Je Remercie 
  
Damir Juric 
  
Jalel 
  
Adrien Ashraf 
  
Eliott Francesca Florence 
  
Gabi 
  
Hadrien Hector Gaspard 
  
Jean Hugo 
  
Lucie 
  
Ludovic 
  
Marine, Marion, PH, Piotr Manon Lukasz 
  
Reinaldo Salome 
  
Vincent Tao 
  
Yanan... Valentin 
  
Abdel Adim 
  
Anas Ahmed 
  
Nabil Sofia Sabri 
  
Y Bengana 
  
J.-Ch Loiseau 
  
J.-Ch Robinet 
  
L S Tuckerman 
  
  
  
Bifurcation analysis and frequency matching in shear-driven cavity flow

Keywords: Linear stability analysis, nonlinear dynamics, base and mean field, heteroclinic cycles

Remerciement

Un sage a dit : "celui qui ne remercie pas d'abord les Hommes, ne peut pas remercier Dieu". Alors, je tiens à remercier en premier lieu ma directrice de thèse Laurette S. Tuckerman. Je lui serais toujours reconnaissant pour m'avoir soutenu pendant les moments intenses et difficiles et pour n'avoir jamais compté le temps passé avec moi à travailler mais aussi à échanger sur des sujets tout aussi passionnants. Son exigence, sa gentillesse et la liberté qu'elle m'a laissé m'ont permis de vivre trois années formidables. J'ai eu l'occasion de collaborer avec Jean-Christophe Loiseau et Jean-Christophe Robinet du laboratoire DynFluid à L'ENSAM. Travailler avec eux a été très enrichissant et particulièrement agréable. Je les remercie chaleureusement pour m'avoir offert cette chance. José Eduardo Wesfreid m'a permis de prendre part à ses travaux sur Henri Bénard et pour cela je lui adresse mes remerciements. Je tiens aussi à remercier Dwight Barkley pour ses suggestions toujours pertinentes à des moments clés de la thèse.

Chapter 1 Introduction (en)

Ancient civilizations have shown an intuitive and experimental knowledge of fluid mechanics, and used this knowledge in the fabrication of arrows, boats and the design of irrigation systems. Hydrostatic principles were investigated at least two thousand years ago in ancient Greece by Archimedes. Substantial progress in fluid mechanics began with the observations and experiments of Leonardo da Vinci: Evangelista Torricelli invented the barometer, Isaac Newton established the basis of classical mechanics and Daniel Bernoulli established the basis of fluid dynamics. During the nineteenth century, Claude-Louis Navier and George Stokes inferred the governing equations of fluid dynamics, known as the Navier-Stokes equations.

In addition to the beautiful structures that unsteady flows may exhibit (figure 2.1), their study plays an essential role in a large number of problems, from natural phenomena to industrial applications. For instance, the comprehension of such flows is helpful to suppress the unwanted vibrations of the vortical structures on bridges or to design vehicles with less energy consumption. Vortical structures could be also produced intentionally to enhance mixing in microfluidic devices for instance.

In this thesis we are interested in time-periodic flows also called oscillators which originate from a Hopf bifurcation. The Bénard-von Kármán vortex street observed in the cylinder wake (figure 2.1(b)) is a famous example of an unsteady flow produced through a Hopf bifurcation. Understanding the onset of the Hopf bifurcation as well as predicting the nonlinear frequency and the amplitude of the perturbation is essential to characterize such flows. The full Navier-Stokes equations solved by direct numerical simulation (DNS) and experiments give a good description of nonlinear flows. However, these methods are expensive. Moreover, these methods consider all the complexity of the flow which makes the study of the physical mechanisms difficult. In some cases, this complexity is not necessary to reproduce the main features of the full nonlinear problem. Therefore many procedures have been developed to characterize such flows without solving the full Navier Stokes equations. The aim of this thesis is to show the limitations of some of these procedures, which will be described in the next sections. [14]. (b) Kelvin-Helmholtz instability over Mount Shasta by Shannon [13]. (c) von-Kármán vortex street behind a cylinder by Wagner [18]. (d) Kelvin-Helmholtz instability around an airfoil by GmbH [4] 1

.1 Linear stability analysis

The first statement about the concept of stability of physical systems was formulated in the nineteenth century by James Clerk Maxwell as reported by Campbell & Garnett [3] (p. 440) :

"When the state of things is such that an infinitely small variation of the present state will alter only by an infinitely small quantity the state at some future time, the condition of the system, whether at rest or in motion, is said to be stable ; but when an infinitely small variation in the present state may bring about a finite difference in the state of the system in a finite time, the condition of the system is said to be unstable..." This stability concept is described by the schematic sketch in figure 2.2. For a small perturbation, the hollow balls will quit their positions permanently, which shows that these positions are unstable. In contrast, the filled ball subjected to an infinitesimal perturbation will stop at its original position after some oscillations, which indicates that this position is a stable equilibrium state. Figure 2.2(b) shows a hollow ball on a flat plate. This situation corresponds to neutral stability. Indeed, all the positions on the flat plate are equivalent and the ball will remain wherever we place it.

Linear stability about the base flow

The equilibrium states or fixed points discussed in the previous section are the steady states about which we carry out a linear stability analysis. In fluid flow, the equilibrium state is a field of one, two or three dimensions and can be steady or periodic. This state is called the base flow. In the context of linear stability analysis, the base flow is the solution of the stationary Navier-Stokes equations. In experiments, an unstable base flow cannot be observed: experiment shows only the final periodic stable state. In numerical simulation, an unstable base flow can be obtained by various methods like the Newton-Raphson method, the selective frequency damping introduced by Åkervik et al. [1] or by imposing the symmetries of the base flow as was done by Barkley [2] for the cylinder wake. This last procedure is not always possible, because the base flow may not be symmetric in some configurations.

Linear stability analysis consists of analyzing the time evolution of a perturbation from the base state. This analysis was first carried out in two dimensions by Pierrehumbert & Widnall [12]. (In the 2000s a new terminology was introduced whereby linear stability analysis was called global linear stability analysis in contrast to the local stability analysis used for parallel and weakly parallel flows by researchers such as Huerre & Monkewitz [5].) Linear stability analysis is carried out by solving the linearized Navier-Stokes equations about the base flow

∂ t u = L U b u (1.1)
where u is the infinitesimal perturbation vector. L U b is the operator linearized about the base flow U b , which corresponds to the Jacobian matrix. Solutions to (2.1) are of the form u = ûe (σ+iω)t . Therefore, equation (2.1) is reduced to the eigenvalue problem,

(σ + iω)û = L U b û (1.2) Equation (2.
2) is characterized by the eigenvalues σ + iω of the Jacobian matrix L U b . The stability of the base flow depends on the real part of the dominant eigenvalue:

• If σ < 0, then the base flow is stable • If σ = 0, then the base flow is marginally stable • If σ > 0, then the base flow is unstable Figure 2.3 shows as a thin curve the result of the linear stability analysis about the base flow of the cylinder wake, reproduced from Barkley [2]. We observe the zero crossing of the growth rate σ shown in figure 2.3(b) at the critical Reynolds number Re c ≈ 47, which is the threshold of a supercritical Hopf bifurcation. The frequency ω obtained by linear stability analysis about the base flow shown in figure 2.3(a) matches the nonlinear frequency shown as a bold curve at Re c ≈ 47. However, this analysis fails to predict the frequency of the time-periodic solutions for Re > Re c . This failure is due to the absence of the nonlinear term (Reynolds stress) from the linear stability analysis. The nonlinear frequency is shown as a bold curve, the thin curve shows the results predicted by linear stability analysis about the base flow and the triangles show the results obtained from linearization about the mean flow. From Barkley [2].

Mean flow analysis

The difference between the mean and base flow, called the distortion, is the result of the nonlinear interactions (Reynolds stress). Therefore, it is natural to think that the mean flow may receive information about the nonlinear dynamics (Maurel et al. [9], Zielinska & Wesfreid [19]). By following this idea, Barkley [2], Mittal [10], Pier [11] carried out linearization about the time-averaged flow for the cylinder wake and Turton et al. [17] in the thermosolutal convection, even though the mean flow is not a solution of the stationary Navier-Stokes equations. This procedure is identical to that presented in the previous section except that we replace the base flow by the mean flow in equations (2.1) and (2.2). The frequency (imaginary part of the eigenvalue) obtained by this procedure matches the nonlinear frequency over the entire range of Reynolds number as shown by the triangles in figure 2. 3(a). Moreover, the growth rate (real part of the eigenvalue) is nearly zero as shown by figure 2.3(b), which means that the mean flow is neutrally stable. This property, named RZIF (Real Zero Imaginary Frequency) by Turton et al. [17], has been sometimes viewed as a prediction of the nonlinear frequency from the mean flow. This is not the case, because the mean flow must be obtained from a DNS or an experiment. However, this property emphasizes the relevance of the mean flow in the study of nonlinear systems.

The fact that the linear analysis about the base flow does not predict information about the full nonlinear system is not surprising, because in this analysis we neglect the nonlinear term. However, the fact that there are configurations, like the open shear-driven cavity flow, for which this analysis predicts fairly well the nonlinear frequency even at a high Reynolds number is intriguing. We suppose that this is because the distortion introduced via the Reynolds stress term is small. The frequency obtained by linearization about the mean flow remains closer, however, to to the nonlinear frequency.

Linearization about the mean flow has also its limitations. Indeed, the RZIF property is not universal for all time-periodic flows. Thermosolutal convection presents two branches, one of traveling waves, another of standing waves. Turton et al. [17] have shown that only the traveling waves verify the RZIF property. Turton et al. [17] argued that the failure of the standing waves to satisfy the RZIF property, is due to their broad spectrum.

The traveling waves, in contrast, show a peaked spectrum. They demonstrated that for Temporal mean flow, (c) snapshot of the vortex shedding, (e) time evolution of the velocity at the point (x 1 = 2, y = 1) from the base flow (black square) until saturation. From Barkley [2]. (d) Sketch of the transient wake dynamics (modified from Tadmor et al. [15]). monochromatic oscillations the RZIF property is exactly satisfied.

Nonlinear dynamics

The nonlinear process from the bifurcation onset to the saturated state (Maurel et al. [9], Zielinska & Wesfreid [19]) is illustrated in figure 2. 4. The schematic view in figure 2. 4(d) describes the typical evolution of a Hopf bifurcation from the base flow (black square) until reaching the limit cycle, which corresponds to the time-periodic vortex shedding shown in figure 2.4(c). Near criticality (black square in figure 2.4(d,e)), the base flow (figure 2.4(a)) and the mean flow are almost the same and the nonlinear frequency measured at this stage of the bifurcation is nearly identical to that predicted by the linear stability about the base flow. During the growth of the perturbation, this frequency increases until reaching that of the vortex shedding and a continuous correction of the mean flow U is introduced by the nonlinear interaction until saturation. The growth rate obtained by linearization about the instantaneous mean flow decreases until marginality as shown by Thiria et al. [16]. This process of amplitude saturation and mean flow distortion sheds light into the mechanisms leading to the RZIF property.

We have shown previously that linear stability analysis about the base flow has limitations. In most cases, linear stability analysis about the base flow is able to predict the frequency of the nonlinear system only near the onset of the bifurcation. On the other hand, linearization about the mean flow is not predictive as we need to carry out an experiment or DNS to compute the mean flow. Moreover, the linear analysis does not describe the amplitude saturation process. A self-consistent model (SCM) based on the RZIF property has been proposed by Mantič-Lugo et al. [7] to describe the amplitude saturation process. This model is described in the next section.

Section 1.3. Present work

Self-consistent model

Mantič-Lugo et al. [7] developed the self-consistent model to describe the amplitude saturation process without time integration. This model is a coupled system consisting of the mean flow governing equation and linearized Navier-Stokes equations. Mantič-Lugo et al. [7] assumed that for supercritical flows satisfying the RZIF property, the leading mode suffices for the mean flow distortion. Therefore, the self-consistent model is written as

N (U) = -A f ((û -1 • ∇)û 1 ) ((û -1 • ∇)û 1 ) 2 (1.3a) (σ + iω)û 1 = L U û1 (1.3b)
with û-1 = û * 1 and L U is the linear operator about U. The parameter A f indicates the amplitude of the forcing term ((û -1 • ∇)û 1 ). A f is an external parameter, because the linear equation (2.3) does not determine the amplitude of the mode. The term ((û -1 • ∇)û 1 ) is normalized by ((û -1 • ∇)û 1 ) 2 , in order to ensure convergence of the system of equations (2.3) as described by Mantič-Lugo et al. [8]. This system is solved by Mantič-Lugo et al. [8] for a given A f , by first solving the linear equation (2.3b) with the base flow as the initial guess. We obtain the solution σ, ω and the leading eigenmode û1 . Then, the forcing term ((û -1 • ∇)û 1 )/ ((û -1 • ∇)û 1 ) 2 is calculated with û1 and a new mean flow is computed with equation (2.3a) by Newton method. This new mean flow U is substituted into (2.3b) leading to new values for σ, ω and û1 . As long as the growth rate is greater than zero, σ > 0, the process is continued by increasing the amplitude A f until convergence to the marginally stable solution σ = 0, ω, û1 and U.

Present work

The aim of the present work is to characterize various flows undergoing a supercritical Hopf bifurcation using the procedures described previously. More specifically, we present in this manuscript three different configurations: the open shear-driven cavity flow, Taylor-Couette flow and finally thermosolutal convection.

Open shear-driven square cavity

The open shear-driven square cavity has been broadly used as a validation case for numerical and theoretical development. Despite the large number of studies based on this configuration, no detailed description of the first bifurcations has been given. This study is focused on a region of Reynolds number Re where two coexisting limit cycles are separated by an unstable quasiperiodic state. The first objective of this study is to describe in detail this bifurcation scenario by means of nonlinear direct numerical simulation, linear stability analysis, and Floquet analysis. The second objective concerns the prediction of the nonlinear frequency by linear stability analysis. The open cavity flow satisfies only partially the RZIF property. Indeed, the linear stability analysis about the mean flow computes a frequency that matches the nonlinear frequency but the mean flow is not marginally stable. Moreover, in this configuration, even linear stability analysis about the base flow predicts fairly well the nonlinear frequency. This case is a mild counterexample to the RZIF property, the first being the standing waves in thermosolutal convection of Turton et al. [17].

Taylor-Couette flow

The second part is devoted to the study of the RZIF property in a Taylor-Couette flow. The thermosolutal convection mentioned previously is driven by temperature and concentration differences. When these differences have opposite effects, a supercritical Hopf bifurcation occurs. In this case, the Hopf bifurcation leads to coexisting solutions, the traveling waves, and the standing waves, at most one of which can be stable as has been proven by Knobloch [6]. Turton et al. [17] showed that for the standing wave solution, the RZIF property is not satisfied: the frequency obtained by linearization about the mean flow is far from the nonlinear frequency and the growth rate is far from zero. This is the only known case in which the RZIF property is fully not satisfied. In the counter-rotating Taylor-Couette flow, there exists a range of Rayleigh number where a Hopf bifurcation leads to two solutions, the axially upwards and downwards moving spirals and the ribbons which are an equal superposition of these two kinds of spirals. The spirals are traveling waves and the ribbons are seen as standing waves. The primary objective of this study is to investigate the validity of the RZIF property on this pair of hydrodynamic traveling and standing waves. We have also discovered that the ribbon branch is followed by two types of successive heteroclinic cycles, connecting two pairs of axisymmetric vortices. The first heteroclinic orbit is non-axisymmetric, with excursions resembling ribbons, while the second has axisymmetric excursions. The analysis of these heteroclinic orbits is the second objective of this study.

Thermosolutal convection

The third part is devoted to better understanding the self-consistent model of Mantič-Lugo et al. [7]. This model has been assumed to be valid in all cases where the RZIF property is verified. We have tested the SCM on the traveling waves of the thermosolutal convection where the RZIF property holds (Turton et al. [17]). We have shown in this case that the SCM predicts the nonlinear frequencies only in the vicinity of the threshold. We have also implemented the SCM by considering higher orders in the Reynolds stress term, which greatly improved the prediction of the nonlinear frequency, the amplitude of the mode and the mean flow. This shows that when RZIF holds, the SCM is not necessarily valid. The SCM has been solved by mean of a full Newton method which avoids the convergence difficulties encountered in the algorithm proposed by Mantič-Lugo et al. [8].

Chapter 2 Introduction (fr)

La mécanique des fluides a été utilisé par les civilisations anciennes d'une façon intuitive et expérimentale, par exemple pour la fabrication de flèches, de bateaux ainsi que pour la mise en place de systèmes d'irrigation. Les principes de l'hydrostatique ont été étudiés depuis au moins deux mille ans par Archimède. Des progrès significatifs en mécanique des fluides ont commencé par les observations et expériences de Léonard de Vinci : Évangelista Torricelli a inventé le baromètre, Isaac Newton a instauré les bases de la mécanique classique et Daniel Bernoulli a mis en place les bases de la dynamique des fluides. Pendant le dix-neuvième siècle, Claude-Louis Navier et George Stokes ont déduit les équations de la dynamique des fluides, connues comme les équations de Navier-Stokes.

En plus de la beauté des structures que peuvent présenter les écoulements fluides instationnaires (figure 2.1), leur compréhension joue un rôle essentiel dans de nombreux problèmes, allant des phénomènes naturels aux applications industrielles. Par exemple, la compréhension de tels écoulements est utile pour la suppression des vibrations causées par les structures tourbillonnaires sur les ponts ou pour aider à concevoir des véhicules avec une faible consommation énergétique. Les structures tourbillonnaires peuvent aussi être produites volontairement pour améliorer le mélange dans les cellules microfluidiques par exemple.

Dans cette thèse nous sommes intéressés par les écoulements périodiques, aussi appelés oscillateurs, provenant de bifurcations de Hopf. La trainée tourbillonnaire de Bénard-von Kármán observée sur le sillage d'un cylindre (figure 2.1(b)) est un exemple très connu d'un écoulement instationnaire produit par une bifurcation de Hopf. La compréhension de la bifurcation ainsi que la prédiction de la fréquence non linéaire et l'amplitude des perturbations sont essentielles pour caractériser ce type d'écoulement. Les équations de Navier-Stokes résolues par moyen de simulation numérique directe (DNS) et d'expériences donnent une description précise de l'écoulement non linéaire. Cependant, ces méthodes sont couteuses. De plus ces méthodes considèrent toute la complexité de l'écoulement ce qui rend l'étude des mécanismes physiques difficile. Dans certains cas, cette complexité n'est pas nécessaire pour reproduire les caractéristiques principales du problème non linéaire.

Par conséquent plusieurs procédures ont été développées pour caractériser de tels écoulements sans la résolution des équations de Navier-Stokes complètes. L'objet de cette thèse est de montrer la limitation de certaines de ces procédures, lesquelles seront décrites dans 

Analyse de stabilité linéaire

Le premier énoncé sur le concept de stabilité pour les systèmes physiques a été formulé pendant le dix-neuvième siècle par James Clerk Maxwell, cité par Campbell & Garnett [3] (p. 440) :

"When the state of things is such that an infinitely small variation of the present state will alter only by an infinitely small quantity the state at some future time, the condition of the system, whether at rest or in motion, is said to be stable; but when an infinitely small variation in the present state may bring about a finite difference in the state of the system in a finite time, the condition of the system is said to be unstable..." Dans une simulation numérique, l'écoulement de base instable peut être obtenu par plusieurs méthodes, telle que la méthode de Newton-Raphson, la selective frequency damping introduite par Åkervik et al. [1] ou en imposant les symétries de l'écoulements de base tels que cela avait été fait par Barkley [2] dans le cas du sillage d'un cylindre. Cette dernière procédure n'est souvent pas possible parce que l'écoulement de base n'a souvent pas de symétrie.

L'analyse de stabilité linéaire consiste à suivre l'évolution temporelle d'une perturbation à partir de l'état de base. Cette analyse a été initié en deux dimensions par Pierrehumbert & Widnall [12]. (Dans les années 2000s, l'analyse de stabilité linéaire a parfois été renommé "analyse de stabilité linéaire globale" en opposition avec l'analyse de stabilité linéaire locale utilisée dans le cas d'écoulements parallèles et quasi parallèles par des chercheurs tels que Huerre & Monkewitz [5].) L'analyse de stabilité linéaire est réalisée en résolvant les équations de Navier-Stokes linéarisées autour de l'écoulement de base.

∂ t u = L U b u (2.1)
où u est le vecteur des perturbations infinitésimales. L U b est l'opérateur linéarisé autour de l'écoulement de base U b et correspond à la matrice Jacobienne. Les solutions de (2.1) sont de la forme u = ûe (σ+iω)t . Par conséquent, l'equation (2.1) est réduite à un problème aux valeurs propres,

(σ + iω)û = L U b û (2.2)
L'équation (2.2) est caractérisée par les valeurs propres σ + iω de la matrice Jacobienne L U b . La stabilité de l'écoulement de base dépend de la partie réelle de la valeur propre dominante:

• Si σ < 0, alors l'écoulement de base est stable

• Si σ = 0, alors l'écoulement de base est marginalement stable 

Analyse par écoulement moyen

La différence entre l'écoulement de base et moyen est nommée distorsion et elle est le résultat des interactions non linéaires (Reynolds stress). Par conséquent, il est naturel de penser que l'écoulement moyen peut capter des informations sur la dynamique non linéaire de l'écoulement (Maurel et al. [9], Zielinska & Wesfreid [19]). En suivant cette idée, Barkley [2], Mittal [10], Pier [11] ont réalisé la linéarisation autour de la moyenne temporelle de l'écoulement pour le sillage du cylindre et 2.4(a)) et l'écoulement moyen sont presque identiques et la fréquence non linéaire mesurée à ce stade de la bifurcation est presque identique à celle prédite par l'analyse de stabilité linéaire autour de l'écoulement de base. Pendant la croissance de la perturbation, cette fréquence augmente jusqu'à atteindre celle des émissions des tourbillons et une correction continue de l'écoulement moyen U est introduite par les interactions non linéaires jusqu'à saturation. Le taux de croissance obtenu par la linéarisation autour de l'écoulement moyen instantané décroît jusqu'à la marginalité comme le montre Thiria et al. [16]. Ce processus de la saturation en amplitude et la distorsion de l'écoulement moyen apporte un éclairage sur les mécanismes conduisant à la propriété RZIF.

Nous avons montré précédemment que l'analyse de stabilité linéaire autour de l'écoulement de base a ses limitations. Dans la majeure partie des cas l'analyse de stabilité linéaire autour de l'écoulement de base est capable de prédire la fréquence du système non linéaire seulement proche du seuil de la bifurcation. D'un autre côté la linéarisation autour de l'écoulement moyen n'est pas prédictive puisque nous avons besoin des résultats d'une expérience ou d'une DNS pour calculer l'écoulement moyen. De plus, l'analyse linéaire ne décrit pas le processus de saturation de l'amplitude. Un modèle auto-consistant (SCM) basé sur la propriété RZIF a été proposé par Mantič-Lugo et al. [7] pour décrire le processus de saturation en amplitude. Ce modèle est décrit dans la section suivante. 

Modèle auto-consistant

Mantič-Lugo et al. [7] ont développé un modèle auto-consistant pour décrire le processus de saturation en amplitude sans intégration temporelle. Ce modèle est un système couplé contenant l'équation gouvernant l'écoulement moyen et les équations de Navier-Stokes linéarisé. Mantič-Lugo et al. [7] supposent que pour les écoulements supercritiques satisfaisant la propriété RZIF, le mode principal est suffisant pour la distorsion de l'écoulement moyen. Par conséquent, le modèle auto-consistant est écrit comme

N (U) = -A f ((û -1 • ∇)û 1 ) ((û -1 • ∇)û 1 ) 2 (2.3a) (σ + iω)û 1 = L U û1 (2.3b) avec û-1 = û * 1 et L U est l'opérateur linéaire autour de U. Le paramètre A f indique l'amplitude du terme de forçage ((û -1 • ∇)û 1 )
. A f est un paramètre externe, car l'équation linéaire (2.3) ne permet pas de déterminer l'amplitude du mode. Le terme

((û -1 • ∇)û 1 ) est normalisé par ((û -1 • ∇)û 1 )
2 pour assurer la convergence du système d'équations (2.3) comme décrit par Mantič-Lugo et al. [8]. Ce système est résolu par Mantič-Lugo et al. [8] pour un A f donnée, par premièrement la résolution de l'équation linéaire (2.3b) avec l'écoulement de base comme condition initiale. Nous obtenons la solution σ, ω et le mode propre principale û1 . Ensuite, le terme de forçage ((û -1 • ∇)û 1 )/ ((û -1 • ∇)û 1 ) 2 est calculé avec û1 et un nouvel écoulement moyen est calculé via l'équation (2.3a) par une méthode de Newton. Ce nouvel écoulement moyen U est substitué dans (2.3b) conduisant à une nouvelle solution pour σ, ω et û1 . Tant que le taux de croissance est plus grand que zéro, σ > 0, le processus est continué en augmentant l'amplitude A f jusqu'à convergence vers la solution marginalement stable σ = 0, ω, û1 et U.

Section 2.3. Plan de la thèse 2.3 Plan de la thèse L'objectif de ce présent travail est de caractériser plusieurs écoulements ayant une bifurcation de Hopf supercritique en utilisant les procédures décrites précédemment. Plus précisément, nous présentons dans ce manuscrit trois différentes configurations: l'écoulement dans une cavité ouverte entrainée par cisaillement, l'écoulement de Taylor-Couette et finalement la convection thermosolutal.

