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Jean-Luc Baril, Professeur, Université de Bourgogne Rapporteur
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iii

Acknowledgments

I would like to express my deepest gratitude to my advisor, Pr. Hamamache Kheddouci. His
guidance helped me in all the time of research during this thesis. I could not have imagined
having a better advisor and mentor for my Ph.D study.

My thanks also go to my co-advisor, Dr. Mohammed Haddad, for him helpful advice and
for the valuable comments and suggestions that he provided, especially on my presentation and
the writing of this thesis.

I would also like to thank Pr. Volker Turau for his successful collaboration and for guiding
my research and helping me to develop my background in a way of proving and writing. I also
thank Pr. Norma Zagalia for her fruitful discussions and collaboration especially during my
stay in Poletichnico di milano.

I wish to express my special thanks to all the personel of liris laboratory: Hacid, Isabelle,
Brigitte, Saida, Catherine, Helene, Jean pierre...

Last but not least, I would like to thank my family for all their love and encouragement.
For my parents who raised me with a love of science and supported me in all my pursuits. For
my sister sarah for supporting me and pushing me all the time and who have given me constant
support and love during the completion of the thesis. And most of all for my loving, supportive,
encouraging, and patient sweetheart Mus whose faithful support during all this thesis and all
my life is so appreciated. Many thanks my angel.

Fairouz



iv

Abstract: Graph theory is considered as a field exploring a large variety of proof techniques

in discrete mathematics. Thus, the various problems treated in this theory have applications in

a lot of other scientific fields such as computer science, physics, sociology, game theory, etc. In

this thesis, three major problems are considered: the multidecomposition of multigraphs, the [1, 2]-

domination and the edge monitoring. The fact that these three problems are of different nature

allowed us to explore several proof techniques in this thesis.

The first part of this thesis deals with a popular aspect of research in graph theory called graph

decomposition. Intuitively, a decomposition into subgraphs allows us to describe the original graph

with a set of copies of these subgraphs. In this part, we give a particular interest to the multi-

decomposition of a complete multigraph into edge disjoint stars and cycles. Thus, we investigate

the problem of (Sk, Ck)-multidecomposition of the complete multigraph and give necessary and

sufficient conditions for such a multidecomposition to exist.

The second and third parts are the most important parts in terms of effort and spent time.

They are devoted to problems related to domination in graphs. The original domination problem

is to find a minimum set of vertices such that every vertex outside the dominating set is adjacent

to at least one vertex from the dominating set. Many variants of theoretical and practical interest

have been studied in the literature.

The second studied problem is called the [i, j]-domination in graphs. This problem was intro-

duced by Chellali et al. in 2013. In addition to the properties of domination, this variant has the

particularity that each non-dominating vertex should be adjacent to at least i dominating vertices

but also to at most j of them. We particularly focus on the [1, 2]-domination. It has been shown

that the problem remains NP-complete. We are interested to study this problem on a particular

graph namely the generalized Petersen graph. This graph was introduced by Watkins and has a

lot of interesting properties. Moreover, several graph theoretical parameters have been studied on

this graph class because of it unique structure. In addition, a study of the [1, 2]-total domination

is also proposed at the end of this part.

The last problem is a new variant called edge monitoring problem and was introduced by

Dong et al. in 2008. It consists to find a set of vertices that monitors (dominates) the edge set

of a graph such as a vertex monitors an edge if it forms a triangle with it i.e. it dominates both

extremities of the edge. An edge can be monitored by one or more vertices. Three variants of

the problem are considered in this part namely the edge monitoring, uniform edge monitoring and

weighted edge monitoring. The essence of this problem lies on its combinatorial aspect and its

range of applications in networks; especially wireless sensor networks. This problem is known to

be NP-hard. Given the complexity of this kind of problems, we are first interested by a theoretical

study: variants of the problem, bounds, characterizations, etc. We give more in depth studies of

the problem for several graph classes.

Keywords: Graph decomposition, multidecomposition, [1, 2]-dominating set, [1, 2]-total

dominating set, edge monitoring problem, weighted monitoring problem, k-uniform edge monitor-

ing.
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Résumé : La théorie des graphes est considérée comme un vaste champ qui permet

d’explorer différentes techniques de preuve des mathématiques discrètes. Ainsi, les différents

problèmes traités dans cette théorie ont plein d’applications dans d’autres domaines scientifiques

tels que l’informatique, la physique, la sociologie, la théorie des jeux, etc.

Dans cette optique, nous proposons, dans cette thèse, de mettre l’accent sur trois problèmes de

graphes, à savoir la multidécomposition de multigraphes, la [1, 2]-domination et le monitoring des

arêtes. Ainsi, le fait d’explorer, dans ce travail de thèse, trois problèmes de graphes relativement

distincts dans des classes de graphes différentes, nous a permis de développer plusieurs techniques

de preuve ainsi qu’une multitude de façon à aborder un problème.

La première partie de cette thèse touche un aspect très important de la théorie des graphes,

appelé la décomposition des graphes. Intuitivement, une décomposition en sous-graphe permet

de représenter le graphe d’origine par un ensemble de copies du sous-graphe, où chaque arête du

graphe initial appartient à une et une seule copie du sous-graphe. Dans cette partie, on s’intéresse

plus particulièrement à la décomposition multiple d’un multigraphe complet en étoiles et cycles

de même taille, c.à.d. générer à partir d’un multigraphe, plusieurs composantes disjointes (étoiles

et cycles). Dans ce sens, des preuves formelles sont présentées pour déterminer les conditions

nécessaires et suffisantes que doit avoir le multigraphe complet pour qu’une telle décomposition

existe.

Les deux autres parties de cette thèse, les parties les plus consistantes, abordent un problème

suscitant beaucoup d’attention actuellement, qui est l’étude de la domination dans les graphes. Le

problème original de domination consiste à trouver un ensemble de sommets (de taille minimum)

dominant le reste des sommets d’un graphe. De nombreuses variantes d’intérêts à la fois théoriques

et pratiques ont été proposées et étudiées dans la littérature. Dans cette partie de thèse et celle

qui suit, nous nous sommes intéressés à deux variantes de domination.

La première variante, appelée [i, j]-domination dans les graphes, a été introduite par Chellali

et al. en 2013. En plus de ses propriétés de domination, la particularité de cette variante est que

chaque sommet non dominant doit être adjacent à au moins i et au plus j sommets dominants. Plus

particulièrement, nous nous somme interéssés à la [1, 2]-domination. Il convient de souligner qu’il

a été démontré que le problème reste NP-complet. Dans ce sens, nous avons étudié ce paramètre

dans des graphes particuliers, tels que les graphes de Petersen généralisés, ce qui rend ce problème

tout aussi intéressant. Introduite par Watkins, cette famille de graphes possède un nombre de

propriétés très intéressantes. D’ailleurs, plusieurs paramètres de graphes ont été étudiés sur cette

classe de graphes de par sa structure qui est assez particulière. De plus, une étude de la [1, 2]-total

domination sur cette classe de graphes est aussi menée dans cette thèse.

La deuxième et dernière variante étudiée, aussi une variante de la domination, appelée mon-

itoring des arêtes, a été introduite par Dong et al. en 2008. Elle consiste à trouver un ensemble

de sommets qui surveille (domine) l’ensemble des arêtes dans un graphe sachant qu’un sommet

surveille une arête s’il forme un triangle avec les deux extrémités de l’arête. Une arête peut être

monitorée par un ou plusieurs sommets. Dans ce contexte, plusieurs variantes du monitoring des

arêtes sont considérées dans cette partie à savoir monitoring des arêtes, monitoring uniforme des

arêtes et monitoring pondéré des arêtes. L’essence de ce problème réside dans sa nature combina-

toire ainsi que son domaine d’application, plus particulièrement dans les réseaux de capteurs sans

fil. De plus, il a été prouvé que trouver un ensemble minimum pour ce problème est NP-difficile.

Vu la complexité de ce type de problème, nous nous sommes intéressés, en premier temps, par une

étude théorique du problème : différentes variantes, les bornes, caractérisations, etc. Par la suite,

nous avons étudié le probléme en profondeur dans différentes classes de graphes.

Mots clés : Décomposition des graphes, multidécomposition, [1, 2]-domination, [1, 2]-total domi-

nation, monitoring des arêtes, monitoring pondéré des arêtes, monitoring k-uniforme des arêtes.
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“Imagination is more important than knowledge. Knowledge is limited. Imagination en-
circles the world.”.
-Albert Einstein-
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Chapter 1

Introduction

Graphs are considered as very powerful modeling tools in different areas of science

such as physics, chemistry, sociology, game theory and many other areas. The

concept of graphs was first introduced by Leonard Euler in 1735 with his work on

the Seven Bridges of Königsberg [Eul41]. Since then, they have been considered as

an important notion in discrete mathematics and used to model the problems of

a wide variety of subjects. All these various subjects of practical interest can be

considered as motivation to develop a large number of problems in graph theory

such as graph coloring, domination sets, graph decomposition, independent sets,

etc. Many other problems in graph theory can be added to this list, since each

problem has a multitude of variants that can be explored.

Informally, a graph consists of some points called nodes and some lines between

them called edges. Graph is used to model the connections between objects. As an

example, a computer network can be modeled as a graph such that each server rep-

resented by a node and the connections between those servers represented by edges.

Another example is to model a social network using graphs such that each individual

(or organization) is represented by a node and the relation between them (friend-

ship, kinship, common interest, financial exchange, dislike, relationships, etc.) by

an edge. The theoretical study and the development of algorithms to manage graphs

are therefore of major interest. Throughout this thesis, we try to discuss different

graph problems in various classes of graphs.

The three major problems considered in this thesis are the Decomposition of

complete multigraph into stars and cycles, the [i, j]-Dominating Set and the Edge

Monitoring Set problems. The fact that these three problems are different nature

allowed us to explore several proof techniques.
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The Decomposition of graphs is one of the most famous and known problems in

graph theory. It consists to break an input graph into subgraphs satisfying some

constraints. Such problems fall broadly into two categories: the first called simple

decomposition, consists to decompose the input graph into edge disjoint subgraphs

of the same type; the second, called multiple decomposition, consists to decompose

the input graph into two types of edge disjoint subgraphs or more. Determining

if a graph G admits simple decomposition was proved to be NP -complete for all

subgraph which have a connected component of size 3 or more. We will focus more

closely on the specific multiple decomposition called decomposition of complete

multigraph λKn into stars Sk of k leaves and cycles Ck of k vertices (a.k.a. (Sk, Ck)-

decomposition of λKn). It consists in finding the partition of the edge set of the

complete multigraph into edge disjoint isomorphic copies of Sk and Ck using at

least one copy of each. Many questions can be asked but the most natural one is

to find the conditions on λKn for which (Sk, Ck)-decomposition exists. This allows

us to find the require properties of λKn in order to have a such decomposition.

The [i, j]-Dominating Set is an interesting variant of the dominating sets problem.

It was introduced by Chellali et al. [CHHM13]. It is defined as follows. Let i

and j be positive integers such that i ≤ j. A subset S ⊆ V in a graph G =

(V,E) is a [i, j]-dominating set if, for every vertex v ∈ V \ S, i ≤ |N(v) ∩ S| ≤ j,

that is, every vertex v ∈ V \ S is adjacent to at least i but not more than j

vertices in S. The minimum cardinality of a [i, j]-dominating set in a graph G

is called the [i, j]-domination number, and is denoted γ[i,j](G). In addition to its

theoretical aspects, this problem has several practical applications. For example, in

the case of servers in a computing network, or sets of monitoring devices in situations

requiring surveillance, but with the need to establish such sets as efficiently or as

cost effectively as possible, that is, without creating too much redundancy. For

this reason, we give a particular interest to study the [1, 2]-dominating set in the

particular graph, namely generalized Petersen graph by giving the exact value of

the [1, 2]-domination number. This graph was introduced by Watkins and has a lot

of interesting properties.

The Edge Monitoring Set problem is an effective mechanism for security of wire-

less sensors networks. It can also be considered as a variant of dominating sets
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problem. The basic idea is that each communication link in the network is moni-

tored (dominated) by nodes within the network and it is defined as follow. A node

v can monitor (dominate) an edge e if the two extremities of e are neighbors of v

(i.e. v and the two extremities of e form a triangle in the graph). Note that some

edges can need more than one monitor. Finding the minimum set of monitor nodes

for such problem is proved to be NP -complete by Dong et al. in 2008 [DLL08]. In

the literature, the problem is studied from distributed systems and self stabilization

point of view. In this thesis, we study this problem and two of its variants from

the graph theoretical point of view. In the first one, namely k-uniform monitoring

sets problem, all the edges of the considered graph need at least k monitors. The

second variant, a more general version of the problem, namely weighted monitoring

sets problem. It consists in assigning a weight for each node representing its cost.

This thesis is organized as follows: Chapter 2 gives a short overview of some

basic graph theory concepts. Moreover, this chapter presents preliminary defini-

tions, that are needed for the understanding of the results exposed throughout this

thesis. Then the rest of thesis is divided into three main parts.

In the first part, we study a problem related to the decomposition of graphs.

This part is divided into two chapters. Chapter 3 presents an overview of existing

decomposition problems. In addition, several applications of decomposition are

discussed to motivate the choice of this problem. In Chapter 4, we investigate the

problem of the (Ck, Sk)-decomposition of the complete multigraph λKn. We give

the necessary and sufficient conditions for the existence of such decomposition.

The second part of this thesis is composed from two chapters. Chapter 5

presents a literature review of the dominating set problem and its variants. We give

a particular interest on the [i, j]-dominating set problem and [i, j]-total dominating

set problem. In Chapter 6, we focus on the [1, 2]-dominating set problem and

[1, 2]-total dominating set problem. We study two numerical invariants of graphs

which concern the [1, 2]-dominating number and the [1, 2]-total dominating number.

We give the exact value for generalized Petersen graphs P (n, k) when k = 2.
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The final part of the thesis is completely devoted to the edge monitoring problem.

This part is split into three chapters. Chapter 7 presents an overview of known

results as well as new results about the edge monitoring problem. The motivation

to study this problem is also discussed. We present the edge monitoring problem in

general by presenting the problem and its variants. Some bounds on edge monitor-

ing number and characterizations are also presented. Then, we focus in particular

on 1-uniform monitoring problem by developing some results on general graphs and

also in particular classes of graphs, e.g. path power, split graph, etc. An algorithm

for finding the minimum 1-uniform edge monitoring set in the square of a tree is

also presented. Chapter 8 is devoted to the study of the edge monitoring problem

from the perspective of parameterized complexity. Some preliminary notions are

presented. We prove that the edge monitoring problem is W [2]-hard when parame-

terized by the size of the solution. Moreover, we present two algorithms that solve

the problem in general graphs and in the particular case of apex-minor free graphs.

Afterwards, we give in Chapter 9 different study results of a more general prob-

lem, namely weighted edge monitoring on several graph classes: complete graphs,

block graphs, interval graphs and cographs.

Finally, Chapter 10 summarizes all results of this thesis and gives some sug-

gestions for further research.
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Chapter 2

Preliminaries

Contents

2.1 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 16
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2.3.2 Approximation algorithms . . . . . . . . . . . . . . . . . . . . 18

2.3.3 The word of parameterized complexity . . . . . . . . . . . . . 19

2.4 Two favorite graph problems . . . . . . . . . . . . . . . . . . 20

2.4.1 Decomposition problems . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Domination problems . . . . . . . . . . . . . . . . . . . . . . 21

Graph theory is the study of the properties of graphs. This chapter presents

basic notions of graph theory which are required throughout this thesis. We begin

by introducing the concept of graph and the common terminology used around

them. Most of this terminology is standard and can be found in any classical book

on graph theory ([BM76, Ber62, W+01]). After that, we define some classes of

graphs and their properties useful for understanding the presented work. Then,

we give some basic notions of a classical computational complexity, approximation

Algorithms and Parameterized complexity. We will end this chapter by presenting

two well-known graph problems relevant to this thesis.

2.1 Basic notations

In this section, we give a short overview of standard graph terminology used through-

out this thesis. Some others will be given later when necessary.
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Graph: a graph G is a pair of sets (V (G), E(G)), where V (G) is the set of vertices

(a.k.a. nodes) and E(G) ⊆ V (G) × V (G) is the set of edges, formed by pairs of

vertices. If e is an edge that connects u and v. The vertices u and v are called the

extremities of e. The cardinality of the vertex set V (G), denoted by |V (G)| = n, is

called the order of G. The cardinality of the edge set E(G) = m, we called the size

of G and we denoted by |E(G)|.

Directed graph: a directed graph (a.k.a. digraph) is a graph where all the edges

have a direction associated with them. In other words, its set of edges is represented

by a set of ordered pairs of vertices, called directed edges or directed arcs.

Multigraph: is a graph which is permitted to have multiple edges (a.k.a. par-

allel edges) that have the same extremities. In other words, two vertices may be

connected by more than one edge. A graph is simple if there is at most one edge

between every two vertices.

Except for Part I, the graphs considered in this thesis, are an undirected finite

graphs without loops or multiple edges.

Degree: is the number of edges incident to the vertex. It’s also called the local

degree or valency. The degree of a vertex v in the graph G is denoted by deg(v).

If deg(v) = 0, a vertex v is called an isolated vertex. A vertex of degree one is

called a leaf or pendant vertex. The maximum degree of a graph G, denoted by

∆(G) = max{deg(v) : v ∈ V (G)}, and the minimum degree of a graph, denoted by

δ(G) = min{deg(v) : v ∈ V (G)}.

Subgraph: a graph H is a subgraph of a graph G, denoted H ⊆ G, if the vertex

set V (H) of H is contained in the vertex set V (G) of G and all edges of H are edges

in G, i.e, V (H) ⊆ V (G) and E(H) ⊆ E(G). For any vertex subset S ⊆ V (G), the

subgraph induced by S denoted by G[S] = (S,Es) contains all the edges of E(G)

whose extremities belong to S. As particular subgraphs, we have clique and inde-

pendent set defined below.

Clique: is a subset of vertices of a simple graph G such that every two distinct
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vertices in the clique are adjacent. A maximal clique is a clique that cannot be ex-

tended by including one more adjacent vertex, that is, a clique which does not exist

exclusively within the vertex set of a larger clique. A maximum clique of a graph

G, is a clique, such that there is no clique with more vertices. The clique number

of a graph G, denoted by ω(G), is the number of vertices in a maximum clique in G.

Independent set: independent set (a.k.a. stable set) is a set of vertices in a graph

such that no two of which are adjacent. In other words, it is a set S of vertices such

that for every two vertices in S, there is no edge connecting the two.

Neighborhood (vertex and edge): the (open) neighborhood of a vertex v in

a graph G is the set of all vertices adjacent to v, denoted by N(v) = {u : uv ∈

E(G)}. The number of neighbors of v corresponds to the degree of v in G, then

|N(v)| = deg(v). The closed neighborhood of v is N [v] = N(v) ∪ {v}. For a set

S ⊆ V , N(S) =
⋃
v∈S N(V ) and N [S] =

⋃
v∈S N [V ]. The neighborhood of an edge

e in a graph G is the set of all edges having at least a common extremity with the

edge e, denoted by N(e).

Connectivity: a graph G is connected if there exists a path between any two

distinct vertices of G. Otherwise, the graph G is disconnected. The connectivity

is minimum number of elements (vertices or edges) that need to be removed to

disconnect the graph.

Distance and diameter: the distance between two vertices v and u in a graph G,

denoted by dist(u, v), is the number of edges of a shortest path connecting them.

The diameter d of G is the maximum distance between any two vertices of G.

2.2 Some families of graphs

Graphs can be used as a modeling tool for many problems of practical importance.

In this section, we present some wide-known family of graphs, that are considered

throughout this thesis. Much more details and definitions on the graph classes can

be found in [BS+99].
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Path graph: a path Pn is a connected graph having n vertices (with length equal

n + 1). It’s a sequence of vertices (v1, v2, ..., vn) such that each edge vi, vi+1 exists

in E(Pn). The path graph Pn is also considered as a tree with two vertices having

degree 1, and the other n− 2 vertices with degree equal 2. A path is called simple

if all its vertices are distinct (see Figure 2.1(a)). A path containing all the vertices

of a graph G is called a Hamiltonian path of G.

Cycle graph: a cycle Cn with n ≥ 2 is a connected graph having n vertices

(n is also called the length of the cycle). It consists of a sequence of vertices

(v1, v2, ..., vn) starting and ending at the same vertex, with each two consecutive

vertices in the sequence adjacent to each other in the graph. In other words, for

every i ∈ {1, ..., n − 1}, the edge vivi+1 exists in E(Cn) and vnv1 also. A simple

cycle is a cycle with no repetitions of vertices and edges (see Figure 2.1(b)). A cycle

containing all the vertices of a graph G is called a Hamiltonian cycle of G.

Tree graph: a tree Tn is a connected graph with no cycles and having n vertices

(see Figure 2.1(c)). Recall that a vertex with degree one is called a leaf and a

vertex of degree at least two is called an internal vertex. A tree is called a rooted

tree if one of its vertices has been designated the root, in which case the edges have

a natural parent-child orientation, towards the root. A vertex v in a rooted tree

is a descendant of a vertex u if u lies on the unique path from the root to v. The

parent of a vertex v is the last vertex before v in a path from the root to v. The

depth of a vertex v in a rooted tree is the length of the path from the root to v.

Thus, the depth of the root is 0.

Star graph: the star graph Sn, is a tree with n+ 1 vertices such that one vertex,

called the central node, has degree n and the other n vertices have degree 1 (see

Figure 2.1(d)).

Complete graph: a complete graph (a.k.a. Clique) is a simple undirected graph

in which every pair of distinct vertices is joined by exactly one edge. The complete

graph with n vertices, denoted by Kn, is a regular graph with degree equal n − 1

and it has n(n − 1)/2 edges. In Figure 2.2, we give some examples of complete
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(a) Path (b) Cycle (c) Tree (d) Star

Figure 2.1: Some basic simple graphs.

graphs. Furthermore, a complete multigraph, denoted by λKn, is a complete graph

Kn in which every edge is taken λ times.

(a)

K1

(b)

K2

(c)

K3

(d) K4 (e) K5

Figure 2.2: Complete graphs Kn for n = 1, 2, 3, 4, 5.

Bipartite graph: we say a graph G = (V,E) is bipartite if its vertex set V (G) can

be divided into two disjoint non-empty subsets A and B, such that every edge in

E(G) has one extremity in A and the other in B. Therefore, a bipartite graph is a

graph that does not contain any odd-length cycle. The complete bipartite graph on

n and m vertices, denoted by Kn,m is the bipartite graph G = (A,B,E), where A

and B are disjoint subsets of size n and m, respectively, and E connects every vertex

in A with every vertex in B. It follows that Kn,m has n∗m edges. If |A| = |B| = n,

that is, if the two subsets have equal cardinality, then the graph is called a balanced

bipartite graph and we denoted by Kn,n. In Figure 2.3, we give three examples of

bipartite graphs.

Multipartite graph: a graph G = (V,E) is multipartite if whose set of vertices
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(a) (b) (c)

Figure 2.3: Some examples of bipartite graphs.

V (G) can be divided into non-empty disjoint subsets (called also parts) in which no

two vertices in the same part have an edge connecting them. The complete multi-

partite graph is a multipartite graph such that any two vertices that are not in the

same part have an edge connecting them. We will denote a complete multipartite

graph with k parts by Kn1,n2,...,nk
where ki is the number of vertices in the ith part

of the graph.The bipartite graph is a multipartite graph having two parts. Figure

2.4 is an example of multipartite graph with three parts.

Figure 2.4: Example of multipartite graph.

Planar graph: planar graph is the graph that can be drawn on the plane in such

a way that no edges cross each other. As an example, complete graphs are planar

only for n ≤ 4. The complete bipartite graph K3,3 is nonplanar. More generally, a

graph is planar if and only if it does not have K5 or K3,3 as a minor1, as proved by

Wagner [Wag37] .

Apex graph: an apex graph is a graph that becomes planar by the removal of a

single vertex. The deleted vertex is called an apex of the graph. An apex graph may

have more than one apex; for example, in the minimal nonplanar graphs K5, every

vertex is an apex. The apex graphs include graphs that are themselves planar, in

which case again every vertex is an apex. The null graph is also counted as an apex

1A graph is a minor of another if the first can be obtained from the second by contracting some

edges, deleting some edges, and deleting some isolated vertices.
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graph even though it has no vertex to remove.

Regular graph: regular graph is a graph that each vertex has the same number

of neighbors. In other words, every vertex of the graph has the same degree. A

regular graph with vertices of degree k is called a kregular graph or regular graph

of degree k. A 0-regular graph consists of disconnected vertices, a 1-regular graph

consists of disconnected edges, and a 2-regular graph consists of disconnected cycles

and infinite chains. A 3-regular graph is known as a cubic graph. The complete

graph Kn is a (n− 1)-regular graph.

Petersen graph: a Petersen graph is an undirected graph having 10 vertices and

15 edges as illustrated in Figure 2.5. It is a well known graph which is often used

as an example or counterexample for graph problems. Many additional facts about

the Petersen graph can be found in [HS93].

Figure 2.5: Petersen graph.

Generalized Petersen graph: Generalized Petersen graph is a family of cubic

graphs introduced by Watkins [Wat69]. Generalized Petersen graph, denoted by

P (n, k) [Big93], such that n ≥ 3 and 1 ≤ k ≤ bn−1
2 c, is a 3-regular graph with 2n ver-

tices and 3n edges. It consists of a set of vertices defined as {u0, u1, ..., un−1, v0, v1, ..., vn−1}

and a set of edges defined as {uiui+1, uivi, vivi+k : 0 ≤ i ≤ n − 1} where all sub-

scripts should be reduced to modulo n. With this notation, the (classical) Petersen

graph, defined before, is P (5, 2). As a known result, P (n, k) is bipartite if and only

if n is even and k is odd.

Graph power: the graph power of a graph G is another graph denoted by Gk,

that represents the kth power of G It has the same set of vertices of G and an edge
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exists between two vertices when their distance in G is at most k. G2 is called the

square of G and G3 is called the cube of G. Figure 2.6 is an example of graph power.

2
GG

Figure 2.6: Example of graph power two G2 of G.

Comparability graph: A graph G = (V,E) is a comparability graph if there

exists a poset < over V such that {x, y} ∈ E if and only if x < y or y < x for every

x, y ∈ V .

Wheel graph: a wheel graph, denoted by Wn, is a graph with n vertices (n ≥ 4),

formed by connecting a single vertex (universal vertex) to the n− 1 other vertices

that form a cycle of length n− 1.

Chordal graph: a graph G is said Chordal if every induced cycle in G should

have at most three vertices. In other words, it is a graph in which all cycles of four

vertices or more have a chord, which is an edge that is not part of the cycle but

connects two vertices of the cycle.

Block graph: block graph (a.k.a. clique tree) is an undirected graph whose blocks

are cliques. To find more characterization about block graphs in [BJT10]. Note

that block graphs are chordal.

Split graph: a graph G is a split graph if its vertices can be partitioned to form

a clique and an independent set [FH76]. Split graphs are a special class of Chordal

graphs.

Interval graph: an interval graph is an undirected graph formed by a set of in-

tervals. Each interval represents a vertex and each edge that connects two vertices

corresponds to the intersection of two intervals. Figure 2.7 represents an example

of interval graph.
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C

D

B

A

F

G

E

G

A D

B

C E F

Figure 2.7: Example of interval graph.

Disc graph: we define a disk graph (a.k.a. DG) as the intersection graph of a set

of disks in the Euclidean plane. DGs have a very simple geometric structure. The

study of this class of graphs is motivated by its applications which can be found in

radio networks, map labeling, and in sensor networks. Disc graph can be considered

as an extension of the concept of the interval graphs family.

If all discs have unit diameter, we have a unit disc graph (a.k.a. UDG). It is

a graph formed from a collection of equal radius circles in the plane such that the

center of the circles represent the set of vertices, in which two vertices are connected

by an edge when them corresponding circles intersect. To find more characteriza-

tion about unit disc graphs, refer to [CCJ90a].

H-free graph: A graph G is called H-free for some graph H if G does not contain

an induced subgraph isomorphic to H and G is called (H,F )-free for some graphs

H and F if G does not contain any induced subgraph isomorphic to neither H or

F . A graph G is H-minor-free if G does not contains H as a minor.

Cograph: cograph (a.k.a. P4-free graph) is a graph that can be generated from the

graph K1 by complementation and disjoint union as follows: 1. any single vertex

graph K1 is a cograph; 2. if G is a cograph, so is its complement graph G; 3. if G

and H are cographs, so is their disjoint union G ∪H.

As an example, the complete graphs and complete bipartite graphs are spe-

cial cases of cographs. Most algorithmic problems can be solved on this class in

polynomial time, and even linear, because of its structural properties.
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2.3 Computational complexity

Throughout this section we give a brief introduction to the field of computational

complexity. For a more complete introduction to computational complexity there

are many good books such that a classic famous book by Garey and Johnson [GJ02],

a book by Christos H. Papadimitriou [Pap03] or a more advanced book by S. Arora

and B. Barak [AB09].

