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Résumé long en français

Les problèmes de classication et d'appariement de graphes peuvent être traités sous deux angles diérents que sont l'apprentissage et l'optimisation combinatoire. Ces deux visions radicalement opposées peuvent être réunies pour servir un objectif commun et résoudre un même problème.

L'hybridation des deux domaines, optimisation combinatoire et apprentissage, conduit à de nouvelles méthodes de résolution ainsi qu'à de nouvelles perspectives. Le manuscrit est découpé en trois parties, la première traitant de l'optimisation combinatoire et la deuxième de l'apprentissage.

Chacune de ces parties est elle-même découpée en deux sous-parties traitant de l'appariement et de la classication de graphes. Une dernière partie porte sur les perspectives évoquant notamment les interactions entre optimisation combinatoire et apprentissage.

Optimisation discrète pour l'appariement et la classication de graphes

Dans cette section sont discutées les problématiques liées au calcul de dissimilarité de graphes ainsi qu'à la classication de graphe basée sur ces dissimilarités.

Comparaison de graphes

De nombreuses applications, comme par exemple la recherche ou la classication d'informations, nécessitent de mesurer la distance ou la similarité entre deux graphes, i.e., apparier mettre en correspondance les sommets des graphes an d'identier leurs points communs et leurs diérences.

Il existe diérents types d'appariements de graphes donnant chacun lieu à une dénition diérente de la distance entre deux graphes. Les appariements exacts (isomorphisme de graphes ou de sousgraphe) permettent de montrer que deux graphes sont identiques ou qu'un graphe est inclus dans un autre graphe. Cependant, dans de nombreuses applications, supposer l'existence d'un tel appariement est une hypothèse trop forte. Par conséquent, des appariements de graphes tolérants aux erreurs tels que la recherche du plus grand sous-graphe commun à deux graphes ou la distance d'édition de graphes ont été proposés. L'appariement recherché est alors un "meilleur" appariement, i.e., un appariement devant préserver le plus grand nombre de sommets et d'arcs des graphes sans pour autant nécessairement tous les préserver. L'idée de la distance d'édition de graphes est de dénir la similarité de deux graphes par le nombre minimal d'opérations élémentaires d'édition nécessaires pour transformer un graphe en un autre. La distance d'édition de graphes est calculée par un ensemble standard d'opérations d'édition, i.e. les insertions de n÷uds ou d'arcs, les suppressions de n÷uds ou d'arcs et les substitutions de n÷uds ou d'arcs. En outre, une fonction de coûts est associée à chacune de ces opérations et l'objectif est de trouver l'ensemble des opérations qui minimise la somme des coûts d'édition. Nous nous sommes intéressés au problème du calcul de la distance d'édition entre graphes qui fournit à la fois un appariement et une mesure de dissimilarité entre deux graphes. Un premier objectif a été de dénir de nouveaux modèles mathématiques pour représenter le problème de la distance d'édition entre graphes. Lors d'une collaboration avec le LITIS et dans la thèse de Mostafa Darwiche, trois modèles fondés sur la programmation linéaire en nombres entiers (PLNE) ont été élaborés. La PLNE est une manière de décrire un problème par une fonction de coût, des contraintes linéaires et par des variables entières. Ce formalisme permet de bénécier de méthodes de résolution ecaces facilement exploitables grâce à des solveurs. Un solveur est un logiciel informatique capable de résoudre des équations mathématiques ou des problèmes de logique. La distance d'édition entre graphes est un problème d'optimisation NP-Dicile. Son temps de résolution croit de manière exponentielle en fonction du nombre de n÷uds des deux graphes. Par conséquent, deux dés apparaissent pour iii ce type de problème. Tout d'abord, l'élaboration de méthodes exactes permettant d'obtenir la solution optimale du problème de manière rapide. La résolution exacte n'est pas toujours possible en pratique du fait de l'explosion combinatoire engendrée par la complexité du problème. De ce constat né le deuxième dé, la conception de méthodes heuristiques capables de fournir rapidement une solution sous optimale de qualité. Nous avons proposé deux méthodes de résolutions exactes calculant la solution optimale du problème d'optimisation. Dans la thèse de Zeina Abu-aisheh une recherche arborescente de type séparation et évaluation a été proposée. Une évaluation de toutes les solutions possibles est exécutée sans les énumérer explicitement. Les solutions partielles sont éliminées à l'aide des bornes inférieures et supérieures. Dans la thèse de Mostafa Darwiche l'utilisation d'un solveur mathématique a permis de résoudre les trois formulations basées sur la PLNE. Le couple PLNE et solveur mathématique a permis d'obtenir les meilleurs résultats. Etant donné que la résolution exacte n'est pas toujours possible en pratique, nous nous sommes intéressés à la résolution heuristique. Dans ma thèse, j'ai exploré la possibilité de simplier le problème initiale pour le transformer en un problème d'aectation de sous graphes dont la résolution s'opère en temps polynomiale et non plus en temps exponentiel comme le problème de départ. Bien sûr, ce gain de temps ne se fait pas sans conséquence sur la qualité de la solution obtenue. There is no free lunch 1 . Dans la thèse de Zeina Abu-aisheh et dans la collaboration avec le LITIS, des heuristiques sont obtenues simplement en limitant en temps l'exécution des méthodes exactes. Ce faisant, il est aisé de répondre aux contraintes de temps de certaines applications mais aucune information sur la qualité de la solution retournée n'est prise en compte pour stopper la méthode. Cet inconvénient est levé dans la thèse de Mostafa Darwiche, deux recherches locales, au sens d'un opérateur de voisinage dans l'espace des solutions, s'appuyant sur la PLNE et un solveur mathématique ont été proposées. Ces méthodes explorent l'espace des solutions localement autour d'un voisinage et s'arrêtent si aucune solution améliorante n'est trouvée. Pour nir, les solveurs mathématiques, comme IBM Cplex par exemple, sont en évolutions constantes et deviennent d'année en année de plus en plus ecaces. Cet élément laisse à penser que les approches développées par le LIFAT vont encore gagner en ecacité dans l'avenir. Une prise de recul sur les méthodes de résolution du problème de la distance d'édition entre graphes a permis de rapprocher les notions de méthode exacte et heuristique en proposant les méthodes dites anytime. Ce type de méthode est capable de délivrer une première solution réalisable très rapidement pour ensuite l'améliorer progressivement jusqu'à converger vers une solution optimale. A chaque fois qu'une solution améliorante est trouvée, elle est mise à disposition pour l'application nale qui utilise la méthode anytime comme un service de production de solutions. Cette manière d'appréhender le problème rend la méthode anytime très exible et applicable lorsque l'on ne connait pas à l'avance les contraintes de temps de l'application nale. Pour nir, une base méthodologique solide composée de bases de graphes et de métriques a été proposée pour l'évaluation de performance des méthodes de résolution du problème de la distance d'édition entre graphes. De cette démarche est né un concours sur ce problème dans le cadre de la conférence internationale en reconnaissance des formes ICPR 2016 en collaboration avec des collègues du laboratoire GREYC de Caen.

Classication de graphes basée distance

Cette partie aborde la problématique de classication supervisée de graphes. Dans de nombreuses applications, il est en eet nécessaire d'aecter une classe (catégorie) à un graphe inconnu. Cette étape de classication s'appuie sur un ensemble de graphes dont la classe est connue. Cet ensemble de graphes est appelé base d'apprentissage. La littérature propose principalement deux types d'approches pour résoudre un problème de classication supervisée de graphes: les approches à base de noyaux et des approches de type K Plus Proches Voisins (KPPV). Cette dernière est la plus fréquemment adoptée pour sa simplicité de mise en ÷uvre et ses bonnes performances.

1 Phrase de l'économiste Milton Friedman 
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General introduction

According to C. Bishop [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF], pattern recognition (PR) has its origins in engineering, whereas machine learning grew out of computer science. The eld of PR is the term given to the science of automating the decisions on data such as classifying them into dierent categories.

Humans are faced with a great diversity of pattern recognition problems in their everyday life.

Examples of pattern recognition tasks, which are in the majority of cases intuitively solved, include the recognition of a written or a spoken word, the face of a friend, an object on the table, a trac sign on the road, and many others. These simple examples illustrate the essence of PR.

In the world, there exist classes of patterns which are recognized by humans according to certain knowledge learned before. The terminology pattern refers to any observation in the real world (e.g., an image, an object, a symbol, or a word, to name just a few). Roughly, pattern recognition is the assignment of a label to a given input value. In statistics, discriminant analysis was introduced for this purpose by Ronald Fisher in 1936. However, its mathematical foundations even go back to the 18th century (with Bayes, Laplace, Euler, etc.). Pattern classication can be a nontrivial problem due to the wide variability of patterns. For instance, image classication could be tackled using handcrafted rules or heuristics for distinguishing the visual patterns based on shape, color or texture. In practice such an approach would lead to a proliferation of rules and exceptions to the rules and so on, and could give poor results. An alternative solution can be obtained by adopting a machine learning (ML) approach. For S. Shwartz et al [START_REF] Shalev | Understanding Machine Learning: From Theory to Algorithms[END_REF], the term machine learning refers to the automated detection of meaningful patterns in data. For example, a large set of images along with their category is called a training set.

This training set can be used to tune the parameters of an adaptive model during a so called learning phase. An algorithm that is capable to adapt the parameters of a model from the data is named a learning algorithm. During the learning phase, sub-patterns are detected, selected and combined to better take decisions. The traditional PR pipeline is depicted in Figure 1.1. Feature extraction and decision steps are coupled and can be trained together. PR is one approach to Articial Intelligence 1 which underpins developments in cognate elds such as computer vision 2 , image processing, text and document analysis for instance. Since in recent years, our world has become increasingly digitized and the amount of data available is dramatically increasing. In twenty years, our world has seen the explosion of Internet, the emergence of social networks, the 1 1956: Dartmouth workshop, rst occurence of the term AI. "We propose a study of articial intelligence [...]. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it" John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon 2 It is commonly accepted that the father of Computer Vision is Larry Roberts (L. Roberts, "Machine perception of 3D solids", Chapter 9 in J. T. Tipp), who in his Ph. D. thesis (cir. 1960) at MIT discussed the possibilities of extracting 3D geometrical information from 2D perspective views of blocks. Computer vision has later emerged as a student summer project at MIT proposed by Papert, Seymour A https://dspace.mit.edu/handle/1721.1/6125 • Worldwide, there are over 2.23 billion monthly active Facebook users (2018)

• The number of smartphone users is forecast to grow from 2.1 billion in 2016 to around 2.5 billion in 2019

• 100 terabytes of data uploaded daily to Facebook servers (2017).

• 600 million of photos, 200 millions of voice messages and 100 millions of video messages are posted on WhatsApp ... each day (2014) • In 2016, IDC and SAP 4 predicted that 60 percent of global manufacturers would use analytics data recorded from connected devices to analyze processes and identify optimization possibilities. (2017) At the same time, the explosion of computing power imagined by Moore 5 is one source of trans- formations in machine learning. Driven by this huge amount of data, the computational power and recent algorithmic progress, PR techniques has entered in a new era during the last 10 years. But with great power comes great responsibility as mentioned by Cedric Villani and al 6 , it is important to structure and regulate the use of such powerful techniques. More than ever, Humanity (the quality of being humane) must be placed at the heart of the technological progress.

The question how to represent patterns in a formal way such that they can automatically be processed by machine is a key issue in pattern recognition and related elds. In general, there are two major ways to tackle this crucial step, viz., the statistical and the structural approach. In the statistical approach, feature vectors are employed for representing the underlying patterns. Vectors do not provide a direct possibility to describe relationships that might exist among dierent parts of a pattern. The use of structural data structures (i.e. strings, trees, or graphs) in PR, has created the branch of Structural Pattern Recognition (SPR). Among the data structures used, the one with the largest number of contributions, conferences and special issues of international journals is the representation based on graphs. Their growing popularity in the elds of PR can be explained by the ability of graphs to represent complex shapes across their ability to model simpler component interactions. However, we have to pay a price when using this type of enriched and interesting representations: computational complexity. Complexity and combinatorial optimization are related to an entire discipline called Operations Research [START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF]. Operations 3 https://www.tomshardware.fr/articles/internet-objet-frigo-spam,1-46695.html 4 http://digitalistmag.wpengine.netdna-cdn.com/files/2016/03/IDC_IoT_white_paper_Mar2016.pdf 5 Moore's law is the observation that the number of transistors in a dense integrated circuit doubles about every two years 6 https://www.aiforhumanity.fr/pdfs/9782111457089_Rapport_Villani_accessible.pdf research is a research eld dealing with modelling and solving combinatorial optimization problems. In operations research, optimization problems need to be formalized and well structured.

Mathematical programming, classically used when dealing with such problems, is a perfect example: a problem is completely modelled by variables, constraints and objectives to optimize. An optimization algorithm exploits this structured information to solve it. At the opposite, machine learning is a research eld dealing with the design of algorithms for solving problems by means of statistical approaches. ML algorithms learn from examples to make predictions, which is a major dierence with operations research algorithms. The core of ML algorithms is their ability to learn and generalize from unstructured or not formalized information. The tricptic machine learning, combinatorial optimization and pattern recognition make SPR still very open to new contributions and interesting discoveries remain to be realized. Thus, more than twenty years ago, a community has formed around the problematic of SPR. This community was built at the national level around 7 https://iapr-tc15.greyc.fr/ The manuscript is organized as follows: Section 2 is dedicated to denitions and notations necessary to introduce the problems of graph matching and classication. In Section 3, state of the art, deadlocks and contributions on the two aforementioned problems are presented through the view point of combinatorial optimization. On the contrary, in Section 4, graph matching and classication problems are addressed in the light of machine learning. Short and long term perspectives are presented in Section 5.

Chapter 2

Notations, problems and applications

The objective of this section is to present basic notions about the graph theory. Notations used in the rest of the document are introduced, problems and applications are identied. This section is organized as follows. Formal denitions of graphs are presented in Section 2.1. Mathematical denitions of the graph matching problems are given in Section 2.2. A categorization of the structural pattern recognition problems are proposed in Section 2.3. Then, applications of SPR are put forward in Section 2.4. Finally, the main surveys on SPR problems are mentioned and the organization of the manuscript is explained in Section 2.5.

Graphs: types and denitions

Graphs are an ecient data structure and the most general formalism for object representation in structural Pattern Recognition (PR). They are basically composed of a nite or innite set of vertices V , that represents parts of objects, connected by a set of edges E ⊆ V × V , that represents the relations between these two parts of objects, where each edge connects two vertices in the graph. Formally saying, e = (u i , u j ), or e ij , where both u i and u j are vertices that belong to the set V .

Denition 1. Graph

G = (V, E) V is a set of vertices E is a set of edges such that E ⊆ V × V
A graph G is said to be undirected when each edge e ij of the set E has no direction. This kind of graphs represents a symmetric relation. Mathematically saying:

(u i , u j ) ∈ E = (u j , u i ) ∈ E.
In contrast to the directed graphs which respect the direction that is assigned to each edge e ij . Thus, for the directed graphs (u i , u j ) = (u j , u i ). Non-attributed graphs are only based on their neighborhood structures dened by edges. Thus, no attributes can be found on neither the edges nor the vertices of graphs. Whereas in attributed, or labelled, graphs (AG), signicant attributes can be found on edges, vertices or both of them which eciently describe objects (in terms of shape, color, coordinate, size, etc.) and their relations.

In AGs, four extra components have been added (L V ,L E ,µ,ζ ) to take into account vertex and edge attributes.

Mathematically speaking, AG is considered as a set of 6 tuples (V ,E,L V ,L E ,µ,ζ ) such that: Denition 2. Attributed Graph In PR, a combination of both symbolic and numeric attributes on vertices and edges is required in order to describe the properties of vertices and their relations. For notational convenience, directed attributed relational graphs are simply referred to as graphs in the rest of the manuscript.

G = (V ,E,L V ,L E ,µ,ζ) V is a set of vertices E is a set of edges such as E ⊆ V × V L V is a set of vertex attributes L E is a set of edge attributes µ : V → L V .
Graph size Let G = (V ,E,µ,ζ ) be a graph. In this manuscript, the size of G is the number of 

nodes in V . The size of G is denoted by N = |V |. Let G 1 = (V 1 ,E 1 ,µ 1 ,ζ 1 ) and G 2 = (V 2 ,E 2 ,µ 2 ,ζ 2 ) be two graphs. The size of G 1 is denoted by n 1 = |V 1 |.
N = n 1 = n 2 .
Walk, circuit, path and cycle 1. Walk: A walk is a sequence of vertices and edges of a graph. Vertices can be repeated and edges can be repeated.

2. Trail A Walk in which no edge is repeated. Vertices can be repeated and edges cannot be repeated.

3. Circuit: is a closed trail. Vertices can be repeated and edges are not repeated.

4. Path: It is a trail in which neither vertices nor edges are repeated.

Cycle:

Traversing a graph such that no vertex and no edge are repeated but the starting and ending vertex must be same i.e. starting and ending vertices can be repeated. Vertices are not repeated and edges are not repeated.

Adjacency matrix The adjacency matrix representation of a graph is |V | × |V | matrix A where

A ij = 1 if e ij ∈ E and 0 otherwise. For undirected graphs the matrix A is symmetric and A T = A. Walks of length n can be computed by looking at the n-th power of A (A n ).

Degree matrix The out-degree of a node u

i , ω + (u i ) is equal to ω + (u i ) = (ui,uj )∈E A ij . The in- degree of a node u i , ω -(u i ) is equal to ω -(u i ) = (uj ,ui)∈E A ji . Note that in an undirected graph, ω + (u i ) = ω -(u i )∀u i ∈ V and is denoted ω(u i ).
The out-degree matrix Ω + is a diagonal matrix with Ω + ii = ω + (u i ), and similarly for Ω -. When the graph is undirected, one has Ω + = Ω -= Ω. Ã = Ω -1 A is a stochastic matrix such that each row sums to one. Ãn ij gives the probability of walks of length n from node i to node j.

Laplacian For undirected graphs, several Laplacian formulation exist. The combinatorial Laplacian is the matrix ∇ = Ω -A. The normalized Laplacian is ∇ = Ω -1/2 ∇Ω -1/2 . The random walk Laplacian ∇ rw = Ω -1 -∇. More details on Laplacian are given in [START_REF] Zhou | Regularization on discrete spaces[END_REF]].

Once we have dened these basic notions of graph theory, we can dene the graph matching problems in the next section.

Graph matching problems

Graph matching (GM) is the process of nding a correspondence between the vertices and the edges of two graphs that satises some (more or less stringent) constraints ensuring that similar substructures in one graph are mapped to similar substructures in the other. Matching problems are divided into two broad categories: the rst category contains exact GM problems that require a strict correspondence among the two objects being matched or at least among their subparts.

The second category denes error-tolerant GM problems, where a matching can occur even if the two graphs being compared are structurally dierent to some extent. GM, whether exact or errortolerant, is applied on patterns that are transformed into graphs. This approach is called structural in the sense of using the structure of the patterns to compare them.

Exact isomorphism

Induced subgraph isomorphism

Induced Subgraph Isomorphism is the problem of nding a subgraph (G 1 ) in a larger graph (G 2 ).

More formally, when comparing two graphs

G 1 = (V 1 ,E 1 ,µ 1 ,ζ 1 ) and G 2 = (V 2 ,E 2 ,µ 2 ,ζ 2 ), we are looking for an function f : V 1 → V 2 which maps each vertex u i ∈ V 1 onto a vertex u j ∈ V 2 such that certain conditions are fullled : Problem 1. Induced SubGraph Isomorphism (ISGI) An injective function f : V 1 → V 2 is a subgraph isomorphism from G 1 to G 2 if: 1. ∀u i ∈ V 1 , µ 1 (v) = µ 2 (f (u i )) 2. ∀u i , u j ∈ V 1 , (u i , u j ) ∈ E 1 ⇔ (f (u i ), f (u j )) ∈ E 2 3. ∀(u i , u j ) ∈ E 1 , ζ 1 ((u i , u j )) = ζ 2 ((f (u i ), f (u j )))
The N P-completeness proof of subgraph isomorphism can be found in [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF]].

Maximum Common Subgraph (MCS)

Maximum Common Subgraph is the problem of mapping a subgraph of the source graph to an isomorphic subgraph of the target graph. Usually, the goal is to nd the largest subgraph for which such a mapping exists.

Problem 2. Maximum Common Subgraph (MCS)

Let G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) be two graphs. A graph G s = (V s , E s
) is said to be a common subgraph of G 1 and G 2 if there exists subgraph isomorphism from G s to G 1 and from G s to G 2 . The largest common subgraph is called the maximum common subgraph, or MCS, of G 1 and G 2 .

Error-tolerant problems

Error-tolerant problems is a family of graph matching problems that contains two important members error-tolerant subgraph matching and error-correcting graph matching.

From exact to error-tolerant: problem transformation

The stringent constraints imposed by exact GM are, in some circumstances, too rigid for the comparison of two graphs. So the matching process must be tolerant: it must accommodate the dierences by relaxing, to some extent, the constraints that dene the matching type.

Error-tolerant matching is generally needed when no signicant identical part of the structure together with the corresponding vertex and edge attributes in graphs G 1 and G 2 can be found. Instead, matching G 1 and G 2 is associated to a penalty cost. For example, this case occurs when vertex and edge attributes are numerical values (scalar or vectorial). The penalty cost for the mapping can then be dened as the sum of the distances between label values. A rst solution to tackle such problems relies on a discretization or a classication procedure to transform the numerical values into nominal/symbolic attributes. The main drawback of such approaches is their sensitivity to frontier eects of the discretization or misclassication. A subsequent exact GM algorithm would then be unsuccessful. A second solution consists in using exact GM algorithms and customizing the compatibility function for pairing vertices and edges. The main drawback of such approaches is the need to dene thresholds for these compatibilities. A last way consists in using an error-tolerant GM procedure that overcomes this drawback by integrating the numerical values during the mapping search. In this case, the matching problem turns from a decision one to an optimization one.

Error-Tolerant Subgraph Matching

Error-Tolerant Subgraph Matching [START_REF] Messmer | A new algorithm for error-tolerant subgraph isomorphism detection[END_REF]] takes into account the dierence in topology as well as attributes. Thus, it requires that each vertex/edge of graph G 1 is mapped to a distinct vertex/edge of graph G 2 or to a dummy vertex/edge. This dummy elements can absorb structural modications between the two graphs. ε V1 is a set of dummy vertices of G 2 such that

|ε V1 | = |V 1 | and V 2 = V 2 ∪ ε V1 . Similarly, ε E1 is a set of dummy edges of G 2 and E 2 = E 2 ∪ ε E1 . Problem 3. Error-Tolerant SubGraph Matching (ETSGM) An injective function f : V 1 → V 2 is an error-tolerant subgraph isomorphism from G 1 = (V 1 ,E 1 ,µ 1 ,ζ 1 ) to G 2 = (V 2 ,E 2 ,µ 2 ,ζ 2 ) Function f must satisfy certain conditions: 1. ∀u i ∈ V 1 , f (u i ) ∈ V 2 2. ∀u i , u j ∈ V 1 , (u i , u j ) ∈ E 1 ⇒ (f (u i ), f (u j )) ∈ E 2 3. ∀u i ∈ V 1 , µ 1 (u i ) ≈ µ 2 (f (u i )) and ∀(u i , u j ) ∈ E 1 , ζ 1 ((u i , u j )) ≈ ζ 2 ((f (u i ), f (u j )))

Error-Correcting Graph Matching

When the Error-tolerant subgraph matching problem draws attention on graph G 1 (only all vertices of G 1 must be matched), error-tolerant graph matching is a problem that considers with equity to G 1 and G 2 . To give the possibility to G 2 of capturing structural distortions, G 1 ' sets of vertices and edges should be extended. ε V2 is a set of dummy vertices of

G 1 such that |ε V2 | = |V 2 | and V 1 = V 1 ∪ ε V2 . Consequently, V 1 and V 2 have the same size (i.e, N = |V 1 | = |V 2 |). Similarly, ε E2 is a set of dummy edges of G 1 and E 1 = E 1 ∪ ε E2 . Problem 4. Error-Correcting Graph Matching (ECGM) A function f : V 1 → V 2 is an error-tolerant graph matching from G 1 = (V 1 ,E 1 ,µ 1 ,ζ 1 ) to G 2 = (V 2 ,E 2 ,µ 2 ,ζ 2 ). Function f must fulll certain conditions: 1. ∀u i ∈ V 1 ⇒ f (u i ) ∈ V 2 2. ∀v i ∈ V 2 ⇒ f -1 (v i ) ∈ V 1 3. ∀u i , u j ∈ V 1 , (u i , u j ) ∈ E 1 ⇒ (f (u i ), f (u j )) ∈ E 2 4. ∀v i , v j ∈ V 2 , (v i , v j ) ∈ E 2 ⇒ (f -1 (v i ), f -1 (v j )) ∈ E 1 5. ∀u i ∈ V 1 , µ 1 (u i ) ≈ µ 2 (f (u i )) 6. ∀(u i , u j ) ∈ E 1 , ζ 1 ((u i , u j )) ≈ ζ 2 ((f (u i ), f (u j )))
Mapping a vertex u i ∈ V 1 to a dummy vertex if often called a deletion of u i while mapping a dummy vertex to v i ∈ V 2 is referred to an insertion operation. This vocabulary is inspired by the string edit distance. The string edit distance is a way of correcting a string to correspond to a second one by means of edit operations. Therefore this graph matching problem is often denoted as error-correcting graph matching.

Multivalent Matching

All the aforementioned matching problems, whether exact or error-tolerant ones, belong to the univalent family in the sense of allowing one vertex to be matched to at most one vertex in the other graph. In multivalent matching, a vertex can be matched to zero or many vertices [START_REF] Sorlin | A generic graph distance measure based on multivalent matchings[END_REF].

Details and more graph matching problems are presented in Appendix A.

Error-tolerant matching cost

In error-tolerant GM, a measurement of the strength of matching vertices and/or edges is called cost. This cost is applicable on both graph structures and attributes. The basic idea is to assign a penalty cost to each matching operation according to the amount of distortion that it introduces in the transformation. When (sub)graphs dier in their attributes or structures, a high cost is added in the matching process. Such a cost prevents dissimilar (sub)graphs from being matched since they are dierent.

Graph Edit Distance

The graph edit distance (GED) was rst reported in [START_REF] Tsai | Pattern Deformational Model and Bayes Error-Correcting Recognition System[END_REF][START_REF] Fu | A distance measure between attributed relational graphs for pattern recognition[END_REF][START_REF] Allermann | Inexact graph matching for structural pattern recognition[END_REF]. GED is a dissimilarity measure for graphs that represents the minimum-cost sequence of basic editing operations to transform a graph into another graph by means classically included operations: insertion, deletion and substitution of vertices and/or edges. Therefore, GED can be formally represented by the minimum cost edit path transforming one graph into another. Edge operations are taken into account in the matching process when substituting, deleting or inserting their adjacent vertices. From now on and for simplicity, we denote the substitution of two vertices u i and v k by (u i → v k ), the deletion of vertex u i by (u i → ) and the insertion of vertex v k by ( → v k ). Likewise for edges (u i , u j ) and (v k , v z ), ((u i , u j ) → (v k , v z )) denotes edges substitution, ((u i , u j ) → ) and ( → (v k , v z )) denote edges deletion and insertion, respectively.

An edit path (λ) is a set of edit operations o i where i = 1 . . . k and k is the number of edit operations. This set is referred to as Edit Path and it is dened in Denition 3.

Denition 3. Edit Path

A set λ = {o 1 , • • • , o k } of k edit operations o i that transform G 1 completely into G 2 is called a (complete) edit path.
Let c(o i ) be the cost function measuring the strength of an edit operation o i . Let Γ(G 1 , G 2 ) be the set of all possible edit paths (λ). The graph edit distance problem is dened by Problem 5.

Problem 5. Graph Edit Distance (GED)

Let G 1 = (V 1 ,E 1 ,µ 1 ,ζ 1 ) and G 2 = (V 2 ,E 2 ,µ 2 ,ζ
2 ) be two graphs, the graph edit distance between G 1 and G 2 is dened as:

d min (G 1 , G 2 ) = min λ∈Γ(G1,G2) oi∈λ c(o i ) (2.1)
The GED problem is a minimization problem and d min is the best distance. In its general form, the GED problem (Problem 5) is very versatile. The problem has to be rened to cope with the constraints of a graph matching problem. First, let us dene constraints on edit operations (o i ) in Denition 4.

Denition 4. Edit operations constraints

1. Deleting a vertex implies deleting all its incident edges.

2. Inserting an edge is possible only if the two vertices already exist or have been inserted.

3. Inserting an edge must not create more than one edge between two vertices.

Second, let us dene constraints on edit paths (λ) in Denition 5. This type of constraint prevents the edit path to be composed of an innite number of edit operations.

Denition 5. Edit path constraints 1. k is a nite positive integer.

2. A vertex/edge can have at most one edit operation applied on it.

Finally, let us dene the topology constrain in Denition 6. This type of constraints avoids edges to be matched without respect to their adjacent vertices.

Denition 6. Topology constraints 1. The topology constraint implies that matching (substituting) two edges (i, j) ∈ E 1 and (k, l) ∈ E 2 is valid if and only if their incident vertices are matched ((i → k) and (j → l)).

An important property of the GED can be inferred from the topology constraint dened in Denition 6.

Property 1. The edges matching are driven by the vertices matching 1. Assuming that constraint dened in Denition 6 is satised then three cases can appear :

(a) If there is an edge e ij = (u i , u j ) ∈ E 1 and an edge e kl = (v k , v l ) ∈ E 2 , edges substitution between (u i , u j ) and (v k , v l ) is performed (i.e., (e ij → e kl )). (b) If there is an edge e ij = (u i , u j ) ∈ E 1 and there is no edge between v k and v l then an edge deletion of (u i , u j ) is performed (i.e., (e ij → )). (c) If there is no edge between u i and u j and there is an edge between and an edge e kl = e(v k , v l ) ∈ E 2 then an edge insertion of e(v k , v l ) is performed (i.e., ( → e kl )).

The GED problem has been proved to be NP-hard by [START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF]. So, unless P = N P, solving the problem to optimality cannot be done in polynomial time of the size of the input graphs.

Regarding the complexity proof, [START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF] have used a reduction of an induced subgraph isomorphism instance (see Problem 2.2.1.1 to a GED instance.

On the relation between GED and error-tolerant graph matching

The GED problem dened in Problem 5 and rened with constraints dened in Denitions 4, 5

and 6 is equivalent to the error-correcting graph matching problem dened in Problem 4 (ECGM).

In this manuscript, the GED problem will always refer to the constrained version of the original problem.

Cost function : denition and discussion

Cost function c(.) can be expressed thanks to the vertex/edge attributes. For instance, c( 

u i → v k ) = Sub(µ 1 (u i ), µ 2 (v k )).
Sub = ||µ 1 (u i ) -µ 2 (v k )|| 2 .
Neuhaus and Bunke [Neuhaus and Bunke., 2007] have shown that if each operation cost satises the criteria of a distance (positivity, uniqueness, symmetry, triangular inequality) then the edit distance denes a metric between graphs and it can be inferred

that if GED(G 1 , G 2 ) = 0 ⇔ G 1 = G 2 .
Furthermore, it has been shown that standard concepts from graph theory, such as graph isomorphism, subgraph isomorphism, and maximum common subgraph, are special cases of error correcting graph matching under particular cost functions [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF][START_REF] Bunke | Error correcting graph matching: On the inuence of the underlying cost function[END_REF]. Thus, any algorithm that implements error correcting graph matching can be used for the computation of graph isomorphism, subgraph isomorphism, and maximum common subgraph if it is run under an appropriate cost function. Conversely, for certain cost functions, algorithms for graph isomorphism, subgraph isomorphisms, or maximum common subgraph detection can be used to implement error correcting graph matching.

Another aspect to consider, when integrating the GED into a nal application, is that cost functions must reect the user need, thus they can be learned to t a specic goal. For instance, the goal can be to reduce the gap between the ground-truth matchings and the optimal matchings.

Finally, it is worth to mentioned that graph matching diculty can be reduced when the cost functions allow to easily dierentiate between vertices and edges of the two graphs. An unknown graph that models an object must be compared with all graphs in a database of known objects in order to nd similarities. [START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF] classify graph searches into three categories, for a database of graphs D = {g 1 , g 2 , • • • , g n } and a query graph q:

• Full search: nd all graphs g i in D that are the same as q.

• Subgraph search: nd all graphs g i in D that contain or are contained by q.

• Similarity search: nd all graphs g i in D that are similar to q, based on some dened similarity measure.

Graph classication Denition 8. Graph Classication

Let D be the set of graphs and let T be the set of classes. Given a graph training set

T rS = {(G j , t j )} M j=1
, where G j ∈ D is a graph and t j ∈ T is the class of the graph. The classier induces from T rS a mapping function f : G → T which assigns a class to an unknown graph from the test set T eS and G is the graph space.

Graph classiers can be categorized into two categories whether the classier operates in a graph space or in a vector space.

Vector space:

2.3.2.1.1 Explicit graph embedding (φ : G → R n ) A rst one consists in transforming the initial structural problem in a common statistical pattern recognition one by describing the graphs with vectors in an Euclidean space. Such an approach can be achieved thanks to hand-crafted features extracted from the graphs [START_REF] Muzzamil Luqman | Fuzzy multilevel graph embedding[END_REF] or thanks to end-to-end learning methods as Graph Neural Networks [Nowak et al., 2017]. In such a context, some features (vertex degree, labels occurrence histograms,etc.) are extracted from the graph. Hence, the graph is projected in a Euclidean space and classical machine learning algorithms can be applied.

2.3.2.1.2 Implicit graph embedding (k :< G, G >→ R) Another family of approaches also consists in using kernel-based machine learning algorithms. In the kernel approaches, an explicit data representation is of secondary interest. That is, rather than dening individual representations for each pattern or object, the data at hand is represented by pairwise comparisons only. The graphs are not explicitly but implicitly projected in a Euclidean space without dening the function φ.

More formally, under given conditions, a similarity function can be replaced by a graph kernel function k :< G, G >→ R. Most kernel methods can only process kernel values which are established by symmetric and positive denite kernel functions. Many kernels have been proposed in the literature [Gaüzère et al., 2012]. In most cases, the graph is embedded in a feature space composed of label sequences through a graph traversal. According to this traversal, the kernel value is then computed by measuring similarity between label sequences. In [Neuhaus and Bunke., 2007], graph kernels based on graph matching have been proposed to improve their expressiveness.

2.3.2.1.3 Dissimilarity space embedding Another possible approach also consists in projecting the graphs in a Euclidean space of a given dimension but using a distance matrix between each pairs of graphs. Each line of the distance matrix is a feature vector of a given graph. In such cases, a dissimilarity measure between graphs has to be designed [START_REF] Bunke | Graph classication on dissimilarity space embedding[END_REF]. Kernels can be derived from the distance matrix. It is the case for multidimensional scaling methods proposed in [START_REF] Volker Roth | Optimal cluster preserving embedding of nonmetric proximity data[END_REF].

Graph space (d : G × G → R):

This paradigm is characterized by the fact that classication and learning problems are directly faced in the graph space, i.e. working on the graphs describing the objects at hand. The objects are classied by comparing the corresponding graphs, using suited matching algorithms. This paradigm operates directly on the graph space and can thus capture more structural distortions.

Any distance-based classier can be involved in the classication task.

Discussion

The recent rise of graph kernels and graph embedding methods might lead to state that the traditional gap between statistical and structural pattern recognition has been bridged. Yet, graph embedding crucially depends on similarity or dissimilarity computation on graphs. That is the topic of (ecient) graph comparison is still of high importance. We have dened a classier as a high level function f : G → T . Behind this black box view is hidden many general problems such as :

• Data reduction: Graph prototypes/clustering/indexing/partitioning [START_REF] Musmanno | Heuristics for the generalized median graph problem[END_REF] • Graph distance [START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF] The objectives of data reduction are (i) to overcome the well-known disadvantages of the large storage requirements, the large computational eort and the sensitivity to noisy examples and (ii) to keep classication performance as high as possible. The choice or the learning of the distance function is an important element in classication. The goal is to design fast and discriminant distance functions.

Graph analytic problems

Graph-based search and graph classication problems assume that a data set containing many graphs is available. On the other hand, graph analytic problems focus mainly on a single graph.

Accordingly, graph analytic problems do not belong to structural pattern recognition problems.

Graph analytic tasks can be broadly abstracted into the following four categories: (a) vertex classication, (b) link prediction, (c) vertex clustering, and (d) visualization. A graph can be a friendship network, a Protein-Protein interaction network, a 3D mesh, or a Telecom network for instance. Vertex classication aims at determining the label of vertices based on other attributed vertices and the topology of the graph. Link prediction refers to the task of predicting missing links or links that are likely to occur in the future. Clustering is used to nd subsets of similar vertices and group them together; nally, visualization helps in providing insights into the structure of the graph. Reviews of graph embedding methods for graph analytic problems can be found in theses two surveys [START_REF] Goyal | Graph embedding techniques, applications, and performance: A survey[END_REF]Ferrara, 2017, Cai et al., 2017].

Applications and representations

Applications

Graph-based search (Denition 7) or classication (Denition 8) problems appear in many application elds and a taxonomy has been proposed by [START_REF] Stauer | A survey on applications of bipartite graph edit distance[END_REF][START_REF] Conte | Thirty years of graph matching in pattern recognition[END_REF]. They belong to many research elds such as Pattern Recognition, Computer Vision, Chem-informatics, Bio-informatics and Document analysis. The following examples are not exhaustive but they provide an interesting picture of the wide range of applications based on structural pattern recognition.

Image analysis.

Graphs are used in images to represent objects and patterns. They are exible, so they can represent objects in both 2D-or 3D-images. Vertices model the main components that form the object, and each vertex has a list of attributes that characterizes the component, e.g. (x; y)coordinates, color intensities around, special features, etc. Then, the edges are used to link the components, with additional attributes to carry information describing those links. Examples of graphs modeling objects, e.g. houses, cars, bikes and even human face features [START_REF] Zhang | Pairwise matching through max-weight bipartite belief propagation[END_REF][START_REF] Mateus | Articulated shape matching using laplacian eigenfunctions and unsupervised point registration[END_REF]. Graphs can also describe silhouettes or skeletons of objects extracted from videos [START_REF] Singh | Graph formulation of video activities for abnormal activity recognition[END_REF]Mohan, 2017, Jin Chang and[START_REF] Hyung | Unsupervised learning of complex articulated kinematic structures combining motion and skeleton information[END_REF]. Then, the graph matching problems can be solved in order to compare objects and patterns and therefore to perform: object detection and recognition, image segmentation [Yu and Wang, 2016]. Visual question answering (VQA) is another interesting problem in image analysis where a question is formulated in natural language about the content of an image. With structured representations of both scene contents and questions, graph-based methods operate over graphs of the scene objects and over the question words [START_REF] Teney | Graph-structured representations for visual question answering[END_REF].

Handwritten document analysis.

Graphs are constructed over segmented words in images, where vertices represent the keypoints or strokes, and the edges link pairs of keypoints or strokes. A graph models the documents words and their relations. Then, graph matching can be applied between a query graph and documents graphs to nd correspondences. Such an application is called keyword spotting and there exists many works in the literature that use graph matching [START_REF] Stauer | Keyword spotting in historical handwritten documents based on graph matching[END_REF].

