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i.1 Introduction 

Parmi les sciences contemporaines, la tribologie est celle qui étudie les phénomènes 

survenant entre 2 corps en contact, immobiles ou animés d’un mouvement relatif. Il en existe 

des applications dans de nombreux domaines industriels et dans des situations de la vie 

quotidienne. Le frottement, l’usure, les vibrations et la chaleur résultant du glissement de 

deux surfaces l’une par rapport à l’autre cherchent continuellement à être contrôlés ou 

réduits pour atteindre les performances maximales d'un système. Le développement de la 

tribologie intègre diverses autres disciplines telles que la science des matériaux, la physique, 

la mécanique ou la chimie. Par conséquent, les différentes approches pour progresser dans le 

domaine sont souvent pluridisciplinaires. 

Dans les cas où le frottement cherche à être limité, des lubrifiants sont couramment 

employés afin de limiter les pertes d’énergie lors du cisaillement de deux surfaces solides. De 

nos jours, les systèmes mécaniques cherchent à répondre à des exigences économiques et 

environnementales de plus en plus importantes. Pour relever ce défi, différents fluides sont 

notamment étudiés et parmi eux, les liquides ioniques présentes des propriétés très 

intéressantes comme lubrifiant alternatif, en particulier pour fonctionner dans des 

environnements très hostiles (haute ou très basse pression, haute température,…). 

Par ailleurs, la volonté de réduire la consommation d’énergie entraine une forte 

réduction des épaisseurs de film dans le contact, jusqu’à n’avoir plus que quelques couches 

de molécules (cf. Figure i-1). Ce sont alors des mécanismes survenant à l’échelle atomiques 

qui régulent la dynamique du contact (structuration du fluide, glissement à la paroi, 

résistance thermique d’interface,…). Il est donc nécessaire de les caractériser, puisqu’ils 

peuvent grandement impacter le comportement globale du système lubrifié. 

 

Figure i-1. Problématique multi-échelle d’un contact lubrifié où la quantité de lubrifiant est 

réduite et l’épaisseur de film est de l’ordre du nanomètre. 
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i.2 Etat de l’art et objectif 

i.2.1 Film mince 

Dans les régimes avec un film mince de lubrifiant, le frottement et l’usure des 

systèmes sont fortement impactés par les variations de l’épaisseur de film. Sa valeur ne peut 

pas être directement contrôlée dans un contact lubrifié en fonctionnement, mais elle dépend 

de deux propriétés du fluide : sa viscosité et son coefficient de piezoviscosité (CPV). Le CPV 

quantifiant l’influence de la pression sur la viscosité. Ainsi, l’estimation de ces quantités est 

la première étape pour prédire le potentiel de lubrification d’un fluide. 

La viscosité et le PVC varient avec la température et la densité, qui sont loin d'être 

homogène dans un contact. Par conséquent, une caractérisation des deux valeurs en fonction 

de la température et de la densité est nécessaire de prévoir avec précision l'épaisseur de film 

d'un lubrifiant. Au cours des dix dernières années , cette caractérisation a été fait pour des 

fluides de natures différentes (hydrocarbures et les liquides ioniques entre autres) [1–4]. 

Les grands taux de cisaillement caractéristiques des films minces provoquent 

également des effets de rhéofluidification se traduisant par une chute de la viscosité souvent 

modélisée par la loi de Carreau : 

                 
  

   

                                                                   

avec la viscosité newtonienne   , le temps de relaxation      un exposant  , trois valeurs 

intrinsèques au fluide, et    le taux de cisaillement subit par le fluide. La viscosité 

newtonienne et le temps de relaxation dépendent des conditions de pression et de 

température, mais l'exposant   est traditionnellement considérée comme constant pour un 

fluide donné. Une analyse plus poussée doit être considéré pour évaluer cette approche. 

Enfin, dans le cas des films très minces (0,1-10 nm), les dimensions associées du 

contact sont proches de la taille d’une molécule de lubrifiant, et une multitude de 

phénomènes locaux entrent alors également en jeu. 

i.2.2 Lubrification moléculaire 

Pour comprendre les mécanismes de lubrification moléculaire des films très minces, 

des approches à la fois expérimentales et numériques sont employées. Les différents travaux 

qui ont amené à l’état de connaissance actuelle des régimes de lubrification nano-confinés 

sont répertoriés dans cette partie. 

Nano-rhéologie 

Une première spécificité de la lubrification moléculaire est la modification du 

comportement rhéologique du film très mince. En particulier, le fluide ne peut pas être 

considéré comme un milieu homogène puisque sa viscosité change localement avec la 

variation de certaines conditions de fonctionnement. La viscosité apparente du contact 

dépend notamment de l'épaisseur de film de lubrifiant. 
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Ainsi, en dessous de 50 nm, la viscosité du fluide augmente progressivement [5]. 

Ensuite, lorsque moins de dix couches moléculaires restent entre les deux surfaces du 

confinement, la viscosité augmente drastiquement avec la réduction de l'épaisseur [6–10]. 

Enfin, lorsque le film de lubrifiant est constitué uniquement d’une à deux couches de 

molécules il se comporte comme un solide et sa viscosité peut être de plusieurs ordres de 

grandeur plus élevée que celle du fluide non confiné [10,11]. 

Structuration du fluide 

Lorsqu'un liquide est en contact avec un corps non déformable, un agencement 

ordonné des molécules de fluide à lieu à l'interface liquide/solide. Ainsi, les molécules de 

lubrifiant ont tendance à se structurer en couches denses qui modifient localement la 

mobilité du fluide (voir la Figure i-2). La structuration peut être apparente à une distance de 

la paroi allant jusqu'à dix fois le diamètre des molécules [12]. Par ailleurs, de nombreux 

facteurs influent sur les conditions de formation de la structuration : les propriétés chimiques 

et l’état de surface de la paroi, la taille et la forme des molécules du lubrifiant ou sa teneur en 

eau [13]. [14] 

 

Figure i-2. Profile de densité dans l’épaisseur de lubrifiant (direction z) pour un fluide Lennard-

Jones confiné. La distance   entre les parois (lignes en pointillé)  varie de 24 à 9 Å, soit 7 à 2 

couches moléculaires. Résultats de Gao et al. [14]. 

Ecoulement à l’interface liquide / solide 

En plus de la structuration du lubrifiant, le cisaillement d’un système nanoconfiné 

inclut des phénomènes d’interface dans la dynamique de l'écoulement. Deux mode 

d'écoulement sont ainsi identifiés à l'interface liquide/solide: le glissement et le blocage [15]. 

Lorsque les forces issues de la liaison liquide/solide sont plus faibles que les forces de 

cohésion du liquide, le lubrifiant glisse sur la surface (voir Figure i-3). L'origine du 

glissement à la paroi dépend donc à la fois des interactions d’interface et de la viscosité du 
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fluide. La corrugation définit l'énergie nécessaire pour initier le mouvement tangentiel d’une 

molécule fluide par rapport à l'interface. Une faible corrugation encourage ainsi le glissement 

à l'interface. Une interprétation des forces de corrugation peut être faite au travers du 

frottement fluide   défini comme le rapport entre la contrainte de cisaillement   et le 

glissement de vitesse à l’interface liquide/solide      . En outre, comme une partie du 

cisaillement est captée par l'interface, une différenciation doit être faite entre le taux de 

cisaillement apparent du contact et le taux de cisaillement effectif dans le fluide. La longueur 

de glissement   , définie comme le rapport entre le saut de vitesse à l’interface et le taux de 

cisaillement effectif, est ensuite introduite pour quantifier le glissement à la paroi à l’interface 

liquide/solide. Trois régimes critiques sont ensuite identifiés : glissement parfait lorsque    

→ ∞, glissement partiel, et pas de glissement lorsque    → 0. Finalement, lorsqu’un 

glissement important est atteint, il a été observé expérimentalement que cela peut avoir un 

impact significatif sur le frottement à l'échelle macroscopique [16]. 

 

Figure i-3. Représentation schématique du glissement à la paroi d’un fluide nano-confiné 

cisaillé. 

Enfin, un " blocage " des molécules fluides à l’interface se produit lorsque les 

conditions ne sont pas réunies pour qu’il y ait du glissement à la paroi, mais que les forces de 

cohésion dans les premières couches de fluide proche de l'interface sont encore plus fortes 

que celles dans le fluide en volume. Dans ce cas, une épaisseur de 1 à 2 molécules de fluide 

est verrouillée à la surface (pas de mouvement relatif tangentiel) et le cisaillement s’opère 

dans le lubrifiant, plus loin des surfaces. 

Résistance thermique d’interface 

Un dernier aspect important lié au régime de lubrification moléculaire est la 

régulation thermique. La température des matériaux présents impacte directement les 

performances du système lubrifié en modifiant la dynamique des fluides (viscosité, 

glissement à la paroi) et en encourageant les réactions d’oxydation du lubrifiant de corrosion 

à l’interface liquide/solide. Les conditions extrêmes du régime en film très mince génèrent 

une chaleur importante qui peut être évacuée à différentes vitesses. En effet, dans le cas des 

films très minces, l'élévation de la température est principalement pilotée par la résistance 

thermique de l'interface liquide/solide    , elle-même dépendante des interactions entre le 

fluide et les surfaces [17]. 
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Après cet état de l’art des mécanismes de lubrification en film très mince, certaines 

questions demeurent. Entre autres, pour mieux caractériser le fonctionnement des lubrifiants 

classiques, des études plus poussées sont nécessaires avec des fluides plus réalistes. 

Certaines surfaces ont aussi révélé leur nature très glissante mais doivent encore être testées 

dans des conditions de lubrification réalistes. De plus, la température ayant un impact direct 

sur la nano-rhéologie et les réactions chimiques possibles, son comportement doit être mieux 

caractérisé par rapport à la résistance thermique d’interface. 

i.2.3 Potentiel des fluides ioniques comme lubrifiants 

Les liquides ioniques (LIs) constituent une famille de fluides qui présentent de 

nombreux atouts comme lubrifiants alternatifs aux huiles couramment utilisées. Par la suite, 

les LIs sont présentés, puis le savoir et les lacunes dans la connaissance des mécanismes de 

lubrification qui leurs sont propres sont détaillés. Les limites connues des LIs comme 

lubrifiants sont également exposées. 

Premier aperçu des liquides ioniques comme lubrifiants 

Les LIs, sont des sels liquides à température et pression ambiantes, généralement 

constitués d’un anion et d’un cation [18]. Leur point de fusion bas, leur volatilité négligeable 

et leur propriété ignifuge sont autant d’attributs essentiels pour des lubrifiants opérants dans 

des conditions de fonctionnement extrêmes. Par ailleurs, la forte polarité des LIs induit la 

formation d'un film absorbé sur les surfaces à lubrifier chargées et les protège ainsi d’un 

contact direct solide/solide destructeur. Enfin, compte tenu de la grande diversité des types 

de cations et d’anions, il existe un très grand nombre de combinaisons possibles de LIs, 

certaines estimations atteignant jusqu’à 1018 possibilités [19]. Dans la pratique, le choix du 

couple {cation, anion} pourra se révéler performant dans certaines applications spécifiques 

mais inapproprié dans d'autres. 

Les LIs ont principalement été comparés à des huiles classiques de lubrification [20]. 

Ainsi, à différentes conditions de température et de pression, les LIs induisent moins de 

frottement et d’usure que les huiles de référence. Les LIs ont également été testés comme des 

lubrifiants mais avec des approches différentes : soit avec des additifs, soit en tant qu’additif, 

soit dans des environnements très spécifiques tels que dans le vide (pour des applications au 

spatiale) ou en film mince continu (pour des applications à l’électronique). Dans tous les cas, 

l’utilisation des LIs a tendance à améliorer les performances des systèmes (moins de 

frottement et d’usure) et certaines études pointent l’importance de maîtriser la natures des 

ions d’un LI (taille, forme, composition) pour optimiser les performances. 

Mécanismes de lubrification propres aux liquides ioniques 

Tout d’abord, concernant les propriétés rhéologiques des LIs, leur viscosité et leur 

coefficient de piezoviscosité sont en général suffisamment élevés pour maintenir le film 
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hydrodynamique qui permet d’assurer la lubrification d’un système. Mais ces propriétés 

sont extrêmement dépendantes de la nature des ions. A titre d’exemple, la viscosité étant liée 

à la longueur des chaînes alkyles, le volume d'usure produit par un contact lubrifié avec un 

LI [C12MIm][PF6] est dix fois plus faible que pour le même contact lubrifié avec un LI 

[C1MIm][PF6] (même LI avec une chaine alkyl douze fois plus petite au cation) [20]. 

Par ailleurs, la structuration des LIs à l’interface liquide/solide est similaire à celle 

observée dans le cas des fluides apolaires présentés précédemment, à ceci près qu’elle 

dépend de la nature polaire des surfaces. En effet, une surface chargée entraîne une 

structuration particulière du LI en monocouches successives de cations et d’anions [21] et la 

structuration est d’autant plus marquée que l’intensité de la charge augmente [22]. En plus 

de la structuration du fluide, les fortes interactions liquide/solide issues des charges 

électrostatiques augmentent l’adhérence d’un film de fluide protégeant ainsi contre un 

éventuel contact sec entre les deux surfaces. 

Enfin les charges ont également un effet sur la dynamique du fluide près de 

l’interface. D’une part il a été observé qu’avec des surfaces chargées, la viscosité du fluide 

augmentait au point de faire croitre le frottement dans les régimes avec une très faible 

épaisseur de film (< 20 nm) [23]. D’autre part, le LI se déplace à l’interface en enchainant 

successivement adhésions et glissements à la paroi. 

Limitation de l’utilisation des LIs comme lubrifiants 

Malgré les performances remarquables des LIs comme lubrifiants, leur usage 

présente également quelques restrictions. 

D’une part, en raison de leur polarité élevée, la capacité d’absorption de l’eau des LIs 

est plus élevé que pour les lubrifiants classiques et la tribo-corrosion à l’interface 

liquide/solide avec des surfaces métalliques est plus importante [20]. Dans les contacts, cette 

réaction peut créer un film anti-usure bénéfique, mais si les composants sont hautement 

réactifs, les surfaces se dégradent significativement et provoque la défaillance globale du 

système. Néanmoins, cette dégradation chimique peut être limitée. En particulier, le choix 

d'un LI approprié peut considérablement réduire la corrosion. 

D’autre part, bien que les LIs soient considérés comme des lubrifiants « écologiques » 

en raison de leur origine non fossile, leur réactivité élevée peut également être toxiques pour 

certains milieux naturels. En particulier, les LIs avec de longues chaînes alkyles lipophiles 

ont tendance à augmenter leur nocivité [24]. Certains ions ont en revanche été remarqués  

comme étant respectueux de l’environnement. Des études de toxicité plus approfondies des 

différents LIs sont nécessaires pour sélectionner les meilleurs candidats comme lubrifiant 

écologique.  

 

Après l'examen des propriétés macroscopiques des LIs et leur comportement en 

nanoconfinement, certaines questions demeurent. Notamment, une étude détaillée de leur 

réponse à des cisaillements importants est manquante. Dans l’étude qui suit, le 

comportement d'un LI est étudié dans diverses configurations représentatives des régimes 
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en films minces ou très minces. Entre autres, l’étude de la dynamique du contact doit 

alimenter les discussions sur la réponse du frottement au cisaillement avec des surfaces 

polaires ou d’autres très glissantes. 

i.3 L’outil de dynamique moléculaire 

Pour répondre aux problématiques posées, le choix a été fait d'utiliser un outil 

numérique capable de simuler la dynamique des particules à l'échelle nanométrique : la 

dynamique moléculaire (DM). Par rapport aux études expérimentales, une telle approche 

permet de tester facilement un grand nombre de cas et de configurer avec précision les 

entrées thermodynamiques de pression, de température et de cisaillement. Une fois 

rigoureusement validée, la méthode est également capable d'estimer quantitativement des 

quantités physiques d'intérêt résultant du système simulé. En outre, comme l'objectif 

principal est de comprendre les mécanismes impliqués dans le processus de lubrification, 

l’outil numérique offre la possibilité d'avoir un regard direct sur les phénomènes locaux et de 

les caractériser pour une large gamme de conditions thermodynamiques. 

i.3.1 Théorie de la dynamique moléculaire 

La principale difficulté pour modéliser correctement le comportement du matériau 

dans les simulations de DM est la définition des interactions interatomiques (comme les 

liaisons chimiques, les interactions faibles, les liaisons hydrogène ou les interactions de 

Coulomb). Un champ de force fait référence aux modèles et aux ensembles de paramètres 

utilisés pour calculer l'énergie potentielle résultant de ces interactions. 

Les champs de force peuvent être de plusieurs natures selon la précision souhaitée 

des simulations par rapport aux temps de calculs envisageables. Les champs de forces les 

plus précis seront coûteux en temps de calcul mais fourniront des résultats plus réalistes que 

ceux obtenus avec des champs de forces plus grossiers. 

Définir les jeux de paramètres des champs de forces est l'aspect le plus sensible de la 

DM. Ils influencent directement les propriétés de la matière modélisée et ses interactions 

avec d'autres matériaux. Ils sont déterminés à partir des données expérimentales pour 

vérifier certaines propriétés physiques (champs de force empiriques) ou à partir de calculs 

ab-initio. Quelle que soit la méthode, ils sont toujours déterminés sur une gamme limitée de 

conditions environnementales (pression, température, état physique...) et leur validité doit 

donc être vérifiée avant l'utilisation dans des situations différentes des conditions 

d'établissement du champs de force. 

Pour modéliser la physique du système simulé, la MD résout explicitement l'équation 

newtonienne du mouvement au fil du temps. Les positions et les vitesses de chaque atome 

sont alors calculées itérativement à chaque pas de temps donné, en fonction des forces 

d'interaction entre les atomes et des contraintes thermodynamiques simulant les conditions 

de fonctionnement. 
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Parmi les liquides ioniques étudiés dans la littérature, ceux avec des anions du type 

bis(trifluoromethylsulfonyl)amide [NTf2-] et des cations de la famille des imidazolium sont 

très performants comme lubrifiants. Ainsi, dans cette étude, le choix a été fait de travailler 

avec du 1-3 dimethylimidazolium bis(trifluoromethylsulfonyl)amide [mmIm+][NTf2-] (voir  

Figure i-4) qui de plus présente une viscosité proche des huiles classiques à température et 

pression ambiante (≈ 30 mPa.s). 

 

Figure i-4. Le liquide ionique modélisé: Molécules du cation (à gauche) et de l’anion (à droite). 

Un champ de force initialement développé par Canongia Lopes et Pádua [25,26] pour 

une large gamme de liquide ionique a été ajusté pour modéliser le [mmIm+][NTf2-]. Pour 

valider les adaptations réalisés sur le champ de force, les variations de certaines propriétés 

de transport (viscosité et coefficient de diffusion) et de la densité en fonction de la 

température, ont été confrontées à des mesures expérimentales. 

i.3.2 Simulation du fluide ionique en volume 

Pour caractériser la réponse du fluide aux différentes sollicitations d’un contact 

lubrifié (hautes températures, hautes pressions et taux de cisaillement importants), la nature 

du  

[NTf2-][mmIm+] est tout d’abord étudiée au travers de simulations d’un volume de LI 

homogène. Dans cette configuration, les conditions périodiques sont définies dans les trois 

directions du domaine de simulation pour simuler un milieu fluide infini. En supposant que 

le fluide en volume est un système ergodique, ses propriétés thermodynamiques 

macroscopiques peuvent alors être déterminées grâce aux simulations de DM. 

Des simulations à l’équilibre sont réalisées pour déterminer les variations de densité, 

de diffusion et de viscosité newtonienne en fonction de la pression et de la température. En 

revanche, pour étudier l’influence du cisaillement du fluide sur la viscosité 

(rhéofluidification), les simulations sortent de l’équilibre et sont stabilisées à un régime 

stationnaire avant que les grandeurs mesurées ne soient relevées. 

i.3.3 Simulation d’un nano-contact lubrifié 

Le liquide ionique est également nano-confiné entre deux surfaces ayant un 

mouvement relatifs. Différents matériaux ont été étudiés dans ce travail pour comprendre 

l'influence de leurs propriétés sur la phénoménologie de l'interface. Pour décrire le cas d'un 
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contact acier-acier lubrifié réaliste, de l'oxyde de fer (FeO) a d'abord été intégré dans les 

simulations de confinement. Par ailleurs, les revêtements Diamond-Like-Carbon (DLC) sont 

utilisés pour améliorer sensiblement les performances tribologiques des systèmes frottant. 

Plusieurs matériaux à base de carbone ont ainsi été intégrés aux simulations pour étudier les 

spécificités du DLC dans un contact lubrifié. 

Dans ces simulations, le nombre de molécules de LI est constant et des conditions aux 

limites périodiques sont définies le long des deux directions perpendiculaires au 

confinement, simulant ainsi des surfaces infinies (voir Figure i-5). Une pression normale aux 

surfaces permet d’assurer le confinement. La température est régulée dans l’interface mais 

laissée libre dans le fluide pour que l’influence de la température puisse être caractérisée. 

Enfin un mouvement relatif, parallèle au confinement, est imposé aux deux surfaces pour 

créer un cisaillement. 

 

Figure i-5. Principe de confinement et de cisaillement du fluide. En bleu, les régions où la 

pression et le mouvement sont imposés. 

Un certain nombre de valeurs peuvent être calculées grâce à ces simulations pour 

comprendre le comportement dynamique d’un nano-contact. Les profils de température et 

de vitesse donnent notamment des indications sur les effets du cisaillement sur le fluide en 

fonction de la vitesse de cisaillement et de la nature des surfaces. 

i.4 Rhéologie en films minces 

Ce chapitre offre une image complète de la rhéologie du [mmIm+][NTf2-], basée sur 

environ 200 simulations de DM et avec une contribution expérimentale, dans des conditions 

de pression, température et cisaillement représentatives des régimes élasto-hydrodynamique 

(EHD) ou film mince. Pour répondre au besoin de savoir estimer l’épaisseur de film, la 
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viscosité et le CPV (coefficient de piezoviscosité) du LI sont tout d’abord évalués en régime 

linéaire. Puis l’étude va plus loin en caractérisant les variations de la viscosité avec des taux 

de cisaillement très importants, propres aux régimes en film mince. 

i.4.1 Régime linéaire 

Lors de l’analyse de la réponse rhéologique du LI en régime linéaire, les résultats de 

DM sont confrontés à des mesures expérimentales pour renforcer la fiabilité de l’étude. Les 

résultats sont présentés en Figure i-6. 

 

Figure i-6. Viscosité du [mmIm+][NTf2-] en fonction de la pression pour différentes températures. 

Les résultats expérimentaux sont représentés par des carrés jaunes et le modèle WLF 

correspondant par des lignes jaunes. Les résultats de DM sont représentés par des étoiles noires 

et des traits en pointillé noirs et le modèle WLF correspondant par des lignes noires. 

La comparaison entre les expériences et les simulations montre un accord quantitatif 

acceptable à 303 et 350 K. Cependant, une nette surestimation de l'influence de la pression 

sur la viscosité par des calculs de DM est observée à des températures élevées. À 400 K 

l’écart n’est clairement plus négligeable pour les hautes pressions. En complément, le modèle 

WLF-Yasutomi, permettant de prédire la viscosité newtonienne en fonction de la pression et 

de la température, est appliqué sur les deux sets de valeurs (expérimental et numérique). 

Dans les deux cas le modèle est capable de prédire avec précision la variation de la viscosité 

newtonienne puisque l’écart relatif est de 2,1 % pour prédire les données expérimentales et 

de 8,8 % pour prédire les données numériques. 

Les résultats précédents ont également permis de calculer la variation du CPV en 

fonction de la température. Il en résulte un CPV deux fois plus faible que celui d’une huile 

lubrifiante classique mais qui suit une évolution similaire avec la variation de température. 
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i.4.2 Régime non-linéaire 

Pour anticiper les effets de rhéofluidification, les variations de viscosité du LI ont 

également été caractérisées dans le domaine non-linéaire (i.e. lorsque le cisaillement est 

suffisamment important pour faire perdre au fluide sa propriété newtonienne). La Figure i-7 

illustre le phénomène pour différents cas de pression et température. 

 

Figure i-7. Variation de la viscosité du [mmIm+][NTf2-] obtenue à partir de calcul de DM en 

fonction du taux de cisaillement à différentes conditions ( ,  ), sélectionnées arbitrairement. 

Les lignes en pointillé représentent la régression de chaque configuration au modèle de Carreau. 

Grâce à la normalisation des différents cas ( ,  ) à une même courbe maitresse, 

l’étude de la pertinence du modèle de Carreau (Equation i.1) est rendu possible. 

D’une part, la variation du temps de relaxation, inverse du taux de cisaillement 

critique     entre le régime linéaire et le régime non-newtonien, a pu être exprimée en 

fonction de la température et de propriétés intrinsèques au fluide : 

     
 

   
   

       

        
                                                                  

avec   la densité du fluide et   une constante. Cela indique notamment que les temps de 

relaxation dérivés du modèle de Carreau ne sont pas des paramètres purement numériques 

sans signification, mais des résultats pertinents du point de vue rhéologique et physique. 

D’autre part, les variations de l’exposant  , jusqu’ici considéré dans la littérature 

comme indépendant des conditions de température et de pression, ont également pu être 

caractérisées à la fois au travers d’un modèle analytique purement numérique et par une 

relation avec le temps de relaxation : 
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avec   et   respectivement égaux à -0.0474 et 0.362. Ainsi, la variation de l'exposant révèle 

une plus grande sensibilité de la viscosité et donc de l’épaisseur de film du contact lubrifié, à 

haute pression et à basse température. 

i.5 Confinement et cisaillement 

Dans cette partie, le  liquide ionique [mmIm+][NTf2-] est confiné entre deux surfaces 

caractéristiques d'un contact acier-acier : des surfaces d'oxyde de fer (voir Figure i-5). La 

réponse du système au confinement et au cisaillement est étudiée qualitativement et 

quantitativement pour mieux comprendre les mécanismes de lubrification moléculaire 

caractéristique des films très minces. 

i.5.1 Structuration et orientation du liquide ionique confiné 

188 pairs de [mmIm+][NTf2-] sont confinées entre 2 surfaces d’oxyde de fer (FeO). Il 

en résulte une épaisseur de film de 2,8 nm. Comme attendu, le liquide ionique réagit avec les 

surfaces en se structurant en couches parallèles à celles-ci (voir courbe noir sur la Figure i-8). 

 

Figure i-8. Profile de densité volumique du [mmIm+][NTf2-] confiné entre deux surfaces d’oxide 

de fer (FeO) à une pression   = 500 MPa et une température   = 350 K. 

La densité des ions dans les premières couches correspond à 220 % et à 135 % celle du 

fluide non-confiné pour le cation et l’anion respectivement. Par ailleurs, en accord avec de 

précédentes études numériques et expérimentales, les cations et les anions sont présents dans 

toutes les couches lorsque le LI est confiné entre des matériaux non-chargés (polarisés ou 

non) [22,27,28]. Ce constat contraste avec la structuration des LI entre des surfaces chargées 
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où les couches formées à l’interface sont des monocouches successives d’anions ou de 

cations. 

En plus de la structuration, l’orientation des ions à l’interface liquide/solide a été 

étudiée. Alors que les cations se positionnent dans les couches en plans parallèles aux 

surfaces, les anions, eux, sont orientés avec leur fonction CF3 pointant en direction du centre 

du confinement et avec leurs atomes d’oxygènes positionnés au plus proche des surfaces. Il 

en résulte que les oxygènes des anions et les hydrogènes des cations peuvent réagir 

chimiquement avec le substrat. Les matériaux de confinement doivent alors être choisis en 

conséquence pour éviter des phénomènes indésirables de corrosion ou pour favoriser la 

formation d'un film protecteur. 

Enfin, pour analyser l'effet réel de la structuration du fluide sur la rhéologie du fluide 

et sur le glissement à la paroi, un mouvement de cisaillement est ajouté au système. 

i.5.2 Réponse du nano-contact cisaillé 

Le liquide ionique est cisaillé sur une large plage de vitesse (de 2 à 160 m/s). Il en 

résulte un coefficient de  frottement relativement élevé (0.1 - 0.2), mais qui sature aux 

grandes vitesses de cisaillement (voir Figure i-9). 