2.3.1 Classical complexity theory

An algorithm is a sequence of instructions that allow us to solve a computational

problem. Informally, it takes an input data of the problem and transforms it to

results. Hence, algorithm and problem are two concepts that compliment each

other. As we explain in sections below, many practical problems can be represented

by graphs. Then, the study and analysis of algorithms used to solve graph problems

is therefore of practical importance.

Among the computational problems that usually exist in theory we find decision

problems and optimization problems. A decision problem is to check if some prop-

erty is true or false. Then, the two possible answers are yes or no. Optimization

problem is to find a solution where the cost, quality, size, or some other measure is

as large or small as possible. In fact, for every optimization problem, there is an

associated decision problem.

The computational complexity helps us to classify these problems according

to their difficulty. In other words, it permits to measure the complexity of the

problem when computing the solution to see how difficult a problem is. In this

context, complexity is measured by the amount of resources required to solve the

problem. As the most common required resources, we distinguish two types: time

complexity and space complexity.

Time complexity is generally expressed as functions of the input size of the

problem, using O notation. In graph theory, for an input graph G = (V,E), it is

common to estimate complexity in terms of the number of vertices |V | and/or in

terms of the number of edges |E|. For example, a polynomial time algorithm is one

for which the number of steps for a given input is upper bounded by a polynomial

function of the size of the input.
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The most popular question in computational complexity is what the difference

between P and NP.

In computational complexity theory, all decision problems that have a determin-

istic polynomial time algorithm, belong to the complexity class P. In other words,

the answer yes or no of the problem can be decided in polynomial time. All the

decision problems in P are classified as nice or more technically speaking tractable

or efficient.

There exist some problems that don’t necessarily run in polynomial time but

whose solutions can be verified in polynomial time. These problems belong to the

class NP (Nondeterministic polynomial time). Observe that P ⊆ NP.

The NP-complete complexity class represents the most difficult problems of the

NP class such that it contains the set of all problems X in NP for which it is

possible to reduce any other NP problem Y to X in polynomial time (polynomial

reduction). All decision problems of this class are classified as bad, intractable or

inefficient.

A problem X is NP-hard, if there is an NP-complete problem Y , such that Y

is reducible to X in polynomial time. This means that we can solve Y quickly if

we know how to solve X quickly. Formally, Y is reducible to X, if there exist a

polynomial time algorithm A that transform instances y of Y to instances x = A(y)

of X in polynomial time, with the property that the answer to y is yes, if and

only if the answer to f(y) is yes. Intuitively, these are the problems that are at

least as hard as the NP-complete problems. Then, if there exists a solution to one

NP-hard problem in polynomial time, there exists a solution to all NP problems in

polynomial time. Note that NP-hard problems do not have to be in NP.

Depending on the properties of the graph, the complexity can change. For

example, the problem can be NP-hard in general classes of graphs and polynomial

in some special classes.

Hence, the unfortunate fact that we cannot find the optimum solution in poly-

nomial time doesn’t mean that the problem cannot be studied or need to be ignored.

In practice, some solutions are possible. We have two possible ways in order to

deal with NP -hard problems: approximation algorithms and parameterized com-

plexity. Note that these two ways can collaborate together [Mar08] but in this thesis

we use one of each separately for the same problem but in different graph classes
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(see Chapters 8 and 9).

In the two following subsections we give more details about this two practical

ways.

2.3.2 Approximation algorithms

Most of optimization problems are NP-hard and more especially the problems hav-

ing important applications in real life. Assuming that P 6= NP, it is unlikely that

there can ever exist efficient polynomial time exact algorithms to solve NP-hard

problems. In this perspective, the field of approximation algorithms allows us to

find polynomial time algorithms with the fastest running time used to give approx-

imate solutions of optimization problems. In other words, the aim is to relax the

requirement that the given solution is the optimum and this help us to find an

approximate solution in faster time.

Approximation needs to be close to the optimal solution, this guarantees the

quality of the solution which is measured by the factor ρ. This means that, for a

ρ-approximation algorithm A which give the approximate solution A(x) for an in-

stance x will not be less (for maximizing problem) or more (for minimizing problem)

than a factor ρ times the value of an optimum solution.

Hence, A polynomial time approximation scheme (PTAS in short) is an algo-

rithm which takes an instance of an optimization problem and a parameter ε > 0 to

produce a solution that is within a factor 1 + ε, in polynomial time. Other variants

exist such as fully polynomial time approximation scheme (FPTAS in short) which

is an approximation scheme whose time complexity is polynomial in the input size

and also polynomial in 1/ε. As typical examples for an approximation algorithms

applied in graph theory, we have approximation algorithm for vertex cover problem

(find minimum set S of vertex such that every edge in the graph is incident to at

least one vertex in S) [Hoc82a], for traveling Salesman problem (find the shortest

possible route, for a list of cities, that visits each city exactly once and returns to

the starting city) [Lap92] and more others can be found in [ACG+12].

More details and some more advanced explanations on approximation complex-

ity, can be found in [ACG+12, Vaz13].
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2.3.3 The word of parameterized complexity

As another way to deal with the computational hard problems we have parame-

terized complexity, introduced in the 1990’s. For a complete introduction to pa-

rameterized complexity there exist many good books for example, we have the two

books by Downey and Fellows [DF12, DF13] and a more recent textbook by Cygan

et al. [CFK+15].

Parameterized complexity can be seen as a refinement of classical complexity in

which one takes into account not only the input size, but also a parameter k. As

an example of parameters in graph theory, we have size of the solution, treewith,

etc.

This parameter help us to get around the inevitable combinatorial explosion

of classical computational complexity and separate the time complexity into two

parts: first part that depends purely on the size of the input and represented with

a polynomial function, and the second part which is an arbitrary function that

depends on the parameter k. In this case, a problem is called fixed-parameter

tractable (FPT in short) and the time complexity of the corresponding algorithm

(fixed parameter tractable algorithm) is represented as O(p(n)f(k)) Where p(n)

is some polynomial function of the input size n and f(k) is an arbitrary function

in k. Hence, this means that the complexity of the problem scales polynomially

with the size of the input data which is nice as time complexity. However, it also

scale arbitrarily (usually exponentially) with the parameter k. This separates out

the central hardness of the problem such that the hard part (the bad part) of the

problem is blamed on the parameter k, while the easy part (the nice part) of the

problem is charged to the size of the input data. Thus, the choice of the right

parameter k is very important since the problem can be considered as hard from

parameterized viewpoint with some parameterization, but tractable (soluble) with

another parametrization.

Since there exist many hard problem in literature, this approach has enormous

practical implications for these problems. If you find a problem that’s fixed param-

eter tractable and the parameter k has small values, it can be significantly more

efficient to use the fixed parameter tractable algorithm than to use the classical

brute force algorithm.
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2.4 Two favorite graph problems

Graph modeling helps us to understand a problem because it determines a single

formal vocabulary for different situations and allow us to find a method to solve

the problem.

Graph theory was born in 1736 with the answer of Euler (1707-1783) to the

famous problem of the bridges of Königsberg (Euler, 1736) [Eul41]. The problem

is proposed as follows. Seven bridges of the city of Königsberg , the east Prussian

city and now renamed Kaliningrad, relied four places as shown in Figure 2.8. The

question is can all be traversed in one trip without doubling back, with the addi-

tional requirement that the trip ends in the same place it began. This problem is

equivalent to asking if the multigraph with four nodes and seven edges (see Figure

2.8) has an Eulerian cycle [W+01].

(a) the bridges of Königsberg (b) Euler’s graph representation

Figure 2.8: Königsberg Bridge Problem.

Thence, there exist a variety of graph problems in literature [BM76, W+01,

Xu13]. Some problems are old such as color problems (1852) [JT11, Kub04], Trav-

eling salesman problem (1832) [LLRKS85], and others more recent such as Roman

domination problem (1999) [Ste99, CDHH04], Rainbow connection problem (2008)

[CJMZ08].

An history of graph theory from 1736 to 1936 can be found in [BLW76], a more

recent update can be found in [Bol13] and some open problems can be found in

[Wes].

All problems considered in graph theory are typically motivated by them prac-

tical applications in a wide range of areas such as: networks [Deo94], biology

[SS+73, PSM+11], chemistry [Bon91, HJ88] social science [WF94], etc.
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Since this thesis is focusing on graph theory problems, let us in the following

introduce the two central problems considered in this work, namely decomposition

and domination, to acquaint the reader with. We hope this section helps the reader

to understand our motivation to study these two problems.

2.4.1 Decomposition problems

Graph decomposition is one of the most famous and known problems in graph

theory. It consists to break an input graph into smaller pieces (subgraphs) by

satisfying some constraints.

Since it is a very vast research area, there exist various types of decomposition

problems in literature. Nevertheless, there exist two major kinds of decomposi-

tions of graphs, depending on the way that we want to decompose, called edge-

decompositions (a.k.a. edge-disjoint decomposition) and vertex-decompositions

(a.k.a. vertex-disjoint decomposition) respectively.

The first kind consists to decompose the input graph into subgraphs such that

each edge belongs to one and only one subgraphs. In other words, we decompose

the edges of the input graph into groups and each group constitutes a subgraph.

The second decomposition is based on vertices. It consists to decompose a graph

into subsets of vertices such that each vertex must belong to one and only one

subsets. Graph decomposition is usually associated to the edge-decompositions and

in a lot of research vertex-decompositions are called colorings and not considered

as decomposition. Then, in all this work, the only kind considered is the edge-

decomposition and for the sake of simplicity we call it graph decomposition.

Graph decomposition is motivated by a lot of applications in practice such as in

fault tolerance [MB98] spanning structures [Fre85], load balancing [Fox88, KNS09],

graph similarity and matching [LH01], pattern recognition techniques [FP75], big

graphs [SXZF07], etc.

More details on graph decomposition, motivation and our results can be found

in Part I of this thesis.

2.4.2 Domination problems

The study of domination problems in graph theory has a long history. Mathematical

study of domination in graphs began around 1960. A brief history of domination
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in graphs are given in Chapter 5.

A dominating set of a graph is a subset D of the vertices such that every vertex is

either in D or adjacent to a vertex in D. Over the years different variations of graph

domination were introduced e.g. total dominating sets, connected dominating sets,

k-tuples dominating sets, etc.

The first domination problems came from chess. In 1850, different chess players

were interested in the minimum number of queens such that every square on the

chess board either contains a queen or is attacked by a queen [HHS98]. Then, the

number of required queens for such problem corresponds to the dominating number.

Other than chess, domination in graphs has a lot of applications in several fields.

Concept of domination appears in facility location problems, where the number

of facilities (e.g., fire stations, hospitals, shops, guards) is fixed and one attempts

to minimize the distance that a person needs to travel to get to the closest facility.

Domination can be also found in problems involving to find sets of representatives,

in monitoring communication or electrical networks. As another application of

domination we have cluster heads. In wireless sensor networks, it consists to group

sensor nodes into clusters and electing cluster heads for all the clusters. Domination

can help us here to select appropriate cluster heads.

The literature on this subject is rich and growing rapidly since we always have

new variants of domination problems. In this thesis, we give a particular interest to

study two variants of domination, called [j, k]-dominating set and edge monitoring

problem. Our motivation about studying these two problems and more details can

be found in Parts II and III respectively.
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The first part of thesis is devoted to the problem of graph decomposition. Graph

decomposition is incredibly well studied area and it is a very broad topic. The

concept of graph decomposition proved to be useful in many ways and it is crucial

in the study of lot of theoretical applications. This chapter is attended as an

introduction to some graph decomposition problems. We give a brief history of the

decomposition in graphs and the motivation of take up this area for the present

research. We also present some well known results on decomposition of specific

graphs which are closely related to the problem presented in the next chapter.

3.1 Motivation

Research in graph decomposition started with a result of Walecki in 1890 concern-

ing the existence of a Hamiltonian decomposition of complete graph with an odd

number of vertices and a lot of open problems have emerged after that.

Like most of research areas, graph decomposition has experienced an exponential

growth and researchers have become increasingly specialized. Hence, for the same
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type of decomposition we can find several results on different graphs and for the

same graph we have different types of possible decomposition.

The study of graph decomposition has close ties to several areas including net-

work theory, design and graphic theories, geometry, coding theory and obviously

graph theory as well as other important areas. This motivated researchers to ex-

tensively develop this area. Results on graph decomposition are applied in a wide

range of applications such as analysis of structures, fault tolerance in network ar-

chitecture, detection of geometric patterns and textures in graphic design, graph

decomposition into specific patterns, summarizing and compressing graphs, graph

similarity and subgraph matching, the study of properties in big graphs... and more

other applications. To have a general idea about how useful is the concept of graph

decomposition in real life and to understand its importance, we focus on three dif-

ferent applications that use graph decomposition.

- Fault tolerance.

Fault tolerance is the property that allows a system to continue the different oper-

ations properly even if there is a failure in one or more of its components [LA12].

Fault tolerance is often related to Hamiltonian cycle decomposable architecture.

Hamiltonian decomposition aims to find all edge disjoint cycles where each one is a

graph cycle through a graph G that visits every vertex exactly once [Ber78]. This

type of decomposition have a direct application in networks field to have fault toler-

ance properties. Generally, Hamiltonian decomposition is used to obtain alternative

communication routes in computer networks. Thus, if there is any communication

failure in one circuit, then another circuit can be used. In other words, if the link

between two different stations (or nodes) in the network is broken, we have the

possibility to use another link.

However, other constructions are also used as a model in fault tolerant networks

such as in [DH90] for trees architecture, [FD89a] for stars architecture and [FD89b]

for complete multipartite architecture.

- Combinatorial designs.

Another research area that used a graph decomposition is the combinatorial con-

struction in designs theory [Sti07]. This research area is very wide and discusses
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a lot of fundamental questions based on arrangement of elements into subset with

satisfying some properties. For example, in design theory, we associate the name

handcuffed designs [HM77] for path decomposition and the name resolvable designs

[HRCW72] for star decomposition. Both decompositions are the most used in this

area but we also find a large number of combinatorial design problems that can be

described in terms of another types of graph decomposition.

As a classical problem of combinatorial designs we find combinatorial index-file or-

ganization scheme problems [I+78]. It consists to give a suitable file organization

scheme in database systems. There exist different data file organizations used in

a database environment. Using graph decomposition, the idea is to model the set

of data files by graph and decompose it into specific subgraphs to give such an

organization.

- Social network analysis.

The concept of social networks is widely growing since the importance of studying

social interactions and behavioral science. Social network can be represented by

a graph which consists on a set of vertices corresponding to the actors and a set

of edges representing the relations between these actors. A small social network

can be visualized directly by its corresponding graph but larger social networks can

be more difficult to envision and analyze. In this perspective, there exist variant

tools and techniques to study patterns of relationships that connect social actors

in social networks, refer [Sco12, WF94]. As a particular technique, we have graph

decomposition that helps us to study and analysis these social networks. For ex-

ample, star decomposition is widely used to identify major actors and interactions

in social network. We just need to decompose the network into stars and select

all stars having maximum degree. Clique decomposition can be used for detecting

communities in social networks. Furthermore, other graph decompositions can also

be used to find a set of people or groups of people having some pattern of contacts

or special interactions between them. There exist several important research papers

and books in this sense, we can refer to [BZ03, BM04, FB07]

All the above facts, motivate us to take up this thrust area for the present

research.
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3.2 Two types of decomposition

In this section we have chosen to present two well-known graph decompositions

namely simple decomposition and multidecomposition of graphs.

3.2.1 Simple decomposition of graphs

The H-decomposition of G aims to partitioning the edge set of G into edge disjoint

copies of H. By other words, it consists of decomposing an input graph G = (V,E)

into a collection of smallest subgraphs H1, H2, ...,Hk, such that each edge of G

belongs to exactly one subgraph Hi : 1 ≤ i ≤ k. Note that decomposing the graph

G means that there is no remaining edges and all the edges need to belong to one

subgraph. If G has an H-decomposition, then we say that G is H-decomposable.

Due to many applications in computer science, an intensive research about sim-

ple decomposition has been done on many special subgraphs. As an example of

basics and well-known simple decomposition, we have star decomposition (denoted

by Sk-decomposition) [Tar79], path decomposition (denoted by Pk-decomposition)

[Tar83] and cycle decomposition (denoted by Ck-decomposition) [ABS90]. Other

decompositions are studied in the literature, for more details, refer to Section 3.3.

In all the decompositions, we consider the fact that all the subgraphs have the

same type H and also the same size. Note that determining if a graph G admits

an H-decomposition was conjectured to be NP -complete by Holyer in [Hol80] and

proved in [CT91, DT92] for all subgraph H which have a connected component of

size 3 or more.

= U U

Figure 3.1: Example of P3-decomposition of K4.

As an example, Figure 3.1 presents the P3-decomposition of K4. The obvious

necessary condition that K4 need to have in order to admit a P3-decomposition

is that the size of K4 have to be a multiple of the size of P3. Thus, for example

K6 doesn’t admit a P3-decomposition since the necessary condition is not satisfied.

Furthermore, depending on the type of decomposition for the same graph G = K4,
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additional conditions can be considered.

3.2.2 Multidecomposition of graphs

An (H,F )-decomposition of a graph G consists on finding a partition of the edge

set of G into edge disjoint isomorphic copies of H and F using at least one copy of

each.

Formally, it consists of decomposing an input graph G = (V,E) into a collec-

tion of subgraphs of two types H and F (or more than two recently) as follow

H1, H2, ...,Hk, F1, F2, ..., Fl, such that each edge of G belongs to only one subgraph

Hi : 1 ≤ i ≤ k or Fi : 1 ≤ i ≤ l.

If G has an (H,F )-decomposition, we say that G is (H,F )-decomposable (or

(H,F )-multidecomposable).

As an example and to have a comparison point of view with simple decompo-

sition, we decompose the same graph K4 using in the above subsection into cycles

and stars. This decomposition is called a (C3, S3)-multidecomposition and it is

presented in Figure 3.2.

= U

Figure 3.2: Example of (C3,S3)-decomposition of K4.

3.3 Review of literature

Since the different applications relating to various decompositions on different graphs,

this subject became an active research area. The literature on this subject has been

surveyed and detailed in a lot of books and research papers such as the phd thesis

of Priyadarshini [Pri13] which dealt with multidecomposition of multigraphs, the

phd thesis of Sotteau [Sot80], the phd thesis of Gabel [Gab80], survey of Chung et

al. [CG81], survey of Rodger [Rod91], survey of Lindner et al. on cycle decomposi-

tion [LR92], survey of Billington [Bil04], survey of Heinrich on path decomposition

[Hei93], survey of Beineke [Bei96], survey of Bermond et al. [BS75], survey of

Alspach et al. on cycle decomposition [ABS90], survey of Ushio [Ush93], survey of
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Rodger [Rod91], the book written by Bosák [Bos90], the book of Foregger [For79],

and the first results on graph decomposition can be found in the Lucas’s book

[Luc82].

In all the references cited above, the reader can find more detailed discussions

about the graph decomposition. Now, we will focus more closely on a few specific

decomposition problems that have more impact and are more intensively studied

in the literature, and then present such a review of existing results on each type

of decompositions. Note that we focus only on results that deal with necessary

and sufficient conditions that need to have a graph to be decomposable into some

special type of subgraphs.

When we consider the problem of H-decomposition of G, many questions can

be asked but the most natural problem is to find the conditions on G for which

H-decomposition exists. This allow us to find the require properties of the graph

in order to have such decomposition.

Let consider the complete graph G = Kn. Complete graph is the most popular

graph studied in decomposition problems. It can easily be seen that for any sub-

graph H of order at most n, the following two conditions are necessary in order to

decompose Kn into H:

1. n(n−1)
2 is a multiple of the number of edges of H.

2. n−1 is a multiple of the greatest common divisor of the degrees of the vertices

of H.

In other words, the size of Kn needs to be a multiple of the size of the subgraph

H and the degree of Kn needs to be a multiple of the greatest common divisor of

the degrees of the vertices of H. It’s not difficult to find the necessary conditions.

However, the real problem and the more difficult part is to establish the sufficient

conditions.

In [Wil76], Wilson stated his fundamental theorem on the existence of an H-

decomposition of the complete graph Kn for any fixed H as long as the number of

edges of Kn is divisible by the number of edges of H and n is large enough. Since

then, decomposition problems became an active research area. There have been

several important research papers relating to various decompositions of different

graphs. Let focus on three types of subgraphs: paths, cycles and stars. For the
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complete graph Kn, the solution of the corresponding problem for H = Pk was

proved by Tarsi [Tar83]

Theorem 3.3.1 Let k and n be positive integers. There exists a Pk-decomposition

of Kn if and only if k ≤ n and n(n1) ≡ 0[2k − 2].

for H = Ck by Alspach et al. [AG01] and Sajna [Šaj02]

Theorem 3.3.2 Let n and k be positive integers. Kn has a Ck-decomposition if

and only if n is odd, 3 ≤ k ≤ n, and n(n− 1) ≡ 0[2k].

and for H = Sk by Tarsi [Tar79] and Yamamoto et al. [YISE+75]

Theorem 3.3.3 Let k and n be positive integers. There exists a Sk-decomposition

of Kn if and only if 2k ≤ n and n(n1) ≡ 0[2k].

Others results about H-decomposition and (H,F )-decomposition on some other

specific graphs G have been investigated by many authors. We summarized some

of them in the Table 3.1 for simple decomposition and Table 3.2 for multidecompo-

sition. We have to note that some cited papers solve just some special cases. The

hole problem is still open in some cases.

Graphs Paths Cycles Stars

Kn [Tar83] [AG01, Šaj02] [Tar79, YISE+75, LS96]

Km,n [Par98] [Sot81] [YISE+75]

λKn [Tar83] [BHMS11] [Tar79]

λKm,n [Shy07, Tru85] [Lee15] [Lee15]

Km,m,m [LLL09, BCS10] [CH77a, Cav98, Bil99, CB00] [UTY+78, T+79]

λK∗
n [MS06, MS12] [Sch75, BF76, AGŠV03] [CHR92]

k − regular [FGK10, HJM99, BJ15] [Mar12] [LL05]

S0
n - [LL00, MPS06] [LLS+99]

Table 3.1: Table summarized some famous graph decomposition.

The problem of Hamiltonian decomposition of graphs has been extensively stud-

ied and it can be considered as the door of an infinite list of decomposition prob-

lems. In [Ber78], several problems related to Hamiltonian decompositions of graphs,
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Graphs P. & S. P. & C. S. & C.

Kn [Shy10a] [Shy12, Shy10b] [AL14, BHK15]

Km,n [Shy13, LC13] [JM14] [Lee13]

λKn [LC15] [PM09] [BHK15]

λKm,n [PM12, LC15] [JM15] [Lee15]

K∗
n - [Shy15] -

S0
n - - [LL13]

Table 3.2: Table summarized some famous graph multidecomposition.

directed graphs and hypergraphs are treated. More results on Hamiltonian decom-

position can be found in [ABS90, Hil84, BFM89, HR86, BN16].

Different types of decomposition of various types of graphs has been studied

by many authors. One of the most studied is tree decomposition. For some re-

sults on tree decompositions; see [DO95, Pet96, BG12, Lon89]. Other types of

decompositions are studied in various types of graphs such as crown decomposi-

tion of complete multigraphs [LG10], complete bipartite decomposition of complete

graph [Tve82], multistars decomposition of complete bipartite multigraph [Lin10],

isomorphic cubes decomposition of complete graph [Kot81], complete multipartite

decomposition of complete graph [Hua91], and so on.

All the decompositions cited above are simple or multiple but recently, Lin and

Jou investigate a new version of decomposition having three types of subgraphs.

They consider the problems of the (Ck, Pk, Sk) -decomposition of the balanced com-

plete bipartite graph Kn,n (not published yet). In the same perspective, they also

consider in [LJ16] the problem of the (Ck, Pk, Sk) -decomposition of the balanced

complete bipartite multigraph λKn, for λ ≥ 2.

In the next chapter, we focus only on the Multidecomposition of complete multi-

graph into cycles and stars of same size.
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In the previous chapter, we introduced the problem of Decomposition of graphs

into subgraphs and we discussed some results that the research raised in this field. In

this chapter, we focus on the Multidecomposition of complete multigraph into cycles

and stars and we discuss the existence of such decomposition. Our decomposition

result show the required conditions for the existence of (Ck, Sk)-multidecomposition.

Note that the particularity is to have the same number of edges in all the subgraphs.

A preliminary version of this work appeared in [BHK15].

This chapter is organized as follows: In Section 4.1, we present a couple of

theorems related to this work and needed to be used in our discussion. After

that we present some introductory results. More advanced results are discussed in

Section 4.3 and Section 4.4 respectively. Furthermore, we discuss a new idea to deal

with the remaining cases in Section 4.5. Section 4.6 concludes this first part.
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4.1 Related work

Before presenting our results, we briefly revisit the essential theorems on Ck-decomposition

and Sk-decomposition that are useful for our proofs.

Theorem 4.1.1 (Tarsi [Tar79] and Yamamoto et al.[YISE+75]) A necessary and

sufficient condition for the existence of an Sk-decomposition of λKn is that:

• λn(n− 1) ≡ 0[2k],

• n ≥ 2k for λ = 1,

• n ≥ k + 1 for even λ,

• n ≥ k + 1 + k/λ for odd λ ≥ 3.

Theorem 4.1.2 (Bryant et al.[BHMS11]) Let λ, n and k be integers with n,k ≥ 3

and λ ≥ 1. There exists a decomposition of λKn into cycles of k edges if and only

if k ≤ n, λ (n− 1) is even and k divides λn(n− 1)/2.

There exists a decomposition of λKn into cycles of k edges and a perfect match-

ing if and only if k ≤ n, λ (n − 1) is odd and k divides λn(n − 1)/2 − (n/2).

Theorem 4.1.3 (Alspach et al. [AG01] and Sajna [Šaj02]) Let n and k be positive

integers. Kn has a Ck-decomposition if and only if n is odd, 3 ≤ k ≤ n, and

n(n− 1) ≡ 0[2k].

Theorem 4.1.4 (Yamamoto et al.[YISE+75]) Let m ≥ n ≥ 1 be integers. Then,

Km,n is Sk-decomposable if and only if m ≥ k and m ≡ 0[k] if n < k, mn ≡ 0[k] if

n ≥ k.

Theorem 4.1.5 (Sotteau [Sot81]) For positive integers m, n, and k, the graph

Km,n is Ck-decomposable if and only if m, n, and k are even, k ≥ 4, min {m,n} ≥

k/2, and mn ≡ 0[k].

4.2 Introductory results

In this section, we give some preliminary results
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Let G be a graph. The order of G is the cardinality of its vertex set and the

size of the graph G is the cardinality of its edge set. We begin with the following

lemma to prove the necessary conditions when λKn is (Sk, Ck)-decomposable:

Lemma 4.2.1 Let n ≥ 3 and λ > 1 be positive integers. If λKn is (Sk, Ck)-

decomposable, then 2 ≤ k ≤ n− 1 and λn(n− 1) ≡ 0[2k].

Proof. Since the minimum length of a cycle and the maximum size of a star in

λKn are respectively 2 and n − 1, so 2 ≤ k ≤ n − 1 is necessary. Since λKn has

λn(n − 1)/2 edges and each subgraph in a (Ck, Sk)-decomposition has k edges, k

has to divide λn(n− 1)/2. �

As an introduction result, we show in the following proposition that the nec-

essary conditions in Lemma 4.2.1 of the (Ck, Sk)-decomposition of λKn are also

sufficient in the special case when k = 4.

Proposition 4.2.2 Let n > 4 and λ > 1 be positive integers. There exists a

(C4, S4)-decomposition if and only if λn(n− 1)/2 ≡ 0[4].

Proof. We distinguish two cases according to the parity of λ.

Case 1. λ is odd

Since λn(n−1)/2 ≡ 0[4] and λ is odd by assumption then n(n−1) ≡ 0[8]. We have

two subcases:

Subcase 1.a. n is even

Since n(n − 1) ≡ 0[8] and n is even, this implies that n ≡ 0[8]. Let n = 8α

with α ≥ 1, then λKn can be decomposed into disjoint union of α copies of λK8

and disjoint union of α(α− 1)/2 copies of λK8,8. Every λK8,8 can be decomposed

into S4 using Theorem 4.1.4. We now decompose each λK8 into C4’s and S4’s as

follows: Note that λK8 = K8 ∪ (λ− 1)K8. Since Theorem 4.1.1 implies that K8 is

S4-decomposable and Theorem 4.1.2 guarantees that (λ−1)K8 is C4-decomposable,

we have λK8 is (C4, S4)-decomposable. Thus, λKn is (C4, S4)-decomposable.

