneously distributed among the vehicles.

4.5 Kinetic Theory of Active Particles

The Kinetic Theory of Active Particles, hereafter sometimes abbreviated as KTAP, is a mathe-
matical method that has been developed to model the dynamics of large living systems, see [12].
Motivations to use KTAP’s methods to model vehicular traffic are offered by the criticisms (ii) and
(iii) cited above in Subsection (2.3.3) by [40]. The basic idea of KTAP is to consider each driver-
vehicle as an active particle of a large complex system, to model the heterogeneous behavior of the
micro-systems that compose the overall system. As previously mentioned, [21] proceeded by the
KTAP’s method. The authors consider a modeling approach which takes into account not only
the lack of continuity of the distribution function with respect to the velocity variable v but also
with respect to the activity variable u. In order to describe this method, the authors discretized
the variables v and u by introducing the following sets Iv and Iu

Iv = {v1 = 0, ..., vi, ..., vn = 1}, Iu = {u1 = 0, ..., uj, ..., um = 1}.

where n and m are, respectively, the number of discretization points of the velocity v and the
activity u.
The authors used a fixed uniform grids of velocity and activity defined as follows

vi =
i− 1
n− 1

, uj = 1− j− 1
m

, ∀i = 1, ..., n, ∀j = 1, ..., m. (4.5.1)

Moreover, the distribution function is defined as a sum of Dirac distributions in the variable v
and u, with coefficients depending on t and x

f (t, x, v, u) =
n

∑
i=1

m

∑
j=1

fij(t, x)δ(v− vi)δ(u− uj), (4.5.2)

where fij(t, x) = f (t, x, vi, uj).
Thus, according to this mathematical representation, the following expressions for the classical
macroscopic average quantities are easily derived

• the dimensionless local density

ρ(t, x) =
n

∑
i=1

m

∑
j=1

fij(t, x),
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• the dimensionless mean velocity and flow

ξ(t, x) =
1

ρ(t, x)

n

∑
i=1

m

∑
j=1

vi fij(t, x),

and
q(t, x) = ξ(t, x)ρ(t, x).

• while the local speed variance is given by

σ(t, x) =
1

ρ(t, x)

n

∑
i=1

m

∑
j=1

[vi − ξ(t, x)]2 fij(t, x).

• Similarly, one can compute the local mean value and variance of the activity variable

a(t, x) =
1

ρ(t, x)

n

∑
i=1

m

∑
j=1

uj fij(t, x),

and

Var(a) =
1

ρ(t, x)

n

∑
i=1

m

∑
j=1

[uj − a(t, x)]2 fij(t, x).

The authors introduce the discrete probability density

Aij
hk,pq(vh → vi, uk → uj|vh, vp, uk, uq, ρ(t, y)), (4.5.3)

which denotes the probability density that the candidate particle (vh, uk) falls into the state (vi, uj)
of the test particle after an interaction with a field particle (vp, uq), with the property that

n

∑
i=1

m

∑
j=1
Ai,j

hk,pq = 1, ∀h, p ∈ {1, ..., n} ∀k, q ∈ {1, ..., m}. (4.5.4)

The evolution of the system is ruled by nonlinearly additive interactions described by stochastic
games. The corresponding mathematical structure by [21] is written as follows

∂ fij

∂t
+ vi

∂ fij

∂x
=

n

∑
h,p=1

m

∑
k,q=1

∫ x+L

x
η[ρ(t, y), x]

×Aij
hk,pq(vh → vi, uk → uj|vh, vp, uk, uq, ρ(t, y)) fhp(t, x, ) fkq(t, y)dy

− fij(t, x)
n

∑
p=1

m

∑
q=1

∫ x+L

x
η[ρ(t, y), x] fpq(t, y)dy, (4.5.5)

where L > 0 is the visibility zone length, and

• η[ρ(t, y), x] is the encounter rate. The authors consider the following expression

η[ρ(t, y), x] = Ψ[ρ(t, y)]w(x, y),

where w(x, y) is the weighted function; it is required to satisfy

w(x, y) ≥ 0,
∫

Dw
w(x, y)dy = 1, ∀x ∈ [0, 1], ∀y ∈ [x, x + L],

and
Ψ[ρ(t, y)] = 1 +

1
α

ρ2,

• α is a phenomenological parameter modeling the traffic condition. Technically, α → 0
models bad condition and α→ 1 models good condition.
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• u ∈ [0, 1] is the activity variable, which identifies the quality of the driver-vehicle micro-
system. u = 0 corresponds to the worst quality and u = 1 corresponds to the best quality.

The authors presented some numerical simulations in the case of the spatially homogeneous and
inhomogeneous problems that show the ability of the above model (4.4.1) to reproduce some
empirical data. Namely, in the first case, the numerical simulations are devoted to reproduce
the so called fundamental diagrams [63]. Such diagrams relate the density of cars to either their
average speed or their flux, this way providing synthetic insights into the gross phenomenology
of vehicular traffic flow expected in stationary conditions. In the second case, the authors consider
a special case of merging of two clusters.

To make it short, the idea of the aforesaid models by [43] and [21] is to relax the hypothesis
that the speed distribution is continuous by introducing in the domain Dv a lattice of discrete
speeds. Consequently, the granular character of the car flow is at least partially taken into account
from the point of view of the speed distribution. We will propose a deep revisiting of the paper
by [21] in the Chapter 5.

4.6 A fully-discrete-state kinetic model by Fermo and Tosin

This section is devoted to introduce a mathematical framework starting from the discrete velocity
kinetic method. In order to accomplish the program of a fully-discrete-state kinetic theory of
vehicular traffic, we refer to the paper by [47], in which the position x and velocity v are discrete.
The authors follow line of aforesaid framework [43] for the discretization of the velocity v. The
basic idea is to introduce a partition of the spatial domain. It is worth anticipating that partitioning
the spatial domain Dx in a number of cells of finite size is a more realistic way to detect the
positions of the vehicles along the road. Indeed, it is consistent with the intrinsic granularity of the
flow, which does not allow for a statistical description of their spatial distribution more accurate
than a certain minimum level of details. In addition, it enables one to account easily for some
effects due to the finite size of the vehicles even in a context where the actual representation is not
focused on each of them. Technically, a useful partition of the spatial domain Dx is in pairwise
disjoint cells Ii, whose union is Dx = [0, L], where L > 0 is the length of the road. Namely,

Dx =
m⋃

i=1

Ii, Ii1 ∩ Ii2 = ∅, ∀i1 6= i2, (4.6.1)

where m ∈ N is the number of cells Ii needed for covering Dx, which depends on the size `i
of each Ii. Moreover, cells assumed have a constant size `, chosen in a such a way that L

` ∈ N,
therefore m = L

` .

The authors consider fij = fij(t) the distribution function of vehicles that, at time t, are located
in the i-th cell with a speed in the j-th class. The total number Nij of vehicles in Ii with speed vj is
Nij = fijl. Then, the total number Ni of vehicles in Ii is

Ni =
n

∑
j=1

Nij = `
n

∑
j=1

fij.

One can get the total number N of vehicles along the road by further summing over i,

N =
m

∑
i=1

Ni = `
m

∑
i=1

n

∑
j=1

fij.