Biometrics.

Retina vessels, ngerprints or signatures are considered as biometrical characteristics. There are many applications with the goal of identifying an individual based on the ngerprint or signature.

So, graphs can be used to model a ngerprint, where vertices represents segmented core areas, and edges relates adjacent areas. Graphs can then be classied [START_REF] Choi | Graph-based ngerprint classication using orientation eld in core area[END_REF]. In the eld of Bio-informatics, graphs are used to model DNA, protein sequences and enzymes. This enables analyzing biological structures. A very important example is the ability of detecting cancerous tissues. Tissues are modeled by graphs and then a classier is built to classify normal, low-grade and high-grade cancerous tissues [START_REF] Ozdemir | A hybrid classication model for digital pathology using structural and statistical pattern recognition[END_REF]. In chemistry eld and precisely when considering chemical molecules, graphs form a natural representation of the atom-bond structure of molecules. Each vertex of the graph then represents an atom, while an edge represents a molecular bond [START_REF] Raymond | Maximum common subgraph isomorphism algorithms for the matching of chemical structures[END_REF]. By using graph matching, it provides a way to compare molecules between each other and to detect similar activities and properties, which answers a major question in this eld.

2.4.1.5 Malware detection.

The eciency of using graphs to construct relational models for malicious executables of the same family, makes it suitable to employ graph matching in the task of malware detection in Anti-viruses.

Graphs are called call graphs and represent a malware sample with certain variations. Then, based on graph matching solutions after comparing the graphs, certain properties can be extracted based on the similarities found [START_REF] Bourquin | Binslayer: Accurate comparison of binary executables[END_REF][START_REF] Ahmed | Malware detection based on hybrid signature behaviour application programming interface call graph[END_REF]. In those examples, the graph matching problem is not the main problem, but it is used for graphs comparison and then builds up on it to achieve the objectives of detecting malicious executables.

Graph-based representations

While describing the applications, we have also depicted some graph-based modelling, we now propose to organize them. Graph-based representations can be split into two parts whether raw data is structured or not.

Native representations

A native representation appears when data are naturally or explicitly expressed into graphs. Structured or relational data fall in this category. Prominent examples of classes of patterns, which can be formally represented in a more suitable and natural way by means of graphs rather than with feature vectors, are chemical compounds, digital-born documents, and networks.

Graph constructed from non-relational data

Built-based representations are graph-based representation built on top of unstructured data such as Euclidean data (Audio signals, images). At the low level, such data can be represented by a grid. For example, an image can be represented by a 2D-grid where each pixel is a vertex and each vertex is connected to its 4 or 8 neighbours. In image analysis, graphs can be built from higher levels such as skeletons, silhouettes, irregular partitions of regions.

Why pattern recognition based on graphs ?

In this section, we give an insight about the main motivations to use graph-based pattern recognition methods.

1. Detect and recognize at the same time. Object detection is one of the problems of image analysis. This type of problem is more dicult than the recognition of isolated objects as it is necessary to simultaneously segment and recognize the object. Subgraph maching can be helpful to solve at once the detection and recognition problems. Subgraph isomorhpism can be employed to spot where a subgraph pattern is located within a larger graph.

2. Graphs by nature. Relational data or structured data are designed as graphs. Non-vectorial methods can guarantee to preserve the topological information.

3. Combining sources of data. A graph can help at combining dierent sources of information.

For instance, an image can be merged with a knowledge graph to bring semantic to an image annotation procedure. Reversely, a graph of an image can be mixed with a question graph to solve the visual question answering problem [START_REF] Teney | Graph-structured representations for visual question answering[END_REF], Lee et al., 2018[START_REF] Marino | The more you know: Using knowledge graphs for image classication[END_REF].

4. Beyond Euclidean data. Considering Euclidean data like images, graphs can be used to develop non-local approaches and to go beyond the standard 8x8 connectivity. While a pixel is linked to its 8 neighbours in a image, in a graph it is possible to be non-local and to extend the neighborhood denition. A pixel can be connected to every pixel in the image and each relation can be enriched by a set of features.

5. Matching matter. Graphs are crucial when the matching between components of the two graphs must be analysis to interpreter the results. For instance, when parts of an object must be tracked to understand the object behaviour.

6. Relation matter. Finally, graphs are essential when relationship between components is fundamental and relationship brings sense to the data. The data are characterized by complex structural relationships rather than the statistical distribution of a xed set of features.

Graph-based representations are of pivotal importance in computer vision, pattern recognition and machine learning. Graph representations also pose unique problems in machine learning, since they are non-vectorial in nature and require new methodology to be developed. For these reasons the design of ecient graph-based algorithms for pattern recognition will certainly be one of the major challenges over the next decades.

Surveys and organization

The use of graphs in Pattern Recognition (PR) dates back to the early 70s [START_REF] Fischler | The representation and matching of pictorial structures[END_REF]Elschlager, 1973, Ullmann, 1976]; Good surveys of graph based techniques have been published up to now on dierent areas: graph-based representations, graph matching, graph edit distance, graph embedding and graph kernels [START_REF] Hancock | Pattern analysis with graphs: Parallel work at bern and york[END_REF][START_REF] Gao | A survey of graph edit distance[END_REF][START_REF] Bunke | Towards the unication of structural and statistical pattern recognition[END_REF][START_REF] Wilson | A study of graph spectra for comparing graphs and trees[END_REF][START_REF] Conte | Thirty years of graph matching in pattern recognition[END_REF], Riesen and Bunke, 2010b[START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF][START_REF] Vento | A long trip in the charming world of graphs for pattern recognition[END_REF] provide an extensive overview of the literature over the last 40 years by introducing a detailed categorization of graph-based methods.

In this dissertation, we propose to organize the literature on graph matching and graph-based search in two parts. The rst part (Section 3) is dedicated to learning-free proposals where methods concentrate their eort on the solution of optimization problems. In the second part (Section 4), a learning phase is required by the approaches and machine learning techniques are of rst importance. This section is split into two parts graph matching (Section 3.1) and graph classication (Section 3.2). Each part is then broken down in three steps. First, the state of the art is summed up. Second, deadlocks and open problems are expressed. Finally, contributions are presented. References about our work are given at the end of each section 3.1 and 3.2 through a quick summary. Note that the state of the arts do not include our work. This is intentionally done to highlight how our contributions help to lift the deadlocks.

Graph matching

In this section, we focus on error-tolerant graph matching methods. Such methods are more convenient for pattern recognition. In reality, graphs suer from the presence of both noise and distortions due to the graph extraction process or due to the presence of noise in the raw data. Thus, exact graph matching problems fail to answer whether two graphs G 1 and G 2 are similar or not.

State of the art

The sate of the art is split into 4 parts. First, graph matching problems are linked to other fundamental problems in Operational Research and Machine Learning. Second, graph matching problems are expressed in terms of mathematical models. Third, the main solving methods are explained. Finally, an analysis is given.

Related problems

The aim of this section is to show the equivalence between the graph matching problems and other important problems from the communities of Operational Research and Machine Learning. 3.1.1.1.1 Quadratic Assignment Problem (QAP) The QAP was introduced by Koopmans and Beckmann in 1955 [START_REF] Koopmans | Assignment problems and the location of economic activities[END_REF] and extended by [START_REF] Lawler | The quadratic assignment problem[END_REF] as a mathematical problem for the location of a set of indivisible economical activities. Consider the problem of allocating a set of facilities to a set of locations, with the cost being a function of the distance and ow between the facilities, plus costs associated with a facility being placed at a certain location. The objective is to assign each facility to a location such that the total cost is minimized. QAP is a very important problem and covers a large range of applications: Bandwith minimization of a graph, Economics, Molecular conformations in chemistry, Scheduling, Supply Chains, Manufacturing lines, ... The formal denition of the quadratic assignment problem is as follows: Problem 6. Quadratic Assignment Problem (QAP) Specically, we are given three N × N input matrices with real elements F , C and B, where F ij is the ow between the facility i and facility j, C kl is the distance between the location k and location l, and B ik is the cost of placing facility i at location k. The Koopmans-Beckmann version of the QAP can be formulated as follows: Let N be the number of facilities and locations and denote by pe the set pe = {1, 2, ..., N }.

min φ∈Sn N i=1 N j=1 F ij • C φ(i)φ(j) + N i=1 B iφ(i)
where S n is the set of all permutations and φ is a function φ : pe → pe.

The QAP is known to be N P-hard [START_REF] Sahni | P-complete approximation problems[END_REF].

To reect the error-tolerant graph matching problem, the matrices F, C and B must be redened along with the role of the function φ. φ(i) represents an assignment of i with k, ∀i ∈ V 1 and ∀k ∈ V 2 . B iφ(i) must denote the vertex matching cost between vertices i and k. Similarly, φ(i)φ(j) is the matching of an edge (i, j) with an edge (k, l),

∀(i, j) ∈ V 1 × V 1 and ∀(k, l) ∈ V 2 × V 2 . By setting D i,k,j,l = f ij C kl , D iφ(i),jφ(j) is the cost to match (i, j) with (k, l).
Problem 7. Error-tolerant graph matching as a QAP (QAPGM)

min φ∈Sn N i=1 N j=1 D iφ(i),jφ(j) + N i=1 B iφ(i)
where S n is the set of all permutations and φ is a function φ : pe → pe. Under this formalism, the error-correcting graph matching problem (Problem 4) and the QAP (Problem 7) are equivalent (see [START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF] for more details).

An example is depicted in Figure 3 Let G = (V, E) be an undirected graph. For each node i ∈ V , a variable y i is associated to i. y i takes its values in a nite set of labels Y i ⊂ {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)}. Hence, each label corresponds to a unit vector. Notation, Y V denotes the Cartesian product

Π i∈V Y i . A vector y ∈ Y V with coordinates (y i , • • • , y j ) ∀i, j ∈ V is called a labeling. Likewise, Y ij = Y i ×Y j indicates the label set of an edge (i, j). Functions θ i : Y i → R ∀i ∈ V , and θ ij : Y ij → R ∀(i, j) ∈ E,
are the unary and pairwise potentials associated with the nodes and edges of G which dene a local quality of labels and label pairs. Problem 8. MAP-inference problem (MAPCRF)

min x∈Y V i∈V θ i (y i ) + ij∈E θ ij (y ij )
The MAP-inference problem is the problem of nding the minimum cost labeling. The MAPinference problem is known to be N P-hard [START_REF] Laerty | Conditional random elds: Probabilistic models for segmenting and labeling sequence data[END_REF]. To t to the error-correcting graph matching problem (Problem ECGM), V must be equal to V 1 . The label y i must be equal to a possible matching between i ∈ V 1 and k ∈ V 2 . This matching can be encoded by a one-hot vector to ensure that each label corresponds to a unit vector. For instance, y i = (0, 0, 1, 0) represents the matching of node i with the third node in V 2 . By extension, Y i represents for node i all the possible matching: (i → k) ∀k ∈ V 2 . Y V1 denotes the Cartesian product Π i∈V1 Y i . The Problem MAPCRF must be rened because in the graph matching problem no label can be taken twice.

Let a common universe L of labels be given such that Y i = L ∀i ∈ V 1 . We require each label la ∈ L to be taken only once, i.e. |{i ∈ V 1 |y i = la}| = 1. In other words, the problem is to nd a mapping V 1 → L. This problem can be stated as Problem 9. Error-tolerant graph matching as a MAP-inference problem (MAPCRFGM)

min y∈Y V 1 i∈V1 θ i (y i ) + ij∈E1 θ ij (y ij ) subject to y i = y j ∀i = j
This problem transformation has been slightly discussed in [START_REF] Swoboda | A study of lagrangean decompositions and dual ascent solvers for graph matching[END_REF]] but here we have presented a more concrete relation between both problems.

An example is depicted in Figure 3.2. 

Related models

In Section 2.2, mathematical descriptions of graph matching problems were given.

From these descriptions, mathematical models can be expressed. A mathematical model is composed of variables, constraints and an objective functions. From this rigorous formulation, no ambiguity is left behind but a single problem can be expressed by many dierent models. An Integer Quadratic Programm (IQP) is a model with a quadratic objective function of the variables and linear constraints of the variables.

A graph matching solution is dened as a subset of possible correspondences y ⊂ V 1 × V 2 , which are represented by a binary assignment matrix Y ∈ {0, 1} N ×N , where N denotes the size of V 1 and V 2 , respectively. If

u i ∈ V 1 matches with v k ∈ V 2 , then Y i,k = 1, or Y i,k = 0 otherwise.
We denote by y ∈ {0, 1} N 2 , a column-wise vectorized replica of Y . With this notation, the errorcorrecting graph matching problem (Problem ECGM) can be expressed as the problem of nding the assignment vector y * that minimizes a score function d(G 1 , G 2 , y) as follows: Model 1. Error-correcting graph matching model : Integer Quadratic Program (GMIQP) 

y * =argmin y d(G 1 , G 2 , y) (3.1a) subject to y ∈ {0, 1} N •N (3.1b) N i=1 y ik = 1 ∀k ∈ [1, • • • , N ] (3.1c) N k=1 y ik = 1 ∀i ∈ [1, • • • , N ] (3.1d) Where G 1 = (V 1 , E 1 , µ 1 , ζ 1 ) and G 2 = (V 2 , E 2 , µ 2 , ζ 2 ) are two graphs. N = |V 1 | = |V 2 |.
e ij ∈ V 1 × V 1 and e kl ∈ V 2 × V 2 . Dissimilarity functions are usually represented by a symmetric dissimilarity matrix D ∈ R N 2 ×N 2 with N = |V 1 | = |V 2 |. A non-diagonal element D ik,jl = c(e ij → e kl ) contains the edge dissimilarity and a diagonal term D ik,ik = c(u i → v k ) represents the vertex dissimilarity.
Thus, the objective function of graph matching is dened as:

d(G 1 , G 2 , y) = N i=1 N k=1 c(u i → u k ) • y ik + N i=1 N j=1 N k=1 N l=1 c(e ij → e kl ) • y ik • y jl = N i=1 N j=1 N k=1 N l=1 D ik,jl • y ik • y jl =y T Dy (3.2)
In essence, the score accumulates all the dissimilarity values that are relevant to the assignment.

Remember that a vertex can be matched to only one other vertex so D ik,jl = cst a large constant value when i = j and k = l. In addition, matching two not existing edges in E 1 and E 2 should not lead to any cost so if (i, j) ∈ E 1 and (k, l) ∈ E 2 then D ik,jl = 0. More details about the model can be found in [Bougleux et al., 2017a].

Model 1(GMIQP) models the error-correcting graph matching problem. Other quadratic objective functions does exist in the literature [START_REF] Lyzinski | Graph matching: Relax at your own risk[END_REF]:

tr(A 1 Y T A 2 Y ) (3.3) and A 1 -Y T A 2 Y 2 = A 1 Y -Y A 2 2 (3.4)
where tr(.) is the trace of a matrix. A 1 , A 2 ∈ R N ×N are the weighted adjacency matrices of the graphs and Y ∈ {0, 1} N ×N is a permutation matrix. In equation 3.4, the problem consists in determining the permutation matrix minimizing the Frobenius norm of the dierence between weighted adjacency matrix of the input graph and the permuted adjacency matrix of the target one.

Equations 3.4 and 3.3 only rely on weighted adjacency matrices and cannot deal with richly attributed graphs.

Dierent IQP models exist in the literature to model dierent problems such as subgraph matching (Problem 3 (ETSGM)) and maximum common sugraph (Problem 2 (MCS)) [START_REF] Cho | Finding matches in a haystack: A max-pooling strategy for graph matching in the presence of outliers[END_REF]. In particular, theses models dene K ∈ R |V1|.|V2|×|V1|.|V2| , it is called an anity matrix or compatibility matrix. K is similar to D but stores similarities instead of costs or dissimilarities. In this representation, K ij,kl = 0 means an impossible matching or a very dissimilar matching. The problem becomes a maximization problem as follows :

Model 2. Error-tolerant subgraph matching model : Integer Quadratic Program (SGMIQP)

y * =argmax y y T Ky (3.5a) subject to y ∈ {0, 1} |V1|•|V2| (3.5b) |V1| i=1 y ik ≤ 1 ∀k ∈ [1, • • • , |V 2 |] (3.5c) |V2| k=1 y ik ≤ 1 ∀i ∈ [1, • • • , |V 1 |] (3.5d)
A part from IQP models, very dierent models of the error-tolerant graph matching problem can be observed in the literature. An Integer Linear Program (ILP) formulation of GED was proposed in [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF]]. An ILP is a mathematical model where the objective function is a linear combination of the variables. The objective function is constrained by linear combinations of the variables.

Model 3. Error-correcting graph matching model : Integer Linear Program (ECGMILP)

d(G 1 , G 2 ) = min Y,S,T ∈{0,1} N XN N i=1 N k=1 {c(u i → v k )Y i,k + K 2 (S i,k + T i,k )} (3.6a) s.t. N j=1 A1 i,j • Y j,k - N l=1 A2 l,k • Y i,l + S i,k -T i,k = 0 ∀i, k ∈ [1, 2, • • • , N ] (3.6b) N i=1 Y i,m = N k=1 Y m,k = 1 ∀m ∈ [1, 2, • • • , N ] (3.6c)
where Y is a permutation matrix representing all possible permutations of the vertices. Two matrices, S and T , are introduced (inspired by [START_REF] Almohamad | A linear programming approach for the weighted graph matching problem[END_REF]) to manage edges matching. A{n} ∈ {0, 1} N XN is the modied adjacency matrix corresponding to G n (see [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF]] for modications). K is a constant cost for edges insertions and deletions. Two types of constraints are dened. Constraint 3.6b makes sure that when matching two couples of vertices, the edges between them have to be matched as well. Constraint 3.6c states that one vertex of G 1 (i.e., vertex) must be permuted with exactly one vertex of G 2 . This model has a limitation. It does not consider the attributes on edges, so edge substitution cost is 0 while deletion and insertion have a K xed cost. This is only one model to give some intuition but more ILP models can be found [START_REF] Le Bodic | An integer linear program for substitution-tolerant subgraph isomorphism and its use for symbol spotting in technical drawings[END_REF].

QAP and MAP-inference problems hold their own IQP and ILP models. These models could be useful to model the error-tolerant graph matching problems too.

Related methods

Methods can be divided into two categories: exact methods and heuristic methods. An exact method computes an optimal solution of a given problem. On the opposite, heuristic methods compute sub-optimal solutions.

3.1.1.3.1 Exact methods For the family of error-tolerant graph matching problems, the runtime complexity of exact methods is not polynomial but exponential with respect to the number of vertices of the graphs.

3.1.1.3.1.1 Tree-based methods Pioneer approaches of graph matching algorithms are based on tree search [Tsai et al., 1979, Shapiro and[START_REF] Shapiro | Structural descriptions and inexact matching[END_REF]. In tree-based methods proceed to an implicit enumeration of all possible solutions without explicitly evaluating all of them by means of an ordered tree. It is constructed dynamically at run time by iteratively creating successor tree nodes. A tree node p here corresponds to a partial matching. At each iteration, the choice of the next tree node to be expanded is important. There are many strategies such that:

1. Depth-rst: The most promising tree node that is a child of p is chosen.

Breadth-rst:

The most promising tree node that is at the same level of p is chosen.

Best-rst:

The most promising tree node is chosen without constraints (at the same level or not).

These search strategies require having a function g(p)+h(p) to compute heuristically an estimation of the cost of exploring a given node further. g(p) represents the cost of the partial matching accumulated so far whereas h(p) denotes the estimated cost from p to a leaf node representing a complete solution. The sum g(p) + h(p) is referred to as a lower bound lb(p) [START_REF] Fischer | Improved quadratic time approximation of graph edit distance by combining hausdor matching and greedy assignment[END_REF]. Given that the estimation of the future costs h(p) is lower than, or equal to, the real costs, an optimal matching from the root node to a leaf node is guaranteed to be found. Leaf nodes correspond to feasible solutions. In the simplest scenario, the estimation of the lower bound h(p) of the future costs for the current node p is set to zero for all p. In the other extreme h(p) would return the exact future costs in exponential time complexity which is unreasonable, of course. A good heuristic (h(p)) helps at pruning unfruitful branches. This family of methods belongs to the Branch and Bound methods.

3.1.1.3.1.2 ILP and IQP solvers In general, ILP and IQP formulations are solved by black-box solvers such as CPLEX, Gurobi, etc. These solvers are equipped with an arsenal of eective algorithms. Theses algorithms can be applied at two dierent moments: 1) a preprocessing stage before searching for a solution and 2) during the solving. For instance, let us mention two preprocessings that are embedded into the solvers. 1) Automatic cuts are sets of constraints added to the model for a given instance. Cuts are expected to reduce the search space (Gomory cuts, Disjunctive cuts, ... ). 2) Preprocessing consists in analyzing an instance and gures out if some variables can be xed to 0 or 1 in the graph matching model (with respect to Driebek penalty for instance). The aim is to reduce the number of variables to be fed to solving methods. A model is usually solved by a tree-based methods as mentioned in the prior paragraph. However, these algorithms dier by taking advantage of the mathematical formulation. During the search, lower bounds (lb(p) = g(p) + h(p)) are computed by continuous relaxation and problem decomposition for instance. Upper bounds can be computed by fast local searches. Cuts can be added to the model (Branch and Cut [START_REF] Gomory | Outline of an algorithm for integer solutions to linear programs[END_REF]). Generally speaking, ILP are better solved than IQP by black-box solvers.Graph matching problems modeled as an ILP and solved by a black box solver can be found in [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF] and [START_REF] Le Bodic | An integer linear program for substitution-tolerant subgraph isomorphism and its use for symbol spotting in technical drawings[END_REF].

3.1.1.3.2 Heuristics methods Heuristics methods can be grouped into two families: problem reformulation and heuristic optimization. In the problem reformulation paradigm, the GM problem is reduced into a simpler problem. However, the optimal solution of the simpler problem is not the optimal solution of the original problem. In the heuristic optimization category, the GM problem is solved by an heuristic algorithms that only explore sub-parts of the solution space and thus leads to nd near-optimal solutions. Each heuristic method can also be divided between deterministic and non-deterministic. The characteristic of deterministic strategies is that under the same conditions the same solution is always obtained.

3.1.1.3.2.1 Tree-based methods Heuristic methods can be derived from exact tree-based methods by truncating the search tree or over-estimating h(p). Truncation of the search tree can be achieved by limiting the number of tree nodes (p) in memory (BeamSearch, PathLength, ... see [START_REF] Neuhaus | Fast suboptimal algorithms for the computation of graph edit distance[END_REF]) or by limiting the solution time.

3.1.1.3.2.2 QAP-based method As presented in Model GMIQP, graph matching problems can be modeled by a QAP (Problem 7). A number of problems such as traveling salesman and graph partitioning can be straightforwardly reduced to QAP. Due to its generality and exibility, many solver paradigms were put to the test for QAP. These include, but are not limited to, convex relaxations based on Lagrangean decompositions [START_REF] Karisch | Lower bounds for the quadratic assignment problem via triangle decompositions[END_REF], linear [START_REF] Hahn | Lower bounds for the quadratic assignment problem based upon a dual formulation[END_REF]], convex quadratic [START_REF] Anstreicher | A new bound for the quadratic assignment problem based on convex quadratic programming[END_REF]] and semi-denite [START_REF] Zhao | Semidenite programming relaxations for the quadratic assignment problem[END_REF] relaxations, which can be used either directly to obtain approximate solutions or just to provide lower bounds. Graph matching modeled as a QAP has been favored in recent graph matching researches. Many ecient approximate algorithms have been applied to graph matching instances : Graduated Assignment (GA) [START_REF] Gold | A graduated assignment algorithm for graph matching[END_REF], Spectral Matching (SM) [START_REF] Leordeanu | A spectral technique for correspondence problems using pairwise constraints[END_REF], Spectral Matching with Ane Constraint (SMAC) [START_REF] Cour | Balanced graph matching[END_REF], Integer Projected Fixed Point (IPFP) [START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF], Reweighted Random Walks Matching (RRWM) [Cho et al., 2010b], and Max-Pooling Matching (MPM) [START_REF] Cho | Finding matches in a haystack: A max-pooling strategy for graph matching in the presence of outliers[END_REF]. 3.1.1.3.2.3 Continuous relaxation As presented in Models GMIQP and GMILP, errortolerant graph matching problems are discrete optimization problems (y ∈ {0, 1} |V1|•|V2| ). A way to simplify the problem is to relax discrete variables to obtain continuous variables (for instance

y ∈ [0, 1] |V1|•|V2|
). The continuous version of an ILP model is referred as an Linear Program (LP).

A LP can be solved optimally in polynomial time by the interior points method [START_REF] Potra | Interior-point methods[END_REF] or eciently solved by the simplex method.

The graph matching problems can be equivalent to the N P-hard QAP. In general, the relaxed QAP is also a N P-hard problem [START_REF] Lyzinski | Graph matching: Relax at your own risk[END_REF]. If the dissimilarity matrix (D) is symmetric and negative denite then the relaxed QAP is convex and can be solved in polynomial time [START_REF] Burkard | Handbook of Combinatorial Optimization: Volume1-3, chapter The Quadratic Assignment Problem[END_REF][START_REF] Lyzinski | Graph matching: Relax at your own risk[END_REF]. Nonetheless, the QAP relaxation can be eciently approximately solved with Frank-Wolfe (F-W) methodology [Frank and Wolfe]. 3.1.1.3.2.4 Franck-Wolfe based methods The FrankWolfe algorithm is an iterative rst-order optimization algorithm for constrained convex optimization. In each iteration, the FrankWolfe algorithm considers a linear approximation of the objective function (given by the rst order Taylor expansion), and moves towards a minimizer of this linear function. It is similar to the gradient descent algorithm but at each iteration, a linear program is solved. Franck-Wolfe algorithm is a relaxed QAP solver and the methods Path-following [START_REF] Zaslavskiy | A path following algorithm for the graph matching problem[END_REF] and Factorized Graph Matching (FGM) [START_REF] Zhou | Factorized graph matching[END_REF] rely on the expensive Franck-Wolfe algorithms.

3.1.1.3.2.5 Linear Sum Assignment Problem (LSAP) The Model GMIQP can be turned into a LSAP model, if D ik,jl = 0 when ik = jl ∀i, j ∈ V 1 and k, l ∈ V 2 . The linear assignment problem (LSAP) is exactly solvable in worst-case cubic time by the Hungarian method [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF]. In such a scenario, D ik,ik can be enriched to take into account the local neighbours of vertices i, k [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF][START_REF] Serratosa | Computation of graph edit distance: Reasoning about optimality and speedup[END_REF], Raveaux et al., 2010]. In [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF], the memory requirements and execution times of this method are respectively proportional to (n 1 + n 2 ) 2 and (n 1 + n 2 ) 3 where n 1 and n 2 are the sizes of vertex sets (n 1 = |V 1 | and n 2 = |V 2 |). In [Bougleux et al., 2017b], for the same results, the algorithm requires O(n 1 n 2 ) memory space and O(min(n 1 , n 2 ) 2 max(n 1 , n 2 )) execution times. In [START_REF] Serratosa | Computation of graph edit distance: Reasoning about optimality and speedup[END_REF], a reduction of the the execution times O(min(n 1 , n 2 ) 3 ) is achieved but at the price of an approximated solution of the LSAP problem. 3.1.1.3.2.6 Integer Projected Fixed Point (IPFP) In [START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF], the Franck-Wolfe methodology is adapted to solve the discrete QAP. The method is named Integer Projected Fixed Point (IPFP). It is an algorithm initially proposed to nd a solution to the quadratic assignment problem in the context of graph matching and MAP-inference problems.

The algorithm tries to nd a solution to both relaxed and discrete QAP. Given an initial continuous or binary candidate solution y(0), it improves iteratively the corresponding quadratic objective function (S(y) = y T Ky). At each iteration, a LSAP problem needs to be solved. 3.1.1.3.2.7 Path following methods Graduated NonConvexity and Concativity Procedure (GNCCP) [START_REF] Liu | Gnccpgraduated nonconvexityand concavity procedure[END_REF][START_REF] Zaslavskiy | A path following algorithm for the graph matching problem[END_REF], Bougleux et al., 2017a] is a path following algorithm which aims at approximating the solution of a QAP by considering a convexconcave relaxation through the modied quadratic function: GNCCPGraduated NonConvexity and Concavity Procedure.

S ξ (y) = (1 -|ξ|)S(y) + ξ(y T y)
where ξ ∈ [-1, 1]. When ξ = 1, S ξ (y) = y T y is fully convex, and when ξ = -1, S ξ (y) = -y T y is concave. GNCCP algorithm starts with ξ = -1 and it leads to the maximization of a concave problem. Any initial solution can be chosen to solve the concave problem and it has no inuence on the result. So, unlike IPFP algorithm, no initial matching is required. Then GNCCP algorithm smoothly interpolates concave and convex relaxations by iteratively increasing ξ from -1 to 1 with step size α (equal to 0.1). For each iteration corresponding to a ξ, the maximization of S ξ is achieved by IPFP.

3.1.1.3.2.8 Spectral graph matching Spectral methods consist of studying the similarities between the spectra of the adjacency or Laplacian matrices of the graphs and using them for matching. The matrix K ∈ R |V1|.|V2|×|V1|.|V2| (see Model SGMIQP) is used for this purpose. This matrix has to be non-negative, symmetric. K can be seen as a weighted adjacency matrix of the graph

G X = G 1 × G 2 where G x is obtained by direct graph product. Given two attributed graphs G 1 = (V 1 , E 1 , µ 1 , ζ 1 ) and G 2 = (V 2 , E 2 , µ 2 , ζ 2 ), G X is the complete non-directed graph that associates a vertex to each couple (i, k) ∈ V 1 × V 2 .
The problem is then recast to a node clustering problem that is solved by spectral method using the principal eigenvector of K and imposing the mapping constraints (one-to-one mapping) [Leordeanu andHebert, 2005, Cour et al., 2007]. Similarly, the Laplacian matrix ∇ X of G X can be computed. The second-smallest eigenvalue of Ω X is called Fiedler eigenvalue. The eigenvector associated with Fiedler eigenvalue has been named the Fiedler vector. The Fiedler vector can be used to partition a graph. The negative values are associated with the poorly connected cluster while the positive values are associated with the connected cluster. The signs of the values in the Fiedler vector can therefore be used to partition this graph into two clusters. Eigenvectors are independent to the permutation of vertices in the matrices ∇ X and K .

3.1.1.3.2.9 MAP-inference-based methods MAP-inference problem (Problem 8) on a discrete pairwise graphical model, also called Conditional Random Field (CRF) in the literature, is related to error-tolerant graph matching (see Problem 9). It diers in an additional uniqueness constraint: Each label can be taken only once. Also, the graph matching problem, after possibly introducing many additional variables, can be stated as a MAP-inference problem in a standard pairwise CRF. The uniqueness constraint prevents naive application of ecient solvers for MAPinference to this problem. For this reason, many dedicated graph matching solvers were developed.

On the other hand, ecient dual block-coordinate ascent (also known as message passing) algorithms like TRW-S [START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF] count among the most ecient solvers for MAP-inference in conditional random elds. The key idea is to use techniques from the MAP-inference community to gain computational eciency. On the high level, the idea is to decompose the original problem into several "easier" subproblems, for which an ecient global minimum (or a good lower bound) can be computed. Combining the lower bounds for individual subproblems will then provide a lower bound for the original problem. The decomposition and the corresponding lower bound will depend on a parameter vector. The goal is to nd a vector that maximizes the bound. This approach is well-known in combinatorial optimization; sometimes it is referred to as "dual decomposition".

The dual decomposition solver [START_REF] Torresani | A dual decomposition approach to feature correspondence[END_REF] represents the problem as a combination of MAP-inference for binary CRFs (labels are 0 or 1), or a combination of linear assignment problems or a combination of small-sized QAPs. Lagrange multipliers connecting these subproblems are updated with the sub-gradient method [START_REF] Kappes | A bundle approach to ecient map-inference by lagrangian relaxation[END_REF], Zhang et al., 2016a[START_REF] Wright | Coordinate descent algorithms[END_REF].

3.1.1.3.2.10 Factorized graph matching Factorized graph matching is a framework for interpreting and optimizing graph matching problems. The anity matrix K (see Model SGMIQP) can be factorized as a Kronecker 1 product of smaller matrices. There is a main benets of using this factorization in graph matching: There is no need to compute the costly (in space and time) pair-wise anity matrix. K can be factorized because

• it is organized in |V 2 | × |V 2 | blocs of size |V 1 | × |V 1 |.
• Many K ij contain only zero-value elements and their positions are indexed by V 2 .

The full details of the factorization can be found in [START_REF] Zhou | Factorized graph matching[END_REF]. We propose to explain the key elements of the decomposition as follows :

K ∝ Structure × Af f inity
This principles is presented in Figure 3.4. Observe that this factorization decouples the graph structure from the pairwise similarity. The Structure is expressed by products of incident matrices of G 1 and G 2 while Af f inity hold two sub-matrices to denote vertex-to-vertex similarities and edge-to-edge similarities independently. Such a decomposition avoids the computation of the cumbersome anity matrix (K ) and hence potentially allows for a more ecient implementation, especially for large graphs. The factorization leads to a new heuristic of the subgraph matching problem.

Evolutionary algorithms (non-deterministic) Evolutionary Algorithms

(EAs) are nature inspired heuristics, which are widely used to tackle many N P-hard problems.

The key idea behind EAs is mimicking the rule "survival-of-the-ttest" on a population of dierent individuals. Two major EAs, genetic algorithms and ant colonies, have been applied to solve the graph matching problems. In genetic algorithms [START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF][START_REF] Andrew | Inexact graph matching using genetic search[END_REF][START_REF] Bengoetxea | Inexact graph matching by means of estimation of distribution algorithms[END_REF], an individual is a set of integers pe as in Problem QAPGM. pe represents a solution.

The tness function measures the suitability of an individual. To do so, the objective function 1 If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is the mp × nq block matrix of the graph matching problem is a usual choice. If pe is an unfeasible solution then a very high cost is associated to pe. The group of individuals (also known as population) evolves towards more promising areas of the search space while the algorithm carries on with the next generation.

New individuals result from inheriting parts of solutions from its parents. Iteratively, the new population of individuals is generated by using crossover or mutation operators. For instance, a mutation is applied to a single individual, a swap between two elements in pe is performed. It can be interpreted as a change of the two matchings (i → k) and (j → l) in (i → l) and (j → k). These principles have been applied to solve the GED problem in [START_REF] Ibragimov | GEDEVO: An Evolutionary Graph Edit Distance Algorithm for Biological Network Alignment[END_REF][START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF].

In [START_REF] Sammoud | Ant algorithm for the graph matching problem[END_REF], an Ant Colony Optimization (ACO) algorithm for solving graph matching problems is proposed. The main idea is to model the problem as the search for a minimum cost path in a graph called construction graph and to use articial ants to search for good paths.

The construction graph G X is the complete non-directed graph that associates a vertex to each couple (i, k) ∈ V 1 ×V 2 . The behavior of articial ants is inspired from real ants. They lay pheromone trails on graph components and they choose their path with respect to probabilities that depend on pheromone trails that have been previously laid. These pheromone trails progressively decrease by evaporation. Intuitively, this indirect communication aims at giving information about the quality of path components in order to attract ants, in the following iterations, towards the corresponding areas of the search space. The amount of pheromone on an edge ((i, k), (j, l)) represents the desirability of matching together i → k and j → l.

3.1.1.3.2.12 Probabilistic framework (non-deterministic) In [START_REF] Myers | Bayesian graph edit distance[END_REF], a Bayesian Graph Edit Distance is proposed. Myers et al shows how the Levenshtein distance can be used to model the probability distribution for structural errors in graph matching problems.

Let f be a matching function f : V 1 → V 2 . The posterior probability of f given G 1 and G 2 can be written as follows:

pr(f |G 1 , G 2 ) = P r(G 1 , G 2 |f )p(f ) P r(G 1 , G 2 )
The local optimum of the a posteriori probability may be located by applying the following iterative decision rule to update the matching conguration:

f (u) = arg max v∈V2 P r(u, v|µ 1 (u), µ 2 (v)) P r(u, v) P r(f ) ∀u ∈ V 1
In [START_REF] Zass | Probabilistic graph and hypergraph matching[END_REF], a probabilistic model is presented for soft graph matching between complex feature sets. The key idea is transform the matrix K into a probability matrix for any possible match between the edges and vertices between G 1 and G 2 . K is modied to become a doubly stochastic matrix. To turn compatibility measures into probabilities, the Sinkhorn algorithm [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF] for nding the nearest doubly stochastic matrix is performed.

In [Cho et al., 2010a], the graph matching solution is obtained by simulating random walks in

G X = G 1 × G 2 that
is the direct graph product between G 1 and G 2 . K can be seen as the weighted adjacency matrix of G X taking into account anities of the graph component correspondences. K is then row-normalized such that each row sums to one ( K). Therefore, Kij 2 provides, from node i to node j, the probability of walks of length 2 based on anities. By extending this principle to the n-th power and searching for the most probable path, the algorithm achieves noise-robust graph matching.

The last type of non-deterministic methods is called Estimation of distribution algorithms (EDAs). EDAS combine two technical disciplines of soft computing methodologies: probabilistic reasoning and evolutionary computing. In brief, EDA are population-based search algorithms based on probabilistic modelling of promising solutions. In EDA the new population of individuals is not generated by using crossover nor mutation operators. Instead, the new individuals are sampled starting from a probability distribution estimated from the database containing only selected individuals from the previous generation. In [START_REF] Bengoetxea | Inexact graph matching by means of estimation of distribution algorithms[END_REF][START_REF] Bengoetxea | Estimation of distribution algorithms: A new evolutionary computation approach for graph matching problems[END_REF], EDAs are used to solve matching problems.

Summary

To conclude, the methods are tabulated in Table 3.1 according the following criteria:

• The graph matching problem to be addressed.

• The related problem (QAP or MAP-inference problems).

• The mathematical model used to represent the problem.

• Is the method an heuristic or an exact method ?

• Is the method deterministic or not ?

• The method family (tree-based, spectral, evolutionary, ...). Sketch of proof. If we can prove that Proposition 1 is wrong for one example then we can admit that Proposition 1 is wrong in the general case. Let G 1 be a graph with a single vertex (i) and no edges. Let G 2 be a graph with a two vertices (k and l) and no edges as depicted in Figure 3.7.

Let us dene the costs as follows :

c(i → k) = 0, c(i → l) = 10, c(i → ) = 10, c( → k) = 10, c( → l) = 30.
Since inserting k is cheaper than inserting l, the optimal solution of Model GMIQP is i → l and → k with a total cost of 20. Let cst = 100 then the compatibilities are as follows:

s(i → ) = 100 -10, s( → k) = 100 -10, s( → l) = 100 -30, s(i → k) = 100 -0 and s(i → l) = 100 -10.
The optimal solution of Model SGMIQP is i → k. The two solutions are dierent so Proposition 1 is wrong. In this case, deletion costs are discriminative and so they are important to perform the matching.

Proposition 2. Solving Model GMIQP and Model SGMIQP is equivalent in terms of solution if deletion and insertion costs are identical for any vertex or edge and higher than any substitution cost.