Cavité carrée ouverte et entrainée par cisaillement L'écoulement dans une cavité carrée ouverte et entrainée par cisaillement a été largement utilisé comme cas de validation pour les développements numériques et théoriques. Malgré le nombre important d'études basées sur cette configuration, aucune description détaillée des premières bifurcations n'a été donnée. Cette étude concerne une plage du nombre de Re où deux cycles limites coexistent et sont séparés par un état quasi périodique. Le premier objectif de cette étude est de décrire en détail ce scénario de bifurcations via des simulations non linéaires directes, l'analyse de stabilité linéaire et l'analyse de Floquet. Le second objectif concerne la prédiction de la fréquence non linéaire par l'analyse de stabilité linéaire. L'écoulement dans une cavité ouverte satisfait partiellement la propriété RZIF. En effet, l'analyse de stabilité linéaire autour de l'écoulement moyen permet d'obtenir une fréquence qui est égale à la fréquence non linéaire mais l'écoulement moyen n'est pas marginalement stable. De plus, dans cette configuration, même l'analyse de stabilité linéaire autour de l'écoulement de base permet de prédire relativement bien la fréquence non linéaire. Ce cas est un léger contre exemple pour la propriété RZIF, la première étant les ondes stationnaires dans la convection thermosolutale de Turton et al. [17].

Écoulment de Taylor-Couette

La deuxième partie est dédiée à l'étude de la propriété RZIF dans l'écoulement de Taylor-Couette. La convection thermosolutale mentionnée précédemment est pilotée par une différence de température et de concentration. Lorsque ces différences ont des effets opposés, une bifurcation supercritique se produit. Dans ce cas, la bifurcation de Hopf conduit à deux solutions coexistantes : les ondes progressives et les ondes stationnaires avec au plus une solution stable comme cela a été prouvé par Knobloch [6]. Turton et al. [17] ont montré que pour les ondes stationnaires, la propriété RZIF n'est pas satisfaite: la fréquence obtenue par la linéarisation autour de l'écoulement moyen est différente de la fréquence non linéaire et le taux de croissance est loin de zéro. Ceci est le seul exemple connu pour lequel la propriété RZIF est pleinement non satisfaite. Dans l'écoulement de Taylor-Couette contrarotatif, il existe un intervalle pour le nombre de Rayleigh pour lequel la bifurcation de Hopf conduit à deux solutions, les spirales montantes et descendantes dans la direction axiale et les rubans. Les rubans sont une superposition de ces deux types de spirales. Les spirales sont des ondes progressives et les rubans sont vus comme des ondes stationnaires. Le premier objectif de cette étude est d'investiguer la validité de la propriété RZIF sur cette paire d'ondes stationnaires et progressives. Nous avons aussi découvert que la branche des rubans est suivie successivement par deux types de cycles hétéroclines, connectant deux pairs de tourbillons axisymétrique. La première orbite hétérocline est non-axisymétrique, avec des excursions ressemblant aux rubans, alors que la seconde a des excursions axisymétriques. L'analyse de ces orbites hétéroclines est le second objectif de cette étude.

Convection thermosolutal

La troisième partie est dédiée à une meilleure compréhension du modèle auto-consistant de Mantič-Lugo et al. [7]. Ce modèle est supposé être valide pour toutes les configurations où la propriété RZIF est vérifiée. Nous avons testé le SCM sur les ondes progressives de la convection thermosolutal pour lesquelles la propriété RZIF est satisfaite (Turton et al. [17]). Nous avons montré que pour cette solution le SCM prédit les fréquences non linéaires seulement au voisinage du seuil de bifurcation. Nous avons aussi implémenté le SCM en considérant les ordres supérieurs dans le terme des contraintes de Reynolds. Ceci a grandement amélioré la prédiction de la fréquence non linéaire, l'amplitude du mode ainsi que l'écoulement moyen. Ceci montre que lorsque RZIF est satisfaite, le SCM n'est pas nécessairement valide. Le SCM a été résolu au moyen d'une méthode de Newton complète. Cette méthode nous a permis d'éviter les difficultés de convergence rencontrées avec l'algorithme proposé par Mantič-Lugo et al. [8].

Chapter 3

Bifurcation analysis and frequency matching in shear-driven cavity flow

Introduction

We consider the incompressible shear-driven flow in a cavity, also known as open cavity flow. This is a geometrically induced separated boundary layer flow which has a number of applications in aeronautics [START_REF] Yu | Measurements of sound radiation from cavities at subsonic speeds[END_REF] and in industry, where it can serve as a mixing device [START_REF] Chien | Laminar mixing and chaotic mixing in several cavity flows[END_REF]). The first two-dimensional instability of the flow is primarily localized along the shear layer delimiting the outer boundary layer and the inner cavity (Sipp & Lebedev 2007;[START_REF] Sipp | Dynamics and control of global instabilities in open-flows: a linearized approach[END_REF]. This instability relies essentially on two mechanisms. First, the convectively unstable nature of the shear layer causes perturbations to grow as they travel downstream. Once they impinge on the downstream corner of the cavity, the inner-cavity recirculating flow and the instantaneous pressure feedback provide the mechanisms by which these perturbations re-excite the upstream portion of the shear layer. At su ciently high Reynolds numbers, the coupling of these mechanisms gives rise to a linearly unstable feedback loop. A similar unstable loop exists for compressible shear-driven cavity flows in which the instantaneous pressure feedback is replaced by upstream-propagating acoustic waves [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF]; Rockwell & Naudascher A comprehensive study of the two-dimensional incompressible shear-driven flow in an open square cavity is carried out. Two successive bifurcations lead to two limit cycles with different frequencies and different numbers of structures which propagate along the top of the cavity and circulate in its interior. A branch of quasiperiodic states produced by secondary Hopf bifurcations transfers the stability from one limit cycle to the other. A full analysis of this scenario is obtained by means of nonlinear simulations, linear stability analysis, and Floquet analysis. We characterize the temporal behavior of the limit cycles and quasiperiodic state via Fourier transforms and their spatial behavior via the Hilbert transform. We address the relevance of linearization about the mean flow. Although here the nonlinear frequencies are not very far from those obtained by linearization about the base flow, the difference is substantially reduced when eigenvalues are obtained instead from linearization about the mean and in addition, the corresponding growth rate is small, a combination of properties called RZIF. Moreover growth rates obtained by linearization about the mean of one limit cycle are correlated with relative stability to the other limit cycle. Finally, we show that the frequencies of the successive modes are separated by a constant increment.

Introduction

We consider the incompressible shear-driven flow in a cavity, also known as open cavity flow. The first two-dimensional instability of the flow is localized along the shear layer delimiting the outer boundary layer above the cavity and also along the downstream side of the cavity (Sipp & Lebedev [54], Sipp et al. [START_REF] Sipp | Dynamics and control of global instabilities in open-flows: a linearized approach[END_REF]). This instability relies essentially on two mechanisms. First, the convectively unstable nature of the shear layer causes perturbations to grow as they travel downstream, essentially due to the Kelvin-Helmholtz mechanism. Once they impinge on the downstream corner of the cavity, the inner-cavity recirculating flow and the instantaneous pressure feedback provide the mechanisms by which these perturbations re-excite the upstream portion of the shear layer. At sufficiently high Reynolds numbers, the coupling of these mechanisms gives rise to a linearly unstable feedback loop. A similar unstable loop exists for compressible shear-driven cavity flows in which the instantaneous pressure feedback is replaced by upstream-propagating acoustic waves (Gloerfelt [22], Rockwell & Naudascher [START_REF] Rockwell | Self-sustaining oscillations of flow past cavities[END_REF], Rossiter [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF], Rowley et al. [START_REF] Rowley | On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities[END_REF], Yamouni et al. [START_REF] Yamouni | Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis[END_REF]). The shear-driven open cavity flow has a number of applications in aeronautics (Yu [START_REF] Yu | Measurements of sound radiation from cavities at subsonic speeds[END_REF]) and in industry, where it can serve as a mixing device (Chien et al. [11]).

Shear-driven instabilities in a cavity are often preceded by centrifugal instabilities as the Reynolds number is increased. The two are easy to distinguish since the sheardriven instabilities lead to streamwise traveling waves while the centrifugal instabilities lead to steady oscillations which are spanwise periodic (away from rigid boundaries if these are present). These spanwise oscillations are observed in simulations (Aidun et al.

[1], Picella et al. [START_REF] Picella | Successive bifurcations in a fully three-dimensional open cavity flow[END_REF], Theofilis et al. [START_REF] Theofilis | Viscous linear stability analysis of rectangular duct and cavity flows[END_REF]) and in experiments (Douay et al. [13], Faure et al. [17,18], Shankar & Deshpande [START_REF] Shankar | Fluid mechanics in the driven cavity[END_REF]). This could make the two-dimensional (spanwiseindependent) case seem academic. However, because the spanwise oscillations are of low amplitude and are mainly located inside the cavity, they have a minimal effect on the subsequent development of the flow for this range of Reynolds numbers. As the Reynolds number is further increased, shear-driven instabilities occur, leading to states resembling streamwise traveling waves (Basley et al. [7]). The resulting streamwise wavelengths and temporal frequencies are very similar to those observed in the spanwise-independent case, but the critical Reynolds numbers are different (Basley et al. [6,7]). Experiments(Basley et al. [6,7], Rockwell [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF], Rockwell & Naudascher [START_REF] Rockwell | Self-sustaining oscillations of flow past cavities[END_REF], Rossiter [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF]) have shown that over a large range of aspect ratios, the frequency of the dominant mode is approximated quite well by a spanwise-independent approach. Rockwell [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF], Rockwell & Naudascher [START_REF] Rockwell | Self-sustaining oscillations of flow past cavities[END_REF] showed that in a square cavity with a short spanwise extent, the mode produced has a spatial wavelength which is approximately half the cavity length and a temporal period which is approximately one, in units of the cavity length and imposed velocity. This is consistent with our numerical results.

The two-dimensional shear-driven cavity has served multiple theoretical modeling purposes over the past decade, such as in optimal control, reduced-order modeling (Barbagallo et al. [3], Loiseau & Brunton [START_REF] Loiseau | Constrained sparse Galerkin regression[END_REF]), and dynamic mode decomposition (Schmid [52]). Despite its use as a representative test case for complex nonlinear dynamics in fluid mechanics, an extensive analysis of the first few bifurcations experienced by the shear-driven cavity flow has never been carried out. The primary aim of the present work is to fill this gap. We have been able to determine the first primary and secondary bifurcations experienced by the flow and to draw the associated bifurcation diagram. The combined use of nonlinear direct numerical simulation, linear stability analysis and Floquet analysis then enabled us to investigate the stability of the various solution branches. More specifically, we have studied two limit cycles whose relative stability is mediated by an unstable quasiperiodic state. Our study is thus complementary to those of Sipp & Lebedev [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF] and Meliga [START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF],

each of which treats one of the two limit cycles covered in this study. Another relevant numerical study is that of Tiesinga et al. [START_REF] Tiesinga | Bifurcation analysis of incompressible flow in a driven cavity by the newton-picard method[END_REF], who conducted a bifurcation analysis of the two-dimensional lid-driven cavity which, in the parameter range of our study, behaves very similarly to the open cavity. Oscillations along the top of the cavity are, of course, ruled out, but the oscillations that travel down the downstream side of the cavity are quite similar in appearance and in behavior. As in our case, two limit cycles and an intermediate quasiperiodic state are found. Because of the viscous damping by the lid, the critical Reynolds numbers are about twice those for the open cavity (Fortin et al. [20], Poliashenko & Aidun [START_REF] Poliashenko | A direct method for computation of simple bifurcations[END_REF]).

A second theme of our investigation, also previously addressed by Sipp & Lebedev [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF] and Meliga [START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF], is the relevance of linearization about the mean flow. For a fully developed limit cycle, nonlinear interactions contribute to the mean flow, deviation from the base flow called the distortion. In this way, the mean flow inherits information from the nonlinearities (Maurel et al. [36], Zielinska et al. [START_REF] Zielinska | Strongly nonlinear effect in unstable wakes[END_REF]). From this comes the idea to linearize about the mean flow, despite the fact that the mean flow is not a solution of the stationary Navier-Stokes equations. Although the empirical use of mean flows to study nonlinear dynamics is long-standing (Malkus [32], Morris [START_REF] Morris | The spatial viscous instability of axisymmetric jets[END_REF], Stuart [START_REF] Stuart | On the non-linear mechanics of hydrodynamic stability[END_REF]), quantitative computations and comparisons are more recent, and primarily for the wake of a circular cylinder (Barkley [4], Hammond & Redekopp [24], Mittal [START_REF] Mittal | Global linear stability analysis of time-averaged flows[END_REF], Pier [START_REF] Pier | On the frequency selection of finite-amplitude vortex shedding in the cylinder wake[END_REF]). When successful, this procedure leads to an eigenvalue whose imaginary part reproduces very well the frequency of the periodic orbit, even quite far from its threshold. Moreover, the real part of this eigenvalue is close to zero (Barkley [4]), which would be called marginal stability if the linearization were about the base flow. This property was named RZIF (a mnemonic for Real Zero Imaginary Frequency) by Turton et al. [START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF]. An extension of RZIF, called SCM (for Self-Consistent Model) has been proposed by Mantič-Lugo et al. [START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF][START_REF] Mantič-Lugo | A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake[END_REF], in which the mean flow is computed, not as an average of the full time-dependent flow, but precisely so that the RZIF property is satisfied, i.e. such that the mean flow is marginally stable. Neither RZIF nor SCM are always valid; counterexamples have been found for regimes in thermosolutal convection by Turton et al. [START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF] and Bengana & Tuckerman [9]. Other flows for which these properties or models have been tested are the compressible flow in the wake of a cylinder (Fani et al. [16]) and counter-rotating Taylor-Couette flow (Bengana & Tuckerman [10]). Linearization about the mean flow has been applied to understanding the temporal spectra of turbulent flows (Beneddine et al. [8], Hwang & Cossu [25], McKeon & Sharma [START_REF] Mckeon | A critical-layer framework for turbulent pipe flow[END_REF], Symon et al. [START_REF] Symon | Non-normality and classification of amplification mechanisms in stability and resolvent analysis[END_REF]).

The paper is organized as follows: §3.2 introduces the configuration of the shear-driven cavity flow and the governing equations and the tools for the various analyses we have performed: linearization about the base and the mean flows, Floquet analysis, the temporal Fourier transform and the spatial Hilbert transform. Our results concerning the bifurcation scenario for this flow are presented in §3.3, more specifically two limit cycles produced by primary Hopf bifurcations and whose relative stability is mediated by an unstable quasiperiodic state produced by secondary bifurcations. In §3.4, we discuss linearization about the mean flow for both limit cycles, as well as the formula of Rossiter [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF]. We summarize our conclusions in §3.5. 

Governing equations and numerical methods

Problem definition

The configuration considered is the two-dimensional incompressible viscous shear-driven flow of a Newtonian fluid over an open cavity with equal length and depth shown in figure 3.1. This configuration is the same as that considered by Sipp & Lebedev [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF] and Barbagallo et al. [3], or more recently by Meliga [START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF]. We use the unperturbed upstream velocity U ∞ , the cavity length L and the resulting advective time L/U ∞ to nondimensionalize the variables. The dynamics of the flow are governed by the incompressible Navier-Stokes equations

∂U ∂t = -∇P + 1 Re ∇ 2 U -∇ • (U ⊗ U) ∇ • U = 0, (3.1) 
where U(x, t) = (U, V ) T and P are the velocity and pressure fields. The Reynolds number Re is defined as

Re = U ∞ L ν ,
where ν is the kinematic viscosity of the fluid. and will range between Re = 4000 and Re = 5000. The boundary conditions, illustrated in figure 3.1, are

U = e x on BC inlet U = 0 on BC no-slip ∂ y U = V = 0 on BC free-slip ∂ x U = 0 on BC outlet (3.2)
The boundary conditions at the inlet and along the wall are crucial. The flow is given a uniform profile at the inlet and develops a boundary layer structure as it advances downstream. The instability occurs where the boundary layer reaches the upstream corner of the cavity and it is the thickness of the boundary layer at this point that controls the details of the transition. When free-slip conditions are imposed on the wall close to the inlet, then a boundary layer of an appropriate thickness develops over a shorter distance than would be the case if no-slip conditions were used over the entire wall. A shorter domain can be used, making the calculation more economical.

The Navier-Stokes equations are solved using the incompressible flow solver Nek5000 (Fischer et al. [19]) which is based on the spectral element method. A P N -P N -2 formulation has been used: the velocity field is discretized using N th order Lagrange interpolants defined on the Gauss-Legendre-Lobatto quadrature points as basis and trial functions while the pressure field is discretized using Lagrange interpolants of degree N -2 defined on the Gauss-Legendre quadrature points. Finally, time integration is performed using the BDF3/EXT3 scheme: integration of the viscous term relies on backward differentiation while the convective terms are integrated explicitly using a third-order accurate extrapolation. In practice, the polynomial degree was set to N = 6 while the computational domain was discretized using 4000 spectral elements. The resulting mesh refinement is thus similar to that used in Sipp & Lebedev [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF].

Base flow and linearization

A base flow U b (x) is a solution of the stationary Navier-Stokes equations

0 = -∇P b + 1 Re ∇ 2 U b -∇ • (U b ⊗ U b ) 0 = ∇ • U b . (3.3)
with the boundary conditions again given by (3.2). Various techniques can be used to compute the base flow U b (x). Because of its simplicity, the selective frequency damping (SFD) technique initially proposed by Åkervik et al. [2] has been used; see also Cunha et al. [12], Jordi et al. [27,28].

Once the equilibrium U b (x) has been computed, we determine its linear stability. To do so, we consider an infinitesimal perturbation u(x, t) to the base flow U b , whose dynamics are governed by the linearized Navier-Stokes equations

∂u ∂t = -∇p + 1 Re ∇ 2 u -∇ • (u ⊗ U b + U b ⊗ u) ∇ • u = 0. (3.4)
The boundary conditions are the homogeneous version of (3.2), i.e. we now prescribe a zero velocity profile at the inlet.

u = 0 on BC inlet u = 0 on BC no-slip ∂ y u = v = 0 on BC free-slip ∂ x u = 0 on BC outlet (3.5)
Solutions to (3.4) are of the form u(x, t) = û(x)e (σ+iω)t + c.c., p(x, t) = p(x)e (σ+iω)t + c.c., we obtain the eigenvalue problem

(σ + iω) û = L U b û ∇ • û = 0, (3.6) 
where L U b is the Jacobian of the Navier-Stokes equations linearized around U b :

L U b û ≡ -∇p + 1 Re ∇ 2 û -∇ • (U b ⊗ û + û ⊗ U b ) (3.7)
The stability of the base flow is determined by the sign of the real part σ of the leading eigenvalue, which is the growth rate of the perturbation. If σ crosses zero for an eigenvalue with non-zero imaginary part ω, then a Hopf bifurcation leads to a limit cycle whose frequency at onset is ω. In our case, the base flow undergoes a first Hopf bifurcation at Re 2 = 4126, leading to a limit cycle LC 2 and a second Hopf bifurcation at Re 3 = 4348 gives rise to LC 3 .

We computed the leading eigenvalues and eigenvectors using a time-stepper approach; see, e.g., Edwards et al. [15]. Our stability calculation typically used a Krylov subspace of dimension K = 256 and a sampling period ∆T = 10 -3 non-dimensional time units.

Eigenvalues were considered to be converged if the residual obtained from the Arnoldi decomposition was below 10 -6 .

Mean flow and linearization

At the threshold of a Hopf bifurcation, linearization about the base flow leads to an eigenvalue whose real part is zero and whose imaginary part is the frequency of the limit cycle which is produced. As the Reynolds number is increased and the limit cycle develops nonlinearly and deviates from the base flow, eigenvalues obtained by linearization about the base flow no longer correspond to the properties of the limit cycle. However, linearization about the mean flow often leads to an eigenvalue whose imaginary part is closer to the nonlinear frequency.

We consider a Reynolds decomposition of the instantaneous flow field, i.e.

U(x, t) = U(x) + u(x, t)
where U(x) is the mean flow and u(x, t) is the zero-mean fluctuation. Introducing this decomposition into the Navier-Stokes equations and averaging shows that U is governed by the Reynolds Averaged Navier-Stokes (RANS) equations

0 = -∇P + 1 Re ∇ 2 U -∇ • U ⊗ U -∇ • (u ⊗ u) 0 = ∇ • U (3.8)
with boundary conditions (3.2). The presence of the Reynolds stress tensor u ⊗ u of the fluctuation means that these equations are not closed. We compute the mean flow U(x) of a period-T limit cycle by carrying out a full nonlinear simulation via (3.1) and time-averaging:

U(x) = 1 T T 0 U(x, t) dt.
The equations governing the dynamics of the fluctuation u(x, t) are obtained by substituting U + u for U into (3.1) and subtracting (3.8), leading to

∂u ∂t = -∇p + 1 Re ∇ 2 u -∇ • U ⊗ u + u ⊗ U -∇ • (u ⊗ u -u ⊗ u) f 0 = ∇ • u (3.9)
with homogeneous boundary conditions (3.5). The equations differ from the linearized Navier-Stokes equations by the presence of f . The term ∇ • (u ⊗ u), is the usual quadratic interaction term neglected in base flow linear stability analyses. The term ∇ • (u ⊗ u) is the divergence of the Reynolds stress tensor of the fluctuation.

Studies carrying out mean flow stability analyses discard f , leading to the linearized equations

∂u ∂t = -∇p + 1 Re ∇ 2 u -∇ • u ⊗ U + U ⊗ u ∇ • u = 0. (3.10) 
Using once again a normal mode ansatz, this set of equations is reduced to the eigenvalue problem

(σ + iω) û = L U û ∇ • û = 0, (3.11) 
where L U is now the Navier-Stokes operator linearized around the mean flow, with U substituted for U b in (3.7).

Although the mean flow is not an equilibrium solution of the Navier-Stokes solution, this approach has proved unexpectedly successful in characterizing the frequencies of the full nonlinear solutions of the Navier-Stokes equations. (For a counter-example, however, see Turton et al. [START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF].) Various theoretical overlapping justifications have been proposed for dropping or modeling f in (3.9), such as:

[37], Symon et al. [START_REF] Symon | Non-normality and classification of amplification mechanisms in stability and resolvent analysis[END_REF]).

Floquet analysis

Our study of the shear-driven cavity focuses on two limit cycles, denoted by LC 2 and LC 3 , created by primary Hopf bifurcations and destabilized via secondary bifurcations. Floquet analysis will be used to characterize this destabilization. The dynamics of an infinitesimal perturbation u(x, t) evolving in the vicinity of a T -periodic limit cycle U(x, t) are governed by the linearized Navier-Stokes equations

∂u ∂t = L U(t) u ∇ • u = 0 (3.12)
with homogeneous boundary conditions (3.5). This set of equations is non-autonomous, as the operator L U(t) is T -periodic. Solutions to Eq. (3.12) are of the Floquet form

u(x, t) = û(x, t)e (σ F +iω F )t + c.c.
where û(x, t) are the T -periodic Floquet modes and (σ F + iω F ) the Floquet exponents.

The stability of U(t) is determined by the Floquet multipliers

µ = e (σ F +iω F )T
If the moduli of the Floquet multipliers are smaller than one, perturbations will decay exponentially fast and the orbit is stable. On the other hand, if at least one of the Floquet multipliers has a modulus greater than one, then that perturbation will grow exponentially and the orbit is unstable; see, e.g. Barkley & Henderson [5] and Gioria et al. [21]. In our study the Floquet exponents are complex and the imaginary part ω F of the Floquet exponent is the argument (angle) of the Floquet multiplier. The presence of an imaginary part leads to quasiperiodic behavior. More details and results are shown in §3.3.4.

Edge state technique for computing the unstable quasiperiodic state

As will be shown in §3.3, there is a range of Reynolds numbers over which limit cycles LC 2 and LC 3 co-exist. In phase space, on the boundary between the basins of attraction of these limit cycles, is an unstable quasi-periodic state QP . (More specifically, QP is an edge state, meaning that within the boundary, trajectories are attracted to it.) In order to compute QP , we use the same technique as in Itano & Toh [26] or Duguet et al. [14] for the laminar-turbulent edge state. In such cases, whether a trajectory evolves towards a turbulent or laminar state depends on the initial condition. Some initial conditions evolve directly to turbulence, others decay directly to the laminar state. By appropriately weighting turbulent and laminar solutions, an initial condition can be constructed so that the resulting trajectory converges to and remains a long time on the edge state before diverging towards one of these two attractors.

In our problem, a quasi-periodic state separates the two stable limit cycles LC 2 and LC 3 . Therefore we construct a weighted sum of the two, seeking an initial condition U(x, 0) that will evolve after some time to QP and then remain as long as possible before eventually converging to either limit cycle. Using the same bisection technique as in Lopez et al. [START_REF] Lopez | Transition to complex dynamics in the cubic lid-driven cavity[END_REF], this initial condition is given by

U(x, t) = αU LC 2 + (1 -α)U LC 3 . (3.13) 
For α = 1, the initial condition is LC 2 and for α = 0, it is LC 3 . For each Reynolds number considered, we successively delimit an interval of α by bisection to capture the quasiperiodic state. As an illustration, we plot in figure 3.2 the time evolution of streamwise velocity recorded by a probe located at (x 1 , y 1 ) = (1.2, 0.2) for α = 0.47562027 and 0.47562256. A slight difference in α will bring the system after a long transient regime to either LC 2 or LC 3 .