The system is described by a distribution function

f (t, x, v) =
m

∑
i=1

n

∑
j=1

fij(t)χIi (x)δ(v− vj), (4.6.2)
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χIi being the characteristic function of the cell Ii
(
χIi (x) = 1 if x ∈ Ii, χIi (x) = 0 if x /∈ Ii

)
. In

practice, f is an atomic distribution with respect to the variable v, like in the discrete velocity
framework, and is piecewise constant with respect to the variable x. Particularly, this latter char-
acteristic implies that vehicles are thought of as uniformly distributed within each cell.
Usual macroscopic variables of traffic, such as the vehicle density ρ, flux q, and average speed ξ
are obtained from Eq. (4.6.2) as distributional moments of f with respect to v: the density, the flux
and the mean velocity quantities are defined by

ρ(t, x) =
n

∑
i=1

( m

∑
j=1

fij(t)
)

χIi (x), q(t, x) =
n

∑
i=1

( m

∑
j=1

fij(t)
)

χIi (x), ξ(t, x) =
q(t, x)
ρ(t, x)

.

According to [47], the corresponding model is written as follows

d fij

dt
+ vi

(
φi,i+1 fij(t)− φi−1,i fi−1,j(t)

)
=

n

∑
h,k=1

ηhk(i)A
j
hk(i) fih(t) fik(t)− fij(t)

n

∑
k=1

ηjk(i) fik(t),(4.6.3)

where

1. if 2 < i < m− 1, the equation are well defined;

2. if i = 1, φ0,1, f0,1 are provided as left boundary conditions;

3. if i = m, φm,m+1 has to be the right conditions.

Moreover,

• φi,i+1 is the flux limiters, which limits the number of vehicles that can actually travel across
the cells on the basis of the occupancy of the destination cells.

φi,i+1 =

{
1−ρi+1

ρi
, if ρi + ρi+1 > 1,

1, if ρi + ρi+1 ≤ 1,

where ρi is the density of the i-th cell.

• ηhk(i), ηjk(i) are the encounter rate, they present frequency interaction between (Ii, vh) and
(Ii, vk)

ηhk(i) = η0ρi, with η0 = constant.

• Aj
hk(i) is the table of games, it presents the probability that (Ii, vh) interacting with (Ii, vk)

becomes (Ii, vj). the following conditions must hold

Aj
hk(i) ≥ 0,

n

∑
j=1
Aj

hk(i) = 1, ∀h, j, k ∈ {1, ..., n} ∀i ∈ {1, ..., m}.

It is worth anticipating that the resulting model Eq. (4.6.3) is not a cellular automaton in spite of
the discreteness of the space state. In fact, vehicles are not assimilated to fictive particles jump-
ing from their current site to a neigh-boring one with prescribed probability. They actually flow
through the cells with their true speed according to a transport term duly implemented in the
time evolution equations of their distribution functions. So that finally the evolution of the sys-
tem is not seen as a stepwise algorithmic update of the lattice of microscopic states.
The validity of the above model (4.6.3), and indirectly also that of the methodological approach
which generated it, can be assessed through exploratory numerical simulations addressing typical
phenomena of vehicular traffic. For this reason, the authors consider the case of space dynamics
at traffic lights and the case of space dynamics for road works.





85

Chapter 5

Multiscale continuum-velocity
kinetic model for vehicular traffic
with local and mean field interactions

This chapter is devoted to summarize our paper [28]. In this paper, we deals with the modeling of vehicular
traffic according to a kinetic theory approach, where the microscopic state of vehicles is described by position,
velocity and activity, namely a variable suitable to model the quality of the driver-vehicle micro-system.
Interactions at the microscopic scale are modeled by methods of game theory, thus leading to the derivation
of mathematical models within the framework of the kinetic theory. Short and long range interactions are
modeled to depict change of velocity related to passing and clustering phenomena.

5.1 Introduction

This chapter specifically refers to [21], where a kinetic type model has been proposed with the
following main features:

1. The approach is developed at the mesoscopic scale to account for the heterogeneous behav-
ior of the driver-vehicle micro-system;

2. The velocity variable is assumed to be discrete to overcome the difficulty that the number of
micro-systems might not large enough to assure continuity of the probability distributions
over the microstates;

3. The quality of the road-environment conditions is modeled by a parameter that has an
influence on the dynamics of interactions. Such parameter takes values in the interval [0, 1],
where the extremes of the domain correspond to worst and best conditions respectively.

The paper by [28] is based on the kinetic theory for active particles [19] and starts from the
achievements obtained in [21], which are definitely interesting, such as the ability to reproduce the
fundamental diagrams, namely mean velocity and flow versus local density, as well as clustering
phenomena of vehicles with closed speeds. This work aims at providing further developments of
interest for the applications. In more detail, the following modeling topics are treated: Interactions,
both local and long distance, between vehicles accounting on perceived (rather than real ones) quantities of
the flow of vehicles, role of variable road conditions, and dynamics under external actions such as presence
of tollgates. In addition, we consider a continuous velocity distribution rather than discrete velocities.
Discrete velocities, our approach, can be introduced only for computational purposes.

These new modeling features introduced in this work make it as a deep revisiting of that
proposed in [21].

More precisely, the contents are as follows: Section 5.2 derives a new mathematical structure
suitable to include the aforementioned features in addition to those already included in [21]; Sec-
tion 5.3 shows how specific models can be derived by inserting in the said structure models of
interactions obtained by a detailed phenomenological interpretation of physical reality. Section
5.4 presents a number of sample simulations which aim at exploring the ability of the model to
predict emerging behaviors that appear in the complexity of vehicular traffic.
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5.2 Mathematical structures

The derivation of models according to the kinetic theory of active particles is in two steps: The first
step consists in deriving a mathematical structure suitable to capture the most important features
of the system under consideration, while the second step consists in deriving specific models of
vehicular traffic by inserting into the said structure models of interactions at the microscopic scale.

This section develops an approach to the first step by deriving a new general structure ap-
propriate to include the specific features defined in Section 5.1. The overall content is presented
through a sequence of subsections from the representation of the system to the derivation of the
structure which is innovative with respect to the existing literature [21] as it includes modeling
local and long distance interactions, as well as the interaction with external actions. This structure
is deemed to offer the conceptual basis for the derivation of specific models.

5.2.1 Representation

Let us consider a one dimensional flow of vehicles along a road of length `. Dimensionless po-
sition and velocity variables are denoted by x and v and are referred to ` and v`, respectively,
where v` is a limit velocity such that no vehicle, simply for mechanical reasons, can pass it even
in favourable environmental conditions. Moreover, it is useful to introduce a dimensionless time
variable t obtained by dividing the real time by the time tc needed by the fastest vehicle to move
along the whole length of the road tc = `/v`. Dimensionless variables are used also for macro-
scopic gross quantities. For instance, the local number density ρ = ρ(t, x) is obtained by dividing
the real density by ρM, which is the maximum density of vehicles, corresponding to bumper-to-
bumper traffic jam.

The analysis developed in what follows is based on the assumption that the state of the driver-
vehicle subsystem is defined, at the microscopic scale, by the variables (x, v, u) ∈ [0, 1]3, where
u, according to the kinetic theory of active particles [19], is a variable which denotes the quality
of the micro-system. More precisely u = 0 corresponds to the worst quality, namely motion is
prevented, while u = 1 to the best quality corresponding to an experienced driver operating in a
high quality vehicle.

According to [19], the driver-vehicle subsystem is an active particle, while the internal variable
is heterogeneously distributed over the active particles. In addition, the quality of the road, in-
cluding environmental conditions, are accounted for by a parameter α ∈ [0, 1] such that α = 0
corresponds to the worst quality that prevents motion, while α = 1 corresponds to the best con-
ditions. In general α can depend on space α = α(x) to account for the presence of curves, local
restrictions, speed limits, etcetera.