 

Figure i-9. Evolution de la contrainte de cisaillement   dans le nano-contact lubrifié en 

fonction de la vitesse de cisaillement, pour une pression de confinement de 500 MPa et une 

température des parois fixée à 350 K. 

Comme le contrôle du frottement est une préoccupation majeure de la communauté 

tribologique, l’analyse qui suit vise à décorréler les mécanismes à l’œuvre afin d’estimer 

leurs influences individuelles sur le frottement. 
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Le cisaillement imposé au système est absorbé à la fois par la déformation du LI et 

par le glissement des ions à l’interface liquide/solide. Ces deux mécanismes dépendent l’un 

de l’autre puisqu’ils sont tous les deux à l’origine de la contrainte de cisaillement : 

                                                                                       

avec       le taux de cisaillement effectif du fluide,   sa viscosité,   le frottement fluide à 

l’interface et       le saut de vitesse à l’interface. Ainsi, l’étude de la viscosité   et du 

coefficient de frottement fluide   en fonction du cisaillement suffisent à expliquer la 

dynamique en place dans le nano-contact. La Figure i-10 illustre la variation des deux 

grandeurs en fonction du cisaillement effectif du fluide. 

 

Figure i-10. Variation du coefficient de frottement fluide   à l’interface IL/FeO et de la 

viscosité du LI   en fonction du taux de cisaillement effectif. 

Le glissement dépend directement de ces deux paramètres puisqu’il est d’autant plus 

important que la surface est glissante (  faible) et que la viscosité du fluide est importante (  

important). La longueur de glissement    lie ces deux paramètres par la relation : 

   
 

 
                                                                                   

La variation de    avec le cisaillement effectif est tracée en Figure i-11. 

. 
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Figure i-11. Longueur    de glissement en fonction du cisaillement effectif du fluide 

La mouillabilité du couple LI/FeO est également estimée à partir de la mesure de 

l’angle de contact d’une goutte de LI déposée sur du FeO. L’angle mesuré est de 43° ce qui 

traduit une forte adsorption du fluide sur le substrat. 

Plusieurs observations découlent de ces résultats. Premièrement, malgré une 

mouillabilité importante, le glissement a un rôle non négligeable dans la dynamique du 

contact puisque la longueur de glissement atteint plus d’un nanomètre pour un contact de 

trois nanomètre d’épaisseur soit environ un tiers du cisaillement qui est absorbé par le 

glissement à l’interface. Deux origines à ce constat : la forte viscosité due au confinement 

sévère (225 mPa.s à 500 MPa), ainsi que la réduction de la viscosité qui est plus lente que 

celle du coefficient de frottement fluide (Figure i-10), ce qui a pour effet d’augmenter le 

glissement (cf. Equation i.5). Deuxièmement, à des taux de cisaillement importants, le 

frottement fluide décroit moins rapidement et rejoint la tendance de variation de la viscosité 

(Figure i-10). Cela a pour conséquence une saturation de la longueur de glissement aux hauts 

taux de cisaillement (Figure i-11). Enfin, la variation de la viscosité peut être prédite par la loi 

de Carreau comme dans des configurations de fluide non confiné (cf. partie i.4). Cependant, 

l’exposant   décrivant la vitesse de réductions de la viscosité est différent pour des 

conditions de pression similaire. Seule la variation de température du LI dans les systèmes 

confinés cisaillés peut expliquer le changement de l’exposant  . 

i.5.3 Le rôle complexe de la température 

Dans les systèmes nano-confinés, le cisaillement important du fluide visqueux est à 

l’origine d’une forte génération de chaleur   : 

         
                                                                              

Etant donné que la chaleur générée dans le fluide se dissipe dans les solides, la 

résistance thermique de l’interface liquide/solide     joue un rôle crucial dans le 
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comportement thermique du système. La Figure i-12 en témoigne fortement puisqu’un saut 

important de température est observable aux interfaces liquide/solide. 

 

Figure i-12. Profile de température typique dans un contact nano-confiné. Ici, pour une vitesse 

de cisaillement   = 40 m/s. 

Les fortes températures vont, d’une part, modifier la dynamique du contact en 

provoquant une chute de la viscosité, d’autre part, amplifier les potentielles réactions 

chimiques d’oxydation du lubrifiant ou de corrosion du substrat. Il est donc essentiel de 

maîtriser son évolution pour assurer le bon fonctionnement du contact lubrifié. Dans cette 

optique, une expression de la température dans le contact confinée a été développée : 

     
      

 

  
        

 

 
                                                             

avec   la conductance thermique du fluide et       la température de la surface à l’interface. 

( 

Au-delà de l’influence de la température, le rôle de la nature des surfaces dans la 

dynamique du contact est toujours source d’interrogation. La section suivante apporte des 

éléments de réponse essentiels en comparant le comportement dynamique du contact cisaillé 

par les surfaces de FeO à des contacts cisaillés par des surfaces de différentes natures. 

i.6 Influence de la nature des surfaces 

Il a été montré dans la section précédente qu’à l’échelle moléculaire, le frottement à 

l’interface entre le lubrifiant fluide et la surface solide est un élément clé de la dynamique des 

contacts. Par ailleurs, Savio et al. [29] a montré que si le glissement n’était pas le même sur 

les deux surfaces d’un contact lubrifié en régime élasto-hydrodynamique (EHD), l'épaisseur 

du film est grandement affectée et peut soit augmenter, soit diminuer. Dans le dernier cas, 
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des ruptures locales du film de lubrifiant peuvent apparaitre, entrainant alors des dommages 

physiques au système. 

Parmi les matériaux prometteurs pour des applications tribologiques, les revêtements 

DLC (Diamond-Like Carbon) présentent un frottement très faible et une résistance élevée à 

l'usure [30,31]. Différents matériaux à base de carbone proches des DLC sont ainsi étudiés 

dans l’optique de comprendre l’impact de leur nature sur la dynamique du contact. 

i.6.1 Dynamique et frottement issus de différentes surfaces 

Les quatre matériaux à base de carbone étudiés sont le diamant, le graphite et deux 

carbones amorphes (a-C) avec des rugosités nanométriques légèrement différentes. Le 

cisaillement du [mmIm+][NTf2-] par les différentes surfaces entraine des comportements 

dynamiques du contact très différents comme en atteste la forte disparité de la longueur de 

glissement en Figure i-13. 

 

Figure i-13. Variation de la longueur de glissement avec la vitesse de cisaillement à partir du 

cisaillement par cinq surfaces différentes. 

La longueur de glissement varie de plus de cinq ordres de grandeur entre les 

différentes surfaces. Alors que les surfaces de carbone amorphe entrainent des longueurs de 

glissement inférieures à celle associée à l’oxyde de fer, le diamant et surtout le graphite sont 

à l’origine de glissements considérables, ce qui modifie profondément la dynamique du 

système. Ainsi même pour des épaisseurs de film standards dans les systèmes lubrifiés (i.e. 

de l’ordre du dixième de micromètre), le glissement peut être prédominent et gouverner le 

comportement dynamique du contact. 
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Par ailleurs, la longueur de glissement issue des surfaces d'oxyde de fer et de carbone 

amorphe saturent à une vitesse de cisaillement donnée. Ce comportement a été observé et 

expliqué dans la section précédente pour l'oxyde de fer et le même mécanisme survient ici 

avec les surfaces non-glissantes de carbone amorphe. 

Comme l’épaisseur de film est d’environ 3 nm dans les présentes simulations, lorsque 

la longueur de glissement est bien supérieure à l’épaisseur de film (cas du graphite et du 

diamant), le cisaillement est quasiment intégralement absorbé par le glissement aux 

interfaces liquide/solide. A l’inverse, dans les configurations où la longueur de glissement 

est inférieure à l’épaisseur de film, le cisaillement est absorbé par la déformation du fluide. 

Cette dynamique est également liée au frottement comme en témoigne la Figure i-14. 

 

Figure i-14. Coefficient de frottement du système cisaillé avec une charge normal de 500 MPa 

pour cinq surfaces différentes. 

Dans les configurations où le cisaillement s’opère principalement dans le fluide (FeO 

et a-C), le glissement n’a logiquement pas d’influence sur le frottement. En revanche, dans 

les configurations où le glissement est prédominant, le frottement peut-être réduit de 

plusieurs ordres de grandeur. 

i.6.2 Aux origines du glissement 

Pour comprendre et maîtriser le phénomène de glissement, les différents mécanismes 

à l’œuvre sont étudiés. Notamment, il a été remarqué que la température avait un rôle assez 

limité dès lors que le glissement est important. A l’inverse, l’épaisseur de film a un effet 
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important sur la quantité de glissement mais qui est complexe à appréhender car la variation 

de l’épaisseur de film modifie également le taux de cisaillement subit par le système. 

En parallèle, la nature (géométrie et composition) des surfaces conditionne la 

présence de glissement. Une principale caractéristique de la géométrie des surfaces est leur 

rugosité (Tableau i-1). 

 Graphite Diamond Smoothest a-C Roughest a-C FeO 

          (Å) 0.0115 0.0534 0.5709 0.8202 0.0705 

Tableau i-1. Rugosité géométrique pour les cinq différentes surfaces. 

Un lien peut directement être fait entre la rugosité et la longueur de glissement 

puisqu’aux plus faibles rugosités correspondent des glissements importants, et inversement. 

La seule exception à la règle ici est pour l’oxyde de fer pour lequel un glissement 

relativement faible est observé alors que sa rugosité l’est également (à peine 32 % d’écart 

entre les rugosités du FeO et du graphite contre 3100 % d’écart entre leur longueur de 

glissement à 5 m/s). L’explication de cette singularité réside dans la nature polaire des 

atomes de l’oxyde de fer qui vont interagir plus fortement avec les atomes du LI et ainsi 

augmenter le frottement à l’interface. 

i.7 Conclusion et perspectives 

L’étude du comportement d’un liquide ionique en film très mince s’inscrit 

directement dans le cadre du développement de systèmes lubrifiés plus économes et plus 

performants. Dans cette étude, un liquide ionique (LI) avec des propriétés rhéologique 

comparable aux lubrifiants traditionnels a été considéré. Grâce à des simulations de 

dynamique moléculaire (DM) ses propriétés de transport et sa réponse au confinement 

nanométrique couplé à du cisaillement ont été étudiées. 

Premièrement, plus de 200 simulations ont permis d’explorer les régimes linéaires et 

non-linéaires du LI en volume à différentes conditions de pression, température et 

cisaillement. Cela a notamment permis de proposer une amélioration des modèles de 

rhéologie actuels pour mieux prédire la viscosité à fort taux de cisaillement. 

Deuxièmement, les simulations du LI nano-confiné et cisaillé ont révélé que le 

cisaillement était accommodé par deux mécanismes bien distincts : la déformation du fluide 

et le glissement à l’interface liquide/solide. Chacun ayant un rôle clé dans la saturation de la 

contrainte de cisaillement aux hauts taux de cisaillement. Concernant le premier, les 

influences de la température et de la rhéofluidification ont été étudiées en détails et un 

modèle de prédiction de la température dans le nanoconfinement a été proposé. 

Enfin, l’influence de la nature des surfaces a été caractérisée. Certaines surfaces très 

peu rugueuses sont à l’origine de glissements de vitesse très importants à l’interface 

liquide/solide, à tel point que le glissement peut-être prédominant dans des systèmes où 

l’épaisseur de film atteint le micromètre. En revanche les surfaces plus rugueuses ou polaires 
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interagissent plus fortement avec le fluide et le glissement n’est alors significatif qu’à des 

épaisseurs de l’ordre de l’Angstrom ou du nanomètre. 

Des travaux complémentaires pourraient mener à une connaissance encore plus 

approfondie des mécanismes de lubrification. 

D’une part, étudier au moyen de simulation de DM d’autres liquides ioniques et avec 

d’autres composants (eau, additifs, …) permettrait de vérifier la généralité des résultats 

obtenus dans cette étude et d’avoir un aperçu de l’influence des différents composants. 

D’autre part, les mécanismes menant à la saturation de la contrainte de cisaillement 

mériteraient d’être explorés avec des fluides et surfaces de différente nature. 

Enfin, les glissements très importants observés avec quelques surfaces doivent être 

retrouvés au moyen d’essais expérimentaux réalistes pour qu’une application industrielle 

concrète soit envisageable. 
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Roman symbols 

     [Å], [nm] Root mean square roughness amplitude of the surface 

COF Dimensionless Coefficient of Friction 

  [Å²/s] Self-diffusion coefficient 

  [kcal/mol] Total potential 

       [kcal/mol] Angle bending potential 

      [kcal/mol] Harmonic bond potential 

        [kcal/mol] Bonded interaction potential 

          [kcal/mol] Dihedral potential 

            [kcal/mol] Lennard-Jones and Coulombic interaction potential 

         [kcal/mol] Potential steming from the Tersoff force field 

   [kcal/mol.Å] Conservative force derived from the total potential 

      [kcal/mol.Å] Corrugation force from the scanning technique 

   [kcal/mol.Å] Long-range forces 

   [kcal/mol.Å] Short-range forces 

     [kcal/mol.Å] Confining force applied on the atom i of the surface 

     Dimensionless Radial distribution function 

  [Å], [nm] Film thickness 

  Dimensionless Dimensionless film thickness 

  [W/m.K] Thermal conductivity of the fluid 

   [J/K] Boltzmann constant 

   [kcal/mol.deg2] Half spring stiffness of the angle bending potential 

   [kcal/mol.Å2] Half spring stiffness of the harmonic bond potential 

     [kcal/mol] Spring stiffeness of the mode i  of the dihedral potential 

   [Å] Kapitza length 

   [Å] Slip length 

  [a.m.u.] Atom mass 

       [a.m.u.] Mass of the molecule i 

  Dimensionless Exponent for the shear thinning behavior in fluids 

   Dimensionless Number of atoms in the control domain of the walls 

     Dimensionless Number of fluid molecules in the system 
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  [kcal/mol.Å.fs] Momentum transfer in the Müller-Plathe method 

  [Pa] External pressure 

PVC [1/Pa] Pressure viscosity coefficient 

      [Pa] Confining pressure 

    [Pa] Indenpendent components of the fluid stress tensor 

  [e] Generated energy per unit volume 

   [e] Atomic partial charge 

    [Å] Distance between two atoms i and j 

   [Å] Equilibrium interactomic distance 

  [Å2] 
Area of the contact nano-patch in the Molecular 

Dynamics simulation 

  [s] Time 

     [s] Relaxation time of the fluid 

  [K] Fluid temperature 

      [K] Imposed wall temperature 

  [m/s] Relative shearing velocity of the surfaces 

  [m3] Volume of the simulation domain 

      [m/s] Velocity jump at the liquid/solid interface 

   [m/s] Weighting factor of the ionic liquid partial charges 

  [Å] Atom coordinates 

   [Å/fs] Atom velocity 

   [Å] Coordinates of the atom i 

   [Å] Temporary atom coordinates computation 

    [Å/fs] Temporary atom velocity computation 

   [Å] Position of the film thickness center 
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Greek symbols 

    [deg] Cation’s specific orientation angle 

    [deg] Anion’s second specific orientation angle 

    [deg] Anion’s first specific orientation angle 

  Dimensionless Temperature-viscosity coefficient 

   [1/s] Shear rate of the bulk fluid 

      [1/s] Apparent shear rate of the confined system 

      [1/s] Effective shear rate of the confined fluid 

   [fs] Time step of the short range interactions 

   [s] Leading time step of the Molecular Dynamics simulations 

   [K] Temperature jump at the liquid/solid interface 

    [kcal/mol] 
Lennard-Jones energy interaction parameter between 
atoms i and j 

   F/m Electric permitivity constant 

  ,       [mPa.s] Fluid viscosity in bulk conditions 

   [mPa.s] Fluid viscosity of the Newtonian plateau 

   [mPa.s] Fluid viscosity predicted by he Carreau model 

     [mPa.s] Effective fluid viscosity under confinement 

     [deg] Angle between three consecutively bonded atoms i, j and k 

   [deg] Equilibrium angle of the angle bending potential 

  [mPa.s/Å] Interfacial liquid friction 

    [m².K/GW] Thermal resistance 

  [kg/m3] Average lubricant density in the film 

   [molecule/nm3] Average number density of a molecule 

    [Å] Lennard-Jones distance parameter between atoms i and j 

      [Å] Lennard-Jones distance parameter for the scanning atom 

  [Pa] Shear stress 

      [deg] 
Dihedral between four consecutively bonded atoms i, j, k 

and l 

   [m²/GW] Heat flux at the liquid/solid interface 
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Among contemporary sciences, the one of interacting bodies in relative motion, 

referred to as Tribology, gathers many investigations of the scientific and industrial 

communities. Firstly, it has applications in countless manufacturing domains and in 

everyday life situations. The friction, wear, vibration and heat resulting from the rubbing of 

two surfaces are continually looked to be controlled or reduced to reach maximum 

performance of a system. Secondly, tribology science embraces the development of various 

other disciplines such as material science, mechanics or chemistry. Hence, the different 

approaches to progress in the field are often multidisciplinary. 

For the cases where friction and wear are looked to be reduced, the most commonly 

used solution is the introduction of a fluid third body between the two sliding solids. Owing 

to their wide presence in industrial applications, such lubricated systems represent an 

essential share of investigations in Tribology. Regarding the recurrent environmental and 

economic issues, researches mainly focuses on the sustainability of lubricated systems. 

Hence, both life expectancy and energy consumption aim to be optimized and “green” 

materials intend to replace the classical harmful ones. 

To meet these challenges, several fluids are currently studied as an alternative to 

conventional lubricants. Among them, ionic liquids exhibit very promising properties to deal 

with common lubricating issues and, in particular, in extreme working environments. In 

addition, their high electrical conductivity opens the way to new fields of application. 

The desired reduction of energy consumption often implies a significant downsizing 

of the systems. Hence, current lubricated contacts present film thicknesses close to the 

micrometer and the ongoing developments go towards nanometers for the future. At this 

scale, phenomena introduced by the physical-chemistry of the involved materials are 

intensified and superpose to the classic lubrication mechanisms. Dedicated approaches are 

then essential to accurately predict the behavior of the tribological contact at the tiniest 

scales. 

 

In the present work, a model ionic liquid is studied in very thin film. The approach is 

mostly computational and focuses on transport properties. By means of molecular 

simulations, the response of the ionic liquid to extreme stresses and nanoconfinements is 

analyzed in detail to evaluate its lubrication potential. 

 

The present manuscript consists of five chapters. 

First, Chapter I presents a brief history of tribological systems until their adoption by 

the contemporary industries. A state of the art of the usual issues of lubricated systems in 

operating conditions is drawn up. From there, weaknesses in the knowledge of current and 

future lubrication mechanisms are identified. In particular, the prediction of the lubricant 

film thickness is a key asset for the conception of enhanced lubricated systems. Next, the 

lubrication mechanisms occurring at the nanoscale are reviewed. Above all, the structuration 

of the fluid molecules, their interactions with the confining solid and the dynamics of the 
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system are looked over, as many factors which impact the global performances of a 

lubricated contact. In this chapter, the response of ionic liquids to nanoscale confinement is 

also summarized as a comparison with the previously introduced mechanisms at this scale 

using more conventional fluids.  

Molecular Dynamics, a numerical method able to model the physical behavior at the 

nanoscale, is introduced in Chapter II. The strengths and limits of the tool are also 

enumerated to justify its choice for this study. To lead the investigations, two main 

simulation systems are modeled: the bulk fluid alone and the fluid confined between two 

solid surfaces. The configuration of the different simulated domains is detailed and a 

validation of the model is done. Finally, the last section depicts how the quantities of interest 

are computed. 

In the following three chapters, the results of the study are presented and discussed 

from the simplest system to the most complete ones. 

 First, from over 200 bulk fluid simulations, the rheological properties of the 

considered ionic liquid are analyzed in Chapter III. As the film thickness prediction is a 

growing issue with the reduction of film thickness and the subsequent increase of shear rate, 

a better knowledge of the lubricant rheological properties is essential. The rheological 

characteristics of the ionic liquid in the linear regime are calculated for several conditions of 

pressure and temperature. At this stage, a comparison is undertaken with experimental 

measurements to bridge experimental and computational studies of viscosity under highly-

stressed states. Finally, from simulations at high shear rates, an enhancement of a classical 

analytical model is proposed to predict the viscosity. 

The lubrication mechanisms occurring within very thin films are then investigated. A 

system composed of the ionic liquid confined between surfaces representative of a classic 

steel-steel contact is modeled in Chapter IV. To broaden the knowledge on the physical 

behavior of ionic liquids under confinement, the static behavior of the configuration is first 

analyzed. Thus, from the structuration and orientation of the lubricant molecules near the 

liquid/solid interfaces, predictions can be made on the lubrication performances of the 

simulated system. One main objective of this study is to reveal the behavior of a highly 

confined lubricated contact and the mechanisms involved. With a relative motion imposed 

between the surfaces, the effective rheology of the system is measured for different velocities 

and the crucial role of temperature and of some interfacial phenomena is depicted. The 

discussion contributes to explain a current challenging mechanism at the heart of the 

research in lubrication, when friction is no longer dependent on the velocity of the surfaces. 

To complete the picture of the nanoscale contacts lubricated by an ionic liquid, the 

influence of the confining surface nature is valued in Chapter V. In particular, presumed 

very efficient anti-wear coatings are implemented in the simulations to be tested under 

highly stressed lubrication conditions. In this manner, the dynamical responses of five 

different materials with different compositions and structures are compared. From these 

responses, the consequences on macroscale lubrication are estimated. Once again, the 

underlying mechanisms are detailed to provide the opportunity to better design the 

lubricated systems of the future.
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This first chapter firstly aims to explain the scientific and industrial interest in the 

issues concerning lubrication in very thin film with ionic liquids and secondly to draw up a 

state of the art of the related knowledge. After a brief history of the lubrication science, the 

current related challenges are introduced in a first section. As severe working environments 

and the current trend to downsize systems lead to significant reduction of the lubricated 

contact thickness, a next section is dedicated to the lubrication mechanisms at the smallest 

scales. In a last section, an overview of the lubrication capabilities at this scale is presented 

for potential alternative lubricants: ionic liquids. The goals of this study are then detailed. 

I.1 Lubrication Theory 

In this first section, the history of lubricated systems is presented, from their 

apparition in wide domains, to the specific challenges in today development of new 

technologies. Especially, a focus is made on the prediction of the lubricant rheology in highly 

stressed systems, when the behavior is the most difficult to apprehend. 

I.1.1 Tribology: From the first uses to its technological development 

Tribology has been an everyday life science long before it even got its name. Since the 

first time a human tried to make fire by rubbing stones or pieces of wood together, the 

number of applications involving friction has increased continuously over the centuries 

along with the development of civilizations and their technologies. To control friction, 

complex methods were early developed, as demonstrated by the use of primitive lubricants 

like water, sand or animal fat before 4000 B.C. [32]. With the development of transport, 

energy and manufacturing industries, the science of tribology became a central question to 

optimize a system’s performance as first evidenced by the 1966 Jost report, which estimated 

that improvements in tribological principles of industry (lubrication, maintenance, etc.) 

could, at the time, save the British economy £500 million per year. 

Despite the key role of friction in society, its first theorization dates back to the 

Renaissance and is attributed to Da Vinci [32]. He introduced the friction coefficient defined 

as the ratio between the force resisting the relative motion of two bodies sliding against each 

other and the normal load holding those bodies in contact. He initially established the 

independence of the coefficient from the surface contact area. His work was rediscovered 

two centuries later by Amontons who generalized it. Coulomb, better known for his work on 

electrostatic forces, also played his part in the development of the friction theory by testing 

the influence of the surface roughness and showing that, in most cases, friction doesn’t vary 

with the sliding velocity. It was Hirn who, after an extensive experimental work in 1847, first 

introduced the fluid lubrication to the study of friction [32]. Even though he supported 

Coulomb’s observations on how friction does not change in relation to sliding speed for dry 

contacts, he highlighted a significant variation of the coefficient of friction in relation to 

speed for lubricated contacts. From then on, the sciences of dry contacts and fluid-lubricated 

contacts took different directions as the physics involved in both situations digress. 
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New approaches were advanced to quantify friction of a lubricated contact. In 1886 

Reynolds included the influences of temperature and theorized the specific rheology of the 

thin lubricant films [33]. In 1902 Stribeck proposed a continuous profile of friction variation 

with three distinct lubrication regimes that depend on the velocity, the lubricant viscosity 

and the load applied to the system (Figure I-1) [34]. [15] 

 

Finally, the complexity and the diversity of today lubricated contacts requires more 

than the understanding of their mechanical behavior. Depending on the involved solids and 

potential lubricants, it is essential to consider many variables like potential chemical 

reactions, the material properties and the dynamics of the system to design a complete 

tribological system (Figure I-2). 

Figure I-1: Stribeck curve, representing the qualitative dependence of the friction coefficient 

with operating conditions. A comparison between the contact thickness   and the root mean 

square roughness amplitude      of the surfaces is also shown. From Savio [15]. 
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I.1.2 Lubrication regimes 

The Stribeck curve displays three distinct lubrication regimes (Figure I-1). At low 

sliding speeds, high loads or low viscosities, a “boundary regime” takes place as the two 

sliding surfaces are in direct contact. In this regime, the friction is independent of the velocity 

as suggested by Coulomb. At higher speeds, higher viscosities or reduced loads, some 

lubricant is dragged in between the shearing surfaces creating a partial fluid film between 

them. In this “mixed regime”, the film thickness is about the size of the surfaces’ asperities. 

During this transition regime, the more the surfaces are separated by the lubricant, the more 

the friction is reduced. Finally, when the film thickness is higher than the asperities, the load 

is entirely supported by the hydrodynamic lift as a “full film regime” is in place and the 

friction only slightly increases with the shearing speed. Moreover, as there is no direct 

contact between the sliding surfaces, the wear of the surfaces is negligible. Therefore, this 

regime is the one sought to achieve the maximum performances in lubricated systems. 

In full-film regime, two sub-regimes are distinguished depending on the nature of the 

contact geometry. For surfaces of conforming bodies (eg. journal bearings, see Figure I-3a), 

the resulting nominal pressure is weak enough not to deform the solids. In this case, the 

lubrication is hydrodynamic (HD) and the friction increases (linearly for Newtonian fluids) 

with the sliding speed. On the other hand, non-conforming surfaces (see Figure I-3b) induce 

a high local pressure in the contact, generating significant deformations of the bodies [35], 

and a modification of the properties of the piezoviscous, compressible and temperature-

dependent lubricant [36–39]. This will considerably modify the fluid flow in the contact [39–

41] and the resulting friction [42–44]. To study this so called elasto-hydrodynamic (EHD) 

regime, the multiple contributions to the global tribological response require the 

development of multi-physical computational methods [43–47]. As industrial lubricated 

Figure I-2: Tribology: A multidisciplinary science 
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systems are mostly subject to the EHD regime, it is essential to understand the underlying 

mechanisms to better predict and control the dynamics and the resulting performances. 

 

Finally, the industrial surfaces of mechanical transmissions usually present roughness 

lower than a tenth of a micrometer. Hence, the lubricant films in the EHD-lubricated systems 

can reach thicknesses of the same scale. Such thin films exhibit very specific rheology that 

must be study into details. 

I.1.3 Thin film rheology 

In thin films, one key element of the lubricated system performance is the lubricant 

film thickness. In fact, as depicted in the following section, friction and wear are greatly 

impacted by its variations. Nevertheless, its value cannot be directly controlled in the contact 

of a working lubricated system but mostly depends on two of the fluid properties: the 

viscosity and the pressure-viscosity coefficient (PVC). Hence, the estimation of those 

quantities is the first step to predict the lubrication performances of a system. 

The PVC quantifies the influence of the pressure on viscosity. In the past decades, it 

was evaluated through experimental and numerical works for different kinds of fluids [48–

50]. Viscosity and PVC vary with temperature and density, which are far from being 

homogeneous in a working contact. Therefore, a characterization of both values over several 

temperatures and densities is needed to accurately predict the film thickness for a specific 

lubricant. Over the past ten years, this characterization has been done for fluids of different 

natures (hydrocarbons and ionic liquids) [1–4]. 