Standard deviation

To construct the bifurcation diagram, we seek an appropriate measure of the oscillation amplitude as a function of Re. Time series from limit cycles LC 2 and LC 3 are shown in figures 3.2 and 3.3(c). Their amplitudes are easily obtained by measuring the maxima in a time series or the fundamental peak in the temporal Fourier spectrum. In contrast to these, which have maxima of constant amplitudes, the quasiperiodic state existing in the overlap region has maxima of varying heights as shown in figure 3.2 and in 3.3(b). To extract a single amplitude in their study of the cubic lid-driven cavity, Lopez et al. [START_REF] Lopez | Transition to complex dynamics in the cubic lid-driven cavity[END_REF] used the standard deviation from the mean flow, defined as where U (x 1 , y 1 , t n ) the streamwise velocity measured at (x 1 , y 1 ) = (1.2, 0.2) and at each instant t n , N is the number of measurements in the time series, and U (x 1 , y 1 ) is the temporal mean. We used the edge state technique described in §(3.2.5) to compute a time series in which the QP is maintained for a long time. In figure 3.3(d), we show the standard deviation of the time series plotted in figure 3.3(a). The standard deviation is computed over all times of a sliding window containing fifty peaks. Once the deviation is computed, the window is shifted by ten peaks and we compute the deviation again over fifty peaks. 

ξ(U ) = 1 N N n=0 U (x 1 , y 1 , t n ) -U (x 1 , y 1 )

Hilbert transform

We use the Hilbert transform to obtain spatial characteristics of the flow. The Hilbert transform is a useful means of extracting the local amplitude and phase from a signal. A complex analytic signal f a (x) is constructed from real data f (x). In contrast to a real signal that has negative and positive frequencies, f a is complex and has only positive frequencies. This signal is obtained by

f a (x) = f (x) + iH(f (x)) (3.15)
The imaginary part H(f (x)) is its Hilbert transform, defined by phase shifting the positive and negative frequencies of the original real signal by -π/2 and π/2 respectively. More details about the Hilbert transform can be found in Smith [START_REF] Smith | Mathematics of the Discrete Fourier Transform[END_REF]. Equation (3.15) is written in polar form

f a (x) = A(x)e iΦ(x) (3.16)
Thus we can extract the envelope (amplitude A(x)) and the phase Φ(x) from the analytic signal at each location, which is the main interest in using the Hilbert transform. We present the results in detail in §3.3.3.

Bifurcation scenario

Overview

The flow over a shear-driven cavity at low Reynolds number consists of a free laminar shear layer and one large recirculation within the cavity. As we increase the Reynolds number, the mixing layer is fed by the shear stress and its thickness develops over the cavity. As widely presented in several studies (Rockwell & Naudascher [49]), it is common to observe self-sustained oscillations in such configurations, in which the flow impacts on a wall. In figure 3.4(a) we show the bifurcation diagram over the range of Reynolds number Re ∈ [4000, 5000]. We represent the standard deviation from the mean of the streamwise velocity at a point as described in §3.2.6. The standard deviation is computed over all times t n of the time series corresponding to LC 2 , LC 3 or QP . The line ξ(U ) = 0 represents the solution of the stationary Navier-Stokes equations (base flow). We plot the stable and unstable states with bold and dashed curves respectively.

The base flow is stable for Re < Re 2 where Re 2 ≈ 4126 is the critical Reynolds number of the first Hopf bifurcation. This threshold is obtained by quadratic interpolation of amplitudes and differs by only 0.34% from that found by Sipp & Lebedev [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF]. Above this threshold, the base solution exists but is unstable. We observe a second Hopf bifurcation at Re 3 ≈ 4348, also from quadratic interpolation of amplitudes, which agrees with the threshold measured by Meliga [START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF], differing only by 0.005%. These successive Hopf bifurcations lead after saturation by nonlinear interactions to two limit cycles which we name LC 2 and LC 3 because they display two or three maxima of the vertical velocity fluctuations, as will be shown in the next section. The stable base flow (i) loses its stability through a primary Hopf bifurcation (ii) at Re 2 producing the limit cycle LC 2 . (iii) Another primary Hopf bifurcation at Re 3 produces the limit cycle LC 3 . (iv) A secondary subcritical Hopf bifurcation from LC 3 at Re 3 produces the quasiperiodic state QP , which moves (v) in phase space towards LC 2 until it undergoes another secondary subcritical Hopf bifurcation (vi) at Re 2 which destroys QP and destabilizes LC 2 . Above Re 3 , LC 3 is stable at least until Re = 5000. Another Hopf bifurcation and interesting dynamics occur above Re = 5000 but these will not be discussed in this paper.

This bifurcation diagram is very similar to that seen in the related configuration of a On the x-axis, we show the Reynolds number Re and on the y-axis the standard deviation from the mean of the streamwise velocity at one point. The bold dots on the curves and the thick ticks on the x-axis show the critical Reynolds numbers. The integers show the number of unstable directions (counting a complex conjugate pair as a single direction). We represent stable states by bold curves and unstable ones by dashed curves. The line ξ(U ) = 0 indicates the stationary base flow. The first Hopf bifurcation occurs at Re 2 ≈ 4126 and the second at Re 3 ≈ 4348. These two thresholds have been calculated by a quadratic interpolation from the amplitudes. The Hopf bifurcations give rise to limit cycles LC 2 and LC 3 . LC 2 is stable from its threshold until Re 2 ≈ 4600 where it loses stability to LC 3 . LC 3 is unstable from Re 3 to Re 3 ≈ 4410 and above this Reynolds number it becomes stable. Between LC 2 and LC 3 in the overlap region Re ∈ [4400, 4600] there exists a quasiperiodic state QP , which has been computed by using αLC 2 + (1 -α)LC 3 as an initial condition for the full nonlinear simulation where α = α(Re). (b) From left to right, the schematic phase portraits corresponding to the bifurcation diagram. The ordinate and abcissa can be considered to be projections onto the eigenmodes leading to LC 2 and LC 3 , respectively. The black dots and hollow circles show the stable and unstable states. lid-driven cavity Tiesinga et al. [START_REF] Tiesinga | Bifurcation analysis of incompressible flow in a driven cavity by the newton-picard method[END_REF]. These authors observed two successive primary Hopf bifurcations leading to branches with different spatial characteristics. Stability is transferred from the first branch to the second via a secondary branch, which is itself created and destroyed via subcritical secondary Hopf bifurcations. The Reynolds numbers they report for the lid-driven cavity are Re 2 ≈ 8375, Re 3 ≈ 8600, Re 3 = 8800, Re 2 = 9150, quite close to twice those we find for the shear-driven cavity. Indeed, this is a classic scenario which occurs in many hydrodynamic configurations; see Kuznetsov [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF], Marques et al. [START_REF] Marques | Mode interactions in an enclosed swirling flow: a double hopf bifurcation between azimuthal wavenumbers 0 and 2[END_REF], Meliga et al. [START_REF] Meliga | A weakly nonlinear mechanism for mode selection in swirling jets[END_REF]. Representing the dynamics by two complex amplitudes r 2 e iφ 2 , r 3 e iφ 3 , the dynamics are governed by the normal form:

(a) (b) (i) (ii) (iii) (iv) (v) (vi)
ṙ2 = r 2 (µ 2 -a 22 r 2 2 -a 23 r 2 3 ) φ2 = ω 2 ṙ3 = r 3 (µ 3 -a 32 r 2 2 -a 33 r 2 3 ) φ3 = ω 3 (3.17)
where coefficients µ j , a ij depend on Re and a 22 and a 33 are positive. The diagrams of figure 3.4(b) are projections of the dynamics onto the (r 2 , r 3 ) plane.

The base flow is shown in figure 3.5. In figures 3.7 and 3.8 we show the instantaneous vertical velocity fluctuations for LC 2 and LC 3 over one period. We observe four structures, i.e. two maxima and two minima of the vertical velocity fluctuations, in LC 2 and six structures, i.e. three maxima and three minima of the vertical velocity fluctuations, in LC 3 . Similar visualisations can be seen in calculations by Barbagallo et al. [3] and experiments by Basley et al. [6,7].

The behavior resembles that of traveling waves. The structures, produced by a feedback mechanism, progress steadily to the right but the overall amplitude is not uniform. At the downstream corner, the structures split, as reported by Rockwell & Knisely [START_REF] Rockwell | Vortex-edge interaction: Mechanisms for generating low frequency components[END_REF]: one part follows the fluid downstream, while the other is entrained by the cavity recirculation and returns to feed the flow at the upstream corner, sustaining the vortex generation. The mechanism producing the oscillations is the same for both limit cycles LC 2 and LC 3 . The temporal frequency is near 7 for LC 2 and near 10 for LC 3 , as in Meliga [START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF], Sipp & Lebedev [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF]. These modes are selected by the cavity length and the mean velocity of the mixing layer as described by Rossiter [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] and as will be discussed in §3.4.4.

Linearization about the base flow

In figure 3.9 we present the results of linear stability analysis about the base flow. We plot the growth rates σ in figure 3.9(a,c) and the frequencies ω in figure 3.9(b,d). As previously stated, two successive Hopf bifurcations correspond to two different modes. We plot in (a,b) the eigenvalue leading to LC 2 and (c,d) that corresponding to LC 3 . The zero crossing of the growth rate marks the Hopf bifurcation at which the base flow becomes unstable to that eigenmode. As presented in the bifurcation diagram in figure 3.4, the base flow acquires a first unstable direction at around Re 2 ≈ 4126 and a second unstable direction at Re 3 ≈ 4348. Figure 3.9(b,d) also shows the nonlinear frequencies for the two limit cycles. These agree with the eigenfrequencies at Re 2 and Re 3 , as is necessarily the case for a supercritical bifurcation, but as the Reynolds number increases, the frequencies diverge from one another. The frequency extracted at an early stage of a nonlinear simulation initialized by a small perturbation from the base flow will be equal to that given by linear analysis, but the nonlinear interactions will cause it to evolve with time to the nonlinear frequency. The frequencies leading to LC 2 and LC 3 cross at Re = 4540 (differing by only 0.6% from the value Re = 4567 reported by Meliga [START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF]). Below this value of Re, a simulation initialized with a small perturbation from the base flow will converge to LC 2 , while above, it will converge to LC 3 . In contrast, transition from LC 2 to LC 3 will take place when Re is increased above Re 2 ≈ 4600 and from LC 3 to LC 2 when Re is decreased below Re 3 ≈ 4410.

Figure 3.10 shows a portion of the eigenvalue spectra for Re = 4200, 4500, and 5000. We show in blue circles the eigenvalues that satisfied the convergence tolerance of 10 -6 and in red stars those that did not converge. The first eigenvalue has crossed the σ = 0 axis by Re = 4200 and the second eigenvalue has crossed by Re = 4500. At this Re there are two unstable eigenvalues with almost the same growth rate. At Re = 5000 these two unstable eigenvalues have further increased and a third stable mode approaches the imaginary axis, becoming unstable at Re ≈ 6000 (not shown). We observe two vertical velocity fluctuation maxima on LC 2 and three on LC 3 , as was mentioned in the discussion of figures 3.7 and 3.8.

Spatial analysis and Hilbert transform

We have shown in the previous sections that LC 2 and LC 3 have different numbers of structures across the cavity. Figure 3.12(a,b) shows the vorticity fluctuations Ω slightly above the cavity like those shown in figure 3.6(d ), at y = 0.05 and for x ∈ [0, 2.5] for these limit cycles. Curves from light to dark show the vorticity fluctuations at various phases of the temporal period. These two figures show qualitatively the behavior of a traveling wave, but quantitatively the wavelength and amplitude are not constant. For this reason, at a fixed time, i.e for each curve shown in figure 3.12(a,b) we compute an average wavelength λ. Averaging the wavelength over only x ∈ [0, 1] is not possible because this range contains too few wavelengths. Figure 3.12(c) shows λ as the dashed and solid curves for LC 3 and LC 2 . The wavelengths vary little over time and have temporal averages λ 2 = 0.56 and λ 3 = 0.39.

We use the Hilbert transform presented in §3.2.7 to analyse in detail the final curve 
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Quasiperiodic state and Floquet analysis

As presented in the previous sections, there is a range of Re over which two limit cycles coexist, separated by a quasiperiodic state. We mention here that this state is probably periodic rather than strictly quasiperiodic, because of the well-known nonlinear phenomenon of frequency locking, but its effective period is very long and we will continue to consider it to be quasiperiodic. We have found from the nonlinear simulations that LC 2 loses stability towards LC 3 for Re > Re 2 ≈ 4600 and LC 3 gains stability for Re > Re 3 ≈ 4420. To shed light on the stability of these limit cycles, we carry out a Floquet analysis. In the Floquet framework, we decompose the velocity field as

U(x, y, t) = U LC (x, y, t) + e (σ F +iω F )t u F (x, y, t) + c.c. (3.19)
with U LC the periodic solution corresponding to the limit cycle about which the Floquet analysis is performed, u F the Floquet mode which is also periodic with period T b = 2π/ω b and σ F + iω F the Floquet exponent. We rewrite (3.19) by expressing the Floquet mode as a Fourier series, leading to 

U(x, y, t) = U LC (x, y, t) + e (σ F +iω F )t n u F,n (x, y)e inω b t + c.c. ( 3 
ℜ(µ) -1 -0.5 0 0.5 1 ℑ(µ) (a) 
-1 -0.5 0 0.5 1 We now turn to the argument of the Floquet multipliers. If the Floquet exponent is real (ω F = 0) then the Floquet multiplier is one and the bifurcating state has the same frequency as the base limit cycle. If ω F /ω b = 1/2 then the Floquet multiplier is -1, which corresponds to a subharmonic mode. In our problem the dominant Floquet multiplier is complex, and so the bifurcation is a secondary Hopf bifurcation and the solution near the threshold of QP is described by equation (3.20). The spectrum of QP near the threshold contains ω b and its multiples as well as the frequencies introduced by the secondary Hopf bifurcation, namely ±ω F ± nω b , with a dominant contribution from n = ±1. Indeed, near Re 2 , the spectrum of QP contains frequencies ω 2 and ω 2 + ω F = ω 2 (1 + θ 2π ) = 10.45 while near Re 3 , QP contains frequencies ω 3 and ω 3 -
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ℑ(µ) (d)
ω F = ω 3 (1 -θ 2π ) = 7.37
These calculations are confirmed by figures 3.14(a,c) For (a) Re = 4420 Re 3 , the Floquet analysis about LC 3 yields a frequency ω 3 -ω F (solid vertical black line) comparable to the peak at ω QP 2 For (c) Re = 4580 Re 2 , the Floquet analysis about LC 2 yields the frequency ω 2 + ω F (dashed vertical black line) which is very close to ω QP 3 .

Frequency prediction

Linearization about the mean flow

Linear stability analysis -i.e. linearizing about the base flow and solving the resulting eigenproblem -is a classic tool in hydrodynamics. Bifurcations which create new branches are determined unambiguously by linear stability analysis and, if the bifurcation is supercritical, the spatial and temporal behaviors of the new states near threshold are similar to those of the eigenvector and eigenvalue responsible for the instability. Further from the threshold, these properties evolve and may well differ substantially from those of the bifurcating eigenvector and eigenvalue. In some cases, it has been shown that linearization about the mean flow of a limit cycle can yield more accurate approximations of the nonlinear states. We have carried out a linear analysis about the temporal mean for both limit cycles LC 2 and LC 3 and compared the resulting frequencies with those obtained from linearization about the base flow and with the nonlinear frequencies of these cycles. This procedure has been carried out for LC 3 by Meliga [START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF]; here we carry out the same procedure for LC 2 and compare the two regimes.

The mean flow greatly resembles the base flow shown in figure 3.5, and therefore we plot instead their difference, the distortion Figure 3.17 and Table 3.1 compare the eigenvalues resulting from linearization about the base flow and the mean flow and those of the nonlinear simulation. Figure 3.17 plots the frequencies and growth rates over the Reynolds number range [4000, 5000] that we have studied, while Table 3.1 shows numerical data extracted from these figures for three representative Reynolds numbers, 4200, 4500 and 5000. We note that unlike for the cylinder wake (Barkley [4]), the frequencies obtained from the usual linear stability analysis are already not very far from those of the nonlinear limit cycles. Table 3.1 shows a deviation of less than 0.6% for the frequencies in LC 2 and of less than 1.4% for LC 3 over this Reynolds number range. In contrast, for the cylinder wake (Barkley [4]), the difference between the nonlinear frequencies and those obtained by linear stability analysis reaches 15% by Re = 60, a Reynolds number comparable to the distance above criticality studied here and reaches 100% by Re = 180, a frequent upper limit of such studies. This difference will be discussed further in sections §3.4.4 and §3.5.

Ω * ≡ Ω -Ω b ,
Figure 3.17(b) for LC 2 (circles) shows that the frequency obtained by linearization about the mean flow is nonetheless much closer to the nonlinear temporal frequency (stars) than that given by linear stability about the base flow (crosses). Quantitatively, table 3.1 shows the relative difference at Re = 4500 between the nonlinear frequency and the frequency obtained from the base flow to be 0.7%; this difference is reduced to 0.04% when the linearization is performed about the mean flow. Moreover, the growth rate obtained about the mean flow (circles) in figure 3.17(a) is nearly zero, as found by Barkley [4] for the cylinder wake. For LC 3 , the frequency obtained by linearizing about the mean presented in figure 3.17(d) (circles) agrees well with the nonlinear frequency (stars). The curves begin to diverge slightly for Re 4600, and although the agreement is not as good as it is for LC 2 , the frequencies are still very close. Quantitatively, table 3.1 shows the relative difference at Re = 5000 between the nonlinear frequency and the frequency obtained from the base flow to be 1.4%; this difference is reduced to 0.02% when the linearization is performed about the mean flow. Table 3.1 shows a growth rate at Re = 5000 of 0.247 for linearization about the base flow; this is again reduced by a factor of 5 to 0.053 for the linearization about the mean.

RZIF and SCM

We now present an argument for the validity of linearization about the mean flow. The derivation is closely related to the idea called harmonic balance in the aerodynamic literature (Hall et al. [23], McMullen et al. [START_REF] Mcmullen | Demonstration of nonlinear frequency domain methods[END_REF], McMullen & Jameson [START_REF] Mcmullen | The computational efficiency of non-linear frequency domain methods[END_REF]). Turton et al. [START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF] argued that the RZIF property holds exactly if the time dependence is monochromatic, meaning that higher harmonics are negligible compared to the fundamental frequency. Consider the evolution equation

∂ t U = LU + N (U, U) (3.22)
where L is linear and

N ( • , • ) is a quadratic nonlinearity. Let U = U + n =0
u n e inωt to temporal harmonics of a single limit cycle, rather than serving to distinguish between LC 2 and LC 3 .

The n = 0 (mean) component of (3.22) is

0 = LU + N (u 1 , u -1 ) + N (u -1 , u 1 ) + N (u 2 , u -2 ) + N (u -2 , u 2 ) + . . . (3.24) 
while the n = 1 component is

iωu 1 = Lu 1 + N (U, u 1 ) + N (u 1 , U) L U u 1 + N (u 2 , u -1 ) + N (u -1 , u 2 ) + N (u 3 , u -2 ) + N (u -2 , u 3 ) + . . . N 1 (3.25)
If, as is often the case, 3.18, the fundamental frequency dominates the second harmonic. These ratios are always below 10 -1 and are slightly higher for LC 2 than that for LC 3 .

||u n || ∼ |n| , then N 1 = O( 3 )
the linear operator L U in (3.25) has the pure imaginary eigenvalue iω, corresponding to the frequency of the periodic solution. Hence the RZIF property is satisfied for nearmonochromatic oscillations in a system with quadratic nonlinearity.

We mention here that RZIF is not predictive, since it requires a full nonlinear direct numerical simulation to be carried out in order to compute the temporal mean U . An approach which is actually predictive, i.e. which does not require a DNS, has been proposed by Mantič-Lugo et al. [START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF][START_REF] Mantič-Lugo | A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake[END_REF], who called it the Self-Consistent Model (SCM). The SCM truncates the mean flow equation (3.24) as well as the n = 1 equation (3.25), leading to the closed system

0 = LU + N (u 1 , u -1 ) + N (u -1 , u 1 ) iωu 1 = Lu 1 + N (U, u 1 ) + N (u 1 , U) (3.26) 
This system is then solved for U and u 1 by various iterative methods; see Mantič-Lugo et al. [START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF][START_REF] Mantič-Lugo | A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake[END_REF]. The next higher truncation, i.e. retaining U, u 1 , and u 2 , has been studied by Meliga [START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF]. It may happen, however, that RZIF is satisfied, while SCM is not, i.e. that while higher-order modes may be neglected in (3.25), they are essential to forming the correct mean flow and cannot be neglected in (3.24); see Bengana & Tuckerman [9].

For thermosolutal convection, Turton et al. [START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF] showed that for traveling waves, the RZIF property is satisfied and the spectrum is highly peaked, while for standing waves the spectrum is broad and the RZIF property is not satisfied. We now wish to see if the temporal spectra of LC 2 and LC 3 also explain the fact that the RZIF property is better satisfied for LC 2 than for LC 3 . We show in figure 3 .07, consistent with the fact that RZIF is satisfied. We observed that RZIF is closer to being valid for LC 2 than for LC 3 , but the ratios in figure 3.19 follow the opposite tendency. Thus, the explanation proposed by Turton et al. [START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF] in terms of the temporal Fourier amplitudes does not explain this difference.

Cross-eigenvalues

Like the base flow, the mean flow has a full spectrum of eigenvalues and eigenvectors. Thus, the mean flow of LC 2 has not only eigenvectors with two vertical velocity fluctuation maxima with corresponding eigenvalues shown in figures 3.17(a,b), like those which lead to LC 2 , but it also has also eigenvectors with three maxima like those which lead to LC 3 and their corresponding eigenvalues. Similarly, the mean flow of LC 3 has eigenvectors containing two maxima. We refer to these as cross-eigenvalues. These results indicate that for a limit cycle, linearization about its mean flow may be able to convey information about the growth rate, frequency, and spatial characteristics of its stability to secondary bifurcations. Referring back to figure 3.4(b), these phase portraits represent the limit cycles as fixed points, whose existence and stability are governed by the dynamics of the two-dimensional normal form (3.17),(3.17). Stability or instability of LC 2 to LC 3 or vice versa is represented by the horizonal arrows emanating to or from LC 2 , located on the vertical axis, and the vertical arrows emanating to or from LC 3 , located on the horizontal axis. The temporal mean would then be interpreted as a fixed point approximation to a limit cycle, and the cross-eigenvalues would then correspond to their relative stability. Although this is plausible, we empasize that there exists at present no mathematical framework for this interpretation. Moreover, although the trends seen in figure 3.20 support this interpretation, the agreement is only qualitative.

Rossiter formula

We return to Table 3.1, the last column of which shows that the frequencies of successive modes increase by a constant interval. (For a given mode, the various versions of its frequency differ by at most 1%-2%.) We emphasize this again by reproducing the eigenspectra in figure 3.21, adding horizontal lines which emphasize visually the constant difference between the frequencies. Spectra similar to those in figure 3.21 are also seen for the lid-driven cavity in Tiesinga et al. [START_REF] Tiesinga | Bifurcation analysis of incompressible flow in a driven cavity by the newton-picard method[END_REF]. In flows over shear-driven cavities, Rossiter [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] observed that the temporal frequencies for self-sustained oscillations were quantized and proposed the following empirical formula:

f n = U ∞ L n -γ M + 1/κ =⇒ U ∞ L κ (n -γ) for M = 0 (3.27)
where U ∞ and L are the free-stream speed away from the cavity and the length of the cavity, and M is the Mach number, here set to zero. The phenomenological constant γ is a phase lag, while the increment κ will be discussed below. The essence of (3.27) is not only that the temporal frequencies f n observed are quantized (which is to be expected in a finite cavity) but that they are separated by a fixed increment ∆f . Heuristically, if the limit cycle consists of n structures advected horizontally at velocity U adv , then the average structure occupies a length L/n and strikes the cavity corner with frequency U adv /(L/n).

Since the frequencies in table 3.1 are nondimensionalized by U ∞ /L, we have

∆f = U ∞ L κ = U adv L = 0.45 =⇒ κ = U adv U ∞ = 0.45 (3.28)
Thus, the frequency is seen to be determined primarily by the geometry and the free-stream velocity.

Conclusion

We have carried out a detailed study of the dynamics of shear-driven square cavity flow over the Reynolds number range 4000 to 5000. An original result of the study is the detailed description of two solution branches, which are limit cycles with different numbers of structures, i.e. vertical velocity fluctuation extrema, across the cavity. These appear via successive primary supercritical Hopf bifurcations. Stability is transferred from the first to the second limit cycle via an unstable quasiperiodic state which is created and destroyed via subcritical secondary Hopf bifurcations from the limit cycles. The primary and secondary Reynolds numbers are such that there exists a region of bistability. Transition from one limit cycle to the other is hysteretic and is characterized by a sudden change in frequency from ω ∼ 7 to ω ∼ 10 and a change in the number of structures along the shear layer of the cavity. By using edge state tracking, we have been able to produce an approximation to the quasiperiodic state and to measure its temporal Fourier spectrum, which corresponds well to the frequencies computed by a Floquet analysis of the two limit cycles. The Hilbert transform is used to extract spatial envelopes and wavenumbers for representatives of these limit cycles.

A possible extension of our study is to the range Re > 5000. Although the next two eigenvalue pairs seen in figure 3.21 cross the imaginary axis, time-dependent simulations do not exhibit these frequencies, as has also been observed by Tiesinga et al. [START_REF] Tiesinga | Bifurcation analysis of incompressible flow in a driven cavity by the newton-picard method[END_REF] for the lid-driven cavity. Preliminary simulations also show that limit cycle LC 3 may undergo a secondary Hopf bifurcation between Re = 6000 and Re = 7500. At these Reynolds numbers, the temporal Fourier spectrum shows low-frequency components whose associated spatial characteristics are localized inside the cavity.

Our second focus has been to apply the technique of linearization about the temporal mean of the limit cycles, an approach which has been shown to describe nonlinear properties in many cases. More specifically, in many cases the real part of the leading eigenvalue is near zero (a property which would be described as marginal stability in the context of linearization about the base) and the imaginary part is near the nonlinear frequency of the limit cycles. The combination of these properties is called RZIF.