The overall state of the system is described by the distribution function over the state at the
microscopic scale:

f = f (t, x, v, u) : R+ × [0, 1]× [0, 1]× [0, 1] → R+, (5.2.1)

which is made to refer to ρM so that, if f is locally integrable, f (t, x, v, u) dx dv du denotes the
dimensionless density of vehicles which, at time t, are in the phase elementary domain [x, x +
dx]× [v, v + dv]× [u, u + du]. In particular, the local density, also referred to ρM, is given by

ρ(t, x) =
∫ 1

0

∫ 1

0
f (t, x, v, u) dv du, (5.2.2)

while the total number of vehicles at time t is computed by integration over space. Precisely,

N(t) =
∫ 1

0

∫ 1

0

∫ 1

0
f (t, x, v, u) dx dv du. (5.2.3)

In the same way, the local dimensionless mean velocity and the flow can be computed, respec-
tively, as follows:

ξ(t, x) =
1

ρ(t, x)

∫ 1

0

∫ 1

0
v f (t, x, v, u) dv du (5.2.4)
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and
q(t, x) = ξ(t, x)ρ(t, x). (5.2.5)

Moreover, higher order momenta such as the average kinetic energy E and the variance of the
velocity σ can be computed, respectively, as follows:

E(t, x) =
1
2

∫ 1

0

∫ 1

0
v2 f (t, x, v, u) dv du (5.2.6)

and

σ(t, x) =
1

ρ(t, x)

∫ 1

0

∫ 1

0

[
v− ξ(t, x)

]2 f (t, x, v, u) dv du. (5.2.7)

Similarly, one can compute the local mean value and variance of the activity variable:

a(t, x) =
1

ρ(t, x)

∫ 1

0

∫ 1

0
u f (t, x, v, u) dv du (5.2.8)

and

Var(a) =
1

ρ(t, x)

∫ 1

0

∫ 1

0
[u− a(t, x)]2 f (t, x, v, u) dv du. (5.2.9)

The derivation of models might be based on the assumption that interactions do not modify
the variable u, namely the probability distributions over the mechanical variables and over u are
independent:

f = f (t, x, v, u) ∼= f (t, x, v) g(u), where
∫ 1

0
g(u) du = 1. (5.2.10)

However, the dynamics of the mechanical variable depends on the activity variable.

5.2.2 Interaction domains and perceived quantities

The car-driver subsystem, namely the active particles, has a visibility zone Ωv = Ωv(x) = [x, x +
`v], where `v is the visibility length on front of the vehicle, that depends on the quality of the
environment, namely on α = α(x). In more detail, we assume `v = α L, where L << ` is the
visibility length in the case of best quality of the road, namely α = 1.

In addition, it has a sensitivity zone, Ω` = [x, x+ `s], necessary to perceive the flow conditions
in Ω`. In general Ω` ⊆ Ωv. However also the opposite case has to be taken into account whenever
local conditions of the road prevent visibility. This matter will be discussed in the critical analysis
of the last section, while calculations are here developed assuming that the visibility zone includes
the sensitivity zone. In general, Ω` can depend on f , which induces an additional nonlinearity.

The driver develops its driving strategy by taking into account perception of the state of the
other vehicles both in Ω` and in a much shorter domain, say Ωs within which active particles are
supposed to perceive an approximate estimate of the local gradients ∂xρ, and hence of a perceived
density ρp[ f ] higher than the real one in the presence of positive gradients, and lower than the
real one in the presence of negative gradients. We define long range interactions in the former case
and short range interactions in the latter case.

In general, the approach of the kinetic theory for active particles is such that interactions
are modeled by evolutionary stochastic games. Three types of particles are involved, namely
candidate particles (vehicles) with the micro-state {x, v∗, u∗}, field particles (vehicles) with the state
{x∗, v∗, u∗}, and the test particle which is representative of the whole system. Candidate particles
are localized in x and can acquire, in probability, the state of the test particle, while field particles
are localized in Ωs for short range interactions and in Ω` for long range interactions.

The rationale toward modeling proposed in the following is based on the assumption that the
activity variable of candidate and test particles is not modified by interactions.

5.2.3 Mean field interactions

The test vehicle is subject to an action of the vehicles in its sensitivity zone which can induce a
consensus toward a common velocity, as an example the mean speed within the visibility domain
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as well as a clustering effect. The test vehicle is sensitive to these actions if the distance between
its speed and the common velocity is below a certain critical threshold.

In general, mean field interactions can be modeled by individual based acceleration term
ϕ(x, x∗, v, v∗, u, u∗) that is applied to the test vehicle (x, v, u) by a field vehicle (x∗, v∗, u∗) in the
sensitivity domain Ω` of the test vehicle. Therefore, the overall acceleration of all vehicles is
obtained by integration corresponding to the action of all vehicles in Ω`. Hence:

F [ f ](t, x, v|u) =
∫

Λ
ϕ(x, x∗, v, v∗|u) f (t, x∗, v∗, u∗) dx∗ dv∗ du∗, (5.2.11)

where Λ = Ω` × [0, 1]× [0, 1].

5.2.4 Short range interactions

Short range interactions occur, as mentioned, in a small domain Ωs sufficient for a candidate par-
ticle to perceive the density gradients ρp. Moreover, it is assumed that the probability distribution
of field particles can be approximated by the probability distribution in x. Therefore, the state of
candidate, test, and field particles is as follows:

f = f∗ = f (t, x, v∗, u), f = f (t, x, v, u), f = f ∗ = f (t, x, v∗, u∗). (5.2.12)

The description of short range interactions requires the modeling of two additional quantities:

• The encounter rate η[ f ]: which models the number of interactions per unit time between candi-
date and test particles with field particles.

• The transition probability density A[ f ](v∗ → v|u) which defines the probability density that a
candidate particle falls into the state of with the field particles.

The actual modeling of short range interactions is based on the assumption that these quan-
tities depend not only on the microscopic state of the interacting particles, but also on the dis-
tribution function f . This dependence induces a nonlinearity in models of interactions at the
microscopic scale, which is put in evidence by square brackets. This dependence involves, as we
shall see, both f and gradients of f . In addition, these interaction terms are allowed to depend on
the quality of the road modeled by a parameter α ∈ [0, 1], where α = 0 corresponds to the worse
conditions that prevent motion and α = 1 to the best conditions.

In addition A is required to satisfy the probability density condition:

A[ f ; α] ≥ 0,
∫
[0,1]
A[ f ; α](v∗ → v|v∗, v∗, u)dv = 1, (5.2.13)

for all possible inputs v∗, v∗, u.

5.2.5 Interactions with the external actions

The test vehicle can be subject to external actions which control its velocity. As an example toll-
gates indicate the maximal speed when the vehicle approaches to the tollgate. Similarly the exit
from the tollgate indicates how the speed can increase to the standard values.

The simplest way to model this term consists in using a BGK-type trend:

T [ f ](t, x, v|u) = µ[ρ]
(

fe(x, ve(x))− f (t, x, v|u)
)
, (5.2.14)

where µ[ρ] models the intensity of the action, which increases with ρ, while ve(x) is the speed
imposed by the external action.

A more general alternative would be modeling this action as by the term Eq. (5.2.11). How-
ever, this task does not appear practical as empirical data on this matter are not available.