Subcase 1.b. n is odd

Since n is odd and n(n−1) ≡ 0[8] by assumption then n−1 ≡ 0[8]. Let n−1 = 8α.

Since the degree of each vertex of λKn equals to λ(n− 1) and is divisible by 4, we

take one vertex and decompose all its incident edges into 2λα stars of 4 edges. The

remaining graph is λKn−1 with n− 1 = 8α. In this case, we use the same method
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as the previous Subcase 1.a for λKn with n = 8α.

Case 2. λ is even

Recall that n > 4. We give the (C4, S4)-decomposition of λKn as follows according

to values of n:

• n = 5: Note that λK5 = λS4∪λK4. Since λ is even and using Theorem 4.1.2,

we decompose λK4 into C4. Thus, λK5 is (C4, S4)-decomposable.

• n = 6 or n = 7: We have n(n− 1) ≡ 0[2] and λn(n− 1) ≡ 0[8] by assumption.

Consequently, λ ≡ 0[4] then we take incident edges of one vertex and decom-

pose them into S4’s. The remaining graph is either λK5 when n = 6 or λK6

when n = 7. Both remaining graphs are C4-decomposable using Theorem

4.1.2.

• n = 8: Since λ is even, λK8 can be written as the disjoint union of 2K8’s.

Now we give the (C4, S4)-decomposition of 2K8: each 2K4 is decomposed into

C4’s by Theorem 4.1.2 and the 2K4,4 is decomposed into S4’s using Theorem

4.1.4. Since each 2K8 is (C4, S4)-decomposable then λK8 is also (C4, S4)-

decomposable.

• n ≥ 9: Note that λKn = λK4 ∪ λKn−4 ∪ λK4,n−4. Observe |E(λK4)| and

|E(λK4,n−4)| are divisible by 4. By assumption |E(Kn)| is a multiple of 4,

so |E(λKn−4)| is also a multiple of 4. We decompose λK4 into cycles of 4

edges using Theorem 4.1.2 with λ even. λK4,n−4 is S4-decomposable using

Theorem 4.1.4. Since λ is even, we decompose λKn−4 into C4 using Theorem

4.1.2. Thus, we conclude that λKn is (S4, C4)-decomposable.

�

4.3 Multidecomposition of λKn when n ≥ 4k or n ≥ 2k

and λ even

In this section, we prove some lemmas and theorems each of them treating a special

case of decomposition of λKn into Sk’s and Ck’s.

The next proposition proves that λKn is (Sk, Ck)-decomposable for all n ≥ 4k

and λ = 1, so we complete the missing cases in [AL14] when n ≥ 4k:
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Proposition 4.3.1 Let n and k be positive integers such that n ≥ 4k and n(n −

1)/2 ≡ 0[k], then the graph Kn is (Sk, Ck)-decomposable.

Proof. Let n = qk + r where q and r are integers with 0 ≤ r < k and q ≥ 4.

Note that: Kn = Kqk+r = K2k ∪K(q−2)k+r ∪K2k,(q−2)k+r.

Clearly, |E(K2k)| and |E(K2k,(q−2)k+r)| are multiples of k. Thus ((q − 2)k +

r)((q− 2)k+ r− 1)/2 is also a multiple of k. We distinguish two cases according to

the parity of k.

Case 1. k is odd

It follows that K(q−2)k+r is Sk-decomposable by Theorem 4.1.1 since (q− 2)k+ r ≥

2k, and K2k,(q−2)k+r is also Sk-decomposable by Theorem 4.1.4.

We write K2k = Kk ∪ Kk ∪ Kk,k. Now, it is clear that each copy of Kk is

Ck-decomposable when k is odd by Theorem 4.1.3 and Kk,k is Sk-decomposable by

Theorem 4.1.4.

Case 2. k is even

In this case, K2k is Sk-decomposable by Theorem 4.1.1.

If n is even, then (q − 2)k + r is even. So, we can decompose K2k,(q−2)k+r into Ck

using Theorem 4.1.5. Since q ≥ 4, (q − 2)k + r ≥ 2k. Consequently, K(q−2)k+r is

Sk-decomposable by Theorem 4.1.1. Conversely, if n is odd, then (q − 2)k + r is

odd. Using Theorem 4.1.3, K(q−2)k+r can be decomposed into cycles of k edges and

K2k,(q−2)k+r is Sk-decomposable by Theorem 4.1.4. Thus, we conclude that λKn is

(Sk, Ck)-decomposable when λ = 1. �

In the rest of this section, we will focus on complete multigraph λKn where

λ > 1. The following lemma gives sufficient conditions for decomposing λKn into

Ck’s and Sk’s where λ > 1 is odd and n ≥ 4k.

Lemma 4.3.2 Let n, k and λ > 1 be positive integers such that n ≥ 4k and λ is

odd. If λn(n− 1)/2 ≡ 0[k] then λKn is (Ck, Sk)-decomposable.

Proof. Let n = qk + r where q and r are integers with 0 ≤ r < k and q ≥ 4.

Note that:

λKn = λKqk+r = λK2k ∪ λK(q−2)k+r ∪ λK2k,(q−2)k+r

= (λ− 1)K2k ∪K2k ∪ λK(q−2)k+r ∪ λK2k,(q−2)k+r

|E(λK2k)| and |E(λK2k,(q−2)k+r)| are multiples of k. Using argument that

|E(λKn)| is a multiple of k i.e. λn(n−1) is divisible by k, then λ((q−2)k+ r)((q−
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2)k + r − 1)/2 ≡ 0[k]. Since (λ− 1)(2k − 1) is even and 2k ≥ k then (λ− 1)K2k is

Ck-decomposable by Theorem 4.1.2. For K2k and using Theorem 4.1.1 with λ = 1

implies that K2k is Sk-decomposable. We now decompose λK(q−2)k+r:

We have q ≥ 4, then (q−2)k+r ≥ 2k+r implies that (q−2)k+r ≥ 2k ≥ 3k/2+1 for

any k ≥ 2. Given that λ ≥ 2 then 3k/2+1 ≥ k+1+k/λ so (q−2)k+r ≥ k+1+k/λ.

Using Theorem 4.1.1 when λ is odd, since (q − 2)k + r ≥ k + 1 + k/λ, we have

λK(q−2)k+r is Sk-decomposable. Note that λK2k,(q−2)k+r can be decomposed into

λ copies of K2k,(q−2)k+r. Since K2k,(q−2)k+r is Sk-decomposable by Theorem 4.1.4,

so is λK2k,(q−2)k+r. Thus λKn is (Ck, Sk)-decomposable. �

In the following lemmas, we will give sufficient conditions of the decomposition

of λKn into Ck’s and Sk’s where n ≥ 2k and λ is even or gcd(λ, k) = 1.

Lemma 4.3.3 Let n, k and λ be positive integers such that λ is even. For all

n ≥ 2k, if λn(n− 1)/2 ≡ 0[k] then λKn is (Ck, Sk)-decomposable.

Proof. Let n = qk + r where q and r are integers with 0 ≤ r < k and q ≥ 2.

Note that: λKn = λKqk+r = λK(q−1)k ∪ λKk+r ∪ λK(q−1)k,k+r.

Obviously, |E(λK(q−1)k)| and |E(λK(q−1)k,k+r)| are multiples of k. Thus, λ(k+

r)(k + r − 1)/2 ≡ 0[k] from the assumption that λn(n − 1)/2 is divisible by k.

λK(q−1)k and λKk+r are Ck-decomposable by Theorem 4.1.2 because λ is even, (q−

1)k ≥ k and k + r ≥ k by assumption. Note that λK(q−1)k,k+r can be decomposed

into λ copies of K(q−1)k,k+r. Since K(q−1)k,k+r is Sk-decomposable by Theorem

4.1.4, so is λK(q−1)k,k+r. Thus, λKn is (Ck, Sk)-decomposable. �

Lemma 4.3.4 Let n, k and λ > 1 be positive integers such that gcd(λ, k) = 1. For

all n ≥ 2k, if λn(n− 1)/2 ≡ 0[k] then λKn is (Ck, Sk)-decomposable.

Proof. From the previous lemma, we only have to examine the case when λ is odd.

We can decompose λKn as an edge disjoint union of (λ − 1)Kn and Kn. Since

gcd(λ, k) = 1, then |E(Kn)| ≡ 0[k]. It is clear that (λ − 1)Kn has a (Ck, Sk)-

decomposition by Lemma 4.3.3. Now we decompose Kn into stars of k size by

Theorem 4.1.1 since n ≥ 2k. Thus λKn is (Ck, Sk)-decomposable. �

Using Proposition 4.3.1 and Lemmas 4.3.2, 4.3.3 and 4.3.4, we obtain the fol-

lowing Theorem:
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Theorem 4.3.5 Let n, k and λ be positive integers. If λn(n− 1)/2 ≡ 0[k] and

• n ≥ 4k, or

• n ≥ 2k and λ > 1 is even or gcd(λ, k) = 1,

then λKn is (Ck, Sk)-decomposable.

4.4 Multidecomposition of λKn when k is prime or di-

vides either n− 1,n or λ

One can easily check that λKn is (C2, S2)-decomposable if and only if n > 2, λ > 1

and λn(n− 1) ≡ 0[4]. Thus, we admit the following lemma without proof.

Lemma 4.4.1 Let n > 2 and λ > 1 be a positive integers. There exists a decom-

position of λKn into copies of S2 and copies of C2 if and only if λn(n − 1)/2 is

even.

In Lemmas 4.4.2-4.4.4, we will show the sufficient conditions of the decompo-

sition of λKn into Ck’s and Sk’s when n = k + 1, n = 2k + 1 and n = 3k + 1,

respectively with k ≥ 3.

Lemma 4.4.2 Let n = k + 1, λ > 1 and k ≥ 3 be positive integers. There exists a

decomposition of λKn into copies of Sk and Ck if and only if λk(k − 1)/2 ≡ 0[k].

Proof. We split the proof into two cases as follows:

Case 1. k is odd or λ is even

By assumption, n = k + 1 and the degree of each vertex of λKn is λk. We use

one vertex in order to construct λ stars of k edges. The remaining graph is λKn−1.

Since k is odd or λ is even and we have n − 1 = k, then λ(n − 2) = λ(k − 1) is

always even and λk(k − 1)/2 ≡ 0[k], so by Theorem 4.1.2 λKn−1 is decomposable

into Ck-decomposable. Thus, λKn is (Sk, Ck)-decomposable.

Case 2. k is even and λ is odd

This subcase does not exist because by assumption λk(k − 1)/2 ≡ 0[k], implies

λ(k − 1) to be even, a contradiction. The opposite implication is clear to proof. �

In the two following lemmas we will show that when n = 2k + 1 or n = 3k + 1,

the complete multigraph λKn can be decomposed into some k-cycles and k-stars.
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Lemma 4.4.3 Let n = 2k+ 1 and λ > 1 be positive integers and let k be a positive

integer, k ≥ 3. There exists a decomposition of λKn into copies of Sk and Ck for

any k.

Proof. The number of edges in λK2k+1, λk(2k+ 1), is a multiple of k. We decom-

pose λK2k+1 as follows : λK2k+1 = (λ−1)K2k+1∪K2k+1. Clearly, |E((λ−1)K2k+1)|

and |E(K2k+1)| are multiples of k. We decompose (λ−1)K2k+1 into Ck’s and K2k+1

into Sk’s. Hence λK2k+1 is (Sk, Ck)-decomposable. �

Lemma 4.4.4 Let n = 3k+ 1, λ > 1 and k ≥ 3 be positive integers. There exists a

decomposition of λKn into copies of Sk and Ck if and only if 3λk(3k− 1)/2 ≡ 0[k].

Proof. We split the proof into two cases as follows:

Case 1. λ is even

This case is solved by Lemma 4.3.3.

Case 2. λ is odd

If k is odd, note that: λK3k+1 = λK2k+1 ∪ λKk ∪ λK2k+1,k. By Lemma 4.4.3,

λK2k+1 is (Sk, Ck)-decomposable. λKk can be decomposed into Ck’s and λK2k+1,k

is Sk-decomposable.

If k is even, 3λ(3k+1) is not even so this case can’t exist. The opposite implication

is clear to proof. �

In the following proposition, we prove that for any k that divides n or n − 1,

λKn is (Sk, Ck)-decomposable.

Proposition 4.4.5 For integers k and n and λ with λ > 1 and 2 ≤ k ≤ n + 1, if

n ≡ 0, 1[k] and λn(n− 1)/2 ≡ 0[k], then λKn is (Sk, Ck)-decomposable.

Proof. For the case when n = k+1, n = 2k+1 and n = 3k+1: see Lemmas 4.4.1,

4.4.2, 4.4.3 and 4.4.4, respectively.

By Theorem 4.3.5, if n = αk + 1 or n = αk with α ≥ 4, then λKn is (Sk, Ck)-

decomposable.

To complete the proof, we study the cases when n = 2k and n = 3k.

For n = 2k: When λ is even, λKn is (Sk, Ck)-decomposable by Lemma 4.3.3. When

λ is odd, observe that: λK2k = (λ− 1)K2k ∪K2k. (λ− 1)K2k is Ck-decomposable

by Theorem 4.1.2 and K2k is Sk-decomposable by Theorem 4.1.1.
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For n = 3k: If λ is even, we have λKn is (Sk, Ck)-decomposable by Lemma 4.3.3. If λ

is odd and k is odd, then λK3k = (λ−1)K3k∪K3k since |E(K3k)| and |E((λ−1)K3k)|

are multiples of k. Thus, (λ−1)K3k is Ck-decomposable by Theorem 4.1.2 and K3k

is Sk-decomposable by Theorem 4.1.1. On the other hand, if λ is odd and k is even,

then it is sufficient to show that λ3k(3k − 1) ≡ 0[2k] is not true in this case. So,

when λ is odd, k must be also odd. �

In the following proposition, we will show the decomposition of λKn into Sk’s

and Ck’s when λ is a multiple of k:

Proposition 4.4.6 For integers k, n with 2 ≤ k ≤ n− 1, if λ ≡ 0[k], then λKn is

(Sk, Ck)-decomposable.

Proof. Since n ≥ k + 1 we distinguish two cases:

Case 1. n ≥ k + 2

λ ≡ 0[k] implies that the degree of each vertex of λKn is multiple of k. Thus, we can

construct stars Sk using each vertex of the multigraph. We first decompose incident

edges of some vertex into Sk’s in a circular manner as illustrated by Example 4.4.7.

This process is repeated until the remaining graph is a λKm where m = k + 1 if k

is even and m = k if k is odd.

If k is odd, the remaining graph is λKk and λk(k − 1)/2 ≡ 0[k], this implies

that λKk can be decomposed into cycles of size k by Theorem 4.1.2. If k is even,

the remaining graph is λKk+1 which has λk(k + 1)/2 edges, thus number of edges

is divisible by k. Since λk is even, the graph λKk+1 can be decomposed into cycles

of k size by Theorem 4.1.2. Hence, λKn is (Sk, Ck)-decomposable.

Case 2. n = k + 1

Since the degree of each vertex is λk, we decompose the incident edges of one vertex

into λ copies of Sk. The remaining graph is λKk. By assumption, λKk has number

of edges divisible by k, this implies that λk(k− 1)/2 ≡ 0[k]. Since λ(k− 1) is even,

we decompose λKk into copies of Ck using Theorem 4.1.2. �

Example 4.4.7, illustrated by Figure 4.1, shows how the proposition 4.4.6 is applied

for a graph 3K5:

Example 4.4.7 (S3, C3)-decomposition of a graph λKn with n = 5 and λ = 3 is

as follows:
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• Considering the graph 3K5, since λ ≡ 0[3] then |E(3K5)| ≡ 0[k].

• Taking on a vertex of 3K5 called v, we decompose the graph into λ(n−1)/k = 4

stars by rotation. This rotation is applied on all the incident edges of the

considered node v (Figure 4.1 illustrate rotation construction).

• The remaining graph is 3K4. The same rotation construction is applied for

finding λ(n − 2)/k = 3 stars. This rotation construction is applied until the

remaining graph is 3Kk(k = 3).

• The remaining graph 3K3 can be decomposed into 3 copies of C3.

=
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Figure 4.1: Rotation construction of stars. The edges of a star are labeled by a, b

and c.

In the following corollary, we will investigate the problem of decomposing λKn

into Sk’s and Ck’s for each prime number k.

Corollary 4.4.8 Let n and λ > 1 be positive integers and let k be a positive prime

number. There exists a (Ck, Sk)-decomposition of λKn if and only if n ≥ k+ 1 and

λn(n− 1)/2 ≡ 0[k].

Proof. We show that the necessary conditions given by Lemma 4.2.1 are also suf-

ficient. λn(n − 1)/2 is a multiple of k and k is a prime number, so we distinguish

three cases according to the multiplicity of n, n− 1 and λ.

When k divides n or k divides n−1, this case is proved in Proposition 4.4.5. When

k divides λ, this case is proved in Proposition 4.4.6. �
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The following theorem is a direct consequence of Propositions 4.4.5 and 4.4.6

and Corollary 4.4.8:

Theorem 4.4.9 Let n, k and λ > 1 be positive integers. λKn is (Sk, Ck)-decomposable

if λn(n− 1)/2 ≡ 0[k] and :

• k is prime, or

• k divides either n− 1, n or λ.

4.5 Discussion on multidecomposition of λKn when n <

2k

In this section, we focus on the multidecomposition of λKn when the number of

vertices n < 2k. We give a possible idea to deal with this case.

In Theorem 4.4.9, we treated the cases when k is prime and when k divides either

n− 1, n or λ. Now, we focus on the remaining cases. In the following example we

will show that if we fix k, the number of possibilities, not treated below, of n is

bounded.

(1) k = 4, this means that λn(n−1)
2 needs to be a multiple of 4. Thus, there is no

remaining cases since all the possible cases are treated above.

With the same reasoning, we obtain the remaining values of n as follow:

(2) k = 6, the possible values of n are 8, 9, 10.

(3) k = 8, the possible values of n are 12, 13.

(4) k = 9, the possible values of n are 12, 13, 15, 16.

(5) k = 10, the possible values of n are 12, 13, 15, 16, 17.

(6) k = 11, there are no remaining cases.

And so on.

As the number of vertices n of the complete multigraph λKn is pretty close to

k, we prove in the following that the degree of the graph λKn have an impact on

how we decompose.

1. If k is even and λ(n − 1) is even, then if such a decomposition exists, the

number of stars Sk needs to be even.
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2. If k is even and λ(n − 1) is odd, then if such a decomposition exists, the

number of stars Sk needs to be odd.

3. If k is odd and λ(n − 1) is even, then if such a decomposition exists, the

number of stars Sk needs to be even.

4. If k is odd and λ(n − 1) is odd, then if such a decomposition exists, n − k

needs to be odd.

These four cases are true for n < 2k. For example, in the first case, each star

has an even number of edges k and the degree of its central node is even. Since

to decompose a graph into cycles without any remaining edges, the degree of each

vertex of the graph needs to be even. Thus, if we begin by decompose the graph

into stars, we must verify that in the remaining graph all vertices have an even

degree. Since n < 2k, the number of stars must be even.

This means that if we give a specific placement for each star in the complete

multigraph, this helps us to define a method to decompose the remaining edges into

cycles.

4.6 Conclusion

The contribution of the first part is the study of the Multidecomposition of complete

multigraph into cycles and stars. Chapter 3 presented an introduction to particular

graph decomposition problems and gave a brief survey of the famous decomposition

problems studied in the literature.

Abueida and Lian [AL14] gave necessary and sufficient conditions for decompos-

ing Kn into cycles and stars of k edges, for n ≥ 4k and k even or n odd. Chapter 4

improved results on this decomposition and extended it for the complete multigraph

λKn. Thus, we presented necessary and sufficient conditions for different cases as

follows:

• k is prime,

• k divides either n− 1, n or λ,

• n ≥ 2k and λ is even or gcd(λ, k) = 1,
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• n ≥ 4k, independently of the parity of n or k, thus improving result of Abueida

and Lian [AL14].
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This part of thesis is devoted to the domination problems in graphs. The lit-

erature contains extensive studies of many different types of domination in graphs.

In our thesis, we consider a variant of the domination set problem, called [i, j]-

domination set problem. The motivation for studying this variant of domination

problem is rich and varied from an application perspective. In this chapter, a re-

view of some well known results about variants of domination sets problems is given.

We also provide a brief history and some motivations to investigate the domination

graph problems. We next focus on [i, j]-domination and [i, j]-total domination prob-

lems. These two problems are discussed in details. Afterwards, we give a particular

interest on the [1, 2]-domination problem and we discuss some results related to this

variant. Since, in the next chapter, we consider the [1, 2]-dominating set problem
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restricted to a particular class of graphs, namely generalized Petersen graphs, then

we provide some basic definitions and properties about these graphs, followed by a

discussion of different types of domination problems studied on it.

5.1 History and motivation

The Queens problem can be considered as the origin of the study of dominating set

in graphs. In 1850, the chess fans in Europe considered the problem of determining

the minimum number of queens that can be placed on a chessboard such that

all squares are either occupied by queens or attacked (or dominated) by at least

one queen. Then, the number of required queens for such problem corresponds

to the dominating number. Therefore, the problem of chess queen placement can

be identified more generally as a problem of dominating the vertices of a graph

[HHS98]. Formally, a dominating set for a graph G = (V,E) is a subset S of V

such that every vertex of V is either in S or has a neighbor in S. A dominating set

S is a minimal dominating set if no proper subset S′ ⊂ S is a dominating set. The

domination number γ(G) of a graph G is the minimum cardinality of a dominating

set of G. We call such a set a γ-set of G. Determining the minimum domination

number is proved to be NP-hard [HHS98]. Therefore, some theorems about the

minimal dominating sets in graphs where given by Ore [OO62] in 1962.

The Dominating set is very important class of problem with several theoretical

and practical applications. This problem has attracted many theoretical researches,

therefore many results have been proposed and different variants have been identi-

fied by the graph community.

Excellent surveys on graph domination are provided by Haynes and al. [HHS98,

HHS97], Cockayne [Coc78] and recently by Henning [Hen09] for total domination.

In practical side, the dominating sets gave a special interest in computer system

field due to their importance for several applications. The structure of dominating

set can be useful as overlays in computer networks. These structures are usu-

ally used for designing efficient protocols in wireless sensor and ad-hoc networks

[GHJ+08, YKR06, BDTC05, KMW04]. For example, the Dominating set are used

for clustering approaches in wireless sensor networks (WSNs) for load balancing

and extending the network lifetime [YKR06]. It is used also for optimization and
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designing protocols in social networks and many other fields. Readers can refer to

Haynes et al.’s book [HHS98] for more descriptions on some variants of domination

in graphs and their applications in several areas.

For all these reasons, different variants of dominating set have been identified

by the graph community, such as total dominating set [CDH80], double dominating

set [HH00], restrained domination [DHHM00] and so on.

In this thesis, we give a particular interest on the [i, j]-dominating set. The mo-

tivation of studying this type of domination is the fact that this type of domination

has relation with a lot of other domination problems e.g. perfect domination.

5.2 Some variants of dominating sets problems

In this section, we present some variants of dominating sets problems before pre-

senting our problem.

5.2.1 Total dominating set

The total domination is an important parameter as it ensures connectivity in the

network even after failure of few of the communication points. Formally, a set

S ⊆ V (G) is a total dominating set of a graph G = (V,E) if N(S) = V . It means

that each vertex in V is adjacent to at least one vertex in S. The total domination

number γt(G) is the minimum cardinality of a total dominating set. Note that a

dominating set S is a total dominating set if G[S], the subgraph induced by S has

no isolated vertices. Clearly, γ(G) ≤ γt(G).

5.2.2 Perfect dominating set

A dominating set S of a graph G is perfect if each vertex of V (G) \ S is dominated

by exactly one vertex in S. More advanced details can be found in [LS90].

5.2.3 Connected dominating set

A connected dominating set is a dominating set that induces a connected subgraph

of the graph G. The connected domination number, denoted by γc(G), is the

minimum cardinality of a dominating set S such that G[S] is connected.
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In Figure 5.1, the red vertices present an example of a minimum connected

dominating set in G which is also a total dominating set and perfect dominating

set.

Figure 5.1: An example of equality in domination, total domination, connected

domination and perfect domination.

5.2.4 Efficient dominating set

A dominating set S in G is an efficient dominating set for G if for every vertex v

in V , there is exactly one u in S dominating v.

5.2.5 Independent dominating set

A dominating set S that is independent (forms an independent set) is an indepen-

dent dominating set, and the minimum cardinality of an independent dominating

set of G is the independent domination number i(G).

5.2.6 k-tuple dominating set

Introduced by Harary and Haynes in [HH00]. For a fixed positive integer k, a k-

tuple dominating set (resp. k-tuple total dominating set) of a graph G = (V,E) is

a subset S of V such that |N [v] ∩ S| ≥ k (resp. |N(v) ∩ S| ≥ k) for every vertex

v ∈ V . The k-tuple domination number γ×k(G) (resp. k-tuple total domination

number γ×k,t(G)) is the minimum cardinality of a k-tuple dominating set (resp.

k-tuple total dominating set) of G. A dominating set of G is a 1-tuple dominating

set of G. A total dominating set of G is a 1-tuple total dominating set of G. A

double dominating set of G is a 2-tuple dominating set of G.
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5.3 [i, j]-domination sets in graphs

In this section we provide definitions, some of the fundamental theorems and results

founded about the [i, j]-domination sets.

Definition 1 ([i, j]-domination set [CHHM13]) A subset S ⊆ V in a graph G =

(V,E) is a [i, j]-dominating set if, for every vertex v ∈ V \ S, i ≤ |N(v) ∩ S| ≤ j,

that is, every vertex in V \ S is adjacent to at least i vertices, but not more than

j vertices in S. The [i, j]-domination number in G, denoted γ[i,j](G), equals the

minimum cardinality of a [i, j]-dominating set in G. A [i, j]-dominating set with

cardinality γ[i,j](G) is called a γ[i,j](G)-set.

Note that, for i ≥ 1, a [i, j]-dominating set S is a dominating set, since every

vertex in V § has at least one neighbor in S.

Definition 2 ([i, j]-total domination set [CHHM13]) A subset S ⊆ V in a graph

G = (V,E) is a [i, j]-total dominating set if, for every vertex v ∈ V , i ≤ |N(v)∩S| ≤

j, that is, every vertex in V is adjacent to at least i vertices, but not more than j

vertices in S. The [i, j]-total domination number in G, denoted γt[i,j](G), equals the

minimum cardinality of a [i, j]-total dominating set in G. A [i, j]-total dominating

set with cardinality γt[i,j](G) is called a γt[i,j](G)-set.

It was mentioned in [CHHM13] that [i, j]-dominating sets are related to differ-

ent types of domination. For example, [1, 1]-dominating set represents the perfect

dominating set and the [1, 1]-total dominating set represents the efficient dominat-

ing set.

Some papers gave a particular interest to study the [1, 2]-dominating set prob-

lem. In [CHHM13], the authors proved that γ(G) = γ[1,2](G) for some classes of

graphs, as in:

Theorem 5.3.1 [CHHM13] If G is a P4-free graph or claw-free graphs, then γ(G) =

γ[1,2](G).

The authors also showed that there are some graph classes for which γ[1,2](G)

is strictly less than n. Then, they proved the following theorem:

Theorem 5.3.2 [CHHM13] If G is a non-trivial k-regular graph for any k ≤ 4,

then γ[1,2](G) < n.
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They have also studied the [1, 3]-dominating set for grid graphs and proved that

γ(G) = γ[1,3](G).

From complexity point of view, they proved that [1, 2]-dominating set is NP-

complete for bipartite graphs.

They also observed that for a tree of order n and k leaves, γ[1,2](G) ≤ n−k, and

asked for a characterization of the trees for which the equality holds. In [YW14],

the authors answered partially this question in the following theorem:

Theorem 5.3.3 [YW14] Let T be a tree of order n with k leaves such that every

non-leaf vertex has degree at least 4. Then γ[1,2](T ) = n− k.

They also give some characterization to solve some open questions posed in

[CHHM13].

In the same perspective, in [GHM16], the authors gave a particular interest to

study the [1, 2]-dominating set and [1, 2]-total dominating set problems in trees by

giving a linear algorithm for finding γ[1,2](T ) and γt[1,2](T ).

In [BDGP16], the authors studied a more general problem: [1, j]-dominating

sets in graphs. They proved that the associated decision problem is NP-complete

for chordal graphs and they proposed a linear time algorithm for finding γ[1,j](G)

for a tree and a polynomial time algorithm for finding γ[1,j](G) for a fixed j in a

split graph.

5.4 Domination in generalized Petersen graph

In this section, we review some dominating sets problems studied on general-

ized Petersen graphs. For many classes of graphs the exact values of γ(G) are

known, e.g., γ(Pn) = γ(Cn) = dn3 e. For the class of generalized Petersen graphs

P (n, 2) introduced by Watkins [Wat69] it was conjectured by Behzad et al. that

γ(P (n, 2)) = d3n
5 e holds [BBP08]. This conjecture was later independently verified

by several researchers [EJM09, FYJ09, YKX09, LZ14]. In particular, Behzad et al.

