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v Résumé : La théorie des graphes est considérée comme un vaste champ qui permet d'explorer différentes techniques de preuve des mathématiques discrètes. Ainsi, les différents problèmes traités dans cette théorie ont plein d'applications dans d'autres domaines scientifiques tels que l'informatique, la physique, la sociologie, la théorie des jeux, etc.

Dans cette optique, nous proposons, dans cette thèse, de mettre l'accent sur trois problèmes de graphes, à savoir la multidécomposition de multigraphes, la [1, 2]-domination et le monitoring des arêtes. Ainsi, le fait d'explorer, dans ce travail de thèse, trois problèmes de graphes relativement distincts dans des classes de graphes différentes, nous a permis de développer plusieurs techniques de preuve ainsi qu'une multitude de façon à aborder un problème.

La première partie de cette thèse touche un aspect très important de la théorie des graphes, appelé la décomposition des graphes. Intuitivement, une décomposition en sous-graphe permet de représenter le graphe d'origine par un ensemble de copies du sous-graphe, où chaque arête du graphe initial appartient à une et une seule copie du sous-graphe. Dans cette partie, on s'intéresse plus particulièrement à la décomposition multiple d'un multigraphe complet en étoiles et cycles de même taille, c.à.d. générer à partir d'un multigraphe, plusieurs composantes disjointes (étoiles et cycles). Dans ce sens, des preuves formelles sont présentées pour déterminer les conditions nécessaires et suffisantes que doit avoir le multigraphe complet pour qu'une telle décomposition existe.

Les deux autres parties de cette thèse, les parties les plus consistantes, abordent un problème suscitant beaucoup d'attention actuellement, qui est l'étude de la domination dans les graphes. Le problème original de domination consiste à trouver un ensemble de sommets (de taille minimum) dominant le reste des sommets d'un graphe. De nombreuses variantes d'intérêts à la fois théoriques et pratiques ont été proposées et étudiées dans la littérature. Dans cette partie de thèse et celle qui suit, nous nous sommes intéressés à deux variantes de domination.

La première variante, appelée [i, j]-domination dans les graphes, a été introduite par Chellali et al. en 2013. En plus de ses propriétés de domination, la particularité de cette variante est que chaque sommet non dominant doit être adjacent à au moins i et au plus j sommets dominants. Plus particulièrement, nous nous somme interéssés à la [1, 2]-domination. Il convient de souligner qu'il a été démontré que le problème reste NP-complet. Dans ce sens, nous avons étudié ce paramètre dans des graphes particuliers, tels que les graphes de Petersen généralisés, ce qui rend ce problème tout aussi intéressant. Introduite par Watkins, cette famille de graphes possède un nombre de propriétés très intéressantes. D'ailleurs, plusieurs paramètres de graphes ont été étudiés sur cette classe de graphes de par sa structure qui est assez particulière. De plus, une étude de la [1, 2]-total domination sur cette classe de graphes est aussi menée dans cette thèse.

La deuxième et dernière variante étudiée, aussi une variante de la domination, appelée monitoring des arêtes, a été introduite par Dong et al. en 2008. Elle consiste à trouver un ensemble de sommets qui surveille (domine) l'ensemble des arêtes dans un graphe sachant qu'un sommet surveille une arête s'il forme un triangle avec les deux extrémités de l'arête. Une arête peut être monitorée par un ou plusieurs sommets. Dans ce contexte, plusieurs variantes du monitoring des arêtes sont considérées dans cette partie à savoir monitoring des arêtes, monitoring uniforme des arêtes et monitoring pondéré des arêtes. L'essence de ce problème réside dans sa nature combinatoire ainsi que son domaine d'application, plus particulièrement dans les réseaux de capteurs sans fil. De plus, il a été prouvé que trouver un ensemble minimum pour ce problème est NP-difficile. Vu la complexité de ce type de problème, nous nous sommes intéressés, en premier temps, par une étude théorique du problème : différentes variantes, les bornes, caractérisations, etc. Par la suite, nous avons étudié le probléme en profondeur dans différentes classes de graphes.
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The first part of this thesis deals with a popular aspect of research in graph theory called graph decomposition. Intuitively, a decomposition into subgraphs allows us to describe the original graph with a set of copies of these subgraphs. In this part, we give a particular interest to the multidecomposition of a complete multigraph into edge disjoint stars and cycles. Thus, we investigate the problem of (S k , C k )-multidecomposition of the complete multigraph and give necessary and sufficient conditions for such a multidecomposition to exist.

The second and third parts are the most important parts in terms of effort and spent time. They are devoted to problems related to domination in graphs. The original domination problem is to find a minimum set of vertices such that every vertex outside the dominating set is adjacent to at least one vertex from the dominating set. Many variants of theoretical and practical interest have been studied in the literature.

The second studied problem is called the [i, j]-domination in graphs. This problem was introduced by [START_REF] Chellali | 1, 2]-sets in graphs[END_REF] In addition to the properties of domination, this variant has the particularity that each non-dominating vertex should be adjacent to at least i dominating vertices but also to at most j of them. We particularly focus on the [1,2]-domination. It has been shown that the problem remains NP-complete. We are interested to study this problem on a particular graph namely the generalized Petersen graph. This graph was introduced by Watkins and has a lot of interesting properties. Moreover, several graph theoretical parameters have been studied on this graph class because of it unique structure. In addition, a study of the [1,2]-total domination is also proposed at the end of this part.

The last problem is a new variant called edge monitoring problem and was introduced by Dong et al. in 2008. It consists to find a set of vertices that monitors (dominates) the edge set of a graph such as a vertex monitors an edge if it forms a triangle with it i.e. it dominates both extremities of the edge. An edge can be monitored by one or more vertices. Three variants of the problem are considered in this part namely the edge monitoring, uniform edge monitoring and weighted edge monitoring. The essence of this problem lies on its combinatorial aspect and its range of applications in networks; especially wireless sensor networks. This problem is known to be NP-hard. Given the complexity of this kind of problems, we are first interested by a theoretical study: variants of the problem, bounds, characterizations, etc. We give more in depth studies of the problem for several graph classes.

Chapter 1

Introduction

Graphs are considered as very powerful modeling tools in different areas of science such as physics, chemistry, sociology, game theory and many other areas. The concept of graphs was first introduced by Leonard Euler in 1735 with his work on the Seven Bridges of Königsberg [START_REF] Euler | Solutio problematis ad geometriam situs pertinentis[END_REF]. Since then, they have been considered as an important notion in discrete mathematics and used to model the problems of a wide variety of subjects. All these various subjects of practical interest can be considered as motivation to develop a large number of problems in graph theory such as graph coloring, domination sets, graph decomposition, independent sets, etc. Many other problems in graph theory can be added to this list, since each problem has a multitude of variants that can be explored.

Informally, a graph consists of some points called nodes and some lines between them called edges. Graph is used to model the connections between objects. As an example, a computer network can be modeled as a graph such that each server represented by a node and the connections between those servers represented by edges.

Another example is to model a social network using graphs such that each individual (or organization) is represented by a node and the relation between them (friendship, kinship, common interest, financial exchange, dislike, relationships, etc.) by an edge. The theoretical study and the development of algorithms to manage graphs are therefore of major interest. Throughout this thesis, we try to discuss different graph problems in various classes of graphs.

The three major problems considered in this thesis are the Decomposition of complete multigraph into stars and cycles, the [i, j]-Dominating Set and the Edge Monitoring Set problems. The fact that these three problems are different nature allowed us to explore several proof techniques.

The Decomposition of graphs is one of the most famous and known problems in graph theory. It consists to break an input graph into subgraphs satisfying some constraints. Such problems fall broadly into two categories: the first called simple decomposition, consists to decompose the input graph into edge disjoint subgraphs of the same type; the second, called multiple decomposition, consists to decompose the input graph into two types of edge disjoint subgraphs or more. Determining if a graph G admits simple decomposition was proved to be N P -complete for all subgraph which have a connected component of size 3 or more. We will focus more closely on the specific multiple decomposition called decomposition of complete multigraph λK n into stars S k of k leaves and cycles C k of k vertices (a.k.a. (S k , C k )decomposition of λK n ). It consists in finding the partition of the edge set of the complete multigraph into edge disjoint isomorphic copies of S k and C k using at least one copy of each. Many questions can be asked but the most natural one is to find the conditions on λK n for which (S k , C k )-decomposition exists. This allows us to find the require properties of λK n in order to have a such decomposition.

The [i, j]-Dominating Set is an interesting variant of the dominating sets problem.

It was introduced by Chellali et al. [START_REF] Chellali | 1, 2]-sets in graphs[END_REF]. It is defined as follows. Let i and j be positive integers such that i ≤ j. A subset S ⊆ V in a graph G = (V, E) is a [i, j]-dominating set if, for every vertex v ∈ V \ S, i ≤ |N (v) ∩ S| ≤ j, that is, every vertex v ∈ V \ S is adjacent to at least i but not more than j vertices in S. The minimum cardinality of a [i, j]-dominating set in a graph G is called the [i, j]-domination number, and is denoted γ [i,j] (G). In addition to its theoretical aspects, this problem has several practical applications. For example, in the case of servers in a computing network, or sets of monitoring devices in situations requiring surveillance, but with the need to establish such sets as efficiently or as cost effectively as possible, that is, without creating too much redundancy. For this reason, we give a particular interest to study the [1,2]-dominating set in the particular graph, namely generalized Petersen graph by giving the exact value of the [1,2]-domination number. This graph was introduced by Watkins and has a lot of interesting properties.

The Edge Monitoring Set problem is an effective mechanism for security of wireless sensors networks. It can also be considered as a variant of dominating sets problem. The basic idea is that each communication link in the network is monitored (dominated) by nodes within the network and it is defined as follow. A node v can monitor (dominate) an edge e if the two extremities of e are neighbors of v (i.e. v and the two extremities of e form a triangle in the graph). Note that some edges can need more than one monitor. Finding the minimum set of monitor nodes for such problem is proved to be N P -complete by Dong et al. in 2008 [DLL08]. In the literature, the problem is studied from distributed systems and self stabilization point of view. In this thesis, we study this problem and two of its variants from the graph theoretical point of view. In the first one, namely k-uniform monitoring sets problem, all the edges of the considered graph need at least k monitors. The second variant, a more general version of the problem, namely weighted monitoring sets problem. It consists in assigning a weight for each node representing its cost. This thesis is organized as follows: Chapter 2 gives a short overview of some basic graph theory concepts. Moreover, this chapter presents preliminary definitions, that are needed for the understanding of the results exposed throughout this thesis. Then the rest of thesis is divided into three main parts.

In the first part, we study a problem related to the decomposition of graphs. This part is divided into two chapters. Chapter 3 presents an overview of existing decomposition problems. In addition, several applications of decomposition are discussed to motivate the choice of this problem. In Chapter 4, we investigate the problem of the (C k , S k )-decomposition of the complete multigraph λK n . We give the necessary and sufficient conditions for the existence of such decomposition.

The second part of this thesis is composed from two chapters. Chapter 5 presents a literature review of the dominating set problem and its variants. We give a particular interest on the [i, j]-dominating set problem and [i, j]-total dominating set problem. In Chapter 6, we focus on the [1,2]-dominating set problem and [1,2]-total dominating set problem. We study two numerical invariants of graphs which concern the [1,2]-dominating number and the [1,2]-total dominating number.

We give the exact value for generalized Petersen graphs P (n, k) when k = 2.

Chapter 1. Introduction

The final part of the thesis is completely devoted to the edge monitoring problem. This part is split into three chapters. Chapter 7 presents an overview of known results as well as new results about the edge monitoring problem. The motivation to study this problem is also discussed. We present the edge monitoring problem in general by presenting the problem and its variants. Some bounds on edge monitoring number and characterizations are also presented. Then, we focus in particular on 1-uniform monitoring problem by developing some results on general graphs and also in particular classes of graphs, e.g. path power, split graph, etc. An algorithm for finding the minimum 1-uniform edge monitoring set in the square of a tree is also presented. Chapter 8 is devoted to the study of the edge monitoring problem from the perspective of parameterized complexity. Some preliminary notions are presented. We prove that the edge monitoring problem is W [2]-hard when parameterized by the size of the solution. Moreover, we present two algorithms that solve the problem in general graphs and in the particular case of apex-minor free graphs.

Afterwards, we give in Chapter 9 different study results of a more general problem, namely weighted edge monitoring on several graph classes: complete graphs, block graphs, interval graphs and cographs.

