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ABSTRACT

The aim of this thesis is the development and application of different control methods
for Active Noise Control in the presence of uncertain and time-varying disturbances. A
model-based controller design is applied and a full methodology for model identification

is introduced. In this context, a reconfigurable test bench based on a noise silencer for ducts
has been designed and built. It is fully equipped with sensors and actuators in order to test the
developed algorithms in diverse configurations.

A feedback scheme is established for the case where narrow-band disturbances are present.
Based on the Internal Model Principle, fixed linear and robust controllers are designed and com-
pared with the proposed adaptive feedback controller using a Youla-Kučera parametrization. For
the case where disturbances have broadband characteristics, a feedforward scheme is proposed.
This approach requires the introduction of an additional sensor which creates an internal positive
coupling, requiring a specific design in order to avoid possible instabilities. In this framework,
Infinite (IIR) and Finite (FIR) Impulse Responses adaptive feedforward compensators, as well as
Youla-Kučera parametrized adaptive feedforward compensators are compared.

The estimated models’ quality for control design as well as the control capabilities themselves
are illustrated by the experimental performance of the controllers implemented on the test bench
for various tests setup conditions.
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RÉSUMÉ

Le but de cette thèse est le développement et l’application de différentes méthodes de
contrôle pour le contrôle actif du bruit en présence de perturbations incertaines et variables
dans le temps. Une conception de contrôleur basée sur un modèle est appliquée et une

méthodologie complète pour l’identification du modèle est introduite. Dans ce contexte, un banc
d’essai reconfigurable basé sur un silencieux de bruit pour gaines a été conçu et construit. Il est
entièrement équipé de capteurs et d’actionneurs afin de tester les algorithmes développés dans
diverses configurations.

Un schéma contre-réaction feedback est établi pour les cas où des perturbations en bande
étroite sont présentes. Sur la base du Principe du Modèle Interne, des contrôleurs linéaires fixes
et robustes sont conçus et comparés avec le contrôleur par contre-réaction adaptatif proposé
en utilisant un paramétrage Youla-Kučera. Dans le cas où les perturbations présentent des
caractéristiques à large bande, un système de rétroaction feedforward est proposé. Cette ap-
proche nécessite l’introduction d’un capteur supplémentaire qui crée un couplage positif interne,
nécessitant une conception spécifique afin d’éviter d’éventuelles instabilités. Dans ce cadre, les
compensateurs adaptatifs IIR et FIR, ainsi que les compensateurs adaptatifs avec paramétrage
Youla-Kučera sont comparés.

La qualité des modèles estimés pour la conception des contrôles ainsi que les capacités de
contrôle elles-mêmes sont illustrées par les performances expérimentales des contrôleurs mis en
œuvre sur le banc d’essai pour diverses conditions de configuration des tests.
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5.5.1 Infinite Impulse Response Youla-Kučera Controller . . . . . . . . . . . . . . 92
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Landau Ioan-Doré, Dugard Luc, Airimiţoaie Tudor-Bogdan, Journées Jeunes Chercheurs
en vibration, Acoustique et Bruit, Société Française d’Acoustique, 15-16 November 2018, Le
Mans, France.

xxii



C
H

A
P

T
E

R

1
INTRODUCTION

This introductory chapter describes the basic problems of adaptive Active Noise Control

(ANC) and how this was related to the studies in Active Vibration control (AVC). This

has motivated the research and gives an overview of the main results in the literature.

To conclude, in the last two sections of this chapter, the original contributions of this work are

summarized, and an outline of the dissertation is given.

1.1 Motivation

Without going into advanced theory or looking deeply into details, the basic principles of Active

Noise Control (ANC) will be exposed and explained in this section. Some basic examples will be

given to state the control problem which will be associated with our research. All this is intended

to be presented as part of the context in our work.

One of the very first mentions about ANC was done by Henri Coandă in the documents of a

French patent in 1930 [Coanda, 1930]. A couple of years later Paul Lueg did something similar in

his work and mentioned it once again in [Lueg, 1934], yet another patent. Some time later the

term appeared in a publication by Harry F. Olson [Olson and May, 1953], this time in a journal’s

article. In brief, the problem to solve in their work is that of mute and suppress an incoming

noise of a given source, by using of a microphone for measurements, and the set of an amplifier

and a loudspeaker to act as an actuator. It was found that under those given conditions, if the

proposed systems were able to create sound waves with frequency characteristics similar to those

of the noise, but with a shift in phase of 180◦, then it was feasible to cancel noises in the action

region of the sound waves produced by the loudspeaker. As an example, one of the proposed uses

of this theory is to apply the ANC system near an operator of heavy machinery and airplanes

engines to reduce the noise created by them.
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CHAPTER 1. INTRODUCTION

In this field of research, three main different approaches of control methods are considered for

counteracting the noise, as mentioned in [Snyder, 2000]: those with passive behavior, those with

something we can call semi-active performance and finally those with a full active action. The

passive approach, which is the most common one, since it consist mainly in the use of material

and geometries with specific characteristics in order to isolate and damp the effects of noises,

where no control algorithms are involved. The advantages of this technique is the simplicity of

application into the systems, with an inherent robustness in terms of control, and a great cost-

benefit ratio in most of the cases. As expected, the downside of using such an approach difficulties

found when attenuating very low frequencies, its lack of flexibility in terms of control, as well as

the absence of adaptation to the environment’s changing characteristics and a dependency to the

system’s physical and natural dynamics. The most simple example of the passive noise control

can be seen in the isolation with high density foam used in pipes and buildings walls. A more

complex, but still an example of this concept is the Helmholtz resonator, which is described in

[Olson and May, 1953, Fleming et al., 2007].

The second approach is denominated as semi-active, since it does not proportionate any

additional energy to the system itself, but it uses information acquired from it to modify the

passive actuators characteristics. This conceptualization requires more parts involved in its

functioning, like a sensor or transducer to gather some given information from the system. This

has the advantages of being more flexible to changes in the system’s dynamics, nevertheless the

implementation complexity and cost increase substantially. Following the previous approach ex-

ample, there are designs of Helmholtz resonators with capacity to change the resonant chamber’s

dimensions and thus, to adapt between a determined range of operation its natural frequency, as

shown by [de Bedout et al., 1997] and [Matsuhisa et al., 1992].

Finally our main interest resides in the third and last approach in which the integrity of this

work is included, correspondingly called active control. This implementation has a distinguishable

difference regarding the late two options, that refers to the fact that these actuators supply an

additional and external source of energy to the system itself in the form of mechanical power,

which targets its behavior to fulfill specific variable objectives. Speaking more specifically about

Active Noise Control (ANC), the frequency domain of interest covers the average human audible

spectrum of frequencies, roughly between 20Hz and 20000Hz. Due to physical conditioning and

inherent characteristics of passive approaches, their frequency range of operation is constrained

to high frequencies, as stated in [Olson and May, 1953, Fuller and von Flotow, 1995, Elliott, 2001],

where attenuations of 40 dB were achieved in frequencies above 500Hz. This opens a window

of opportunities for the ANC, to act at the low frequency domain, where no other approach can

perform.

Amongst the many examples and uses of these theories, one of the most common examples

found in real life applications is that of the headphones with environment noise reduction

capabilities for a better audio quality and sound experience. This is done by measuring the
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environmental noise with an embedded microphone and the use of this acquired information

through control algorithm and the internal speaker as an actuator. Figure 1.1 details a reference

to this system. In the ideal case, the added signal should be of equal magnitude and of 180◦ phase
shift (negative) so as to completely cancel the disturbing noise. Further background analysis

can be found in the articles and documents of [Elliott and Nelson, 1993, Fuller and von Flotow,

1995, Guicking, 2007].

FIGURE 1.1. External noise attenuation in headphones by use of Active Noise Control.

1.2 Problem Description

This section describes some generalities of the Active Noise Control problems treated throughout

this thesis. The main objective is to reduce the effects of a given perturbation in the system,

corresponding in this case to the effects produced by acoustic noise, at the specified location

of interest inside the system. A general overview and a description are given for the so called

system, as well as the control approaches used which are given in the following subsections.

1.2.1 Active Vibration Control

The base of this work were settled first in the studies done by Aurelian Constantinescu in

[Constantinescu, 2001], where the case of Active Vibration Control was exposed. Subsequently

works done by Alma, Airimiţoaie [Alma, 2011, Airimiţoaie, 2012] and more recently Castellanos

[Silva, 2014] were also developed in the field of vibration control, but there are similarities

between mechanical vibrations and acoustics, since they are both physical phenomena that can

be described by mechanical waves, just acting in different environments. Each of these works

had at its disposal test benches fitted to emulate diverse mechanical vibrational systems. Under

the conditions established for these projects, theories were developed and put to trial in the test

benches.
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An example, there are studies done in [Constantinescu and Landau, 2003] where an active

suspension system test bench is used for the application of theories in which this thesis settle its

basis. In [Alma et al., 2012] and [Landau et al., 2011a], we can find the follow up applications

done by Alma of these theories on a different test bench. A close relationship between the work

described in this thesis is still hold among the studies previously done, as well as the current

works made at this point by Airimiţoaie, a seen in [Airimiţoaie et al., 2011, Airimitoaie and

Landau, 2016].

It is remarkable to state that there exists a wide field of study around AVC, and there are

many different approaches, nevertheless one of the main objectives of this thesis is to keep track

of those specific studies and follow up the work done there. Once the similarities and bases are

stated, the aim is then to focus the sum of efforts done in the ANC field.

1.2.2 Control System Configuration

Figure 1.2 represents an Active Noise Control system, as well as an Active Vibration Control, as

we will see in the next subsection, which contemplates the use of both feedback and feedforward

compensators. This system can be described as a two input, two output system. The first input

corresponds to the perturbation or Disturbance s(t), with unknown characteristics and generated

by an as well unidentified source. The second input can be denominated as the Control Signal

u(t), being the sum of individual output control signals from the feedback regulator K , and

the feedforward compensator N, uf b(t) and uf f (t) correspondingly. The outputs of this system

will be those obtained from the measurements, as the first output corresponds to the system’s

Residual Noise y(t), and the second output corresponds to the Disturbance’s Image v(t), in our

case both gathered through microphones. As shown in Figure 1.2, the path that transmits the

perturbation s(t) to the residual noise y(t) is defined as Primary path. Similarly, the Secondary

path is defined as the path that transmits the control signal u(t) to the residual noise y(t). As

such, the residual noise is defined as the sum of the primary path’s output, the perturbation p(t);

and of the secondary path’s output, denoted as z(t).

Inherently in Active Noise Control and Active Vibration Control systems, a side effect called

internal positive coupling is present due to the control signal u(t). The fact that control signal

u(t) effects are omnidirectionally distributed through the system indicates that this will have

an effect as well in the measurements v(t), intended to gather an information correlated with

the disturbance. This phenomenon represents a coupling between the control signal u(t) and

the measurements v(t), where this path is defined as an internal positive feedback, or more

commonly Reverse path. This is a crucial part in the development of feedforward control theory,

since its effects can destabilize the system if not properly taken into account. Finally the path

formed between the perturbation s(t) and the measurements at v(t) is described by the Image

path. Thus, we can state that the measurements v(t) are formed by the sum of the reverse path’s

output, defined as x(t) and of the image path’s output, defined as the disturbance image pi(t).
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Accordingly with the control theory terminology, we will define the system’s output y(t) as the

performance variable, usually detonated as e(t). In this context we define our objective as that of

minimizing the resulting signal e(t), by compensating with the control signal u(t), calculated by

using the measurements y(t) and v(t).

FIGURE 1.2. Block diagram representation of the combined feedback and feedforward
control problem. In green we can identify the blocks corresponding to the sys-
tem’s plant, meanwhile in blue the corresponding feedback K and feedforward N
compensators.

System’s measurements can be displayed in a vectorial disposition, such that Y (t)= [v(t), y(t)]T .

In the same way using the previously stated definition of feedback regulator K , and feedforward

compensator N, we can display them in a vectorial disposition such that κ= [N,−K]T . Thus, we

can define control signal as:

(1.1) u(t)= uf f −uf b =N ·v(t)−K · y(t)= κT ·Y (t).

The feedforward controller denomination attributed to N is motivated by the fact that v(t),

also called Correlated disturbance’s image, is measured upstream of the performance variable.

This assumes also that it is physically possible to obtain such a measurement. The situations

where this is not possible constitute feedback control problems, while the others are more

generally addressed in the literature as hybrid control.

A standard feedback representation in the form of a 2 input - 2 output system can also be

considered as shown in Figure 1.3. This representation is very well known in robust and optimal

control, and similar representation can be found in [Tay et al., 1997, Zhou et al., 1996]. The

equations associated with the feedback system representation are:

(1.2) Y (t)=
[
y(t)

v(t)

]
=

[
P11 P12

P21 P22

][
s(t)

u(t)

]
=

[
D G

W M

][
s(t)

u(t)

]
,

where the system, or plant parameters are defined, and D corresponds to the Primary path, G

is designed as the Secondary path, W represents the Image path and M symbolizes the Reverse

5



CHAPTER 1. INTRODUCTION

FIGURE 1.3. General representation of a 2 input - 2 output Active Noise Control / Active
Vibration Control system.

path. Given these denominations, we can redefine the Figure 1.2, as displayed in the following

Figure 1.4.

FIGURE 1.4. Block scheme of the combined feedback and feedforward control problem.

Equation (1.2), alongside with Equation (1.1), gives the overall representation of the ANC

system and the corresponding control law. From here two specific cases for this problem will be

addressed.

1.2.3 Feedback Control Problem

The feedback regulation is the first case. For this, it is common to provide a solution for reducing

narrow band perturbation, talking about their frequency domain. In general, the disturbances

will be supposed to represent vibrations coming from multiple narrow band disturbances sources.

It should be observed that in this context there is no feedforward compensator and N = 0. As

such, the previous general scheme can be reduced as in Figure 1.5.

Consequently we will have the residual noise measurement y(t)=Y (t), and the control signal

u(t) = uf b(t). For this configuration we will define the performance variable as the measured

system’s output, such that e(t)= y(t). A schematic representation of this simplified situation is

given in Figure 1.6.
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FIGURE 1.5. Reduced block diagram representation for a feedback control problem.

FIGURE 1.6. Feedback control problem scheme.

This came from the fact that there are situations where a second transducer to measure an

image correlated with the disturbance cannot be used because the physical characteristics of

the process prevent it, thus feedback control techniques have to be applied. The Bode integral

limitations permit only narrow band disturbances to be reduced or rejected. Therefore, in this

part of the dissertation, objectives will be those of developing techniques for the compensation of

multiple stationary or variable sinusoidal disturbances.

1.2.4 Feedforward Control Problem

The feedforward noise compensation is the second case for this problem. A schematic represen-

tation of this situation is given in Figure 1.7. For this case, it can be observed that there is no

feedback regulator, thus K = 0.

Therefore, in this situation we obtain v(t)=Y (t) and u(t)= uf f (t). As mentioned earlier, it

is supposed that a transducer can be used that provides a correlated image of the disturbance

upstream of the performance variable e(t) = y(t), therefore allowing a feedforward regulation

approach to be implemented. Again a schematic representation of this simplified situation is

given in Figure 1.8.

This method is used in practical situations where large or wide band perturbations need to be
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FIGURE 1.7. Reduced block diagram representation for a feedforward control problem.

FIGURE 1.8. Feedforward control problem schema.

reduced. In these cases, a pure feedback approach would be hindered by the limitations imposed

through the Bode integral [Hong and Bernstein, 1998] and only narrow band disturbances could

be compensated (as it will be shown in the next section).

To deal with large band disturbances, the scheme in Figure 1.8 can be used. It can be

immediately observed from this representation that the measured correlated image of the

disturbance v(t) will not only contain the significant information from the disturbance source but

it will also be contaminated by the control signal transmitted through the positive coupling path,

or Reverse path. The presence of this intrinsic positive feedback complicates the controller design

because it can cause instability.

In many of the research studies that begun to propose solutions for this problem, the influence

attributed to the positive feedback coupling was not taken into account [Widrow et al., 1975],

because it was either considered that its influence could be compensated or that it was too weak

to raise any problems. Several techniques have been reported in the literature for compensating

the positive feedback coupling’s effect, some being of mechanical nature and other being more

related to the control algorithm. One example concerning the second technique, called feedback

neutralization, has been described in [Kuo and Morgan, 1999, Nelson and Elliott, 1993] and

relies on a very good estimation of the feedback path’s model. However, it has been reported in

[Nelson and Elliott, 1993, Mosquera et al., 1999] that if the estimation is not accurate, then the

8
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possibility for instability still exists.

The algorithms presented in this dissertation are designed to provide good results in the

presence of this feedback coupling path and therefore there is no need for positive feedback path

cancellation. The use of adaptive control is motivated by the fact that in real applications, the

disturbance’s characteristics can vary in time or that the identified models might not be exact

representations of the system’s dynamics.

1.3 Literature Overview

A detailed summary of the Active Noise Control evolution through time can be seen in [Miljković,

2016]. Concerning more specifically this work, as stated in 1.1, the three main different ap-

proaches of control methods can be considered for counteracting the noise, as it is mentioned

in [Snyder, 2000]. As for the passive approach [Krysinski and Malburet, 2008], some new de-

velopments are being done regarding the materials used to attenuate undesired sound waves

effects. As an example there is a theory called acoustic black holes [Krylov, 2014], where basic

physic concepts are applied into the surfaces geometries to produce the passive dampening. A

more recent concept is that of the so called metamaterials [Marchal, 2014], where the concept of

internal structure and geometry of the materials are further manipulated to achieve the desired

objective [Guo et al., 2018a, Guo et al., 2018b]. As for the semi-active approach, some examples

can be seen in [Babaee et al., 2016] and [Hansen et al., 2007]. For the last approach, in this

section a review of the important contributions in the literature of feedback and feedforward

active regulation of noise will be further developed.

1.3.1 Feedback Rejection of Multiple Narrow Band Disturbances

Often in practice, it is not possible to use a second transducer to measure the image of a

disturbance. In these situations, a feedback control approach has to be considered. Taking into

account the Bode integral restriction [Åström and Murray, 2008, Zhou et al., 1996] we can

conclude that only disturbances on a finite band of frequencies can be attenuated. Consequently,

this part of the dissertation is concerned with the rejection of multiple time-varying sinusoidal

disturbances. A comparative analysis of feedback and feedforward disturbance rejection is given

in [Elliott and Sutton, 1996].

A review of the existing methods for narrow band disturbance rejection is given hereafter. To

begin with we need to distinguish between what it is define as adaptive regulation and a second

term which is very close and denominated adaptive control. The importance to differentiate

between these paradigms was pointed out in [Landau et al., 2011b]. It is observed there that in

classical adaptive control the objective is disturbance attenuation (tracking) in the presence of

unknown and time-varying plant model parameters. Thus, the focus of adaptive control is put
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on the adaptation with respect to variations in the plant model’s parameters. The disturbance

model is assumed to be known and invariant.

Conversely, the adaptive regulation paradigm refers to asymptotically suppression (or attenu-

ation) of the effects created due to unknown and time varying disturbances. It is also assumed

that the plant model is known and that a robust control design can be applied to deal with

possible small variations of its parameters. Thus no effort is put onto estimating in real-time the

process’ model. An important aspect is that the disturbance should be located in the frequency

region where the plant model has enough gain.

Recognizing that the objective of this dissertation will be disturbance rejection (or atten-

uation), the adaptive regulation problem will be considered. The common framework is the

assumption that for our system the disturbance can be described as the result of a white noise or

a Dirac impulse passed through the disturbance’s model. To reject its influence, several solutions

have been proposed. One of them is the Internal Model Principle (IMP), as reported in [Amara

et al., 1999b, Amara et al., 1999a, Gouraud et al., 1997] and [Valentinotti et al., 2003, Valentinotti,

2001, Hillerstrom and Sternby, 1994]. Using this method supposes that the disturbance’s model is

incorporated in the controller [Tsypkin, 1997, Bengtsson, 1977, Francis and Wonham, 1976, John-

son, 1976]. Its parameters should therefore be continuously estimated, allowing the system to

respond to possible changes in the disturbance’s characteristics. This will lead to an indirect

adaptive control algorithm. However, it has been shown in [Landau et al., 2005] that direct

adaptation is possible if one uses the Youla-Kučera parametrization of all stable controllers.

Another idea that has been used is to build and incorporate an adaptive observer in the

controller [Marino and Tomei, 2007, Serrani, 2006, Ding, 2003, Marino et al., 2003]. However, the

approach seems to be focused mainly on disturbances acting over the plant’s input. Additional

hypotheses should be taken into account before applying it to disturbances on the system’s output

(the plant should have stable zeros, which is seldom the case for discrete time plant models). It

can be noted that, although the Internal Model Principle is not explicitly taken into consideration

in this scheme, incorporating an observer into the controller means that the internal model

principle is implicitly used.

A direct approach that uses the concept of phase-locked loop is presented in [Bodson and

Douglas, 1997] and experimental results are provided in [Bodson, 2005]. It is shown that it can

be applied to the rejection of sinusoidal perturbations with unknown frequencies. Disturbance’s

frequency estimation as well as disturbance cancellation are performed simultaneously by using

a single error signal. As a requirement, an adequate plant’s frequency response is needed in the

region which corresponds to our frequency range of interest.

More recently furthers applications have been developed using the same concept in different

areas of interest, proving that the study of Active Noise Control for the narrow band disturbance

rejection by means of a feedback configuration is still relevant. Industry has found a source of

innovation for a growing market in environmental comfort as shown in [Carme et al., 2016],
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where the theory and experimental results on a test setup are displayed, and focused in the

development of a specific product. Concerning also diverse problematic, [Sharma and Renu,

2016, Lu et al., 2014] have stated applications for these theories on medical related problematic.

1.3.2 Feedforward Control of Broad-band Noises

The first attempts in the literature of adaptive Feedforward Active Noise Compensation have

been done neglecting the positive feedback coupling. Most of the work that has been done in this

field is centered around various developments of the Least Mean Squares (LMS) gradient search

algorithm (introduced in [Widrow, 1971]). The main objective of the LMS method is to find the

minimum point on the Mean Square Error (MSE) surface by updating the parameters of a Finite

Impulse Response (FIR) filter in a direction which is an estimate of the steepest descent. For

these purposes, this algorithm uses the current sample of the squared error.

One of the first improvements was the Filtered-X Least Mean Squares (FxLMS), proposed

independently by [Burges, 1981] and [Widrow et al., 1981], which used a filtered version of

the observations measured for the adaptation algorithm (measurements correlated with the

disturbance). Both adaptation schemes studied by these authors (adaptive sound controller in

Burges’ research and adaptive inverse control in Widrow’s) presented a secondary path model that

influenced the adaptation procedure. A filtering of the observation vector through the secondary

path’s model had to be performed in order to obtain good estimations. Both problems addressed

by these authors presented the adaptation of a FIR filter in those given schemes without feedback

coupling.

Despite the stability and the convex performance surface of the FIR filters, there are situations

when the use of Infinite Impulse Response (IIR) filters is especially interesting (e.g., to obtain

good performances, one often has to use a large number of parameters for the FIR filter because

of their all zero form, while with IIR filters, it is possible to obtain similar performances with

a significantly reduced number of parameters). A method to adapt IIR filters was originally

proposed by Feintuch in [Feintuch, 1976], called the Recursive Least Mean Squares (RLMS),

which provides a transformation of the basic LMS filter adaptation to the IIR structure. Later,

the algorithm was improved by using filtered observations in the same way as was done in

FxLMS, providing the Filtered-U Least Mean Squares (FuLMS) algorithm. The FuLMS was

first introduced in [Eriksson et al., 1987] for ANC and AVC applications, but no convergence and

stability analysis were provided. As an application example of this algorithm, the reduction of

noise inside jet aircraft, produced by the engines that are mounted directly on the fuselage is

described in [Billoud, 2001].

The family of LMS algorithms uses an approximate estimate of the steepest descent direction,

obtained by taking the current sample’s gradient of the squared error instead of taking that

corresponding to the MSE gradient. An improvement has been obtained in the Filtered-V Least

Mean Squares (FvLMS) algorithm presented in [Crawford and Stewart, 1997] where the full-
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gradient is calculated. Nevertheless, considering a slow adaptation of the parameters, some

approximations have been done to reduce the algorithm’s numerical complexity.

A difficult problem for adaptive IIR filters in the context of ANC is their stability and

convergence analysis. Compared to the output error algorithms, this is complicated mainly by the

secondary and feedback coupling paths. One way of analyzing the convergence, in a stochastic

environment, is the ODE method of Ljung ([Ljung and Söderström, 1983], first presented in

[Ljung, 1977a] and applied on the output error analysis estimation method of [Landau, 1976]

in [Ljung, 1977b]). Using this, it was possible to analyze the FuLMS algorithm properties in

[Fraanje et al., 1999, Wang and Ren, 2003]. Conditions are found so as to assure convergence

with probability 1 in the case of positive feedback coupling but with some restricting conditions,

two of them being that a vanishing adaptation gain has to be used and that the feedback path

does not destabilize the system.

Another approach for the stability and convergence analysis of adaptive algorithms is the

hyperstability theory. This was first proposed in the seminal work of Vasile Mihai Popov presented

in the original publications [Popov, 1960, Popov, 1966] and then translated in [Popov, 1963, Popov,

1973]. One of the most important consequences of this theory is its use in the design of stable

adaptive algorithms alongside positive dynamic systems. The initial framework for studying a

given adaptive system using the hyperstability was established in [Landau and Silveira, 1979,

Landau, 1979, Landau, 1980] and a complete theoretical analysis can be found in [Landau et al.,

2011c]. Unlike the Lyapunov approach which is limited by the difficulty in finding appropriate

Lyapunov functions, a large family of adaptation laws leading to stable adaptive algorithms can

be designed using the hyperstability theory.

FIGURE 1.9. Standard representation of the analysis of adaptive systems using hyper-
stability theory.

The hyperstability mainly deals with the stability of systems class that can be represented as

done by [Johnson, 1979] in the form given in Figure 1.9. On this configuration, it is supposed

that the nonlinear and/or time-varying feedback block is such that it satisfies an input-output

relation of the form

(1.3)
k1∑
k=0

ω̄(k)ν(k)≥−γ2, for all k> 1
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One of the early uses of hyperstability in the synthesis of adaptive algorithms was reported

in [Treichler et al., 1978, Larimore et al., 1980]. The Simple Hyperstable Adaptive Recursive

Filter (SHARF) is convergent only for slow adaptation. The more complex Hyperstable Adaptive

Recursive Filter (HARF) version has, instead, been proven convergent under less restrictive

conditions [Johnson, 1979]. Both algorithms use filtering of the estimation error. A challenge

encountered in these algorithms and which makes them difficult to use in ANC systems is the

choice of a filter that assures the Strictly Positive Real (SPR) condition, especially due to the

existence of the secondary and reverse paths. Furthermore, they are not presented in an ANC

context, therefore the feedback coupling is not taken into account.

A filtered observations - filtered error variant of the HARF algorithm is presented in [Mos-

quera et al., 1999]. The convergence is concluded upon, based on the previously developed theory.

The implementation on an ANC system was experimented using feedback cancellation but the

results were not satisfactory. Similarly to the SHARF algorithms, in [Snyder, 1994] a method

applicable in active control without positive feedback coupling is formulated. In contrast to the

SHARF algorithms, filtering is done on the observation vector, whereas in the aforementioned

algorithms it was done on the estimation error. A way of choosing the filtering is given.

Another attempt to use the stability approach to design an adaptive algorithm for ANC was

proposed in [Jacobson et al., 2001]. However, specific assumptions taken in the development,

restrict the application of this algorithm to specific cases and, as shown in [Landau et al., 2011a],

the algorithm can even become unstable in a general ANC problem. More specifically, it was

supposed that the secondary path is characterized by a SPR transfer function which is seldom

true. In addition to these directions of research, much work was done also on improving the

numerical efficiency, especially in the case of RLS type algorithms and references belonging to

these methods can be found in [Montazeri and Poshtan, 2010, Montazeri and Poshtan, 2011], but

it has been limited to the case without positive feedback coupling.

An equation error algorithm has been presented in [Sun and Chen, 2002]. The approach is

globally convergent when the feedback coupling is not present and the measurement noise is zero.

Where there is a presence of measurement noise, it is shown that the result is biased. Also when

feedback exists, a local minimum is attained instead of a global one. To overcome these problems,

a Steiglitz-McBride type IIR algorithm has been published in [Sun and Meng, 2004]. Simulation

results without feedback coupling are presented. Yet another drawback of this algorithm would

be that the stability is assumed before hand but, in practice, the poles of a IIR filter may move

outside the unit circle and instability may then occur.

A different approach is considered in [Zeng and de Callafon, 2006], where a Model Based

Design (MBD) controller obtained using the Youla-Kučera (YK) parametrization of all stabilizing

controllers is implemented for a noise cancellation problem. The feedforward filter is first identi-

fied from open loop data and then an orthonormal basis function is designed, based on the method

presented in [Heuberger et al., 1995]. A further difference with previously mentioned research
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results is that the parameters’ adaptation is not done continuously but at certain intervals during

which the system operates based on the last computed values. No stability analysis has been

performed.

To conclude on this review of the various methods developed in the field of ANC, it is necessary

to mention also the H∞ and H2 MBD compensators. This approach has been considered in [Bai

and H.H.Lin, 1997, Rotunno and de Callafon, 2003]. However, the resulting compensator does not

have adaptation capabilities and its performance is not necessarily very good. Provided that the

high dimension of the resulting compensator can be reduced, it may constitute an "initial" value

for the parameters of an adaptive or self-tuning feedforward compensator. In [Bai and H.H.Lin,

1997], it is shown experimentally that the results obtained with the H∞ approach are better

than those achieved using the very popular FuLMS adaptation algorithm (for a disturbance with

known spectral characteristics).

1.4 Contributions

The main objective of this work is the further development and comparison of diverse adaptive

algorithms for acoustic noise attenuation in a determined system. These given algorithms have

been used in previous projects for mechanical vibrations, and here they are extensively tested on a

test bench designed specifically for this purpose. Having in mind the disturbances’ characteristics,

either a feedback control configuration for narrow band perturbations, or a feedforward control

configuration for large band disturbances has been used.

In the initial Part I, aside of delivering an explanation of the test bench used for this work,

the following contributions are presented:

• Development of methodology for systems’ models identification based on measurements,

applied on an acoustic environment,

• Study of geometry and physical disposition of elements and their effects on the active

control and controllability over the resulting identified models.

As for the section corresponding to feedback in Part II, the contribution made can be summa-

rized as:

• Development of methodology for feedback control to reject narrow band disturbances based

on Band Stop Filters with adjustable frequency bandwidths and attenuations in order to

shape the output sensitivity functions,

• Analysis and implementation of the Youla-Kučera parametrization on the control scheme

of the feedback controller to improve the adaptation capabilities as well as the computation

efficiency,
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• Thorough comparison between different approaches and algorithms tested on the test bench

designed for this purpose.

Finally in part III of this work, the feedforward approach is addressed, and the main contri-

butions are:

• Analysis of different test bench configurations used and their effects on the control regarding

the delay in the models.

• Development of generalized feedforward compensation adaptive algorithms that take into

account the inherent existence of a positive feedback coupling in Active Noise Control

systems,

• Application of Youla-Kučera parameterized adaptive feedforward filters, either in a FIR or

IIR configuration,

• Exhaustive comparison between different algorithms and configurations, by analysis of

experiments performed on the test bench,

• Comparison between both feedback and feedforward approaches made under similar condi-

tions.

1.5 Dissertation Outline

After an explanation of the basis leading to this study in Chapter 1, we give a detailed description

of the ANC test bench used for the trials done for this dissertation in Chapter 2. a comparison with

more common approaches by other studies done in ANC is made. Geometries and dimensions are

given for all the different configurations used throughout these studies, as well as the specification

of the elements taking part in the test bench itself.

In the Chapter 3, the methodology utilized for the identification of all the linearized models,

both for controller design and identifications, is described step by step. Later, similar models from

different test bench configurations are discussed and compared.

In Chapter 4 of this thesis, theory for attenuation of tonal or narrow band disturbances

through a feedback control configuration is addressed. As a basis for comparison, non-adaptive

controllers theory is developed and applied, focusing primordially in shaping the system’s sensi-

tivity functions. Then a more complex approach is taken into account when the Youla-Kučera

(YK) parametrization is used for a self-tuning version of the previous controllers. Special care is

taken for the computational stress due to complex calculations, and the optimization of the time

required to perform them is done.

Finally, Chapter 5 expose and studies the feedforward control theory for rejection of broad

band disturbances, in the presence of an inherit internal coupling between the control signal and
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the measured disturbance’s image present in ANC systems, that might induce a destabilization

of the system itself. Common adaptive algorithms are tested and compared with the proposed

Youla-Kučera parametrization.
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Experimental Setup
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2
PRACTICAL FIELD: TEST BENCH

Application of algorithms and theories developed in the Active Noise Control domain

is a fundamental step, since the models are based on approximations of systems with

non-linear and dynamic behavior. This inherent condition creates a discrepancy between

the expected theoretical results and the ones we may encounter in real applications. Because

of that, one of the best approaches is to actually test the theory developed under a controlled

environment. From here the need to design a test bench for our studies.

In this chapter, first an explanation of the test bench used is given, comparing it with different

approaches. The physical disposition of key elements is explained and detailed, comparing to

other works and detailing the different test bench configurations used. Technical specifications

about the main components are given as well as detailed diagrams of configurations used.

2.1 From Theory to Reality: Test Bench Design

Different approaches exist when talking about test systems and environments for Active Noise

Control, as in [Venugopal and Bernstein, 2000, Cocchi et al., 2000, Hu and Lin, 2000, Bordeneuve-

Guibé and Nistor, 2002], just to mention a few. Taking all this into account, it was decided to take

a slight different approach to what has been done up until now. It was chosen, as general design,

an enclosed environment with an inherent closed initial point for the source of disturbances

acting in the system, and an open boundary at its end.

This was initially intended to act as a section of an idealized duct of air distribution, as the

ones we can find in real industrial environments. Let us give, as an example, a given machinery

or equipment working near one conduct of air conditioning distribution, which is close enough

to an office’s room of the facility to be heard. The passive isolation that a wall and its materials
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possess is limited, and the ducts provide a non usually isolated way of transmission for these

noises. As an example we can see the work done by [Zeng and de Callafon, 2006].

A different application of the same idea is given in [Ben-Amara et al., 1999], where several

controller adaptation algorithms are implemented in a test bench to solve the noise cancellation

problem in a duct. In this work they address the fact that there are indeed differences between

expected results and observed performances, that are attributed to the nonlinearities present in

the test bench, and are not modeled in the design.

2.1.1 Control Actuator Placement

The main difference of the chosen configuration is seen at the control actuator positioning level.

Amongst the most common configurations, we can find those in [Sharma and Renu, 2016, Zimmer

et al., 2003, Carmona and Alvarado, 2000, Eriksson, 1991a], where there is a direct connection

with the main section of the system in a complete perpendicular orientation, and taking into

account the working fluid characteristics, allowing this actuator to be as close as possible to this

main section.

Given the fact that a phenomenon of positive coupling is inherent to the system itself (as it

will be explained in Section 5.3.1) and taken into account in some configurations for active control,

such as measurement to decrease the effects of this, a new configuration was proposed. The basic

scheme of the standard used setup in the field is displayed at Figure 2.1(a), where we can see

a 90° connection, and the path that a reverse coupling would take. In order to decrease these

undesirable but always present effects, a 45° connection, as in Figure 2.1(b), is implemented to

create a smoother junction between the control signal heading to the flux of residual noise in the

system, at the same time that makes a tougher path for the internal coupling.

More than one configuration were used during the theses, due to some characteristics of the

obtained models, and explained at section 5.1.

2.2 Test Bench Configurations

2.2.1 First Configuration

The first approach was taken just having in mind only the idea of decreasing the effects that

an internal coupling presents. Dimensions of the components and parts taking into this first

configurations can be found in Figure 2.2. Here we can see the 45° angles formed by the control

loudspeaker, marked as (2) in Figures 2.3 and 2.4, and its connection to the main body of the test

bench.

The image in Figure 2.3 shows the real test bench in the facilities were it is used. Four

important sections are depicted in it:
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(a)

(b)

FIGURE 2.1. (a) Standard control actuator positioning. (b) Proposed control actuator
positioning.

(1) Disturbance’s loudspeaker, used as an artificial source of noises. Can reproduce variety of

disturbances with specific characteristics. Used to feed the system with perturbations that go

from simple sinusoidal signals, to audio recordings in real environments.

(2) Controller’s loudspeaker, used as an actuator for the control signal fed into the system after

calculations of the algorithms. It is individually connected to the computers, meaning that it

has independent connectors and amplifier as it would be in a real system.

(3) Residual noise’s microphone, located at the open end of the system and used to gather and

record the measurements’ data of the system exit. Information acquired by this microphone

is measured in real time and used in algorithms with either a feedback or in feed-forward

configuration.

(4) Image’s microphone, a second sensor that may be used only for algorithms with a feed-forward

configuration. It is located as close to the source of disturbance as possible in order to get a
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FIGURE 2.2. First experimental test bench configuration.

first impression or image of the disturbance before it crosses the system, thus called hereby

image microphone.

FIGURE 2.3. Photo of test bench’s first configuration.

Figure 2.4 displays these same four remarks in a more schematic representation. Here we

can see included both the development and target PC’s, used to develop the algorithms and their

direct application in the test bench. More important, we define for the first time the nomenclature

used throughout the whole thesis for the different signals found in our schemes. First of all

we have y(t) as the Residual Noise, which is acquired by measurements of the residual noise’s
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microphone and sent to the target PC. This is the signal that a given controller being tested aims

to attenuate. Second in importance is u(t) as the control signal. It is calculated in the target PC

and applied into the system through a power amplifier connected to the controller’s loudspeaker.

Independently to the different algorithms calculations, a signal s(t) is defined as the disturbance.

It is applied in the system through a second independent amplifier connected to the disturbance’s

loudspeaker. Lastly, v(t) is the perturbation or disturbance’s image, and is only used for the

algorithms in a feed-forward configuration.

As a fundamental part of our approach, we define now the inner trajectories or paths inside

the system. The path situated between the disturbance source located at (1), and the point where

residual noise is measured, located at (3) is named as Primary Path. This so called path is useful

to recreate the system’s dynamics in a simulation. More important is the path situated between

the Controller’s loudspeaker at (2) and the point where residual noise is measured in (3). This is

called Secondary Path and is crucial in the controllers’ design, as it will be shown in the following

sections.

FIGURE 2.4. Schema of test bench’s first configuration.

Since we are working in a discrete-time environment, given the cut-off frequency in the

system a sampling frequency fs = 2500Hz was chosen. We may now describe the system based

on a standard RST feedback controller as in figure 2.5, where G =G(q−1) is the discrete time

model of the plant, and where we will find that for our specific case, r(t)= 0.

Being that the case, the system can be further described by the diagram given in Figure 2.6,
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FIGURE 2.5. RST general controller scheme.

where we have the primary and secondary paths model given in discrete time such that,

(2.1) G(q−1)= q−dGBG(q−1)
AG(q−1)

defines the secondary path G with a pure delay given by dG , and the controller K is defined as,

(2.2) K(q−1)= R(q−1)
S(q−1)

.

For the case of simulations we will require to have the primary path’s model as well, defined

as D in the same way, such that,

(2.3) D(q−1)= q−dDBD(q−1)
AD(q−1)

.

In such manner, we define the residual noise as

(2.4) y(t)=G(q−1) ·u(t)+ p(t),

and the control signal as

(2.5) u(t)=−K(q−1) · y(t),

with p(t) as the perturbations affecting the system (not to be confused with the disturbance signal

s(t) sent from the target PC). Further explanations will be given regarding the feed-forward

configuration in the following sections (Chapter 5).

The resulting identified model for this first configuration’s secondary path can be seen in

Figure 2.7.
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FIGURE 2.6. Feedback control scheme.
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FIGURE 2.7. First test bench configuration’s identified secondary path.

2.2.2 Second Configuration

For the second configuration used, as it can be seen in Figures 2.8 and 2.9, the geometry was

changed to improve some characteristics of the secondary path, more specifically the controllabil-

ity in some determined regions in the frequency domain, which is further explained in section
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5.1.

In order to improve the secondary path’s characteristics, it was found that since we use a

loudspeaker as a disturbance’s actuator, its diaphragm was acting as a passive damper [Baz, 2018,

Krysinski and Malburet, 2008]. This introduced a series of setbacks that may not appear in a real

system since disturbances are not configured to display passive dampening in real environment.

This was related to a mechanic engineering term defined as effective length ([Stanfield and Skaves,

2012]). By shortening the disturbance’s duct and changing the angles used as connection for the

control loudspeaker, we were able to modify this length and thus, alter the undesired conditions

present in the original design. However in this configuration the delay of the secondary path is

larger than the delay of the primary path.

FIGURE 2.8. Second experimental test bench configuration.

FIGURE 2.9. Photo of test bench’s second configuration.

Results of the identified model for the second configuration’s secondary path are displayed in
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Figure 2.10.
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FIGURE 2.10. Second test bench configuration’s identified secondary path.
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2.2.3 Third Configuration

Finally a third and last configuration was implemented, where the test bench geometry was

changed so that both feedback and feedforward approaches could be tested in similar conditions.

The new geometrical dimensions are shown in Figure 2.11, and the actual test bench configuration

can be seen in Figure 2.12.

Here, both previous test bench configurations advantages were considered. First, the un-

wanted zero in the secondary’s path model was displaced to a mid-high frequency in order to

allow the feedback controllers to operate in the desired frequency region of attenuation. Secondly,

the difference between primary and secondary paths in terms of delay was taken into account to

have favorable conditions for the feedforward controller.

FIGURE 2.11. Third experimental test bench configuration.

FIGURE 2.12. Photo of test bench’s third configuration.

Further information regarding the differences between these configurations and the expla-
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nation of their need are later done inChapter 5. Figure 2.13 shows the resulting identified path

corresponding to this third configuration’s secondary path is displayed. Figure 2.14 shows the

comparison between all different configurations secondary path identified models and their

differences in terms of frequency response.
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FIGURE 2.13. Third test bench configuration’s identified secondary path.

2.3 Technical Specifications

Among the components used in the test bench we enlist here the most important ones. First of all,

the pipes and connections are made of regular general purposes PVC non-scheduled, commonly

used in low pressure sewer drain systems. All PVC parts have a nominal diameter of 0.10m.

The loudspeakers used are a couple of Mark Audio Alpair 7 (Gen. 3) Extended Full-Range

emitter, Gold color cone model. In the attempt of creating an environment closer to reality,

speakers were enclosed into anechoic chambers made out for reducing radiation noises done back

the rear side of the speakers. They are made of half inch tick plywood, and filled with high density

acoustic isolating foam. This custom made chambers have dimensions of 0.15m×0.15m×0.12m,

with the configuration seen in Figure 2.15. Speakers are connected to two independent Extron XPA

2004 power amplifiers, with a working range from 20Hz to 20kHz for frequency response. As for

the microphones, a set of custom made Hutchinson Paulstra sensors are used for measurements.
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FIGURE 2.14. Secondary path models comparison. Frequency response of all test bench’s
configurations.

(a) (b)

FIGURE 2.15. Anechoic boxes Set up.

2.4 Concluding Remarks

The physical description of elements conforming the test bench was given, as well as a brief

explanation of the configuration and geometry used in its overall design, including the different

configurations proposed. A basic introduction of the terms that will be used through this work is

provided to start giving the basic notions and notations that will be recurring.
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3
IDENTIFICATION OF MODELS

Design of noise controllers requires some knowledge of the system where it is intended to

be applied. In this chapter, the methodology followed and the basic principles of dynamic

systems identification are first introduced. The choice for this system’s input signal used

for identification and the influence of disturbances is later discussed, as well as the constrains

imposed to high order models to agree with the parsimony principle, while keeping a good quality

of the models. The whole model identification procedure is completely detailed for one of the

models used in this project. Then the results obtained for the three configurations are displayed

and compared before the concluding remarks.

3.1 Basis of Model Identification

Model identification from experimental data is a well established methodology as described in

[Landau et al., 2016] and [Ljung, 1999]. Identification of systems is an experimental approach for

determining a system’s dynamic model. It includes four steps:

1. Input-output data acquisition under an experimental protocol and data pre-processing.

2. Estimation of the model’s structure complexity.

3. Calculation of the model parameters.

4. Validation of the identified model for both complexity of the model and parameter’s values.

A complete identification operation must comprise the four stages indicated above. The

typical input excitation signal is a Pseudo-Random Binary Sequence PRBS, which is a persistent

excitation signal allowing unique parameter estimation even for high order systems. The type
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of model to be identified is a discrete-time parametric model, which allows to design a control

algorithm straightforwardly implementable on a computer. Model validation is the final key point.

It is important to emphasize that it does not exist one single algorithm that can provide a good

model in all the cases (i.e. which passes the model validation tests). System identification should

be viewed as an iterative process which has as objective to obtain a model which passes the model

validation test and then can be used safely for control design. The procedure will be detailed for

an identification of the system’s first configuration secondary path G. The same methodology

has been also used for the reverse path’s M identification, used in the feedforward approach.

Subsequently the primary and image paths, D and W correspondingly, were also identified in the

same way, although they were used only for simulations.