(2008) and Yan et al. (2009) determined the domination number of the generalized

Petersen graph P (n, k) with n = 2k + 1, the exact domination number is d3n
5 e.

Then, Liu et al. (2014) determined the exact domination number of P (n, k) with

n = 2k and n = 2k + 2. Fu et al. (2009) proved that the domination number of

P (n, k) with k = 2 is n− bn5 c − b
n+2

5 c.
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Others variants of dominations are studied in literature and then some of these

domination numbers are also known for generalized Petersen graphs. Cao et al.

computed the total domination number of P (n, 2) as γt(P (n, 2)) = 2dn3 e [JWM09].

Zelinka studied three numerical invariants of graph domination namely the domatic

number2 [CH77b], total domatic number [CDH80] and k-ply domatic number [Zel84]

with k = 2 and k = 3 in generalized Petersen graphs. He gave exact values for

some specific cases [Zel02]. Fu et al. studied Roman domination in generalized

Petersen graphs [XYB09]. In [BŠ07], Bresar and Sumenjak studied the 2-rainbow

domination number3, denoted by γr2, in generalized Petersen graph and showed

that d4n
5 e ≤ γr2(P (n, k)) ≤ n for any P (n, k), where n and k are relatively prime

numbers. Shortly after, Tong et al. investigated the problem in P (n, k) with k = 2

[TLYL09] and in the same period Xu studied the problem in P (n, k) with k = 3

[Xu09]. In [LXS13], Li et al. considered the problem of signed total domination in

P (n, 2). Further results about other types of domination in this type of graphs can

be found in [BF11, XK11, SLY+14, K+10].

2A domatic partition of a graph G = (V,E) is a partition of V into disjoint sets V1, V2, ..., VK

such that each Vi is a dominating set for G. The domatic number is the maximum size of a domatic

partition.
3 A k-rainbow dominating function of a graph G is a function f from V (G) to the set of all subsets

of {1, 2, . . . , k} such that for any vertex v with f(v) = Ø we have ∪u∈NG(v)f(u) = {1, 2, . . . , k}
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This chapter considers [1, 2]-domination and [1, 2]-total domination, a concept

introduced by Chellali et al. [CHHM13]. In this sense, we study two numerical

invariants of graph domination, namely the [1, 2]-domination number γ[1,2](G) and

[1, 2]-total domination number γt[1,2](G) of a graph G. We investigate them for gen-

eralized Petersen graphs P (n, k) for k = 2. Obviously γ[1,2](P (n, 1)) = γ(P (n, 1)).

6.1 Notations

In this section we introduce some definitions and notions that we use throughout

this chapter. Let recall the formal definition of generalized Petersen graphs.

Definition 3 Let n, k ∈ N with k < n/2. The generalized Petersen graph P (n, k)

is the undirected graph with vertices {u0, . . . , un−1} ∪ {v0, . . . , vn−1} and edges

{{ui, ui+1}, {ui, vi}, {vi, vi+k} | 0 ≤ i < n}.

In this work indices are always interpreted modulo n, e.g. vn+i = vi. Fig. 1

shows the graphs P (5, 2) and P (6, 2), vertices depicted in black form a [1,2]-dominating
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Figure 6.1: The minimum [1, 2]-domination sets of the generalized Petersen graphs

P (5, 2) and P (6, 2) and the minimum [1, 2]-total dominating set for P (5, 2).

set of minimum size, i.e., γ[1,2](P (5, 2)) = γ[1,2](P (6, 2)) = 4 and also for the graph

P (5, 2), vertices depicted in black form a [1,2]-total dominating set of minimum size

γt[1,2](P (5, 2)) = 5.

The proofs of this chapter use the following notion of a block.

Definition 4 A block b of P (n, 2) is the subgraph induced by the six vertices

{vi−1, vi, vi+1, ui−1, ui, ui−1} for any i ∈ {0, . . . n − 1}. A block is called positive

if two of the indices of {vi−1, vi, vi+1} are odd, otherwise it is called negative.

Fig. 6.1 shows three disjoint blocks of P (n, 2). The second block is positive while

the other two are negative. Note that blocks can overlap. If b is a block, the block

to the left is denoted by b− and that to the right by b+.

b− b b+

ui−4

ui−3

ui−2

ui−1

ui

ui+1

ui+2

ui+3

ui+4

vi−4

vi−3

vi−2

vi−1

vi

vi+1

vi+2

vi+3

vi+4

Figure 6.2: Partition of P (n, 2) into blocks.

Let S be a [1, 2]-dominating set. For a subset U ⊆ V denote by γS(U) the

number of vertices of S that are in U , i.e., γS(U) = |U ∩ S|. For i ≥ 0 let Bi(S) be

the set of all blocks b with γS(b) = i.

Note that B0(S) = ∅ for any dominating set S of P (n, 2).
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6.2 [1, 2]-dominating set of P (n, 2)

In this section we analyze the [1, 2]-domination number of the generalized Petersen

graphs P (n, 2) and prove the following theorem.

Theorem 6.2.1 γ[1,2](P (n, 2)) =


2n/3 if n ≡ 0, 3[6]

2bn/3c+ 1 if n ≡ 1[6]

2bn/3c+ 2 otherwise.

for n ≥ 5.

Denote by f(n) the value of the right side of the equation in Theorem 6.2.1.

f(n) =


2n/3 if n ≡ 0, 3[6]

2bn/3c+ 1 if n ≡ 1[6]

2bn/3c+ 2 otherwise.

for n ≥ 5.

The correctness of Theorem 6.2.1 for n < 12 can be verified manually.

Lemma 6.2.2 γ[1,2](P (n, 2)) = f(n) for 5 ≤ n < 12.

Proof. By inspection, we can easily see that the following sets Sn are minimum

[1, 2]-dominating sets of P (n, 2). S5 = {u1, v1, v3, v4}, S6 = {u1, v1, u4, v4}, S7 =

{u0, v1, v2, v3, u4}, S8 = {u1, v1, u4, v4, v6, v7}, S9 = {u1, v1, u4, v4, u7, v7}, S10 =

{u1, v1, u4, v4, u7, v7, u8, v8} and S11 = {u1, v1, u4, v4, u7, v7, v9, v10}. �

Lemma 6.2.3 γ[1,2](P (n, 2)) ≤ f(n) for n ≥ 5.

Proof. To prove that f(n) is an upper bound of γ[1,2](P (n, 2)), we give in Fig. 6.3

the corresponding construction for each case. For n ≡ 0, 3[6], we choose the middle

pair of nodes of each block. For the cases n ≡ 2, 4, 5[6], we do the same as the

previous case by choosing the middle pair of nodes of each block. Then, we add two

dominating nodes as depicted in red in Fig. 6.3. For the case n ≡ 1[6], we choose

two nodes from each block as shown in Fig. 6.3 except in the two successive blocks

preceding the block with only two nodes. In these two blocks we choose five nodes

as depicted in Fig. 6.3. This means that we have 2n/3 nodes plus one additional

dominating node. �

Thus, it suffices to prove that f(n) is a lower bound. Assume that there exists

a minimal [1, 2]-dominating set S of P (n, 2) with |S| < f(n). Lemma 6.2.2 yields

n ≥ 12. The remaining proof is split into two parts depending on whether B1(S)

is empty or not. The case when B1(S) is empty is proved in Section 6.2.1 and the

case when B1(S) is not empty is proved in Section 6.2.2.
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(a) Case n ≡ 0, 3[6]

(b) Case n ≡ 2[6]

(c) Case n ≡ 4[6]

(d) Case n ≡ 5[6]

(e) Case n ≡ 1[6]

Figure 6.3: f(n) is an upper bound of γ[1,2](P (n, 2)) for all n > 12
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Figure 6.4: The partition of P (n, 2) into n pairs.

6.2.1 Case when B1(S) is empty

The vertices of P (n, 2) are grouped into n pairs of vertices pi = {vi, ui} as depicted

in Fig. 6.4. Since B1(S) = ∅ this means that for i = 1, ..., n

γS(pi) + γS(pi+1) + γS(pi+2) ≥ 2

(subscripts are always taken modulo n). Note that γS(pi) ≤ 2 for all i. Consider

the following system of inequalities for integer valued variables x0, . . . , xn−1.

xi ≤ 2

xi + xi+1 + xi+2 ≥ 2∑n−1
i=0 xi < f(n)

(6.1)

Note that xi = γS(pi) is a solution for these equations. We will show that no

solution of Eq. (6.1) is induced by a [1, 2]-dominating set.

Lemma 6.2.4 Let x be a solution of Eq. (6.1) with xi = 2 for some i. Let x̂ = x

except x̂i+1 = x̂i+2 = 0 and x̂i+3 = 2. Then x̂ is a solution of Eq. (6.1) with∑n−1
i=0 x̂i ≤

∑n−1
i=0 xi.

Proof. Obviously x̂ satisfies the first two sets of inequalities. Note that xi+1 +

xi+2 + xi+3 ≥ 2 since x is a solution of Eq. (6.1). Thus, x̂i+1 + x̂i+2 + x̂i+3 ≤

xi+1 + xi+2 + xi+3. �

Lemma 6.2.5 Let x be any solution of Eq. (6.1). Then xi ≤ 1 for i = 0, . . . , n−1.

Proof. Let x be any solution of Eq. (6.1) such that xi = 2 for some i. Without

loss of generality i = 0. By Lemma 6.2.4 there exist a solution which coincides

with x except x1 = x2 = 0 and x3 = 2. Repeatedly applying Lemma 6.2.4 proves

that there exits a solution x̂ of Eq. (6.1) with x̂k = 2 and x̂k+1 = x̂k+2 = 0 for
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k = 0, 1, . . . , bn/3c. If n ≡ 0 [3] then
∑n−1

i=0 x̂i = 2n/3 = f(n), which is impossible.

Suppose n ≡ 1 [3]. Then x̂n−1 = 2 otherwise the second constraint for i = n − 2

would be violated. This leads to the contradiction
∑n−1

i=0 x̂i = 2bn/3c + 2 ≥ f(n).

Hence, n ≡ 2 [3]. Then x̂n−2 = 2 otherwise the second constraint for i = n − 2 is

not satisfied. Again this leads to the contradiction
∑n−1

i=0 x̂i = 2bn/3c + 2 = f(n).

This proves xi ≤ 1 for all i. �

Lemma 6.2.6 If n 6≡ 4 [6] then Eq. (6.1) has no solution. If n ≡ 4 [6] then any

solution of Eq. (6.1) is a rotation of the solution (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1).

Proof. Let x be any solution of Eq. (6.1). By Lemma 6.2.5 xi ≤ 1 for i = 0, . . . , n−

1. Denote by n0 the number of variables with xi = 0. Thus
∑n−1

i=0 xi = n−n0. Note

that if xi = 0 then either xi+1 = 1 or xi−1 = 1, thus no adjacent variables have

both value 0. Denote by l1, . . . , ln0 the lengths of maximal sequences of consecutive

xi with xi = 1. Note that lj ≥ 2 for all j. Then

n−1∑
i=0

xi =

n0∑
j=1

lj = 2n0 +

n0∑
j=1

(lj − 2).

This implies

3
n−1∑
i=0

xi = 2n+

n0∑
j=1

(lj − 2).

If n ≡ 0 [3] then
∑n−1

i=0 xi ≥ 2n/3 = f(n). A contradiction. If n ≡ 2 [3] then again

this leads to the contradiction
∑n−1

i=0 xi = 2bn/3c+(4+
∑n0

j=1(lj−2))/3 ≥ 2bn/3c+

2 ≥ f(n). Finally if n ≡ 1 [6] then
∑n−1

i=0 xi = 2bn/3c + (2 +
∑n0

j=1(lj − 2))/3 ≥

2bn/3c + 1 = f(n). This contradiction proves that for n 6≡ 4 [6] Eq. (6.1) has no

solution.

Let n ≡ 4 [6]. Then
∑n−1

i=0 xi = 2bn/3c+(2+
∑n0

j=1(lj−2))/3 < f(n) = 2bn/3c+1

implies 3 = 2 +
∑n0

j=1(lj − 2). This yields that there exists i such that li = 3 and

lj = 2 for all j 6= i. Thus, x is a rotation of the solution (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1).

�

Lemma 6.2.7 The solution x = (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1) is not induced by a

[1, 2]-dominating set of P (n, 2).

Proof. Assume there exists a [1, 2]-dominating set S such that xi = γS(bi). Two

vertices of the first two pairs must be in S. All four possibilities lead to a contra-

diction as shown in the following.
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Case 1. v0, u1 ∈ S (see Fig. 6.5). Since S is [1, 2]-dominating the lower vertex of

the last pair pn−1 must be in S. Now the same argument implies that the middle

vertex of pair p3 must be in S. This yields that the lower vertex of pair p7 must be in

S, otherwise the lower vertex of pair p5 is not dominated. Repeating this argument

shows that the lower vertex of pair pn−3 must be in S (note that n ≡ 4 [6]). Thus,

S does not dominate the middle vertex of pair pn−2. Contradiction.

1 1 1 0 101111001011

u

uu

n−1
pp

0
p
2

p
1

1

1
v

0 2

20

vv

Figure 6.5: If v0, u1 ∈ S then vertices depicted in red must also be in S.

Case 2. u0, v1 ∈ S (see Fig. 6.6). In order to dominate the middle vertex of pair

p2 the middle vertex of p3 must be in S. Similarly the lower vertex of pair p7 must

be in S to dominate the lower vertex of p5. This results in the pattern shown in

Fig. 6.6. This is impossible because all three neighbors of the lower vertex of pn−1

are in S.
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Figure 6.6: If u0, v1 ∈ S then vertices depicted in red must also be in S.

Case 3. u0, u1 ∈ S. The same reasoning as above leads to the situation depicted

in Fig. 6.7. This gives also rise to a contradiction since the upper vertex of pair

pn−2 is not dominated.

Case 4. v0, v1 ∈ S. The same reasoning as above leads to the situation depicted in

Fig. 6.8. This is impossible because all three neighbors of the lower vertex of pn−1

are in S.
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Figure 6.7: If u0, u1 ∈ S then vertices depicted in red must also be in S.
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Figure 6.8: If v0, v1 ∈ S then vertices depicted in red must also be in S.

�

This concludes the proof of Theorem 6.2.1 for the case B1(S) = ∅.

6.2.2 Case when B1(S) is not empty

The following simple observation is based on the fact that the central vertex of a

block b can only be dominated by a vertex within b.

Lemma 6.2.8 Any positive block b ∈ B1(S) corresponds to one of the four blocks

shown in Fig. 6.9. A similar result holds for negative blocks.

(a) Type A (b) Type B (c) Type C (d) Type D

Figure 6.9: The four types of positive blocks with γS(b) = 1.
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In the following the four different types of blocks are considered individually.

Lemma 6.2.9 Let S be a [1, 2]-dominating set of P (n, 2) containing a block b of

type B and n ≥ 12. Then there exists a [1, 2]-dominating set S′ of P (n, 2) not

containing a block of type B such that |S′| = |S|.

Proof. In order to dominate vi−1 and vi+1 from block b, vertices vi−3 from block

b− and vi+3 from b+ need to be in S. The idea is to move some dominating nodes

such that block b is not no longer of type B and no new block of type B emerges

while S is still [1, 2]-dominating and the cardinality of S remains. The proof is

divided into four cases, considering whether ui−2 from block b− and ui+2 from b+

are in S or not. The notation of the nodes is taken from Fig. 6.1.

Case 1. ui−2, ui+2 ∈ S. If vi−4 and vi+4 are not in S then S′ = S/{ui} ∪ {vi}. If

vi−4 or vi+4 are in S then S′ = S/{ui−2} ∪ {ui−1} or S′ = S/{ui+2} ∪ {ui+1}.

Case 2. ui−2 6∈ S, ui+2 ∈ S. To dominate ui−2 and vi−2 we consider two subcases.

Subcase 2.1. vi−2 ∈ S. If ui−3 is not in S then S′ = S/{ui}∪{ui−1}. If ui−3 ∈ S

then there are three possibilities depending on which vertex dominates ui+4. Hence,

if ui+3 ∈ S then S′ = S/{ui+2} ∪ {vi}. If vi+4 ∈ S then S′ = S/{ui+2} ∪ {ui+1}.

Otherwise, the vertex ui+4 is dominated by node ui+5 of block b++ then S′ =

S/{ui} ∪ {vi−1}.

Subcase 2.2. vi−2 6∈ S. This implies that ui−3 and vi−4 from are both in S.

Then S′ = S/{ui−3} ∪ {ui−1}.

Case 3. ui+2 6∈ S, ui−2 ∈ S. This case is symmetric to case 2.

Case.4. ui+2, ui−2 6∈ S. In order to dominate ui−2 and vi−2 two situations must

be considered.

Subcase 4.1. vi−2 ∈ S. Since vi−2 is in S and vi is not in S then vi+2 cannot be

a dominating node. This yields that ui+3 and vi+4 are in S. Then S′ = S/{ui+3}∪

{ui+1}.

Subcase 4.2. vi−2 6∈ S. This implies ui−3, vi−4 ∈ S. Therefore, S′ = S/{ui−3} ∪

{ui−1}. �

The next Lemma finally completes the proof of Theorem 6.2.1.

Lemma 6.2.10 If B1(S) 6= ∅ and n ≥ 6 then |S| ≥ f(n).
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Proof. Let n be minimal such that the lemma is false. Then n ≥ 12 by Lemma 6.2.2.

Let SB the set of all [1, 2]-dominating sets S of P (n, 2) not containing a block of

type B and |S| < f(n). Then B1(S) 6= ∅ for all S ∈ SB by the first part of the

proof. Let p be the largest number such that |B1(S)| ≥ p for each S ∈ SB. Then

p ≥ 1. Let Mp be the set of all S ∈ SB with |B1(S)| = p.

Claim 1: P (n, 2) does not contain a block of type A for any S ∈Mp.

Assume false. Let S ∈Mp and b a positive block of type A. Then the nodes vi+3 and

ui+2 of b+ must be dominating. Assume γb+(S) ≥ 3. Then S′ = S \ {ui+2} ∪ {ui}

is also a [1, 2]-dominating set. Thus, γb(S
′) = 2. Then |B1(S′)| = |B1(S)| − 1 < p

since γb(S) = 1. This yields S′ 6∈ SB and therefore B1(S) = ∅. Thus, γb+(S) = 2.

Let b++ be the positive block to the right of b+. Then the nodes ui+5 and vi+6

of b++ must be dominating. Next we remove the nodes of the blocks b and b+

and connect the corresponding nodes of blocks b− and b++. The resulting graph

is isomorphic to P (n− 6, 2). Furthermore, S′ = S \ {vi, ui+2, vi+3, ui+5} is a [1, 2]-

dominating set of this graph. Thus, |S′| = |S| − 4 ≥ f(n − 6) by the choice of n.

Therefore |S| ≥ f(n − 6) + 4 = f(n). This implies |S| ≥ f(n). This contradiction

proves claim 1 for positive blocks of type A. The same argument shows that there

are no negative blocks of type A.

Claim 2: P (n, 2) does not contain a block of type D for any S ∈Mp

Assume false. As above we only need to consider the positive case. Let S ∈Mp and

b a positive block of type D. Then nodes vi+3 and ui+2 of b+ must be dominating.

Assume γb+(S) = 2. Then again the nodes ui+5 and vi+6 of block b++ must be

dominating. We distinguish two cases. If vi−2 is not a dominating node then

S′ = S \ {vi+3} ∪ {vi+1} else (vi−2 is a dominating node) then we have again

two subcases depending on γb++(S). If γb++(S) = 2 then the nodes ui+8 and

vi+9 of the block to the right of b++ must be dominating nodes. We remove the

nodes of the blocks b and b+ and connect the corresponding nodes of blocks b−

and b++ with S′ = S \ {ui−1, ui+2, vi+3, vi+6}. Similar to the proof of claim 1

this leads to a contradiction. If γc(S) ≥ 3 then at least one of the nodes vi+5

and ui+6 is a dominating node. Then we again remove the nodes of the blocks b

and b+ and connect the corresponding nodes of blocks b− and b++ with S′ = S \

{ui−1, ui+2, vi+3, ui+5}. Similar to the proof of claim 1 this leads to a contradiction.

Hence, γb+(S) ≥ 3. In the following we will construct a new [1, 2]-dominating
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set S′ with |B1(S′)| < p. This is a contradiction.

Case 1. vi+2, ui+3 ∈ S. There are three subcases. If vi−3 6∈ S then S′ = S \

{ui+2} ∪ {vi+1} and if vi−2 6∈ S then S′ = S \ {ui+2} ∪ {ui}. If vi−3, vi−2 ∈ S then

S′ = S \ {ui−1, ui+2} ∪ {ui, vi}.

Case 2. Neither vi+2 nor ui+3 are in S. Since γb+(S) ≥ 3 this implies that vi+4 is

a dominating node and S′ = S \ {ui+2} ∪ {ui+1}.

Case 3. If vi+2 ∈ S and ui+3 6∈ S then S′ = S \ {ui+2} ∪ {ui+1}.

Case 4. If vi+2 6∈ S and ui+3 ∈ S we distinguish two cases: If vi+4 ∈ S then

S′ = S \ {ui+2} ∪ {ui+1} else we have four subcases depending on which node

dominates ui+5:

1. If vi+5 ∈ S then S′ = S \ {vi+3} ∪ {ui+1}.

2. If ui+5 ∈ S then S′ = S \ {ui+3} ∪ {ui+1}.

3. If ui+6 ∈ S then we distinguish three cases depending on which node domi-

nates vi+4. If ui+4 ∈ S then S′ = S \ {ui+2, ui+4} ∪ {vi+2, ui}. If vi+4 ∈ S

then S′ = S \ {ui+2, vi+4}∪{vi+2, ui}. Finally if vi+6 ∈ S then we remove the

nodes of the blocks b and b+ and connect the corresponding nodes of blocks

b− and c.

4. If ui+4 ∈ S then S′ = S \ {ui+2, ui+3} ∪ {ui+1, vi+4}.

This proves claim 2.

Claim 3: P (n, 2) does not contain a block of type C for any S ∈Mp

This case is symmetric to the second claim.

Claim 4: P (n, 2) does not contain a block of type B for any S ∈Mp

If S contains a block of type B then by Lemma 6.2.9 there exists S′ ∈ SB which

does not contain a block of type B. The above claims yield B1(S′) = ∅. This

contradiction concludes the proof of the lemma. �

6.3 [1, 2]-total dominating set of P (n, 2)

In this section, we investigate the problem of [1, 2]-total domination and prove the

following result.
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Theorem 6.3.1 γt[1,2](P (n, 2)) =


5 if n = 5

2n/3 if n ≡ 0, 3[6]

2bn/3c+ 2 otherwise.

for n ≥ 6.

Note that γt[1,2](P (n, 2)) = γ[1,2](P (n, 2)) except for the case n = 5 and n ≡ 1[6].

Denote by g(n) the value of the right side of the equation in Theorem 6.3.1. We

begin by proving an upper bound.

Lemma 6.3.2 γt[1,2](P (n, 2)) ≤ g(n) for n ≥ 5.

Proof. For n = 5, the construction is already given in Fig. 6.1. In Fig. 6.12,

we give the construction of the minimum [1, 2]-total dominating set in P (n, 2) for

n ≡ 1[6]. The proposed construction is based on the selection of one pair of nodes

of the middle in each block which corresponds to 2n/3 nodes. Then, we add two

additional dominating nodes as depicted in color red in Fig. 6.12. For the cases

n 6≡ 1[6], we refer to Fig. 6.3 since the provided sets are already total dominating

sets. �

Now, it remains to prove that g(n) is a lower bound. Let S be a total [1,2]-

dominating set of minimum size of P (2, n). Let G[S] be subgraph induced by S.

By definition of a [1, 2]-total dominating set, each connected component of G[S]

has at least two vertices and every vertex of G[S] has degree 1 or 2. Hence every

connected component is either a path or a cycle. Let xl and yl be the numbers of

connected components that are paths and cycles of order l, respectively. Observe

that x1 = 0 and y1 = · · · = y4 = 0. Moreover, each path of order l dominates at

most 2l+2 vertices and each cycle of l vertices dominates at most 2l vertices. Thus,∑
l≥2

(2l + 2)xl + 2lyl ≥ 2n (1)

∑
l≥2

l(xl + yl) = |S| (2)

From (1) and (2) we can deduce

|S|+
∑
l≥2

xl ≥ n (3)

Also one may observe that ∑
l≥2

lxl ≥ 2
∑
l≥2

xl (4)
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In the following we study γt[1,2](P (n, 2)) according to residue of n[6]. Suppose

|S| < γt[1,2](P (n, 2)).

(a) n = 5: This case can be checked by inspection.

(b) n ≡ 0[3]: If n = 3k then γt[1,2](P (n, 2)) = 2k and |S| < 2k. Inequality (3)

becomes |S| +
∑

l≥2 xl ≥ 3k, thus
∑

l≥2 xl ≥ k + 1. From (2), we deduce∑
l≥2 l(xl + yl) < 2k thus

∑
l≥2 lxl +

∑
l≥2 lyl < 2k. Using (4), we obtain

2k + 2 +
∑

l≥2 lyl < 2k, a contradiction.

(c) n ≡ 2, 4, 5[6]: If n = 6k + i with i ∈ {2, 4, 5} then γt[1,2](P (n, 2)) = 4k + 2

and |S| < 4k + 2. Inequality (3) becomes |S| +
∑

l≥2 xl ≥ 6k + i − 4k − 2 for

i ∈ {2, 4, 5}, thus
∑

l≥2 xl ≥ 2k + j with j ∈ {1, 3, 4}. From (2), we deduce∑
l≥2 l(xl+yl) < 4k+2 thus

∑
l≥2 lxl+

∑
l≥2 lyl < 4k+2. Using (4), we obtain

4k + 2j +
∑

l≥2 lyl < 4k + 2 with j ∈ {1, 3, 4}, a contradiction.

(a)
(b)

Figure 6.10: Maximal components induced by P2 and P3 and their neighbors.

(d) n ≡ 1[6]: If n = 6k + 1 then γt[1,2](P (n, 2)) = 4k + 2 and |S| < 4k + 2.

Inequality (3) becomes |S| +
∑

l≥2 xl ≥ 6k + 1, thus
∑

l≥2 xl ≥ 2k. From (2)

and using (4), we obtain 4k ≤
∑

l≥2 lxl +
∑

l≥2 lyl ≤ 4k + 1. This implies∑
l≥2 lyl = 0, thus 4k ≤ |S| =

∑
l≥2 lxl ≤ 4k + 1. Since

∑
l≥2 lxl ≤ 4k + 1 and∑

l≥2 xl ≥ 2k, we have
∑

l≥2 lxl ≤ 2
∑

l≥2 xl + 1. This is only possible if x3 = 1

and xj = 0,∀j > 3. Thus, G[S] is the union one path P3 and x2 paths P2. Since

every P2 component can dominate at most 6 vertices and the P3 component can

dominate at most 8 vertices, we deduce 6x2 + 8 ≥ 12k + 2 = 2n. On the other

hand, recall |S| = 2x2 + 3 ≤ 4k + 1 thus 6x2 + 8 ≤ 12k + 2. Hence, 6x2 + 8 =

12k + 2. This implies that P (n, 2) can be partitioned into x2 components of

type shown in Fig. 6.10(a) and one component shown in Fig. 6.10(b) Suppose
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(a)

(b)

Figure 6.11: Impossible partitionings.

such partitioning exists. In the following we study the partitioning by making

consecutive extractions of components. Extracting a component means deleting

all its vertices from the graph. Moreover, an extraction is said to be forced if

there is no other option. Recall that the set of vertices of P (n, 2) is the union

of the two sets U = {u0, . . . , un−1} and V = {v0, . . . , vn−1}. Vertices of U and

V form the two main cycles of P (n, 2) respectively. Two cases are possible.
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Figure 6.12: The construction of γt[1,2](P (n, 2)) for n ≡ 1[6].

Either all three vertices of the P3 component are on the same main cycle or

two of them are on one cycle and the third on the other. In the first case,

once the P3 dominated component is extracted, the next forced extraction of

a P2 dominated component would imply the appearance of a vertex with a

degree 2 (as shown by Fig. 6.11(a)). In the second case, after extracting the

P3 dominated component and after several forced extractions of P2 dominated

components(as shown by Fig. 6.11(b)), one may easily confirm that such a

partitioning is impossible. We conclude that x3 = 0, a contradiction.

This concludes the proof of Theorem 6.3.1.