Based on this study and preceding ones, we can classify hydrodynamic configurations into three categories with respect to the RZIF property. The first is those for which the nonlinear frequencies deviate substantially from those resulting from linearization about the base flow, but are close to those resulting from linearization about the mean flow, and the mean flow growth rate is also very small. This category includes the cylinder wake (Barkley [4], Mantič-Lugo et al. [START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF], Mittal [START_REF] Mittal | Global linear stability analysis of time-averaged flows[END_REF]), for which RZIF has been studied most extensively, as well as the traveling waves of thermosolutal convection (Turton et al.

[61]), and the the ribbons and spirals of counter-rotating Taylor-Couette flow (Bengana & Tuckerman [10]). In the second category, the nonlinear, base flow and mean flow frequencies are all different and the mean flow growth rate is not small, such as the standing waves of thermosolutal convection (Turton et al. [START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF]). In the third category, the difference between the the nonlinear and the base flow frequencies and the base flow growth rate is already fairly low. This is what we find for the shear-driven cavity flow at the parameter values we have studied. The frequencies are primarily set by the geometry and the convection velocity. The nonlinear self-sustained mechanism distorts the base flow only slightly, leaving the convection velocity and hence the frequency almost unchanged. Linearization about the mean flow further and substantially reduces these already small differences. It would useful to know a priori into which category a hydrodynamic configuration falls. Explanations in terms of traveling or standing waves (Bengana & Tuckerman [10], Turton et al. [START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF])

have not yet proved satisfactory or complete.

Because the shear-driven cavity flow in our Reynolds number range has two limit cycles, we can take the further step of computing other eigenmodes of the mean, which do not correspond to the limit cycle. We find that these eigenmodes mimic qualitatively the behavior of the limit cycles with respect to one other: as the Reynolds number is increased, the real part of one eigenvalue decreases from positive to negative for a limit cycle which undergoes stablization via a secondary bifurcation, and increases from negative to positive for a cycle which undergoes destabilization. Further investigation, in the form of simulations of other hydrodynamic configurations, and more theoretical understanding, would be necessary to verify whether and when this is a systematic tendency. Another possible direction would be to generalize this type of analysis to quasiperiodic regimes, linearizing about the full temporal mean or else about some other quantity.

In summary, the existence of two competiting limit cycles for shear-driven cavity flow has yielded both an interesting bifurcation diagram, containing features such as subcritical bifurcations, hysteresis and a quasiperiodic state. At the same time, the existence of two cycles has also extended the application and interpretation of linearization about the mean flow.

Chapter 4

Spirals and ribbons: frequencies from mean flows and heteroclinic orbits
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Bifurcation analysis and frequency matching in shear-driven cavity flow

Yacine Bengana 1 and Laurette S. Tuckerman An extensive study of the two-dimensional incompressible shear-driven flow in an open square cavity is carried out. Two successive bifurcations lead to two limit cycles with di↵erent frequencies and di↵erent numbers of vortices which propagate along the top of the cavity and circulate in its interior. A secondary bifurcation to a quasiperiodic state mediates the stability of these limit cycles. A full analysis of this scenario is obtained by means of nonlinear simulations, linear stability analysis, and Floquet analysis. We characterize the temporal behavior of the limit cycles and quasiperiodic state via Fourier transforms and their spatial behavior via the Hilbert transform. We address the relevance of linearization about the mean flow. Although here the nonlinear frequencies are not very far from those obtained by linearization about the base flow, the di↵erence is substantially reduced when eigenvalues are obtained instead from linearization about the mean and in addition, the corresponding growth rate is small, a combination of properties called RZIF. Moreover growth rates obtained by linearization about the mean of one limit cycle are correlated with relative stability to the other limit cycle. Finally, we show that the increments between the successive frequencies are constant.

Introduction

We consider the incompressible shear-driven flow in a cavity, also known as open cavity flow. This is a geometrically induced separated boundary layer flow which has a number of applications in aeronautics [START_REF] Yu | Measurements of sound radiation from cavities at subsonic speeds[END_REF] and in industry, where it can serve as a mixing device [START_REF] Chien | Laminar mixing and chaotic mixing in several cavity flows[END_REF]). The first two-dimensional instability of the flow is primarily localized along the shear layer delimiting the outer boundary layer and the inner cavity (Sipp & Lebedev 2007;[START_REF] Sipp | Dynamics and control of global instabilities in open-flows: a linearized approach[END_REF]. This instability relies essentially on two mechanisms. First, the convectively unstable nature of the shear layer causes perturbations to grow as they travel downstream. Once they impinge on the downstream corner of the cavity, the inner-cavity recirculating flow and the instantaneous pressure feedback provide the mechanisms by which these perturbations re-excite the upstream portion of the shear layer. At su ciently high Reynolds numbers, the coupling of these mechanisms gives rise to a linearly unstable feedback loop. A similar unstable loop exists for compressible shear-driven cavity flows in which the instantaneous pressure feedback is replaced by upstream-propagating acoustic waves [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] A number of time-periodic flows have been found to have a property called RZIF: when a linear stability analysis is carried out about the temporal mean (rather than the usual steady state), an eigenvalue is obtained whose Real part is Zero and whose Imaginary part is the nonlinear Frequency. For two-dimensional thermosolutal convection, a Hopf bifurcation leads to traveling waves which satisfy the RZIF property and standing waves which do not. We have investigated this property numerically for counter-rotating Couette-Taylor flow, in which a Hopf bifurcation gives rise to branches of upwards and downwards traveling spirals and ribbons which are an equal superposition of the two. In the regime that we have studied, we find that both spirals and ribbons satisfy the RZIF property. As the outer Reynolds number is increased, the ribbon branch is succeeded by two types of heteroclinic orbits, both of which connect saddle states containing two axially stacked pairs of axisymmetric vortices. One heteroclinic orbit is non-axisymmetric, with excursions that resemble the ribbons, while the other remains axisymmetric.

Introduction

A number of time-periodic flows have been found to have the following property: when a linear stability analysis is carried out about the temporal mean (rather than the usual steady state from which they bifurcate), an eigenvalue emerges whose imaginary part reproduces the frequency of the nonlinear oscillation and whose real part is near zero. This property was first discovered by Barkley [5] and extensively studied [16,17,19,20,22,26] for the cylinder wake (for which it is strongly verified) and then for an open cavity [6,18,26] (for which it holds quite well, though not exactly). In these two-dimensional flows, a horizontal velocity imposed at infinity is deviated as it encounters objects (a cylinder) or openings (a cavity) and, for sufficiently high Reynolds number, undergoes a Hopf bifurcation.

In Turton, Tuckerman & Barkley [28], this property was named RZIF -a mnemonic for the fact that the eigenvalue obtained by linearizing about the mean flow has a Real part of Zero and an Imaginary part which is the nonlinear Frequency -and was studied for a quite different kind of flow. Thermosolutal convection is driven by a vertical density gradient in a fluid mixture between two horizontal plates, which in turn is caused by imposed temperature and concentration differences at the two bounding plates. When the temperature and concentration have opposing effects on the density, instability is manifested as a Hopf bifurcation. In a two-dimensional domain with horizontally periodic boundary conditions, this is a classic case of the breaking of O( 2) symmetry (translations and reflection) and leads to the simultaneous formation of traveling and standing wave branches, at most one of which can be stable [13]. Turton et al. [28] discovered that the traveling waves in thermosolutal convection provide another clear realisation of the RZIF property, while the standing waves provide an equally clear counterexample: the real part of the eigenvalue obtained by linearizing about the mean part of the standing waves is far from zero and its imaginary part is far from the nonlinear frequency.

We have sought to continue this investigation on another pair of hydrodynamic traveling and standing waves. In Taylor-Couette flow, when only the inner cylinder rotates, a steady bifurcation leads to the classic Taylor vortices. In counter-rotating Taylor-Couette flow, however, these vortices are inclined to the rotation axis, and hence non-axisymmetric. A Hopf bifurcation then gives rise to branches of the well-known spirals [2,14,15] and the somewhat lesser-known ribbons [1,7,8,9,12,23,24,25,27], which, like standing waves, are an equal superposition of spirals moving axially upwards and downwards. As in [13,28], this is a consequence of the breaking of O(2) symmetry, here in the axial direction, when end effects are disregarded. Figure 4.1 shows the appearance of these two types of flows.

Counter-rotating Taylor-Couette flow has an additional symmetry when compared to the two-dimensional thermosolutal cases studied in [13,28]. Along with the O(2) axial z symmetry, the Taylor-Couette configuration has SO(2) symmetry, consisting of rotations (not reflection) in the azimuthal θ direction. The tilted spirals or azimuthally tiled ribbons are not axisymmetric, and hence they break SO(2) symmetry. In such cases, bifurcations always lead to states which rotate in the azimuthal direction; see e.g. [11]. Thus, although ribbons are standing waves in the axial direction, i.e. equal superpositions of axiallyupwards and axially-downwards traveling waves, they rotate in the azimuthal direction, as do the spirals.

As the rotation velocity of the outer cylinder is varied, the ribbon branch is succeeded by two types of heteroclinic orbits, both of which connect saddle states consisting of two pairs of axisymmetric vortices. One heteroclinic orbit is non-axisymmetric, with excursions that resemble the ribbons, while the other remains axisymmetric. 

Methods

To investigate this problem numerically, we have used the spectral finite-difference code of Willis [10] to solve the Navier-Stokes equations in a cylindrical annulus,

∂ t U = -(U • ∇) U -∇P + ∇ 2 U (4.1a) ∇ • U = 0 (4.1b) U = e θ Re in , e θ Re out at r in , r out (4.1c)
where the length scale is d ≡ r out -r in and the time scale is d 2 /ν, where ν is the kinematic viscosity. The radius ratio is η ≡ r in /r out , the two Reynolds numbers are defined as Re j ≡ r j Ω j d/ν where j = in, out, and the numerical resolution is (N r , N θ , N z ) = [START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF]16,16).

We use the parameters in Pinter et al. [23,24,25], namely radius ratio η ≡ r in /r out = 0.5, inner Reynolds number Re in = 240 and azimuthal wavenumber M 0 = 2 (azimuthal wavelength 2π/M 0 = π). We have chosen the axial wavelength λ z = 1.2, slightly less than the value studied intensively by [23,24,25] to avoid a secondary bifurcation they describe near the onset of spirals and ribbons for λ z = 1.3. Because counter-rotating Taylor-Couette flow is centrifugally unstable only near the inner cylinder, here for r ∈ [1, 1.24], the preferred axial wavelength is correspondingly less than that which would be expected if the vortices filled the gap. Because Re in remains fixed and we will vary Re out , we will simplify the notation by using Re instead of Re out to designate the outer Reynolds number.

We have modified the Taylor-Couette code [10] in order to timestep the equations linearized Section 4.2. Methods about a velocity field U:

∂ t u = -(U • ∇) u -(u • ∇) U -∇p + ∇ 2 u (4.2a) ∇ • u = 0 (4.2b) u = 0 at r in , r out (4.2c)
Time-integration of the linearized equations (4.2) about a steady solution U converges to the leading eigenvector, i.e. that whose corresponding eigenvalue has the most positive or least negative real part or growth rate. It is a means of carrying out the power method on the exponential of the right-hand-side of (4.2). Integration of (4.2) does not generally lead to a steady or periodic state, since the nonlinear terms which would otherwise saturate the amplitude is absent. Instead, it leads to states whose amplitude increases or decreases, but with a constant growth rate and frequency, in the case of a complex eigenvalue.

We first use the linearized code to compute the Hopf bifurcation threshold from laminar Couette flow. For various timesteps ∆t, we calculate the growth rate σ as a function of Re and then use linear extrapolation or interpolation to find Re c such that σ(Re c ) = 0. (This procedure circumvents critical slowing down and so finds bifurcation thresholds faster and more accurately than could be done with nonlinear simulations.) The bifurcation thresholds calculated using ∆t = 10 -4 , 10 -5 , and 10 -6 are, respectively, Re c = -595.23, Re c = -586.65, Re c = -585.42, the last of which we consider to be the converged value.

(For greater legibility and simplicity, in what follows we cite its truncated value -585.)

The branches of spirals and ribbons illustrated in figure 4.1 bifurcate at Re ≈ -585 towards increasing Re. Their functional form is:

u SPI± (r, θ, z, t) = m ûm (r) e im(z/λz±M 0 θ-ω SPI t) u RIB (r, θ, z, t) = k,m
   ûkm,r (r)e r sin(kz/λ z ) ûkm,θ (r)e θ sin(kz/λ z ) ûkm,z (r)e z cos(kz/λ z )

   e im(M 0 θ-ω RIB t) (4.
3)

The spirals are traveling waves: they depend on z, θ, and t only via the single combination z/λ z + M 0 θ -ω SPI t. The ribbons have fixed axial nodal lines and are reflection symmetric; the axis of symmetry is z = λ z /2 in equation ( 4.3) and in figure 4.1. The ribbons are traveling waves in θ: they depend on θ and t via M 0 θ -ω RIB t. Many other complex and esthetic symmetry-breaking flows have been observed in numerical simulations of this configuration [1,8,12,23,24,25], including cross-spirals, oscillating cross spirals, mixed cross spirals and mixed ribbons.

We will use numerical simulations of the nonlinear and linearized equations (4.1) and (4.2) to investigate the RZIF phenomenon mentioned in the introduction, in which linearization about the mean flow of a periodic solution yields an eigenvalue whose Real is Zero and whose Imaginary part which is the nonlinear Frequency. To do so, we will calculate the spirals and ribbons by time integrating the nonlinear equations (4.1) until an asymptotic state is reached. Because the spirals and ribbons are both azimuthally traveling waves, their temporal means are identical with their azimuthal means which are, in turn, the axisymmetric (m = 0) components of (4.3). We will then find the eigenvalues and 

RZIF analysis

We begin by showing the bifurcation diagram for spirals and ribbons. Their common threshold is Re ≈ -585. On figure 4.2a, we represent the square root of kinetic energy of the two branches. In this parameter range, the spirals are unstable to ribbons, but can be computed by including only k = m modes or, like [23], by setting the m = 0 component of u r to zero. The ribbons themselves become unstable for Re -530. Figure 4.2b shows the frequency of the nonlinear spirals and ribbons (symbols), as well as those obtained by linearizing about laminar Couette flow (dashed line). Linearization about the laminar flow leads to the same set of eigenvalues for spirals or ribbons, since the eigenvectors corresponding to upgoing and downgoing spirals are related by symmetry, with their superposition leading to ribbons. For a supercritical Hopf bifurcation, these necessarily match the frequency of the nonlinear branches at the threshold. As Re is increased, the frequencies of the nonlinear spirals deviate greatly from those derived from the laminar flow, but the frequencies of the nonlinear ribbons remain close. This was also true of the standing waves of thermosolutal convection [28], which inspired this study: the frequencies of the nonlinear standing waves were much closer to those obtained by linearization about the laminar (conductive) flow than were the frequencies of the nonlinear traveling waves. The solid curves show the frequencies obtained from nonlinear simulations. Linearization about the mean flows of spirals (red crosses) or of ribbons (blue stars) lead to eigenvalues whose imaginary parts agree with the nonlinear frequencies. The corresponding growth rates are seen to be near zero, i.e. the mean flows are nearly marginally stable. (This has no relation to the marginal stability of the full spirals or ribbons to shifted versions of themselves, which arises from their θ or z dependence in a homogeneous domain.) Thus, both the spirals and the ribbons satisfy the RZIF property. This contrasts with the thermosolutal case, in which the traveling waves satisfied the RZIF property, while the standing waves did not.

Additional eigenvalues are shown in figure 4.6, which are not related to the basic RZIF property. Both correspond to spiral eigenvectors and have positive growth rates. These show the frequency and growth rate of spiral eigenvectors superposed on the mean flow of spirals of opposite helicity (dark green circles) or of ribbons (blue circle). The positive growth rate for the spirals of opposite chirality could be related to the linear instability of the spirals to ribbons; such a transition would take place via the addition of spirals of opposite chirality until equal amplitudes are reached. However, for these parameter values, ribbons show no tendency to make a transition to spirals, and yet the growth rates from the mean flow of ribbons to spirals are also positive (although less so than the growth rates from the mean flow of spirals). More understanding of the meaning of linearization about mean flows would be necessary to interpret these eigenvalues.

The RZIF property is implied by a near-monochromatic spectrum, as shown in [28] as follows. Consider the evolution equation

∂ t U = LU + N (U, U) (4.4)
where L is linear and N ( • , • ) is a quadratic nonlinearity. Let

U = U + n =0
u n e inωt (4.5)

(with u -n = u * n ) be the temporal Fourier decomposition of a periodic solution to (4.4) with mean U and frequency ω. The n = 1 component of (4.4) is

iωu 1 = Lu 1 + N (U, u 1 ) + N (u 1 , U) L Ū u 1 + N (u 2 , u -1 ) + N (u -1 , u 2 ) + N (u 3 , u -2 ) + N (u -2 , u 3 ) + . . . N 1 (4.6)
If, as is often the case, ||u n || ∼ |n| , then N 1 = O( 3 ) may be neglected and RZIF is satisfied: the linear operator L Ū in (4.6) has the pure imaginary eigenvalue iω, corresponding to the frequency of the periodic solution. Hence the RZIF property is satisfied for nearmonochromatic oscillations in any system with a quadratic nonlinearity.

It remains to verify whether these periodic solutions are near-monochromatic. Figure 4.7 shows the temporal Fourier spectra of the azimuthal velocity for the spirals and the ribbons. For the thermosolutal case of [28], the ratio ||u 2 ||/||u 1 || was found to be much higher for the standing waves (greater than about 10 -1 ) than for the traveling wave branch (between 10 -3 and about 10 -1 ), explaining the satisfaction of RZIF for the traveling waves and not for the standing waves. In contrast, for this counter-rotating Taylor-Couette case, figure 4.7 shows that the temporal spectra for spirals and ribbons are quite similar. The ratio ||u 2 ||/||u 1 || is consistently less than 10 -2 for both flows over the range of our investigation. This is consistent with the fact that RZIF is satisfied for both flows.

Heteroclinic orbits

Pinter et al. [23,24,25] observed that the ribbon branch became unstable and was succeeded by oscillating cross-spirals as Re was increased. We observe this as well, near Re ≈ -525. As Re is further increased, however, the oscillating cross-spirals are themselves succeeded by a near-heteroclinic orbit, in which the system spends the overwhelming majority of its time in one of two saddles containing two pairs of axisymmetric vortices. The two saddles differ by a quarter of an axial period (one vortex). The system passes from one to the other via rapid non-axisymmetric excursions resembling the ribbon states. Snapshots of the phases of an excursion taken from a heteroclinic cycle at Re = -502 are shown in figure 4.8. Figure 4.9a shows timeseries from this heteroclinic orbit. Time spent at the two saddles are seen as two plateaus. The approaches to and departures from the saddles are oscillatory; this appears clearly in the enlarged timeseries as well as in the spirals of the phase portrait of figure 4.10a. In the phase portrait, the two saddles are distinguished, and the spiraling approaches to them are approximately perpendicular to one another. In the timeseries at the bottom of figure 4.9, the energy in the non-axisymmetric modes is seen to increase and to decrease logarithmically.

As Re is further increased, this regime is succeeded by another type of heteroclinic orbit, visualized in figure 4.11. Timeseries for this cycle are shown in figure 4.9b for Re = -490.

The two plateaus are the same as for the previous heteroclinic cycle, but the approaches to and departures from the saddles are not oscillatory. These approaches and departures differ from excursion to excursion, as highlighted in the enlargements. The difference between the excursions is also seen in the phase portraits in figure 4.10b, which begins with a transient oscillatory phase. The black dots in the phase portrait are equally spaced in time and so accumulate on the saddles. Trajectories are seen approaching and leaving the saddles along different paths at different angles. Turning to the logarithmic energy timeseries, after an initial transient (corresponding to the oscillatory transient in the phase portrait), the energy in the non-axisymmetric modes becomes and remains very small. Instead, it is the energy in the odd axial wavenumber modes which tracks the heteroclinic cycle. Since the saddles contain two stacked pairs of vortices, their axial Fourier spectrum contain only even multiples of the fundamental wavenumber 2π/λ z . Excursions are manifested by the logarithmic increase and decrease of the energy contained in odd multiples of 2π/λ z in the axial spectrum. The variation from cycle to cycle is also seen in the logarithmic timeseries.

The axisymmetric heteroclinic cycle is very similar to that observed in the 1:2 modeinteraction [3,21]. An erratic alternation between a few different types of excursions is also seen in the cycles of [21]. As explained in these references, this cycle is a consequence of the interaction of axial modes with wavenumbers 2π/λ z and 4π/λ z . Furthermore, the heteroclinic orbits can be characterized quantitatively by calculating the rates of approach and departure from the saddles which anchor the heteroclinic orbits. These are the two leading eigenvalues (in the axisymmetric subspace) of the saddles and are seen as the slopes of the black curve in the logarithmic timeseries in figure 4.9b. We plot these as a function of Re in figure 4.12b. The existence of the heteroclinic cycle requires eigenvalues of opposite signs; thus, the axisymmetric cycle exists for Re > -502, where one of the leading eigenvalues becomes positive while the other remains negative. Stability of the cycle requires that the rate of departure be no greater than the rate of approach, i.e. the absolute value of the negative eigenvalue must exceed the positive eigenvalue. This occurs for Re < -482. Hence the axisymmetric cycle exists and is stable within this axisymmetric subspace in the range Re ∈ [-502, -482].

The theory in [3,21] does not concern oscillatory heteroclinic cycles or complex eigenmodes. However, assuming that the analysis of the oscillatory cycles is similar to that of the non-oscillatory cycles, we plot the slopes (or real parts of the eigenvalues) seen in the logarithmic timeseries of figure 4.9a as a function of Re. We also plot the frequencies associated with these eigenvalues in figure 4.13a, associated with the oscillations in the timeseries in figure 4.9a and the spiraling in and out in the phase portraits of figure 4.10a. Using the same criteria as for the non-oscillatory cycles, figure 4.12a shows that the oscillatory heteroclinic cycle exists and is stable within the subspace of these eigendirections for Re ∈ [-522, -476].

The theory in [3,21] also does not address the relative stability of two kinds of heteroclinic cycles. The transition that we observe when Re is reduced from -502 to -490 implies that the non-axisymmetric heteroclinic cycles is unstable to the axisymmetric one at this value of Re. In fact, we observe non-axisymmetric heteroclinic cycles for Re < -496 and axisymmetric cycles for Re > -496, separated by the point at which axisymmetric and non-axisymmetric departure rates cross, as seen in figure 4.13b. This supports the idea that the cycle whose departure rate from the saddles is smaller is unstable to the cycle 12 -Rate of approach to and departure from saddles as a function of Re. These are the slopes of the logarithmic plots of figure 4.9 and also the real parts of the leading eigenvalues. a) Non-axisymmetric oscillatory heteroclinic cycle. The cycle exists when the eigenvalues are of opposite sign, here for Re < -476. The cycle is stable within the space of these eigenmodes when the rate of approach exceeds the rate of departure, here for Re > -522. b) Axisymmetric non-ocillatory heteroclinic cycle. The cycle exists when the eigenvalues are of opposite sign, here for Re > -502. The cycle is stable within the space of these eigenmodes when the rate of approach exceeds the rate of departure, here for Re < -482. whose departure rate is greater [4]. Combining all of the criteria, the stability range of the non-axisymmetric cycle is Re ∈ [-522, -496], while that of the axisymmetric cycle is Re ∈ [-496, -482].

Discussion

The problem of characterizing the nonlinear frequency of a periodic flow away from the threshold has led to one proposed solution: when a linear stability analysis is carried out about the temporal mean, an eigenvalue is obtained whose Real part is Zero and whose Imaginary part is the nonlinear Frequency. This RZIF property has heretofore been studied for the cylinder wake, an open cavity, and thermosolutal convection. It is strongly satisfied for the cylinder wake and the traveling waves of thermosolutal convection with oppositely directed density gradients, weakly satisfied for the open cavity, and not at all satisfied for the standing waves of thermosolutal convection. Although the RZIF property is a natural outcome of a near-monochromatic temporal spectrum, it is not entirely clear when this occurs.

We have investigated RZIF in another configuration, counter-rotating Taylor-Couette flow, which, like the thermosolutal convective case, has a Hopf bifurcation leading to branches of traveling and standing waves, here manifested as spirals and ribbons. In the thermosolutal case, the traveling waves display the RZIF property and have a temporal Fourier spectrum which is highly peaked, while the standing waves do not. Here, both the spirals and the ribbons display the RZIF property and both have temporal spectra which are equally peaked. However, the ribbons are standing waves only in the axial direction and are traveling waves in the azimuthal direction. This may be the cause of the difference between the Taylor-Couette and thermosolutal cases. The search for another counter-example to RZIF, especially in a purely hydrodynamic flow without additional fields, remains open.

During the course of our investigation, we discovered two heteroclinic cycles, one nonaxisymmetric and the other axisymmetric. Both cycles are anchored by the same saddles: axisymmetric states containing two axially stacked pairs of vortices. The axisymmetric heteroclinic cycle is a manifestation of the classic 1:2 mode interaction, here the interaction between axisymmetric states with one and two pairs of vortices. The non-axisymmetric heteroclinic cycle is not of this type, since the approach to and from the saddles is oscillatory via transients resembling ribbons. However, it is anchored by the same axisymmetric saddles. The existence of two qualitatively different heteroclinic cycles connecting the same saddles is an unusual and intriguing feature. These cycles will be studied in more detail in a later investigation.