As thin films generally come with high shear rates, shear thinning might occur 

leading to a non-Newtonian behavior of the fluid. Further investigations were then necessary 

to enhance the film thickness prediction at high shearing conditions. The Carreau analytical 

law is able to describe the viscosity drop caused by the shear thinning for classic lubricating 

oils [51]: 

                
  

   
                                                                   

with the Newtonian viscosity   , the relaxation time      and the exponent  , three values 

inherent to the fluid, and    the shear rate. Several numerical analysis also validated the 

Carreau model for different kinds of alkanes and isomers [52–54]. Both the Newtonian 

viscosity and the relaxation time depend on pressure and temperature, but the exponent   is 

Figure I-3. Schematic representation of contacting geometries. a) Conforming: shaft rotating in 

a journal bearing. b) Non-conforming: Roller-raceway contact in a bearing 
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traditionally considered as constant for a given fluid. This statement will be further 

examined in Chapter III. 

Finally, thin films exhibit a complex rheology that could be quantified numerically. 

However, when it comes to very thin film (0.1-10 nm), the dimensions of the studied contact 

are close to the lubricant molecular size, so a multitude of local phenomena can come as well 

into play. 

I.2 Molecular lubrication 

The present section explores the lubrication mechanisms at stake when the film 

thickness tends toward 10 - 0.1 nm. The context of the apparition of such very thin films is 

first described. An overview of the different numerical and experimental tools used to 

investigate those films is then given. Finally, the known molecular lubrication mechanisms 

occurring in very thin films are depicted one by one and some lacks in their understanding 

are identified. 

I.2.1 From local to global film thickness reductions 

Lubricated systems are generally designed to work in full-film regimes where friction 

and wear are low. However, upon severe conditions, only a few tenth of a nanometer would 

separate the junctions between surface asperities peaks which represent a sub-region of the 

whole contact area (see Figure I-4 a  b  c  d) [55]. Moreover, due to economic and 

environmental constraints, the size of the elements and the quantity of lubricant tend to be 

reduced, leading to a global film thickness reduction [56]. Simultaneously, recent progress in 

manufacturing technics gives the opportunity to design very smooth surfaces [55], which 

ones, coupled with low viscosity lubricants as cooling fluids or ionic liquids, favor molecular 

lubrication (see Figure I-4 a  e  d) [57,58]. 
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Although molecular lubrication has becomes a central concern in lubrication, it is far 

from being fully mastered as researches on the subject are relatively recent and the nanoscale 

regime is complex to investigate. Dealing with molecular confinements, the film can no 

longer be considered as a continuum medium. The fluid molecules must be studied as 

individual elements to apprehend the global behavior of the contact. This discrete nature of 

the fluid comes with a rich phenomenology resulting from local discontinuities. The latter 

are introduced by the liquid/solid interface featuring specific structuration, segregation of 

lubricant additives, hydrodynamic slip and physi- or chemisorption, and by the non-trivial 

rheology of the fluid which depends on different factors (thermal dissipation, molecular 

layering and arrangement and shear thinning). Today’s studies on nanoscale thin films focus 

on the understanding of those phenomena to improve the prediction of the whole lubricated 

contact response and enhance its performances. 

Figure I-4: Multi-scale nature of a lubricated contact problem with film thickness reduction: 

from a macroscopic application to molecular lubrication between surface asperities (a  b  c 

 d) or between very smooth surfaces (a  e  d). From Savio [15].  
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I.2.2 Investigation methods 

It is impossible with the current technology to directly look at an operating nanoscale 

lubricated contact and instantly figure out the mechanisms of molecular lubrication. 

Nevertheless, by coupling experimental measurements and numerical simulations, it is 

possible to get a global insight of the lubrication process for various lubricants, confining 

surfaces and operating conditions. 

Experimental approaches 

Bhushan and coworkers reviewed the various apparatuses and methods developed to 

investigate confined fluids at the nanoscale [59]. 

In the late 1960s, the first measurements of interactions between two surfaces 

separated by a molecularly-thin fluid film became possible with the development of the 

Surface Force Apparatus (SFA) [13]. Two perpendicular cylinders are brought in contact and 

the contact area is estimated by means of optical interferometry [60] or capacitive methods 

[61]. Through the piezoelectric crystals which drive the two solids, the distances and the 

forces are measured with a precision of respectively 0.1 nm and 10 nN or even better with 

the most recent devices. Therefore, accurate evaluations of the static and dynamical 

properties of nanothick fluid films confined between smooth surfaces were achieved. 

In 1981 a second instrument named Scanning Tunneling Microscope (STM) was 

designed. It allows to picture clean surfaces as well as lubricant molecules using the electrical 

conductivity of some surfaces [62]. 

Finally in 1985, the Atomic-Force Microscope (AFM) [63] and its by-product, the 

Friction-Force Microscope (FFM) have been the most remarkable discoveries of the last 

decades among the experimental tools used at the nanoscale. With a probe tip scanning the 

studied surface, it can measure extremely low forces with a precision better than 0.1 nN. To 

achieve this performance, the probe tip is attached to a cantilever whose deflections are 

evaluated by a laser beam. With the classic AFM, topographical measurements, adhesion or 

electrostatic force estimations can be carried out on a surface, with or without fluid, 

providing valuable information on the wear, the indentation, the transfer of material, etc. it 

endured. Subsequent modification of the original apparatus led to the development of the 

FFM, able to measure forces tangential to the surface. 

Numerical approaches 

Simultaneously, the exponential progress in the computing field enabled a fast 

development of numerical tools that would supplement the experimental studies on 

molecular lubrication. As previously noticed, at the nanoscale, solids and liquids are better 

described by their elementary components: the atoms. Classic simulations include up to 

millions of discrete elements, so the dimensions of the modeled domain extend from the 

Angstrom to a ten of nanometers. Similarly, simulation times last from picoseconds to a 
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fraction of a microsecond in time-explicit simulations. Hence, molecular simulations provide 

a glimpse of the system at the nanoscale, in a steady state or in an ultra-fast transient state. 

To model materials at the atomic scale, two methods are most recurrently used. The 

first, Monte-Carlo (MC) [64,65], is a statistic approach designed to determine the equilibrium 

properties and configuration of molecular systems in specific thermodynamic ensembles. 

Atomic configurations are generated randomly but are kept only if they fulfill a condition 

depending on their energy state. Hence, in MC simulations, the potential energy is computed 

but the time is not. This means that there is theoretically no limit to model features with 

quasi-infinite characteristic times. As a consequence, few computation steps are usually 

required to get to the equilibrium state, opening the way to simulate systems with a large 

amount of particles. However, without time reference, it is not possible to solve the 

dynamical behavior of non-equilibrium systems. Nevertheless it remains a preferred tool to 

work out the structuration and the molecular arrangement in complex systems. 

Molecular Dynamics (MD) simulation is a deterministic approach in which the 

Newton’s equations of motion governing each atom are explicitly solved. Therefore, it 

becomes possible to study non-equilibrium systems [66]. On the other hand, since time is 

computed explicitly, simulations usually do not exceed a few tens of nanoseconds. Very 

complete systems can be modeled with the MD tool to reveal qualitative phenomena 

(structuration, velocity profiles, molecule segregation, etc.). A large set of physical quantities 

can also be derived (viscosity, thermal or electrical conductivity, friction, energy, etc.). More 

details on the potential and the computational aspects of MD simulations will be given in 

Chapter II. 

The following section reviews the investigations on molecular lubrication 

mechanisms, both experimental and numerical approaches are used to apprehend the 

various involved phenomena. 

I.2.3 Molecular lubrication mechanisms 

In the following are described some effects occurring at the nanoscale that have 

influence on the global lubrication performances. First is depicted the influence of the contact 

thickness on the system global response. The structuration of the confined fluid molecules is 

then described. A picture of the consequent dynamics near the fluid/solid interfaces is 

presented. Finally, the influence of the temperature variations on the fluid rheology is 

introduced. 

Nano-rheology 

A first specificity of the molecular lubrication is the possible alteration of the 

rheological behavior of the very thin lubricant film. In fact, the fluid cannot be treated as a 

homogeneous medium because its viscosity can change with the variation of some of the 

operating conditions. Especially, local variations of the effective shear viscosity are caused by 

the re-arrangement of the molecules in structured assemblies up to their crystallization. 
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When typically less than ten molecule layers remain in the gap between the two 

confining surfaces, the viscosity dramatically increases as the thickness keeps being reduced. 

It has been first highlighted by SFA experimental assessments on hexadecane [10] and 

confirmed with different numerical simulations on n-dodecane [6,7] and on model fluids 

[8,9]. This sudden rise is attributed to the formation of long range structures across the 

narrow fluid film. 

When the lubricant film is made of only 1-2 molecule layers it undergoes a solid-like 

behavior as the fluid tends to crystalize, and so its viscosity is several orders of magnitude 

higher than the bulk one [10,11]. Under those conditions, shearing is no longer a continuous 

movement but a succession of stick and slip phases of the lubricant molecules at the 

liquid/solid interface. The phenomenon was detected experimentally [11] as well as using 

numerical simulations [9,67] and always comes with very high pressures.  

Finally, independently of the contact thickness, at high shear rates the motion is more 

steady and the viscosity evolves as a negative power law with the shear rate:        , with    

is the shear rate and   ϵ [0.5;1] [9,68–70]. When the viscosity reaches its bulk value, it stays 

constant [71] (see Figure I-5). This mechanism is different from the non-Newtonian shear 

thinning effect depicted in a following section. In fact, shear thinning occurs at high to very 

high shear rates (see Figure I-5) [51] whereas the previously described solid-like behavior 

only occurs at low shearing [72]. 

 

This complex relationship between the contact film thickness and the effective 

rheology in nanoconfinements also depends on the nature of the involved lubricant and 

surfaces. The size and shape of molecules define the solidification threshold: smaller and 

regular molecules would tend to arrange and solidify more easily at lower pressures or 

higher thicknesses [6,13,14]. 

Effective for any nano-confined liquid, the structuration of the molecules near the 

liquid/solid interface also governs the rheology of the lubricant at the nanoscale. 

Figure I-5. Generalized map in arbitrary units for the effective viscosity of confined films as a 

function of the shear rate, load and film thickness. Inspired by Luengo et al. [71]. 
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Structuration at the interface 

 When a liquid is in contact with a non-deformable body, a tidy arrangement of the 

fluid molecules occurs at the liquid/solid interface. The lubricant molecules tend to structure 

in distinct dense layers that change the local mobility (see Figure I-6). Layering is a direct 

consequence of the liquid/solid interaction. As the solid surface keeps its plane structure, its 

atoms uniformly interact with the fluid ones in the two directions of the plan. In response, 

the closest fluid molecules to the wall will lay parallel to the surface in a dense layer that can 

reach several times the bulk density. This first structure is located at the equilibrium point 

defined by the liquid/solid interactions stemming from the Van der Waals and Coulomb 

forces [13,73]. The formation of a first dense layer modifies the classical isotropic interactions 

inside the fluid. As a consequence, a second layer will form next to the first one, and so on, 

other layers develop away from the solid. Nevertheless, the irregularities of the molecules 

shape and the thermal agitation cause the layers to be less and less organized away from the 

wall. The structuration can be apparent up to ten molecular diameters away from the 

surfaces when the conditions favor the ordering [12]. Beyond this limit, the fluid becomes 

isotropic again with bulk properties that can be predicted by classic fluid dynamics models. 

 

Many factors influence the formation of the organized structuration. Horn early 

found out experimentally that the molecule size impacts the layers density and width and 

that the chemical surface properties and the water content can strongly modify the first layer 

amplitude [13]. Similarly, at the liquid/solid interface, Thompson analyzed through 

molecular dynamics simulations the relation between the surface topographies and molecule 

geometries [74]. At high pressure, it appeared that fluid film crystallization was favored 

when the surface structure and the fluid can interpenetrate (condition often reached when 

the solid density is close to the molecule one and the fluid/solid interactions are strong). 

Figure I-6. Density profiles across the lubricant film (z-direction) for a confined Lennard-Jones 

fluid. The distance   between the walls (dotted lines) is varied from 24 to 9 Å, corresponding to 

7 to 2 molecular layers. Results from Gao et al. [14]. 
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Furthermore, various numerical works have shown that the presence of nanoscale 

roughness on the surfaces will disturb the molecular ordering and the glass transition 

[69,75,76], as well as macroscale rough surfaces will [70,75,77]. The layering was however 

found to be insensitive to temperature [13] and to high shearing [8,78–80], although it 

dramatically reduces the crystallization capability of the fluid molecules [72]. 

Finally, branched molecules also reduce the structuration capability [9,14,81,82]. 

However the effect on the rheology response is more complex. Even if the reduction of the 

structuration comes in this case with less crystallization [4,82], and so less friction at low 

shear rates, at high shearing conditions, the structured area induces high viscosity as the 

branched molecules lock the layers together. 

Interfacial flow 

In addition to the structuration of the lubricant, shearing with high confinement 

induces local interfacial phenomena in the dynamics of the flow. In regard to the size of the 

considered systems in the molecular lubrication regime, they have a non-negligible influence 

on the apparent properties of the lubricated system. Two interfacial flow patterns are 

identified at the liquid/solid interface: slip and locking [15]. Since the local dynamics of 

nanoscale films under severe operating conditions is difficult to access through experimental 

tests, most of the following observations stem from Molecular Dynamics investigations.  

When the forces induced by the liquid/solid interactions are smaller than the 

cohesion forces of the fluid, molecules will slip on the surface (see Figure I-7). The occurring 

hydrodynamic “wall-slip” thus depends on both the interfacial interactions and on the 

viscosity of the fluid. The interfacial interactions controlling the tangential friction force are 

embodied by the fluid friction,  , defined as the ration between the shear stress   and      , 

the velocity slip at the liquid/solid interface. Also, as a part of the shearing is absorbed by 

the interface a differentiation has to be made between the apparent shear rate of the 

confinement and the effective one experienced by the fluid. The slip length,     defined as the 

ratio between the interfacial velocity jump and the effective shear rate is then introduced to 

quantify wall-slip at one liquid/solid interface. Three critical regimes are then identified : 

perfect slip when    → ∞, partial slip, and no slip when    → 0 [16]. When large slip is 

reached, it was experimentally observed that it can have a significant impact on the friction 

at the macroscale [16]. 
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Wall slip is frequently found in molecular simulations of fluids sheared between 

smooth surfaces [8,78,83]. Standard values of the slip length are a few nanometers for 

alkanes confined between materials with crystalline structures [83], but can reach the 

micrometer with very slippery materials as for water into carbon nanotubes [84]. 

As for structuration, wall slip is a multifactorial feature of molecular lubrication. The 

couple {surface, lubricant} is the prevailing factor as wall-slip is an interfacial phenomenon. 

In particular, two properties of the interface drive the fluid behavior: the wettability [85] 

which quantifies the adsorption capability of a fluid on a substrate, and the corrugation [17], 

often linked to the wettability, which defines the required energy to initiate a relative 

tangential motion at the interface. In particular, a weak corrugation encourages an increase 

of the hydrodynamic slip at the interface. As well, the liquid/solid geometry compatibility 

and the sliding direction  may have also substantial influence [83]. Petrie and Denn early 

found that the molecule length and shape also impact the slip: longer and more complex 

chains reinforce the fluid cohesion and therefore favor slip [86]. Besides, a very limiting 

factor of the wall slip is the surface topography. Numerous experimental [16,87,88] and 

numerical [29,75,77,79] studies highlighted that nano- to micro-scale roughness significantly 

reduce interfacial slip. Similarly, Jabbarzadeh and coworkers found that flexible surfaces also 

tend to reduce it [89]. 

Variation of slip with the environmental parameters was also widely investigated. It 

results from molecular dynamics simulations that slip increases with shear rate [79,89,90] 

while it decreases with temperature as a consequence of the reduction of the liquid viscosity 

[79]. The slip dependence on pressure seems however more complex since observations 

differ according to the nature of the fluid and surfaces under investigation. With water and 

hydrophobic surfaces, the increase of absolute pressure tends to reduce the slip [91] while 

the opposite trend is observed with alkanes sheared in between copper oxide surfaces [92] 

for instance. 

At last, the dynamics singularity referred to as “locking” occurs when the conditions 

for wall-slip to occur are not met, but when cohesion forces in the first layer(s) of fluid next 

to the interface are still stronger than the ones of the bulk. In that case, a 1-2 molecule 

thickness of fluid will be locked to the surface (no relative tangential movement). In this 

configuration the shearing entirely occurs within the fluid thickness excluding the extreme 

layers near the interfaces. Here, effective shear rate will be higher than the apparent one. 

Figure I-7. Schematic representation of wall slip in a nano-confined fluid under shearing. 



Chapter I 

22 
 

Furthermore, lubricant additives are often use to enhance the lubrication performances of a 

contact. Those additives are designed to be strongly adsorbed on the surfaces, so it creates a 

“tribofilm” at the liquid/solid interfaces. This way, it prevents direct contact between the 

sliding surfaces that would cause dramatic wear and undesired high friction. With regard to 

the interfacial rheology, Berro evidenced that the presence at the interface of ZDDP - a 

common lubricant additive - will favor locking [17] (see Figure I-8). 

 

Interfacial thermal resistance 

One last important aspect concerning molecular lubrication is thermic behavior 

within the contact. A temperature change of the materials directly impacts the performance 

of the lubricated system by modifying the fluid dynamics (viscosity, wall-slip) and 

stimulating corrosion and oxidation reactions. The severe conditions encountered in the 

molecular lubrication regime generate important heat which can be evacuated at various 

rates depending on the solid and fluid materials. In fact, the temperature elevation is 

controlled by the thermal resistance of the liquid/solid interface     and by the thermal 

diffusion of the confining solid that drains the heat out of the contact. A wise choice of 

lubricating and confining material is thus essential to prevent unexpected effects that would 

cause premature failure of the lubricated system. 

In nanoscale systems, the temperature discontinuity caused by the interfacial thermal 

resistance     is even more important given that the diffusion in continuous materials 

operates over very small distances. The liquid/solid interfacial interactions impact the 

interfacial resistance     [17]. Indeed, an important wall-slip or well-structured layers reduce 

friction and heat generation by favoring the atoms mobility [29]. Though it must be noticed 

that important wall slip often comes with an important interfacial thermal resistance which 

drastically limits heat dissipation by the surfaces [93]. Lastly, the presence of classic additives 

at the interface increases the interfacial thermal resistance [17]. Depending on the value of 

   , the evolution of the fluid temperature significantly impacts the rheology at the 

Figure I-8. Velocity profiles for pure hexadecane and a hexadecane-ZDDP mixture under 

confinement. Non-wettable (a) and wettable (b) surfaces are obtained by changing the wall-fluid 

interaction potential. Interfacial flow is modified by the physisorption of the antiwear additives 

(ZDDP) and surface wettability. Results from Berro et al. [17]. 
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nanoscale. If well controlled, this effect can be an asset to optimize the global lubricating 

performance of a system. 

I.2.4 Questions still pending 

The above review shows that the knowledge on the molecular lubrication 

mechanisms is already well mastered. The dependence of each phenomena on the 

considered materials and to the environmental conditions was widely studied. Nevertheless, 

different questions still remain. First, all the mechanisms were mostly characterized for very 

basic fluids, as Lennard-Jones fluids or linear alkanes with rather low number of carbon 

atoms. To define more precisely the lubrication regimes with classic oils, further 

investigations with more realistic fluids are essential. Then, the study of the interfacial flow 

can be more deeply explored. For instance, it was shown that the pressure can lead to 

opposite effects depending on the nature of the fluid involved. Moreover, some surfaces 

revealed their very slippery nature but still need to be tested under realistic lubrication 

conditions. The understanding of the relation between the wetting strength and the 

interfacial friction would also benefit from further work. Slip was also found to increase with 

shear rate, but a more precise description of its evolution would contribute to control the 

contact response. At last, as temperature has a direct influence on nano-rheology and 

potential chemical reactions, its impact shall be better characterized regarding to its influence 

on the interfacial thermal resistance. 

In order to explore the lubrication process with a more realistic fluid lubricant, a fluid 

family is considered has it has recently proven its great potential to lubricate different kind 

of systems. 

I.3 Ionic liquids as lubricants 

Ionic liquids are introduced in this section. This kind of fluids presents numerous 

assets to consider it as alternative lubricant to commonly used oils. The potential of ionic 

liquid properties is thus first described. As they also exhibit interesting features for other 

applications (gas or energy storage, pharmaceuticals and solar thermal energy, among 

others), they have been largely studied in the last decades, including at the molecular scale. 

Based on the ensuing results, a brief review was undertaken on the lubrication mechanisms 

specific to ionic liquids, from the rheological properties of the bulk fluids to their dynamics 

and interactions with the surfaces at the nanoscale. The known limits of ionic liquids as 

lubricants were also evaluated and, finally, the remaining issues on the ionic liquids 

lubricating mechanisms were summarized. 

I.3.1 Ionic liquids promising properties 

With the aim to find more performing lubricants, several fluids with promising 

properties (thermal stability, high PVC, high or low conductivity…) have been considered. 

Some were already tested to reveal their behavior as nanoconfined films or at a surface 
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interface, either with an experimental approach: water and aqueous solutions [94–96], 

glycerol mono-oleate (GMO) [97], fatty acid [98,99], oligomers [100], or using molecular 

numerical simulations: glycerol [101], alcohol [102], fatty acid [103]. The studies revealed 

interesting properties for lubrication applications, but all of those fluids also present some 

limitations to be widely adopted as lubricants. Furthermore, another family of fluids, very 

well studied in the physical chemistry literature, seems to have extremely promising 

properties to be used as lubricants: ionic liquids [20]. 

Room temperature ionic liquids (RTILs), often referred to as ionic liquids (ILs), are 

liquid salts at ambient temperature and pressure, made of atomic or molecular ions [18]. 

Given the considerable diversity of cations and anions, there is a tremendous number of 

possible combinations of ions with some estimations reaching 1018 possibilities [19] (see in 

Figure I-9 the most common ions). Most ILs are based on one cation/anion pair and 

occasionally on a triplet with two cations and one anion type when the anion carries a 

double charge (dicationic ILs). 

 

Ionic liquids were first suggested as lubricants in 1961 because of the high stability of 

their thermal properties that could prevent corrosion issues of lubricated systems [104]. But 

this is only one among the long list of the remarkable properties they exhibit as potential 

lubricants, which explains the increasing enthusiasm to study them [20,104–108]. Their low 

melting point, negligible volatility and non-flammability are all essential attributes to the use 

Figure I-9. The most common a) cation classes and b) anions 
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of these lubricants under severe operating conditions. Also related to ions properties, the 

high polarity of ILs can induce the formation of a strong absorbed film on charged surfaces 

that protects them from destructive solid/solid contacts. Finally, ILs are customizable 

lubricants as the cation/anion couple deeply influences the tribological properties of the ILs. 

Among the possible combinations, the chosen {cation, anion} couple will perform well in 

specific applications but fail in others. For that reason, numerous studies on ILs as lubricants 

have focused on the dependence of IL properties on their composition either in bulk 

rheology or at liquid/solid interfaces. 

I.3.2 ILs in lubricated systems 

Given their properties in the lubrication field, ILs are mostly studied for oil 

replacement. Some were compared to X-1P and PFPE, two lubricant oils commonly used in 

specific industrial lubricated systems [20]. At different conditions of temperature and 

pressure, ILs exhibit lower friction and wear than the two reference oils. But ILs were also 

considered as lubricants with alternative uses: either with additives or as additives, or in 

very specific environments as in high vacuum (for space applications) or in very thin film 

confinements (for applications in electronics). 

Some ILs were tested with additives to enhance their lubricating performances [104]. 

When the surface and the additive were compatible (i.e. when they interact enough to create 

a protective tribofilm), friction and wear of IL-lubricated contacts were both found to be 

reduced. Best performances were reached with an amino-acid-derived salts specially 

designed to work with ILs. 

Studies on the use of ILs as additives for classic oils [20] identified a friction reduced 

up to 30 %, explained by the formation of a protective tribolayer adsorbed on the shearing 

walls. The latter can prevent solid-solid contact and limit corrosion reactions at the interface, 

as it protects the substrate from the lubricant and the water it might contain. Nevertheless, 

the application is limited by the low solubility of common ILs in oils (< 1 %). Better 

performance might be obtained using specific ILs or base-lubricants. For example, ILs are 

more miscible in polyethylene glycol:  very low wear rates were obtained for solutions of 

polyethylene glycol with 3 % of IL. It was also found that ILs are rather more efficient as 

additives at 100°C than at 25°C. 

Under high vacuum, ILs also exhibit lower friction that the PFPE [20,107]. It is 

noteworthy that the alkyl chain length of IL’s cation were found to have no influence on the 

friction in this configuration [109]. However cations with short alkyl chains exhibit better 

thermal stability than ILs with longer ones. This results in an increase of the lubricant 

lifetime [107]. Aside, their low vapor pressure and high radiation resistance features made 

ILs very good candidate for high vacuum space applications. 

In MEMS/NEMS ILs could replace PFPE oils, which experience metal catalytic 

degradation, and their high electrical conductivity could contribute to improve the 

technologies in the field. Compared with classical lubricated systems, lubricant films in 

MEMS/NEMS are less than 40 nm thick but not submitted to high confining pressures [20]. 

In this configuration, it was found that substrates with hydroxyl terminations or silicon 
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surfaces lead to more interactions and induce the formation of strong anti-wear films that 

ensure good tribological properties. Moreover, a mixture of several ILs can lead to better 

performances than a single IL. As ILs are electrically conductive, they can also find 

applications in electrical cars where electric potential differences are the cause of mechanical 

damages when insulated by non-conducting lubricant [110]. 

I.3.3 Ionic liquid lubrication mechanisms 

 This section presents a short review of the investigations, carried out over the past 

ten years, on ILs as lubricants. It covers the bulk rheology properties which depend on the 

nature of their ions, on the presence of a surface or a confinement. This section aims to 

apprehend the formation of boundary films and their dynamical behavior in the molecular 

lubrication regime, as much essential elements in the choice of an IL as a lubricant. 

Inherent properties of ionic liquids in bulk rheology 

Ionic liquids exhibit different rheological behavior depending on their composition, 

size and shape. First, the length of alkyl chains of ions (most often the one of cations), 

influences the nature of the fluid and its related properties. ILs with longer chains exhibit 

enhanced viscosity [19,20], higher piezo-viscosity coefficient and lower surface tension [48]. 

Their rheological properties are also less dependent on the shear rate [19]. In most 

applications they perform better than ILs with little chains, because their higher viscosity 

and piezo-viscosity index stimulate the formation of a thicker hydrodynamic film. Therefore, 

the wear volumes are drastically reduced [20,111]. As an example, the wear volume 

produced by a contact lubricated with [C12MIM][PF6] IL (long alkyl chain) is ten times lower 

over the same sliding time than a similar contact lubricated with [C1MIM][PF6] IL (short 

alkyl chain) [20]. Lastly, the melting point of ILs also varies with the alkyl chain length [20], 

and so deeply modifies the rheological response at low shear rates. 

Likewise, the shape of ILs has an impact on their tribological response in severe 

environments. An asymmetric structure of the ions of an IL make it more resistant to 

solidification [112,113]. Perkin and coworkers [114] experimentally observed reduced wear 

and friction for systems lubricated with ILs made up of ions with important disparities in 

size and shape compared to more regular non polar fluids. On the other hand, a sub class of 

ILs named “ionic liquid crystals” solidify at close-to-ambient conditions of pressure and 

temperature, and exhibit specific rheological behaviors. Besides their important viscosity 

(around 1 Pa.s), the specific orientation of their molecules (as they tend to crystalize) make 

them very non-Newtonian fluids. 

 With regard to the ion natures, the disparity of anions is more important than the one 

of cations but both have a significant influence on the ILs physical and chemical properties. 

Three families of cations with equivalent alkyl chain length and the same anion were 

compared: from the less to the more viscous, the ILs based on imidazolium, pyridinium, 

pyrrolidinium are among the most studied ones in the last decade [20]. As a confirmation, 

Lopéz Sánchez and coworkers [115] observed higher friction with the [BMpyrr][NTf2] than 
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with the [BMMIm][NTf2]. As for the anions, eight families were compared based on ILs with 

the same cation: from the less to the more viscous: NTf2- (≈ 10 mPa.s) < FAP- < BETI- < 

CF3SO3- < BF4- < PF6- (≈ 10-100 mPa.s) < Cl- < Br- [48,114]. In particular, it has been noticed 

that the geometry of anions influences the viscosity: the more spherical and symmetric 

anions, the more viscous ILs [48]. 