Sketch of proof. This is the specic case of the MCS problem (Problem 2) as stated in [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF][START_REF] Bunke | Error correcting graph matching: On the inuence of the underlying cost function[END_REF], Brun et al., 2012]. Both models can express the MCS problem. Since deletion and insertion costs are identical and higher than any substitution, an explicit or implicit denition of deletion and insertion costs are equivalent. Proposition 2 is right. An example is presented in of a given method and a reference method on a single instance (a pair of graphs). Let D be a graph data set that consists of M graphs, D = {G 1 , G 2 , ..., G M }. Let P be the set of all of the methods. Given a method pm ∈ P, the square distance matrix Q pm ∈ M M ×M , which holds every pairwise comparison Q pm i,j = d pm (G i , G j ), where the distance d pm (G i , G j ) is the value returned by the method pm on the graph pair (G i , G j ).

deviation(i, j) pm = |Q pm i,j -R i,j | R i,j , ∀i, j ∈ [1, • • • , M ] , ∀pm ∈ P (3.7)
where R i,j is dened in Equation 3.8.

R i,j = min pm∈P {Q pm i,j }, ∀i, j ∈ [1, • • • , M ] (3.8)
R i,j is either the best upper bound or the optimal solution (if available). For a given method, the deviation can express the error made by a method in terms of the percentage of the best method.

The second metric is called "accuracy" or "Dissimilarity Matching" in the literature. It denotes the dissimilarity between a computer-generated matching (y (computer) ) and a Human-made matching (y (human) ). A matching is represented by a vector of binary values (y) so the dissimilarity matching can be computed as the Hamming distance between y (computer) and y (human) .

The last metric is the speed of a given method.

When comparing a computer generated matching and the human ground-truth, there could be two reasons to explain missmatches. The rst reason is that graph matching solver is not an exact method and thus the computed matching is not the optimal one. The suboptimal solution is far from the expected matching. A second reason is that the graph matching solver has computed a very good solution (the best minimum) but the dened cost functions are not in adequacy with the Human need or goal. Consequently, dissimilarity Matching is not a good criterion to assess graph matching solvers. Bridging the gap between Human ground-truth and computer-generated matchings is more linked to the machine learning community. However, fast and eective solvers are a key element in this objective.

A specic metric appears when solving Problem ECGM. Solving Problem ECGM leads to a dissimilarity measure between graphs. This dissimilarity measure can be involved in a classication step. The classication rate is then used as a metric to gauge the solver eectiveness. The assumption is that better the solver higher the classication rate. This assumption is wrong and an heuristic can give a higher classication rate than an exact method. It is dependent on the data distribution and the classier. It will be discussed in the graph classication section (Section 3.2.

3.1.1.5.3 Data sets Data sets to evaluate graph matching methods can be analyzed through 2. The cost function is not dened and it should be found to t the application need.

Finally, graph matching methods are impacted by some intrinsic characteristics of the datasets :

1. The number of vertices.

2. The connectivity or the density of the graphs: A dense graph is a graph in which the number of edges is close to the maximal number of edges. At the opposite, a graph with only a few edges is a sparse graph. The distinction between sparse and dense graphs is rather vague, and depends on the context. For undirected simple graphs, the graph density is dened as:

Density = 2|E| |V | (|V |-1)
3. The type of cost functions: Cost functions can be very dierent. Especially, their outputs can be binary (0 or 1) or continuous and everything in between. In addition, the discriminative power or the distribution of the costs according to the graph component pairs is crucial for graph matching solvers. Roughly speaking and to give an example, a discriminative cost function is a function answering 0 for a given pair of vertices (i → k) and high values for other vertex matches (i → l). A cost function that discriminates between vertices can be helpful. At the opposite, a cost function making each vertex comparison identical is somehow not informative for the solver and so it makes the graph matching more challenging. A binary cost function re-casts the problem to an exact matching problem.

Below, we propose a list of the main data sets used for error-tolerant graph matching. These datasets have been chosen by carefully reviewing all of the publicly available datasets that have been used in the reference works mentioned in the state of the art section.

1. CMU House/Hotel: house [cmu] and hotel [cmu] with costs as in [START_REF] Torresani | A dual decomposition approach to feature correspondence[END_REF]. The task is to nd a matching between two images. This dataset consists of 111 frames of a house, each of which has been manually labeled with 30 landmarks. The Delaunay triangulation is used to connect the landmarks. Each frame represents the same object but with dierent rotation angles. Frame number 0 and frame number 10 represent the same object but with a rotation of 10 degrees. Intuitively, the gap between rotation angles controls the matching diculty.

2. VOC car and motorbike: in [START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF], this data sets contain pairs of cars and motorbikes with keypoints to be matched. Delaunay triangulation is used to connect the keypoints inside an image. The images are taken from the VOC PASCAL 2007 challenge.

Costs are computed from features [START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF]. Graphs contain outliers (points of the background or from other objects). Intuitively, the number of outliers controls the matching diculty. 4. MUTA [START_REF] Riesen | Iam graph database repository for graph based pattern recognition and machine learning[END_REF] ata set comes from the IAM Graph Database Repository [START_REF] Riesen | Iam graph database repository for graph based pattern recognition and machine learning[END_REF]. Alkane, Acyclic, PAH, MAO are from the GREYC database repository [gre]. These graphs are mainly purely structural datasets representing chemical molecules. Vertices represent atoms and edges are valence bounds. [START_REF] Riesen | Iam graph database repository for graph based pattern recognition and machine learning[END_REF].

GREC data set comes from the IAM Graph Database Repository

The GREC data set consists of graphs representing symbols from architectural and electronic drawings. The images occur at ve dierent distortion levels.

Dataset

# graphs The main characteristics of the data sets are tabulated in 3.2.

3.1.1.5.4 Graph matching library Here are some of the graph matching libraries :

• Path Following: http://projects.cbio.mines-paristech.fr/graphm/ The large volume of code available is an index to measure the maturity of the community. The problems, the input and output are well dened and it makes comparisons between methods easier.

2 http://www.greyc.ensicaen.fr/iapr-tc15/index.php 3.1.1.5.5 Discussion on the running times In this paragraph, our ambition is not to benchmark all the methods but rather to provide intuition about the speed of the methods.

First let us take a look to methods solving Problem ETSGM. PATH [START_REF] Zaslavskiy | A path following algorithm for the graph matching problem[END_REF],

IPFP [START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF], GNCCP [START_REF] Liu | Gnccpgraduated nonconvexityand concavity procedure[END_REF] call the Hungarian method at each iteration. Factorized Graph Matching (FGM) [START_REF] Zhou | Factorized graph matching[END_REF] relies on the expensive of the Frank-Wolfe algorithm. All these methods have a worst case of O(n 3 ) per iteration time complexity. The Dual Decomposition (DD) [START_REF] Torresani | A dual decomposition approach to feature correspondence[END_REF] algorithm is more computational expensive. In the papers of recent graph matching algorithms [START_REF] Zaslavskiy | A path following algorithm for the graph matching problem[END_REF][START_REF] Zhou | Factorized graph matching[END_REF][START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF][START_REF] Liu | Gnccpgraduated nonconvexityand concavity procedure[END_REF][START_REF] Cour | Balanced graph matching[END_REF][START_REF] Leordeanu | A spectral technique for correspondence problems using pairwise constraints[END_REF][START_REF] Torresani | A dual decomposition approach to feature correspondence[END_REF][START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF], the experiments were done on graphs with a number of nodes from 20 to 200.

Second let us take a look to methods solving Problem ECGM. Many fast heuristics have been designed. In [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF], the memory requirements and execution times of this method are respectively proportional to (n 1 + n 2 ) 2 and (n 1 + n 2 ) 3 where n 1 and n 2 are the order of the graphs. In [Bougleux et al., 2017b], for the same results, the algorithm requires O(n 1 n 2 ) memory space and O(min(n 1 , n 2 ) 2 max(n 1 , n 2 )) execution times. In [START_REF] Serratosa | Computation of graph edit distance: Reasoning about optimality and speedup[END_REF], a reduction of the the execution times O(min(n 1 , n 2 ) 3 ) is achieved but at the price of an approximated solution of the LSAP problem. Tree-based methods such as BeamSearch can be very fast if the beam size is small. To the extreme, if the beam size is equal to one then the method is called a greedy search and the exploration is limited to a single branch of tree. Other methods tend to be more time consuming but it is not possible to conclude about a clear ranking.

3.1.1.5.6 Eectiveness analysis This paragraph is not about an exhaustive evaluation of the methods but we compare the most frequent methods of the literature on two important and challenging data sets. First let us take a look to methods solving Problem ETSGM. Results are shown in Figure 3.9 about the house CMU data set. The task is to nd a matching between two images. This dataset consists of 111 frames of a house, each of which has been manually labeled with 30 landmarks. The Delaunay triangulation is used to connect the landmarks. Each frame represents the same object but with dierent rotation angles. Frame number 0 and frame number 10 represent the same object but with a rotation of 10 degrees. Intuitively, the gap between rotation angles controls the matching diculty. In this experiment, the node-anity K ik,ik was set to zero and the edge-anity K ik,jl was set to K ik,jl = exp(-

(ζ(ij)-ζ(kl)) 2 2500
) where ζ(ij) is the distance between two keypoints in the image. In Figure 3.9, note that as the separation between frames increases, the accuracy of several algorithms drops precipitously. The four methods: IPFP-S, RRWM, FGM, and Hungarian-BP exactly identify the correct match in all scenarios.

Results are shown in Figure 3.10 about the VOC data sets. Each node feature µ(i) is an orientation angle. pairwise distance between the connected nodes and θ is the absolute angle between the edge. Thus, for each pair of images, we computed the node anity as K ik,ik = exp(-||µ(i) -µ(k)|| 1 ) and the edge anity as K ik,jl = exp(- 

1 2 ||d ij -d kl || 1 -1 2 ||θ ij -θ kl || 1
c(i → k) 1 0 c(i → ) 3 1000 c( → k) 3 1000 c(ij → kl) 1 ||ζ(ij) -ζ(ij)|| 1 c(ij → ) 3 ||ζ(ij)|| 1 c( → kl) 3 ||ζ(ij)|| 1
Table 3.5: Cost functions for PAH and CMU House data sets.

As it is usual for N P-hard problems, no single method can eectively address all QAP instances. Dierent applications require dierent methods and we concentrate here on problem instances specic for computer vision and pattern recognition. Traditionally, within this community predominantly heuristics are used, since demand for low computational time usually dominates the need to obtain optimality guarantees.

Open problems

As previously stated, the computer vision and pattern recognition are mainly focused on heuristic methods. Consequently, exact methods are not well studied in the literature. There is only one ILP [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF] to solve the error-correcting graph matching problem but it does not solve the general case because edge attributes are not taken into account. However, exact methods are important because they can help to evaluate heuristics methods in terms of eectiveness. In addition, exact methods can be used to solve eciently "not large" instances. To nish on this aspect, heuristics can be derived from exact methods. For all theses reasons, we think that it is important to study exact methods. Graph matching benchmarks are well-established in the community, especially, VOC and CMU databases. However, these data sets do not reect all the parameters that impact graph matching methods such as:

1. The number of vertices.

2. The density of the graphs.

The type of cost functions.

There is a room to enrich graph matching benchmarks to better t with real applications as well as better characterize the behaviour of graph matching solvers. Finally, researchers working on error-correcting graph matching and error-tolerant subgraph matching problems are not the same.

They form two distinct communities with their own benchmarks and methods. It is crucial to bridge the gap between the Problem ETSGM and Problem ECGM. A rst step forward has been done by [Bougleux et al., 2017a] by modelling Problem ECGM as a QAP and using solvers from the subgraph matching community. In this direction, more investigations could be led to compare ETSGM and ECGM problems. The goal would be to unify methods and benchmarks. To sum up, here are the fours deadlocks to be opened:

1. There is a need to study exact methods.

2. There is a need to work on the performance evaluation of graph matching methods.

(a) Performance evaluation of heuristics with respect to optimal solutions (thanks to deadlock 1).

(b) To enrich graph matching benchmarks and to better characterize their behaviors.

3. Like any N P-hard problem there is always a trade-o to be found between speed and eectiveness. There is a need to study heuristics according to speed and eectiveness criteria.

4. There is a need to draw links between Problem ETSGM and Problem ECGM to gather people from both communities.

Contribution

The rst deadlock to be released is about exact methods. It is addressed through the design of new models and a branch and bound methods. The second deadlock is about the performance evaluation. A benchmark was proposed and latter used in an international contest. Accurate and fast heuristics is a Graal, we proposed to develop accurate and exible heuristics to cope with a wide range of applications. Finally, we propose a theoretical study to relate Model SGMIQP and Model GMIQP.

3.1.3.1 Deadlock 1: models and algorithms for exact methods 3.1.3.1.1 Motivation Exact methods to solve Problem ECGM are not well studied. As an illustration, computing the optimal solution of Problem ECGM using A * is only feasible for graphs of a rather small size (typically 10 vertices) because of the its memory consumption. Another exact method exists named JH [START_REF] Justice | A binary linear programming formulation of the graph edit distance[END_REF], it is based on ILP but does not solve the general problem. We tackle the question of designing exact methods for Problem ECGM by adopting two strategies: the design of new ILP models and the design of memory ecient algorithms.

3.1.3.1.2 Exact methods: mathematical models A BLP is a restriction of integer linear programming (ILP) where the variables are binary. Hence, its general form is :

min x c T x (3.9a) subject to Ax ≤ b (3.9b) x ∈ {0, 1} n (3.9c)
where c ∈ R n , A ∈ R n×m and b ∈ R m are data of the problem. A feasible solution is a vector x of n binary variables (3.9c) which respects linear inequality constraints (3.9b). If the program has at least a feasible solution, then the optimal solutions are the ones that minimize the objective function (3.9a) which is a linear combination of variables of x weighted by the components of the vector c.

In the GED denition provided in Problem 5, the edit operations that are allowed to transform the graphs G 1 and G 2 are (i) the substitution of a vertex (respectively an edge) of G 1 with a vertex (resp. an edge) of G 2 , (ii) the deletion of a vertex (or an edge) from G 1 and (iii) the insertion of a vertex (or an edge) in G 1 . For each type of edit operation, we dene a set of corresponding binary variables:

• ∀(i, k) ∈ V 1 × V 2 , x i,k = 1 if i is substituted with k, 0 otherwise. • ∀(ij, kl) ∈ E 1 × E 2 , z ij,kl = 1 if ij is substituted with kl, 0 otherwise. • ∀i ∈ V 1 , u i = 1 if i is deleted from G 1 0 otherwise. • ∀ij ∈ E 1 , e ij = 1 if ij is deleted from G 1 0 otherwise. • ∀k ∈ V 2 , v k = 1 if k is inserted in G 1 0 otherwise. • ∀kl ∈ E 2 , f kl = 1 if kl is inserted in G 1 0 otherwise.
In order to evaluate the global cost of an edit path, elementary costs for each edit operation must be dened. We adopt the following notations for these costs:

• ∀(i, k) ∈ V 1 × V 2 , c(i → k) is the cost of substituting the vertex i with k, • ∀(ij, kl) ∈ E 1 × E 2 , c(ij → kl)
is the cost of substituting the edge ij with kl,

• ∀i ∈ V 1 , c(i → ) is the cost of deleting the vertex i from G 1 , • ∀ij ∈ E 1 , c(ij → ) is the cost of deleting the edge ij from G 1 , • ∀k ∈ V 2 , c( → k) is the cost of inserting the vertex k in G 1 , • ∀kl ∈ E 2 , c( → kl) is the cost of inserting the edge kl in G 1 .
The objective function (3.10) is the overall cost induced by an edit path (x, z, u, v, e, f ) that transforms a graph G 1 into a graph G 2 . In order to get the graph edit distance between G 1 and G 2 , this objective function must be minimized.

C(x, z, u, v, e, f ) = i∈V1 k∈V2 c(i → k) • x i,k + ij∈E1 kl∈E2 c(ij → kl) • z ij,kl + i∈V1 c(i → ) • u i + k∈V2 c( → k) • v k + ij∈E1 c(ij → ) • e ij + kl∈E2 c( → kl) • f kl (3.10)
Now let us present the constraints to guarantee that the admissible solutions of the BLP are edit paths that transform G 1 in G 2 .

3.1.3.1.2.1 Vertices mapping constraints The constraint (3.11) ensures that each vertex of G 1 is either mapped to exactly one vertex of G 2 or deleted from G 1 , while the constraint (3.12) ensures that each vertex of G 2 is either mapped to exactly one vertex of G 1 or inserted in G 1 :

u i + k∈V2 x i,k = 1 ∀i ∈ V 1 (3.11) v k + i∈V1 x i,k = 1 ∀k ∈ V 2 (3.12)
3.1.3.1.2.2 Edges mapping constraints Similarly to the vertex mapping constraints, the constraints (3.13) and (3.14) guarantee a valid mapping between the edges:

e ij + kl∈E2 z ij,kl = 1 ∀ij ∈ E 1 (3.13) f kl + ij∈E1 z ij,kl = 1 ∀kl ∈ E 2 (3.14) 3.1.3.1.2.

Topological constraints

The respect of the graph topology in the mapping of the vertices and of the edges is described in the following proposition : Proposition 3. An edge ij ∈ E 1 can be mapped to an edge kl ∈ E 2 only if the head vertices i ∈ V 1 and k ∈ V 2 , on the one hand, and if the tail vertices j ∈ V 1 and l ∈ V 2 , on the other hand, are respectively mapped.

This quadratic constraint can be expressed linearly with the following constraints (3.15) and (3.16):

• ij and kl can be mapped only if their head vertices are mapped:

z ij,kl ≤ x i,k ∀(ij, kl) ∈ E 1 × E 2 (3.15)
• ij and kl can be mapped only if their tail vertices are mapped: 4 Reducing the number of constraints and variables The variables u, v, e and f help the reader to understand how the objective function and the constraints were obtained, but they are unnecessary to solve the GED problem.

z ij,kl ≤ x j,l ∀(ij, kl) ∈ E 1 × E 2 (3.16) 3.1.3.1.2.
Replacing in Equation 3.10 the variables u, v, e and f by their expressions deduced from equations 3.11,3.12, 3.13 and 3.14, we get a new objective function:

C (x, z) = i∈V1 k∈V2 c(i → k) -c(i → ) -c( → k) • x i,k + ij∈E1 kl∈E2 c(ij → kl) -c(ij → ) -c( → kl) • z ij,kl + γ with γ = i∈V1 c(i → ) + k∈V2 c( → k) + ij∈E1 c(ij → ) + kl∈E2 c( → kl) (3.17)
We transform the vertex mapping constraints 3.11 and 3.12 into inequality constraints, without changing their role in the program. As a side eect, it removes the u and v variables from the constraints:

k∈V2 x i,k ≤ 1 ∀i ∈ V 1 (3.18) i∈V1 x i,k ≤ 1 ∀k ∈ V 2 (3.19)
We do the same for edge mapping constraints 3.13 and 3.14:

kl∈E2 z ij,kl ≤ 1 ∀ij ∈ E 1 (3.20) ij∈E1 y ij,kl ≤ 1 ∀kl ∈ E 2 (3.21)
Equation 3.17 shows that the GED can be obtained without explicitly computing the variables u, v, e and f . Once the formulation solved, all insertion and deletion variables can be a posteriori deduced from the substitution variables.

The number of topological constraints, 3.15 and 3.16, is |E 1 | • |E 2 |. Therefore, in average, the number of constraints grows quadratically with the density of the graphs. We show that it is possible to formulate the GED problem with potentially less constraints, leaving,the set of solutions unchanged. To this end, we propose to mathematically express Proposition 3 in another way. We replace the constraints 3.15 and 3.16 by the following ones:

• Given an edge ij ∈ E 1 and a vertex k ∈ V 2 , there is at most one edge whose initial vertex is k that can be mapped with ij:

kl∈E2 z ij,kl ≤ x i,k ∀k ∈ V 2 , ∀ij ∈ E 1 (3.22)
• Given an edge ij ∈ E 1 and a vertex l ∈ V 2 , there is at most one edge whose terminal vertex is l that can be mapped with ij:

kl∈E2 z ij,kl ≤ x j,l ∀l ∈ V 2 , ∀ij ∈ E 1 (3.23)
The entire formulation called F2 is described as follows :

Model 4. F2

min x,z i∈V1 k∈V2 c(i → k) -c(i → ) -c( → k) • x i,k + ij∈E1 kl∈E2 c(ij → kl) -c(ij → ) -c( → kl) • z ij,kl + γ (3.24a) subject to k∈V2 x i,k ≤ 1 ∀i ∈ V 1 (3.24b) i∈V1 x i,k ≤ 1 ∀k ∈ V 2 (3.24c) kl∈E2 z ij,kl ≤ x i,k ∀k ∈ V 2 , ∀ij ∈ E 1 (3.24d) kl∈E2 z ij,kl ≤ x j,l ∀l ∈ V 2 , ∀ij ∈ E 1 (3.24e) with x i,k ∈ {0, 1} ∀(i, k) ∈ V 1 × V 2 (3.24f ) z ij,kl ∈ {0, 1} ∀(ij, kl) ∈ E 1 × E 2 (3.24g) where γ = i∈V1 c(i → ) + k∈V2 c( → k) + ij∈E1 c(ij → ) + kl∈E2 c( → kl) (3.24h)
γ is not a function of x and z. It does not impact the minimization problem. However, γ is mandatory to obtain the GED value.

3.1.3.1.3 Exact method: Branch and Bound algorithm (DF) A part from mathematical models, A * is another exact method. A * is a tree-based method adopting a best-rst exploration.

A * stores candidate solutions to be explored while traversing the search tree. It is memory expen- sive, so we decided to investigate an algorithm with a memory ecient framework. To overcome the high memory load, we propose a depth-rst graph edit distance (called DF) algorithm which requires less memory and search time. The search space is organized as an ordered tree which is explored in a depth-rst way. Each tree node is a complete or a partial solution of the GED problem. For example, the rst oor (F ) of the tree is obtained by creating a node for each substitution (i → k, ∀k ∈ V 2 ) and a last tree node is added to the oor representing the deletion (i → ). The choice of the most promising tree node is achieved by selecting the minimum cost tree node within the oor F (i.e., p min = arg min p∈F (g(p) + h(p))). g(p) is the sum of the costs of the graph components in p. h(p) is an estimation of the remaining cost of the unmatched graph components. After comparing several heuristics h(p) from the literature, we selected the bipartite graph matching heuristic proposed in [START_REF] Riesen | Speeding up graph edit distance computation with a bipartite heuristic[END_REF]. The complexity of such a method is O(max

(|V 1 |, |V 2 |) 3 ).
For each tree node p, the unmatched vertices and edges are handled completely independently. Unmatched vertices of G 1 and unmatched vertices of G 2 are matched at best by solving an linear sum assignment problem. Unmatched edges of both graphs are handled analogously. Obviously, this procedure allows multiple substitutions involving the same vertex or edge and, therefore, it possibly represents an invalid way to edit the remaining part of G 1 into the remaining part of G 2 . However, the estimated cost certainly constitutes a lower bound of the optimal cost. Once p min is selected then the child tree nodes are created by substituting (j → l, ∀l ∈ V 2 \ {k}) and so on.

While traversing the search tree, each leaf node is a feasible solution and provides an upper bound. an optimal solution or the best solution found so far among the methods that were put to the test. The number of optimal solutions is Tabulated in Table 3.6. Finally, a set of metrics was proposed. Especially, for a given data set, each method can be projected into a 2-Dimensional space corresponding to its average deviation and its average running time. Therefore, each method is a point in this space and a method is said to be dominated in the sens of Pareto if a method is not better than any other on one of the two criteria (average deviation and average running time).

The benchmark is available online http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/ home.html. It is composed of metrics, sub sets, low level information (distance and matching) and well-dened cost functions. is, the methods that needed more than 30 s were stopped, and the best answer found so far was outputted. Several data sets composed of graphs with symbolic and numeric attributes were used in the experiments. For the sake of clarity, we synthesize our dierent conclusions via gures. For exhaustive and numerical results, we refer the interested reader to the contest website: http://gdc2016.greyc.fr. 3.1.3.3.1.2 Local branching details As presented in [START_REF] Fischetti | Local branching[END_REF], LocBra heuristic is a local search approach that makes use of ILP solver to explore the neighborhoods of solutions through a branching scheme. In addition, it involves mechanisms such as intensication 3.25. For the GED problem, it turns out that the crucial variables are x that model the vertices matching. Another important improvement is proposed for the diversication mechanism, where also not all binary variables are included but a smaller set of "important variables" is used instead. The notion of important variables is based on the idea that when changing its value from 1 → 0 (or the opposite), it highly impacts the objective function value.

3.1.3.3.2 Anytime Branch and Bound (ADF) 3.1.3.3.2.1 Motivation We establish a compromise between exact and approximate errorcorrecting GM algorithms, referred to here as anytime algorithms. The concept of anytime algorithms was rst reported in [START_REF] Zilberstein | Approximate reasoning using anytime algorithms[END_REF]. The desirable properties of anytime algorithms are as follows: • Interruptibility: After some small amount of setup time 3 , a suboptimal solution can be provided by stopping the algorithm at time t.

• Monotonicity: The quality of the result increases as a function of computational time.

• Measurable quality: We can always measure the quality of a suboptimal result.

• Preemptability: Anytime algorithms can be suspended and resumed with minimal overhead.

Anytime algorithms have a trade-o between quality and execution time, see Figure 3.15. They can nd the rst best-so-far solution after some setup time at the beginning of the execution. From Figure 3.15, one can see that the quality of the solution improves with increasing execution time.

Users have the choice of stopping the algorithm at anytime and thus getting an answer that is satisfactory, or they can run their algorithm until its completion when it is important to nd the optimal solution.

3.1.3.3.2.2 Details The anytime algorithm for GED is named ADF and it is based on DF .

During traversal of the search tree when a rst complete solution is reached, it is outputted and made available for the application or the user. Thereafter, when a better solution is found (a better upper bound U B) then it is outputted and made available too. This process is repeated until the optimal solution is found or the user stops the method. ADF can start from a pre-computed upper bound. In such a case, ADF is called ADF -U B. Whenever an improved solution is found, it is made available for the nal application that uses the anytime method as a service. This way of understanding the problem makes the anytime method very exible and applicable when the time constraints of the nal application are not known in advance. 3 The time needed to output a rst solution by an anytime method. Figure 3.17 pictures out results on MUTA-70 that is a challenging data set with graphs of 70 nodes. The left part of Figure 3.17 shows that when time matters, FBP was the fastest in outputting solutions, followed by BP, SBP-Beam and ADF-UB. After 40 ms (right of Figure 3.17), both ADF and ADF-UB beat BP. For instance, when the time limit was equal to 400 ms, the deviation of BP was 45.24% whereas the deviation of ADF and ADF-UB was 35.12% and 33.02%, respectively.

3 

(i → k) = -(c(i → k) -c(i → ) -c( → k)).
To intuitively demonstrate the exactness of the proposition, we proceed as follows :

1. We start from Model GMIQP.

2. From this quadratic model, we express the Model F2 which is a linear model.

3. We perform a change of cost functions linking s with c. Deviation (%) q q q q q q FBP BP BS-1 BS-100 ADF ADF-UB SBP-Beam 4. Under this cost function s, we show that F2 turns to be a maximization problem and we call this new model F2'.

5. F2' is then modify to get a quadratic model called GMIQP'.

6. We obtain GMIQP' = Model SGMIQP and it is sucient to show that both models solve the same problem.

Sketch of proof. Let Γ 1 be the set of solutions (edit paths between G 1 and G 2 ) implied by the set of admissible solutions of the Model GMIQP. Let Γ 2 be the set of solutions implied by the set of admissible solutions of F2 (Model 4).

1. Model GMIQP and Model F2 solve the error-correcting graph matching problem so

Γ 1 = Γ 2 . 2. By setting d(i → k) = (c(i → k) -c(i → ) -c( → k)) and d(ij → kl) = (c(ij → kl) - c(ij → ) -c( → kl))
, we can rewrite the objective function of F2 as follows :

C (x, z) = i∈V1 k∈V2 d(i → k) • x i,k + ij∈E1 kl∈E2 d(ij → kl) • z ij,kl + γ with γ = i∈V1 c(i → ) + k∈V2 c( → k) + ij∈E1 c(ij → ) + kl∈E2 c( → kl) (3.26)
3. γ does not depend on variables so it does not impact the optimization problem. Therefore γ can be removed.

By setting s(i

→ k) = -d(i → k) = -(c(i → k) -c(i → ) -c( → k)) and s(ij → kl) = -d(ij → kl), we can rewrite the objective function C of the model F2 to obtain C . C (x, z) = i∈V1 k∈V2 s(i → k) • x i,k + ij∈E1 kl∈E2 s(ij → kl) • z ij,kl (3.27) 5. Minimizing f (x) is equivalent to maximize -f (x). So, minimizing C is equivalent to maximize C .
6. The linear objective function C can be turned into a quadratic function by removing variables z and replacing them by product of x variables.

C (x) = i∈V1 k∈V2 s(i → k) • x i,k + ij∈E1 kl∈E2 s(ij → kl) • x i,k • x j,l
(3.28)

7. Topological constraints (Equations 3.24d and 3.24e (see below)) in F2 are not necessary anymore and they can be removed. The product of x i,k and x j,l is enough to ensure that ab edge ij ∈ E 1 can be matched to an edge kl ∈ E 2 only if the head vertices i ∈ V 1 and k ∈ V 2 , on the one hand, and if the tail vertices j ∈ V 1 and l ∈ V 2 , on the other hand, are respectively matched.

kl∈E2 z ij,kl ≤ x i,k ∀k ∈ V 2 , ∀ij ∈ E 1 kl∈E2 z ij,kl ≤ x j,l ∀l ∈ V 2 , ∀ij ∈ E 1 8.
We obtain the new model named GMIQP':

Model 5. GMIQP'

max x C (3.29a) subject to k∈V2 x i,k ≤ 1 ∀i ∈ V 1 (3.29b) i∈V1 x i,k ≤ 1 ∀k ∈ V 2 (3.29c) with x i,k ∈ {0, 1} ∀(i, k) ∈ V 1 × V 2 (3.29d) (3.29e)
9. Model SGMIQP = Model GMIQP'. This was to be demonstrated. Proposition 4 is right.

Under condition of Proposition 4, the optimal assignment obtains when solving Model SGMIQP allows to reconstruct an optimal solution for the Model GMIQP and to compute the associated GED. This process is depicted in Figure 3.18. Note that in some case, the function s() has to be positive then s() ILP model was proposed in [Lerouge et al., 2017]. An exact method based on this mathematical model was designed [Lerouge et al., 2016] along with a time-truncated heuristic [Lerouge et al., 2017]. All these methods were put to the test in the ICPR 2016 graph edit distance contest [Abu-Aisheh et al., 2017a]. In the PhD thesis of Mostafa Darwiche, an heuristic based on mathematical models was proposed [Darwiche et al., 2018, in pressa]. An attempt was made to link researchers working on error-tolerant subgraph matching and error-correcting graph matching. Our codes are available at:

can rewrite s(i → k) = cst -(c(i → k) -c(i → ) -c( → k)) with cst a large constant value.
(i → k) = -(c(i → k) -c(i → ) -c( → k)).
• Anytime Graph Matching http://www.rfai.li.univ-tours.fr/PublicData/GraphLib/home. html

• Local Branching https://sites.google.com/view/orspr/

Graph classication

This section is decomposed into three parts: Section 3.2.1, the state of the art where problems are expressed along with the methods from the literature. Section 3.2.2, the deadlocks to be released are stated about the combinatorial aspect of the graph classication. Section 3.2.3, answers and

analysis of the open problems are proposed.

State of the art

Graph classiers can be categorized into two categories whether the classier operates in graph space or in vector space. In this manuscript, we only focus on methods operating in graph space without projecting the graphs into a vector space. This strong assumption is motivated by the aim of capturing as much as possible structural distortions. Graph matching is a way to compare graphs in graph space and a standard approach to GED-based pattern recognition is given by the k-nearest neighbors (kNN) classication [START_REF] Serratosa | Graph edit distance: Restrictions to be a metric[END_REF][START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF][START_REF] Serratosa | Computation of graph edit distance: Reasoning about optimality and speedup[END_REF][START_REF] Cortés | Learning graph-matching edit-costs based on the optimality of the oracle's node correspondences[END_REF]. In contrast with other classiers such as articial neural networks, Bayes classiers, or decision trees, the underlying pattern space need not be rich in mathematical operations for nearestneighbor classiers to be applicable. In this scenario, a test graph from the test set (T eS) is compared to all the graphs in the training set with the aim of dening a neighborhood based on a dissimilarity measure between graphs. Finally, the test graph is assigned to the most common class among its neighborhood.

Problem denition

Let us recall some notations. Let D be the set of graphs and let T be the set of classes. Given a graph training set T rS = {(G j , t j )} M j=1 , where G j ∈ D is a graph and t j ∈ T is the class of the graph.

The 1-nearest neighbor problem can be dened as follows:

Problem 10. 1-Nearest Neighbor Problem (1NN)

(G * , t * ) = arg min (Gj ,tj )∈T rS d(G, G j ) (3.30)
Where d(G, G j ) is an arbitrary function to calculate a dissimilarity between G and G j .

To extend Problem 10 to k-nearest neighbors, we introduce K, the set of the kNN from a query graph G ∈ T eS.

Let K = {(G 1 , t 1 ), • • • , (G j , t j ), • • • , (G k , t k )
} be a set of graphs along with their class labels with (G j , t j ) ∈ T rS. The k-Nearest Neighbors problem can be dened by: Problem 11. k-Nearest Neighbors Problem (kNN)

K = arg sort (Gj ,tj )∈T rS (d(G, G j ), k) (3.31)
Where sort is a function that performs an ascending sort of d(G i , G j ) values. k is the number of retained values to choose the number of nearest neighbors of G. Where count(.) is a function that counts the number of observations that fall into each class t j .

Problem 10 and Problem 11 put forward that d(G, G j ) is computed between G and each graph G j in the training set.

The optimal kNN can be found by an exact kNN algorithm when :

1. Solving d(G, G j ) by an exact graph matching method, 2. and comparing G with all the training set.

The kNN classier has many advantages thanks to three properties: i) It is non-parametric. It means that it does not depend on a specic distribution of the data (i.e. Gaussian distribution).

ii) Only one parameter k is needed. iii) The kNN classier is intuitive. It means that a wrong or a good decision can be easily understood by a human by looking at the set of nearest neighbors.

However, its time consumption cannot be ignored especially when the number of graphs in the training set is big.

The rst use of the kNN classier is reported in [START_REF] Cover | Nearest neighbor pattern classication[END_REF]. It is stated that the probability of error of the nearest neighbor rule is bounded above by twice the Bayes probability of error. In this sense, it may be said that half the classication information in an innite sample set is contained in the nearest neighbor. In its origin the kNN problem is a type of lazy learning algorithms such that training is not needed. In machine learning, this kind of method is referred to instance-based learning. The parameter k has an important impact on the classication rate of kNN. This impact was deeply studied in [START_REF] Gustavo | How k-nearest neighbor parameters aect its performance[END_REF]. The boundary between classes becomes smoother with increasing value of k. A small value of k (i.e k = 1) could lead to an overtting phenomena while a large value of k could lead to under-tting of the data (under-tting and over-tting are dened in Appendix B). k is usually empirically tuned by checking the error rate on a validation data set.

kNN methods

The literature about the kNN algorithms can be split into two parts : exact or approximate nearest neighbor search. Does a method return the optimal nearest neighbors or not? The quality and usefulness of the algorithms are determined by the time complexity of queries as well as the space complexity of any search data structures that must be maintained. A survey of nearest neighbor techniques can be found in [START_REF] Bhatia | Survey of nearest neighbor techniques[END_REF].

3.2.1.2.1 Exact methods 3.2.1.2.1.1 Linear search (structure less) The rst method is called "Linear search".

The simplest solution to the kNN problem is to compute the distance from the query to every other data in the database, keeping track of the "best so far". This algorithm, sometimes referred to as the naive approach, has a running time of O(M ) 4 where M is the cardinality of D. There are no search data structures to maintain, so linear search has no space complexity beyond the storage of the database. 4 The complexity is given regardless to the dissimilarity function complexity.

Space partitioning Several space-partitioning methods have been developed

for solving the kNN problem. Perhaps the simplest is the k-d tree, which iteratively bisects the search space into two regions containing half of the points of the parent region. Queries are performed via traversal of the tree from the root to a leaf by evaluating the query point at each split. k-d-trees are restricted to euclidean space. A limitation of these multidimensional search structures is that they are only dened for searching over objects that can be treated as vectors.

They aren't applicable for the more general case in which the algorithm is given only a collection of objects and a function for measuring the distance or similarity between two objects. However in case of general metric space, branch and bound approaches are still applicable and thy are known under the name of metric trees. The rst use of the term "metric tree" was published in [START_REF] Jerey | Satisfying general proximity / similarity queries with metric trees[END_REF]. Particular examples include vp-tree and BK-tree [START_REF] Peter | Data structures and algorithms for nearest neighbor search in general metric spaces[END_REF]. However, the dissimilarity function must satisfy the triangle inequality then the result of each comparison can be used to prune the set of graph candidates to be examined. The triangle inequality allows to compute bounds on various distances without having to evaluate the distance function itself [START_REF] Kumar | What is a good nearest neighbors algorithm for nding similar patches in images?[END_REF]. The graph edit distance can satisfy the triangle inequality property if the graph edit distance is turned into a distance. To do so, the cost function associated with the edit operations satises the distance conditions of non-negativity, symmetry, and the triangle inequality then the GED is a distance [Neuhaus and Bunke., 2007] that respects the four axioms: Denition 11. Distance function

A distance function d : G × G → R is a distance if for
all graphs (G i ,G j ) the four axioms are respected:

• Non-negativity: d(G i , G j ) ≥ 0 • Identity: d(G i , G j ) = 0 =⇒ G i = G j • Symmetry: d(G i , G j ) = d(G j , G i ) • Triangle inequality: d(G i , G j ) ≤ d(G i , G k ) + d(G k , G j )
The bounding of distances thanks to the triangle inequality is illustrated by the use case of 

d(G 1 , G 4 ) ≤ d(G 1 , G 2 ) + d(G 2 , G 4 ) =⇒ d(G 1 , G 4 ) ≤ 2 (3.33a) d(G 1 , G 3 ) ≤ d(G 1 , G 4 ) + d(G 4 , G 3 ) =⇒ d(G 1 , G 4 ) ≥ d(G 1 , G 3 ) -d(G 4 , G 3 ) (3.33b) So, we can conclude that √ 5 -1 ≤ d(G 1 , G 4 ) ≤ 2. A
G = (V, E) in which every data G i ∈ D is uniquely associated with vertex v i ∈ V .
The search for the nearest neighbors to a query q in the set D takes the form of searching for a specic vertex in the graph G = (V, E). The basic algorithm is a greedy search and it works as follows: the search starts from an enter-data vertex v i ∈ V by computing the distances from the query q to each vertex of its neighborhood {v j |(v i , v j ) ∈ E}, and then nds a vertex with the minimal distance value. If the distance value between the query and the selected vertex is smaller than the one between the query and the current element, then the algorithm moves to the selected vertex, and it becomes new enter-data. The algorithm stops when it reaches a local minimum: a vertex whose neighborhood does not contain a vertex that is closer to the query than the vertex itself.