Finally, Chapter 10 summarizes all results of this thesis and gives some suggestions for further research. Graph theory is the study of the properties of graphs. This chapter presents basic notions of graph theory which are required throughout this thesis. We begin by introducing the concept of graph and the common terminology used around them. Most of this terminology is standard and can be found in any classical book on graph theory ([BM76, Ber62, W + 01]). After that, we define some classes of graphs and their properties useful for understanding the presented work. Then, we give some basic notions of a classical computational complexity, approximation Algorithms and Parameterized complexity. We will end this chapter by presenting two well-known graph problems relevant to this thesis.

Basic notations

In this section, we give a short overview of standard graph terminology used throughout this thesis. Some others will be given later when necessary. Directed graph: a directed graph (a.k.a. digraph) is a graph where all the edges have a direction associated with them. In other words, its set of edges is represented by a set of ordered pairs of vertices, called directed edges or directed arcs.

Multigraph: is a graph which is permitted to have multiple edges (a.k.a. parallel edges) that have the same extremities. In other words, two vertices may be connected by more than one edge. A graph is simple if there is at most one edge between every two vertices.

Except for Part I, the graphs considered in this thesis, are an undirected finite graphs without loops or multiple edges.

Degree: is the number of edges incident to the vertex. It's also called the local degree or valency. The degree of a vertex v in the graph G is denoted by deg(v).

If deg(v) = 0, a vertex v is called an isolated vertex. A vertex of degree one is called a leaf or pendant vertex. The maximum degree of a graph G, denoted by

∆(G) = max{deg(v) : v ∈ V (G)}
, and the minimum degree of a graph, denoted by whose extremities belong to S. As particular subgraphs, we have clique and independent set defined below.

δ(G) = min{deg(v) : v ∈ V (G)}. Subgraph: a graph H is a subgraph of a graph G, denoted H ⊆ G, if the vertex set V (H) of H is contained in the vertex set V (G) of G
Clique: is a subset of vertices of a simple graph G such that every two distinct 

N (v) = {u : uv ∈ E(G)}.
The number of neighbors of v corresponds to the degree of v in G, then

|N (v)| = deg(v). The closed neighborhood of v is N [v] = N (v) ∪ {v}. For a set S ⊆ V , N (S) = v∈S N (V ) and N [S] = v∈S N [V ]
. The neighborhood of an edge e in a graph G is the set of all edges having at least a common extremity with the edge e, denoted by N (e).

Connectivity: a graph G is connected if there exists a path between any two distinct vertices of G. Otherwise, the graph G is disconnected. The connectivity is minimum number of elements (vertices or edges) that need to be removed to disconnect the graph.

Distance and diameter: the distance between two vertices v and u in a graph G, denoted by dist(u, v), is the number of edges of a shortest path connecting them.

The diameter d of G is the maximum distance between any two vertices of G.

Some families of graphs

Graphs can be used as a modeling tool for many problems of practical importance.

In this section, we present some wide-known family of graphs, that are considered throughout this thesis. Much more details and definitions on the graph classes can be found in Tree graph: a tree T n is a connected graph with no cycles and having n vertices (see Figure 2.1(c)). Recall that a vertex with degree one is called a leaf and a vertex of degree at least two is called an internal vertex. A tree is called a rooted tree if one of its vertices has been designated the root, in which case the edges have a natural parent-child orientation, towards the root. A vertex v in a rooted tree is a descendant of a vertex u if u lies on the unique path from the root to v. The parent of a vertex v is the last vertex before v in a path from the root to v. The depth of a vertex v in a rooted tree is the length of the path from the root to v.

Thus, the depth of the root is 0.

Star graph: the star graph S n , is a tree with n + 1 vertices such that one vertex, called the central node, has degree n and the other n vertices have degree 1 (see graphs. Furthermore, a complete multigraph, denoted by λK n , is a complete graph K n in which every edge is taken λ times. V (G) can be divided into non-empty disjoint subsets (called also parts) in which no two vertices in the same part have an edge connecting them. 

P (n, k) [Big93], such that n ≥ 3 and 1 ≤ k ≤ n-1 2
, is a 3-regular graph with 2n vertices and 3n edges. It consists of a set of vertices defined as {u 0 , u 1 , ..., u n-1 , v 0 , v 1 , ..., v n-1 } and a set of edges defined as

{u i u i+1 , u i v i , v i v i+k : 0 ≤ i ≤ n -1}
where all subscripts should be reduced to modulo n. With this notation, the (classical) Petersen graph, defined before, is P (5, 2). As a known result, P (n, k) is bipartite if and only if n is even and k is odd.

Graph power: the graph power of a graph G is another graph denoted by G k , that represents the k th power of G It has the same set of vertices of G and an edge exists between two vertices when their distance in G is at most k. G 2 is called the square of G and G 3 is called the cube of G. Comparability graph: A graph G = (V, E) is a comparability graph if there exists a poset < over V such that {x, y} ∈ E if and only if x < y or y < x for every x, y ∈ V .

Wheel graph: a wheel graph, denoted by W n , is a graph with n vertices (n ≥ 4), formed by connecting a single vertex (universal vertex) to the n -1 other vertices that form a cycle of length n -1.

Chordal graph: a graph G is said Chordal if every induced cycle in G should have at most three vertices. In other words, it is a graph in which all cycles of four vertices or more have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

Block graph: block graph (a.k.a. clique tree) is an undirected graph whose blocks are cliques. To find more characterization about block graphs in [START_REF] Behtoei | A characterization of block graphs[END_REF]. Note that block graphs are chordal.

Split graph: a graph G is a split graph if its vertices can be partitioned to form a clique and an independent set [START_REF] Foldes | Split graphs[END_REF]. Split graphs are a special class of Chordal graphs.

Interval graph: an interval graph is an undirected graph formed by a set of intervals. Each interval represents a vertex and each edge that connects two vertices corresponds to the intersection of two intervals. and H are cographs, so is their disjoint union G ∪ H.

As an example, the complete graphs and complete bipartite graphs are special cases of cographs. Most algorithmic problems can be solved on this class in polynomial time, and even linear, because of its structural properties.

Chapter 2. Preliminaries

Computational complexity

Throughout this section we give a brief introduction to the field of computational complexity. For a more complete introduction to computational complexity there are many good books such that a classic famous book by Garey and Johnson [START_REF] Michael | Computers and intractability[END_REF],

a book by Christos H. Papadimitriou [START_REF] Papadimitriou | Computational complexity[END_REF] or a more advanced book by S. Arora and B. Barak [START_REF] Arora | Computational complexity: a modern approach[END_REF].

Classical complexity theory

An algorithm is a sequence of instructions that allow us to solve a computational problem. Informally, it takes an input data of the problem and transforms it to results. Hence, algorithm and problem are two concepts that compliment each other. As we explain in sections below, many practical problems can be represented by graphs. Then, the study and analysis of algorithms used to solve graph problems is therefore of practical importance.

Among the computational problems that usually exist in theory we find decision problems and optimization problems. A decision problem is to check if some property is true or false. Then, the two possible answers are yes or no. Optimization problem is to find a solution where the cost, quality, size, or some other measure is as large or small as possible. In fact, for every optimization problem, there is an associated decision problem.

The computational complexity helps us to classify these problems according to their difficulty. In other words, it permits to measure the complexity of the problem when computing the solution to see how difficult a problem is. In this context, complexity is measured by the amount of resources required to solve the problem. As the most common required resources, we distinguish two types: time complexity and space complexity. only if the answer to f (y) is yes. Intuitively, these are the problems that are at least as hard as the NP-complete problems. Then, if there exists a solution to one NP-hard problem in polynomial time, there exists a solution to all NP problems in polynomial time. Note that NP-hard problems do not have to be in NP.

Depending on the properties of the graph, the complexity can change. For example, the problem can be NP-hard in general classes of graphs and polynomial in some special classes.

Hence, the unfortunate fact that we cannot find the optimum solution in polynomial time doesn't mean that the problem cannot be studied or need to be ignored.

In practice, some solutions are possible. We have two possible ways in order to deal with N P -hard problems: approximation algorithms and parameterized complexity. Note that these two ways can collaborate together [START_REF] Marx | Parameterized complexity and approximation algorithms[END_REF] but in this thesis we use one of each separately for the same problem but in different graph classes Chapter 2. Preliminaries (see Chapters 8 and 9).

In the two following subsections we give more details about this two practical ways.

Approximation algorithms

Most of optimization problems are NP-hard and more especially the problems having important applications in real life. Assuming that P = NP, it is unlikely that there can ever exist efficient polynomial time exact algorithms to solve NP-hard problems. In this perspective, the field of approximation algorithms allows us to find polynomial time algorithms with the fastest running time used to give approximate solutions of optimization problems. In other words, the aim is to relax the requirement that the given solution is the optimum and this help us to find an approximate solution in faster time.

Approximation needs to be close to the optimal solution, this guarantees the quality of the solution which is measured by the factor ρ. This means that, for a ρ-approximation algorithm A which give the approximate solution A(x) for an instance x will not be less (for maximizing problem) or more (for minimizing problem) than a factor ρ times the value of an optimum solution.

Hence, A polynomial time approximation scheme (PTAS in short) is an algorithm which takes an instance of an optimization problem and a parameter ε > 0 to produce a solution that is within a factor 1 + ε, in polynomial time. Other variants exist such as fully polynomial time approximation scheme (FPTAS in short) which is an approximation scheme whose time complexity is polynomial in the input size and also polynomial in 1/ε. As typical examples for an approximation algorithms applied in graph theory, we have approximation algorithm for vertex cover problem (find minimum set S of vertex such that every edge in the graph is incident to at least one vertex in S) [START_REF] Hochbaum | Approximation algorithms for the set covering and vertex cover problems[END_REF], for traveling Salesman problem (find the shortest possible route, for a list of cities, that visits each city exactly once and returns to the starting city) [START_REF] Laporte | The traveling salesman problem: An overview of exact and approximate algorithms[END_REF] and more others can be found in [ACG + 12].

More details and some more advanced explanations on approximation complexity, can be found in [ACG + 12, Vaz13].

The word of parameterized complexity

As another way to deal with the computational hard problems we have parameterized complexity, introduced in the 1990's. For a complete introduction to pa- An history of graph theory from 1736 to 1936 can be found in [START_REF] Biggs | Graph Theory, 1736-1936[END_REF], a more recent update can be found in [START_REF] Bollobás | Modern graph theory[END_REF] and some open problems can be found in [Wes].

rameterized
All problems considered in graph theory are typically motivated by them practical applications in a wide range of areas such as: networks [START_REF] Deo | Graph theory with applications to engineering and computer science[END_REF], biology [SS + 73, PSM + 11], chemistry [START_REF] Bonchev | Chemical graph theory: introduction and fundamentals[END_REF][START_REF] Peter | Chemical applications of graph theory. part i. fundamentals and topological indices[END_REF] social science [START_REF] Wasserman | Social network analysis: Methods and applications[END_REF], etc.

Two favorite graph problems 21

Since this thesis is focusing on graph theory problems, let us in the following introduce the two central problems considered in this work, namely decomposition and domination, to acquaint the reader with. We hope this section helps the reader to understand our motivation to study these two problems. The first part of thesis is devoted to the problem of graph decomposition. Graph decomposition is incredibly well studied area and it is a very broad topic. The concept of graph decomposition proved to be useful in many ways and it is crucial in the study of lot of theoretical applications. This chapter is attended as an introduction to some graph decomposition problems. We give a brief history of the decomposition in graphs and the motivation of take up this area for the present research. We also present some well known results on decomposition of specific graphs which are closely related to the problem presented in the next chapter.

Decomposition problems

Motivation

Research -Fault tolerance.

Fault tolerance is the property that allows a system to continue the different operations properly even if there is a failure in one or more of its components [START_REF] Peter | Fault tolerance: principles and practice[END_REF].

Fault tolerance is often related to Hamiltonian cycle decomposable architecture.

Hamiltonian decomposition aims to find all edge disjoint cycles where each one is a graph cycle through a graph G that visits every vertex exactly once [START_REF] Bermond | Hamiltonian decompositions of graphs, directed graphs and hypergraphs[END_REF]. This type of decomposition have a direct application in networks field to have fault tolerance properties. Generally, Hamiltonian decomposition is used to obtain alternative communication routes in computer networks. Thus, if there is any communication failure in one circuit, then another circuit can be used. In other words, if the link between two different stations (or nodes) in the network is broken, we have the possibility to use another link.