3.2 Data Acquisition

For design and application reasons, since the objective was determined to reject tonal disturbances

up to 400Hz, the sampling frequency was selected as fs= 2500Hz (sampling time Ts= 0.0004s) i.e.

approximately 6 times the maximum frequency to attenuate, in accordance with recommendation

given in [Landau et al., 2016]. The theoretical band pass of the system is 1975Hz, using formula

given in [Zimmer et al., 2003].

3.2.1 Pseudo-Random Binary Sequence (PRBS)

In order to identify the corresponding models to each path, a methodology must be followed. First

the system has to be excited with an input signal rich in frequencies. The experimental protocol

should assure persistent excitation for the number of parameters to be estimated. There are

several methods to achieve this, nevertheless it was shown in [Ljung, 1999], that for identifying

2n parameters, the excitation signal should contain at least n+1 sines of distinct frequency. To go

beyond this constraint, during this work’s tests, the discrete-time version of a white noise signal,

called Pseudo-Random Binary Sequence (PRBS), has been used; since it contains a large number

of sines with energy equally distributed over the frequency domain. In addition, the signal’s

magnitude is constant, allowing an easy selection with respect to the magnitude constraint on

the plant input. Pseudo-random binary sequences are signals of rectangular pulses modulated in

width that vary randomly, but have a finite sequence length and repeat periodically in long term,

thus Pseudo-Random.

One of the key points is the design of a PRBS in order to satisfy a compromise between the

frequencies range to be covered, particularly those in the low frequencies region, and the test

duration. One should apply at least on complete PRBS sequence, and its characteristics, including

duration, will depend on the number of cells in the registers length used for its generation.

The PRBS are generated by means of shift registers with feedback. The maximum length of a

sequence is L= 2N −1, where N is the shift register’s number of cells. In order to cover the entire
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frequency spectrum generated by a particular PRBS, the length of a test must be at least equal

to the sequence’s length. In a large number of cases, the test duration L is chosen equal to the

sequence’s length.

The PRBS magnitude must also be considered. Although the value chosen for this magnitude

may be very low, it should lead to output variations larger than the residual noise level. If the

signal/noise ratio is too low, the test length must be augmented in order to obtain a satisfactory

parameter estimation. Note that in a large number of applications, the significant increase in the

PRBS level may be undesirable in view of the nonlinear character of the plants to be identified, as

in our case, since we are concerned with the identification of a linear model around an operating

point.

For identification in this work, the signal’s characteristics used are: magnitude = 0.15V,

register length = 17, sequence length of 217 − 1 = 131071samples, having a total duration of

L = 52.43s and guaranteeing a uniform power spectrum from about 50Hz to 1250Hz. This

is beyond the system’s band-pass estimated by using the non-parametric transfer function

estimation technique in [Zimmer et al., 2003].

3.2.2 Data Preprocessing

Since we identify the secondary path, and since the relationship between the input/output

signals (u(t)/y(t)), is that of a loudspeaker-microphone, the transfer functions will have a double

differentiator behavior, since the input is determined by the speaker’s coil position in [m], and

the output is the acoustic pressure measured by the microphone’s diaphragm in [Pa]= [kg/(ms2)].

This is considered as the system’s known part and so the objective is to identify the remaining

unknown part only. To do this, the input sequence will be filtered by a discrete-time double

differentiator

(3.1) Gdd(q−1)= (1− q−1)2 = 1−2q−1+ q−2,

with q−1 as the delay operator for the time domain as in q−n y(t)= y(t−n), such that

(3.2) u′(t)=Gdd(q−1) ·u(t),

The double differentiator will be concatenated with the identified model of the unknown part in

the final model. Finally the data acquired in y(t) and the new defined u′(t) are centered.

3.3 Order Estimation

It is extremely important being able to estimate the system’s order from input/output data since

it is hard from physical reasoning to get a reliable estimation of it. The plant measured output is

in general contaminated by noise. This is due either to the effect of random disturbances acting

at different points of the plant, to measurement noises, or unmodeled dynamics in the system’s
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plant. A common way of describe this phenomenon is define the system as the plant + disturbance

G +η, thus giving as result y(t)=G(q−1)u(t)+η(t). These random disturbances η are frequently

modeled by ARMA models, thus the plant + disturbance process is given by an Auto-Regressive

Moving Average with external input (ARMAX) model structure [Landau et al., 2016, Landau and

Zito, 2006].

3.3.1 ARMAX Structure

Figure 3.1 shows the ARMAX process configuration taken for the secondary path’s identification,

where u(t) is the signal sent to the controller’s loudspeaker (as in 2.2), y(t) is the system’s output

measured residual noise, δ(t) is an unknown source of disturbances defining η as η(t)=O(q−1)δ(t),
and the discrete-time model of the disturbed secondary path is given by the linear transfer

function G∗(q−1) describing the system as y(t)=G∗(q−1)u(t).

FIGURE 3.1. ARMAX process diagram.

Hence, we can define the disturbed plant’s output as:

(3.3) y(t)= q−dB(q−1)
A(q−1)

u(t)+ C(q−1)
A(q−1)

δ(t)=G(q−1)u(t)+O(q−1)δ(t),

in which the first termG(q−1) represents the controller effect or plant, and the second termO(q−1)
is attributed to the sum of measurements noise, random disturbances and unmodeled dynamics

remaining out the effective model, since in practice we assume δ(t)= 0, thus G(q−1)=G∗(q−1).
The polynomials A(q−1) and C(q−1) have the form

(3.4) A(q−1)= 1+
nA∑
k=1

akq−k = 1+a1q−1+a2q−2+·· ·+anA q
−nA ,

and B(q−1) is defined as

(3.5) B(q−1)=
nB∑
k=1

bkq−k = b1q−1+b2q−2+·· ·+bnB q
−nB ,

where nB, nA, nC are the polynomials orders respectively. The variable d corresponds to a pure

input-output delay in the system. As such, d,nB,nA,nC are the order values to estimate in this
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step of the process. For simplicity, we then arbitrarily assign the order for C(q−1) as nC = nA , and

define the overall system’s estimated order as n̂, with n̂=max(nB+d,nA).

3.3.2 Instrumental Variable

A simple way for identifying the polynomial orders and the quantity of pure delays is based

on the least squares (LS) loss function. It is simple because it can be computed with only one

pass through the data using an orthogonal transformation [Ljung, 1999, Söderström and Stoica,

1988, Söderström, 1977]. In general the LS method does not give a consistent estimate for orders

when the second term O(q−1) of Equation (3.3) models is colored noise. A solution in that case is

to use the loss function of an ARMAX model, where G(q−1) is also identified simultaneously.

However, the use of an ARMAX model is not appropriate when O(q−1) is time-varying.

Moreover, the identification of an ARMAX model is highly nonlinear, and the exact minimum

of the loss function cannot be obtained. Finally, this approach has a high computational cost,

because it requires many passes through the data, for identifying the model’s parameters and

computing the loss function of each model. Another approach, the rank test, has been proposed by

[Guidorzi, 1981, Young et al., 1980, Wellstead, 1978] and others. The technique is based on testing

the rank of some matrices, and often the problem is to define a criterion for deciding whether or

not the considered matrix is of full rank [Söderström and Stoica, 1988]. Some solutions of the

problem for a stationary noise case have been given by [Hall, 1991, Stoica, 1981], and others.

For explaining the rank test we, take as an example a simplified version of Equation (3.3),

where the plant model is described by:

y(t)= [−a1y(t−1)+b1u(t−1)]+ [−a2y(t−2)+b2u(t−2)]+·· ·+ [−an̂ y(t− n̂)+bn̂u(t− n̂)],

=−
(

n̂∑
k=1

akq−k

)
y(t)+

(
n̂∑

k=1
bkq−k

)
u(t),

=−A(q−1)y(t)+B(q−1)u(t),

(3.6)

with A(q−1) and B(q−1) of estimated order n̂. From here we can define the data vectors

acquired from the experiments system output Y (t) and plant input U(t) as

(3.7) YT (t)= [y(t), y(t−1), . . . ], UT (t)= [u(t),u(t−1), . . . ],

and the parameters vector from the identified model as

(3.8) θT = [a1,a2, . . . ,an̂,b1,b2, . . . ,bn̂].

Afterwards we construct the [2n̂]× [2n̂+1] matrix [Y (t)|R(n̂)] as:

35



CHAPTER 3. IDENTIFICATION OF MODELS

(3.9) [Y (t)|R(n̂)]=

⎡
⎢⎢⎢⎢⎢⎣

y(t) y(t−1) u(t−1) . . . y(t− n̂) u(t− n̂)

y(t−1) y(t−2) u(t−2) . . . y(t− n̂−1) u(t− n̂−1)
...

...
...

. . .
...

...

y(t−2n̂−1) y(t−2n̂) u(t−2n̂) . . . y(t−3n̂−1) u(t−3n̂−1)

⎤
⎥⎥⎥⎥⎥⎦ ,

with the square [2n̂]× [2n̂] matrix R(n̂) defined by

(3.10) R(n̂)= [Y (t−1),U(t−1),Y (t−2),U(t−2), . . . ,Y (t− n̂),U(t− n̂)].

From here we can say that, if the model order n̂ given in Equation (3.6) is correct, the vector

Y (t) will be a linear combination of the columns in R(n̂), since Y (t)=R(n̂)θ and the matrix will

be rank deficient. If the real order of plant model is higher than n̂, the matrix (3.9) will be full

rank meaning that the estimated order n̂ was too small.

Unfortunately, as a consequence of the disturbances that may appear, this procedure cannot

directly be applied in practice. A more practical approach results from the observation that a

rank test problem can be approached by looking for a θ̂ which minimizes the following criterion

for an estimated value of the order n̂. This is where the LS loss function intervenes [Söderström

and Stoica, 1988], and we can define the criterion such that,

(3.11) VLS(n̂,N)=min
θ̂

1
N

∥∥Y (t)−R(n̂)θ̂
∥∥2

where N is the number of samples acquired in the test for model identification.

Finally it has been shown that it is possible to replace the matrix R(n̂), by a new reformulated

Instrumental Variable (IV) auxiliary observation matrix Z(n̂), as proposed in [Duong and Landau,

1996, Duong and Landau, 1994], whose elements are highly correlated with the uncontaminated

variables, and therefore representative, but uncorrelated with the measurements noise and

disturbances. Such an instrumental matrix Z(n̂) can be obtained, by replacing in the matrix

R(n̂), the columns Y (t−1),Y (t−2), . . . ,Y (t− n̂) by a corresponding delayed version of U(t−1) as

in Y (t)→U(t−L), where L≥ 2n̂ [Duong and Landau, 1996], such that

(3.12) Z(n̂)= [U(t−1−L),U(t−1),U(t−L−2),U(t−2), . . . ,U(t− n̂−L),U(t− n̂)],

hence the criterion to minimize is defined as

(3.13) VIV (n̂,N)=min
θ̂

1
N

∥∥Y (t)−Z(n̂)θ̂
∥∥2 .
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3.3.3 Penalization

One of the main objectives of the identification is to estimate lower order models, due to the

parsimony principle, and therefore it is reasonable to add in the criterion a term which penalizes

the model’s complexity. Therefore, the penalized criterion for order estimation will take the form:

(3.14) JIV (n̂,N)=VIV (n̂,N)+S(n̂,N),

where the penalization term S(n̂,N) can take several forms. Results in this work were

obtained by using the penalization term S(n̂,N)= 2n̂ logN
N , so Equation (3.14) is reformulated as

(3.15) JIV (n̂,N)=VIV (n̂,N)+2n̂
logN
N

.

Since we have a fixed amount of data and N is a constant, the value for this model order that

the procedure is looking for can be described by

(3.16) n̂=min
n̂

JIV (n̂).

A typical curve of the criterion JIV (n̂,N) evolution as a function of n̂ is shown in Figure 3.2.

FIGURE 3.2. Evaluation of the penalized instrumental variable criterion for order
estimation.

Once an estimated order n̂ is selected, one can apply a similar procedure to individually

estimate n̂A, n̂− d̂, n̂B+ d̂, from which n̂A, n̂B, n̂C and d̂ are obtained.

From Equation (3.1) we recall that a known part of the model is given by the second order

polynomial Gdd(q−1), hence the final value for the order of polynomial B(q−1) will be expressed as

n̂B′ +2. Examples of the results obtained for the real estimation of the example taken can be seen

in Figure 3.3, where Figure 3.3(a) shows the results for n̂, Figure 3.3(b) for n̂B′ + d̂, Figure 3.3(c)

for n̂A, and Figure 3.3(d) for n̂− d̂. The order for polynomial C(q−1) is taken as n̂C = n̂A.
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As seen for the example in Figure 3.3(a), the minimum for criterion is very flat, which is

understandable since we are trying to approximate an infinite-dimensional system. It is therefore

necessary to explore the model’s properties for n̂ between 32 and beyond, in order to decide what

order to take. Two additional criteria will be used to decide upon the best order estimation: I)

comparison between the Power Spectral Densities (PSD) of the identified model’s output and the

output’s real data, in order to see if the identified model captures all the vibration modes in the

frequency range of operation, and II) comparison of the validation tests for the various models.

This will be further explained in 3.5.
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FIGURE 3.3. Order estimation using an Instrumental Variable and complexity penalty,
with estimation for (a) n̂, (b) n̂B′ + d̂, (c) n̂A, and (d) n̂− d̂.

The table 3.1 summarizes the estimated orders used for the secondary path model, along with

the orders for all remaining system’s paths models.

Path n nA nB d
Primary 38 34 27 9
Secondary 40 38 32 8
Reverse 35 33 30 7
Image 34 34 34 0

TABLE 3.1. First test bench configuration estimated orders used for the different system
models.

A remark that can be done at this point is the fact that for the specific case of an ANC system,
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the delays d can be sometimes calculated previously to the order estimation, since the sound

speed and the relative distances between the signal source (a loudspeaker in this test bench),

and the point of signal measurement, located at the microphone, can be determined.

3.4 Parameters Estimation

The algorithms used for parameter estimation will depend on the assumptions made on the

measurements noise η(t) characteristics, which have to be confirmed by the model validation (3.5).

It is important to emphasize that no single plant + noise structure exists that can describe all the

situations encountered in practice. Furthermore, there is no parameter estimation algorithms

that may be used with all possible plant + noise structures such that the estimated parameters

are always unbiased. It is the validation stage which will allow to decide what method, and

implicitly what noise model, has to be used.

3.4.1 Identification Method: OEEPM

Among various models, it was found that ARMAX model gives the best representation in this

case, and between the available methods for that model, Output Error with Extended Prediction

method (OEEPM), called XOLOE in some literature [Landau et al., 2016], brought the best

results in terms of validation for a given order model. It has been developed initially with the aim

to remove the strictly positive real condition required by the output error algorithm. It turns out

that the OEEPM can be interpreted as a variant of the Extended Least Squares (RELS) [Landau

et al., 2016].

From Equation (3.3), we have:

(3.17) A(q−1)y(t)= q−dB(q−1)u(t)+C(q−1)δ(t).

The idea is to simultaneously identify the plant model G(q−1) and the noise model O(q−1),
in order to obtain a prediction adaptation error which is asymptotically white. Expressing the

polynomials as B(q−1)= q−1B∗(q−1), the model generating data can be expressed as:

y(t+1)=−A∗(q−1)y(t)+B∗(q−1)u(t−d)+C∗(q−1)δ(t)+δ(t+1)

=θTϕ0(t)+δ(t+1)
(3.18)

with

θT =[a1,a2, . . . ,anA ,b1,b2, . . . ,bnB , c1, c2, . . . , cnC ],(3.19)

ϕT
0 (t)=[−y(t), . . . ,−y(t−nA +1),u(t−d), . . . ,u(t−d−nB+1),δ(t), . . . ,δ(t−nC +1)].(3.20)

Assume that the parameters are known and construct a predictor that will give a white

prediction error:
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(3.21) ŷ(t+1)=−A∗(q−1)y(t)+B∗(q−1)u(t−d)+C∗(q−1)δ(t).

Furthermore as shown in [Landau and Zito, 2006], this predictor will minimize E
{
[y(t+1)− ŷ(t+1)]2

}
.

The prediction error, in the case of known parameters, is given by:

(3.22) ε(t+1)= y(t+1)− ŷ(t+1)= δ(t+1),

hence Equation (3.21) can be written as

(3.23) ŷ(t+1)=−A∗(q−1)y(t)+B∗(q−1)u(t−d)+C∗(q−1)ε(t),

and modifying Equation (3.18) with this new definition we get

(3.24) ε(t+1)=−C∗(q−1)[ε(t)−δ(t)]+δ(t+1),

thus C∗(q−1)[ε(t)−δ(t)]= 0, and since C(q−1) is an asymptotically stable polynomial, it results

that ε(t+1) will become white asymptotically.

In the adaptive version of this algorithm, the a priori adjustable predictor will take the form:

ŷ◦(t+1)=− Â∗(q−1, t)y(t)+ B̂∗(q−1, t)u(t−d)+ Ĉ∗(q−1, t)δ(t)

=− Â∗(q−1, t) ŷ(t)+ B̂∗(q−1, t)u(t−d)+{
Ĉ∗(q−1, t)δ(t)− Â∗(q−1, t)[y(t)− ŷ(t)]

}
,

(3.25)

that can be rewritten as

ŷ◦(t+1)=− Â∗(q−1, t) ŷ(t)+ B̂∗(q−1, t)u(t−d)+ Ĥ∗(q−1, t)ε(t)

=θ̂T (t)ϕ(t),
(3.26)

with Ĥ∗(q−1, t) = Ĉ∗(q−1, t)− Â∗(q−1, t) = ĥ1(t)+ q−1ĥ2(t)+ . . . , with ĥi(t) = ĉ i(t)− âi(t) for

i = 1,2, . . . ,nH , where nH =max(nA,nC); and also getting

θ̂T (t)=[â1, â2, . . . , ânA , b̂1, b̂2, . . . , b̂nB , ĥ1, ĥ2, . . . , ĥnH ],(3.27)

ϕT (t)=[− ŷ(t), . . . ,− ŷ(t−nA +1),u(t−d), . . . ,u(t−d−nB+1),ε(t), . . . ,ε(t−nH +1)].(3.28)

Equation (3.26) corresponds to the adjustable predictor for the Output Error with Extended

Prediction model (OEEPM). From here, the recursive parameter estimation (or adaptation)

algorithm (PAA) used is described in [Landau et al., 2016], such that:
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θ̂(t+1)=θ̂(t)+F(t)ϕ(t)ε(t+1),(3.29)

F(t+1)−1 =λ1(t)F(t)−1+λ2(t)ϕ(t)ϕT (t),(3.30)

ε(t+1)= ε◦(t+1)
1+ϕT (t)F(t)ϕ(t)

,(3.31)

with 0<λ1(t)≤ 1, 0≤λ2(t)≤ 2, F(0)> 0, F−1(t)>αF−1(0) for α> 0.

3.5 Model Validation

The considered identification protocol OEEPM belongs to the class of methods based on the

residual error’s whitening, meaning that the identified ARMAX predictor is optimal if the

residual error ε(t) is a white noise. If the residual prediction error ε(t) is a white noise sequence,

in addition to obtaining unbiased parameter estimates, this also means that the identified model

gives the best prediction for the plant output in the sense that it minimizes the variance of ε(t).

On the other hand, since the residual error is a white noise, it is not correlated with any other

variable, then all correlations between the input and output of the plant are represented by the

identified model and what remains unmodeled does not depend on the input u(t).

Before implementing the validation method it is assumed that I) the plant + noise structure

chosen is correct and representative of the reality, II) an appropriate parameter estimation

method for the structure chosen has been used, and III) the polynomials orders nA,nB,nC and

delay d have been correctly chosen. Then the prediction error ε(t) asymptotically tends toward a

white noise, which implies:

lim
t→∞E {ε(t)−ε(t− i)}= 0; i = 1,2, . . .

3.5.1 Whitening Test

Let ε(t) be the centered sequence of the residual prediction errors, so we have:

R(i)= 1
N

N∑
t=1

ε(t)ε(t− i),(3.32)

RN (i)=R(i)
R(0)

, i = 0,1,2, . . . ,nA, . . .(3.33)

with imax ≥ nA, N number of samples and R(i), RN (i) the autocorrelation and normalized

autocorrelation estimations. In the theoretical situation where the residual prediction error ε(t)

sequence is perfectly white and the number of samples N is large (N →∞), then RN (i)= 0 for

all i. However, in real situations this is never the case and RN (i) 	= 0 for i ≥ 1, since ε(t) contains
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residual structural errors from wrong polynomial orders, nonlinear effects, non-Gaussian noises,

or the value for N is too small.

A practical validation extensively tested on applications criterion is defined by:

(3.34) |RN (i)| ≤ 2.17

N

, i ≥ 1.

This test has been defined taking into account the fact that for a white noise sequence

RN (i) 	= 0 has an asymptotically Gaussian (normal) distribution with zero mean and standard

deviation σ 1

N
. Equation (3.34) considers a confidence interval of 97% in the hypothesis test for

Gaussian distribution (with a z-score= 2.17 we get 2.17σ= 97%).

If RN (i) obeys one-sided Gaussian distribution, there is only a probability of 1.5% that

|RN (i)| > 2.17

N
. Therefore, if a computed value RN (i) falls outside the confidence interval range,

the hypothesis stating that ε(t) and ε(t− i) are independent is not satisfied, and model should be

rejected, since ε(t) would not be a white noise sequence.

If several identified models have the same complexity, the model given by the methods that

lead to the smallest |RN (i)| should be preferred. Also a "too good" validation criterion indicates

that model simplifications may be possible.

Since for our example we estimate nA = nC = 38 from Table 3.1, we get that imax = 38. Results

of the Whitening Test for the identified model example of the secondary path can be seen in

Figure 3.4.
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FIGURE 3.4. Whiteness test for identified secondary path.

It can be noticed that not all autocorrelations satisfy the criterion limit of |RN (i)| ≤ 2.17

N
,

nevertheless among the several tests and approached realized for the models identifications, it

was found that being close enough to this limit in the first autocorrelations, corresponding to the

low frequencies in the identified model, gave good results.
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3.6 Identified Models

Models identified from experiments done in the different configurations of the test bench by

applying the model identification methodology are presented in this section. The primary and

image paths are used only for simulations; they are presented only for the first test bench

configuration.

3.6.1 First Configuration Models
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FIGURE 3.5. Identified primary path for first test bench configuration.

From Figure 3.5 we can see that the identified primary path of the first configuration has

very low gain at frequencies over 500Hz, meaning than disturbances above this frequency

will be attenuated by the system itself and there is no use in apply a controller over those

frequencies. Same phenomenon happens with frequencies under 50Hz, where the effects of the

double differentiator present on the model are evident.

In Figure 3.6 the most important point to highlight is the presence of a low damped zero

around 315Hz. This zero generates a region of low gain where the controller won’t have attenua-

tion capabilities and thus compensation at those given frequencies must be avoided.
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FIGURE 3.6. Identified secondary path for first test bench configuration.
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FIGURE 3.7. Identified reverse path for first test bench configuration.
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FIGURE 3.8. Identified image path for first test bench configuration.

Once the problem of this zero was pointed out, a solution was proposed and Figure 3.9 displays

the secondary path of the second test bench configuration without low damped zeros in it, allowing

us to have a larger attenuation region.

At last Figure 3.11 the third test bench configuration’s secondary path, where the low damped

zero is present again, but the gain at frequencies near 70Hz is higher in comparison with those

models of both previous configurations.
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3.6.2 Second Configuration Models
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FIGURE 3.9. Identified secondary path for second test bench configuration.
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FIGURE 3.10. Identified reverse path for second test bench configuration.
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3.6.3 Third Configuration Models
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FIGURE 3.11. Identified secondary path for third test bench configuration.
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FIGURE 3.12. Identified reverse path for third test bench configuration.
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3.7 Concluding Remarks

The basic elements for the identification of discrete-time models for dynamical systems have been

laid down in this chapter. The following facts have to be emphasized:

1. System identification includes four basic steps:

• input/output data acquisition under an experimental protocol,

• estimation or selection of the model complexity,

• estimation of the model parameters,

• validation of the identified model (structure of the model and values of parameters);

having in mind that this procedure has to be repeated (with appropriate changes at each

step) if the model validation fails.

2. Recursive or off-line parameter estimation algorithms can be used for the identification of

the plant model parameters.

3. The stochastic noises, which contaminate the measured output, may cause errors in the

parameter estimates (bias). For a specific type of noise, appropriate recursive identification

algorithms providing asymptotically unbiased estimates are available.

4. A unique plant + noise model structure that describes all the situations encountered in

practice neither exists, nor is there a unique identification method providing satisfactory

parameter estimates (unbiased estimations) in all situations.

5. Different test bench configurations have significant differences in terms of the models

identified, more important in the secondary path, defining the controller capabilities.

48



Part II

Adaptive Feedback Disturbance
Compensation

49





C
H

A
P

T
E

R

4
FEEDBACK CONFIGURATION

Development of an adaptive feedback controller for narrow band disturbances is explained

step by step in this chapter. Starting with a simple fixed controller for tonal disturbances,

passing through a more robust fixed controller with respect to the disturbance’s charac-

teristics, and then finally get to the self tuning adaptive feedback controller in a Youla-Kučera

parametrization.

First of all, the basic specifications are that the attenuation of two tonal disturbances located

at 170Hz and 285Hz must be at least −40dB, and the maximum amplification at any other

frequencies be less than 7dB. This choice is due to the fact that, as can be seen in Figure 3.5,

the disturbance’s frequency gains expected in the primary path have high gain at 170Hz and

285Hz. Nevertheless, as Figure 3.6 shows, the control signal’s gains have a strong lost at 315Hz

that renders the zone as non controllable. Furthermore, in order to improve robustness, the input

sensitivity function should be below −20dB at frequencies over 600Hz since they are beyond the

system’s band-pass.

4.1 Feedback Theory

For ease of notation, since in this chapter we make use exclusively of the secondary path models,

in the this feedback context we will redefine A(q−1)= AG(q−1), B(q−1)=BG(q−1) and d = dG . As

stated in the previous Chapter 2 and Chapter 3, the linear time invariant (LTI) discrete-time

model of the secondary path, or plant, used for controller design will be described as:

(4.1) G(q−1)= q−dB(q−1)
A(q−1)

,

where the polynomials A(q−1) and B(q−1) are defined as:
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A(q−1)= 1+a1q−1+·· ·+anA q
−nA ,(4.2)

B(q−1)= b1q−1+·· ·+bnB q
−nB ,(4.3)

with d as the plant pure time delay in number of sampling periods.

Also we defined the feedback controller K(q−1) as K(q−1) = RK (q−1)
SK (q−1) . Once again, since in

this chapter we are working exclusively within the feedback context, we redefine our controller

R(q−1)=RK (q−1) and S(q−1)= SK (q−1), such that

(4.4) K(q−1)= R
S

= r1q−1+·· ·+ rnR q
−nR

1+ s1q−1+·· ·+ snS q−nS
.

FIGURE 4.1. Feedback regulation scheme.

Figure 4.1 shows the closed loop feedback regulation scheme described by these equations,

thus the plant’s output y(t) and the input u(t) are described by y(t) = G(q−1)u(t)+ p(t) and

u(t)=−K(q−1)y(t), than may be written as:

y(t)= q−dB(q−1)
A(q−1)

u(t)+ p(t),(4.5)

u(t)=−R(q−1)
S(q−1)

y(t),(4.6)

where p(t) represents the disturbances’ effect on the measured output (Section 2.2). Developing

these equations we obtain:

y(t)= AS
AS+ q−dBR

p(t)= AS
P

p(t).(4.7)

with P(q−1) as the system’s characteristic polynomial, which specifies the desired closed loop

poles of the system.
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4.2 Linear Controller Design

As stated before, the performance specifications required for the controller are that the attenua-

tion of two tonal disturbances located at 170Hz and 285Hz must be at least −40dB, meanwhile

the maximum amplification at any other frequencies must be less than 7dB. Furthermore, in

order to improve robustness, the input sensitivity function should be below −20dB at frequencies

over 600Hz. Moreover in a number of applications, the measured signal may contain specific

frequencies which should not be attenuated by the regulator. In such cases the system should be

in open-loop at these frequencies. Theory about feedback linear controller design was the main

topic in the conference paper at Appendix E [Meléndez et al., 2017].

4.2.1 Sensitivity Function Shaping

In order to impose some specific constrains to the controller, we redefine K(q−1) polynomials R

and S as:

R =HR ·R′ =HR · (r′1q−1+ . . .+ r′nR′ q
−nR′ ),(4.8)

S =HS ·S′ =HS · (1+ s′1q
−1+ . . .+ s′nS′ q

−nS′ ),(4.9)

where HS(q−1) and HR(q−1) represent prespecified fixed parts of the controller, used for example

to incorporate the internal model of a disturbance, or to open the loop at some frequencies. Then

S′(q−1) and R′(q−1) are solutions of the Bezout equation defined in Equation (4.7) as:

(4.10) P = PD ·Paux = (A ·HS) ·S′ +
(
q−dB ·HR

)
·R′,

where PD represents the stable or dominant poles of the plant and Paux are auxiliary poles. The

dominant closed loop poles PD have been chosen equal to those of the secondary path, thus P,

PD , Paux, B, A, d, HS, and HR are given.

Equation (4.10) has unique solution for S′ and R′ of minimal degree for

nP = deg
{
P(q−1)

}≤ nA +nHS +nB+nHR +d−1,(4.11)

nS′ = deg
{
S′(q−1)

}= nB+nHR +d−1,(4.12)

nR′ = deg
{
R′(q−1)

}= nA +nHS −1.(4.13)

This means that, if not specified otherwise, the order nP of polynomial P(q−1) can be smaller

in degree that the right side of the equation, and zeros will be added to pad P(q−1) and match

the right side. This zeros will be located at 0Hz and might cause undesirable conditions in the

controller performance as it can be seen in Figure 4.3. Therefore, to overcome this problematic

auxiliary real poles can be added, determined by the design requirements, without augmenting
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the controller’s order. These auxiliary poles are generally chosen as high-frequency real poles in

the form:

(4.14) Paux(q−1)= (1− piq−1)nPaux ,

with 0.05≤ pi ≤ 0.50, and nPaux ≤ nP− n̂P , for nP =max[deg
{
P(q−1)

}
] and nPaux calculated degree

of P(q−1). The introduction of auxiliary asymptotically stable real poles Paux(q−1) will cause in

general a decrease of the modulus of the sensitivity function.

From Figure 4.1, the closed-loop transfer function between the disturbance p(t) and the

system’s output y(t), is denominated as output sensitivity function (Syp) and is given by

(4.15) Syp = y(t)
p(t)

= A(q−1)S(q−1)
P(q−1)

.

In the same way, the transfer function between the disturbance p(t) and the plant’s input u(t)

is named input sensitivity function (Sup) and is given by

(4.16) Sup = u(t)
p(t)

=−A(q−1)R(q−1)
P(q−1)

.

As previously stated, in a number of applications, the measured signal may contain specific

frequencies which should not be attenuated by the regulator. In such cases the system should be

in open-loop at these frequencies. Equation (4.16) can be further developed such that

(4.17) Sup =−A(q−1)HR(q−1)R′(q−1)
P(q−1)

,

and therefore in order to make the input sensitivity function zero at a given frequency f , one

should introduce a pair of undamped zeros in HR(q−1), i.e.

(4.18) HR(q−1)= 1+βq−1+ q−2,

with

(4.19) β=−2cos
(
2π

f
fs

)
.

In many cases it is desired that the controller does not react to signals of frequencies close to

0.5 fs, corresponding to the Nyquist frequency, where the system’s gain is in general very low. In

such cases, we have HR(q−1)= (1+βq−1)2.
In active noise control systems, the secondary path gain at 0Hz is zero due to the double

differentiator behaviour. It is therefore not reasonable to send a control signal at very low

frequencies and the system should operate in open-loop at this frequency too. To achieve this, we

get HR(q−1)= (1−βq−1)2.
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4.2.2 Internal Model Principle

In order to strongly attenuate the two tonal disturbances the Internal Model Principle (IMP)

has been used [Landau et al., 2016, Francis and Wonham, 1976]. In short, the IMP states that

in order to completely reject a disturbance asymptotically (i.e., in steady state), the controller

should include the disturbance model, so the designed of our RS controller requires a fixed part

HS to incorporate this disturbance’s model. As described in Section 3.3.1, we suppose that p(t) is

a deterministic disturbance, so it can be modeled as a signal passing through a discrete filter and

they can be modeled by:

(4.20) p(t)= Cp(q−1)
Ap(q−1)

δ(t),

with δ(t) as a Dirac impulse, and Ap,Cp co-prime polynomials. While in the case of stationary

disturbances Ap has roots on the unit circle, in practice the contribution of Cp is weak asymptoti-

cally and negligible for steady state analysis in comparison with Ap. Hence, the disturbance’s

energy is essentially represented by Ap.

As such, from Equations (4.9) and (4.15) we have:

(4.21) y(t)= A(q−1)
[
S′(q−1)HS(q−1)

]
P(q−1)

· Cp(q−1)
Ap(q−1)

δ(t),

where P(q−1) is an asymptotically stable polynomial that describes the system’s closed loop poles,

and where y(t) will converge towards zero asymptotically if and only if the polynomial S′(q−1) in
the RS controller includes the disturbance’s model as in S′(q−1)= Ap(q−1).

For the case of tonal disturbances, as stated in Equation 4.18, to make a sensitivity function

zero qt q given frequency f it is needed to introduce a pair uf undamped zeros, for this case in

HS, as in

(4.22) HS(q−1)= 1+αq−1+ q−2,

again with

(4.23) α=−2cos
(
2π

f
fs

)
.

Accordingly with the previously stipulated required specifications and constrains for the

linear controller design at the beginning of this section, a fixed tonal disturbance compensator

was designed using the tools hitherto described. By using the proper values in HR , we can see

in Figure 4.2 the effects of this fixed parts of the controller in its input sensitivity function Sup,

where at 0Hz and 1250Hz we have no gain, and less that 20 dB are achieved after 600Hz.
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FIGURE 4.2. Input sensitivity function Sup of a fixed linear controller.

To display the effects and importance of each fixed component in the controller, Figure 4.3

shows the output sensitivity function Syp evolution, when using just the IMP for defining filters

HS, then adding the corresponding values in HR to modify Sup, and finally adding some auxiliary

poles in Paux(q−1) to fulfill the controller requirements.
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FIGURE 4.3. Evolution of the Output sensitivity function Syp of a fixed linear controller.
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4.3 Robust Controller Design

Since the tonal disturbances frequency may vary or is not perfectly known in an ANC system,

a robust controller has to be designed to take into account the possible characteristics of the

disturbance. Compensator is then designed to attenuate frequencies around 170Hz and 285Hz,

with a ±5Hz tolerance. Attenuation must be at least of −18dB in these regions and any undesired

amplification should be less than 6dB. Also since the model’s gain is low over 600Hz, and very low

damped complex zeros are present in high frequencies, the input sensitivity function’s magnitude

should be below −20dB at frequencies over 600Hz, in order to improve robustness with respect

to additive uncertainties and to avoid unnecessary control effort. Theory about feedback robust

controller design was one of the main topics in the journal paper at Appendix A [Landau et al.,

2019b].

4.3.1 Band Stop Filtering

Band Stop Filter (BSF) are used for shaping the output sensitivity function and the input

sensitivity function in order to meet the design specifications. Without loss of generality for this

explanation we make use of HSi but same would apply for HRi . We suppose now a simultaneous

introduction of a fixed part HSi , and a pair of auxiliary poles Pauxi in the form

(4.24)
HSi

Pauxi

= 1+α1q−1+α2q−2

1+ρ1q−1+ρ2q−2
,

as result from the discretization of a continuous-time Band Stop Filter (BSF)

(4.25) FBSF(s)=
s2+2ζnumω0s+ω2

0

s2+2ζdenω0s+ω2
0
,

using the bilinear transformation

(4.26) s= 2 fs
1− z−1

1+ z−1
,

with the complex variable z−1 used to characterize the system’s behavior in the frequency

domain. This bilinear transformation assures a better approximation of a continuous-time model

by a discrete-time model in the frequency domain than the replacement of differentiation by a

simple difference, as in s= (1− z−1)/ fs.
These filters introduce a strong attenuation, or hole, at the normalized discretized frequency

(4.27) ωBSF = 2arctan
(
ω0

2 fs

)
,
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as a function of the ratio between ζnum/ζden. The attenuation magnitude is described by

(4.28) MBSF = 20log
(
ζnum

ζden

)
,

with ζnum < ζden. In practice, the values used to define a BSF are the central normalized frequency

fBSF[Hz], the desired attenuation MBSF[dB] at the given frequency, and the damping ζden, such

that:

ω0 =2 fs tan(π fBSF) ,

ζnum =10
MBSF
20 ζden.

The total set of BSF used with HS for shaping of the output sensitivity functions can be

obtained by the sum of 2nd order band-stop filters taking the form:

(4.29) BSFHS =
HS (z−1)
Paux(z−1)

∣∣∣∣∣
BSF

=
n∏

i=1

HSi (z
−1)

Pauxi (z−1)
.

Same characteristics are applied using HR for shaping of the input sensitivity function in a

similar way.

An example of the use if these filters can be seen at Figure 4.4(a), where the different usage

of filters is displayed. If used alone, BSF create gains above the desired threshold, so auxiliary

poles and fixed parts in HR are added to correct and improve its performance. In Figure 4.4(b) we

can clearly see the attenuation achieved at 170Hz and 285Hz, with similar control capabilities

around those main frequencies, given them the desired ±5Hz tolerance or robustness.

4.4 Adaptive FIR controller

The adaptive approach uses the Youla-Kučera parametrization of the controller combined with

the Internal Model Principle. The basic reference for this approach used in active vibration

control is [Landau et al., 2016]. A key aspect of this methodology is the use of aforementioned

internal model principle (IMP), defined in Section 4.2.2. Feedback adaptive FIR controller theory

was the main topics in the journal paper at Appendix A [Landau et al., 2019b].

4.4.1 Youla-Kučera Parametrization

To build a direct adaptive filter, the Youla-Kučera (YK) parametrization of the controller is used.

In this context, one considers a finite impulse response (FIR) filter of the form:

(4.30) Q(z−1)= q0+ q1z−1+·· ·+ qnQ z
−nQ ,
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FIGURE 4.4. Output sensitivity function Syp: a) Evolution of the fixed robust controller,
and b) final controller zoomed region of interest.

to which is associated the parameters vector:

(4.31) θ = [q0 q1 . . .qnQ ]
T .

Under Youla-Kučera parametrization or Q-parametrization, the equivalent polynomials

R(z−1) and S(z−1) of the controller K(q−1) take the form:
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R(q−1)=R0+AQHS0HR0(4.32)

S(q−1)= S0− q−dBQHS0HR0 ,(4.33)

with

R0(z−1)= r00+ r01z
−1+ . . .+ r0nR

z−nR0 =R′
0HR0(4.34)

S0(z−1)= 1+ s01z
−1+ . . .+ s0nS

z−nS0 = S′
0HS0 ,(4.35)

where A, B and d correspond to the identified model of the secondary path, R0(z−1), S0(z−1) are
the central controller’s polynomials, and HS0 , HR0 are the controller’s fixed parts. It is remarkable

to stand that under the YK parametrization using a FIR structure for the Q(z−1) filter, the closed

loop poles defined by the central controller remain unchanged, such that:

P(q−1)=AS+ q−dBR,

=A[S0− q−dBQHS0HR0 ]+ q−dB[R0+AQHS0HR0 ],

=AS0+ q−dBR0.

(4.36)

Using the output sensitivity function Syp, the expression of system residual noise, or output

can be written as:

y(t)=S0− q−dBHS0HR0Q
P

w(t)

S0

P
w(t)−Q

q−dBHS0HR0

P
w(t),

(4.37)

with the disturbance’s observer w(t) defined by

(4.38) w(t)= A(q−1)y(t)− q−dB(q−1)u(t)= A(q−1)p(t).

Hence, the objective is to estimate a value for Q such that y(t) is driven to zero. Making the

filter Q suitable of an adaptation will have as result the block diagram in Figure 4.5, with the

Parameters Adaptation Algorithm PAA.

The polynomial Q estimation at time t is denoted:

(4.39) Q̂(t,q−1)= q̂0(t)+ q̂1(t)q−1+·· ·+ q̂nQ (t)q
−nQ ,

and is characterized by the parameter vector

(4.40) θ̂T (t)= [q̂0(t) q̂1(t) . . . q̂nQ (t)],
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FIGURE 4.5. Adaptive Youla-Kučera parametrization scheme.

where the order nQ of the polynomial Q̂ is related to the disturbance’s model denominator order

nAp . As explained in Section 4.2.2 we suppose that p(t) is a deterministic disturbance, like in

Equation (4.20). As such we have nQ = nAp −1.

Since this is a regulation problem, y(t) is expected to go towards zero and as such, it becomes

an a priori adaptation error denoted ε0(t+1) for a given estimated polynomial Q̂(t,q−1), such
that:

(4.41) ε0(t+1)= S0

P
w(t+1)− Q̂(t)

q−dB∗HS0HR0

P
w(t),

with B(q−1)= q−1B∗(q−1). In a similar way, one can define an a posteriori error as:

(4.42) ε(t+1)= S0

P
w(t+1)− Q̂(t+1)

q−dB∗HS0HR0

P
w(t),

which can be further expressed as

(4.43) ε(t+1)= [Q− Q̂(t+1)]
q−dB∗HS0HR0

P
w(t)+η(t+1)

where Q is the unknown optimal filter, and η(t) tends asymptotically towards zero [Landau et al.,

2011c].

Now, denoting filtered versions of the observer output w(t) as:
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w1(t)=S0(q−1)
P(q−1)

w(t),(4.44)

w2(t)=
q−dB∗HR0HS0

P
w(t),(4.45)

and

(4.46) ϕT (t)= [w2(t) w2(t−1). . .w2(t−nQ)],

Equation (4.43) can be rewritten as:

(4.47) ε(t+1)= [θT − θ̂T (t+1)]ϕ(t)+η(t+1),

where η goes to zero. From here we can get:

ε(t+1)=w1(t+1)− θ̂T (t+1)ϕ(t),(4.48)

ε0(t+1)=w1(t+1)− θ̂T (t)ϕ(t).(4.49)

This type of equation allows immediately to develop an adaptation algorithm, so the Parame-

ters Adaptation Algorithm PAA is then defined by:

(4.50) θ̂(t+1)= θ̂(t)+F(t)ϕ(t)ε(t+1)

with

ε(t+1)= ε0(t+1)
1+ϕT (t)F(t)ϕ(t)

,(4.51)

ε0(t+1)=w1(t+1)− θ̂T (t)ϕ(t),(4.52)

and the Adaption Gain matrix defined as:

(4.53) F(t+1)= 1
λ1(t)

⎡
⎢⎢⎣F(t)− F(t)ϕ(t)ϕT (t)F(t)

λ1(t)
λ2(t)

+ϕT (t)F(t)ϕ(t)

⎤
⎥⎥⎦

with 0<λ1(t)≤ 1, 0≤λ2(t)< 2, F(0)> 0; where λ1 and λ2 allow to obtain different profiles for the

adaptation gain F(t) evolution. Finally the control to be applied is given by:

(4.54) S0u(t+1)=−R0y(t+1)−HR0HS0Q̂(t+1)w(t+1).

In adaptive regulation applications, one uses in general the constant trace profile, where λ1(t)

and λ2(t) are automatically chosen at each step in order to ensure a constant trace value of the

gain matrix F(t), such that:
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(4.55) tr {F(t+1)}= tr {F(t)}= tr {F(0)}= nG0

in which n is the number of parameters and G0 is the initial adaptation gain. Hence, the diagonal

matrix F(0) has the form:

(4.56) F(0)=

⎡
⎢⎢⎢⎢⎢⎢⎣

G0 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 G0

⎤
⎥⎥⎥⎥⎥⎥⎦

The values of λ1(t) and λ2(t) at each sampling instant are determined from the equation:

(4.57) trF(t+1)= 1
λ1(t)

tr
[
F(t)− F(t)ϕ(t)ϕT (t)F(t)

α(t)+ϕT (t)F(t)ϕ(t)

]

fixing the ratio α(t)=λ1(t)/λ2(t). This algorithm can be combined with the decreasing adaptation

gain or with the variable forgetting factor profiles for initialization [Landau et al., 2016]. One

switches to the constant trace algorithm when the adaptation gain’s trace becomes equal or

smaller than the assigned constant trace. Algorithms with constant scalar gain can be also

implemented with F(t)= F(0), but the results will be less good.

This scheme is implemented on top of the central controller R0, S0, which corresponds to the

robust controller designed in Section 4.3 from which the BSF filters on Syp have been removed,

preserving however the characteristics of Sup in high frequencies over 600 Hz for robustness

reasons.

4.4.2 U-D Parametrization

The calculation of parameters at each given sample can be highly demanding in terms of the task

execution time (TET) of the operation. Additionally, the adaptation gain equation is sensitive to

round-off errors. This problem is comprehensively discussed in [Landau et al., 2016, Bierman,

1977], where a U-D factorization has been developed to ensure the numerical robustness of the

PAA. To this end, the adaptation gain matrix is rewritten as:

(4.58) F(t)=U(t)Δ(t)UT (t),

where U(t) is an upper triangular matrix with all diagonal elements equal to 1, and Δ(t) is a

diagonal matrix. By reformulating F(t) using this configuration allows the adaptation gain matrix

to remain positive definite so that the rounding errors do not affect the solution significantly.