6.4 Conclusion

Generalized Petersen graphs are very important structures in computer science and

communication techniques since their particular structures and interesting proper-

ties. In this part, we considered a variant of the dominating set problem, called

the [1, 2]-dominating set problem. We studied this problem in generalized Petersen

graphs P (n, k) for k = 2. We gave the exact values of the [1, 2]-domination numbers

and the [1, 2]-total domination numbers of P (n, 2).
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In this part of thesis, we are interested in a recent problem that deals with

security networks, namely edge monitoring problem. This part is divided into three

chapters and it is organized as follows: Chapter 7 presents the motivation to study

this problem and defines the edge monitoring problem from the graph theory point

of view. Different variants of the problem are also presented. Then, we focus on 1-

uniform monitoring problem by presenting some bounds on edge monitoring number

in general graphs. We propose some characterizations related to those bounds. We

also discuss a relation between this problem and two famous problems in graph

theory: triangle packing problem [HR06] and double total dominating sets problem

[HK10]. Some results on specific classes of graphs are also discussed such as path
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power, cycle power, split graph, etc. A linear time algorithm for the square of a tree

is also presented. In Chapter 8, we study the Edge Monitoring problem from

the perspective of parameterized complexity. Afterwards, we focus in Chapter 9

on the weighted version of the edge monitoring problem, called Weighted Edge

Monitoring.

7.1 Motivation

Wireless Sensor Networks (WSNs in short) are increasingly used in the environment

and industry thanks notably to the latest developments in the field of networks in

the last few years [ASSC02]. The need to observe, analyze and control such type of

area is essential to many environmental and scientific applications (e.g. measuring

pollution levels, detecting earthquake activity, military surveillance, home health

care, assisted living...). Anticipating security problems allows to protect the network

from a variety of attacks. Many approaches have been proposed to protect sensor

networks [LGBK12, RIBJ15, HWK+05].

In this thesis, we are interested in the Edge Monitoring mechanism for the

security of wireless sensor networks. The basic idea of the Edge Monitoring

problem [NHTK14a, WZMX10, DLL+11] is to select some nodes as monitors in a

given sensor network. These monitors are employed for carrying out monitoring

operations by listening promiscuously to the transmission of two nodes. They can

also perform basic operations of communication and sensing in the network.

S

M2

M1

R

Figure 7.1: An example to illustrate the Edge monitoring problem.

The idea is illustrated in Figure 7.1. Each node in the network has a trans-

mission range. The monitors (or watchdogs) are placed in the intersection of the
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transmission ranges of the sending (S) and the receiving (R) nodes. They monitor

nodes by listening promiscuously to the transmissions of both nodes. When node S

forwards a message to R, the watchdog of this link verifies that node R also forwards

the message. If R does not forward the message, then it is misbehaving. Similar

to this, monitoring nodes are able to detect any malicious actions such as delaying,

dropping, modifying, or even fabricated packets.

The Edge Monitoring problem was introduced in sensor networks [DLL+11,

DLL08] as self-monitoring. Self-monitoring is an effective mechanism for the secu-

rity of wireless sensor networks. Dong et al. studied the problem by modeling the

communication network as a unit disk graph (UDG). They propose a polynomial-

time approximation scheme for the problem in UDG graphs with a geometric repre-

sentation [DLL08]. They also propose two distributed polynomial algorithms with

provable approximation ratios.

In [HL06, WZL07, WLZ08], the authors concentrated on the system-level fault

diagnosis of the network, especially detecting node failures as self-protection. The

authors of [DLL+11, DLL08] focused on the fundamental issue of designing an edge

self-monitoring topology, where every transmission link can be monitored by nodes

within the network. In [NHTK14b],the authors studied the problem of edge moni-

toring from the perspective of self-stabilizing systems. They propose a polynomial

self-stabilizing algorithm which operates under distributed daemon for computing

a minimal edge monitoring set.

7.2 Definitions and variants of problem

All the graphs we consider in this part are undirected and contain neither loops nor

multiple edges.

Let G = (V,E) be a graph. Let v be a vertex of G. N(v) denotes the set of

vertices adjacent to v and Ne(v) denotes the set of edges having v as an extremity.

Let c = {0, 1, . . . , k − 1} be a k-coloring of edges of G. Consider the following

definitions:

Definition 5 (Monitor) A vertex v ∈ V is said to monitor (or to be a monitor

of) an edge e = {u,w} iff. v is adjacent to both extremities of e ({v, u} ∈ E and

{v, w} ∈ E). The set of monitors of an edge e is denoted by M(e).
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Definition 6 (Monitorable edge) An edge e = {u, v} colored with color i is said to

be monitorable if |M(e)| ≥ i. The coloring c is said to be monitorable if all edges of

G are monitorable.

For the sake of simplicity, all colorings considered are monitorable.

Definition 7 (Monitoring Set) Let S ⊆ V be a subset of vertices. S is said to be

a Monitoring set of G with regards to a coloring c iff. ∀e ∈ E : |M(e) ∩ S| ≥ c(e).

The edge monitoring number of G, denoted by γm(G, c) is the minimum cardinality

of a monitoring set according to the coloring c. If the vertices of G are weighted

by a function w : V → Q+, the weighted edge monitoring number of G, denoted by

γm(G,w, c), is equal to the minimum sum of weights of a monitoring set.

Definition 8 (Uniform edge monitoring) A monitoring whose coloring uses only

one color k is called k-uniform edge monitoring (k-uniform monitoring for short).

Observation 7.2.1 The largest possible color in any monitoring is the color n−2.

Observation 7.2.2 Any i-uniform monitoring set is also a j-uniform monitoring

set for all values j < i.

Now, let formally define the different variants of the problem:

Edge Monitoring

Input: An edge colored graph (G = (V,E), c), an integer k ≥ 0.

Question: Is there a monitoring set S of G such that |S| ≤ k?

k-Uniform Edge Monitoring

Input: A graph G = (V,E), a color c, ∀e ∈ E : c(e) = k, an integer t ≥ 0.

Question: Is there a monitoring set S of G such that |S| ≤ t?

Let G = (V,E), w, c such that G is a graph, w : V → Q+ and c : E → N.

Weighted Edge Monitoring

Input: A weighted graph (G = (V,E), w, c), a rational k ≥ 0.
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Question: Is there a monitoring set S of G, c such that w(S) ≤ k?

The k-uniform weighted monitoring problem is a Weighted Edge Monitoring

with the particularity that all the edges have the same color c = k.

7.3 Introductory results

In order to illustrate the behavior of the edge monitoring, we give some trivial

characterizations of some special cases of the complete graph Kn. We first begin

with {0, 1}-colorings.

Let Kn be a complete graph of at least 3 vertices.

Since any subset of three vertices monitors all edges of Kn, we deduce that for

any {0, 1}-coloring c of G we have γm(Kn, c) ≤ 3.

This observation is supported with the following characterizations of special

cases:

• γm(Kn, c) = 1 iff. ∃v ∈ V s.t. ∀e ∈ Ne(v) : c(e) = 0.

• γm(Kn, c) ≤ 2 iff. ∃uv ∈ E : c(uv) = 0.

Now, we consider monitoringKn with {i, . . . , n−2}-colorings. That is we assume

at least one edge having a maximum color c = n− 2.

• γm(Kn, c) = n iff. ∃e1, e2 ∈ E s.t. e1 is not adjacent to e2 and c(e1) = c(e2) =

n− 2.

• γm(Kn, c) = n− 1 iff. for more than one edge with color n− 2, the subgraph

induced by En−2, the edges colored with n− 2, must be a star or for one edge

with color n − 2, we must have at least one edge nonadjacent to the edge of

color n− 2, having a color n− 3.

• γm(Kn, c) = n− 2 iff. there are one and only one edge having the color n− 2

and all the edges adjacent to this edge must have a color c < n − 2 and all

the edges nonadjacent having a color c < n− 4.

Now, we consider monitoring Kn in the case color c = 1.
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Proposition 7.3.1 Let Kn and Kn − I denote the complete graph with n vertices

and complete graph with n vertices from which a 1-factor (a perfect matching) I

has been removed, respectively. The edge monitoring number for Kn and Kn−I for

any n ≥ 3 is 3.

Proof. For Kn: Let m1 be the first monitor chosen among the vertices of Kn. This

monitor will monitor all the edges of Kn−1 = Kn−{m1} because both ends of each

edge in Kn−1 have a link with m1. The remaining edges is all the edges having the

monitor m1 as end. To monitor these edges, we choose a vertex belonging to Kn−1

as a second monitor m2. All edges will be monitored except m1m2, so we choose a

third monitor m3 in order to monitor this edge. Finally, we needed three monitors

to monitor all edges.

For Kn− I: Let m1 be the first monitor. As shown in Figure 7.2, this monitor have

a connection with all the vertices except s1. So m1 will monitor all edges except the

edges having m1 or s1 as end. We choose the second monitor m2, we are sure that

m2 has connection with m1 and s1 but not with s2. m2 will monitor the remaining

edges except the edges m1m2, m2s1 and s1s2. To monitor the remaining edges, we

choose the third monitor m3 from the rest. m3 has necessarily connection with m1,

m2, s1 and s2.

s

m

s

1

m
1

3

2

m2

Figure 7.2: Edge Monitoring for K6 − I.

�

It follows that the edge monitoring number of the complete graph, the complete

graph minus 1-factor and the complete multipartite graph is equal to 3.

In the rest of the chapter we focus on monitoring graphs with a special case of

coloring with only one color c = {1}.
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Note that we restrict Edge Monitoring to apply only on graphs where every

edge is part of at least one triangle. Indeed if it is not the case, then we can directly

answer that the problem has no solution in polynomial time. This restriction is no

big deal because in practice either we add sensors that cover the edges that are not

in a triangle or remove the edges by forbidding communications on these edges.

7.4 1-uniform monitoring of general graphs

The 1-uniform monitoring problem (1-UMP) assumes the uniform coloring where all

the edges have the same color c = 1. A graph admitting a 1-uniform monitoring set

is called a 1-monitorable graph. In the following, we give a trivial characterizations

of 1-monitorable graphs. An example of such graphs are maximal planar graphs

since every edge belongs to a triangle. However, the graph illustrated in Figure 7.3

admits a 1-uniform monitoring and it’s not a maximal planar graph.

Figure 7.3: A 1-uniform monitorable non maximal planar graph.

Recall from Definition 6, a graph G = (V,E) admits 1-uniform monitoring

iff. |M(e)| ≥ 1 for all e ∈ E. Thus, recognizing 1-monitorable graphs could be

performed in polynomial time. From now on we consider only 1-monitorable graphs

and we use the term graph or 1-monitorable graph equivalently and interchangeably.

We first give an introductory example in a simple graph class, namely, wheel

graph.

Proposition 7.4.1 The wheel graph Wn has

γm(Wn, 1) =


2α+ 1 if n− 1 ≡ 0[4]

2α+ 2 if n− 1 ≡ 1[4]

2α+ 3 otherwise.

with α = bn−1
4 c.
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(a) (b)

(c) (d)

Figure 7.4: Edge monitoring of the wheel graph. The red nodes are the monitors

that must be added.

Proof. Clearly, the universal vertex need to be monitor to monitor all lateral edges

(edges of the cycle). For n = 3, 4, 5, γm(Wn, 1) = 3. We can easily check it by in-

spection. For n > 5 and using Observation 7.5.2, it implies that if we choose a

vertex v as monitor from the vertices of the cycle, we must choose at least another

vertex as monitor adjacent to v from the cycle. Then, all lateral vertices (vertices

of the cycle) choose as monitors need to form paths of at least two monitors. Let

decompose the lateral vertices of the graph into blocks of four vertices. We distin-

guish three cases according to the value of n− 1:

(a) For n − 1 ≡ 0[4]: As shown in Figure 7.4(a), each two monitors can only

monitor four edges. This implies that we need two monitors for each block. Since

n− 1 ≡ 0[4] and in order to monitor all the edges, we must choose 2(n−1
4 ) vertices

to monitor the remaining edges plus one (the universal vertex).

(b) For n− 1 ≡ 1[4]: In this case, we use the same method using in the precedent

case to monitor the edges. We have one edge more and in order to monitor it, we

must choose one monitor more as shown in Figure 7.4(b).

(c) For n− 1 ≡ 2[4]: We need to prove that we need two more monitors in order to

monitor the two added edges. To monitor four edges and using only two monitors,

the monitors must be positioned in the center of each block. Since each monitor

need to be adjacent to two other monitors (Observation 7.5.2), it implies that if we
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add one monitor to monitor the two added edges, this monitor must be adjacent to

the two monitors of the adjacent block then only one edge can be monitored. Thus,

we need two more monitors as shown in Figure 7.4(c).

(d) For n− 1 ≡ 3[4]: In this case, we will have three more edges to be monitored.

Since one monitor can only monitor two edges then we need at least two other

monitors as depicted in Figure 7.4(d). This complete the proof. �

7.5 Bounds on edge monitoring number

The decision problem to determine the edge monitoring number of a graph is NP-

complete (see Chapter 8). Hence it is of interest to determine some bounds on the

edge monitoring number of a graph.

The first proposition of this section gives a trivial lower bounds of the edge

monitoring number γm(G, 1) for any 1-monitorable graph G.

Proposition 7.5.1 Let G be a 1-monitorable graph. The edge monitoring number

γm(G, 1) ≥ 3.

Proof. By contradiction, we prove there is no possible monitoring with 2 or less

monitors. Suppose a monitoring set with 2 monitors u and v. If u and v are

neighbors then the edge uv is not monitored and needs at least one new monitor.

Otherwise, u and v belong to two triangles. This implies that at least two other

monitors will be needed. Thus, any monitoring set of G will have three monitors

at least. �

Let G be a connected graph of order n ≥ 3. There exist graphs where all vertices

should be monitors. Thus, 3 ≤ γm(G, 1) ≤ n.

Observation 7.5.2 Let G = (V,E) be a 1-monitorable graph and let S be a mon-

itoring set of G. Each vertex of G is adjacent to at least two vertices of S.

To prove the previous observation, one may rely on the fact that a 1-monitorable

graph G has minimum degree at least 2. We now present a characterization of

graphs reaching the upper bound:

Observation 7.5.3 Let G = (V,E) be a 1-monitorable graph. γm(G, 1) = n iff.

for each vertex v of V there exists an edge e of E such that M(e) = {v}.
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Thus, recognizing graphs G having γm(G, 1) = n could be performed in polyno-

mial time.

The following proposition gives more precise description of such graphs having

a universal vertex i.e. a vertex adjacent to all others.

Proposition 7.5.4 Let G be a 1-monitorable graph.

(1) If ∆(G) = n− 1 and |E(G)| > 3n−3
2 then γm(G, 1) < n.

(2) If ∆(G) = n− 1 and |E(G)| = 3n−3
2 then γm(G, 1) = n.

Proof. Let G be a monitorable graph with order n ≥ 4. Let ∆ = n − 1 then we

have at least one vertex v with degree n− 1. If we select this vertex v as monitor,

this permit to monitor all the edges of the graph G except n − 1 edges that have

v as one end. In the case (2), the number of edges of G is 3n−3
2 and according to

the definition of the monitorable graph this means that there are one vertex with

degree n−1 and the remaining vertices have degree 2 and n is odd. Otherwise, if n

is even |E(G)| is not natural number. It implies that the graph is a set of triangles

sharing the same vertex v. Then, in this case, all the vertices of this graph must be

monitors in order to monitor all the edges. In the case (1), the number of edges is

bigger than 3n−3
2 . This means that for the n − 1 vertices, we have more than n−1

2

edges. Thus, to monitor the n− 1 remaining edges, we need less than n− 1 vertices

so γm(G, 1) < n. �

Now, we mention a basic lower bound for edge monitoring number.

Theorem 7.5.5 Let G be a monitorable graph of order n with no isolated vertices.

Then γm(G, 1) ≥ 2n
∆ .

Proof. Let S be a set of monitors of G. Then, using Observation 7.5.2, every vertex

of G is adjacent to two vertices of S. That is, all neighbors of the set S N(S) = 2n.

Since every v ∈ S can have at most ∆ neighbors, it follows that ∆γm(G, 1) ≥ 2n.

The theorem follows by dividing this inequality by ∆. �

Corollary 7.5.6 Let G be a monitorable graph of order n. If ∆ ≤ n
k for some

positive integer k > 1, then γm(G, 1) ≥ 2k. If ∆ < n
k , then γm(G, 1) ≥ 2k + 1.

Proof. By Theorem 7.5.5, γm(G, 1) ≥ 2n
∆ . If ∆ ≤ n

k , then substitution yields

γm(G, 1) ≥ 2k. Moreover, if ∆ < n
k , then by substitution again, we have γm(G, 1) >

2k. Hence γm(G, 1) ≥ 2k + 1. �
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Recall the following definitions:

Definition 9 (k-tuple dominating set) For a fixed positive integer k, a k-tuple dom-

inating set (resp. k-tuple total dominating set) of a graph G = (V,E) is a subset

S of V such that |N [v] ∩ S| ≥ k (resp. |N(v) ∩ S| ≥ k) for every vertex v ∈ V .

The k-tuple domination number γ×k(G) (resp. k-tuple total domination number

γ×k,t(G)) is the minimum cardinality of a k-tuple dominating set (resp. k-tuple

total dominating set) of G. A dominating set of G is a 1-tuple dominating set of

G. A total dominating set of G is a 1-tuple total dominating set of G. A double

dominating set of G is a 2-tuple dominating set of G.

Definition 10 (Edge disjoint triangle packing) A graph G = (V,E) is said to have

a k packing of triangles K3 if there exist k disjoint copies (K3)1, ..., (K3)k of K3 in

the vertex set of G. The packing is called edge-disjoint if we allow (K3)1, ..., (K3)k

to have some vertices in common but no edges exist in (K3)i ∩ (K3)j when i 6= j.

In the following, we give better lower and upper bounds:

Theorem 7.5.7 Let G = (V,E) be a monitorable graph and let F be a subgraph

such that F is the maximum edge disjoint triangle packing of G. Then, γ×2,t(G) ≤

γm(G, 1) ≤|V (F )|.

Proof. Let D ⊆ V be γm(G, 1)-set of G. From Observation 7.5.2, we deduce that

D is also a double total dominating set and we hence obtain γ×2,t(G) ≤ γm(G, 1).

For the upper bound, let F be a subgraph which represent the maximum edge

disjoint triangle packing of G. We prove that any V (F ) is edge monitoring set

for G. Assume, to the contrary, that V (F ) is not an edge monitoring set. This

implies that ∃e ∈ G such that e = uv is not monitored by any vertex of V (F ).

By assumption, the graph G is monitorable, then e belongs to at least one triangle

< v, u, w >. The triangle < v, u, w > has to belong to F for otherwise F is not

a maximum edge disjoint triangle packing of G. Contradiction. Thus, V (F ) is an

edge monitoring set and then γm(G, 1) ≤|V (F )|. �

To finish this section, we give a brief study on how the monitoring set evolves

with edge deletion. In particular, we consider the example of complete graphs and

deleting edges by blocks of perfect matchings I.
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Proposition 7.5.8 Let Kn be a complete graph with n even. Kn − αI remains

1-monitorable only if α < n−2
2 .

Proof. We begin by prove that if α = n−2
2 then we have edges that don’t form a

triangle. Note that Kn = Kn
2
∪Kn

2
∪Kn

2
,n
2
. Note that the degree of each vertex of

Kn
2
,n
2

is n
2 . When we remove n−2

2 perfect matchings from Kn
2
,n
2
, we are sure that

the remaining edges in Kn
2
,n
2

form a perfect matching and we denote it by PM .

Then, Kn − (n−2
2 )I = Kn

2
∪Kn

2
∪ PM . We prove easily that every edge e in PM

don’t belong to triangle because we can’t have a common adjacent vertex between

any two vertices in PM . Now, for any α > n−2
2 , we proceed by the same way as

below for the first n−2
2 perfect matchings then we remove n−2

2 perfect matching

from Kn
2
,n
2

After that, for the remaining perfect matchings, we remove them from

each Kn
2

if n
2 is even. If n

2 is odd, we remove an additional edge for each perfect

matching from the edges of PM . Using this method to remove α perfect matchings,

we are sure that all remaining edges of PM doesn’t belong to a triangle.

Now, we prove that even if α = n−2
2 − 1 or less, every edge in Kn − αI belongs

to triangle. In the case when α = n−2
2 − 1 = n−4

2 , the two extremities of every edge

is not connected to n−4
2 vertices. Suppose that the two extremities don’t have the

same disconnected vertices set, then the two extremities have n − 4 disconnected

vertices. This implies that we are sure that, in the worst case, every two extremities

of any edge in Kn − (n−4
2 )I have two vertices (neighbors) in common. �

7.6 1-uniform monitoring for some graph classes

7.6.1 Planar unit disc graphs

A graph G = (V,E) is a unit disk graph if it there exists a map f : V → R2

satisfying

{u, v} ∈ E ⇔ ‖f(u)− f(v)‖ ≤ 2

f is called a geometric representation of G.

Recognizing whether a graph G is an unit disk graph is NP-hard [BK98]. Thus,

computing a geometric representation of an unit disk graph is also NP-hard. Con-

sequently, we suppose that an unit disk graph G is given with a geometric repre-

sentation f .
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Dong et al [DLL+11] prove that k-uniform Edge Monitoring is NP-complete

on unit disk graphs for every k ≥ 2. We prove a stronger result for 1-uniform

Edge Monitoring.

Theorem 7.6.1 1-uniform Edge Monitoring is NP-complete on planar unit disk

graphs given with a geometric representation.

The proof is inspired by Theorem 4.1 in [CCJ90b]. As in [CCJ90b] we use the

following lemma:

Lemma 7.6.2 [Val81] A planar graph G with maximum degree 4 can be embedded

in the plane using O(|V |) area in such a way that its vertices are at integer coor-

dinates and its edges are drawn so that they are made up of horizontal or vertical

segments.

Proof. (of Theorem 7.6.1) We show a reduction from PlanarVertexCover with

maximum degree 3 which is NP-complete [GJ77]. Let G = (V,E) be a planar graph

with maximal degree 3. Let {e1, . . . , e|E|} be the edges in G. Let N > 0 be an inte-

ger. We draw G in the plane using Lemma 7.6.2 (see Figure 7.5) and we adjust the

scale such that each vertex is at coordinate (xN, yN) for some integers x and y. We

build G′ = (V ′, E′) from G by replacing each edge ei = {u, v}, i ∈ [1, . . . , |E|], by a

subgraphGei of vertices {ai,0 = u, bi,0, b
′
i,0, ai,1, bi,1, b

′
i,1, . . . , ai,2ni , bi,2ni , b

′
i,2ni

, ai,2ni+1 =

v} where ni is an integer that depends on the length of the embedding of ei. For

each j ∈ [0, 2ni], we connect bi,j and b′i,j to ai,j and ai,j+1 and we connect bi,j to

b′i,j (see Figure 7.6).

v1 v2 v3

v4

v1 v2

v3

v4

Figure 7.5: A representation of K4 in the grid

It is easily seen that the obtained graph G′ is planar and that there exists an

unit disk representation of G′ for suitable N and (ni)i∈[1,|E|]. Now, we prove that
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u v u

bi,0

b′i,0

ai,1

bi,1

b′i,1

ai,2

bi,2

b′i,2

v

Figure 7.6: An edge ei = {u, v} and its associate graph Gei for ni = 1

G admits a vertex-cover S such that |S| ≤ k if and only if G′ has a monitoring

set S′ such that |S′| ≤ k′ = k +
∑

i∈[1,|E|(5ni + 2). Let A be the set of vertices

ai,j for i ∈ [1, |E|] and j ∈ [1, 2ni]. Let B be the set of vertices bi,j and b′i,j for

i ∈ [1, |E|] and j ∈ [0, 2ni]. Clearly, V ′ is the disjoint union of V , A and B.

Moreover, |A| =
∑

ei∈E(2ni) and |B| =
∑

ei∈E(4ni + 2). The proof is an immediate

consequence of these three facts.

(1) If a set S′ ⊆ V ′ monitors G′ then B ⊆ S′: otherwise, there exists a vertex

bi,j or b′i,j that is not in S′. Then {ai,j , bi,j} or {ai,j , b′i,j} is not monitored by S′.

(2) Let S be a vertex-cover of G. Then there is a set A′ ⊆ A such that |V (Gei)∩

A′| = ni for every i ∈ [1, |E|] and such that S ∪ A′ ∪ B is a monitoring set of G′:

let ei = {u, v} be an edge in G. If u ∈ S, then we choose all ai,2j for j ∈ [1, ni] as

elements of A′. Otherwise (v ∈ S), we choose ai,2j+1 for j ∈ [0, ni − 1]. It is easily

seen that S ∪A′ ∪B is a monitoring set of G′.

(3) There exists a minimum monitoring set S′ of G′ such that V ∩S′ is a vertex-

cover of G and |V (Gei)∩A∩S′| = ni for every i ∈ [1, |E|]: assume that V ∩S′ is not

a vertex cover of G. Let ei = {u, v} be an edge in G not covered by V ∩ S′. Then,

it is easily seen that |V (Gei)∩A∩ S′| > ni. Otherwise, an edge {bi,j , b′i,j} for some

j is not covered by S′. Thus, we can replace these vertices by u and ni vertices in

V (Gei)∩A which monitors every edge {bi,j , b′i,j}. By iterating this process on every

edge in G, we obtain a set with the desired properties. Now, assume that V ∩ S′ is

a vertex cover of G but there is some i such that |V (Gei)∩A∩S′| 6= ni. It is easily

seen that |V (Gei) ∩ A ∩ S′| < ni implies that an edge {bi,j , b′i,j} for some j is not

covered by S′ and if |V (Gei) ∩A ∩ S′| > ni then S′ is not minimum. �

7.6.2 Split graphs

We prove that the problem is NP -complete on split graphs.
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Lemma 7.6.3 Let G = (V = C ∪ I, E) be a split graph with minimum degree

δ(G) ≥ 2 and such that |C| ≥ 3 then, there exists a minimum 2-tuple dominating

set (resp. monitoring set) S ⊆ C.

Proof. Let S be a set that minimizes |S∩I| among all minimum 2-tuple dominating

sets of G. For the sake of contradiction, suppose S ∩ I non empty and let v be a

vertex in S ∩ I. If N(v) ⊆ S, then S − v is also a 2-tuple dominating set of

G. Thus, G is not minimum. Now, suppose that N(v) * S. Then, there exists

u ∈ N(v) \ S. Then S′ = S ∪ {u} − v is a minimum 2-tuple dominating set of G

with |S′ ∩ I| < |S ∩ I|. Thus S does not minimize |S ∩ I|.

The proof for monitoring sets is quite similar to the proof for 2-tuple dominating

sets. Let S be a set that minimizes |S ∩ I| among all minimum monitoring sets of

G. For the sake of contradiction, suppose S ∩ I non empty and let v be a vertex

in S ∩ I. S contains at least 3 vertices and |S ∩ C| ≥ 2. Otherwise, S does not

monitor all edges between C and I. If N(v) ⊆ S and |S ∩ C| ≥ 3, then S − v is

also a monitoring set of G. Thus S is not minimum. If N(v) ⊆ S and |S ∩ C| = 2

then choose a vertex u ∈ C \ S. Thus, S′ = S ∪ {u} − v is a minimum monitoring

set with |S′ ∩ I| < |S ∩ I|. Now, suppose that N(v) * S and let u ∈ N(V ) \ S.

Then, S′ = S ∪ {u} − v is a minimum monitoring set with |S′ ∩ I| < |S ∩ I|. That

contradicts our assumption. �

Lemma 7.6.4 Let G = (V = C ∪ I, E) be a split graph with minimum degree

δ(G) ≥ 2 and such that |C| ≥ 3 and γ×2(G) ≥ 3. Then, γm(G, 1) = γ×2(G).

Proof. By Theorem 7.5.7, we have γ×2(G) ≤ γm(G, 1). We will prove that γ×2(G) ≥

γm(G, 1). Let S be a minimum 2-tuple dominating set of G. Thanks to Lemma

7.6.3, we can assume without loss of generality that S ⊆ C. Since |S| ≥ 3, S moni-

tors all edges in G[C]. Let {u, v} be an edge in G such that u ∈ C and v ∈ I. Since

S dominates twice the vertex v, there is a vertex u′ ∈ S ∩N(v) distinct to u. Thus

{u, v} is monitored by u′. Consequently, S is a monitoring set of G. �

Since 2-tuple domination is NP-complete on split graphs [LC03] and by Lemma

7.6.4, we obtain the following result.

Theorem 7.6.5 1-uniform Edge Monitoring is NP-complete on split graphs.
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7.6.3 Comparability graphs

We also prove that the problem is NP -complete on comparability graphs.

Theorem 7.6.6 1-uniform Edge Monitoring is NP -complete on comparability graphs.

Proof. We do a reduction from Total Domination on bipartite graphs which

has been proved NP -complete [PLH82]. Let G = (V,E) be a bipartite graph.