To ensure the presence of a lubricating film in EHD regime and so to guarantee the 

best lubrication performances in severe environments, the viscosity of the candidate IL must 

combine a large response to the confining pressure (i.e. an adequate PVC) and good thermal 

stability [48]. The PVC were compared for some of the previous anions: BF4- < NTf2- < PF6- < 

FAP- [48,116]. As for the temperature , a low temperature-viscosity coefficient   as defined 

by Spikes [117] implies little dependence of the viscosity on temperature. NTf2-based ILs 

have shown the lowest temperature-viscosity coefficient ensuing a good thermal stability. 

Finally, NTf2-based ILs present the highest PVC/  index ratio and so they can be considered 

as the best candidates for severe environments. Considering mild lubrication conditions, PF6-

-based ILs present the lowest coefficients of friction and wear generation, although the ones 

from NTF2--based and BF4--based ILs are low too [19]. 

Interfacial behavior 

Once in contact with a surface, the IL adopts a layered structure close to the interface 

that can differ from the structuration of a non-polar fluid. In fact, as detailed below, the 

conformation changes with the IL nature, the surface topography and charges and it can 

directly impact the rheology of the nano-contact. 

First, on a single surface, the deposed IL experiences different structurations 

according to the size of the ions and the surface charges. On uncharged surfaces considered 

in the literature (gold, graphite or mica with a carbon precoverage), the global density profile 

of the IL (anions and cations taken together) is similar to the one with non-polar surfaces 

(layering of the size of the ions) [118]. This denotes alike solvation forces in both cases. 

Wetting is high at the liquid/solid interface, which favors the formation of protective layers 

[27,119]. Also, when anions and cations are of comparable size, they structure in a 

checkerboard-like arrangement in order to optimize charge neutrality. Moreover, the cation 

lies flat on the surface while, on the contrary, the anions stand normal to the wall [27] with 

their oxygen elements adsorbed onto the surface [28]. On negatively charged surfaces (mica), 

the cations remain alone in the first layer next to the wall to screen the charge, and anions 

come above them as a second layer. In this configuration, the wetting might be weaker or 

stronger depending on the ions nature [119–121]. It is finally observed that whatever the 

surface charge, ions with longer alkyl chains disturb the first layer ordering [27,120]. This can 

modify the interface rheology once the fluid is sheared. 

The IL structuration near the interface is of the same nature when confined between 

two surfaces than previously with a single surface. Between uncharged surfaces (graphite or 

iron), successive mixed-layers of cations and anions are formed parallel to each surface [28]. 

The cations are oriented parallel to the wall, which favors the layering in presence of small 

anions [22]. Between charged surfaces, successive monolayers of cations and anions come 
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one after another [21] and the layering increases with the charge intensity [22]. The 

dependence of the structuration on the alkyl chain length is still effective for an IL confined 

between uncharged surface [22], but it is remarkably amplified when confined between 

charged walls [21,22,122]: for a [CnC1Im][NTf2] IL, Perkin’s team [21] observed that between 

an imidazolium cation with a butyl alkyl chain (n=4) and an imidazolium with an hexyl alkyl 

chain (n=6), the layer thickness increases up to four times. This is explained by the more 

amphiphilic nature of the [C6C1Im] cation which causes self-assembly into tail-to-tail cation 

bilayers at the mica surface (Figure I-10-b,c), driven by the need to sequester the non-polar 

hydrocarbon chains away from the saturated ionic regions. The interactions between the 

cation tails being a lot weaker than the interaction at the interface, this dual layered structure 

(one adsorbed IL layer locked on the surface and a mobile one) leads to very good 

tribological properties [113]. A similar bilayer structuration is observed with pyrrolidinium-

based ILs, but the mono layers to bilayers transition occurs at different alkyl chain length 

than with imidazolium-based ILs and the alkyl chains are also more interdigitated [123]. 

 

In addition to the described fluid structuration, the liquid/solid interaction directly 

influences the strength of the adhesion of the fluid onto a surface. In particular, the chemical 

elements involved are predominant in the formation of a protective tribofilm. For example, 

phosphate-containing anions mimic the behavior at the interface of anti-wear additives like 

ZDDP and act as a protective tribofilm [113]. Lubrication performances are also enhanced 

with fluorine-containing anions [113] or phosphonium cations [124,125], which favor 

tribofilm formation. Likewise, dicationic ILs show better anti-wear properties than mono-

cations as the adsorption film were found to be thicker [126,127]. Concerning surfaces, it was 

also observed that SiO2 and Mg(OH)2 materials shows better tribological properties than 

Al2O3, MgO, ZnO and ZrO2 because of the active interaction with the IL hydroxyl groups, 

which initiates protective layer formation [20]. At last, the presence of water significantly 

impacts the lubricating behavior. With hydrophilic ILs, water is absorbed in the lubricant 

and reduces its viscosity: it will be thus more easily squeezed out of the contact and 

boundary lubrication might occur. With hydrophobic anions, the water is adsorbed on the 

surfaces and modify the ions orientation. This can either increase or decrease friction, 

depending upon the ions type and the operating conditions [128,129]. 

 

Figure I-10. Suggested ion orientations in (a) [C4C1im][NTf2] at a film thickness of 2.3 nm 

showing alternating cation and anion monolayers for C(AC)2; (b) [C6C1im][NTf2] at 3.4 nm 

showing a single bilayer, (ACCA)1, and (c) [C6C1im][NTf2] at a film thickness of 8.3 nm showing 

two bilayers, (ACCA)2 [21]. 
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Dynamics at the nanoscale 

The global dynamic response of a nanoscale contact and the rheology at the interface 

both depend on the previously depicted structuration and tribofilm formation, and on some 

conditions like pressure or shear rate. 

The influence of the structuration is complex. A difference is to be made between the 

layering structuration and the cohesive reinforcement of the fluid. Indeed, the first one tends 

to ease the diffusion as a motion is possible between well-defined layers whereas the second 

reduces the mobility as an isotropic densification occurs. Confining two different ILs 

between low-charged silica surfaces, Federici Canova and coworkers [130] observed two 

opposite types of structuration resulting in two rheological responses: alternating 

monolayers (of cations and anions) formed with the [BMIM][BF4] induce faster dynamics 

than the mixed layers formed with the [BMIM][NTF2]. Similarly, as previously noticed, 

molecules with long alkyl chains progressively order in parallel layers as the shearing rises. 

In this way, they present a non-Newtonian behavior at low shear rate in nanoconfinements 

[128,131] as parallel layering reduces the resistance to shearing with increasing sliding. On 

the contrary, the cohesive nature of the fluid dictates its viscosity and different external 

factors can alter it and so modify its dynamical response. For instance, Bou-Malham and 

coworkers [23] found that the surface charge increases the ILs cohesion. Indeed, the bulk 

viscosity exponentially increases from film thickness thinner than 20 nm when confined 

between mica surfaces. The IL even exhibits a solid-like behavior under 3.5 nm. 

Concurrently, if the same fluid is confined between methyl-terminated surfaces, no viscosity 

variation of the IL occurs for thicknesses down to 2 nm. In a different context, Mendonça and 

coworkers highlighted that nano-roughness at the solid surface could disturb the fluid 

cohesion and favor the shearing movement [131]. 

When high pressure conditions force the lubricant to nanoconfinements, a stick-slip 

response can occur [112]. In this regime, friction is usually independent of the shear rate. 

Although the stick-slip also takes place with non-polar fluids, its origin and apparition 

conditions differ with ILs as they are generally less subject to solidification. Several 

explanations were suggested [112,129]. The shearing might happen at the interfaces between 

the anion and cation monolayers when the IL is confined between charged surfaces. Besides, 

it was observed that the motion can oscillate between local microslips and collective slip 

resulting from consecutives jumps of the molecules at a fixed shear plane. Finally, a 

succession of local freezing and melting could occur to accommodate the shearing. 

Depending on the rheology, it has been observed in some configurations that friction can 

even drop with an increasing shear rate [128]. This anomalous response is attributed to 

bonds breaking with the shearing as the sliding times between the molecules become faster 

than the re-bonding times at important shear rates. 
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I.3.4 Problems inherent to ILs and solutions 

Since ILs are considered for a use as lubricants, research groups also investigated the 

potential issues.  

In particular, due to their high polarity, the water absorbing capacity of ILs is higher 

than for classical lubricants and the tribo-reactions at the fluid/solid interface with metallic 

surfaces can be more important [20]. Under confinement, this reaction provides a benefic 

anti-wear film but for highly reactive components, degradation of the surfaces can arise. 

Thus damaged surfaces rapidly lead to the global system failure. As an example, fluorine-

containing anions were found to be very sensitive to tribo-corrosion [20,115]. Nevertheless 

this degradation can be restricted in several manners. First, the choice of an appropriate ILs 

can significantly reduce corrosion in major situations. As the charge of the ions is not located 

in their alkyl-group, the ones with long alkyl chains present a reduced polarity and are 

consequently less prone to corrosion [19,20]. Moreover, specific anions were also found to be 

quite resistant to chemical degradations as for instance [NTf2]- which is one of the most 

hydrophobic anions [20]. Best performances in resistance to corrosion were achieved with 

the synthetic anion [FAP]- which offers much better tribological properties (low friction and 

wear) than [NTf2]—containing ILs in long-lasting tests [20]. Other solutions consist to add 

anticorrosion additives to the lubricating IL or to mix it with an anticorrosion functional 

group [20]. Tests with a benzotriazole additive showed good performances, but the latter 

consumed quickly and did not resist to high temperature. On the other hand, mixing a 

triazole at 50/50 with an IL efficiently absorbs the acid locally generated by hydrolysis and 

chemisorbs on metallic surfaces to form a protective tribofilm. Lubricating performances are 

therefore greatly enhanced. 

Further to corrosion, oxidation reactions are also to be considered using ILs as 

lubricants. In fact, even if they are less prone to oxidation than classical oils, they can still 

deteriorate over long periods [20] in severe environments. As for corrosion, the presence of 

water must be restrained and the use of hydrophilic anions (as PF6 and BF4) should be 

avoided to increase the thermo-oxidative stability and keep good tribological performances 

[104]. Not much investigations were conducted on the subject except on the cation influence: 

the –H terminations are suspected to favor the oxidation so cations with short alkyl chain 

lengths present better thermo-oxidative stability [20,104]. 

Finally, though ILs are considered as green lubricants owing to their non-fossil origin, 

their high reactivity might also be toxic for the environment, which could become a major 

issue if they are used more widely. In particular, ILs with long lipophilic alkyl chains tend to 

increase their hazardous properties [24]. According to a recent review of Amde et al. [132], 

the IL toxicity varies considerably across their type, test conditions and morphology of the 

organisms. On the whole, it is recommended for further studies to create a database of 

environmentally benign ILs, based on their toxicological and biodegradation data to fully 

inform on noxiousness for the environment. 
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I.3.5 Conclusion 

As a conclusion, ILs can feature best lubrication performances than classical oils and 

their particular properties such as electrical conductance or high thermal conductivity can 

also be of interest for some specific applications. Today, they remain expensive lubricants 

with rather high sensibility to corrosion and oxidation and possible harmfulness for the 

environment. However, further investigations would give the keys to choose one IL for a 

specific application, optimizing the lubrication performance and limiting the adverse 

reactions. 

Ahead of those investigations, the approach in this work will mostly consider the 

rheological response under representative conditions of an EHD contact, the behavior at high 

confinements and the dynamic interactions in presence of various rough and smooth 

particular substrates. An IL with rheological properties alike to the ones of classic lubricant 

oils should be selected, so the revealed lubrication mechanisms could be compared. It should 

also be composed of ions which are already recognized to be compatible with solid materials 

of current lubricated systems. 

After the review on the macroscale and nanoscale properties of ILs, some questions 

remain. Even if the rheological properties of various ILs were already explored, a detailed 

study of their response to high shearing is still missing. In the following, the behavior of an 

IL will be studied in diverse configurations representative of thin film or very thin film 

regimes. Among other considerations, the revealed mechanisms must feed the discussions 

on the friction response to shearing with polar surfaces. Finally, from the orientation and 

structuration of the ions at the interface, hypothesis can be drawn up on the influence on the 

reactivity at the interface and on the rheological response. 

To carry out the aforementioned investigations, the choice was made to use a 

numerical tool able to simulate the dynamics at the nanoscale. Compared to experimental 

studies, this approach enables to easily test a large number of cases and to precisely 

configure the thermodynamic inputs of pressure, temperature and shear. Once validated, it 

is also capable to quantitatively estimate some physical quantities of interest. Moreover, as 

the main objective was to understand the mechanisms involved in the lubrication process, 

the numerical tool offers the opportunity to have a direct look into the local phenomena and 

to characterize them over various input conditions. The next chapter details the tool and its 

parameterization. 
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This study aims to predict the behavior of ionic liquid lubricated systems under 

various operating conditions and to investigate nanoconfinements to understand the 

lubrication mechanisms occurring in severe environment. The molecular dynamics 

numerical tool enables to easily explore multiple configurations with a great control of the 

environment parameters and offer the possibility to focus independently on each involved 

mechanisms. 

In this chapter, the molecular dynamics tool is first presented and the different 

solving methods are reviewed and evaluated for their suitability with this study. Then a first 

simulated system is introduced: bulk simulation of an ionic liquid. With this system, the 

rheological response of this fluid to various conditions (pressure, temperature, shear rate) 

can be analyzed. At last, a second system is presented: the same fluid nano-confined between 

surfaces of different nature. Through this configuration, a deep analysis of systems response 

to high shearing is possible. 

II.1 Model theory 

This first section presents the molecular dynamics tool through its operational 

principle and the existing methods to configure a simulation. 

II.1.1 Context 

Molecular Dynamics (MD) is an N-body numerical simulation method able to 

describe the physics of interacting particles as atoms and molecules thanks to long-range 

interaction laws [66]. It was first developed in the late 1950s for applications in the theoretical 

physics.  Today, it can model various configurations in any phase state from simple 

crystalline solid structures to complex proteins. Hence, it finds applications in material, 

biomolecular and chemical physics sciences. 

In the tribological field, numerous studies highlighted the ability of MD simulations 

to describe the lubricant dynamics in lubricated systems [15,17,133,134]. Fluids of different 

natures can either be tested as bulk fluid to evaluate their inherent properties in various 

environmental conditions, or in nanoconfinements. In the last case, each fluid presents 

specific structuration and orientation at the liquid/solid interface that have direct effects on 

the global rheology and the potential chemical reactions. The dynamics of the sheared 

contact can also be modeled to evaluate the characteristic values of lubrication at the 

molecular scale. 

As any approach, MD comprises limitations. First, as time is explicitly solved in the 

method, the simulation time step must be low enough to introduce minimum cumulative 

errors in the resolution. This confines the simulation times to generally a few nanoseconds. 

Similarly, with today computational technologies, the number of particles can go up to a few 

thousands and so the size of the 3D simulation domain reaches generally of a few 

nanometers cube. It is sufficient to evaluate inherent properties of bulk fluid, as long as 

lubricant molecules are not too big. Though it is more constraining for nanoconfined systems 
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as only a nano-patch of the contact area can be considered. Besides, classical MD cannot 

describe potential chemical reactions as more complex modeling at the subatomic scale are 

necessary to determine the establishment conditions of chemical bonds. Nevertheless, some 

hybrid algorithms described thereafter enable to model some simple unbonding and 

rebonding between particles. Finally, MD remains a relevant tool to provide essential 

information on the transport properties at the molecular scale, cornerstone of the global 

tribological response of a lubricated contact. 

The time scale restriction is besides a challenging obstacle to simulate the shearing of 

complex fluids. As only a few nanoseconds of a nanoscale system can be simulated, the shear 

rate is generally of the order of 107 to 1010 s-1 to acquire sufficient data statistics. 

Consequently, with confinements of a few nanometers, it is hard to run shearing simulations 

with surface velocities under 1 m/s. Moreover, the simulation of complex fluids come with 

complex modeling of the interactions between elements, bringing an increase of the 

computation times. As the trend is to study molecular lubrication with new fluids (IL, 

glycerol, refrigerants, fatty acids…) [101–103] compromises must be found between the 

model complexity, the simulating times and the shearing velocity. 

II.1.2 Force Field Theory 

The main feature to model properly the material behavior in MD simulations is the 

definition of the atomic interactions (as chemical bonds, weak interactions, hydrogen bonds 

or Coulombic interactions). A force field (FF) refers to the functional form and parameter sets 

used to calculate the potential energy resulting from those interactions. 

In classic FF, the functional form is split up between non-bonded             and 

bonded         terms of the total potential energy   of a particle. The first often 

characterizes all the long-range contributions (Van der Waals, electron cloud repulsion and 

electrostatic forces) while the second describes the chemical bonds. The non-bonded terms 

are softer than the bonded ones but are usually the most computationally intensive. Hence, it 

is relevant to set up different time steps to compute both kinds of potential. Alternatively to 

classic ones, reactive FFs aim to represent both bonded and long-range interactions in a same 

expression by progressively changing the potential nature according to the distance between 

the atoms. Those FFs reasonably increase the computational times and allow a simplified 

representation of chemical reactions. Though, to accurately predict complex chemical 

reactions, ab initio computations or methods combining MD and quantum chemistry (as ab 

initio MD) are necessary [135].  However, associated simulation times are several orders of 

magnitude larger than in classic MD. 

According to the size of the simulated molecules and to the targeted simulation times, 

the representation of the molecule structures may differ with the FF. In “All-atom” FFs every 

type of atom is individually implemented in the simulation, while “united-atom” FFs treat 

the hydrogen and carbon atoms in each terminal methyl and each methylene bridge as a 

single interaction center. “Coarse-grained” potentials define even more crude 

representations for increased computational efficiency. They are frequently used in long-time 
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simulations of macromolecules such as proteins, nucleic acids, and multi-component 

complexes.  

The configuration of the FF parameter sets is the most sensitive aspect of the MD 

method. They directly influence the properties of the modeled matter and its reaction with 

other materials. Only accurate sets would be able to provide quantitative results. They are 

ascertained either from experimental data to verify some physical properties (empirical force 

fields) or from ab-initio calculations. Independently of the method, they are always 

determined on a limited range of environmental conditions (of pressure, temperature, 

physical state…) and so the validity must be verified before use in situations differing from 

the establishment conditions of the FF. 

II.1.3 Calculation principle and Equations 

To model the physics of the simulated system, MD simulations explicitly solve the 

Newton’s equation of motion over time. The positions and the velocities of each atom are 

recalculated every given time step according to the interaction forces between atoms and the 

thermodynamic constraints simulating the operating conditions. To do so, the potential 

energy   of each atom is deduced from their interatomic interactions which are defined by 

the setup of a force field detailed in following sections (ionic liquid: II.2.2 and surfaces: 

II.3.1). The conservative force    acting on one atom is then the opposite of the gradient of its 

potential energy  : 

                                                                                      

The Verlet algorithm is usually employed to compute the atom position as it 

guarantees a good precision of the energy conservation [66]. However, considering the 

disparity between the characteristic times of the different interatomic interactions ruling the 

dynamics of complex fluids, the use of a multi-timescale integrator can substantially reduce 

the computation times [136]. The reversing Reference System Propagator Algorithm (r 

RESPA) allows to consider separately the short and long range interactions to integrate the 

Newton’s second law of motion over time. Therefore, the displacements of particles resulting 

from sensitive intra-molecular interactions are computed more often than the ones resulting 

from loose inter-molecular interactions. Besides, before the integration of the interaction 

forces, additional forces are added to the long range forces to represent the external 

conditions of pressure, temperature and potential other imposed forces. The different 

thermostats and barostats used in this study are detailed in the following for each simulated 

configuration. The r RESPA integration algorithm is detailed in Appendix A. 

The process is repeated many times to reproduce the dynamical behavior of the 

simulated system until an equilibrium or steady state is reached and/or sufficient statistics is 

acquired to estimate the wanted physical quantities. Through iterative computations of 

positions and velocities, cumulative errors are also introduced, depending on the chosen 

time steps. The swifter displacement of atoms correspond to their thermal agitation and start 

to be appreciated at roughly 10-12 s. To ensure energy conservation in the thermodynamic 

ensemble, time steps closed to the femtosecond (10-15 s) are generally taken. With such time 

basis, millions of time steps are necessary to achieve the few nanoseconds needed to analyze 
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the physics of the simulated system. Tens of CPU units are commonly exploited to complete 

the simulations in reasonable times. 

II.2 Bulk simulations 

II.2.1 Choice of the studied IL 

It was observed that hydrophobic anions like the bis(trifluoromethylsulfonyl)imide  

[NTf2-] (sometimes also referred to as [tf2N-] or TFSA)  perform well in steel-steel contacts 

[20]. As previously depicted, ILs with this anion also exhibit pressure-viscosity coefficients 

and temperature-viscosity coefficient that confer them an optimum stability under high 

pressure and wide-temperature range conditions [48,116]. With respect to the cation, 

imidazolium-based RTILs proved to be thermally stable and adaptable. Indeed, through 

different chemical reactions, alkyl chains of varying lengths can be positioned on the 

imidazole ring, modulating its physical and chemical characteristics [104]. 

Finally, coupling a bis(trifluoromethylsulfonyl)imide [NTf2-] anion with a short alkyl 

chain length imidazolium as the 1-3 dimethylimidazolium [mmIm+] (also referred to as 

[C1C1Im+])  results in an ionic liquid (illustrated in Figure II-1) with one of the lowest possible 

viscosity, and comparable to the one of common lubricants [20,48]. This feature can induce 

low friction in tribological systems working in the full film lubrication regime, but also cause 

more lubricant squeezing out of the contact, which would highly favors the presence of the 

nano-confined areas that are central in this work. At last, the size of [mmIm+] cations is very 

close to the one of [NTf2-] anions, meaning the results of this study are exempt from possible 

asymmetrical effects. 

 

II.2.2 IL force-field development 

To model the behavior of ILs with MD simulations, Canongia Lopes and Pádua 

[25,26] built an all-atom force field from ab initio calculations. The molecular geometry, the 

partial charge distribution and the torsional energy profiles were considered to evaluate the 

parameter set. It was then validated on several ILs in both liquid and crystalline phases. 

Figure II-1: Simulated Ionic Liquid: cation (left) and anion (right) molecules 
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Some partial charges of the anions were also adjusted to be transferable to various sets of 

molecules and compatible with the OPLS force field [137]. 

To represent the Van Der Waals and Coulombic interactions between atoms of 

different molecules or separated by more than 4 atoms along the same molecular chain, the 

functional form of the non-bonded potential energy bring together a classic 12-6 Lennard-

Jones potential [138] and the Coulomb’s law: 

                   
   

   
 

  

  
   

   
 

 

  
 

    

    

   
                                    

with, for the Lennard-Jones term,     the distance between the atoms’ nuclei,     the 

finite distance at which the inter-particle potential is zero and     the depth of the potential 

well, and for the Coulombic term,    the atomic partial charge of the atom i and    the electric 

permittivity constant equal to 8.854 × 10−12 F/m. When the atoms are of different natures, the 

Lorentz-Berthelot mixing rules are applied to determine the Lennard-Jones parameters: 

                             
     

 
                                                         

The cutoff distance of the non-bonded interactions is fixed to 12 Å as they are almost 

null over this distance. However, as the coulombic forces have a very long interaction range, 

they remain effective for           but are estimated using a particle-particle particle-mesh 

solver [139] (see Appendix B for more details). 

To describe the complex structure of fluid molecules, their numerous degrees of 

freedom and the bond flexibility, the bonded term of the interaction potential energy is the 

combination of three components: 

                                                                                   

Atoms pairs linked with covalent bonds are model as tension/extension springs: 

                 

     

                                                              

with    the bond stiffness,     the distance between atoms i and j and    the equilibrium 

distance. Force between triplets of atoms are represented by an angle bending potential: 

                   

      

                                                           

with    the angle stiffness,      the bending angle and    the equilibrium angle. Finally, 

torsion of covalent bonds between quadruplets of atoms are modeled with a dihedral 
potential: 

           
 

 
                  

         

 
 

 
                    

 

 
                    

        

with      the torsion stiffness of the different modes and       the torsion angle. 
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The force field is compatible with the classic OPLS-AA and is able to describe a large 

set of IL compounds, but it generally fails to reproduce quantitatively their transport 

properties. In particular, it typically overestimates their viscosity by one order of magnitude 

[140]. A rescaling of some of the force field coefficients is then necessary to obtain accurate 

predictions of the IL lubrication behavior by means of this force field. This is presented in the 

following section II.2.5 

II.2.3 System definition 

One goal of the following work is to estimate the bulk properties of the studied fluid. 

The first goal is to validate its model parametrization by comparing computed 

thermodynamic features with the corresponding experimental data. Secondly, the 

rheological behavior can be characterized in a variable environment (pressure, temperature 

and shear rate).  

Each simulation run is associated to a statistical ensemble. In the microcanonical 

ensemble (NVE), the total energy of the system (sum of the potential and kinematic energy of 

all the atoms), the volume and the number of particles are each fixed to their starting values. 

In most of the studied cases, the fluid is submitted to no external forces so Equilibrium 

Molecular Dynamics (EMD) simulations were run with a microcanonical ensemble as no 

control of the pressure and temperature is necessary. Assuming that the bulk fluid is an 

ergodic system, its macroscopic thermodynamic properties can be determined through the 

evolution of a simple MD simulation as the time averages of an ergodic system correspond 

to microcanonical ensemble averages. Hence, the different macroscopic quantities of density, 

viscosity and diffusion are evaluated with this method. Some Non-Equilibrium Molecular 

Dynamics (NEMD) simulations were also carried out to study the influence of the shearing 

on the viscosity. Although the equilibrium state is broken, a steady state is required to 

average over time the studied quantities. 

In bulk simulations, periodic conditions are applied along the three directions to 

simulate an infinite fluid medium. Hence, the dimensions of the simulations domain must 

have theoretically no influence on the occurring physics. Minimum dimension sizes are 

nevertheless required for the molecules not to interact with themselves through the periodic 

boundary conditions and to have enough molecules to ensure sufficient data statistic 

generation when computing the thermodynamic quantities. So most simulated bulk domains 

are cubes with edges 5 nanometers long, that being roughly ten times the size of 

[mmIm+][NTf2-] molecules (Figure II-2). 
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Before the computation of the desired data, an equilibration step is run to minimize 

the potential energies of the molecules placed manually into the simulation box and to reach 

an equilibrium or steady state according to the imposed temperature, pressure and shear 

rate. In particular, although MD simulations are deterministic, the equilibration step allows 

for a simulation of a disordered initial state peculiar to a fluid at the liquid state. Those 

initialization stages are run in an isothermal-isobaric (NPT) ensemble in which the atom 

number, the temperature and the pressure are controlled but where the total energy is free to 

evolve to adapt to the environmental conditions. To lead the simulation to the desired 

pressure and temperature, Nosé-Hoover thermostat and barostat [141,142] were set up and 

regulated the full system every 100 and 1000 time steps respectively. As the studied fluid 

presents a relatively low mobility, preliminary tests revealed that a few hundreds of 

picoseconds are often necessary to fully stabilize the system before calculation of the 

quantities of interest. Once at equilibrium, the statistical ensemble is switched to 

microcanonical. 

II.2.4 Quantities of interest 

Several thermodynamic properties of the fluid were computed to evaluate its 

rheological behavior at conditions of shearing, temperature and pressure which cannot be 

achieved easily through experimental tests. 

Density 

Density was the first bulk fluid property investigated as it is a representative quantity 

of the fluid thermodynamic nature depending both on the pressure and the temperature. It is 

also relatively fast to compute so a wide range of environmental conditions could be tested. 

The density   can be defined as follow: 

Figure II-2: Bulk fluid domain. Red molecules are anions and blue ones are cations 
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with      the number of molecules in the system,        the mass of one molecule,   the 

domain volume and     the average over time. As it is dependent on the volume, the density 

computation must be perform in an isothermal-isobaric (NPT) ensemble in which the volume 

is free to vary. After the density reached its equilibrium value, it is time-averaged over 100 ps 

to get a satisfactory estimation of the value. 