However, other constructions are also used as a model in fault tolerant networks such as in [START_REF] Dutt | On designing and reconfiguring k-fault-tolerant tree architectures[END_REF] for trees architecture, [START_REF] Aziz | Designing optimal faulttolerant star networks[END_REF] for stars architecture and [START_REF] Aziz | Fault-tolerant extensions of complete multipartite networks[END_REF] for complete multipartite architecture.

-Combinatorial designs.

Another research area that used a graph decomposition is the combinatorial construction in designs theory [START_REF] Douglas R Stinson | Combinatorial designs: constructions and analysis[END_REF]. This research area is very wide and discusses

Motivation

a lot of fundamental questions based on arrangement of elements into subset with satisfying some properties. For example, in design theory, we associate the name handcuffed designs [START_REF] Stephen | Handcuffed designs[END_REF] for path decomposition and the name resolvable designs [START_REF] Hanani | On resolvable designs[END_REF] for star decomposition. Both decompositions are the most used in this area but we also find a large number of combinatorial design problems that can be described in terms of another types of graph decomposition.

As a classical problem of combinatorial designs we find combinatorial index-file or- -Social network analysis.

ganization
The concept of social networks is widely growing since the importance of studying social interactions and behavioral science. Social network can be represented by a graph which consists on a set of vertices corresponding to the actors and a set of edges representing the relations between these actors. A small social network can be visualized directly by its corresponding graph but larger social networks can be more difficult to envision and analyze. In this perspective, there exist variant tools and techniques to study patterns of relationships that connect social actors in social networks, refer [START_REF] Scott | Social network analysis[END_REF][START_REF] Wasserman | Social network analysis: Methods and applications[END_REF]. As a particular technique, we have graph decomposition that helps us to study and analysis these social networks. For example, star decomposition is widely used to identify major actors and interactions in social network. We just need to decompose the network into stars and select all stars having maximum degree. Clique decomposition can be used for detecting communities in social networks. Furthermore, other graph decompositions can also be used to find a set of people or groups of people having some pattern of contacts or special interactions between them. There exist several important research papers and books in this sense, we can refer to [BZ03, BM04, FB07]

All the above facts, motivate us to take up this thrust area for the present research.

Chapter 3. Overview of graph decomposition

Two types of decomposition

In this section we have chosen to present two well-known graph decompositions namely simple decomposition and multidecomposition of graphs.

Simple decomposition of graphs

The In all the decompositions, we consider the fact that all the subgraphs have the same type H and also the same size. Note that determining if a graph G admits an H-decomposition was conjectured to be N P -complete by Holyer in [START_REF] Holyer | The Complexity of Graph Theory Problems[END_REF] and proved in [START_REF] Cohen | Np-completeness of graph decomposition problems[END_REF][START_REF] Dor | Graph decomposition is npc-a complete proof of holyer's conjecture[END_REF] for all subgraph H which have a connected component of size 3 or more.

= U U Figure 3.1: Example of P 3 -decomposition of K 4 .
As an example, Figure 3.1 presents the P 3 -decomposition of K 4 . The obvious necessary condition that K 4 need to have in order to admit a P 3 -decomposition is that the size of K 4 have to be a multiple of the size of P 3 . Thus, for example K 6 doesn't admit a P 3 -decomposition since the necessary condition is not satisfied.

Furthermore, depending on the type of decomposition for the same graph G = K 4 ,
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additional conditions can be considered.

Multidecomposition of graphs

An (H, F )-decomposition of a graph G consists on finding a partition of the edge set of G into edge disjoint isomorphic copies of H and F using at least one copy of each.

Formally, it consists of decomposing an input graph G = (V, E) into a collection of subgraphs of two types H and F (or more than two recently) as follow

H 1 , H 2 , ..., H k , F 1 , F 2 , .
.., F l , such that each edge of G belongs to only one subgraph

H i : 1 ≤ i ≤ k or F i : 1 ≤ i ≤ l.
If G has an (H, F )-decomposition, we say that G is (H, F )-decomposable (or (H, F )-multidecomposable).

As an example and to have a comparison point of view with simple decomposition, we decompose the same graph K 4 using in the above subsection into cycles and stars. This decomposition is called a (C 3 , S 3 )-multidecomposition and it is presented in Figure 3.2. Rodger [START_REF] Rodger | Graph decomposition[END_REF], the book written by Bosák [START_REF] Bosák | Decompositions of graphs[END_REF], the book of Foregger [START_REF] Forman | Decompositions of graphs[END_REF],

= U Figure 3.2: Example of (C 3 ,S 3 )-decomposition of K 4 .
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and the first results on graph decomposition can be found in the Lucas's book [START_REF] Lucas | Récréations mathématiques[END_REF].

In all the references cited above, the reader can find more detailed discussions about the graph decomposition. Now, we will focus more closely on a few specific decomposition problems that have more impact and are more intensively studied in the literature, and then present such a review of existing results on each type of decompositions. Note that we focus only on results that deal with necessary and sufficient conditions that need to have a graph to be decomposable into some special type of subgraphs.

When we consider the problem of H-decomposition of G, many questions can be asked but the most natural problem is to find the conditions on G for which H-decomposition exists. This allow us to find the require properties of the graph in order to have such decomposition.

Let consider the complete graph G = K n . Complete graph is the most popular graph studied in decomposition problems. It can easily be seen that for any subgraph H of order at most n, the following two conditions are necessary in order to decompose K n into H:

1. n(n-1)
2 is a multiple of the number of edges of H.

2. n-1 is a multiple of the greatest common divisor of the degrees of the vertices of H.

In other words, the size of K n needs to be a multiple of the size of the subgraph H and the degree of K n needs to be a multiple of the greatest common divisor of the degrees of the vertices of H. It's not difficult to find the necessary conditions.

However, the real problem and the more difficult part is to establish the sufficient conditions.

In Others results about H-decomposition and (H, F )-decomposition on some other specific graphs G have been investigated by many authors. We summarized some of them in the Table 3.1 for simple decomposition and Table 3.2 for multidecomposition. We have to note that some cited papers solve just some special cases. The hole problem is still open in some cases. The problem of Hamiltonian decomposition of graphs has been extensively studied and it can be considered as the door of an infinite list of decomposition problems. In [START_REF] Bermond | Hamiltonian decompositions of graphs, directed graphs and hypergraphs[END_REF], several problems related to Hamiltonian decompositions of graphs, isomorphic cubes decomposition of complete graph [START_REF] Kotzig | Decompositions of complete graphs into isomorphic cubes[END_REF], complete multipartite decomposition of complete graph [START_REF] Huang | On the decomposition of kn into complete m-partite graphs[END_REF], and so on.

Graphs Paths Cycles Stars K n [Tar83] [AG01, Šaj02] [Tar79, YISE + 75, LS96] K m,n [Par98] [Sot81] [YISE + 75] λK n [Tar83] [BHMS11] [Tar79] λK m,n [Shy07, Tru85] [Lee15] [Lee15] K m,m,m [LLL09, BCS10] [CH77a, Cav98, Bil99, CB00] [UTY + 78, T + 79] λK * n [MS06, MS12] [Sch75, BF76, AG ŠV03] [CHR92] k -regular [FGK10, HJM99, BJ15] [Mar12] [LL05] S 0 n - [LL00, MPS06] [LLS + 99]
Graphs P. & S. P. & C. S. & C. K n [Shy10a] [Shy12, Shy10b] [AL14, BHK15] K m,n [Shy13, LC13] [JM14] [Lee13] λK n [LC15] [PM09] [BHK15] λK m,n [PM12, LC15] [JM15] [Lee15] K * n - [Shy15] - S 0 n - - [LL13]
All the decompositions cited above are simple or multiple but recently, Lin and Jou investigate a new version of decomposition having three types of subgraphs.

They consider the problems of the (C k , P k , S k ) -decomposition of the balanced complete bipartite graph K n,n (not published yet). In the same perspective, they also consider in [START_REF] Lin | Cps,-decompositions of balanced complete bipartite multigraphs[END_REF] the problem of the (C k , P k , S k ) -decomposition of the balanced complete bipartite multigraph λK n , for λ ≥ 2.

In the next chapter, we focus only on the Multidecomposition of complete multigraph into cycles and stars of same size. In the previous chapter, we introduced the problem of Decomposition of graphs into subgraphs and we discussed some results that the research raised in this field. In this chapter, we focus on the Multidecomposition of complete multigraph into cycles and stars and we discuss the existence of such decomposition. Our decomposition result show the required conditions for the existence of (C k , S k )-multidecomposition.

Note that the particularity is to have the same number of edges in all the subgraphs.

A preliminary version of this work appeared in [START_REF] Beggas | Decomposition of complete multigraphs into stars and cycles[END_REF].

This chapter is organized as follows: In Section 4.1, we present a couple of theorems related to this work and needed to be used in our discussion. After that we present some introductory results. More advanced results are discussed in Section 4.3 and Section 4.4 respectively. Furthermore, we discuss a new idea to deal with the remaining cases in Section 4.5. Section 4.6 concludes this first part.

Related work

Before presenting our results, we briefly revisit the essential theorems on C k -decomposition and S k -decomposition that are useful for our proofs. sufficient condition for the existence of an S k -decomposition of λK n is that:

• λn(n -1) ≡ 0[2k],
• n ≥ 2k for λ = 1,

• n ≥ k + 1 for even λ, 

• n ≥ k + 1 + k/λ for odd λ ≥ 3.
n(n -1) ≡ 0[2k]. Theorem 4.1.4 (Yamamoto et al.[YISE + 75]) Let m ≥ n ≥ 1 be integers. Then, K m,n is S k -decomposable if and only if m ≥ k and m ≡ 0[k] if n < k, mn ≡ 0[k] if n ≥ k.

Introductory results

In this section, we give some preliminary results

Let G be a graph. The order of G is the cardinality of its vertex set and the size of the graph G is the cardinality of its edge set. We begin with the following lemma to prove the necessary conditions when λK n is (S k , C k )-decomposable:

Lemma 4.2.1 Let n ≥ 3 and λ > 1 be positive integers. If λK n is (S k , C k )- decomposable, then 2 ≤ k ≤ n -1 and λn(n -1) ≡ 0[2k].
Proof. Since the minimum length of a cycle and the maximum size of a star in 

λK
(n -1) ≡ 0[8] by assumption then n -1 ≡ 0[8]. Let n -1 = 8α.
Since the degree of each vertex of λK n equals to λ(n -1) and is divisible by 4, we take one vertex and decompose all its incident edges into 2λα stars of 4 edges. The remaining graph is λK n-1 with n -1 = 8α. In this case, we use the same method as the previous Subcase 1.a for λK n with n = 8α.

Case 2. λ is even

Recall that n > 4. We give the (C 4 , S 4 )-decomposition of λK n as follows according to values of n:

• n = 5: Note that λK 5 = λS 4 ∪ λK 4 . Since λ is even and using Theorem 4.1.2, we decompose λK 4 into C 4 . Thus, λK 5 is (C 4 , S 4 )-decomposable.

• n = 6 or n = 7: We have n(n -1) ≡ 0 [2] In this section, we prove some lemmas and theorems each of them treating a special case of decomposition of λK n into S k 's and C k 's.

The next proposition proves that λK n is (S k , C k )-decomposable for all n ≥ 4k and λ = 1, so we complete the missing cases in [START_REF] Atif | On the decompositions of complete graphs into cycles and stars on the same number of edges[END_REF] when n ≥ 4k: 

1)/2 ≡ 0[k], then the graph K n is (S k , C k )-decomposable.
Proof. Let n = qk + r where q and r are integers with 0 ≤ r < k and q ≥ 4.

Note that:

K n = K qk+r = K 2k ∪ K (q-2)k+r ∪ K 2k,(q-2)k+r .
Clearly, |E(K 2k )| and |E(K 2k,(q-2)k+r )| are multiples of k. Thus ((q -2)k + r)((q -2)k + r -1)/2 is also a multiple of k. We distinguish two cases according to the parity of k.

Case 1. k is odd It follows that K (q-2)k+r is S k -decomposable by Theorem 4.1.1 since (q -2)k + r ≥ 2k, and K 2k,(q-2)k+r is also S k -decomposable by Theorem 4.1.4.