Without loss of generality, assume that G has no isolated vertices. Let G′ be the

graph obtained from G by adding a universal vertex u. It is clear that G′ is a

comparability graph. We will prove that γm(G′, 1) = γt(G) + 1. Let S be a total

dominating set of G. Then, S∪{u} is a monitoring set of G. Indeed, every edge in E

is covered by u and for every edge {u, v} with v ∈ V , there is a vertex v′ ∈ N(v)∩S.

Thus, {u, v} is monitored by v′. Now, let S be a monitoring set of G′. Then, u ∈ S

because u is the only vertex that monitors edges in E. S − u is a total dominating

set of G. Indeed, let v be a vertex in V . {u, v} is an edge of G′ monitored by a

vertex v′ ∈ S − u distinct from v. Thus, v is dominated v′. �

7.6.4 General results on graph power

Let G = (V,E) be a graph. Let d(G) be the diameter of G. Throughout this section

we assume that G is connected. If G is disconnected then, γm(G, 1) is the sum of

the edge monitoring numbers of its components. We define Gk as the kth power of

G that has the same set of vertices as G, but in which two vertices are adjacent

when their distance in G is at most k.

Since the graph G does not necessarily have the properties of a monitorable

graph, we discuss the edge monitoring number of some graph power.

Theorem 7.6.7 The graph power Gk of any connected graph G with at least k+ 1

vertices is (k − 1)-monitorable.

Proof. Since G is a connected graph, then each vertex v ∈ G has degree at least

1. Note that G has at least k+ 1 vertices and no isolated vertices this implies that

each vertex in Gk will be connected to at least k vertices. Now, in order to prove

that each edge in Gk is k − 1-monitorable, it suffices to prove that each edge in

Gk belongs to k − 1 triangles. By definition of graph power Gk, two vertices are

adjacent when their distance in G is at most k. Let e = uv be an edge in Gk. For
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each edge in Gk, each extremity is connected to at least k vertices. Consider one

extremity v, v has at least k−1 connections with other vertices and one connection

with u. Furthermore, the other extremity u is also connected to at least k vertices.

Since v is adjacent to u and G has at least k + 1 vertices, then u has at least k − 1

common vertices with v. This means that any edge e in Gk belongs to at least k−1

triangles. Hence, Gk is k − 1-monitorable. �

Proposition 7.6.8 Let G be a connected monitorable graph. If G is monitorable,

then γm(Gk, 1) = 3 ≤ γm(Gk−1, 1) ≤ · · · ≤ γm(G2, 1) ≤ γm(G, 1) with k ≥ d − 1

and d the diameter of the graph G.

Proof. Let γm(G, 1) = t. We can easily prove that the same number t can monitor

all edges of the graph Gi for any i > 1.

First, we prove that is true for the first graph power G2. G2 has the same set of

vertices as G, but we add edges between two vertices when their distance in G is

2. We simply prove that all the additional edges can be monitoring by the same

monitors of G. We have two subcases A and B as showing in Figure 7.7 and the

details of each subcases are as follow:

• If we connect any two vertices, of distance two, having one monitor in common,

denoted by v. Clearly this monitor v can monitor the new edge e (see Figure

7.7(A)).

• In the contrary, there is no monitor in common between the two vertices

in the graph G, as shown in Figure 7.7(B). Since all edges of the graph G

are monitored, the edges e1 and e2 have one monitor (or more). Since the

graph G2 allows to connect each two vertices of distance 2, then the edges e3

and e4 connect each extremity of the edge e with the monitors of e1 and e2,

respectively. This implies that the edge e can be monitored by any monitors

of edges e1 or e2.

Hence, γm(G2, 1) ≤ γm(G, 1). By the same way, we can easily prove that γm(G3, 1) ≤

γm(G2, 1) and so on. Besides, the graph Gk, for k ≥ d− 1 is a complete graph and

for k = d− 1 is a complete graph minus one factor, then γm(Gk, 1) = 3 (For more

details see the proof of Proposition 7.3.1). �
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e

e1 e2

e3 e4

e

BA

Figure 7.7: Edge monitoring in graph power.

7.6.5 Linear algorithm for the square of tree

One of the important classes of graphs is the trees. The importance of trees is

evident from their applications in various areas. Besides, many hard problems are

efficiently solvable on trees, and this is the second reason for studying the edge

monitoring problem in this classe of graphs.

Let T be a tree of order n ≥ 3. In the following, we give an algorithm for the

edge monitoring of the square of any tree T , denoted by T 2. Please observe that

trees are not monitorable graphs.

First we present some definitions. A leaf is a vertex of degree 1. If a vertex

is not a leaf this means that is an inner vertex of degree at least 2. A forest is a

disjoint union of trees.

We start with the following propositions that can be easily obtained, thus proofs

are omitted.

Proposition 7.6.9 Let T be a tree of order n ≥ 3. If d(T ) ≤ 4, then γm(T 2, 1) = 3.

Proposition 7.6.10 For any tree T with diameter at least 5, there exist γm(T 2, 1)-

set that contains no leaves of T .

In the rest of this section, we only consider γm(T 2, 1)-sets for which the Propo-

sition 7.6.10 holds.

Lemma 7.6.11 Let T be a tree of order n. T 2 is the square of the tree T . Let S

be a set of monitors of T 2. Let V (T ) be the set of vertices of T . Let L be a set of

leaves of T . If ∃v ∈ V (T ) such that one of the following conditions hold in T :

(a) deg(v) = 2 or
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(b) |N(v) ∩ L| = deg(v)− 2 or

(c) ∃u ∈ L : dist(u, v) = 2 or

(d) ∃u ∈ L : dist(u, v) = 3 and let v, x, y, u be the path between v and u then

|N(x) ∩ L| = deg(x)− 2

then v ∈ S.

Proof. Let v be a vertex of T and S the set of monitors of T 2. To prove that v

must be in S, we just need to verify that for each case there exists at least one

edge that can only be monitored by v. These four possible cases are illustrated

in Figure 7.8. The red edges are the edges that candidate be monitored. The

Figure 7.9 represents a counterexample to explain why we need to add the condition

|N(x) ∩ L| = deg(x)− 2 in (d).

(b)

(d)(c)

v

(a)

v

v
v

Figure 7.8: The four cases of Lemma 7.6.11 for which v must be monitor. A non

monitor vertex is represented by white vertex. The red edges are the edges that

can only be monitored by v.

v

u

x

y

Figure 7.9: ∃u ∈ L : dist(u, v) = 3 and let v, x, y, u be the path between v and u

then |N(x) ∩ L| 6= deg(x)− 2.

This completes the proof. �

Let decompose the set of vertices of T into three subsets. Let V1 be a set of

vertices that are leaves. Let V2 be a set of vertices that satisfy the conditions of
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Lemma 7.6.11. The set V3 is the remaining vertices that belong to neither V1 nor

V2. This means that there is no monitors that belong to the set V1 and all vertices

of V2 are monitors. In the following lemma, we will show the conditions that must

satisfy the set of vertices that are non monitors.

Lemma 7.6.12 Let T be a tree of order n. T 2 is the square of this tree. Let S

be a monitoring set of T 2. Let {u, v} ∈ V (T )\S and {x, y} ∈ V (T ) ∩ S be four

vertices in T . (1) If deg(v) = 3 in T and v /∈ S , then v cannot be adjacent to a

non monitor in T . (2) If deg(v) ≥ deg(u) > 3, then u may be adjacent to v in T

but not to a third vertex w ∈ V (T )\S. (3) If deg(x) = 2 in T or deg(x) > 2 in T

and x is adjacent to at least deg(x) − 2 leaves (same for y), then u and v cannot

form the path with x and y in T as follow u, x, y, v.

(a) (b) (c) (d)

Figure 7.10: The V \M -vertex induced subgraph from T does not contain P3 (and

can contain P2 in some conditions). A non monitor vertex is represented by white

vertex. The red edges are the edges that can only be dominated by a white vertex.

Proof. Let {u, v} ∈ V (T ) two vertices such that {u, v} /∈ M . We deduce three

cases depending on the degree of v and u:

(1) If v has degree 3, then v cannot be adjacent to another non monitor in T .

Assume the contrary. It is easy to observe that if at least one vertex v /∈ M has

degree equal to 3 and it is adjacent to another vertex u /∈M in T , then there exist

some edges not monitored (see Figure 7.10(a) and 7.10(b)).

(2) If deg(v) ≥ deg(u) > 3, then u may be adjacent to v in T but not to a third

vertex w ∈ V (T )\M . Figure 7.10(c) and 7.10(d) illustrate this case. We can easily

see that we can admit two adjacent non monitors in T but if we have three non

monitors, we have an edge that cannot be monitored.
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(3) If deg(x) = 2 in T or deg(x) > 2 in T and x is adjacent to at least deg(x)− 2

leaves (same for y), then u and v cannot form the path with x and y in T as

follow u, x, y, v. Assume the contrary. This implies that there exist four vertices

{u, v, x, y} forming a path in T such that {u, v} ∈ V (T )\M and {x, y} ∈ M and

deg(x) = deg(y) = 2 in T or the vertices x (or y) have at least deg(x) − 2 (or

deg(y) − 2) leaves. The Figure 7.11 shows that in these two subcases, there exists

an edge that cannot be monitored. This contradicts our assumption and complete

the proof.

yu v

(a)

x

(b)

u x y v

Figure 7.11: A counterexample to prove the condition (3) of Lemma 7.6.12. A non

monitor vertex is represented by white vertex and monitor by black vertex. The

red edges are the edges that can only be dominated by a white vertex.

�

From Proposition 7.6.10, we deduce that there exist γm(T 2, 1)-sets without any

vertices in V1. From Lemma 7.6.11, we can observe that all vertices in V2 must be

monitors. The vertices in V3 need to satisfy some conditions, see Lemma 7.6.12.

The idea is to construct the graph G = (V,E) such that V = V3(T ) be the set of

vertices and E be the set of edges consisting on all the edges in E(T ) having both

endpoints in V3(T ) and we add an edge between two vertices {u, v} ∈ V3 if these

vertices form a path as follow: u, x, y, v such that {x, y} ∈ V2 and deg(x) = 2 in T

or deg(x) > 2 in T and x is adjacent to at least deg(x)−2 leaves (same for y). Note

that if both vertices u and v have degree bigger than 3 then we give weight = 2

to the added edge. All the other edges of the graph have weight = 1. The idea of

adding some edges in the graph help us to keep the condition (3) of Lemma 7.6.12.

It is easy to see that the graph G constitutes a forest of trees.

We first discuss how we can find the minimum number of monitors from this

forest. By Lemma 7.6.12, we deduce that we cannot have two adjacent non mon-

itors except in some conditions and we cannot have more then two non monitors

constituted a path in T . The conditions of Lemma 7.6.12 will be illustrated as a
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new problem that we call Mixed {1, 2}-Independent Set in a coloring forest.

We begin by proposing a coloring scheme for the vertices of the forest. The

vertices are colored as follows:

1. Red vertices Vr are the set of vertices having degree equals to 3 in T .

2. Blue vertices Vb are the set of vertices having degree higher than 3 in T .

The definition of the Mixed {1, 2}-Independent Set problem is based on an

existing definition of the k-Independent set given by Fink et al. in [FJ85]:

Definition 11 A subset S of V is a k-independent if the maximum degree of the

subgraph induced by the vertices of S is less or equal to k − 1.

In the following, the degree of a vertex is represented by the sum of weights of

its incident edges.

Now, let define the Mixed {1, 2}-Independent Set problem:

mixed {1, 2}-independent set

Input: A tree graph T ′ = (V,E), a partition (Vr, Vb) of V .

Output: A subset S = Sr ∪ Sb of V = Vr ∪ Vb is a mixed {1, 2}-independent set if

it is a 2-independent set such that Sr is a 1-independent set.

Maximum Mixed {1, 2}-Independent Set is to find the largest mixed {1, 2}-

independent set for a given graph T ′. We first give an algorithm that finds a

minimum set of monitors that satisfy conditions of Lemma 7.6.12. The proposed

algorithm looks for a variant of the Maximum Mixed {1, 2}-Independent Set in a

colored tree. It will be applied to each tree of the forest. In other words, the

following algorithm returns for each tree of the forest a maximum mixed {1, 2}-

independent set S that represents vertices that are not monitors. Hence, finding S

induces finding the minimum set of monitors by complementarity.

Before presenting the algorithm, let’s present a well-known algorithm for the

maximum independent set problem. We will show that for a tree T = (V,E), using

dynamic programming, the maximum 1-independent set (a.k.a. independent set)

problem can be solved in linear time:

Root the tree at an arbitrary vertex. Then, each vertex defines a subtree (the one

hanging from it). Dynamic programming proceeds from smaller to larger subprob-
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lems then bottom up in the rooted tree (induced by depth first search (DFS in

short)).

Suppose that we know the size of the largest independent set, denoted by MIS,

of all subtrees below a node v. What is the maximum independent set in the subtree

hanging from v? Two cases are possible: v is in the maximum independent set or

is not.

Let O(v) be the size of the maximum independent set in the subtree rooted at

vertex v such that v /∈ MIS, then the maximum independent set is the union of

the maximum independent sets of the subtrees of the children of v. Let I(v) be the

size of the maximum independent set in the subtree rooted at vertex v such that

v ∈ MIS, then the maximum independent set consists of v added to the union of

the maximum independent sets of the subtrees of the children of v such that they

do not belong to the maximum independent set. It follows that the time complexity

of such algorithm is linear O(|V |).

Let’s define an algorithm for the mixed [1, 2]-independent set based on the same

idea of the above algorithm. Let T ′ = (V,E) be a tree with V = Vr ∪ Vb meaning

the vertices are either colored red or blue. Suppose that we know the size of the

largest mixed [1, 2]-independent set, denoted by MMIS, of all subtrees below a

node v. We have two possible cases:

1. Let O(v) be the size of the maximum independent set in the subtree rooted at

vertex v such that v /∈MMIS, then the maximum independent set is the union of

the maximum independent sets of the subtrees of the children of v.

2. Let I(v) be the size of the maximum independent set in the subtree rooted

at vertex v such that v ∈ MMIS. Let c(v) be the set of children of v. Then

c(v) = cr(v) ∪ cb1(v) ∪ cb2(v) where cr(v) is the set of children of v having color

red. cb1(v) is its children of color blue and connected to v with an edge of weight

1. cb2(v) is its children of color blue and connected to v with an edge of weight 2.

The algorithm is obtained as follows:

It is easy to see that this algorithm is of linear complexity O(|V |).

Using the structure of an optimum solution described by lemmas and propo-

sitions of this section as well as the previous algorithm, we present a linear-time

algorithm for solving the Edge monitoring problem on square tree graphs.
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Algorithm 7.1: Compute the mixed {1, 2}-Independent Set in trees

1: Input: A tree T ′ = (V,E) rooted at r, a partition (Vr, Vb) of V .

2: Output: The mixed {1, 2}-Independent Set in T ′.

3: Begin

4: For each vertex v ∈ V in DFS order do

5:

O(v) =
∑
u∈c(v)

max(I(u), O(u));

6: If v ∈ Vr then

7:

I(v) = 1 +
∑
u∈c(v)

O(u);

8: Else then

9:

I(v) = 1 +
∑

u∈cr(v)∪cb2(v)

O(u) +
∑

u∈cb1(v)

max(I(u), O(u));

10: End If

11: End For each

12: Return max(I(r), O(r));

13: End

As described bellow, the vertices set of the tree T can be decomposed into three

subsets V1, V2 and V3. The algorithm 7.2 is divided into two steps. First, all vertices

V1 represents the leaves of the tree. We mark them as non monitors. All the ver-

tices of V2 (as described previously) are marked as monitors. Note that the degT (v)

is the corresponding degree of the vertex v ∈ V (T ) and not in T 2. The step 2 of

the algorithm considers only the vertices V3 (i.e. the remaining vertices). First, it

applies the proposed coloring scheme on the vertices V3 of the tree T . Some edges

are added to coincide with the properties of Lemma 7.6.12. This step will require

to call Algorithm 7.1 in order to find the maximum [1, 2]-independent set and then

find the minimum monitoring set on the forest induced by vertices of V3.

We conclude that Algorithm 7.2 computes a minimum set of monitors for any

square of a tree of order n > 4 in linear time.
Thus, we have the following theorem.
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Algorithm 7.2: Compute γm(T 2, 1)-set for a tree square T 2

Input: A tree T = (V,E).

Output: γm(T 2, 1)-set.

Step 1:

Compute the set of leaves L;

For each v ∈ L do color(v) = white;

For each vertex v ∈ V (T ) do

If degT (v) = 2 or |N(v) ∩ L| = degT (v)− 2 or ∃u ∈ L : dist(u, v) = 2 or

∃u ∈ L : dist(u, v) = 3 and a path v, x, y, u between v and u with

|N(x) ∩ L| = degT (x)− 2 (Cf. Lemma 7.6.11) then

color(v) = black;

Put v in γm(T 2, 1)-set;

End If

End For each

Step 2:

The induced subgraph by the remaining uncolored vertices forms a forest F ;

For each v ∈ F
If degT (v) = 3 then color(v) = Red;

Else color(v) = Blue;

End If

For each u in F do

If there exist x and y with degT (x) = 2 or degT (x) > 2 and x adjacent to at

least degT (x)− 2 leaves (same for y) and u, x, y, v form a path in F (Cf. Lemma

7.6.12(3)) then

Add an edge with weight 2 between the two vertices v and u in F ;

End If

End For each

End For each

Apply Algorithm 7.1 on each tree of the forest;

Let S(F ) be the union of the maximal mixed {1, 2}-independent set of each tree of the

forest;

For each v ∈ F do

If v ∈ S(F ) then

color(v) = white;

Else

color(v) = black;

Put v in γm(T 2, 1)-set;

End If

End For each

Return γm(T 2, 1)-set

End
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Theorem 7.6.13 There exists an algorithm which computes the minimum number

of monitors for square tree in linear time.

7.6.6 Power of cycles

Now, before presenting some results about the edge monitoring number of the cycle

power graph, we detail two lemmas that can be useful in our proofs.

Let u and v be two vertices in Cn. Let de(uv) be the distance between two

vertices which is measured by the number of vertices in the shortest path connecting

these two vertices in Cn (not in Cmn ). Let call the edge that connects u and v in

Cmn within distance de(uv) = m in Cn a long edge and call the portion of vertices

and edges between u and v in Cmn , the path Puv of e. It is clear that the long edge

uv can be monitored by any vertex of the path Puv. By the following lemma, we

prove that for each portion of Cn having 2m − 1 vertices, we need at least three

monitors.

Lemma 7.6.14 Let Cmn be the mth power of a cycle graph of order n. Let P2m−1

be a sequence of 2m− 1 vertices of Cn. Let S be a γm(Cmn , 1)-set of Cmn . We have

|V (P2m−1) ∩ S| ≥ 3.

m−2 m−2

vu }}

Figure 7.12: A sequence of 2m− 1 vertices of Cn. The red edges represent the two

long edges.

Proof. Let P2m−1 = uv be a sequence of 2m− 1 vertices of Cn. This sequence has

two long edges that need to be monitored only by nodes in P2m−1 as depicted in

Figure 7.12. Consequently, we have two monitors. Let call them m1 and m2 from

left to right. As mentioned above, these two long edges can be monitored by any

vertex of their paths.

Let x = de(m1m2) be the distance between the two monitors in Cn. Let x1 =

de(um1) be the distance between u and m1 and x2 = de(m2v) the distance between

m2 and v. Now, let us prove that whatever the placement of the two monitors in

P2m−1, we will need at least a third monitor in P2m−1. We have four cases:
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(1) x = 1: this implies that the two monitors are adjacent in Cn then we have only

one possibility as depicted in Figure 7.13(a). The red edge is an edge monitored

only by a vertex in P2m−1. Thus we need a third monitor.

(2) x = m: the long edge, depicted in red in Figure 7.13(b), can be monitored only

by a monitor in P2m−1.

(3) x > m: this means that we have at least the two long edges, as shown in Figure

7.13(c), are monitored only by a vertex in P2m−1.

(4) 1 < x < m: we have two possible configurations depending on the distances x1

and x2.

• If x + x2 ≥ m and x + x1 ≥ m then the edge having extremities the two

monitors need to be monitored by a vertex in P2m−1 as depicted in Figure

7.13(d).

• If x + x2 < m then x1 > m. It implies that the long edge depicted in red

in Figure 7.13(e) need to be monitored by a vertex in P2m−1 (the case when

x+ x1 < m is symmetric to this case).

�

Lemma 7.6.15 Let Cmn be a power cycle graph of order n. If n = 2m + 2 then

Cmn = Kn − I and for any n ≤ 2m+ 1, then Cmn = Kn.

Proof. Let Cmn be a cycle graph power m of order n. For n ≤ 2m + 1: if we

prove that Cm2m+1 = K2m+1, this implies that for any n ≤ 2m + 1, Cmn = Kn.

Assume, to the contrary, that Cm2m+1 6= K2m+1. This means that there exist at

least two nonadjacent vertices in Cm2m+1. From the definition of graph power, each

vertex of Cm2m+1 will be connected to all vertices having distance less or equal to

m. Since we have 2m+ 1 vertices, each vertex will be connected to 2m vertices (m

vertices on its left and m on its right). Thus, this contradicts the supposition that

Cm2m+1 6= K2m+1.

For n = 2m + 2: similarly to the previous case, we can easily prove that Cm2m+2 is

a complete graph minus one factor. �

Theorem 7.6.16 The cycle power Cmn has
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γm(Cmn , 1) =


3 if n ≤ 3m

n if m = 2 and n > 3m

3b n
2m−1c+ c otherwise.

with

c =


0 if n ≡ 0[2m− 1]

1 if n ≡ 1[2m− 1]

2 if n ≡ k[2m− 1] with 2 ≤ k ≤ m

3 otherwise.
.

Proof. We distinguish four cases as follows:

Case 1. n ≤ 2m+ 1 :

By Lemma 7.6.15 we have Cmn = Kn and using Proposition 7.3.1 we have γm(Cmn , 1) =

3.

Case 2. n = 2m+ 2 :

Using Lemma 7.6.15 and Proposition 7.3.1, we have Cmn = Kn−I then γm(Cmn , 1) =

3.

Case 3. 2m+ 2 < n ≤ 3m:

Let decompose Cmn into three components, as illustrated in Figure 7.14, called

Comp1, Comp2 and Comp3 as follow: (a) The first two components Comp1 and

Comp2 have the same number of vertices m− 1 and a common vertex, denoted by

vi. (b) The third component Comp3 is composed from the remaining vertices of the

cycle and has two common vertices vj and vk with Comp1 and Comp2 respectively.

Note that the vertices vi, vj and vk form a triangle. We prove that these three

vertices can monitor all the edges of Cmn . We show that each vertex can monitor a

set of specific edges. Consider the first monitor vi and the proof is the same for the

other monitors vj and vk.

The monitor vi monitors the following edges:

1. All edges having the two extremities in the adjacent components of vi: one ex-

tremity in Comp1 and the other one in comp2 such that vi is not an extremity

of these edges.

2. All edges having the both extremities in the same adjacent component Comp1

or Comp2 such that vi is not an extremity of these edges.
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3. The edge having as extremities the two other monitors vj and vk.

Case 4. n > 3m:

Subcase 4.a. m > 2:

Since each monitor must be adjacent to two monitors (from Observation 7.5.2), this

means that the set of monitors need to form a set of triangles. Thus, the aim is to

find the minimum triangles set that covers all the edges in order to have the smallest

number of monitors. In this perspective, we define a method of monitors selection

as follow: first, we choose randomly one vertex as monitor, this vertex can monitor

exactly m− 1 long edges from its right and its left(Cmn is symmetric) and all edges

having each extremity in distance de = m with this monitor except edges having

this monitor as extremity (see example of Figure 7.15.step 1). Then, in order to

monitor the edges having the first monitor as extremity and more precisely the two

long edges e1 and e2 incident from this monitor (see Figure 7.15.step 2), we need to

choose one monitor which belongs to the path Pe1 (resp. to e2). Consequently, we

choose as monitor the vertex having distance m − 1 from the first monitor chosen

because it’s the farthest vertex which can monitor the edge e1 (the same for e2

because of the symmetry). Since the distance between the first monitor and the

second one is m− 1, then the second monitor can monitor all the edges having the

first monitor as end (same for the other part because of the symmetry) except the

edge having two monitors as end. Consider e3 and e4 the edges having both ends

as monitors. Then, in order to monitor these edges, we choose the farthest vertices

that can monitor them. Thus, we choose the adjacent vertex to the second monitor

as monitor (same for the other part) (as shown in Figure 7.15.step 3). Consequently,

using this method, we are sure to have the minimum number of monitors for this

part of the cycle then we just need to do the same for the rest. It means that to

monitor all edges, one time we choose one vertex as monitor and after m−2 vertices,

we need to choose two monitors and so on. Using Lemma 7.6.14, we deduce that

this construction gives an optimal solution.

Subcase 4.b. m = 2:

Using Observation 7.5.3, we can easily see that all vertices must be monitors to

monitor all the edges. �
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7.6.7 Power of paths

The idea of proof for powers of a path is the same as the proof of powers of a cycle.

Theorem 7.6.17 The path power Pmn has

γm(Pmn , 1) =


3 if n ≤ 2m+ 1

4 if 2m+ 1 < n ≤ 3m

n− 2 if n > 3m and m = 2

3bn−2m−2
2m−1 c+ 4 + c otherwise.

with

c =


0 if n− 2m− 2 ≡ k[2m− 1] with 0 ≤ k ≤ m− 2

1 if n− 2m− 2 ≡ k[2m− 1] with m− 1 ≤ k ≤ 2m− 3

2 otherwise.

.

Proof. We distinguish three cases as follows:

Case 1. n ≤ 2m+ 1 :

In this case, we prove that three monitors are sufficient to monitor all the edges of

the power of path, denoted by Pmn . The idea is to find the triangle whose vertices

can monitor all edges of the power of path. For example, if we choose three succes-

sive monitors from the center of the path, then each monitor monitors all edges in

m−1 distance from it left and it right, except the edges having this monitor as end.

Moreover, each monitor monitors the edge connected by the two other monitors.

Thus, three monitors are enough.

Case 2. 2m+ 1 < n ≤ 3m:

We can easily verify that three monitors are not enough to monitor all edges. Then,

we prove that four monitors are sufficient. We divide the path into three compo-

nents. The two components of extremity (right and left) contain m + 1 vertices

each and the component of the middle contains the rest of vertices. We choose two

adjacent monitors, from each component of extremity, in order to monitor all edges

in distance m− 1 from the end of the path. Since the number of vertices that has

the component of the middle is at most m− 2, we are sure that two two vertices of

each component form a triangle with at least one vertex from the other component

and all the edges are monitored.
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Case 3. n > 3m :

If m = 2, then it is easy to see that we need to choose all vertices as monitors except

the two vertices of extremities.

If m > 2, we divide the path into three components as in Case 2. The two compo-

nents of extremity contain m− 1 vertices and the third component contain the rest

of vertices. In order to monitor all the edges of the components of extremity, we

must choose two adjacent monitors from each extremity of the middle components

as shown in Figure 7.16(step 1). To monitor the edges of the middle component,

we define the following method to select monitors: the idea is to find the minimum

number of triangles that cover all the remaining edges to have the minimum number

of monitors. We know that the largest triangle in the path power Pmn is extended

over a distance of m + 1. This means that the biggest distance between two mon-

itors in the same triangle is m− 2. This implies that after each m− 2 vertices we

must have at least one monitor. In order to have the minimum number of monitors,

after each m− 2 vertices, we choose one monitor and the second time two adjacent

monitors and so on (See Figure 7.16) in order to constitute our triangles. It permits

to have succession of triangles connected along the path (same idea as cycle power

Cmn for n > 3m and m > 2). Using Lemma 7.6.14, we can easily deduce that this

construction gives an optimal solution.

This complete the proof. �
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Figure 7.13: The different cases depending on the placement of the two monitors

m1 and m2 in P2m−1.
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Comp3
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Figure 7.14: Cycle power Cmn for 2m+ 2 < n ≤ 3m.

Step 1Step 2Step 3
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Figure 7.15: An example of monitors selection in cycle power Cmn for n > 3m and

m = 4.
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Figure 7.16: The minimum set of monitors on the path P 4
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In this chapter we review some basic notions related to parameterized com-

plexity. Then, we focus in particular on 1-uniform monitoring problem (1-UMP)

by proving that the problem in NP-complete even when restricted to (P5, C4)-free

1-monitorable graphs. We also prove that 1-uniform Edge Monitoring cannot be

approximated within (1−ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(nO(log logn)).

Afterthat, we prove that the 1-uniform edge monitoring problem is W [2]-hard when

parameterized by the size of the solution. Then, we present two algorithms that

solve a more general problem, namely Edge Monitoring. The first one solves the

version of the problem parameterized by the treewidth in time 2
O(tw2·log(max

e∈E
c(e)))

·n

where tw is the treewidth of the input graph and c : E → N is a color function

such that each edge e should be monitored c(e) times. The second one solves

the version of the problem parameterized by k, the size of the solution, in time

2
O(
√
k·log(max

e∈E
c(e)))

· n when the input graph is apex-minor-free, in particular, when

it is planar, by using Bidimensionality Theory [DH08, DFHT04, DHT04]. We also
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prove that the edge monitoring problem is W [1]-complete on complete graphs when

the parameter is the size of the solution.