3. [START_REF] Kaufman | Clustering by means of medoids[END_REF] or hierarchical cluster analysis. More specically, some methods have been adapted to graphs [START_REF] Musmanno | Heuristics for the generalized median graph problem[END_REF][START_REF] Chaieb | Fuzzy generalized median graphs computation: Application to content-based document retrieval[END_REF][START_REF] Ferrer | Generalized median graph computation by means of graph embedding in vector spaces[END_REF][START_REF] Villani | Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften[END_REF][START_REF] Coustaty | [END_REF][START_REF] Ehsan | Discriminative prototype selection methods for graph embedding[END_REF]. Globally, the aim is to construct prototypes that are representatives for D. Clearly, this part is more related to the machine learning eld and it will be developed in Section 4. One of the main limitations of such methods is the loss of information as they imply a signicant reduction of the training set (with the use of the representatives of clusters instead of all the labeled samples). Boundaries between classes can then become less precise.

3.2.1.2.2.4 Fast heuristics for the GED problem Another approach to speed up the kNN computation is to nd a fast (heuristic) GED algorithm. In Section 3.1, a review of heuristics for the GED problem have been proposed. Methods [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF][START_REF] Serratosa | Computation of graph edit distance: Reasoning about optimality and speedup[END_REF][START_REF] Neuhaus | Fast suboptimal algorithms for the computation of graph edit distance[END_REF][START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF] have been applied to the kNN problem.

Analysis

To summarize, all the methods are tabulated in Table 3.8 according to the following criteria :

• Exact: Is the method exact or not ?

• Category : The family of the methods: linear search or space partitioning methods.

• Generic: Is the method generic operating in a metric space or is it adapted to graph space ?

• Learning: Does the method require a learning phase or not? In Figure 3.20 methods are synthesized according to either methods are generic or dedicated to graphs. From Table 3.8 and Figure 3.20, several remarks can be drawn. Learning-free methods based on metric trees (i.e. vp-tree) imposes that the triangle inequality property holds true for the distance function. This constraint is very conservative and may lead to low recognition rates and a small speed up in practice [START_REF] Serratosa | Graph edit distance: Restrictions to be a metric[END_REF]. Structuring the search space lies at the art of machine learning techniques and many kNN methods require a learning phase to structure the database.

In the meantime, many kNN methods are learning-free and rely on fast GED solvers.

From these three remarks, we can observe the complementary of discrete optimization and machine learning. The two aspects can be combined to achieve a common goal : a good kNN method. The organization of the search space by means of machine learning techniques and the design of ecient graph matching solvers thanks to combinatorial optimization.

Open problems

From the literature review and focusing on learning-free methods, the methods are divided in two parts: i) the methods based on fast GED heuristics and ii) the methods based on a line search operating on a generic dissimilarity space. Speaking about the rst category, fast GED heuristics are key elements of kNN methods but there is no clear conclusion in the literature about the impact of the suboptimality on the kNN methods. The same observation can be drawn about the classiers based on kNN methods. On the other category of methods, they are based on a linear search among all the graph in the database. The line search methods do not take advantage of the graph space to structure the kNN search and so to speed up the methods. From these conclusions, three open problems can be drawn:

1. What is the impact of GED heuristics on the kNN problem?

2. Is there a way to specialize a line search method to operate in graph space instead of the generic dissimilarity space?

3. What is the impact of GED heuristics in a classication context?

Contribution

This section is built on the three open problems mentioned in Section 3.2.2.

3.2.3.1 Deadlock 5: What is the impact of GED heuristics on the kNN problem?

An important question is brought up: what is the impact of GED heuristics on the (dis)similarity search? This question can be answered experimentally by evaluating the ranking of graphs, which is considered as an important task in graph retrieval. A query graph is compared to each graph of a database thanks to a given GED heuristic used as a distance. Then, distances are sorted in ascending order to obtain a ranking. The goal of this experiment is to compare the ranking given by all the heuristics against the optimal ranking given by an exact method. Consequently, the experiment aims at comparing the orders provided by the heuristics and the order provided by an exact method. It proceeds as follows: assuming a graph database with 5 graphs

D = {G 1 , G 2 , • • • , G 5 }.
Starting with graph G 1 , the optimal and heuristics solutions (distances) are computed for all possible pairs of graphs e.g.

d(G 1 , G 1 ); d(G 1 , G 2 ); • • • ; d(G 1 , G 5 ).
Then, graphs are ordered by ascending order based on the distances. For instance, assuming that the optimal order

for G 1 is O opt 1 = {G 1 , G 2 , G 4 , G 3 , G 5 } and a heuristic pm order is O pm 1 = {G 1 , G 5 , G 4 , G 3 , G 2 }.
Then, the metric used is the Kendall rank correlation coecient τ b : it is a statistic used to study the correlation between two ranked/sorted ordinal variables [START_REF] Kendall | Rank correlation methods[END_REF]. Computing τ b consists in measuring the degree of concordance between the two ranked variables. The correlation τ b is computed between O opt 1 and O pm 1 . The τ b statistic makes adjustments for ties. Ties means that data that have the same value. For instance, the pair

((G 1 , G 1 ), (G 1 , G 2 )) is tied if d(G 1 , G 1 ) = d(G 1 , G 2 ).
A tied pair is neither concordant nor discordant. When tied pairs arise in the data, the coecient may be modied in a number of ways to keep it in the range [-1, 1]. Values of τ b range from -1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association. The Kendall τ b coecient is dened as:

τ b = n c -n d (n 0 -n 1 )(n 0 -n 2 )
where are not correlated and τ b = 0. The alternative hypothesis (H 1) is that the variables are correlated, and τ b is non-zero. A p-value test is applied to evaluate these hypothesis. The p-value is dened as the probability of obtaining a result equal to or "more extreme" than what was actually observed, when the null hypothesis is true. It is the error of the second kind, to accept the null hypothesis while H1 is true (false positive). If the p-value is less than a chosen risk level (5% for example), then the null hypothesis (H0) is rejected. On the contrary, if the p-value is greater than the chosen alpha level, then the null hypothesis (H0) cannot be rejected. In any case, it never leads to accept H1. A p-value is computed for each τ b value, it represents the probability of obtaining results similar or better to what was observed if the null hypothesis is true. For each p-value under 5%, we can say that the hypothesis H0 is rejected.

n 0 = n(n -1)/2 n 1 = i t i (t i -1)/2 n 2 = j u j (u j -
The MUTA subset with graph size 30 is picked in this experiment, because all optimal solutions are known for these instances (100 instances) and 30 is the average graph sizes. All PAH instances (8836) are selected to be part of this experiment as well. In Table 3.9, the percentage p-value under 5% is reported for the PAH data set. Local Branching heuristic (LocBra) is at 100%, so the null hypothesis is always rejected for all instances. LocBra has a very strong correlation with the optimal ranking. The other heuristics have lower percentages and are far from LocBra, the highest (23%) being obtained by GNCCP. In Figure 3.21 chart(b)

shows τ b distribution for PAH instances. LocBra has correlation values between [0.6; 1] and all the other heuristics are below those values. This proves that the ranking obtained by LocBra is very similar to the optimal ranking. In the second place comes GNCCP, followed by IPFP and then SBPBeam at last.

In Table 3.10, the percentage p-value under 5% is reported for the MUTA-30 data set. The average p-value is 100% for LocBra. Hence, there is a strong correlation between the ranking of LocBra and the optimal ranking. Moreover, GNCCP has scored 70%, higher than SBPBeam and IPFP (both 50%). GNCCP should reject the null hypothesis in 70% of the cases. Regarding the correlation distribution shown in Figure 3.21 chart (a), all the values obtained by LocBra are uniformly in bin 1. This means that LocBra ranking is perfectly correlated with the optimal ranking. GNCCP comes in the second place but the correlation values are distributed in a wide range between [0.2; 1]. IPFP shows poor correlation with the optimal and has negative value (-0.2) for one instance.

These experiments have empirically demonstrated that LocBra ranking is strongly correlated with the optimal ranking. But more importantly, we could show that the type of heuristics has a strong impact on the the ranking and so on the kNN methods based on GED heuristics. and σ the complexity of the dissimilarity function. In a learning-free context, we cannot reduce the factor M (the size of the database). Many researchers decided then to reduce σ thanks to GED heuristics. However, non of the previous work tries to reduce σ considering that the GED solver is involved in a kNN problem. In other words, to the best of our knowledge, all the existing works compared the query graph to each graph in the training set separately without considering the entire problem (GED + kNN problems). When using a kNN method based on a line search, the 

MGED problem

The MGED can be seen as a merge of the two problems formulated in Problems 11(kNN) and 5(GED). First, let us recall that Γ(G,

G j ) = {λ 1 G,Gj , λ 2 G,Gj , • • • , λ b G,Gj
} is the set of all possible matchings between G ∈ T eS and G j ∈ T rS. The number of possible matchings b is exponential with respect to the number of vertices in G and G j .

Now, let L = {(t 1 , Γ(G, G 1 )), • • • , (t j , Γ(G, G j )), • • • , (t M , Γ(G, G M ))
} be the set of all possible matchings between G and each graph G j ∈ T rS where t j is the class of the graph G j . The set L can be expanded by developing the Γ sets.

L = {(t 1 , λ 1 G,G1 ), (t 1 , λ 2 G,G1 ), • • • , (t 1 , λ b G,G1 ), • • • , t j , λ 1 G,Gj ), (t j , λ 2 G,Gj ), • • • , (t j , λ q G,Gj ), • • • , (t M , λ 1 G,G M ), (t M , λ 2 G,G M ), • • • , (t M , λ r G,G M )}.
The MGED problem can be dened as follows:

Problem 12. Multi Graph Edit Distance Problem (MGED)

(G * , t * ) = arg min (tj ,λ G,G j )∈L o∈λ G,G j c(o) (3.34)
The former Problem 12(MGED) can be seen as searching the minimum matching (or edit path) among all the matchings between one query graph G and a graph collection. The MGED problem can be extended to nd the k minimum matchings by using the sort function. The kMGED problem can be dened as follows:

Problem 13. k-Multi Graph Edit Distance Problem (kMGED)

K = arg sort (tj ,λ G,G j ) ∈L     o∈λ G,G j c(o)   , k   (3.35)
where sort is a function that performs an ascending sort. The kMGED problem expresses the search of the k matchings with the cheapest costs. K can contain dierent matchings that belong to a single graph G j . To respect the kNN problem each matching λ G,Gj ∈ K should belong to dierent graphs (λ 1 G,Gj and λ 2 G,Gj are forbidden). In other words, G j should appear only once in K. This is modeled by the Constraint 3.36b. Problem 14. Constrained k-Multi Graph Edit Distance Problem (CkMGED)

K = arg sort (tj ,λ G,G j )∈L     o∈λ G,G j c(o)   , k   (3.36a) Subject to ∃!G j ∈ K ∀(t j , λ G,Gj ) ∈ K (3.36b)
where K is the set of graphs along with their class labels with (G j , t j ) ∈ T rS. Constraint 3.36b ensures that the pair (G j , t j ) cannot appear twice. That is, only the best feasible solutions of each GED computation (G and G j ) is selected and thus (G j , t j ) appears only once. In the worst case, the time complexity of solving the problem of kMGED is exponential in the number of vertices of the graphs G and G j multiplied by the number of graphs in T rS. In other words, the complexity at the worst case equals to the complexity of the kNN problem O(M σ). Apparently, we did not achieve our goal to reduce the kNN complexity thanks to the MGED problem. It is true for the complexity at the worst case. However, experimentally, we can expect that an heuristic algorithm takes advantage of the MGED problem.

3.2.3.2.3 One-tree depth rst algorithm to solve the kMGED problem Now, we present a rst algorithm to solve the kMGED problem dened in Problem 14(CkMGED). As a nal application, the algorithm classies a query graph G by searching within a single search space.

Algorithm 1 depicts the main steps of the proposed algorithm, called One-Tree-kMGED. Lines 1 to 3 correspond to the initialization step. The GED solver is called for the comparison between G q and G j (Line 5). The obtained distance d is then added to the list Dmin at the location k + 1 (line 7). The list of distances is sorted in ascending order while keeping track of IDs (Line 8). In Line 9, the upper bound UB is updated and is given the value of the k th element saved in the distance list Dmin (i.e., Dmin[k]). After all the aforementioned steps, the algorithm One-Tree-kMGED returns the graphs along with their associated class label (G

IDmin[k] , c IDmin[k] ).
Algorithm 1 One-Tree-kMGED Algorithm Input: The set T rS: {(G 1 , t 1 ), • • • , (G M , c M )}, the unknown query graph G q and the parameter k Output: The k nearest graphs to G q from the set T rS with their associated class

1: Dmin = [+∞, • • • , +∞] A distance of k + 1 elements 2: IDmin = [+∞, • • • , +∞] A graph ID list 3: U B = +∞
The initial upper bound 4: for j = 1 to M do 5:

d = GED (G q ,G j ,U B) 6: Dmin[k + 1] = d 7: IDmin[k + 1] = j 8:
(IDmin, Dmin) = sort Dmin (I Dmin, Dmin) sort in an ascending order 9:

U B = Dmin[k] 10: end for 11: Return (G IDmin[1] , t IDmin[1] ), • • • , (G IDmin[k] , t IDmin[k] )
3.2.3.2.4 Used GED solver In line 5 of Algorithm 1, any GED solver that takes an upper bound as an input is suitable. We propose to use the depth rst algorithm DF in [Abu-Aisheh et al., 2015b] (see Section 3.1). It is a branch and bound method and it has the ability to prune the search space thanks to its upper and lower bounds. The solution space is organized as a search tree. The exploration of the search tree is performed in a depth-rst way. Bounding is performed when nding a leaf node with a cost smaller than U B. Pruning is performed by cutting nodes with a larger cost than U B. A node p has a cost lb(p) = g(p) + h(p) where g(p) is the cost of the partial edit path and h(p) is an estimation of the future cost to obtain a complete edit path. If lb(p) ≥ U B then the branch is discarded. In order to simply illustrate One-Tree-kMGED, Figure 3.23 highlights its idea for k = 1. Given a query graph G q and a learning database T rS, the idea is to consider each search tree S qj of the GED(G q ,G j ) as a sub-tree of the global tree dedicated to the query G q . The global tree is referred to as T q . For instance, in Figure 3.23, one can see that the rst UB found while exploring the sub-tree S q1 of GED(G q ,G 1 ) is 2. UB is then used as an initial UB of the sub-tree S q2 of GED(G q ,G 2 ) and so on. Such an operation helps in pruning the sub-trees as fast as possible while searching for the nearest neighbor of G q . Figure 3.23: one-Tree-kMGED when k = 1. Given a query graph G q and graphs in the training set, the problems GED(G q ,G 1 ), GED(G q ,G 2 ) and GED(G q ,G 3 ) are considered as sub-trees of the global tree (T q ). The sub-tree of GED(G q ,G j ) is pruned thanks to UB that is found via GED(G q ,G 1 ).

Complexity and time constraint

In the worst case, the time complexity of one-Tree-kMGED is exponential in the number of vertices of the involved graphs. This case occurs when the rst UB does not help in pruning the rest of the search tree and thus all the T rS subtrees need to be explored. One should notice that the complexity in the worst case equals to the complexity of the line search method.

Conceptually speaking, a line search based on DF and One-Tree-kMGED provide the same neighbors. This statement is true under one assumption that is the time constraint to solve each graph comparison is innite. Another way to view this assumption is to say that the time limit is never reached by the solvers and the solutions are optimal. On the other hand, One-Tree-kMGED does not output the distance of each graph pair (G q ,G j ). The GED computation of each (G q ,G j ) is stopped as soon as the solver proved that no better solutions than the global upper bound U B could be found. In such a case, the U B value is returned as an output of the given graph comparison. The only distances that are guaranteed to be outputted are the GED values of the kNN. The global U B could accelerate the classication time and maybe improve the classication rate.

Theoretical discussion around the impacts of the parameters As depicted

in Algorithm 1, one-Tree-kMGED has 3 parameters: the test graph G q , the training set TrS and the parameter k for the selection of the nearest neighbors. In this section, a discussion about the impact of Trs and k is provided.

3.2.3.2.6.1 Parameter k Regarding One-Tree-kMGED, having a big value of k, could have a big impact not only on the classication rate but also on the execution time. The reason is that, the upper bound will be the k th one in the {d min } list and not the best upper bound found so far.

The k th upper bound is higher than the rst upper bound. Consequently, the k th upper bound is likely less capable of cutting the search tree. Such a fact could slow down the algorithm depending on the diculty of the classication problems.

3.2.3.2.6.2 Ordering the graphs in the training set In Algorithm 1, the graphs in TrS were supposed to be already ordered. However, the question arises: Which order of training graphs should be taken into account in order to prune the search tree as soon as possible? We propose 3 dierent orderings:

1. RO: T rS is randomly shued.

2. CACO: T rS samples are ordered by class.

3. SGPCO: T rS is organized by batches containing one graph of each class.

Deadlock 7: What is the impact of GED heuristics in a classication context ?

We aim at answering the question whether the resulting sub-optimal graph edit distances remain suciently accurate for classication tasks. On its own, a kNN classier does not aim at maximizing a classication rate. A kNN classier relies on a dissimilarity function that drives its objective. In our context, the dissimilarity function is a GED method. All the GED methods aim at minimizing the sum of the edit operations costs. The cost is the piece of information that link the GED problem to the classication problem. From this statement, two sub questions can arise. 1) Are heuristics suciently accurate for classication tasks when cost functions are chosen based on expert knowledge? 2) Are heuristics suciently accurate for classication tasks when cost functions are learned to maximize a classication rate?

To answer these questions, classication experiments must be performed. Heuristics should be compared with exact methods.

3.2.3.3.1 1) Are heuristics suciently accurate for classication tasks when cost functions are chosen based on expert knowledge? This paragraph is organized as follows: First the data sets are presented. Then the way of computing the cost functions is described. Classication rate are summarized and an analysis is given.

Table 3.11 synthesizes the characteristics of each of the selected data sets in terms of the number of graphs in both train and test sets and the number of classes. The data sets are selected because the computation of optimal solutions is possible.

The cost functions c(•) for each data set are summed up in Table 3.12. These cost functions are not chosen randomly. Solving the GED with these cost functions correspond to solve the Maximum Common Subgraph (Problem 2).

The selected classier is a 1NN classier which has the advantage of being parameter free.

Classication results are presented in the distances found by heuristic methods are equal to, or larger than, the optimal distances. Such distances are feasible solutions and represent upper bounds of the GED problem. The correlation between optimal and suboptimal methods can be seen in Figure 3.24. These scatter plots give a visual representation of the accuracy of the two heuristics BS-10 (BeamSearch) and BP (LSAPbased) on the LETTER-HIGH data set. The optimal solution were computed by the method called JH. Based on the scatter plots given in Figure 3.24, we nd that BS approximates small distance values accurately, i.e. all small suboptimal distances are equal to the optimal distances.

On the other hand, large distance values are overestimated quite strongly. Based on the fact that graphs within the same class usually have a smaller distance than graphs belonging to two dierent classes. This means that the suboptimality of BS mainly increases interclass distances, while intraclass distances are not strongly aected. A similar conclusion can be drawn for BP. Many of the small distance values are not overestimated, while higher distance values are increased due to the suboptimal nature of the approach. Moreover, for a nearest-neighbor classier, small distances have more inuence on the decision than large distances. Hence no serious deterioration of the classication accuracy occurs when heuristic algorithms are used instead of an exact method.

Method

We can conclude that on the tested data sets, the classication accuracy of the 1NN classier is not negatively aected by using the suboptimal distances. This is due to the fact that most of the overestimated distances belong to inter-class pairs of graphs, while intra-class distances are not strongly aected. Obviously, intraclass distances are of much higher importance for a distance based classier than inter-class distances. In other words, through the approximation of the edit distances, the graphs are rearranged with respect to each other such that a better classication becomes possible. Graphs which belong to the same class (according to the ground truth) often remain near, while graphs from dierent classes are pulled apart from each other. Obviously, if the approximation is too inaccurate, the similarity measure and the underlying classier will be unfavorably disturbed. Probably, the concerned data sets are not dicult enough to put forward the impact of heuristics in a classication context. A distance of zero is likely to appear and these distances are well computed by heuristics. Extending the number of k nearest neighbors could be a way to see the dierences between exact and heuristic methods. The computation of distances between farther neighbors could be more challenging for heuristics.

BP(left) and BS-10(right) on the LETTER dataset. Table 3.14 synthesizes the characteristics of each of the selected data sets in terms of the number of graphs in both train and test sets, the average and maximum number of vertices and edges and the attributes on both of them.

Each data set has specic edit cost functions that dene how the insertion, deletion and substitution are achieved [Riesen and Bunke, 2010b]. In most of the datasets, two non-negative meta parameters are associated: (τ vertex ∈ R and τ edge ∈ R) where τ vertex denotes a vertex deletion or insertion costs whereas τ edge denotes an edge deletion or insertion costs. A third meta parameter α ∈ [0, 1] is integrated to control whether the edit operation cost on the vertices or on the edges is more important. Table 3.15 reports the cost functions of each of the included data sets as well [2016]

In Table 3.16, the results achieved on all the datasets are presented. Note that the computation time corresponds to the average time needed per dissimilarity in milliseconds (ms).

The results show that on all the datasets, one-Tree-kMGED was always faster than the classical DF approach. It also improved the classication rate of DF on both Protein and Muta. one-Tree-kMGED could improve UB while moving from one comparison to another. As a consequence, it pruned unfruitful parts of the global search tree and found smaller distances. As mentioned in the previous Paragraph 3.2.3.3.3, a better minimization of the GED or the MGED problems does not always lead to a higher classication rate even when the cost function is optimized to improve a When comparing one-Tree-kMGED to BP, one can see that one-Tree-kMGED was 4.2 times faster (on GREC), 3.6 times faster (on Muta) and 9.5 times faster (on WebPage). On the other hand, on Fingerprint and House-Hotel, the speed results of the two methods were quite similar. This is due to the small number of graphs in these datasets and thus the advantage of using prior UB in one-Tree-kMGED cannot be fully revealed. Moreover, on House-Hotel, BS-1 was the fastest. House-Hotel has easy graphs to classify (with only 2 classes) and that is why all the methods obtained 98.5% as a classication rate. Another interesting remark is that one-Tree-kMGED succeeded in improving the classication rate on Muta. However, on Protein, it was less accurate than BP. Despite the fact that BS-1 was faster than one-Tree-kMGED on Protein, the accuracy of BS-1 was lower. As a general conclusion, one-Tree-kMGED was the fastest algorithm, except on Protein and CMU where FBP won. This point is explained by the fact that the number of train graphs in both of them was quite small so that the interest of merging all sub-problems into a unique one is not useful, see Table 3.14.

The results of Table 3.16 conrms that a cost function originally optimized for the method called BP can be applied to dierent heuristics. Results obtained by BP can also be improved thanks to an eective GED solver or a MGED algorithm.

Summary

During the thesis of Mostafa Darwiche, the ranking experiment showed that the type of heuristics has a great impact on the order of the graphs returned by a kNN method [Darwiche et al., 2018, in pressb]. During the PhD of Zeina Abu-aisheh, a new problem referred to as multi graph edit distance (MGED) was dened. The MGED can be seen as searching the k minimum matchings (or edit paths) among all the matchings between one query graph G and a graph collection D. Under some constraints, the problem of nding kNN falls within the MGED problem [Abu-Aisheh et al., 2017a]. A classication task was led to evaluate GED solvers and the MGED solver. In this test, the cost function is of rst interest. It has been showed that cost functions, optimized for a given GED method, could be transferred with success to dierent GED methods.

Finally, a comparison between exact and heuristic methods in a classication context has shown that the classication accuracy of the 1NN classier is not negatively aected by suboptimal distances. However, it cannot be generalized unconditionally since if the approximation is too inaccurate, the similarity measure and the underlying classier will be unfavorably disturbed. In the same vein, we must take caution because conclusions that are drawn for 1NN might be dierent if the number of neighbors gets larger. The computation of distances between farther neighbors could be more challenging for heuristics. This section is split into two parts graph matching (Section 4.1) and graph classication (Section 4.2). Each part is then broken down in three steps. First, the state of the art is summed up.

Second, deadlocks and open problems are expressed. Finally, contributions are presented. The section is focused on machine learning techniques. An introduction that presents the foundations of the learning theory is presented in Appendix B. References about our contributions are given in the summary sections (Section 4.1.4 and Section 4.2.4). Note that the state of the arts do not include our work. This is intentionally done to highlight how our contributions help to release the deadlocks.

Graph matching

State of the art of learning graph matching

The learning graph matching problem can be framed as the minimization of an error rate on the number of correctly matched graph components. This can be seen as minimizing the average Hamming distance between ground-truth's correspondences and the computer generated correspondences on a data set of graph pairs. The training set is then dened as

T rS = {((G 1 , G 2 ) k , y gt k )} M k=1 .
(G 1 , G 2 ) is a graph pair and y gt is the ground-truth's correspondences. A computer generated matching that is considered as a prediction is written y from the machine learning viewpoint.

A graph matching solution is dened as a subset of possible correspondences y ⊂ l(y, y gt , W )

V 1 × V 2 or y ⊂ V 1 × V 2
(4.1)
Where Γ is the set of all possible matchings between G 1 and G 2 . l is the loss function and a possible choice is the Hamming distance l = y gt -y(W ) 1 . W are invariants (trainable parameters) over the data set T rS and y are variables of the graph matching problem.

Inside this problem, many learning problems arise. Node/edge attributes can be learned. This procedure is assimilated to a feature extraction step. Another area where learning algorithms can be applied is the learning of node/edge (di)ssimilarity function. Finally, the graph matching algorithm itself can be improved or replaced by a machine learning algorithm. In Figure 4.1, an overview of these three concepts is provided. The literature about graph matching is decomposed into two parts: shallow and deep methods. Deep methods refers to models composed of a hierarchy of sub-models (representations). "Deep" architectures take advantages of properties of the data such as compositionality. That is data can be represented by a composition of (simple) models.

There are many dierent methods for learning graph matching but the general learning scheme is depicted in Figure 4.2. The ML method takes a graph pair as an input and output matching that depends on parameters W. The predicted matching is compared to the ground-truth and errors are given back to the ML method to adapt its parameters. Leordeanu et al. [Leordeanu andHebert, 2009, Leordeanu et al., 2012] used the same strategy than [START_REF] Tibério | Learning graph matching[END_REF]. They parametrized functions s V and s E with weight vectors. They showed for the rst time how to perform parameter learning in an unsupervised fashion, that is when no correct correspondences between graphs are given during training. The assumption is that the expected values of the second order scores s(ij, kl) do not depend on the particular assignments ij or kl, but only on whether these assignments are correct or not. In average over many matchings, the pairs of correct assignments are expected to agree in appearance and so E[s(ij, kl)] should be high. The leading eigenvector (v ∈ R n1.n2 ) of the anity matrix K ∈ R n1.n2×n1.n2 (Model SGMIQP) should follow the same principle. In average over many matchings, all correct assignments ik must have high values v ik and wrong assignments (jl) should have low value v jl . In other words, authors assume that eigenvector values are higher on average for correct assignments than for wrong ones. Then the objective is to maximize the correlation between v and its binary version b(v) (that is, the binary solution returned by the matching algorithm):

max W M i=1 transpose(v (i) W )b(v (i)
W ). Note that the construction of K depends on parameters W through s V and s E functions so the leading eigenvector v depends on W too. So the notation v W appears.

They showed empirically that unsupervised learning is comparable in eciency and quality with the supervised one, while avoiding the tedious manual labeling of ground truth correspondences.

They also veried experimentally that the unsupervised learning method can improve the performance of several state-of-the art graph matching algorithms. This statement was observed on graphs built from images (CMU-House/ Hotel, VOC-Cars/Motorbikes).

In [START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF], the paper focused on a Frank-Wolfe like method called IPFP but also a learning procedure is activated. They used the supervised version of the graph matching learning method from [START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF].

On specic data sets, learning was eective, improving the performance by more than 15% on average, for all learning-free methods.

The work of [START_REF] Torresani | Feature correspondence via graph matching: Models and global optimization[END_REF] formulated the matching task as an energy minimization problem by dening a complex objective function of the appearance and the spatial arrangement of the features. The objective function is parametrized by 4 weights to be learned. This approach can be viewed as adopting 4-dimensional s V (s V : R 4 × R 4 → R) and s E functions for measuring appearance dissimilarity, geometric compatibility, and occlusion likelihood. As presented in Section 3.1, the paper [START_REF] Torresani | Feature correspondence via graph matching: Models and global optimization[END_REF] is mainly focused on solving the graph matching problem formulated as a CRF problem. The method is called DD and is based on dual decomposition. However, they used the method of Liu et al. [START_REF] Liu | Learning physics-based motion style with nonlinear inverse optimization[END_REF] to learn the parameter values for the graph matching model from examples. They applied Nonlinear Inverse Optimization [START_REF] Liu | Learning physics-based motion style with nonlinear inverse optimization[END_REF] (NIO) to learn non-negative parameters. They used DD within NIO to optimize the learning objective.

In the next bunch of papers, the learning techniques are dedicated to the graph edit distance and so a special attention is given to deletion and insertion costs. In [START_REF] Cortés | Learning graph-matching edit-costs based on the optimality of the oracle's node correspondences[END_REF], a method for learning the real numbers for the insertion c( → k) and deletion c(i → ) costs on nodes and edges is proposed. An extension to substitution costs is presented in [START_REF] Cortés | Learning graph matching substitution weights based on the ground truth node correspondence[END_REF]. The training set is composed of M observations. Each observation is composed of a pair of graphs (G 1 , G 2 ) i and also the ground truth correspondence y gt . The computer-generated correspondence y depends on the costs K , ) are scalar values to be learned. The loss function is expressed as 

V ∈ R and K E ∈ R. K V = d V ( , k) = d V (i, ) and K E = d E ( , kl) = d E (ij
l(K V , K E ) = 1 M (G1,G2),y gt ∈T rS l 0 (G 1 , G 2 , y gt , y, K V , K E ) + λΩ(K V , K E )(4.5) l 0 (G 1 , G 2 , y gt , y, K V , K E ) = (d(G 1 , G 2 , y, K V , K E ) -d(G 1 , G 2 , y gt , K V , K E )) 2 (4.6) Ω(K V , K E ) = || [K V , K E ] || 2 2 (4.7)
The loss function l is composed of a data-oriented function l 0 and a regularization term. Please see Appendix B for more details about these terms. l 0 gauges how far the computer generated matching is from the ground-truth matching. Clearly, using this loss function, authors assume that two correspondences that are close to each other (small Hamming distance) tend to achieve similar costs. Although this relation is not true for all graphs and correspondences, the empirical evaluation tends to show that it is true for most of the graphs and correspondences in the considered datasets. Ω is the quadratic regularization term based on the inner product of the weights to be optimized in order to prevent overtting and undertting (see Appendix B). The loss function l is minimized by the NelderMead method also called downhill simplex method [START_REF] Nelder | A simplex method for function minimization[END_REF] that is a non-linear optimization heuristic.

All the previous works aimed at learning common weights shared among all the edges' and nodes.

Weights are global over a graph pair and not local to a given pair of nodes or edges. In other words with an analogy to probability, it could be more appealing to compute the conditional probability P r(y gt |node, parameters) rather than P r(y gt |parameters)

To overcome this problem, the discriminative weight formulation was introduced by [START_REF] Cho | Learning graphs to match[END_REF] and it can assign dierent parameters for individual node and edge matching as follows :

s(G 1 , G 2 , y, β) = y ik =1 β i .s V (i, k) + y ik =1 y jl =1 β ij .s E (ij, kl) (4.8)
β is in this case a vector of parameters indexed by the edge/node matching. Equation 4.8 can be used to parametrize a graph matching problem. The Figure 4.3 depicts this mechanism. The learning problem is to learn the parameters to t a given objective specied by the loss function.

The learning problem turns into the minimization of the Hamming distance measuring the quality of a predicted matching y against its ground truth y gt . The Hamming distance y gt -y 1 is not continuous anywhere and makes the problem not convex. To leverage this diculty, the normalized Hamming distance is favored and it can be rewritten as follows:

l(y, y gt ) = 1 - 1 y 2 F y.y gt (4.9)
Finally, the learning problem is minimized by a constraint quadratic programming method [START_REF] Joachims | Cutting-plane training of structural svms[END_REF]. The discriminative weight formulation can be seen as a generalization of previous methods [START_REF] Tibério | Learning graph matching[END_REF][START_REF] Torresani | Feature correspondence via graph matching: Models and global optimization[END_REF]. The paper [START_REF] Cho | Learning graphs to match[END_REF] goes beyond the graph matching problem because the authors proposed also a way to learn/generate the graph G 1 . The features and the structure of G 1 are involved in the optimization procedure. The similarity function is the dot product of two attributes:

s V (i, k) = s V (µ 1 (i), µ 2 (k)) = s V (a i , a k ) = a T i .a k
Where a i is a numeric feature vector of node i. Then, the attributes (a i ) of the graph G 1 can be factored out and combined with the weights to be learned:

s(G * 1 , G 2 , y, β) = y ik =1 (β i a i ) T .a k + y ik =1 y jl =1 (β ij a ij ) T .a kl s(G 2 , y, W ) = y ik =1 (W i ) T .a k + y ik =1 y jl =1 (W ij ) T .a kl (4.10)
is an element-wise product. The parameters to be learned are β i , a i , β ij and a ij . They are combined in the matrix W to cope with the multidimensional nature of graph attributes. The graph G * 1 is a fully-connected graph where node and edge features are learned.

In [START_REF] Riesen | Predicting the correctness of node assignments in bipartite graph matching[END_REF], a completely dierent framework was designed. The main contribution is the prediction of whether two nodes match or not thanks to conventional machine learning tools. The node assignment is represented by a vector of 24 features. These numerical features are extracted from the node-to-node cost matrix C which was used for the original matching process (called BP algorithm). Then, using the assignments derived from exact graph edit distance computation as the ground truth, each computed node assignment is labeled correct or incorrect. This set of labeled assignments is used to train an SVM endowed with a Gaussian kernel to classify the assignments computed by the approximation as correct or incorrect. This method does not require solving a graph matching problem to predict pairwise node assignment however no guarantee is given to output a feasible solution. The prediction does not rely on a graph matching method.

Deep methods

A part from the graph matching community, A. Nowak et al in [Nowak et al., 2017, Nowak et al., 2017] presented a note on learning algorithms for the QAP. They studied data driven approximations to solve it. Especially, since the QAP can be modelled by a graph, they focused on a Graph Neural Network (GNN) model [START_REF] Scarselli | The graph neural network model[END_REF]]. An introduction and a review about GNN methods are presented in Appendix C. A graph is processed by a set of units. Each unit corresponds to a node of the graph. Units are linked according to the input graph connectivity. This neural network alternates between applying linear combinations of local graph operators, such as the graph Laplacian, and node-wise non-linearities, and has the ability to model some forms of non-linear message passing from a layer to another. This GNN model can answer both graph regression 1 f (G) ∈ R d and node regression problems f (G, n) ∈ R d . f (G, n) maps a graph and one of its nodes into an d-dimensional Euclidean space. An application to subgraph isomorhpism is prensented in [START_REF] Scarselli | The graph neural network model[END_REF]. Given a subgraph S in a larger graph G, the function f (G, n) that has to be learned is such that f (G i , n i,j ) = 1 if the node n i,j belongs to a subgraph of G i , which is isomorphic to S, and, f (G i , n i,j ) = -1 otherwise. The presented results are not good and cannot be compared with those achievable by other specic methods for subgraph isomorhpism, which are faster and more accurate. In [Nowak et al., 2017], a simpler GNN is presented. Note Clearly, the siamese GNN produces node embeddings. Those embeddings are used to predict a matching as follows. They rst computed the outer product Z = E 1 E T 2 , that they then mapped to a stochastic matrix by taking the softmax along each row/column (Sinkhorn-Knopp algorithm 2 ). Let us assume that the results is a bi-stochastic matrix Z ∈ R N ×N represents node-to-node matching similarity. Finally, they used standard cross-entropy loss to predict the corresponding permutation index. The loss function can be written as follows :

l = - (G1,G2),y gt ∈T rS |G1| i=0 |G2| k=0 Y gt i,k log Z i,k
where Y gt is the ground-truth matching for the graph pair G 1 , G 2 . Figure 4.5 depicts the overall architecture.

To build the data set T rS, they considered G 1 to be a random Erdos-Renyi graph. The graph G 2 is a small perturbation of G 1 so the matching can be trivially deduced as the Identity matrix I ∈ {0, 1} N ×N . All graphs have 50 nodes and the density is around 0.2. The GNN method is out 2 A simple iterative method to approach the double stochastic matrix is to alternately rescale all rows and all columns of E 1 .E T 2 to sum to 1 The literature is organized with greater details according to the following criteria:

• The minimizer of the learning problem: This criterion corresponds to the learning algorithm used to minimize the loss function.

• Graph matching solver: The graph matching solver involved. Some approaches do not used any graph matching solver.

• The type of loss to be minimized.

• The parameterization level: Where are trainable parameters introduced? Are they global to the whole graph or local to nodes and edges?

• Distance or Feature Learning: Does the method learn node/edge distance? Or are node and edge features learned to better match?

• Are node/edge insertion and deletion considered explicitly?

• Supervised or unsupervised learning: Do the data set need to be labeled or ground-truthed and what kind of ground-truth is needed.

• Attribute types: Is a method benchmarked on richly attributed graphs (node/edge labelled with numeric vector, symbolic value, ...)?

• Scalability/Graph size: What is the graph size of the graphs involved in the experiments?

A literature summary is tabled in Table 4.1. Focusing on the learning problem, it is often solved by constraint quadratic programming or by gradient descent algorithms. Recently, the later is gaining importance thanks to deep neural networks and consequently the need to compute gradients eciently is increasing.

Focusing on the GM module, the GM solvers are based on the QAP or the MAP-inference problems. All models are based on quadratic programming. However, the instances are often solved in the relaxed domain. At the opposite, some methods do not involve any matching solver. methods seem well evaluated, the impact on the convergence speed of the learning algorithm is not discussed. Running time are rarely reported in the experiments so it is hard to draw conclusion about it. However, in the deep learning architecture of [START_REF] Zanr | Deep learning of graph matching[END_REF], for graphs with 1000 nodes, a complete forward and backward pass runs in roughly 2 seconds on a 3.2 Ghz Intel Xeon machine, with Titan X Pascal GPU.

Matching methods

Dataset

Finally, the amount of data to do the training is not really discussed. In [START_REF] Cho | Learning graphs to match[END_REF], for images of identical objects, such as these House/Hotel sequences, only a few number of images are sucient for the method to learn the model graph and its features.