We write

K 2k = K k ∪ K k ∪ K k,k . Now, it is clear that each copy of K k is C k -decomposable when k is odd by Theorem 4.1.3 and K k,k is S k -decomposable by Theorem 4.1.4. Case 2. k is even In this case, K 2k is S k -decomposable by Theorem 4.1.1.
If n is even, then (q -2)k + r is even. So, we can decompose K 2k,(q-2)k+r into C k using Theorem 4.1.5. Since q ≥ 4, (q -2)k + r ≥ 2k. Consequently, K (q-2)k+r is S k -decomposable by Theorem 4.1.1. Conversely, if n is odd, then (q -2)k + r is odd. Using Theorem 4.1.3, K (q-2)k+r can be decomposed into cycles of k edges and K 2k,(q-2)k+r is S k -decomposable by Theorem 4.1.4. Thus, we conclude that λK n is

(S k , C k )-decomposable when λ = 1.
In the rest of this section, we will focus on complete multigraph λK n where λ > 1. The following lemma gives sufficient conditions for decomposing λK n into C k 's and S k 's where λ > 1 is odd and n ≥ 4k. 

. If λn(n -1)/2 ≡ 0[k] then λK n is (C k , S k )-decomposable.
Proof. Let n = qk + r where q and r are integers with 0 ≤ r < k and q ≥ 4.

Note that:

λK n = λK qk+r = λK 2k ∪ λK (q-2)k+r ∪ λK 2k,(q-2)k+r = (λ -1)K 2k ∪ K 2k ∪ λK (q-2)k+r ∪ λK 2k,(q-2)k+r |E(λK 2k )| and |E(λK 2k,(q-2)k+r )| are multiples of k. Using argument that |E(λK n )| is a multiple of k i.e. λn(n -1) is divisible by k, then λ((q -2)k + r)((q - 2)k + r -1)/2 ≡ 0[k]. Since (λ -1)(2k -1) is even and 2k ≥ k then (λ -1)K 2k is C k -decomposable by Theorem 4.1.2.
For K 2k and using Theorem 4.1.1 with λ = 1 implies that K 2k is S k -decomposable. We now decompose λK (q-2)k+r :

We have q ≥ 4, then (q-2)k+r ≥ 2k+r implies that (q-2)k+r ≥ 2k ≥ 3k/2+1 for any k ≥ 2. Given that λ ≥ 2 then 3k/2+1 ≥ k+1+k/λ so (q -2)k+r ≥ k+1+k/λ.

Using Theorem 4.1.1 when λ is odd, since (q -2)k + r ≥ k + 1 + k/λ, we have λK (q-2)k+r is S k -decomposable. Note that λK 2k,(q-2)k+r can be decomposed into λ copies of K 2k,(q-2)k+r . Since K 2k,(q-2)k+r is S k -decomposable by Theorem 4.1.4, so is λK 2k,(q-2)k+r . Thus λK n is (C k , S k )-decomposable.

In the following lemmas, we will give sufficient conditions of the decomposition of λK n into C k 's and S k 's where n ≥ 2k and λ is even or gcd(λ, k) = 1.

Lemma 4.3.3 Let n, k and λ be positive integers such that λ is even. For all

n ≥ 2k, if λn(n -1)/2 ≡ 0[k] then λK n is (C k , S k )-decomposable.
Proof. Let n = qk + r where q and r are integers with 0 ≤ r < k and q ≥ 2.

Note that: λK n = λK qk+r = λK (q-1)k ∪ λK k+r ∪ λK (q-1)k,k+r .

Obviously, |E(λK (q-1)k )| and |E(λK (q-1)k,k+r )| are multiples of k. Thus, λ(k + r)(k + r -1)/2 ≡ 0[k] from the assumption that λn(n -1)/2 is divisible by k.

λK (q-1)k and λK k+r are C k -decomposable by Theorem 4.1.2 because λ is even, (q -1)k ≥ k and k + r ≥ k by assumption. Note that λK (q-1)k,k+r can be decomposed into λ copies of K (q-1)k,k+r . Since K (q-1)k,k+r is S k -decomposable by Theorem 4.1.4, so is λK (q-1)k,k+r . Thus, λK n is (C k , S k )-decomposable. 

all n ≥ 2k, if λn(n -1)/2 ≡ 0[k] then λK n is (C k , S k )-decomposable.
Proof. From the previous lemma, we only have to examine the case when λ is odd.

We can decompose λK n as an edge disjoint union of (λ -1)K n and K n . Since Proof. We split the proof into two cases as follows:

gcd(λ, k) = 1, then |E(K n )| ≡ 0[k]. It is clear that (λ -1)K n has a (C k , S k )-
Case 1. k is odd or λ is even

By assumption, n = k + 1 and the degree of each vertex of λK n is λk. We use one vertex in order to construct λ stars of k edges. The remaining graph is λK n-1 .

Since k is odd or λ is even and we have n

-1 = k, then λ(n -2) = λ(k -1) is always even and λk(k -1)/2 ≡ 0[k], so by Theorem 4.1.2 λK n-1 is decomposable into C k -decomposable. Thus, λK n is (S k , C k )-decomposable.
Case 2. k is even and λ is odd This subcase does not exist because by assumption λk(k -1)/2 ≡ 0[k], implies λ(k -1) to be even, a contradiction. The opposite implication is clear to proof.

In the two following lemmas we will show that when n = 2k + 1 or n = 3k + 1, the complete multigraph λK n can be decomposed into some k-cycles and k-stars. Proof. The number of edges in λK 2k+1 , λk(2k + 1), is a multiple of k. We decompose λK 2k+1 as follows : Proof. We split the proof into two cases as follows:

λK 2k+1 = (λ-1)K 2k+1 ∪K 2k+1 . Clearly, |E((λ-1)K 2k+1 )| and |E(K 2k+1 )| are multiples of k. We decompose (λ-1)K 2k+1 into C k 's and K 2k+1 into S k 's. Hence λK 2k+1 is (S k , C k )-decomposable.
Case 1. λ is even This case is solved by Lemma 4.3.3. Case 2. λ is odd If k is odd, note that: λK 3k+1 = λK 2k+1 ∪ λK k ∪ λK 2k+1,k . By Lemma 4.4.3, λK 2k+1 is (S k , C k )-decomposable. λK k can be decomposed into C k 's and λK 2k+1,k is S k -decomposable.
If k is even, 3λ(3k + 1) is not even so this case can't exist. The opposite implication is clear to proof.

In the following proposition, we prove that for any k that divides n or n -1, To complete the proof, we study the cases when n = 2k and n = 3k.

λK n is (S k , C k )-decomposable.
≤ k ≤ n + 1, if n ≡ 0, 1[k] and λn(n -1)/2 ≡ 0[k], then λK n is (S k , C k )-decomposable.
For n = 2k: When λ is even, λK n is (S k , C k )-decomposable by Lemma 4.3.3. When λ is odd, observe that: is S k -decomposable by Theorem 4.1.1. On the other hand, if λ is odd and k is even, then it is sufficient to show that λ3k(3k -1) ≡ 0[2k] is not true in this case. So, when λ is odd, k must be also odd.

λK 2k = (λ -1)K 2k ∪ K 2k . (λ -1)K 2k is C k -decomposable
In the following proposition, we will show the decomposition of λK n into S k 's and C k 's when λ is a multiple of k:

Proposition 4.4.6 For integers k, n with 2 ≤ k ≤ n -1, if λ ≡ 0[k], then λK n is (S k , C k )-decomposable.
Proof. Since n ≥ k + 1 we distinguish two cases: • Considering the graph 3K 5 , since λ ≡ 0

Case 1. n ≥ k + 2 λ ≡ 0[k] implies
[3] then |E(3K 5 )| ≡ 0[k].
• Taking on a vertex of 3K 5 called v, we decompose the graph into λ(n-1)/k = 4 stars by rotation. This rotation is applied on all the incident edges of the considered node v (Figure 4.1 illustrate rotation construction).

• The remaining graph is 3K 4 . The same rotation construction is applied for finding λ(n -2)/k = 3 stars. This rotation construction is applied until the remaining graph is 3K k (k = 3).

• The remaining graph 3K 3 can be decomposed into 3 copies of C 3 . Proof. We show that the necessary conditions given by Lemma 4.2.1 are also sufficient. λn(n -1)/2 is a multiple of k and k is a prime number, so we distinguish three cases according to the multiplicity of n, n -1 and λ.

When k divides n or k divides n -1, this case is proved in Proposition 4.4.5. When k divides λ, this case is proved in Proposition 4.4.6.

Discussion on multidecomposition of λK n when n < 2k

The following theorem is a direct consequence of Propositions 4. • k is prime, or

• k divides either n -1, n or λ.

Discussion on multidecomposition of λK n when n < 2k

In this section, we focus on the multidecomposition of λK n when the number of vertices n < 2k. We give a possible idea to deal with this case.

In Theorem 4.4.9, we treated the cases when k is prime and when k divides either n -1, n or λ. Now, we focus on the remaining cases. In the following example we will show that if we fix k, the number of possibilities, not treated below, of n is bounded.

(1) k = 4, this means that λn(n-1)

2

needs to be a multiple of 4. Thus, there is no remaining cases since all the possible cases are treated above.

With the same reasoning, we obtain the remaining values of n as follow:

(2) k = 6, the possible values of n are 8, 9, 10.

(3) k = 8, the possible values of n are 12, 13.

(4) k = 9, the possible values of n are 12, 13, 15, 16.

(5) k = 10, the possible values of n are 12, 13, 15, 16, 17.

(6) k = 11, there are no remaining cases.

And so on.

As the number of vertices n of the complete multigraph λK n is pretty close to k, we prove in the following that the degree of the graph λK n have an impact on how we decompose.

1. If k is even and λ(n -1) is even, then if such a decomposition exists, the number of stars S k needs to be even.

2. If k is even and λ(n -1) is odd, then if such a decomposition exists, the number of stars S k needs to be odd.

3. If k is odd and λ(n -1) is even, then if such a decomposition exists, the number of stars S k needs to be even.

4. If k is odd and λ(n -1) is odd, then if such a decomposition exists, n -k needs to be odd.

These four cases are true for n < 2k. For example, in the first case, each star has an even number of edges k and the degree of its central node is even. Since to decompose a graph into cycles without any remaining edges, the degree of each vertex of the graph needs to be even. Thus, if we begin by decompose the graph into stars, we must verify that in the remaining graph all vertices have an even degree. Since n < 2k, the number of stars must be even.

This means that if we give a specific placement for each star in the complete multigraph, this helps us to define a method to decompose the remaining edges into cycles.

Conclusion

The contribution of the first part is the study of the Multidecomposition of complete multigraph into cycles and stars. Chapter 3 presented an introduction to particular graph decomposition problems and gave a brief survey of the famous decomposition problems studied in the literature.

Abueida and Lian [START_REF] Atif | On the decompositions of complete graphs into cycles and stars on the same number of edges[END_REF] gave necessary and sufficient conditions for decomposing K n into cycles and stars of k edges, for n ≥ 4k and k even or n odd. Chapter 4 improved results on this decomposition and extended it for the complete multigraph λK n . Thus, we presented necessary and sufficient conditions for different cases as follows:

• k is prime,

• k divides either n -1, n or λ,

• n ≥ 2k and λ is even or gcd(λ, k) = 1,

• n ≥ 4k, independently of the parity of n or k, thus improving result of Abueida and Lian [START_REF] Atif | On the decompositions of complete graphs into cycles and stars on the same number of edges[END_REF].

Part II

Domination in Graphs

Chapter 5

Overview of some domination sets problems This part of thesis is devoted to the domination problems in graphs. The literature contains extensive studies of many different types of domination in graphs.

In our thesis, we consider a variant of the domination set problem, called [i, j]domination set problem. The motivation for studying this variant of domination problem is rich and varied from an application perspective. In this chapter, a review of some well known results about variants of domination sets problems is given.

We also provide a brief history and some motivations to investigate the domination graph problems. We next focus on [i, j]-domination and [i, j]-total domination problems. These two problems are discussed in details. Afterwards, we give a particular interest on the [1,2]-domination problem and we discuss some results related to this variant. Since, in the next chapter, we consider the [1,2]-dominating set problem restricted to a particular class of graphs, namely generalized Petersen graphs, then we provide some basic definitions and properties about these graphs, followed by a discussion of different types of domination problems studied on it.

History and motivation

The Queens problem can be considered as the origin of the study of dominating set in graphs. In 1850, the chess fans in Europe considered the problem of determining the minimum number of queens that can be placed on a chessboard such that all squares are either occupied by queens or attacked (or dominated) by at least one queen. Then, the number of required queens for such problem corresponds to the dominating number. Therefore, the problem of chess queen placement can be identified more generally as a problem of dominating the vertices of a graph In this thesis, we give a particular interest on the [i, j]-dominating set. The motivation of studying this type of domination is the fact that this type of domination has relation with a lot of other domination problems e.g. perfect domination.