5.2.6 A mathematical structure toward modeling

This subsection shows how all models of actions that have been described above can be inserted
into a proper mathematical structure deemed to offer the conceptual basis for the derivation of
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models. This structure is obtained by a balance of particles in the elementary volume of the
space of the microscopic state which includes position, velocity (namely the variables of the phase
space) and the activity. This balance of particles includes the free transport term, the transport due
to long range interactions, the dynamics of short range interaction, and the trend to the speed
required by the external actions. The dynamics of short range interactions include a “gain” term
of vehicles that enter in the aforementioned elementary volume and a “loss” term of vehicles that
leave it. The resulting structure can be written, at a formal level, as follows:

∂t f + v ∂x f + F[ f ] = J[ f ] + T [ f ], (5.2.15)

where f = f (t, x, v, u) and v∂x f is the free flow transport term, while F, J, and T correspond,
respectively, to mean field interactions, short range interactions, and interaction with external
actions.

Classical calculation of the kinetic theory leads to the following result

∂t f (t, x, v, u) + v∂x f (t, x, v, u) + ∂v(F [ f ](t, x, v, u) f (t, x, v, u))

=
∫
[0,1]3

η[ f ]A[ f ; α](v∗ → v|v∗, v∗, u) f (t, x, v∗, u) f (t, x, v∗, u∗)dv∗ dv∗ du∗

− f (t, x, v, u)
∫
[0,1]2

η[ f ] f (t, x, v∗, u∗)dv∗ du∗ (5.2.16)

+µ[ f ]
(

fe(x, ve(x))− f (t, x, v, u)
)
.

5.2.7 Critical analysis

The mathematical structure proposed in this work include the features of the complex system
under consideration which, according to the authors’ opinion, appear to be the most impor-
tant aspects of the dynamics to be retained by the modeling approach. Namely heterogeneity
of the driver-vehicle subsystem, aggregation dynamics for vehicles with closed each other veloc-
ity, passing probability, variable properties of the road-environment where the dynamics occur
and role of the external actions.

The structure can operate as a general framework for the derivation of models which can
be obtained by inserting into the structure models of interaction at the microscopic scale. These
models can be obtained by a phenomenological interpretation of empirical data. The most impor-
tant reference to this aim is the book by Kerner [63], see also [64], which provides an interesting
variety of empirical data valid in uniform flow conditions as well as in transient conditions. The
main difficulty is that empirical data are available in steady flow conditions, while individual
behaviors in unsteady conditions are quite different from those in steady conditions. However, a
sharp interpretation of data can hopefully lead to models that can be validated by the information
delivered by empirical data.

Validation is generally understood as the ability of models to reproduce quantitatively steady
flow conditions, in particular the fundamental diagrams, and emerging behaviors at a qualitative
level.

5.3 From mathematical structures to models

This section develops a possible approach to the derivation of specific models of vehicular traffic
by inserting into the structure (5.2.16) models of interactions at microscopic scale. This objective
is pursued by looking at the modeling of the interaction terms that characterize such structure,
namely ϕ, η, A, µ and fe, such that a good agreement with empirical data, concerning both the
fundamental diagram and the emerging behaviors in unsteady flow conditions, is provided.

5.3.1 Modeling accelerations

The acceleration term ϕ in Eq. (5.2.11) accounts for mean field interactions, where the test vehicle
is subject to an action of the vehicles in its sensitivity zone Ω` which can induce a consensus
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toward a common velocity v∗. A phenomenological interpretation of reality is as follows: The test
vehicle is sensitive to these actions if the distance between its speed and the common velocity is below a
certain critical threshold dc; it decays with the distance between the test and field vehicle; takes the sign of
v∗ − v and depends on u and on the quality of the road α.

A simple formalization of the formalization given above yields:
|v∗ − v| ≤ dc : ϕ(x, x∗, v, v∗|u) = α

`v
u(x∗ − x)(v∗ − v),

|v∗ − v| > dc : ϕ(x, x∗, v, v∗|u) = 0.

(5.3.1)

Since x∗ ∈ Ω`, one has x ≤ x∗ ≤ x + `v, then 0 ≤ x∗ − x
`v

≤ 1. Now, taking z∗ =
x∗ − x
`v

,

yields

F [ f ](t, x, v|u) = `v

∫ 1

0

∫ 1

0

∫ 1

0
ϕ(x, `vz∗ + x, v, v∗) f (t, `vz∗ + x, v∗, u∗)dz∗ dv∗ du∗.

F [ f ](t, x, v|u) = α u `v

∫ 1

0

∫ 1

0

∫ 1

0
z∗(v∗ − v) f (t, `vz∗ + x, v∗, u∗)dz∗ dv∗ du∗

= α u `v (I1(t, x)− v I2(t, x)) , (5.3.2)

where

I1(t, x) =
∫ 1

0

∫ 1

0

∫ 1

0
z∗v∗ f (t, `vz∗ + x, v∗, u∗)dz∗ dv∗ du∗,

and

I2(t, x) =
∫ 1

0

∫ 1

0

∫ 1

0
z∗ f (t, `vz∗ + x, v∗, u∗)dz∗ dv∗ du∗.

Computing the derivative of F with respect to v, yields

∂v(F [ f ])(t, x|u) = −α u `v I2(t, x). (5.3.3)

5.3.2 Modeling the perceived density

The concept of perceived density was introduced in [41], where it was suggested that this quantity
is greater (smaller) than the real one whenever positive (negative) density gradients appear. The
following expression can be adopted according to [15]:

ρp[ f ] = ρ +
∂xρ√

1 + (∂xρ)2

[
(1− ρ) H(∂xρ) + ρ H(−∂xρ)

]
, (5.3.4)

where H(·) is the heaviside function H(· ≥ 0) = 1, while H(· < 0) = 0. Thus, the perceived
density, positive gradients increase the value of ρp from ρ to the maximum admissible value
ρ = 1, while negative gradients decrease it from ρ to the lowest admissible value ρ = 0 such that

∂xρ→ +∞⇒ ρp → 1, ∂xρ = 0⇒ ρp = ρ, ∂xρ→ −∞⇒ ρp → 0.

5.3.3 Modeling the encounter rate

The encounter rate η[ f ] refers the rate of interactions per unit time between candidate and test
particles with field particles. One can assume that this term grows with the local perceived density
starting from a minimal value corresponding to driving in vacuum conditions η0. The following
expression can be proposed:

η[ f ] = η0 (1 + γη ρp[ f ]), (5.3.5)

where γη is the growth coefficient and ρp is the perceived density.
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5.3.4 Modeling short range interactions

Let us now consider the term A which models short range interactions. This term defines the
probability density that a candidate particle with the state {x, v∗, u} falls into the state of the test
particle {x, v, u} after interaction with the field particles with the state {x, v∗, u∗}. These notations
indicate that the activity variable is not modified by the interaction which, however, modifies the
speed.

The modeling approach proposed in our work is based on the following assumptions:

1. Short range interactions do not modify the activity variable, but only the speed.

2. A depends on the velocities of the interacting pairs, on the perceived density, on the ac-
tivity, and on the quality of the road, A[ f ](v∗ → v|v∗, v∗, u, α, ρp), where the dynamics
is enhanced by α u, while it is limited by the perceived density. In addition, it is totally
prevented if ρp = 1.

3. We assume that the candidate particle after interacting with the field particle reach new
velocity v ∈ [vm, vM] where vm and vM, respectively, are the minimum and the maximum
velocities given by

vm = max{0, min{v∗, v∗} − κ(1− αu)ρp(|v∗ − v∗|+ exp(−|v∗ − v∗|))},

vM = min{1, max{v∗, v∗}+ καu(1− ρp)(|v∗ − v∗|+ exp(−|v∗ − v∗|))}

where κ = 1
200 is a constant allowed to make vm close to the min{v∗, v∗} and vM close to the

max{v∗, v∗}. Note that these choices of vm and vM guaranteed the condition vM − vm > 0
even if v∗ = v∗.