Open problems

In some applications for instance Computer Aided Drawing, the graph G 2 can be a perfect model of a symbol and G 1 a noisy graph. However, in realistic situations, the source of information cannot be accessed directly (i.e. there is no ideal model graph available). So, the model graph can only be sampled from the source (the data set). Although it is useful to learn a matching function for two graphs of a certain class, a more appealing goal would be to learn a graph model to match, which provides an optimal matching to all instances of the class. Such a learned graph would better model the inherent structure in the target class, thus resulting in better performance for matching. So the new question is merging graph learning and graph matching: How to obtain a graph model for matching ? This question that has been discussed in [Cho et al., 2013, Zanr and[START_REF] Zanr | Deep learning of graph matching[END_REF]. Another way of thinking is to explicitly learn insertion/deletions costs to cope with noisy model graphs. If a model graph G 2 holds unnecessary vertices then their insertion costs should be small. This was not investigated yet. Other interesting questions are still opened about the accuracy of predicted matchings. Is it possible to parametrize an heuristic method to reach solutions close the optimal solutions? Can we learn to approximate an exact method? Can we speed up an heuristic method thanks to trained cost function? Does a trained cost function makes instances easier to solve? These questions lead to the following deadlocks:

1. Deadlock 8 : How to deal at a ne level with insertion and deletion costs? Can we model noisy referent graph thanks to these costs.

2. Deadlock 9 : Can an heuristic output solutions closer to optimality thanks to machine learning?

These two deadlocks will be discussed in the next section. In addition, from the literature review, wider problems appear:

1. How to deal with symbolic attributes? Are one-hot vector a possible solution?

2. What is the amount of data required to do the learning?

3. Benchmarking, common data sets and evaluation protocol. These questions and remarks will be developed in the perspective section (Section 5) of this manuscript. Can insertion/deletions cost function be learned to cope with noisy sample graphs? How to parametrize the graph edit distance to learn node/edge dependent insertion/deletion costs? Starting from the disrcrimitative weight formulation proposed in [START_REF] Cho | Learning graphs to match[END_REF], we proposed to extend it to take into account also insertion/deletions costs. Finally, in our proposal, the learning problem is not solved by constraint quadratic programming method like in [START_REF] Cho | Learning graphs to match[END_REF] but by gradient descent.

Contributions

Details

Let G 1 = (V 1 ,E 1 ,µ 1 ,ζ 1 ) and G 2 = (V 2 ,E 2 ,µ 2 ,ζ 2 ) be two graphs, with |V 1 | = n 1 and |V 2 | = n 2 .
To apply removal or insertion operations on nodes, node sets are augmented by dummy elements. The removal of each node i ∈ V 1 is modeled as a mapping i → 2,i where 2,i is the dummy element that is associated with i. As a consequence, the set V 2 is increased by

n 1 dummy elements 2 to form a new set V 2 = V 2 ∪ 2 . The node set V 1 is increased similarly by n 2 dummy elements 1 to form V 1 = V 1 ∪ 1 . Note that V 1 and V 2 have the same cardinality : N = n 1 + n 2 .
Each element of the two graphs can be edited only once. Now, we explain how we parameterize Equation 4.2. Let π(k) = i denote an assignment of node k ∈ G 2 to node i ∈ G 1 , i.e. y ik = 1. A joint feature map Φ(G 1 ; G 2 ; y) is dened by aligning the relevant dissimilarity values of Equation 3.2 into a vector form as:

Φ(G 1 , G 2 , y) = [• • • , d V (π(k), k), • • • , d E ((π(k), π(l)), (k, l)), • • • ].
By introducing a real-valued vector β to weight all elements of this feature map, we obtain a discriminative objective function:

d(G 1 , G 2 , y, β) =β T Φ(G 1 , G 2 , y) (4.12a) = • • • + β k • d V (π(k), k)+ + β kl • d E ((π(k), π(l)), (k, l)) + • • • (4.12b)
where β is a weight vector that encodes the importance of node and edge dissimilarity values. In the case of uniform weights, i.e. β = 1, all elements of vector β are 1, and Equation 4.12a is reduced to the conventional graph matching score function of Equation 3. Two extra components are added to parametrize the node and edge deletion costs, respectively.

2: d(G 1 , G 2 , y) = d(G 1 , G 2 , y, 1). An
y * = argmin y d(G 1 , G 2 , y, β) (4.13a) subject to y ∈ {0, 1} N.N (4.13b) N i=1 y i,k = 1 ∀k ∈ [1, • • • , N ] (4.13c) N k=1 y i,k = 1 ∀i ∈ [1, • • • , N ]
A shared weight is associated with all node deletion costs. The same strategy is applied for edge deletions.

The value of the objective function remains the same. Substitutions and insertions have individual weights. Deletions share a mutual parameter. In Figure 4.8, G 1 holds 5 graph components and in Figure 4.9, G 1 holds 7 graph components. However, in both gures Φ(•) and β are vectors of size 5 that only depend on model graph G 2 . Now that we have a parametrized version of the error-correcting graph matching problem. We can use it in a learning scheme that it explained in the next section (Section 4.1.3.2).

Deadlock 9:

Can an heuristic output solutions closer to optimality thanks to machine learning? 4.1.3.2.1 Motivation Heuristics are known to be fast (polynomial time) but their solutions can be far from the optimal solutions. The key idea is to take advantage of fast heuristics but to use machine learning to increase their eectiveness. Eectiveness is to be understood in terms of matching accuracy.

4.1.3.2.2 Details Starting, from the parametrized graph edit distance presented in Model 7(PGED), we use it to predict the optimal matchings between input graphs G and a xed model graph G m . Optimal matchings are computed thanks to an exact algorithm (F2 in our case).

Optimal matchings are the target values of the learning algorithm so they are denoted by y gt . Therefore, T rS = {(G k , G m ), y gt i } M i=1 and we want to predict y. From the viewpoint of machine learning this problem falls into a structured regression problem also called structured prediction.

The term "structured" refers to the fact that the output of the predictor is not a simple scalar value but a structured output (see Appendix B). Thanks to the joint-feature map Φ dened in the previous section, we can write structured prediction problem :

min β,y (G,Gm),y gt ∈T rS l(G, y gt , G m , y, β) (4.14) l = 1 2 (Φ(G, G m , y gt ) -Φ(G, G m , y)) 2 (4.15)
The learning problem is a minimization problem where appears both variables β and y. Both are involved into the minimization of an empirical risk guided by the loss function l. However, β is wanted to be invariant across the whole data set while y is computed for every input graph.

The goal is to produce a feature map Φ(G, G m , y) that is close to the ground-truth feature map Φ(G, G m , y gt ).

4.1.3.2.2.1 Learning algorithm One of the easiest ways to understand algorithms for general structured prediction is the structured perceptron of Collins [START_REF] Collins | Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms[END_REF]. This algorithm combines the perceptron algorithm for learning linear regressor with an inference algorithm (classically the Viterbi algorithm when used on sequence data) and can be described abstractly as follows. First dene a "joint feature function" Φ(x, y) that maps a training sample x and a feasible solution y to a vector of length d (x and y may have any structure; d is problem-dependent, but must be xed for each model). Let GEN be a function that generates a set of feasible solutions and α is the learning rate.

• Let β be a weight vector of length d.

• For a pre-determined number of iterations:

For each sample x in the training set with true output y gt : * Find a feasible solution y * = arg min

y∈GEN (x) (β T Φ(x, y)) * Update β, from y * to y gt : β = β + α(-Φ(x, y * ) + Φ(x, y gt ))
Now, let us design our perceptron-based learning algorithm for graph matching. Algorithm 2 is a deterministic algorithm. #iter is the maximum number of iterations or also called epochs in the literature. The parametrized graph matching problem is solved in Line 9. Line 10 applies the learning rule dened in Equation 4.16. To show the time-dependence of β, we use β(i) as the weight at time i.

4.1.3.2.2.2 Learning rule. The learning rule aims at modifying β. The weights should be updated in cases of wrong predictions. The correction must take into account the amount and the sign of the committed error.

β(i + 1) = β(i) -α ∂l(G, G m , y gt ) ∂β(i) β(i + 1) = β(i) -α (Φ(y * ) -Φ(y gt )).Φ(y * ) (4.16)
This rule is obtained by deriving the the computation graph shown in Figure 4.10 with respect to parameters β. Parameters are updated in the opposite direction of the gradient. The goal is to get closer and closer to the best parameter values β min as shown in Figure 4.11. We decided to not propagate gradients through the graph matching method (inside each iteration of the solver) but we do it only once at convergence ( ∂y * ∂β ). We are aware of that shortcut. The goal was to be faster maybe at the cost of a noisier or unstable gradient. for (G, y gt ) ∈ T rS do 9:

y * ← arg min y∈Γ(G,Gm) β(i) T • Φ(G, G m , y) // Solve Model 7(PGED) 10: β(i + 1) = β(i) -α ((Φ(y * ) -Φ(y gt )).Φ(y * )) 11: i ← i +1 12:
end for 13: iter ← iter +1 14: end while 4.1.3.2.2.3 Experiments Algorithm 2 requires a GED heuristic. The method called BP [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF] has been chosen because it is fast but other could be applied. Algorithm 2 was run on CMU House data set. The model graph is the k th graph of the data set and k varies from 1 to 100. Nodes have no attributes and edges convey information about the distance between two points. Distance between two edges d E is the L1 norm between two scalar values. Such graphs represent a challenging task for the matching algorithms. Three methods are considered. 1) The matching given by an exact method (optimal matching), 2) and 3) The matching provided by BP with and without learning. For the learning free method, the matching costs were taken from the GED contest [Abu-Aisheh et al., 2017a]. Half of the data set was used for training and the other half for testing. Results of the Algorithm 2 are reported in Table 4.4 and Figure 4.13. In Figure 4.13, the average matching accuracy is depicted in function of the iterations of the algorithm. The learning scheme can improve the matching accuracy by 25% in average on the training set. Results obtained during the test phase are reported in Table 4.4, the gain is about 20%. The gain is smaller due to the diculty to generalize on unseen graphs. However, results are still far from the exact method in terms of accuracy but the heuristic remains much faster. On CMU instances, the heuristic had a running time about 80 ms when the exact method took 1500 seconds. In Figure 4.12 graph matching results are presented for a given pair of graphs at iteration 0 and iteration 200.

Finally, a main drawback of such an approach is that parameters are dependent on the model graph G m . Parameters must be found and stored for each model graphs. Another issue is that this method does not learn the features but only the local dissimilarities. The β weight vector could be extended to be a matrix in order to weight each feature component of a given node or edge. 

Summary

During the PhD of Maxime Martineau, we have worked on parametrizing the GED problem to cope with noisy reference graphs [START_REF] Raveaux | Learning graph matching with a graph-based perceptron in a classication context[END_REF]. Then, a learning scheme was designed to include the parametrized GED formulation. The goal to be achieved by the learning scheme is to approximate an exact GED solver. Now let us outline some drawbacks. Learning from examples (supervised learning) might be undesirable for N P-hard problems because (1) the performance of the model is tied to the quality of the supervised labels, (2) getting high-quality labeled data is expensive and may be infeasible for some instances, (3) one cares more about nding a competitive solution more than replicating the results of another algorithm. This last statement opens the door to a whole area of research. It will be discussed in the perspectives. As mentioned in Section 2.3, graph classiers can be categorized into two categories whether the classier operates in a vector space or in a graph space. Vector space methods are fast but eciency comes at a price: feature vector transformation leads to loss of topological information. The graph space paradigm is characterized by the fact that graphs are compared in a graph space. Whereas, this denition was straightforward in a learning free context (Section 3.2). In a machine learning context, the boundaries are less clear. So, we come up with a denition of machine learning in graph space as follows:

Denition 12. Machine learning in graph space

Machine learning techniques that rely on graph matching to extract features.

This manuscript is focused on the methods that respect this denition.

Typically, kNN, kernel machines and explicit embeddings can be compliant with Denition 12 if they rely on graph matching. Figure 4.14 draws a picture at a coarse level of machine learning techniques for graph classication. In addition, Figure 4.14 illustrates the links between techniques operating in graph space and vector space.

Let us comment this important statement thanks to Table 4.5 where the families of classication methods are categorized according to their compliance to Denition 12.

Both graph kernels and graph embeddings provide a powerful vectorial description of the underlying graphs. While graph kernels produce an implicit embedding of graphs into a Hilbert space, graph embeddings result in an explicit feature vector in a real vector space. Yet, both approaches crucially depend on similarity or dissimilarity computation on graphs. In Appendix D, a review of kernels based on graph matching is provided. In a classication context, the training set is dened 

as T rS = {(G i , t i )} M i=1 , where G i ∈ D is

No

Graph kernels [START_REF] Gärtner | A survey of kernels for structured data[END_REF]: They are similarity measures corresponding to a scalar product in a vector space that is not neces-

sary known explicitly (k :< G, G >→ R)).
Each pair of graphs is compared thanks to substructures that are computable in polynomial time. Substructures are used to compute the scalar product of the graph pair. The kernel must encode a measure of relevant similarity between the graphs while limiting the complexity of calculation and respecting the dierent properties dening a kernel.

Classiers are trained in a kernel space.

No

Graph neural networks [START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF]: They can be categorized as explicit graph embedding techniques but the function φ is not handcrafted but learned.

Yes

The graph kernel is based on GED (i.e. [Neuhaus and Bunke., 2007]. kNN or SVM classiers can be employed for instance. In such a case, graph comparisons are performed in a kernel space but the kernels rely on graph matching.

k(G 1 , G 2 ) = exp(-GED(G 1 , G 2 )))

Yes

kNN based on GED [START_REF] Riesen | Structural Pattern Recognition with Graph Edit Distance -Approximation Algorithms and Applications[END_REF].

Yes

The explicit graph embedding dened by Riesen and Bunke, 2010b]. In this case, the graph comparisons are performed in a vector space.

φ(G) = [GED(G , G 1 ), • • • , GED(G , G M )] [
However, each component of the vector is the result of a graph matching algorithm. 

Learning graph prototypes

Graph prototypes can be categorized according to the space they belong to. Prototypes that necessarily belongs to the training set are called "set graphs". At the opposite, prototypes that do not necessarily belong to the training set are called "generalized graphs". Generalized graphs can be articially generated and do not necessarily represent real objects. Each prototype family can then be rened according to the computation criteria. We distinguish between generative and discriminative prototypes. Generative prototypes model the data distribution (P r(D) or P r(D|t) ) while discriminative prototypes maximize a classication rate (equivalent to the conditional probability p(t|D)) if t is the ground-truth class label. Generative prototypes are obtained in a unsupervised manner. However, such prototypes do not take into account the inter-class distribution of learning samples. Discriminative prototypes require a supervised scheme to be computed.

The Figure 4.15 pictures out the graph prototype taxonomy.

The objectives of graph prototypes are (i) to overcome the well-known disadvantages of a (dis)similarity-based classier, i.e. the large storage requirements, the large computational effort and the sensitivity to noisy examples and (ii) to keep classication performance as high as possible. [Vapnik, 1998, Neuhaus andBunke., 2007] based methods have sparse solutions, so that predictions for new inputs depend only on the similarity/kernel function evaluated at a subset of the training data. In Appendix D, an introduction to SVM is presented to illustrate this principle.

Set prototypes SVM

In order to classify new graph using the SVM trained model, the sign of the classier f (G) is expressed in terms of the Lagrange multipliers {a n } and the kernel function. {a n ∈ R + } are parameters and they are found by solving the dual formulation of SVM (Equation D.8). According to a training set T rS = {(G i , t i )} M i=1 where t is the class label, the classication is then expressed by :

t = M i=1 a i t i k(G, G i )
t is the predicted class. Any graph for which a n = 0 will not appear in the sum in and hence plays no role in making predictions for new graphs. The remaining graphs are called support vectors and because they satisfy t. t = 1, they correspond to graphs that lie on the hyperplane of separation between classes. This property is central to the practical applicability of support vector machines.

Once the model is trained, a signicant proportion of the training data can be discarded and only the support vectors are retained.

t = i∈S a i t i k(G, G i )
Where S denotes the set of indices of the support vectors. According to the taxonomy explained in Figure 4.15, SVM-based prototypes are discriminative set prototypes. Similarly to SVM, in [START_REF] Ehsan | Discriminative prototype selection methods for graph embedding[END_REF], another framework for selecting a set of prototypes is proposed. It selects graphs from a labelled graph set taking their discriminative power into account.

Another kind of set prototypes are set median graphs [START_REF] Ferrer | Median graphs: A genetic approach based on new theoretical properties[END_REF][START_REF] Coustaty | [END_REF][START_REF] Jiang | On median graphs: Properties, algorithms, and applications[END_REF]. In a classication context, median graphs are computed independently in each class through a minimization process of the sum of distances to all graphs within a given class. The set median graph for the class i is dened as follows:

Denition 13. Set median graph Let S = {T rs|t = i} be the set containing all the graphs of the class i.

smg = arg min (G2,t)∈S (G1,t)∈S d(G 1 , G 2 )
The concepts presented above involve the generation of a single prototype for each class. In some particular applications, it may be interesting to generate m prototypes for each class in order to obtain a better description of data. In what follows, we give the denition of such prototypes called msmg [Raveaux et al., 2011]: Denition 14. Multiple set median graphs Let S = {T rs|t = i} be the set containing all the graphs of the class i. Let P roto = {G k } m k=1 ⊂ S be a subset of S with m graphs. Let d min (G, P roto) be the smallest distance between a graph G and P roto dened as follows:

d min (G, P roto) = min Gj ∈P roto d(G, G j )
Then, the set of multiple median graphs is dened by:

msmg = arg min P roto⊂S G1∈S d min (G 1 , P roto)
The problem of nding the msmg is known in the literature as the p -median problem. The p -median problem is a combinatorial problem known to be N P-hard [START_REF] Mladenovic | The p-median problem: A survey of metaheuristic approaches[END_REF]. A variation of the msmg are the spanning set graphs (mspg) [Riesen and Bunke, 2010a]. Contrary to multiple median graphs, the spanning prototypes can be computed in polynomial time. This set of graphs is built by iterations. At the rst iteration, the rst prototype selected is the set median graph and then each additional prototype is selected by the spanning prototype selector.

The spanning prototype selector is the graph the furthest away from the already selected prototype graphs. Such a graph set can be dened as follows: Denition 15. Spanning set graphs Let S = {T rs|t = i} be the set containing all the graphs of the class i. Let mspg = {G k } m k=1 ⊂ S be a subset of S with m graphs. Let d min (G, mspg) be the smallest distance between a graph G and mspg dened as follows:

d min (G, mspg) = min Gj ∈mspg d(G, G j )
Then, the set of spanning graphs can be iteratively constructed as follows:

mspg j = smg if j = 1 mspg j-1 ∪ {G j } if 1 < j ≤ m where G j = arg max G∈{S\mspgj-1}
d min (G, mspg j-1 ) mspg j denotes the set at iteration j.

Finally set prototypes can also be obtained by any distance based clustering algorithm. For instance, the PAM algorithm [START_REF] Kaufman | Clustering by means of medoids[END_REF] is a clustering algorithm operating on a distance matrix to compute medoids. In contrast to the k-means algorithm, PAM can be used with arbitrary distances.

Generalized prototypes

The generalized median graph of a set of graph S is a graph that minimizes the sum of the distances to all graphs in S. The generalized median graph diers from the set median graph because it does not necessary lie in S [START_REF] Musmanno | Heuristics for the generalized median graph problem[END_REF][START_REF] Ferrer | Generalized median graph computation by means of graph embedding in vector spaces[END_REF][START_REF] Chaieb | Fuzzy generalized median graphs computation: Application to content-based document retrieval[END_REF]. It is dened by : Denition 16. Generalized median graph Let U be the innite set of graphs that can be built using the labels from

L V and L E . Let S = {G 1 , • • • , G M } ⊂ U be a subset of U .
The generalized median graph (gmg) of the subset S is dened by: gmg = arg min

G2∈U G1∈S d(G 1 , G 2 )
Using median graphs, essential information of each class is captured. However, such prototypes do not take into account the inter-class distribution of learning samples. In order to overcome this problem, discriminative graphs [Raveaux et al., 2011] (dg) has been proposed as prototypes for graph classication. The main dierence between median graphs and discriminative graphs lies in the criterion which is used to generate the prototypes. In the case of dg, rather than optimizing a sum of intra-class distances, prototypes are generated in order to optimize the classication error rate obtained on a test dataset.

Denition 17. Generalized discriminative graphs

Let N be the number of classes of the classication problem. Let T rS be a training set and let ∆(T rS, {G i } N i=1 ) be the error rate obtained by a 1NN classier on T rS using the graph prototypes {G i } N i=1 ⊂ U as learning samples. Then the set GDG composed of the gdg of each class is given by:

GDG = {sdg 1 , • • • , sdg N } GDG = arg min {Gi} i=1] N ∈U ∆(T rS, {G i } i=1] N )
The concepts presented above involve the generation of a single prototype but it can be extended to m prototypes.

Note that in [START_REF] Cho | Learning graphs to match[END_REF], generalized prototypes are learned. However, the criterion to generate them is to maximize a matching rate and not a classication rate.

As it is explicitly mentioned in Denitions 13, 14, 15, 16, 17, a (dis)similarity measure is required to compute prototypes. However, as discussed in Section 4.1, the (dis)similarity measure can also be learned to t a specic objective. So, the next section is devoted to this topic called "Learning graph (dis)similarity measure".

Learning graph (dis)similarity measure

Another room, where learning algorithms can be introduced, is the learning of the (dis)similarity measure. This topic is often called metric learning. Metric learning can be achieved by many means such that :

• learning kernel parameters [START_REF] Gärtner | A survey of kernels for structured data[END_REF] • learning a graph embedding [START_REF] Pau Riba | Learning graph distances with message passing neural networks[END_REF] • learning a distance in the vector space where the graphs are projected

• metric learning for structured data [START_REF] Collins | Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms[END_REF] However, we may focus on metric learning for structured data to be compliant with the Denition 12(LGM). Note that when kernels rely on graph matching, learning kernel parameters can also be compliant with Denition 12(LGM). However, kernels based on graph matching need cost functions.

So the question of learning graph matching cost function is still crucial. In [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF],

a grid search on a validation set is used to determine the values of the parameters K V ∈ R, which corresponds to the cost of a node deletion or insertion, and K E ∈ R, which corresponds to the cost of an edge deletion or insertion. The main drawback of the grid search is the empirical denitions of intervals and bounds of the grid, which require expertise on the problem. The speed can also drastically decrease as the grid becomes larger in function of the size parameter space. The method aimed at learning common weights for all the edges and nodes and only distinguishes weights by type of operations: deletion, insertion or substitution. [START_REF] Neuhaus | Self-organizing maps for learning the edit costs in graph matching[END_REF] address the issue of learning dissimilarity functions for numerically labeled graphs from a corpus of sample graphs. A system of self-organizing maps (SOMs) that represent the dissimilarity spaces of node and edge labels was proposed. The learning process adapts the edit costs in such a way that the similarity of graphs from the same class is increased. The matching are computed only once before learning the costs and each edit operation is considered independently from the matching it belongs. From the same authors, in [Neuhaus and Bunke, 2007], the graph matching process is formulated in a stochastic context. A maximum likelihood parameter estimation of the distribution of matching operations is performed. The underlying distortion model is a mixture of multivariate Gaussians. The model is learned using an Expectation Maximization algorithm. The matching costs are adapted to decrease the distances between graphs from the same class, thereby leading to compact graph clusters. The method requires the summation over all possible edit paths between two graphs which is not tractable in practice. But it can be approximated by GED heuristics (A beam search for instance).

Open problems

By reviewing the literature about classication operating in graph space, machine learning can be introduced in two locations: 1. Learning graph distance

Learning graph prototypes

The literature about learning graph distance aimed at learning common weights shared among all the edges' and nodes. Weights are global over a graph pair and not local to a given pair of nodes or edges. To overcome this problem, the discriminative weight formulation used in graph matching context in Equation 4.12 can be of rst interest but the learning remains to be designed. Another, room for improvement could be to learn the graph prototypes along with the graph distance.

To our knowledge, in the literature, there is no paper about learning graph matching and graph prototypes, at the same time, in the graph space. The most similar idea lies in [START_REF] Cho | Learning graphs to match[END_REF] where graph prototypes and graph matching are learned at the same time. However, the approach do not tackle a classication problem and furthermore, the method is not hierarchical. Such that the complicated learning problem must be addressed in a single step. At the opposite, GNNs [START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF]Welling, 2016, Monti et al., 2016] are organized in a hierarchical manner but graphs are locally projected in the Euclidean space to compute local statistics. This feature vector transformation leads to loss of topological information. Here comes a great objective, to create a GNN operating in the graph space in order to, at once, learn graph matching and graph prototypes. Pictorially, our research direction is showed in Figure 4.16.

The deadlocks to be addressed are :

1. Deadlock 10: Learning graph distance for classication with local parameters for nodes and edges.

2. Deadlock 11: Learning graph matching and graph prototypes in a hierarchical manner. [Neuhaus and Bunke, 2007[START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF][START_REF] Cortés | Learning graph-matching edit-costs based on the optimality of the oracle's node correspondences[END_REF] have considered a global parametrization of the graph distance. Here, we take benet of the parametrized graph edit distance described in Model 7(PGED) to built a T rS = {(G i , t i )} M i=1 is the training set composed of graphs and their associated class t i ∈ {0, 1}.

Contributions

We rst consider a binary or two-class classication problem. The Algorithm 3 is designed to train the perceptron model. The algorithm is operating on the graph set T rS through a change of variable from G to Φ(G, G m , y * ). Φ(G, G m , y * ) is the joint feature map, the vector of minimal edit costs for each element in the prototype graph G m . Any type of prototypes could be involved but discriminative graph prototypes could be more suited for the classication task. Then, the weights β are optimized with respect to classication loss through the perceptron algorithm. But β is also implied in nding y * as y * = arg min y d(G, G m , y, β). It means modifying β is not only acting on the linear projection of Φ(G, G m , y * ) but also on the graph matching operator, which is a non-linear operation. Reinterpreting the minimization problem, it appears that both variables β and y are involved into the minimization of an empirical risk guided by the loss function l:

min β,y (Gi,ti)∈T rS l(G i , t i , G m , y i , β) (4.18) l = 1 2 t i -heaviside(β T • Φ(G i , G m , y * i )) 2 (4.19)
The heaviside : R → {0, 1} is a decision function dened as

heaviside = 1 if β T • Φ(G, G m , y) + b > 0 0 otherwise with G m a prototype
Such an output is suitable for a binary classication problem. Now, let us get a closer look to the learning algorithm of the graph-based perceptron for classication. Algorithm 3 is a deterministic algorithm. #iter is the maximum number of iterations or also called epochs in the literature. The parametrized graph matching problem is solved in Line 9. Lines 10 to 14 apply the learning rule dened in Equation 4.20 when the prediction is wrong.

To show the time-dependence of β, we use β(i) as the weight at time i. 

β(i + 1) ≈ β(i) -α ∂l(.) ∂β(i) β(i + 1) ≈ β(i) -α( t -t)Φ(G, G m , y * ) (4.20) 
This rule is obtained by deriving the computation graph shown in Figure 4.18 with respect to parameters β. 

The gradient calculation is not the exact gradient. The Heaviside is no dierentiable anywhere.

So we approximate it as a linear function to let the gradient ow through the graph matching algorithm. We decided to not propagate gradients inside each iteration of the solver but we do it only once at convergence ( ∂y * ∂β ). We are aware of that shortcut. The goal was to be faster maybe at the cost of a noisier or unstable gradient. Parameters are updated in the opposite direction of the gradient. The goal is to get closer and closer to the best parameter values β min as shown in 

β(i) T • Φ(G, G m , y) // Solve Model 7 10: z ← β(i) T • Φ(G, G m , y * ) 11: t ← heaviside(z)
12:

if t = t then 13: 18: end while

β(i + 1) ← β(i) -α(t -t)Φ(G, G m ,
The perceptron provides a natural extension to the multiclass problem. The Heaviside function could be replaced by a Relu(z) = max(0, z). Then, instead of having only one neuron with binary output, we could have m neurons leading to multiclass classication. A set of functions f (G, t) map each possible input/output pair to a real value that represents the tness of the pair (G, t).

The resulting score is used to choose among many possible outputs: t = argmin t f (G, t).

One drawback of the method is the a priori choice of the prototype graph (G m ). We have seen in the state of the art that computing a prototype (G m ) is dependent on a distance function.

The distance is exactly what our method aims to learn. So we face a chicken-egg problem.

Consequently, the choice of G m is made based on a arbitrary selected distance function. In other words, the prototype graph computation requires pre-dened weights. To overcome this issue, a looping process with 2 phases could be envisaged but is not applied here : 1) compute the prototype graph, 2) learn the distance parameters and loop to step 1).

Experiments

The proposed approach stands and falls with the answer to the overall question, whether or not we are able to outperform traditional pattern recognition systems that are directly applied in the graph domain. That is, the essential and sole quality criterion to be applied to the novel approach is the degree of improvement in the recognition accuracy. More pessimistically one might ask, is there any improvement at all? Algorithm 3 requires a GED heuristic. The method called BP [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF] has been chosen because it is fast but another could be chosen. Prototypes are computed according to the Denition 13 of the set median graphs. Predened β parameters are required to compute the median graphs of the G-M-Perceptron method. A vanilla plain solution was adopted with β = 1.

Let us recall that β = 1 is the initialization value of our algorithms.

The datasets are described in Table 4.6. These databases are representative of a wide range of learning problems that occur in Computer Vision. Matching functions d V and d E were taken from [Riesen and Bunke, 2010b] and [START_REF] Francisco Moreno-García | A graph repository for learning error-tolerant graph matching[END_REF].

A commonly used approach in pattern classication is based on nearest-neighbor classication.

That is, an unknown object is assigned the class of its closest known element, or nearest neighbor (1NN). Two versions were utilized in the tests. R-1NN [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF] and C-1NN [START_REF] Cortés | Learning graph-matching edit-costs based on the optimality of the oracle's node correspondences[END_REF] where the values of kl) were borrowed from [Riesen and Bunke, 2010b] and [START_REF] Francisco Moreno-García | A graph repository for learning error-tolerant graph matching[END_REF], respectively. K N corresponds to the cost of a node deletion or insertion, and K E corresponds to the cost of an edge deletion or insertion. The aforementioned methods hold a meta parameter α ∈ [0, 1] which corresponds to the weighting parameter that controls whether the cost on the nodes or on the edges is more important. In Table 4.7, the best values of parameters (α, K N , K E ) are summarized.

K V = c(i → ) = c( → k) and K E = c(ij → ) = c( →
In Figure 4.19, the impact of the learning rate is depicted for the median models. A very high learning rate (α = 0.1) leads to poor results. The search space exploration is too fast and saddle points are missed. A high learning rate (α = 0.01) leads to unstable results with many oscillations while a low learning rate implies a slow but smooth convergence. A trade-o can be achieved with an intermediate value (α = 0.001). For the rest of the experiments, α = 0.001 was chosen and the number of iterations was set to 300.

To summarize the results of theses experiments, the classication rates (η) during the training and the test phases are reported in Table 4.9 along with the time, in milliseconds, for classifying all test instances. Table 4.9, the classication rates obtained during the learning phase are tabulated (column η T rS ). The learning ability is demonstrated on all data sets. The classication rate is always higher on the training set than on the test set except on the CMU and Fingerprint databases where the number of classes is small. The gap between the training and test recognition rates is 3% on average. This result demonstrates the good generalization ability of our algorithms.

Classication results on 7 publicly available datasets demonstrated a large speed-up during the test phase (60 times faster in average) with a loss of accuracy of 6% on average compared to a 1NN classier based on an optimized graph distance.

Database

size (TrS,TeS) Here comes the need to have graph-based neurons at each layer of a deep learning architecture.

GNN that are reviewed, in Appendix C, rely mainly on a vector space denition of locality in graphs, we propose to stay in graph space by using a convolution operator based on graph matching. The parametrized convolution operator based on graph matching is depicted in Figure 4.21. A convolution lter is an attributed graph. The result of our convolution operator on an input graph is, for a given node i, the matching similarity between N (i) the neighbourhood of i and the graph lter. The intuition is that the local response of a convolution lter on euclidean data is analog to graph similarity between a node neighbourhood and the lter graph. A lter graph can be seen as a prototype dedicated to react to a pattern within the input graph. To illustrate this principle, we propose some toy examples on images represented by regular grids.

In Figure 4.20, the results of convolutions is displayed. The lter graph is a simple graph with 2 nodes and one edge. Nodes are labelled with values -1 and 1 respectively. By analogy with image processing, this lter graph can be seen as a simple gradient kernel. The convolution operator endowed with this specic lter will nd the maximum contrast (pairwise pixel dierences) inside The key dierence, with the image domain, is that the lter does not need to be "spatialised". There is no need to apply the lter vertically (y axis) and horizontally (x axis). Therefore the convolution is rotation invariant.

Several graph lters can be added to compose a convolution layer as shown in Figure 4.22.

Finally, in the GNN review (Appendix C), we have seen that edge attributes were not fully handled.

They were either restricted to be a scalar value or merely aggregated with the node features.

GNN described in the literature outputs node embeddings but never edge embedddings. When describing the convolution with an error-tolerant graph matching operator, this problem is solved.

Graph matching can manage complex edge attributes. The outputs of our graph matching based neural network are node and edge embedddings.

4.2.3.2.2 Details Now, that we have drawn a global picture of our GNN based on graph matching. Let us dene in greater detail the framework that is at its early stage of development.

To dene our convolution operator, we must dene the graph matching function that will be pointwisely used.

Denition 18. Graph Matching Similarity

Let G 1 and G 2 be attributed graphs:

G 1 = (V 1 , E 1 , µ 1 , ζ 1 ) and G 2 = (V 2 , E 2 , µ 2 , ζ 2 )
. n 1 and n 2 are the size of the sets V 1 and V 2 , respectively.

GMS(G 1 , G 2 ) = max y s(G 1 , G 2 , y), (4.22a) subject to y ∈ {0, 1} n1n2 (4.22b) n1 i=1 y i,k ≤ 1 ∀k ∈ [1, • • • , n 2 ] (4.22c) n2 k=1 y i,k ≤ 1 ∀i ∈ [1, • • • , n 1 ] (4.22d) (4.22e)
The choice of this graph matching problem is driven by the analogy with the CNN. Where a convolution response is maximum when the lter ts well to the input signal. 

s(G 1 , G 2 , y) = y ik =1 s V (i, k) + y ik =1 y jl =1 s E (ij, kl) (4.23a) s V (i, k) = µ(i).µ(k) (4.23b) s E (ij, kl) = ζ(ij).ζ(kl) (4.23c)
Similarity between nodes and edges are dened as dot products. Now that our matching operator is formulated, we can apply it over an input graph to compute the result of convolution.

Let G I and G F be attributed graphs: 

G I = (V I , E I , µ I , ζ I ) and G F = (V F , E F , µ F , ζ F ).
G I G F = (V I , E I , µ, ζ) (4.24a) with µ : V I → R such that µ(i) = GMS(g i I , G F ) ∀ i ∈ V I (4.24b) ζ : E I → R such that ζ(ij) = score(ij, G I , G F ) ∀ ij ∈ E I (4.24c)
.

g i I is dening the neighbourhood (which is a subgraph) for vertex i in G I .

The results of the convolution operator is a graph with the same topology/structure than G I but with dierent attributes on edges and nodes.

4.2.3.2.2.1 Edge attribute in convolved graph score is a function mapping an edge to its matching score in the found GMS. The problem is that it might be assigned multiple times:

let P ij = {ij ∈ g i I |g i I ∀i ∈ V I } ∀ij ∈ E I (4.25)
P ij potentially contains more than one element. Therefore, a score can be dened as follows:

score(ij, G I , G F ) = θ ({s E (ij, kl).y ij,kl ∀kl ∈ E F ∀g I ∈ P ij }) (4.26a)
with θ : some statistical estimator (max or avg) (4.26b) Now that the convolution operator is dened, it is possible to use it as a base to build a convolution layer. This layer can be included in a graph neural network.

Denition 20. Filter graph

A lter graph is an attributed graph G W F . Every attribute function is parametrized with respect to weight vector W ∈ R |V |+|E|+2 . The extra parameters (noted W b1 and W b2 ) correspond to the biases w.r.t vertex and edges outputs. et al., 2007[START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF]. 4.2.3.2.2.3 Hyperparameters Like any traditional convolution layer, hyperparameters of our graph convolution layer are the number of lter graphs and their size. Moreover, another hyperparameter is introduced. The number of hops (n-hops) that denes a node neighborhood. This hyperparameter n -hops is involved in the creation of the subgraph g k I rooted in node k. In the experiment, the n -hops parameter is set to one. The choice of the graph maching solver is also an important element. In the experiment, the BP algorithm was chosen [START_REF] Riesen | Approximate graph edit distance computation by means of bipartite graph matching[END_REF]. This choices are made arbitrary to establish preliminary results. A deeper study about these hyper parameters should be carried out in a near future. 4.2.3.2.2.4 Experiments We applied the proposed method on a classical task of handwritten digit classication in the MNIST dataset. While almost trivial by todays standards, we nevertheless use this example to obtain preliminary results of our approach. Our experimental setup followed [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF]. The 28 × 28 images were represented as graphs, where vertices Three methods were compared: classical CNN LeNet5 architecture [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]] (containing two convolutional, two max pooling, and one fully-connected layer, applied on regular grids only), MoNet [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF] that is a recent and eective GNN and our proposal. We used a standard splitting of the MNIST dataset into training, testing, and validation sets of sizes 55K, 10K, and 5K images, respectively. LeNet used 2 × 2 max-pooling; and for MoNet and our method, we used three convolutional layers, interleaved with pooling layers based on the Graclus method [START_REF] Inderjit | Weighted graph cuts without eigenvectors a multilevel approach[END_REF] to coarsen the graph by a factor of four.

G W F = (V F , E F , µ W F , ζ W F ) (4.27a) with µ W F (k) = W k (4.27b) ζ W F (kl) = W kl
Training was done with 350K iterations of Adam optimizer, initial learning rate 10 -4 regularization factor 10 -4 dropout probability 0.5, and batch size of 10.

Results on MNIST 2class are reported in Table 4.10.

The overall tendency of results show a clear advantage for the CNN when dealing with grid graphs. MoNet is the best when dealing with the irregular graphs. Nevertheless, our method is just at the early stage of development. The n -hops parameter was set to one. Higher value could be a plus to capture more structural information. In addition, lter sizes were set up like in the LeNET5 network. The lter size is 5 nodes so graph prototypes are rather small. Larger graph prototypes could capture more structural information too. Better graph matching solver could be investigated. Especially, the GM solver adopted in [START_REF] Zanr | Deep learning of graph matching[END_REF]] could be a good choice. It seems to be faster and easier to optimize by back propagation.

Summary

In the PhD of Maxime Martineau, the research direction of bridging the gap between graph space and explicit embedding was investigated. A rst step in this direction was to propose a graph-based perceptron for learning discriminative graph matching in a classication context [Martineau et al., 2018, in press]. Graph matching was parametrized to build a weighted formulation. This weighted formulation was used to dene a perceptron classier, in which each neuron is composed of a prototype graph and a vector of parameters. Each weight is associated with a graph component of the prototype graph. Weights are learned using the gradient descent algorithm. A main drawback is that the prototype graph is not learned and the method is not hierarchical. So secondly, a convolution operator based on graph matching was proposed and integrated into a GNN architecture.