Chapter 5

Frequency prediction from exact or self-consistent meanflows
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Bifurcation analysis and frequency matching in shear-driven cavity flow

Yacine Bengana 1 and Laurette S. Tuckerman An extensive study of the two-dimensional incompressible shear-driven flow in an open square cavity is carried out. Two successive bifurcations lead to two limit cycles with di↵erent frequencies and di↵erent numbers of vortices which propagate along the top of the cavity and circulate in its interior. A secondary bifurcation to a quasiperiodic state mediates the stability of these limit cycles. A full analysis of this scenario is obtained by means of nonlinear simulations, linear stability analysis, and Floquet analysis. We characterize the temporal behavior of the limit cycles and quasiperiodic state via Fourier transforms and their spatial behavior via the Hilbert transform. We address the relevance of linearization about the mean flow. Although here the nonlinear frequencies are not very far from those obtained by linearization about the base flow, the di↵erence is substantially reduced when eigenvalues are obtained instead from linearization about the mean and in addition, the corresponding growth rate is small, a combination of properties called RZIF. Moreover growth rates obtained by linearization about the mean of one limit cycle are correlated with relative stability to the other limit cycle. Finally, we show that the increments between the successive frequencies are constant.

Introduction

We consider the incompressible shear-driven flow in a cavity, also known as open cavity flow. This is a geometrically induced separated boundary layer flow which has a number of applications in aeronautics [START_REF] Yu | Measurements of sound radiation from cavities at subsonic speeds[END_REF] and in industry, where it can serve as a mixing device [START_REF] Chien | Laminar mixing and chaotic mixing in several cavity flows[END_REF]). The first two-dimensional instability of the flow is primarily localized along the shear layer delimiting the outer boundary layer and the inner cavity (Sipp & Lebedev 2007;[START_REF] Sipp | Dynamics and control of global instabilities in open-flows: a linearized approach[END_REF]. This instability relies essentially on two mechanisms. First, the convectively unstable nature of the shear layer causes perturbations to grow as they travel downstream. Once they impinge on the downstream corner of the cavity, the inner-cavity recirculating flow and the instantaneous pressure feedback provide the mechanisms by which these perturbations re-excite the upstream portion of the shear layer. At su ciently high Reynolds numbers, the coupling of these mechanisms gives rise to a linearly unstable feedback loop. A similar unstable loop exists for compressible shear-driven cavity flows in which the instantaneous pressure feedback is replaced by upstream-propagating acoustic waves [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] The self-consistent model developed by Mantič-Lugo et al. [9] describes the nonlinear process of amplitude saturation of supercritical flows and predicts accurately the nonlinear frequency, the amplitude and the mean fields. This model is formed by the mean flow governing equation and the linearized Navier-Stokes equation, coupled via the Reynolds stress by the leading mode. This model is assumed to be valid for supercritical flows for which the RZIF property is verified. The self-consistent model is applied to the thermosolutal convection for which a supercritical Hopf bifurcation gives rise to two branches: the standing waves and the traveling waves. This model is solved by means of a full Newton method. Although the RZIF property is verified for the traveling waves, the self-consistent model reproduces the nonlinear frequency only very near the onset of the bifurcation. The assumption that the nonlinear interaction (Reynolds stress) arising from the leading mode suffices to reproduce the nonlinear mean field and frequency is not valid in this case. By considering higher orders in the Reynolds stress term, we are able to reproduce the nonlinear frequency, the amplitude, and the mean fields.

Introduction

Periodic emission or translation of vortical structures is an intriguing and important nonlinear phenomenon observed in fluid flows in many different configurations. The amplitude and frequency are two essential characteristics of these time-periodic systems. Usually, these are obtained either by experiment or by solving the full Navier-Stokes equations via a direct numerical simulation.

The first step in understanding a nonlinear problem is linear stability analysis about its equilibrium solution. This analysis shows whether an infinitesimal perturbation to the base flow grows or decays exponentially i.e whether the equilibrium solution is stable or unstable. This analysis is also used to locate the threshold of the bifurcation, at which the growth rate is equal to zero. The periodic oscillations originate from a supercritical Hopf bifurcation and linear stability analysis predicts the nonlinear frequency in the vicinity of the threshold [4]. Far from the threshold, linear analysis no longer predicts the frequency because the nonlinear interactions can no longer be neglected.

In many cases, linearization about the time-averaged field [1,13,14,16,20] yields the nonlinear frequency as the imaginary part of the eigenvalue of the leading eigenmode. Moreover, the growth rate, which is the real part of the eigenvalue, is nearly zero, showing that the mean flow is marginally stable, as had been previously suggested [6] in the context of turbulent shear flow. We emphasize that this result, which has been named RZIF in [20], is a match and not a prediction. It requires the mean flow, which must be determined by either experiment or direct numerical simulation. However, the RZIF property confirms the importance of the mean flow. As stated in, e.g. [3,17,18], the mean flow is essential, first for understanding the selection of the frequency of the nonlinear system and also as a factor in the theoretical development of reduced models, which is common in turbulent flow modeling.

At the early stage of the instability, the mean flow is identical to the base flow. As the perturbation grows, it introduces a distortion of the mean flow via the nonlinear interaction (Reynolds stress). The perturbation amplitude continues to grow until it is saturated by nonlinear interactions. The mean flow corresponding to this final saturated state is marginally stable. This process of amplitude saturation has been described in [11,17]. Reduced models may help to understand the physical mechanisms of nonlinear systems. The reduction in numbers of degrees of freedom makes them easy to manipulate and less expensive to solve. However, these reduced models must be validated before they can be used in applications.

The self-consistent model (SCM) developed by Mantič-Lugo et al. [9] on the cylinder wake combines the mean flow equation and the equation obtained by linearizing about the mean flow. The mean flow equation is approximated by assuming that only the leading eigenmode of the linearized equation is important in creating the distortion of the mean flow. This assumption is based on the temporal spectrum of the cylinder wake that is dominated by the fundamental frequency. Therefore the Reynolds stress term, which is the source of the nonlinearities, is reduced to the leading mode. The amplitude of the mode is then chosen such that the growth rate of the linear problem is zero. For the cylinder wake, the results obtained by these coupled equations match the mean flow and the nonlinear frequency. The model describes the evolution of the amplitude of the mode as the distortion grows.

In this paper, we investigate the self-consistent model for the traveling wave branch in thermosolutal convection, for which RZIF is satisfied [20]. We will show that, for this case, the self-consistent model fails to predict the frequency or the mean flow. Higher order terms contributing to the Reynolds stress are necessary to reproduce the mean flow to sufficient accuracy. We have thus shown that satisfaction of the RZIF property does not necessarily imply the validity of the self-consistent model.

The procedure used in [10] to solve the self-consistent model is economical but not robust. The second-order generalization is more accurate, but its formulation in [12] is complicated. We will show that the full Newton method, as carried out in [2], is efficient in solving this system of equations and is feasible even at fifth order.

Definition of the problem

Thermosoluthal convection

Thermosolutal convection is produced by temperature and concentration differences ∆Θ and ∆C imposed on plates separated by a height h. We consider a two-dimensional configuration governed by the Boussinesq approximation, meaning that only the density appearing in the buoyancy term varies and depends linearly on temperature and concentration, with thermal and solutal volume expansion coefficients β T and β C . The properties of the fluid such as the kinematic viscosity ν, thermal and solutal diffusivities κ T and κ C are assumed to be constant. We use the scales h, ∆Θ, ∆C and the thermal diffusion time h 2 /κ T to nondimensionalize the variables. As the configuration is two-dimensional, we represent velocity by a streamfunction Ψ. In the conductive state, the flow is at rest and Θ and C vary linearly with z via diffusion. The coupled non-dimensional governing equations are written as

∂ t Θ -J [Ψ, Θ] = ∇ 2 Θ + ∂ x Ψ, (5.1a) 
∂ t C -J [Ψ, C] = L∇ 2 C + ∂ x Ψ, (5.1b) 
∂ t ∇ 2 Ψ -J [Ψ, ∇ 2 Ψ] = P r[∇ 4 Ψ + ∂ x (R T Θ + R S C)]. (5.1c) 
where the streamfunction Ψ, temperature Θ and concentration C are deviations from the conductive state. We recall that the vorticity is equal to -∇ 2 Ψ. The vorticity form of equation (5.1c) has been used to eliminate the pressure gradient from the momentum equation.

Equations (5.1) contains four dimensionless parameters:

P r = ν κ T , L = κ S κ T , R T = β T g∆Θh 3 νκ T , R S = β S g∆Ch 3 νκ T (5.2) 
The Prandtl number P r is the ratio of viscosity to thermal diffusion, and L is the ratio of solutal to thermal diffusivity. (Note that the parameter L defined above was called the Lewis number in [19,20], but is in fact the inverse of the Lewis number.) These parameters can also be considered to measure the ratio of the thickness of the viscous and solutal boundary layers to the thermal boundary layer. Thermal and solutal gradients are measured by the thermal and solutal Rayleigh numbers R T and R S . The Poisson bracket is defined by

J [f, g] = ∂ z f ∂ x g -∂ x f ∂ z g (5.3) 
We note that if either f or g is independent of x, then J [f, g] = 0. For simplicity and clarity, we write equations (5.1) in compact form

∂ t U = LU + N (U, U ) (5.4) 
where U ≡ (Θ, C, ∇ 2 Ψ) T , L is the operator grouping linear diffusive terms and N corresponds to advective terms. Opposite signs for R S and R T mean that temperature gradient is destabilizing and the concentration gradient is stabilizing or vice versa. This is necessary for the occurrence of a Hopf bifurcation. Branches of traveling waves (TW) and standing waves (SW) are generated by a Hopf bifurcation in a system with translation and reflexion symmetry O(2) as shown in [5].

The boundary conditions are as follows:

• The temperature and concentration deviations are zero on the plates at z = 0, 1

T = C = 0 on z = 0, 1 (5.5) 
• Imposing zero tangential stress leads to free-slip conditions at z = 0, 1

∂ zz Ψ = 0 on z = 0, 1 (5.6) 
This unrealistic boundary condition simplifies the problem but does not alter the behavior qualitatively near the threshold.

• No horizontal flux 1 0 -∂ z Ψ(x, z)dz = Ψ(x, 0) -Ψ(x, 1) = 0 (5.7) 
Ψ is defined up to an additive constant. Choosing this arbitrary constant to be Ψ(x, z = 0) = 0, we obtain Ψ(x, 0) = Ψ(x, 1) = 0 (5.8)

• Periodic boundary conditions in the horizontal direction

U (x + λ, z) = U (x, z) (5.9) 
For the pure thermal convection problem Rs = 0, Rayleigh [15] calculated a stationary bifurcation with a critical Rayleigh number that is a function of the wavenumber k,

Ra 0 = (k 2 + π 2 ) 3 k 2 (5.10)
We fix the wavenumber to k = π/ √ 2 which minimizes equation (5.10) and for which the critical Rayleigh number of the stationary bifurcation is Ra 0 = 657.5. We set the streamwise length of the domain to λ = 2π/k = 2 √ 2 and define the reduced Rayleigh number as

r = Ra T Ra 0 (5.11)
The presence of a solutal gradient introduces a solutal Rayleigh number. The principal physical effect induced by the concentration gradient is the Soret effect controlled by the separation parameter, S = Ra S Ra T (5.12)

We carry out our study over the range of reduced Rayleigh number r ∈ [2.06, 3]. As in [20], we fix the Prandtl number at P r = 10, the inverse L of the Lewis number L = 0.1 and the Soret number to S = -0.5.

Numerical methods

We present the numerical methods used for studying thermosolutal convection. The code has been developed in [20] and a synoptic view is given in figure 5.13, which describes a time integration code for the governing equations. Newton's method is implemented by transforming the time integration code with the method developed in [7]. We developed our own Newton method to solve the SCM model.

Spatial discretization

The spatial discretization uses a pseudo-spectral code. The periodic field U (x, z, t) is decomposed in a Fourier-sine basis as

U (x, z, t) = m,n Ûmn (t)e imkx sin(nπz) (5.13) 
The two-dimensional Fourier transform brings the field represented on the physical space grid to the spectral representation (5.13). We differentiate in the spectral domain and we transform into the grid space (physical domain) to carry out the nonlinear Poisson bracket operations. The spatial resolution is N x × N z = 8 × 8, which is sufficient to describe the behavior in this periodic/free-slip configuration in our parameter range. In what follows, we will use hats and indices on U to denote features other than the wavenumbers in (5.13).

Time discretization

The time evolution is carried out by means of a mixed scheme. The diffusive term ∇ 2 is evolved by the implicit Euler method. The convective terms, i.e. the Poisson brackets and the ∂ x Ψ that remain are evolved with an explicit Euler method [20]. The the timediscretized version of the governing equations (5.1) are

Θ n+1 = (1 -∆t∇ 2 ) -1 (∆t(-J [Ψ, Θ] n + ∂ x Ψ n ) + Θ n ) (5.14a) C n+1 = (1 -∆tLe∇ 2 ) -1 (∆t(-J [Ψ, C] n + ∂ x Ψ n ) + C n ) (5.14b) ∇ 2 Ψ n+1 = (1 -∆tP r∇ 2 ) -1 (∆t(-J [Ψ, ∇ 2 Ψ] n + P r(Ra T ∂ x Θ n + Ra S ∂ x C n )) + ∇ 2 Ψ n ) (5.14c)
The standing waves are unstable and are therefore computed by forcing the reflexion symmetry. The traveling waves have been computed with Newton's method by transforming the time-stepping code, as described in [20]. The time-stepping code is used to provide an initial guess for the traveling waves for the Newton method. The time-stepping method is summarized in figure 5.13 in the appendix.

Linear stability analysis

We present in this section the equations governing linear stability analysis about the conductive state, as well as the equations governing linearization about the mean field.

Linearization about the conductive state

Linear stability analysis consists of studying the evolution of an infinitesimal perturbation from an equilibrium state, in this case the conductive state. The linearized problem is written as

∂ t u = Lu (5.15)
where the infinitesimal time-dependent perturbations u = [τ, c, ∇ 2 ψ] are of the form u (x, z, t) = ũ(x, z)e λt , with ũ the eigenvector and λ its eigenvalue. L is the linearized operator containing in this case only the right hand side of equations (5.1). Equation (5.15) then becomes

(σ + iω)ũ = Lũ (5.16)
As our study concerns a Hopf bifurcation from the conductive state, the eigenvalue λ = σ + iω of the operator L is complex and its real part σ crosses the marginal stability axis.

Linearization about the time averaged field

We consider the Reynolds decomposition U = U + u , with u the perturbations and U the temporal average of the traveling wave fields defined by

U (x, z) = 1 T T t=0
U (x, z, t)dt (5.17)

Substituting the Reynolds decomposition into the governing equations (5.4) we obtain

∂ t u = LU + Lu + N (U , U ) + N (u , U ) + N (U , u ) + N (u , u ) (5.18) 
The temporal average of equations (5.18) gives the equations obeyed by the mean fields

0 = LU + N (U , U ) + N (u , u ) (5.19) 
where N (u , u ) is the nonlinear interaction term called Reynolds stress. This term can be viewed as an external forcing in order for the mean field to be a stationary solution. Indeed the mean field is not a steady solution of the system (5.1). The mean fields are computed from nonlinear simulations because equation (5.19) is not a closed system. Subtracting equations (5.19) from (5.18) we obtain the fluctuation equations

∂ t u = -L U (u ) -N (u , u ) + N (u , u ) (5.20) 
where

L U u ≡ Lu + N (U , u ) + N (u , U ) (5.21)
Equations (5.19) and (5.20) are the cornerstone of the linearization about the mean fields [1,13,14,16,20] and of the self-consistent model developed in [9] and described in section 5.4.

The RZIF procedure calls for neglecting the nonlinear self-interactions from equations (5.20). We then obtain the governing equations of the linear stability analysis about the mean

∂ t u = L U (u ) (5.22) 
Since (5.22) is linear in u and homogeneous in t, its solutions are again of the form u (x, z, t) = e (σ+iω)t ũ(x, z), leading again to the eigenproblem

(σ + iω)ũ = L U ũ (5.23)
For the traveling waves, the frequency ω obtained by the linearization about the conductive state deviates substantially from the nonlinear frequency, whereas that obtained by the linearization about the mean field matches it almost exactly. Moreover the growth rate σ is very close to the marginal stability axis. This property of the mean fields and linear stability analysis was named RZIF in [20] meaning that the real part of the eigenvalue is nearly zero and the imaginary part of the eigenvalue matches the nonlinear frequency.

In contrast, the self-consistent model is constructed as a closed system of equations (5. 19) and (5.23) by making the further assumption that the nonlinear interaction term of equation (5.19) can be truncated to include only the leading eigenmode of (5.23). That is, U is defined by solving (5. 19) and (5.23) rather than calculated by taking the mean (5.17) of the full evolution equations (5.4). Thus, the mean flow and the nonlinear frequency are approximated without time integration. A detailed explanation of the SCM is given in section 5.4.

RZIF using fields from DNS

Overview

Our study follows that of [20]. To make it self-contained, we have reproduced the traveling waves and the linear stability analysis about the base and mean fields. we linearize is stable or not. As already demonstrated from nonlinear simulation, the base flow is unstable as shown by the positive growth rate σ > 0. The growth rate about the mean field is near the marginal stability axis σ = 0. Therefore the TW satisfies the RZIF property. This property was reported for the first time by Barkley [1] for the Bénard-von Kármán vortex street that can be viewed approximately as a traveling wave modulated in the x direction. In figure 5.1(c), the frequency about the mean field separates slightly from the exact frequency for r > 2.5. The growth rate also separates from the marginal stability axis.

Fourier decomposition and eigenvectors

The RZIF procedure does not merely approximate the nonlinear frequencies via the eigenvalues but also approximates the temporal Fourier coefficients via the eigenvectors.

To understand this, we turn to the argument given by Turton et al. [20] based on the temporal Fourier decomposition to explain the RZIF property. The Fourier decomposition of a periodic solution is written as

U = U + n =0
ûn e inωt (5.24)

where û-n = û * n . We substitute (5.24) into the governing equations and separate the resulting terms of different frequencies. The term n = 0 is the governing equation of the mean field. From equation (5.1) we have

0 = LU + N (U , U ) + m =0 N (û m , û-m ) (i) (5.25)
The Fourier coefficients ûn satisfy the equation

inωû n = Lû n + N (U , ûn ) + N (û n , U ) (ii) + m =0,n N (û m , ûn-m ) (iii) (5.26)
The nonlinear term (i) appearing in equation (5.25) is the Reynolds stress. This term is responsible for the distortion and production of the mean field. The Reynolds stress could be seen as an external force needed for the mean field to satisfy the stationary equations as suggested by Barkley [1]. The term (ii) in equation (5.26) is the linear operator about the mean field. As stated by Turton et al. [20] if the higher order Fourier coefficients are negligible compared to the fundamental mode, then higher harmonic interactions can be neglected (iii). Thus linearization about the mean field leads to an eigenvalue problem with σ = 0. This means that if the time trace has only a single frequency, equation (5.26) for n = 1 leads to the RZIF property:

iωû 1 = Lû 1 + N (U , û1 ) + N (û 1 , U ) = L Ū û1 (5.27)
This argument shows that RZIF implies the equality of the first temporal Fourier coefficient of U (t) and the eigenvector of L U .

We wish to test the validity of this in our system, where

U (x, z, t) = U (x, z) + n =0
ûn (x, z)e inωt (5.28) A slight difference is noted for the concentration field. For traveling waves, because of the horizontal translation symmetry, neither the temporal Fourier coefficients nor the eigenvectors are uniquely defined, but we have chosen the combinations and phases that provide the best match to the traveling waves.

We now wish to compare the Fourier coefficients over our entire range of reduced Rayleigh number r. To do so, we extract the one-dimensional z-profiles of û and ũ as follows. The displacement of a traveling wave in the horizontal direction is equivalent to time translation as shown in figure 5. 1(a). (This property permits us to compute the traveling waves by Newton's method.) Therefore to calculate the temporal mean field and the temporal Fourier coefficients of the traveling waves, we can use an instaneous spatial Fourier transform in the x direction

U (x, z) = U (z) + n =0 ûn (z)e inkx (5.29)
Because U is independent of z, so is the operator L U and its eigenmodes are of trigonometric form, for example: τ (z) cos(kx), c(z) cos(kx), ψ(z) sin(kx) (5.30a) τ (z) sin(kx), c(z) sin(kx), ψ(z) cos(kx) (5.30b)

We computed the traveling waves over a range of reduced Rayleigh number r and calculated their first Fourier coefficients û from the spatial Fourier decomposition (5.29). We also linearized about the mean fields U and computed the eigenvectors ũ. In order to compare û(z) and ũ(z) over the entire range of r values, rather than comparing profiles for each value of r, we combine these one-dimensional functions into two-dimensional representations û(r, z) and ũ(r, z) where at r = r * , û(r = r * , z) = û(z) (5.31)

Figure 5.3 shows the contours of these two-dimensional functions ũ(r, z) and û(r, z) constructed from the leading eigenvectors ũ(z) (dashed curves) and from the normalized Fourier coefficients û(z) (bold curves). The Fourier coefficients of temperature and streamfunction match the eigenvectors from the linearization about the mean fields. The concentration fields match only very near the threshold and diverge drastically when we increase the Rayleigh number. Therefore though the linear analysis about the mean fields matches the nonlinear frequencies, it does less well in matching all the fields of thermosolutal convection. Note that the divergence of the eigenvectors from the Fourier coefficients is significant from r > 2.5, as it is for the frequency shown in figure 5.1(c).

Approximating the mean flow

In the self-consistent model of [9], the distortion of the mean field is assumed to be caused only by the leading mode. In this section, we will determine how many modes are necessary to create the true mean field and therefore to satisfy the RZIF property.

The mean fields U of traveling waves are necessarily homogeneous in the horizontal direction as shown in figure 5.1(b). For x-independent fields, the Poisson bracket (5.3) which corresponds to N (U , U ) vanishes and equation (5.25) is reduced to

0 = ∂ zz U + N m =0 N (û m , û-m ) (5.32)
Thus the mean field satisfies

U = -∂ -1 zz N m =0 N (û m , û-m ) (5.33)
with N the total number of Fourier coefficients. If we consider all temporal Fourier coefficients ûm taken from a direct numerical simulation, solution U of equation (5.33) is the exact mean field. We define U to be the field obtained by truncating (5.33): 

U K = -∂ -1 zz K m =0 N (û m , û-m ) (5.34) 
(This use of the subscript will only apply in this section.)

We approximate the mean fields by truncating the series in (5.34) at order N = 1, N = 2 and N = 3. Figure 5.4 compares the approximated mean fields with the exact mean field.

The temperature is accurately reproduced by the first term whereas the concentration and streamfunction require the first three terms in order to match the exact mean field to the point where they are visually indistinguishable. This result is consistent with that of Turton et al. [20]. They showed peaked spectra for the temperature field of traveling waves implying that the higher harmonics contribute little to the mean field, whereas those of the concentration and streamfunction are not as highly peaked.

We now linearize about the truncated mean fields to study the dependence on truncation level of the accuracy of the estimated nonlinear frequencies. Figure 5.5 shows the same results as figure 5.1(c) but also includes the results of linearization about the truncated mean fields U 1 , U 2 and U 3 . Figure 5.5(b) shows that the frequency obtained by linearization about the first order mean field (plus signs) matches the frequency obtained about the full mean field until r = 2.5 and diverges abruptly from it for r > 2.5. The growth rate shown in figure 5.5(a) also deviates from the marginal stability axis σ = 0 (bold line) at r = 2.5. It is important to point out that reconstructing the mean field only by the first Fourier coefficient increases the initial difference already present between the exact nonlinear frequency and that obtained by linearization about the exact mean field. The frequency about the third-order mean field (stars) matches perfectly that calculated from the full mean field and therefore matches the nonlinear frequency. Moreover, the very small growth rate matches that of the full mean field. We conclude that the third order mean field U 3 is sufficient for the system to satisfy the RZIF property. The second Fourier coefficient has almost no effect on the truncated mean field (figures 5.5(b-c)) nor on the frequency and growth rate. Moreover, if we consider only the first and third coefficients and neglect the second Fourier coefficient, the change in the mean field and in the eigenvalues (stars) is not significant. Nevertheless, we have

N (û 1 , û-1 ) = 7.19 N (û 2 , û-2 ) = 0.057 N (û 3 , û-3 ) = 0.035
i.e. N (û 2 , û-2 ) is greater than N (û 3 , û-3 ) . This result suggests that the amplitudes of the modes for n > 1 are not the only relevant point in the construction of the true mean field.

For completeness, we exhibit the Fourier coefficients ûn themselves. The Fourier coefficients obtained over our range of reduced Rayleigh number are represented as contours of the two-dimensional functions ûn (r, z), defined as before in (5.31). Figure 5.6 shows contours of these functions obtained from the real parts of the first three Fourier coefficients. As suggested in the discussion of figures 5.4 and 5.5, there is an obvious resemblance between the first and third Fourier coefficient. The imaginary parts of the Fourier coefficients (not shown) also present the same resemblance. 
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First-order SCM

We present in this section the result of the self-consistent model (5.35). Figure 5.7 shows the frequency resulting from linearization about the exact mean flow (dots), that about the conductive base state (triangles), the exact frequency of the traveling waves (circles) and the results of the SCM (diamonds). In this method, σ = 0 by construction, as shown in figure 5.7(a). Although the RZIF property is satisfied for the traveling waves, we observe in figure 5.7(b) that the frequency given by the SCM at first order matches the nonlinear frequency only very close to the threshold. Therefore, the SCM fails to predict the nonlinear frequency. This case provides a counterexample to the SCM, showing that the RZIF property does not The assumption that only the leading eigenmode contributes significantly to the distortion of the mean field does not hold. This result is supported by that of section 5.3.3, which showed that the three first modes must be included to recover the mean flow.