Diffusion 

The diffusion coefficient   is computed from the mean square displacement of the 

molecules [66]: 

  
 

      
                 

  

      

   

                                                     

with   the acquisition time and    the position of the molecule i. After the equilibrium stage 

in the NPT ensemble to relax the fluid at the desired temperature and pressure, 2 ns are 

necessary for the diffusion to stabilize at its limit value. The diffusion coefficients of different 

molecules of a same fluid can be computed either together or separately to provide 

information either on the fluid properties or on its component species. 

Viscosity 

The bulk viscosity was computed using two different methods. The Newtonian 

viscosity of the fluid is estimated through EMD simulations while NEMD ones were run to 

study the transition of the fluid from its Newtonian behavior (viscosity independent of the 

shear rate) to a non-Newtonian one. For the equilibrium simulations, the Newtonian 

viscosity is estimated within the linear response theory, using a Green-Kubo relation based 

on the integration of the autocorrelation of the five independent components of the traceless 

stress tensor [143]: 

   
 

    
                   

 

 

                                                        

with    the Newtonian viscosity,    the Boltzmann’s constant,   the fluid temperature and 

    the independent components of the traceless stress tensor:    ,    ,    , 
 

 
         , 

 

 
         . The computation time is directly dependent on the viscosity and averaging the 

contributions of those five components significantly reduce this time. Nevertheless, as it was 

studied on a wide range of environmental conditions, at the highest pressures and lowest 

temperatures (i.e. most important viscosities), more than 40 ns simulations were required to 

estimate the Newtonian viscosity with the chosen IL. 

The evaluation of the sheared viscosity without shearing walls and without 

supplying external energy to the system is possible thanks to the Müller-Plathe algorithm 
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[144]. The method consist of exchanging artificially momenta between particles of different 

regions to generate a shear velocity profile in the fluid (see Figure II-3). Hence, the shear rate 

   is not directly an input of the simulation but is controlled by the number of particles 

swapping their momenta and on the periodicity of those swaps. To reach shear rates from 

107 s-1 to 1011 s-1, momenta exchanges goes from 1 exchange every 0.1 ps to 20 exchanges every 

0.02 ps. The velocity range on which the data are exploitable is bounded at both sides: at the 

lowest shear rates, longer computations times are needed to yield the shear rate value 

through thermal noise and at the highest shear rates, a swap too frequent of the momenta 

prevent the establishment of a linear velocity profile. The viscosity   is then deduced from 

the shear stress   measured from the energy of exchanged momenta  : 

  
 

  
               

 

  

  

  
                                                               

with   the area of the section perpendicular to the direction of the exchanged momenta. As 
energy is added to the simulation, the control of the thermostat is also essential as it pulls out 
the excess of energy so the total energy of the bulk system is constant. In the present 
simulations using the Müller-Plathe method, the temperature was confirmed to be constant 
over time on account of the Nose-Hoover thermostat. 

 

II.2.5 Charge scaling and model validation 

As quantitative results were expected from the present study, a standard charge 

scaling procedure [140,145] was implemented in order to properly reproduce the evolution 

of the density and of transport properties of the [mmIm+][NTf2-] ionic liquid with the 

temperature. This modification was conducted following the method described by Chaban 

[146]. 

Figure II-3. Typical velocity profile resulting from the application of the Muller-Plathe method. 

The simulation is periodic in the z direction so the profile must be continuous between the 

lowest and the highest points. 
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For this purpose, the [mmIm+][NTf2-] IL properties were computed from MD 

simulations and compared to experimental data. Figure II-4 illustrates the variation of the IL 

density with temperature at ambient pressure   = 0.1 MPa, for both experimental data 

[146,147] and MD simulations carried out with 3 different charges weighting factors:    = 

0.70, 0.75 and 0.80. The relative deviation between the computed density values and the 

measured ones is less than 1 % over the studied temperature range when    = 0.75. It was 

thus considered, for this specific    value, that density and by extension the structural 

properties of the [mmIm+][NTf2-] ionic liquid were satisfactorily predicted. 

 

As for dynamic properties, the diffusion coefficient was computed from the 

integration of the mean square displacement of the ions over time [66]. The weighting factor 

of 0.75 was used and the results were compared with analytical predictions of empirical laws 

derived from experimental data [148]. Figure II-5 shows the variation of the bulk self-

diffusion coefficient   of [mmIm+] cations and [NTf2-] anions versus temperature, at ambient 

pressure   = 0.1 MPa. The agreement between the two set of results is fairly satisfying: the 

maximum relative deviations are of ca. 20 % for the cation and ca. 10 % for the anion at 333 

and 393 K, respectively. 

Figure II-4. Evolution of the bulk ionic liquid density with temperature, at ambient pressure p = 

0.1 MPa. Symbols represent numerical values obtained for different weighting factors k applied 

to the Coulombic charges in the force field parameterization. The dashed line represents 

experimental results [146,147]. 
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As a last step to confirm the   value of 0.75, the bulk shear viscosity at   = 303 K and 

  = 0.1 MPa was computed through equilibrium MD simulations using a Green-Kubo 

expression [66], still with the same weighting factor applied to the ions charges. The 

resulting viscosity value   was equal to 36 ± 5 mPa.s, to be compared with the experimental 

one of 32 mPa.s [146], the relative deviation of 13 % being within the range of statistical 

errors. Finally, the choice of    = 0.75 appeared to be relevant to predict both density and 

transport properties of the [mmIm+][NTf2-]: this weighting factor has thus been adopted in 

this study. The whole parameter set of the IL force field is available in the Appendix B. 

II.3 Lubricated nano-contact simulations 

II.3.1 Surfaces generation and force field 

As it was highlighted in the first chapter, the fluid/solid interface plays a major role 

on the studied rheology of a molecularly lubricated contact. Thus, the interaction of the fluid 

with the surfaces must be finely modeled. Different materials were considered in this work 

to study the influence of their properties on the interface phenomenology. To depict the case 

of a realistic steel-steel lubricated contact, iron oxide was first implemented in the confining 

simulations and most of the investigations of the system behavior were run with this solid. 

As Diamond-like-carbon (DLC) coatings proved to substantially improve the tribological 

performances of frictional systems, several carbon-based materials were then integrated and 

their influence on the confinement behavior were compared to the iron oxide one. 

Figure II-5. Bulk diffusion coefficients of [mmIm+] cations (blue triangles) and [NTf2-] anions (red 

squares) as a function of temperature, for a weighting factor    = 0.75 and at ambient pressure 

  = 0.1 MPa. Analytical laws determined empirically from experimental data [148] are plotted 

for comparison. 
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Iron oxide (FeO) force field 

A huge part of mechanical systems, like rolling element bearings, are made of steel. 

The surface of carbon steel in contact with ambient air oxidizes and different compounds can 

result from the reaction (FeO, Fe2O3, FeO(OH)...) [149]. Among those compounds, iron oxide 

(FeO) is a relevant candidate to authentically describe the upper molecular layers of an 

engineering surface (see Figure II-6). 

 

A force field developed by Cygan et al. [150] for crystalline structures and later 

validated for metal oxides [151] was implemented to describe the nature of the FeO 

interactions. In this force field, all the covalent bonds structuring the solid body are depicted 

through non-bonded Van der Waals and Coulombic interactions as described by Equation 

II.7. Here, to ensure the most realistic interaction with the fluid, the iron and oxygen atoms 

were set to their fully ionized configuration. The parameter set is given in the Appendix B. 

Finally, there is less than 4 % discrepancies between the lattice parameter of modeled FeO 

and its theoretical bulk value [152]. 

Carbon-based material force field 

In the last chapter, the properties of different carbon-based materials as confining and 

shearing surfaces are explored. In those solids, the carbon presents different type of 

hybridizations. A sp3 hybridized carbon features four bonds with other carbons (or other 

atoms) coordinated in a tetrahedral geometry. Similarly, sp2 hybridized carbon presents 

three bonds in a same plane, and sp hybridized carbon, two lined up bonds. Here, the 

extreme cases of the two crystalline allotropes of carbon were first studied: graphite (sp2 

carbons only) and diamond (sp3 carbons only) (see Figure II-7 a,b). In both cases, ideally flat 

surfaces were simulated. Tetrahedral amorphous carbon (ta-C) is a hydrogen-free DLC 

consisting of mainly sp3-bonded amorphous carbon. It is used in numerous tribological 

applications [153]. Under working conditions, amorphous carbon (a-C) results from the ta-C 

coatings at the shearing interface. Hence, a-C is a good candidate to depict the interfacial 

behavior of a typical DLC coating. To model a-C, a 3-dimensional periodic volume of molten 

carbon was cooled and stabilized to nearly the solidification temperature (≈ 4000 K). From 

this state, two surfaces with different roughness where generated (see Figure II-7 c,d): the 

carbon volume was taken equal to 3000 K (roughest a-C) and 2000 K (smoothest a-C) at a 

cooling speed of 0.2 K/ps and blocs were cut out in the volume. Along one direction, each 

Figure II-6. Iron oxide surface. The numbers of oxygen ions (O2- in red) and iron ions (Fe2+ in 

green) are the same. This way, the surface is polar but globally uncharged. 
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bloc has two free surfaces (with no periodic boundary condition) where carbon atoms are 

free to relax. Depending on the bloc temperature, it will differently modify the topography of 

the surfaces: at 2000 K, the carbon volume is fully solid so the surface structure will not 

rearrange more than necessary to be at an equilibrium state. At 3000 K more carbon atoms 

jump from one equilibrium location to another, causing an increase of the surface roughness. 

Once stabilized, both surfaces were cooled to ambient temperature before being integrated 

into shearing simulations. 

 

 

The reactive Tersoff potential [154] was invoked to represent the carbon-carbon 

interactions. First develop as a new force field for silicon (SiC), it was then adopted on 

repeated occasions to model carbon-based material interactions [155]. This potential 

describes, with a single expression, the force between the two atoms of breakable covalent 

bonds.  

For          , exponential laws rules the interaction: 

         
 

 
                               

   

                                         

with   and   two constants,    and    two atom-dependent parameters and     a weighting 

coefficient including a three-body term to embody the bond ordering. For          , the 

potential is null as the bond is broken and for                 the potential smoothly tends 

towards 0 leaded by the         factor. The full analytical expressions and coefficient values 

of the force field are detailed in Appendix B. As graphite has a complex structure made of a 

piling of graphene layers, a hybrid force field is used with the Tersoff potential describing C-

C bonds within graphene layers and a Lennard-Jones potential to model the non-bonded 

Figure II-7. Carbon-based surfaces representations. Representation with the atoms for the 

graphite a) and the smooth c) and rough d) a-C materials. Representation of the bonds for the 

graphite b), so the graphene layers are visible. 

a) b) 

c) d) 
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interactions between graphene layers. For this last material, the Tersoff force field 

coefficients were taken from Lindsay work [155] and the Lennard-Jones ones from the classic 

AMBER force field [156]. 

Wall-fluid interactions force field 

Non-reactive force fields do not directly model the chemical reactions between the 

solid and the fluid bodies. They are inappropriate to study highly reactive species and long 

term oxidation/corrosion reactions. They are nevertheless a powerful instrument to describe 

the physisorption and the orientation of the molecules at the interface as well as the resulting 

tangential forces and velocities in a sheared system. Hence, only non-bonded Van der Waals 

and electrostatic interactions are modeled between the atoms of the surface and the ones of 

the IL. They are also described by Equation II.7 using the previously introduced Lennard-

Jones and Coulombic coefficients mixed with the Lorentz-Berthelot rule. 

II.3.2 System definition 

To study the molecular lubrication, MD simulations are configured with the fluid 

confined and sheared between two sliding surfaces. Numerous data can be acquired through 

this method: arrangement and orientation of molecules, velocity and temperature profiles, 

energy transfers… Input parameters are also numerous: surface and fluid natures, lubricant 

thickness and sliding speed add to the thermodynamics variables of pressure, temperature. 

Periodic boundary conditions are defined along both the x and y directions, thus 

simulating infinite surfaces.  As for the bulk simulations, surfaces are about 5 nanometers 

long (x axis) and wide (y axis) for the fluid not to interact with itself. Given that in the center 

of a lubricated contact the film thickness is much smaller than the other dimensions the 

previous hypothesis is relevant to model molecular lubrication. As a consequence, the 

number of simulated lubricant molecules is constant between the surfaces. This is a major 

choice in the model configuration as with flat surfaces the full film lubrication condition is 

always fulfilled and no squeeze out of the fluid that would lead to local film breakdown can 

happen. 

The solid surfaces are about 2 nanometers thick as the liquid/solid interactions are 

quasi non-existent beyond this distance. This way, the fluid experiences a contact with the 

surfaces as if they were semi-infinite solids. The operating conditions are set up on the two 

external atom layers of each surfaces according to the z direction (blue region in Figure II-8). 

The normal confining pressure is applied uniformly on the atoms of these control regions so 

each one support the following confining force    
: 

   
 

      

  
                                                                            

with       the imposed confining pressure,   the surface section and    the number of atoms 

in a control region. In the shearing simulations, the sliding velocity is also applied to the 

same control regions by forcing the displacement along the x-direction to the desired speed. 

Half the value of the total shearing velocity is set up to each surfaces. 
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As one of the goals of this work is to study the thermal behavior of molecularly 

lubricated contacts and its influence on the rheology, no thermostat was directly imposed to 

the fluid so its temperature is free to evolve when it is sheared. However, as the solid 

thermal properties are not investigated here, the surfaces are fully thermostated with a 

Langevin thermostat [66] so the defined temperature       is adjusted with a damping time 

of 100 time steps (being 0.2 ps). Hence, forcing to the same temperature all the surfaces is 

relevant for the comparison of the liquid/solid interface thermal behavior for the different 

studied cases. 

Three steps were implemented to initialize the system. Firstly, an equilibration step 

was run without shearing and with no confining pressure applied on the surfaces so the 

fluid can relax between the walls. Secondly, the confining forces were added to the system so 

it progressively achieved an equilibrium state under confinement. Finally, a tangential 

relative motion was introduced between the two surfaces and sufficient simulation time (up 

to 2 ns) was run to ensure the sheared system achieved a steady state before data acquisition. 

II.3.3 Quantities of interest 

In simulations of the molecular lubrication regime, different outputs are generated 

and averaged over time. The shear stress and the film thickness are directly computed 

during the simulation and are regularly outputted. The shear stress    shear   (with  shear 

the total shear force measured on the control region of the confining walls) is deduced from 

the momentum supplied to the atoms of the control domain to keep their imposed velocity in 

Figure II-8: Confined and sheared fluid principle. Highlighted in blue are the control regions 

where the pressure and the shearing velocity are imposed. The solid surfaces are entirely 

thermostated. 
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the   direction while the contact thickness is defined as the arithmetic mean between the 

lubricant thickness and the distance between the two confining walls (see Figure II-9). 

 

The velocity, temperature and local density of the fluid are all evaluated through 

their respective profile across the   direction. Each one is discretized in slabs that are about 1 

angstrom thick and parallel to the    plan. Atom number and velocities are measured in 

each distinct slab and averaged over multiple time steps to plot the different profiles. 

Snapshots of all the atoms positions are also regularly produced over short periods to 

generate visual renderings or to calculate the molecule orientations. All the other studied 

quantities (effective and apparent shear rates, friction, viscosity, slip length, fluid friction, 

average temperature and interfacial thermal resistance) can be deduced from the previous 

ones. 

Finally, two classes of systems were configured and validated to investigate 

lubrication mechanisms by means of MD simulations: bulk fluid and nanoconfined fluid. 

With the first, the next chapter aims to characterize the rheology of ionic liquids, and more 

generally, of fluid lubricants, at high shear rates, for various conditions of pressure and 

temperature. 

  

Figure II-9. Schematic representation of the film thickness calculation for smooth surfaces. 



 

 
 

  



 

 
 

 



 

 
 

  

Chapter III: Rheology in thin films 
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This chapter offers a full picture of the [mmIm+][NTf2-] shear-rheological response to 

representative conditions of the elasto-hydrodynamic (EHD) and thin film regimes, based on 

MD simulations and with an experimental contribution. Most of this chapter is adapted from 

a paper accepted for publication in Tribology Letters. In a first section, experimental and 

numerical results in the linear regime are thoroughly evaluated, modeled and compared to 

prove the capability of molecular simulations to quantitatively predict the rheological 

properties. In a second section, the nonlinear domain is analyzed and the shear-thinning 

behavior of the ionic liquid is discussed and compared to the predictions of usual rheological 

models. 

III.1 Linear regime 

In this section, the opportunity to compare experimental findings with MD results is 

presented for the Newtonian (or linear) domain only. This includes the influence of 

temperature   and pressure   on low-shear viscosity    and the deduction of the pressure-

viscosity coefficients. To this end, a regression to the Carreau model (Equation I.1) was 

performed for each       couple of conditions to obtain the corresponding values of the 

Carreau equation parameters. 

III.1.1 Methodology 

A series of          cases was studied, in which             were varied from 303 to  

550 K, from ambient pressure up to 800 MPa, and from typically 107 to 1011 s-1, respectively. 

The majority of the results were obtained from NEMD computations and the previously 

detailed Müller-Plathe method was employed to infer the viscosity at different shear rates. In 

a complementary manner, EMD simulations using the Green-Kubo formalism were also 

computed to derive the Newtonian viscosity in a different way, with the aim to offer a 

validation of the NEMD results. Thus, a total of nearly 200 cases were computed from 21 

      conditions associated with different    values. Figure III-1 shows a typical set of results 

obtained from arbitrarily selected conditions. 
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Whatever the case under consideration, the results follow a similar trend: first, a 

plateau is observed, followed by a continuous drop with a constant slope, suggesting a 

power-law trend. The plateau is characteristic of the Newtonian viscosity and the drop is 

induced by the shear thinning of the fluid. For the only 6       couples (among the 21 

effectively computed) reported in the Figure III-1, the viscosity values cover 4 orders of 

magnitude while the corresponding shear rates extend over more than 5 decades. 

To strengthen the analysis, the Newtonian viscosities obtained from MD simulations 

were compared to the results of experimental measurements on the [mmIm+][NTf2-] carried 

out at LaMCoS. 

  

Figure III-1: Viscosity variations obtained from NEMD simulations of the [mmIm+][NTf2-] ionic 

liquid versus shear rate at different ( ,  ) conditions, arbitrarily selected. Values obtained 

from the Green-Kubo approach are plotted with black symbols at an arbitrary shear rate of 

2.106 s-1. The dashed lines represent the regression of each configuration to the Carreau 

model (Equation I.1). 



Chapter III 

58 
  

III.1.2 Analytical prediction model of the viscosity 

Figure III-2 compares the two series of results obtained experimentally and 

numerically at ambient pressure over a range of temperature. 

 

Overall, a good quantitative agreement was found even if some rather weak 

discrepancies are visible. By comparison with similar previous works, the self-consistence of 

the Newtonian viscosities variations versus temperature is triple checked in this work: the 

two computational approaches (NEMD and EMD-Green Kubo) highlighted before are 

completed by low shear-rate experiments. Finally, for confirmation purpose, but in the range 

293-353 K, it is shown that the measured and simulated values agree well with those of 

Tokuda et al. [148,157] obtained experimentally for the same fluid, which are likewise plotted 

in Figure III-2. 

The experimental results at ambient pressure were fitted to the Vogel-Fulcher-

Tammann (VFT) empirical model [158] that has been often used in glass forming liquids 

which display a non-Arrhenius behavior, as it is the case with ionic liquids [159]. Its 

expression is given below, and the resulting viscosity values are also plotted in Figure III-2 

(black open squares and dashed line). 

                  
     
    

                                                       

where    is the viscosity extrapolated to infinite temperature,    the fragility parameter and 

   the Vogel temperature at which viscosity diverges. A regression of the VTF model to the 

experimental data gives    = 0.2546 mPa.s,    = 4.054 and    = 182.8 K. 

Figure III-2. Newtonian viscosity of the [mmIm+] [NTf2-] ionic liquid at ambient pressure as a 

function of temperature. NEMD results are compared with measurements, including those of 

Tokuda et al. [148,157]. The values resulting from a fit to the VFT expression are also reported 

with black open squares and dashed line. 
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The agreement between the viscosity values derived from NEMD simulations and 

those given by the VFT expression is very satisfying over the whole temperature domain 

investigated here, from 298 to 550 K. In fact, Equation III.1 also provides supplementary data 

which is required when it comes to consider the effect of pressure and temperature on 

viscosity. Assuming that a viscosity of    = 1012 Pa.s indicates the occurrence of a glass 

transition which is a typical value for lubricants at this specific state, it becomes possible to 

deduce the value of      , the glass transition temperature at atmospheric pressure by 

making the assumption          . With this approximation, we found              

thanks to the VFT model. This value was then directly introduced in a modified WLF-

Yasutomi correlation [160] to allow the prediction of the Newtonian viscosity   , as a 

function of both temperature and pressure. This model is expressed as follows: 

                      
                 

                 
                                     

with                           and                , where                   are 

the model constants, and      the dimensionless relative thermal expansion function of the 

free volume. 

The 6 parameters of the modified WLF-Yasutomi correlation were obtained by least 

mean square regressions of the experimental data using         183 K, as described before. 

The parameter values are reported in Table III-1.  

 

Parameter 

(unit) 

   

(°C) 

   

(MPa
-1

) 

   

(MPa
-1

) 

   

(-) 

   

(-) 

   

(°C) 

      

(°C) 

Standard 

deviation 

From exp. 22.0997 2,381 10
-3

 0,002346 -0,770 15,680 18.892 -90.159 2 % 

From MD 1447.44 2.063 10
-5

 0.002281 -0.8682 15.721 19.898 -90.159 9.4 % 

Table III-1. Parameters and standard deviations of the modified WLF-Yasutomi correlation 

(Equation III.2) used to represent the viscosity variations with   and   of the [mmIm+] [NTf2-] 

ionic liquid. Parameters are inferred from the Newtonian viscosity of experimental and MD 

measurements. 

In Figure III-3, the experimental results are plotted with yellow squares and the 

modified WLF-Yasutomi predictions from those values are plotted with yellow lines. The 

uncertainty of the experimental data is lower than 3 %. With a standard deviation of 2.1 % 

calculated on the whole experimental dataset, Equation III.2 provides a very good fit to the 

measurements which makes almost impossible to distinguish the experimental points from 

the calculated values in a graph that spans over several orders of magnitude in viscosity. The 

Newtonian viscosities obtained through MD simulations are represented by black stars 

connected by black dashed lines whereas the values obtained from the modified WLF-
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Yasutomi model (applied to these computations) are drawn with continuous black lines. The 

values of the parameters of this second correlation are given in the last line of Table III-1: it 

should be emphasized that the       value was the same as for the regression to the high 

pressure measurements, meaning that this experimental parameter was used to fit the results 

of numerical simulations. The regression has led to a rather good estimate of the MD 

predictions, with a standard deviation of 8.8 % obtained for 19       cases out of the 21 

studied here. The two cases at 550 K were not considered as the temperature is out of the 

range that the WLF model can estimate accurately. This has also enabled to keep the       

domain not too large compared with the experimental one, also not to overburden the graph 

with values obtained at unusual temperatures for a lubricant. 

 

The comparison between experiments and simulations shows a fair quantitative 

agreement at 303 and 350 K, where the visual differences on the pressure influence are 

amplified by i) the deviation between the initial viscosities at 303 K and ii) by a temperature 

difference between the tests and the computations (353 vs. 350 K). However, a clear 

overestimation of the pressure influence on viscosity by molecular computations is observed 

at 403 K. The Newtonian viscosity is linked to the self-diffusion coefficient   through the 

Stokes-Einstein equation:  

  
   

    
                                                                              

with    the Boltzmann's constant,   the temperature and   the hydrodynamic radius of the 

molecule. Hence, the observed deviation of the Newtonian viscosity is consistent with some 

Figure III-3. Viscosity versus pressure at different temperatures for the [mmIm+][NTf2-] ionic 

liquid. The experimental results are plotted with yellow squares and the corresponding modified 

WLF-Yasutomi predictions with yellow lines. NEMD results are represented by black stars and 

dashed lines, the results of the modified WLF-Yasutomi expression applied to these 

computations are traced with dark blue lines. 
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previous observations stating that the self-diffusion coefficient is underestimated when 

calculated by means of MD simulations [161,162]. 

III.1.3 Pressure viscosity coefficient 

At this stage, it appeared necessary to compare these results with reference data in 

order to assess both the experimental and the computational studies, and to validate the 

models used so far. Considering the frame and the main objective of this work, i.e. the EHD 

and very thin film regimes and to offer a new way to access the lubricant characteristics 

required for estimating film thickness, the more critical and discussed parameter is certainly 

the PVC at the contact inlet temperature. In the literature, several definitions of the PVC 

coexist. One commonly used is the secant PVC coming from the Barus relation [163]: 

                                                                                      

where   is the PVC. This definition is extremely accurate but   depends on the pressure 

what greatly limits its range of application. Otherwise, in their reference work for predicting 

film thickness in EHL, Hamrock and Dowson [164] actually used     the reciprocal 

asymptotic isoviscous pressure coefficient proposed by Blok [165] and defined by: 

 

  
   

         

       
  

 

   

                                                                 

This PVC has first the advantage to be pressure independent. Using the Hamrock and 

Dowson expressions [164], it is also relevant to properly foresee the EHD film forming 

capacity as it was, for instance, reported by Chaomleffel et al. [166] for a very wide range of 

operating conditions, including the EHL and thin film regimes, and also for a broad 

collection of lubricants of different molecular natures. There is, however, a limitation for 

using   : as it is derived from an integration, the residue must be negligible or nearly 

negligible, which means that the ratio 
         

       
 must tend to zero when   becomes sufficiently 

high. Since most of the PVC data arise from experiments, this condition implies that the 

pressure range and thus, the maximum pressure, should be large enough. In his book, Bair 

[167] recommends to reach a maximum pressure       of, at least,     to make sure that the 

derived PVC value is correct. 

The observation reported in 2008 by Pensado et al. [48], who emphasized the lack of 

conclusive works in the literature on the viscosity-pressure dependence in ionic fluids, is still 

topical. Up to now, no pressure-viscosity data were published on the [mmIm+][NTf2-] ionic 

fluid. Ahosseini and Scurto [159] studied the [emIm+] [NTf2-] (1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide) whose molecular structure is very similar to that of the 

fluid under consideration in this work. However, the pressure domain in [159] was limited to 

125 MPa making it impossible to determine a pressure-viscosity coefficient like    within an 

acceptable accuracy. In fact, the PVC of this type of fluids is expected to be rather low 

[48,159], in the typical range from 10 to 7 GPa-1 at 313-353 K, meaning that the pressure 

domain must extend to a minimum of respectively 330 to 430 MPa, in accordance with 

the            condition.  
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The    values calculated from the two regressions by the modified WLF-Yasutomi 

correlation to both experimental and MD results on [mmIm+][NTf2-] are plotted in Figure 

III-4, for temperatures lying from 298 to 450K. In this range, compared with the values 

obtained from the experiments, those calculated from molecular computations overestimate 

   by 6 to 14%, respectively. As the absolute gap remains nearly constant when   varies, it is 

the continuous drop of    with   which leads to an increase of the relative deviation. The 

reciprocal asymptotic isoviscous pressure coefficients from the works of Harris et al. [1] on 

[bmIm+][NTf2-] are also reported in Figure III-4, with brown diamonds:    was calculated 

from the tabulated data obtained at 298, 323 and 348 K. This ionic fluid has a similar 

molecular structure to the one considered in this study, except one longer alkyl chain in the 

cation, 1-butyl-3methylimidazolium instead of 1-3-dimethylimidazolium. According to the 

literature, a longer alkyl chain results on a significant increase of the viscosity at ambient 

pressure [48], but has a rather weak influence on the PVC [168]. By analogy with other fluids 

of similar molecular size, the low values of the PVC found here can also be attributed to the 

very compact shape of the ions. It must also be noticed that the corresponding maximum 

pressure in [1] are equal to 150, 250 and 300 MPa, meaning that the           condition is 

somewhat violated. The      value should have been higher by approximately 100 MPa at 

each temperature step: this lack of data at appropriate pressures has a higher effect at 298 K 

compared to 348 K. Given the above remarks and comments, it can be concluded that the 

results derived from the tests by Harris et al. [1] on [bmIm+][NTf2-] confirm qualitatively and 

quantitatively the viscosity-pressure coefficients found from experiments and MD 

simulations on the [mmIm+][NTf2-] ionic fluid. This is particularly well verified at 348 K, 

where the uncertainty on    from [1] is certainly the lowest. 
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The gap found between the two approaches is acceptable, given that    appears in 

film thickness formulae with a power exponent of nearly 0.5 which limits the consequences 

of this deviation. For comparison with the properties of conventional lubricants, the    

variations with   obtained on a hydrocracked mineral base oil (from [160]) are also plotted in 

Figure III-4. This lubricant was chosen in such a way that its viscosity at ambient pressure is 

close (lower by 10 to 20%) to that of the ionic fluid. This further comparison clearly evidences 

that this class of ionic fluids exhibits lower PVC but that its variations with temperature are 

very similar to those of the lubricants currently in use. Thus, their potential, from the film 

thickness capacity point of view, is clearly evidenced: it is equal or better than that of 

conventional fluids, given that ionic fluids properties at ambient pressure are more stable 

with   variations, and that it is easily possible to adapt their structure (e.g. the length of the 

alkyl chains of the cations) for adjusting / optimizing their characteristics. 