Some variants of dominating sets problems

In this section, we present some variants of dominating sets problems before presenting our problem.

Total dominating set

The total domination is an important parameter as it ensures connectivity in the network even after failure of few of the communication points. Formally, a set

S ⊆ V (G) is a total dominating set of a graph G = (V, E) if N (S) = V . It means
that each vertex in V is adjacent to at least one vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set. Note that a dominating set S is a total dominating set if G[S], the subgraph induced by S has no isolated vertices. Clearly, γ(G) ≤ γ t (G).

Perfect dominating set

A dominating set S of a graph G is perfect if each vertex of V (G) \ S is dominated by exactly one vertex in S. More advanced details can be found in [START_REF] Livingston | Perfect dominating sets[END_REF].

Connected dominating set

A connected dominating set is a dominating set that induces a connected subgraph of the graph G. The connected domination number, denoted by γ c (G), is the minimum cardinality of a dominating set S such that G[S] is connected.

In Figure 5.1, the red vertices present an example of a minimum connected dominating set in G which is also a total dominating set and perfect dominating set. 

Efficient dominating set

A dominating set S in G is an efficient dominating set for G if for every vertex v in V , there is exactly one u in S dominating v.

Independent dominating set

A dominating set S that is independent (forms an independent set) is an independent dominating set, and the minimum cardinality of an independent dominating set of G is the independent domination number i(G).

k-tuple dominating set

Introduced by Harary and Haynes in [START_REF] Harary | Double domination in graphs[END_REF]. For a fixed positive integer k, a k- 

tuple dominating set (resp. k-tuple total dominating set) of a graph G = (V, E) is a subset S of V such that |N [v] ∩ S| ≥ k (resp. |N (v) ∩ S| ≥ k) for every vertex v ∈ V .

[i, j]-domination sets in graphs

In this section we provide definitions, some of the fundamental theorems and results founded about the [i, j]-domination sets.

Definition 1

([i, j]-domination set [CHHM13]) A subset S ⊆ V in a graph G = (V, E) is a [i, j]-dominating set if, for every vertex v ∈ V \ S, i ≤ |N (v) ∩ S| ≤ j,
that is, every vertex in V \ S is adjacent to at least i vertices, but not more than

j vertices in S. The [i, j]-domination number in G, denoted γ [i,j] (G), equals the minimum cardinality of a [i, j]-dominating set in G. A [i, j]-dominating set with cardinality γ [i,j] (G) is called a γ [i,j] (G)-set.
Note that, for i ≥ 1, a [i, j]-dominating set S is a dominating set, since every vertex in V § has at least one neighbor in S. Some papers gave a particular interest to study the [1,2]-dominating set problem. In [START_REF] Chellali | 1, 2]-sets in graphs[END_REF], the authors proved that γ(G) = γ [1,2] (G) for some classes of graphs, as in:

Definition 2 ([i, j]-total domination set [CHHM13]) A subset S ⊆ V in a graph G = (V, E) is a [i, j]-total dominating set if, for every vertex v ∈ V , i ≤ |N (v)∩S| ≤ j, that is, every vertex in V is
Theorem 5.3.1 [CHHM13] If G is a P 4 -free graph or claw-free graphs, then γ(G) = γ [1,2] (G).
The authors also showed that there are some graph classes for which γ

[1,2] (G)
is strictly less than n. Then, they proved the following theorem:

Theorem 5.3.2 [CHHM13] If G is a non-trivial k-regular graph for any k ≤ 4, then γ [1,2] (G) < n.
They have also studied the [1,3]-dominating set for grid graphs and proved that

γ(G) = γ [1,3] (G).
From complexity point of view, they proved that [1,2]-dominating set is NPcomplete for bipartite graphs.

They also observed that for a tree of order n and k leaves, γ [1,2] (G) ≤ n -k, and asked for a characterization of the trees for which the equality holds. In [START_REF] Yang | 1, 2]-domination in graphs[END_REF],

the authors answered partially this question in the following theorem:

Theorem 5.3.3 [YW14]
Let T be a tree of order n with k leaves such that every non-leaf vertex has degree at least 4. Then

γ [1,2] (T ) = n -k.
They also give some characterization to solve some open questions posed in [START_REF] Chellali | 1, 2]-sets in graphs[END_REF].

In the same perspective, in [GHM16], the authors gave a particular interest to study the [1,2]-dominating set and [1, 2]-total dominating set problems in trees by giving a linear algorithm for finding γ [1,2] (T ) and γ t[1,2] (T ).

In [START_REF] Bishnu | 1, j)-set problem in graphs[END_REF], the authors studied a more general problem: [1, j]-dominating sets in graphs. They proved that the associated decision problem is NP-complete for chordal graphs and they proposed a linear time algorithm for finding γ [1,j] (G)

for a tree and a polynomial time algorithm for finding γ [1,j] (G) for a fixed j in a split graph.

Domination in generalized Petersen graph

In this section, we review some dominating sets problems studied on general- 2 A domatic partition of a graph G = (V, E) is a partition of V into disjoint sets V1, V2, ..., VK such that each Vi is a dominating set for G. The domatic number is the maximum size of a domatic partition.

3 A k-rainbow dominating function of a graph G is a function f from V (G) to the set of all subsets of {1, 2, . . . , k} such that for any vertex v with f (v) = Ø we have (P (n, 1)) = γ(P (n, 1)).

∪ u∈N G (v) f (u) = {1,

Notations

In this section we introduce some definitions and notions that we use throughout this chapter. Let recall the formal definition of generalized Petersen graphs. is the undirected graph with vertices {u 0 , . . . , u n-1 } ∪ {v 0 , . . . , v n-1 } and edges

{{u i , u i+1 }, {u i , v i }, {v i , v i+k } | 0 ≤ i < n}.
In this work indices are always interpreted modulo n, e.g. v n+i = v i . Fig. 1 shows the graphs P (5, 2) and P (6, 2), vertices depicted in black form a [1,2]-dominating Note that B 0 (S) = ∅ for any dominating set S of P (n, 2).

{v i-1 , v i , v i+1 , u i-1 , u i , u i-1 } for any i ∈ {0, . . . n -1}. A block is called positive if two of the indices of {v i-1 , v i , v i+1 } are odd, otherwise it is called negative.

[1, 2]-dominating set of P (n, 2)

In this section we analyze the [1,2]-domination number of the generalized Petersen graphs P (n, 2) and prove the following theorem.

Theorem 6.2.1 γ [1,2] (P (n, 2)) =        2n/3 if n ≡ 0, 3[6] 2 n/3 + 1 if n ≡ 1[6]
2 n/3 + 2 otherwise.

for n ≥ 5.

Denote by f (n) the value of the right side of the equation in Theorem 6.2.1.

f (n) =        2n/3 if n ≡ 0, 3[6] 2 n/3 + 1 if n ≡ 1[6]
2 n/3 + 2 otherwise.

for n ≥ 5.

The correctness of Theorem 6.2.1 for n < 12 can be verified manually.

Lemma 6.2.2 γ [1,2] (P (n, 2)) = f (n) for 5 ≤ n < 12.
Proof. By inspection, we can easily see that the following sets S n are minimum [1,2]-dominating sets of P (n, 2).

S 5 = {u 1 , v 1 , v 3 , v 4 }, S 6 = {u 1 , v 1 , u 4 , v 4 }, S 7 = {u 0 , v 1 , v 2 , v 3 , u 4 }, S 8 = {u 1 , v 1 , u 4 , v 4 , v 6 , v 7 }, S 9 = {u 1 , v 1 , u 4 , v 4 , u 7 , v 7 }, S 10 = {u 1 , v 1 , u 4 , v 4 , u 7 , v 7 , u 8 , v 8 } and S 11 = {u 1 , v 1 , u 4 , v 4 , u 7 , v 7 , v 9 , v 10 }. Lemma 6.2.3 γ [1,2] (P (n, 2)) ≤ f (n) for n ≥ 5.
Proof. To prove that f (n) is an upper bound of γ [1,2] (P (n, 2)), we give in Fig. 6.3 the corresponding construction for each case. For n ≡ 0, 3 [6], we choose the middle pair of nodes of each block. For the cases n ≡ 2, 4, 5 [6], we do the same as the previous case by choosing the middle pair of nodes of each block. Then, we add two dominating nodes as depicted in red in Fig. 6.3. For the case n ≡ 1 [6], we choose two nodes from each block as shown in Fig. 6.3 except in the two successive blocks preceding the block with only two nodes. In these two blocks we choose five nodes as depicted in Fig. 6 

61 u 0 v v u 1 v u u u i-1 i i+1 i 1 0 v i-1 v i+1 P 0 P 1 P P i P i+1 i-1 v n-1 u n-1 P n-1
Figure 6.4: The partition of P (n, 2) into n pairs.

Case when B 1 (S) is empty

The vertices of P (n, 2) are grouped into n pairs of vertices p i = {v i , u i } as depicted in Fig. 6.4. Since B 1 (S) = ∅ this means that for i = 1, ..., n

γ S (p i ) + γ S (p i+1 ) + γ S (p i+2 ) ≥ 2
(subscripts are always taken modulo n). Note that γ S (p i ) ≤ 2 for all i. Consider the following system of inequalities for integer valued variables x 0 , . . . , x n-1 .

x i ≤ 2

x i + x i+1 + x i+2 ≥ 2 n-1 i=0 x i < f (n) (6.1)
Note that x i = γ S (p i ) is a solution for these equations. We will show that no solution of Eq. (6.1) is induced by a [1, 2]-dominating set. Lemma 6.2.4 Let x be a solution of Eq. (6.1) with x i = 2 for some i. Let x = x except xi+1 = xi+2 = 0 and xi+3 = 2. Then x is a solution of Eq. (6.1) with

n-1 i=0 xi ≤ n-1 i=0 x i .
Proof. Obviously x satisfies the first two sets of inequalities. Note that x i+1 +

x i+2 + x i+3 ≥ 2 since
x is a solution of Eq. (6.1). Thus, xi+1 + xi+2 + xi+3 ≤

x i+1 + x i+2 + x i+3 .
Lemma 6.2.5 Let x be any solution of Eq. (6.1). Then x i ≤ 1 for i = 0, . . . , n -1.

Proof. Let x be any solution of Eq. ( 6.1) such that x i = 2 for some i. Without loss of generality i = 0. By Lemma 6.2.4 there exist a solution which coincides with x except x 1 = x 2 = 0 and x 3 = 2. Repeatedly applying Lemma 6.2.4 proves that there exits a solution x of Eq. (6.1) with xk = 2 and xk+1 = xk+2 = 0 for k = 0, 1, . . . , n/3 . If n ≡ 0 [3] then n-1 i=0 xi = 2n/3 = f (n), which is impossible. Suppose n ≡ 1 [3]. Then xn-1 = 2 otherwise the second constraint for i = n -2 would be violated. This leads to the contradiction n-1 i=0 xi = 2 n/3 + 2 ≥ f (n). Hence, n ≡ 2 [3]. Then xn-2 = 2 otherwise the second constraint for i = n -2 is not satisfied. Again this leads to the contradiction n-1 i=0 xi = 2 n/3 + 2 = f (n). This proves x i ≤ 1 for all i. Lemma 6.2.6 If n ≡ 4 [6] then Eq. ( 6.1) has no solution. If n ≡ 4 [6] then any solution of Eq. (6.1) is a rotation of the solution (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1).

Proof. Let x be any solution of Eq. (6.1). By Lemma 6.2.5 x i ≤ 1 for i = 0, . . . , n-1. Denote by n 0 the number of variables with x i = 0. Thus n-1 i=0 x i = n -n 0 . Note that if x i = 0 then either x i+1 = 1 or x i-1 = 1, thus no adjacent variables have both value 0. Denote by l 1 , . . . , l n 0 the lengths of maximal sequences of consecutive

x i with x i = 1. Note that l j ≥ 2 for all j. Then n-1 i=0 x i = n 0 j=1 l j = 2n 0 + n 0 j=1 (l j -2). This implies 3 n-1 i=0 x i = 2n + n 0 j=1 (l j -2). If n ≡ 0 [3] then n-1 i=0 x i ≥ 2n/3 = f (n). A contradiction. If n ≡ 2 [3] then again this leads to the contradiction n-1 i=0 x i = 2 n/3 + (4 + n 0 j=1 (l j -2))/3 ≥ 2 n/3 + 2 ≥ f (n). Finally if n ≡ 1 [6] then n-1 i=0 x i = 2 n/3 + (2 + n 0 j=1 (l j -2))/3 ≥ 2 n/3 + 1 = f (n).
This contradiction proves that for n ≡ 4 [6] Eq. ( 6.1) has no solution.