Convolution lters play the role of prototypes graphs to be learned. Such a GNN model oer an elegant solution to output both node and edge embeddings. The applications are matching and classifying graphs.

Discrete optimization for graph matching and graph classication

In this section are discussed the issues related to the calculation of graph matching as well as the classication of graphs.

Graph comparison

Many applications, such as information retrieval or classication, require measuring the distance or similarity between two graphs, ie, matching -the vertices of the graphs to identify their common points and their dierences. A rst objective was to dene new mathematical models to represent the problem of the graph edit distance. In a collaboration with LITIS Lab (in Rouen) [Lerouge et al., 2017[Lerouge et al., , 2016] ] and also the PhD of Mostafa Darwiche [Darwiche et al., 2018, in pressa], three models based on integer linear programming were developed. This formalism makes possible to benet from ecient solving methods that can be easily exploited thanks to solvers. A solver is a computer software capable of solving mathematical equations or logic problems.

The graph edit distance is an N P-hard optimization problem. Its solution time increases exponentially according to the number of nodes of the two graphs. Therefore, two challenges arise for this type of problem. First, the development of exact methods to obtain the optimal solution of the problem quickly. Exact solving is not always possible in practice because of the combinatorial explosion caused by the complexity of the problem. From this observation arose the second challenge, the design of heuristic methods able to quickly provide a sub-optimal solution of quality.

We have proposed two exact methods to calculate the optimal solution of the optimization problem. In Zeina Abu-aisheh thesis [Abu-Aisheh et al., 2015b], a branch and bound method was

proposed. An evaluation of all possible solutions is performed without explicitly listing them. Partial solutions are removed using the lower and upper bounds. In the PhD of Mostafa Darwiche, the use of a mathematical solver solved the three formulations based on the integer linear programming. The couple integer linear programming and mathematical solver allowed to obtain the best results. To date, the LITIS and LIFAT have among the best exact methods for solving the graph edit distance problem. Since exact solving is not always possible in practice, we are interested in heuristic methods. In my thesis [Raveaux, 2010], I explored the possibility of simplifying the initial problem to transform it into a linear subgraph assignment problem whose solving is in polynomial time and no longer in exponential time. Of course, this time reduction is not without consequence on the quality of the solution obtained. There is no free lunch 1 . In Zeina Abu-aisheh's thesis [Abu-Aisheh, 2016] and in collaboration with the LITIS [Lerouge et al., 2017], heuristics are obtained simply by limiting execution time of exact methods. In doing so, it is easy to meet the time constraints of certain applications but no information on the quality of the returned solution is taken into account to stop the method. This drawback is raised in the PhD of Mostafa Darwiche [Darwiche et al., 2018, in pressa], two local searches, in the sense of a neighborhood operator in the solution space, based on the linear programming and a mathematical solver have been proposed. These methods explore the solution space locally around a neighborhood and stop if no improved solution is found. These heuristics are among the most accurate of the literature. In addition, mathematical solvers, such as IBM CPLEX for example, are constantly evolving and become more and more ecient from year to year. This suggests that the approaches developed by LIFAT will become even more eective in the future.

Taking a step back on the methods helped to bring closer the notions of exact method and heuristic by proposing the methods called anytime [Abu-Aisheh et al., 2017a]. This type of method is capable of delivering a rst feasible solution very quickly and then gradually improving it to converge towards an optimal solution. Whenever an improved solution is found, it is made available for the nal application that uses the anytime method as a service of solutions. This way of understanding the problem makes the anytime method very exible and applicable when the time constraints of the nal application are not known in advance.

Finally, a solid methodological benchmark consisting of graphs and metrics has been proposed for the performance evaluation [Abu-Aisheh et al., 2015a] of the graph edit distance. From this approach was born a competition on this problem within the framework of the international conference in pattern recognition ICPR 2016 in collaboration with colleagues of the GREYC laboratory in Caen.

Graph distance based classication

This part deals with the problem of supervised classication of graphs. In many applications, it is necessary to assign a class (category) to an unknown graph (G). This classication step is based on a set of graphs whose class is known. This set of graphs is called the training set. One of the signicant limitations of (dis)similarity based algorithms is that the kernel or distance functions must be evaluated for all possible pairs G and G i of training data. It can be computationally infeasible during training and it can lead to excessive computation times when making predictions for new graphs. Three dierent methodological angles correct these defects:

• 1) The use of a fast heuristic to compute the graph edit distance. This solution has been 1 Economist Milton Friedman's sentence used in the PhD of Zeina Abu-aisheh [Abu-Aisheh et al., 2018, in press] as well as in my thesis [Raveaux et al., 2010[Raveaux et al., , 2013a].

• 2) It is also possible to "reduce" the training set by selecting or generating representatives from the initial database. In my thesis and in a collaboration with the LITIS, I was interested in calculating median graphs (modeling a class) and prototype graphs (discriminant) [Raveaux et al., 2011]. These aspects of selection or generation of prototypes fall under the learning section that will be developed after.

• 3) Finally, the last angle of attack is to model the problem of computing classication problem as a discrete optimization problem and to solve it heuristically. This original methodology was validated in a work with Zeina Abu-aisheh [Abu-Aisheh et al., 2018, in press]. The graph edit distance problem was generalized to comparing a graph G 1 with an entire training set. This approach enables a branch and bound procedure which eliminates comparisons of non-promising graphs thanks to the upper and lower bounds calculated on the classication problem. The result is an optimized exploration of the comparison tree.

Graph matching and graph classication in graph space

In this section is discussed the development and use of learning methods to solve problems of graph matching and graph classication.

Graph matching

In Maxime Martineau's thesis, the problem of the graph edit distance has been parametrized to be suitable for learning [START_REF] Raveaux | Learning graph matching with a graph-based perceptron in a classication context[END_REF]. The parameters w weight the cost functions between two nodes or two edges so the problem of matching "node to node" or "edge to edge" is dependent on continuous (real) parameters. The objective of the learning algorithm is to nd the values of the parameters that minimize a criterion dened on the training data (empirical risk). An example of a criterion to be minimized is the sum of squared errors between suboptimal and exact matchings.

The goal is to have an heuristic as accurate as an exact method. This problem is similar to a structured regression problem. An eective tool for solving a regression problem is a model based on a neural network. Such a model is trained by the gradient descent method. In this context, learning consists of nding the values of the parameters w. The parameterized editing distance can be seen as a particular layer called a combinational layer that is integrated into a neural network. This combinatorial layer requires one hyper-parameter: a prototype graph that must be xed during the learning phase. The disadvantage of this method is that it does not generalize the learned parameters to several prototype graphs. The parameters w are therefore associated with a particular prototype graph.

Graph classication

The previous approach has been adapted to classify graphs [Martineau et al., 2018, in press]. The criterion to be minimized is a misclassication rate. In the context of a two-class problem {0,1 }, the output of the combinatorial layer feeds an function (H : R → {0, 1}) to predict the class.

The inputs of the combinatorial layer remain similar to the previous approach: a xed prototype graph during the learning phase. In my thesis and in collaboration with the LITIS [Raveaux et al., 2011], we dened four types of prototype graph: 1) the set graphs belonging to the training set, 2) the generalized prototypes that do not to belong to the training set, generalized graphs are synthetic graphs resulting from a generation process. Each of these two large families is divided into two parts: 3) the median graphs are constructed with respect to a single class of the classication problem without taking into consideration the other classes. In contrast, 4) the discriminant graphs are constructed taking into account the entire training set in order to minimize a misclassication rate. In [Martineau et al., 2018, in press], the prototype graph is chosen a priori by calculating a set median graph. In Maxime Martineau's thesis, the previous perceptron architecture has been extended to the concept of convolutional neural network (GCNN). This strategy allow to get rid o a priori prototypes for the benet of discriminating graphs determined during the learning phase.

All of this work constitutes a solid foundation for extending deep learning networks in graph space.

Interplay between machine learning and combinatorial optimization

As we have seen in this manuscript, machine learning and combinatorial optimization are closely coupled. Some learning problems can be formulated as combinatorial optimization problems as shown in Figure 5.1. It is the case of learning prototype graphs for instance. Here are some other examples that fall in this category:

• k-medians clustering.

• The graph partition problems (Graph cut).

• The MAP-inference problem of a discrete variable CRF.

Combinatorial optimization is then very important for the machine learning community. Better solving methods can lead to better learning scheme. The reverse is also true. Heuristic methods can be improved when they integrate machine learning methods. This idea is presented in Figure 5.2. It is the case of learning schemes for structured outputs that generalize traditional machine learning approaches to structured outputs:

• SVMs → Structured SVM [START_REF] Tsochantaridis | Support vector machine learning for interdependent and structured output spaces[END_REF] • Logistic Regression → Conditional Random Fields [START_REF] Laerty | Conditional random elds: Probabilistic models for segmenting and labeling sequence data[END_REF] • Perceptron → Structured Perceptron [START_REF] Collins | Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms[END_REF] All these algorithms learn parameters of a combinatorial optimization problem in order to guide its solving. Studying the benets of embedding machine learning algorithms into discrete optimization methods is important to create new ecient optimization approaches. Such learning methods is of interest to the discrete optimization community and machine learning community.

Finally, ML can be used to directly output solutions of combinatorial optimization problems [Nowak et al., 2017[START_REF] Scarselli | The graph neural network model[END_REF]. This kind of approach is depicted in Figure 5.3. Such an approach can be guided by the nature of the application that requires to output solutions in real time. ML turns out to be suitable for obtaining accurate solutions in short computing times because some of the complexity is addressed oine. 

Short term perspectives

This section is concerned by short term perspectives that could lead to PhD subjects. First, we draw our attention on new ideas in the eld of learning-free graph matching methods.

5.2.1 Learning-free graph matching problems

Higher order graph matching

The graph matching problems consider unary and binary relations so that the matching costs depend on very local information. In pattern recognition, it could be interesting to extend the context to capture a more global information. The matching cost could carry more semantic because the subgraphs to be matched represent larger parts of an object. This paradigm is depicted in Figure 5.4 and modeled by Equation 5.1. Note that only the 3rd order extension is presented for clarity reasons but it could be extended to higher orders.

d(G 1 , G 2 , y) = i∈V1 k∈V2 c(i, k).y ik + ij∈V1×V1 kl∈V2×V2 c(ij, kl).y ik,kl + hij∈V 3 1 mkl∈V 3 2 c(hij, mkl).y hik,mkl (5.1) 
To my knowledge, the solving of higher order graph matching for pattern recognition has not been (well) investigated in the literature.

A "robust" graph matching model

In the same vein, new models could be investigated. Graph matching problems aims at minimizing a sum of costs. In a pattern recognition context, it could be great to integrate an additional criterion to make the matching more robust to large distortions or outliers. In this objective, the Figure 5.4: Extension of the graph matching problem to a higher order addition of a penalization term, such that the maximum distortion is small, is of rst interest. This intuition is modeled by Equation 5.2.

d(G 1 , G 2 ) = min λ∈Γ(G1,G2) 1 |λ| oi∈λ c(o i ) + max oi∈λ c(o i ) (5.2)

Multivalent matching

In graph matching, the constraints implies that each node can be assigned at most once. In many real-world applications, comparing patterns described at dierent granularity levels is of great interest. For instance, in the eld of image analysis, an over-segmentation of some images might occur whereas an under-estimation occurs in some other images resulting in allowing several regions of one image to be correspondent, or related to, a single region of another image. Based on this fact, multivalent matching problem emerged to be one of the interesting problems in graph theory [START_REF] Sorlin | A generic graph distance measure based on multivalent matchings[END_REF]. Multivalent matching drops the condition that vertices in the source graph are to be mapped to distinct vertices of the target graph. Thus, in multivalent matching, vertex in the rst graph can be matched with an empty set of vertices, one vertex or even multiple vertices in the other graph. Even if the multivalent matching problem has been studied, it is still at the its early stage.

Similarly to what we have done for the graph edit distance, mathematical programming and machine learning could be investigated to deal with this problem.

Multiple occurrences graph matching

This problem deal with the search of multiple occurrences of a given pattern represented as a input graph within a larger graph. Few works address this problem [START_REF] Le Bodic | An integer linear program for substitution-tolerant subgraph isomorphism and its use for symbol spotting in technical drawings[END_REF] and usually the methods are iterative and the algorithms are congured so that any vertex mapping in a previous solution is excluded from the search space. At the opposite, the Multi Graph Edit Distance Problem dened in Problem KMGED could be used in a single pass to search for the k most similar matchings and providing a speed up.

Second, we discuss the perspective on the side of learning graph matching.

Learning-based graph matching

We now discuss the possibility to merge combinatorial optimization and machine learning for the purpose of graph matching.

Hierarchical feature learning for graph matching methods

We have seen that a big trend is to learn graph matching with graph neural networks. The Siamese architecture for graph matching presented in [Nowak et al., 2017] suers from a main drawback that no graph matching solver is involved to maintain the constraints consistency. The learning algorithm must learn on its own the combinatorial nature of the problem. At the opposite, in [START_REF] Zanr | Deep learning of graph matching[END_REF], a feed-forward architecture is proposed and it relies on a graph matching solver. However, the feature extraction is completely domain-dependent and it is dedicated to image processing. Our proposal would be to replace the feature extraction step of [START_REF] Zanr | Deep learning of graph matching[END_REF]] by a Siamese architecture based on graph neural networks. In this way, we would obtain a complete end-to-end graph matching learning scheme. In this direction, we could exploit our graph-matching based neural network. The global architecture is depicted in Figure 5.5. In this strategy, the ML serves as a feature extractor. The extracted features are used to generate an anity matrix (K ) on which operates the graph matching method. Another way of seeing this mechanism is a data generation scheme to facilitate the graph matching. Figure 5.1 illustrates this mechanism.

Learning to branch in a branch and bound

In [START_REF] Zanr | Deep learning of graph matching[END_REF], the graph matching solver does not have any parameter to be learned. The learning stage is located before by extracting features that will facilitate the graph matching stage. In the methods based on structured prediction [START_REF] Martineau | Learning errorcorrecting graph matching with a multiclass neural network[END_REF], in press, Raveaux et al., 2017[START_REF] Cho | Learning graphs to match[END_REF], ML and CO collaborate together (see Figure 5.2). However, these methods remain shallow. We would like to extend the concept to structured prediction to deep architecture. Especially, we would like to couple structured prediction and a branch bound procedure. In our branch and bound [Abu-Aisheh et al., 2015b], each tree node (p) is either a partial matching plus the remaining nodes/edges to be matched or a feasible matching. We would like to design a predictor as a function f θ with parameters θ. This predictor would take as an input the tree node p, and outputs both move probabilities and a value, (m, ô pt) = f θ (p). The vector of move probabilities m represents the probability of selecting each move (next child node) a, m a = P r(a|p). The value ô pt is a scalar evaluation, estimating the probability of the current state p to lead to an optimal solution. At test time, the predictor f θ will be called by the branch and bound procedure to drive the exploration of the search space to the most promising solution.

An illustration is provided in Figure 5.7. In this way, the branch and bound will be equipped with trainable parameters. The predictor f θ could be a deep architecture such as a GNN.

Learning graph matching for classication

Graph neural networks achieve graph classication by averaging the node embeddings. We have the intuition that this step induces a loose of information. A research direction is to stacked our graphbased perceptron after a graph neural network. Once again, we could exploit our graph-matching based convolution neural network to constantly operate in graph space. The global architecture is depicted in Figure 5.8. 

Long term perspectives

Now, that we have explained some promising hanging fruits, we can expose some more long term perspectives. [START_REF] Marino | The more you know: Using knowledge graphs for image classication[END_REF], Lee et al., 2018[START_REF] Teney | Graph-structured representations for visual question answering[END_REF]. With our insight on graph matching, we could create cost functions for the image graph that depend on the knowledge graph.

On the relation between graph matching and Optimal Transport

Optimal Transport (OT) problems have recently raised interest in several elds, in particular because OT theory can be used for computing distances between probability distributions. These distances have important properties:

• They can be evaluated directly on empirical estimates of the distributions.

• By exploiting the geometry of the underlying metric space, they provide meaningful distances.

Graph matching and OT are related in the sense that both consider interactions (edges) between

data.

An optimal transport-like distance [START_REF] Villani | Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften[END_REF] can be obtained by comparing the metric spaces directly: It calculates distances between pairs of samples within each domain and measures how these distances compare to those in the other domain. The Gromov-Wasserstein distance is an optimal transport distance and it can be applied to model a graph matching problem : Let G 1 , G 2 be two graphs. Let A 1 , A 2 be the weighted adjacency matrix of these two graphs. Note that a weight may not be between 0 and 1 but they have to express the similarity between two nodes (the appearances of the interaction). Let P m 1 ∈ R |V1| be the empirical distribution of nodes of G 1 , which counts the appearance of each node in E 1 . P m 2 is built in the same way.

d(P m 1 , P m 2 ) = min P r∈Π(P m 1 ,P m 2 ) (i,k)∈V1×V2 (j,l)∈V1×V2

||A 1 i,j -A 2 k,l ||.P r(i, k).P r(j, l)

(5.3) P r ∈ R |V1|×|V2| is the joint probability of nodes i ∈ V 1 and k ∈ V 2 . P r and P m 1 are related. P m 1 is the marginal of P r such that P m 1 i = k∈V2 P r(i, k). Π(P m 1 , P m 2 ) is the set of all possible joint probabilities P r that can be obtained from P m 1 and P m 2 . By choosing the largest P r(i, k) for each i, the matching that minimizes the Gromov-Wasserstein distance between the two graphs can be obtained. However, the results may not fulll binary mapping constraints.

Modelling graph matching problems by OT problems is interesting because OT problems have strong solution methods with linear convergence ( Sinkhorn-Knopp algorithm [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF]Knopp, 1967, Altschuler et al., 2017] ). A rst step in this direction was made in [START_REF] Xu | Gromov-wasserstein learning for graph matching and node embedding[END_REF] (pre-print of Lawrence Carin).

Graph matching for domain adaptation

Modern data analytics are based on the availability of large volumes of data, sensed by a variety of acquisition devices and at high temporal frequency. But this large amounts of heterogeneous data also make the task of learning semantic concepts more dicult, since the data used for learning a decision function and those used for inference tend not to follow the same distribution. Discrepancies (also known as drift) in data distribution are due to several reasons and are application-dependent.

In computer vision, this problem is known as the visual adaptation domain problem, where domain drifts occur when changing lighting conditions, acquisition devices, or by considering the presence or absence of backgrounds. For those reasons, several works have coped with these drift problems by developing learning methods able to transfer knowledge from a source domain to a target domain. Learning in this discrepancy context is denoted as the domain adaptation problem. A variant of domain adaptation is unsupervised domain adaptation, where data labels are only available in the source domain. This problem can be tackled by assuming that the eects of the drifts can be reduced if data undergo a phase of adaptation (typically, a non-linear mapping)

where both domains look more alike. The question is then how to transform data so as to make their distributions closer, and use the label information available in the source domain to learn a classier in the transformed domain ? If the source domain and the target domain are modeled as graphs then nding matches between samples of the source and target domains can be achieved by graph matching. This process is depicted in Figure 5.9. This idea was investigated in [START_REF] Das | Sample-to-sample correspondence for unsupervised domain adaptation[END_REF] but it could be further developed thanks to graph neural networks. Nodes embeddings and graph matching could be learned in the objective to better classify in the target domain.

The rise of the edge classication

Traditional structural pattern recognition techniques were mainly focused on graph classication and matching. With the rapid emergence of the graph neural networks, new interesting applications come to the surface. In fact graph neural networks provide a common framework to perform classication at node and graph levels. This enables new perspectives such as semantic image segmentation (pixel classication). However, edges are left behind and it is not possible to perform classication at edge level. It could very useful to use our graph matching based neural network for such a purpose because our model outputs node and edge embeddings. A direct applications could be to classify the types of relation between atoms in a molecule graph or to perfom graph factorization.

Benchmarking

This topic is of great importance if we want to take into account the mistakes that have been made in the past within the research on edge detection (some authors proposed many new optimal edge detectors only because we had no tools to make them compete, or just to compare and classify them, on the basis of real data).

Learning graph matching

On the side of learning graph matching, none of the papers reported experiments with symbolic attributed graphs. It is true that the focus was given to computer vision methods but is it possible to make all this methods work on graph with discrete attributes? It could be interesting to include in the benchmark graphs with discrete attributes to answer this question. Moreover, running time are rarely reported in the experiments so it is hard to draw conclusion about the scalability of the methods. The amount of data to perform the training is not really discussed. Generally, there is a lack of common benchmarks with precised metrics and various graph data sets.

Graph classication

If I would ask myself what is it the best methods to classify graphs, I would get to the point that the answer is not obvious. It would depend on the graphs (density, attributes type, the size) and on the number graphs at hand. There is no clear consensus. Graph neural networks seem very promising but they are not the ultimate weapon. In [START_REF] Xu | How powerful are graph neural networks?[END_REF], a recent benchmark is proposed to compare graph kernels and graph neural networks. Data sets are made of social networks and molecules. Graph kernels (based random walks) achieve very good results. They are competitive with graph neural networks and sometimes better, especially on molecule graphs. So the debate is not closed. There are rooms to enrich performance evaluation tools and better characterize the methods. This will come up with graphs from dierent domains (scene images, document images, medical images, mesh, computer-aided-drawing models, ...) and a common library supporting the dierent methods would be a plus.

Deep reinforcement learning

Learning from examples (supervised learning) might be undesirable for N P-hard problems because (1) the performance of the model is tied to the quality of the supervised labels, (2) getting highquality labeled data is expensive and may be infeasible for new problem statements, (3) one cares more about nding a competitive solution more than replicating the results of another algorithm.

Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]. Though both supervised and reinforcement learning use the same paradigm but no. Unlike supervised learning where the feedback (the ground-truth label) provided is complete (in term of information) and correct (i.e. t = [0, 0, 1] for a three class problem), reinforcement learning uses rewards and punishment to drive the learning process (i.e. t = -1 or 1 to warn the system in case of wrong or good classication, respectively). Standard RL algorithms do not have the ability to estimate values for unseen states. This can be overcome by more advanced algorithms based on deep learning called deep reinforcement learning. Deep reinforcement learning is getting more and more attention thanks to interesting successes. AlphaGo Zero [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] is the rst computer program to defeat a world champion in the ancient Chinese game of Go. AlphaStar is the rst Articial Intelligence to defeat a top professional player at the Real-Time Strategy game called Starcraft 2. RL requires a lot of (weakly) labelled data, therefore it is most applicable in domains where simulated data. Graph matching problems fall into this category. Many solutions can be generated. Each solution can be evaluated/labelled by its objective function value. The couple RL and deep learning has been applied to solve combinatorial problems such as the traveling salesman problem or knacksack [START_REF] Bello | Neural combinatorial optimization with reinforcement learning[END_REF]. Thanks to the combination of graph neural networks, search tree algorithms and RL, new heuristics for the graph matching problems could appear. One could think about the Siamese architecture [Nowak et al., 2017] and the search tree method [Abu-Aisheh et al., 2015b] trained by RL. The deep reinforcement algorithm would learn how to explore the search tree.

Graph matching for multi-object tracking in videos and document analysis

Tracking multiple objects in videos is an important problem in computer vision which has wide applications in various video analysis scenarios, such as visual surveillance. In particular, we would like to focus on tracking people and cars moving within a video. 

Synthesis

To conclude, we provide a synthesis of our perspectives under the form of a mind map. Figure 5.10 shows the relations between the key concepts. Short term perspectives are split into two balanced categories combinatorial optimization and machine learning. The long term perspectives are grouped into three parts: application, performance evaluation and fundamental. On the application side, object tracking in videos, domain adaptation and edge classication for graph factorization are targeted. Concerning performance evaluation, the creation of data sets and evaluation metrics as well as scalability tests are considered. Finally, the fundamental aspects concern deep reinforcement learning, optimal transport and semantic computer vision thanks to graphs. 

B.1 The basics of losses

Many loss functions have been designed. We take a closer look to two loss functions. The cross entropy that is well suited for classication tasks and the least square errors that is good for regression task.

B.1.1 Cross-entropy loss

This paragraph describes how minimizing the cross-entropy is related with maximizing the likelihood of the model according to the training set. This consideration was rst explained by Vapnik in [START_REF] Vapnik | Statistical Learning Theory[END_REF]. When we develop a model for classication, we aim to map the model's inputs to targets. The targets can be encoded by integers or by an encoding called one-hot vector. For example, if we're interested in determining whether an image is best described as a landscape or as a house or car. The target of the rst sample t 1 can be represented as t 1 ∈ [1, 2, 3] or t 1 ∈ {0, 1} 3 . If an image is a house then t 1 = [1, 0, 0]. A prediction made by the classier could be t1 = [0.2, 0.3, 0.5]. The notation t1 1 refers to the rst value of the vector t1 . In cross-entropy there is entropy. The entropy of the discrete random variable t 1 is dened as : H(t 1 ) = i P r(t i 1 ) log 2 1 P r(t i 1 )

=i P r(t i 1 ) log 2 P r(t i 1 )

B.2. PROBABLY APPROXIMATELY CORRECT (PAC)

We see that maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function with a regularization parameter given by λ = σα. This statement can be found in [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. Many other regularization terms can be found in the literature such as L1 norm or the pseudo norm L0. Classically, the cost function in a learning problem can be written as :

Cost Function= Loss (i.e. MSE or cross entropy) + Regularization term

B.2 Probably Approximately Correct (PAC)

This has its origins with [START_REF] Valiant | A theory of the learnable[END_REF] who formulated the probably approximately correct, or PAC, learning framework. The goal of the PAC framework is to understand how large a data set needs to be in order to give good generalization. It also gives bounds for the computational cost of learning.

Suppose that a data set D of size M is drawn from some joint distribution P r(x, t) where x is the input variable and t represents the class label, and that we restrict attention to `noise free' situations in which the class labels are determined by some (unknown) deterministic function t = f (x). In PAC learning we say that a function g(x, D), drawn from a space F of such functions on the basis of the training set D, has good generalization if its expected error rate is below some pre-specied threshold , so that E x,t [I(g(x; D) = t)] < where I(.) is the indicator function, and the expectation is with respect to the distribution P r(x, t). PAC learning aims to provide bounds on the minimum size M of data set needed to meet this criterion. A key quantity in PAC learning is the Vapnik-Chervonenkis dimension, or VC dimension, which provides a measure of the complexity of a space of functions. The bounds derived within the PAC framework are often described as worst case, because they apply to any choice for the distribution P r(x, t), so long as both the training and the test examples are drawn (independently) from the same distribution, and for any choice for the function g(x) so long as it belongs to F.

The PAC bounds are very conservative, in other words they strongly over-estimate the size of data sets required to achieve a given generalization performance.

In real-world applications of machine learning, we deal with distributions that have signicant regularity, for example in which large regions of input space carry the same class label.

B.3 Structured prediction

Generalize classication/regression methods to deal with structured outputs and/or with multiple, interdependent outputs. Outputs are either

• Structured objects such as sequences, strings, trees, etc.

• Variables that are interdependent (e.g. dependencies modeled by probabilistic graphical models)

One of the easiest ways to understand algorithms for general structured prediction is the structured perceptron of Collins [START_REF] Collins | Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms[END_REF]. This algorithm combines the perceptron algorithm for learning linear regressor with an inference algorithm (classically the Viterbi algorithm when used on sequence data) and can be described abstractly as follows. First dene a "joint feature function" Φ(x, y) that maps a training sample x and a feasible solution y to a vector of length d (x and y may have any structure; d is problem-dependent, but must be xed for each model). Let GEN be a function that generates a set of feasible solutions and α is the learning rate. This model is also denoted as a "dense" layer or "Fully Connected (FC)" layer or a "MuLtilayer Perceptron" (MLP). The question is how to generalize this articial neural networks to graphs? • V is the vertex set.

• E is the edge set.

• A is the adjacency matrix (assume binary). A ∈ {0, 1} |V |×|V |

• F ∈ R |V |×m is a matrix of node features.

Categorical attributes, text, image data Node degrees, clustering coecients, etc. Indicator vectors (i.e., one-hot encoding of each node)

In the literature, the graph structure is also called "domain structure" while features are also named "data on a domain" [Bronstein et al., 2016]. Some papers of the literature makes a clear distinction between xed domain structure [START_REF] Hena | Deep convolutional networks on graph-structured data[END_REF][START_REF] Deerrard | Convolutional neural networks on graphs with fast localized spectral ltering[END_REF] or variable domain structure [START_REF] Atwood | Search-convolutional neural networks[END_REF]Towsley, 2015, Boscaini et al., 2016]. The last concept means that the input graphs can have dierent sizes and structures. The xed domain structure problem often appear where the input is a single (large) graph while the variable domain structure is likely to appear when the learning set is composed of many (small) graphs. In [START_REF] Scarselli | The graph neural network model[END_REF], both paradigms are merged into a single one. The learning set composed of many graphs can be combined into a unique disconnected graph, and, therefore, one might think of the learning set as a pair composed of a single graph and the targets. It is worth mentioning that this compact denition is not only useful for its simplicity, but that it also captures directly the modelling power of graphs.

C.3.2 Intuition

The key idea is to generate node embeddings based on local neighborhoods. The intuition is to aggregate node information from their neighbors using neural networks. Nodes have embeddings at each layer and the neural network can be arbitrary depth. layer-0 embedding of node u is its input feature, i.e. F u . A GNN produces a node-level output Z (an |V | × p feature matrix, where p is the number of output features per node). Graph-level outputs can be modeled by introducing some form of pooling operation (see, e.g. [Duvenaud et al., 2015]).

A graph is processed by a set of units, each one corresponding to a node of the graph, which are linked according to the input graph connectivity. The graph structure is shared over layers.

Every graph neural network layer can then be written as a non-linear function:

H (l+1) = f (H (l) , A)
with H (0) = F and H (L) = Z, L being the number of layers. The specic models then dier only in how f (., .) is chosen and parameterized.

A GNN layer receives as input a signal H (l) ∈ R |V |×m l and produces H (l+1) ∈ R |V |×m l+1 . This output can be fed into any loss function. The training algorithm is based on stochastic gradient descent to learn the aggregation parameters. C.3.3 A simple example for f (., .):

As an example, let's consider the following very simple form of a layer-wise propagation rule:

f (H (l) , A) = σ AH (l) W (l) where W (l) ∈ R m l ×m l+1 is a weight matrix for the l-th neural network layer. m l is indexed by l because it depends on the number of parameters in the layer l. Theses values are hyperparameters of the model except for H (0) = F . σ(.) is a non-linear activation function like the ReLU. Note that σ(.) is a element-wise non-linearity operating on a matrix. But rst, let us address two limitations of this simple model: multiplication with A means that, for every node, we sum up all the feature vectors of all neighboring nodes but not the node itself (unless there are self-loops in the graph). This can be "xed" by enforcing self-loops in the graph: we simply add the identity matrix to A.

The second major limitation is that A is typically not normalized and therefore the multiplication with A will completely change the scale of the feature vectors. Normalizing A such that all rows sum to one, i.e. D -1 A, where D is the diagonal node degree matrix, gets rid of this problem. Multiplying the input with D -1 A now corresponds to taking the average of neighboring node features from the layer l. It is also called in the literature "Average neighbor messages" passing average node feature from one layer to another.

f (H (l) , A) = σ D -1 AH (l) W (l) After K-layers of neighborhood aggregation (compositionality), the network outputs embeddings for each node. The GNN can be seen as an encoder that maps nodes to vector embeddings: More complex functions have been applied in the literature. The key idea is to do more than averaging the features from a neighborhood. In [START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF], a better (symetric) normalization of the adjacency matrix is proposed i.e. D -1 2 AD -1 2 (as this no longer amounts to mere averaging of neighboring nodes). A per-neighbor normalization is performed instead of simple average, normalization varies across neighbors.

f (H (l) , A) = σ D-1 2  D-1 2 H (l) W (l) with  = A + I, where I is the identity matrix and D is the diagonal node degree matrix of Â. The complexity of this model is O(|E|) time complexity overall. However, it is not suited for regular Two main sources of graphs can be found in the literature : bioinformatics and social networks (see Table C.1 for summary statistics of these datasets)

Social networks datasets. IMDB-BINARY and IMDB-MULTI are movie collaboration datasets.

Each graph corresponds to an ego-network for each actor/actress, where nodes correspond to actors/actresses and an edge is drawn betwen two actors/actresses if they appear in the same movie.

Each graph is derived from a pre-specied genre of movies, and the task is to classify the genre graph it is derived from. REDDIT-BINARY and REDDIT-MULTI5K are balanced datasets where each graph corresponds to an online discussion thread and nodes correspond to users. An edge was drawn between two nodes if at least one of them responded to another's comment. The task is to classify each graph to a community or a subreddit it belongs to. COLLAB is a scientic collaboration dataset, derived from 3 public collaboration datasets, namely, High Energy Physics, Condensed Matter Physics and Astro Physics. Each graph corresponds to an ego-network of different researchers from each eld. The task is to classify each graph to a eld the corresponding researcher belongs to.

Bioinformatics datasets. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic nitro compounds with 7 discrete labels. PROTEINS is a dataset where nodes are secondary structure elements (SSEs) and there is an edge between two nodes if they are neighbors in the amino-acid sequence or in 3D space. It has 3 discrete labels, representing helix, sheet or turn.

PTC is a dataset of 344 chemical compounds that reports the carcinogenicity for male and female rats and it has 19 discrete labels. NCI1 is a dataset made publicly available by the National Cancer Institute (NCI) and is a subset of balanced datasets of chemical compounds screened for ability to suppress or inhibit the growth of a panel of human tumor cell lines, having 37 discrete labels.

The state-of-the-art baselines for graph classication: (1) the WL subtree kernel [START_REF] Shervashidze | Weisfeiler-lehman graph kernels[END_REF] Baselines WL subtree 73.8 ± 3.9 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 78.9 ± 1.9 90.4 ± 5.7 75.0 ± 3.1 59.9 ± 4.3 86.0 ± 1.8

GNN variants

MEAN1-LAYER (GCN) 74.0 ± 3.4 51.9 ± 3.8 50.0 ± 0.0 20.0 ± 0.0 79.0 ± 1.8 85.6 ± 5.8 76.0 ± 3.2 64.2 ± 4.3 80.2 ± 2.0 MAX1-LAYER (GraphSAGE) 72.3 ± 5.3 50.9 ± 2.2 85.1 ± 7.6 75.9 ± 3.2 63.9 ± 7.7 77.7 ± 1.5 i.e., (GCN) [START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF], (GraphSage) [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF]. Is it possible to go deeper? A proposal to solve this problem is described in [START_REF] Li | Gated Graph Sequence Neural Networks[END_REF]. Going deeper is possible if the number of parameters is reduced. A solution is to share parameters across layers. It means that a single neural network is used, the same for each layer. To take into account that the layer l impacts the layer l+1, a Recurrent Neural Network (RNN) is used where the notion of time is replaced by the concept of layer. The global idea is that nodes aggregate messages from their neighbors using a recurrent neural network. This idea is depicted in Figure C.6. The new layer l + 1 is computed by the taking message from neighbors at step l as well as the output of the layer l. H (l+1) = RN N (H (l) , AGG (l) )

This architecture can handle models with > 20 layers and it allows for complex information about global graph structure to be propagated to all nodes. 

C.5.2 Graph pooling

Each layer H l outputs a graph and a node embedding. So far the graph is the same as the input graph. To extract information at dierent scales two schemes can be adopted:

• Adjacency operators at dierent scales (A J ) as in [Nowak et al., 2017].

• Graph coarsening for graph pooling as in [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF].

The graph pooling goals are: a) pool similar local features (max pooling or average pooling) and b) series of pooling layers create invariance to global geometric deformations. The main challenge is to design a multi-scale coarsening algorithm that preserves non-linear graph structures. Graph coarsening decomposes G into smaller meaningful clusters. This problem is combinatorial and is N P-hard.

In [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF], a graph pooling layer is added. The pooling layer takes as input [G, H l ] and outputs [G , H l+1 ] where |V | < |V | and H l+1 ∈ R |V |×m l . In the graph pooling layer, some graph clustering algorithm have be favored such as [START_REF] Inderjit | Weighted graph cuts without eigenvectors a multilevel approach[END_REF][START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF].

Graph pooling layers are inspired from pooling layers that appear in classical Convolutional Neural Network (CNN).

C.5.3 Dierentiation and training

Training a GNN is similar to standard MLP or CNN. The main idea is to minimize the loss l() The loss is a composition of functions so its derivative is a composition of derivatives. This principle is called the chaine rule or back propagation.

(
∂l(W, G) ∂W = ∂l(W, G) ∂H (L) (W ) × ∂H (L) (W ) ∂H (L-1) (W ) × ∂∂H (L-1) (W ) ∂H (L-2) (W )

• • •

If each function that composed the neural network is dierentiable then the derivative can be computed. Issues occur for functions that are not continuous anywhere. This is the case of ReLU (Rectied Linear Units) ReLU (x) = max(0, x). The derivative is then :

ReLU (x) = 1, if x > 0 0, otherwise (C.1)
Now what about x = 0? Technically this is undened. When x = 0, there are many possible lines (slopes) we could t through it. So what to do here?

Basically, it is commonly accepted to impose a slope when x=0. A common choice is when x=0, the derivative will be 0. It could be some other value, but most implementations use this (this has a nice property that it encourages many values to be 0 i.e., sparsity in the feature map). By doing so the ReLU function is modied but apparently it does not impact the training algorithms. The same phenomenon appears for the max pooling function. This function selects one node of G to be part of G in the graph pooling layer. Nodes from G that are not in G will have their derivative set to 0.

In matrix-vector notation, with the n × n Fourier matrix φ = [φ 1 , • • • , φ n ]: This method is used in [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF]. However, getting access to the eigenbasis of the graph laplacian is time-consuming as it implies matrix inversion.

f = φ T f and f = φ f Convolution of two vectors: f = (f 1 , • • • , f n ) T and g = (g 1 , • • • , g n ) T g * f =      g 1 g 2 • • • g n g n g 1 • • • g n-1 . . . . . . . . . g 2 g 3 • • • g 1           f 1 f 2 . . .
A way to avoid eigenanalysis is to consider our lter f as a polynomial of the Laplacian f θ (L I ) (L I is the laplacian for graph G I ) [Bronstein et al., 2016[START_REF] Deerrard | Convolutional neural networks on graphs with fast localized spectral ltering[END_REF]: Therefore, the k-nearest neighbors algorithm can be applied in the vector space without having to calculate the projections φ(x) and φ(x ) but only the value of the kernel k(x, x ). This property is called the kernel trick.

G I * f = f θ (L I )M I f θ (L) =

D.2 Kernel machines

Machine learning techniques that involve kernels are called Kernel machines. These algorithms include, support vector machine, nearest-neighbor classier, principal component analysis, Fisher discriminant analysis, k-means clustering, and many more.

The k-nearest neighbors algorithm where the distance function is based on a kernel can be called a Kernel machine. One of the signicant limitations of such algorithms is that the kernel function k(x, x ) must be evaluated for all possible pairs x and x of training points, which can be computationally infeasible during training and can lead to excessive computation times when making predictions for new data points.

Kernel machines that have sparse solutions, so that predictions for new inputs depend only on the kernel function evaluated at a subset of the training data points. The support vector machine (SVM), which became popular in some years ago for solving problems in classication, regression, and novelty detection. An important property of support vector machines is that the determination of the model parameters corresponds to a convex optimization problem, and so any local solution is also a global optimum. However, this formulation is not easy to optimize.