For a detailed explanation of its use, let
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G(t)=Δ(t)V (t),(4.59)

V (t)=U(t)Tϕ f (t),(4.60)

β(t)=1+VT (t)G(t),(4.61)

so we are able to define:

(4.62) Γ(t)= U(t)G(t)
β(t)

= F(t)ϕ f (t)

1+ϕT
f (t)F(t)ϕ f (t)

.

4.5 Comparative Results

Using the test bench described in Chapter 2 to apply the controllers designed in Sections 4.3 and

4.4 based on the model identified in Chapter 3, some real-time experiments were carried out in

order to compare the different controllers performances.

To do so, we carried out a set of different tests allowing us explode the adaptive capabilities of

the YK parametrization, but remaining in a fair ground for the fixed robust controller to enact.

4.5.1 Interference test

By interference, one refers to the physical effect occurring when two distinct waves with very

close frequencies act together, creating periodic outbursts in the resulting wave magnitude. The

interference test protocol is as follows:

• For 1s, the system operates in open loop and without any disturbance in order to get a

reference of the existing surrounding ambient noise.

• From 1s to 10s, the test bench works in open loop, in the presence of two pairs of sinusoidal

noise disturbances located at 170Hz and 170.5Hz, and 285Hz and 285.5Hz respectively.

• At 10s, the loop is closed and the controller begins to counteract the disturbance effect.

• The frequencies of the four signals are then increased at 21s by 10Hz. The corresponding

new values are 180Hz and 180.5Hz for the first pair and 295Hz and 295.5Hz for the second

pair, getting out of the attenuation regions of the robust controller.

Figure 4.6 shows the robust controller’s performance for the interference experiment in a time

domain, with delimited region for each of the four steps in the protocol. As long as the disturbance

frequencies are in the region of designed operation, a residual noise’s global attenuation of

39.86dB is obtained (between 10s and 21s). After 21s, since the disturbance’s frequencies are
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FIGURE 4.6. Acoustic interference attenuation using a robust controller.

outside the region of designed operation, the performance is unsatisfactory achieving a global

attenuation of only 7.94dB.

Figure 4.7 presents the results for a similar test using an adaptive controller. The number of

adjustable parameters in theQ-filter is 4 (nQ = 3) and an adaptation algorithm with constant trace

adaptation gain is used, where the value for adaptation gain trace used was: trF = 0.03 · (nQ +1).

It can be seen that after a negligible transient, a much better attenuation is obtained with

respect to the robust controller between 10s and 21s. The global attenuation obtained is 70.56dB.

Excellent levels of attenuation are also obtained once the disturbances frequencies move away

by 10Hz, achieving a global attenuation of 67.65dB, with a negligible adaptation transient. It is

remarkable to state that the filter Q order is not directly related to the controller performance,

and tests using nQ = 7, or 8 adjustable parameter, did not improve the performance.

Figure 4.8 displays the evolution of each Q-parameter with respect to time. From 0s to 10s,

all the parameters have values equal to zero since the controller is not working yet. Once the

loop is closed, the Q-parameters take almost instantly stable mean values. At 21s, the change in

frequencies leads to a quick adaptation towards the new values.

4.5.2 Step changes test

In this experiment, step changes in the frequencies of a pair of tonal noise disturbances are

considered, starting from their nominal values of 170Hz and 285Hz, with steps in the frequencies

of ±10Hz. The system is operated in open loop from 0s to 1s as reference for surrounding external

noises. here, two simultaneous signals of constant frequency act as perturbations. After a given

amount of time both frequencies are decreased or increased a determined value and remain
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FIGURE 4.7. Acoustic interference attenuation using an adaptive controller with YK
parametrization.
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FIGURE 4.8. Parameters evolution for acoustic interference test using an adaptive
controller with YK parametrization.

at those new constant frequencies for a period of time. At 1 s the system begin with both the

controller and disturbances signals in closed loop with perturbations of 170Hz and 285Hz as

nominal frequencies. After the next step, both signals are decreased −10Hz. In the next span

both perturbations go back to their nominal frequencies. At next step the signals have an increase

of 10Hz. Finally for the final period, disturbance’s frequencies have once again the nominal
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values. In order, the protocol for this test and corresponding step frequencies are:

• Reference for ambient noise, no disturbances nor control

• Nominal disturbances, 170Hz+285Hz

• −10Hz disturbances, 160Hz+275Hz

• Nominal disturbances, 170Hz+285Hz

• +10Hz disturbances, 180Hz+295Hz

• Nominal disturbances, 170Hz+285Hz

Figure 4.9 displays the robust controller performance. When the disturbances frequencies

are inside the designed region of the controller, attenuation levels are satisfactory. However for

−10Hz and +10Hz steps, since one operates outside the designed regions of attenuation, the

performance is unsatisfactory.
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FIGURE 4.9. Step changes in frequencies using the robust controller. Residual noise:
open loop vs closed loop.

The performance of the adaptive controller is illustrated in Fig. 4.10. The performance is

almost the same for all frequencies values and the residual noise is close to the ambient noise.

Adaptation transients are visible but very short. The same number of adjustable parameters

and same adaptation gain as in the previous experiments have been used. Evolution of the

Q-parameters is shown in Fig. 4.11.

Sinusoidal disturbances with continuously time- varying frequency
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FIGURE 4.10. Step changes in frequencies using the adaptive controller with YK
parametrization.
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FIGURE 4.11. Parameters evolution for step changes in frequencies test using an
adaptive controller with YK parametrization.

4.5.3 Continuously time-varying frequency test

In this experiment, a couple of tonal noise disturbances located at 160Hz and 275Hz are first

applied to the system from 1 s to 6 s. Then, their frequencies linearly increase until they reach

the values of 180Hz and 295Hz correspondingly at 27 s, after which their frequencies remain
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constant until 32 s. A protocol for the test can be described as:

• Reference for ambient noise, no disturbances nor control until 1 s,

• Nominal disturbances −10Hz, 160Hz+275Hz from 1 s to 6 s,

• Linear increase in frequencies 6 s to 27 s

• Nominal disturbances +10Hz, 180Hz+295Hz from 27 s to 32 s.

Figure 4.12 displays a comparison between the system’s residual noise when it is operated

in open loop and in closed loop using the robust controller. As the frequencies move within

the designed regions, a significant attenuation is obtained. However outside this zone, the

performance is not satisfactory.
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FIGURE 4.12. Residual noise in open loop vs closed loop using a robust controller under
the effect of tonal disturbances with variable frequencies.

Correspondingly, Fig. 4.13 displays the residual noise in open loop operation and with the

adaptive controller. Levels of attenuation achieved are globally much better.

The residual noise is comparable with the ambient noise measured between 0s and 1s. The

Q-parameters evolution is shown in Fig. 4.14.

4.6 Concluding Remarks

This chapter has shown that if the frequencies variation regions of multiple tonal noise distur-

bances are known and limited, an efficient robust feedback controller can be designed. Adding an
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FIGURE 4.13. Residual noise in open loop vs closed loop using the adaptive controller
with YK parametrization under the effect of tonal disturbances with variable
frequencies.
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FIGURE 4.14. Parameters evolution for the tonal disturbances with variable frequencies
test using an adaptive controller with YK parametrization.

adaptation feedback loop drastically enhances the performance of a robust controller in terms of

achieved attenuation and expansion of the regions of attenuation in the frequency domain. It has

been shown that techniques developed in the context of active vibration control [Landau et al.,

2016] can be successfully used for robust and adaptive feedback attenuation of multiple narrow
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band noise disturbances in ducts. The effective implementation of these techniques should take

into account the identified model characteristics of the compensation path and design guidelines

have been provided.
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Part III

Adaptive Feedforward Disturbance
Rejection
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5
FEEDFORWARD CONFIGURATION

In the case of presence of broadband disturbances a Feedforward approach is proposed for the

system. After undesirable conditions were found in the first test bench configuration, two more

setups are proposed to enable a better performance of a control system working in a feedforward

approach. Brief introduction about state of the art behind our denominated Feedforward approach

is given, followed by a detailed explanation about its theory. These different approaches are

described and then compared in a theoretical perspective. Using the same approaches, different

parametrization of the controller is proposed using the denominated Youla-Kučera parametriza-

tion. The theory and use of Infinite Impulse Response compensators, as well as the simplified

option using a Finite Impulse Response compensator are addressed. Finally a comparison of all

the algorithms proposed is done in the test bench, and relevant results are discussed.

5.1 Test Bench Configurations

Active control is particularly dedicated to attenuate low frequency noise, and due to a undesired

condition in the secondary path identified for the first test bench configuration, more specifically

a zero located at 315Hz, new configurations for the test bench had to be proposed in order to

work under a feedforward configuration.

The effects of this undesired zero present in the secondary path model for the first test bench

configuration are such that the controller won’t have enough energy to perform any attenuation

at that specific frequency and those around it. This effects are close to partially open the loop

at those frequencies, leaving behind a region where the controller won’t perform, thus being

ineffective for a wide or broad brand attenuation attempt.

Nevertheless, this new second configuration brought a new problematic. Since the system

to performs with a feedforward schema, according with the theory, pure delays in our identified
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secondary path model should be less or equal than those delays found in the primary path;

otherwise some conditions required for the proper application of theories won’t be fulfilled.

5.1.1 Second Test Bench Configuration

It was found that, since the test bench uses a loudspeaker as disturbance’s actuator, its di-

aphragm acts as a passive damper [Baz, 2018, Krysinski and Malburet, 2008] for the control

signal produced at the controller loudspeaker. In this disposition of the experimental setting, an

unwanted reflection phenomenon is created, which lead to the presence of low damped complex

zeros, where the position of these zeros in the frequency domain depends upon the geometry of

the system. This was related to a mechanical engineering term defined as effective length, and

a deeper explanation of the physics describing the phenomenon can be found in [Stanfield and

Skaves, 2012]. This unwanted zeros introduced a series of inconvenient that may not appear in a

real system, since disturbance sources are not configured to display passive dampening in a real

environment.

As it can be seen in Figures 5.1 and 5.2, a second geometry was proposed for the test bench

in order to modify the length between the control actuator and the passive damper located in

the disturbance loudspeaker, named second test bench configuration. By shortening the duct

connecting the disturbance’s actuator with the rest of the system, and changing the angles used

for connecting the control loudspeaker the rest of the system, we were able to modify this so

called effective length and alter the undesired conditions present in our original design, thus

displacing the position in the frequency domain of the zeros created by the unwanted passive

damper.

An effective length between two points in a system includes the length of straight sections of

duct, but it also contemplates the addition of equivalent lengths corresponding to all the fittings

and couplings present to connect those straight sections, whose most of the time are longer than

the real lengths due to the additional friction and changes of direction and pressure created in

the flux of air. In this way, the dampening effect of the disturbance speaker’s diaphragm, coupled

with the control loudspeaker at that specific effective length gave as result the undesired zero in

the identified secondary path for the first configuration.

Once again the process for identification of the different path’s transfer functions was carried

on and new identified models were estimated. Results and images of the frequency response

of these paths can be found at 3.6.2. As a comparison between the first and second test bench

configurations, Figure 5.1.1 displays secondary paths identified for each configuration. Here we

can see the zero located at 315Hz in the first configuration, and how this model differs from the

second configuration model, where these low damped zeros are no longer present. This second

configuration and its following identification of models brought as result a region in the frequency

domain up to 450Hz without interruptions due to zeros in the model of the secondary path,

allowing us to have a control region roughly from 70Hz to 450Hz.
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FIGURE 5.1. Second experimental test bench configuration.

FIGURE 5.2. Photo of test bench’s second configuration.

Results of experiments performed on this second configuration of the test bench are not

explicitly presented in this thesis, and can be found in Appendix C and Appendix D [Airimiţoaie

et al., 2018, Landau et al., 2018]. Even if the results and performance of the system were according

to expectations, it was found that while this configuration managed to solve the problem of the

zeros present due to unwanted dampening effects, it violates the conditions for perfect matching

[Landau et al., 2016].
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FIGURE 5.3. Identified secondary path for first and second test bench configurations.

5.1.2 Third Test Bench Configuration

To overcome the problematic regarding the model delay’s orders and the fact that the perfect

match conditions were not fulfilled, a third test bench configuration was proposed and presented

as in 2.2.3. The new geometry of the system satisfy the perfect match conditions, but presents

again a pair of low damped zeros located near 300Hz, leaving a region for attenuation from 70Hz

to 270Hz approximately.

Accordingly with the nomenclature previously stipulated in Figure 2.4, the updated schema

for this third configuration can be seen in Figure 5.4. Here the residual noise’s microphone located

at (3) was displaced nearer the disturbance speaker (1). Similarly, sections of pipes connecting the

main body with the control speaker at (2) were shortened and the angles connecting the sections

were modified. The third and final configuration of the test bench can be seen in Figure 5.6, and

its dimensions are described in Figure 5.5.

As a comparison between all the three different test bench configurations, Figure 5.7 shows

the identified secondary paths for each of them, where we can a similar presence of a zero located

around 300Hz in the first and last configurations, nevertheless this last setup of the test bench

allows us to have higher gain in frequencies between 50Hz and 150Hz.
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FIGURE 5.4. Schema of test bench’s feedforward configuration.

FIGURE 5.5. Third experimental test bench configuration.

5.2 Introduction to Adaptive Feedforward Noise Attenuation

Adaptive feedforward for broadband disturbance compensation is widely used when a well cor-

related signal with the disturbance (image of the disturbance) is available [Kuo and Morgan,

1999, Elliott and Sutton, 1996, Elliott and Nelson, 1994]. However, in many systems there is a

positive physical coupling between the feedforward compensation system and the disturbance’s

image measurement, which often leads to a condition of instability in the system. About this
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FIGURE 5.6. Photo of test bench’s third configuration.
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FIGURE 5.7. Identified secondary path for first, second and third test bench configura-
tions.

inherent positive feedback, the adaptive feedforward compensator should counteract and mini-

mize the disturbance effects while simultaneously assuring the stability related to the internal

positive feedback loop [Jacobson et al., 2001, Kuo and Morgan, 1996].

Starting with [Amara et al., 1999b] adaptive feedback noise control emerged as an efficient

solution for canceling single or multiple tonal disturbances [Amara et al., 1999a] taking advantage

of the internal model principle and the Youla-Kučera parametrization of the feedback controller
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[Landau et al., 2019b, Meléndez et al., 2017]. Nevertheless, the efficient use of this so called

feedback approach for attenuation of broad-band noise is limited by the Bode integral. Giving the

additional complexity that is inherent in the broadband disturbances, regarding unknown and

variable characteristics, an adaptive approach is required. Therefore one can say that the adaptive

feedforward noise compensation is particularly dedicated to the attenuation of broad-band noise

with unknown and time varying characteristics in this cases.

A major component of an adaptive feedforward compensator is the PAA. In ANC field, the

first algorithm used was the so called LMS [Widrow and Stearns, 1985] derived from a local

minimization of a quadratic criterion in terms of the residual noise. Many contributions have

been done on the properties analysis of this algorithm and the improvement of it. One of the ways

for improving the adaptation is filtering of the regressor vector, giving as results the FuLMS

[Eriksson, 1991b, Wang and Ren, 2003, Fraanje et al., 1999], which seems to be the most used

algorithm in recent publications [Xie et al., 2016, Zhu et al., 2012].

For the analysis of these algorithms in the presence of an internal positive feedback an

attempt is made in [Wang and Ren, 2003] where the asymptotic convergence in a stochastic

environment of the so called Filtered-U Least Mean Squares (FuLMS) algorithm in this context

is discussed. Further results on the same direction can be found in [Fraanje et al., 1999]. The

authors use Ljung’s ODE method [Ljung and Söderström, 1983] for the case of a scalar vanishing

adaptation gain. Unfortunately, this is not enough because nothing is said about the system

stability with respect to initial conditions and when a non vanishing adaptation gain is used

in order to keep the controller capabilities of adaptation. The authors have assumed that the

positive feedback does not destabilize the system which is not a realistic assumption.

A different approach emerged in the area of ANC, namely the adaptation algorithms design

starting from a stability point of view and taking into account from the beginning an internal

positive feedback. A first reference in ANC for a stability approach in the presence of an internal

positive feedback is [Johnson, 1976]. Unfortunately, the results applicability is very limited

since it is assumed that the secondary path has a simple positive gain, or it is characterized

by a SPR transfer function, which is a unrealistic hypothesis. So then the study is based in the

research done in AVC [Landau et al., 2011a], where it is provided a full synthesis procedure for

asymptotically stable adaptation algorithms using IIR feedforward compensators in the presence

of an internal feedback coupling. These algorithms can be used also in ANC as it will be shown

throughout this work. It is interesting to note that most of the algorithms used for the adaptive

feedforward compensation can be viewed as particular approximations of the algorithms derived

from stability considerations.

81



CHAPTER 5. FEEDFORWARD CONFIGURATION

5.3 Adaptive Feedforward Compensators Basic Theory

First, as it was done for the Feedback approach in Chapter 4, the primary path is characterized

by the asymptotically stable transfer operator:

(5.1) D(q−1)= q−dDBD(q−1)
AD(q−1)

,

where dD corresponds to the pure delay in sample times for the primary path and

BD(q−1)= bD
1 q−1+ . . .+bD

nBD
q−nBD ,(5.2)

AD(q−1)= 1+aD
1 q−1+ . . .+aD

nAD
q−nAD .(5.3)

In a similar way, the secondary path is characterized by the asymptotically stable transfer

operator:

(5.4) G(q−1)= q−dGBG(q−1)
AG(q−1)

,

where dG corresponds to the pure delay in sample times for the secondary path and

BG(q−1)= bG
1 q−1+ . . .+bG

nBG
q−nBG = q−1B∗

G(q
−1),(5.5)

AG(q−1)= 1+aG
1 q−1+ . . .+aG

nAG
q−nAG .(5.6)

This can be represented in a feedforward diagram as in Figure 5.8,

FIGURE 5.8. Feedforward control scheme.

where D represents the primary path transfer function and G denotes the secondary path of

our system. In this configuration, the block N is used for the feedforward controller. Moreover,

we found that W characterize the transfer function between the disturbance’s speaker and the

image’s microphone, located in between (1) and (4) in Figure 5.4, and the than transfer function

M describes the positive feedback coupling called reverse path.
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In a similar fashion to a feedback configuration, y(t) is the system’s residual noise measured

by the microphone located at (3) in Figure 5.4; u(t) corresponds to the control signal sent to the

controller speaker in (2), s(t) is the disturbance signal sent to the disturbance’s speaker in (1).

Additionally to the signals seen in a feedback diagram, we find the measurements v(t) used to get

the signal correlated with the disturbance’s image i(t) which is inherently bias by the positive

internal loop created by the control signal.

5.3.1 Feedforward Compensator Design

Since the measurements required for the feedforward configuration call for an image of the

disturbance, it is acquired by the microphone located at (4) in Figure 5.4, nevertheless the

control signal will also be captured by this measures as an indirect effect, and the resulting

measurements are a sum of the the disturbance and the control signal. This phenomenon is

detonated as a positive internal feedback loop and is an undesired condition than can cause

instabilities in these systems and needs to be taken into account in the controller design stage.

The feedforward compensator’s output coupling with the measurement v(t) through is denoted by

M. As indicated in Figure 5.8, this coupling is a positive feedback.

Similarly to the primary and secondary paths, the positive feedback coupling is characterized

by the asymptotically stable transfer operator:

(5.7) M(q−1)= q−dMBM(q−1)
AM(q−1)

,

where dM corresponds to the pure delay in sample times for the reverse path and,

BM(q−1)= bM
1 q−1+ . . .+bM

nBM
q−nBM = q−1B∗

M(q−1),(5.8)

AM(q−1)= 1+aM
1 q−1+ . . .+aM

nAM
q−nAM .(5.9)

The objective is to estimate and adapt the feedforward compensator’s parameters N, such

that the measured residual noise be minimized in the sense of a certain criterion. The optimal

unknown IIR feedforward filter is defined by:

(5.10) N(q−1)= R(q−1)
S(q−1)

,

where the corresponding polynomials are defined as:

R(q−1)= r0+ r1q−1+ . . .+ rnR q
−nR ,(5.11)

S(q−1)= 1+ s1q−1+ . . .+ snS q
−nS = 1+ q−1S∗(q−1).(5.12)

Accordingly with Figure 5.9, the estimated compensator is denoted by N̂(q−1). It is defined
as N̂(θ̂,q−1) when it is a linear filter with constant coefficients; and N̂(t,q−1) during estimation

(adaptation) of its parameters. FIR compensators are obtained by taking S = 1 (i.e. si = 0,

∀i = 1 : nS).
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FIGURE 5.9. Feedforward control scheme with PAA.

The feedforward compensator’s input is denoted by v(t), and it corresponds to a sum between

the disturbance image in the absence of compensation, and of the positive feedback path’s output.

In the absence of a compensation, meaning to operate in a open-loop configuration, we have

v(t)= i(t).

We now remember that in adaptive control and estimation theory, a predicted output at a given

time t can be computed either on basis of the current parameter estimations, named a posteriori;

or on the basis of previous parameter estimations, denominated a priori. The a posteriori output

of the feedforward compensator, which is the control signal applied to the secondary path, is

denoted by û(t+1)= û(t+1|θ̂(t+1)). The input-output relationship for the estimated feedforward

compensator is given by an equation of the a priori output, such that:

û◦(t+1)= û(t+1|θ̂(t))= R̂(t,q−1)v(t+1)− Ŝ∗(t,q−1)û(t)

= θ̂T (t)ϕ0(t)=
[
θ̂T
R(t), θ̂

T
S (t)

][
ϕv(t)

ϕû(t)

]
,(5.13)

where the controller’s estimated parameters vector θ̂(t) and ϕ0(t) are defined as

θ̂T (t)= [r̂1(t), . . . , r̂nR (t), ŝ0(t), . . . , ŝnS (t)]= [θ̂T
R(t), θ̂

T
S (t)],(5.14)

ϕT
0 (t)= [v(t+1), . . . ,v(t−nR +1),−û(t), . . . ,−û(t−nS +1)]

= [ϕT
v (t+1),ϕT

û (t)],
(5.15)

and û(t), û(t−1), . . . are the a posteriori outputs of the feedforward compensator generated by

(5.16) û(t)= û(t|θ̂(t))= θ̂T (t)ϕ0(t−1),
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and where v(t+1), v(t), . . . are the measurements provided by the microphone located at (4) in

Figure 5.4, since v(t+1) is available before adaptation of parameters starts at time t+1.

The a priori output of the secondary path will be denoted ẑ◦(t+1):

(5.17) ẑ◦(t+1)= ẑ(t+1|θ̂(t))= q−dGB∗
G(q

−1)
AG(q−1)

û(t),

meanwhile the a posteriori unmeasurable value of the secondary path’s output is denoted by:

(5.18) ẑ(t+1)= ẑ(t+1|θ̂(t+1))= q−dGBG(q−1)
AG(q−1)

û(t+1)=G(q−1)û(t).

The measured primary signal, also called reference, satisfies the equation:

(5.19) v(t+1)= q−dMB∗
M(q−1)

AM(q−1)
û(t)+ i(t+1),

while the residual error measured at (3) in 5.4, is described by the equation:

(5.20) y(t+1)= p(t+1)+ ẑ◦(t+1),

so the a priori adaptation error can be defined as

(5.21) ε◦(t+1)=−y(t+1)=−p(t+1)− ẑ◦(t+1).

Finally, the calculated a posteriori adaptation error, in this case similar to the residual error,

will be given by:

(5.22) ε(t+1)= ε(t+1|θ̂(t+1))=−p(t+1)− ẑ(t+1).

The development of a PAA for estimating in real-time the parameter’s vector θ̂ assumes that:

• A perfect matching condition can be satisfied and there exist a set of values θ for the

feedforward filter N(q−1), such that:

(5.23)
N(q−1)W(q−1)

1−N(q−1)M(q−1)
G(q−1)=−D(q−1)

• The characteristic polynomial Pint(q−1) of the internal feedback loop,

(5.24) Pint(q−1)= AM(q−1)S(q−1)− q−dMBM(q−1)R(q−1),

is a Hurwitz polynomial.

Now we can state that the parameter adaptation algorithm’s (PAA) objective will be then to

allow the compensator N̂(q−1, θ̂(t)) to approach the optimal compensator N(q−1), at least in the

frequency range of interest but assuring the asymptotic stability of the internal loop.

From the user point of view and taking into account the type of adaptive compensation

system’s operation, one has to consider two approaches for the adaptive schemes:
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• Adaptive operation. The adaptation is performed continuously with a non-vanishing adap-

tation gain and the feedforward compensator is updated at each sampling.

• Self-tuning operation. The adaptation procedure starts either on demand or when the

performance is unsatisfactory. A vanishing adaptation gain is used.

In this chapter, only the adaptive operation will be considered in the experimental evaluation

5.3.2 Parameter Adaptation Algorithm

As seen in Chapter 4, a general formulation for the parameter adaptation algorithm (PAA) can

be described by:

θ̂(t+1)= θ̂(t)+F(t)ϕ(t)ε(t+1),(5.25)

ε(t+1)= ε◦(t+1)
1+ϕT (t)F(t)ϕ(t)

,(5.26)

F(t+1)= 1
λ1(t)

⎡
⎣F(t)− F(t)ϕ(t)ϕT (t)F(t)

λ1(t)
λ2(t)

+ϕT (t)F(t)ϕ(t)

⎤
⎦ ,(5.27)

1≥λ1(t)> 0, 0≤λ2(t)< 2, F(0)> 0,(5.28)

ϕ(t)= Lϕ0(t)(5.29)

where L is a filter defined by the system parameters, and λ1(t) and λ2(t) allow to obtain various

profiles for the adaptation gain matrix F(t). Four cases are of interest:

• Constant trace profile. λ1(t) and λ2(t) are adjusted continuously to maintain constant the

trace of the adaptation gain matrix. This allows to move in the optimal direction but

maintaining the adaptation capabilities. Nevertheless, for accelerating the adaptation

transient it may be useful to use a larger adaptation gain transiently.

• Decreasing adaptation gain. With λ1 = 1 and λ2 = 1, a self-tuning regime is defined. Can

also be used for initialization of the constant trace profile.

• Variable forgetting factor. This option can be also used for initialization of the constant trace

algorithm. The difference is that in this option λ1(0)< 1 but it will tend asymptotically to 1.

This allows to get transiently a higher adaptation gain than the one used in the constant

trace algorithm.

• Constant scalar adaptation gain. This is obtained by taking F(t)= γI where I is the identity

matrix, and γ is a chosen constant value. This approach gives a scalar adaptation gain.

As stated before, in order to initialize the algorithms, it is often the combined use of decreasing

gain with the constant trace, allowing the adaptation process to have a larger gain at beginning.

Once the adaptation gain matrix’s trace tr[F(t)] reaches the specific constant trace’s value desired,
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λ1 and λ2 switches to a constant trace profile. Same can be said about an initialization using a

variable forgetting factor instead of decreasing adaptation gain.

As previously, the adaptation gain matrix evolution is given by defined in Equation (5.27).

For the decreasing gain profile one chooses λ1(t)= λ1 = 1 and λ2(t)= λ2 = 1; meanwhile for the

variable forgetting factor profile we define λ2(t)=λ2 = 1, λ1(t)=λ0λ1(t−1)+1−λ0 and 0<λ0 < 1,

with typical values being λ1(0)= 0.95 to 0.99, and λ0 = 0.95 to 0.99. The difference with respect to

the decreasing gain profile is that the maximum value for adaptation gain occurs not at instant

t= 0, but after a certain horizon related to the particular values of λ1(0), λ0 and the number of

parameters to adapt.

Finally, in order to maintain a constant the trace profile, the values of λ1(t) and λ2(t) of the

adaptation gain matrix F(t) are determined from the equation:

(5.30) tr[F(t+1)]= 1
λ1(t)

tr
[
F(t)− F(t)ϕ(t)ϕT (t)F(t)

α+ϕT (t)F(t)ϕ(t)

]

fixing the ratio α=λ1(t)/λ2(t).

Moreover, by taking F(t)= γI, where I is the identity matrix, one gets a scalar adaptation

gain as in Table 5.1 and 5.2. The equation (5.25) for updating the parameter vector then becomes:

(5.31) θ̂(t+1)= θ̂(t)+γϕ(t)
ε◦(t+1)

1+γϕT (t)ϕ(t)
.

When using a scalar adaptation gain, it can be seen that for very small values of γ one can

approximate the above equation by

(5.32) θ̂(t+1)= θ̂(t)+γϕ(t)ε◦(t+1),

which is close to the adaptation algorithm used in FuLMS, who uses ϕ(t−1)ε◦(t) instead of

ϕ(t)ε◦(t+1), since the adaptation gain is small and the residual error would vary slowly otherwise.

In this experimentation setup, the updating of matrix F(t) is again done using the U −D

factorization for reasons of numerical robustness. The details of this algorithm are given in

Section 4.4.2. At this point the adaptation gain matrix F(t) is rewritten as:

(5.33) F(t)=U(t)Δ(t)UT (t),

where U(t) is an upper triangular matrix with all diagonal elements equal to 1, and Δ(t) is a

diagonal matrix. This allows F(t) to remain positive definite so that the rounding errors do not

affect the solution significantly. An interesting option, taking into account theU−D factorization,

is to apply the desired profile on tr[Δ(t)] instead of tr[F(t)] for simplification of calculations and

ease of computation time consumption, while the PAA objectives remains unchanged.

5.4 Feedforward Adaptive Algorithms Comparison

Table 5.1 and Table 5.2 summarize the most important algorithms used with an IIR configuration

of the feedforward compensator. In every case it is possible to perform with a FIR controller by
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using a fixed value for S = 1. These tables give a brief comparison between different approaches

exposed throughout this Chapter. The proposed approach with an adaptation based on a matrix

gain F(t), as well as its simplified counterpart who uses a scalar gain γ(t) in a similar fashion,

are compared with a more common approach FuLMS, than can be described as an even more

simplified scalar version of the previous two methodologies.

Table 5.1 starts showing the differences between them, by exposing the diverse ways of

computing and estimate the controller’s parameters vector θ̂(t+1) at the future instant in t+1

while using just past information from instants t and t−1. The complexity inherent to the matrix

structure is clear when comparing its adaptation gains calculation with those of a scalar approach.

Even though the vector ϕ0(t) definition remains unchanged, Table 5.2 shows a difference for

computing the vector ϕ(t) for each case. Derived from stability considerations, using a matrix gain

F(t) gives as result the adaptation algorithms Filtered-U Pseudo Linear Regression (FuPLR) and

Filtered-U Stability Based Algorithm (FuSBA). In a similar way and also derived from stability

considerations, the adaptation algorithms using scalar gain Normalized Filtered-U Least Mean

Squares (NFuLMS) and Scalar Filtered-U Stability Based Algorithm (SFuSBA). Lastly we can

find FuLMS approach, an algorithm that has been extensively used and is still common to be

found [Xie et al., 2016, Zhu et al., 2012].

A comparison that summarize the stability conditions in a deterministic context os also shown,

being a global asymptotic stability condition for any initial conditions on the IIR compensator’s

parameters, or a local asymptotic stability condition. A key element for assuring the stability of

the various algorithms is the filter L, as in Table 5.2. The definition of this filter helps to satisfy

the strictly positive real (SPR) condition for asymptotic stability and parameter convergence.

θ̂(t+1) Adaptation Gain

Matrix F(t+1)−1 =λ1(t)F(t)+λ2(t)ϕ(t)ϕT (t)
Approach

θ̂(t)+F(t)ϕ(t)
ε◦(t+1)

1+ϕT (t)F(t)ϕ(t) 0≤λ1(t)< 1, 0≤λ2(t)< 2, F(0)> 0

Scalar
Approach

θ̂(t)+γ(t)ϕ(t)
ε◦(t+1)

1+γϕT (t)ϕ(t)
γ(t)> 0

FuLMS θ̂(t)+γ(t)ϕ(t−1)ε◦(t) γ(t)> 0

TABLE 5.1. Comparison of algorithms for direct adaptive feedforward compensation in
an ANC system with acoustic coupling (1).

5.4.1 Adaptation Algorithm Stability: The Filter L

In order to clarify the importance of filtering the observation vector though the filter L, it is

important to note that the residual error equation can be expressed as [Landau et al., 2011a]:

(5.34) ε(t+1)=H(q−1)[θ− θ̂(t+1)]Tϕ(t),
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ϕT
0 (t) ϕ(t)= Lϕ0(t) Stability Condition

FuPLR: L=G
Matrix [v(t+1), . . . ,v(t−nR +1),

FuSBA: L= AM

P̂
G,

AMG
PL

− λ

2
= SPR

Approach −û(t), . . . ,−û(t−nS +1)]
P̂ = AMŜ− q−dMBMR̂ λ=max[λ2(t)]

NFuLMS: L=G
Scalar [v(t+1), . . . ,v(t−nR +1),

SFuSBA: L= AM

P̂
G,

AMG
PL

= SPR
Approach −û(t), . . . ,−û(t−nS +1)]

P̂ = AMŜ− q−dMBMR̂

[v(t), . . . ,v+1(t−nR +1), AM = 1, unknown
FuLMS −û(t), . . . ,−û(t−nS +1)]

FuLMS: L=G
stability condition

TABLE 5.2. Comparison of algorithms for direct adaptive feedforward compensation in
an ANC system with acoustic coupling (2).

where function H(q−1) is defines as

(5.35) H(q−1)= AM(q−1)G(q−1)
P(q−1)L(q−1)

and as stated before, the filtered vector ϕ(t) is defined by

(5.36) ϕ(t)= Lϕ0(t).

From these equations, one can understand that there is a phase difference between the resid-

ual error ε(t+1) and ϕ(t), and that ϕ(t)ε(t+1) is an approximation of the gradient vector’s inverse.

Therefore, for convergence purposes, the angle created between the directions of adaptation, and

that of the true gradient’s inverse, which is not computable, should be less than 90◦, fact that
is effectively assured by the SPR condition on H(q−1). For time-varying adaptation gains, the

condition is sharper, where

(5.37) H′(q−1)=H(q−1)− λ2

2
, max

t
[λ2(t)]≤λ2 < 2

is required to be SPR.

Several choices for the filter L are considered, each one leading to a different algorithm. In the

specific case where one uses a matrix adaptation gain F(t) is done, we can describe the following

algorithms:

FuPLR: L= Ĝ

FuSBA: L= AM
P̂

G with P̂ = AMŜ− qdMBMR̂
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The algorithm FuPLR, assuming that the SPR condition given in Table 5.2 is satisfied, assures

a global stability of the algorithm for any initial given conditions. This condition can be relaxed

for low adaptation gain provided that in the average, a SPR condition is true but the performance

will be impacted, as described in the works of [Landau et al., 2011a, Anderson et al., 1986]. In

order to improve the performance, it is needed to use the FuSBA algorithm, which tries to make

the H(q−1) transfer function close to 1. This will depend on how good the estimation in real-time

of P̂ is. This can be achieved once an acceptable estimation of the parameters in N̂ is available.

Therefore in order to use this approach, an initialization with the FuPLR algorithm should be

done. Is important to remember that in terms of stability, the FuSBA algorithm’s condition is a

local result. Strictly speaking, it is valid only in the

neighborhood of the equilibrium point. This algorithm assumes also that FuPLR despite that

the SPR is not satisfied, which means that ans SPR condition is satisfied in the average. Note

that in order to consider averaging arguments the adaptation gains should be enough small.

It also assumes that the estimated P̂ is asymptotically stable, which implies that requires an

inclusion of a stability test on P̂.

For the scalar adaptation gain one has the same choices for the filter L and the corresponding

algorithms issued from stability consideration have th same considerations as for the matrix

adaptation gain, as given in Table 5.2. These algorithms are described as:

NFuLMS: L=G

SFuSBA: L= AM
P̂

G with P̂ = AMŜ− qdMBMR̂

Where, in a similar way that the matrix approach, the SFuSBA should be initialized using

the NFuLMS.

The procedure followed at each sampling time for implementing the adaptive feedforward

compensation, in a given sample at time t+1, can be describes ass:

1. Get the measured image of the disturbance v(t+1), and the measured residual error y(t+1).

Then compute ε◦(t+1)=−y(t+1).

2. Update the values in ϕ0(t) with the new acquired measure v(t+1), and û(t) from the

previous sampling period.

3. Using filter L, calculate ϕ(t) as ϕ(t)= Lϕ0(t)

4. Estimate the parameter vector θ̂(t+1) using the corresponding PAA defined at Table 5.1,

in accordance with the chosen approach.

5. Calculate the adaptation gain for the current sample, also in accordance with the chosen

approach, as described in Table 5.1.

6. Using Equation (5.16), compute and apply the control û(t+1).
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5.5 Youla-Kučera Parametrized Adaptive Feedforward
Controller

In order to isolate the issues related with the positive internal feedback loop stability, from the

controller’s objective which is the residual noise’s minimization, and as previously done for the

feedback control approach in Section 4.4.1, the use of a Youla-Kučera (YK) parametrization was

used. Instead of a standard IIR feedforward compensator, a similar version using a Youla-Kučera

parametrization of the adaptive feedforward compensator was settled.

In such way, a central controller will assure the internal positive feedback loop stability,

while its performance are enhanced in real-time by the direct parameters adaptation of the

Youla-Kučera Q(q−1) filter. In an extended format of the diagram presented in Figure 5.9, and

now taking into account a YK parametrization, the scheme shown in Figure 5.10 presents the

block diagram of the adaptive feedforward compensator with a Youla-Kučera estimated Q̂(q−1)
filter and a PAA. Details of the specific algorithms can be found in [Landau et al., 2013, Landau

et al., 2012].

FIGURE 5.10. Feedforward control scheme using a Youla-Kučera parametrization with
PAA.
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5.5.1 Infinite Impulse Response Youla-Kučera Controller

Using the Youla-Kučera parametrization, the optimal IIR feedforward compensator which will

minimize the residual noise can be denominated as Infinite Impulse Response Youla-Kučera

(YK-IIR) filter, and it is described by:

(5.38) N(q−1)= R(q−1)
S(q−1)

= R0AQ −AMBQ

S0AQ − q−dMBMBQ
,

where the optimal Youla-Kučera filter Q(q−1) has an IIR structure

(5.39) Q(q−1)= BQ(q−1)
AQ(q−1)

=
bQ
0 +bQ

1 q−1+ . . .+bQ
nBQ

q−nBQ

1+aQ
1 q−1+ . . .+aQ

nAQ
q−nAQ

,

with R0(q−1), S0(q−1)= 1+q−1S∗
0 (q

−1) as the central controller’s polynomials meant to work as a

stabilizing filter, and AM(q−1), q−dMBM(q−1) are given in (5.7). As such, the estimated YK-IIR

filter can be expressed as:

(5.40) Q̂(q−1)= B̂Q(q−1)
ÂQ(q−1)

=
b̂Q
0 + b̂Q

1 q−1+ . . .+ b̂Q
nBQ

q−nBQ

1+ âQ
1 q−1+ . . .+ âQ

nAQ
q−nAQ

,

and its parameters are given by:

(5.41) θ̂T (t)= [b̂Q
0 (t), . . . , b̂

Q
nBQ

(t), âQ
1 (t), . . . , â

Q
nAQ

(t)]= [θ̂T
BQ

(t), θ̂T
AQ

(t)].

In a similar way as it was done in Section 5.3.1, the a priori output of the estimated feedfor-

ward compensator using a YK parametrization for the case of time-varying parameter estimates

is given by:

(5.42)
û◦(t+1)= û(t+1|θ̂(t))=−Ŝ∗(t,q−1)û(t)+ R̂(t,q−1)v(t+1),

=−S∗
0 û(t)+R0v(t+1)− Â∗

Q(t,q
−1)ψ(t)+ B̂Q(t,q−1)w(t+1),

and

(5.43) û(t+1)=−S∗
0 û(t)+R0v(t+1)− Â∗

Q(t+1,q−1)ψ(t)+ B̂Q(t+1,q−1)w(t+1),

where we define ψ(t) as filter Q(q−1) output, such that ψ(t)= S0û(t)−R0v(t), and the resulting

signal w(t)= q−dMBMû(t)−AMv(t) used as input for the filter Q(q−1).
Then, the perfect matching condition for the YK-IIR parametrized feedforward filter becomes

(5.44)
AM(R0AQ −AMBQ)

AQ(S0AM − q−dMBMR0)
G =−D.
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Neglecting the time-varying operators property of non-commutativity, the residual noise

equation of is then given by:

(5.45) ε(t+1|θ̂)= AM(q−1)G(q−1)
AQ(q−1)P0(q−1)L(q−1)

[θ− θ̂]Tϕ(t),

with

(5.46) P0 = AMS0− q−dMBMR0,

and ϕ(t)= L(q−1)ϕ0(t). We then redefine ϕ0(t) as:

ϕT
0 (t)= [w(t+1),w(t), . . . ,w(t−nBQ +1),ψ(t),ψ(t−1), . . . ,ψ(t−nAQ )],

= [ϕT
w(t+1),ϕT

ψ(t)].
(5.47)

The parameter adaption algorithm described in Section 5.3.2 is again used for the Youla-

Kučera feedforward compensators, and in the same way, there are several choices for the filter L

that can be considered, leading to different algorithms:

YK FuPLR: L=G,

YK FuSBA: L= AM
P̂

G with P̂ = ÂQ(AMS0− q−dMBMR0)= ÂQP0,

where ÂQ is an estimation of the denominator for an ideal YK-IIR filter computed on the basis

of available parameters estimations of the filter Q̂. In order to implement the YK-IIR - FuSBA

algorithm, it is necessary to make an initialization over a certain horizon for obtaining an

estimation of ÂQ . This can be done by running the YK-IIR - FuPLR for a certain time to get an

estimate of ÂQ .

5.5.2 Finite Impulse Response Youla-Kučera Controller

For the case where a FIR Youla-Kučera (YK-FIR) configuration is desired, filters are obtained by

taking AQ(q−1)= 1.

The parameters vector of the optimal YK-FIR filter assuring perfect matching will be denoted

by:

(5.48) θT (t)= [bQ
0 (t), . . .b

Q
nBQ (t)]= θT

BQ
(t),

The vector of parameters for the estimated Q̂ filter is described by:

(5.49) Q̂(q−1)= B̂Q(q−1)
1

= b̂Q
0 + b̂Q

1 q−1+ . . .+ b̂Q
nBQ

q−nBQ ,

so the estimation vector θ̂T is denoted by

(5.50) θ̂T (t)= [b̂Q
0 (t), . . . , b̂

Q
nBQ

(t)]= θ̂T
BQ

(t).
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The major difference between the YK-IIR configuration and that proposed as YK-FIR, is

reflected in the residual noise evolution’s equation, described by::

(5.51) ε(t+1|θ̂)= AM(q−1)G(q−1)
P0(q−1)L(q−1)

[θ− θ̂]Tϕ(t),

with ϕ(t)= Lϕ0(t), and

(5.52) ϕ0(t)= [w(t+1), . . .w(t−nBQ +1)].

In Equation (5.51), the current poles of the internal closed loop, which will depend on the

time-varying parameters of AQ(q−1), are now fixed and defined by the central controller.

The objective will be then to select a filter, such that the transfer function

(5.53) H = AM(q−1)G(q−1)
P0(q−1)L(q−1)

is SPR when we use a constant adaptation gain, or the transfer function

(5.54) H′(q−1)=H(q−1)− λ2

2
, max

t
[λ2(t)]≤λ2 < 2

is SPR for time-varying adaptation gains.

Like for the IIR type compensators, condition in Equation (5.53) can be interpreted as that of

the gradient’s angle approximation implemented in the algorithm, and the non-computable true

gradient is less than 90◦ in all the directions [Landau et al., 2011c].

Several choices for the filter L will be considered, leading to different algorithms, as seen in

see Tables 5.3 and 5.4:

YK FuPLR: L= Ĝ,

YK FuSBA: L= AM
P0

G with P̂0 = AMS0− q−dMBMR0.

The major difference with respect to the IIR compensators is that the FuSBA algorithm

assures in this case global stability and can be implemented from the start, since our polynomial

P is known from the beginning and remains unchanged during adaptation process. This is a

significant advantage.

As previously done in Section 5.4, Tables 5.3 and 5.4 give the adaptation gain’s details used in

the various cases proposed. Also as it was done before, the following procedure is applied at each

sampling time for implementing the adaptive feedforward compensation using a Youla-Kučera

structure. At a given time t+1, we have:

1. Get the measured image of the disturbance v(t+1), and the measured residual error y(t+1).

Then compute ε◦(t+1)=−y(t+1).

2. Update the values in ϕ0(t) with the new acquired measure v(t+1), and û(t) from the

previous sampling period.
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3. Using filter L, calculate ϕ(t) as ϕ(t)= Lϕ0(t)

4. Estimate the parameter vector θ̂(t+1) using the corresponding PAA defined at Table 5.3,

in accordance with the chosen approach.

5. Calculate the adaptation gain for the current sample, also in accordance with the chosen

approach, as described in Table 5.3.