Let n ≡ 4 [6]. Then n-1 i=0

x i = 2 n/3 +(2+ n 0 j=1 (l j -2))/3 < f (n) = 2 n/3 +1 implies 3 = 2 + n 0 j=1 (l j -2)
. This yields that there exists i such that l i = 3 and l j = 2 for all j = i. Thus, x is a rotation of the solution (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1). Lemma 6.2.7 The solution x = (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1) is not induced by a [1, 2]-dominating set of P (n, 2).

Proof. Assume there exists a [1, 2]-dominating set S such that x i = γ S (b i ). Two vertices of the first two pairs must be in S. All four possibilities lead to a contradiction as shown in the following.

[1, 2]-dominating set of P (n, 2)

63 Case 1. v 0 , u 1 ∈ S (see Fig. 6.5). Since S is [1,2]-dominating the lower vertex of the last pair p n-1 must be in S. Now the same argument implies that the middle vertex of pair p 3 must be in S. This yields that the lower vertex of pair p 7 must be in S, otherwise the lower vertex of pair p 5 is not dominated. Repeating this argument shows that the lower vertex of pair p n-3 must be in S (note that n ≡ 4 [6]). Thus, S does not dominate the middle vertex of pair p n-2 . Contradiction.

1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 u u u n-1 p p 0 p 2 p 1 1 1 v 0 2 2 0 v v Figure 6.5: If v 0 , u 1 ∈ S then
vertices depicted in red must also be in S.

Case 2. u 0 , v 1 ∈ S (see Fig. 6.6). In order to dominate the middle vertex of pair p 2 the middle vertex of p 3 must be in S. Similarly the lower vertex of pair p 7 must be in S to dominate the lower vertex of p 5 . This results in the pattern shown in Fig. 6.6. This is impossible because all three neighbors of the lower vertex of p n-1 are in S.

1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 u u u n-1 p p 0 p 2 p 1 1 1 v 0 2 2 0 v v Figure 6.6: If u 0 , v 1 ∈ S then
vertices depicted in red must also be in S.

Case 3. u 0 , u 1 ∈ S. The same reasoning as above leads to the situation depicted in Fig. 6.7. This gives also rise to a contradiction since the upper vertex of pair p n-2 is not dominated.

Case 4. v 0 , v 1 ∈ S. The same reasoning as above leads to the situation depicted in Fig. 6.8. This is impossible because all three neighbors of the lower vertex of p n-1 are in S.

1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 u u u n-1 p p 0 p 2 p 1 1 1 v 0 2 2 0 v v Figure 6
.7: If u 0 , u 1 ∈ S then vertices depicted in red must also be in S.

1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 u u u n-1 p p 0 p 2 p 1 1 1 v 0 2 2 0 v v Figure 6.8: If v 0 , v 1 ∈ S then vertices depicted in red must also be in S.
This concludes the proof of Theorem 6.2.1 for the case B 1 (S) = ∅.

Case when B 1 (S) is not empty

The following simple observation is based on the fact that the central vertex of a block b can only be dominated by a vertex within b. Lemma 6.2.8 Any positive block b ∈ B 1 (S) corresponds to one of the four blocks shown in Fig. 6.9. A similar result holds for negative blocks. 

Case 1. u i-2 , u i+2 ∈ S. If v i-4 and v i+4 are not in S then S = S/{u i } ∪ {v i }. If v i-4 or v i+4 are in S then S = S/{u i-2 } ∪ {u i-1 } or S = S/{u i+2 } ∪ {u i+1 }. Case 2. u i-2 ∈ S, u i+2 ∈ S.
To dominate u i-2 and v i-2 we consider two subcases.

Subcase 2.1.

v i-2 ∈ S. If u i-3 is not in S then S = S/{u i } ∪ {u i-1 }. If u i-3 ∈ S
then there are three possibilities depending on which vertex dominates u i+4 . Hence,

if u i+3 ∈ S then S = S/{u i+2 } ∪ {v i }. If v i+4 ∈ S then S = S/{u i+2 } ∪ {u i+1 }.
Otherwise, the vertex u i+4 is dominated by node u i+5 of block b ++ then S = S/{u i } ∪ {v i-1 }.

Subcase 2.2. v i-2 ∈ S. This implies that u i-3 and v i-4 from are both in S.

Then S = S/{u i-3 } ∪ {u i-1 }.

Case 3. u i+2 ∈ S, u i-2 ∈ S. This case is symmetric to case 2.

Case.4. u i+2 , u i-2 ∈ S. In order to dominate u i-2 and v i-2 two situations must be considered.

Subcase 4.1. v i-2 ∈ S. Since v i-2 is in S and v i is not in S then v i+2 cannot be a dominating node. This yields that u i+3 and v i+4 are in S.

Then S = S/{u i+3 } ∪ {u i+1 }. Subcase 4.2. v i-2 ∈ S. This implies u i-3 , v i-4 ∈ S. Therefore, S = S/{u i-3 } ∪ {u i-1 }.
The next Lemma finally completes the proof of Theorem 6.2.1. 

v i-3 ∈ S then S = S \ {u i+2 } ∪ {v i+1 } and if v i-2 ∈ S then S = S \ {u i+2 } ∪ {u i }. If v i-3 , v i-2 ∈ S then S = S \ {u i-1 , u i+2 } ∪ {u i , v i }.
1. If v i+5 ∈ S then S = S \ {v i+3 } ∪ {u i+1 }. 2. If u i+5 ∈ S then S = S \ {u i+3 } ∪ {u i+1 }.
3. If u i+6 ∈ S then we distinguish three cases depending on which node domi- 

nates v i+4 . If u i+4 ∈ S then S = S \ {u i+2 , u i+4 } ∪ {v i+2 , u i }. If v i+4 ∈ S then S = S \ {u i+2 , v i+4 } ∪ {v i+2 , u i }. Finally if v i+6 ∈ S then

If u

i+4 ∈ S then S = S \ {u i+2 , u i+3 } ∪ {u i+1 , v i+4 }.
This proves claim 2. 

[1, 2]-total dominating set of P (n, 2)

In this section, we investigate the problem of [1,2]-total domination and prove the following result.

Theorem 6.3.1 γ t[1,2] (P (n, 2)) =        5 if n = 5 2n/3 if n ≡ 0, 3[6]
2 n/3 + 2 otherwise.

for n ≥ 6.

Note that γ t [1,2] (P (n, 2)) = γ [1,2] (P (n, 2)) except for the case n = 5 and n ≡ 1 [6].

Denote by g(n) the value of the right side of the equation in Theorem 6.3.1. We begin by proving an upper bound.

Lemma 6.3.2 γ t[1,2] (P (n, 2)) ≤ g(n) for n ≥ 5.
Proof. For n = 5, the construction is already given in Fig. 6.1. In Fig. 6.12, we give the construction of the minimum [1, 2]-total dominating set in P (n, 2) for n ≡ 1 [6]. The proposed construction is based on the selection of one pair of nodes of the middle in each block which corresponds to 2n/3 nodes. Then, we add two additional dominating nodes as depicted in color red in Fig. 6.12. For the cases n ≡ 1 [6], we refer to Fig. 6.3 since the provided sets are already total dominating sets. Now, it remains to prove that g(n) is a lower bound. Let S be a total [1,2]dominating set of minimum size of P (2, n). Let G[S] be subgraph induced by S.

By definition of a [1, 2]-total dominating set, each connected component of G[S]

has at least two vertices and every vertex of G[S] has degree 1 or 2. Hence every connected component is either a path or a cycle. Let x l and y l be the numbers of connected components that are paths and cycles of order l, respectively. Observe that x 1 = 0 and y 1 = • • • = y 4 = 0. Moreover, each path of order l dominates at most 2l + 2 vertices and each cycle of l vertices dominates at most 2l vertices. Thus,

l≥2 (2l + 2)x l + 2ly l ≥ 2n (1) l≥2 l(x l + y l ) = |S| (2) 
From ( 1) and ( 2) we can deduce

|S| + l≥2 x l ≥ n (3) 
Also one may observe that

l≥2 lx l ≥ 2 l≥2 x l (4) 
In the following we study γ t [1,2] (P (n, 2)) according to residue of n [6]. Suppose becomes 2), we deduce l≥2 l(x l + y l ) < 2k thus l≥2 lx l + l≥2 ly l < 2k. Using (4), we obtain 2k + 2 + l≥2 ly l < 2k, a contradiction.

|S| < γ t[1,2] (P (n, 2)).
|S| + l≥2 x l ≥ 3k, thus l≥2 x l ≥ k + 1. From (
(c) n ≡ 2, 4, 5 [6]: If n = 6k + i with i ∈ {2, 4, 5} then γ t [1,2] (P (n, 2)) = 4k + 2 and |S| < 4k + 2. Inequality (3) becomes |S| + l≥2 x l ≥ 6k + i -4k -2 for i ∈ {2, 4, 5}, thus l≥2 x l ≥ 2k + j with j ∈ {1, 3, 4}. From (2), we deduce l≥2 l(x l + y l ) < 4k + 2 thus l≥2 lx l + l≥2 ly l < 4k + 2. Using (4), we obtain 4k + 2j + l≥2 ly l < 4k + 2 with j ∈ {1, 3, 4}, a contradiction. 

Inequality (3) becomes |S| + l≥2 x l ≥ 6k + 1, thus l≥2 x l ≥ 2k. From (2)
and using (4), we obtain 4k ≤ l≥2 lx l + l≥2 ly l ≤ 4k + 1. This implies l≥2 ly l = 0, thus 4k ≤ |S| = l≥2 lx l ≤ 4k + 1. Since l≥2 lx l ≤ 4k + 1 and l≥2 x l ≥ 2k, we have l≥2 lx l ≤ 2 l≥2 x l + 1. This is only possible if x 3 = 1 and x j = 0, ∀j > 3. Thus, G[S] is the union one path P 3 and x 2 paths P 2 . Since every P 2 component can dominate at most 6 vertices and the P 3 component can dominate at most 8 vertices, we deduce 6x 2 + 8 ≥ 12k + 2 = 2n. On the other hand, recall |S| = 2x 2 + 3 ≤ 4k + 1 thus 6x 2 + 8 ≤ 12k + 2. Hence, 6x 2 + 8 = 12k + 2. This implies that P (n, 2) can be partitioned into x 2 components of type shown in Fig. 6.10(a) and one component shown in Fig. 6.10(b) Suppose such partitioning exists. In the following we study the partitioning by making consecutive extractions of components. Extracting a component means deleting all its vertices from the graph. Moreover, an extraction is said to be forced if there is no other option. Recall that the set of vertices of P (n, 2) is the union of the two sets U = {u 0 , . . . , u n-1 } and V = {v 0 , . . . , v n-1 }. Vertices of U and V form the two main cycles of P (n, 2) respectively. Two cases are possible. Figure 6.12: The construction of γ t [1,2] (P (n, 2)) for n ≡ 1 [6].

Either all three vertices of the P 3 component are on the same main cycle or two of them are on one cycle and the third on the other. In the first case, once the P 3 dominated component is extracted, the next forced extraction of a P 2 dominated component would imply the appearance of a vertex with a degree 2 (as shown by Fig. 6.11(a)). In the second case, after extracting the P 3 dominated component and after several forced extractions of P 2 dominated components(as shown by Fig. 6.11(b)), one may easily confirm that such a partitioning is impossible. We conclude that x 3 = 0, a contradiction. This concludes the proof of Theorem 6.3.1.

Conclusion

Generalized Petersen graphs are very important structures in computer science and communication techniques since their particular structures and interesting properties. In this part, we considered a variant of the dominating set problem, called the [1,2]-dominating set problem. We studied this problem in generalized Petersen graphs P (n, k) for k = 2. We gave the exact values of the [1,2]-domination numbers and the [1, 2]-total domination numbers of P (n, 2). uniform monitoring problem by presenting some bounds on edge monitoring number in general graphs. We propose some characterizations related to those bounds. We also discuss a relation between this problem and two famous problems in graph theory: triangle packing problem [START_REF] Hassin | An approximation algorithm for maximum triangle packing[END_REF] and double total dominating sets problem [START_REF] Michael | k-tuple total domination in graphs[END_REF]. Some results on specific classes of graphs are also discussed such as path power, cycle power, split graph, etc. A linear time algorithm for the square of a tree is also presented. In Chapter 8, we study the Edge Monitoring problem from the perspective of parameterized complexity. Afterwards, we focus in Chapter 9

Introduction and first results

on the weighted version of the edge monitoring problem, called Weighted Edge Monitoring.