As was the case before, the mean field U is independent of x, while U R and U I consist of profiles in z multiplied by trigonometric factors e ikx or cos(kx), sin(kx). In order to compare these profiles over our entire Rayleigh-number range, as we did in figures 5.3 and 5.6, we construct two-dimensional functions of r and z out of the profiles U , U R 1 (z) and U I 1 (z) obtained from SCM and from our full numerical values. Figure 5.9 compares the mean fields obtained by the first order SCM (dashed curves) with the exact mean fields (solid curves). We observe that the prediction of the temperature mean field shown in figure 5.9(a) is quite good. In contrast, the concentration and the streamfunction do not match the exact mean fields. Therefore, the self-consistent model fails to predict the nonlinear frequency and the mean field.

Higher-order SCM

Meliga [12] considered the second order in the SCM model in order to predict the nonlinear frequency and calculate the mean flow of the open cavity. In this section, we investigate the generalized SCM by considering successively higher orders in the terms (i) and (iii) of equations (5.25) and (5.26). We observe clearly that the modes are better resolved when we increase the SCM order. Nevertheless, we note that even at the 4th order we do not reproduce perfectly the exact nonlinear modes Figures 5.12 show the contours of the function û1 (r, z) representing the real part of the first Fourier coefficient compared to the leading mode obtained by the SCM at different orders. We observe that the first modes are quite well predicted at 4th order by the SCM; the 5th order (not shown) improved only very slightly the results of the 4th order SCM. It is obvious that we have to take account the eight orders to have an exact match between the first Fourier coefficient and the mode obtained by SCM.
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Discussion

Thermosolutal convection presents a supercritical Hopf bifurcation that gives rise to two solutions, traveling waves, and standing waves. First, we have reproduced the results of Turton et al. [20]. We have computed the full nonlinear solution of the traveling waves. Then, we have carried out a linear stability analysis about the mean field of this solution and about the conductive state. The frequency (imaginary part of the eigenvalue) obtained by linearization about the mean field matches the nonlinear frequency; moreover, the growth rate (real part of the eigenvalue) is close to zero, showing that the mean field is marginally stable. Therefore, the traveling waves satisfies the RZIF property [20]. In contrast, the base field is unstable with a positive growth rate and the imaginary part of the eigenvalue deviates from the nonlinear frequency right after the threshold.

We then reconstructed the mean flow by considering successively the first, second and the third Fourier coefficients computed from the full nonlinear solution. The mean field is accurately reproduced by considering these three first Fourier coefficients. We have carried out linear stability analysis about the three approximations of the mean field and we have found that the frequency obtained about the mean field reconstructed from the first Fourier coefficient, matches the nonlinear frequency only for r ∈ [2.06, 2.5] and the growth rate is nearly zero over the same range of reduced Rayleigh number. For r > 2.5 the frequency deviates from the nonlinear frequency and the growth rate leaves the marginal stability axis. The mean field reconstructed by considering both the first and the second Fourier coefficients does not improve the results. In contrast, the frequency obtained from the linearization about the mean field constructed from the three first Fourier coefficients matches the frequency obtained about the exact mean field over the entire range of Rayleigh number r ∈ [2.06, 3] and the growth rate is nearly zero. These results already indicate that the self-consistent model will fail to reproduce the nonlinear results.

The self-consistent model developed in [9] couples the mean flow governing equation and the linearized Navier-Stokes equation through the Reynolds stress exerted by the leading eigenmode. It was assumed in [9] that for flows where the RZIF property is satisfied, the SCM reproduces features of the nonlinear dynamics such as the frequency, the amplitude, and the mean fields. We have shown that this assumption is not valid. Indeed, even the exact leading mode (first Fourier coefficient) does not suffice to reproduce the mean field.

We have implemented a full Newton method in order to avoid the convergence difficulties shown by the algorithm of [9]. We have found that for the traveling waves, the SCM predicts the nonlinear features only very near the threshold. To solve the SCM far from the threshold, we have also extended the SCM to take account successively of high orders in the Reynolds stress, which successively improved the predictions. At the fifth order, the amplitude of the leading mode is well predicted but the frequency starts to deviate from the nonlinear frequency for r > 2.8, suggesting that at high Rayleigh number we need to consider even higher orders.

Appendix

Chapter 6

Preliminary studies

We describe in this chapter two preliminary studies, the first on the lid-driven cavity flow and the second on the Bénard prism.

Lid-driven cavity flow

We have studied the dynamics of an incompressible flow in a two-dimensional lid-driven square cavity. We have computed the nonlinear dynamics, the temporal spectra, and the Fourier modes. By a linear stability analysis, we localized the threshold of the Hopf bifurcation. The growth rate σ, which is the real part of the eigenvalue λ, crosses the marginal stability axis at Re = 8018.2 which is in very good agreement with Fortin et al.

[9], Botella & Peyret [7], Auteri et al. [1] and Bruneau & Saad [8]. As in Barkley [3], Turton et al. [14] and for the open cavity presented in Chapter 3, we have investigated the linear analysis of the mean flow of the lid-driven cavity. We observed that the growth rate is close to zero, showing the marginal stability of the lid-driven cavity mean flow and that the imaginary part of the eigenvalue matches the nonlinear frequency. We have therefore added a new configuration for which the RZIF property is satisfied.

This is a preliminary study to prepare to test the self-consistent model of Mantič-Lugo et al. [13] on this geometry by using a full Newton method.

Problem

We present the dynamics of the incompressible flow in a two-dimensional lid-driven square cavity. We impose a horizontal velocity (u = -1, v = 0) at the upper wall and we impose a no-slip boundary condition (u = 0, v = 0) at the other walls. Therefore, the flow is generated by the shear of the lid displacement as shown by the configuration in figure 3.1. As in Botella & Peyret [7] and Auteri et al. [1], the lid moves towards the left. (The flow is by reflection symmetry equivalent to that caused by the lid moving to the right as in Goodrich et al. [10]). The discontinuity in the boundary conditions between the moving lid and the static vertical walls causes the singularities at upper corners of the cavity. Indeed, the discontinuity in the horizontal velocity implies infinite pressure and vorticity as shown by Botella & Peyret [7]. This singularity does not play a major role in the dynamics of the flow and it is mainly a numerical problem for spectral methods. Accordingly, we have not regularized the singularities in this current study. and for thermosolutal convection in Chapter 5. Therefore in this chapter, we will only present the results.

Numerical simulation and validation

Numerical method

This study has been carried out with FreeFEM++ software developed by Hecht [11] written in C ++ as its name indicates. This software is based on finite elements for spatial discretization for solving partial differential equations, more specifically the Taylor-Hood elements with a polynomial element of order one P 1 for the pressure p and of order two [P 2, P 2] for the velocity fields [u, v]. The time is discretized by a Characteristics-Galerkin method; see for example Azaïez et al. [2] and Benítez & Bermúdez [6]. The stationary solution is computed by a Newton-Raphson method. The linear problem is also solved in FreeFEM as a generalized eigenvalue problem with the shift-invert method using the ARPACK library.

Comparaison with literature

The validation of the results consists first of all in verifying that the calculated solution is independent of the mesh resolution. Secondly the accuracy is validated by comparing the solution with the results of Auteri et al. [1]. The computation time of the stationary solution (base flow) is much smaller than that of the temporal integration. Therefore, the mesh convergence and the accuracy have been checked on the stationary solution and also on eigenvalues obtained for different Re by the linear stability analysis about the base flow as shown in figure 6.3.

The accuracy of the solution has been verified on the streamwise and vertical velocities at the cavity midplane. We observe that even though the mesh is not very fine, we obtain very good agreement with Auteri et al. [1], who used finite differences for space discretisation with a structured mesh resolution of 1024 × 1024. The frequency ω = (λ) is more sensitive to the mesh resolution than the growth rate. Indeed, the frequency is approximately independent of the mesh when the mesh attains 292539 n d.o.f cf. Tab 6.1.

is indistinguishable from that of Auteri et al. [1] even though we used a relatively coarse mesh with 48039 n d.o.f .

In the next section, we will study the dependence of the solution on the mesh resolution.

Mesh refinement

The different mesh resolutions tested and the thresholds Re c of the first Hopf bifurcation obtained for each mesh resolution are listed in Table 6.1. 3(a) shows the evolution of the maximum of the horizontal velocity u max = max(u(0.5, y)) in the vertical direction at the center of the cavity and Re = 9000 for different unstructured meshes. We observe that the solution begins to be independent of the mesh resolution from 292539 n d.o.f . The results of the linear stability analysis about the base flow for the different meshes are presented in figures 6.3(b-c). Figure 6.3(b) shows that the growth rate σ is not very sensitive to the mesh resolution and thus the threshold of the bifurcation is not significantly impacted as shown by table 6 In this preliminary study, we will use the mesh with a resolution of 48039 n d.o.f , which corresponds to mesh II in table 6.1. For our definitive study, we will increase the resolution and use mesh IV to study the self-consistent model applied in this geometry.

Results

Nonlinear dynamics

The flow is produced by the shearing of the cavity lid displacement. The stationary stable flow (base flow) at low Reynolds number consists of a global recirculation that is reflection symmetric with respect to the vertical midplane and attached by the shear layer to the moving lid as showed by Kawaguti [12]. This recirculation is surrounded by a shear boundary layer developing on the other walls. This stationary solution becomes unstable at high Reynolds number. The breaking of the reflection symmetry occurs through a Hopf bifurcation at the threshold Re c = 7943.4. This threshold is calculated from linear stability analysis about the base flow by linear interpolation of the growth rates, which is in good agreement with the result of Auteri et al. [1]. The 0.9% difference is due to the coarse mesh. Indeed, the difference between the threshold obtained with the highly resolved mesh V shown in table 6.1 with that of Auteri et al. [1] is only 10 -4 . For Re > Re c the base flow exists but is unstable. The perturbation moves from the base state to a time-periodic state as shown by the time trace of the velocity u(x 1 , y 1 ) at (x 1 , y 1 ) = (0.7, 0.87) in figure 6.5(a). In figure 6.4 we show the streamfunction fluctuations ψ of the time-periodic flow at Re = 8400 over a period T spaced by quarter of a period. The flow consists of five counter-rotating vortices attached to the right wall, and originates from a shear instability. These vortices are stretched and entrained by the shear layer that develops just below the moving lid and rotates within the cavity following by inertia the global recirculation. The vortices in figure 6.4 rotate in a counterclockwise sense because the lid moves to the left. We observe also the correspondence between the quarter period and the quarter spatial phase shift typical of traveling waves. The phase shift between the real and imaginary part is in a clockwise sense, the opposite to that shown in figure 6.4, wich can be shown to be as expected.

Linear stability analysis about the base and mean flow

In Figure 6.7 we show the results obtained by linear stability analysis about the base flow and by linearization about the mean flow. Figure 6.7(a) shows the zero crossing of the growth rate σ obtained about the base flow (crosses). This indicates that the base flow is unstable and locates at the same time the Hopf bifurcation threshold at Re c = 7943.4. Figure 6.7(b) shows that the frequency ω obtained from linear stability analysis about the base flow matches the nonlinear frequency (stars) at the threshold and diverge from it when increasing the Reynolds number. Whereas the frequency obtained by linearization about the mean flow matches exactly the nonlinear frequency near the threshold and deviates only slightly when increasing the Re. In addition, the growth rate obtained about the mean flow is very close to zero. This result confirmes that the RZIF property is satified in this case.

The base flow at Re = 8400 (figure 6.8(b)) presents a primary recirculation at the center of the cavity with secondary recirculations on the corners. The mean flow computed from the nonlinear simulation is very similar to the base flow as shown by the very small distortion in figure 6.8(b). 

Conclusion

In this study, we have validated our simulation with respect to the literature. We have described briefly the dynamics of lid-driven cavity flow. Importantly, we have confirmed by means of linear stability analysis about the base flow and linearization about the mean flow that the RZIF property is satisfied in this configuration. case of vortex shedding behind a circular cylinder, no previous study has until now been carried out for the prismatic geometry used by Bénard to discover and to measure the alternating rows of the vortex street. In the next section we describe our theoretical and numerical study of this problem. In order to find predictions of the exact value of the observed frequency in the experiments, linear stability calculations must be performed which take into account the nonlinear modified mean flow profile U (x, y) around the bluff body which induces the vortex shedding.

The velocity fluctuations and quadratic nonlinearities of the Navier-Stokes equations governing the flows generate a distortion of this average flow profile around the obstacle. As a consequence, its instability depends on this self-regeneration. Therefore, the first step for this theoretical analysis is to estimate the mean flow around the body. This can be done from experimental measures or by direct numerical simulation (DNS). The geometry of the bluff body used in our calculations is one of the cases treated by Bénard (see figure 6.13), more specifically that for which L = 2 cm and D = 0.4 cm with an angle of 22 • in the upstream extremity. We have used FreeFem++ Hecht [11] with the same methods for time integration, steady state solving and stability analysis as for the lid-driven cavity. Our domain is [-25, 50] × [-20 , 20] with the point of the arrow located at the origin. The mesh has 174 000 degrees of freedom.

From these base and mean flow profiles we can observe the change of the time-averaged recirculation length, which grows with Reynolds number. When the flow is unsteady, the recirculation length of the mean flow is smaller than that of the corresponding base flow due to the nonlinear modification of the mean flow. This behaviour has also been observed numerically and experimentally in similar configurations, such as trapezoidal and circular cylinders, e.g [3].

We have studied the stability of both the base and time-averaged mean flow profiles. We observe in figure 6.15 that the growth rate for the equations linearized about the base state is positive, whereas when the governing equations are linearized about the time-averaged profile produced by vortex shedding, the growth rate is zero.

In addition, we display the values of the frequency obtained by the nonlinear numerical simulation (DNS) and the original experimental results of Bénard for one series of measurements performed on the prismatic body of L = 4 cm and D = 0.2 cm. Only the linear stability calculation about the time-averaged mean flow agrees very well with the DNS results. In addition, there is agreement with the values obtained 110 years ago by Bénard.

It was necessary to wait nearly eighty years to understand the frequency dependence or similarity law arising from a hydrodynamic supercritical Hopf bifurcation such as the vortex shedding behind bluff bodies. Chapter 7

Conclusion and perspectives

Each chapter of this manuscript has its own conclusion. We will summarize the results here as an overall conclusion and propose some perspectives.

Within this thesis, we have studied various flows undergoing oscillations through a Hopf bifurcation: open shear-driven square cavity flow, Taylor-Couette flow, thermosolutal convection and also two preliminary studies (the lid-driven cavity flow and the flow around a prismatic object). The central line of this thesis is the ability of a linear analysis to give information about nonlinear flows such as the frequency. In most cases, classic linear stability analysis about the base flow fails to predict the nonlinear frequency. However, linearization about the time-averaged mean flow predicts the nonlinear frequency for most flows even though the mean flow is not an equilibrium solution of the Navier-Stokes equations. Barkley [1] found that linearization about the mean flow of a cylinder gives a growth rate near zero indicating that the mean flow is marginally stable. This property has been named RZIF, meaning that the real part of the eigenvalue is near zero and the imaginary part is near the nonlinear frequency.

We carried out direct numerical simulations to study the nonlinear dynamics of the flow in the shear-driven cavity over the range of Re = [4000, 5000]. We constructed the full bifurcation diagram which shows two successive Hopf bifurcations leading to limit cycles each of which exhibits a different frequency and a different numbers of structures in the mixing layer region. There is a range of Reynolds number where these two limit cycles coexist and are separated by a quasiperiodic state. We approximated the unstable quasiperiodic state by using the edge state technique. We then studied its Fourier spectrum for different Reynolds numbers showing that it is a nonlinear combination of the two limit cycles. We also carried out a Floquet analysis that confirmed the results obtained from the DNS.

The second goal of this study is to understand which information of the nonlinear dynamics could be obtained from a linear analysis around the base and mean flow. For the open shear-driven cavity, the linear analysis about the stationary solution gives a quite good prediction of the nonlinear frequency, but linearization about the mean flow gives a better prediction. Moreover, the growth rate has been significantly damped and therefore approaches the marginal axis. For the cavity, it is the geometry that drives the frequency selection and therefore the nonlinear interactions do not play a significant role. This is the Section reason for which the linear stability about the base flow gives a good prediction.

Since in this problem, there are two limit cycles, the eigenvalue spectrum obtained from linear stability analysis about the mean flow shows a mode that corresponds to the other limit cycle and vice versa. These eigenmodes indicate qualitatively the same stability behavior as the limit cycles with respect to one other: as the Reynolds number is increased, the real part of one eigenvalue decreases from positive to negative for the limit cycle which undergoes stabilization via a secondary bifurcation and increases from negative to positive for the limit cycle which undergoes a destabilization. As this behavior is only qualitative, it is important to further analyze other hydrodynamic flows and it is necessary to bring more theoretical understanding in order to clarify if it is a systematic behavior. The generalization of the mean flow analysis to the quasiperiodic state would be also an interesting perspective to pursue after this work.

The RZIF property has been validated on various examples: cylinder wake, open sheardriven square cavity flow, lid-driven cavity flow, flow around a prismatic object. However, satisfaction of the RZIF property by the mean flow is not systematic for all nonlinear flows undergoing a Hopf bifurcation. Turton et al. [4] studied thermosolutal convection which is governed by a thermal and solutal gradient. This problem undergoes a supercritical Hopf bifurcation which in the presence of O(2) symmetry gives rise to two solutions: traveling and the standing waves. The linear stability analysis around the conductive state fails to predict the nonlinear frequency. Linearization about the mean of the traveling waves gives almost exactly the nonlinear frequency and the growth rate matches the marginal stability axis. However, linearization about the mean flow fails completely for the standing waves.

One explanation about why it works, based on the Fourier spectra, has been proposed. Turton et al. [4] argued that satisfaction of the RZIF property is justified by its peaked spectrum and the failure of the standing waves by its broad spectrum.

To confirm or invalidate this result we sought to investigate another pair of hydrodynamic traveling and standing waves. In counter-rotating Taylor-Couette flow, traveling and standing waves exist respectively in the form of spirals traveling upwards and downwards and ribbons. The ribbons are standing waves in the axial direction i.e. equal superpositions of axially-upwards and axially-downwards traveling waves. Linearization about the mean flow of these two branches shows that the RZIF property is valid for both of them. It appears that the spectrum of the spirals and ribbons are both peaked as is the case for the traveling waves in thermosolutal convection problem.

During this work, we have discovered two heteroclinic cycles, one non-axisymmetric and the other axisymmetric. Both cycles share the same saddles, which are axisymmetric states containing two axially stacked pairs of vortices. By computing the growth rate of approach to (departure from) one saddle state, we have been able to clarify the linear dynamics leading to this two heteroclinic cycles. These successive cycles are not documented and will be investigated in depth in the future.

Mantič-Lugo et al. [2] assumed that in the case of RZIF only the first leading mode contributes to the mean flow distortion. From this assumption, they developed the self-consistent model (SCM) to describe the amplitude saturation process without time integration. This model is a coupled system consisting of the mean flow equation and the linearized Navier-Stokes equations. The Reynolds stress term in the mean flow equation
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 1 Figure 1.1 -(a) von-Kármán vortex street behind the Juan Fernandez Island, by Shannon [14]. (b) Kelvin-Helmholtz instability over Mount Shasta by Shannon[13]. (c) von-Kármán vortex street behind a cylinder by Wagner[18]. (d) Kelvin-Helmholtz instability around an airfoil by GmbH[4] 
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 12 Figure 1.2 -Schematic illustration of the concept of stability. (a) The hollow balls are on the top of hills. These positions are unstable equilibrium states. The filled ball is in the valley, which is a stable equilibrium state. (b) The hollow ball positioned on a flat plate is marginally stable.

Figure 1 . 3 -

 13 Figure 1.3 -(a) The imaginary part (frequency) and (b) the real part (growth rate) of the eigenvalue. The nonlinear frequency is shown as a bold curve, the thin curve shows the results predicted by linear stability analysis about the base flow and the triangles show the results obtained from linearization about the mean flow. From Barkley [2].
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 14 Figure 1.4 -Description of the saturation and mean flow distortion. (a) Base flow, (b) Temporal mean flow, (c) snapshot of the vortex shedding, (e) time evolution of the velocity at the point (x 1 = 2, y = 1) from the base flow (black square) until saturation. From Barkley [2]. (d) Sketch of the transient wake dynamics (modified from Tadmor et al. [15]).
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 2 Figure 2.1 -(a) Trainée tourbillonnaire de von-Kármán observée derrière l'île Juan Fernandez, par Shannon [14]. (b) instabilité de Kelvin-Helmholtz observée au-dessus du mont Shasta, par Shannon [13]. (c) Trainée tourbillonnaire de von-Kármán observée derrière un cylindre par Wagner [18]. (d) Instabilité Kelvin-Helmholtz observée autour d'un profil d'aile, par GmbH [4]
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 22 Figure 2.2 -Illustration schématique du concept de stabilité. (a) Les balles blanches sont positionnées au sommet des collines. Ces positions sont des points d'équilibres instables. La balle noire est positionnée dans la vallée, qui est une position d'équilibre stable. (b) La balle blanche positionnée sur une plaque plane est marginalement stable.
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 23 Figure 2.3 -(a) La partie imaginaire (fréquence) et (b) la partie réelle (taux de croissance)de la valeur propre. La fréquence non linéaire est montrée par la courbe en gras et la courbe fine montre les résultats prédits par l'analyse de stabilité linéaire autour de l'écoulement de base. Les triangles montrent les résultats obtenus à partir de la linéarisation autour de l'écoulement moyen.Barkley [2] 
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 24 Figure 2.4 -Description de la saturation et distorsion de l'écoulement moyen. (a) écoulement de base, (b) écoulement moyenné dans le temps, (c) instantané de la trainée tourbillonnaire, (e) évolution temporelle de la vitesse au point de (x 1 = 2, y = 1) de l'écoulement de base (carré noir) jusqu'à saturation. Barkley [2]. (d) Vision schématique de la transition du sillage dynamique (modifié à partir de la figure de (Tadmor et al. [15]))
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 31 Figure 3.1 -Geometry of our study. At the inlet (BC inlet ) a uniform unit velocity (u = 1 ; v = 0) is imposed. Dashed red line: free-slip condition (BC free-slip ). Thick blue line: no-slip boundary condition (BC no-slip ). A free-outflow boundary condition is imposed at the outlet.
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 32 Figure 3.2 -Time traces of streamwise velocity at Re = 4460 for two simulations. The initial condition of the simulation is (3.13). For α = 0.47562027 the system evolves towards LC 2 , shown as the black curve. For α = 0.47562256 it evolves towards LC 3 , shown as the higher-amplitude red curve.
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 1231433 Figure 3.3 -(a) Time series of streamwise velocity at (x 1 , y 1 ) = (1.2, 0.2) and Re = 4580 for a simulation with α = 0.829630407714844. The regimes corresponding to QP and to LC 3 are shown in (b-c). (d) The standard deviation is computed by a sliding window.
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 3 3(d) shows two regimes of constant ξ(U ) corresponding to QP and LC 2 , justifying the choice of ξ(U ) for the bifurcation diagram.
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 3 Figure 3.4(b) shows the schematic phase portraits corresponding to the bifurcation diagram.The stable base flow (i) loses its stability through a primary Hopf bifurcation (ii) at Re 2 producing the limit cycle LC 2 . (iii) Another primary Hopf bifurcation at Re 3 produces the limit cycle LC 3 . (iv) A secondary subcritical Hopf bifurcation from LC 3 at Re 3 produces the quasiperiodic state QP , which moves (v) in phase space towards LC 2 until it undergoes another secondary subcritical Hopf bifurcation (vi) at Re 2 which destroys QP and destabilizes LC 2 . Above Re 3 , LC 3 is stable at least until Re = 5000. Another Hopf bifurcation and interesting dynamics occur above Re = 5000 but these will not be discussed in this paper.
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 34 Figure 3.4 -(a) Bifurcation diagram of the shear-driven cavity flow for Re ∈ [4000, 5000].On the x-axis, we show the Reynolds number Re and on the y-axis the standard deviation from the mean of the streamwise velocity at one point. The bold dots on the curves and the thick ticks on the x-axis show the critical Reynolds numbers. The integers show the number of unstable directions (counting a complex conjugate pair as a single direction). We represent stable states by bold curves and unstable ones by dashed curves. The line ξ(U ) = 0 indicates the stationary base flow. The first Hopf bifurcation occurs at Re 2 ≈ 4126 and the second at Re 3 ≈ 4348. These two thresholds have been calculated by a quadratic interpolation from the amplitudes. The Hopf bifurcations give rise to limit cycles LC 2 and LC 3 . LC 2 is stable from its threshold until Re 2 ≈ 4600 where it loses stability to LC 3 . LC 3 is unstable from Re 3 to Re 3 ≈ 4410 and above this Reynolds number it becomes stable. Between LC 2 and LC 3 in the overlap region Re ∈ [4400, 4600] there exists a quasiperiodic state QP , which has been computed by using αLC 2 + (1 -α)LC 3 as an initial condition for the full nonlinear simulation where α = α(Re). (b) From left to right, the schematic phase portraits corresponding to the bifurcation diagram. The ordinate and abcissa can be considered to be projections onto the eigenmodes leading to LC 2 and LC 3 , respectively. The black dots and hollow circles show the stable and unstable states. (i) Stable base flow. (ii) Limit cycle LC 2 is shown as bifurcating in the vertical direction. (iii) LC 3 bifurcates in the horizontal direction. (iv,v) The circle moving on the orbit indicates the quasiperiodic state QP . (vi) QP has disappeared, stabilizing LC 3 .