8.1 Preliminary notions

In this section we introduce some basic definitions.

Figure 8.1: The triangulated grid Γ5.

Let k be an integer. The triangulated grid of size k is the graph Γk = (Vk, Ek)

such that Vk = {`i,j |1 ≤ i, j ≤ k} and Ek = {{`i,j , `i+1,j} | 1 ≤ i ≤ k − 1, 1 ≤

j ≤ k} ∪ {{`i,j , `i,j+1} | 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1} ∪ {{`i,j+1, `i+1,j} | 1 ≤ i ≤

k−1, 1 ≤ j ≤ k−1}∪{{`1,j , `k,k}, {`k,j , `k,k} | 1 ≤ j ≤ k}∪{{`i,1, `k,k}, {`i,k, `k,k} |

1 ≤ i ≤ k}. Note that Γk is triangulated. For an illustration, the graph Γ5

is depicted in Figure 8.1. If i0, j0 ∈ {1, . . . , k − 1}, we call the square (i0, j0)

of Γk the set {`i0,j0 , `i0+1,j0 , `i0,j0+1, `i0+1,j0+1} and the diagonal (i0, j0) the edge

{`i0+1,j0 , `i0,j0+1}.

Let G = (VG, EG) and H = (VH , EH) be two graphs. We say that H is a

contraction of G if we can partition VG into |VH | sets (Ru)u∈VH such that for all

u ∈ VH , Ru is not empty and G[Ru] is connected, and such that {u1, u2} ∈ EH if

and only if there exist v1 ∈ Ru1 and v2 ∈ Ru2 such that {v1, v2} ∈ EG.

Treewidth A tree-decomposition of width w of a graph G = (V,E) is a pair (T , σ),

where T is a tree and σ = {Bt|Bt ⊆ V, t ∈ V (T )} such that:

•
⋃
t∈V (T )Bt = V ,
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• For every edge {u, v} ∈ E there is a t ∈ V (T ) such that {u, v} ⊆ Bt,

• Bi ∩ Bk ⊆ Bj for all {i, j, k} ⊆ V (T ) such that j lies on the path between i

and k in T , and

• maxi∈V (T ) |Bt| = w + 1.

A tree-decomposition rooted at a node tr is nice if the following conditions are

fulfilled:

• Btr = ∅,

• each node has at most two children,

• for each leaf t ∈ V (T ), Bt = ∅,

• if t ∈ V (T ) has exactly one child t′, then either

– Bt = Bt′ ∪ {v} for some v 6∈ Bt′ and this node is called an introduce

vertex, or

– Bt = Bt′ \ {v} for some v ∈ Bt′ and this node is called a forget vertex,

and

• if t ∈ V (T ) has exactly two children t′ and t′′, then Bt = Bt′ = Bt′′ . This

node is called a join vertex .

The sets Bt are called bags. The treewidth of G, denoted by tw(G), is the smallest

integer w such that there is a tree-decomposition of G of width w. When context is

clear we will use the notation tw instead of tw(G). An optimal tree-decomposition

is a tree-decomposition of width tw(G). Moreover, if we have a tree-decomposition,

then we can build a nice tree-decomposition of G with the same width in polynomial

time [Klo94a].

8.2 Complexity of 1-uniform monitoring problem

8.2.1 Algorithmic complexity and approximability

We first study 1-UMP for P4-free graphs, also called cographs. We recall the fol-

lowing theorem from Pim, et al.
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Theorem 8.2.1 [PvD10] A graph G is P4-free iff. each connected induced subgraph

of G contains a dominating induced C4 or a dominating vertex.

The previous theorem is a better reformulation of Wolk’s result.

Theorem 8.2.2 [Wol62] A graph G is (P4, C4)-free iff. each connected induced

subgraph of G contains a dominating vertex.

We deduce an algorithm that computes γm(G, 1) of (P4, C4)-free 1-monitorable

graphs as follows:

Corollary 8.2.3 Let G be (P4, C4)-free 1-monitorable graph. There exists an algo-

rithm that computes γm(G, 1) in polynomial time.

Proof. Let S be the monitoring set to be computed. We begin with S = ∅. Let

u be a vertex dominating all other vertices of G. Determining such vertex is easy.

Add u to S. Now, consider the graph G − u = G1 ∪ · · · ∪ Gk where the Gi’s are

connected components. Then for all Gi’s do the following. Let vi be a dominating

vertex of Gi. Add vi and one of its neighbors to S. �

In the following, we will prove that 1-UMP is NP-complete on (P5, C4)-free

graphs.

Theorem 8.2.4 1-UMP is NP-complete even when restricted to (P5, C4)-free 1-

monitorable graphs.

Proof. Since it is possible to check a candidate solution of 1-UMP in polynomial

time, 1-UMP belongs to NP. To prove its NP-hardness, we give a reduction from

the total dominating set problem that was proven to be NP-complete in split graphs

by Bartossi in 1984 [Ber84].

Let G = (Kn, Im) be a split graph where Kn is a clique of n vertices and Im is

an independent set of m vertices. Without loss of generality we consider only split

graphs with minimum degree δ(G) ≥ 2, for otherwise G wouldn’t be 1-monitorable.

We construct a graph G′ from the split graph G by replacing each vertex of

the independent set Im with a K2, and call the set of obtained vertices I ′. G′ is a

(P5, C4)-free 1-monitorable graph. We prove that G admits a total dominating set

of size at most k iff. G′ admits a monitoring set of size at most 2k.
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Assume G admits a total dominating set S of size k ≥ 3. If S contains a vertex

of Im then replace it by any of its neighbors in Kn. The obtained set is still a

total dominating set of G. Then we construct S′ a monitoring set of G′ from S as

follows. For every K2 of I ′, if it is adjacent to only one vertex of S then add in S′

another of its neighbors. This is always possible since δ(G) ≥ 2. Observe that S′ is

a monitoring set of G′ such that |S′| ≤ 2k.

Now, assume G′ admits a monitoring set S′ of 2k vertices. Let S′ = S1∪S2 such

that S1∩S2 = ∅ and S1 ⊂ Kn is the smallest set of vertices sufficient to monitor I ′.

We prove S1 ≤ S2. Suppose S1 > S2. Construct S′2 by replacing every vertex of S2

that belongs to I ′ by one of its neighbors in Kn. Observe S′2 is sufficient to monitor

I ′. A contradiction. Thus S1 is a total dominating set of G such that S1 ≤ k. �

In the following, we study relationship between 1-UMP and other problems such

as Hitting Set Problem (HSP), Set Cover Problem (SCP) and Vertex Cover Problem

(VCP) in hypergraphs [Kar72].

The Hitting Set Problem (HSP) is defined as follows: Let S be a finite set, C a

collection of subsets C1, C2, . . . , Cm of S and k a positive integer. The couple (S,C)

has a hitting set of size at most k, iff. ∃X ⊆ S : |X| ≤ k and ∀Ci ∈ C,Ci ∩X 6= ∅.

The decision problem associated with HSP has been proven to be NP -complete

[Kar72].

Theorem 8.2.5 1-UMP is turing reducible to HSP, 1-UMP ≤T HSP.

Proof. We give a reduction that solves 1-UMP, assuming the algorithm solving

HSP to be already known. Let graph G = (V,E) a 1-monitorable and k a positive

integer be an instance of 1-UMP. Create an instance (S,C, k) of HSP as follows:

S = V and the collection C = {M(e1), . . . ,M(em)} such that E = {e1, . . . , em}. �

Nevertheless, from Theorem 8.2.5 all results and approximation algorithms that

deal with HSP [SC10, AvG09, LY02] can be used to have similar results for 1-

UMP. Moreover, HSP, SCP and VCP on hypergraphs are equivalent problems.

This implies that 1-UMP is a special case of all the three problems. Hence all the

result for SCP [Hoc82b, Sla96] and VCP [Hal02, Kar05] could be considered and

refined for 1-UMP.

Thus, we deduce:
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Corollary 8.2.6 1-UMP ≤T SCP and 1-UMP ≤T VCP.

Theorem 8.2.7 1-uniform Edge Monitoring cannot be approximated within (1 −

ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(nO(log logn)).

Proof. It has been proved in [CC08] that Total Dominating Set cannot be

approximated within (1−ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(nO(log logn)).

We will define an approximation preserving reduction from Total Dominating

Set to 1-uniform Edge Monitoring. Let G = (V,E) be a graph without isolated

vertex. We construct G′ from G by adding three vertices u, v, w which form a clique

and connecting u to every vertex in V . We will prove that γm(G′, 1) = γt(G) + 3.

Let S be a total dominating set of G and S′ = S ∪ {u, v, w}. Then S′ is a

monitoring set of G′. Indeed, the edges uv, uw and vw are monitored by w, v and

u respectively. The edges in E are monitored by u. Let x be a vertex in V then x

has a neighbor y in S. Thus, ux is monitored by y.

Now, let S be a monitoring set of G′. {u, v, w} ⊆ S. Otherwise, uv, vw or uw

is not monitored by S. Let S′ = S \ {u, v, w}. We will prove that S′ is a total

dominating set of G. Let x be a vertex of G. The edge xu is monitored by a vertex

y in S′. Since {x, y, u} forms a triangle, x is adjacent to a vertex in S′. Hence,

γm(G′, 1) = γt(G) + 3.

Using the same method as in Theorem 1 of [KL04] we obtain the desired result.

�

8.2.2 W [2]-hardness of 1-uniform edge monitoring problem

Now, we show that the problem is W [2]-hard when parameterized by the size of

the solution. In order to prove that, we reduce from Red-Blue Dominating Set,

which is known to be W [2]-hard [DF13].

Red-Blue Dominating Set

Input: A graph G = (V,E), a partition (Vr, Vb) of V , and an integer k.

Output: A set S ⊆ Vb of size at most k such that ∀v ∈ Vr, S ∩N(v) 6= Ø.
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Theorem 8.2.8 1-uniform Edge Monitoring is W [2]-hard parameterized by

the size of the solution.
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Figure 8.2: Edge Monitoring gadget. For readability, some edges are drawn as

dotted and for some of them, only one extremity is drawn. In the figure, the vertices

ub, vb, wb, d1, e1, and f1 are connected to the three vertices a1
1, a1

2, and a1
3 like ub

and d1 are, and the vertices ub, vb, wb, d2, e2, and f2 are connected to the three

vertices a2
1, a2

2, and a2
3 like wb and e2 are.

Proof. Let G = (V,E) be a graph, let (Vr, Vb) be a partition of V , and let k be an

integer. We want to solve Red-Blue Dominating Set on (G,Vr, Vb, k). Without

lost of generality, we can assume that there is no isolated vertex.

We construct from (G,Vr, Vb, k) the graph G′ = (V ′, E′) as depicted in Figure

8.2. Formally, V ′ = V ′b ∪ V ′e ∪ Va where V ′b = {vb|v ∈ Vb}, V ′e = {v1|v ∈ Vr} ∪

{v2|v ∈ Vr}, Va = {aij , bij , cij |i ∈ {1, 2}, j ∈ {1, 2, 3}}, and E′ = {{v1, v2}|v ∈ Vr} ∪

{{vb, w1}|{v, w} ∈ E} ∪ {{vb, w2}|{v, w} ∈ E} ∪ {{aij , vi}|i ∈ {1, 2}, j ∈ {1, 2, 3}} ∪

{{aij , vb}|i ∈ {1, 2}, j ∈ {1, 2, 3}} ∪ {{aij , aij′}|i ∈ {1, 2}, j, j′ ∈ {1, 2, 3}, j 6= j′} ∪

{{aij , bij}, {aij , cij}, {bij , cij}|i ∈ {1, 2}, j ∈ {1, 2, 3}}.

We now show that solving Red-Blue Dominating Set on (G,Vr, Vb, k) is

equivalent to solving 1-uniform Edge Monitoring on (G′, k + 18). Let S be a
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solution of Red-Blue Dominating Set on (G,Vr, Vb, k). Note that the existence

of S implies that each vertex of Vr has at least one neighbor in Vb. Let S′ = {vb|v ∈

S} ∪ Va. Then S′ is a solution of 1-uniform Edge Monitoring on (G′, k + 18).

Indeed, |S′| ≤ k + 18 by definition of S and Va. Let e ∈ E′. If e = {v1, v2} with

v ∈ Vr, then by definition of S, there exists t ∈ S that is neighbor of v in G, so

tb monitors e in G′. If e = {vb, w1} with v ∈ Vb and w ∈ Vr, then a1
1 monitors e.

The same happens if e = {vb, w2}. If e = {aij , vi} then ai(j mod 3)+1 monitors e. As

{ai1, ai2, ai3} is a triangle where all the vertices are in S′, all the edges are monitored.

The same happens for the triangles {aij , bij , cij}, i ∈ {1, 2}, j ∈ {1, 2, 3}.

Now let S′ be a solution of 1-uniform Edge Monitoring on (G′, k + 18).

For each i ∈ {1, 2} and j ∈ {1, 2, 3}, the edges {aij , bij}, {aij , cij}, and {bij , cij} can

be monitored only by the vertices cij , b
i
j , and aij respectively. So they need to be

in S′. One can check that the only edges not monitored by Va are the edges of the

form {v1, v2}, and by construction of G′ the only vertices that can monitor them

are vertices from V ′b . It directly follows that S = {v ∈ Vb|vb ∈ S′} is a solution of

Red-Blue Dominating Set on (G,Vr, Vb, k). �

8.3 Fixed parameter algorithms for edge monitoring

In this section, we will present algorithms that solve the Edge Monitoring prob-

lem. The first one is parameterized by the treewidth of the input graph and the sec-

ond one, based on the first one, uses Bidimensionality to solve Edge Monitoring

parameterized by the size of the solution when the input graph is apex-minor-free.

In this version, we allow only some selected monitors to be in the solution, and

we impose that each edge is monitored by at least a given number of monitors.

From Theorem 8.2.8, we directly obtain the following.

Corollary 8.3.1 Edge Monitoring is W [2]-hard parameterized by k.

We now focus on the algorithms. First we present an FPT algorithm parame-

terized by the treewidth.

Lemma 8.3.2 Let G = (V,E) be a graph, k be an integer, M be a subset of V ,

and c : E → . . . k be a coloring of edges of G. Edge Monitoring on (G, k,M, c)

can be solved in time 2
O(tw2.log(max

e∈E
c(e)))

. n, where tw is the treewidth of G.
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Proof. Let G = (V,E) be a triangulated graph, k be an integer, M be a subset of

V , c : E → . . . k be a color function, and (T , µ) be a nice tree-decomposition of G

rooted at a node tr of width tw.

For each t ∈ V (T ), we denote by Vt the set of vertices of all descendents of t,

Gt = G[Vt], and Et = E(G[Bt]). Note that this graph may be disconnected.

We use a dynamic programming approach. The table we store at a node t will

contain elements of the form (X,Y, p), where X ⊆ Bt is the set of chosen vertices

in Bt for this solution, Y ⊆ Et × N is the set of pairs (y,m) where the edge y still

needs to be monitored m times in Gt, and p is the number of vertices we already

have chosen. We will keep such an element in the table, if there exists a solution

S of our problem of size at most k such that S ∩ Bt = X, |S ∩ Vt| ≤ p, S ∩ Vt
monitors all the edges of E(Gt)\{y|∃m ∈ N : (y,m) ∈ Y }, and for each (y,m) ∈ Y ,

S ∩ Vt monitors c(y) −m times the edge y. Formally, if H = (Vh, Eh) is a graph,

B ⊆ Vh, X ⊆ B, and Y ⊆ E(H[B])× {1, . . . , k}, we define sol(H,B,X, Y, p,M) =

true, if and only if there exists a set S ⊆ Vh ∩ M of size at most p such that

for each (e,m) ∈ Y , |S ∩ N(e)| = c(e) − m, and for each e ∈ Eh \ {y|∃m ∈ N :

(y,m) ∈ Y }, |S ∩ N(e)| = c(e), and S ∩ B = X. Note that we add M as an

argument of sol in order to obtain a function sol that is self-consistent. We define

the table we store at each node t ∈ V (T ) to be Rt = {(X,Y, p)|X ⊆ Bt, Y ⊆

E(G[Bt])× {1, . . . , k}, sol(Gt, Bt, X, Y, p,M), p ≤ k}. Note that there is a solution

of our problem if and only if Rtr 6= Ø. For convenience, if (X,Y, p) ∈ Rt and

(X,Y, q) ∈ Rt with p < q then our algorithm will keep only (X,Y, p), as the other

entry is not relevant. Let t ∈ V (T ). We can compute Rt as follows:

• If t is a leaf then Gt = (Ø,Ø) and Rt = {(Ø,Ø, 0)}.

• If t is an introduce vertex v and v ∈ M , let t′ be its child. Then Rt =

{(X ∪{v}, {(y,m−|N(y)∩{v}|)|(y,m) ∈ Y }∪{({v, w},m′)|w ∈ Bt, {v, w} ∈

E,m′ = max(c({v, w})−|N ′{v, w}∩X|, 0)}, p+1)|(X,Y, p) ∈ Rt′ , p+1 ≤ k}∪

{(X,Y ∪ {({v, w},m′)|w ∈ Bt, {v, w} ∈ E,m′ = max(c({v, w})− |N ′{v, w} ∩

X|, 0)}, p)|(X,Y, p) ∈ Rt′}.

• If t is an introduce vertex v and v 6∈ M , let t′ be its child. Then Rt =

{(X,Y ∪ {({v, w},m′)|w ∈ Bt, {v, w} ∈ E,m′ = max(c({v, w})− |N ′{v, w} ∩

X|, 0)}, p)|(X,Y, p) ∈ Rt′}.
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• If t is a forget vertex v, let t′ be its child. Then Rt = {(X \ {v}, Y \

{({v, w}, 0)|w ∈ Bt, ({v, w}, 0) ∈ Y }, p)|(X,Y, p) ∈ Rt′ ,∀w ∈ X,m ∈ {1, . . . , k} :

({v, w},m) 6∈ Y }. Note that if v /∈ X then X \ {v} = X.

• If t is a join vertex, let t′ and t′′ be its children. Then Rt = {(X ′ ∪

X ′′, {(y,m)|(y,m′) ∈ Y ′, (y,m′′) ∈ Y ′′,m = c(y)− (c(y)−m′)− (c(y)−m′′) +

|N(y) ∩ (X ′ ∩ X ′′)|}, p′ + p′′ − |X ′ ∩ X ′′|)|(X ′, Y ′, p′) ∈ Rt′ , (X ′′, Y ′′, p′′) ∈

Rt′′ , p′ + p′′ − |X ′ ∩ X ′′| ≤ k}. Note that (c(y) −m′) (resp. (c(y) −m′′)) is

the number of times y has been monitored in Gt′ (resp. Gt′′).

For all t ∈ V (T ), if (X,Y, p) ∈ Rt then X ⊆ Bt and Y ⊆ Et × {1, . . . ,max
e∈E

c(e)}.

Note that if (y,m) and (y,m′) are in Y with m < m′, then we need to keep only

(y,m). So we can see Y as a subset of all functions Et → {1, . . . ,max
e∈E

c(e)}. We

obtain that |Y | ≤ 2
tw2·log(max

e∈E
c(e))

. Thus, |Rt| ≤ 2tw · 2
tw2·log(max

e∈E
c(e))

. So we can

solve Edge Monitoring on (G, k) in time 2
O(tw2·log(max

e∈E
c(e)))

· n. �

If G is apex-minor-free, then, there exists a constant a, depending only on the

apex-graph, such that |E| ≤ a|V | [Tho01]. In particular, it implies that in the

previous complexity analysis, if G is apex-minor-free, then Y is of size at most

a|V | · log(max
e∈E

c(e)). This directly gives the following lemma.

Lemma 8.3.3 Let G = (V,E) be an apex-minor-free graph, k be an integer, M be

a subset of V , and c : E → {1, . . . , k} be a color function. Edge Monitoring on

(G, k,M, c) can be solved in time 2
O(tw·log(max

e∈E
c(e)))

· n.

Theorem 8.3.4 ([FGT11]) There exists a constant c such that for every apex-

minor-free graph G and every integer k such that k ≤ tw(G)
c , the triangulated grid

Γk is a contraction of G.

Theorem 8.3.5 Let G = (V,E) be an apex-minor-free graph, k be an integer, c be

a color function c : E → {1, . . . , k}, and M be a subset of V . Edge Monitoring

on (G, k) can be solved in time 2
O(
√
k·log(max

e∈E
c(e)))

· n.

Proof. Let G = (V,E) be an apex-minor-free graph and k be an integer. Assume

first that tw > c(2d
√

(k + 1)e + 2). By Theorem 8.3.4, Γ
(2d
√

(k+1)e+2)
is a con-

traction of G. Let L = {`i,j |i, j ∈ N, 1 ≤ i, j ≤ (2d
√

(k + 1)e + 2)} be the vertex
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Figure 8.3: The considered squares in Γ4 and their diagonals.

set of Γ
(2d
√

(k+1)e+2)
, and let M be its edge set. Let (Ru)u∈L be a partition of

V such that for all u ∈ L, Ru is not empty, G[Ru] is connected, and such that

{u1, u2} ∈ E(Γ
(2d
√

(k+1)e+2)
) if and only if there exist v1 ∈ Ru1 and v2 ∈ Ru2 such

that {v1, v2} ∈ E.

Consider the d
√
k + 1e2 squares (2i, 2j), for 1 ≤ i ≤ d

√
k + 1e and 1 ≤ j ≤

d
√
k + 1e. For simplicity we denote by Qi,j the square (2i, 2j). The selected squares

are illustrated in Figure 8.3. By construction, the squares Qi,j are pairwise vertex-

disjoint. For each i, j, we arbitrarily choose ei,j = {ai,j , bi,j} ∈ E such that ai,j ∈

R2i+1,2j and bi,j ∈ R2i,2j+1. We denote by ei,j the representative edge of Qi,j . The

edge ei,j can be monitored only by an element of R`2i,2j ∪ R`2i,2j+1
∪ R`2i+1,2j

∪

R`2i+1,2j+1
, because the other `i′,j′ are not connected to both `2i+1,2j and `2i,2j+1.

Thus, there are no two distinct representative edges in G that can be monitored by

the same vertex of G. This means that the solution should be of size at least k+ 1,

that is the number of squares we had consider. As we ask for a solution of size at

most k, then we can safely answer that there is no such a solution.

Now assume that tw(G) ≤ c(2d
√

(k + 1)e + 2). By Lemma 8.3.3, we know

that there is an algorithm in time 2
O(tw)·log(max

e∈E
c(e)))

· n to solve the problem. In

particular, this algorithm runs in time 2
O(
√
k·log(max

e∈E
c(e)))

· n. �

8.4 Edge monitoring on complete graphs

In this section, we give a complexity result related to complete graphs.

Theorem 8.4.1 Edge Monitoring is W [1]-complete on complete graphs when the

parameter is the size of the solution.
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Proof. The problem is clearly in NP. To prove that Edge Monitoring is NP-

hard and W [1]-hard, we exhibit an FPT-reduction from Independent Set. Let

(G = (V,E), k) be an instance of Independent Set. Without loss of generality,

we can assume that G is connected. Indeed, it is easily seen that Independent

Set remains NP-complete under this restriction. We build an instance (G′ =

(V,E′), c, k) of Edge Monitoring as follows: G′ is a complete graph and for each

edge e ∈ E′, we have c(e) = k − 1 if e ∈ E and c(e) = 0 otherwise.

We show that (G, k) is a positive instance of Independent Set if and only if

(G′, c, k) is a positive instance of Edge Monitoring. First of all, notice that there is

no monitoring set of size less than k. Indeed, assume, for the sake of contradiction,

that there is a monitoring set S of size less than k. Since G is connected, there

exists an edge e incident to a vertex in S and such that c(e) = k − 1. We have

M(e) ∩ S < k − 1 so there is a contradiction.

Now, let S ⊆ V such that |S| = k. Then, we have:

S is a monitoring set of (G′, c) iff for each e ∈ E, |S \ e| ≥ k − 1 iff for each e ∈ E

in E, |S ∩ e| ≤ 1 iff S is a stable of G.

We will prove now that Edge Monitoring on complete graphs parametrized by

k belongs to W [1]. To prove this, we will show that this problem can be reduced

to Independent Set as described in the following algorithm.

First, let us prove that (G, c) admits a monitoring set of size at most k if

Algorithm 8.1 returns True. We proceed by induction on k. If k = 0, it is clear

that Algorithm 8.1 returns True if and only if C = 0. Now, assume that k > 0. If

Line 7 returns True then (G, c) admits a monitoring set of size at most k − 1 by

induction hypothesis. Assume now that Line 12 returns True. Then, there exists

an independent set S of size k in G′. Thus, S is a monitoring set of (G, c). Indeed,

(G, c) does not admit an edge e with c(e) > k by Lines 3-4. Edges e with c(e) = k

have no extremities in S by construction of G′. Hence, these edges are monitored by

S. Edges e with c(e) = k−1 have at most one extremity in S also by construction of

G′. Thus, these edges are monitored by S. Edges e with c(e) ≤ k−2 are necessarily

monitored by S since |S| = k.

Now, let us prove that Algorithm 8.1 returns True if (G, c) admits a monitoring

set S of size at most k. We proceed by induction on k. If k = 0 then necessarily

C = 0. Thus, Algorithm 8.1 returns True. Now, assume that k > 0. If |S| ≤ k − 1
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then Algorithm 8.1 returns True in Line 7 by induction hypothesis. Assume now

that |S| = k then it is easily seen that S is an independent set of G′ with |S| = k.

Then Algorithm 8.1 returns True in Line 12. This completes the proof. �

Algorithm 8.1: Reduction of Edge Monitoring to Independent Set (Func-

tion ReducMStoIS(G, c, k)).

1: Input: G = (V,E), c, k

2: Let C = max{c(e) : e ∈ E}

3: If C > k

4: Return False

5: Else

6: If ReducMStoIS(G, c, k − 1) returns True

7: Return True

8: Else

9: Let V ′ built from V by removing the extremities of edges e with

c(e) = k

10: Let E′ = {uv ∈ E : c(uv) = k − 1 ∧ u ∈ V ′ ∧ v ∈ V ′}

11: If there exists an independent set of size k in G′ = (V ′, E′)

12: Return True

13: Else

14: Return False

15: End If

16: End If

17: End If

8.5 Conclusion

In this chapter, we proved that 1-uniform monitoring problem is NP-complete even

when restricted to (P5, C4)-free 1-monitorable graphs. Moreover, we proved that

1-uniform Edge Monitoring cannot be approximated within (1 − ε) ln |V | for any

ε > 0, unless NP ⊆ DTIME(nO(log logn)). We also proved that the 1-uniform edge

monitoring problem is W [2]-hard when parameterized by the size of the solution.

Afterwards, we proved that the edge monitoring problem is W [1]-complete on com-
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plete graphs when the parameter is the size of the solution. Moreover, we showed

that, in general graphs, we are unlikely to be able to solve our problem in FPT

time when parameterized by the size of the solution. We used Bidimensionality to

show that if the input graph has the topological restriction to be apex-minor-free,

then our problem can be solved in time 2O(
√
k) · n. We even show that the Edge

Monitoring can be solved in a similar time, i.e., in time 2
O(
√
k·log(max

e∈E
c(e)))

· n,

when the input graph is apex-minor-free.
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In the two previous chapters, we studied the problem of Edge Monitoring and

we gave a particular interest to 1-uniform monitoring (1-UMP). We presented some

results on specific classes of graphs related to this problem and some complexity

results are also discussed.

In this chapter, we consider a weighted version of the problem, it means a

weight on vertices, called weighted edge monitoring problem. We study the problem

on several classes of graphs as complete graphs, block graphs, interval graphs and

cographs.

9.1 Introductory results on complete graphs

In this section, we give some results related to complete graphs.

Lemma 9.1.1 Let G = (V,E), w, c such that G is a complete graph, C = max{c(e) :

e ∈ E} and |V | ≥ C + 2. Then, C ≤ γm(G, c) ≤ C + 2. Moreover, every set S ⊆ V

such that |S| ≥ C + 2 is a monitoring set of (G, c).
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Proof. Since there exists an edge e of color c(e) = C, we need C vertices to monitor

it. Thus, C ≤ γm(G, c). Let S ⊆ V be a set such that |S| ≥ C + 2. Then, every

edge is monitored by S. Indeed, let e = {u, v} ∈ E. Then, the set S \ {u, v} of size

at least C ≥ c(e) covers e. �

Lemma 9.1.2 Let G = (V,E), c be a colored graph such that G is a complete graph

and c is k-uniform with k > 0 and |V | ≥ k + 2. Then, γm(G, c) = k + 2.