It is natural that we have the following two cases to distinguish:

Interaction with faster particles

If v∗ ≤ v∗, the candidate particle has a trend, in probability, to increase its speed. This probability
decreases with v − vm with v ∈ [vm, vM]. We propose the following probability density, which
generalize the table of games defined in [21] where the velocity and the activity variables are
discrete,

A[ f ](v∗ → v) = (1− αu(1− ρp))
e−
|v−v∗|2

σ1∫ vM
vm

e−
|v−v∗|2

σ1 dv
+ αu(1− ρp)

(vM − v)2∫ vM
vm

(vM − v)2dv
(5.3.6)

where σ1 is a small constant given by σ1 = καu(1− ρp). Note that the probability density (5.3.6)
has the same nonlinear behavior as of the table of games in [21]. More precisely, in good road
conditions α and good activity u, the candidate particle has attendance to accelerate and reach
new velocities greater than its pre-interaction velocity v∗. On the other hand, decreasing the
value of α or u decreases the probability to accelerate (see Figure 5.1).

Interaction with slower particles

If v∗ > v∗, the candidate particle has a trend, in probability, to decrease its speed. In order to
get the similar behavior as in the discrete table of games by [21], we propose that our probability
distribution is a dichotomy function which can be written as follows:

A[ f ](v∗ → v) = αu(1− ρp)
e−
|v−v∗|2

σ2∫ vM
vm

e−
|v−v∗|2

σ2 dv
+ (1− αu(1− ρp))

vM − v∫ vM
vm

(vM − v)dv
, (5.3.7)

where σ2 is a small constant given by σ2 = κ(1− αu(1− ρp)). Note that if α or u tend to zeros, the
probability to decelerate is greater than the probability to maintain the velocity. On the contrary,
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FIGURE 5.1: The probability density (discrete velocity) proposed by [21] vs
our probability density (continuous velocity) in the case: 0.3 = v∗ < v∗ =

0.7, u = 1 and ρp = 0.6.

if α and u tend to maximum value, the candidate particle has tendency to maintain it velocity (see
Figure 5.2).
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FIGURE 5.2: The probability density (discrete velocity) proposed by [21] vs
our probability density (continuous velocity) in the case: 0.7 = v∗ > v∗ =

0.3, u = 1 and ρp = 0.6.

Bearing in mind these two cases, the probability density is defined as follows:

A[ f ](v∗ → v ∈ [vm, vM]) =



(1− P)
e−
|v−v∗|2

σ1∫ vM
vm

e−
|v−v∗|2

σ1 dv
+ P

(vM − v)2∫ vM
vm

(vM − v)2dv
, v∗ ≤ v∗

P
e−
|v−v∗|2

σ2∫ vM
vm

e−
|v−v∗|2

σ2 dv
+ (1− P)

vM − v∫ vM
vm

(vM − v)dv
, v∗ > v∗

(5.3.8)
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where P = αu(1− ρp). Accordingly, the probability density (5.3.8) can be rewrites as follows

A[ f ](v∗ → v) =

(
H(v∗ − v∗)

(
(1− P)

e−
|v−v∗|2

σ1∫ vM
vm

e−
|v−v∗|2

σ1 dv
+ P

(vM − v)2∫ vM
vm

(vM − v)2dv

)

+ (1− H(v∗ − v∗))
(

P
e−
|v−v∗|2

σ2∫ vM
vm

e−
|v−v∗|2

σ2 dv
+ (1− P)

vM − v∫ vM
vm

(vM − v)dv

))
χ[vm ,vM ](v). (5.3.9)

5.3.5 Modelling external action

Let us now consider the modeling of external action which indicate a prescribed speed as it occurs,
as an example, in the presence of tollgates. The structure of this term is reported in Eq. (5.2.14),
where fe is a given function (for instance a step-wise function) of the prescribed velocity ve =
ve(x). Therefore, the simplicity of Eq. (5.2.14) simply means that only the rate µ needs to be
modelled. Following the same rationale applied to η, the following can be used:

µ[ f ] = η0 (1 + γµ ρp[ f ]), (5.3.10)

where γµ is the growth coefficient and ρp is the perceived density.

5.3.6 Parameters and critical analysis

This section has proposed a simple modeling of the interaction terms to be implemented into the
structure delivered by Eq. (5.2.16). The model includes the following parameters which related to
specific different phenomena in vehicular traffic flows:

• α which models the quality of the road-weather conditions;

• `v which is length of the sensitivity zone Ω`. It depends on quality of the road-weather
conditions α (`v = αL);

• η0 which is the minimal value corresponding to driving in vacuum conditions;

• γη and γµ which are, respectively, the growth coefficients of the encounter rate η and the
intensity of the action µ.

Bering the proposed modeling of the interaction terms in mind, one gets the following derived
model

∂t f (t, x, v|u) + v∂x f (t, x, v|u) +F [ f ](t, x, v|u)∂v( f (t, x, v|u))

=
∫
[0,1]3

η[ f ]A[ f ](v∗ → v) f (t, x, v∗, u) f (t, x, v∗, u∗)dv∗ dv∗ du∗ (5.3.11)

− f (t, x, v|u)
∫
[0,1]2

η[ f ] f (t, x, v∗, u∗)dv∗ du∗ + α u `v f (t, x, v|u) I2(t, x)

+µ[ f ]
(

fe(x, ve(x))− f (t, x, v|u)
)
.

It is worth mentioning that in this work we proposed a generalized probability density (5.3.9)
by taking inspiration on the table of games with the discrete variables of velocity and activity case
proposed by [21]. Moreover, we considered the nonlinear interactions by taking into account the
perceived density ρp and the mean field interactions, which are one of the paradigms of the com-
plexity in vehicular traffic field. We would like to stress that only a few works can be found in the
field proposing a modeling of the probability density based on the continuous velocity variable.
Namely, the authors in [83] proposed two models of A: the first is the quantified acceleration
model, in which the post-interactions after an acceleration is obtained by a velocity jump. The
second model is actually based on the paper by [67] which assumed that the interaction result
between the candidate and field particles is uniformly distributed in a velocity interval.
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5.4 Simulations toward validation of models

This section is devoted to the computational analysis toward validation of spatially homogeneous
and inhomogeneous problems. In the first subsection, after the description of numerical scheme
of the spatially homogeneous problem, we will reproduce Kerner’s fundamental diagrams for
different values of the road conditions. The second subsection aims to reproduce some numerical
simulations for the spatially inhomogeneous problem, namely we will show emerging of two
clusters in the case of good and bad road conditions.

5.4.1 Spatially homogeneous problem

The spatially homogeneous problem provides some information on the trend of the system to-
ward the equilibrium state (called fundamental diagrams), which can be duly compared with the
measurements performed under uniform flow conditions (see e.g. [64]). We account for the spa-
tial homogeneity by assuming that the kinetic distribution function is independent of the variable
representing the space x. Consequently ∂x f = 0, this implies ρp = ρ. Moreover, we neglect the
mean field interactions and the external forces. Thus, the distribution function f is given by

f = f (t, v, u) : [0, T]× [0, 1]× [0, 1] −→ R+.