  Figure 3.4 -(a) Bifurcation diagram of the shear-driven cavity flow for Re ∈ [4000, 5000].On the x-axis, we show the Reynolds number Re and on the y-axis the standard deviation from the mean of the streamwise velocity at one point. The bold dots on the curves and the thick ticks on the x-axis show the critical Reynolds numbers. The integers show the number of unstable directions (counting a complex conjugate pair as a single direction). We represent stable states by bold curves and unstable ones by dashed curves. The line ξ(U ) = 0 indicates the stationary base flow. The first Hopf bifurcation occurs at Re 2 ≈ 4126 and the second at Re 3 ≈ 4348. These two thresholds have been calculated by a quadratic interpolation from the amplitudes. The Hopf bifurcations give rise to limit cycles LC 2 and LC 3 . LC 2 is stable from its threshold until Re 2 ≈ 4600 where it loses stability to LC 3 . LC 3 is unstable from Re 3 to Re 3 ≈ 4410 and above this Reynolds number it becomes stable. Between LC 2 and LC 3 in the overlap region Re ∈ [4400, 4600] there exists a quasiperiodic state QP , which has been computed by using αLC 2 + (1 -α)LC 3 as an initial condition for the full nonlinear simulation where α = α(Re). (b) From left to right, the schematic phase portraits corresponding to the bifurcation diagram. The ordinate and abcissa can be considered to be projections onto the eigenmodes leading to LC 2 and LC 3 , respectively. The black dots and hollow circles show the stable and unstable states. (i) Stable base flow. (ii) Limit cycle LC 2 is shown as bifurcating in the vertical direction. (iii) LC 3 bifurcates in the horizontal direction. (iv,v) The circle moving on the orbit indicates the quasiperiodic state QP . (vi) QP has disappeared, stabilizing LC 3 .
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 35 Figure 3.5 -Stationary solution (base flow). (a) Ω b over the domain for Re = 4500. (b) Vorticity profiles Ω b (x = 0.5, y) for Re = 4200, 4500, 5000, 6000. The major change in the base flow with Reynolds number is localised on the shear layer region and at the bottom of the cavity.
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 336 Figure 3.6 -Instantaneous visualisations of LC 2 at Re = 4500. The left column (a,b,c) shows the spanwise vorticity Ω 2 , the horizontal velocity u 2 , and the vertical velocity v 2 . The right column (d,e,f) shows the fluctuations, obtained by subtracting the mean, e.g.Ω 2 = Ω 2 -Ω 2 ,where Ω 2 is the average over one temporal period. The mean fields Ω 2 , u 2 , v 2 are almost identical to the instantaneous fields and are therefore not shown.
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 37 Figure 3.7 -Instantaneous vertical velocity fluctuations (v = v -v ) for LC 2 over one period for Re = 4500. (a) t = 0 (b) T /4 (c) T /2 (d) 3T /4. The structures are advected downstream, as they would be for a traveling wave. In the range of the cavity x ∈ [0, 1] we count two maxima of the vertical velocity fluctuations. The velocity contours are deformed downstream for x > 1.2, due to the change to a free-slip boundary condition.
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 38 Figure 3.8 -Instantaneous vertical velocity fluctuations (v = v -v) for LC 3 over one period for Re = 4500. (a) t = 0 (b) T /4 (c) T /2 (d) 3T /4. We observe the same dynamics as in LC 2 shown in figure 3.7. Over the range x ∈ [0, 1] we count three maxima of the vertical velocity fluctuations.
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 39 Figure 3.9 -Eigenvalues σ + iω from linear stability analysis about the base solution with blue and red crosses, and nonlinear frequency from DNS simulation with black stars. (a,c): Growth rate σ of the most unstable eigenmode. In this range of Reynolds number, are two successive Hopf bifurcations as shown in the bifurcation diagram of figure 3.4. The growth rates for eigenvalues leading to LC 2 and LC 3 are shown with blue and red stars respectively. (b,d ): Frequency ω of linear stability analysis about the base state and nonlinear simulation. The nonlinear and linear frequencies agree at onset, but when we increase the Reynolds number the nonlinear frequency deviates from that resulting from linear stability about the base flow.
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 3 Figure 3.10 -Spectra of complex-conjugate eigenvalues of the base flow for (a) Re = 4200, (b) Re = 4500, (c) Re = 5000. Blue circles designate the converged eigenvalues and red stars the eigenvalues that did not converge. In these figures we observe the evolution of modes leading to LC 2 and LC 3 . The third converged mode, which is stable in this range of Reynolds number, crosses the imaginary axis for Re ≈ 6000 (not shown).
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 311 Figure 3.11 -Vertical velocity of the real parts of the leading unstable eigenmodes about the base flow at Re = 4500. (a,b) LC 2 and (c,d ) LC 3 .
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 312 Figure 3.12 -Vorticity fluctuations above the cavity Ω (x, y = 0.05) over one period. We observe the behavior of a traveling wave for (a) LC 2 and (b) LC 3 . Because the wavelength evolves in space, we calculate the average wavelength λ as shown in figure (c), in solid and dashed line for LC 2 and LC 3 respectively. The mean wavelength is near 0.5 for LC 2 and near 0.4 for LC 3 .
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 3 Figure 3.11(a,b) shows the real parts of the eigenvectors leading to LC 2 and to LC 3 . We observe two vertical velocity fluctuation maxima on LC 2 and three on LC 3 , as was mentioned in the discussion of figures 3.7 and 3.8.

  Figure 3.13 -Hilbert transform of vorticity fluctuations Ω (x, y = 0.05). (a,b): vorticity fluctuation, its spline interpolation and the modulus of the Hilbert transform, which is the envelope of the signal. (c):The ratio between the real and imaginary parts of the Hilbert transform is the phase whose evolution is shown for LC 3 (red) and for LC 2 (blue). Linear fits to the phases Φ i are shown by dashed and dotted curves

Figure 3 .

 3 13(c) shows the phase Φ(x) for LC 2 and LC 3 . The slope of Φ(t) is the wavenumber k. We show with dashed and dotted lines the linear regression calculated over x ∈ [0.5, 1.5]. The wavenumber for LC 2 obtained in this way is k = 12.115 and that for LC 3 is k = 16.045, leading to wavelengths λ 2 = 0.519 and λ 3 = 0.392. These values are fairly close to the values λ 2 = 0.56 and λ 3 = 0.39 obtained by measuring wavelengths, as shown in figure3.12. The value λ 2 ≈ 0.5 justifies our designation of LC 2 as containing two vertical velocity fluctuation maxima, since L/λ 2 ≈ 2, but the value λ 3 ≈ 0.4 leads to L/λ 3 ≈ 2.5 rather than 3.

  Figures 3.2 and 3.3(b) show the time series corresponding to the

. 20 )

 20 For t = T b , we have e inω b T b = e inω b (2π/ω b ) = e in2π = 1 and so (3.20) becomes U(x, y, T b ) = U LC (x, y, T b ) + e σ F 2π/ω b e i2πω F /ω b n u F,n (x, y) + c.c. (3.21) with µ ≡ e σ F 2π/ω b the modulus and θ ≡ 2πω F /ω b the argument of the Floquet multipliers.
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 3 Figure 3.15 shows the Floquet multipliers for both limit cycles in the complex plane. All Floquet multipliers (dots) are inside the unit circle, meaning that the corresponding limit cycles are stable at these Reynolds numbers. Figures 3.15(a,b) show the results for LC 2
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 315 Figure 3.15 -Floquet multipliers for LC 2 : (a) Re = 4500, (b) Re = 4600, and LC 3 : (c) Re = 4420, (d ) Re = 4500. The small boxes are enlargements of the region surrounding the dominant Floquet multiplier.

Figure 3 .

 3 Figure 3.16 -Distortion of the mean flow (Ω * = Ω -Ω b ). For LC 2 at (a) Re = 4200 and (b) Re = 4500 . For LC 3 at (c) Re = 4500 and (d ) Re = 5000. The distortion measures the deviation of the mean flow from the base flow due to nonlinear interaction and increases with Reynolds number.

  which is shown for LC 2 at Re = 4200 and 4500 in figure 3.16(a,b) and for LC 3 at Re = 4500 and 5000 in figure 3.16(c,d). Nor do we show the eigenmodes obtained by linearizing about the mean flow, since they resemble those obtained from linearizing about the base flow (figure 3.11) as well as the nonlinear vertical velocity fluctuations (figures 3.7 and 3.8).
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 317 Figure 3.17 -Eigenvalues σ + iω from linear stability analysis about the base and mean flows of LC 2 and LC 3 . The eigenvalues about the base flow are plotted with crosses. Linear stability about the mean flow is shown with circles. The nonlinear frequency from DNS is plotted with black stars. (a,c):The growth rate σ for LC 2 for the mean flow is nearly zero but that of LC 3 is smaller than that about the base flow, but not enough to be considered to be neutrally stable. (b,d ): The imaginary parts of the eigenvalues are almost exactly equal to the nonlinear frequencies, especially for LC 2 . For LC 3 , although the imaginary part of the eigenvalue and the nonlinear frequency are necessarily equal at onset, the two diverge slightly as Re increases.
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 318 Figure 3.18 -Temporal spectra of streamwise velocity normalized by the fundamental frequency for LC 2 and LC 3 . (a) Spectra of LC 2 at Re = 4200 and Re = 4500. (b) At Re = 4500 for LC 2 and LC 3 . (c) At Re = 4500 and Re = 5000 for LC 3 . (d ) Spectra of LC 2 and LC 3 at Re = 4200 and Re = 5000 respectively.
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 320 Figure 3.20 -Eigenvalues σ + iω from linearization about the base and mean flows. Here the spatial form of the eigenvector does not correspond to that of the mean flow. The eigenvalues about the base flow are plotted with crosses, blue for LC 2 and red for LC 3 . The eigenvalues of mode two about the mean flow of LC 3 are shown with red circles and that of mode three about the mean flow of LC 2 with blue circles. The nonlinear frequencies from DNS are plotted with black stars for LC 2 and LC 3 . (a) The growth rate of mode two about the mean of LC 3 (red circles) decreases from the threshold Re 3 ≈ 4348 of LC 3 and becomes negative at Re ≈ 4681. This may correspond qualitatively to the fact that LC 3 is unstable to mode 2 perturbations when it is created at Re 3 and becomes stable at Re 3 ≈ 4410. (c) The growth rate of mode three about the mean of LC 2 (blue circles) increases from the threshold Re 2 ≈ 4126 of LC 2 and becomes positive at Re ≈ 4418.This may correspond qualitatively to the fact that LC 2 is stable when created at Re 2 and becomes unstable at Re 2 ≈ 4600.

Figure 3 .

 3 20 shows the cross-eigenvalues corresponding to mode two, obtained by linearization about the mean flow of LC 3 (circles, figure3.20(a,b) and those of mode three about the mean flow of LC 2 (circles, figure3.20(c,d). The eigenvalues obtained from the base and from the mean necessarily agree at Re 2 for LC 2 and at Re 3 for LC 3 , since when the limit cycles are created, the base and mean flows are equal.
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 321 Figure 3.21 -Spectra of the base flow for (a) Re = 4200, (b) Re = 4500, (c) Re = 5000.Blue circles designate the converged eigenvalues and red stars the eigenvalues that did not converge. Horizontal lines emphasize the fact that the frequencies are equally spaced.

  ; Rockwell & Naudascher 1978; Rowley et al. 2002; Gloerfelt 2009; Yamouni et al. 2013).
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 41 Figure 4.1 -Nonlinear spirals (top) and ribbons (bottom) at Re = -550. The deviation from laminar Couette flow is shown. Spirals of the opposite helicity exist and have identical properties but are not shown. a) (θ, z) velocity (arrows) with u r (colors) at r = 1.26, near the maximum of the deviation from laminar Couette flow. b) (r, z) velocity (arrows) with u θ (colors).
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 42 Figure 4.2 -a) Bifurcation diagram for spirals and ribbons. Square root of kinetic energy of the deviation from laminar Couette flow is shown as a function of Re. The ribbons are stable where shown, while the spirals are calculated by using a spiral initial condition. b) Frequencies of spiral and ribbon states as a function of Re.
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 4434445 Figure 4.3 shows the temporal means of the nonlinear spiral and ribbon states shown in figure 4.1 at Re = -550.Since spirals are traveling waves in both the θ and the z direction, their temporal means are equivalent to their spatial means and have no dependence on either direction. Ribbons are traveling waves in the θ direction and so their means have no θ dependence. We set U in the linearized equations (4.2) to the mean flows of spirals or ribbons shown in figure4.3 and initialize u with fields of the spiral or ribbon form, respectively. We then integrate until the growth rate and the frequency are constant. The resulting field u(t) then cycles between the real and imaginary parts of the eigenvector
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 4647 Figure 4.6 -Same as figure 4.5 with additional eigenvalues. The hollow circles are eigenvalues corresponding to spiral eigenvectors. The dark green circles (upper set) are obtained by linearizing around a mean spiral flow whose orientation is opposite to that of the eigenvector while the blue ones (lower set) are obtained by linearizing around the mean flow of a ribbon.
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 4 4 shows samples of these eigenvectors. These greatly resemble the deviations of the corresponding nonlinear flows from laminar Couette flow shown in figure4.1 and resemble even more the usual eigenvectors of spiral and ribbon form resulting from linearization about laminar Couette flow.
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 4 Figure 4.5 presents the main result of this section, namely that both the spirals and the ribbons satisfy the RZIF property. The growth rates or real parts of eigenvalues are shown in figure4.5a and the frequencies or imaginary parts are shown in figure4.5b. The solid curves show the frequencies obtained from nonlinear simulations. Linearization about the mean flows of spirals (red crosses) or of ribbons (blue stars) lead to eigenvalues whose imaginary parts agree with the nonlinear frequencies. The corresponding growth rates are seen to be near zero, i.e. the mean flows are nearly marginally stable. (This has no relation to the marginal stability of the full spirals or ribbons to shifted versions of themselves, which arises from their θ or z dependence in a homogeneous domain.) Thus, both the spirals and the ribbons satisfy the RZIF property. This contrasts with the thermosolutal case, in which the traveling waves satisfied the RZIF property, while the standing waves did not.
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 48 Figure 4.8 -Non-axisymmetric heteroclinic cycle at Re = -502. Colors show the radial velocity in a (θ, z) slice at r = 1.26. The first (top left) and last (bottom right) visualizations show the saddles which anchor the heteroclinic cycles. These contain two pairs of axisymmetric vortices and differ by an axial phase shift of a single vortex. The visualizations between the two illustrate the excursion or rapid transition between the two saddles, via states which resemble ribbons.
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 494 Figure 4.9 -Timeseries for a) oscillatory and non-axisymmetric heteroclinic cycle at Re = -502 and for b) non-oscillatory and axisymmetric heteroclinic cycle at Re = -490.Top: complete timeseries alternating between two plateaus. Middle: enlargements of timeseries. a) enlargement of a single period from a non-axisymmetric cycle, with further enlargement around the excursion. The differences between the growth/decay rates and frequencies during the spiralling approach and departure are clear. b) enlargements near the peaks of the excursions, highlighting their variation. Bottom: Logarithmic plot of energy, which grows and decays exponentially. The non-axisymmetric energy is shown in black and, for the axisymmetric heteroclinic cycle, the energy corresponding to axisymmetric but axially antisymmetric modes is shown in red. Both types of heteroclinic cycles have the same plateaus, up to numerical roundoff.
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 411 Figure 4.11 -Axisymmetric heteroclinic cycle at Re = -490. Colors show the radial velocity in a (θ, z) slice at r = 1.26. The first (top left) and last (bottom right) visualizations show the saddles which anchor the heteroclinic cycles. These contain two pairs of axisymmetric vortices and differ by an axial phase shift of a single vortex. For this heteroclinic cycle, the states remain axisymmetric throughout the rapid transition between the two saddles.
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 4 Figure 4.12 -Rate of approach to and departure from saddles as a function of Re. These are the slopes of the logarithmic plots of figure 4.9 and also the real parts of the leading eigenvalues. a) Non-axisymmetric oscillatory heteroclinic cycle. The cycle exists when the eigenvalues are of opposite sign, here for Re < -476. The cycle is stable within the space of these eigenmodes when the rate of approach exceeds the rate of departure, here for Re > -522. b) Axisymmetric non-ocillatory heteroclinic cycle. The cycle exists when the eigenvalues are of opposite sign, here for Re > -502. The cycle is stable within the space of these eigenmodes when the rate of approach exceeds the rate of departure, here for Re < -482.
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 4 Figure 4.13 -a) Imaginary parts of eigenvalues involved in non-axisymmetric oscillatory heteroclinic cycle. b) Real parts of eigenvalues involved in both heteroclinic cycles, axisymmetric and non-axisymmetric. Non-axisymmetric cycles are observed for Re < -496, when the largest eigenvalue (departure rate, dark green circles) corresponds to a nonaxisymmetric eigenpair. Axisymmetric cycles are observed for Re > -496, when the largest eigenvalue (blue stars) corresponds to an axisymmetric eigenvector. The other endpoints of the stability ranges, shown as the black rightwards and red leftwards arrows, involve the next-to-largest eigenvalues (rates of approach, red diamonds and black squares); see figure 4.12 and its caption. Summarizing, the stability range of the non-axisymmetric cycle is Re ∈ [-522, -496], while that of the axisymmetric cycle is Re ∈ [-496, -482], which matches our observations.

  ; Rockwell & Naudascher 1978; Rowley et al. 2002; Gloerfelt 2009; Yamouni et al. 2013).

Figure 5 .

 5 1(a) shows the evolution of the field components over one temporal period spaced by a quarter of a period. The temperature Θ is in phase opposition with concentration C and the streamfunction Ψ.

Figure 5 .

 5 1(b) shows the mean fields, which are homogenous in the horizontal direction.

Figure 5 .

 5 1(c) shows the results of linear stability analysis about the conductive and mean fields compared to the exact nonlinear frequency of the traveling waves. All frequencies match at the threshold r c = 2.06[20] as they must for a supercritical Hopf bifurcation, but only the frequency about the mean field follows the nonlinear frequency when we increase the Rayleigh number. The imaginary part of the eigenvalue ω obtained by linearization about the mean field matches almost exactly the nonlinear frequency. In contrast, the frequency obtained by linearizing about the conductive base state and shown as triangles diverges completely from the nonlinear frequency. The real part of the eigenvalue shows the growth rate which indicates whether the field about which

Figure 5 . 1 -

 51 Figure 5.1 -(a) Evolution of traveling waves over a period T for temperature Θ, concentration |S|C and the streamfunction Ψ for r = 2.5, L = 0.1, S = -0.5, P r = 10. (b) Mean fields of Θ, |S| C and Ψ. The horizontal invariance of the temporal mean fields in x is a consequence of the equivalence of time and space translation for traveling waves. (c) Exact nonlinear frequencies ω of TW (•) as well as frequencies and growth rates σ obtained by linearization about the base ( ) and mean fields (•) as a function of r. The frequencies about mean fields (•) and the exact frequencies (•) match almost perfectly; moreover the growth rate about the mean field collapses onto the marginal stability axis σ = 0. Adapted from [20].

Figure 5 .

 5 Figure 5.2(a,b) show the real and imaginary part of the normalized first Fourier coefficient

Figure 5 . 2 -

 52 Figure 5.2 -Column (a): real part of the normalized first Fourier coefficient of temperature ΘR 1 / Û1 2 , concentration ĈR 1 / Û1 2 and the streamfunction ΨR 1 / Û1 2 . Column (b): imaginary part of the normalized first Fourier coefficient, ΘI 1 / Û1 2 , ĈI 1 / Û1 2 and ΨI 1 / Û1 2 . (c,d) show the eigenvectors obtained by linearization about the mean fields. Columns (c): real part of the leading eigenvector, ΘR 1 , CR 1 and ΨR 1 . Columns (d): imaginary part of the leading eigenvector, ΘI 1 , CI 1 and ΨI 1 . Those results are obtained for r = 2.5, L = 0.1, S = -0.5, P r = 10. We observe the typical quarter phase shift of traveling waves shown in figure 5.1.

Figure 5 . 4 -

 54 Figure 5.4 -Mean field approximation of (a) temperature, (b) concentration and (c) streamfunction at r = 2.5. The exact mean fields are shown as red bold line, the mean fields truncated at first order as the dotted curve, truncated at second order by the green dashed line and truncated at the third order by the black dashed line.

Figure 5 . 5 -

 55 Figure 5.5 -(a) Growth rate and (b) frequency as a function of Rayleigh number for TW. (b) Exact frequencies are shown by (•). Linearization about the base and mean flows are represented by ( ) and (•). The results of linearization about the truncated mean fields U 1 , U 2 and U 3 are shown by (+), ( ) and ( * ).

Figure 5 . 6 -

 56 Figure 5.6 -Contours of functions ûn (r, z) constructed from the real parts of the three first Fourier coefficients. (a,d,g) show the function constructed from the first Fourier coefficient û1 , (b,e,h) from the second Fourier coefficient û2 and (c,f,i) from the third Fourier coefficient û3 . (a-c) shows the temperature fields. (d-f) concentration. (g-i) the streamfunction. We observe the resemblance between the first and the third Fourier coefficients.

Figure 5 . 7 -

 57 Figure 5.7 -(a) Growth rate, (b) Frequency as a function of Rayleigh number. Exact frequencies are shown by open circles (•). Frequencies and growth rates obtained by linearization about the base and full mean field are represented by triangles ( ) and solid circles (•). Frequencies predicted by the SCM at first order are shown by diamonds ( ).

Figure 5 . 8 -

 58 Figure 5.8 -Amplitude of the first mode computed by the self-consistent model at 1st order, compared to the fundamental Fourier coefficient amplitude.

Figure 5 .

 5 Figure 5.8 shows the amplitude A computed with the SCM and the nonlinear amplitude of the fundamental Fourier coefficient. As was the case for the frequency shown in figure5.7(b), both the value and and the slope of the amplitude match those of the nonlinear amplitude near the threshold and deviate from them for r > r c .

Figure 5 . 9 - 1 SCM

 591 Figure 5.9 -Contours of functions U (r, z) and U 1 SCM (r, z) constructed from the exact mean fields (bold curves) and from the mean field calculated by SCM at first order (dashed curves). (a) Temperature, (b) concentration and (c) streamfunction. We observe that the SCM mean fields do not match the exact mean fields. The streamfunctions have very small amplitudes and very different spatial forms.

Figure 5 . 10 -

 510 Figure 5.10 -Frequency as a function of Rayleigh number. Exact frequencies are shown by open circles (•). Frequencies obtained by linearization about the base and mean field are represented by triangles ( ) and solid circles (•). Frequencies predicted by the SCM are shown by diamonds : (a) second order ( ), (b) third order ( ), (c) fourth order ( ) and (d) fifth order ( )

Figure 5 . 11 -

 511 Figure 5.11 -Amplitude of the first mode computed by the self-consistent model at 2nd, 3rd, 4th and 5th order, compared with the fundamental Fourier coefficient amplitudes.

Figure 5 . 12 -

 512 Figure5.12 -Contours of the function û1 (r, z) constructed from the real part of the first Fourier coefficient (bold curves) and ûSCM (r, z) constructed from the real part of first mode obtained by SCM (dashed curves) at (a, e, i)1st, (b, f, j) 2nd, (c, g, k) 3rd and (d, h, l) 4th order. (a-d) Shows the temperature fields, (e-h) concentration and (i-l) streamfunction. We observe clearly that the modes are better resolved when we increase the SCM order. Nevertheless, we note that even at the 4th order we do not reproduce perfectly the exact nonlinear modes

Figure 6 . 1 -

 61 Figure 6.1 -Geometry of our study. At the upper wall, a uniform unit velocity (u = -1 ; v = 0) is imposed. On the other walls, we impose a no-slip boundary condition (u = 0 ; v = 0).

Figure 6 .Figure 6 . 2 -

 662 Figure 6.2 -Comparison of (a) u max (0.5, y) and (b) v max (x, 0.5) of the stationary solution obtained by using the mesh at 48039 n d.o.f with the results of Auteri et al. [1] for Re = 1000.We observe that even though the mesh is not very fine, we obtain very good agreement with Auteri et al.[1], who used finite differences for space discretisation with a structured mesh resolution of 1024 × 1024.

Figure 6 . 3 -

 63 Figure 6.3 -(a) Maximal velocity u max (0.5, y) maximized over y at x = 0.5 and Re = 9000 for different mesh resolutions. The solution is independent of the resolution with 292539 degrees of freedom (n d.o.f ). (b) Growth rate σ = (λ) obtained by linear stability analysis about the base flow as a function of Re and for different mesh resolutions. We observe that the growth rate is independent of the resolution starting with 138045 n d.o.f . (c)The frequency ω = (λ) is more sensitive to the mesh resolution than the growth rate. Indeed, the frequency is approximately independent of the mesh when the mesh attains 292539 n d.o.f cf. Tab 6.1.

Figure 6 . 4 -

 64 Figure 6.4 -Streamfunction fluctuations (ψ = ψ -ψ) over one period for Re = 8400. (a) t = 0, (b) T 4 , (c) T 2 , (d ) 3T 4 . We observe the counter clockwise displacement of the structures similar to traveling waves.

Figure 6 . 5 -

 65 Figure 6.5 -For Re = 8400, (a) time series of streamwise velocities at (x 1 , y 1 ) = (0.7, 0.87). (b) Temporal spectrum of the horizontal velocity normalized by the fundamental frequency. (c) Phase portrait with streamwise velocity U (x 1 = 0.7, y 1 = 0.87) and U (x 2 = 0.25, y 2 = 0.85), showing the limit cycle produced by the Hopf bifurcation.

Figure 6 . 6 -

 66 Figure 6.6 -(a) Real ( ψ1 ) and (b) imaginary ( ψ1 ) parts of the first Fourier coefficient of the streamfunction at Re = 8400. We observe the typical phase shift between the real and imaginary part, similar to that observed in figure 6.4.

Figure 6 .

 6 Figure 6.5(b)shows the temporal spectrum of the horizontal velocity normalized by the fundamental frequency. We observe that the second harmonic is not negligible. Figure6.5(c) shows the phase portrait exhibiting the limit cycle typical of a Hopf bifurcation.

Figure 6 .