Proof. Assume, for the sake of contradiction, that there exists a set S that monitors

G such that |S| < k + 2. If |S| = 1, let v be the unique element of S. Let e an

edge incident to v. Then, e is not monitored by S. Otherwise, let u and v be two

elements in S. Then, M({u, v}) ∩ S = |S| − 2 < k so {u, v} is not monitored by S.

�

9.2 Polynomial algorithms for complete and block graphs

In this section we present some results of Weighted Edge Monitoring problem on

complete and block graphs.

Let recall some definitions. A block graph is a graph where each biconnected

component (block) is a clique. The block-cut tree T of a connected graph G is

defined as follows. The vertices of T are the blocks and the articulation points of

G. There is an edge in T for each pair of a block and an articulation point that

belongs to that block.

Lemma 9.2.1 Weighted Edge Monitoring can be solved in polynomial time on C-

bounded weighted complete graphs.

Proof. Let (G = (V,E), w, c) such that G is a complete graph. By Lemma 9.1.1,

γm(G, c) ≤ C + 2. Therefore, it suffices to enumerate all sets S ⊆ V that monitor

G and such that |S| ≤ C + 2. There are O(nC+2) such sets. Thus, the problem can

be computed in polynomial time. �

Lemma 9.2.2 Weighted Edge Monitoring can be solved in quasi-linear time on

uniform complete graphs.

Proof. Let (G = (V,E), w, c) such that G is a complete graph and c is k-uniform.

By Lemma 9.1.2, γm(G, c) = C + 2 and by Lemma 9.1.1, every set S ⊆ V
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of size C + 2 monitors G. Thus, if we choose S as the set of the C + 2 first

elements in V sorted by increasing weight, we obtain an optimal solution for

Weighted Edge Monitoring(G,w, c). We only need to sort V which can be done

in time |V | log |V |. �

The following lemma is useful to establish the connection between γm of a graph

G and γm of its 2-connected components.

We denote γm(G1, w, c|u) = min{w(S) : S is a monitoring set of (G, c) and u ∈

S}

Lemma 9.2.3 Let (G = (V,E), w, c) be a weighted graph, G1 = (V1, E1) and G2 =

(V2, E2) two graphs and u ∈ V such that V = V1∪V2, E = E1∪E2 and V1∩V2 = {u}.

Let d = γm(G1, w, c|u) − γm(G1, w, c). Let w′ obtained from w by replacing the

weight of u by d. Then γm(G,w, c) = γm(G1, w, c) + γm(G2, w
′, c).

Proof. Let S1, S
′
1, S2 be optimal solutions of Weighted Edge Monitoring(G1, w, c),

Weighted Edge Monitoring(G1, w, c|u), Weighted Edge Monitoring(G2, w
′, c) respec-

tively.

We first prove γm(G,w, c) ≤ γm(G1, w, c) +γm(G2, w
′, c): if u /∈ S2 then S1∪S2

is a solution of Weighted Edge Monitoring(G,w, c) having weight w(S1) + w′(S2).

If u /∈ S2 then S′1 ∪ S2 is a solution of Weighted Edge Monitoring(G,w, c) hav-

ing weight w(S′1) + w(S2) − d = w(S1) + w′(S2). Thus we have γm(G,w, c) ≤

γm(G1, w, c) + γm(G2, w
′, c).

Now we prove γm(G,w, c) ≥ γm(G1, w, c) + γm(G2, w
′, c): let S∗ be an optimal

solution of Weighted Edge Monitoring(G,w, c). We have S∗1 = S∗ ∩ V1 and S∗2 =

S∗∩V2 are solutions of Weighted Edge Monitoring(G1, w, c) and Weighted Edge Monitoring(G2, w
′, c)

respectively. We have to consider two cases:

u /∈ S∗: We have w(S∗1) ≥ w(S1) and w′2(S∗2) ≥ w′2(S2) by optimality of S1 and

S2. Since w(S∗) = w(S∗1) + w(S∗2), w(S∗) ≥ w(S1) + w(S2).

u ∈ S∗ : This implies that w(S∗) = w(S∗1) + w′(S∗2)− d. Since w′(S∗2) ≥ w(S2)

and w(S∗1) ≥ w(S′1), then

w(S∗) ≥ w(S′1) + w′2(S2)− d = w(S1) + w′2(S2)

Consequently we have γm(G,w, c) ≥ γm(G1, w, c) + γm(G2, w
′, c). This completes

the proof of the lemma. �
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Theorem 9.2.4 The two statements hold:

1. Weighted Edge Monitoring can be solved in polynomial time on C-bounded

weighted block graphs.

2. Weighted Edge Monitoring can be solved in quasi-linear time for block graphs

(G = (V,E), w, c) where c is uniform.

Proof. Without loss of generality, we can assume that G is connected. We will

prove the first statement. The proof of the second statement is similar. Let (G =

(V,E), w, c) be a C-bounded weighted block graph. We first compute the block-cut

tree T of G. This can be done in linear time [HT73]. Then, we choose a clique V1

that corresponds to a leaf of T and u the articulation point that is neighbor of V1 in

T . Let G1 = (V1, E1) = G[V1] and G2 = (V2, E2) = G[(V \ V1) ∪ {u}]. G2 is also a

block graph. Thus, we can apply Lemma 9.2.3. It suffices to compute γm(G1, w, c),

γm(G1, w, c|u) and γm(G2, w
′, c). γm(G1, w, c) can be computed in polynomial time

by using Lemma 9.2.1. Proof of Lemma 9.2.1 can be easily modified to compute

γm(G1, w, c|u). γm(G2, w
′, c) can be computed by induction. �

9.3 Interval graphs

In this section we give a polynomial dynamic programming algorithm for computing

Weighted Edge Monitoring on weighted interval graphs. First some definitions.

A graph G = (V,E) is an interval graph if there exists |V | intervals (Ii)i∈V =

([ai, bi])i∈V of the real line such that (i, j) ∈ E if and only if Ii ∩ Ij 6= ∅ for every

distinct vertices i, j ∈ V . We say that (Ii)i∈[1,n] is a realization of G. Without

loss of generality, we can assume that there are no intervals Ii and Ij that have a

common extremity.

Given an interval graph G = (V,E) and a realization (Ii)i∈V , we define a total

order <L (resp. <R) over V such that i <L j (resp. i <R j) if ai < aj (resp.

bi < bj).

The following definition is a refinement of the nice tree decomposition introduced

by Kloks [Klo94b] and used in Chapter 8.

Definition 12 [FMN+15] Let G = (V,E) be an interval graph and (Ii)i∈V be a

realization of G. A nice path decomposition of G is a sequence of sets of vertices
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B0, . . . Bl such that

• all sets Bi are cliques of G;

• every edge e ∈ E appears in a set Bi,

• for every vertex v ∈ E, the set of indices i such that v ∈ Bi is a segment of

[0, l].

• B0 = ∅ and Bl = ∅;

• For every i ∈ [1, l],

– Bi = Bi−1 ∪ {v} (i introduces the vertex v)

– or Bi−1 = Bi ∪ {v} (i forgets the vertex v).

• the order in which vertices are introduced corresponds to <L

• the order in which vertices are forgotten corresponds to <R

For i ∈ [0, l], Fi is the set of vertices appearing in some set Bj, j < i, but not in

Bi. Vi = Fi ∪Bi and Gi = G[Fi ∪Bi].

Lemma 9.3.1 [FMN+15] Let G = (V,E) be an interval graph and (Ii)i∈V be a

realization of G. Then G has a nice path-decomposition that can be computed in

linear time.

A set S ⊆ Vi is an i-partial solution if every edge in Gi that has an extremity

in Fi is monitored by S. The i-representant W of S ⊆ Vi, denoted by repr i(S),

contains exactly the C + 2 greatest vertices in S ∩N [Bi] w.r.t. <R or is S ∩N [Bi]

if |S ∩N [Bi]| < C + 2. We say that S extends W if W is the i-representant of S.

We denote by F∗i the set of i-representants of i-partial solutions and w∗i is a func-

tion w∗i : Fi → Q+ such that w∗i (W ) = min{w(S) : S is an i-partial solution that extends W}.

Before presenting the algorithm, we introduce two lemmas. The second is the

key of the algorithm.

Lemma 9.3.2 Let u ∈ Bi, v1, v2 ∈ Vi such that v1 <R v2 and v1 ∈ N [u]. Then

v2 ∈ N [u].
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Proof. Let [au, bu], [av1 , bv1 ] and [av2 , bv2 ] the intervals that represent u, v1 and

v2 respectively in the realization of G. Since u ∈ Bi and v2 ∈ Vi, bu > av1 and

bu > av2 . Since v1 ∈ N [u], we have au < bv1 and since v1 <R v2, we have au < bv2 .

Thus [au, bu] ∩ [av2 , bv2 ] 6= ∅. Consequently, v2 ∈ N [u]. �

Lemma 9.3.3 Let S ⊆ Vi, W = repr i(S) and v1, v2 ∈ Bi such {v1, v2} is monitored

by S. Then {v1, v2} is monitored by W .

Proof. First, notice that every u ∈ Vi that belongs to M({v1, v2}) belongs to N [Bi].

If |S∩N [Bi]| ≤ C+2, then W = S∩N [Bi] and the lemma is trivially verified. Now,

assume that |S ∩ N [Bi]| > C + 2 and let u ∈ (S \W ) ∩M({v1, v2}). By Lemma

9.3.2, every vertex u′ ∈W belongs to N [v1] and N [v2]. So all elements in W except

at most two (v1 and v2) belong to M({v1, v2}). Thus |M({v1, v2}) ∩W | ≥ C and

{v1, v2} is monitored by W . �

To solve Weighted Edge Monitoring on interval graphs, a naive algorithm con-

sists to iterate over the setsBi and to compute for each i the set of i-partial solutions.

Unfortunately, the algorithm is non polynomial since the set of i-partial solutions

can be exponential. The key of the algorithm is as follows: instead of considering

all the i-partial solutions, we consider the representants of the i-partial solutions.

Since the number of representants is polynomially bounded by |V |, the algorithm

will run in polynomial time. Lemma 9.3.3 guarantees that we don’t miss solutions.

Indeed, let S be an i-partial solution. If i + 1 introduces the node v, then S and

S ∪ {v} are (i+ 1)-partial solutions. There is nothing to verify. If i+ 1 forgets the

node v then S is an (i + 1)-partial solution if and only if the forgotten edges i.e.

the edges having v as extremity and the other extremity in Bi+1 are monitored by

S. But thanks to Lemma 9.3.3, it suffices to check that these edges are monitored

by repr i(S).

We present now Algorithm 9.2. Functions wi can be seen as associative arrays

with default value +∞: the instruction wi(W ) returns +∞ if the key W is not in

the associative array wi.

Lemma 9.3.4 For every i ∈ [0, l], after the run of Algorithm 9.2, it holds Fi = F∗i
and wi(S) = w∗i (S) for every S ∈ Fi.
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Algorithm 9.1: Algorithm for Weighted Edge Monitoring on interval graphs

1: Input: An interval graph G = (V,E).

2: Begin

3: Compute a nice path decomposition B0, ..., Bl

4: F0 ← {∅}

5: w0(∅) = 0

6: For each i from 1 to l do

7: Fi ← ∅

8: If i forgets the node v

9: For each W ∈ Fi−1 do

10: If all edges {u, v} where u ∈ Bi are monitored by W

11: W ′ ← repr i(W )

12: Fi ← Fi ∪ {W ′}

13: wi(W
′)← min{wi(W ′), wi−1(W )}

14: End If

15: End For

16: Else If i introduces the node v

17: For each W ∈ Fi−1 do

18: W ′ ← repr i(W )

19: Fi ← Fi ∪ {W ′}

20: wi(W
′)← min{wi(W ′), wi−1(W )}

21: W ′ ← repr i(W ∪ {v})

22: Fi ← Fi ∪ {W ′}

23: wi(W
′)← min{wi(W ′), wi−1(W ) + w(v)}

24: End For

25: End If

26: End For

27: If Fl = ∅

28: Return +∞

29: Else

30: Return min{wl(W ) : W ∈ Fl}

31: End If

32: End
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Proof. We prove by induction on i. The property is clearly verified for i = 0. Now,

suppose that the property holds for i and prove it for i+ 1.

Fi+1 ⊆ F∗i+1 and for each W ∈ Fi+1, w∗i+1(W ) ≤ wi+1(W ): let W ′ ∈ Fi+1. We

consider two cases.

i + 1 forgets the vertex v: then, W ′ comes from some W ∈ Fi such that W ′ =

repr(W ), wi+1(W ′) = wi(W ) and W ′ is added to Fi+1 by Lines 11-13. Using the

induction hypothesis, W ′ ∈ F∗i and wi(W ) = w∗i (W ). Let S be a i-partial solution

of weight w(S) = w∗i (W ) that extends W . By Line 10 of the algorithm, all edges

{u, v} where u ∈ Bi are monitored by W and thus by S. Consequently, S is an

(i+ 1)-partial solution with repr i+1(S) = repr i+1(W ) = W ′. Thus, W ′ ∈ F∗i+1 and

w∗i+1(W ′) ≤ w(S) = w∗i (W ) = wi(W ) = wi+1(W ′).

i+ 1 introduces the vertex v: There are two possibilities.

v /∈ W ′: then W ′ comes from some W ∈ Fi such that W ′ = repr(W ),

wi+1(W ′) = wi(W ) and W ′ is added to Fi+1 by Lines 18-20. By induction hy-

pothesis, W ∈ F∗i and wi(W ) = w∗i (W ). Let S be a i-partial solution of weight

w(S) = w∗i (W ) that extends W . S is an (i+ 1)-partial solution with repr i+1(S) =

repr i+1(W ) = W ′. Thus W ′ ∈ F∗i+1 and w∗i+1(W ′) ≤ w(S) = w∗i (W ) = wi(W ) =

wi+1(W ′).

v ∈ W : W ′ comes from some W ∈ Fi such that W ′ = repr(W + {v}),

wi+1(W ′) = wi(W ) + w(v) and W ′ is added to Fi+1 by Lines 21-23. Let S be a

i-partial solution of weight w(S) = w∗i (W ) that extendsW . S′ = S∪{v} is an (i+1)-

partial solution with repr i+1(S ∪ {v}) = repr i+1(W ∪ {v}) = W ′. Thus W ′ ∈ F∗i+1

and w∗i+1(W ′) ≤ w(S + {v}) = w∗i (W ) + w(v) = wi(W ) + w(v) = wi+1(W ′).

F∗i+1 ⊆ Fi+1 and for each W ∈ F∗i+1, wi+1(W ′) ≤ w∗i+1(W ′): let W ′ ∈ F∗i+1 and

S′ be an (i+ 1)-partial solution that extends W and such that w(S′) = w∗i+1(W ′).

We also consider two cases:

i + 1 forgets the vertex v: then S′ is an i-partial solution. Let W = repr i(S
′).

Then W ′ = repr i+1(W ). Using the induction hypothesis, W ∈ Fi and wi(W ) =

w∗i (W ). By definition of a (i+ 1)-partial solution, all edges {u, v} where u ∈ Bi are

monitored by S′. But, by applying Lemma 9.3.3, these edges are also monitored

by W . Thus, Line 10 of the algorithm succeeds and W ′ = repr i+1(W ) is added to

Fi+1 and by Line 13 wi+1(W ′) ≤ wi(W ) = w∗i (W ) = w(S′) = w∗i+1(W ′).

i+ 1 introduces the vertex v. There are two possibilities.
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v /∈ S′: then S′ is an i-partial solution. Let W = repr i(S
′). Using the induction

hypothesis, W ∈ Fi and wi(W ) = w∗i (W ). Thus, W ′ = repr i+1(W ) is added to

Fi+1 by Line 19 and by Line 20 wi+1(W ′) ≤ wi(W ) = w∗i (W ) = w(S′) = w∗i+1(W ′).

v ∈ S′: let S = S′ − v. Then S′ is an i-partial solution. Let W = repr i(S).

Using the induction hypothesis, W ∈ Fi and wi(W ) = w∗i (W ). Thus, W ′ =

repr i+1(S ∪ {v}) = repr i+1(W ∪ {v}) is added to Fi+1 by Line 22 and by Line 23

wi+1(W ′) ≤ wi(W ) + w(v) = w∗i (W ) + w(v) = w(S) + w(v) = w(S′) = w∗i+1(W ′).

�

Theorem 9.3.5 Weighted Edge Monitoring on C-bounded weighted interval graphs

is in P. More precisely, it can be solved in time O(|V |C+4).

Proof. Thanks to Lemma 9.3.4, it is clear that Algorithm 9.2 is exact. Let prove

that it runs in the expected time. The algorithm consists of a main loop that

does |V | + 1 iterations. Within this loop, we have two possibilities: forgetting or

introducing a vertex. In the two cases, we loop over the elements of Fi−1. Each step

of the loop can be done in time O(N(Bi)) (since C is bounded) in both cases. The

size of Fi−1 is bounded by (N [Bi−1]∩ Vi−1)C+2. Therefore the time spent within a

step of the main loop is O((N [Bi−1] ∩ Vi−1)C+3). Since N [Bi−1] ∩ Vi−1 is bounded

by |V |, Algorithm 9.2 runs in time O(|V |C+4). �

The complexity of the algorithm can be refined in the case of unit interval

graphs.

Lemma 9.3.6 Let C be a clique of an unit interval graph G = (V,E). Then

N [C] ≤ 3ω(G).

Proof. Let (Ii)i∈E be a realization of G. Since G is an unit interval graph, we have

u ≤L v ⇔ u ≤R v for every x, y ∈ V . For every vertex v ∈ V , we denote by N≤[v]

(resp. N≥[v]) the set {u : u ∈ N [v] ∧ u ≤L v} (resp. {u : u ∈ N [v] ∧ u ≥L v}). Let

vmin (resp. vmax) be the minimal (resp. maximal) vertex of C w.r.t ≤L. It is easily

seen that N [C] = N≤[vmin]∪ (N≥[vmin]∩N≤[vmax])∪N≥[vmax] and that N≤[vmin],

N≥[vmin] ∩N≤[vmax] and N≥[vmax] are clique of G. Thus N [C] ≤ 3ω(G). �

Theorem 9.3.7 Weighted Edge Monitoring can be solved in time O(ω(G)C+3|V |)

on C-bounded weighted unit interval graphs.
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Proof. We refine the running time of Theorem 9.3.5. Thanks to Lemma 9.3.6, we

can bound N [Bi−1]∩Vi−1 by 3ω(G). Thus, we deduce that the overall running time

is O(ω(G)C+3|V |) in weighted unit interval graphs. �

9.4 Cographs

Let G1 = (V1, E2) and G2 = (V2, E2) such that V1 ∩ V2 = ∅. The join of G1 and

G2 is the graph G = (V1 ∪ V2, E1 ∪ E2 ∪ {{u, v} : u ∈ V1 ∧ v ∈ V2}). The class of

cographs is defined by induction.

• The graph which contains one vertex is a cograph;

• The (disjoint) union and the join of two cographs are cographs.

Lemma 9.4.1 Let G = (V,E) be the join of two graphs G1 = (V1, E1) and G2 =

(V2, E2). Let S be a total dominating set of G1. Then, S monitors all edges between

V1 and V2.

Proof. Let {u, v} be an edge between G1 and G2 such that u ∈ V1. Then there

exists a vertex u1 ∈ S adjacent to u. Thus, {u, v} is monitored by S since {u, v, u1}

is a triangle of G. �

Lemma 9.4.2 Let G = (V,E) be the join of two graphs G1 = (V1, E1) and G2 =

(V2, E2). Let S be a monitoring set of G. Then S ∩ V1 is a total dominating set of

G1 or S ∩ V2 is a total dominating set of G2.

Proof. Assume for the sake of contradiction that S1 is not a total dominating set of

G1 and S2 is not a total dominating set of G2. Then there exists an edge {u, v} ∈ E

such that u has no neighbor in S1 and v has no neighbor in S2. Thus, {u, v} is not

monitored by S. �

Lemma 9.4.3 Let G be the join of two graphs G1 = (V1, E1) and G2 = (V2, E2).

Let S be a minimal monitoring set of G. Then |S ∩ V1| ≤ 1 or |S ∩ V2| ≤ 1.

Proof. Let S be a minimal monitoring set of G, S1 = S ∩ V1 and S2 = S ∩ V2.

Assume, for the sake of contradiction, that |S1| ≥ 2 and |S2| ≥ 2. By Lemma

9.4.2, S1 is a total dominating set of G1 or S2 is a total dominating set of G2. By
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symmetry, suppose that S1 is a total dominating set of G1. Then S1 monitors all

edges between V1 and V2 by Lemma 9.4.1 and all edges in V2. Consequently, for

every vertex u ∈ V2, S1 ∪ {u} is a monitoring set of G since u monitors all edges in

V1. Thus, S is not minimal. �

Lemma 9.4.4 Let G = (V,E) be a graph with no isolated vertices and S a moni-

toring set of G. Then, S is a total dominating set of G.

Proof. Let v be a vertex in V . Since G has no isolated vertices, there is a vertex

e = (v, v1) incident to v. Since S is a monitoring set of G, there is a vertex v2 ∈ S

such that {v, v1, v2} is a triangle in G. Thus, v is adjacent to a vertex in S. �

Combining Lemmas 9.4.1, 9.4.2 and 9.4.4, we obtain the following lemma.

Lemma 9.4.5 Let G = (V,E) be the join of two graphs G1 = (V1, E1) and G2 =

(V2, E2). Let S1 = S ∩ V1 and S2 = S ∩ V2. The two statements hold.

• If S1 6= ∅ and S2 6= ∅, then S is a monitoring set of G if and only if S1 is a

total dominating set of G1 or S2 is a total dominating set of G2.

• If S2 = ∅ (resp. S1 = ∅), then S is a monitoring set of G if and only if G1

(resp. G2) has no isolated vertices and S1 (resp. S2) is a monitoring set of

G1 (resp. G2).

The following lemma is a direct consequence of Lemma 9.4.3 and Lemma 9.4.5.

Lemma 9.4.6 Let G = (V,E) be a graph. If G is the (disjoint) union of two graphs

G1 and G2. Then,

γm(G,w, 1) = γm(G1, w, 1) + γm(G2, w, 1)

If G is the join of two graphs G1 and G2.

γm(G,w, 1) = min


γt(G1, w) + min{w(v) : v ∈ V2}

min{w(v) : v ∈ V1}+ γt(G2, w)

γm(G1, w, 1) if G1 has no isolated vertices

γm(G2, w, 1) if G2 has no isolated vertices



134 Chapter 9. Weighted edge monitoring problems

Lemma 9.4.6 combined with the fact that a cotree is computable in linear time

[HP05] give us a linear time algorithm to compute Weighted Edge Monitoring on

cographs.

Theorem 9.4.7 1-uniform Weighted Edge Monitoring can be solved in linear time

on cographs.

9.5 Conclusion and summary of Part III

In this last part, we studied a recent problem, called Edge monitoring problem, in

different classes of graphs. This parameter can be considered as a variant of domi-

nating sets problem. Three variants of the problem have been studied in this part.

We provided exact values of γm(G, 1) on three types of graphs: powers of a cycle,

powers of a path and square of trees. Moreover, we proved the NP-completeness

of 1-uniform monitoring problem on split graphs, comparability graphs and pla-

nar unit disc graphs. Other results are also obtained for the edge monitoring and

weighted edge monitoring problems in some graph classes such as complete graphs,

block graphs, interval graphs, planar graphs and cographs.

The most important results, developed in this part, are summarized in the

following points.

1. 1-Uniform Edge Monitoring

• Exact values of γm(Cmn , 1) is given in power of cycle (Cmn ).

• Exact values of γm(Pmn , 1) is given in power of path (Pmn ).

• A linear time algorithm to find γm(T 2, 1)-sets is given.

• NP-completeness on split graphs is proved.

• NP-completeness on comparability graphs is proved.

• NP-completeness on planar UDGs is proved.

• NP-completeness even when restricted to (P5, C4)-free 1-monitorable graphs

is proved.

• Non approximability of the problem within (1 − ε) ln |V | for any ε > 0,

unless NP ⊆ DTIME(nO(log logn)) is proved.
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2. Edge monitoring

• The problem is W [1]-complete on complete graphs when the parameter

is the size of the solution.

• The problem is W [2]-hard when the parameter is the size of the solution.

• Two algorithms are presented. First one parameterized by the treewidth

in time 2
O(tw2·log(max

e∈E
c(e)))

· n where tw is the treewidth of the input

graph. The second one parameterized by k, the size of the solution, in

time 2
O(
√
k·log(max

e∈E
c(e)))

· n when the input graph is apex-minor-free, in

particular, when it is planar.

• Exact values of γm(Kn, k) is given.

3. Weighted Edge Monitoring

• The problem can be solved in polynomial time on C-bounded weighted

complete graphs.

• 1-uniform weighted edge monitoring can be solved in linear time in

cographs.

• The problem on C-bounded weighted interval graphs is in P. It can be

solved in time O(|V |C+4).

• The problem can be solved in polynomial time on C-bounded weighted

block graphs.

• The problem can be solved in quasi-linear time for block graphs (G =

(V,E), w, c) where c is uniform.





Chapter 10

Conclusions and Perspectives

In this thesis, we discussed three graph theory problems applied to different classes

of graphs. This concluding chapter summarizes the results presented in the previous

chapters and discusses several open questions and directions for future research to

each contribution.

In the first part, we presented the graph decomposition problem, detailed two

types of this problem and surveyed some of its famous results. Then, our focus

was on the decomposition of complete multigraph. We discussed the problem of

decomposition of complete multigraph λKn into k-cycles and k-stars of size k and

gave necessary and sufficient conditions for which this decomposition exists. Most

cases have been treated. As future work, we plan to focus on the following issues:

1. We left some open subcases when n < 2k. The natural question is how to

improve our results by using the proposed idea (or not) to prove the remaining

cases ?

2. Investigate the same decomposition problem with a generalized point of view

by considering the decomposition of complete multigraph λKn into cycles of

size l and stars of size k such that l ≥ 2 and k ≥ 2 are different.

3. It would be interesting to consider the directed version of the studied de-

composition as the directed stars and circuit decomposition for the complete

directed graph, the complete directed multigraph and the complete directed

bipartite graph.

The second part of this thesis was devoted to study the [i, j]-dominating sets

and its variant, namely [i, j]-total dominating sets. Several variants of the domi-

nating sets problem have been defined in the literature. Then, we first presented

dominating sets problem and reviewed some of its variants. Afterwards, we focused
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on [i, j]-dominating sets and [i, j]-total dominating sets. We were particularly in-

terested in these two variants for i = 1 and j = 2. We gave the exact value of the

[1, 2]-dominating number and the [1, 2]-total dominating number for generalized

Petersen graphs P (n, k) when k = 2.

From these results, we can consider several directions for future work:

1. We would like to investigate whether the study of [1, 2]-dominating set prob-

lem on P (n, k) for k ≥ 3.

2. Since γt[1,2](P (n, 2)) = γ[1,2](P (n, 2)) except for the case n = 5 and n ≡ 1[6].

The natural question is for each values of n and k this equation holds.

3. If there is some integer 1 < k ≤ n such that γ[1,2](P (n, k)) = γ(P (n, k)).

4. If there is some integer 1 < k ≤ n such that γt[1, 2](P (n, k)) = γt(P (n, k)).

5. There exists a simple algorithm to compute the exact value of γ[1,j](P (n, k))

and γt[1,j](P (n, k)) ?

The last part of this thesis was devoted to study a recent problem namely edge

monitoring problem. It can be considered as variant of dominating sets problem.

This problem was originally motivated by its security application on wireless sensor

networks. We presented the problem from theoretical point of view and detailed its

variants. Then, some bounds on the edge monitoring number are given in general

graphs. Afterwards, we first focused on 1-uniform monitoring problem by present-

ing some results on general graph and hardness proofs. The problem was also

studied in particular classes of graphs: power of a cycle, power of a path, planar

unit disc graph, split graph and comparability graph. An algorithm for finding the

minimum 1-uniform edge monitoring set on the square of tree was also presented.

Then, we studied the edge monitoring problem from the perspective of parameter-

ized complexity. We proved that the edge monitoring problem is W [2]-hard when

parameterized by the size of the solution. Moreover, we presented two algorithms

that solve the problem in general graphs and in the particular case of apex-minor

free graphs. Finally, we gave different study results about weighted edge monitoring

problem on several graph classes: complete graphs, blocks graphs, interval graphs,

cographs.
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Even if this part contains several results on the edge monitoring problem and

its variants, a number of issues need to be further investigated.

1. A natural extension is to study the problem in other types of graphs e.g.

permutation graphs, strongly chordal graphs and maximal planar graphs.

2. Consider the variant of the problem in which each vertex can monitor only a

fixed number of edges t, namely bounded edge monitoring problem.
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