6. Using Equation (5.43), compute and apply the control û(t+1).

θ̂(t+1) Adaptation Gain

Matrix
YK-IIR F(t+1)−1 =λ1(t)F(t)+λ2(t)ϕ(t)ϕT (t)

Matrix 0≤λ1(t)< 1, 0≤λ2(t)< 2, F(0)> 0
YK-FIR

θ̂(t)+F(t)ϕ(t)
ε◦(t+1)

1+ϕT (t)F(t)ϕ(t)

Scalar
YK-IIR

Scalar
YK-FIR

θ̂(t)+γ(t)ϕ(t)
ε◦(t+1)

1+γϕT (t)ϕ(t)
γ(t)> 0

TABLE 5.3. Comparison of algorithms for direct adaptive feedforward compensation in
an ANC system with acoustic coupling, using a YK parametrization (1).

Two major observations when using the Youla-Kučera parametrization can be made at this

point:

• If a FIR Q filter is used, the internal closed loop poles will be defined by the central

controller R0, S0 and they will remain unchanged independently of the Q filter parameters

values. The stability condition for the FuSBA algorithm is global.

• If an IIR Q filter is used, the internal closed loop poles will be defined by the central

controller, but additional poles corresponding to the denominator AQ from Q filter will be

added. The stability condition for the FuSBA algorithm is local and an initialization with

the FuPLR algorithm is necessary.

When using an YK-FIR structure, ÂQ ≡ 1, so implementation of a FuSBA-YK-FIR algorithm

is much simpler since P̂ = P̂0 is constant and known once the central controller is designed.

As for the direct feedforward algorithms described in Section 5.4, scalar adaptation gains can

also be used. The same choices for the filter L apply and the corresponding algorithms issued

from stability consideration are NFuLMS and SFuSBA, as seen in Tables 5.3 and 5.4.

95



CHAPTER 5. FEEDFORWARD CONFIGURATION

ϕT
0 (t) ϕ(t)= Lϕ0(t) Stability Condition

[w(t), . . . ,w(t−nBQ +1), FuPLR: L=G

Matrix ψ(t+1), . . . ,ψ(t−nAQ )] FuSBA: L= AM

P̂
G,

YK-IIR w(t)= q−dMBMû(t)−AMv(t) P̂ = AQ(AMS0− q−dMBMR0)
AMG
PL

− λ

2
= SPR

ψ(t)= S0û(t)−R0v(t)

FuPLR: L=G λ=max[λ2(t)]
Matrix [w(t), . . . ,w(t−nBQ +1)]

FuSBA: L= AM

P̂
G,

YK-FIR w(t)= q−dMBMû(t)−AMv(t)
P̂ = AMS0− q−dMBMR0

[w(t), . . . ,w(t−nBQ +1), NFuLMS: L=G

Scalar ψ(t+1), . . . ,ψ(t−nAQ )] SFuSBA: L= AM

P̂
G,

YK-IIR w(t)= q−dMBMû(t)−AMv(t) P̂ = AQ(AMS0− q−dMBMR0)

ψ(t)= S0û(t)−R0v(t)
AMG
PL

= SPR

NFuLMS: L=G
Scalar [w(t), . . . ,w(t−nBQ +1)]

SFuSBA: L= AM

P̂
G,

YK-FIR w(t)= q−dMBMû(t)−AMv(t)
P̂ = AMS0− q−dMBMR0

TABLE 5.4. Comparison of algorithms for direct adaptive feedforward compensation in
an ANC system with acoustic coupling, using a YK parametrization (2).

5.6 Test Bench Experimental Results

For the realization of experiments, experimental test were carried in the second and third test

bench configurations. Those obtained with the second configuration are presented in [Landau

et al., 2018], found in Appendix D. As previously stated in Section 5.1, the third configuration

of the test bench was chosen as the best option to satisfy the proposed requirements. As it can

be seen in Figures 5.11 and 5.7, the frequency region of the third test bench configuration’s

identified secondary path has enough gain to perform roughly starting from 70Hz to 270Hz. It is

not recommended to enforce a controller’s performance beyond this point, since the existence of a

zero located at 300Hz is quite clear and would let the control in a operation close to an open loop

behavior around those frequencies. So the following experiments will have as objective to test the

performance of diverse algorithms and approaches attempting the attenuation of disturbances

located between 70Hz and 270Hz.

A discretized version of a Gaussian white noise, in this case a PRBS, is filtered by a band-pass

filter, with band frequencies of 70Hz to 270Hz an used as disturbance signal. A first approach for
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FIGURE 5.11. Identified secondary path for the third test bench configuration.

these tests includes the use a single disturbance that remains unchanged throughout the whole

experiment, with a range of 70Hz to 270Hz. A regular test horizon of 180 s has been chosen as a

compromise between the time required to achieve many of the experiments, and the convergence

horizon. Longer tests have been carried on with a length of 600 s as horizon, showing the expected

improvement in performance.

After the disturbance characteristics and experiment length have been decided, we proceed

then to determine the optimal order for the controller adaptive filters, in this case N(q−1) for
the standard FF approach, and Q(q−1) for the YK parametrization. Here it is taken into account

the parsimony concept stating that a simpler controller should be chosen over a more complex

in the case that improvements in performance are not enough in relation to the additional

computational time required at each step inherent to a more complex controller, and may be an

implicit over-parametrization of the compensator.

Once we have decided the adaptive filter’s order, we test an compare the results given by

different Parameter Adaptation Algorithms (PAA). This include the test of approaches whom use a

scalar gain, and since it is intended to have a fair comparison between all the proposed algorithms

in this chapter, a profile of Constant Trace has been chosen for the algorithms using a matrix

gain. This is also done in this way since the controllers are intended to represent the application

in a real environment, where the constant trace profile is used for letting the controller remain

with adaptive capabilities in the case of changes in the disturbances characteristics.

At last, a small comparison of the selected choices using different initial conditions is done.
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Since all experiments are carried using a constant trace profile, the value for this trace is

increased gradually to look at the changes in performance, and eventually find a threshold for

the value that the system working under such conditions can handle.

5.6.1 Standard Feedforward Adaptive Results

As stated before, the first step is to select a proper order for the controller filter, and Table 5.5

shows the results obtained after a series of experiments different orders for the N(q−1) filter,
either in a IIR or FIR configuration. Results show that for a 180 s horizon in the experiments,

IIR controllers have an average better performance in comparison with the FIR counterpart.

Speaking now exclusively about the results gathered from IIR filters, is evident that the best

response came from the order 30 15/15 filter. In this particular case there seems to be a local

maximum for the parameter’s order, since a larger filter, 20/20 has a lost in performance and the

attenuation achieved is smaller that the lesser order controller.

Filter Filter Order Attenuation Test
Type [Num/Den] [dB] Duration

10/10 23.4
15/15 26.7IIR
20/20 25.6
20/0 18.4
30/0 21.0
40/0 21.0

FIR

50/0 20.8

180 s

TABLE 5.5. Standard controller order comparison for tests with 180 s horizon and a
70Hz to 270Hz disturbance. This comparison was done using standard FuSBA
algorithm and a profile of constant trace with a value of 0.002 per parameter.

Table 5.6 shows results from similar versions of the previous tests, where different order for

the N(q−1) filter were reviewed, but this time a 600 s horizon was chosen. This longer version

of the tests allowed to see the improvement in performance of controllers. Once again we found

that the results of IIR filter with order 30 and values of 15/15 is amongst the best performances,

alongside with the IIR filter of order 40 and values of 20/20. Increasing the complexity by 10 just

gives a 5% improvement in the performance, thus not giving enough arguments to change the

previous selection and keeping a complexity of 30 for the IIR filter, and values of 15/15 for its

numerator and denominator.

Table 5.7 show the results of test with similar experimental conditions, but using different

PAA. An horizon of 180 s was again used as test length, and a signal with frequencies between

70Hz and 270Hzis used as disturbance. Results for FuSBA are still showing good levels of
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Filter Filter Order Attenuation Test
Type [Num/Den] [dB] Duration

10/10 unstable
IIR 15/15 39.5

20/20 41.5 600 s
30/0 32.4

FIR
40/0 32.2

TABLE 5.6. Standard controller order comparison for tests with 600 s horizon and a
70Hz to 270Hz disturbance. This comparison was done using standard FuSBA
algorithm and a profile of constant trace with a value of 0.002 per parameter.

attenuation, nevertheless experiment with its scalar counterpart, SFuSBA, displayed a even

better performance.

Adaptation Attenuation Filter Test
Algorithm [dB] [Num/Den] Duration

FuPLR 23.7
FuSBA 26.7
NFuLMS 26.3 IIR [15/15] 180 s
SFuSBA 28.5
FuLMS 24.7

TABLE 5.7. Standard controller adaptation algorithms comparison for tests with 180 s
horizon and a 70Hz to 270Hz disturbance. This comparison was done using a
constant trace with a value of 0.002 per parameter (tr[F(t)]= tr[F]= 0.002(nR+nS))
for the matrix gain, and 0.002 per parameter (γ= 0.002(nR +nS)) for the scalar
gain approach.

As previously done, Table 5.8 presents longer duration experiments, with a length of 600 s

as horizon. Here is evident that for a longer duration, controller with a FuSBA approach has

outperform SFuSBA, and will be chosen as the best choice.

Since one of the most common algorithms used now a days is FuLMS, Table 5.9 shows a

comparison of results between performance of tests done with FuLMS, and the choice we made of

algorithm FuSBA. Since different approaches for the PAA have diverse limitations, we push to

their limits the performance of both algorithms by modifying the initial conditions of the PAA.

In order to have a fair comparison, one again the matrix approach was done using a constant

trace profile to have a similar base for comparison with the scalar case, as well as conditions of

operation closer to a real environment. The selected value for a constant trace tr[F(t)]= tr[F]

in the FuSBA experiments was chosen as tr[F] = tr[F]pp(nR + nS), where nR and nS are the

corresponding numerator and denominator orders of filter N(q−1), [15/15] accordingly with our

experimental results; and tr[F]pp is the desired value for the constant trace per parameter. In
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Adaptation Attenuation Filter Test
Algorithm [dB] [Num/Den] Duration

FuPLR 35.5
FuSBA 39.5
NFuLMS 35.1 IIR [15/15] 600 s
SFuSBA 36.8
FuLMS 34.6

TABLE 5.8. Standard controller adaptation algorithms comparison for tests with 600 s
horizon and a 70Hz to 270Hz disturbance. This comparison was done using a
constant trace with a value of 0.002 per parameter (tr[F(t)]= tr[F]= 0.002(nR+nS))
for the matrix gain, and 0.002 per parameter (γ= 0.002(nR +nS)) for the scalar
gain approach.

the case of experiments using a scalar FuLMS PAA, several values for γ were considered as

γ= γpp(nR +nS), where γpp is the desired value for the gain per parameter.

Adaptation Initial Condition Attenuation Filter Test
Algorithm (per parameter) [dB] [Num/Den] Duration

0.002 26.7
0.005 36.2
0.010 39.6

FuSBA tr[F]pp =
0.020 unstable IIR
0.002 24.7 [15/15]
0.008 34.2
0.020 37.8

FuLMS γpp =
0.040 unstable

180 s

TABLE 5.9. Standard controller initial condition comparison for tests with 180 s horizon
and a 70Hz to 270Hz disturbance. This comparison was done using different
constant trace values tr[F]pp (tr[F(t)] = tr[F] = tr[F]pp(nR + nS)) for the matrix
gain, and different values for γ (γ= γpp(nR +nS)) for the scalar gain approach.

In Table 5.9 we can see that even though augmenting the initial values for the gain has a

clear improvement in the performance and attenuation achieved, the PAA have limitations and

there are thresholds for them in terms of capabilities that must not be surpassed. Finally we can

see that FuSBA algorithm has a better performance than the FuLMS scalar approach, even if we

have different initial conditions for each one of them.

Figures 5.12 to 5.15 show results from the highlighted experiment in Table 5.9. First at

Figure 5.12 we have a comparison between the signal sent as disturbance to the system, denomi-

nated s(t), and the measurements gathered as residual noise in y(t). In this experiment, first 15 s

displays the system behavior in open loop, meaning that there is no compensation. Starting from
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15 s is clear that the controller had a positive effect counteracting the disturbance. Right axis

displays the attenuation’s value achieved at any given point with respect to the open loop section,

as

(5.55) Attenuation(t)[dB]= 20log10

( ‖yOL‖22
‖yCL(t)‖22

)
,

where yOL corresponds to the measures of residual noise while the system is in open loop such

that yOL = [y(15s), . . . , y(0s)], and yCL corresponds to the measures of residual noise while the

system is already being compensated by the controller, meaning that is performing in a closed

loop, and yCL(t) = [y(t), . . . , y(t− 15s)]. Even thou the experimental horizon is just 180 s, the

attenuation achieved is already 39.6 dB at that time, seemingly reaching a steady state.

FIGURE 5.12. Performance of IIR compensator of order [15/15] with FuSBA PAA and
constant trace profile (tr[F]pp = 0.010). Right side shows the level of attenuation
achieved at a given point in time, with 39.6 dB achieved at 180 s. Compensation
starts at 15 s.

Figure 5.13 show results in the frequency domain of this experiment. Here we can see

compared the power spectral densities (PSD) of yOL for the Open loop, and yCL(180s) for the

Closed loop. As expected from the open loop section where only the disturbance is present in the

measurements, its PSD show a clear high gain in the region corresponding to 70Hz - 270Hz. On

the other hand we have the closed loop PSD taken at t= 180s, where is evident the compensation

achieved at those given frequencies. As we remember from Figure 5.11, there are region with

very low gain in the secondary path and this becomes observable at the gain peak created around

325Hz, where the controller is trying to perform and creating a perturbation with similar levels

to those of the attenuated disturbances.

Parameters adaptation evolution through time is displayed in Figure 5.14, where all the 30

estimated parameters from the filter N(q−1)= R
S of order [15/15] are displayed. Here it can be
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FIGURE 5.13. Comparison between measured noise’s PSD of a disturbance with frequen-
cies between 70Hz and 270Hz without compensation (Open loop), and measured
residual noise of the system at 180 s, using a standard FuSBA PAA with a constant
trace profile and tr[F]pp = 0.010 (Closed loop).

seen that many of the parameters values have reached a steady state and converged to a constant

value.

0
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FIGURE 5.14. Filter N(q−1)= R
S parameters evolution for a [15/15] standard IIR filter

using FuSBA PAA with a constant trace profile. Compensation starts at 15 s.

Finally Figure 5.15 show the values of adaptation gain matrix trace tr[F(t)], where a constant
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value of 0.3 is reached immediately after compensations starts.
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FIGURE 5.15. Evolution of adaptation matrix F ’s trace for a constant trace profile of a
FuSBA PAA. A value of tr[F]pp = 0.010 was chosen, so tr[F(t)]= tr[F]= 0.3
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5.6.2 Youla-Kučera Feedforward Adaptive Results

In a similar fashion than the procedures for standard feedforward compensation, the first step is

to select a proper order for the controller filter, and identical experimental conditions were used,

with a 70Hz to 270Hz disturbance applied in the third test bench configuration. Table 5.10 shows

the results obtained after a series of experiments different orders for the Q(q−1) filter, either
in a IIR or FIR configuration with 180 s horizon. Even if experimental results for YK-FIR are

stable for small order of the Q(q−1) filter, corresponding orders in a YK-IIR configuration display

better performance in terms of attenuation levels reached in an overall perspective. Between the

use of filters 30/30 and 40/40 there is a 3 dB improvement, but an increment of 20 additional

parameters, which increments considerably the computational process time, thus 30/30 filter is

chosen.

Filter Filter Order Attenuation Test
Type [Num/Den] [dB] Duration

20/20 unstable
25/25 29.0
30/30 30.2

YK-IIR

40/40 33.2
20/0 17.2
30/0 20.9
40/0 22.7
50/0 25.7
60/0 27.0
80/0 28.9

YK-FIR

100/0 31.2

180 s

TABLE 5.10. YK controller orders comparison for test with 180 s horizon and a 70Hz to
270Hz disturbance. This comparison was done using YK FuSBA algorithm and a
profile of constant trace with a value of 0.02 per parameter in the IIR case, and 0.5
for FIR case.

As done for the standard approach Table 5.11 shows the experimental results of test with the

chosen order 30/30 YK-IIR FuSBA, but an extended horizon of 600 s, as well as its counterpart

60/0 YK-FIR for comparison. The differences here are even higher, since even both tests shows

an improved attenuation level reached, YK-FIR has a 1.3 dB increase from its shorter test, while

YK-IIR has a 5.5 dB improvement. This shows once again that for the YK approach, an IIR filter

is the best choice for this configuration.

Table 5.12 show the results of test with similar experimental conditions with an 180 s horizon

and a signal with frequencies between 70Hz and 270Hz used as disturbance; but again using

different PAA for comparison proposes. Results were just a L=G filtering is used show similar and

unacceptable levels of attenuation, conditioning the system to use the more complex filtering of
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Filter Filter Order Attenuation Test
Type [Num/Den] [dB] Duration
YK-IIR 30/30 35.7
YK-FIR 60/0 28.3

600 s

TABLE 5.11. YK controller order comparison for tests with 600 s horizon and a 70Hz to
270Hz disturbance. This comparison was done using YK FuSBA algorithm and a
profile of constant trace with a value of 0.02 per parameter in the IIR case, and 0.5
for FIR case.

FuSBA and SFuSBA. As in the standard case, FuSBA was the final choice due to its performance

was the one with best levels of attenuation.

Adaptation Attenuation Filter Test
Algorithm [dB] [Num/Den] Duration

FuPLR 6.1
FuSBA 30.2
NFuLMS 6.1
SFuSBA 27.5

YK-IIR [30/30] 180 s

TABLE 5.12. YK controller adaptation algorithms comparison for tests with 180 s hori-
zon and a 70Hz to 270Hz disturbance. This comparison was done using a constant
trace with a value of 0.02 per parameter (tr[F(t)]= tr[F]= 0.02(nR +nS)) for the
matrix gain, and 0.02 per parameter (γ = 0.02(nR + nS)) for the scalar gain ap-
proach.

Finally experimental results were gathered for tests with a 30/30 YK-IIR filter and a

FuSBAPAA with constant trace profile. The value used to define the trace calculation was

augmented gradually and the results are displayed in Table 5.13.

Filter Order Initial Condition Attenuation Test
[Num/Den] (per parameter) [dB]

PAA
Duration

0.02 30.2
0.05 34.4
0.10 35.6

[30/30] tr[F]pp =
0.12 unstable

FuSBA 180 s

TABLE 5.13. YK controller initial condition comparison for tests with 180 s horizon and
a 70Hz to 270Hz disturbance. This comparison was done using different constant
trace values tr[F]pp (tr[F(t)]= tr[F]= tr[F]pp(nR +nS)) for the matrix gain, and
different values for γ (γ= γpp(nR +nS)) for the scalar gain approach.

Figures 5.16 to 5.15 show results from the highlighted experiment in Table 5.13. Once again

Figure 5.16 shows a comparison between the signal sent as disturbance to the system s(t), and
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the measurements gathered as residual noise in y(t). First 15 s represent the system behavior in

open loop. From 15 s the controller positive effects counteracting the disturbance are evident. In

this case the experimental horizon is just 180 s, and the attenuation achieved is 35.6 dB at that

time, but without reaching a steady state.

FIGURE 5.16. Performance of YK-IIR compensator order 30/30 with FuSBA PAA and
constant trace profile (tr[F]pp = 0.10). Right side shows the level of attenuation
achieved at a given point in time, with 35.6 dB achieved at 180 s. Compensation
starts at 15 s.

Figure 5.17 show results in the frequency domain of this experiment. Comparison between

the power spectral densities (PSD) of yOL for the Open loop, and yCL(180s) for the Closed loop is

done here. The open loop section show a clear high gain in the region corresponding to 70Hz -

270Hz accordingly with the disturbance frequencies. On the other hand we have the closed loop

PSD taken at t= 180s, where the compensation achieved at those given frequencies is shown. An

improvement regarding the standard approach is the fact that there are no more high-gain peaks

outside the attenuation region, with an almost negligible undesired gain in very low frequencies.

Parameters adaptation evolution through time is displayed in Figure 5.18, where all the 60

estimated parameters from the filter Q(q−1)= QB
QA

of order [30/30] are displayed. Here it can be

seen that many of the parameters values have yet to reach a steady state and have not completely

converged to a constant value.

Finally Figure 5.19 show the values of adaptation gain matrix trace tr[F(t)], where a constant

value of 6.0 is reached immediately after compensations starts.
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FIGURE 5.17. Comparison between measured noise’s PSD of a disturbance with frequen-
cies between 70Hz and 270Hz without compensation (Open loop), and measured
residual noise of the system at 180 s, using a YK FuSBA PAA with a constant trace
profile and tr[F]pp = 0.10 (Closed loop).
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FIGURE 5.18. Filter Q(q−1)= BQ
AQ

parameters evolution for a [30/30] YK-IIR filter using
FuSBA PAA with a constant trace profile. Compensation starts at 15 s.
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FIGURE 5.19. Evolution of adaptation matrix F ’s trace for a constant trace profile of a
YK FuSBA PAA. A value of tr[F]pp = 0.10 was chosen, so tr[F(t)]= tr[F]= 6.0
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5.7 Concluding Remarks

New configurations of the test bench were presented, where diverse physical phenoms affecting

controller’s performance were described. Basis and theory about the Feedforward approach were

given and related to the previous explained Feedback theory. Similar Parameter Adaptation

Algorithms were presented as it was done for in previous Chapters, but this time focused in a

Feedforward approach. The Youla-Kučera parametrization was again applied to improve some

characteristics in the control system. A full methodology for comparison between all different

variants in the configuration of controllers was established and tested in the test bench for

examination of real experimental results.

No definitive conclusion can be done about the general case of Active Noise Control, neverthe-

less results presented give an idea of the differences that diverse approaches and their variants

can bring. It is not yet possible to assure that the standard approach is better just because it

excels in attenuation levels regarding a YK parametrized system, if for example we found that

this last has a neater performance in terms of frequencies attenuated and lack of gain outside

the desired regions of performance, as well as a better ratio of computation time per parameter.
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CONCLUSIONS AND PERSPECTIVES

6.1 Concluding Remarks

The main concern of this thesis was the control of active noise systems. Depending on the

disturbance’s characteristics, either feedback or feedforward control methods are proposed. Both

operation approaches rely on accurate models of the system. Physical modeling can provide

qualitative results but fails to yield models that are usable in control design, since their high

order of complexity and the fact that they are not always an available solution rend them not

suitable for this scenario. Thus data based modeling was emphasized for acquiring such required

dynamic model identification. The main point in the methodology defined for identification based

on data, is to find a simplified approximate discrete transfer function of an infinite order dynamic

model of system’s secondary path, located between the compensator’s actuator and the residual

noise measurement point, used in both control design and active compensation. Additional

transfer functions have been identified as well, including a reverse path model of the inherent

internal coupling present while implementing feedforward compensation, located between the

control actuator and the source of the disturbance’s image required for this approach.

Part I

The procedure was investigated in detail starting with transfer the functions’ orders estimation

and continuing with parameters estimation and model’s validation, as well as related topics

developed in Chapter 3. This settled the basis for the first section in the paper published in

IEEE Transactions on Control Systems Technology, found in Appendix A [Landau et al., 2019b].

Methodology for identification of models was also one of the main topics approached during the

20th IFAC World Congress Toulouse 2017, with the presentation of Appendix E [Meléndez et al.,
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2017]. Shorter introductions to the topic are given in the following publications since it continued

to be a relevant point throughout subsequent theories and their applications.

To develop the theory of both identification and control design, as well as obtaining data

from experimental results, a relevant reconfigurable test-bench was designed and built. The

geometry and dimensions of such an experimental setup are indeed subject to redesign and

changes in order to explore different configurations, allowing to get various identified models

which, at the same time, permit us to have slightly distinct control capabilities. The active control

uses a loudspeaker as an actuator, so the main objective was to minimize the residual noise

at the considered point of measurement. A detailed explanation is given in Chapter 2, where

specifications of the test bench were given, alongside the relevant differences between all the

different geometrical configurations of the test bench and their corresponding identified models.

The first configuration was used in the first part of the thesis, and was described in [Meléndez

et al., 2017, Landau and Meléndez, 2017, Landau et al., 2019b]. The second configuration was the

main topic developed in the internal report [Landau et al., 2018], while the third configuration

was used in the studies done in [Landau et al., 2019a, Airimiţoaie et al., 2018].

Part II

The feedback control approach was addressed in Chapter 4 for the case where the frequency

characteristics of the disturbances are either tonal or narrow-band time-varying. First, in order

to be able to compare the proposed adaptive noise control approach with simpler controllers,

the theory for a linear fixed controller design based on the identified models was presented,

by introducing and developing the concept of Internal Model Principle, later used as a base

for an adaptive controller in a more complex approach. A robust canceler was then proposed

and developed as a better variant of the linear controller, while keeping the non adaptability

characteristics. The concept of Band-Stop Filters was introduced to reduce the so called water-bed

effects, settling a base for the sensitivity function shaping theory also applied in the adaptive

control approach. A direct adaptive control algorithm was then proposed, still based on the

use of the internal model principle, but with a extended theory meant to be combined with the

Youla-Kučera parametrization of the controller. The estimated model’s quality for control design

was illustrated by the experimental performance of the controllers implemented on the test bench

in diverse tests setup conditions.

The most relevant results are on one hand those obtained in the case of multiple narrow

band disturbances located in distinct frequency regions which vary through time, and on the

other hand, those obtained in the case of frequency interference, occurring in the presence of

disturbances with very close frequencies creating a dynamic and non stationary perturbation.

Results gathered from these experiments were presented in the IEEE Transactions on Control

Systems Technology, Appendix A [Landau et al., 2019b], and the 20th IFAC World Congress

held on Toulouse in 2017, Appendix E [Meléndez et al., 2017]. Results achieved with the test
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bench were satisfactory, and a seemingly total attenuation was reached in many of the cases for

the experimental conditions of the tests, proving the efficiency of the developed feedback theory

applied to disturbances with either tonal or narrow-band time-varying characteristics.

Part III

Concerning the attenuation of broadband disturbances, a feedforward scheme was studied. This

approach requires a perturbation’s image, thus a signal highly correlated with the disturbance

needs to be obtained from the system. Given the flexible characteristics of the test bench, a second

sensor was added to perform this task, such that an additional measurement was available to

be integrated into the active noise control system. As explained in Chapter 5, this configuration

generates an internal positive acoustical feedback in the system between the compensation

actuator and the reference measurements source, which is a cause of instabilities in several cases

of compensators. Adaptive algorithms for feedforward active compensation have been developed

from a stability point of view. Nevertheless, in order to separate the problem of stabilizing the

internal positive feedback loop from the minimization of the residual noise, the Youla-Kučera

parametrization of the feedforward compensator had been proposed as a second available optional

approach; hence algorithms have been developed from a stability point of view for both standard

and YK parametrized configurations.

Experimental tests with for a feedforward system were done in the test bench and results were

obtained and studied. Since the different configurations proposed for the test bench have diverse

advantages and disadvantages, the feedforward experiments were designed accordingly for each

of the configurations as well. The second proposed test bench configuration is extensively detailed

and acts as the main topic in [Landau et al., 2018] found at Appendix D, where the system

performs under undesirable conditions related to the minimal difference required between

the pure delays in the primary and secondary paths. Even though this topic was addressed

and extensive studies were done, this is not presented in this thesis since research about the

phenomenon and theories backing up the results are still under development and research, as

can be seen in [Landau et al., 2019a], found at Appendix B

The third test bench configuration was used for the experiments shown in Chapter 5, and in

[Airimiţoaie et al., 2018], see Appendix C. In [Landau et al., 2019a], a brief comparison between

second and third test bench configurations was made. It was proved that if taken into account,

the stability issues inherent to the feedforward approach can be properly managed while keeping

a good performance in terms of attenuation, even in the presence of broadband noises. Since

the frequency characteristics of the disturbances present a wide spectrum and portray a time-

variant dynamic, it is very hard to achieve a full attenuation of them; nevertheless very good and

interesting results were achieved using the proposed approaches.
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6.2 Future Work

Thorough the length of this thesis, feedback and feedforward algorithms have been addressed

individually, and the disturbances each methodology attempts to attenuate are as well individual

for each approach, using a feedback configuration for narrow band perturbations and a feed-

forward for broadband disturbances. Nevertheless, the simultaneous study of them is still a

promising field of research, that can be a followup of the work already done in this project.

First of all, a comparison under identical disturbances conditions can be done from the point

of view where both approaches, feedback and feedforward, are tested under perturbations with

similar frequency characteristics. The use of a feedback approach is preferred in some cases,

since it requires one measurement less and does not present as many instabilities issues as its

feedforward counterpart, however it use is limited to narrow band disturbances. This threshold

can be further tested to find an equilibrium point where more complex perturbation can still be

approached with a simpler feedback control, before appealing to a more complex feedforward

system. In the same way, the broadband control of the feedforward approaches can be expanded

to the narrow disturbances in some extent, enlarging the control capabilities of a system already

implementing this kind methodology.

This studies can lead as well to a simultaneous combined Feedback + Feedforward control

scheme, where the stability issues will be an important part of the system and will play a funda-

mental role in the design of the controllers. Whit this new combined approach, the disturbances

could be as well of combined characteristics, enlarging even further the control capabilities

already achieved by the individual components of the scheme. Theory enclosing the use of both

approaches simultaneously from a stability point of view can be developed with basis in the

individual theories of its components. Here could be more important the need of algorithms and

calculus simplification, since both control systems performing at the same time may increase

significantly the computation time required at each sample.
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Robust and Adaptive Feedback Noise Attenuation in Ducts

Ioan Doré Landau , Raúl Meléndez, Luc Dugard, and Gabriel Buche

Abstract— In this brief, the attenuation of sound propagation
in an air-handling duct using robust and adaptive feedback active
noise control (ANC) strategies is investigated. The case of multiple
narrow-band disturbances located in distinct frequency regions
and the interference occurring in the presence of disturbances
with very close frequencies are considered. The active control
uses a loudspeaker as a compensatory system. The objective is
to minimize the residual noise at the end of the duct segment
considered. The system does not use any additional sensors
for receiving real-time information upon the disturbances. This
brief illustrates the application of the techniques for active
vibration control presented by Landau et al. to this problem.
A hierarchical feedback control approach will be used. At the first
level, a robust linear controller will be designed taking advantage
of the knowledge of the domains of variation of the frequencies
of the noise disturbances. To further improve the performance,
a direct adaptive control algorithm will be added. Its design is
based on the use of the internal model principle combined with
the Youla–Kučera parameterization of the controller. Guidelines
for the design of the baseline (central) controller are provided.
Both robust and adaptive controls require the knowledge of the
discrete-time model of the compensation path, which is obtained
by identification from experimental data. Experimental results on
a relevant duct ANC test bench will illustrate the performance
of the proposed methodology.

Index Terms— Active noise control (ANC), adaptive control,
internal model principle (IMP), robust control, system
identification, Youla–Kučera (YK) parameterization.

I. INTRODUCTION

IN MOST cases, feed-forward noise compensation is cur-
rently used for active noise control (ANC) when a dis-

turbance’s image is available (a correlated measurement with
the disturbance) [2]–[5]. However, these solutions, inspired
by Widrow’s technique for adaptive noise cancellation [6],
ignore the possibilities offered by feedback control systems
and have a number of disadvantages: 1) they require the use
of an additional transducer; 2) difficult choice for its location;
and 3) in most cases, presence of a “positive” coupling
between the compensatory system and the disturbance image’s
measurement, which can cause instabilities [5]. To achieve the
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version February 8, 2019. Manuscript received in final form November 28,
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attenuation of the disturbance without measuring it, a feedback
solution can be considered. This is particularly suitable for
attenuating multiple time-varying narrow-band noise.
Residual noise can be described as the result of acoustic

waves that pass through the system, and the noise canceller’s
objective is to minimize it. In many cases, these waves can be
characterized in the frequency domain either as tonal distur-
bances or as narrow-band disturbances, both with unknown
and time-varying frequencies. The common framework is
the assumption that a narrow-band disturbance is the result
of a white noise or a Dirac impulse passed through the
“disturbance’s model.” More specifically, in discrete time,
the model for a single narrow-band or tonal disturbance is
a notch filter with poles on the unit circle and zeros inside
the unit circle (for details see [1]). In the context of this brief,
robustness should be understood as performance robustness
with respect to the variations of the characteristics of the
disturbance noise. This will be achieved by using either a
linear robust controller or an adaptive controller.
In managing the noise attenuation by feedback, the shape

of the modulus of the output sensitivity function (the trans-
fer function between the disturbance and the residual
noise) is fundamental both from performance and robust-
ness considerations. The output sensitivity function should be
appropriately shaped in order to avoid unwanted amplifications
in the neighborhood of the frequencies of the disturbances
which will be attenuated.
The problem of robust feedback noise attenuation in ducts

by shaping the output sensitivity function has been addressed
in [7]. This paper [8] considers the use of H∞ combined with
LMI for a robust control design of noise attenuation in ducts.
This paper [9] considers an H∞ approach to noise attenuation
in headphones. If the frequency of the tonal or narrow-band
disturbance is known, the "internal model principle" (IMP) can
be used to achieve a very strong attenuation. However, since
the frequencies of these noise disturbances vary, an adaptive
approach has to be considered. The combination of the IMP
with the Youla–Kučera (YK) parameterization has allowed the
development of a direct adaptive regulation scheme for active
vibration control [1] and this approach will be used in this brief
for active noise attenuation in ducts. This approach is different
from the approaches considered in [10]–[12], which ignore
IMP and YK parameterization and require adaptation of a
very large number of parameters. One should mention the pio-
neering work of [13] in using IMP and YK parameterization.
However, this paper uses different adaptation algorithms and
a different design for the central controller and goes beyond
the case of a single tonal disturbance.
Several problems have been considered in the field

of ANC. In this paper, one considers multiple unknown and

1063-6536 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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time-varying tonal disturbances located within two distinct
relatively small frequency ranges. To be specific, two cases
will be considered: 1) the case of two time-varying tonal
disturbances located in two distinct frequency regions and
2) the case of four simultaneous tonal disturbances, two
located in one limited frequency range and the other two in
another frequency range. In this context, a very important
problem is to be able to counteract the very low frequency
oscillations (interference), which are generated when the two
frequencies are very close. Since these disturbances are located
within two relatively small frequency ranges, it is possible
to consider a robust linear control design. The first case,
in the context of ANC in ducts, was considered in [7] and
the shaping of the output sensitivity function was achieved
using the convex optimization procedure introduced in [14]. It
will be shown in this brief that an elementary procedure for
shaping appropriately the modulus of the sensitivity functions
can be implemented by using stopband filters as shaping tools
(see [1] for details).
To further improve the performance, an algorithm for direct

adaptive rejection of the disturbances will be added [1]. This
algorithm uses the IMP and the YK parameterization of the
controller. The design of the central controller associated with
the YK parameterization should consider the presence of low
damped complex zeros in the plant model.
The real-time performance of the noise cancellers depends

upon the quality of the secondary path dynamic model used
for designing the feedback control law. Despite long years
of effort [15], [16], physical modeling is not relevant for
obtaining good models for control design. What is needed
in practice is a finite-dimension discrete-time model, which
reproduces the system’s dynamical behavior. Once such a
model is available, one can use digital control design tech-
niques readily implementable on a real-time computer. These
models can be obtained directly from data using system
identification techniques [1], [7], [17].
This brief is organized as follows. Section II describes

the experimental setup. Section III presents briefly the
equations describing the system model and the controller.
Section IV summarizes the identification procedure and pro-
vides the model of the secondary path used in the controller
design. Section V gives the specifications and the design
of the robust controller. Section VI provides the algorithm
used for adaptive disturbance rejection using the internal
model principle. Section VII presents the experimental results
obtained. Conclusions are given in Section VIII.

II. EXPERIMENTAL SETUP

The view of the test bench used for experiments is shown
in Fig. 1 and its detailed scheme is given in Fig. 2.
The speaker used as the source of disturbances is labeled

as 1, the control speaker is 2, and finally, at the pipe’s open
end, the microphone that measures the system’s output (resid-
ual noise) is denoted as 3. The transfer function between the
disturbance’s speaker and the microphone (1→3) is denomi-
nated Primary Path, while the transfer function between the
control speaker and the microphone (2→3) is denominated
Secondary Path. Both speakers are connected to an xPC Target

Fig. 1. Duct ANC test bench (photograph).

Fig. 2. Duct ANC test bench diagram.

computer with Simulink Real Time environment. y(t) is the
system’s output (residual noise measurement), u(t) is the
control signal, and p(t) is the disturbance. Both primary and
secondary paths have a double differentiator behavior, since as
input we have the voice coil displacement, and as output the air
acoustic pressure. A second computer is used for development,
design, and operation with MATLAB.

III. SYSTEM DESCRIPTION

The linear time invariant discrete-time model of the sec-
ondary path, or plant, used for the controller design is

G(z−1) = z−d B(z−1)
A(z−1)

= z−d B ′(z−1)DF (z−1)
A(z−1)

(1)

where DF (z−1) = (1 − z−1)2 is a double differentiator filter
and

A(z−1) = 1+ a1z−1 + · · · + an A z−n A (2)

B ′(z−1) = b1z−1 + · · · + bnB′ z
−nB′ (3)

with d as the plant pure time delay in a number of
sampling periods.1 The system’s order (without the double
differentiator) is

n = max(n A, nB ′ + d). (4)

1The complex variable z−1 is used to characterize the system’s behavior
in the frequency domain and the delay operator q−1 for the time-domain
analysis.
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Fig. 3. Feedback regulation scheme.

Fig. 3 shows the closed-loop feedback regulation scheme,
where the controller K is described by

K (z−1) = R

S
= r0 + r1z−1 + · · · + rnR z−nR

1+ s1z−1 + · · · + snS z−nS
. (5)

The plant’s output y(t) and the input u(t) may be written as
(see Fig. 3)

y(t) = q−d B(q−1)
A(q−1)

· u(t)+ p(t) (6)

S(q−1) · u(t) = −R(q−1) · y(t). (7)

In (6), p(t) is the disturbances’ effect on the measured output2

and R(z−1) and S(z−1) are the polynomials in z−1 having the
following expressions:

R = HR · R′ = HR · (r ′0 + r ′1z−1 + . . .+ r ′nR′ z
−nR′ ) (8)

S = HS · S′ = HS · (1+ s′1z−1 + . . .+ s′nS′ z
−nS′ ) (9)

where HS(z−1) and HR(z−1) represent prespecified parts of
the controller (used, for example, to incorporate the inter-
nal model of a disturbance, or to open the loop at some
frequencies) and S′(z−1) and R′(z−1) are, in the present
context, the solutions of the Bezout equation

P = (A · HS) · S′ + (z−d B · HR) · R′. (10)

In (10), P(z−1) represents the characteristic polynomial,
which specifies the desired closed-loop poles of the system.
The transfer functions between the disturbance p(t) and

the system’s output y(t) and the control input u(t), denoted,
respectively, output sensitivity and input sensitivity functions,
are given by

Syp(z
−1) = A(z−1)S(z−1)

P(z−1)
(11)

and

Sup(z
−1) = − A(z−1)R(z−1)

P(z−1)
. (12)

IV. SYSTEM IDENTIFICATION

The design of the ANC requires the knowledge of the
dynamic model of the compensator system (the secondary
path). This model will be obtained by system identification
from experimental data [1], [17].
For design and application reasons (the objective is to reject

tonal disturbances up to 400 Hz), the sampling frequency was

2The disturbance passes through the primary path, and p(t) is its output.

selected as fs = 2500 Hz (Ts = 0.0004 s), i.e., approximately
six times the maximum frequency to attenuate, in accordance
with the recommendation given in [1].
The characteristics of the pseudorandom binary sequences

used as excitation signal are: magnitude = 0.15 V,
register length = 17, frequency divider of 1, and sequence
length: 217 − 1 = 131, 071 samples, guaranteeing a uni-
form power spectrum from about 70 to 1250 Hz. Since the
transfer functions have a double differentiator behavior (input:
speaker’s coil position and output: acoustic pressure), this
is considered as a system’s known part and the objective
is to identify the unknown part only. To do this, the input
sequence is filtered by a double discrete-time differentiator
DF = (1 − q−1)2, such that u′(t) = DF · u(t). The double
differentiator will be concatenated with the identified model
of the unknown part in the final models.
The next step in the identification procedure is the esti-

mation of the order n of the model from the experimental
data. The method of [1] and [18] has been used. Once an
estimated order n̂ is selected, one can apply a similar procedure
to estimate n̂ A, n̂− d̂, and n̂B ′ + d̂, from which n̂ A, n̂B ′ , and d̂
are obtained. The estimated order n̂ is selected as the value
which minimizes a certain criterion. The value of n̂ = 36
has been obtained, but since the minimum was relatively flat,
nearby values have also been considered. The final selection
has been done by checking what order allows: 1) to capture
all the oscillatory modes in the model and 2) to lead to the
best statistical validation once the parameters are identified.
Comparative parameter estimation considering various plant

and noise models and estimation algorithms led to the con-
clusion that an ARMAX model representation is the most
appropriate for this system, and the best results in terms of
statistical validation (whiteness test on the residual error) have
been obtained using the output error with extended prediction
model (OEEPM) (see [1] for the detail of the methodology).
Therefore, the OEEPM model n A = 38, n′B = 30, and d = 8
(n = 38) has been chosen. It has 18 oscillatory modes
with damping comprised between 0.0097 and 0.3129. It has
also 13 pairs of stable and unstable oscillatory zeros with
damping comprised between −0.0159 and 0.5438. The very
low damped complex zeros and the unstable zeros are located
in the frequency domain over 500 Hz. The presence of these
low damped zeros makes the control system’s design difficult.
Fig. 4 gives the frequency characteristics of the identified
complete models for the primary and secondary paths.3

V. ROBUST CONTROL DESIGN

A. Control Specifications

The controller is designed to attenuate frequencies around
170 and 285 Hz, with a ±5 Hz tolerance. Attenuation must
be at least of −18 dB in these regions and any undesired
amplification should be less than 6 dB. In addition, since the
gain of the model is low over 600 Hz, and very low damped
complex zeros are present in high frequencies, the magnitude
of the input sensitivity function should be below −20 dB

3Primary path model has been identified using the same procedure. This
model is used for simulations only.
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Fig. 4. Frequency characteristics of the identified primary and secondary
paths’ models.

at frequencies over 600 Hz (in order to improve robustness
with respect to additive uncertainties and to avoid unnecessary
control effort).
In addition, the controller’s gain should be zero at 0 Hz

since the plant does not have gain at zero frequency, and the
controller’s gain should be zero also at the Nyquist frequency
(0.5 fs), for robustness reasons (the unstable zeros are close
to 0.5 fS ). These control specifications will be achieved
through the sensitivity functions’ shaping.

B. Design Procedure

To achieve the constraints at 0 Hz and at 0.5 fs , a fixed
part (HR)4 is introduced in the controller

HR(q−1) = (1− q−1)(1+ q−1) = 1− q−2. (13)

The use of auxiliary poles is done such that the characteristic
polynomial takes the form

P(z−1) = PD(z−1) · PF (z−1) (14)

where PD contains the dominant poles corresponding to the
poles of the identified dynamic model and PF includes the
auxiliary poles determined by the design requirements.
It is shown in [1] that a very accurate shaping of

the output or the input sensitivity functions can be
obtained by the use of the second-order band-stop fil-
ters (BSFs) of the form: [HSi (z

−1)/PF Si (z
−1)] and, respec-

tively [HRi (z
−1)/PF Ri (z

−1)]. Depending on whether the filter
is designed for shaping the output or the input sensitivity
function, the numerator of the filter is included in the fixed
part of the controller denominator HS0 or numerator HR0 ,
respectively. The filter denominator is always included in
the closed-loop characteristic polynomial. As such, the filter
denominator influences the design of the controller indirectly
in the computation of S′ and R′ as solutions of the Bezout
equation (10).
The steps for the linear controller’s design are as follows.

4HRi , HSi , PF Ri , and PF Si will denote any given controller’s fixed part.

Fig. 5. Robust controller design—output sensitivity function evolution.

Fig. 6. Robust controller’s output sensitivity function evolution—zoomed-in
view.

1) Include all (stable) secondary path poles in the closed-
loop characteristic polynomial.

2) Open the loop at 0 and 1250 Hz by setting the fixed part
of the controller numerator as in (13).

3) Nine BSFs on Syp have been used around each of the
frequencies, where attenuation is desired in order to
assure the desired attenuation within ±5 Hz.

4) Eight BSFs have been used on Sup to reduce its magni-
tude above 600 Hz.

5) To improve robustness, 17 auxiliary real poles located
at 0.17 have been added to the characteristic polynomial.

Fig. 5 shows the characteristics of the output sensitivity
function. The effect of auxiliary poles is illustrated. A zoom
of the final characteristics is shown in Fig. 6.5

VI. ADAPTIVE CONTROL DESIGN

The adaptive approach uses the YK parameterization of the
controller combined with the IMP. The basic reference for this
approach used in active vibration control is [1].
A key aspect of this methodology is the use of the IMP. It is

supposed that p(t) is a deterministic disturbance given by

p(t) = Np(q−1)
Dp(q−1)

· δ(t) (15)

where δ(t) is a Dirac impulse and Np and Dp are the coprime
polynomials of degrees nNp and nDp , respectively. In the case

5The models and the robust controller can be downloaded from:
http://www.gipsa-lab.fr/raul.melendez/.
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of stationary narrow-band disturbances, the roots of Dp(z−1)
are on the unit circle.