Under the above assumptions, model 5.3.11 is reduced to the following ordinary differential equa-
tion implemented with initial condition:

d f
dt

= η[ρ]
( ∫

[0,1]3
A[ρ] f (t, v∗, u) f (t, v∗, u∗)dv∗ dv∗ du∗ − f (t, v, u)

∫
[0,1]2

f (t, v∗, u∗) dv∗ du∗
)

f (0, v, u) = f0(v, u) ∈ R+.
(5.4.1)

Recalling the probability density propriety (5.2.13), the above model (5.4.1) satisfies the `̀ mass
conservation´́ hypothesis, i.e. dρ

dt = 0, as it is required in spatially homogeneous conditions.
Consequently, model (5.4.1) can be written as follows

d f
dt

= η[ρ0]
( ∫

[0,1]3
A[ρ0] f (t, v∗, u) f (t, v∗, u∗)dv∗ dv∗ du∗ − f (t, v, u) ρ0

)
f (0, v, u) = f0(v, u) ∈ R+.

(5.4.2)

For the existence and uniqueness of the solution of the spatially homogeneous model (5.4.2), we
refer the reader to the Appendix A.
As it is mentioned above, the numerical simulations of Eq. (5.4.2) have been carried out to obtain
the fundamental diagrams relating the flux q(ρ), the kinetic energy E(ρ) and the average velocity
ξ(ρ) to the vehicle density ρ at the equilibrium. We divide the velocity and activity variables into
a certain number of cells and calculate the transition rates between the cells given by the above
ordinary differential equation. We assume that the velocities and activities grid points are chosen
uniformly:

vi =
i
n

, uj =
j

m
, i = 0, ..., n− 1, j = 0, ..., m− 1.

The discrete scheme over the variables v and u of model (5.4.2) is given by
d fi,j

dt
= η[ρ0]

[ 1
n3 m2

n−1

∑
h,p=0

m−1

∑
k=0
Aij

hp,k fh,j(t) fp,k(t)−
1

n2 m
fi,j(t)ρ0

]
,

fi,j(0) = f 0
i,j,

for i = 0, ..., n − 1, j = 0, ..., m − 1. Aij
hp,k is the discrete passing probabilities calculate in each

average of cells. Thus, it given by

Ai,j
hp,k = n3 m2

∫ ( i+1
n , h+1

n , p+1
n )

( i
n , h

n , p
n )

∫ (
j+1
m , k+1

m )

(
j

m , k
m )

A(v, v∗, v∗, u, u∗) dv dv∗ dv∗ du du∗.
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The scheme under consideration has been numerically solved by using Runge-Kutta of order 4
method. We adopt the following set of variables: u = 1, n = 31, η0 = 1, γη = 1

α . Moreover, we
perform a different situations of road conditions by choosing different values of α. Namely, we
consider α1 = 0.95, α2 = 0.7 and α3 = 0.2.
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FIGURE 5.3: Fundamental diagram: flux q vs density ρ.
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FIGURE 5.4: Free flow phase and fundamental diagram: flux q vs density
ρ.

Figure 5.3 shows the obtained numerical results for different values of road conditions (α =
0.95, 0.7, 0.2) for the density ρ against the flux q. We notice that for low density, the flux ex-
hibits linear behaviour. While for high density, it decreases to zero and shows a critical change
known as phase transition between the free and congested flow regime as it has been described
experimentally by [64]. Finally, it is clear that the free flow phase reduces as the environmental
conditions worsen, see Figure 5.4.

In Figure 5.5, we present the obtained numerical results for different values of road conditions
(α = 0.95, 0.7, 0.2) for the density ρ against the kinetic energy E. We observe that the kinetic
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FIGURE 5.5: Fundamental diagram: kinetic energy E vs density ρ.
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FIGURE 5.6: Fundamental diagram: mean velocity ξ vs density ρ.

energy increasing linearly in free flow situation. It decreases nonlinearly to zeros in the congested
flow.

Figure 5.6 shows the obtained numerical results for different values of road conditions (α =
0.95, 0.7, 0.2) for the density ρ against the mean velocity ξ. The average speed takes the maximum
value for the low density. As the density increases, the average speed decreases in a nonlinear
way to zeros which corresponds to the traffic jam.

We would like to mention the primordial role of road conditions α in the proposed probability
density (5.3.9), which has been modelled to depict the quality of the environment. It has been
considered one of the paradigms of the complexity in vehicular traffic field (see [21]). On the
other hand, the obtained results are achieved without artificial insertion of the velocity diagram
into the model itself ([38]).
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5.4.2 Spatially inhomogeneous problem

In order to show the ability of our model to depict some phenomena in vehicular traffic flow field.
Here, we are interested to the numerical method of the spatially inhomogeneous problem, where
the mean field interactions is neglected. Thus, the model (5.3.11) is reduced to the following
advection equation implemented with initial condition and the periodic boundary condition:

∂t f (t, x, v, u) + v∂x f (t, x, v, u) = J[ f , f ] = G[ f , f ] + f L[ f ] + T [ f ]

=
∫
[0,1]2

η[ρp(t, x)]A[ρp(t, x)] f (t, x, v∗) f (t, x, v∗)dv∗ dv∗

− f (t, x, v)
∫ 1

0
η[ρp(t, x)] f (t, x, v∗)dv∗

+µ[ρp]( fe(x, v(e))− f (t, x, v, u)),

f (t = 0, x, v, u) = f0(x, v, u), f (t, 0, v, u) = f (t, 1, v, u),

(5.4.3)

where η andA this time depend on the perceived density ρp. µ is the intensity of the action given
by Eq. (5.3.10) and fe is a given function.

We introduce the following gridpoints:

xi = i dx, vj =
j + 0.5

Nv
, us =

s + 0.5
Nu

, tn = n dt, dt = CFL dx,

for i = 1, ..., Nx, j = 0, ..., Nv − 1, s = 0, ..., Nu − 1. Where CFL is Courant-Friedrichs-Lewy
condition.
The full discrete scheme of inhomogeneous model (5.4.3) is given by

f n+1
ijs − f n

ijs

dt
+

Φn
i,j,s −Φn

i−1,j,s

dx
= Gn

i,j,s − f n
ijsLn

i,j,s + T n
i,j,s

f (t = 0, xi, vj, us) = f n
ijs, f (t, 0, vj, us) = f (t, 1, vj, us),

for i = 1, ..., Nx, j = 1, ..., Nv, s = 1, ..., Nu and n = 1, ..., T. The discrete distribution function is
given by f n

ijs = f (tn, xi, vj, us). The discritized gain and lose terms are given by

Gn
i,j,s =

Nv

∑
h,p=1

Nu

∑
k=1

ηn
i [ρ

p]An
i,j,h,p,s,k[ρ

p] f n
ihs f n

ipk dv2 du, Ln
i,j,s =

Nv

∑
p=1

Nu

∑
k=1

ηn
i [ρ

p] f n
ips dv du,

where

An
i,j,h,p,s,k = N3

v N2
u

∫ (
j+1
Nv , h+1

Nv , p+1
Nv )

(
j

Nv , h
Nv , p

Nv )

∫ ( s+1
Nu , k+1

Nu )

( s
Nu , k

Nu )
An(v, v∗, v∗, u, u∗) dv dv∗ dv∗ du du∗,

and
T n

i,j,s = µn
i [ρ

p](( fe)ij − f n
ijs).