III.2 Non-linear regime 

After having confirmed the prediction of the viscosity plateau at low shear rates 

through molecular computations, this section is devoted to the analysis of the nonlinear 

response of the ionic liquid rheology at high shear rates (see Figure III-1). As a large number 

of cases were simulated, the first step consists in normalizing the viscosity with respect to a 

Figure III-4. Variations of     the reciprocal asymptotic isoviscous pressure coefficient [165], as 

a function of temperature calculated from: i) WLF-like correlation applied to experimental 

results (blue squares) and MD simulations on [mmIm+][NTf2-] (light blue circles), ii) Harris et al. 

experimental results [1] on [bmIm+] [NTf2-] and iii) WLF-like correlation applied to experimental 

results on a mineral base oil [160] (triangles). 
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reference configuration. This way, a comparison is possible between the evolutions of the 

viscosity with the shear rate when shear thinning occurs. Once on the same basis, the 

evolution of the parameters issued from the regression of each cases to the Carreau model 

introduced in section I.1.3 can be analyzed. The expression of the Carreau law is recalled 

here as it will be widely referred to in this section: 

                
  

   
                                                                   

with the Newtonian viscosity   , the relaxation time      and the exponent  , three values 

inherent to the fluid, and    the shear rate taken by the fluid. 

First the physical meaning of relaxation time is put forward to explain its evolution. 

Second, the   exponent is carefully characterized and is described by an analytical 

expression in order to improve the viscosity prediction of the Carreau model. 

III.2.1 Normalization procedure  

Given the very large number of computed cases and the wide extension of the 

domains in both viscosity and shear rate, the simulations results of the 21 (   ) conditions 

cannot be directly treated as such as it is quite impossible to directly compare them either 

quantitatively or qualitatively. At this point, the method of reduced variables, which is the 

standard rheological application of time–temperature–pressure superposition [4,53,169], is 

put into practice. It is a well-established technique for collapsing the rheological results of a 

given material obtained at different temperatures, pressures and shear rates onto a unique 

(or master) curve, characteristic of that material. In accordance with Bair et al. [169], it is 

possible to calculate the reduced viscosity            and the reduced shear rate       

         with    and    the shift factors given by 

   
       

             
                                                                      

    
                         

                      
                                                                 

where       and      define a reference state for the rescaling of   and   ,   and      are the 

fluid density values at any       condition and at the reference state, respectively. 

The reference state was chosen at        303 K and       0.1 MPa as it is the closest 

to ambient conditions. The technique was thus applied to the entire set of MD results and the 

corresponding values are plotted in Figure III-5.  
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This figure firstly illustrates how the MD rheological data obtained for 

[mmIm+][NTf2-], initially spreading over many orders of magnitude of viscosity, now 

converge well onto a single master curve, justifying this way the employed shift factors 

expressed by Equations III.6 and III.7. Secondly, the good overlap shown in Figure III-5 

enables the estimation of the viscosity value of this ionic liquid at any       condition, 

provided that the corresponding        and          values are known. However the ideal 

way to quantitatively foresee the rheological properties at any          condition requires the 

introduction of a relevant model. To achieve this goal, the Carreau relationship, as expressed 

by Equation I.1 in [51], comprises three parameters which have a fundamental meaning for 

describing the rheological response of a material submitted to extreme values of shear rate at 

any       condition:     the Newtonian viscosity already introduced,     , the relaxation time 

directly related to the shear rate for which the onset of non-Newtonian (or non-linear) 

behavior occurs, and  , the power-law exponent reflecting the degree of non-linearity of the 

viscosity-shear rate dependency. 

III.2.2 Improvement of the Carreau model 

The regression to the Carreau law was carried out on the entire set of almost 200 

rescaled cases and is plotted in Figure III-5 by the dashed black line. It gave the following 

values:     29.7 mPa.s,       0.605 ns and    0.212. In order to evaluate the quality of the 

regression, the coefficient of determination    was introduced: 

     
          

       
                                                                      

Figure III-5. Results obtained from nearly 200 NEMD simulations, after viscosity and shear rate 

rescaling using Equations III.6 and III.7, with a reference state defined by        303 K and 

      0.1 MPa. 

. 
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where            and         are respectively the sum of the squares of residuals and the total 

sum of the squares and are defined as : 

                           
         

 

                                               

                        

 

                                                             

with            the viscosities for all the conditions of pressure  , temperature   and shear 

rate    ;    
         the viscosities predicted by the Carreau model for all the same conditions 

and    the overall mean of the viscosity.    is equal to 0.994 what reflects the pretty good 

prediction capability of the Carreau model. Nevertheless, even if the Newtonian viscosity is 

very close to the experimental values mentioned before, a significant discrepancy is found on 

both      and  , indicating an apparent inadequacy or incompleteness of the model. As a 

matter of fact, the regressions to the Carreau model computed for each of the 

21       couples give non constant   values, which range from 0.20 to 0.52 (see Table III-2). 

Note that    and      are missing at 303 K for pressures of 500 MPa, because it has been 

impossible, at those       conditions, to get reliable results in the linear domain with 

acceptable simulation times. Also, the   values obtained at 0.1 MPa and temperatures of 450, 

500 and 550 K have to be considered with care because, for those conditions, the studied 

nonlinear domain was rather limited. 
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  (MPa)   (K)    (mPa.s)      (ns)   

0.1 

303 32.5 1.15 0.375 

350 9.46 0.31 0.419 

400 3.87 0.12 0.470 

450 2.17 0.07 0.483 

500 1.44 0.04 0.505 

550 1.01 0.03 0.521 

100 303 85.0 2.56 0.323 

200 

303 200 4.72 0.277 

350 39.5 1.01 0.342 

400 14.8 0.41 0.420 

450 7.04 0.17 0.448 

500 3.84 0.09 0.475 

500 

350 275 5.21 0.257 

400 60.6 1.28 0.340 

450 23.5 0.46 0.381 

500 12.6 0.25 0.433 

550 7.67 0.16 0.481 

800 

350 2109 38.4 0.211 

400 277 5.23 0.285 

450 78.3 1.39 0.337 

500 30.7 0.54 0.389 

Table III-2.   ,      and   values from regressions to the Carreau model of the NEMD viscosity-

shear rate curves obtained at different pressures and temperatures. 

To explore the possible improvements of the Carreau model, the relaxation time      

and the exponent   are successively considered to characterize their evolution. 

Relaxation time predictions 

It is imperative to analyze the relevance of the      values derived from the 

regressions to the Carreau equation (Equation I.1), given that it was previously observed that 

the Newtonian viscosities found this way are quantitatively comparable with those obtained 

numerically. The relaxation time     , fitted from a Carreau formula is comparable to the 

molecular relaxation time, estimated from the equilibrium fluid properties by using the 

following expression: 

     
  

 
                                                                         

where   is the average self-diffusion coefficient and   the typical ion size. For instance at the 

reference conditions (      K and       MPa), the fitted relaxation time of 1.15 ns is 

close to the ca. 2 ns estimated through the Equation III.11. However, the multiple 

combinations of   and   simulated in the current work lead to      variations extending over 

a wide range, typically from 0.03 to more than 30 ns (Table III-2). Thus, another way, more 

consistent, was needed for the assessment of the      values. In the Carreau expression, the 

relaxation time is analogous to the inverse of the critical shear rate      where the viscosity vs. 
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shear rate curve departs from the Newtonian trend. Furthermore, it is possible to express 

Equation III.7 as follows, multiplying each term by   : 

                                                             

Considering that                and               are constants, after substitution of 

these parameters in the two terms of the left hand side equality into a single one, one gets  

                       , where   is a constant 

Finally, at the critical shear rate,      one may writes  

     
 

   
   

       

        
                                                               

On the basis of Equation III.12, it is now possible to check if the      values, given by 

regressions of the viscosity variation obtained at different       to the Carreau model, vary 

proportionally with the ratio               . The variations of      derived from the Carreau 

fits as a function of 
       

   
 are plotted in Figure III-6. 

 

For   = 15.17, a linear relationship is clearly found (see black line in Figure III-6), 

characterized by a coefficient of determination    = 0.993, meaning that Equation III.12 is 

verified. More important here, it indicates that the relaxation times derived from regressions 

to the Carreau model are not purely numerical parameters without meaning, but relevant 

results from the rheological and physical points of view. 

Figure III-6. Relaxation times in the [mmIm+] [NTf2-] ionic fluid obtained from regressions to the 

Carreau equation as a function of            . The color of the symbols refers to the different 

pressures simulated by NEMD, the black line represents a linear regression of      vs            . 
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Characterization of the evolutions of the   exponent 

The variations of   as a function of temperature at different pressures, as reported in 

Table III-2, are plotted in Figure III-7, which clearly evidences that   can no longer be taken 

as a constant parameter. The clear trends on the temperature and pressure dependencies 

of   incite to propose a model. In the absence of theoretical background, arbitrarily plausible 

forms were selected to permit an accurate estimation of   for various       conditions. 

Firstly, a logarithmic function is used to represent the temperature influence on     , at 

constant pressure. Thus, one may write: 

                                                                                 

at a given pressure  , where      and      are two pressure dependent parameters.  

 

 

In addition, the two parameters of Equation III.13 were found to vary monotonically 

with  , as shown in Table III-3 and by Figure III-8. 

Figure III-7. Variations of  , obtained by regressions of the NEMD results to the Carreau 

equation (circles), versus temperature at different pressures. The dashed lines represent the 

values computed from Equation III-13. 
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  (MPa)           

0.1 0.243 1.001 

200 0.403 2.019 

500 0.474 2.512 

800 0.495 2.684 

Table III-3. Pressure dependence of the parameters of Equation III.13 proposed to represent the 

variations of the Carreau exponent    with  . 

The two parameters      and      are arbitrarily approximated by exponential-like 

expressions 

                                                                                

                                                                                

Equations III.14 and III.15 give a very accurate representation of      and 

     variations with pressure. Thus, combining now Equations III.13, III.14 and III.15 enables 

to express the variation of  , the Carreau exponent which reflects the ionic liquid non-linear 

behavior, by: 

                                                                                

         

with   and   expressed in K and MPa. 

Figure III-8. Variations of      and      with pressure and their fitting (dashed lines) to arbitrary 

exponential-like expressions (Equations III.14 and III.15). 
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The values of   calculated from Equation III.16 are plotted with the dashed lines in 

Figure III-7, and compared with those obtained from regressions of the NEMD results to the 

Carreau equation. From this figure, it is clearly demonstrated that the empirical model 

described before predicts   with a good precision, within a standard deviation of 0.006 

(  =0.994), for   and   ranging from 300 to 500 K and from 0.1 to 800 MPa, respectively. 

Besides, the MD results made it possible to describe the   variations in a rather more 

straightforward and physical way. Indeed, it was found that the   variations with   and   

could be related to     , the Carreau relaxation time, itself varying as a function of 
       

        
 , as 

shown in Figure III-6. More remarkably, the drop of   with increasing      (e.g. when   is 

increased or   is decreased) follows a logarithmic function, as clearly revealed in the graph 

of Figure III-9. The black line in this figure was obtained by a logarithmic regression to the   

values expressed as:  

                                                                                    

where     and    were found equal to -0.0474, 0.362 and 0.973, respectively. 

 

Figure III-9. Variations of  , the Carreau exponent with      , the relaxation time and their 

regression (black line) to a logarithmic dependence (Equation III.17). 

Equation III.17 gives a fairly accurate representation of   variations with pressure 

and temperature: the results are plotted with dotted lines in Figure III-10, and compared 

with the values from Table 2. The proposed model predicts   within a standard deviation of 

0.031 (  =0.986), for   and   ranging from 300 to 550 K and from 0.1 to 800 MPa, 

respectively. Thus, it is clearly demonstrated that  , which reflects the ionic liquid non-linear 

behavior, can be predicted with a good precision from the relaxation time. The longer      (or 

the higher the pressure or the lower the temperature), the lower   (or the higher the shear-

thinning effect). 



Chapter III 

72 
  

 

Figure III-10. Prediction of   at different pressures and temperatures (black dotted lines) 

compared with the results from the regressions of the molecular simulations to the Carreau law. 

Finally, beyond the prediction of   with two different expressions, the variation of 

the exponent shows that at high pressure and low temperature, the influence of the shear 

rate on the viscosity is more important (lower  ). This observation has a direct influence on 

film thickness, which one might decrease quickly leaded by an important drop of viscosity. 

III.3 Conclusion 

In this chapter was described the rheological characterization, for application in the 

EHD and thin film lubrication regimes, of the [mmIm+][NTf2-] ionic liquid. Representative 

temperature, pressure and shear rate domains were investigated by a complete approach, 

comparing over 200 molecular dynamics computations results to rheological measurements. 

The comparisons between experimental results and those obtained by MD 

simulations in the linear domain have demonstrated the ability of the employed numerical 

techniques to quantitatively predict two essential properties: the viscosity and the pressure 

viscosity coefficient (PVC), and their variations with temperature. Compared with a 

conventional mineral lubricant oil of almost the same Newtonian viscosity at room 

condition, the PVC of the ionic fluid is lower, but its variation with temperature remains 

very similar. 

The application of the time-temperature-pressure superposition principle and 

regressions of the NEMD results to the Carreau expression have shown that appropriate time 

relaxation values can be derived from the latter. However, MD simulations has revealed, for 

the first time, the variations of  , the nonlinear exponent, as a function of temperature and 
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pressure. An empirical modeling of the   changes versus   and   was proposed as well as a 

direct relation with the relaxation time was evidenced. The observed variations of the 

exponent also demonstrate a higher sensibility of the viscosity, and thus of the film 

thickness, at high pressure and low temperature. 

Overall, this study provides the evidence that the behavior of rather complex fluids, 

like ionic liquids, can be studied in a meaningful way by means of molecular simulations 

with an experimental contribution. A full picture of the [mmIm+][NTf2-] shear-rheology to 

representative conditions is now accessible. It is a complementary way to purely 

experimental measurements.  

In the next chapter, the exhaustive characterization of the [mmIm+][NTf2-] bulk 

rheology will be compared to the response of [mmIm+][NTf2-] in nanoconfinements and the 

associated molecular lubrication mechanisms can be investigated. 
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In this chapter, the [mmIm+][NTf2-] ionic liquid is confined between two model 

surfaces of a steel-steel contact: iron oxide surfaces (see Figure II-6). The system response to 

confinement and shearing were studied qualitatively and quantitatively to better understand 

the mechanisms of molecular lubrication. A large part of the results and discussions of this 

chapter were published in the journal Physical Chemistry Chemical Physics (PCCP). 

First without shearing, the structuration and the orientation of the fluid molecules 

near the interfaces were analyzed. Hypothesis could be drawn up on their incidence on the 

lubrication performances. The response of the fluid and of the liquid/solid interface to 

shearing were analyzed one after another. Then, the complex role of the temperature were 

carefully depicted. 

IV.1 Structuration and orientation under confinement 

Some specific structuration and orientation of the fluid molecules take place near the 

liquid/solid interfaces. They result from the reaction of the fluid with the structured atoms 

of the solid surface and from the nanoconfinement. Both are studied in this section as they 

can influence i) the fluid rheology near the interface and ii) the fluid/solid interaction and 

that way, the interfacial velocity slip, the tribofilm formation and the possible chemical 

reactions. 

IV.1.1 Density profile 

When confined between two surfaces, the ionic liquid loses its homogeneous 

structure with respect to the direction perpendicular to the walls. Figure IV-1 shows the ion 

density profiles of 188 [mmIm+][NTf2-] pairs confined between two iron oxide (FeO) surfaces 

at T = 350 K and under a normal pressure       = 500 MPa. The resulting film thickness is 

28.4 Å for a non-sheared confinement. Well-defined ion layers were observed close to the 

surfaces, with first density peaks reaching ca. 220 and 135 % of the bulk density for the 

cations and anions, respectively. Cations and anions were well represented in every formed 

layer, implying that no monolayer of a single ionic type was present at the interface. The 

amplitude of the layers density declined with the distance from the walls, and almost 

vanished after two occurrences. Thus, the average density in the central region of the 

confinement was very close to the IL bulk one: the mean density in the central zone of the 

confinement (between 25 and 35 Å in Figure IV-1) is 1.69 g/cm3 vs. 1.72 g/cm3 for the bulk 

density computed from the bulk simulations of Chapter III in the same conditions of 

pressure and temperature (      = 500 MPa and   = 350 K). 
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The organization of the simulated solid material can explain the absence of separated 

layers of cations or anions: even though the studied surfaces were polar, including both iron 

(2+) and oxygen (2-) ions, and so subject to Coulombic interactions, they remained globally 

uncharged and their first atomic layer in contact with the fluid was equally composed of 

alternating Fe and O ions. The distance between Fe and O ions in the solid being significantly 

smaller than the size of IL ions, the latter did not experience a net Coulombic 

attraction/repulsion and could mix freely near the surfaces. As mentioned in Chapter I, the 

formation of mixed anion-cation layers was also proven experimentally for ILs confined 

between neutral, non-polar graphitic or gold surfaces [22,27], and numerically between polar 

iron surfaces [28]. However, successive monolayers of separated cations and anions were 

distinctly observed next to negatively charged surfaces like mica [105,170]. 

The radial distribution function (Figure IV-2) describes how the density varies 

according to the distance between two particles. For 3D-domains, it is defined with the 

following expression: 

     
       

          
 

where         is the number of ions   between two spheres of radius   and      and with 

an ion   as the origin ; and               with        the number of ions   in the system 

and   the volume. To ensure an accurate sampling of g(r),         Å was taken. The results 

were obtained from an EMD simulation of the bulk [mmIm+][NTf2-]. 

Figure IV-1. Ion number density profiles of the [mmIm+] [NTf2-] IL confined between FeO surfaces 

with a pressure   = 500 MPa and a wall temperature       = 350 K: [mmIm+] cations (blue 

triangles), [NTf2-] anions (red squares), and total density (black circles). 
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The IL exhibits long-range spatial correlation (> 15 Å). It can first be noticed that the 

mean distance between ions of the same type is equivalent for cations and anions but is 

significantly higher than the mean distance between a cation and an anion. This is a 

consequence of the ions’ partial charge that forces a 3D chessboard-like arrangement of the 

molecules to screen the electrostatic interaction forces. 

Further, while the width of the anion density peak in bulk fluid is just about the same 

than the one in the first layer near the interface in Figure IV-1 (roughly 4 Å), the cation 

density peak in the same first layer is a lot more narrow than the bulk one. This denotes a 

specific orientation of the cation ions at the interface that can be detected through further 

analyses. 

IV.1.2 Orientation at the interface 

Referring back to Figure IV-1, the width of the density peaks should be correlated to 

the size of the molecules; nevertheless the width of the first [mmIm+] and [NTf2-] density 

peaks was significantly different although the ions were of similar size. The organization of 

the molecules in the first layers nearby the surfaces provided an explanation, as it can be 

seen in Figure IV-3 where the orientation taken by the ions in that region is reported. Open 

circles on Figure IV-3a show the variation of    , the average angle between the normal to 

the wall and the vectors normal to cation rings: a low     value indicates that cations tend to 

be oriented parallel to the surface. Open circles on Figure IV-3b show the variation of    , the 

average angle between the normal to the wall and the vectors           of the anions,   and    

being the two sulfur atoms. Similarly, black squares on Figure IV-3b display the variation vs. 

the distance from the wall of    , the average angle between the normal to the solid-walls 

and the sum of the two vectors         and               of an anion, (    ) and (    ) being the couples of 

sulfur and carbon atoms, respectively. From the last two cases, the closer to 90° the value of 

    and the closer to 0° the value of     , the more the anions are oriented parallel to the 

surfaces with their CF3 groups pointing toward the center of the confinement and with their 

oxygen atoms positioned near the surfaces. 

Figure IV-2. Radial distribution function of the ions in bulk fluid simulations. 
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Figure IV-3a and Figure IV-3b show that, at the solid-liquid interface, both cations 

and anions were oriented parallel to the walls. Nevertheless, the CF3 groups of the anions in 

contact with the walls were distinctly oriented perpendicular to the walls, which explains the 

Figure IV-3. Ions orientation close to the wall under confinement, at 350 K and 500 MPa. a) 

Cations orientation with respect to the surface: variation of    , the average angle between the 

normal to the surfaces (z axis) and the vector normal to cation rings. The cation density profile 

is superimposed for comparison (blue dashed line). b) Anions and CF3 orientations with respect 

to the z axis represented by the variation of     and     angles (see text for detail). The anion 

density profile is superimposed for comparison (red dashed line). 

a) 

b) 
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broader density peak of the anions. These results are in accordance with the observations of 

two others research groups who studied the same [mmIm+][NTf2-] IL pairs confined between 

either non-charged gold surfaces [27] or negatively-charged mica surfaces [119]. [mmIm+] 

cations were found to be oriented parallel to mica surfaces and [NTf2-] anions oriented with 

their CF3 group pointing toward the bulk. Other works carried out with different IL pairs 

presented comparable results regarding ions orientation. Atkin and Warr [22] and Mendonça 

et al. [28] observed the following trends on graphite and iron surfaces, respectively: the 

cation rings tended to align parallel to the surfaces while the anions alkyl chains were 

oriented toward the bulk. However in the same study but on mica surfaces, Atkin et al. 

observed a slightly different orientation of [emIm+] cations with their alkyl chain pointing 

toward the bulk. The positive charge of the cations attracted by mica being located in the 

imidazolium ring, it was suggested that long alkyl-chains tend to get away from mica 

surfaces. Those tendencies were also confirmed through MD works [171] on confined 

[emIm+][NTf2-].  

Finally, combining our results with results from the literature, the layering 

structuration of the ions in confinement appears to strongly depend on the surface charge, 

with the formation of: 

 separated cation and anion monolayers when confined between charged surfaces, 

 mixed layers when confined between uncharged surfaces, either polar or nonpolar. 

On the contrary, the orientation of IL ions is found to be less sensitive to the surface 

charge. 

Overall, it results from the orientation of the ions that the anion oxygen and the cation 

hydrogen could chemically react with the substrate. The confining material must be chosen 

in consequence to avoid undesirable corrosion or to favor the formation of a tribofilm. 

Finally, to analyze the real effect of the fluid structuration on the fluid rheology and on the 

interfacial slip, shearing must be added to the system. 

IV.2 Anomalous effective dynamics of the nano-contact 

A shearing was imposed to the confined system by setting opposite velocities of 

      to the confining walls (Figure II-8). The temperature of the solid surfaces was kept 

constant and equal to 350 K while the temperature of the fluid was free to evolve. The 

pressure applied to the system was held to       = 500 MPa and the shear velocity,  , was 

varied from 2 to 160 m/s, leading to apparent shear rates,            (with   the contact 

thickness), ranging between ca. 8x108 and 6x1010 s-1. 

IV.2.1 Apparent response 

Under shearing, the global film thickness increased slightly but regularly with the 

shear velocity up to ca. 7 % for the extreme case of   = 160 m/s. This feature will be 



Chapter IV 

82 
  

explained later in the chapter. On the other hand, the structuration of the [mmIm+][NTf2-] IL 

remained remarkably similar to the non-sheared one shown in Figure IV-1. 

The Figure IV-4 represents the evolution of the global shear stress   in the lubricated 

contact as a function of the shear velocity. The shear stress is invariable in the contact 

thickness as a steady state was achieved for each studied shearing velocity. Remarkably, it 

varied only slightly when the shear velocity spanned over almost 2 orders of magnitude, and 

reached a plateau at high shear velocities. The corresponding coefficient of friction (COF), 

equals to        , ranged between 0.1 and 0.2. This is consistent with experimental 

measurements on nanoconfined IL [128,172].  

 

 

As the control of friction is one major concern of the tribological community, the 

following investigation aims to uncorrelate the distinct mechanisms at stakes to estimate 

their individual influences. 

IV.2.2 Shearing of the fluid 

In order to explain the saturation of the shear stress   with the shear velocity, the local 

IL response were investigated. Figure IV-5 represents a typical velocity profile, obtained for a 

shear velocity of   = 40 m/s at a confining pressure of 500 MPa and a wall temperature of 

350 K. 

 

Figure IV-4. Evolution of the global shear stress   in the lubricated contact as a function of the 

shear velocity, for an confining pressure of 500 MPa and a wall temperature of 350 K. The 

dashed line is a guide for the eyes. 
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Overall, the velocity profile was little affected by the IL layering close to the walls and 

remained linear throughout the whole fluid film. This homogeneity was not always 

ascertained with other fluids: a numerical study quantified the viscosity profiles of different 

Lennard-Jones fluids in confinement [173] and detected some viscosity reduction between 

well-formed layers near the surfaces. The strong interaction between the formed mixed 

layers in our study could explain the absence of similar variations. 

The confined fluid then underwent a homogeneous effective shear rate, defined as 

              in the linear region of the velocity profile. The rheology of the confined IL 

was characterized by computing the viscosity                  , as represented in Figure 

IV-6. As both the shear stress   and the effective shear rate       are homogeneous across the 

lubricant film thickness, the viscosity is also constant. 
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Figure IV-5. Typical velocity profile (for   = 40 m/s); the total density profile of the IL is 

superimposed for comparison. 
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As for the bulk IL at ambient temperature and pressure, the evolution of the viscosity 

with the effective shear rate was well described by a Carreau law (Equation I.1), with a 

Newtonian viscosity    = 229 mPa.s, a relaxation time      = 3.21 ns, and an exponent   = 

0.038 (note that although the MD data did not reach the Newtonian plateau, the lowest 

effective shear rates simulated were sufficiently close to it so as to estimate the Newtonian 

viscosity with good accuracy). Remarkably, the Newtonian viscosity obtained from the 

Carreau fit matched the value obtained independently from equilibrium bulk simulations at 

500 MPa and 350 K, using a Green-Kubo formula: 225 ± 17 mPa.s. However, the exponent   

was significantly larger for the confined IL (  = 0.038, at a pressure of 500 MPa and a wall 

temperature of 350 K) than in bulk (  = 0.257, at a pressure of 500 MPa and a fluid 

temperature of 350 K, cf. Chapter III). 

IV.2.3 Wall slip 

Remarkably, the velocity profile in Figure IV-5 also revealed the presence of a 

velocity jump at the interfaces between the IL and the oxide surfaces, a phenomenon referred 

to as liquid/solid slip [87]. Hydrodynamic slip is described with the partial-slip boundary 

condition, which links the slip velocity       (i.e. the velocity jump at the liquid/solid 

interface) to the shear rate in the liquid at the solid surface. In a simple shear flow as 

considered here, the slip velocity is directly related to the effective shear rate in the liquid as 

follows: 

                                                                                       

where    is the so-called slip length, which can be interpreted as the depth inside the wall 

where the linear extrapolation of the fluid velocity profile reaches the wall velocity [87]. For a 

Figure IV-6. Viscosity of the confined IL as a function of the effective shear rate              in 

the confined fluid. The dashed line is a Carreau regression of the viscosity. The red cross 

indicates the value of the Newtonian viscosity at 500 MPa and 350 K (Chapter III). 