A. Internal Model Principle [19]

The effect of the disturbance (15) upon the output

y(t) = A(q−1)S(q−1)
P(q−1)

· Np(q−1)
Dp(q−1)

· δ(t) (16)

where Dp(z−1) is a polynomial with roots on the unit
circle and P(z−1) is an asymptotically stable polynomial,
converges asymptotically toward zero if and only if the poly-
nomial S(z−1) in the RS controller has the form [based on (9)]

S(z−1) = Dp(z
−1)HS0(z

−1)S′(z−1). (17)

Thus, the prespecified part of S(z−1) should be chosen as
HS(z−1) = Dp(z−1)HS0(z

−1) and the controller is computed
solving

P = ADp HS0S′ + z−d B HR0 R′ (18)

where P , Dp , A, B , HR0 , HS0, and d are given.6

To build a direct adaptive controller, the YK parameteriza-
tion of the controller is used. In the context of this brief, one
considers a finite impulse response (FIR) filter of the form

Q(z−1) = q0 + q1z−1 + · · · + qnQ z−nQ (19)

to which is associated the vector of parameters

θ = [q0 q1 . . . qnQ ]T . (20)

Under YK parameterization or Q-parameterization, the equiv-
alent polynomials R(z−1) and S(z−1) of the controller K (q−1)
take the form of

R(q−1) = R0 + A · Q · HS0 · HR0 (21)

S(q−1) = S0 − q−d B · Q · HS0 · HR0 (22)

with

R0(z
−1) = r00 + r01 z−1 + . . .+ r0nR

z−nR0 = R′0 · HR0 (23)

S0(z
−1) = 1+ s01 z−1 + . . .+ s0nS

z−nS0 = S′0 · HS0 (24)

where A, B , and d correspond to the identified model of
the secondary path, R0(z−1) and S0(z−1) are the central
controller’s polynomials, and HS0 and HR0 are the controller’s
fixed parts.7

Using the output sensitivity function, the expression of the
output can be written as

y(t) = S0
P
· w(t)− Q · q−dBHS0 HR0

P
· w(t) (25)

with

w(t) = A · y(t)− q−d B · u(t) = A · p(t) (26)

as a disturbance’s observer. The objective is to find a value
of Q such that y(t) is driven to zero.

A block diagram of the adaptive scheme is given in Fig. 7.

6Of course, it is assumed that Dp and B do not have common factors.
7Under YK parameterization using an FIR structure for the Q filter,

the closed-loop poles defined by the central controller remain unchanged.

Fig. 7. Adaptive YK parameterization scheme.

The estimation of the polynomial Q at time t is denoted as

Q̂(t, q−1) = q̂0(t)+ q̂1(t)q
−1 + · · · + q̂nQ (t)q−nQ (27)

and is characterized by the parameter vector 8

θ̂T (t) = [q̂0(t) q̂1(t) . . . q̂nQ (t)]. (28)

Since this is a regulation problem, y(t) is expected to go
toward zero and as such, it is an a priori adaptation error
denoted ε0(t + 1) for a given estimated polynomial Q̂(t, q−1)

ε0(t + 1) = S0
P
·w(t + 1)− Q̂(t)

q−d B∗HS0 HR0

P
·w(t)

(29)

with B(q−1) = q−1 ·B∗(q−1). In a similar way, one can define
an a posteriori error as

ε(t + 1) = S0
P
·w(t + 1)− Q̂(t + 1)

q−d B∗HS0HR0

P
· w(t)

(30)

which can be further expressed as

ε(t + 1) = [Q− Q̂(t + 1)] · q−d B∗HS0 HR0

P
·w(t)+η(t + 1)

(31)

where Q is the unknown optimal filter, and η(t) tends asymp-
totically toward zero (see [20] for details).
Denoting filtered versions of the observer output w(t) as

w1(t) = S0(q−1)
P(q−1)

· w(t) (32)

w2(t) = q−d B∗HR0 HS0

P
·w(t) (33)

and

ϕT (t) = [w2(t) w2(t − 1) . . .w2(t − nQ)] (34)

Equation (31) can be rewritten as

ε(t + 1) = [θT − θ̂T (t + 1)] · ϕ(t)+ η(t + 1) (35)

8The order of the polynomial Q̂ is related to the order of the denominator
of the model of the disturbance nDp as nQ̂ = nDp − 1.
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where η goes to zero. This type of equation allows immedi-
ately to develop an adaptation algorithm [20]

θ̂ (t + 1) = θ̂ (t)+ F(t)ϕ(t)ε(t + 1) (36)

ε(t + 1) = ε0(t + 1)

1+ ϕT (t)F(t)ϕ(t)
(37)

ε0(t + 1) = w1(t + 1)− θ̂T (t)ϕ(t) (38)

F(t + 1) = 1

λ1(t)

[
F(t)− F(t)ϕ(t)ϕT (t)F(t)

λ1(t)
λ2(t)

+ ϕT (t)F(t)ϕ(t)

]
(39)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2; F(0) > 0 (40)

where λ1 and λ2 allow to obtain different profiles for the
evolution of the adaptation gain F(t). Finally, the control to
be applied is given by

S0 · u(t + 1) =−R0 · y(t + 1)− HR0 HS0 Q̂(t + 1) ·w(t + 1).

(41)

For the stability analysis of this algorithm, see [20].
In adaptive regulation applications, one uses in general the

constant trace algorithm. In this case, λ1(t) and λ2(t) are
automatically chosen at each step in order to ensure a constant
trace of the gain matrix (constant sum of the diagonal terms)

trF(t + 1) = trF(t) = trF(0) = nGI (42)

in which n is the number of parameters and G I is to be
suppressed the initial adaptation gain. The matrix F(0) has
the form

F(0) =
⎡
⎢⎣

G I 0
. . .

0 G I

⎤
⎥⎦ . (43)

The values of λ1(t) and λ2(t) at each sampling instant are
determined from the equation

trF(t + 1)= 1

λ1(t)
tr

[
F(t)− F(t)φ(t)φT (t)F(t)

α(t) + φT (t)F(t)φ(t)

]
(44)

fixing the ratio α(t) = λ1(t)/λ2(t). This algorithm can
be combined with the decreasing adaptation gain algo-
rithm or with the variable forgetting factor algorithm for
initialization [1]. One switches to the constant trace algorithm
when the trace of the adaptation gain becomes equal or smaller
than the assigned constant trace. Algorithms with constant
scalar gain can also be implemented [F(t) = F(0)], but the
results will be inferior.
This scheme is implemented on top of the central

controller, which corresponds to the robust controller designed
in Section V from which the BSF filters on Syp have been
removed (preserving, however, the characteristics of Sup in
high frequencies over 600 Hz for robustness reasons).

VII. EXPERIMENTAL RESULTS

The robust controller and the adaptive controller have been
tested on the experimental setup described in Section II under
several protocols.

Fig. 8. Acoustic interference attenuation using a robust controller. Noise
frequencies: 170 + 170.5 Hz and 285 + 285.5 Hz then 180 + 180.5 Hz and
295 + 295.5 Hz. Loop closed at 10 s.

Fig. 9. Acoustic interference attenuation using an adaptive controller. Noise
frequencies: 170+170.5 Hz and 285+285.5 Hz then 180+180.5 Hz and
295+295.5 Hz. Loop closed at 10 s.

A. Interference Test

The protocol is as follows. For 1 s, the system operates
in open loop and without any disturbance in order to get a
reference for the ambient noise. From 1 to 10 s, the test
bench works in open loop, in the presence of two pairs of
sinusoidal noise disturbances located at 170 and 170.5 and
285 and 285.5 Hz, respectively. At 10 s, the loop is closed
and the controller begins to counteract the disturbance effect.
The frequencies of the four signals are then increased at 21 s
by 10 Hz. The corresponding new values are 180 and 180.5 Hz
for the first pair and 295 and 295.5 Hz for the second pair
(leaving the attenuation regions of the robust controller).
Fig. 8 shows the robust controller’s performance for the

interference experiment. As long as the disturbance frequen-
cies are in the region of designed operation, a global attenua-
tion of 39.86 dB is obtained (between 10 and 21 s). After 21 s,
since the frequencies of the disturbances are outside the
region of designed operation, the performance is unsatisfactory
achieving a global attenuation of only 7.94 dB.9 Fig. 9 presents
the results for a similar test using the adaptive controller.
The number of adjustable parameters in the Q filter is 4
(nQ = 3) and an adaptation algorithm with constant trace
adaptation gain is used. The trace of the adaptation gain
used was: tr F = 0.03 · (nQ + 1). It can be seen that after
a negligible transient, a much better attenuation is obtained

9Audio files available at http://www.gipsa-lab.fr/raul.melendez/.
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Fig. 10. Parameters evolution for acoustic interference test using an adaptive
controller.

Fig. 11. Residual noise in open loop (green) and closed loop (blue)
using a robust controller under the effect of tonal disturbances with variable
frequencies.

with respect to the robust controller between 10 and 21 s. The
global attenuation obtained is 70.56 dB. Excellent levels of
attenuation are also obtained once the disturbances frequencies
move away by 10 Hz (global attenuation 67.65 dB), with a
negligible adaptation transient.10

Fig. 10 shows the evolution of each Q-parameter with
respect to time. From 0 to 10 s, all the parameters have values
equal to zero, since the controller is not working yet. Once the
loop is closed, the Q-parameters take almost instantly stable
mean values. At 21 s, the change in frequencies leads to a
quick adaptation toward the new values.

B. Sinusoidal Disturbances With Continuously
Time-Varying Frequency

In this experiment, two tonal noise disturbances located at
160 and 275 Hz are first applied to the system from 1 to 6 s.
Then, their frequencies linearly increase until they reach the
values of 180 and 295 Hz correspondingly at 27 s, after which
their frequencies remain constant.
Fig. 11 shows a comparison between the system’s residual

noise when it is operated in open loop and in closed loop
using the robust controller. As the frequencies move within
the designed attenuation regions, a significant attenuation is
obtained. However, outside this zone, the performance is not
satisfactory. Correspondingly, Fig. 12 shows the residual noise
in open-loop operation and with the adaptive controller. The

10Using nQ = 7 (eight adjustable parameters) does not improve the
performance.

Fig. 12. Residual noise in open loop (green) and closed loop (blue) using
an adaptive controller under the effect of tonal disturbances with variable
frequencies.

Fig. 13. Evolution of the controller parameters under the effect of tonal
disturbances with variable frequency

Fig. 14. Step changes in frequencies using the robust controller. Residual
noise in open loop (green) and in closed loop (blue).

levels of attenuation achieved are globally much better. The
residual noise is comparable with the ambient noise measured
between 0 s and 1 s. The evolution of the parameters is shown
in Fig. 13.

C. Step Changes in Frequencies

In this experiment, step changes in the frequencies of a
pair of tonal noise disturbances are considered, starting from
their nominal values of 170 and 285 Hz. The steps are of
±10 Hz and applied every 6.2 s. The system is operated in
open loop from 0 to 1 s. Fig. 14 shows the robust controller
performance. When the disturbances’ frequencies are inside
the attenuation region of the controller, the attenuation is
satisfactory. However, for −10 Hz and +10 Hz steps, since
one operates outside the designed regions of attenuation,
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Fig. 15. Step changes in frequencies using the adaptive controller. Residual
noise in open loop (green) and in closed loop (blue).

Fig. 16. Evolution of the parameters of the adaptive controller in the presence
of step changes in disturbances frequencies.

the performance is unsatisfactory. The performance of the
adaptive controller is shown in Fig. 15. The performance
is almost the same for all frequencies values and the resid-
ual noise is close to the ambient noise. The adaptation
transients are visible but very short. The same number of
adjustable parameters and the same adaptation gain as in the
previous experiments have been used. The evolution of the
Q-parameters is shown in Fig. 16.

VIII. CONCLUSION

This brief has shown that techniques developed in the con-
text of active vibration control [1] can be successfully used for
robust and adaptive feedback attenuation of multiple narrow-
band noise disturbances in ducts. The effective implementation
of these techniques should consider the characteristics of
the identified model of the compensation path, and design
guidelines have been provided.
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ADAPTIVE FEEDFORWARD NOISE ATTENUATION?

127



Why one should use Youla-Kucera parametrization in adaptive
feeforward noise attenuation?

Ioan Doré Landau, Tudor-Bogdan Airimitoaie, Raul Melendez, and Luc Dugard

Abstract— A crucial problem in adaptive feedforward noise
attenuation is the presence of an “internal” positive acoustical
feedback between the compensation system and the reference
source which is a cause of instabilities. Adaptive algorithms
for feedforward active compensation having an infinite impulse
response (IIR) or a finite impulse response (FIR) structure have
been developed from a stability point of view. Nevertheless, in
order to separate the problem of stabilizing the internal positive
feedback loop from the minimization of the residual noise,
the Youla–Kučera (YK) parametrization of the feedforward
compensator has been proposed and algorithms have been
developed from a stability point of view. Since the stability
of the internal loop is a key issue in practice, the present
paper using a unified presentation of the algorithms available
discusses the stability conditions associated with the various
algorithms and their properties. It is shown that the FIRYK
configuration offers, from the stability point of view, the best
option. Experimental results obtained on a relevant test-bench
will illustrate the theoretical analysis.

I. INTRODUCTION

Adaptive feedforward broad-band noise compensation is

currently used when a correlated measurement with the

disturbance (an image of the disturbance) is available. Most

of the active feedforward noise control systems feature an

internal “positive” acoustical feedback between the com-

pensation system and the reference source (a correlated

measurement with the disturbance). This internal positive

feedback loop often leads to the instability of the system

if it is not taken into account in the design stage ([1]).

Fig. 1. Adaptive active noise feedforward compensation.

Figure 1 gives the basic block diagram of the adaptive

feedforward compensation in the presence of the internal
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positive coupling between the output of the compensator

and the measurement of the image of the incoming noise.

The incoming noise propagates through the so called primary
path and its effect is compensated through a secondary noise

source (secondary path) driven by a feedforward compen-

sator. The input to the feedforward compensator is the sum of

the image of the incoming noise and of the internal acoustical

positive feedback.

Single and multiple narrow-band disturbances can be effi-

ciently attenuated by adaptive feedback configurations ([2],

[3]). Nevertheless, the efficient use of the feedback approach

for attenuation of broad-band noise is limited by the Bode

integral. Therefore adaptive feedforward noise compensation

is particularly dedicated to the attenuation of broad-band

noise with unknown and time-varying characteristics.

Stability analysis of the adaptive feedforward compensa-

tion schemes taking into account the internal positive loop

is an important aspect (see [4], [5], [6], [7], [8]). The

stability analysis makes the assumption that there exists a

compensator N such that the internal positive loop (formed

by M and N in feedback) is stable and such that the perfect

matching of the primary path is achieved.1

Starting with [6], a new approach emerged in the area

of active noise and vibration control (ANVC), namely the

design of the adaptation algorithms starting from a stability

point of view and taking into account the internal positive

feedback from the beginning. In the field of active vibration

control (AVC), the paper [7] provides a full synthesis pro-

cedure for asymptotically stable adaptation algorithms using

infinite impulse response (IIR) feedforard compensators in

the presence of the internal feedback. These algorithms can

be used also in active noise control (ANC) as it will be shown

in this paper.

Since assuring the stability of the internal positive feed-

back loop is essential in applications, in [9] it is proposed

to separate the stabilization of the internal positive feedback

loop from the minimization of the residual noise by using a

Youla–Kučera (YK) parametrization of the feedforward com-

pensator. A tuning procedure based on system identification

has been proposed and tested on a silencer. This idea has

been used in [10] for developing direct adaptive feedforward

compensation schemes using the YK parametrization of

finite impulse response (FIR) form or IIR form [11] for the

feedforward compensator. While these algorithms have been

developed and tested in the context of AVC [8], they can be

1This hypothesis of perfect matching of the primary path can be relaxed
under certain conditions (see [7]).



used also in the field of ANC. Even if the various algorithms

proposed for IIR or FIR compensators assure the stability

of the full system under some strictly positive real (SPR)

conditions, they do not guarantee that the poles of the internal

positive loop are not too close to the unit circle. One may ask

if such a situation may occur. Considering the block diagram

shown in Fig. 1, one can view this system as a Model

Reference Adaptive System. In order to achieve perfect

matching, the internal closed loop which is the effective

feedforward compensator will try to cancel all the zeros of

the secondary path which are not zeros of the primary path.

This will imply that the poles of the internal closed loop will

tend towards the zeros of the secondary path. Unfortunately,

as it will be shown in the experimental section, the model

of the secondary path in the context of noise attenuation

in ducts (typical application field) have very low damped

complex zeros. Therefore, as it will be shown, despite very

good attenuation properties, the FIR (IIR) compensators will

lead to the presence of closed-loop poles extremely close to

the unit circle. So the problem of securing a disk of radius

less than 1 is very important from a practical point of view,

even if one has to accept slightly less good performances. YK

parametrized adaptive feedforward compensators can offer

such a solution. An FIRYK configuration will allow to define

from the beginning the desired closed-loop poles (design of

the central controller) and these poles will remain unchanged

independently of the values of the parameters of the FIRYK

filter.

The FIRYK configuration offers also another advantage:

by an appropriate design of the central controller one can

remove the SPR condition for stability (or more exactly,

it will only depend on the precision of the estimation

of the reverse path M, and current techniques of system

identification extract excellent models from data).

There is also another advantage of using an FIRYK

configuration. A necessary condition for perfect matching is

that the transportation delay2 of the secondary path should be

smaller or equal than the transportation delay of the primary

path. For most applications till recently, the design of the

physical system has been done such that this constraint be

satisfied. Nevertheless, there are potential application fields

where, because of thermal constraints, this condition can not

be fulfilled. It will be shown that despite the violation of

the delay constraints, the FIRYK can still operate with good

performance while all the other configurations except the FIR

are unstable (but the FIR gives poor performance).

The paper is organized as follows: in Section II, the

various structures and algorithms will be presented under a

unified form called “Generalized Youla-Kučera”. Section III

will examine comparatively various particular configurations

and algorithms proposed in terms of stability conditions.

Results obtained on an experimental test-bench (a core of

a duct silencer) will illustrate some important properties of

the algorithms in Section IV.

2The transportation delay is directly related to the speed of the sound and
the geometry of the system.

II. BASIC EQUATIONS AND NOTATIONS

The block diagram associated with an adaptive feeforward

compensator using a generalized Youla-Kučera structure for

adaptive feedforward compensators is shown in Fig. 2.

Fig. 2. Adaptive feedforward disturbance compensation using the gener-
alized Youla–Kučera parametrization.

The primary (T ), secondary (G), and reverse (positive

coupling) (M ) paths represented in Fig. 2 are characterized

by the asymptotically stable transfer operators:

X(q−1) =
BX(q

−1)

AX(q−1)
=

bX1 q−1 + ...+ bXnBX
q−nBX

1 + aX1 q−1 + ...+ aXnAX
q−nAX

,

(1)

with BX = q−1B∗X for any X ∈ {D,G,M}. Ĝ = B̂G

ÂG
,

M̂ = B̂M

ÂM
, and D̂ = B̂D

ÂD
denote the identified (estimated)

models of G, M, and D.

Polynomials AZ and BZ are defined as:

AZ = aZ0 + aZ1 q
−1 + ... (2)

BZ = bZ1 q
−1 + ... (3)

The optimal feedforward compensator which will mini-

mize the residual noise can be written as:

N =
R

S
=

AQR0 −BQAZ
AQS0 −BQBZ

(4)

where the optimal filter Q(q−1) has an IIR structure

Q =
BQ
AQ

=
bQ0 + bQ1 q

−1 + . . .+ bQnBQ
q−nBQ

1 + aQ1 q
−1 + . . .+ aQnAQ

q−nAQ

(5)

and R0(q
−1), S0(q

−1) = 1+q−1S∗0 (q
−1) are the polynomi-

als of the central (stabilizing) filter and AZ(q
−1), BZ(q

−1)
are given in (2) and (3)3.

The estimated QIIR filter is denoted by Q̂(q−1) or

Q̂(θ̂, q−1) when it is a linear filter with constant coefficients
or Q̂(t, q−1) during estimation (adaptation). The vector of

parameters of the optimal QIIR filter assuring perfect match-

ing will be denoted by

θT = [bQ0 , . . . , b
Q
nBQ

, aQ1 , . . . , a
Q
nAQ

] = [θTBQ
, θTAQ

]. (6)

3The following notation for polynomials will be used throughout this
paper: A(q−1) = a0 +

∑nA
i=1 aiq

−i = a0 + q−1A∗(q−1).



The vector of parameters for the estimated Q̂IIR filter

Q̂(q−1) =
B̂Q(q

−1)

ÂQ(q−1)
=

b̂Q0 + b̂Q1 q
−1 + . . .+ b̂QnBQ

q−nBQ

1 + âQ1 q
−1 + . . .+ âQnAQ

q−nAQ

(7)

is denoted by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

, âQ1 , . . . , â
Q
nAQ

] = [θ̂TBQ
, θ̂TAQ

]. (8)

The input of the feedforward filter (called also reference)

is denoted by ŷ(t) and it corresponds to the measurement

provided by the primary microphone. In the absence of the

compensation loop (open-loop operation) ŷ(t) = w(t). The
output of the feedforward compensator (which is the control

signal applied to the secondary path) is denoted by û(t+1) =
û(t+ 1/θ̂(t+ 1)) (a posteriori output).
The a priori output of the estimated feedforward compen-

sator using an IIRYK parametrization for the case of time-

varying parameter estimates is given by (using (4))

û◦(t+ 1) = û(t+ 1|θ̂(t))
= −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= −S∗0 û(t) +R0ŷ(t+ 1)− ÂQ(t, q
−1)∗β(t)

+B̂Q(t, q
−1)α(t+ 1), (9)

and

û(t+ 1) = −S∗0 û(t) +R0ŷ(t+ 1)− ÂQ(t+ 1, q−1)∗β(t)

+B̂Q(t+ 1, q−1)α(t+ 1), (10)

where β(t) = S0û(t)−R0ŷ(t) (see also Fig. 2).

The objective is to develop stable recursive algorithms for

adaptation of the parameters of the Q filter such that the

measured residual error (noise in ANC) be minimized in the

sense of a certain criterion. This has to be done for broad-

band disturbances w(t) (or s(t)) with unknown and variable
spectral characteristics and an unknown primary path model.

The algorithms for adaptive feedforward compensation

have been developed under the following basic hypotheses

1) (Perfect matching condition) There exists a value of

the Q parameters such that

G ·AM (R0AQ −AZBQ)

AQ(AMS0 −BMR0)−BQ(BZAM −BMAZ)
= −T.

2) The characteristic polynomial of the internal closed-

loop for AQ = 1 and BQ = 0

P0(z
−1) = AM (z−1)S0(z

−1)−BM (z−1)R0(z
−1)

is a Hurwitz polynomial.

3) (Stability of the internal loop) The characteristic poly-

nomial of the internal closed-loop for the values of

AQ and BQ assuring perfect matching is a Hurwitz

polynomial:

P = AQ(AMS0 −BMR0)−BQ(BZAM −BMAZ)

A first step in the development of the algorithms is to es-

tablish for a fixed estimated compensator a relation between

the error on the Q-parameters (with respect to the optimal

values) and the adaptation error ν. This is summarized in the
following lemma.

Lemma 1: Under the hypotheses 1–3 for the system

described by eqs. (1)–(10) using an estimated generalized

Youla-Kučera parameterized feedforward compensator with

constant parameters, one has:

ν(t+ 1/θ̂) =
AMG

AQP0 −BQ(BZAM −BMAZ)
[θ− θ̂]Tφ(t),

(11)

with φ(t) given by:

φT (t) = [α(t+ 1), α(t), . . . , α(t− nBQ
+ 1),

− β(t),−β(t− 1), . . . ,−β(t− nAQ
)]. (12)

where:

α(t+ 1) =BM û(t+ 1)−AM ŷ(t+ 1) =

=B∗M û(t)−AM ŷ(t+ 1) (13a)

β(t) =S0û(t)−R0ŷ(t). (13b)

The proof of this lemma follows the proof given in

Appendix A of [11] with the appropriate change of notations

and is omitted.

For assuring the stability of the system, one needs to filter

the observation vector φ(t). Filtering the vector φ(t) through
an asymptotically stable filter L(q−1) = BL

AL
, (11) for θ̂ =

constant becomes

ν(t+ 1/θ̂) =
AMG

(AQP0 −BQ(BZAM −BMAZ))L
·

· [θ − θ̂]Tφf (t) (14)

with

φf (t) = L(q−1)φ(t) = [αf (t+ 1), . . . , αf (t− nBQ
+ 1),

βf (t), βf (t− 1), . . . , βf (t− nAQ
)] (15)

where

αf (t+ 1) = L(q−1)α(t+ 1), βf (t) = L(q−1)β(t). (16)

When the parameters of Q̂ evolve over time and neglecting
the non-commutativity of the time-varying operators, eq. (14)
transforms into4

ν(t + 1/θ̂(t + 1)) =
AMG

[AQP0 −BQ(BZAM −BMAZ)]L
·

· [θ − θ̂(t + 1)]Tφf (t). (17)

Equation (17) has the standard form for an a posteriori
adaptation error ([12]), which immediately suggests to use

4Nevertheless, exact algorithms can be developed taking into account the
non-commutativity of the time varying operators - see [12].



the following parameter adaptation algorithm (PAA):

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)ν(t+ 1) ; (18a)

ν(t+ 1) =
ν0(t+ 1)

1 + ψT (t)F (t)ψ(t)
; (18b)

F (t+ 1) =
1

λ1(t)

⎡
⎣F (t)− F (t)ψ(t)ψT (t)F (t)

λ1(t)
λ2(t)

+ ψT (t)F (t)ψ(t)

⎤
⎦ (18c)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2;F (0) > 0 (18d)

ψ(t) = φf (t), (18e)

where λ1(t) and λ2(t) allow to obtain various profiles for the

matrix adaptation gain F (t) (see [12]). By taking λ2(t) ≡ 0
and λ1(t) ≡ 1, one gets a constant adaptation gain matrix.

Choosing F = γI , γ > 0 one gets a scalar adaptation

gain. The equation (18a) for updating the parameter vector

becomes:

θ̂(t+ 1) = θ̂(t) + γΦ(t)
ν◦(t+ 1)

1 + γΦT (t)Φ(t)
. (19)

III. SPECIFIC CASES

1) For AZ = −1, BZ = 0, R0 = 0, S0 = 1:
we are in the context of IIR (FIR) adaptive feedforward

compensators discusssed in [7]. In this context there are two

basic algorithms:

FUPLR (Filtered-U pseudo linear regression): L = Ĝ and

FUSBA (Filtered-U stability based algorithm): L = ÂM

P̂
Ĝ,

with P̂ = ÂM Ŝ − B̂M R̂.
The stability condition for FUPLR is: AMG

PĜ
− λ

2 = SPR
with λ = maxλ2(t) and for the FUSBA the stability

condition is: AM P̂G

ÂMPĜ
− λ

2 = SPR (λ = maxλ2(t)). For the

FUSBA algorithm, the SPR condition is milder. Note that

the FUSBA algorithm requires initialization over a certain

horizon using FUPLR. This implies that the SPR condition

for FUPLR is fulfilled at least in the average [13], [7]. Note

that the stability conditions for FUPLR is “global” while

for the FUSBA is “local” (one implicitly assumes that the

FUPLR algorithm brings the parameters in the vicinity of

the equilibrium point).

2) For AZ = AM , BZ = BM : we are in the context

of the IIRYK feedforward compensator which has been dis-

cussed in [11]. In this context one has two basic algorithms:

FUPLR: L = Ĝ and

FUSBA: L = ÂM

P̂
Ĝ, where P̂ = ÂQ(AMS0 − BMR0).

The stability condition associated to the FUPLR is that
AMG

PĜ
− λ

2 = SPR (λ = maxλ2(t)) and the stability

condition associated with th FUSBA is that: AM P̂G

ÂMPĜ
− λ

2 =

SPR (λ = maxλ2(t)).
In this case also the FUSBA algorithm requires initializa-

tion using the FUPLR algorithm.5 This implies that the SPR

condition for the FUPLR is satisfied at least on the average.

The FUPLR stability condition is “global” while the FUSBA

condition is “local”.

5Or with an approximated FUSBA algorithm (using the filter L =
AM
P0

Ĝ).

3) For AZ = AM , BZ = BM , AQ = 1: we are in the

context of the FIRYK feedforward compensator (see [11]).

One can consider two adaptation algorithms:

FUPLR: L = Ĝ and

FUSBA: L = ÂM

P̂0
Ĝ, where P̂0 = (ÂMS0 − B̂MR0).

The stability condition associated with the FUPLR is

that: AMG

P0Ĝ
− λ

2 = SPR (λ = maxλ2(t)). The stability

condition associated with the FUSBA is that: AM P̂0G

ÂMP0Ĝ
− λ

2 =

SPR (λ = maxλ2(t)). In this case, for both FUPLR

and FUSBA the stability conditions are “global”. The main

difference with respect to the previous cases is twofold:

• The FUSBA algorithm can be implemented from the

beginning since P0 is known and constant and the

stability condition is global.

• The design of the central controller can be used for

fulfilling the SPR conditions.6

If the central controller is designed such that P̂0 = ÂM , then

FUPLR and FUSBA are almost the same and the fulfillment

of the SPR condition will depend only on the quality of the

estimation of the transfer M. This is a key point because not

only the stability of the internal loop will be assured for any

finite value of the parameters of the FIR Youla-Kučera filter

but in addition the system will be operated under a global

stability condition easy to fulfill and allowing to use high

values of the adaptation gain leading to fast adaptation.

A consequence of this property is that the YKFIR con-

figuration can be safely used even if the perfect matching

condition is not fulfilled. Such a situation occurs in practice

when the pure delay (propagation delay) on the secondary

path is larger than the pure delay of the primary path. This

will be illustrated in the experimental results section.

For all the configurations, scalar adaptation gains can also

be used. The same filter L is used and the algorithms cor-

responding to FUPLR and FUSBA are termed: NFULMS7

and SFUSBA respectively. The stability conditions are the

same as for the matrix case except that in this case λ = 0.

Youla–Kučera Parametrization—Some Remarks

Two major observations when using the Youla–Kučera

parametrization have to be made:

• If an FIR Q filter is used, the poles of the internal

closed-loop will be defined by the central compensator

R0, S0 and they will remain unchanged independently

of the values of the parameters of the Q filter. The

stability condition for the FUSBA algorithm is global.

• If an IIR Q filter is used, the poles of the internal closed-

loop will be defined by the central compensator but

additional poles corresponding to the denominator of

the Q filter will be added. The stability condition for

the FUSBA algorithm is local and an initialization with

the FUPLR algorithm is necessary.

6The main objective of the central controller is to stabilize the internal
loop.

7For the case of FIR and IIR structures the FXLMS and respectively the
FULMS can be interpreted as approximations of the NFULMS algorithm.



IV. EXPERIMENTAL RESULTS

The core of a noise silencer is used as a test bench. Two

configurations have been considered: Configuration A shown

in Fig. 3 (the pure delay of the secondary path is smaller

than the pure delay of the primary path) and configuration

B shown in Fig. 4 (the pure delay of the secondary path is

larger than the pure delay of the primary path).

Fig. 3. Duct active noise control test-bench. Configuration A (Photo).

Fig. 4. Duct active noise control test-bench. Configuration B (Photo).

Fig. 5. Duct active noise control test-bench diagram.

Figure 5 gives the block diagram of the system. The

speaker used as the source of disturbances is labeled as

1, while the control speaker is marked as 2. At the pipe’s

open end, the microphone that measures the system’s output

(residual noise e(t)) is denoted as 3. Inside the pipe, close to
the source of disturbances, the second microphone, labeled as

4, measures the image of the incoming noise, denoted as ŷ(t).
The various paths are indicated on the figure. The system

is connected to an xPC Target computer with Simulink

Real-time R© environment. The sampling frequency is fs =
2500 Hz. The various paths have been identified by standard
experimental identification techniques which are described

in [14]. The various paths’ models are characterized by

the presence of multiple very low damped complex poles

and complex zeros. The orders for the various models are

summarized in Table I for configurations A and B.

Config. A A A B B B

Model nB nA d nB nA d

Primary (global) 20 24 7 20 27 8
Secondary 27 26 6 20 27 9
Reverse 22 25 5 33 33 4

TABLE I

ORDERS OF THE IDENTIFIED SYSTEM PATHS.CONFIGURATION A AND B.

1) Configuration A: The objective is to illustrate first the

properties of the FIRYK configuration and the importance

of the design of the central controller for the fulfillment

of the SPR condition for stability. In the first design, the

central controller introduces some attenuation in the region

of operation (70 to 270 Hz). In the second design, the

central controller was computed such that P0 = ÂM without

introducing attenuation. Table II gives the results obtained

using the two different central controllers with 60 adapted

parameters. In the case P0 �= ÂM , the FUPLR algorithm

Cl. Poles P0 �= ÂM P0 = ÂM
Adaptation algorithm Atten. [dB] Atten. [dB]
Matrix (FUSBA) 27.0 27.3
Matrix (FUPLR) unstable 27.2
Scalar (SFUSBA) 26.7 27.1
Scalar (SFUPLR) unstable 27.2

TABLE II

EXPERIMENTAL RESULTS FOR FIRYK 60/0 ADAPTIVE COMPENSATORS

USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND

DISTURBANCE, 180 S EXPERIMENTS).

is unstable. This can be easily understood by looking to

the phase of the estimated transfer function ÂM

P0
shown in

Fig. 6 (obtained when using the FUSBA algorithm). Since

the noise to be attenuated has an almost flat power spectral

density (PSD) between 70 and 270 Hz, it is clear that the SPR

condition is violated in a too large frequency spectrum (even

using averaging arguments). By using the second design, for

both FUPLR and FUSBA, the SPR condition will be the

same and both algorithms will be stable and will provide

identical performances as illustrated in Table II.

Figure 7 shows the PSD in open loop and in the presence

of the FIRYK compensator8. As it can be seen, there is

no significant amplification at the frequencies outside the

attenuation zone. The estimation of the output sensitivity

function of the internal loop for the FIRYK 60/0 using

the FUSBA algorithm shows a maximum below 10 dB

(modulus margin greater than 0.3). Figure 8 shows the PSD

of an FIR and of an IIR adaptive compensator. Despite

the fact that they assure a better attenuation in the region

70-270 Hz there is a very strong amplification outside the

attenuation zone indicating the presence of a pair of very

low damped complex poles (in the region around 320 Hz).

8The number of the parameters of the compensator is denoted by nb/na
(nb for the numerator, nb for the denominator)
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Fig. 7. PSD of the FIRYK 60/0 adaptive compensators using FUSBA
matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 8. PSD comparison of FIR 30/0 and IIR 15/15 standard adaptive
compensators using FUSBA matrix adaptation (70-270 Hz disturbance,
600 s experiments).

Further analysis shows for the IIR configuration that the

estimated output sensitivity function has a maximum of 26

dB in this region corresponding to a modulus margin of less

than 0.06 (extremely close to instability).

2) Configuration B: In this configuration, all compen-

sators are unstable except the FIR and the FIRYK. Figure 9

shows the PSD of the residual noise obtained over a test

horizon of 800 s for the FIR and the FIRYK compensators.

Clearly the FIRYK compensator offers much better results

in terms of attenuation (20.6 dB versus 10.4 dB for a broad

band noise covering the range 150-350 Hz).

V. CONCLUDING REMARK

In summary one can say that the FIRYK adaptive feed-

forward compensator offers a robust solution (with respect

to the risk of instability of the internal loop) for adaptive

feedforward noise attenuation.
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Fig. 9. PSD of the FIR and the FIRYK adaptive compensators using
FUSBA (60 parameters, 150-350 Hz disturbance, 800 s experiments).
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Algorithms for adaptive feedforward noise
attenuation – A comparative experimental evaluation

Tudor-Bogdan Airimitoaie, Ioan Doré Landau, Raul Melendez, and Luc Dugard

Abstract—Adaptive feedforward broad-band noise compen-
sation is currently used when a correlated measurement with
the disturbance (an image of the disturbance) is available.
Most of the active feedforward noise control systems feature an
internal “positive” acoustical feedback between the compensation
system and the reference source (a correlated measurement
with the disturbance) which has to be taken into account.
Adaptive algorithms for active feedforward noise attenuation
have been developed since 1985 from local optimization point
of view and further improved and analysed. Later on, adaptive
algorithms for feedforward active vibration control have been
developed from a stability point of view and these algorithms
can be used in adaptive feedforward noise control. The various
algorithms existing in the literature of adaptive feedforward noise
control can be viewed as particular cases of the algorithms
developed from a stability point of view. In order to separate
the problem of stabilizing the internal positive feedback loop
from the minimization of the residual noise, the Youla–Kučera
parametrization of the feedforward noise compensator has been
proposed by Zeng and de Callafon (2006). This approach can
be extended to the adaptive case and has been extensively
studied in the field of active vibration control. Nevertheless, this
approach can be used also in the adaptive active noise control.
The paper tries to present, in an unified manner, the available
algorithms and compensator structures for adaptive feedforward
noise attenuation and to propose a comparative experimental
evaluation on a relevant experimental test-bench (a duct silencer).
A number of improvements of the current algorithms are also
proposed and tested.

Index Terms—active noise control, adaptive feedforward com-
pensation, Youla–Kučera parametrization, positive feedback cou-
pling.

LIST OF ACRONYMS

ANC Active Noise Control

ANVC Active Noise and Vibration Control

AVC Active Vibration Control

FIR Finite Impulse Response

FULMS Filtered-u least mean squares

FUPLR Filtered-u pseudo linear regression

FUSBA Filtered-u stability based algorithm
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FXLMS Filtered-x least mean squares

IIR Infinite Impulse Response

FIRYK Youla–Kučera parametrized IIR adaptive

feedforward compensator using a FIR

Youla–Kučera filter

IIRYK Youla–Kučera parametrized IIR adaptive

feedforward compensator using an IIR

Youla–Kučera filter

LMS Least mean squares

NFULMS Normalized FULMS

PAA Parameter Adaptation Algorithm

PRBS Pseudo random binary sequence

PSD Power Spectral Density

SFUSBA Scalar FUSBA

SPR Strictly Positive Real (transfer function)

TET Task execution time

I. INTRODUCTION

ADAPTIVE feedforward noise attenuation is widely used

when a well correlated signal with the disturbance (image

of the disturbance) is available ([1], [2], [3], [4]). The first

references go back roughly to 1985 ([5]). In many systems,

there is a positive acoustical coupling between the feedforward

compensation system and the measurement of the image of the

disturbance. This often leads to the instability of the system. In

the context of this inherent “positive” feedback, the adaptive

feedforward compensator should minimize the effect of the

disturbance while simultaneously assuring the stability of the

internal positive feedback loop. This problem has been clearly

identified by the mid nineties [6], [7].

At the end of the nineties ([8]), adaptive feedback noise

control emerged as an efficient solution for cancelling single or

multiple tonal disturbances ([9], [10]) taking advantage of the

internal model principle and the Youla–Kučera parametrization

of the feedback controller. Nevertheless, the efficient use of

the feedback approach for attenuation of broad-band noise

is limited by the Bode integral. Therefore one can say that

the adaptive feedforward noise compensation is particularly

dedicated to the attenuation of broad-band noise with unknown

and time-varying characteristics. For this reason, the present

paper will focus on the experimental evaluation of the various

feedforward compensator structures and adaptation algorithms

in the presence of broad-band noise disturbances.
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A major component of such a system is the PAA. In the

field of ANC, the first algorithm used was the so called least

mean squares (LMS) ([5]) derived from a local minimization

of a quadratic criterion in terms of the residual noise. Many

contributions have been done on the analysis of the properties

of this algorithm and the improvement of the algorithm. Filter-

ing of the regressor vector was one of the ways for improving

the adaptation and the so called “Filtered-U LMS” (FULMS)

([11], [12], [13]) seems to be the most used algorithm in recent

publications ([14], [15]).
For the analysis of these algorithms in the presence of an

internal positive feedback an attempt is made in [12] where

the asymptotic convergence in a stochastic environment of

the FULMS algorithm is discussed. Further results on the

same direction can be found in [13]. The authors use the

Ljung’s ODE method ([16]) for the case of a scalar vanishing

adaptation gain. Unfortunately, this is not enough because

nothing is said about the stability of the system with respect

to initial conditions and when a non-vanishing adaptation gain

is used (to keep adaptation capabilities). The authors have

assumed that the positive feedback does not destabilize the

system which is not a realistic assumption.
A different approach emerged in the area of ANVC, namely

the design of the adaptation algorithms starting from a stability

point of view and taking into account the internal positive

feedback from the beginning. A first reference in ANC for

a stability approach in the presence of the internal positive

feedback is ([7]). Unfortunately, the applicability of the results

is very limited since one assumes that the secondary (compen-

satory) path has a simple positive gain or it is characterized by

a SPR transfer function (unrealistic hypothesis). In the field of

AVC, the paper [17] provides a full synthesis procedure for

asymptotically stable adaptation algorithms using IIR feed-

forard compensators in the presence of the internal feedback.

These algorithms can be used also in ANC as it will be shown

in this paper. It is important to note that most of the algorithms

used for the adaptive feedforward compensation can be viewed

as particular approximations of the algorithms derived from

stability considerations.
An interesting idea is presented in the paper [4]: separate

the stabilization of the internal positive feedback loop from the

minimization of the residual noise. This can be done by using

a Youla–Kučera parametrization of the feedforward compen-

sator. A tuning procedure based on system identification has

been proposed and tested on a silencer. This idea has been

used in [18], [19] for developing direct adaptive feedforward

compensation schemes using Youla–Kučera parametrization

of FIR or IIR form for the feedforward compensator. These

algorithms have been extensively tested and compared with

other algorithms in the field of AVC [20]. Nevertheless, they

can be used also in the field of ANC as it will be shown in

this paper. These algorithms have a number of advantages with

respect to IIR feedforward compensators including:

• Possibility to pre-assign the poles of the internal posi-

tive closed-loop (not possible with IIR(FIR) feedforward

compensators);

• Easier satisfaction of the positive real condition for sta-

bility.

The objectives of this paper are:

• To comparatively evaluate experimentally in the context

of ANC the various algorithms developed in AVC from

the stability point of view and the algorithms currently

used in ANC for attenuating broad-band noise distur-

bances;

• To compare experimentally the performance of Youla–

Kučera parametrized feedforward compensators with

those of the IIR (FIR) adaptive feedforward compensators

for various types of PAA;

• To try to present in an unified manner the various PAA

used in ANVC.

• To evaluate comparatively the complexity of the various

configurations in terms of “performance” and “task exe-

cution time” (TET).

The experimental evaluation of the various algorithms and

compensator configurations is done under identical protocols

on an experimental test-bench which represents the core of a

duct silencer.

The paper is organized as follows: in Section II, the exper-

imental setting is presented. Section III describes the various

paths of the system and gives their experimentally identi-

fied frequency characteristics (the identification procedure is

presented in Appendix A). The IIR adaptive compensators

together with the corresponding PAA are reviewed in Section

IV. In Section V the Youla–Kučera based adaptive feedforward

algorithms are presented. Section VI presents the results of

the comparative experimental evaluation. Conclusions of these

evaluations are given in Section VII.

II. EXPERIMENTAL SETUP

The view of the test-bench used for experiments is shown

in Fig. 1 and its detailed scheme is given in Fig. 2. The actual

dimensions of the test-bench are given in Fig. 3.

Fig. 1. Duct active noise control test-bench (Photo).

The speaker used as the source of disturbances is labeled

as 1, while the control speaker is marked as 2. At pipe’s

open end, the microphone that measures the system’s output

(residual noise e(t)) is denoted as 3. Inside the pipe, close to

the source of disturbances, the second microphone, labeled

as 4, measures the perturbation’s image, denoted as y(t).
Additionally, we denote u(t) the control signal, and s(t) the
disturbance. The transfer function between the disturbance’s

speaker and the microphone (1→3) is called Global Primary
Path, while the transfer function between the control speaker

and the microphone (2→3) is denoted Secondary Path. The
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Fig. 2. Duct active noise control test-bench diagram.

Fig. 3. Duct active noise control test-bench dimensions.

transfer function between microphones (4→3) is called Pri-
mary Path. The internal coupling found between (2→4) is

denoted Reverse Path. These marked paths have a double

differentiator behavior, since as input we have the voice coil

displacement and as output the air acoustical pressure.

Both speakers are connected to an xPC Target computer

with Simulink Real-time R© environment through a pair of

high definition power amplifiers and a data acquisition card.

A second computer is used for development, design and

operation with Matlab R©. The sampling frequency has been

chosen in accordance with the recommendations given in [20].

Taking into account that disturbances up to 400 Hz may need

to be attenuated, a sampling frequency fs = 2500 Hz has

been chosen (Ts = 0.0004 sec), i.e., approximately six times

the maximum frequency to attenuate.

In this configuration, speakers are isolated inside wood

boxes filled with special foam in order to create anechoic

chambers and reduce the radiation noise produced. These

boxes have dimensions 0.15m × 0.15m × 0.12m, giving a

chamber volume of 2.7L.