Motivation

Wireless Sensor Networks (WSNs in short) are increasingly used in the environment For the sake of simplicity, all colorings considered are monitorable. Question: Is there a monitoring set S of G such that |S| ≤ t?

Definitions and variants of problem

Let G = (V, E), w, c such that G is a graph, w : V → Q + and c : E → N.

Weighted Edge Monitoring

Input: A weighted graph (G = (V, E), w, c), a rational k ≥ 0.

Introductory results

79

Question: Is there a monitoring set S of G, c such that w(S) ≤ k?

The k-uniform weighted monitoring problem is a Weighted Edge Monitoring with the particularity that all the edges have the same color c = k.

Introductory results

In order to illustrate the behavior of the edge monitoring, we give some trivial characterizations of some special cases of the complete graph K n . We first begin with {0, 1}-colorings.

Let K n be a complete graph of at least 3 vertices.

Since any subset of three vertices monitors all edges of K n , we deduce that for

any {0, 1}-coloring c of G we have γ m (K n , c) ≤ 3.
This observation is supported with the following characterizations of special cases:

• γ m (K n , c) = 1 iff. ∃v ∈ V s.t. ∀e ∈ N e (v) : c(e) = 0. • γ m (K n , c) ≤ 2 iff. ∃uv ∈ E : c(uv) = 0.
Now, we consider monitoring K n with {i, . . . , n-2}-colorings. That is we assume at least one edge having a maximum color c = n -2.

• γ m (K n , c) = n iff. ∃e 1 , e 2 ∈ E s.t. e 1 is not adjacent to e 2 and c(e 1 ) = c(e 2 ) = n -2.

• γ m (K n , c) = n -1 iff. for more than one edge with color n -2, the subgraph induced by E n-2 , the edges colored with n -2, must be a star or for one edge with color n -2, we must have at least one edge nonadjacent to the edge of color n -2, having a color n -3. Proof. For K n : Let m 1 be the first monitor chosen among the vertices of K n . This monitor will monitor all the edges of K n-1 = K n -{m 1 } because both ends of each edge in K n-1 have a link with m 1 . The remaining edges is all the edges having the monitor m 1 as end. To monitor these edges, we choose a vertex belonging to K n-1 as a second monitor m 2 . All edges will be monitored except m 1 m 2 , so we choose a third monitor m 3 in order to monitor this edge. Finally, we needed three monitors to monitor all edges.

• γ m (K n , c) = n -2 iff.
For K n -I: Let m 1 be the first monitor. As shown in Figure 7.2, this monitor have a connection with all the vertices except s 1 . So m 1 will monitor all edges except the edges having m 1 or s 1 as end. We choose the second monitor m 2 , we are sure that m 2 has connection with m 1 and s 1 but not with s 2 . m 2 will monitor the remaining edges except the edges m 1 m 2 , m 2 s 1 and s 1 s 2 . To monitor the remaining edges, we choose the third monitor m 3 from the rest. m 3 has necessarily connection with m 1 , m 2 , s 1 and s 2 . It follows that the edge monitoring number of the complete graph, the complete graph minus 1-factor and the complete multipartite graph is equal to 3.

In the rest of the chapter we focus on monitoring graphs with a special case of coloring with only one color c = {1}.

1-uniform monitoring of general graphs 81

Note that we restrict Edge Monitoring to apply only on graphs where every edge is part of at least one triangle. Indeed if it is not the case, then we can directly answer that the problem has no solution in polynomial time. This restriction is no big deal because in practice either we add sensors that cover the edges that are not in a triangle or remove the edges by forbidding communications on these edges.

1-uniform monitoring of general graphs

The 1-uniform monitoring problem (1-UMP) assumes the uniform coloring where all the edges have the same color c = 1. A graph admitting a 1-uniform monitoring set is called a 1-monitorable graph. In the following, we give a trivial characterizations of 1-monitorable graphs. An example of such graphs are maximal planar graphs since every edge belongs to a triangle. However, the graph illustrated in Figure 7.3 admits a 1-uniform monitoring and it's not a maximal planar graph. Proof. Clearly, the universal vertex need to be monitor to monitor all lateral edges (edges of the cycle). For n = 3, 4, 5, γ m (W n , 1) = 3. We can easily check it by inspection. For n > 5 and using Observation 7.5.2, it implies that if we choose a vertex v as monitor from the vertices of the cycle, we must choose at least another vertex as monitor adjacent to v from the cycle. Then, all lateral vertices (vertices of the cycle) choose as monitors need to form paths of at least two monitors. Let decompose the lateral vertices of the graph into blocks of four vertices. We distinguish three cases according to the value of n -1:

γ m (W n , 1) =        2α + 1 if n -1 ≡ 0[4] 2α + 2 if n -1 ≡ 1[4] 2α + 3 otherwise. with α = n-1 4 . (a) (b) (c) (d) 
(a) For n -1 ≡ 0 [4]: As shown in Figure 7.4(a), each two monitors can only monitor four edges. This implies that we need two monitors for each block. Since n -1 ≡ 0 [4] and in order to monitor all the edges, we must choose 2( n-1 4 ) vertices to monitor the remaining edges plus one (the universal vertex).

(b) For n -1 ≡ 1 [4]: In this case, we use the same method using in the precedent case to monitor the edges. We have one edge more and in order to monitor it, we must choose one monitor more as shown in Figure 7.4(b).

(c) For n -1 ≡ 2 [4]: We need to prove that we need two more monitors in order to monitor the two added edges. To monitor four edges and using only two monitors, the monitors must be positioned in the center of each block. Since each monitor need to be adjacent to two other monitors (Observation 7.5.2), it implies that if we 7.5. Bounds on edge monitoring number 83 add one monitor to monitor the two added edges, this monitor must be adjacent to the two monitors of the adjacent block then only one edge can be monitored. Thus, we need two more monitors as shown in Figure 7.4(c).

(d) For n -1 ≡ 3 [4]: In this case, we will have three more edges to be monitored.

Since one monitor can only monitor two edges then we need at least two other monitors as depicted in Figure 7.4(d). This complete the proof.

Bounds on edge monitoring number

The decision problem to determine the edge monitoring number of a graph is NPcomplete (see Chapter 8). Hence it is of interest to determine some bounds on the edge monitoring number of a graph.

The first proposition of this section gives a trivial lower bounds of the edge monitoring number γ m (G, 1) for any 1-monitorable graph G. Proof. By contradiction, we prove there is no possible monitoring with 2 or less monitors. Suppose a monitoring set with 2 monitors u and v. If u and v are neighbors then the edge uv is not monitored and needs at least one new monitor.

Otherwise, u and v belong to two triangles. This implies that at least two other monitors will be needed. Thus, any monitoring set of G will have three monitors at least.

Let G be a connected graph of order n ≥ 3. There exist graphs where all vertices should be monitors. Thus, 3 ≤ γ m (G, 1) ≤ n. Observation 7.5.2 Let G = (V, E) be a 1-monitorable graph and let S be a monitoring set of G. Each vertex of G is adjacent to at least two vertices of S.

To prove the previous observation, one may rely on the fact that a 1-monitorable graph G has minimum degree at least 2. We now present a characterization of graphs reaching the upper bound:

Observation 7.5.3 Let G = (V, E) be a 1-monitorable graph. γ m (G, 1) = n iff.
for each vertex v of V there exists an edge e of E such that M (e) = {v}.

Thus, recognizing graphs G having γ m (G, 1) = n could be performed in polynomial time.

The following proposition gives more precise description of such graphs having a universal vertex i.e. a vertex adjacent to all others. Proposition 7.5.4 Let G be a 1-monitorable graph.

(1

) If ∆(G) = n -1 and |E(G)| > 3n-3 2 then γ m (G, 1) < n. (2) If ∆(G) = n -1 and |E(G)| = 3n-3 2 then γ m (G, 1) = n.
Proof. Let G be a monitorable graph with order n ≥ 4. Let ∆ = n -1 then we have at least one vertex v with degree n -1. If we select this vertex v as monitor, this permit to monitor all the edges of the graph G except n -1 edges that have v as one end. In the case (2), the number of edges of G is 3n-3 2 and according to the definition of the monitorable graph this means that there are one vertex with degree n -1 and the remaining vertices have degree 2 and n is odd. Otherwise, if n is even |E(G)| is not natural number. It implies that the graph is a set of triangles sharing the same vertex v. Then, in this case, all the vertices of this graph must be monitors in order to monitor all the edges. In the case (1), the number of edges is bigger than 3n-3 2 . This means that for the n -1 vertices, we have more than n-1 2 edges. Thus, to monitor the n -1 remaining edges, we need less than n -1 vertices so γ m (G, 1) < n.

Now, we mention a basic lower bound for edge monitoring number.

Theorem 7.5.5 Let G be a monitorable graph of order n with no isolated vertices.

Then γ m (G, 1) ≥ 2n ∆ .

Proof. Let S be a set of monitors of G. Then, using Observation 7.5.2, every vertex of G is adjacent to two vertices of S. That is, all neighbors of the set S N (S) = 2n.

Since every v ∈ S can have at most ∆ neighbors, it follows that ∆γ m (G, 1) ≥ 2n.

The theorem follows by dividing this inequality by ∆.

Corollary 7.5.6 Let G be a monitorable graph of order n.

If ∆ ≤ n k for some positive integer k > 1, then γ m (G, 1) ≥ 2k. If ∆ < n k , then γ m (G, 1) ≥ 2k + 1.
Proof. By Theorem 7.5.5, γ m (G, 1) ≥ 2n ∆ . If ∆ ≤ n k , then substitution yields γ m (G, 1) ≥ 2k. Moreover, if ∆ < n k , then by substitution again, we have γ m (G, 1) > 2k. Hence γ m (G, 1) ≥ 2k + 1.

Recall the following definitions:

Definition 9 (k-tuple dominating set) For a fixed positive integer k, a k-tuple dominating set (resp. k-tuple total dominating set) of a graph G = (V, E) is a subset

S of V such that |N [v] ∩ S| ≥ k (resp. |N (v) ∩ S| ≥ k) for every vertex v ∈ V .
The k-tuple domination number γ ×k (G) (resp. k-tuple total domination number γ ×k,t (G)) is the minimum cardinality of a k-tuple dominating set (resp. k-tuple

total dominating set) of G. A dominating set of G is a 1-tuple dominating set of G. A total dominating set of G is a 1-tuple total dominating set of G. A double dominating set of G is a 2-tuple dominating set of G. Definition 10 (Edge disjoint triangle packing) A graph G = (V, E) is said to have a k packing of triangles K 3 if there exist k disjoint copies (K 3 ) 1 , ..., (K 3 ) k of K 3 in the vertex set of G. The packing is called edge-disjoint if we allow (K 3 ) 1 , ..., (K 3 ) k
to have some vertices in common but no edges exist in (K 3 ) i ∩ (K 3 ) j when i = j.

In the following, we give better lower and upper bounds: Theorem 7.5.7 Let G = (V, E) be a monitorable graph and let F be a subgraph such that F is the maximum edge disjoint triangle packing of G. Then, γ ×2,t (G) ≤ γ m (G, 1) ≤|V (F )|.

Proof. Let D ⊆ V be γ m (G, 1)-set of G. From Observation 7.5.2, we deduce that D is also a double total dominating set and we hence obtain γ ×2,t (G) ≤ γ m (G, 1).

For the upper bound, let F be a subgraph which represent the maximum edge disjoint triangle packing of G. We prove that any V (F ) is edge monitoring set for G. Assume, to the contrary, that V (F ) is not an edge monitoring set. This implies that ∃e ∈ G such that e = uv is not monitored by any vertex of V (F ).

By assumption, the graph G is monitorable, then e belongs to at least one triangle < v, u, w >. The triangle < v, u, w > has to belong to F for otherwise F is not a maximum edge disjoint triangle packing of G. Contradiction. Thus, V (F ) is an edge monitoring set and then γ m (G, 1) ≤|V (F )|.

To finish this section, we give a brief study on how the monitoring set evolves with edge deletion. In particular, we consider the example of complete graphs and deleting edges by blocks of perfect matchings I. + 11] prove that k-uniform Edge Monitoring is NP-complete on unit disk graphs for every k ≥ 2. We prove a stronger result for 1-uniform Edge Monitoring. Theorem 7.6.1 1-uniform Edge Monitoring is NP-complete on planar unit disk graphs given with a geometric representation.