The flux Φ is chosen in order to get the conservation of mass and it given as follow

Φn
i,j,s = vj( f n

i−1,j,s − f n
i−2,j,s) + vj

dx
2

(
1−

vj dt
dx

)
(Ψ1 −Ψ2),

where

Ψ1 =
f n
i,j,s − f n

i−1,j,s

dx

f n
i−1,j,s − f n

i−2,j,s

f n
ijs − f n

i−1,j,s
φ, Ψ2 =

f n
i−1,j,s − f n

i−2,j,s

dx

f n
i−2,j,s − f n

i−3,j,s

f n
i−1,j,s − f n

i−2,j,s
φ,
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where φ is the flux-limiter [73]. In our case, we consider Superbee flux-limiter defined by

φ(θ) = max(max(0, min(1, 2θ)), min(θ, 2)).

Parameters Values

Activity u 1
Road conditions α 0.3, 0.95
Number of space points Nx 101
Number of velocity cells Nv 31
CFL condition 0.7
Growth coefficients of the encounter rate γη 1/α

TABLE 5.1: Values of the used parameters.

Application: emerging of two clusters

In this example, we aim to reproduce the numerical simulations of the emerging of two clusters
of vehicles travelling with different speeds on a closed road and having different density. We
assume that there is no external force and that the first cluster travels with the maximum velocity
vM = 1, and has the following initial density

ρ(0, x) = 100 sin2(10π(x− 0.2)(x− 0.3)), x ∈ [0.2, 0.3],

the other one travels with the velocity vM − 3 dv and has the following initial density

ρ(0, x) = 50 sin2(10π(x− 0.5)(x− 0.6)), x ∈ [0.5, 0.6].

Figure 5.7 shows the result of simulation in bad road conditions (α = 0.2). We notice that
the fast group of vehicles after have reached the slow ones (Figure 5.7(b)), have a mixing period
(Figure 5.7(c)). Finally, two groups merge and transport as a one group (Figure 5.7(d)).

We show in Figure 5.8 the numerical results in good road conditions (α = 0.95). We observe
that fast group of vehicles reach the slow ones, as indicated in (Figure 5.7(b)), having a mixing
period (Figure 5.7(c)). Finally, fast group overtake the slow ones (Figure 5.7(d)).
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FIGURE 5.7: Evolution of two clusters in the case of bad road condition
(α = 0.3).
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FIGURE 5.8: Evolution of two clusters in the case of good road condition
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Chapter 6

Conclusion and perspectives

6.1 Summary

This thesis has been devoted to the modeling and mathematical analysis of complex systems in
biology and vehicular traffic on the basis of kinetic theory and macroscopic-fluid approaches. The
aims were to propose and to study a new mathematical models which improve some interesting
characteristics of already existing models. On the other hand, these proposed models are suit-
able for mathematical modeling investigations. In the first part, we successfully proposed two
new macroscopic systems and two new kinetic-fluid models describing the interacting biologi-
cal species living in complex medium. The second part of this thesis dealt with vehicular traffic
flow on the basis of kinetic theory of active particles. Here also, we are successfully proposed
and studied a new general mathematical structure according to a kinetic theory approach. It
includes the features of the complex system under consideration which appear to be the most im-
portant aspects of the dynamics to be retained by the modeling approach. Namely heterogeneity
of the driver-vehicle subsystem, aggregation dynamics for vehicles with closed each other veloc-
ity, passing probability, variable properties of the road-environment where the dynamics occur
and role of the external actions. The most important achievements in this thesis can be summa-
rized as follows:

• Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system. We
have proposed a new nonlinear cross-diffusion system coupled to a stationary fluid. The micro-
macro decomposition has been applied to derive this system from kinetic-fluid model. Moreover,
we have proved the existence of weak solutions of the derived system by using Schauder fixed-
point theory. Finally, it has shown that the presented numerical scheme enjoys the asymptotic
preserving property. In other words, when Knudsen parameter ε is small, our scheme is asymp-
totically equivalent to a standard numerical scheme of the derived cross-diffusion-fluid system.

• Kinetic-fluid derivation and mathematical analysis of nonlocal cross-diffusion-fluid system.
We have proposed a new generalized nonlocal cross-diffusion model for multi-interacting popu-
lations coupled to non-stationary fluid. The proposed model has been derived from an improved
nonlocal kinetic-fluid model by using the micro-macro decomposition technique. On the basis
of nonlinear Galerkin method, we have proved the existence of weak solutions for the proposed
system. Moreover, we have developed an asymptotic preserving numerical schemes (AP). Si-
multaneously, we have reproduced some interesting phenomena such as the pattern-formation
induced by cross-diffusion terms and convection of species caused by the fluid motion. Mo-
tivated by the obtained numerical simulation in 1D, we shown the effect of nonlocal diffusion
together with cross-diffusion, as well as fluid flow in an explicit form of the fluid velocity on the
interactions of populations. Finally, we have demonstrated the effect of external forces (obstacle
interior de domain and the force of gravity) on the dynamic of fluid flow and simultaneously on
the behavior of interacting populations.

• Multiscale continuum-velocity kinetic model for vehicular traffic with local and mean field
interactions. We have proposed a mew mathematical structure on the basis of the kinetic theory
for active particles. The purpose was to provide further developments of interest for the appli-
cations and to treat the following modeling topics: Interactions, both local and long distance,
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between vehicles accounting on perceived (rather than real ones) quantities of the flow of vehi-
cles, role of variable road conditions, and dynamics under external actions such as presence of
tollgates.

6.2 Looking ahead for perspectives

In our opinion, this thesis opens up several research perspectives.

• Development of asymptotic preserving numerical schemes in 2D. A natural extension of our
presented works in chapters 2-3 would be the development of an asymptotic preserving numeri-
cal schemes in 2D. We think that our proposed numerical schemes en the basis of the finite volume
method can be extended to this aim, one only has to well choose the meshes. However, one has
to overtake the drawback of the computational cost.

• Anisotropic model with degenerate diffusion. In fact, we have in mind many models that can
be studied by an improved developed techniques. The future works include the derivation and
mathematical analysis of the following anisotropic model with degenerate diffusion

∂tu1 − div
(

a(x)∇u1 + b(x)∇u2

)
= H1(u1, u2),

∂tu2 − div
(

c(x)∇u1 + d(x)∇u2

)
= H2(u1, u2).

• Other numerical applications for vehicular traffic flow. A natural extension of our work in
chapter 5 would be the development of other numerical applications. As it mentioned, our pro-
posed model (5.2.16) brings together all the following modeling topics: Interactions, both local
and long distance, between vehicles accounting on perceived (rather than real ones) quantities of
the flow of vehicles, role of variable road conditions, and dynamics under external actions such
as presence of tollgates. We have successfully reproduced the fundamental diagrams in the ho-
mogeneous case and the emerging of two clusters. However, we think that it is so interesting to
seek for other applications such as the bottleneck, tallgates and stop and go waves phenomena.
We stress that one has to reduce the complexity of the numerical cost.

• On the modeling of multilane traffic flow by kinetic theory for active particles [61]. Another
possible extension of the kinetic model proposed in chapter 5 is the derivation of new models
being able to describe the multilane traffic flow. This was the aim of an article in preparation
where we propose the following model

∂t f `ij(t, x) + vi∂x f `ij(t, x) = J`ij[ f ](t, x)

=
L

∑
r,s=1

n

∑
h,p=1

m

∑
k,q=1

∫ x+ξ

x
ηr[ρr(t, x∗), x]Ai,j,`

hk,pq,rs f r
h,k(t, x) f s

p,q(t, x∗)dx∗

− f `ij(t, x)
L

∑
s=1

n

∑
p=1

m

∑
q=1

∫ x+ξ

x
η`[ρ`(t, x∗), x] f s

p,q(t, x∗)dx∗,

for i = 1, . . . , n, j = 1, . . . , m, and ` = 1, . . . , L. In the proposed model above

• x∗ ∈ Jξ = [x, x + ξ], with Jξ represents the visibility zone;

• η`[ρ`(t, x∗), x] is the encounter rate, it depends on the probability distributions by means of
the density ρ` in the `−lane.