III. SYSTEM DESCRIPTION

The primary (T ), secondary (G), and reverse (positive

coupling) (M ) paths are characterized by the asymptotically

stable transfer operators:

X(q−1) = q−dx
BX(q

−1)

AX(q−1)

= q−dx
bX1 q−1 + ...+ bXnBX

q−nBX

1 + aX1 q−1 + ...+ aXnAX
q−nAX

, (1)

with BX = q−1B∗X for any X ∈ {G,M, T}. Ĝ = q−dG B̂G

ÂG
,

M̂ = q−dM B̂M

ÂM
, and T̂ = q−dT B̂T

ÂT
denote the identified

(estimated) models of G, M, and T. Both BG and BM have a

one step discretization delay.

The system’s order is defined by (the indexes G, M , and T
have been omitted):

n = max(nA, nB + d). (2)

0 200 400 600 800 1000 1200
-70

-60

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Global primary path
Secondary path
Reverse path

Bode Diagram

Frequency  (Hz)

Fig. 4. Frequency characteristics of the Primary, Secondary and Reverse paths
identified models.

The frequency characteristics of the identified models for

the primary1, secondary and reverse paths are shown in Fig. 4.

These characteristics present multiple resonances (low damped

complex poles)2 and anti-resonances (low damped complex

zeros).

One can see that the secondary path has a high gain between

70 to 270 Hz, which means that disturbances can be efficiently

attenuated in this zone. It is also clear that the reverse path

has a significant gain on a large frequency range so its effect

can not be neglected. The orders of the identified models are

given in Table I.

Model nB nA d

Primary (global) 20 24 7
Secondary 27 26 6
Reverse 22 25 5

TABLE I
ORDERS OF THE IDENTIFIED SYSTEM PATHS.

Details concerning the experimental model identification are

given in Appendix A.

IV. IIR (FIR) ADAPTIVE FEEDFORWARD NOISE

COMPENSATORS

The corresponding block diagrams in open-loop operation

and with the compensator system are shown in Fig. 5. The

signal w(t) is the image of the disturbance measured when

1The primary path model has been exclusively used for simulation purposes
only.

2The lowest damping is around 0.01.



4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

the compensator system is not used (open-loop). The signal

ŷ(t) denotes the effective output provided by the measurement
device when the compensator system is active and which will

serve as input to the adaptive feedforward compensator N̂ .

The output of this filter, denoted by û(t), is applied to the

actuator through an amplifier. The transfer function G (the

secondary path) characterizes the dynamics from the output

of the compensator N̂ to the residual noise measurement

(amplifier + actuator + dynamics of the acoustical system).

The unmeasurable value of the output of the primary path

(when the compensation is active) is denoted x(t).

(a)

(b)

Fig. 5. Feedforward AVC: in open-loop (a) and with adaptive feedforward
compensator (b).

The coupling between the output of the feedforward com-

pensator and the measurement ŷ(t) through the compensator

actuator is denoted by M . As indicated in Fig. 5, this coupling

is a “positive” feedback. The positive feedback may destabilize

the system.3 The system is no longer a pure feedforward

compensator.

The objective is to estimate (and to adapt) the parameters of

the feedforward compensator N(q−1) such that the measured

residual noise be minimized in the sense of a certain crite-

rion. The optimal IIR feedforward compensator (unknown) is

defined by:

N(q−1) =
R(q−1)

S(q−1)
, (3)

where

R(q−1) = r0 + r1q
−1 + . . .+ rnR

q−nR , (4)

S(q−1) = 1 + S1q
−1 + . . .+ SnS

q−nS

= 1 + q−1S∗(q−1). (5)

The estimated compensator is denoted by N̂(q−1) or

N̂(θ̂, q−1) when it is a linear filter with constant coefficients

or N̂(t, q−1) during estimation (adaptation) of its parameters.
FIR compensators are obtained by taking S = 1 (i.e. si = 0,
∀i = 1 : nS).
The input of the feedforward compensator is denoted by

ŷ(t) and it corresponds to the sum between the disturbance

3Different solutions for reducing the effect of this internal positive feedback
are reviewed in [6], [3].

image in the absence of compensation and of the output of

the positive feedback path. In the absence of the compensation

loop (open-loop operation): ŷ(t) = w(t). The a posteriori4

output of the feedforward compensator (which is the control

signal applied to the secondary path) is denoted by û(t +
1) = û(t + 1|θ̂(t + 1)). The input-output relationship for the

estimated feedforward compensator is given by the equation

of the a priori output:

û◦(t+ 1) = û(t+ 1|θ̂(t))
= −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= θ̂T (t)φ(t) =
[
θ̂TS (t), θ̂

T
R(t)

] [φû(t)
φŷ(t)

]
, (6)

where

θ̂T (t) = [ŝ1(t), . . . ŝnS
(t), r̂0(t), . . . r̂nR

(t)]

= [θ̂TS (t), θ̂
T
R(t)], (7)

φT (t) = [−û(t),−û(t− nS + 1), ŷ(t+ 1), . . . ŷ(t− nR + 1)]

= [φTû (t), φ
T
ŷ (t)], (8)

and û(t), û(t − 1), ... are the a posteriori outputs of the

feedforward compensator generated by

û(t) = û(t|θ̂(t)) = θ̂T (t)φ(t− 1), (9)

where ŷ(t + 1), ŷ(t), . . . are the measurements provided by

the primary transducer.5

The measured residual error satisfies the following equation:

e◦(t+ 1) = x(t+ 1) + ẑ◦(t+ 1). (10)

The a priori adaptation error is defined as

ν◦(t+ 1) = −e◦(t+ 1) = −x(t+ 1)− ẑ◦(t+ 1). (11)

The a posteriori adaptation (residual) error (which is com-

puted) will be given by:

ν(t+ 1) = ν(t+ 1|θ̂(t+ 1)) = −x(t+ 1)− ẑ(t+ 1). (12)

When using an estimated filter N̂ with constant parameters:

û◦(t) = û(t), ẑ◦(t) = ẑ(t) and ν◦(t) = ν(t).
The development of the PAA for estimating in real-time the

parameter vector θ̂ assumes that

• (Perfect matching condition) There exists a value of the

feedforward compensator parameters such that6

N

(1−NM)
G = −T (13)

• and the characteristic polynomial of the “internal” feed-

back loop:

P (z−1) = AM (z−1)S(z−1)−BM (z−1)R(z−1) (14)

is a Hurwitz polynomial

4In adaptive control and estimation the predicted output at t can be
computed either on the basis of the previous parameter estimates (a priori)
or on the basis of the current parameter estimates (a posteriori).

5ŷ(t+ 1) is available before adaptation of parameters starts at t+ 1.
6The parenthesis (q−1) or (z−1) will be omitted in some of the following

equations to make them more compact.
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So the objective of the adaptation algorithm will be to allow

the compensator N̂ to approach the optimal compensator N
at least in the frequency range of interest but assuring the

asymptotic stability of the internal loop.

From the user point of view and taking into account the type

of operation of adaptive disturbance compensation systems,

one has to consider two modes of operation of the adaptive

schemes:

• Adaptive operation. The adaptation is performed con-

tinuously with a non-vanishing adaptation gain and the

feedforward compensator is updated at each sampling.

• Self-tuning operation. The adaptation procedure starts

either on demand or when the performance is unsatis-

factory. A vanishing adaptation gain is used.

Parameter Adaptation Algorithm (PAA)

A general formulation of the parameter adaptation algorithm

is given below [21]:

θ̂(t+ 1) = θ̂(t) + F (t)Φ(t)ν(t+ 1) (15)

ν(t+ 1) =
ν◦(t+ 1)

1 + ΦT (t)F (t)Φ(t)
(16)

F (t+ 1) =
1

λ1(t)

⎡
⎣F (t)− F (t)Φ(t)ΦT (t)F (t)

λ1(t)
λ2(t)

+ΦT (t)F (t)Φ(t)

⎤
⎦ (17)

1 ≥ λ1(t) > 0 ; 0 ≤ λ2(t) < 2;F (0) > 0 (18)

Φ(t) = φf (t) (19)

where λ1(t) and λ2(t) allow to obtain various profiles for the

adaptation gain matrix F (t). Four cases are of interest:

• Constant trace algorithm. λ1(t) and λ2(t) are adjusted

continuously to maintain constant the trace of the adap-

tation gain matrix. This allows to move in the optimal

direction while maintaining the adaptation capabilities.

• Decreasing adaptation gain (λ1 = 1, λ2 = 1). This
is used in self-tuning regime and in some situations for

initialization of the constant trace algorithm.

• Variable forgetting factor. The difference with respect

to the decreasing adaptation gain is that in this option

λ1(0) < 1 but it will tend asymptotically to 1. This allows
to get transiently a higher adaptation gain.

• Constant scalar adaptation gain. This is obtained by

taking F (t) = γI where I is the identity matrix. One

gets a scalar adaptation gain.

To initialize the algorithms often one can use the com-

bination of the “decreasing gain” with the “constant trace”

(i.e., allowing a larger gain at the beginning of the adaptation

process) or the combination of the “variable forgetting factor”

with the “constant trace”. In both cases one switches to the

constant trace when the trace of the adaptation gain matrix

F (t) reaches the specific desired trace.

The evolution of the adaptation gain matrix is given by:

F (t+ 1) =
1

λ1(t)

⎡
⎣F (t)− F (t)Φ(t)ΦT (t)F (t)

λ1(t)
λ2(t)

+ΦT (t)F (t)Φ(t)

⎤
⎦ . (20)

For the decreasing gain one chooses

λ1(t) = λ1 = 1 ; λ2(t) = λ2 = 1 (21)

In the variable forgetting factor case, the evolution of λ1(t) is
given by

λ1(t) = λ0λ1(t− 1) + 1− λ0 ; 0 < λ0 < 1 (22)

with

λ2(t) = λ2 = 1 (23)

the typical values being:

λ1(0) = 0.95 to 0.99 ; λ0 = 0.95 to 0.99

The values of λ1(t) and λ2(t) in order to maintain constant

the trace of the adaptation gain matrix are determined from

the equation:

tr (F (t+ 1)) =
1

λ1(t)
tr

(
F (t)− F (t)Φ(t)ΦT (t)F (t)

α(t) + ΦT (t)F (t)Φ(t)

)

fixing the ratio α(t) = λ1(t)/λ2(t) = const. (a typical value
is α = 1).
The updating of matrix F(t) is done using the U-D factor-

ization for numerical robustness reasons. The details of this

algorithm7 are given in [20, Appendix B].

By taking F (t) = γI , where I is the identity matrix, one

gets a scalar adaptation gain (see columns 3 and 4 of Table II).

The equation (15) for updating the parameter vector becomes:

θ̂(t+ 1) = θ̂(t) + γΦ(t)
ν◦(t+ 1)

1 + γΦT (t)Φ(t)
. (24)

When using scalar adaptation gain, one can see that for very

small values of γ one can approximate the above equation by

θ̂(t+ 1) = θ̂(t) + γΦ(t)ν◦(t+ 1) (25)

which corresponds almost to the adaptation algorithm used

in FULMS except that since the adaptation gain is small and

the residual error varies slowly, the quantity Φ(t)ν◦(t+ 1) is
replaced by Φ(t− 1)ν◦(t).

Filtering of the residual error

An interesting practical issue is the use of a filtered residual

error (noise) in the adaptation algorithm. This idea comes from

adaptive filtering and identification ([22], [7]). For a general

presentation see [20]. A recent application of adaptation error

filtering to AVC is presented in [23]. The use of this filtering

on one hand may contribute to satisfy the SPR condition for

stability and on the other hand (which is the most important)

it will shape the resulting spectral density.8

In this case the adaptation error takes the form

ν◦(t) = − [
e◦(t) + V ∗(q−1)e(t− 1)

]
, (26)

where the filter V (q−1) is given as

V (q−1) = 1 + v1q
−1 + . . .+ vnV

q−nV = 1 + q−1V ∗(q−1).

7Routines for the implementation of the algorithm can be downloaded from
http://www.gipsa-lab.grenoble-inp.fr/∼ioandore.landau/adaptivecontrol/

8In fact it will modify the quadratic criterion minimized by the adaptation
algorithm by introducing a frequency dependent weight.
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Summary of the algorithms for adaptive IIR (FIR) compen-
sators

Table II summarizes the most important algorithms used

with an IIR (FIR) configuration of the feedforward compen-

sator. Column 1 gives the adaptation algorithms using a matrix

adaptation gain derived from stability considerations (FUPLR

and FUSBA). Column 2 gives the adaptation algorithms using

scalar adaptation gain also derived from stability consider-

ations (NFULMS and SFUSBA). Column 3 gives the now

classical FULMS algorithm (which corresponds to the FXLMS

algorithm when using an FIR compensator) which uses a scalar

adaptation gain. The connections with the NFULMS have been

enhanced above.

The last two rows of Table II summarize the stability con-

ditions in a deterministic context (global asymptotic stability

condition for any initial condition on the parameters of the

compensator or local asymptotic stability condition) and the

convergence condition in a stochastic environment (conver-

gence of the parameters in the presence of a measurement

noise affecting the residual noise measurement, assuming that

the system is already asymptotically stable in deterministic

context and that the parameters evolve inside the zone where

the internal positive feedback loop is stable for each time t
[21]).

A key role in the stability of the various adaptation algo-

rithms is played by the filter L operating on the observation

vector φ. It helps to satisfy the “strictly positive real condition”
for asymptotic stability and parameter convergence.

For understanding the roles played by the filter L introduced

on the observation vector, it is important to note that the

equation of the residual error can be expressed as (see [17]):

ν(t+ 1) = H(q−1)[θ − θ̂(t+ 1)]Tφf (t) (27)

where

H(q−1) =
AM (q−1)G(q−1)

P (q−1)L(q−1)
(28)

and

φf (t) = Lφ(t). (29)

From these equations, one can understand that there is a phase

difference between the residual error ν(t + 1) and φf (t) and
that φf (t)ν(t + 1) is an approximation of the inverse of the

gradient vector. Therefore, for convergence, the angle between

the direction of adaptation and the direction of the inverse of

the true gradient (not computable) should be less than 90◦

which is effectively assured by the SPR stability condition on

H . For time-varying adaptation gains, the stability condition

is sharper:

H ′(q−1) = H(q−1)− λ2

2
, max

t
(λ2(t)) ≤ λ2 < 2 (30)

should be SPR.

Several choices for the filter L will be considered, leading

to different algorithms. For the case of matrix adaptation gain

one has:

FUPLR: L = Ĝ
FUSBA: L = ÂM

P̂
Ĝ with P̂ = ÂM Ŝ − B̂M R̂

The algorithm FUPLR, assuming that the SPR condition

given in Table II is satisfied, assures a global stability of

the algorithm for any initial conditions. The SPR stability

condition can be relaxed for low adaptation gain provided

that, in the average, the SPR condition is true (see [24], [16],

[17]) but the performance will be impacted. To improve the

performance one has to use the FUSBA algorithm which tries

to make the H(q−1) transfer function close to 1. This will

depend on how good the estimation in real-time of P̂ is.

This can be achieved once an acceptable estimation of the

parameters of N̂ is available. Therefore, in order to use this

algorithm, an initialization with the FUPLR algorithm should

be done9.

For the scalar adaptation gain one has the same choices

for the filter L and the corresponding algorithms issued

from stability consideration are (see column 3 of Table II):

NFULMS and SFUSBA. The same considerations as for the

matrix adaptation gain are valid in the case of constant scalar

adaptation gain. The SFUSBA should be initialized using the

NFULMS. Note also that FULMS and NFULMS use the same

type of filter.

The following procedure is used at each sampling time for

implementing the adaptive feedforward compensation:

1) Get the measured image of the disturbance ŷ(t+1), the
measured residual error e◦(t+ 1), and compute ν◦(t+
1) = −e◦(t+ 1).

2) Compute φ(t) and φf (t) using (8) and (29).

3) Estimate the parameter vector θ̂(t + 1) using the PAA

(15)-(19).

4) Compute (using (9)) and apply the control û(t+ 1).

V. YOULA–KUČERA PARAMETRIZED ADAPTIVE

FEEDFORWARD COMPENSATORS

The rationale behind the use of the Youla–Kučera

parametrized feedforward compensator is to separate the prob-

lem of the stabilization of the positive internal loop from the

problem of the minimization of the residual noise.

In order to achieve this, instead of a standard IIR feedfor-

ward compensator, one can use an Youla–Kučera parametriza-

tion of the adaptive feedforward compensator. The central

compensator will assure the stability of the internal positive

feedback loop and its performance are enhanced in real-time

by the direct adaptation of the parameters of the Youla–Kučera

Q filter.

A block diagram of such an adaptive feedforward compen-

sator is shown in Fig. 6. FIR and IIR Q filters can be used.

Details of the specific algorithms can be found in [18], [19].

The transfer operators of the various paths of the AVC system

have been described in Section III.

9For the FUSBA algorithm the stability condition is a “local” result. Strictly
speaking, it is valid only in the neighborhood of the equilibrium point. It
assumes indeed that the estimated P̂ is asymptotically stable. This requires
inclusion of a stability test on P̂ .
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Paper (Matrix gain) Paper (Scalar gain) FULMS (Scalar gain)

θ̂(t+ 1) = θ̂(t) + F (t)Φ(t)
ν◦(t+1)

1+ΦT (t)F (t)Φ(t)
θ̂(t) + γ(t)Φ(t)

ν◦(t+1)

1+γ(t)ΦT (t)Φ(t)
θ̂(t) + γ(t)Φ(t− 1)ν◦(t)

Adapt.
gain

F (t+ 1)−1 = λ1(t)F (t)+

γ(t) > 0 γ(t) > 0+λ2(t)Φ(t)ΦT (t)
0 ≤ λ1(t) < 1, 0 ≤ λ2(t) < 2

F (0) > 0
Adaptive Decr. gain and const. trace γ(t) = γ = const γ(t) = γ = const
Self λ2 = const. ∞∑

t=1
γ(t) = ∞, lim

t→∞ γ(t) = 0
∞∑

t=1
γ(t) = ∞, lim

t→∞ γ(t) = 0
tuning lim

t→∞λ1(t) = 1

φT (t) = [−ŷ(t), . . . , û(t+ 1), . . .] [−ŷ(t), . . . , û(t+ 1), . . .] [−ŷ(t), . . . , û(t+ 1), . . .]

Φ(t) =

Lφ(t) Lφ(t)

FUPLR: L = Ĝ NFULMS: L = Ĝ Lφ(t)

FUSBA: L = ÂM

P̂
Ĝ SFUSBA: L = ÂM

P̂
Ĝ L = Ĝ

P̂ = ÂM Ŝ − B̂M R̂ P̂ = ÂM Ŝ − B̂M R̂

M = BM
AM

BM = b1M z−1 + b2M z−2 + . . . BM = b1M z−1 + b2M z−2 + . . . BM = b1M z−1 + b2M z−2 + . . .
AM = 1 + a1M z−1 + a2M z−2 + . . . AM = 1 + a1M z−1 + . . . AM = 1

Stability
AMG
PL

− λ
2
= SPR AMG

PL
= SPR Unknown

condition λ = maxλ2(t)

Conv.
AMG
PL

− λ
2
= SPR AMG

PL
= SPR

G
PĜ

= SPR
condition λ = λ2

TABLE II
COMPARISON OF ALGORITHMS FOR DIRECT ADAPTIVE FEEDFORWARD COMPENSATION IN ANC WITH ACOUSTICAL COUPLING.

Fig. 6. Adaptive feedforward disturbance compensation using Youla–Kučera
parametrization.

Infinite Impulse Response Youla–Kučera compensators
(IIRYK)

The optimal IIR feedforward compensator which will mini-

mize the residual noise can be written, using the Youla–Kučera

parametrization, as

N =
R

S
=

AQR0 −BQAM
AQS0 −BQBM

(31)

where the optimal Youla–Kučera filter Q(q−1) has an IIR

structure

Q(q−1) =
BQ(q

−1)

AQ(q−1)
=

bQ0 + bQ1 q
−1 + . . .+ bQnBQ

q−nBQ

1 + aQ1 q
−1 + . . .+ aQnAQ

q−nAQ

and R0(q
−1), S0(q

−1) = 1+q−1S∗0 (q
−1) are the polynomials

of the central (stabilizing) compensator 10 and AM (q−1),

10The characteristic polynomial of the internal loop with the central
compensator: P0 = AMS0 −BMR0 is a Hurwitz polynomial.

BM (q−1) are given in (1). The estimated IIRYK filter is

expressed as:

Q̂(q−1) =
B̂Q(q

−1)

ÂQ(q−1)
=

b̂Q0 + b̂Q1 q
−1 + . . .+ b̂QnBQ

q−nBQ

1 + âQ1 q
−1 + . . .+ âQnAQ

q−nAQ

and its parameters are given by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

, âQ1 , . . . , â
Q
nAQ

] = [θ̂TBQ
, θ̂TAQ

]. (32)

The estimated IIRYK filter is denoted by Q̂(q−1) or Q̂(θ̂, q−1)
when it is a linear filter with constant coefficients or Q̂(t, q−1)
during estimation (adaptation). The a priori output of the esti-
mated feedforward compensator using an IIRYK parametriza-

tion for the case of time-varying parameter estimates is given

by (using (31))

û◦(t+ 1) = û(t+ 1|θ̂(t))
= −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= −S∗0 û(t) +R0ŷ(t+ 1)− ÂQ(t, q
−1)∗β(t)

+B̂Q(t, q
−1)α(t+ 1), (33)

and

û(t+ 1) = −S∗0 û(t) +R0ŷ(t+ 1)− ÂQ(t+ 1, q−1)∗β(t)

+B̂Q(t+ 1, q−1)α(t+ 1), (34)

where β(t) = S0û(t) − R0ŷ(t) (see also Fig. 6). The

development of the PAA assumes that:

• (perfect matching condition) For the IIRYK parametrized

feedforward compensator there exists a value of the

parameters Q such that

G ·AM (R0AQ −AMBQ)

AQ(AMS0 −BMR0)
= −T. (35)

• the characteristic polynomial of the resulting internal

loop:

P = AQ(AMS0 −BMR0) = AQP0, (36)
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is a Hurwitz polynomial.

The equation of the residual error can be expressed as ([19]:

ν(t+ 1|θ̂) = AM (q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂]Tφf (t) (37)

with

φf (t) = L(q−1)φ(t)

= [αf (t+ 1), . . . αf (t− nBQ
+ 1),

βf (t), βf (t− 1), . . . βf (t− nAQ
)] (38)

where αf (t+1) = L(q−1)α(t+1), βf (t) = L(q−1)β(t), and

φ(t) = [α(t+ 1), . . . α(t− nBQ
+ 1),

β(t), β(t− 1), . . . β(t− nAQ
)] (39)

The PAA described in Section IV is used also for the Youla–

Kučera feedforward compensators. Several choices for the

filter L will be considered, leading to different algorithms:

FUPLR: L = Ĝ
FUSBA: L = ÂM

P̂
Ĝ with

P̂ = ÂQ(ÂMS0 − B̂MR0) = ÂQP̂0,

where ÂQ is an estimation of the denominator of the ideal

IIRYK filter computed on the basis of available estimates

of the parameters of the filter Q̂. In order to implement

the FUSBA - IIRYK algorithm, it is necessary to make an

initialization over a certain horizon for obtaining an estimation

of ÂQ. This can be done by running the FUPLR -IIRYK for

a certain time to get an estimate of ÂQ.

Finite Impulse Response Youla–Kučera Compensators
(FIRYK)

FIR Youla–Kučera filters are obtained by taking AQ(q
−1) =

1. The vector of parameters of the optimal FIRYK filter

assuring perfect matching will be denoted by

θT = [bQ0 , . . . b
Q
nBQ

] = θTBQ
. (40)

The vector of parameters for the estimated Q̂ filter

Q̂(q−1) =
B̂Q(q

−1)

1
= b̂Q0 + b̂Q1 q

−1+ . . .+ b̂QnBQ
q−nBQ (41)

is denoted by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

] = θ̂TBQ
. (42)

The major difference between the IIRYK configuration and

the FIRYK configuration is reflected in the equation describing

the evolution of the residual noise:

ν(t+ 1|θ̂) = AM (q−1)G(q−1)

P0(q−1)L(q−1)
[θ − θ̂]Tφf (t) (43)

with

φf (t) = [αf (t+1), . . . αf (t−nBQ
+1)] = L(q−1)φ(t), (44)

where αf (t+ 1) = L(q−1)α(t+ 1) and

φ(t) = [α(t+ 1), . . . α(t− nBQ
+ 1)] (45)

In eq. 43 the current poles of the internal closed-loop will no

more depend upon the time-varying parameters of AQ and are

now fixed and defined by the central compensator.

The objective is to select a filter L such that the transfer

function

H =
AM (q−1)G(q−1)

P0(q−1)L(q−1)
(46)

is SPR when a constant adaptation gain is used or that the

transfer function

H ′(q−1) = H(q−1)− λ2

2
, max

t
(λ2(t)) ≤ λ2 < 2 (47)

is SPR for time-varying adaptation gains.

Several choices for the filter L will be considered, leading

to different algorithms (see Table III):

FUPLR: L = Ĝ
FUSBA: L = ÂM

P̂0
Ĝ with P̂0 = ÂMS0 − B̂MR0

The major difference with respect to the IIR and IIRYK

compensators is that the FUSBA algorithm assures in this

case global asymptotic stability and can be implemented from

the beginning since the polynomial P̂0 is known from the

beginning and remains unchanged during adaptation process.

This is a significant advantage.

Table III gives the details of the adaptation gains used

in the various cases as well as the structure of the filters.

The implementation procedure is similar to that for the IIR

compensators except that (8), (29), and (9) are replaced,

respectively, by (39), (38), and (34) for IIRYK (or (45), (44),

and (34) for FIRYK).

Design of the Central Compensator

The same central compensator N0(q
−1) = R0(q

−1)
S0(q−1) can be

used for FIRYK or IIRYK. The main objective is to guarantee

the stability of the internal positive feedback loop. This can

be achieved by using a pole placement design technique (see

also [20, Chapter 7]) taking into account that the feedback is

positive. All stable poles of the reverse path can be assigned

as poles of the closed-loop (one can change their damping in

order to impose a desired minimum value for the damping of

the complex poles). Additional stable poles can be assigned.

Sensitivity functions of the internal closed-loop have to be

checked.

Youla–Kučera Parametrization—Some Remarks

Two major observations when using the Youla–Kučera

parametrization have to be made:

• If an FIR Q filter is used, the poles of the internal closed-

loop will be defined by the central compensator R0, S0

and they will remain unchanged independently of the

values of the parameters of the Q filter. The stability

condition for the FUSBA algorithm is global.

• If an IIR Q filter is used, the poles of the internal

closed-loop will be defined by the central compensator

but additional poles corresponding to the denominator of

the Q filter will be added. The stability condition for the

FUSBA algorithm is local and an initialization with the

FUPLR algorithm is necessary.
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IIRYK FIRYK IIRYK FIRYK
Matrix adaptation gain Scalar adaptation gain

θ̂(t+ 1) = θ̂(t) + F (t)Φ(t)
ν◦(t+1)

1+ΦT (t)F (t)Φ(t)
θ̂(t) + γ(t)Φ(t)

ν◦(t+1)

1+γ(t)ΦT (t)Φ(t)

Adapt. gain
F (t+ 1)−1 = λ1(t)F (t) + λ2(t)Φ(t)ΦT (t)

γ(t) > 0
0 ≤ λ1(t) < 1, 0 ≤ λ2(t) < 2, F (0) > 0

Adaptive Decr. gain and const. trace γ(t) = γ = const

Self tuning λ2 = const., lim
t→∞λ1(t) = 1

∞∑

t=1
γ(t) = ∞, lim

t→∞ γ(t) = 0

θ̂(t) = [b̂Q0 , . . . , âQ1 , . . .] [b̂Q0 , . . .] [b̂Q0 , . . . , âQ1 , . . .] [b̂Q0 , . . .]

φT (t) =
[α(t+ 1), . . . , β(t), . . .] [α(t+ 1), . . .] [α(t+ 1), . . . , β(t), . . .] [α(t+ 1), . . .]

α(t) = BM û(t)−AM ŷ(t) α(t) = BM û(t) α(t) = BM û(t)−AM ŷ(t) α(t) = BM û(t)
β(t) = S0û(t)−R0ŷ(t) −AM ŷ(t) β(t) = S0û(t)−R0ŷ(t) −AM ŷ(t)

P̂ = ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0 ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0
P = AQ(AMS0 −BMR0) AMS0 −BMR0 AQ(AMS0 −BMR0) AMS0 −BMR0

Φ(t) =
Lφ(t) Lφ(t)

FUPLR: L = Ĝ SFUPLR: L = Ĝ

FUSBA: L = ÂM

P̂
Ĝ SFUSBA: L = ÂM

P̂
Ĝ

Stability AMG
PL

− λ
2
= SPR (λ = maxλ2(t))

AMG
PL

= SPR
condition
Conv. AMG

PL
− λ

2
= SPR (λ = λ2)

AMG
PL

= SPR
condition

TABLE III
COMPARISON OF ALGORITHMS FOR YOULA–KUČERA PARAMETRIZED ADAPTIVE FEEDFORWARD COMPENSATION IN ANC WITH ACOUSTICAL

COUPLING.

When using an FIRYK structure, ÂQ ≡ 1 and the im-

plementation of the FUSBA algorithm is much simpler since

P̂ = P̂0 is constant and known once the central compensator

is designed.

As for the direct feedforward algorithms described in

Section IV, scalar adaptation gains can also be used. The

same choices for the filter L apply and the corresponding

algorithms issued from stability consideration are: NFULMS

and SFUSBA (see also Table III).

VI. EXPERIMENTAL RESULTS

The objective of this section is to asses comparatively the

performance of the various adaptive feedforward compensation

schemes for attenuating broad-band noise disturbances with

unknown and time-varying characteristics.

In defining the experimental protocols, a number of indica-

tors have to be taken into account:

• Testing signals

• Type of structure for the feedforward compensator

• Number of parameters to be adapted

• Type of PAA used

• Computer load (complexity).

Testing Signals

Two broad band disturbances have been considered

• noise with a flat PSD between 70 and 270 Hz

• step change from a flat disturbance 70 - 170 Hz to a flat

disturbance 170 - 270 Hz

These disturbances have been obtained using a PRBS with

N = 15 and amplitude 0.1 passed through band-pass Butter-

worth filters of order 7 with the cut-off frequencies as indicated

above.

A test horizon of 180 s has been chosen as a compromise

between the time required to achieve all the experiments and

the convergence horizon. For the best algorithms a few tests

have been carried out on a larger horizon of 600 s showing

the expected improvement in performance.

For testing the adaptation capabilities in the presence of step

changes of the disturbance characteristics, a horizon of 360s

with a step change occurring at 180 s has been selected.

Type of Structure

Standard IIR and FIR (particular case of IIR) compensators

will be considered as well as the FIRYK and IIRYK compen-

sators.

Number of Adjustable Parameters

The performances of the various compensators will depend

on the number of parameters. A compromise between number

of parameters and performance in terms of global attenuation

and computer load is considered when choosing the number

of parameters.

Type of Parameter Adaptation Algorithms

For this paper only the adaptive operation will be consid-

ered in the experimental evaluation. This means that only

the ”constant trace adaption gain” and the constant scalar

adaptation gain will be considered. For a given complexity

of the feedforward compensator the performances obtained

with various PAA have been evaluated. The attenuation is

measured on a sample of 15 s. One expresses the ratio

between the variance of the residual noise in the absence of

the compensator and the variance of the residual noise in the

presence of the compensator in dB.
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Computer Load

The indicator of the complexity of a scheme is given by the

maximum TET (Task Execution Time) which measures the

maximum duration of computation over a sampling period.

A. Results for IIR (FIR) Adaptive Feedforward Compensators

For each type of compensator the comparison has been done

under the following protocols:

• Given PAA and variable number of parameters to be

adapted

• Fixed number of parameters and various parameter adap-

tation algorithms

The PAA used for the experiments are implemented using an

initial diagonal gain matrix with a gain of 0.002 per parameter.

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
FIR 20/0 18.4 8.76e-5
FIR 30/0 21.0 9.79e-5
FIR 40/0 21.0 1.07e-4
FIR 50/0 20.8 1.16e-4

TABLE IV
INFLUENCE OF THE NUMBER OF PARAMETERS ON THE PERFORMANCE OF

THE STANDARD FIR ADAPTIVE FEEDFORWARD COMPENSATOR USING THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 180 S

EXPERIMENTS).

Filter type No. params. [num/den] Attenuation [dB]
FIR 30/0 32.4
FIR 40/0 32.2

TABLE V
EXPERIMENTAL RESULTS USING FIR ADAPTIVE COMPENSATOR WITH THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 600 S

EXPERIMENTS).

We begin our discussion with the choice of the number of

parameters (complexity) for both the FIR and the IIR compen-

sators. The standard FIR adaptive feedforward compensator

has been tested first. Experimental results for various number

of parameters are shown in Table IV and Table V. From these

tables, one can conclude that the FIR with 30/0 parameters is

the best compromise in terms of performance over number of

parameters.

Filter type No. params. [num/den] Attenuation [dB]
IIR 10/10 23.4
IIR 15/15 26.7
IIR 20/20 25.6

TABLE VI
INFLUENCE OF THE NUMBER OF PARAMETERS ON THE PERFORMANCE OF

THE STANDARD IIR ADAPTIVE FEEDFORWARD COMPENSATOR USING THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 180 S

EXPERIMENTS).

A similar evaluation has been done for the standard IIR

adaptive feedforward compensator. From the examination of

the Table VI and Table VII one can conlude that 15/15

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
IIR 15/15 39.5 8.92e-5
IIR 20/20 41.5 9.30e-5

TABLE VII
EXPERIMENTAL RESULTS USING IIR ADAPTIVE COMPENSATOR WITH THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 600 S

EXPERIMENTS).

parameters11 gives the best compromise between performance

and number of parameters. This IIR compensator has the

same total number of parameters as the FIR compensator 30/0

evaluated previously.

Adaptation algorithm Attenuation [dB] max. TET [s]
Matrix (FUSBA) 39.5 8.92e-5
Matrix (FUPLR) 35.5 7.01e-5
Scalar (SFUSBA) 36.8 8.17e-5
Scalar (NFULMS) 35.1 6.63e-5
Scalar (FULMS) 34.6 6.14e-5

TABLE VIII
EXPERIMENTAL RESULTS FOR IIR 15/15 ADAPTIVE COMPENSATORS

USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND
DISTURBANCE, 600 S EXPERIMENTS).

It results that for a total number of 30 adapted parameters,

the IIR 15/15 compensator gives the best results compared

with the FIR with 30 parameters.

The IIR structure with 15/15 parameters has been chosen to

be further evaluated. Results obtained using various adaptation

algorithms are shown in Table VIII. These experiments have

been run over 600 s. The maximum TET is also indicated. It

can be observed that the matrix gain FUSBA algorithm gives

the best results. The corresponding scalar version shows a loss

of 6.8 % in performance and a reduction of the maximum

TET by 8.4 %. The FULMS algorithm gives the lowest

performance.

Figure 7 illustrates the evolution of the residual noise and

of the attenuation over an horizon of 600 s for the IIR 15/15

feedforward compensator using the FUSBA algorithm with a

matrix adaptation gain. Attenuation reaches almost the steady

state value at 600 s.

Figure 8 shows the PSD for the FIR 30/0 and the IIR 15/15

using the FUSBA algorithm with matrix adaptation gain.

Both compensators assure a significant attenuation of the

disturbance. Nevertheless, both PSD show a strong unwanted

amplification (around 325 Hz in the case of the IIR and around

350 Hz for the FIR) which is caused by the presence of very

low damped poles in the internal closed-loop (the algorithm

guarantees only that the final closed-loop poles will be inside

the unit circle but these poles can be very close to the unit

circle).

Figure 9 shows an estimation of the output sensitivity

function of the internal loop (at 600 s) for the IIR 15/15 com-

pensator. There is a peak of 25 db at 315 Hz (corresponding to

a modulus margin12 of 0.06) and there is a pair of low damped

11The first number indicates the number of adjustable parameters at the
numerator and the second indicates the number of the adjustable parameters
at the denominator.

12The modulus margin gives the minimum distance between the Nyquist
plot and the critical point [−1, 0].
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Fig. 7. Residual noise using the IIR 15/15 adaptive compensators using
FUSBA matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 8. PSD comparison of FIR 30/0 and IIR 15/15 standard adaptive
compensators using FUSBA matrix adaptation (70-270 Hz disturbance, 600 s
experiments).

200 400 600 800 1000 1200
-15

-10

-5

0

5

10

15

20

25

30

M
ag

ni
tu

de
 (

dB
)

Internal loop output sensitivity function

Frequency  (Hz)

Fig. 9. Internal loop output sensitivity function for the IIR 15/15 adaptive
compensator (70-270 Hz disturbance, 600 s experiments).

closed-loop poles at 315 Hz with a damping of 0.0090. This

explains the peak in the PSD of the residual noise.

Figure 10 shows the phase of the estimated AM

P for the

IIR 15/15 adaptive compensator using the FUSBA and the

FUPLR algorithms. Since this transfer operator is not strictly

positive real between 330 and 360 Hz, one can understand the

beneficial effect of using the FUSBA algorithm (by filtering

additionally the regressor by AM

P ). In the mean time, by aver-

aging arguments, since the energy of the signal is concentrated

between 70 to 270 Hz where AM

P is strictly positive real, the

FUPLR (and the NFULMS) is stable.
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Fig. 10. Phase of
AM
P

for the IIR 15/15 adaptive compensator (70-270 Hz
disturbance, 600 s experiments).

Fig. 11. Residual noise of the IIR 15/15 adaptive feedforward compensator
for a change of disturbance from 170 - 270 Hz to 70 - 170 Hz at 180 s.

Figure 11 illustrates the adaptation capabilities of the IIR

15/15 FUSBA compensator. These experiments are run over

360 s. For the first 15 s, the system is in open-loop and the

disturbance 70 - 170 Hz is applied until 10 s and then the

disturbance 170 - 270 Hz is applied from 10 to 15 s. The

adaptive compensation system is in operation from 15 to 360 s.

During this period, the disturbance 170 - 270 Hz is applied

from 15 to 180 s and the disturbance 70 - 170 Hz is applied

from 180 to 360 s.

B. Results for IIRYK Adaptive Feedforward Compensators

The initial diagonal adaptation gain matrix used for IIRYK

compensators has been set at 0.02 per parameter.

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
IIRYK 25/25 29.0 7.85e-5
IIRYK 30/30 30.2 8.41e-5
IIRYK 40/40 33.2 1.01e-4

TABLE IX
INFLUENCE OF THE NUMBER OF PARAMETERS ON THE PERFORMANCE OF

THE IIRYK ADAPTIVE FEEDFORWARD COMPENSATOR USING THE FUSBA
ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 180 S

EXPERIMENTS).

The number of parameters for the Youla-Kučera

parametrized adaptive compensators has been chosen such

that the maximum TET be equivalent to the one obtained

for the standard IIR adaptive compensator with matrix gain.
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Table IX shows that a total of 60 (30/30) parameters can be

adapted for a maximum TET that is close to the one for the

standard IIR 15/15 adaptive compensator given in Table VII.

Table X shows the attenuation that can be obtained if the

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
IIRYK 30/30 35.7 8.51e-5

TABLE X
EXPERIMENTAL RESULTS USING IIRYK ADAPTIVE COMPENSATOR WITH

THE FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 600 S

EXPERIMENTS).

experiment is run over 600 s. The difference with respect

to the 180 s long experiment is less significant than for the

standard IIR compensator case. This is due to the fact that the

IIRYK adaptive compensator converges more rapidly. Figure

Adaptation algorithm Attenuation [dB] max. TET [s]
Matrix (FUSBA) 30.2 8.41e-5
Matrix (FUPLR) 6.1 8.32e-5
Scalar (SFUSBA) 27.5 7.10e-5
Scalar (SFUPLR) 6.1 6.77e-5

TABLE XI
EXPERIMENTAL RESULTS FOR IIRYK 30/30 ADAPTIVE COMPENSATORS

USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND
DISTURBANCE, 180 S EXPERIMENTS).

12 illustrates the evolution of the residual noise and of the

attenuation over an horizon of 600 s for the IIRYK 15/15

feedforward compensator using the FUSBA algorithm with a

matrix adaptation gain. Attenuation reaches almost the steady

state value at 600 s. Table XI gives a comparison of the

various adaptation algorithms in terms of global attenuation

and maximum TET. Clearly the FUSBA and the SFUSBA

give the best results. The loss in performance when using a

scalar adaptation gain is around 9% and the corresponding

reduction of the maximum TET is about 15%. To understand

why the FUPLR gives in this case far less good results than

the FUSBA, one has to look at the phase of the estimated
AM

P shown in Figure 13. One can see that AM

P is not positive

real between 50 - 120 Hz, 160 - 310 Hz and 350 - 890 Hz.

It is clear that in a large frequency spectrum the adaptation

will not move in the right direction.

Figure 14 shows the PSD for the IIRYK 30/30 using the

FUSBA algorithm. The peak at 306 Hz is due to a pole in the

denominator of the Youla-Kučera filter at the same frequency

with a damping of 0.00265.

Figures 15 shows the adaptation capabilities of the IIRYK

adaptive compensator with 30/30 parameters. The same pro-

tocol is used as in the case of the standard IIR. The transients

are shorter than for the IIR 15/15 while the steady states are

comparable (even if one is better in high frequencies (IIRYK)

and the other one is better in lower frequencies (IIR)).

C. Results for FIRYK Adaptive Feedforward Compensators

The initial gain of the adaptation algorithms used for FIRYK

compensators has been set at 0.5 per parameter (this is possible

since in this case one can take advantage of the global

Fig. 12. Residual noise using the IIRYK 30/30 adaptive compensators with
FUSBA matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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for the IIRYK 30/30 adaptive compensator (70-270 Hz
disturbance, 600 s experiments).
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Fig. 14. PSD of the IIRYK 30/30 adaptive compensators using FUSBA matrix
adaptation (70-270 Hz disturbance, 600 s experiments).

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
FIRYK 20/0 17.2 6.43e-5
FIRYK 30/0 20.9 6.72e-5
FIRYK 40/0 22.7 7.06e-5
FIRYK 50/0 25.7 7.51e-5
FIRYK 60/0 27.0 7.87e-5
FIRYK 80/0 28.9 9.36e-5
FIRYK 100/0 31.2 1.11e-4

TABLE XII
INFLUENCE OF THE NUMBER OF PARAMETERS ON THE PERFORMANCE OF

THE FIRYK ADAPTIVE FEEDFORWARD COMPENSATOR USING THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 180 S

EXPERIMENTS).
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Fig. 15. Residual noise of the IIRYK 30/30 adaptive feedforward compensator
for a change of disturbance from 170 - 270 Hz to 70 - 170 Hz at 180 s.

character of the stability condition for the FUSBA algorithm).

Table XII shows a comparison of the attenuation and

maximum TET for various complexities of the FIRYK com-

pensator. The FIRYK with 60 parameters (same number as

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
FIRYK 60/0 28.3 8.03e-5

TABLE XIII
EXPERIMENTAL RESULTS USING FIRYK ADAPTIVE COMPENSATOR WITH

THE FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 600 S

EXPERIMENTS).

for the IIRYK) has been chosen for further investigation.

A 600 s experiment has been conducted for this FIRYK

compensator and the results are given in Table XIII. Figure

16 shows both the time evolution of the residual error and of

the attenuation. While the adaptation is much faster compared

with the previous schemes, the steady state is less good (28.3

dB compared with the 35.7 dB for the IIRYK 30/30 and the

39.5 dB for the IIR 15/15 and the 32.4 for the FIR 30/0). Note

however that the maximum TET is slightly smaller than for

the other two schemes.

Adaptation algorithm Attenuation [dB] max. TET [s]
Matrix (FUSBA) 27.0 7.87e-5
Matrix (FUPLR) unstable -
Scalar (SFUSBA) 26.7 6.75e-5
Scalar (SFUPLR) unstable -

TABLE XIV
EXPERIMENTAL RESULTS FOR FIRYK 60/0 ADAPTIVE COMPENSATORS

USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND
DISTURBANCE, 180 S EXPERIMENTS).

Table XIV gives a comparison of the various adaptation

algorithms in terms of global attenuation and maximum TET.

It was observed that the FUPLR is unstable and this can be

understood when looking to the phase plot of the estimated
AM

P given in Figure 17. It can be observed that AM

P is not

positive real in a large frequency range from 110 Hz to 760 Hz
13 and one absolutely needs to use the FUSBA algorithm. The

13Averaging can not be used since the region of non positive realness is

much larger than the region where
AM
P

is SPR even within the range 70 -
270 Hz.

loss in performance when using a scalar adaptation gain is very

small in this case (1%) while the computer load decreases by

14%.

Figure 18 shows the PSD of the FIRYK 60/0 using the

FUSBA algorithm. The loss in performance with respect to

the other schemes seems to be specifically in the region

210-270 Hz. Nevertheless, this curve indicates that the peak

around 325 Hz is lower than in the previous cases (it will

depend in fact on the design of the central compensator).

The estimated pair of complex poles around this frequency

have a damping of 0.04 (348 Hz) much higher than for the

other schemes. Figure 19 shows the estimation of the output

sensitivity function of the internal loop for the FIRYK 60/0

using the FUSBA algorithm. Note that the shape of this curve

depends exclusively on the design of the central compensator

and is not affected by the evolution of the Q filter parameters.