 6 Figure 6.5(b)shows the temporal spectrum of the horizontal velocity normalized by the fundamental frequency. We observe that the second harmonic is not negligible. Figure6.5(c) shows the phase portrait exhibiting the limit cycle typical of a Hopf bifurcation.

Figures 6 .

 6 Figures 6.6(a,b) show the real and imaginary part of the first temporal Fourier coefficient of the streamfunction at Re = 8400. This Fourier coefficient is very similar to the streamfunction fluctuations shown in figure6.4 but at a different phase.

Figure 3 .Figure 6 . 7 -

 367 Figure 6.7 -Eigenvalues λ = σ + iω obtained by linearization about the base flow (crosses) and mean flow (circles). The exact frequency is shown by stars. (a) Growth rates σ. (b) Frequency ω. The growth rates about the mean flow are nearly zero and the frequency obtained by linearization about the mean flow is very close to the exact nonlinear frequency.

Figure 6 . 8 -

 68 Figure 6.8 -(a) Stationary solution (base flow) of streamfunction ψ b . (b) Distortion (ψ * = ψ b -ψ) at Re = 8400. The mean flow ψ and the base flow are almost identical as shown by the distortion scale.

Figure 6 .

 6 11 shows the full spectra obtained about the mean flow. The growth rate of the leading eigenmode is almost on the marginal stability axis throughout the entire range Re ∈ [8000, 9000]. Moreover, the unstable modes that appear at Re > 8600 in figure6.10 are not present in figure6.11.

Figure 6 . 9 -

 69 Figure 6.9 -Streamfunction of the real and imaginary parts of the leading unstable eigenmodes about the base flow (a,b) and mean flow (c,d ) at Re = 8400.

Figure 6 . 10 -Figure 6 . 11 -

 610611 Figure 6.10 -Full eigenvalue spectrum for different Re, obtained by linearization about the base flow.

Figure 6 . 13 -

 613 Figure 6.13 -Geometry of our study. Uniform unit velocity (u = -1 ; v = 0) is imposed at the upstream. we impose a no-slip boundary condition (u = 0 ; v = 0) on all walls.

Figure 6 . 14 -

 614 Figure 6.14 -Vorticity field at Re = 200. (a) Base flow, (b) instantaneous vorticity and (c) temporal mean flow. We show only the central part of our computational domain, which is [-25, 50] × [-40, 40].

Figure 6 .

 6 Figure 6.15 -(a) Growth rate (real part of the eigen value) and (b) frequency (imaginary part of the eigenvalue. The results obtained by linear stability analysis about the base flow are shown with diamons. The results obtained by the linearizarition about the mean flow are shown with stars. The nonlinear frequency obtained from DNS is shown with circles and that obtained by Bénard is shown with crosses.

  

  

  

  Par contre, la balle noire soumise à une perturbation infinitésimale s'arretera sur sa position d'origine après quelques oscillations, ce qui indique que cette position est un état d'équilibre stable. La figure 2.2(b) montre une balle blanche sur une plaque plane. Cette situation correspond à une stabilité neutre. En effet, toutes les positions sur la plaque sont équivalentes et la balle restera sur n'importe laquelle de ces positions.2.1.1 Stabilité linéaire autour de l'écoulement de baseLes états d'équilibre où points fixes discutés dans le paragraphe précédent sont les états stationnaires autour desquels nous appliquons l'analyse de stabilité linéaire. Dans les écoulements fluides, un état d'équilibre est un champ à une, deux ou trois dimensions et peut être stationnaire ou périodique. Cet état est nommé l'écoulement de base. Dans le contexte de l'analyse de stabilité linéaire, l'écoulement de base est la solution des équations stationnaires de Navier-Stokes.

Ce concept de stabilité est décrit par le schéma présenté sur la figure 2.2. Pour une petite perturbation, les balles blanches quittent leur position définitivement, ce qui montre Section 2.1. Analyse de stabilité linéaire que ces positions sont instables.

Dans les expériences, l'écoulement de base instable ne peut pas être observé et seulement l'écoulement final périodique et stable est observé.

  • Si σ > 0, alors l'écoulement de base est instable La courbe fine sur la figure 2.3 montre les résultats de l'analyse de stabilité linéaire autour de l'écoulement de base pour le sillage d'un cylindre. Nous observons sur la figure 2.3(b) le seuil de la bifurcation de Hopf supercritique au nombre de Reynolds critique Re c ≈ 47, indiqué par l'intersection du taux de croissance σ avec l'axe de stabilité marginale. La fréquence ω obtenue par l'analyse de stabilité linéaire autour de l'écoulement de base montrée sur la figure 2.3(a) est égale à la fréquence non linéaire à Re = Re c , comme le montre par la courbe épaisse. Cependant, cette analyse échoue dans la prédiction de la fréquence non linéaire pour Re > Re c . Cet échec est dû à l'absence des interactions non linéaires (contraintes de Reynolds) de l'analyse de stabilité linéaire.

  Le fait que l'analyse de stabilité linéaire autour de l'écoulement de base ne prédit pas d'information sur le système non linéaire complet n'est pas étonnant, car dans cette analyse nous négligeons les termes non linéaires. Cependant, le fait qu'il y ait des configurations, comme la cavité ouverte pour lesquelles cette analyse prédit relativement bien la fréquence non linéaire même à hauts nombres de Reynolds est surprenant. Nous supposons que cela est dû au fait que la distorsion introduite via le terme de contraintes de Reynolds est faible. Cependant, la fréquence obtenue par la linéarisation autour de l'écoulement moyen reste plus proche de la fréquence non linéaire.La linéarisation autour de l'écoulement moyen possède également ses limitations. En effet, la propriété RZIF n'est pas universelle à tous les écoulements périodiques. La convection thermosolutal possède deux solutions, une d'ondes progressives et une autre d'ondes stationnaires. Turton et al.[17] ont montré que seuls les ondes progressives vérifient la propriété RZIF. Turton et al.[17] suggèrent que l'échec des ondes stationnaires pour satisfaire la propriété RZIF est dû à leur large spectre temporel. Les ondes progressives en revanche montrent un spectre piqué. Ils démontrent que pour des oscillations monochromatiques la propriété RZIF est exactement satisfaite.

Turton et al.

[17] 

pour la convection thermosolutale, même si l'écoulement moyen n'est pas solution des équations stationnaires de Navier-Stokes. Cette procédure est identique à celle présentée dans la section précédente mis à part que nous remplaçons l'écoulement de base par l'écoulement moyen dans les équations (2.1) et (2.2). La fréquence (partie imaginaire de la valeur propre) obtenue par cette procédure est égale à la fréquence non linéaire sur tout l'intervalle du nombre de Reynolds tels que le montrent les triangles sur la figure 2.3(a). De plus, le taux de croissance (partie réelle de la valeur propre) est presque égal à zéro tel que le montre la figure 2.3(b), ce qui indique que l'écoulement moyen est marginalement stable. Cette propriété, nommée RZIF (Real Zero Imaginary Frequency) par Turton et al.

[17]

, a été vue comme une prédiction de la fréquence non linéaire à partir de l'écoulement moyen. Ceci n'est pas le cas, car l'écoulement moyen doit être obtenu à partir d'une DNS ou d'une expérience. Cependant, cette propriété souligne la pertinence de l'écoulement moyen dans Section 2.2. Dynamique non linéaire l'étude des systèmes non linéaires.

2.2 Dynamique non linéaire

Le processus du début de la bifurcation jusqu'à l'état saturé (Maurel et al.

[9]

, Zielinska & Wesfreid

[19]

) est illustré dans la figure 2.4. La vue schématique de la figure

2

.4(d) décrit l'évolution typique de la bifurcation de Hopf à partir de l'écoulement de base (carrées noires) jusqu'à atteindre le cycle limite correspondant à la génération périodique des tourbillons montrés sur la figure 2.4(c). Proche du point critique (carré noir sur la figure 2.4(d,e)), l'écoulement de base (figure

  Re = 4580, near Re 2 . The vertical lines show the frequencies ω 2 (blue dotted lines) and ω 3 (red dashed lines) of LC 2 and LC 3 at the corresponding values of Re. (a) Near Re 3 where QP is near LC 3 , the peak ω QP 3 of the QP spectrum matches its analogue ω 3 (red dashed line) on LC 3 , while ω QP 2 is slightly to the left of ω 2 (blue dotted line) of LC 2 . (c) Near Re 2 , where QP is near LC 2 , the peak of ω QP 2 of the QP spectrum matches its analogue ω 2 (blue dotted line), while ω QP 3 is to the right of ω 3 (red dashed line) from LC 3 . (b) Away from Re 2 and Re 3 , both frequencies ω QP 2 and ω QP 3 are shifted slightly from their analogues on LC 2 and LC 3 . The vertical bold and dash-dotted lines show the frequencies calculated by Floquet analysis about LC 2 by ω = ω 2 + ω state. Figure3.14 presents temporal Fourier spectra for three values of Re. The quasiperiodic state has two fundamental frequencies close to ω 2 and ω 3 as shown by the dotted and dashed lines in figures 3.14(a-c). QP can be viewed as a nonlinear superposition of LC 2 and LC 3 ∈ N, ω QP 2 and ω QP 3 are the fundamental frequencies of QP . The blue dotted lines show the nonlinear frequency of LC 2 and the red dashed lines that of LC 3 at the corresponding values of Re.We now interpret the spectra of figure 3.14 in the context of the bifurcation diagram of figure3.4. Because Re = 4420 is close to Re 3 , the quasiperiodic state at Re = 4420 is close to the limit cycle LC 3 . In agreement with this, the peak at ω QP 3 matches almost exactly the nonlinear frequency ω 3 = 10.38 of LC 3 indicated by the red dashed line in figure3.14(a). In contrast QP is not close to LC 2 at this Reynolds number and so the peak at ω QP 2 is to the left of the the frequency ω 2 = 7.58 of LC
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Figure 3.14 -Temporal Fourier spectra of the quasiperiodic state (black bold curves), computed with the edge state technique at (a) Re = 4420, near Re 3 , (b) Re = 4500 and (c) F (dash-dotted line) and about LC 3 by ω = ω 3 -ω F (bold line). Near the thresholds at (a) Re = 4420 and (c) Re = 4580, the frequency obtained by Floquet analysis about LC 3 and LC 2 are very close to ω QP 2 and ω QP 3 . At Re = 4500 in figure (b) the frequencies obtained by Floquet analysis about LC 2 and LC 3 are also close to their analogues in the quasiperiodic state even though the linear analysis is only valid at the vicinity of the thresholds.

quasiperiodic 2 (blue dotted line). At figure 3.14(c), corresponding to Re = 4580 near Re 2 , the situation is naturally reversed. The peak at ω QP 2 matches almost exactly its analogue ω 2 = 7.634 on LC 2 (blue dotted line) since it is close to LC 2 , while ω QP 3 is slightly to the right of ω 3 = 10.445 of LC 3 . Away from LC 2 and LC 3 at Re = 4500, both frequencies ω 2 = 7.609 and ω 3 = 10.412 are slightly shifted from their analogues on the quasiperiodic state.

Table 3

 3 

		linearize about base	linearize about mean	nonlinear	∆ω ∆f
	Re	4200	4500	5000 4200	4500	5000 4200	4500	5000
	ω 2	7.502	7.556	7.629 7.517	7.612	7.516	7.609	2.8 0.45
	diff	0.014	0.053		0.001	0.003		
	σ 2	0.016	0.073	0.158 0.005	0.017		
	ω 3	10.327 10.401 10.512		10.421 10.686	10.412 10.661 2.8 0.45
	diff		0.011	0.149		0.009	0.025	
	σ 3 -0.058	0.065	0.247		0.018	0.053	
	ω 4	13.099 13.188 13.321					2.8 0.45
	ω 5	15.931 16.029 16.183				

.1 shows a growth rate at Re = 4500 of 0.073 for linearization about the base flow; this is reduced by a factor of 5 to 0.017 for the linearization about the mean.

Table 3 .

 3 1 -Linear and nonlinear frequencies for cavity modes. The first row shows frequencies from linearization about the base and from linearization about the mean and nonlinear simulations, where available. Second row for ω 2 and ω 3 shows deviation from frequencies from nonlinear simulations. When the RZIF property is satisfied, linearization about the nonlinear mean yields frequencies close to nonlinear frequencies. The third row for ω 2 and ω 3 shows linear growth rates for cavity modes. Linearization about base yields growth rates which cross zero transversely as the bifurcation threshold is crossed. When the RZIF property is satisfied, linearization about the nonlinear mean yields growth rates near zero, i.e. the mean flow is nearly marginally stable. Last columns show the frequency increment from one row to the next row, which is constant to two digits, regardless of the Reynolds number or which type of frequency is used.

  Figure 3.19 -Amplitude of second harmonic (stars) and the sum of the amplitudes of the three lowest harmonics (crosses) normalized by the amplitude of the fundamental frequency as a function of relative Reynolds number for LC 2 and LC 3 . As in figure
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may be neglected and RZIF is satisfied:

  1 
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Table 6 .

 6 1 -Summary of the meshes tested, with u, v the streamwise and vertical velocities respectively, and p the pressure field. Thresholds are obtained for the different meshes by linear interpolation of the growth rates shown in figure6.3(b). The threshold converges at mesh IV.

	.1. Figure 6.3(b) shows

The quadratic interaction of the fluctuation with itself is small and its temporal mean does not appear in a linear stability analysis(Barkley [4], Mantič-Lugo et al.[START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF][START_REF] Mantič-Lugo | A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake[END_REF]).

The terms can be treated via an expansion in the distance from the threshold(Sipp & Lebedev [54]).

The instantaneous Reynolds stress tensor u ⊗ u is approximately equal to its temporal average u ⊗ u so that they almost cancel out (Turton et al.[START_REF] Turton | Prediction of frequencies in thermosolutal convection from mean flows[END_REF]); see also section 3.4.2.

The resolvent operator (iω -L U ) -1 is sharply peaked or of low rank. This implies that its action on any vector, including f , is approximately a projection onto the leading mode of the resolvent. The purpose of this procedure is not to eliminate f , but to approximate it as a scalar multiple of the leading resolvent mode, and then to treat f as a forcing input (Beneddine et al. [8], Hwang & Cossu [25], McKeon & Sharma
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.3 -Contours of functions ũ(r, z) constructed from the real and imaginary parts of eigenvectors (dashed curves) obtained by linearization about the mean fields and functions û(r, z) constructed from the real and imaginary parts of the normalized Fourier coefficients (solid curves). (a, c, e) Contours of functions obtained from the real parts of the eigenvectors τ R , cR , ψR and from the real parts of the normalized Fourier coefficients τ R 1 / û1 2 , ĉR 1 / û1 2 , ψR 1 / û1 2 . (b, d, f ) Contours of functions obtained from the imaginary parts of eigenvectors τ I , cI , ψI and from the imaginary parts of the normalized Fourier coefficients τ I 1 / û1 2 , ĉI 1 / û1 2 , ψI 1 / û1 2 . Fourier coefficients and the leading eigenvectors start to diverge from one other essentially at r > 2.4 and for z ∈ [0.3, 0.7]. (a,b) The temperature and the streamfunction match better than the (c,d) concentration. Indeed, the imaginary part of the concentration matches the Fourier coefficient only close to the threshold, while the real parts diverge even close to the threshold.

Self-consistent model

Decoupled model

While the idea that linearization about the mean flow reproduces properties of the nonlinear Bénard-von Kármán vortex street is intriguing, it is not predictive because a full direct numerical simulation (DNS) must be carried out. In contrast, Mantič-Lugo et al. [9] have developed an approach, the self-consistent model (SCM) which does not rely on a DNS. The key hypothesis is that the most unstable leading eigenmode suffices for the mean field distortion. Consequently, the Reynolds stress term (i) contributing to the mean field in equation (5.25) contains only the leading mode. Neglecting the higher harmonic interactions (iii) from (5.26) reduces this equation to an eigenvalue problem about the mean field. The following equations form the SCM

(5.35a)

with U 1 the leading eigenmode and U -1 its complex conjugate, A the amplitude of the mode and L U U 1 the linear operator defined, as usual, by

(Here, we have used U 1 rather than û1 to denote the leading eigenmode in order to prepare for presenting our solution method for (5.35) via Newton's method in section 5.4.2.) Thus, according to (5.35), U , U 1 , ω, and A are defined such that σ = 0. The question is whether this yields correct values, in particular for the mean field U and the frequency ω.

In [10], system (5.35) is solved by an iterative algorithm that decouples (5.35a) and (5.35b) as follows. The amplitude A is fixed. Initially the base field is used in (5.35b) and Mantič-Lugo et al. [10] compute the eigenvector U 1 and eigenvalue σ + iω by solving the eigenproblem (5.35b). (It is for this reason that σ cannot immediately be set to zero, despite (5.35d). When (5.35b) is solved as an eigenproblem, the eigenvalue will in general have a non-zero real part.) The eigenvector is then given norm A and substituted into the mean field governing equation (5.35a), which is solved by Newton's method. The new value of U is substituted into (5.35b), leading to a new value of U 1 . The process is continued until convergence, yielding values of U , U 1 , σ, and ω for each value of A. The final values chosen for U , U 1 , ω and A are those for which σ(A) = 0. For more details see [10] and [8].

System (5.35) has the advantage of describing the amplitude saturation process, mimicking the evolution of A in time, discussed in [11,21]. The unstable base field solution extracts energy from the perturbations, which grow until they saturate. By neglecting higher harmonics, the SCM computes the mean field, the nonlinear frequency and the nonlinear mode with its amplitude A without time integration. Mantič-Lugo et al. [10] accurately reproduce the results of Barkley [1] for the cylinder wake up to Re = 120.

Full Newton method for SCM

From an algorithmic perspective, problems of convergence for high Re have been reported in solving this system by the algorithm described above. A relaxation factor and a different normalization of the nonlinear term in equation (5.35a) have been necessary to ensure convergence; details about the algorithm can be found in [8]. We have been unable to use the algorithm of [10] to solve the SCM for the traveling wave branch of the thermosolutal convection. Indeed, we have been able to solve the system only very close to the threshold r c ; beyond 2% from r c we no longer converge. Therefore we implemented a full Newton method to solve (5.35). Very recently Andrea Fani et al. [2] also applied a full Newton method to solve the SCM for the acoustic generation from the Bénard-von Kármán vortex street.

Here we present the Newton method developed to solve the system of equations that compose the SCM, which is equivalent to system (5.35). This system contains four unknowns with three fields which are the mean field U , the real part U r 1 and imaginary part U i 1 of the leading eigenmode U 1 and the scalar unknown Ω. We recall that the traveling wave mean fields are homogeneous in the streamwise direction and the term N (U , U ) corresponding to the Poisson bracket vanishes from equation (5.35a). Separating equation (5.35b) into real and imaginary parts, the SCM is written as

where

Because Ω is treated as a scalar unknown, the imposition of phase condition (5.36d) is required to close the system of equations. As presented in section 5.4.1, Mantič-Lugo et al. [10] solved the SCM equations (5.35) as a decoupled problem. The mean governing equation (5.35a) is solved for U by Newton's method and the linear equation (5.35b) is solved for U 1 , σ and Ω as an eigenvalue problem by diagonalization. In that formulation, the presence of a growth rate σ in system (5.35) cannot be avoided. Moreover, the amplitude A of the leading mode must be imposed as an external parameter because the amplitude of an eigenvector is arbitrary. In contrast, with the full Newton method we set σ to 0 and remove it as a variable because we solve the SCM as a coupled problem. Moreover, the amplitude A of the mode is not present explicitly in the system (5.36) because it is included in U 1 . The fact that we do not normalize U 1 allows the trivial solution U 1 = 0 to be possible choice for the system, which must be avoided. In practice, we start the simulation with an initial guess obtained by Mantič-Lugo et al. [10] algorithm that converges near the threshold. We avoid the trivial solution U 1 = 0 by considering the mode U 1 with its amplitude. By varying the reduced Rayleigh number r by small intervals, the method converges to the solution [U , U 1 , Ω]. System (5.36) merely describes a robust method of solving the SCM (5.35). As is the case for [10] the mean field U , mode U 1 with its amplitude and the frequency Ω are obtained from (5.36) without time integration.

Newton's method consists of solving F (U ) = 0 where U = [U , U r 1 , U i 1 , Ω] and F (U ) is the RHS of (5.36). We approximate F (U + u) by a Taylor expansion at first order

, ω] and solve the linear system

where DF (U ) is the Jacobian matrix and u the decrement applied to U . The details of equation (5.39) for system (5.36) are

(5.40a)

We summarize the algorithm in figure 5.14 in the appendix.

We present the system of equations corresponding to the fifth order:

We added to the initial problem (5.35) four unknowns u 2 , u 3 , u 4 , u 5 and four equations. We solve system (5.41) sequentially, including first u 2 , then u 3 , then u 4 and finally u 5 .

Each of these successive systems are solved by a full Newton method.

Figure 5.10 shows the frequencies predicted by the higher order SCMs. We observe in figure 5.10(a-b) that by including the second and third order we improve the prediction of the frequency until r = 2.4 and deviate as we increase the reduced Rayleigh number. Figure 5.10(c) shows that even though the fourth order greatly improves the frequency prediction, it is not as precise as that of the exact mean field. Figure 5.10(d) shows that the frequency obtained from the SCM at fifth order gives almost a perfect match with the nonlinear frequency until r ≈ 2.8 and deviates as we increase r. We recall that a full calculation in our case includes the eight modes of our horizontal spatial resolution N x = 8.

Figure 5.11 shows the amplitude of the first mode u 1 obtained by the SCM and that of Fourier coefficient û1 . It is clear that the amplitude of u 1 is better predicted than the frequency. Indeed the amplitude obtained by the SCM at fourth and fifth order matches almost exactly that of Fourier coefficient û1 as shown in figure 5.11(c-d).

Section 5.6. Appendix Henri Bénard (1874Bénard ( -1939) ) began the systematic experimental study of two hydrodynamic systems: the thermal convection of fluids heated from below and the periodic vortex shedding behind a bluff body in a flow. Using optical methods, he discovered the spatial pattern or cellular organization of this kind of fluid motion [4,15,16].

Thermosolutal convection code

Motivated by his experience in optical methods in hydrodynamics, Bénard built a water tank in which a rectangular elongated obstacle with a pointed upstream shape, is displaced, producing a deformation in the free surface. He associated this deformation with the presence of vortices in the fluid and he reported that he "was surprised to discover two splendid lines of alternate vortices. . . " [1]. Bénard performed systematic experiments using these elongated bodies, for which the aspect ratio L/D of these obstacles varied between 2.5 and 40. where L is the length of the body in the flow direction and D its transversal width. He observed that the wavelength λ (the distance between successive vortices in one line) grew with the transversal dimension D and did not depend on the longitudinal dimension L. The wavelength also increased with the viscosity ν of the fluid but not, as a first approximation, with the velocity U of the obstacle. Although a large literature exists on the theoretical prediction of these parameters in the Chapter 7. Conclusion and perspectives is truncated at first order. They assumed that this model is valid for flows that satisfy the RZIF property as was shown successfully for the cylinder wake. We point out that the self-consistent model is similar to the harmonic balance of McMullen et al. [3] but considered from a different viewpoint. In fact, they considered the mean flow equation and the linearized Navier-Stokes equation which explains the presence of a growth rate, which is not present in harmonic balance of McMullen et al. [3] as it is a Fourier approach. The SCM model fails to predict the nonlinear frequency, the mean flow and the amplitudes of the modes in the case of the traveling waves of thermosolutal convection. We have extended this model by considering the system of equations up to the fifth order to match the nonlinear results. Therefore, the satisfaction of RZIF does not imply the validity of SCM but if the SCM is verified, RZIF should be satisfied.

During this thesis we were motivated by the RZIF property. We have shown that up to now only standing waves in thermosolutal convection oppose clearly the universality of the RZIF property. A better theoretical understanding of this property is still missing which prevents the determination of a robust criterion of its validity. The definition of such criterion is an important open question for the future.

Résumé

Les écoulements fluides jouent un rôle important dans de nombreux phénomènes naturels ainsi que dans de nombreux secteurs industriels. 

Mots Clés

Analyse de stabilité linéaire, dynamique non linéaire, champ de base et moyen, cycles hétéroclines Abstract Fluid flows play an important role in many natural phenomena as well as in many industrial applications. In this thesis, we are interested in oscillating flows origins from a Hopf bifurcation. The open shear-driven square cavity has two limit cycles separated by an unsteady quasi-periodic state. We have described this scenario in detail by using direct numerical simulations, linear stability analysis, and Floquet analysis. The Hopf bifurcation in Taylor-Couette flow gives rise to two solutions, spirals (traveling waves) and ribbons (standing waves in the axial direction). We discovered that the ribbons branch is followed by two consecutive heteroclinic cycles connecting two pairs of axisymmetric vortices. We studied in detail these two heteroclinic cycles.

The linear stability analysis about the stationary solution is used to compute the threshold of the bifurcations. Another approach is the linearization about the mean field. This approach gives frequencies very close to that of the nonlinear system and shows in most cases a nearly zero growth rate. We have shown that spirals, ribbons, the lid-driven cavity and the flow around a prismatic object verify this property.

In the thermosolutal convection, the frequencies obtained by the linearization about the mean field of the standing waves do not match the nonlinear frequencies and the growth rate is far from zero, on the other hand for the traveling waves this property is fully satisfied. We studied the validity of a self-consistent model in the case of the traveling waves. The self-consistent model consists of the mean field governing equation coupled with the linearized Navier-Stokes equation through the most unstable mode and the Reynolds stress term. This model calculates the mean field, the nonlinear frequency, and the amplitude without time integration. The self-consistent model is assumed to be valid for flows that satisfy the property of the mean field. We have shown that in this case, this model predicts the nonlinear frequency only very close to the threshold. We have improved significantly the predictions by considering higher orders in the Reynolds stress term.