D.2.1 Distance to the decision line

D.2.4 Rescaling the parameters

To make the problem easier to solve, a rescaling of the data must be performed. 

D.3 Graph mathing-based Kernels

On the basis that a similarity measure can be dened as a decreasing function of a dissimilarity measure, some kernels are dened from a distance between graphs. The graph edit distance between graphs, measures the dissimilarity between graphs: a distance high indicates a low similarity between the two graphs while a low distance indicates a strong similarity.

Kernel functions that are derived from graph edit distance. Based on the assumption that graph edit distance is well suited for dicult graph matching problems, kernel functions are proposed that are suciently exible for unconstrained graph representations. Regarding kernel functions as similarity measures, we obtain embeddings of the space of graphs into vector spaces, where the similarity of vectors is dened according to the edit distance of the original graphs.

D.3.1 Trivial GED kernels

Trivial kernels [Neuhaus and Bunke., 2007] can be dened:

k1(G 1 , G 2 ) = -GED(G 1 , G 2 ) k2(G 1 , G 2 ) = -GED(G 1 , G 2 ) 2 k3(G 1 , G 2 ) = -tanh(-GED(G 1 , G 2 )) k4(G 1 , G 2 ) = exp (-GED(G 1 , G 2 ))
However, the edit distance between two graphs does not dene a metric in a Euclidean space, so there is no guarantee that the associated distance matrices will be negative-denite. The Gram matrices calculated by the GED kernels are therefore not semi-denite positive [Neuhaus and Bunke., 2007]. Therefore, the use of the kernel machines is limited since the function to be minimized is no longer convex and therefore no guarantee of convergence towards the global minimum is ensured.

However, non-compliance with the semi-dened positivity of the kernel does not completely exclude the use of kernel machines. n i = n i , the resulting similarity will be zero as well, due to k δ (n i , n i ). Hence, only the similarity of decompositions that are consistent in terms of the number of nodes and edges are taken into account, that is, contribute a non-zero similarity value to the convolution kernel. D.3.5 Random Walk Edit Kernel [Neuhaus and Bunke., 2007] Another class of graph kernels is based on the evaluation of random walks in graphs. These kernels measure the similarity of two graphs by the number of (possibly innite) random walks in both graphs that have all or some labels in common.

The basic idea of random walk kernels is to dene the similarity of graphs by comparing random walks in two graphs. For instance, one of the most elegant random walk kernels computes the number of matching random walks in two graphs. A key observation is that this computation can eciently be realized by means of the direct product of two graphs, without having to explicitly enumerate random walks in graphs. This enables to consider random walks of arbitrary length.

Random walk kernels are undoubtedly very ecient, but on noisy data their accuracy is often unsatisfactory. For this reason, an extension to a standard random walk kernel is proposed in this section to make the kernel more robust and therefore applicable to noisy graph data as well.

The idea is to integrate information from the global matching of graphs into the otherwise locally dened random walk kernel. To this end, we rst compute the edit distance of graphs and use the optimal edit path to dene the adjacency matrix of the direct product in an extended way to enhance the robustness of the random walk kernel.

Denition 29. (Direct graph product) ((i, k), (j, l))|ζ((i, k)) = ζ((j, l)) ∀(i, j) ∈ E 1 , (k, l) ∈ E 2 } Denition 29 is restricted to evaluating whether two discrete attributes are identical or not. An extension of the direct graph product is welcome to consider rich attributed graphs.

V X = {(i, k)|µ(i) = µ(k) ∀i ∈ V 1 , k ∈ V 2 } E X = {
Denition 30. (Modied direct graph product)

V X = {(i, k)| ∀i ∈ V 1 , k ∈ V 2 } E X = {((i, k), (j, l))| ∀(i, j) ∈ E 1 , (k, l) ∈ E 2 }
The adjacency matrix A X of this modied direct product graph can then be dened by : A x(i,k),(j,l) = k edge ((i, k), (j, l)) if ((i, k), (j, l)) ∈ E X 0

Otherwise

Where the kernel function k edge measuring the similarity of pairs of nodes and edges based on edit operations. The random walk kernel enhanced by edit distance is then dened according to the standard random walk kernel function. Given a decay factor 0 < Λ < 1:

k(G 1 , G 2 ) = |Vx| i=1 |Vx| j=1 ∞ n=0 Λ n A n x ij
The edit distance enhanced random walk kernel diers from the random walk kernel for discretely labeled graphs and the modied random walk kernel for continuously labeled graphs only in the denition of the adjacency matrix A X of the direct product.
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Figure 1

 1 Figure 1.1: A functional block diagram of a pattern recognition process. The whole procedure maps the pattern domain to the label domain.

  groups such as AFRIF (French Association for Pattern Recognition and Interpretation) and at the international level around technical committees TC15 7 (Graph-based representation for pattern recognition), TC2 (structural and syntactical pattern recognition) of International Association for Pattern Recognition (IAPR). Graph-based representations have been used with considerable success for solving many problems in Document Image Analysis. For instance, my PhD thesis entitled "Graph Mining and Graph Classication: Application to cadastral map analysis." was established in this context. The rise of graph-based pattern recognition methods has been greatly supported by the document image analysis community. At the national level thank to Written Communication Research Group (GRCE) and at the international level through TC10 Graphic Recognition (GREC) and TC11 Reading Systems. Therefore, the dissemination is conveyed by a high number of scientic journals that are concerned with this research area (e.g., Pattern Analysis and Applications, International Journal of Document Analysis and Recognition (both Springer), Pattern Recognition and Pattern Recognition Letters (both Elsevier), and the IEEE Transactions on Pattern Analysis and Machine Intelligence, to name just a few examples. Conferences and workshop are also devoted to this topic Graph-based Representation (GbR), Structural/Syntactic Pattern Recognition (SSPR) workshops and a dedicated track on the International Conference on Pattern Recognition (ICPR). Finally, it is interesting to name some recent competitions on this eld: Graph Distance Contest (2016), Competition on Subgraph Spotting in Graph Representations of Comic Book Images (2018) and Contest on Graph Matching Algorithms for Pattern Search in Biological Databases (2014) hosted by the ICPR. Subgraph Isomorphism challenge launched by the MIT (http://graphchallenge.mit.edu). Regionally speaking, problems related to graph computation are well represented at the ICVL Federation (Informatique Centre Val de Loire) and the research axis called Graph algorithmics and exponential complexity (18 members from 3 teams). My work concerns the structural pattern recognition, proposing contributions related respectively to supervised graph classication and graph matching. Especially, a focus is given on similarity and dissimilarity computation on graphs. My work is applied to image analysis problems for object recognition and detection as well as molecule classication (Chemoinformatics). My scientic course is at the conuence of two research areas: combinatorial optimization and machine learning. By confronting and combining theses two visions, new proposals and a better understanding of structural pattern recognition problems have arisen. Since my rst research activities started with my doctoral studies, I was led to model problems, to formalize and design algorithms. I have followed this thread to tackle problems in SPR. Of course, various colleagues contributed inestimably to this work. It would not be possible without the hard work of "my" PhD students (Zeina Abu-Aisheh, Mostafa Darwishe and Maxime Martineau) and my colleagues (Donatello Conte, Jean-Yves Ramel, Vincent T'kindt, Gilles Venturini, Antoine Tabbone, Alireza Alaei, Jean-Marc Ogier, Jean-Christophe Burie, Pierre Héroux and Sébastien Adam).

  µ is a vertex labeling function which associates the label l ui to a vertex u i ζ : E → L E . ζ is an edge labeling function which associates the label l eij to an edge e ij In the literature and to make the notation simpler, L V and L E are omitted which leads to G = (V ,E,µ,ζ ). Denition 2 allows to handle arbitrarily structured graphs with unconstrained labeling functions. For example, attributes of both vertices and edges can be part of the set of integers L = {1, 2, 3, • • • }, the vector space L = R n and/or a nite set of symbolic attributes L = {x, y, z, • • • }.

Figure 3

 3 Figure 3.1: An example of graph matching modelled as a QAP.

  .1. Now let us take a look to another interesting problem called Maximum a posteriori(MAP)inference problem for Conditional Random Field (CRF) and see how it is related to graph matching. 3.1.1.1.2 Maximum a posteriori (MAP)-inference problem for Conditional Random Field (CRF) Finding the most likely conguration of a Conditional Random Field (CRF), also called MAP-inference or energy minimization problem for graphical models, is of big importance in computer vision, bioinformatics, communication theory, statistical physics, combinatorial optimization, signal processing, information retrieval and statistical machine learning. Denition 9. Conditional random elds (CRF)

Figure 3 . 2 :

 32 Figure 3.2: An example of graph matching modelled as a CRF.

  Figure 3.3. Positioning the graph matching problems with respect to other fundamental problems is important because QAP or MAP-inference problems are well studied. QAP or MAP-inference solvers could be useful to solve the graph matching problems.

Figure 3

 3 Figure 3.3: A relation between the Graph Edit Distance (GED), Quadratic Assignment (QAP), Maximum-a posteriori (MAP) inference and error-tolerant graph matching (ETSGM and ECGM) problems.

Figure 3 . 4 :

 34 Figure 3.4: Example of graph matching and related matrices [Zhou and la Torre, 2016]. (a) Two synthetic graphs. (b) The correspondence matrix X. (c) The rst graph's incidence matrix G 1 . (d) The second graph's incidence matrix G 2 . (e) The node anity matrix K p . (f ) The edge anity matrix K q . (g) The global anity matrix K.
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 35 Figure 3.5: State of the art on graph matching.#papers is the number of papers according to the criteria: model type and heuristic or exact methods. A paper is cited for each category to give an example.

Figures 3. 5

 5 Figures 3.5 and 3.6 give a synthetic view of the literature. Figure 3.5 displays the number of research papers according to the model they use and the method family. Figure 3.6 shows the number of research papers by the solving method types. From these gures two facts can be stated. Exact methods are rarely study (only 1 paper) and few works have paid attention to ILP models. From Table 3.1, we can observe that people working on Problem 3(ETSGM) have concentrated their eorts on the QAP and MAP-inference solvers (Frank-Wolfe like methodology, dual decomposition methods, ...). Research community working on Problem 4(ECGM) have favored LSAP-based and tree-based methods.
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 36 Figure 3.6: State of the art on graph matching.#papers is the number of papers according to the type methods. A paper is cited for each category to give an example.

Figure

  Figure 3.8.

Figure 3

 3 Figure 3.8: A comparison of the sugbraph matching and error-correcting graph matching problems when deletion and insertion costs are identical for any vertex or edge and higher than any substitution cost.

  3. Graph ow: the graph ow dataset[gra, 2015] comes from a tracking problem with large displacements[START_REF] Abu Alhaija | Graphow 6d large displacement scene ow via graph matching[END_REF]. Keypoints in frames of RGB-D images obtained by a Kinect camera are matched. The depth information provided by the Kinect camera is taken into account when computing the cost functions.
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 39 Figure 3.9: From [Zhang et al., 2016a]. The x-axis is the rotation angle gap between frames. The "Acc" axis represents the similarities between matchings. The normalized Obj axis represents the normalized objective function values.

  Figure 3.10: From [Zhang et al., 2016a]. Matching results on VOC images. Typical matching result are shown on the left. Yellow lines indicate correct matches, blue lines indicates incorrect matches, and green lines indicate matches between outliers. The results of DD are not shown due to the prohibitive execution time
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 3 Figure 3.11: Graph data repository for error correcting graph matching
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 3 Figure 3.12: Average speed-deviation scores on MUTA Dataset.
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 3 Figure 3.13: Average speed-deviation scores on GREC Dataset.

Figure 3 .

 3 Figure 3.14: Local branching ow. a) depicts the left and right branching. b) shows the neighborhoods in the solution space

Figure 3 .

 3 Figure 3.15: Characteristics of anytime algorithms

Figure 3 .

 3 Figure3.16 depicts the list of improved solutions (i.e., distances) found by the anytime methods ADF-UB and ADF on one random pair of graphs taken from MUTA. One can observe that in the rst few milliseconds ADF-UB does not output any solution while ADF succeeds in outputting several solutions, however, with the delight of time both of them reach the same distance. Such a fact reveals the importance of anytime algorithms, since they are able to improve their solutions in a few milliseconds.

Figure 3 .

 3 Figure 3.16: A random pair of graphs taken from MUTA-70 database illustrating the improvement of found solutions with the delight of time

Figure 3 . 17 :

 317 Figure 3.17: MUTA deviation: left (up to 40 ms), right (up to 400 ms).

Proposition 4

 4 is a rst attempt toward the unication of two communities working respectively on GED and subgraph matching problems. The proposition needs to be validated and fully proved with more examples and numerical experiments. All the methods solving the Problem ETSGM represented by Model SGMIQP can be used to solve the Problem ECGM under a specic cost function s

Figure 3 .

 3 Figure 3.18: A comparison of the sugbraph matching and error-correcting graph matching problems when the similarity function s(i → k) = -{c(i → k) -c(i → ) -c( → k)}

  Complexity of Problem 11 is O(M σ) with σ the complexity of the dissimilarity function. In the literature, the complexity of the dissimilarity function is often ignored to focus on the complexity of the kNN.To exploit the Problem 11 in a classication context, a voting operator has to be dened. The max voting operator is a function ρ : K → T dened by: Denition 10. Max Voting Operator:

Figure 3 .

 3 Figure 3.19. Considering the four graphs G 1 , G 2 , G 3 , G 4 , the rst axiom implies that d(G 1 , G 4 ) ≥ 0 and d(G 4 , G 1 ) ≥ 0. The third axiom implies that d(G 1 , G 4 ) = d(G 4 , G 1 ). The fourth axiom implies that :

Figure 3 .

 3 Figure 3.19: Four graphs and the distance between each graph.

Figure 3 . 20 :

 320 Figure 3.20: Speeding up the kNN problem : State of the art of kNN methods operating in dissimilarity space.

  1)/2 n c = Number of concordant pairs n d = Number of discordant pairs t i = Number of tied values in the i th group of ties for the rst quantity u j = Number of tied values in the j th group of ties for the second quantity By repeating this procedure for each graph of the database, |D| values of τ b are computed for an heuristic pm.

For a given

  heuristic (pm), it is interesting to analyze the distribution of τ b values computed for dierent graph query. Such a goal can be achieved by a statistical test. The hypothesis to be tested is H0: two variables O opt 1 and O pm 1

9 :

 9 Percentage of the number of times, the H0 hypothesis (τ b = 0) was rejected for 10: Percentage of the number of times, the H0 hypothesis (τ b = 0) was rejected for each heuristic on MUTA-30 instances

  Figure 3.21: Histograms showing τ b distribution for each heuristic for MUTA-30 (a) and PAH (b)
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 3 Figure 3.24: Scatter plots of the optimal edit distances (x-axis) and the suboptimal edit distances (y-axis). Orange dots are optimal distances.
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 41 Figure 4.1: An overview of the learning graph matching problem. Three sub-problems arise as learning features, learning dissimilarity and learning to match.

Figure 4 .

 4 Figure 4.2: A general framework for supervised learning of graph matching.
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 4 Figure 4.3: Local parametrization of graph matching.
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 44 Figure 4.4: Siamese architecture: a structural denition.

Figure 4 . 5 :

 45 Figure 4.5: Siamese architecture for graph matching.

Figure 4 . 6 :

 46 Figure 4.6: Computational pipeline of the fully trainable graph matching model.

Figure 4 .

 4 Figure 4.7: A literature review of machine learning techniques for graph matching.

  4. A better understanding of the training impact, generalization power and size of the training set.

4. 1

 1 .3.1 Deadlock 8 : How to deal at a ne level with insertion and deletion costs? 4.1.3.1.1 Motivation In the context of the ECGM problem, an interesting question arises:

Figure 4 .

 4 Figure 4.8: Illustration of the parametrized score function computation.

  matching for machine learning To perform conventional machine learning techniques such as Support Vector Machines (SVM) or Deep Neural Networks (DNN) on a data set, a xed feature vector size is often mandatory. In the context of machine learning, G 2 is the model graph and is considered to be xed during the learning phase. Consequently, G 2 is renamed G m in the manuscript. To obtain a xed size, in Equation 4.12b, the sizes of the vectors β and Φ(G, G m , y) must only depend on the size of G m and not on the query graph G. The graph elements of G and the components of graph G m = (V m , E m ) are aligned into a vectorial form by the function Φ. Φ(G, G m , y) is a vector ∈ R |Vm|+|Em|+2 . Two extra components

Figure 4 . 9 :

 49 Figure 4.9: Parametrized matching function where G 1 has 7 graph components (4 nodes and 3 edges).

Figure 4 .

 4 Figure 4.10: Computation graph of our learning problem from the inputs to the loss.

Algorithm 2 6

 2 Training the graph-based perceptron for matching. 1: INPUT: T rS = {(G k , y gt k )} M k=1 and G m 2: INPUT: #iter is the maximum number of iterations 3: INPUT: α learning rate 4: OUTPUT: Learned β. A weight vector 5: Init: β ← 1 and iter ← 0

Figure 4 . 4 :

 44 Figure 4.11: Principle of the gradient descent.

Figure 4 .

 4 Figure 4.12: Matching evolution from iteration 0 (top) to 200 (bottom).

Figure 4 .

 4 Figure 4.13: Training: Accuracy in function of the number of epochs.

Figure 4 .

 4 Figure 4.14: Machine learning techniques for graph classication and a focus on bridging the gap between graph matching and embedding techniques.

4. 2

 2 Graph classication 4.2.1 State of the art from a machine learning viewpoint

Figure 4 .

 4 Figure 4.15: Taxonomy of graph prototypes.

Figure 4 .

 4 Figure 4.16: Bridging the gap between end-to-end graph embedding and graph space techniques by learning graph matching and prototypes.

Figure 4 . 17 :

 417 Figure 4.17: Overview of the perceptron and a modied perceptron for graph classication. I in this gure is an input vector.

Figure 4 .

 4 Figure 4.18: Computation graph of our graph-based classier from the inputs to the loss.

Figure 4

 4 Figure 4.11. Algorithm 3 is a deterministic algorithm whose complexity in terms of calls to the matching solver is O(#iter • |T rS|) where #iter is the number of iterations. In addition, the entire test set (T eS) is classied by only |T eS| calls to the graph matching algorithm. This linear complexity makes the decision procedure a fast graph classier. Classical kNN graph classiers require generally |T rS| × |T eS| calls to the graph matching solver.The methods can also be seen as learning a discriminative distance function between a training set and a graph prototype (G m ).

From

  7: Best parameters according to learning strategies R-1-NN and C-1-NN taken from Paper I:[Riesen and Bunke, 2010b] and from Paper II:[START_REF] Francisco Moreno-García | A graph repository for learning error-tolerant graph matching[END_REF] 

Figure 4 .

 4 Figure 4.19: Letter-HIGH : Impact of the learning rate on the convergence.

Figure 4 .

 4 Figure 4.20: Top: Original images. Bottom: Results of a lter graph convolves on regular grids of images (8-connexity). The neighbourhood is a one hop neighbourhood.

Figure 4 .

 4 Figure 4.21: Two graphs are convolved. G I is the input graph and G F is the lter graph. Attributes of G F are parameters W . Convolution is based on matching G F at dierent locations of the input graph.

Figure 4 .

 4 Figure 4.22: Graph matching based convolution layer.

  G I and G F are respectively referred to as the input graph and the lter graph. Denition 19. Graph convolution operator

  lter is a convolution operation based on a lter graph. The output of graph convolution lter convf ilter : G × G → G is dened as follows:convf ilter(G I , G W F ) = G I G W F + W b• (4.28a) (4.28b)Denition22. Graph convolution layerA convolution layer is a set of lter graphs {G k F } k k=1 endowed with a convolution operator and applied on a same input graph G I .The output function of the layer is a graph with same topology as G I but with attributes as vectors composed by attributes of every lters outputs. Now let us how this layer can be integrated into a deep learning architecture. 4.2.3.2.2.2 Architecture GNN based on our graph convolution layer can perform both graph classication or node classication. Graph convolution layers can be stacked and combined with conventional layers or activation functions like RelU or Softmax. Only the pooling layer should be adapted to graphs. The graph pooling goals are: a) pool similar local features (max pooling or average pooling) and b) series of pooling layers create invariance to global geometric deformations (translation invariance for instance). The main challenge is to design a multi-scale coarsening algorithm that preserves non-linear graph structures. Graph coarsening decomposes G I into smaller meaningful clusters. This problem is combinatorial and is N P-hard. In the literature, some graph clustering algorithm have been favored such as Graclus or the Louvain method [Dhillon

Figure 4 .

 4 Figure 4.23: MNIST digits classication (Regular grid, Superpixels) (Taken from CVPR 2017 tutorial http://geometricdeeplearning.com/ ).

  53 % correspond to (super)pixels and edges represent their spatial relations. We considered two constructions: all images represented on the same graph (regular grid) and each image represented as a dierent graph (see Figure4.23 left and right, respectively). Furthermore, the grids contain 196 vertices and the superpixel-based graphs contain 75 vertices.

  the issue of matching and classifying graphs. In structural pattern recognition based on graphs, the idea is to transform patterns into graphs and then perform the analysis and classication of patterns in the domain of graphs. Graphs are very exible computer data structures that allow a very rich and very detailed description of a very wide range of objects, ranging from chemical molecules to images, via social networks. Paradoxically, despite the important power of representation of graphs, the Machine Learning and Operational Research communities have not mixed closely to develop powerful algorithms for analyzing data represented by graphs. My research activities are focused around pattern recognition using structural methods. Two axes are developed during my research: discrete optimization and learning in the space of graphs.

Figure 5 .

 5 Figure 5.1: The combinatorial optimization (CO) solves a machine learning problem.

Figure 5 . 2 :

 52 Figure 5.2: The combinatorial optimization (CO) algorithm repeatedly queries the same ML model to make decisions. The ML model takes as input the current state of the combinatorial algorithm.

Figure 5 . 3 :

 53 Figure 5.3: Machine learning acts alone to provide a solution to the problem.

Figure 5 . 5 :

 55 Figure 5.5: A proposal of end-to-end learning graph matching scheme based on a combinatorial layer. Red parts are new components compared to[Nowak et al., 2017] 

Figure 5 .

 5 Figure 5.7: A branch and bound algorithm guided by a learned predictor.

Figure 5 .

 5 Figure 5.8: A proposal of end-to-end learning graph classication in the graph space. The left part of the image (the GNN) is taken from[START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF] 

Figure 5 . 9 :

 59 Figure 5.9: Illustration of the domain adaptation. (left) dataset for training, i.e. source domain, and testing, i.e. target domain. Note that a classier estimated on the training examples clearly does not t the target data. (middle) a matching Y is estimated and used to transfer the training samples onto the target domain.(right) the transferred labeled samples are used for estimating a classier in the target domain.
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 5 Figure 5.10: A mind map about the perspectives

Figure

  Figure C.1: A time line about graph neural networks.

  What to do when the input is a graph? C.3 The basics of graph neural networks C.3.1 Denitions Assume we have a graph G:

  Figure C.2: A general overview of a GNN.

Figure C. 5 :

 5 Figure C.5: MNIST digits classication (Regular grid, Superpixels) (From CVPR 2017 tutorial http://geometricdeeplearning.com/ ).

C. 5

 5 Advanced GNN C.5.1 Gated GNN GNNs and GraphSAGE generally are only 2-3 layers deep. Increasing the number of layers may lead to an overtting phenomenon and the vanishing/exploding gradients during backpropagation.

Figure C. 6 :

 6 Figure C.6: A general overview of a Gated GNN.

  also called cost function) according to the parameters. The minimum of the cost function is where its derivative is equal to 0.

  g * f = φ diag( g1 , • • • , gn )φ T f C.5.5.2 Spectral convolution for graphsConvolution will be noted as G I * f with G I the input graph and f the lter in its abstract form.The rst one is based on spectral graph theory, which is the equivalent of Fourier analysis for graphs. The idea is to take advantage of the Convolution Theorem to apply convolution on a given graph. The convolution theorem states that convolution in the spatial domain is equivalent to product in the frequency domain. It is then possible to multiply the two signals in the frequency domain to obtain the convolved signal. The structure that allows to work on the frequency domain of a graph is its Laplacian: L = D -A with D and A respectively being the degree and adjacency matrices.The eigenvectors of the graph Laplacian act as the Fourier basis of the graph. Convolving over a graph from its frequency domain is as follows:G I * f = Φ I diag( f )Φ I M Iwhere f is the lter f in the spectral domain, M I is the vector of edge attributes in graph G I and Φ I are the Laplacian eigenvectors for graph G I[Bronstein et al., 2016].

  r k=0 θ k .L k D.1.1 Kernel and dissimilarityIn pattern recognition, it is desired to combine a kernel with the k-nearest neighbors algorithm. It is therefore necessary to calculate distances. Kernels can be used to construct dissimilarities.d(x, x ) = ||φ(x) -φ(x )|| 2 = < φ(x), φ(x) > + < φ(x ), φ(x ) > -2 < φ(x), φ(x ) > = k(x, x) + k(x , x ) -2k(x, x )

(

  Figure D.1: Orthogonal projection of the point A on the line.

  w = cst.w and b = cst.b where cst is a constant then the rescaling does not change the distance d(x, f (), t). If the closest samplex min = arg min i∈[1,••• ,M ] t.f (xi,w,b) ||w||2, we can use this freedom to set t min (w T x min + b) = 1.And all the samples satisfy:t i (w T x i + b) = 1 ≥ 1, ∀i ∈ [1, • • • , M ] Subject to t i (w T x i + b) ≥ 1 ∀i ∈ [1, • • • , M ] (D.4)D.2.9 ClassicationIn order to classify new data points using the trained model, the sign of f (x, w, b) is evaluated, dened by t = w T x + b, if the canonical formulation is solved (Equation D.4). Another possibility can be expressed in terms of the parameters {a n } and the kernel function if dual formulation was solved (Equation D.8) : i k(x, x i ) + bAny data point for which a = 0 will not appear in the sum in and hence plays no role in making predictions for new data points. The remaining data points are called support vectors. This property is central to the practical applicability of support vector machines. Once the model is trained, a signicant proportion of the data points can be discarded and only the support vectors retained.

  t = i∈S a i t i k(x, x i ) + bWhere S denotes the set of indices of the support vectors.
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  The function d(G 1 , G 2 , y) measures the dissimilarity of graph attributes, and is typically decomposed into a rst order dissimilarity function c(u i → v k ) for a node pair u i ∈ V 1 and v k ∈ V 2 , and a second-order similarity function c(e ij → e kl ) for an edge pair

	Constraints 3.1c and 3.1d indicate that each vertex of a graph must be matched with only one vertex
	of the other graph.

Table 3 .

 3 Second let us take a look to methods solving Problem ECGM. Results on PAH and CMU House data sets are reported on Table3.3 and Table3.4, respectively. Costs associated with these experiments are reported in Table3.5. According to these results, mIPFP seem to be the fastest and the most accurate. mIPFP dominates other methods on the two data sets.

	3.1.1.5.7 Reasoning about eectiveness and speed-up	
		BS-5	SBPBeam-5	mIPFP	mGNCCP
	Deviation (%)	103.6	5.24	0	20
	Time (s)	0.14	8.50	0.18	9.61

). VOC datasets contains vertex and edge outliers. Without outliers, Hungarian-BP always achieves the highest accuracy. It also achieves the best objective in the Motorbikes dataset, and the second best in the Car dataset. The speed of the Hungarian-BP is also quite competitive. In the Motorbike dataset, DD achieves the second best accuracy, but its speed is hundreds of times slower than that of Hungarian-BP method. In the Car dataset, FGM achieves the second best accuracy, but its speed is 10 times slower than that of Hungarian-BP. When outliers exist, the running time of Hungarian-BP algorithm increases with the number of outliers. However it is sill faster than the FGM method. 4: Results on CMU House dataset of error-correcting graph matching methods with a time limit of 10s.

  The best found upper bound is saved in a variable called U B. A backtrack to the parent node is performed when a leaf node is reached. Finally, during the search, if g(p) + h(p) is greater than U B then p is discarded. In the worst case, |V 1 |.|V 2 | partial solutions to be explored are stored and hence the memory consumption is not exhausted. This method is called DF .

3.1.3.2 Deadlock 2: Performance evaluation of graph matching methods 3.1.3.2.1 Motivation The error-correcting graph matching problem is often evaluated in a classication context and less deeply assessed in terms of deviation to the optimal solution. So, we

  Table 3.7 summarizes the GED methods that were included in the contest.

	Acronym	Reference	Details
	BS-100	Neuhaus and Bunke. [2007]	Beam-search of size 100
	LSAPE	Bougleux et al. [2017b]	Linear Sum Assignment Problem
			with Edition
	QAPE =mIPFP	Bougleux et al. [2017a]	Quadratic Assignment Problem
			with Edition
	F2	Lerouge et al. [2017]	Exact binary linear program-
			ming formulation
	F24threads	Abu-Aisheh et al. [2017a]	Parallel version of F 2
	F2LP	Abu-Aisheh et al. [2017a]	Upper bound of F 2
	DF	Abu-Aisheh et al. [2015b]	Depth-rst algorithm
	DFUB	Abu-Aisheh et al. [2017a]	Upper bound of DF
	PDFS	Abu-Aisheh et al. [2018]	Parallel version of DF

Table 3 .

 3 7: Methods included in the graph edit distance contest of ICPR 2016.

  .1.3.4 Deadlock 4: Relation between Problem ETSGM and Problem ECGM In this paragraph, we propose to draw a tighter relation between both problems. Especially, we create a link between both models Model GMIQP and Model SGMIQP. Our proposition goes as

	follows:
	Proposition 4. Model GMIQP and Model SGMIQP are equivalent in terms of solutions under a
	reformulation of the cost function s

  method based on a metric tree can use these bounds to prune the search space.

	3.2.1.2.2 Heuristic methods
	3.2.1.2.2.1 Greedy search in proximity neighborhood graphs Proximity graph meth-
	ods (such as HNSW[Malkov and Yashunin, 2016]) are considered as the current state-of-the-art for
	the approximate nearest neighbors search. The methods are based on greedy traversing in proxim-
	ity neighborhood graphs

Table 3

 3 

		Database	# Train	# Test	Comment
		PAH	22		22	2 classes
		MAO	16		16	2 classes
		LETTER-HIGH	750		16	10 classes
	Table 3.11: Data sets selected from the ICPR'2016 contest.
		Node	Cost	Edge	Cost	Node/Edge	Node/Edge	Node/Edge
		function		function		substitu-	Insertion	Deletion
						tion	
	PAH	Kronecker	Kronecker	0		3	3
		delta		delta			
	MAO	Kronecker	Kronecker	0 or 3		3	3
		delta		delta			
	LETTER-HIGH	Euclidean	Kronecker	L2 norm	1	1
		distance		delta		for nodes.
						Edge are
						with-	
						out	at-
						tributes.
		Table 3.12: Learning-free cost functions.
	comments. Classication rates are not negatively impacted by heuristics. Heuristics can obtain
	higher classication rates than exact methods.			
	Now, we can try to analyze this behaviour.			
	3.2.3.3.2 Why heuristics can provide good classication results? As mentioned before,

.13. JH is an exact method. All optimal solutions were computed by JH. BP and BS-10 are two heuristics. Acc is the classication rate on the test set. time is the average time in milliseconds to classify a query. From this table, we can make some

Table 3

 3 

			PAH		MAO	LETTER-High
		Acc	time (ms)	Acc	time (ms)	Acc	time (ms)
	JH	0.6363	31765.5	0.8125	11009	0.8346	534.66
	BP	0.6363	34.81	0.75	26.75	0.836	80.63
	BS-10	0.6818	2928.04	0.8125	57.68	0.8346	227.44

.13: Classication rate obtained by exact and heuristic methods.
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 3 14: The characteristics of the datasets included in the experiments.

	Dataset		GREC	Protein	Muta	Fingerprint	Webpage	House-
									Hotel
	#train		286	200		1500	378	780	51
	graphs							
	#valid		286	200		500	3OO	780	20
	graphs							
	#test		528	200		2337	1532	780	70
	graphs							
	vertices	11.5	32.6		30.3	5.38	186.04	30
	edges		12.2	30.8		79	8.8	104.03	62.1
	Max	ver-	25	40		71	26	785	30
	tices							
	Max edges	30	149		112	48	524	79
	Vertex		x,y coor-	Type		Chemical	None	Word's fre-	60 size fea-
	labels		dinates	and		symbol		quency	ture
				amino				
				acid	se-			
				quences			
	Edge labels	Line	Type		Valence	Orientation	Section la-
			type	and				
				length				
	Dataset	GREC	Muta	Protein	Fingerprint Webpage	House-
									Hotel
	τ vertex		90	11		11	0.7	2	3
	τ edge							

bel Distance as their meta parameters. Each database is divided into three disjoint subsets, viz. the training, the validation, and the test set. The elements of the training set are used as prototypes in the 1NN classier. The validation set is used to determine the values of the meta parameters τ node , τ edge and α that maximizes a classication rate for the method called BP . The cost function is parametrized with τ node , τ edge and α (.i.e. c(i, k; τ node , τ edge , α)). This cost function is optimized only for the BP heuristic. Is the learned cost function useful for other heuristics? This is open question. This general question can be rened if a link does exist between methods. For example, if BP is an upper bound of the method called DF then does the optimized cost function c * (.) maximizes a classication rate for DF? Table

3

.15: The cost functions and meta parameters of the datasets.
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 3 16: Classication results on ve datasets where time refers to the average time in milliseconds needed by each dissimilarity computation whereas Acc refers to the classication accuracy. The best results are marked in bold style. Note that k was xed to 1.

		GREC	Protein	Muta	Fingerprint	WebPage	House-Hotel
		time Acc	time Acc time	Acc	time	Acc	time Acc time	Acc
	one-Tree-k-DF (CAFO) 136.31 98.5 320.77	47	70.56	72.41 30.25 61.68 152.48 21	395.66	98,57
	one-Tree-k-DF (SGPCO) 51.01 98.5 306.48	47	69.23 71.05 29.06 61.68 48.91 21	370.43	98,57
	one-Tree-k-DF (RO)	54.13	98.5 291.60	47	69.45	71.28	28.76 61.68 51.61	21	363.37	98,57
	DF	491.87	98.5 426.90	42	487.43	70	168.45	63.83 470.03 21	485.05	98,57
	BS-1	242.08	98.5 127.35 42.5 434.61 55.5	74.35	62.46	426.22	12.4	108.18 98.57
	BS-100	293.45	58.7	475.69	31.0	486.71	55.5	211.74	10.3	499.21	4.3	478.91	98,57
	BP	217.81	98.5 295.20	52 352.36	70	42.60	60.40	466.81	21	308.71	98.57
	FBP	97.63	98.5 197.12 38.5 250.57	70	36.53	61.35	449.06	15	189.07	98.57
	classication rate.												
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	Chapter 4
	Structural machine learning for
	graph matching and graph
	classication
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 4 2: Taken from[START_REF] Leordeanu | Unsupervised learning for graph matching[END_REF]: Comparison of matching rates for 2 graph matching algorithms before and after unsupervised learning on Cars and Motorbikes from Pascal07 database, with all outliers from the right image allowed and no outliers in the left image.

			SM	GA
	Cars: no learning		26.3%	31.9%
	Cars: with learning		62.2%	47.5%
	Motorbikes: no learning		29.5%	34.2%
	Motorbikes: with learning	52.7%	45.9%
			Matching methods
			SM	IPFP
	Learning methods	Accuracy (%)	Accuracy (%)
	w/o learning		60.4	61.4
	DW-SSVM [Cho et al., 2013]		66.2	69.0

Table 4 .

 4 

3: Taken from

[START_REF] Cho | Learning graphs to match[END_REF]

: Performance on synthetic point sets. A learning approach and a learning-free method (shown in each row) are evaluated with the state of the art graph matching algorithms (in columns)

  a graph and t i ∈ T is the class of the graph. One of the signicant limitation of (dis)similarity based algorithms is that the kernel or distance functions

	Machine	Family of methods
	learning	in
	graph space
	No	Explicit graph embedding [Luqman et al., 2013]: each graph is
		mapped to a feature vector (

φ : G → R n ). Thereafter it is not trivial to return in a graph space. The function φ is explicitly dened. By analogy with the image processing eld, such methods can be seen as handcrafted methods to extract features from graphs. Classiers are trained on vectors.
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 4 5: Categorization of high level methods for comparing graphs.

  y * )

	14:	end if
	15:	i ← i +1
	16:	end for
	17:	

iter ← iter +1

  classes node labels edge labels |V | |E| max |V | max |E| balanced

	LETTER-HIGH LETTER-MED LETTER-LOW CMU GREC Fingerprint COIL-DEL	(750,750) (750,750) (750,750) (71,70) (286,528) (378,1533) (2400,1000)	15 15 15 2 22 4 100	x,y x,y x,y Shape x,y none x,y	none none none none Line types 11.5 12.2 4.7 4.5 4.7 3.2 4.7 3.1 30 154.4 angle 5.42 4.42 none 21.5 54.2	9 9 9 30 25 26 77	9 9 9 158 30 24 222	Y Y Y Y Y N Y
		Table 4.6: Summary of graph data set characteristics.		
	4.2.3.2 Deadlock 11: Learning graph matching and graph prototypes in a hierarchical
	manner							
	4.2.3.2.1 Motivation A rst drawback of the graph-based perceptron is that it does not learn
	the prototype graph. The latter must be computed before. Second, the graph-based perceptron
		Database		R-1-NN	C-1-NN			
			α Kn Ke				

Table 4

 4 

					.8: Taxonomy of the compared methods		
			Classier		Parameter learning		Model graph Method's Name	
			1NN		R [Riesen and Bunke, 2009]	M TrS	R-M-1NN R-1NN	
					C [Cortés and Serratosa, 2015]	M TrS	C-M-1NN C-1NN	
			Perceptron		Gradient descent		M		G-M-Perceptron	
		0.9													
		0.85													
		0.8													
	Classification rate	0.45 0.5 0.55 0.6 0.65 0.7 0.75													
		0.4													
		1	2 1	4 1	6 1	8 1	1 0 1	1 2 1	1 4 1	1 6 1	1 8 1	2 0 1	2 2 1	2 4 1	2 6 1	2 8 1
								# of iterations					
					Learning rate=0.1	Learning rate=0.01			
					Learning rate=0.001	Learning rate=0.0001		
							(a) Median graph model					

Table 4 .

 4 9: Classication results. The best classication rates are marked in blue while the best pro-T eS Time η T eS Time η T eS Time η T eS Time η T eS Time

	cessing times are in red. "Best" means an improvement over other methods statistically signicant
	according to a z-test with a condence level of 70%			
		G-M-Perceptron	R-1NN	C-1NN	R-M-1NN	C-M-1NN
	Database η T rS η LETTER-LOW 1 0.98	1436	0.99 69700	0.96 71869	0.97 1341	0.98 1341
	LETTER-MED 0.90 0.87	1404	0.92 74506	0.93 72150	0.86 1388	0.81 1310
	LETTER-HIGH 0.86 0.81	1669	0.83 86377	0.84 84911	0.82 1731	0.71 1498
	CMU	1	0.99 11029	NA	NA	0.99 427955 NA	NA	0.99 10780
	GREC	0.84 0.75 14370	0.98 199087 NA	NA	0.96 14726 NA	NA
	Fingerprint	0.74 0.76	1576	0.58 260816 NA	NA	0.73 2138	NA	NA
	Coil-DEL	0.52 0.52 471575 NA	NA	NA	NA	NA	NA	NA	NA
	a given neighbourhood N (i).						