As one can see, the maximum is about 10 dB which assures

from the beginning of the adaptation process a modulus margin

greater than 0.3.

Fig. 16. Residual noise using the FIRYK 60/0 adaptive compensators with
FUSBA matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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for the FIRYK 60/0 adaptive compensator (70-270 Hz
disturbance, 600 s experiments).

Figure 20 shows the adaptation capabilities of the FIRYK

adaptive compensator with 60/0 parameters. The same proto-

col is used as in the case of the standard IIR. As expected, the

adaption transient is very fast and in addition the maximum

value of the residual noise during the adaptation transient is

much smaller compared with the IIR and the IIRYK.
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Fig. 18. PSD of the FIRYK 60/0 adaptive compensators using FUSBA matrix
adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 19. Internal loop output sensitivity function for the FIRYK 60/0 adaptive
compensator (70-270 Hz disturbance, 600 s experiments).

Fig. 20. Residual noise of the FIRYK 60/0 adaptive feedforward compensator
for a change of disturbance from 170 - 270 Hz to 70 - 170 Hz at 180 s.

Filtering the Residual Noise for Parameter Adaptation

Figure 21 illustrates the effect of using a filtered residual

noise in the adaptation algorithm upon the PSD of the residual

noise. The comparison is done using the IIRYK 30/30 compen-

sator with the FUSBA algorithm over 180 s (similar behavior

is obtained also for the other compensator structures). The

residual noise filter considered is a low pass FIR filter given

by

V (q−1) = 1 + 0.9q−1 (48)

The frequency response of this filter is shown in Fig. 22.

As it can be observed, this filter enhances the attenuation
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Fig. 21. PSD comparison of the residual noise in open-loop (solid grey line),
using the adaptive compensator without filtering of the residual noise (solid
black line), and using the adaptive compensator with filtering of the residual
noise (dotted black line).

of disturbances at low frequencies. The global attenuation

obtained with and without this filter is given in Table XV.

One can see an improvement of about 9% when the filter is

used.
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Fig. 22. Residual error filter.

Filter type No. params. Residual noise filter Atn. [dB]

IIRYK 30/30 V (q−1) = 1 30.2

IIRYK 30/30 V (q−1) = 1 + 0.9q−1 32.9
TABLE XV

EXPERIMENTAL RESULTS USING IIRYK ADAPTIVE COMPENSATOR WITH

AND WITHOUT RESIDUAL NOISE FILTER (70-270 HZ BROAD-BAND
DISTURBANCE, 180 S EXPERIMENTS).

Performance comparison - a summary

For a comparable complexity in terms of computer load,

the IIR feeforward compensator with the matrix adaptation

gain using the FUSBA algorithm provides the best steady state

results in terms of attenuation followed by the IIRYK, FIR and

FIRYK. In terms of adaptation transients, the FIRYK provides

the best results. In terms of safety of operation (stability of the

internal positive loop) without any doubt the FIRYK using the

FUSBA algorithm (matrix adaptation gain) is the good choice

since in this case the stability of the internal positive loop

depends exclusively upon the stabilizing central compensator.
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The steady state performance of the FIRYK can be enhanced

by augmenting the number of adjustable parameters (which

will increase however the computer load).

The use of the scalar adaptation gain leads to a slight degra-

dation of the performances but does not lead to a substantial

reduction of the computer load.

The use of a filtered residual noise measurement for adap-

tation may improve the overall performance.

VII. CONCLUSION

This study has provided the opportunity to assess com-

paratively the properties of various algorithms which can be

used for adaptive feedforward noise compensation taking into

account the inherent presence, in most of the applications, of

an internal positive coupling. In many practical applications

instabilities have been encountered using classical algorithms

(FXLMS, FULMS, etc.) which do not take into account this

internal positive coupling.

Based on extensive experimental tests one can state that

FIRYK adaptive compensator structure using the FUSBA

(or SFUSBA) algorithm is the good solution for a robust

operation of the feedforward active noise attenuation. The

main argument is that the stability of the internal positive

loop is guaranteed by the design of the central compensator

and is not influenced by the evolution of the adjustable filter

parameters.

APPENDIX

IDENTIFICATION OF THE EXPERIMENTAL TEST-BENCH

The PRBS characteristics used in the identification pro-

cess as excitation signal was: magnitude = 0.14V,
register length = 15, frequency divider of 1, sequence length:
215 − 1 = 32, 767 samples, guaranteeing an flat power

spectrum up to 1250Hz.
Since the transfer functions have a double differentiator

behaviour (input: speaker’s coil position, output: acoustical

pressure), this is considered as the system’s known part. The

objective being to identify the unknown part only, the input

sequence is filtered by a double discrete-time differentiator

DF = (1 − q−1)2 such that u′(t) = DF · u(t). The double

differentiator is added to the identified model of the unknown

part in order to obtain the complete model.

Once the input-output data have been acquired, the next

step in the identification procedure is to estimate the order n
of the model from experimental data (see (2)). The method

of Duong ([20], [25]) has been used. Once an estimated order

n̂ is selected, one can apply a similar procedure to estimate

n̂A, n̂−d̂, and n̂B′+d̂, from which n̂A, n̂B′ and d̂ are obtained
(nB′ is the order of the model’s numerator without the double

differentiator). In the method of Duong, the minimum of a

quadratic criterion in terms of an unbiased plant-model error

penalized by a complexity terms is searched. Fig. 23 shows in

detail the system’s order estimation results for the secondary

path.

The value of n̂ = 25 minimizes the Duong criterion,

but since the minimum is relatively flat, nearby values have

also been considered. The final selection has been done by
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Fig. 23. Penalized criterion for order estimation (secondary path).

checking what order allows to capture all the oscillatory modes

in the model and leads to the best statistical validation once the

parameters are identified. For the secondary path, this order

has been found to be n̂ = 33 (see Table I).

Comparative parameter estimations considering various

plant + noise models and estimation algorithms led to the

conclusion that an ARMAX model representation is the most

appropriate for this system and the best results in terms of

statistical validation (whiteness test on the residual error) have

been obtained using the Output Error with Extended Prediction

Model (termed OEEPM or XOLOE). See [20] and [26] for

more details on the methodology.
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Abstract

Adaptive feedforward broad-band noise compensation is currently used when a correlated mea-

surement with the disturbance (an image of the disturbance) is available. Most of the active feed-

forward noise control systems feature an internal “positive” acoustical feedback between the com-

pensation system and the reference source (a correlated measurement with the disturbance) which

has to be taken into account. Adaptive algorithms for active feedforward noise attenuation have

been implemented such that the propagation delay between the compensatory actuator and the

measurement of the residual noise (the secondary path) be much smaller than the propagation

delay between the reference source (image of the incoming noise) and the measurement of the

residual noise (the primary path). Nevertheless, there are potential fields of applications where

the propagation delay of the secondary path may be larger than the one of the primary path. The

present paper explores the behaviour of the available adaptive feedforward compensation algo-

rithms in this new context. The algorithms have been tested experimentally on a relevant test

bench. All the algorithms except the Youla–Kučera FIR adaptive compensator and the FUSBA

standard FIR lead to an unstable behavior. In terms of performance the Youla–Kučera FIR pro-

vides the best performance.

Keywords: active noise control, adaptive feedforward compensation, Youla–Kučera

parametrization, positive feedback coupling
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1. Introduction

Adaptive feedforward broad-band noise compensation is currently used when a correlated

measurement with the disturbance (an image of the disturbance) is available. Most of the ac-

tive feedforward noise control systems feature an internal “positive” acoustic feedback between

the compensation system and the reference source (a correlated measurement with the disturbance)

which has to be taken into account.

Figure 1: Adaptive active noise feedforward compensation.

Figure 1 gives the basic block diagram of the adaptive feedforward compensation in the pres-

ence of the internal positive coupling between the output of the compensator and the measurement

of the image of the incoming noise. The incoming noise propagates through the so called primary
path and its effect is compensated through a secondary noise source (secondary path) driven by a
feedforward compensator. The input to the feedforward compensator is the sum of the image of

the incoming noise and of the internal acoustic positive feedback. Since this feedback is positive,

it raises of course stability problems. Stability analysis of the adaptive feedforward compensation

schemes became an important issue [1–3]. The stability analysis make the assumption that there

exists a compensator N such that the internal positive loop (formed by M and N in feedback) is

stable and such that the perfect matching of the primary path is achieved2.

One of the important aspects in active noise feedforward control is the transportation delay

related to the sound propagation speed [4]. Most of the implementations of the adaptive feedfor-

ward compensation systems are close to a collocation of the residual noise measurement and of the

secondary source used for compensation (see for example [5],[6]). More generally speaking the

length between these two objects is much smaller than the length of the primary path (between the

2This hypothesis of perfect matching of the primary path can be relaxed under certain conditions taking into

account that the perfect matching should be achieved in practice in a limited frequency band (see [2]).
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reference microphone and the residual noise microphone). See for example [7]. A ratio of 3 to 6

seems to be the case in a number of applications (particularly true in the active noise compensation

in ducts).

Nevertheless, there are potential applications fields where the length of the secondary path may

be longer than the length of the primary path.3 In this case the delay associated with the dynamics

of the secondary path will be larger than the delay associated with the primary path.

When the delay characterizing the dynamic model of the secondary path is larger than the

delay of the primary path, even in the absence of the internal positive feedback, it just simply does

not exist a stable compensator assuring the “perfect matching”4. One needs algorithms which will

minimize the residual noise and which will assure the stability of the scheme (and of course the

stability of the internal loop). The present paper does not propose new algorithms but tries to

evaluate in this context the available algorithms for adaptive feedforward compensation using a

relevant experimental test bench.

As it will be shown in this paper only the Youla–Kučera FIR parametrized algorithm [3] and

the FUSBA standard FIR algorithm [2, 8] assure a stable operation of the system. All the other

algorithms tested do not assure a stable operation. In terms of performance it is the Youla–Kučera

FIR adaptive feedforward compensator which has provided the best performance. The reason for

the good behavior of the Youla–Kučera parametrized FIR algorithm is that from the beginning the

internal loop will be stable (by the appropriate design of the central compensator) independently

of the values of the parameters of the YKFIR filter which will be adapted in order to minimize the

residual noise. The standard FUSBA FIR adaptive compensator provides less good performance

and does not offer the possibility to assign the poles of the internal closed-loop which unfortunately

go extremely close to the unit circle. This raises questions about its robustness.

All the algorithms have been tested in real-time on a relevant test bench and in simulation using

the identified models of the test bench. The performance of the Youla–Kučera FIR algorithm will

be thoroughly investigated.

The paper is organized as follows: In Section 2, the experimental setup will be presented.

In Section 3, the basic equations describing the system will be presented in order to make un-

derstandable the various algorithms which will be reviewed in Sections 4 and 5. Section 6 will

show simulation results. The experimental results obtained on the test bench are summarized in

Section 7. Some conclusions are given in Section 8.

2. Experimental Setup

The view of the test bench used for experiments is shown in Fig. 2 and its detailed scheme is

given in Fig. 3. The actual dimensions of the test bench are given in Fig. 4.

The speaker used as the source of disturbances is labelled as 1, while the control speaker is

marked as 2. At pipe’s open end, the microphone that measures the system’s output (residual

noise e(t)) is denoted as 3. Inside the pipe, close to the source of disturbances, we can find

3This can occur when there are thermal constraints for the positioning of the secondary source.
4In the case of the internal feedback the effective compensator is the feedback connection of the compensator N

and of the reverse path M.
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Figure 2: Duct active noise control test bench (Photo).

Figure 3: Duct active noise control test bench diagram.
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Figure 4: Duct active noise control test bench dimensions.

the second microphone, labelled as 4, for measuring the perturbation’s image, denoted as y(t).
Additionally, we denote u(t) the control signal and s(t) the disturbance. The transfer function

between the disturbance’s speaker and the microphone (1→3) is called Global Primary Path,
while the transfer function between the control speaker and the microphone (2→3) is denoted

Secondary Path. The transfer function between microphones (4→3) is called Primary Path. The
internal coupling found between (2→4) is denoted Reverse Path. These marked paths have a

double differentiator behaviour, since as input we have the voice coil displacement and as output

the air acoustic pressure.

Both speakers are connected to a xPC Target computer with Simulink Real-time R© environ-

ment through a pair of high definition power amplifiers and a data acquisition card. A second

computer is used for development, design and operation with Matlab R©. The sampling frequency
has been chosen in accordance with the recommendations given in [8]. Taking into account that

disturbances up to 400 Hz need to be attenuated, a sampling frequency fs = 2500 Hz has been

chosen (Ts = 0.0004 sec), i.e., approximately six times the maximum frequency to attenuate.

In this configuration, speakers are isolated inside wood boxes filled with special foam in order

to create anechoic chambers and reduce the radiation noise produced. These boxes have dimen-

sions 0.15m×0.15m×0.12m, giving a chamber volume of 2.7L.
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3. System Description

The primary path is characterized by the asymptotically stable transfer operator:5

T (q−1) = q−dT
BT (q−1)
AT (q−1)

, (1)

where6

BT (q−1) = bT
1 q−1+ . . .+bT

nBT
q−nBT , (2)

AT (q−1) = 1+aT
1 q−1+ . . .+aT

nAT
q−nAT . (3)

The secondary path is characterized by the asymptotically stable transfer operator:

G(q−1) = q−dG
BG(q−1)
AG(q−1)

, (4)

where

BG(q−1) = bG
1 q−1+ . . .+bG

nBG
q−nBG = q−1B∗G(q

−1), (5)

AG(q−1) = 1+aG
1 q−1+ . . .+aG

nAG
q−nAG . (6)

The positive feedback coupling is characterized by the asymptotically stable transfer operator:

M(q−1) = q−dM
BM(q−1)
AM(q−1)

, (7)

where

BM(q−1) = bM
1 q−1+ . . .+bM

nBM
q−nBM = q−1B∗M(q−1), (8)

AM(q−1) = 1+aM
1 q−1+ . . .+aM

nAM
q−nAM . (9)

dT , dG, and dM represent the pure delays of the various paths as integer multiples of the sampling

period Ts. All three numerators, BT , BG, and BM have a one step discretization delay. The identified

models of the secondary and of the positive feedback coupling paths will be denoted Ĝ and M̂,

respectively.

The system’s order is defined by (the indexes T , G and M have been omitted):

n = max(nA,nB +d). (10)

The models of the systems have been identified experimentally using the identification proce-

dure described in [9].

5The complex variable z−1 will be used for characterizing the system’s behaviour in the frequency domain and the
delay operator q−1 will be used for describing the system’s behaviour in the time domain.

6The following notation for polynomials is used: A(q−1) = a0+∑nA
i=1 aiq−i = a0+q−1A∗(q−1).
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Figure 5: Frequency characteristics of the Primary, Secondary and Reverse paths identified models.

The frequency characteristics7 of the identified models for the primary8, secondary and reverse

paths are shown in Fig. 5. These characteristics present multiple resonances (low damped complex

poles) and anti-resonances (low damped complex zeros).

One can see that the secondary path has sufficient gain between 150 to 425 Hz, which means

that disturbances can be efficiently attenuated in this zone. It is also clear that the reverse path has

a significant gain on a large frequency range so its effect can not be neglected.

The orders and the pure delays of the various identified models are given in Table 1. One

observes that the secondary path transfer operator has a pure delay of 9 sampling periods and the

primary path has a pure delay of 8 sampling periods (coherent values with the length of the two

paths - Figure 4).

Model nB nA d
Primary 20 27 8

Secondary 20 27 9

Reverse 33 33 4

Table 1: Orders of the identified system paths.

7It expresses the gain of the system in the frequency domain. The gain is a non-dimensional quantity.
8The primary path model has been exclusively used for simulation purposes only.
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4. FIR/IIR Adaptive Feedforward Noise Attenuation Algorithms

The corresponding block diagrams in open-loop operation and with the compensator system

are shown in Fig. 6. The signal w(t) is the image of the disturbance measured when the com-

pensator system is not used (open-loop). The signal ŷ(t) denotes the effective output provided by
the measurement device when the compensator system is active and which will serve as input to

the adaptive feedforward compensator N̂. The output of this filter, denoted by û(t), is applied to
the actuator through an amplifier. The transfer function G (the secondary path) characterizes the

dynamics from the output of the filter N̂ to the residual noise measurement (amplifier + actuator

+ dynamics of the acoustic system). The unmeasurable value of the output of the primary path

(when the compensation is active) is denoted x(t).

(a)

(b)

Figure 6: Feedforward ANC: in open-loop (a) and with adaptive feedforward compensator (b).

The coupling between the output of the feedforward compensator and the measurement ŷ(t)
through the compensator actuator is denoted by M. As indicated in Fig. 6, this coupling is a

“positive” feedback. The positive feedback may destabilize the system.9 The system is no longer

a pure feedforward compensator.

The objective is to adapt the parameters of the feedforward compensator N(q−1) such that the
measured residual noise be minimized in the sense of a certain criterion while assuring the stability

9Different solutions for reducing the effect of this internal positive feedback are reviewed in [10, 11].
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of the internal posditive feedback loop. The optimal IIR feedforward filter (unknown) is defined

by:

N(q−1) =
R(q−1)
S(q−1)

, (11)

where

R(q−1) = r0+ r1q−1+ . . .+ rnRq−nR , (12)

S(q−1) = 1+ s1q−1+ . . .+ snSq−nS = 1+q−1S∗(q−1). (13)

The estimated compensator is denoted by N̂(q−1) or N̂(θ̂ ,q−1) when it is a linear filter with con-
stant coefficients or N̂(t,q−1) during estimation (adaptation) of its parameters. The optimal FIR
compensator structure is obtained by taking S = 1 (i.e. si = 0, ∀i = 1 : nS).

The input of the feedforward compensator is denoted by ŷ(t) and it corresponds to the sum
between the disturbance image in the absence of compensation and of the output of the positive

feedback path. In the absence of the compensation loop (open-loop operation): ŷ(t) = w(t). The
a posteriori10 output of the feedforward compensator (which is the control signal applied to the
secondary path) is denoted by û(t + 1) = û(t + 1|θ̂(t + 1)). The input-output relationship for the
estimated feedforward compensator is given by the equation of the a priori output:

û◦(t +1) = û(t +1|θ̂(t)) =−Ŝ∗(t,q−1)û(t)+ R̂(t,q−1)ŷ(t +1)

= θ̂ T (t)φ(t) =
[
θ̂ T

S (t), θ̂
T
R (t)

][φû(t)
φŷ(t)

]
, (14)

where θ̂ is the estimated parameter vector and φ is the measurement vector whose expressions are

given below:

θ̂ T (t) = [ŝ1(t), . . . ŝnS(t), r̂0(t), . . . r̂nR(t)] = [θ̂ T
S (t), θ̂

T
R (t)], (15)

φ T (t) = [−û(t),−û(t−nS +1), ŷ(t +1), . . . ŷ(t−nR +1)]

= [φ T
û (t),φ

T
ŷ (t)], (16)

and û(t), û(t−1), ... are the a posteriori outputs of the feedforward compensator generated by

û(t) = û(t|θ̂(t)) = θ̂ T (t)φ(t−1), (17)

while ŷ(t +1), ŷ(t), . . . are the measurements provided by the primary transducer.11

The measured residual error satisfies the following equation:

e◦(t +1) = x(t +1)+ ẑ◦(t +1). (18)

10In adaptive control and estimation the predicted output at t can be computed either on the basis of the previous
parameter estimates (a priori) or on the basis of the current parameter estimates (a posteriori).

11ŷ(t +1) is available before adaptation of parameters starts at t +1.
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The a priori adaptation error is defined as

ν◦(t +1) =−e◦(t +1) =−x(t +1)− ẑ◦(t +1). (19)

The development or analysis of the PAA for estimating in real-time the parameter vector θ̂
assumes that

• (Perfect matching condition) There exists a value of the feedforward filter parameters such

that12
N

(1−NM)
G =−T (20)

• and the characteristic polynomial of the “internal” feedback loop:

P(z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1) (21)

is a Hurwitz polynomial

So the objective of the adaptation algorithm will be to allow the compensator N̂ to approach the

optimal value at least in the frequency range of interest.

Nevertheless, in the context of the present paper these hypothesis are violated. What it is

expected is that the minimization of the residual error in a frequency band will lead to a stable

internal loop.

The various FIR/IIR adaptive compensation algorithm which have been tested are summarized

in Table 2. All the algorithms can be characterized by the use of a particular form of the PAA

which will be presented next and of a specific ”regressor vector” (observation vector) generated

through the filtering of available measurements.

4.1. Parameter Adaptation Algorithm (PAA)
A general formulation of the PAA is given below:

θ̂(t +1) = θ̂(t)+F(t)Φ(t)ν(t +1) (22)

ν(t +1) =
ν◦(t +1)

1+ΦT (t)F(t)Φ(t)
(23)

F(t +1) =
1

λ1(t)

⎡
⎣F(t)− F(t)Φ(t)ΦT (t)F(t)

λ1(t)
λ2(t)

+ΦT (t)F(t)Φ(t)

⎤
⎦ (24)

1≥ λ1(t)> 0 ; 0≤ λ2(t)< 2;F(0)> 0 (25)

Φ(t) = φ f (t) (26)

where λ1(t) and λ2(t) allow to obtain various profiles for the adaptation gain matrix F(t). Four
cases are of interest:

12The parenthesis (q−1) or (z−1) will be omitted in some of the following equations to make them more compact.
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• Constant trace algorithm. λ1(t) and λ2(t) are adjusted continuously to maintain constant

the trace of the adaptation gain matrix. This allows to move in the optimal direction of the

least squares while maintaining the adaptation capabilities. Nevertheless, for accelerating

the adaptation transient it may be useful to use a larger adaptation gain transiently.

• Decreasing adaptation gain (λ1 = 1, λ2 = 1). This is used in self-tuning regime and for

initialization of the constant trace algorithm with a higher gain as well as for self-tuning

operation (convergence towards a fixed feedforward compensator).

• Variable forgetting factor. This option can be also used for initialization of the constant trace

algorithm. The difference is that in this option λ1(0)< 1 but it will tend asymptotically to 1.

This allows to get transiently a higher adaptation gain than the one used in the constant trace

algorithm.

• Constant scalar adaptation gain. This is obtained by taking F(t) = γI where I is the identity
matrix. One gets a scalar adaptation gain.

The values of λ1(t) and λ2(t) in order to maintain constant the trace of the adaptation gain

matrix are determined from the equation:

tr (F(t +1)) =
1

λ1(t)
tr
(

F(t)− F(t)Φ(t)ΦT (t)F(t)
α(t)+ΦT (t)F(t)Φ(t)

)
(27)

fixing the ratio α(t) = λ1(t)/λ2(t).
The updating of matrix F(t) is done using the U-D factorization for numerical robustness rea-

son. The details of this algorithm13 are given in [8, Appendix B].

When using a scalar adaptation gain, one can see that for very small values of γ one can

approximate equation (22) by

θ̂(t +1) = θ̂(t)+ γΦ(t)ν◦(t +1), (28)

which corresponds almost to the adaptation algorithm used in FULMS (IIR compensator)[12] and

FXLMS (FIR compensator)[13] algorithms except that since the adaptation gain is small and the

residual error will vary slowly the quantity Φ(t)ν(t +1) is replaced by Φ(t−1)ν◦(t).
In Table 2, column 1 gives the adaptation algorithms using a matrix adaptation gain derived

from stability considerations (FUPLR and FUSBA). Column 2 gives the adaptation algorithms

using scalar adaptation gain also derived from stability considerations (NFULMS and SFUSBA).

Column 3 gives the now classical FULMS algorithm which uses a scalar adaptation gain (and

which corresponds to the FXLMS algorithm when using an FIR compensator). The connections

with the NFULMS have been enhanced above. An important observation is that the compensator

can be implemented as a FIR or an IIR filter.

13Routines for the implementation of the algorithm can be downloaded from http://www.gipsa-lab.
grenoble-inp.fr/˜ioandore.landau/adaptivecontrol/
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Paper Paper FULMS (FXLMS)

(Matrix gain) (Scalar gain) (Scalar gain)

θ̂(t +1) =θ̂(t)+F(t)Φ(t) ν◦(t+1)
1+ΦT (t)F(t)Φ(t) θ̂(t)+ γ(t)Φ(t) ν◦(t+1)

1+γ(t)ΦT (t)Φ(t) θ̂(t)+ γ(t)Φ(t−1)ν◦(t)

Adapt.

gain

F(t +1)−1 = λ1(t)F(t)+

γ(t)> 0 γ(t)> 0
+λ2(t)Φ(t)ΦT (t)

0≤ λ1(t)< 1,0≤ λ2(t)< 2

F(0)> 0

Adaptive Decr. gain and const. trace γ(t) = γ = const γ(t) = γ = const
Self λ2 = const. ∞

∑
t=1

γ(t) = ∞, lim
t→∞

γ(t) = 0
∞
∑

t=1
γ(t) = ∞, lim

t→∞
γ(t) = 0

tuning lim
t→∞

λ1(t) = 1

φ T (t) = [−ŷ(t), . . . , û(t +1), . . .] [−ŷ(t), . . . , û(t +1), . . .] [−ŷ(t), . . . , û(t +1), . . .]

Φ(t) =

Lφ(t) Lφ(t)
FUPLR: L = Ĝ NFULMS: L = Ĝ Lφ(t)

FUSBA: L = ÂM
P̂

Ĝ SFUSBA: L = ÂM
P̂

Ĝ L = Ĝ
P̂ = ÂMŜ− B̂MR̂ P̂ = ÂMŜ− B̂MR̂

M = BM
AM

BM = b1M z−1+b2M z−2+ . . .
AM = 1+a1M z−1+a2M z−2+ . . . AM = 1

Stability AMG
PL − λ

2 = SPR AMG
PL = SPR Unknown

condition λ =maxλ2(t)

Table 2: Comparison of algorithms for direct adaptive feedforward compensation in ANC with acoustic coupling.

The last row of Table 2 summarizes the stability conditions in a deterministic context (asymp-

totic stability condition for any initial condition on the parameters of the IIR/FIR compensator

assuming that a perfect matching solution exist). Despite the fact that the basic hypotheses for

stability analysis are violated, it was observed that these “strictly positive real” conditions play a

fundamental role even in the present context. The reason is that these SPR conditions can be inter-

preted as approximation conditions with respect to the true gradient [14], namely the approximated

gradient used should be within an angle of ±90◦ with respect to the true gradient.
A key role in the various adaptation algorithms is played by the filter L, that helps to satisfy

the “strictly positive real condition”.

5. Youla–Kučera Parametrized Adaptive Feedforward Compensators

The rationale behind the use of the Youla–Kučera parametrized feedforward compensator is to

separate the problem of the stabilization of the positive internal loop from the problem of the min-

imization of the residual noise [5]. In order to achieve this, instead of a standard FIR or IIR feed-

forward compensator, one can use an Youla–Kučera parametrization of the adaptive feedforward

compensator. The central compensator will assure the stability of the internal positive feedback

loop and its performance are enhanced in real-time by the direct adaptation of the parameters of

12



the Youla–Kučera Q filter.

Figure 7: Adaptive feedforward disturbance compensation using Youla–Kučera parametrization.

A block diagram of such an adaptive feedforward compensator is shown in Fig. 7. FIR and

IIR Q filters can be used. Details of the specific algorithms can be found in [3, 14]. The transfer

operators of the various paths of the ANC system have been given in Section 3.

The optimal IIR feedforward compensator which will minimize the residual noise can be writ-

ten, using the Youla–Kučera parametrization, as

N(q−1) =
R(q−1)
S(q−1)

=
AQ(q−1)R0(q−1)−BQ(q−1)AM(q−1)
AQ(q−1)S0(q−1)−BQ(q−1)BM(q−1)

(29)

where the optimal Youla–Kučera filter Q(q−1) can have an IIR or a FIR structure:

Q(q−1) =
BQ(q−1)
AQ(q−1)

=
bQ
0 +bQ

1 q−1+ . . .+bQ
nBQ

q−nBQ

1+aQ
1 q−1+ . . .+aQ

nAQ
q−nAQ

(30)

and R0(q−1), S0(q−1) = 1+q−1S∗0(q
−1) are the polynomials of the central (stabilizing) filter and

AM(q−1), BM(q−1) are given in (7). The FIR Q filter corresponds to AQ = 1, i.e. aQ
i = 0 for i = 1

to nAQ .

Details on YK algorithms for adaptive feedforward compensation can be found in [2],[14].

Table 3 summarizes the YK type adaptation algorithms used in the various cases as well as the

structure of the filters introduced for stability reasons. We will focus next on the YK FIR algorithm

which is the algorithm assuring a stable operation in the context of a delay of the secondary path

larger than the delay of the primary path.
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5.1. Youla–Kučera Finite Impulse Response (YK FIR) Filter
Let’s begin by considering Youla–Kučera FIR filters, for which AQ(q−1) = 1. The estimated

YK FIR filter is denoted by Q̂(q−1) or Q̂(θ̂ ,q−1) when it is a linear filter with constant coefficients
or Q̂(t,q−1) during estimation (adaptation). The vector of parameters for the estimated Q̂ filter

Q̂(q−1) =
B̂Q(q−1)

1
= b̂Q

0 + b̂Q
1 q−1+ . . .+ b̂Q

nBQ
q−nBQ (31)

is denoted by

θ̂ T = [b̂Q
0 , . . . , b̂

Q
nBQ

] = θ̂ T
BQ
. (32)

The PAAs have been developed from a stability point of view assuming that:

• (Perfect matching condition) There exists a value of the Q filter parameters such that

G ·AM(R0−AMBQ)

AMS0−BMR0
=−D (33)

• There exists a central feedforward compensator N0 (R0, S0) which stabilizes the inner posi-
tive feedback loop formed by N0 and M and the characteristic polynomial of the closed-loop

P0(z−1) = AM(z−1)S0(z−1)−BM(z−1)R0(z−1) (34)

is a Hurwitz polynomial.

What it is important to underline, is that in the context of this paper while the first hypothesis is

violated, the second is definitely true since the central controller is designed such that the poles

of the internal closed loop (which remains constant independently of the values of the parameters

of the FIR Q filter) be asymptotically stable. This is a fundamental difference with respect to the

case of using a standard FIR adaptive compensator (see Section 4).

The PAAs are exactly of the same structure as those given in (22)-(26). All the considerations

regarding the type of adaptation gain and its profile remain valid. In order to satisfy the positive

real condition for stability, the introduction of the filter L on the measured quantities is important.

Several choices for the filter L will be considered, leading to different algorithms (see Table 3):

FUPLR: L = Ĝ

FUSBA: L = ÂM
P̂0

Ĝ with P̂0 = ÂMS0− B̂MR0

The major difference with respect to the standard IIR or FIR compensators as well as with

respect to YK IIR compensators is that the FUSBA algorithm can be implemented from the be-

ginning since the polynomial P̂0 is known from the beginning and remains unchanged during the

adaptation process (for YK IIR the filter to be used will depend on currently estimated parame-

ters). This is a significant advantage and this is the key point for assuring a stable operation when

the delay of the secondary path is larger than the delay of the primary path.
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YK IIR YK FIR YK IIR YK FIR

Matrix adaptation gain Scalar adaptation gain

θ̂(t +1) = θ̂(t)+F(t)Φ(t) ν◦(t+1)
1+ΦT (t)F(t)Φ(t) θ̂(t)+ γ(t)Φ(t) ν◦(t+1)

1+γ(t)ΦT (t)Φ(t)

Adapt. gain
F(t +1)−1 = λ1(t)F(t)+λ2(t)Φ(t)ΦT (t) γ(t)> 0
0≤ λ1(t)< 1, 0≤ λ2(t)< 2, F(0)> 0

Adaptive Decr. gain and const. trace γ(t) = γ = const

Self tuning λ2 = const., lim
t→∞

λ1(t) = 1
∞
∑

t=1
γ(t) = ∞, lim

t→∞
γ(t) = 0

θ̂(t) = [b̂Q
0 , . . . , â

Q
1 , . . .] [b̂Q

0 , . . .] [b̂Q
0 , . . . , â

Q
1 , . . .] [b̂Q

0 , . . .]

φ T (t) =
[α(t +1), . . . ,β (t), . . .] [α(t +1), . . .] [α(t +1), . . . ,β (t), . . .] [α(t +1), . . .]

α(t) = BMû(t)−AMŷ(t) α(t) = BMû(t) α(t) = BMû(t)−AMŷ(t)α(t) = BMû(t)
β (t) = S0û(t)−R0ŷ(t) −AMŷ(t) β (t) = S0û(t)−R0ŷ(t) −AMŷ(t)

P̂ = ÂQ(ÂMS0− B̂MR0) ÂMS0− B̂MR0 ÂQ(ÂMS0− B̂MR0) ÂMS0− B̂MR0

P = AQ(AMS0−BMR0) AMS0−BMR0 AQ(AMS0−BMR0) AMS0−BMR0

Φ(t) =
Lφ(t) Lφ(t)

FUPLR: L = Ĝ NFULMS: L = Ĝ
FUSBA: L = ÂM

P̂
Ĝ SFUSBA: L = ÂM

P̂
Ĝ

Stability AMG
PL − λ

2 = SPR (λ =maxλ2(t)) AMG
PL = SPR

condition

Table 3: Comparison of algorithms for Youla–Kučera parametrized adaptive feedforward compensation in ANC with

acoustic coupling.

5.2. Design of the Central Controller

The main objective of the central controller N0(q−1) =
R0(q−1)
S0(q−1)

is to guarantee the stability

of the internal positive feedback loop. This can be achieved by using a pole placement design

technique (see also [8, Chapter 7]) taking into account that the feedback is positive. All stable

poles of the reverse path can be assigned as poles of the closed loop. In order to obtain a small

attenuation of the high amplitude picks, one can modify the damping of the poles at the frequencies

of those picks. Additional stable poles can be assigned and some fixed part can be added in order

to reach some specifications (opening of the loop at 0 Hz and at 0.5 fS, reducing the maximum of

the disturbance–residual noise sensitivity function, etc.)

5.3. Youla–Kučera Parametrization—Some Remarks
Two major observations when using the Youla–Kučera parametrization have to be made:

• If an FIR Q filter is used, the poles of the internal closed loop will be defined by the cen-

tral controller R0, S0 and they will remain unchanged independently of the values of the

parameters of the Q filter.
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• If an IIR Q filter is used, the poles of the internal closed loop will be defined by the central

controller but additional poles corresponding to the denominator of the estimated Q filter

will be added. When the delay of the secondary path is larger than the delay of the primary

path, it was observed that the denominator of the estimated Q filter becomes unstable.

As for the direct feedforward algorithms described in Section 4, scalar adaptation gains can

also be used. The same choices for the filter L apply and the corresponding algorithms issued

from stability consideration are: NFULMS and SFUSBA (see also Table 3).

6. Simulation Results

The objective of this section is to assess comparatively the performance of the various adaptive

feedforward compensation schemes for attenuating broad-band noise disturbances with unknown

and time-varying characteristics. All the algorithms mentioned in Tables 3 and 4 have been tested,

but only the FIR FUSBA and the YK FIR algorithms have assured a stable operation of the test

bench and of the simulation. Decreasing of the adaption gain only pushes forward in time the

instability phenomenon. As a consequence only the FIR FUSBA and the YK FIR FUSBA will be

further evaluated in terms of performance.

6.1. Number of Adjustable Parameters
The performances of the various compensators will depend on the number of parameters. For

a selected PAA various complexities of the feedforward compensator have been tested. A com-

promise between performance/complexity has to be considered and this value is used for further

investigation.

6.2. Type of Parameter Adaptation Algorithms
For a given complexity of the feedforward compensator (Total 60 parameters) the performance

obtained with various PAAs have been evaluated. The attenuation is measured on a sample of

3s as the ratio between the variance of the residual noise in the absence of the compensator and

the variance of the residual noise in the presence of the compensator. The obtained result is then

transformed into decibels.

6.3. Description of Simulations and Results
In this section, simulation results for the Youla-Kučera FIR and the standard FIR feedforward

compensators are presented. The disturbance signal used in these simulations is a PRBS with

N = 15 passed through a band-pass filter with cut-off frequencies at 150 Hz and 350 Hz. To

make these simulation closer to the experimental case, we have introduced small changes in the

poles and zeros of the reverse and secondary path models used for the simulation of the system

by making these closer to the unit circle (as such there will be a difference between the values

of the identified model parameters used in the filters and the values of the parameters used in the

simulator).

Table 4 summarizes the obtained attenuation results for the YK FIR adaptive filter for various

filter orders and the FUSBA adaptation algorithm with decreasing gain. The initial gain is chosen
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Filter type No. params. [num/den] Attenuation [dB]

YK FIR 20/0 13.28

YK FIR 30/0 14.55

YK FIR 40/0 19.25

YK FIR 50/0 19.53

YK FIR 60/0 21.02

YK FIR 70/0 21.82

YK FIR 80/0 22.01

Table 4: Influence of the number of parameters on the performance of the YK FIR adaptive compensator (150-350

Hz broad-band disturbance, decreasing gain, 180 sec, simulation).

Filter type No. params. [num/den] Adaptation algorithm Att. [dB]

YK FIR 60/0 NFULMS (scalar gain) unstable

YK FIR 60/0 FUPLR (matrix gain) unstable

YK FIR 60/0 SFUSBA (scalar gain) 15.23

YK FIR 60/0 FUSBA (matrix gain) 21.02

Table 5: Influence of the adaptation algorithm on the performance of YK FIR adaptive compensators (150-350 Hz

broad-band disturbance, decreasing gain, 180 sec, simulation).

to be of 0.1 per parameter, which implies an initial trace of the adaptation matrix of 0.1 times the
number of adapted parameters. The simulation is done over a time duration of 180 sec, where the

control algorithm is activated after 15 sec. From these results, it seems that the 60/0 filter order is
a good compromise in terms of attenuation vs. complexity. For the rest of these simulation results,

the 60/0 order filter will be used.
Table 5 shows a comparison of various adaptation algorithms for the 60/0 YK FIR feedforward

filter. For the scalar gain adaptation, an initial gain of 0.02 is used. Decreasing gain adaptation is

obtained by dividing the initial gain by (1+ t
10), where the variable t represents the time in seconds

since the beginning of the adaptation.

For the standard FIR adaptive algorithm, Table 6 shows the influence of the number of parame-

ters on the obtained attenuation. These simulations results have been obtained by closing the loop

first at 15 sec using the FUPLR algorithm and then switching to the FUSBA algorithm at 50 sec.

The total simulation duration is of 180 sec. The decreasing gain algorithm is used to adapt the

parameters with an initial gain of 0.01 per parameter. As for the YK FIR adaptive compensator,

the disturbance’s spectrum is between 150 and 350 Hz. An adaptive FIR compensator with 60

parameters has been considered for further evaluation.

Figure 8 can be used to compare the poles of the positive feedback loop when using the adap-

tive YK FIR and the adaptive FIR compensators. Figure 9 shows a zoom of the previous one to

better assess the closeness of the poles to the unit circle. For the standard FIR there is a pair of

poles in low frequencies which are very close to the unit circle.
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Filter type No. params. [num/den] Attenuation [dB]

FIR 20/0 6.66

FIR 30/0 7.67

FIR 40/0 8.16

FIR 50/0 8.33

FIR 60/0 8.37

FIR 70/0 8.43

FIR 80/0 8.51

Table 6: Influence of the number of parameters on the performance of the FIR adaptive compensator (150-350 Hz

broad-band disturbance, decreasing gain, 180 sec, simulation).
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Figure 8: Comparison of the positive feedback loop poles for the YK FIR (◦) and FIR (×) adaptive compensators
(simulation).

7. Experimental Results

The objective of this section is to compare experimentally on the test bench described in Sec-

tion 2 the algorithms that showed stable results in simulation.
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Figure 9: Comparison of the positive feedback loop poles for the YK FIR (◦) and FIR (×) adaptive compensators
(simulation).

7.1. Protocols used for performance evaluation
In defining the experimental protocols, a number of performance indicators have to be taken

into account:

• Definition of the testing signals

• Number of parameters to be adapted

• Type of PAA used

• Duration of the experiment

7.2. Testing Signals
The following type of disturbances have been considered

• broad-band noise with a flat DSP between 150 to 250 Hz

• broad-band noise with a flat DSP between 250 to 350 Hz

• broad-band noise with a flat DSP between 150 to 350 Hz

• PRBS noise with a flat DSP from 80 to 1250 Hz
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• step change from a broad-band disturbance 150 -250 Hz to a broad-band disturbance 250

-350 Hz

A test horizon of 180 s has been chosen as a compromise between the time required to achieve

many of the experiments and the convergence horizon. Few tests have been carried on a larger

horizon showing the expected improvement in performance.

An important issue is the adaptation capabilities in the presence of step changes in the distur-

bance characteristics. The step changes occur at 180 s.

7.3. Experimental Results for Adaptive Youla-Kuc̆era FIR Feedforward Compensators

Filter type No. params. [num/den] Attenuation [dB]

YK FIR 40/0 19.79

YK FIR 60/0 20.58

YK FIR 80/0 20.66

Table 7: Influence of the number of parameters on the performance of the YK FIR (150-350 Hz broad-band distur-

bance, 180 s experimental).

Table 7 gives results obtained with YK FIR FUSBA for various complexities of the Q FIR

filter on a 180 s experiment using a broad-band disturbance 150-350 Hz and a decreasing matrix

adaptation gain. The Q FIR filter with 60 parameters has been selected for further investigation.

Table 8 gives the performance of the 60 parameters YK FIR for various PAAs and a duration of

180 s for the experiment. It can be seen that the FUSBA (matrix adaptation gain) and the SFUSBA

(scalar adaptation gain) algorithms give the best results.

Filter type No. params. [num/den] Adaptation algorithm Att. [dB]

YK FIR 60/0 NFULMS (scalar gain) 5.57

YK FIR 60/0 FUPLR (matrix gain) 5.65

YK FIR 60/0 SFUSBA (scalar gain) 19.90

YKFIR 60/0 FUSBA (matrix gain) 20.94

Table 8: Influence of the adaptation algorithm on the performance of YK FIR adaptive compensators, 180s, experi-

mental.

Figure 10 gives the time-domain performance of the YK FIR configuration with 60 parameters

using the FUSBA algorithm. A constant trace adaptation gain has been used with a trace of

trace = 60×0.002. The system operates in open loop for 15 s. The attenuation is evaluated every

15 secs on a horizon of 15s. One can say that the system almost reaches final attenuation after

700 s. Table 9 gives information about the transient behaviour. One can see that after 180 s almost

90% of the final performance is achieved.

Table 10 gives the performance of the YK FIR for various types of broad-band disturbances.

The duration of the experiment is of 180 s. As expected, the attenuation depends on the bandwidth

of the disturbance.
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Filter type No. params. [num/den] Duration Attenuation [dB]

YK FIR 60/0 180s 20.58

YK FIR 60/0 800s 22.76

Table 9: Influence of the experiment’s length on the performance (150-350 Hz broad-band disturbance).

Figure 10: Performance of YK FIR adaptive compensator with 60 parameters (experimental).

Filter type No. params. [num/den] Bandwidth Disturbance Att. [dB]

YK FIR 60/0 50Hz 150Hz-200Hz 32.33

YK FIR 60/0 50Hz 225Hz-275Hz 33.19

YK FIR 60/0 50Hz 300Hz-350Hz 29.30

YK FIR 60/0 100Hz 150Hz-250Hz 31.68

YK FIR 60/0 100Hz 250Hz-350Hz 23.94

YK FIR 60/0 200Hz 150Hz-350Hz 20.57

YK FIR 60/0 1250Hz PRBS 5.20

Table 10: Influence of the disturbance characteristics on the performance of the YK FIR compensator.

Figure 11 shows the evolution of the output of the system using YK FIR with constant trace

adaptation gain for a change in the characteristics of the disturbance at t=180 s. The first dis-

turbance is a broad band disturbance located between 150 and 250 Hz, while the second one is

a broad band disturbance located between 250-350 Hz (the system operates in open-loop for the
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first 15 s).

Figure 11: Transient performance of YK FIR adaptive compensator (experimental). 0 to 180s: broad-band disturbance

150-250 Hz; 180-345 s: broad-band disturbance 250-350 Hz; open loop operation: 0 to 15s

7.4. Experimental Results for FUSBA FIR adaptive compensators

Filter type No. params. Attenuation [dB]

FIR 20/0 9.20

FIR 30/0 9.95

FIR 40/0 9.98

FIR 50/0 10.04

FIR 60/0 10.35

FIR 80/0 10.07

Table 11: Influence of the number of parameters on the performance of standard FIR compensator (150-350 Hz

broad-band disturbance, 180s experiment).

Table 11 gives results obtained with a standard FIR FUSBA compensator for various complex-

ities of the FIR filter on a 180 s experiment using a broad-band disturbance 150-350 Hz. The FIR

filter with 60 parameters has been selected for further investigation.
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Nevertheless, the difference observed on this shorter horizon does not allow to conclude clearly

for the compromise performance/complexity.

Figure 12: Performance of FUSBA FIR adaptive compensator (60 parameters, experimental).

Figure 12 illustrates the performance of the FUSBA FIR using a constant trace adaptation gain

over a horizon of 800s. One can see that the steady-state operation has not yet been obtained.