 Confinement and shearing 

85 
    

given shear velocity, liquid/solid slip reduces the effective shear rate inside the IL, which 

can be expressed as: 

                                                                                

where           with   the shearing velocity and   the contact thickness. Liquid/solid slip 

has therefore a significant influence on the effective shear rate when the slip length compares 

with the lubricating film width, as it was the case here. 

 

 

To offer some insight into the origin of slip in the present system, it should be 

emphasized that the slip length, though it has a simple kinematic interpretation, is not a 

fundamental property of the liquid/solid interface. Indeed, the partial slip boundary 

condition (Equation IV.2) stems physically from the identification of the bulk viscous shear 

stress: 

                                                                                   

with an interfacial liquid/solid friction stress : 

                                                                                   

where   is the liquid/solid friction coefficient [87,174,175]. Combining Equation IV.3 and 

Equation IV.4, one obtains the partial slip boundary condition of Equation IV.1, where the 

slip length is given by: 

                                                                                     

The slip length is accordingly a combination of the bulk liquid viscosity   and the 

interfacial friction coefficient  . Figure IV-8 shows the evolution of the slip length    as a 

function of the effective shear rate. It increases significantly from a few angstroms at low 

velocities and tend to saturate at higher velocities to roughly 30 Å. 

Figure IV-7. Schematic definition of the slip length. 

The characteristic velocity profile is drawn in blue. 
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So far, no hydrodynamic slip has been observed experimentally with sheared ionic 

liquids. However, previous studies on alkanes confined between various non-polar surfaces 

identified wall-slip occurrence and its strong relationship with the surface composition and 

orientation [83]. Depending on the atom nature of the solid body in contact with the fluid, 

the commensurability and the corrugation forces at the interface can profoundly change, and 

directly influence the presence and intensity of wall slip [83,174,175]. Oxygen and iron atoms 

(both present at the interface of the IL/oxide system of the current study) present Lennard-

Jones energy coefficients [150] favoring wall slip in the absence of Coulombic interactions 

[83]. Nevertheless, when considering ionic liquids, Coulombic interactions are predominant 

at the interface and should modify the corrugation forces opposed to slip. Other MD works 

simulating different confined ILs encountered little to no slip response to shearing with 

metallic (polar) or silica (charged) surfaces [131,176]. 

In order to understand the origin of slip in the current study, it became essential to 

characterize the liquid/solid interactions. For simple liquids at low pressure and small shear 

rate (i.e. in the linear response regime), a large experimental and numerical effort over the 

last 20 years has highlighted the existence of a quasi-universal relationship between the slip 

length and the wetting properties of the liquid/solid couple [173,177], although some recent 

works have shown that the wetting properties alone can fail to predict the slip length 

[178,179]. This quasi-universal relationship predicts that slippage is favored on non-wetting 

substrates, and that it should not occur for contact angles below ca. 80°. Therefore, the 

wetting properties of the IL/FeO couple were measured in an independent simulation of an 

IL droplet (40 IL ion pairs) on a FeO substrate at 350 K and a rather wetting behavior was 

found, with a contact angle of 43°. Hence, the relationship between wetting and slippage fails 

for the system under consideration. On Figure IV-9 is plotted the liquid/solid friction 

coefficient   as a function of the effective shear rate. 
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Figure IV-8. Effective shear rate dependence of the slip length                 
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The inaptitude of the wetting properties to explain the observed wall slip suggests 

that the presence of slip in our study was due to the particular working conditions of high 

pressure and high shear rates typical of a lubricated contact. Specifically, the combination of 

two factors can explain the presence of significant slip. Firstly, the important viscosity 

resulting from the severe confinement of the system (up to 225mPa.s at   = 500 MPa) tends 

to increase the slip length as the two values are directly proportional (Equation IV.5). 

Secondly, the comparison of the evolution with the shear rate of both the bulk viscosity and 

the fluid/solid friction coefficient (see Figure IV-9) reveals that the first decreases more 

slowly than the second at the lowest studied shear rates. This results in an increase of the slip 

length with the shear rate (Equation IV.5). In other words, the strong viscosity of the fluid 

has a higher influence on slip than the friction of the fluid/solid interface. 

Another interesting feature concerns the fact that the slip length saturated in the large 

shear rate limit (Figure IV-8). This contrasts with previous numerical results on simple fluids 

obtained in less severe thermodynamic conditions, where the slip length has been shown to 

diverge [180], although other works also observed a saturation when using thermostated 

walls [90,181]. In the high shear rate limit   scales exactly as the fluid viscosity (cf. Figure 

IV-9). Consequently, the slip length, which is the ratio between the two quantities, reached a 

constant value. In other words, the vanishing liquid/solid friction at high shear rates did not 

result in a diverging slip length because it was exactly compensated by the vanishing fluid 

viscosity. To understand the cause behind this behavior, it is thus necessary to have a look at 

the origin of this anomalous drop of the viscosity. 

Figure IV-9. Variation of the liquid/solid friction coefficient             at the IL/FeO interface 

in relation with the effective shear rate. By way of comparison, the viscosity is also reported on 

a secondary axis.  

. 
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IV.3 The complex influence of the temperature 

The following analysis aims to explain the anomalous rheology observed in the 

contact. This involves a focus on the thermal behavior of the system as it directly impacts the 

lubricant viscosity. Therefore, the link between the viscosity, the thermal behavior and the 

interfacial thermal resistance is first explored. In a second part, an analytical expression is 

proposed to predict the thermal behavior occurring in a confined system. 

IV.3.1 Interfacial thermal resistance 

To understand the viscosity variation, a look at the thermal behavior of the contact is 

crucial. Figure IV-10 displays a typical temperature profile (for   = 40 m/s). As the shear 

stress induces a viscous strain of the fluid, the latter heats up with its strain: 

         
                                                                             

where   is the generated energy per unit volume of the IL. 

 

Only the thermostated surfaces have a frontier with the fluid. Hence, they dissipate 

the transferred energy so a steady state can be reached. It is noteworthy that at the 

liquid/solid interface a thermal slip operates simultaneously the velocity slip, this can be 

associated to a non-null thermal resistance of the interface.  

Figure IV-11 represents the evolution of the interface thermal resistance: 

                                                                                   

with    the temperature jump at the liquid/solid interface and    the heat flux through the 

interface. 

Figure IV-10. Typical temperature profile of the sheared IL, for a shear velocity   = 40 m/s. 
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The variation of the resistance appeared to be comparable to the evolution of the slip 

length (Figure IV-8). This is consistent with previous observations of a correlation between 

hydrodynamic and thermal slips [93], and could result from shared underlying mechanisms 

occurring at the molecular level. 

As a consequence of the limited heat transfer between the lubricant and the walls, the 

average temperature of the confined fluid increased progressively and significantly with the 

effective shear rate, as shown in Figure IV-12. 

 

Figure IV-12. Evolution of the average temperature of the confined IL with the effective shear 

rate. 

This temperature rise is the key to the specific behavior of the confined IL. In 

particular, it could explain the observed increase of the lubricant film thickness with the 
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Figure IV-11. Evolution of the thermal resistance of the fluid/solid interface with the effective 

shear rate. 
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shear velocity, through thermal expansion of the fluid. More importantly, the increase of 

fluid temperature is expected to amplify the decrease of viscosity with the shear rate, what 

explains the larger exponent N in the Carreau law measured for the confined fluid, as 

compared to the bulk one Figure III-1. One can note here that the Carreau law for the 

confined fluid is therefore an effective one, hiding a complex mechanism involving the 

coupling between the variations of the fluid temperature and the shear thinning, both leaded 

by the shear rate. 

To evaluate the contribution of both effects, the evolution of the Newtonian viscosity 

with the temperature is compared to the variation of the viscosity in nanoconfined 

simulations. Through data of section III.2, an arbitrary analytical expression of the 

Newtonian viscosity variation with the temperature was established to predict the viscosity 

variation at   = 500 MPa. The Newtonian viscosity corresponding to the mean temperature 

of each nanoconfined simulated configurations is computed and plotted in Figure IV-13. As 

in nanoconfinements, the viscosity variation depends on the effect of shear thinning and 

temperature elevation, it can be deduced from the evolution of the Newtonian viscosity that 

the effect of the shear thinning is prominent at moderate shear rates (                

          ) whereas the effect of the temperature is prominent at high shear rates (      

     
     ). 

 

IV.3.2 Toward a control of the heating in the lubricated contact 

Mastering the whole heating process could allow to enhance the tribological 

performances of a lubricated contact through a better design of the surface and fluid 

involved. Hence, an analytic description of the heating process in depicted in the following. 

Figure IV-13. Comparison of the operating viscosities resulting from nanoconfined simulations 

(black circles) with the bulk Newtonian viscosities at the corresponding temperatures (blue 

diamonds).  
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 As the fluid exhibits a homogenous viscosity across the film thickness, the velocity 

profile is linear (Figure IV-6) and so the energy generated by the fluid viscous strain is 

constant. The subsequent heat flux is obtained by integrating the work of the shearing per 

unit area over z: 

       
 

 
      

   
 

 

 
      

  

 
                                                 

For simplification purpose, the frame origin (     is taken at the film thickness center so 

that         . According to Fourier’s law, the heat flux is also defined by the temperature 

gradient: 

     
  

  
                                                                            

With   the thermal conductance of the fluid. As a consequence: 

  

  
  

      
  

  
                                                                       

     
      

 

  
                                                                       

With   a constant to be determined. It is noteworthy that the evolution of the temperature 

within the fluid can be fitted with a parabola, this is in accordance with temperature profiles 

specific to the nanoconfinements as the one plotted Figure IV-10. 

The thermal jump at the liquid/solid interface can also be described analytically. To 

do so, Barrat and Chiaruttini used the Kapitza length    to characterize its prominence [93]. 

As illustrated in Figure IV-14, this parameter is the ratio between two specific values of the 

interface: the temperature jump    and the gradient temperature in the fluid 
  

  
. 

 

Given that         , and according to the Equation IV.9, the Kapitza length can 

also be defined as the ratio between both fluid and interface conductivities:             

Figure IV-14. Schematic definition of the Kapitza length   . 

The characteristic temperature profile was drawn in red. 
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with         the interface conductance. Considering the fluid temperature at the interface, 

Equation IV.11 gives the following: 

     
 

 
        

      
 

  
    

 

 
 
 

         

  
 
 
 

  
      

    

  
                    

And therefore: 

       
 

 
                                                                          

     
      

 

  
      

 

 
                                                           

Through this explicit expression of the fluid temperature, the thermal behavior of the 

confinement can be predicted providing that some characteristical values of the fluid and 

surface properties or known. In particular two distinct regimes are identified. 

For      (i.e. large thickness or good interface conductance): 

     
      

 

  
 
  

 
                                                                 

In such a configuration, the temperature rise is mostly fluid-dependent and varies 

significantly in the system thickness. As a consequence the viscosity is as well quite 

heterogeneous along z with a minimum at the center of the film thickness causing the shear 

to be mainly absorbed around this location. Besides, in this configuration, if the fluid 

viscosity and the wall temperature are known, the fluid conductivity and the film thickness 

only are required to predict the thermal behavior. 

For      (i.e. nanoconfinements or low interface conductance): 

  
      

 

  
          

      
  

  
                                                   

In that case, the temperature is homogeneous in the lubricant film as well as the 

viscosity. A special consideration should be given to the lubricant choice as for low interface 

conductance at high shearing velocities, the temperature can rise to the point it accelerates its 

oxidation. However, the Kapitza length    is generally of the same order of magnitude than 

the slip length    [93] so the shear can be mostly absorbed at the liquid/solid interface, 

limiting the stress of the fluid. More features of this aspect are detailed in the following 

chapter for different surface natures. Finally, in this case, the evaluation of the interfacial 

conductance   and of the film thickness   are sufficient to predict the thermal behavior. 

IV.4 Outcome and limiting shear stress 

Now that the interfacial response of the confined IL to shearing were investigated in 

detail, the saturation of the global shear stress (Figure IV-4) can be related to the particular 

rheology of the confined IL, measured inside the lubricated contact. Due to this particular 
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rheology, it is noteworthy that the presence of liquid/solid slip has no significant influence 

on the plateau value of the global shear stress. 

Indeed, the global shear stress in the lubricated contact can be expressed as the 

viscous shear stress inside the fluid:             . As previously depicted, the viscosity of 

the confined IL followed a Carreau law (Equation I.1), with an exponent   = 0.038. Beyond 

the Newtonian plateau (i.e. when             ), the Carreau law simplifies to a simple 

power law: 

         
                 

   
                                                        

The shear stress in the IL then becomes proportional to: 

       
         

                                                                    

For an exponent of precisely 0,   becomes independent of the effective shear rate, and 
reaches a plateau at a value:                . Remarkably, in that specific situation, the 
reduction of effective shear rate due to liquid/solid slip would therefore not help to reduce 
the global shear stress. In the simulated cases,   is very low but as the slip is also remarkably 
high, the latter contributes to reach the saturation of the shear stress at a lower shearing 
velocity than if the shear thinning were acting alone. 

Beyond the interest of previous results for the chemical physics community, the 

response of the system to shearing gives some insight on the choice of using ILs as lubricants 

in steel-steel contacts under severe working conditions. As the shear rate rises, this work 

revealed that the presence of both an anomalous effective shear thinning and a velocity wall 

slip lead to a limitation of the shear stress and thus of the global friction. It is important to 

note that this friction limitation is accompanied by a significant temperature increase. In that 

regard, the high thermal stability of ILs (and especially of the [mmIm+][NTf2-] compound) 

makes them particularly suitable lubricants compared with conventional ones. 

In Appendix C the case of the ultra-confined IL (contact thickness under one 

nanometer) were also briefly studied to foresee the response of the friction to almost 

solid/solid contacts. In this configuration, the role of the fluid structuration becomes 

determining. It is noticed that the friction reaches an optimal minimum value when only two 

well-formed layers of IL remain between the shearing surfaces. 

Now that the incidence of shearing and of the coupled effect of slip and temperature 

elevation on viscosity and friction were examine in detail, the next chapter aims to 

apprehend the influence of the surface nature on the nanoscale rheology and more globally 

on the lubrication performances of the contact. In particular, despite the wetting properties 

of the FeO, significant wall slip was observed in the latter simulation. The question then arise 

on the prominence of slip with less adhesive materials. 
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As described in Chapter I, the thickness of industrial lubricated contacts has 

gradually decreased during the last decades, down to the size of a few tens of nanometers 

and even locally to a few molecular layers at the junction of asperities [32]. It was shown in 

Chapter IV that at this scale, the interfacial friction between the fluid lubricant and the solid 

surface at the origin of velocity wall slip, is a key component of the dynamics of such 

systems. In particular, Savio et al. [29] illustrated that if the slip is different at each surface in 

a contact controlled by an elasto-hydrodynamic (EHD) regime, the film thickness is greatly 

impacted and can either increases and prevents solid-solid contact or drops toward 

apparition of local film breakdown that would damage the system. So far, iron oxide were 

considered as the more representative component of the surface of classic steel-steel 

lubricated systems [149]. However, compared to non-polar surfaces, this oxide is subject to 

significant fluid friction [83]. As a consequence, all the shearing motion is absorbed by the 

fluid, bringing about more viscous friction in EHD or very thin film (VTF) regimes. With this 

in mind, a limitation of friction losses is sought with the use of particularly smooth surfaces. 

Among the promising materials for tribological applications, the non-polar DLC (diamond 

like carbon) coatings exhibit very low friction and high wear resistance [30,31] and might 

present low wetting properties [182]. 

To understand the ruling physics behind novel lubricated systems, the present study 

aims to characterize the influence of the surface nature on the shearing response. The 

[mmIm+][NTf2-] was nanoconfined between five different materials (including four DLC 

alike surfaces) and sheared over a large velocity range. 

V.1 Introduction to DLC coatings 

DLC coatings are amorphous carbon materials essentially made of sp3 and sp2 

hybridized carbons. They are more or less hydrogenated depending on the production 

method and on the desired properties of the coatings. Figure V-1 shows the family of DLCs 

depending on the concentration of each component (carbon sp2, carbon sp3 or H). 

 

Figure V-1. Ternary phase diagram of bonding in amorphous carbon-hydrogen alloys [31] 
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The more sp3 bonds and the less hydrogenated, the harder and more wear resistant 

the coating will be [31]. The ideal fully sp3-hybridised and non-hydrogenated allotrope of 

carbon is diamond, hence the name of the coating. On the other hand, the fully sp2-

hybridised and non-hydrogenated allotrope of carbon is graphite. Between the two, when 

the DLC is dense and structured (more than 40 % sp3-hybridised carbon [153]), it is referred 

to as tetrahedral amorphous carbon (ta-C). It is the best quality coating done in the industry 

but also the most expensive. A less dense carbon material is simply named amorphous 

carbon (a-C). It is noteworthy that a-C is formed at the interface of two shearing ta-c surfaces 

when direct contact occurs [153]. In today industries, hydrogenated DLC (a-C:H or ta-c:H) 

are more widely used as they are cheaper to produce and present satisfactory tribological 

performances. However, with the enhancement of coatings deposition technics, DLC are less 

and less hydrogenated. 

Further to showing good performances with some classic lubricated systems, DLC 

coatings were experimentally investigated within IL-lubricated contacts: less friction and 

wear were noticed using IL lubricants rather than standard ones (PAO, MAC, Zdol or PFPE) 

[183–185]. The explanation partially lies in the formation of a protective tribofilm caused by 

the reaction of the IL anion with the DLC film. With IL-lubricated contacts, experimental 

studies also confirmed the better performances of DLC-steel surfaces compared to steel-steel 

surfaces [186,187] or even to other coatings depending on the considered IL [188]. Several 

works were also conducted using MD simulations to study some aspects of the lubrication 

capability or of the IL mobility when confined between DLC or graphite materials [118,189–

192]. Pushing forward, Mendonça and coworkers characterized the friction of a 

nanoconfined IL between two amorphous carbon surfaces for different normal loads and 

speeds [192]. While the friction force evolves linearly with the normal load, it increases more 

slowly with the shearing velocity (for any fixed value of the normal load, the ratio of the 

shear stress and the shearing velocity decreases significantly with the velocity). Either the IL 

viscosity decreases with increasing velocity, either an important hydrodynamic slip takes 

place at the liquid/solid interface. Some investigations of the {DLC+IL} systems are still 

needed to optimize them. A comparative study of the involved mechanisms for different 

surfaces is necessary to quantify the improvements. 

To study the lubrication mechanisms of the DLC coatings in EHD and VTF regime, 

MD simulations are run with the carbon-based materials introduced in Chapter II as 

confining and shearing surfaces. Hence, the friction behavior associated to diamond, 

graphite and two a-C surfaces with different roughness are evaluated and compared to the 

one displayed with the iron oxide surfaces. 
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V.2 Surface-driven friction and rheology 

V.2.1 Coefficient of friction 

Focus was first made on the global coefficient of friction (COF) of the lubricated 

contact. The simulations bring out large disparities of the value according to the surfaces 

nature (Figure V-2). 

 

The coefficient is extremely low for graphite surfaces: from 0.00033 (at 0.5 m/s) to 

0.0063 (at 160 m/s). It is also low with perfect diamond structures: from 0.0094 (at 0.2 m/s) to 

0.056 (at 160 m/s). On the other hand, the COF is remarkably close for the two amorphous 

carbon surfaces and the iron oxide one. Overall, high differences are obtained with the same 

fluid as lubricant, and comparable operating conditions, making unquestionable the major 

role of surfaces in the lubrication at this scale.  

V.2.2 Interfacial velocity slip 

Focusing on the liquid/solid interface, high velocity slips       of the ionic liquid on 

the surfaces were detected. The order of magnitude of those slips varies significantly with 

the surface nature and could explain the large disparities of the COF (Figure V-3). 

Figure V-2. Coefficient of friction of the sheared system with a confining pressure of 500 MPa 

between five different surfaces: iron oxide, diamond, graphite and two a-C coatings 



Chapter V 

100 
  

 

Distinct regimes take place depending on the shearing surfaces. Graphite brings a 

surface-controlled regime with a complete absorption of the shearing at the liquid/solid 

interface and no shear of the fluid. Close to this configuration, diamond induces an uptake of 

the shearing by the interfaces starting from 57 % at low speed (0.2 m/s) to more than 90 % at 

higher shear rates (from 3 m/s). Interfacial slip with iron oxide follows the same trend but in 

a more assorted regime: from 16 % of absorption of the shear at a 2 m/s shearing velocity to 

a maximum of 62% at higher velocity. While similar COFs are featured by a-C and FeO 

surfaces, the slip is lower for both DLC surfaces than for the iron oxide one. As explained in 

detailed in the following section V.3.2, the slight difference of the film thickness between the 

simulations is at the origin of this discrepancy. It results in a mainly fluid-sheared regime 

with amorphous carbon surfaces. 

The last cases (FeO and a-C surfaces) also reveal a saturation of the wall slip over a 

given shearing velocity. This contrasts with previous numerical results on simple fluids 

obtained in less severe thermodynamic conditions, where the slip length has been shown to 

diverge [180]. Nevertheless, other studies also observed saturation when using thermostated 

walls [90,181]. To understand both singularities of slip dissimilarity and slip saturation, 

further analysis of the interface behavior are needed. 

V.2.3 Interfacial Fluid friction coefficient 

To provide insight into the origin of slip, the fluid friction coefficient   was computed 

and is plotted in Figure V-4 as a function of the interfacial velocity slip      . 

Figure V-3. Ratio of the interfacial velocity slip on the imposed shearing velocity as a fonction 

of the imposed shearing velocity. 
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The evolution of the coefficient   with the velocity slip at the liquid/solid interface 

      is comparable for every surfaces. Ideal surface of graphite (flat, non-polar) has the 

lowest fluid friction while the polar (but smooth) surface of iron oxide and the rough (but 

non-polar) surfaces of a-C give rise to more interfacial friction. Each variations can be fitted 

by a negative power law whose exponents specific to each surfaces are listed in Table V-1. It 

is noteworthy that the higher the friction, the more important the exponent. As a 

consequence, the discrepancy between the low friction surface (graphite) and high friction 

ones (FeO, a-C) is slightly reduced at high      . 

 

Graphite Diamond FeO Smoothest a-C Roughest a-C 

-0.535 -0.781 -0.944 -0.944 -0.947 

Table V-1. Power law exponent of the evolution of the fluid friction coefficient   with the 

interfacial velocity slip      . 

Over the past 20 years, many MD studies claimed the existence of a quasi-universal 

relationship between the previously introduced slip length (Equation IV.1) and the wetting 

properties of the liquid/solid couple [173,177], although some recent studies have shown 

that the wetting properties alone can fail to predict the slip length [178,179]. In the present 

study, comparable wetting properties are expected for all the carbon based surfaces as they 

are composed of the same elements, and yet they display extremely different coefficient   

(up to 2+ orders of magnitude). 

Figure V-4. Fluid friction versus interfacial slip velocity of five different surfaces: iron oxide, 

diamond, graphite and two DLC coatings. 
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The global COF (Figure V-2), is logically linked to the fluid friction: the lower the  , 

the lower the COF, and to equivalent values of   for the iron oxide and a-C surfaces 

correspond equal values of COF. Nonetheless, the variation of the fluid friction does not 

explain the saturation of the slip (Figure V-3). An overall picture of the mechanisms at the 

origin the uptake of the shearing motion according to the confining surfaces would bring 

new answers. 

V.2.4 Slip length 

As the slip length is the ratio between the interfacial velocity slip and the effective 

shear rate through the fluid, it is a relevant indicator to compare the velocity accommodation 

at the interface and in the fluid. It is related to the  
     

   ratio by: 

     

 
 

 

   
  

 
                                                                          

with   the lubricant film thickness. According to this expression, the shearing is assimilated 

at the interface (i.e.        ) when      and in return, the fluid uptakes the shearing 

when     . The slip length is likewise linked to the fluid friction and the fluid viscosity 

(see Equation IV.5). In Figure V-5 the slip length variations with the shearing velocity is 

plotted for the five studied surfaces. 

 

The slip length varies over five orders of magnitude with the considered surfaces, 

graphite being the most slippery material. As for the evolution of the velocity ratio between 

the interfacial slip and the imposed shearing (Figure V-3), the slip length of iron oxide and  

Figure V-5. Slip length variation with the Shearing Velocity computed for five shearing surfaces 
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a-C surfaces saturates over a given shearing velocity. This behavior was observed and 

explained in Chapter IV for the iron oxide and the same mechanism occurs here with non-

slippery a-C surfaces. The effective shearing of the fluid initiates two effects causing a drop 

of the viscosity: shear thinning and temperature increase. As the slip length characterizes the 

competition between the interfacial slip and the fluid strain to absorb the shearing (cf. 

Equation IV.5), when the fluid viscosity   decreases as fast as the fluid friction  , the slip 

length saturates as the fluid is more prone to absorb the shear. The slip follows the same 

trend as the film thickness does not change. 

Now that the dynamic behavior occurring in the fluid and at the fluid/solid interface 

has been detailed, its origins will be identified. Indeed, from this knowledge, the contact 

behavior could be controlled by better-informed design of the fluid and surfaces of the 

contact. 

V.3 Origins of the dynamical behavior 

V.3.1 Influence of the temperature 

As detailed in the previous chapter, the temperature has also a major and complex 

role directly impacting the fluid viscosity and consequently, the slip length. When sheared 

by an adhesive surface, the fluid accommodates the shear. As a consequence, shear thinning 

effects and elevation of the lubricant temperature occur, drastically reducing its viscosity at 

high shear rates. When sheared by a more slippery surface, no shear thinning takes place and 

the fluid heats up more slightly. However, the generated energy might dissipate less as the 

interfacial thermal resistance     is generally higher with low friction surfaces [93], although 

it is not a universal assumption [193]. Hence, the surface material has a proven impact on the 

temperature but which is complex to foresee as the effects of thermal interfacial resistance 

and fluid shearing add to one another. 

To assess the thermal properties of the studied surfaces, a comparison between the 

rise of the fluid temperature according to the produced energy reflects the interfacial thermal 

resistance    . In Figure V-6, for each surfaces is plotted the evolution of the fluid average 

temperature as a function of     the produced energy by a unit area of a contact nanopatch 

in each simulation, with   the generated energy per unit volume and   the contact thickness. 

As the surfaces are the only frontiers with the lubricant, it also corresponds to the total heat 

flux through both surfaces. 
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The case of the graphite-sheared systems is not computed as the effective shearing of 

the fluid is extremely low and consequently no heat is generated. For the other systems, it 

can be noticed that, even though a-C and FeO have close   values, FeO surfaces exhibit 

higher thermal resistances than a-C ones as the temperature elevation resulting from similar 

energy production is higher. This can especially be explained by the greater effective contact 

area inherent to the rough a-C surfaces. This is also consistent with previous observations 

stating that the thermal resistance     is generally higher with surfaces featuring a lower 

friction [93]. Finally, the difference of the temperature rises has moderate influences on the 

viscosity (see Figure V-7): the viscosity variations between FeO and a-C simulations with the 

shear rate remain equivalent while the quick elevation of temperature with diamond 

surfaces induces an anticipated drop of the viscosity. 

Figure V-6. Average temperature of the fluid with respect to the produced energy   and the 

surface nature. 



 From rough to very low friction surfaces 

105 
    

 

According to the equation IV.5, this result suggests that the slip length induced by 

FeO surfaces should be lower than the one induced by a-C ones. Nonetheless, the opposite is 

observed (Figure V-5) as the slip length computed with FeO systems is up to two times the 

one computed with a-C ones. To explain the difference between the system dynamics 

featured by both kinds of surfaces, the slight differences between the film thicknesses of the 

simulated configuration must be considered. 

V.3.2 Influence of the film thickness 

In each simulated configuration, the number of molecules is the same but the film 

thickness features little variations depending on the shearing velocity (see Section IV.2.1) and 

the domain dimensions. Indeed, in order to guarantee the exact periodicity of the system, 

small variations of the domain dimensions in the x and y directions are necessary and induce 

slight disparities of the contact thickness  . Hence, at the same shearing velocity, the film 

thickness in simulations with FeO surfaces is roughly 15 % smaller than in ones with a-C 

surfaces. 