• Ai,j,`
hk,pq,rs[vh → vi, uk → uj, yr → yl |vh, vp, uk, uq, yr, ys, ρ`(t, x∗)] defines the table of games,

which denotes the probability density that the candidate particle (vh, uk, yr) falls into the
state (vi, uj, yl) of the test particle after an interaction with a field particle (vp, uq, ys).
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Appendix A

Mathematical analysis of the
spatially homogeneous problem

In this appendix, we prove the existence and uniqueness of solution in the spatially homogeneous
case associated to model (5.2.16). Thus, the distribution function f is given by

f = f (t, v) : [0, T]× [0, 1] −→ R.

Consequently, the Initial Value Problem (IVP) is given by d f
dt

= η[ρ0]
( ∫ 1

0

∫ 1

0
A[ρ0](v∗ → v|α, u) f (t, v∗) f (t, v∗)dv∗ dv∗ − f (t, v)ρ0

)
f (0, v) = f0(v) ∈ R+.

(A.0.1)

Remarks:

• The distribution function f is independent of the variable x. Consequently ∂x f = 0, which
gives ρp = ρ. Moreover, by integrating over v the IVP (A.0.1) once get the integral of source
term equals 0, then gets ρ(t) = ρ0.

• The encounter rate is defined by η[ρ0] = η0(1+ γηρ0). Then, there exists a constant Cη such
that

0 < η[ρ0] ≤ Cη .

• The probability density is defined by

A[ρ0](v∗ → v) =

(
H(v∗ − v∗)

(
(1− P)

e−
|v−v∗|2

σ1∫ vM
vm

e−
|v−v∗|2

σ1 dv
+ P

(vM − v)2∫ vM
vm

(vM − v)2dv

)

+(1− H(v∗ − v∗))
(

P
e−
|v−v∗|2

σ2∫ vM
vm

e−
|v−v∗|2

σ2 dv
+ (1− P)

vM − v∫ vM
vm

(vM − v)dv

))
χ[vm ,vM ](v)

where P = αu(1− ρ0), σ1 = αu(1− ρ0)/200, σ2 = (1− αu(1− ρ0))/200, vm = max{0, min{v∗, v∗}−
(1 − αu)ρ0(|v∗ − v∗| + exp(−|v∗ − v∗|))/200} and vM = min{1, max{v∗, v∗} + αu(1 −
ρ0)(|v∗ − v∗|+ exp(−|v∗ − v∗|))/200}.

We introduce the following space XT = C([0, T]; L1([0, 1])) for some T > 0, equipped with
the norm

|| f || = sup
t∈[0,T]

|| f (t, .)||1 = sup
t∈[0,T]

∫ 1

0
| f (t, v)|dv.
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A.1 Local existence

Theorem A.1.1 Let ρ0 ∈ [0, 1] Then there exists a unique function f solution to the IVP (3.4.12) such
that f is non-negative and such that

|| f (t, .)||1 = || f0(.)||1 = ρ0, ∀t ∈ [0, T]. (A.1.1)

Proof A.1.1 In the sequel we denoted the term source by Q[ f , f ] defined by

Q[ f , f ](t, v) = η[ρ0]
( ∫ 1

0

∫ 1

0
A[ρ0](v∗ → v|α, u) f (t, v∗) f (t, v∗)dv∗ dv∗ − f (t, v)ρ0

)
.

The proof of this theorem is based on the two following Lemmas:

Lemma A.1.1 There exists a constant C > 0 such that

||Q[ f , f ](t, .)||1 ≤ C|| f (t, .)||21, (A.1.2)

||Q[ f , f ](t, .)−Q[g, g](t, .)||1 ≤ C
(
|| f (t, .)||1 + ||g(t, .)||1

)
|| f (t, .)− g(t, .)||1. (A.1.3)

Let R( f )(t, v) =
∫ t

0 Q[ f , f ](s, v)ds, then one have the following Lemma

Lemma A.1.2 The operator R is continuous map from X to X. Moreover, ∃C > 0 such that

||R( f )|| ≤ CT|| f ||2, (A.1.4)

||R( f )− R(g)|| ≤ CT
(
|| f ||+ ||g||

)
|| f − g||. (A.1.5)

After integrating Eq.(3.4.12) over the interval [0, t], t ∈ [0, T], it can be written in the form of integral
equation

f = N( f )

where

N( f )(t, v) = f0(v) +
∫ t

0
Q[ f , f ](s, v)ds.

From the Lemma A.1.2, we have the following estimates

||N( f )|| ≤ || f0(.)||1 + CT|| f ||2, (A.1.6)

||N( f )− N(g)|| ≤ CT
(
|| f ||+ ||g||

)
|| f − g||. (A.1.7)

In order to apply the Banach fixed point method, the operator N should verify the following estimates

||N( f )|| ≤ || f ||, (A.1.8)

||N( f )− N(g)|| ≤ L|| f − g||, L ∈ [0, 1[. (A.1.9)

By comparing the estimates (9)− (11), the solution of the following equation

|| f0(.)||1 + CT|| f ||2 − || f || = 0

Assume that ∆ = 1− 4CT| f0(.)||1 > 0 that implies the condition on T

T ≤ 1
4C| f0(.)||1

In the oder hand, one can choose to solve

CT2r =
1
2
⇒ r =

1
4CT

≥ || f ||.
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The operator N is a contraction on a ball in XT of radius r, then there exists a unique local solution f of
Eq. (3.4.12) on [0, T].

In order to finish to proof of the theorem it remains the positivity of the solution. After multiplying
Eq.(3.4.12) by exp(R) and integrating over [0, t], we get

N( f )(t, v) = f (t, v) = exp(−η[ρ0]ρ0t) f0(v) +
∫ t

0
exp(η[ρ0]ρ0(s− t))η[ρ0]

.
∫ 1

0

∫ 1

0
A[ρ0](v∗ → v) f (s, v∗) f (s, v∗) dv∗ dv∗ds.

The operator N maps X+
T into itself if f0(v) is positive. That closed the proof of the theorem.

A.2 Global existence

Thanks to the existence of local solution in time and the estimate (A.1.2), we can prove the exis-
tence of global solution in time to our problem (3.4.12).

Theorem A.2.1 The problem (3.4.12) admits a unique nonnegative global solution f ∈ C([0,+∞); L1([0, 1])
satisfying the estimate (A.1.2).

Proof A.2.1 It suffices to apply the same reasoning developed in the proof of Theorem 1 on the interval
(T, 2T], taking f (T, v) as new initial condition. Since f (T) ≥ 0 and moreover

∫ 1
0 f (T, v)dv = ρ0 ∈ [0, 1]

we are in the same hypotheses of Theorem 4.1, hence we can conclude on the existence and uniqueness of a
local solution on [T, 2T] satisfying the estimate

|| f (t, .)||1 = || f (T, .)||1, ∀t ∈ (T, 2T]

Therefore a unique solution f (t, v) to the problem (3.4.12) in the whole interval (0, 2T] is found. Iterating
this procedure on all intervals of the form (kT, (k + 1)T], k ∈ N, we can construct the global solution
on R+.
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