Table 4 .

 4 10: Recognition rates on MNIST 2class

	Representation Dataset	CNN	MoNet	Ours
			Valid	Test	Valid	Test	Valid	Test
	1 4 grid	MNIST	100 % 99.88 % 97.56 % 99.40 % 99.51 % 97.76 %
	75 superpixels	MNIST			94.13 % 92.70 % 94.13 % 89.

  5.3.1 Bringing semantic to computer vision task thanks to graphsOne characteristic that sets humans apart from modern learning-based computer vision algorithms is the ability to acquire knowledge about the world and use that knowledge to reason about the visual world. Humans can learn about the characteristics of objects and the relationships that occur between them to learn a large variety of visual concepts, often with few examples. Our future work will investigate the use of structured prior knowledge in the form of knowledge graphs to improve performance on image classication. Such additional information could help to deal with ambiguity and to bring the context into the classier. Graph neural networks will be a key component to represent the image and the semantic knowledge about the classication task (classication of documents, scene images or medical images for instance). Graph neural network could be a way of eciently incorporating knowledge graphs into a vision classication pipeline. A key challenge to require joint reasoning over the visual and knowledge graph domains. The question is even more

widely open: how could we built graph neural networks that deal with multiple graphs? Visual question answering is another task where this situation appears. In visual question answering with structured representations of both scene contents and the textual questions are presented by graphs. Structures and features of both graphs are completely dierent so that they cannot be input to the graph neural network in a straightforward manner. A way to tackle this issue could be to train several neural networks together with a mutual goal. Very promising works in this direction has emerged

  In this case, category detector can be utilized to facilitate tracking. The major challenge in objects tracking is how to associate noisy detected objects in the current video frame with previously tracked objects. We propose the use of graph-based representations and graph matching to deal with the data association problem. Strategies for matching graphs having large set of nodes Graph comparison in graph space is a challenging task. Input graphs can be huge. Very powerful tools already exist for matching graphs. However, due to their complexity, these algorithms cannot be used eciently (in less than a second) for graphs having very large sets of nodes (let us say more than 1000). In such as case, an interesting challenge could be to partition the graph. It could be achieved either by optimization methods based on some graph properties or by learning to partition thanks to paremetrized graph pooling layers for instance. The major advantages would be to create higher level of representations while reducing the computational cost of the graph comparison.

	5.3.8 Scalability
	5.3.8.1 Graph matching and GPU
	Nowadays, when developing graph matching methods to be integrated in a deep neural network,
	it is important to take into account the explosion of the computing power (GPU and CPU vector-
	ization). GPU compatible methods are more than welcome. Graph matching implementations in
	a computationally ecient manner thanks to complex matrix calculation is a big challenge.
	5.3.8.2
	Many tasks in Pattern Recognition and Document Image Analysis are formulated as graph
	matching problems. Therefore learning graph-based representations and related techniques is a
	real interest for the community. Image of documents are likely to be structured because they are
	images made by humans to humans. Recent work on the problem of subgraph spotting in graph-
	representation of comic book images (SSGCI) have been published [Le et al., 2018]. We could
	participate to this applicative problem thanks to our GED methods.

5.3.8.3 Increasing the "intelligence" of a pixel-based graph

When working with image based features, we often end up with a RAG-like graph which is very useful for image analysis but not for image classication, because it takes only into account very low level relations. How can we enhance such a graph without loosing of course its useful properties? A key challenge is then to build methods that can deal directly at pixel levels without data reduction as a preprocessing. Considering Euclidean data like images, graphs can be used to develop nonlocal approaches and to go beyond the standard 8x8 connectivity. While a pixel is linked to its 8 neighbours in a image, in a graph it is possible to be non-local and to extend to neighborhood denition. A pixel can be connected to every pixel in the image and each relation can be enriched by a set of features. As an example the VGG neural network that works well for image classication, its input is a grid of 224 × 224 = 50176 pixels. Extending this concept to a kN N graph (k = 16 for instance to double the neighborhood compared to a grid) would lead to a graph wit 50176 nodes and 802816 edges. Roughly speaking, this the size of data, we could likely face. A hierarchical method (deep) could then build a higher level of representation based non-local information. Fast graph neural networks will be an important element in the development of such pixel-based approach.

Table C .

 C with C-SVM was used as a classier. (2) state-of-the-art deep learning architectures, 1: Properties of the Bioinformatics and Social network datasets used in graph/node clas-

		Dataset		Size Classes Avg.nodes Labels
		MUTAG		188	2	17.9	7
		PTC		344	2	25.5	19
		ENZYMES		600	6	32.6	3
		PROTEINS		1113	2	39.1	3
		NCI1		4110	2	29.8	37
		NCI109		4127	2	29.6	38
		COLLAB		5000	3	74.49	-
		IMDB-BINARY		1000	2	19.77	-
		IMDB-MULTI		1500	3	13	-
		REDDIT-BINARY	2000	2	429.61	-
	REDDIT-MULTI-5K 5000	2	508.5	-
	REDDIT-MULTI-12K 11929	11	391.4	-
	sication experiments.				
	Datasets # graphs # classes Avg # nodes	IMDB-B IMDB-M 1000 1500 2 3 19.8 13.0	RDT-B RDT-M5K COLLAB MUTAG PROTEINS 2000 5000 5000 188 1113 2 5 3 2 2 429.6 508.5 74.5 17.9 39.1	PTC 344 2 25.5	NCI1 4110 2 29.8

Table C

 C 

.2: Test set classication accuracies (%).

Table C .

 C 2 compares test accuracies of the methods.

pouvant ne pas appartenir à la base d'apprentissage, les graphes généralisés sont des graphes synthétiques issus d'un processus de génération. Chacune de ces deux grandes familles se scindent en deux parties: 3) les graphes médians sont construits au regard d'une seule et unique classe du problème de classication sans prendre en considération les autres classes. Par opposition, 4) les graphes discriminants sont construits en tenant compte de toute la base d'apprentissage dans un objectif de minimiser une erreur de classication. Dans l'approche mentionnée précédemment, le prototype de graphe est choisi a priori en calculant un graphe médian d'ensemble. Dans la thèse de Maxime Martineau, l'architecture précédente de type perceptron a été étendue au concept de réseau de neurones convolutifs (CNN). Cette stratégie a permis de s'abstraire des prototypes de graphes calculés a priori pour le bénéce de graphes discriminants déterminés pendant la phase d'apprentissage. L'ensemble de ces travaux constitue des bases solides pour étendre les réseaux de neurones profonds (deep learning) à des données représentées sous forme de graphe.Perspectives pour l'appariement et la classication de graphesDans les problèmes d'appariement et de classication de graphes, l'apprentissage peut être intégré à diérents niveaux allant de l'apprentissage des graphes (structures et attributs) en passant par les mesures de similarité entre n÷uds et arcs jusqu'à l'exploration de l'arbre de recherche composé de tous les appariements possibles entre graphes. Des perspectives sont évoquées comme les couches combinatoires dans les réseaux profonds, le transport optimal pour l'appariement de graphes et l'apprentissage par renforcement. Finalement, des applications sont décrites comme l'adaptation de domaine non supervisée et le tracking d'objets dans des vidéos. vi

three dierent angles. First, the question of the ground-truth matching availability. Three cases can appear:1. The ground-truth matching is available.2. The ground-truth matching is not available.3. The ground-truth matching is indirectly available. It is available through some properties of the nal application. The ground-truth is usually computed by an application-dependent method.Second, data sets can also be split according to the cost function view point :1. The cost function is provided and so the comparison is reproducible.

Note that in most regression problems, the mapping is to a vector of reals while in classication problems, the mapping is to a vector of integers. Here, for simplicity of exposition, we will denote only the regression case. See Appendix B for more details about classication and regression. See Appendix C for node classication with GNN.

Remerciements

In addition, we only focus on techniques producing a matching at the end. Techniques such as metric learning methods that do not cope with this constraint are not detailed [START_REF] Pau Riba | Learning graph distances with message passing neural networks[END_REF].

The papers in the literature mainly dier on three aspects :

• How the Problem15 (LGM) is minimized.

• How the losses are employed.

• How the parameters are introduced.

• How the node/edge insertions and deletions are considered.

• Does the method involves a graph matching solver or not ? Now, we present a deeper insight of the dierent methods.

Shallow methods

The shallow methods focuses on learning the cost functions (c(.))). To better characterize the state of the art, we introduce two notations d V (.) and d E (.) that are derived from the cost function c(.). d V (.) and d E (.) denote specic cost functions between vertices and edges, respectively. With this consideration, the objective function dened in Equation 3.2 of the Model GMIQP can be rewritten as follows :

Equation 4.2 must be understood as the sum of vertex and edge dissimilarities when y variables equal to 1. Equation 4.2 must be minimized.

In this the same way of splitting cost functions for nodes and edges, the matching problem based on similarity (s V (.) and s E (.)) dened in the Model SGMIQP can be rewritten as follows :

s E (ij, kl) (4.3) Equation 4.3 must be maximized.

The rst series of papers are learning methods dedicated to the problem expressed by the Model SGMIQP. It means that only substitutions are concerned.

The method of [START_REF] Tibério | Learning graph matching[END_REF] aims at learning global features to facilitate the matching. Parameters to be learned are located on the node and edge features as shown in Equation 4.4. Parameters w E and w V are vectors of real values whose sizes are equal to the size of the vertex or edge features.

They use graphs with numeric attributes so s v is a 60-dimensional node similarity function for appearance similarity and s v is a simple binary edge similarity for edges. The learning procedure is iterative and aims at maximizing the number of correctly matched graph components between the ground-truth y gt and the estimated matching y. At each iteration the graph matching problem is solved by a branch and price method and the parameters w = [w V , w E ] are updated by the gradient descent method. Weights are global over the whole data set. The results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, they found that simple linear assignment with such a learning scheme outperforms the Graduated Assignment method. performed on these graphs by classical QAP solvers. Similarly, another experiment is performed on regular graphs with more symmetric structures. On these regular graphs, the GNN outperformed classical QAP solvers. The source code is available 3 .

Recently, [START_REF] Zanr | Deep learning of graph matching[END_REF] present an end-to-end model that makes it possible to learn all parameters of the graph matching process, including the node and edge features, represented as deep feature extraction hierarchies. The challenge is in the formulation of the dierent matrix computation layers of the model in a way that enables the consistent, ecient propagation of gradients in the complete pipeline from the loss function, through the combinatorial optimization layer solving the matching problem, and the feature extraction hierarchy. The N Phard graph matching problem is relaxed by dropping both the binary and the mapping constraints.

The model to be solved is then : Model 6. L2-norm relaxed QAP (RSGMIQP)

The optimal y * is then given by the leading eigenvector of the matrix K. The main components of the approach are shown in Figure 4.6. One may notice that the inputs are two images and two graphs of keypoints. In fact, the approach is dedicated to image because nodes represent keypoints in the image and node/edge features are extracted and learned to perform graph matching. The second step is the anity computation of matrix K (see Model 6(RSGMIQP)). Since K is large, it is computed as in [START_REF] Zhou | Factorized graph matching[END_REF] thanks to a factorization of the matrix K. K is decomposed into smaller matrices: Node-edge incidence matrix, node-to-node similarity matrix and edge-to-edge similarity matrix. Then the relaxed graph matching (see Model 6(RSGMIQP)) is solved thank to a spectral method that computes the leading eigenvector of the matrix K. The solution y * of the relaxed graph matching problem is further rened by adding L1 constraints (one-to-one mapping constraints) ∀i, i y ik = 1 and ∀k, k y ik = 1. This is performed by the Sinkhorn-Knopp algorithm [START_REF] Sinkhorn | Concerning nonnegative matrices and doubly stochastic matrices[END_REF]Knopp, 1967, Knight, 2007]. The fth step goes back to the image by measuring the 2D-displacement d i between two matched node i and k. Finally a loss is computed by computing a distance between d and the ground-truth displacement d gt from the source point to the correct assignment. The key contribution is the construction of the dierent matrix layers, obtaining analytic derivatives all the way from the loss function down to the feature layers in the framework of matrix backpropagation.

The model is designed to establish correspondences between two images. The method scales up to anity matrices K of size 10 6 × 10 6 . The method is evaluated by the Percentage of Correct Keypoints metric.

Summary

Structural machine learning suer from a main issue is how to confer learning capability. How to improve matching by learning? A hand-crafted matching cost function may perform poorly in practical problems. It means that the optimal solution, in term of graph matching objective function, does not lead to a low hamming distance with respect to the human ground-truth. A key idea is then to learn parameters of the matching cost function in order to better match two graphs G 1 , G 2 . A high level picture of the literature is provided in Figure 4.7. It is useful to capture at glance the paper distributions withing several families of methods. However, a more precise representation is needed to understand the new trends and issues.

3 https://github.com/alexnowakvila/QAP_pt [START_REF] Gold | A graduated assignment algorithm for graph matching[END_REF]) and Spectral Matching (SM [START_REF] Leordeanu | A spectral technique for correspondence problems using pairwise constraints[END_REF]). In the experiment the spectral graph matching takes more advantage of the learning scheme. At the opposite, Table 4.3 reports performance evaluation of a supervised learning method against a learning-free method. Accuracy improvements are observed (around 10%-15%) for the learningbased methods against the learning-free method. When the gain in accuracy thanks to learning Appendix A

More graph matching problems

A.1 Graph isomorphism

The mapping, or matching, between the vertices of the two graphs must be edge-preserving in the sense that if two vertices in the rst graph are linked by an edge, they are mapped to two vertices in the second graph that are linked by an edge as well. This condition must be held in both directions, and the mapping must be bijective. That is, a one-to-one correspondence must be found between each vertex of the rst graph and each vertex of the second graph. When graphs are attributed, attributes have to be identical. More formally, when comparing two graphs

2 ), we are looking for a bijective function f :

In the dissertation, the term source graph refers to graph G 1 while target graph refers to G 2 .

Graph isomorphism is one of the problems for which it has not yet been demonstrated if it belongs to N P-complete or not. However, there is still no algorithm that can solve the problem in polynomial time. Yet, readers who are aware of the recent rise of graph isomorphism might have heard about the claim of L. Babai in [START_REF] Babai | Graph isomorphism in quasipolynomial time[END_REF] 

A.3 Substitution-Tolerant Subgraph Isomorphism Substitution-Tolerant Subgraph Isomorphism [Bodic et al., 2012] aims at nding a subgraph isomorphism of a pattern graph G s in a target graph G. This isomorphism only considers label substitutions and forbids vertex and edge insertion in G. This kind of subgraph isomorphism is often needed in PR problems when graphs are attributed with real values and no exact GM can be found between attributes due to noise. A subgraph isomorphism is said to be substitution-tolerant when the mapping does not aect the topology. That is, each vertex and each edge of the pattern graph has a one-to-one mapping into the target graph, however, two vertices and/or edges can be matched (or substituted) even if their attributes are not similar. A substitution-tolerant mapping is generally needed when no exact mapping between vertex and/or edge attributes can be found, but when the mapping can be associated to penalty cost. For example, this case occurs when vertex and edge attributes are numerical values (scalar or vectorial) resulting from a feature extraction step as often in pattern analysis.

Denition 25. Substitution-Tolerant Subgraph Isomorphism

In PR applications, where vertices and edges are labeled with measures which may be aected by noise, a substitution-tolerant formulation which allows dierences between attributes of mapped vertices and edges is mandatory. However, these dierences are associated to costs where the objective is to nd the mapping corresponding to the minimal global cost, if one exists. i.e.,

A.4 Multivalent Matching

All the aforementioned matching problems, whether exact or error-tolerant ones, belong to the univalent family in the sense of allowing one vertex or one edge of one graph to be substituted with one and only one vertex or edge in the other graph.

In many real-world applications, comparing patterns described at dierent granularity levels is of great interest. For instance, in the eld of image analysis, an over-segmentation of some images might occur whereas an under-estimation occurs in some other images resulting in allowing several regions of one image to be correspondent, or related to, a single region of another image. Based on this fact, multivalent matching problem emerged to be one of the interesting problems in graph theory [START_REF] Sorlin | A generic graph distance measure based on multivalent matchings[END_REF]. Multivalent matching drops the condition that vertices in the source graph are to be mapped to distinct vertices of the target graph. Thus, in multivalent matching, vertex in the rst graph can be matched with an empty set of vertices, one vertex or even multiple vertices in the other graph. This matching problem is also called relational matching since GM is no longer a function but rather a relation m ⊆ V 1 × V 2 . The objective of this kind of matching is to minimize the number of split vertices (i.e., vertices that are matched with more than one vertex).

Mathematically, the relation m associating a vertex of one graph to a set of vertices of the other graph can be dened as follows:

Denition 26. Multivalent Matching

where m(v * ) denotes the set of vertices that are associated with a vertex v * by the relation m.

Appendix B

Machine learning theory

The eld of pattern recognition is concerned with the automatic discovery of regularities in data through the use of computer algorithms and with the use of these regularities to take actions such as classifying the data into dierent categories or predicting continuous variables, then the task is called regression. to reach an acceptable level of accuracy on the training data set. To be able to measure these problems, usually, an entire data set is split into three parts :

• Train data set: It is the data set used directly by the learning algorithm. On this data set, parameters are updated in order to achieve a goal.

• Validation data set: on this data set, the learning process does not occur. This means that parameters are xed and will never be updated using this data set. However, this data set is still useful because it helps to validate the model on pieces of data unseen during the learning process. Validation data set is meaningful to adapt the meta-parameters of the learning algorithm.

• Test data set: After the learning process has been completed, the test data set comes into play. Its objective is to test the model on completely new and unseen data. Parameters and If we assume that t i 1 is already a probability then :

The entropy measures the number of bits needed to encode the classes of t 1 . In contrast, the cross entropy is the number of bits we need if we encode classes from t 1 using t1 .

Cross-entropy is always larger than entropy; encoding classes according to the wrong distribution t1 will always make us use more bits. The only exception is the trivial case where t 1 and t1 are equal, and in this case entropy and cross entropy are equal. The KullbackLeibler (KL) divergence from t1 to t 1 is simply the dierence between cross-entropy and entropy:

It measures the number of extra bits we'll need on average if we encode classes from t 1 according to t1 .

It's never negative, and it's 0 only when t 1 and t1 are the same.

Note that minimizing cross entropy is the same as minimizing the KL divergence from t1 to t 1 . Now we can use the cross entropy over all training examples as our loss. In particular, if we let n index training examples, the overall loss would be

We have dene the cross entropy, and it seems quite relevant but is there any reason? B.1.1.1 The cross entropy, a probabilistic reasoning But let's look at another approach. What if we want our objective function to be a direct measure of our model's predictive power, at least with respect to our training data? One common approach is to tune our parameters so that the likelihood of our data under the model is maximized.

max P r(t| t)

We usually assume that our samples are independent and identically distributed (iid), each measure is independent from the other, so, the likelihood over all of our examples decomposes into a product over the likelihoods of individual examples:

Going back to the original example, if the rst training image is of a landscape, then t 1 = (1.0, 0.0, 0.0) T , which tells us that the likelihood P r(t 1 , t1 ) is just the rst entry of t1 = (0.2, 0.3, 0.5) T , which is t1 1 = 0.2.

Let's play a bit with the likelihood expression above.

First, since the logarithm is monotonic, we know that maximizing the likelihood is equivalent to maximizing the log likelihood, which is in turn equivalent to minimizing the negative log likelihood:

-log P r(t| t) = -M n=1 log P r(t n | tn )

But from our discussion above, we also know that the log likelihood of t n is just the log of a particular entry of tn . In fact, it's the entry i which satises t i n = 1. We can therefore rewrite the log likelihood for the n-th training example in the following way: 

In the context of a discriminative model for probabilistic classication, minimizing the cross entropy is equivalent to maximize the likelihood of P r(t| t) without any assumption on the distributions t and t .

B.1.2 Mean square error loss

We shall see that the least squares approach to nding the model parameters represents a specic case of maximum likelihood. We now use the training data {x, t} where the encoding of t n is not the one-hot vector but an integer t n ∈ N. The least square error can be dened as follows :

We now use the training data to determine the values of the unknown parameters w of our predictor f (x, w) by maximum likelihood. For this purpose, we shall assume that, given the value of x, the corresponding value of t has a Gaussian distribution with a mean equal to the value tn = f (x n , w). P r(t|x, w, σ) = P r(t| t, σ) = N (t| tn , σ) σ is the variance of the distribution. We just recall the equation of a Gaussian distribution.

P r(x|µ

If the data are assumed to be drawn independently from the distribution, then the likelihood function is given by

As we did in the case of the cross-entropy, it is convenient to maximize the logarithm of the likelihood function.

Consider rst the determination of the maximum likelihood solution which will be denoted by w * . These are determined by maximizing EquationB.3 with respect to w. For this purpose, we can omit the last two terms on the right-hand side of Equation B.3 because they do not depend on w.

Also, we note that scaling the log likelihood by a positive constant coecient does not alter the location of the maximum with respect to w, and so we can replace the coecient 1

2σ with

Finally, instead of maximizing the log likelihood, we can equivalently minimize the negative log likelihood.

We therefore see that maximizing likelihood is equivalent, so far as determining w is concerned, to minimizing the sum-of-squares error function dened by Equation B.4.

Thus the sum-of-squares error function has arisen as a consequence of maximizing likelihood under the assumption of a Gaussian noise distribution.

B.1.3 Regularization of loss functions

Regularization is a common feature of machine learning technique to deal with generalization problem. One technique that is often used to control the over-tting phenomenon in such cases is that of regularization, which involves adding a penalty term to the error function in order to discourage the coecients from reaching large values. The simplest such penalty term takes the form of a sum of squares of all of the coecients, leading to a modied error function of the form:

where ||w|| 2 2 and the coecient λ governs the relative importance of the regularization term compared with the sum-of-squares error term. The L2 norm regularization can be explained by a Bayesian approach.

Therefore we introduce a prior distribution over the coecients w. Let us consider a Gaussian distribution of the form P r(w|α) = N (w|0, α) = exp (-

where alpha is the variance of the distribution. Variables such as α, which control the distribution of model parameters, are called hyperparameters. Using Bayes' theorem, the posterior distribution for w is proportional to the product of the prior distribution and the likelihood function Posterior ∝ Likelihood × Prior P r(w|x, t, α, σ) ∝ P r(t| t, σ)P r(w|α)

We can now determine w by nding the most probable value of w given the data, in other words by maximizing the posterior distribution. This technique is called Maximum A Posteriori, or simply MAP. Taking the negative logarithm, we nd that the maximum of the posterior is given by the minimum of

• Let β be a weight vector of length n.

• For a pre-determined number of iterations:

For each sample x in the training set with true output t: * Find a feasible solution y * = arg min

This simple paradigm can be extended to the large margin framework [START_REF] Tsochantaridis | Large margin methods for structured and interdependent output variables[END_REF]:

There are an exponential number of constraints for each input.

Appendix C

Graph neural networks C.1 History

One of the key reasons for the success of deep neural networks is their ability to leverage statistical properties of the data such as stationarity and compositionality through local statistics.

So, a lot of attention has been devoted to the generalization of neural network models to structured datasets.

In the last ve years, a number of papers re-visited this problem of generalizing neural networks to work on arbitrarily structured graphs [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF][START_REF] Hena | Deep convolutional networks on graph-structured data[END_REF], Duvenaud et al., 2015[START_REF] Li | Gated Graph Sequence Neural Networks[END_REF][START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF], some of them now achieving very promising results in domains that have previously been dominated by, e.g., kernel-based methods, graph-based regularization techniques. These former methods were based on a two-step pipeline:

1. Get embedding for every node or graph 

C.2 The basics of articial neural networks

An articial neural networks is a model of data. It is composed of layers organized hierarchically.

Each layer is composed of a set articial neurons. Inside a layer, the neurons are not structured and do not communicate. Between layers, neurons can communicate by sending their output to the input of the next layer.

Let x ∈ R 1×m be a vector considered as an input data. It is also called the input signal.

Let a layer be dened as :

×m l+1 is a matrix of trainable parameters. m l is the number of neurons of the layer l.

For the layer 0, H (0) = x. Layer l + 1 produces a vector H (l+1) ∈ R 1×m l+1 . Finally, σ is a non linear function. This neural network is considered as a model where parameters can be learned.

graphs (see 1 for more details).

More operations have been investigated in the literature [Nowak et al., 2017]. A complete family of operations can be used :

• I ∈ R |V |×|V | . This identity operator does not consider the structure of the graph and neither provide any aggregation. Used alone this operator makes the GNN a composition of |V | MLP completly independent. One MLP for each node feature vector.

• A ∈ R |V |×|V | . The adjacency operator gather information on the node neighborhood (1 hop).

• D ∈ R |V |×|V | . D = diag(A1. This degree operator gather information on the node degree. D is node degree matrix (a diagonal matrix).

It encodes 2 j -hop neighborhoods of each node, and allow us to aggregate local information at dierent scales, which is useful in regular graphs.

• U ∈ 1 |V |×|V | . U is matrix lled with ones. This average operator, which allows to broadcast information globally at each layer, thus giving the GNN the ability to recover average degrees, or more generally moments of local graph properties.

B ∈ R m (l) ×m (l+1) are trainable parameters. All the nodes share the same operators but it is not mandatory.

C.3.4.2 Mean, max and neural network aggregations

Key distinctions are in how dierent approaches aggregate messages. So far, proposals have aggregated the neighbor messages by taking their (weighted) average, but is it possible to do better?

In [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF], a GNN called GraphSAGE is proposed. The aggregation of neighbors information is more complex. The very general scheme of aggregation can written thanks to the function AGG:

Let us dene N (u) is the set of nodes in the 1-hop neighborhood of node u.

Transform neighbor vectors into a matrix and apply a max pooling element-wise.

• LSTM :

Where π is a random permutation. The idea is to provide to the LSTM a sequence composed of neighbor embeddings.

So the input sequence is composed of vectors. The sequence is randomly permuted by the function π.

1 https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/

C.3.4.3 A word on permutation invariance

In the case of permutation invariant graphs, it is assumed that the learning task is independent of the order of neighbors. To generalize to unseen nodes or graphs at the decision stage, it is required that the (aggregator AGG) function acting on the neighbors must be invariant to the orders of neighbors under any random permutation (pi). In [START_REF] Liu | Geniepath: Graph neural networks with adaptive receptive paths[END_REF] 

Where Z T i Z j is a similarity measure between two nodes embeddings and A adjacency matrix. D is a database containing pair of nodes from dierent graphs or a single graph. However, the pair u i and u j must come from the same graph. Generally speaking, instead of A i,j , any similarity function (S : V × V → R) between u i and u j can be used. Z T i Z j is also called a decoder (DEC(Z i , Z j )).

More complex decoder can be built. Like the matrix factorization approaches described above, DeepWalk [START_REF] Perozzi | Deepwalk: Online learning of social representations[END_REF] and node2vec [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF] rely on embedding and use a decoder based on the inner product. However, instead of trying to decode a deterministic node similarity measure, these approaches optimize embeddings to encode the statistics of random walks. The basic idea behind these approaches is to learn embeddings so that :

Where p G (u j |u i ) is the probability of visiting u j on a length-k random walk starting at u i .

Where S(u i , u j ) = ((D -1 A) k ) i,j is the value of the random walk of length k.

C.4.2 Supervised

This alternative aims at directly training the model for a supervised task (e.g node classication, node regression, graph classication, • • • ).

C.4.2.1 Node classication

In the context of node classication, the last layer of the GNN must output an embedding of dimension p for each node where p is the number of classes (i.e H ( l) = Z = R |V |×p ). For the last layer the activation function is a softmax activation function dened as sof tmax(Z i,j ) = exp(Zi,j ) p j=1 exp(Zi,j )

.

The softmax is applied row-wise and outputs a vector similar to probability distribution over the classes. Then the loss function is the traditional cross entropy.

Where t i ∈ {0, 1} p is a one-hot vector of the ground-truth class label for node u i and D is the data set composed of nodes.

C.4.2.2 Graph classication

In the context of graph classication, a global average pooling layer must be added to gather all the node embeddings of a given graph. This layer has no parameter. It takes as an input Z = R |V |×p and output a vector Z = R 1×p . This layer is performing the average of each component Z .,j over the number of nodes in the graphs. The average pooling layer is dened as

This vector Z can be fed to a MLP for classication. t is the prediction made by this extended version of the GNN. Consequently, the cross-entropy loss function can be used.

Where #classes is the number of classes. D is the data set composed of graphs. t i ∈ {0, 1} #classes is a one-hot vector of the ground-truth class label for graph G i .

C.4.3 Semi-Supervised

The semi-Supervised node classication problem is the problem of classifying nodes in a graph, where labels are only available for a small subset of nodes. This problem can be framed as semisupervised learning, where label information is smoothed over the graph via some form of explicit graph-based regularization [START_REF] Pang | Graph laplacian regularization for inverse imaging: Analysis in the continuous domain[END_REF], e.g. by using a graph adjacency or graph Laplacian regularization term in the loss function. By using a graph Laplacian/adjacency regularization term, the assumption is that connected nodes in the graph are likely to share the same label. However, this assumption is only true if edges encode the information of node similarity. This is true for instance for a neighborhood graph. The loss function is then closed to the one for fully supervised node classication problem (mentioned earlier) but an adjacency regularization term is added.

To accomplish a graph Laplacian regularization, A must be replaced by ∆ = D -A that denotes the unnormalized graph Laplacian of an undirected. 

C.4.4.2 Graph regularization:

Matrix completion is the task of lling in the missing entries of a partially observed matrix. A wide range of datasets are naturally organized in matrix form. One example is the movie-ratings matrix, as appears in the Netix problem: Given a ratings matrix in which each entry (i,j) represents the rating of movie j by user i. When users and movies are organized as graphs (Pictorially Figure C.4) then graphs can be used to regularized the matrix completion problem.

C.5.3.2 Gradient descent

The question is nally to nd the parameters W min that leads to ∂l(Wmin,G) ∂Wmin = 0. To achieve this goal, the gradient descent algorithm is often selected. The algorithm is depicted in Algorithm 4. The main feature of this algorithm is to update W iteratively in the opposite direction of the gradient. The algorithm as one parameter called α. This scalar controls the speed of the descent. High values of α can lead to non-convergence. Based on this paradigm more complex methods has arisen [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]Ba, 2014, Marceau-Caron and[START_REF] Marceau-Caron | Practical riemannian neural networks[END_REF].

Algorithm 4 Graph descent algorithm

Input: #iter is the maximum number of iterations.

α is the learning rate controlling the descent step.

Output: W min . Learned W . Weight matrices 1: W ← random and i ← 0 2: while i< #iter do 3:

5: end while C.5.4 A word on scalability and time complexity?

Neural networks in general are successful because they can take advantage of the computational power provided by CPU and GPU. In this direction, operations within a layer should be vectorized.

Vectorization is the process of converting an algorithm from operating on a single value at a time to operating on a set of values at one time. Vector, matrix or tensor operations are easily vectorized.

In some nal applications, the adjacency matrix can be sparse and there is special representations and libraries for such matrices. For instance, the product AF can be eciently implemented as a product of a sparse matrix with a dense matrix .

Secondly, computational complexity should be low. In [START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF], the model is trainable in O(|E|) time. Operators I, A, D and U decribed in [Nowak et al., 2017] have the same complexity while the operator A 2 j is much more greedy.

C.5.5 Spatial vs spectral convolution on graphs

There is no consensus on the convolution (operator * ) denition on non-euclidean signals. Two dierent types of denitions arise from the literature [Bronstein et al., 2016].

C.5.5.1 Relation between spatial and spectral convolution

Given two functions, f and g : [-π, π] → R their convolution is a function (f * g) = f .g

Where . stands for the function being in the Fourier domain.

[ [START_REF] Kipf | Semi-supervised classication with graph convolutional networks[END_REF][START_REF] Deerrard | Convolutional neural networks on graphs with fast localized spectral ltering[END_REF][START_REF] Scarselli | The graph neural network model[END_REF] use this method, introducing dierent types of polynomials.

The major drawback of spectral approaches is sensitivity to domain changes: Similar graphs with slightly dierent topologies will respond very dierently to a given lter. In other words, a single signal dened on anisomorph graphs will give dierent responses. This is due to the fact that constructing the Fourier basis depends on the graph structure. The second type of graph convolution denition relies solely on spatial domain. The common point of these approaches is to consider the problem in a riemannian perspective: non-euclidean data can be seen as manifolds.

This allows to reduce the local structure of graphs down to a compact euclidean space on which lters can be easily built: a patch operator D can be dened. The patch operator transforms the local space into a P -sized vector with respect to P weighting functions (w 1 , . . . , w P ). w k (i) is the vector of weights for each node in the graph in the neighbourhood of i. The patch value at node i is dened as follows:

These weights are dened depending on the locations of the dierent neighbours in a given local space.

where N is the number of nodes in the graph, ζ ii is the label for edge (i, i ) (or the location of i in the local space of i) and e k (ζ ii ) is the weight for node i in the neighbourhood of i.

Once our patch operator is applied, it is possible to dene our convolution lter f as a vector f ∈ R P . The result of the convolution at node i is as follows:

Several approaches t in this spatial framework [START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF]. The way they dier is how they dene the weighting functions e k .

[ [START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF] proposes to use parameterized gaussian kernels as weight functions:

Where µ k and Σ k are the gaussian kernel parameters for the k-th weighting function. These parameters can be learned during the training of the neural network as it is included in the loss function and it is dierentiable.

Nevertheless, most of the aforementioned approaches don't take advantage fully of the graph topology. The graph structure is locally embedded into a vector space (i.e. the tangent space at a given point of a riemannian manifold). In a graph theory perspective, this means the notion of neighbourhood is limited to 1-hop graph neighbourhood which is bound to be a star structure.

C.6 Summary on GNN

The key idea is to generate node embeddings based on local neighborhoods.

• Graph convolutional networks

Average neighborhood information and stack neural networks.

• GraphSAGE Generalized neighborhood aggregation.

• Gated Graph Neural Networks Neighborhood aggregation + RNNs 

Kernels and kernel machines for graphs

The similarity between graphs are either based on a vector representation or dened directly in the space of graphs. Another option is to project the graphs in a kernel space. The kernels provide a mathematical framework for dening a measure of similarity between objects corresponding to a scalar product in a vector space that is not necessary known explicitly. Therefore, the kernels make it possible to overcome the limits induced by xed size vectors while allowing the use of statistical learning methods. However, the denition of a kernel is not trivial and must respect a set of conditions to dene a scalar product.

D.1 Kernel theory

Let dene a kernel k : X × X → R between two objects x and x corresponds to a scalar product between two projections φ(x) and φ(x ) in a Hilbert space H. ∀(x, x ) ∈ X × X , k(x, x ) =< φ(x), φ(x ) >

In order to dene a valid kernel, it is not necessary to explicitly dene the projection function φ : X → H. However, the kernel k must verify certain properties:

Denition 27. (Positive-denite kernel)

A positive-denite kernel on X × X is a function

and semi-denite positive:

If k is a positive-denite kernel then the Gram matrix K is semi-denite positive. The reverse is also true.

D.2. KERNEL MACHINES

The determination of the model parameters corresponds to a convex optimization problem. This is an example of a quadratic programming problem in which we are trying to minimize a quadratic function subject to a set of linear inequality constraints.

D.2.6 Lagrangian formulation

In order to solve this constrained optimization problem, we introduce Lagrange multipliers an α i ≥ 0, with one multiplier a i for each of the constraints (a = (a

Note the minus sign in front of the Lagrange multiplier term, because we are minimizing with respect to w and b, and maximizing with respect to a.

D.2.7 Dual formulation and kernel formulation

From the langrangian function L(.), we want to nd its minimum according to parameters w and b so we need to nd where its derivative equal 0.

∂L ∂w

By substituting w = M i=1 a i t i x i in the function L(.), we obtain the dual formulation:

By replacing the dot product x i x j by the kernel k = (x i , x j ), we obtain the SVM kernel machine:

D.2.8 Solving SVM

Solutions for this optimization problem either: (i) reduce it to an equivalent polynomial-size reformulation (for certain decomposable loss functions), and use methods like SMO (sequential minimal optimization) [START_REF] Taskar | Max-margin markov networks[END_REF] or general-purpose solvers; or (ii) work with the original problem by considering a subset of constraints, and employing cutting plane [START_REF] Tsochantaridis | Large margin methods for structured and interdependent output variables[END_REF] or stochastic subgradient methods. The solution to a quadratic programming problem in d variables in general has computational complexity that is O(d 3 ). In going to the dual formulation, the original optimization problem, which involved minimizing over d variables, into the dual problem, which has M variables. For a xed set of basis functions whose number d is smaller than the number M of data points, the move to the dual problem appears disadvantageous. However, it allows the model to be reformulated using kernels, and so the maximum margin classier can be applied eciently to feature spaces whose dimensionality exceeds the number of data points. D.3.2 Kernels based on GED embedding [Riesen and Bunke, 2010b] The explicit graph embedding dened by φ

Considering this embedding function, the kernel between two graphs is simply dened as the dot product between their embeddings. This method therefore uses an explicit vector representation to dene a kernel based on editing distance. Although this method uses a dissimilarity measure widely used in the eld of comparison graphs, the choice of reference graphs strongly inuences the quality of the embedding.

D.3.3 Kernel from Maximum-Similarity Edit Path

In [Neuhaus and Bunke., 2007], a method is proposed to re-formulate graph edit distance as a graph similarity measure. The idea is to turn the minimum-cost edit path condition into a maximumsimilarity edit path criterion.

Where Γ (G 1 , G 2 ) is obtained from by the set of all edit path and then by removing all deletions and insertions of nodes and edges. Hence, the kernel function only considers the substitution of nodes and edges. The computation of this kernel function can be carried out by means of a modied edit distance algorithm.

D.3.4 Convolution kernels and local matching kernels [Neuhaus and Bunke., 2007] The idea is to decompose complex objects into smaller parts, for which a similarity function can more easily be dened or more eciently be computed. Using a convolution operation, these sim- ))∈R(G ) k δ (s, s )Π s i=1 k(u i , u i )k δ (n i , n i )Π ni p=1 k(e p ui , e p u i

)

It is clear that for two decompositions with a dierent number of nodes s = s , the resulting product will be zero, due to the Dirac kernel, k δ (s, s ) = 0. Similarly, if a node u i in the decomposition contains a dierent number of edges than the corresponding node in the other graph u i ,

D.3.6 Diusion kernel

In [Neuhaus and Bunke., 2007], the edit distance between graphs (D = {(G 1 , t 1 ), • • • , (G M , t M )}) is turned into a matrix of non-negative similarities: B i,j = max 1≤s,t≤M (GED(G s , G t )) -GED(G i , G j ) ∀i, j 1 ≤ i, j ≤ M where B i,j denotes the similarity of graphs G i and G j .

Given a decay factor 0 < Λ < 1, the exponential diusion kernel is dened by:

K is a Gram matrix.