Those small variations induce consequent modifications of the contact dynamics that 

are quite complex to predict as it acts on multiple intricate mechanisms. As        

(Equation IV.5), {Fluid+surface} couples with similar interfacial fluid friction   and similar 

  present the same slip length. Besides, according to Equations IV.1 and IV.2: 

               
 

 
  

   
                                                             

Figure V-7. Viscosity with respect to the effective shear rate and the surface nature. 
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Hence, with equivalent slip length    and shearing velocity  , both       and       increase 

with a reduction of the contact thickness  . However, it has been shown than       and       

respectively impact the fluid friction coefficient   and the fluid viscosity   and so the slip 

length… Predictions of the system dynamics thus depend on many intricate factors. 

An approach to explain the difference between the dynamic behaviors featured with 

FeO surfaces and the a-C surfaces consist in taking the system with a-C materials as a 

reference one and compare the system with FeO to it. Given that the fluid friction coefficient 

  of the FeO and of the a-C surfaces with the IL is of the same order of magnitude (see Figure 

V-4), and that the same liquid is used (so with equivalent fluid viscosity behavior, see Figure 

V-7), the slip length featured by both surfaces should be similar for equivalent operating 

conditions. Thus the smaller thickness in FeO simulations tends to increase the slip and the 

effective shear rate for the same imposed shearing velocity. Hence, it contributes to explain 

the discrepancy between the wall slip featured by FeO and a-C observed in Figure V-3, what 

is strengthened by the somewhat lower   of FeO surfaces. Still in the case of the iron oxide 

surfaces, according to Figure IV-8, the slip length increases with the effective shear rate. This 

finally explicates the higher slip length of FeO simulations compared to a-C ones for 

equivalent shearing velocities   (see Figure V-5). 

V.3.3 Surfaces specificities and fluid friction coefficient. 

The effects of the interfacial fluid friction   were computed for 5 distinct materials. 

The differences between each of them stem from the surface nature (composing atoms) and 

from their geometrical arrangement [83,174,175]. To estimate the influence of both of these 

factors, two parameters were computed: the geometrical roughness of the surface and its 

force corrugation (i.e. the maximum shear stress that the wall can transfer tangentially to the 

fluid molecules before the occurrence of wall slip) (Table V-2). 

The geometrical roughness parameter was defined as follow: a plan of 200 by 200 

probing atoms was set parallel to the tested surface and relaxed in the orthogonal direction 

to both the plan and the surface. The probing atoms interact with the surface atoms by the 

mean of a Lennard-Jones potential. The LJ parameters are the same for every probing atoms: 

a default energy   of 1 Kcal/mole and a size   of 3.2 Å characteristic of the [mmIm+][NTf2-]  

atoms. The geometrical roughness is then estimated with the following expression. 

            
 

 
            

 

   

                                                          

The force corrugation parameter is estimated by roaming the energy-mapping of the 

tested surface as previously described by Savio et al. [83]. This method computes the force 

needed to initiate a tangential movement between a model non-polar atom and the probed 

surface. Several directions are tested and the force corrugation parameters       takes the 

value of the minimum force according to the different direction. Therefore, a minimum-force 

path is calculated, based on the assumption that the atoms try to slip in the direction 

opposing the least resistance to their movement. For both            and       parameters, 
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the LJ potential alone is considered in their computations. Coulombic interactions of the iron 

oxide surfaces are not taken into account given that the probing atoms are non-polar ones. In 

the following analysis, the fluid friction   of the different cases is compared for interfacial 

velocity slip of 5 m/s. To do so, interpolations are made between the data plotted in the 

Figure V-4. 

 

 Graphite Diamond Smoothest a-C Roughest a-C FeO 

           (Å) 0.0115 0.0534 0.5709 0.8202 0.0705 

      (kcal/mol/Å) 0.1347 0.5475 1.7112 2.2688 0.3498 (non-polar) 

  (mPa.s/Å) 0.0217 0.5061 4.0353 4.1484 3.06 

Table V-2. Geometrical roughness and force corrugation parameter for every five surfaces. The 

fluid friction coefficient at 5 m/s is added for comparison. 

For carbon-based materials, a direct correlation exists between the surface 

characteristics of geometrical roughness and force corrugation, and the resulting fluid 

friction with the ionic liquid. As an example, to a geometrical roughness of 0.0115 Å and a 

force corrugation of 0.1347 kcal/mol/Å for the graphite corresponds a fluid friction of 0.0217 

mPa/Å. Comparatively, a fluid friction of 4.1484 mPa/Å is attributed to the roughest a-C 

material, for a geometrical roughness of 0.8202 Å and a force corrugation of 2.2688 

kcal/mol/Å. More generally, at low friction, λ is very sensitive to the increase of geometrical 

roughness and force corrugation: between graphite and diamond, both parameters are 

increased by a factor ≈ 5 and the fluid friction is multiplied by ≈ 20. While at higher friction, λ 

is much less sensitive: while there is about 30% of discrepancy between the corrugation and 

the roughness of DLCs surfaces, the fluid friction only varies by 3%. This behavior is 

consistent with the result obtained by Savio and coworkers studying the interactions of 

alkanes with surfaces of various natures [83]. In particular, as soon as a nanoroughness is 

present at the surfaces, the slip is greatly reduced [131]. 

With iron oxide the friction is substantially high (3.06 mPa.s/Å at a 5 m/s interface 

velocity slip), whereas the measured geometrical roughness and force corrugation are close 

to the values obtained for diamond. As the Coulombic interactions are not considered in the 

calculation of the surface parameters, this large differences between the measured value of λ 

and the one that could be expected from the previous correlations, suggest a large influence 

of the surface polarity on friction when interacting with a polar fluid (as a ionic liquid) that is 

reflected by an substantial increase of the force corrugation. On the other hand,  

experimental observations exposed with a very similar IL ([emIm][NTf2-]) sheared by mica 

surfaces (charged material) [121] point out the locking of the counterions of IL on the mica 

that considerably reduces the flow of the fluid near the interface. This feeds the debate on the 

influence of the surface charges on friction: friction is higher with polar (but not necessarily 

charged) solid materials than with non-polar materials for short alkyl-chain ionic liquids and 

in a dry (water-free) environment. 



Chapter V 

108 
  

 

V.4 Implications for the lubrication performance 

The order of magnitude of the slip length for the graphite goes from 1 to 10 μm. 

Considering the average film thickness in the EHL regime is around 0.1-1 μm, and given the 

relation between the slip length and the contact thickness made explicit in Equation V.1, a 

contact of this size implying at least one perfect graphite surface would be exclusively driven 

by the surface and the fluid would be very little sheared. However, lubrication would still be 

ensured as the thickness at the contact inlet would always be higher than the slip length 

what guarantees that the lubricant is drag into the contact. Diamond slip length rises up to 

0.1 μm at high shearing velocities so slip would still be significant for diamond-sheared 

contacts with standard film thicknesses (roughly 0.1 μm) and predominant in the VTF regime 

(1-10 nm). For iron oxide and a-C surfaces, the slip length is comprised between 0.0001 and 

0.003 μm and become negligible compared to classic film thicknesses. In this case, the 

shearing is mainly absorbed by the viscous fluid. Nonetheless, thanks to the progress made 

in surface conception and with the use of less viscous lubricants, the film thickness might 

decrease significantly in the future what would intensify the role of wall slip [55,58]. Yet, in 

today lubricated systems the surface roughness causes local film thickness reductions under 

10 nanometers (see Figure I-4). This strengthen the importance of slip in the contact response. 

Knowing the slip capability of the fluid/surface couple is crucial in those cases to predict 

local film breakdown [29]. 

In a lubricated contact, the two confining surfaces move in the same direction and a 

relative sliding velocity might take place between the two. The wall with the higher velocity 

in the direction of the flow is considered as the entraining surface. According to Savio and 

coworkers [194], systems with surfaces of different nature are subject to complex lubrication 

responses depending on the slippage properties of both surfaces. It turns out from nano-EHL 

simulations that two opposite situations are willing to take place. If the entraining surface 

slips more than the other one, less lubricant is drag out of the confinement and as the mass 

flow is conservative, the thickness of the fluid film increases. On the other hand, when the 

entraining surface grips the fluid more than the other, the lubricant is expelled out of the 

confinement and local film breakdown might occurs. 

During the design of a DLC/IL lubricated system, it is also important to estimate the 

range of the temperature rise as it has a consequent impact on the chemical reactivity 

between the two species and graphitization might occurs impacting friction and wear [185]. 

This effect could be amplified all the more given that the amorphous carbon thermal 

diffusion is relatively low [195,196].
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Nowadays, the demand for smaller, more durable, more efficient and 

environmentally friendly lubricated systems is growing. The significant decrease in the 

quantity of oil and additives, as well as the use of low viscosity operating fluids as lubricants 

and of better manufacturing techniques, are inevitably leading to a reduction of film 

thickness, which can reach a few nanometers. At this scale, the classical continuum dynamics 

formulations are no longer valid as fluid molecules introduce a specific behavior when 

nanoconfined between two sliding surfaces. In fact, the structuration in layers near the 

interfaces, the wall slip, the anomalous rheological response and the particular thermal 

behavior lead to a highly complex response of the lubricated contact (Chapter I). 

Simultaneously, due to their promising capabilities, the search for new lubricants to 

overcome the performance of those commonly employed leads inevitably to consider the 

ionic liquids. In addition to their valuable resistance to extreme environments (as ultra-low 

pressures or high temperatures), they can also exhibit superior tribological performance than 

conventional lubricating oils in the most common conditions. However, various natures and 

properties of ionic liquids exist, due to the quasi-infinite number of ions combinations 

available. 

In this work one model ionic liquid was considered with rheological properties close 

to the conventional lubricants. Molecular Dynamics simulations were used to study its 

transport properties (Chapter II), completed by some in-house experiments.  

A first objective of this work was to characterize the rheological behavior of the 

model ionic liquid in the EHD and very thin film lubrication regimes. MD simulations of the 

bulk ionic liquid provided quantitative agreement with experiments regarding viscosity-

pressure and viscosity-temperature dependencies (Chapter III). The linear and non-linear 

regimes were explored through more than 200 bulk simulations. They provided a basis for 

an original improvement of a classical rheological model, and established the high sensibility 

of the ionic liquid viscosity to shearing at high pressures and low temperatures in the non-

linear regime. 

A second objective was to further study the molecular phenomena occurring at 

nanoscale. Simulations of the same ionic liquid confined between two surfaces representative 

of a common steel-steel lubricated contact were considered in Chapter IV. First by means of 

static simulations, the orientation of the ions at the interface gave indications on the 

fluid/substrate reactivity. Then, a relative motion was introduced between the confining 

surfaces. It was first noticed that shearing has no effect on the fluid structuration. Classic 

wall slip and a saturation of the shear stress were observed. The atypical response of the 

effective viscosity, depending on the shear thinning and on the temperature, was 

investigated. Therefore, a predictive model of the temperature in nanoconfinements 

submitted to shearing was also established. Finally, it is noteworthy that the large 

temperature elevation induced by the considerable shearing of nanoconfined fluids is 

relevant with the trend to use highly thermally stable ionic liquids as lubricants. 

At last, the interaction with carbon-based surfaces were studied in Chapter V. 

Comparing surfaces with different structures and compositions led to very distinct 

lubrication regimes. First, the graphite surfaces induce enormous wall slip, so the fluid is no 
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longer sheared and the velocity difference is entirely absorbed at the liquid/solid interfaces. 

On the contrary, the non-flat amorphous carbon surfaces produce high fluid friction 

coefficients so the shearing fully takes place within the fluid thickness. Although small 

variations of interfacial fluid friction or fluid thickness slightly impact the shear stress, they 

imply very different slip regimes with slip lengths discrepancies of several orders of 

magnitude. Finally, polar surfaces of iron oxide lead to a significantly higher friction than 

non-polar diamond with comparable roughness. 
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The results of this thesis bring about relevant information to understand the 

lubrication mechanisms and for a better design of future lubricated systems. Besides, 

complementary investigations could also lead to further knowledge on this field. 

Firstly, the relevance of the previous conclusions would benefit from a confrontation 

with different ionic liquids. Moreover, as it was experimentally observed, ionic liquids 

performed well with additives or as additives. It was shown by means of experimental 

studies that the presence of water in the ionic liquid composition has a great and complex 

influence on the lubrication performances. Numerical simulations could give an insight on 

the underlying mechanisms for the different cases of multi-component lubricants [197]. 

Finally, tests of short-alkyl chain ionic liquids with charged surfaces would complete the 

picture of the influence of charges on friction, as the formation of well-formed monolayers 

could increase the liquid mobility and thus reduce the friction. 

Secondly, the mechanisms leading to a limitation of the shear stress at high shear rate 

shall be further investigated. Molecular dynamics simulations with fluid and surfaces of 

different natures would confirm the mechanisms highlighted here. 

Besides, a more extensive investigation of the influence of the film thickness in ultra-

confined systems would provide precious information on the transition between full film 

and mixed/boundary lubrication regimes. 

Moreover, the high wall slip behavior of some carbon-based tested surfaces should 

deeply impact the friction and the dynamics of the contact, what remains to be verify by 

means of realistic experimental tests. 

At last, the general rheological model proposed here to predict the viscosity in the 

non-linear regime shall be tested with different kinds of fluids of evaluate its relevance and 

universality. 
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Appendix A. The r RESPA Integration Algorithm 

The reversing Reference System Propagator Algorithm (r RESPA) is a multi-timescale 

integrator. Compared to the conventional Verlet integration algorithm, it allows to optimize 

the simulation times through a differentiation of the integration time steps. This way, an 

appropriate integration frequency is defined for each type of interatomic interaction, 

according to their respective sensitivity. Distinct studies validated this approach to model 

ionic liquids in Molecular Dynamics simualtions [198,199]  

Algorithm theory 

As defined in Section II.1.3, the conservative force    acting on one atom is the 

opposite of the gradient of its potential energy  : 

                                                                                      

Decomposing the total interactive forces    between short range forces    and long 

range forces    , the positions   and velocity    of each atoms are computed considering all 

forces every time step    using the following equations: 

                           
  

  
                                                 

                             
  

  
          

  

 
                                   

Where    and     are respectively the position and velocity of atoms numerically 

solved for   time step         with the velocity Verlet algorithm [200] seeing only the 

short range forces: 

                         
  

  
                                                      

                 
  

  
                                                              

With the following initial conditions: 

           
  

  
                                    

  

  
                                   

Time step configuration 

By iterating the position and velocity computation, cumulative errors are introduced, 

depending on the chosen time steps. The swifter displacement of atoms correspond to their 

thermal agitation and start to be appreciated at roughly 10-12 s. To ensure energy 

conservation in the thermodynamic ensemble, time steps closed to the femtosecond (10-15 s) 

are generally taken. However, as the errors introduced at each iteration depends on the 
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interaction forces, a differentiation can be made between the hard ones (with high energy 

potential) and the soft ones (with low energy potential). Hard forces must be integrated more 

often than the soft ones as they can lead to consequent accelerations over small time steps. 

More specifically, the long range interactions of Coulomb and Lennard-Jones 

(Equation II.7) present softer potential that the short range ones of Tersoff (Equation II.18) 

and bonded interactions (Equation II.9). Hence, the short range interaction integration time 

step    was taken equal to 0.5 fs and the long range interaction one    was taken equal to 2 

fs. 
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Appendix B. Force field parameters 

Long range interactions 

In this study, all the long range interactions are non-bonded ones and bring together 

a classic 12-6 Lennard-Jones potential [138] and the Coulomb’s law: 

                   
   

   
 

  

  
   

   
 

 

  
 

    

    

   
                                    

for           and using the Lorentz-Berthelot mixing rules for Lennard Jones coefficients 

(Equation II.8). Within molecules, the non-bonded interactions are weighted not to interfere 

with the configured bonded interaction terms. The weighting factors are as follow: 

 0 for 1-bond separated atom 

 0 for 2-bonds separated atom 

 0.5 for more than 3-bonds separated atom 

The following table present the mass, the Lennard-Jones coefficients and charges of 

the different simulated atoms. 

 Atom Mass (g/mol)     (Å)     (kcal/mol)    (e) 

Iron oxide 
Fe 55.845 4.9059 9.0298E-06 2 

O 15.999 3.166 0.1554 -2 

1,3-dymethylimidazolium [mmIm+] 
 

(see Figure B-1 for the atom 
denominations) 

NA 14.0067 3.25 0.17 0.1125 

CR 12.011 3.55 0.07 -0.0825 

CW 12.011 3.55 0.07 -0.0975 

C1 12.011 3.5 0.065999 -0.1275 

HA 1.008 2.5 0.03 0.1575 

H1 1.008 2.5 0.03 0.0975 

Bis(trifluoromethylsulfonyl)imide 
[NTf2

-] 

O 15.9994 2.96 0.21 -0.3975 

S 32.065 3.55 0.25 0.765 

F 18.998 2.95 0.053 -0.12 

N 14.0067 3.25 0.17 -0.495 

C 12.0107 3.5 0.066 0.2625 

Graphite C 12 3.412 0.05511 - 

Diamond and a-C C 12 3.5 0.066 - 
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Figure B-1. 1,3-dymethylimidazolium [mmIm+] molecule with atom denominations. 

As the Coulombic interactions are very long range interactions, they must still be 

effective in simulations beyond the cut-off distance (for         ). As it would be too 

computationally expensive to describe them directly with the standard Coulomb’s law, they 

are approximated through a particle-particle mesh (PPM) solver [139] which maps atom 

charge to a 3d mesh, uses 3d FFTs to solve Poisson’s equation on the mesh, then interpolates 

electric fields on the mesh points back to the atoms. 

As 3d FFTs are used, the PPM solver must operate in an infinite domain. Thus, as the 

confined simulations have periodic boundaries in the direction normal to the surfaces, a 

virtual empty space of 4 times the length of the domain is defined between the two non-

periodic boundaries to simulate a 3d periodic (and so infinite) domain for the PPM solver. 

Bonded-interactions 

To describe the complex structure of ionic liquid molecules, their numerous degrees 

of freedom and the bond flexibility, the bonded term of the interaction potential energy is the 

combination of three components: 

                                                                                   

Atoms pairs linked with covalent bonds are model as tension/extension springs: 

                 

     

                                                              

with    the bond stiffness,     the distance between atoms i and j and    the equilibrium 

distance. 

 Bonds    (Å)    (kcal/mol) 

1,3-dymethylimidazolium 
[mmIm+] 

 
(see Figure B-1 for the atom 

denominations) 

CR-N 1.315 477.0555 

CW-N 1.378 427.1033 

C1-N 1.466 336.9981 

CR-H 1.08 339.7629261 

                                                      
1
 Coefficient values taken from the AMBER96 force field [201] 
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CW-H 1.08 339.7629261 

CW-CW 1.341 520.076481 

Bis(trifluoromethylsulfonyl)imide 
[NTf2

-] 

O-S 1.442 637.0545 

N-S 1.57 372.0035 

S-C 1.818 235.415 

C-F 1.323 441.7915 

 

 

Forces between triplets of atoms are represented by an angle bending potential: 

                   

      

                                                           

with    the angle stiffness,      the bending angle and    the equilibrium angle. 

 Angles    (°)    (kcal/mol) 

1,3-dymethylimidazolium 
[mmIm+] 

 
(see Figure B-1 for the atom 

denominations) 

CW-N-CR 108 69.93308 

CR-N-C1 126.4 69.93308 

CW-N-C1 125.6 69.93308 

N-CR-N 109.8 69.93308 

N-CR-H 125.1 34.96653 

N-CW-H 122 34.96653 

N-CW-CW 107.1 69.93308 

CW-CW-H 130.9 34.96653 

N-C1-H 110.7 74.8566 

H-C1-H 107.8 65.98948 

Bis(trifluoromethylsulfonyl)imide 
[NTf2

-] 

O-S-O 118.5 115.7955 

O-S-N 113.6 94.2855 

O-S-C 102.6 103.965 

N-S-C 100.2 97.512 

S-N-S 125.6 80.1845 

S-C-F 111.8 82.933 

F-C-F 107.1 93.3295 

 

Finally, torsion forces of covalent bonds between quadruplets of atoms are modeled with a 
dihedral potential: 

           
 

 
                  

         

 
 

 
                    

 

 
                    

        

with      the torsion stiffness of the different modes and       the torsion angle. 
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 Dihedrals     (kcal/mol)     (kcal/mol)     (kcal/mol) 

1,3-dymethylimidazolium 
[mmIm+] 

 
(see Figure B-1 for the atom 

denominations) 

N-CR-N-CW 0 4.651 0 

H-CR-N-C1 0 4.651 0 

CR-N-CW-CW 0 3 0 

CW-N-C1-H 0 3 0 

CR-N-C1-H 0 0 0 

N-CR-N-C1 0 4.651 0 

H-CR-N-C1 0 4.651 0 

C1-N-CW-CW 0 3 0 

C1-N-CW-H 0 3 0 

CW-N-C1-H 0 0 0.1314 

N-CW-CW-N 0 10.75 0 

N-CW-CW-H 0 10.75 0 

H-CW-CW-H 0 10.75 0 

1,3-dymethylimidazolium 
(improper dihedrals) 

N 0 2.0004 0 

CR/W 0 2.1988 0 

Bis(trifluoromethylsulfonyl)imide 
[NTf2

-] 

O-S-N-S 0 0 -0.003585 

O-S-C-F 0 4.651 0.34679 

C-S-N-S 7.83294 -2.49044 -0.76362 

N-S-C-F 0 0 0.31596 

 

Tersoff potential 

Tersoff is a reactive potential able to model the breakable bonded interactions of some 

atoms. It was used in this study to represent most of the C-C interactions in carbon based-

materials. The Equation II.8 introduced in section II.3.1 is completed here: 

         
 

 
                               

   

                                         

with   and   two constants,    and    two atom-dependent parameters and     a 

weighting coefficient including a three-body term to embody the bond ordering: 
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The values of the parameters are given in the following table. 

Parameter Unit Graphite Diamond and a-C 

  - 3 3 

     - 1 1 

   Å-1 0 0 

  - 38049 38049 

  - 4.3484 4.3484 

      - -0.57058 -0.930 

  - 0 .72751 0 .72751 

  - 1.5724.10-7 1.5724.10-7 

   Å-1 2.2119 2.2119 

  kcal/mol 7995.09 9916.00 

  Å 1.95 1.95 

  Å 0.15 0.15 

   Å-1 3.4879 3.4879 

  kcal/mol 32137.17 32137.17 
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Appendix C. Toward extreme confinements 

It had been shown that the structuration of the nanoconfined fluid has a direct impact 

on the fluid viscosity and thus on the friction [173]. In the previous configuration of roughly 

3 nm thick confinements, no influence of the structuration on the viscosity were noticed. 

However, the question still ran for ultra-confined systems (< 1 nm thick) for which the 

structuration of the fluid in the thickness is extreme. Hence, four new systems with fewer 

ionic liquid molecule pairs were simulated over several shearing velocities. The resulting 

friction is plotted in Figure D-1. 

 

Figure D-1. Evolution of the coefficient of friction with the shearing and the lubricant film 

thickness. 

Firstly, it can be noticed that whatever the film thickness, the coefficient of friction 

(COF) always tends to saturate with increasing shear rate. As the effects of slip and warming 

are still occurring, those last results comfort with the idea that the same mechanisms induce 

a limitation of the shear stress. Secondly, the film thickness reduction has a significant 

influence only under about ten Angstroms. Indeed, from 28.4 Å to 13.2 Å, the measured 

friction is quite stable whereas it is reduced of roughly 25 % when the film thickness reaches 

6.8 Å and increase once again when reducing the thickness to 3.8 Å. To understand this 

unintuitive behavior, a look at the fluid structuration is crucial. 

Considering the normalized coordinate    , the Figure D-2 represents the numerical 

density of the ions in layers perpendicular to the thickness. For more than one nanometer 

thick contacts, one well-formed layer is present at each fluid/solid interfaces and more 

heterogeneous layers takes place between them. The lowest friction is reached when those 

two layers are not separated by structured fluid (  = 6.8 Å) and the friction increased when 

the layers merge into a single one (  = 3.8 Å). This is in accordance with the observations of 

Savio on n-hexadecane [15]. To explain the discontinuity of the COF with the reduction of 

. 
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the thickness, Savio claims that the two well-formed layers will easily slip on one another, 

whereas a single layer is more difficult to shear. In a recent experimental study, Sweeney et 

al. compared the friction resulting from the shear of a single layer of IL and for ILs with 

different ion structures [170]. In this “boundary regime” friction is also found to be higher 

than with multilayer confinements. In fact, as a single layer of fluid cannot be sheared, 

mechanisms requiring more energy take place. When interfacial slip is prevailing, the energy 

is mainly dissipated by expulsion of near contact fluid. With lesser slip, the energy is mainly 

dissipated to deform and rotate the ions in the boundary layer. 

 

Figure D-2. Evolution of the density profile in relation with the film thickness. The abscissa is 

normalized by the film thickness. 

A last singularity inherent to the reduction of the film thickness is the important 

increase of friction at low shearing velocity. Further investigation are necessary to fully 

characterize this anomalous behavior. A first hypothesis can be formulated. At low shear 

rate, the thin dense layer of ionic liquid crystalizes (as it was experimentally observed in 

chapter III) and exhibit a solid-like behavior. On the other hand, the increase of the shearing 

forces the strain of the fluid and introduces a dynamic lift between the two surfaces 

generating less friction than at low shear.
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Molecular simulation of an ionic liquid as lubricant: 

from bulk rheology to nanoconfinement 

Les contraintes économiques et environnementales toujours plus exigeantes tendent à 

réduire la quantité de lubrifiant utilisée dans les systèmes mécaniques. Il en résulte des 

épaisseurs de film de l’ordre du nanomètre dans les zones de contact, laissant seulement 

quelques couches de molécules de lubrifiant pour assurer la séparation des surfaces. Pour 

relever ce défi, de nouveaux fluides sont à l’étude tels que les liquides ioniques qui 

présentent un formidable potentiel en tant que lubrifiants. 

Grâce à la Dynamique Moléculaire, la réponse rhéologique d’un liquide ionique à 

différentes sollicitations de température, pression et cisaillement est tout d’abord caractérisée 

en détail. Avec l’appui d’essais expérimentaux, l’aptitude du liquide ionique à lubrifier des 

films minces est confirmée. Cette étude a également permis de jeter un nouveau regard sur 

les modèles analytiques classiques utilisés en rhéologie. 

Le liquide ionique en situation de nano-confinement entre deux surfaces 

représentatives d’un contact acier-acier est ensuite étudié. Les effets combinés du glissement 

à la paroi, de la rhéofluidification et de l’élévation de température apportent des éléments de 

réponse pour expliquer la saturation de la contrainte de cisaillement aux fortes sollicitations. 

Enfin, l’influence de différents revêtements de surface limitant grandement le 

frottement est analysée. Selon le matériau utilisé, des régimes de lubrification très 

différents surviennent avec un glissement du fluide à la paroi parfois prédominant. 

L’utilisation de surfaces polaires impacte également fortement la réponse des contacts 

lubrifiés par un liquide ionique. 

 

Molecular simulation of an ionic liquid as lubricant: 

from bulk rheology to nanoconfinement 

Increasing economic and environmental constraints tend to reduce the amount of 

lubricant used in mechanical systems. This results in nanometric film thicknesses in the 

contact areas, leaving only a few layers of lubricant molecules to ensure the separation of the 

surfaces. To meet this challenge, new fluids are being considered such as ionic liquids which 

feature a great potential as lubricants. 

Through Molecular Dynamics simulations, the rheological response of an ionic liquid 

to different conditions of temperature, shear and pressure is first characterized in detail. The 

ability of the ionic liquid to lubricate thin films is confirmed. Besides, this study goes back 

over the classic analytical models used in rheology. 

The ionic liquid is then nanoconfined between two representative surfaces of a steel-

steel contact. The combined effects of wall slip, shear-thinning and temperature rise provide 

answers to explain the saturation of the shear stress. 

Finally, the influence of different low friction surface coatings is analyzed. According 

to the material used, very different dynamical behaviors occur. Moreover, it is shown that 

the use of polar surfaces significantly impacts the response of ionic liquid lubricated contacts. 