Figure 13 shows comparatively the PSD in open-loop and under the effect of the FUSBA FIR

compensator and of the YK FIR compensator (each with 60 parameters, and the same constant

trace adaptation gain with trace = 60× 0.002). Experiment duration: 800 s. It can be seen on
this figure that the performance of the YK FIR is better than the performance of the FUSBA FIR

compensator for the same complexity and the same the same adaptation gain.

8. Concluding Remarks

Based on the experimental and simulation results presented, it can be concluded that the YK

FIR algorithm provides a stable operation and good performance of the adaptive feedforward ac-

tive noise compensation system when the delay of the compensator path is larger than the delay

of the primary path (between the reference source and the residual noise measurement). Its per-

formance is much better than the one of a standard FIR adaptive compensator using the FUSBA

algorithm. The main explanations for this good behavior for the YK FIR adaptive compensator us-

ing a FUSBA algorithm is that the internal positive closed-loop will remain stable independently

of the values of the adaptive parameters and the filter to be used for the implementation of the
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parameter adaptation algorithm is fixed and provides a better approximation of the gradient than

the other filtering options used in the various algorithms. Unfortunately, the FULMS and FXLMS

algorithms as well as the standard IIR compensators using FUPLR or NFULMS algorithms and

the YK IIR adaptive compensators do not work properly in this configuration (instability).
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Abstract: This paper emphasizes the design methodology for active tonal noise feedback cancellers
starting from data collected on the system. To design such control systems, an accurate dynamic model
of the system is necessary. Physical modeling can provide qualitative results but fails to yield enough
accurate models for control design. The main point in the methodology is identification of primary path
(noise propagation) and secondary path (compensation) models from data. The procedure is investigated
in details starting with transfer functions’ order estimations, continuing with parameters estimation
and model’s validation. The second aspect is the design of a noise canceller using the Internal Model
Principle and the sensitivity function shaping in order to reduce the ”water-bed” effect. The estimated
model’s quality for control design is illustrated by the experimental performance of a tonal noise
feedback canceller implemented on a test bench.

Keywords: Active noise control, System Identification, Internal model principle, Band stop filters,
Sensitivity functions.

1. INTRODUCTION

Active noise control (ANC) has been under research for many
years and applied in various kind of applications. In most cases
feed-forward broadband noise compensation is currently used
for ANC when a disturbance’s image is available (correlated
measurement with the disturbance). See Elliott and Nelson
(1994), Elliott and Sutton (1996), Kuo and Morgan (1999),
Zeng and de Callafon (2006).

However, these solutions, inspired by Widrows technique for
adaptive noise cancellation, see Widrow and Stearns (1985),
ignore the possibilities offered by feedback control systems
and have a number of disadvantages: they require the use of
an additional transducer, difficult choice for its location and
presence, in most cases, of a ”positive” coupling between the
compensator system and the disturbance image’s measurement,
which can cause instabilities. To achieve the disturbance’s
rejection (asymptotically) without measuring it, a feedback
solution can be considered.

Residual noise can be described as the result of acoustic waves
which pass trough the system, and the noise cancellers’ objec-
tive is to attenuate it. In many cases, these waves can be char-
acterized in the frequency domain either as tonal disturbances
or as narrow band perturbations. The common framework is
the assumption that a narrow band disturbance is the result of
a white noise or a Dirac impulse passed through the ”distur-
bance’s model.” In the case of tonal (narrow band) noise distur-
bances, the basic idea is to use the ”internal model principle”
to get a strong attenuation, combined with output sensitivity
function shaping, in order to avoid unwanted amplifications in
the tonal disturbances’ neighborhoods.
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However, the real time performance of the noise cancellers
strongly depends on the secondary path dynamic model’s qual-
ity used for designing the feedback control law. Many studies
have been carried out to develop dynamic models for control
design, starting from the basic physical equations describing
the system and trying to determine, from the systems’ geom-
etry, the values of some basic constants. See Nelson and El-
liott (1993). Zimmer and Lipshitz (2003) give a very complete
evaluation of the physical modeling in the context of active
noise control in ducts. Unfortunately on one hand the resulting
models are not very good, since it is hard for a given system
to find the correct physical constants, and on the other hand it
is a PDE model for which there are not simple control design
methods available.

What is needed in practice is a finite dimension discrete-
time model which reproduces the system’s dynamical behavior.
Once such a model is available, one can use digital control de-
sign techniques readily implementable on a real time computer.
These models can be obtained directly from data using sys-
tem identification techniques, see Ljung (1999); Landau et al.
(2016); Carmona and Alvarado (2000). However these discrete-
time models for active noise compensation present a number of
peculiarities which require to develop a specific identification
procedure. One of the major objectives of the paper is to clarify
how system identification from data should be done in the
context of active noise control. Previous identification results
given in Ben Amara et al. (1999) and Zeng and de Callafon
(2006) have been also considered.

The final quality test for an identified model is to verify how
close are the real-time experimental results obtained and the
designed controller’s performances in simulation. As shown
later, the results are very close, which indicates that the pro-
posed procedure is reliable. Two control problems have been
considered: the rejection of two tonal disturbances, and strong



attenuation of interferences, caused by tonal disturbances with
very close frequencies. The Internal Model Principle (IMP)
combined with the sensitivity functions’ shaping will be used
for control design.

2. EXPERIMENTAL SETUP

The test bench used for the experiments is shown in Fig. 1, and
its detailed scheme is given in Fig. 2. The speaker used as the
source of disturbances is labeled as 1, the control speaker is
2 and finally, at pipe’s open end, the microphone that measures
the system’s output (residual noise) is denoted as 3. The transfer
function between the disturbance’s speaker and the microphone
(1→3) is denominated Primary Path, while the transfer func-
tion between the control speaker and the microphone (2→3) is
denominated Secondary Path. Both speakers are connected to a
xPC Target computer with Simulink Real Time� environment
through a pair of high definition power amplifiers and a data
acquisition card. The current signals u(t) and p(t) are amplified
and reach the speakers’ voice coils and displace them, gener-
ating movement in the diaphragms and thus, sound waves. In
Fig. 2, y(t) is the system’s output (residual noise measurement).
Both primary and secondary paths have a double differentiator
behavior, since as input we have the voice coil displacement,
and as output the air acoustic pressure. A second computer is
used for development, design and operation with Matlab�.

Fig. 1: Noise control test bench (Photo).

Fig. 2: Noise control test bench diagram.

PVC pipes of 0.10m diameter are used in this test bench, with
couplings of 135◦ for the control speaker. Distances between
disturbance speaker and microphone are 1.65m, and to control
input 0.80m. Speakers are isolated inside wood boxes filled
with special foam in order to create anechoic chambers and
reduce the radiation noise produced.

3. SYSTEM DESCRIPTION

The linear time invariant (LTI) discrete-time model of the
secondary path, or plant, used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−dB′(z−1)
A(z−1)

DF(z−1), (1)

where DF(z−1) is a double differentiator filter and
A(z−1) = 1+a1z−1+ · · ·+anAz−nA , (2)

B′(z−1) = b1z−1+ · · ·+bnB′ z
−nB′ , (3)

with d as the plant pure time delay in number of sampling
periods 1 . The system’s order is

n = max(nA,nB′ +d) (4)

Fig. 3: Feedback regulation scheme.

Figure 3 shows the closed loop feedback regulation scheme,
where the controller K is described by

K(z−1) =
R
S
=

r0+ r1z−1+ · · ·+ rnRz−nR

1+ s1z−1+ · · ·+ snS z−nS
. (5)

The plant’s output y(t) and the input u(t)may be written as (see
Fig. 3):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (6)

S(q−1) ·u(t) =−R(q−1) · y(t). (7)

In (6), p(t) is the disturbances’ effect on the measured output 2

and R(z−1), S(z−1) are polynomials in z−1 having the following
expressions:

R = HR ·R′ = HR · (r′0+ r′1z−1+ . . .+ r′nR′ z
−nR′ ), (8)

S = HS ·S′ = HS · (1+ s′1z−1+ . . .+ s′nS′ z
−nS′ ), (9)

where HS(z−1) and HR(z−1) represent prespecified parts of the
controller (used for example to incorporate the internal model
of a disturbance, or to open the loop at some frequencies) and
S′(z−1) and R′(z−1) are solutions of the Bezout equation:

P = PD ·PF = (A ·HS) ·S′+
(

z−dB ·HR

)
·R′. (10)

In (10) P(z−1) represents the characteristic polynomial, which
specifies the desired closed loop poles of the system. PD repre-
sents the stable poles of the plant and PF are auxiliary poles.

The transfer functions between the disturbance p(t) and the
system’s output y(t) and the control input u(t), denoted respec-
tively output and input sensitivity functions, are given by

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(11)

1 The complex variable z−1 is used to characterize the system’s behavior in the
frequency domain and the delay operator q−1 for the time domain analysis.
2 The disturbance passes through the primary path, and p(t) is its output.



and

Sup(z−1) =−A(z−1)R(z−1)
P(z−1)

, (12)

4. DATA DRIVEN SYSTEM IDENTIFICATION

Model identification from experimental data is a well estab-
lished methodology (see Landau et al. (2016); Ljung (1999)).
Identification of systems is an experimental approach for deter-
mining a system’s dynamic model. It includes four steps:

1. Input-output data acquisition under an experimental pro-
tocol and data pre-processing.

2. Estimation of the model complexity.
3. Estimation of the model parameters.
4. Validation of the identified model (complexity of the

model and values of the parameters).

A complete identification operation must comprise the four
stages indicated above. The typical input is a PRBS, which is
a persistent excitation signal allowing unique parameter esti-
mation even for high order system. Model validation is the final
key point. It is important to emphasize that it does not exist
one single algorithm that can provide in all the cases a good
model (i.e. which passes the model validation tests). System
identification should be viewed as an iterative process which
has as objective to obtain a model which passes the model
validation test and then can be used safely for control design.
The procedure will be detailed for the secondary path’s identi-
fication. The same methodology has been used for the primary
path identification also (which is used only for simulation), and
only the final results will be given.

4.1 Data Acquisition under the experimental protocol

For design and application reasons (the objective is to reject
tonal disturbances up to 400 Hz), the sampling frequency was
selected as fs = 2500Hz (Ts = 0.0004s) i.e. approximatively
6 times the maximum frequency to attenuate, in accordance
with recommendation given in (see Landau et al. (2016)). The
theoretical band pass of the system is 1975Hz, using formula
given in Zimmer and Lipshitz (2003).

The experimental protocol should assure persistent excitation
for the number of parameters to be estimated, thus a PRBS
has been used. This signal’s magnitude is constant allowing an
easy selection with respect to the magnitude constraint on the
plant input. One of the key points is the design of a PRBS in
order to satisfy a compromise between the frequencies range to
be covered (particularly those in the low frequencies region),
and the test duration. One should apply at least on complete
PRBS sequence, and its characteristics, including duration, will
depend on the number of cells in the registers length used for
its generation.

For identification, the signals’ characteristics used in both paths
are: magnitude = 0.15V, register length = 17, frequency di-
vider of 1, sequence length of 217 − 1 = 131,071 samples,
guaranteeing a uniform power spectrum from about 70Hz to
1250Hz. Since the transfer functions have a double differentia-
tor behavior, this is considered as a system’s known part and the
objective will be to identify the unknown part only. To do this,
the input sequence will be filtered by a double discrete-time
differentiator DF = (1− q−1)2 such that u′(t) = DF · u(t). The
double differentiator will be concatenated with the identified
model of the unknown part in the final models.

4.2 Complexity Estimation

The basic idea in complexity estimation is to have, on one
hand an unbiased estimator of the system parameters, which
allows to obtain an unbiased evolution of the prediction error
quadratic criterion that tends toward zero when the correct
order is reached, and on the other hand a penalty term for
the model’s complexity. In order to get an unbiased estimation
of the error criterion, the instrumental variable approach is
used, see Landau et al. (2016); Duong and Landau (1996). This

assumes that the system is described by Y (t) = Z(n̂)θ̂n̂, where

θ̂ T
n̂ = [â1, · · · , ân̂, b̂1, · · · , b̂n̂], and n̂ is the estimated order. So,
Z(n̂) = [U(t−L−1),U(t−1), · · · ,U(t−L− n̂),U(t− n̂)]

are the delayed inputs with L > n̂, and Y (t),U(t) are defined by

Y T (t) = [y(t),y(t−1)...]; UT (t) = [u′(t),u′(t−1)...].

The least squares criterion defined in Landau et al. (2016) is

VIV (n̂,N) =min
θ̂

1

N

∥∥Y (t)−Z(n̂)θ̂n̂
∥∥2 , (13)

where N is the number of samples. Adding a term which
penalizes the model’s complexity leads to

JIV (n̂,N) =VIV (n̂,N)+2n̂
logN

N
. (14)

When identifying finite dimensional discrete-time models, JIV
will show a minimum value, function of n̂, allowing to define
the estimated order of the model. Once an estimated order n̂ is
selected, one can apply a similar procedure to estimate n̂A, n̂−
d̂, and n̂B′ + d̂, from which n̂A, n̂B′ and d̂ are obtained.

Results for the secondary path order estimation (without the
double differentiator) are shown in Fig. 4, where both non-
penalized and penalized criteria VIV , JIV are represented. As it
can be seen, the minimum is very flat (which is understandable
since we are trying to approximate an infinite-dimensional sys-
tem). It is therefore necessary to explore the model’s properties
for n between 32 and 42, in order to decide what order to take.
Two additional criteria will be used to decide upon the best
order estimation: I) comparison between the Power Spectral
Densities (PSD) of the identified model’s output, and the out-
put’s real data (in order to see if the identified model captures all
the vibrations modes in the frequency range of operation); and
II) comparison of the validation tests for the various models.

To do this it is necessary to estimate the values of nA, nB′ and
d for each order n selected, and to proceed with parameter
estimation. To illustrate the details of orders estimations, the
model with n = 40 is considered (the procedure for other values
of n is similar). For the secondary path, Fig.4b shows that
the minimum for n−d is 32. From Fig.4c one can see that
the minimum for nA is given by nA = 38. From Fig.4d one
concludes that nB′ +d = 38. Taking in account the definition
of order n, one concludes that nA = 38, nB′ = 30 and d = 8,
therefore the effective estimated order of this model is ne = 38.
Similarly for a model with n = 38, one gets nA = 37, nB′ = 30,
d = 8 (which means an effective order ne = 38) 3 .

4.3 Parameters Estimation

The algorithms used for parameter estimation will depend on
the assumptions made on the measurements’ noise character-
istics, which have to be confirmed by the model validation.

3 Complete model’s nB = nB′ +2, due to the double differentiator addition.
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Fig. 4: Secondary path, Instrumental Variable order estimation.

It is important to emphasize that none single plant + noise
structure exists that can describe all the situations encountered
in practice. It is the validation stage which will allow to decide
what method (and implicitly what noise model) has to be used.
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Fig. 5: Whiteness validation tests for the secondary path.

Among various models, it was found that the ARMAX model
gives the best representation in this case, and between the
available methods for that model, Output Error with Extended
Prediction method (XOLOE) brought the best results in terms of
validation for a given order model. The details of the algorithm
are given in Landau et al. (2016), section 5.4.2.

4.4 Model Validation

The validation procedure associated with the identification of
ARMAX models is based on a whiteness test.

Whiteness test: Let {ε(t)} be the centered (measured value
minus average) sequence of the residual prediction errors. One
computes estimations of the normalized autocorrelations as:

R(i) =
1

N

N

∑
t=1

ε(t)ε(t− i) (15)

R(0) =
1

N

N

∑
t=1

ε2(t) ; RN(i) =
R(i)
R(0)

(16)

i = 1,2,3, . . . ,nA, . . . ,n

One considers as a validation criterion (extensively tested on
applications):

RN(0) = 1 ; |RN(i)| ≤ 2.17√
N

; i≥ 1. (17)

Fig. 5 shows the validation results (whiteness test) for the
unknown part model with n = 40 (effective ne = 38) and
n = 38 (ne = 38). The results are summarized in Table 1.
Model n = 40 leads to better results, which is confirmed in
Fig. 6 where the PSD of real data’s measures is compared
with the two complete models outputs’ PSD (including the
double differentiator). Therefore the XOLOE model n = 40 is
chosen. It has 18 oscillatory modes with damping comprised
between 0.0097 and 0.3129; also 13 pairs of oscillatory zeros
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with damping comprised between −0.0159 and 0.5438. The
presence of these low damped zeros make the control system’s
design difficult. Fig. 7 gives the frequency characteristics of
the identified complete models for the primary and secondary
paths.

Table 1: Summary of Whiteness tests validations

Method Model Error Maximum RN(i)
energy RN(i) over limit

XOLOE n = 40 1.3307e-06 0.0154 15
XOLOE n = 38 1.3337e-06 0.0177 14

5. CONTROLLER DESIGN

The basic specifications are that the attenuation of two tonal
disturbances located at 170Hz and 285Hz must be at least
−40 dB, and the maximum amplification at other frequencies
be less than 7 dB. Furthermore, in order to improve robustness,
the input sensitivity function should be below −20 dB at fre-
quencies over 600Hz (beyond the system’s bandpass).

In order to strongly attenuate the two tonal disturbances the
IMP has been used, so the RS controller to be designed requires
a fixed part HS to incorporate the disturbance’s model, as
described in section 3. See (Landau et al., 2016). The tonal
disturbances can be modeled by:

p(t) =
Np(q−1)
Dp(q−1)

·δ (t), (18)

with δ (t) as a Dirac impulse. Dp has roots on the unit circle.
In practice, the contribution of Np is negligible for steady state
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analysis in comparison with Dp. Then HS(q−1) = Dp(q−1), and
for this specific case, HS = HS1HS2 where:

HSi(q
−1) = Dpi(q

−1) = 1−2cos

(
2π

fi

fs

)
q−1+q−2, (19)

with f1 = 170Hz and f2 = 285Hz. Also, since the system
has a zero gain at 0Hz and a very low gain at 1250Hz,
the loop has been opened at these frequencies by choosing
HR = (1+q−1)(1−q−1). The dominant closed loop poles PD
have been chosen equal to those of the secondary path. Eq. (10)
has unique solution for S′ and R′ of minimal degree for

nP =degP(z−1)≤ nA +nHS +nB +nHR +d−1, (20)

nS′ =degS′(z−1) = nB +nHR +d−1, (21)

nR′ =degR′(z−1) = nA +nHS −1. (22)

Fig. 8 shows the resulting output sensitivity function Syp (curve
IMP+HR). The specifications for maximum gain are violated.
To overcome this, 30 auxiliary real poles with value pi = 0.25
have been added in the form PF(z−1) = (1− piz−1)nF , without
augmenting the controller’s order (curve IMP+HR +Pol). The
resulting sensitivity function is improved but the limit is still
violated. To further shape the sensitivity function, Band-Stop
Filters (BSF) have been used (Landau et al. (2016)); 3 on Syp,
and 3 on Sup to obtain a correct behavior (see table 2). The
resulting output sensitivity function is shown in Fig. 8. Also the
resulting input sensitivity function is shown in Fig. 9.

Table 2: Band-Stop Filters for sensitivity functions.

Freq.[Hz] Ampli.[dB] Freq.[Hz] Ampli.[dB]
90 -6.00 600 -6.00

Syp 231 -8.00 Sup 800 -1.00
370 -5.00 945 +5.00



Fig. 10 displays the system’s output for a simulation using
the models estimated for the primary and secondary paths. A
pair of sinusoidal signals at 170Hz and 285Hz were used as
disturbances p(t) from 1 s to 11 s. Control starts at 6 s and ends
at 11 s. A global attenuation of 86.4 dB was achieved, with
attenuations of −88.6 dB at 170Hz, and −94 dB at 285Hz.

0 2 4 6 8 10 12

-0.4

-0.2

0

0.2

0.4

Time [s]

y
(t
)
A
m
p
li
tu
d
e
[V

] Open loop
Closed loop
Reference

Fig. 10: Simulation results.

6. EXPERIMENTAL RESULTS

The experimental results have been obtained by implementing
the designed controller on the test-bench described in Section 2.

Fig. 11 shows the result for a real time test. Two tonal sinusoidal
signals at 170Hz and 285Hz were used as disturbances p(t)
from 1 s to 11 s. Control starts by closing the loop at 6 s and
ends at 11 s. Performances during the first second and the
last one are used as a reference for the ambient noise (no
control, no disturbance). A global attenuation of 76.88 dB was
achieved, with disturbance attenuations of −94.5 dB at 170Hz,
and −94 dB at 285Hz. These results are very close to those
obtained in simulation. Fig. 12 displays the effective residual
PSD estimation, calculated as a difference between the open-
loop PSD and the closed-loop PSD of the residual noise.
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Fig. 11: Real-time experiment results: tonal disturbances.

Fig. 13 displays the results for a second real-time test. Two
pairs of sinusoidal interference signals (170Hz+170.5Hz and
285Hz+285.5Hz) with amplitude of 0.14V were used as
disturbances p(t) from 1 s to 20 s. Control starts by closing the
loop at 10 s and ends at 20 s. Performances during first and last
second are used as a reference for ambient noise again. A global
attenuation of 59.55 dB was achieved.
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Active Noise Control : Adaptive vs. Robust Approach

Ioan Doré Landau, Raúl Meléndez

Abstract—Active noise control is often concerned with the
strong attenuation of single or multiple tonal noise disturbances
which may have unknown and time varying frequencies. Cur-
rently in applications, adaptive feed-forward compensation is
used which requires the use of an additional transducer and
introduces an instability risk due to a positive internal coupling.
However for these types of noise a feedback approach can be
efficiently used and this will be illustrated in this paper. One
considers the case of two tonal disturbances located in two
distinct frequency regions subject to frequency variations within
a given range as well the case of interferences between tonal
disturbances of very close frequencies. The objective is to mini-
mize the measured residual noise in a predefined location. These
problems occurs often in ventilation systems (active silencers).
To solve these problems robust and adaptive solutions are
considered. A robust controller design using sensitivity function
shaping is considered. The maximum achievable attenuation is
inverse proportional to the range of frequency variations of
the tonal disturbances. To further improve the performance an
add-on direct adaptive feedback approach using the Internal
Model Principle and the Youla Kucera parametrization is
considered. The adaptive approach allows both to improve
the performance within the given frequency ranges as well
as to extend the admissible domain of frequencies variations.
Experimental results obtained on a relevant test bench will
illustrate the performance of the two designs.

Index Terms—Active noise control, System Identification, In-
ternal model principle, Youla-Kučera parametrization, Adaptive
control, Robust control.

I. INTRODUCTION

Active disturbance rejection is a key issue in active vibra-

tion control and active noise control. The popular approach

for active noise control is to use adaptive feed-forward com-

pensation. This approach, inspired by Widrows technique for

adaptive noise cancellation, see [1], ignores the possibilities

offered by feedback control systems and have a number

of disadvantages: 1) it requires the use of an additional

transducer for obtaining an image of the disturbance, 2)

difficult choice for positioning this additional transducer

and, 3) in most cases, there exists a ”positive” coupling

between the compensator system and the disturbance image’s

measurement, which can cause instabilities. See for example

[2]. To achieve the disturbance’s rejection (asymptotically)

without measuring it, a feedback solution can be considered.

This approach is particularly pertinent for single or multiple

time varying tonal or narrowband disturbance noise.

The common framework is the assumption that a narrow

band or a tonal disturbance noise is the result of a white

Financial support thanks to Consejo Nacional de Ciencia y tecnologı́a de
Meéxico, CONACyT.
R. Meléndez is with Univ. Grenoble Alpes, CNRS, GIPSA-lab, F-

38000 Grenoble, France, (e-mail: Raul.Melendez, Ioan-Dore.Landau@gipsa-
lab.grenoble-inp.fr).

noise or a Dirac impulse passed through the ”disturbance’s

model.” More specifically the model for a single narrow-band

or tonal disturbance is a notch filter with poles on the unit

circle and zeros inside the unit circle (for details see [3]).

In managing the vibration attenuation by feedback, the

shape of the modulus of the “output sensitivity function” (the

transfer function between the disturbance and the residual

acceleration/force) is fundamental both from performance

and robustness considerations. Three basic concepts are to

be considered: the Bode Integral, the Modulus margin and

the Internal Model Principle (IMP). The problem of robust

control design in the context of active noise control has been

considered in [4] and the shaping of the output sensitivity

function has been achieved using the convex optimization

procedure introduced in [5]. See also [6], [7] for Hinf and

LMI approaches.

In this paper, one considers multiple unknown and time

varying tonal disturbances located within two distinct rel-

atively small frequency ranges. To be specific, two cases

will be considered: (i) the case of two time varying tonal

disturbances located in two distinct frequency regions and

(ii) the case of four simultaneous tonal disturbances, two

located in one limited frequency range and the other two in

another frequency range. In this context, a very important

problem is to be able to counteract the very low frequency

oscillations which are generated when the two frequencies are

very close (interference). Since these disturbances are located

within two relatively small frequency ranges, it is possible to

consider a robust linear control design which will shape the

output sensitivity function in such a way that a sufficient

attenuation is introduced in these two frequency regions

but avoiding significant amplification at other frequencies

(both for performance and robustness reason). It will be

shown in this paper that an elementary procedure for shaping

appropriately the modulus of the sensitivity functions can be

implemented using stop band filters as shaping tools. For a

basic reference on this approach see [3].

To further improve the performance an add-on direct adap-

tive feedback approach using the Internal Model Principle

and the Youla Kucera parametrization is considered [3]. The

adaptive approach allows both to improve the performance

within the given frequency ranges as well as to extend the

admissible domain of frequencies variations. See also [8].

The performance of these approaches depend to a large ex-

tent on the quality of the dynamic model of the compensator

system used for controller design. To obtain such reliable

model, identification from data of a finite dimensional dis-

crete time model has to be used since the physical modeling

does not in general provide enough good models for design.
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Experimental results on a noise silencer for noise attenu-

ation in ducts will illustrate comparatively the performance

of the robust and adaptive approach.

II. THE TEST BENCH

The detailed scheme of the noise silencer test bench used

for the experiments is given in Fig. 1. Its actual photo

is shown in Fig. 2. The speaker used as the source of

disturbances is labeled as 1, the control speaker is 2 and

finally, at pipe’s open end, the microphone that measures

the system’s output (residual noise) is denoted as 3. The

transfer function between the disturbance’s speaker and the

microphone (1→3) is denominated Primary Path, while the
transfer function between the control speaker and the micro-

phone (2→3) is denominated Secondary Path. Both speakers
are connected to a PC Target computer with Simulink Real

Time R© environment through a pair of high definition power

amplifiers and a data acquisition card. In Fig. 1, y(t) is the
system’s output (residual noise measurement) and u(t) is

the control signal. Both primary and secondary paths have

a double differentiator behaviour, since as input we have

the voice coil displacement, and as output the air acoustic

pressure. A second computer is used for development, design

and operation with Matlab R©.

Fig. 1. Active noise control test bench diagram.

Fig. 2. Active noise control test bench (Photo).

PVC pipes of 0.10m diameter are used in this test bench,

with couplings of 135◦ for the control speaker. Distances

between disturbance loudspeaker and microphone are 1.65m,
and to control input 0.80m. Speakers are isolated inside

wood boxes filled with special foam in order to create

anechoic chambers and reduce the radiation noise produced.

III. SYSTEM DESCRIPTION

The linear time invariant (LTI) discrete-time model of the
secondary path, (the plant), used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−dB′(z−1)DF(z−1)
A(z−1)

, (1)

where DF(z−1) = (1− z−1)2 is a double differentiator filter

and

A(z−1) = 1+a1z−1+ · · ·+anA z−nA , (2)

B′(z−1) = b1z−1+ · · ·+bnB′ z
−nB′ , (3)

with d as the plant pure time delay in number of sampling

periods1. The system’s order (without the double differentia-

tor) is:

n = max(nA,nB′ +d) (4)

Fig. 3. Feedback regulation scheme.

Figure 3 shows the closed loop feedback regulation

scheme2, where the controller K is described by:

K(z−1) =
R
S
=

r0+ r1z−1+ · · ·+ rnR z−nR

1+ s1z−1+ · · ·+ snS z−nS
. (5)

The plant’s output y(t) and the input u(t) may be written

as (see Fig. 3):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (6)

S(q−1) ·u(t) =−R(q−1) · y(t). (7)

In (6), p(t) is the disturbances’ effect on the measured

output3 and R(z−1), S(z−1) are polynomials in z−1 having

the following expressions:

R = HR ·R′ = HR · (r′0+ r′1z−1+ . . .+ r′nR′ z
−nR′ ), (8)

S = HS ·S′ = HS · (1+ s′1z−1+ . . .+ s′nS′ z
−nS′ ), (9)

1The complex variable z−1 is used to characterize the system’s behavior
in the frequency domain and the delay operator q−1 for the time domain
analysis.

2The measurement noise is not represented
3The disturbance passes through the primary path, and p(t) is its output.
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where HS(z−1) and HR(z−1) represent prespecified parts of

the controller (used for example to incorporate the internal

model of a disturbance, or to open the loop at some frequen-

cies) and S′(z−1) and R′(z−1) are solutions of the Bezout

equation:

P = (A ·HS) ·S′+
(

z−dB ·HR

)
·R′. (10)

In (10) P(z−1) represents the characteristic polynomial,

which specifies the desired closed loop poles of the system.

The transfer functions between the disturbance p(t) and

the system’s output y(t) and the control input u(t), denoted
respectively output sensitivity and input sensitivity functions,
are given by

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(11)

and

Sup(z−1) =−A(z−1)R(z−1)
P(z−1)

, (12)

IV. SYSTEM IDENTIFICATION

System identification from experimental data (see [3],

[9]) will be used for obtaining the dynamic model of the

compensator system used for controller design .

For design and application reasons (the objective is to re-

ject tonal disturbances up to 400 Hz), the sampling frequency

was selected as fs = 2500Hz (Ts = 0.0004s) i.e. approxima-
tively 6 times the maximum frequency to attenuated (see [3]).

A Pseudo Random Binary Sequence (PRBS) has been

used as excitation signal. Its characteristics are: magnitude=
0.15V, register length= 17, frequency divider of 1, sequence

length of 217 − 1 = 131,071 samples, guaranteeing a uni-

form power spectrum from about 70Hz to 1250Hz. Since

the transfer functions has a double differentiator behaviour

(input: speaker’s coil position, output: acoustic pressure), this

is considered as a system’s known part and the objective

will be to identify the unknown part only. To do this, the

input sequence will be filtered by a double discrete-time

differentiator DF = (1−q−1)2 such that u′(t) =DF ·u(t). The
double differentiator will be concatenated with the identified

model of the unknown part in the final model used for

controller design.

The criterion used for order estimation has the form:

JIV (n̂,N) =VIV (n̂,N)+2n̂
logN

N
, (13)

where n̂ is the estimated order of the system and N is

the number of data and the optimal estimated order is the

one which minimize the criterion JIV . The first term of the

criterion VIV (n̂,N) is a prediction error criterion to which

a term penalizing the model’s complexity is added. The

effective order estimation was done using the algorithms

given in [3], [10] which uses instrumental variables for

obtaining an unbiased value for the error criterion VIV since

one can not ignore the measurement noise. Once an estimated

order n̂ is selected, one can apply a similar procedure to

estimate n̂A, n̂− d̂, and n̂B′ + d̂, from which n̂A, n̂B′ and d̂
are obtained.
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Fig. 4. Frequency characteristics of the identified primary and secondary
paths models.

A model with the orders n=40, nA=38, nB’=30 and d=8

has been chosen.

Comparison of several models obtained with various pa-

rameter estimation algorithms in terms of statistical valida-

tion led to the conclusion that an ARMAX model repre-

sentation is the most appropriate for this system. Among

the various methods which can be used for this structure4,

XOLOE algorithm gives the best results for a given order

model, in terms of whiteness test validation (see [3]).

Therefore the XOLOE model with n= 40 has been chosen.

It has 18 oscillatory modes with damping comprised between

0.0097 and 0.3129; also 13 pairs of oscillatory zeros with

damping comprised between −0.0159 and 0.5438. Fig. 4
gives the frequency characteristics of the identified complete

models for the primary and secondary paths5.

V. ROBUST CONTROL DESIGN

Control specifications

The controller will be designed to attenuate in regions

of ±5Hz around the two nominal frequencies 170Hz and

285Hz. The attenuation must be al least of −17dB and any

undesired amplification should be less that 7dB. Also since

our model may be not fully representative of the system’s

behaviour at high frequencies, magnitudes at the input sen-

sitivity function should be below −20dB at frequencies over

600Hz (improving robustness versus additive plant model

uncertainties in high frequencies).

In addition the gain of the controller should be zero at

0 Hz since the plant does not have gain at zero frequency

and the gain of the controller should be zero also at the

Nyquist frequency (0.5 fs) for robustness reasons. These

control specifications will be achieved through the sensitivity

functions’ shaping.

4Recursive Extended Least Squares (RELS), Output Error with Extended
Prediction Model (OEEPM) or (XOLOE), Recursive Maximum Likelihood
(RML)

5Primary path model has been identified using the same procedure. This
model is used for simulations only
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Design procedure

To achieve the constraints at 0Hz and at 0.5 fs, a fixed part

(HR)
6 will be introduced in the controller:

HR(q−1) = (1−q−1)(1+q−1) = 1−q−2, (14)

Three major tools will be used for design

• Choice of the dominant poles

• Use of the band stop filters for shaping the sensitivity

functions

• Choice of the auxiliary poles for further improving

performance and robustness

The use of auxiliary poles will be done such that the

characteristic polynomial take the form

P(z−1) = PD(z−1) ·PF(z−1), (15)

where PD are the dominant poles obtained from the identified

dynamic model, and PF will be the auxiliary poles determined

by the controller’s requirements.

It is shown in [3] that very accurate shaping of the output

or the input sensitivity functions can be obtained by the use

of band-stop filters (BSF). These are IIR filters obtained from

the discretization of continuous-time filters of the form

F(s) =
s2+2ζnumω0s+ω2

0

s2+2ζdenω0s+ω2
0

(16)

using the bilinear transform s = 2
T s

1−z−1
1+z−1 . The use of BSFs

introduces an attenuation M = 20log
(

ζnum
ζden

)
at the normal-

ized discretized frequency ωd = 2 ·arctan
(

ω0TS
2

)
. Depending

on whether the filter is designed for shaping the output

or the input sensitivity function, the numerator of the dis-

cretized filter is included in the fixed part of the controller

denominator HS0 or numerator HR0 , respectively. The filter

denominator is always included in the desired closed loop

characteristic polynomial. As such, the filter denominator

influences the design of the controller indirectly since S′0 and
R′0 are solutions of the Bezout equation (10). These filters

will be used for a fine shaping of both the output and input

sensitivity functions.

The steps for the design of the linear controller are:

1) include all (stable) secondary path poles in the closed

loop characteristic polynomial.

2) open the loop at 0 Hz and at 1250 Hz by setting the

fixed part of the controller numerator as in Eq. (14).

3) 7 BSFs on Syp have been used around each of the

frequencies where attenuation is desired in order to

assure the desired attenuation within ±5 Hz .

4) 11 BSF has been used on Sup to reduce its magnitude

above 600 Hz.

5) to improve robustness 17 auxiliary real poles located at

0.17 have been added to the characteristic polynomial.

Figure 5 shows the characteristics of the output sensitivity

function through the various steps of the design. The perfor-

mance and robustness specifications are achieved (as well as

on the input sensitivity function, not shown here).

6Hi,HRi ,HRi ,PFi will denote any given controller’s fixed part.
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Fig. 5. Robust controller design: Output sensitivity function.

VI. ADAPTIVE CONTROL DESIGN

The adaptive approach uses the Youla-Kucera parametriza-

tion of the controller combined with the Internal Model

Principle. The basic reference for this approach used in active

vibration control is [3] A key aspect of this methodology is

the use of the Internal Model Principle (IMP). It is supposed

that p(t) is a deterministic disturbance given by

p(t) =
Np(q−1)
Dp(q−1)

·δ (t), (17)

where δ (t) is a Dirac impulse and Np, Dp are coprime

polynomials of degrees nNp and nDp , respectively
7. In the

case of stationary narrow-band disturbances, the roots of

Dp(z−1) are on the unit circle.

Internal Model Principle[11]: The effect of the distur-

bance (17) upon the output

y(t) =
A(q−1)S(q−1)

P(q−1)
· Np(q−1)

Dp(q−1)
·δ (t), (18)

where Dp(z−1) is a polynomial with roots on the unit circle

and P(z−1) is an asymptotically stable polynomial, converges
asymptotically towards zero iff the polynomial S(z−1) in the
RS controller has the form (based on eq. (9))

S(z−1) = Dp(z−1)HS0(z
−1)S′(z−1). (19)

Thus, the pre-specified part of S(z−1) should be chosen as
HS(z−1) = Dp(z−1)HS0(z

−1) and the controller is computed

solving

P = ADpHS0S′+ z−dBHR0R′, (20)

where P, Dp, A, B, HR0 , HS0 and d are given8.

In the context of this paper for the Youla-Kučera parametriza-

tion, one considers a finite impulse response (FIR) filter of

the form:

Q(z−1) = q0+q1z−1+ · · ·+qnQz−nQ , (21)

to which one associate the vector of parameters:

θ = [q0 q1 . . .qnQ ]
T . (22)

7Throughout the paper, nX denotes the degree of the polynomial X .
8Of course, it is assumed that Dp and B do not have common factors.
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Under Youla-Kučera parametrization or Q-parametrization,
the equivalent polynomials R(z−1) and S(z−1 of the controller
K(q−1) take the form

R(q−1) = R0+A ·Q ·HS0 ·HR0 (23)

S(q−1) = S0−q−dB ·Q ·HS0 ·HR0 , (24)

with

R0(z−1) = r00+ r01z−1+ . . .+ r0nR
z−nR0 = R′0 ·HR0 (25)

S0(z−1) = 1+ s01z−1+ . . .+ s0nS
z−nS0 = S′0 ·HS0 , (26)

where A, B and d correspond to the identified model of the

secondary path, R0(z−1), S0(z−1) are the central controller’s
polynomials, and HS0 , HR0 are the controller fixed parts.

Using the output sensitivity function, the expression of the

output can be written as:

y(t) =
S0
P
·w(t)−Q · q−dBHS0HR0

P
·w(t), (27)

with

w(t) = A · y(t)−q−dB ·u(t) = A · p(t) (28)

as a disturbance’s observer. The objective is to find a value

of Q such that y(t) is driven to zero.

A block diagram of the adaptive scheme is given in Figure

6.

Fig. 6. Adaptive Youla-Kučera parametrization scheme.

The estimation of the polynomial Q at time t is denoted:

Q̂(t,q−1) = q̂0(t)+ q̂1(t)q−1+ · · ·+ q̂nQ(t)q
−nQ (29)

and is caracterized by the parameter vector:

θ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ(t)]
T , (30)

Since this is a regulation problem y(t) is expected to go to

zero and as such it is an a priori adaptation error denoted

ε0(t +1) for a given estimated polynomial Q̂(t,q−1):

ε0(t +1) =
S0
P
·w(t +1)− Q̂(t)

q−dB∗HS0HR0
P

·w(t), (31)

with B(q−1) = q−1 ·B∗(q−1) . In a similar way, we can define
an a posteriori error like

ε(t +1) =
S0
P
·w(t +1)− Q̂(t +1)

q−dB∗HS0HR0
P

·w(t), (32)

which can be further expressed as

ε(t +1) = [Q− Q̂(t +1)] · q−dB∗HS0HR0
P

·w(t)+η(t +1)

(33)

where η(t) tends asymptotically towards zero ( see [3]for

details).

Denoting filtered versions of observer output w(t) as

w1(t) =
S0(q−1)
P(q−1)

·w(t) (34)

w2(t) =
q−dB∗HR0HS0

P
·w(t) (35)

and

ϕT (t) = [w2(t) w2(t−1) . . .w2(t−nQ)], (36)

Eq. (33) can be rewritten as:

ε(t +1) = [θ T − θ̂ T (t +1)] ·ϕ(t)+η∗(t +1). (37)

This type of equation allows immediately to develop an

adaptation algorithm (see [12]):

θ̂(t +1) = θ̂(t)+F(t)ϕ(t)ε(t +1) (38)

ε(t +1) =
ε0(t +1)

1+ϕT (t)F(T )ϕ(t)
(39)

ε0(t +1) = w1(t +1)− θ̂ T (t)ϕ(t). (40)

F(t +1) =
1

λ1(t)

⎡
⎢⎢⎣F(t)− F(t)ϕ(t)ϕT (t)F(t)

λ1(t)
λ2(t)

+ϕT (t)F(t)ϕ(t)

⎤
⎥⎥⎦ (41)

where λ1, λ2 allows to obtain different profiles for the

evolution of the adaptation gain F(t). Finally the control to

be applied is given by

S0 ·u(t+1)=−R0 ·y(t+1)−HR0HS0Q̂(t+1) ·w(t+1). (42)

For the stability analysis of this algorithm see[12].

VII. EXPERIMENTAL RESULTS

The robust and adaptive design have been comparatively

evaluated on the duct silencer described in Section II. For all

the adaptive experiments nQ = 3 (4 parameters)

A. Interference test

Figure 7 shows the performance of the robust controller in

the presence of two pairs of sinusoidal noise signals acting si-

multaneously, and located first at170Hz and 170.5Hz, 285Hz
from 10s to 20s and then with modified central frequencies

located at 285.5Hz, 180Hz and 180.5Hz, and respectively at
295Hz and 295.5Hz. One can see that the controller gives

good performance from 10s to 20s (global attenuation of

36.56 dB) but the performance is degraded after 20s and this

is understandable since one operates outside the the region

considered for the design. Figure 8 shows the performance

of the adaptive controller for the same configuration. The

performance are very good (global attenuation of 71.45 dB).
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Fig. 7. Acoustic interference attenuation using a robust controller. Noise
frequencies:170,170.5,285,285.5 Hz then 180,180.5,295, 295.5 Hz.

Fig. 8. Acoustic interference attenuation using an adaptive controller. Noise
frequencies:170,170.5,285,285.5 Hz then 180,180.5,295, 295.5 Hz.

B. Step Changes in Frequency

In this test, two simultaneous signals of constant frequency

act as disturbances. After a given amount of time a step

change in the frequencies of both signals is done. Both fre-

quencies are decreased or increased with a constant value and

remain at those new constant frequencies for 4s . Figures 9

and 10 show the performance of the robust and adaptive

controller. The red curves gives the magnitude of the residual

noise in open loop and the blue curves give the magnitude

of the residual noise in closed loop. The frequencies of

the disturbances are indicated in the plots. One can clearly

see that the adaptive controller has better performance than

the robust controller even within the frequency domain of

variations used for robust controller design.

VIII. CONCLUSION

The paper has shown that robust and adaptive approaches

can be considered for active attenuation of multiple narrow

band noise disturbances by feedback. However the adaptive

approach offer better performance.
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APPENDIX G. EVALUATION EXPÉRIMENTALE DES TECHNIQUES D’ATTÉNUATION
ACTIVE DE BRUIT PAR CONTRE-RÉACTION ADAPTATIVE

Evaluation expérimentale des techniques d’atténuation active de bruit
par contre-réaction adaptative

I. Landau, R. Melendez, L. Dugard. GIPSA-LAB – France.

Les techniques d’atténuation active de bruit par contre-réaction offre de performances très

intéressantes et sont d’une complexité moindre que les techniques de compensation active de

bruit par pré-compensation adaptative. Par rapport aux techniques utilisant la pré-compensation

adaptative, elles ont l’avantage de ne pas nécessiter un microphone supplémentaire pour obtenir

une image du bruit perturbateur, de nécessiter un nombre plus réduit de paramètres à adapter,

et de ne pas introduire une réaction interne positive source de possible instabilités. Ces tech-

niques font appel au principe du modèle interne (le régulateur doit contenir le modèle de la

perturbation) et utilisent la paramétrisation Youla-Kucera pour le régulateur qui permet de

réduire significativement le nombre de paramètres à adapter. Les algorithmes d’adaptation

paramétriques utilisés sont de type à gain d’adaptation matriciel ou scalaire. On évaluera les

performances de ces approches en présence de plusieurs configurations: a) Perturbation tonales

(bande étroite) multiples de fréquences inconnues et variables; b) Atténuation des phénomènes

d’interférence pour des perturbations tonales ayant des fréquences rapprochées, inconnues et

variable; c) Atténuation dynamique de bruit tonal de fréquence variable; d) Atténuation de

bruit bande large (plus exactement d’une largeur de bande limitée). Les mesures concernent:

l’atténuation globale, l’atténuation des raies, l’amplification maximale à d’autre fréquences que

celles qui sont atténues, durée des transitoires. Des fichiers audio illustreront les performances

en complément des différentes courbes. Les expérimentations seront faites sur un banc de test

existant au GIPSA-Lab consistant en un tube principal excité par un haut-parleur (voie primaire

de propagation) sur le quel est branché en amont du microphone de mesure du bruit résiduel

un autre tube par lequel le bruit de compensation produit par un haut-parleur commandé est

envoyé (la voie secondaire).
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parametrized adaptive feedforward compensator for active vibration control with mechanical

coupling. Automatica, 48(9):2152–2158.

[Landau et al., 2013] Landau, I.-D., Airimiţoaie, T.-B., and Alma, M. (2013). Iir youla-kučera

parameterized adaptive feedforward compensators for active vibration control with mechanical

coupling. IEEE Transactions on Control System Technology, 21(3):765–779.
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