Dong et al [DLL

The proof is inspired by Theorem 4.1 in [START_REF] Clark | Unit disk graphs[END_REF]. As in [START_REF] Clark | Unit disk graphs[END_REF] we use the following lemma: Lemma 7.6.2 [START_REF] Valiant | Universality considerations in VLSI circuits[END_REF] A planar graph G with maximum degree 4 can be embedded in the plane using O(|V |) area in such a way that its vertices are at integer coordinates and its edges are drawn so that they are made up of horizontal or vertical segments.

Proof. (of Theorem 7.6.1) We show a reduction from PlanarVertexCover with maximum degree 3 which is NP-complete [START_REF] Garey | The rectilinear steiner tree problem in NP complete[END_REF]. Let G = (V, E) be a planar graph with maximal degree 3. Let {e 1 , . . . , e |E| } be the edges in G. Let N > 0 be an integer. We draw G in the plane using Lemma 7.6.2 (see Figure 7.5) and we adjust the scale such that each vertex is at coordinate (xN, yN ) for some integers x and y. We build G = (V , E ) from G by replacing each edge

e i = {u, v}, i ∈ [1, . . . , |E|], by a subgraph G e i of vertices {a i,0 = u, b i,0 , b i,0 , a i,1 , b i,1 , b i,1 , . . . , a i,2n i , b i,2n i , b i,2n i , a i,2n i +1 =
v} where n i is an integer that depends on the length of the embedding of e i . For each j ∈ [0, 2n i ], we connect b i,j and b i,j to a i,j and a i,j+1 and we connect b i,j to b i,j (see Figure 7.6). Moreover, |A| = e i ∈E (2n i ) and |B| = e i ∈E (4n i + 2). The proof is an immediate consequence of these three facts.

v 1 v 2 v 3 v 4 v 1 v 2 v 3 v 4
(1) If a set S ⊆ V monitors G then B ⊆ S : otherwise, there exists a vertex b i,j or b i,j that is not in S . Then {a i,j , b i,j } or {a i,j , b i,j } is not monitored by S .

( (3) There exists a minimum monitoring set S of G such that V ∩ S is a vertexcover of G and |V (G e i ) ∩ A ∩ S | = n i for every i ∈ [1, |E|]: assume that V ∩ S is not a vertex cover of G. Let e i = {u, v} be an edge in G not covered by V ∩ S . Then, it is easily seen that |V (G e i ) ∩ A ∩ S | > n i . Otherwise, an edge {b i,j , b i,j } for some j is not covered by S . Thus, we can replace these vertices by u and n i vertices in V (G e i ) ∩ A which monitors every edge {b i,j , b i,j }. By iterating this process on every edge in G, we obtain a set with the desired properties. Now, assume that V ∩ S is a vertex cover of G but there is some i such that |V (G e i ) ∩ A ∩ S | = n i . It is easily seen that |V (G e i ) ∩ A ∩ S | < n i implies that an edge {b i,j , b i,j } for some j is not covered by S and if |V (G e i ) ∩ A ∩ S | > n i then S is not minimum.

Split graphs

We prove that the problem is N P -complete on split graphs.

each edge in G k , each extremity is connected to at least k vertices. Consider one extremity v, v has at least k -1 connections with other vertices and one connection with u. Furthermore, the other extremity u is also connected to at least k vertices.

Since v is adjacent to u and G has at least k + 1 vertices, then u has at least k -1 common vertices with v. This means that any edge e in G k belongs to at least k -1 triangles. Hence, G k is k -1-monitorable.

Proposition 7.6.8 Let G be a connected monitorable graph. If G is monitorable,

then γ m (G k , 1) = 3 ≤ γ m (G k-1 , 1) ≤ • • • ≤ γ m (G 2 , 1) ≤ γ m (G, 1) with k ≥ d -1
and d the diameter of the graph G.

Proof. Let γ m (G, 1) = t. We can easily prove that the same number t can monitor all edges of the graph G i for any i > 1.

First, we prove that is true for the first graph power G 2 . G 2 has the same set of vertices as G, but we add edges between two vertices when their distance in G is 2. We simply prove that all the additional edges can be monitoring by the same monitors of G. We have two subcases A and B as showing in Figure 7. 7.6.5 Linear algorithm for the square of tree One of the important classes of graphs is the trees. The importance of trees is evident from their applications in various areas. Besides, many hard problems are efficiently solvable on trees, and this is the second reason for studying the edge monitoring problem in this classe of graphs.

Let T be a tree of order n ≥ 3. In the following, we give an algorithm for the edge monitoring of the square of any tree T , denoted by T 2 . Please observe that trees are not monitorable graphs.

First we present some definitions. A leaf is a vertex of degree 1. If a vertex is not a leaf this means that is an inner vertex of degree at least 2. A forest is a disjoint union of trees.

We start with the following propositions that can be easily obtained, thus proofs are omitted. Proposition 7.6.9 Let T be a tree of order n ≥ 3. If d(T ) ≤ 4, then γ m (T 2 , 1) = 3. Proposition 7.6.10 For any tree T with diameter at least 5, there exist γ m (T 2 , 1)set that contains no leaves of T .

In the rest of this section, we only consider γ m (T 2 , 1)-sets for which the Proposition 7.6.10 holds. Lemma 7.6.11 Let T be a tree of order n. T 2 is the square of the tree T . Let S be a set of monitors of T 2 . Let V (T ) be the set of vertices of T . Let L be a set of leaves of T . If ∃v ∈ V (T ) such that one of the following conditions hold in T : Proof. Let v be a vertex of T and S the set of monitors of T 2 . To prove that v must be in S, we just need to verify that for each case there exists at least one edge that can only be monitored by v. These four possible cases are illustrated in Figure 7.8. The red edges are the edges that candidate be monitored. The Figure 7.9 represents a counterexample to explain why we need to add the condition This completes the proof.

|N (x) ∩ L| = deg(x) -2 in (d). (b) (d) (c) v (a) v v v
Let decompose the set of vertices of T into three subsets. Let V 1 be a set of vertices that are leaves. Let V 2 be a set of vertices that satisfy the conditions of Lemma 7.6.11. The set V 3 is the remaining vertices that belong to neither V 1 nor V 2 . This means that there is no monitors that belong to the set V 1 and all vertices of V 2 are monitors. In the following lemma, we will show the conditions that must satisfy the set of vertices that are non monitors.

Lemma 7.6.12 Let T be a tree of order n. T 2 is the square of this tree. Let S be a monitoring set of T Proof. Let {u, v} ∈ V (T ) two vertices such that {u, v} / ∈ M . We deduce three cases depending on the degree of v and u:

(1) If v has degree 3, then v cannot be adjacent to another non monitor in T .

Assume the contrary. It is easy to observe that if at least one vertex v / ∈ M has degree equal to 3 and it is adjacent to another vertex u / ∈ M in T , then there exist some edges not monitored (see Figure 7.10(a) and 7.10(b)).

(2) If deg(v) ≥ deg(u) > 3, then u may be adjacent to v in T but not to a third vertex w ∈ V (T )\M . Figure 7.10(c) and 7.10(d) illustrate this case. We can easily see that we can admit two adjacent non monitors in T but if we have three non monitors, we have an edge that cannot be monitored. From Proposition 7.6.10, we deduce that there exist γ m (T 2 , 1)-sets without any vertices in V 1 . From Lemma 7.6.11, we can observe that all vertices in V 2 must be monitors. The vertices in V 3 need to satisfy some conditions, see Lemma 7.6.12.

The idea is to construct the graph G = (V, E) such that V = V 3 (T ) be the set of vertices and E be the set of edges consisting on all the edges in E(T ) having both endpoints in V 3 (T ) and we add an edge between two vertices {u, v} ∈ V 3 if these vertices form a path as follow: u, x, y, v such that {x, y} ∈ V 2 and deg(x) = 2 in T or deg(x) > 2 in T and x is adjacent to at least deg(x) -2 leaves (same for y). Note that if both vertices u and v have degree bigger than 3 then we give weight = 2 to the added edge. All the other edges of the graph have weight = 1. The idea of adding some edges in the graph help us to keep the condition (3) of Lemma 7.6.12.

It is easy to see that the graph G constitutes a forest of trees.

We first discuss how we can find the minimum number of monitors from this forest. By Lemma 7.6.12, we deduce that we cannot have two adjacent non monitors except in some conditions and we cannot have more then two non monitors constituted a path in T . The conditions of Lemma 7.6.12 will be illustrated as a 

O(v) = u∈c(v)
max(I(u), O(u));

6:

If v ∈ V r then 7:

I(v) = 1 + u∈c(v)
O(u);

8:

Else then 9:

I(v) = 1 + u∈cr(v)∪c b2 (v) O(u) + u∈c b1 (v)
max(I(u), O(u)); As described bellow, the vertices set of the tree T can be decomposed into three subsets V 1 , V 2 and V 3 . The algorithm 7.2 is divided into two steps. First, all vertices V 1 represents the leaves of the tree. We mark them as non monitors. All the vertices of V 2 (as described previously) are marked as monitors. Note that the deg

T (v)
is the corresponding degree of the vertex v ∈ V (T ) and not in T 2 . The step 2 of the algorithm considers only the vertices V 3 (i.e. the remaining vertices). First, it applies the proposed coloring scheme on the vertices V 3 of the tree T . Some edges are added to coincide with the properties of Lemma 7.6.12. This step will require to call Algorithm 7.1 in order to find the maximum [1,2]-independent set and then find the minimum monitoring set on the forest induced by vertices of V 3 .

We conclude that Algorithm 7.2 computes a minimum set of monitors for any square of a tree of order n > 4 in linear time. Thus, we have the following theorem. (a) Step 1

v u 2 m 1 m (b) v u 1 m m 2 (c) v u m 1 m 2 (d) v u m 2 m 1 (e)
Step 2 In this chapter we review some basic notions related to parameterized complexity. Then, we focus in particular on 1-uniform monitoring problem (1-UMP) by proving that the problem in NP-complete even when restricted to (P 5 , C 4 )-free 1-monitorable graphs. We also prove that 1-uniform Edge Monitoring cannot be • n when the input graph is apex-minor-free, in particular, when it is planar, by using Bidimensionality Theory [START_REF] Demaine | Bidimensionality. In Encyclopedia of Algorithms[END_REF][START_REF] Demaine | Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs[END_REF][START_REF] Erikd | Thilikos. The bidimensional theory of bounded-genus graphs[END_REF]. We also prove that the edge monitoring problem is W [1]-complete on complete graphs when the parameter is the size of the solution.

Preliminary notions

In this section we introduce some basic definitions. Let k be an integer. The triangulated grid of size k is the graph

Γ k = (V k , E k ) such that V k = { i,j |1 ≤ i, j ≤ k} and E k = {{ i,j , i+1,j } | 1 ≤ i ≤ k -1, 1 ≤ j ≤ k} ∪ {{ i,j , i,j+1 } | 1 ≤ i ≤ k, 1 ≤ j ≤ k -1} ∪ {{ i,j+1 , i+1,j } | 1 ≤ i ≤ k -1, 1 ≤ j ≤ k -1} ∪ {{ 1,j , k,k }, { k,j , k,k } | 1 ≤ j ≤ k} ∪ {{ i,1 , k,k }, { i,k , k,k } | 1 ≤ i ≤ k}.
Note that Γ k is triangulated. For an illustration, the graph Γ 5 is depicted in Figure 8.1. If i 0 , j 0 ∈ {1, . . . , k -1}, we call the square (i 0 , j 0 ) of Γ k the set { i 0 ,j 0 , i 0 +1,j 0 , i 0 ,j 0 +1 , i 0 +1,j 0 +1 } and the diagonal (i 0 , j 0 ) the edge

{ i 0 +1,j 0 , i 0 ,j 0 +1 }. Let G = (V G , E G ) and H = (V H , E H ) be two graphs. We say that H is a contraction of G if we can partition V G into |V H | sets (R u ) u∈V H such that for all u ∈ V H , R u is not empty and G[R u ] is connected, and such that {u 1 , u 2 } ∈ E H if and only if there exist v 1 ∈ R u 1 and v 2 ∈ R u 2 such that {v 1 , v 2 } ∈ E G . Treewidth A tree-decomposition of width w of a graph G = (V, E) is a pair (T , σ),
where T is a tree and σ = {B t |B t ⊆ V, t ∈ V (T )} such that:

• t∈V (T ) B t = V ,
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• For every edge {u, v} ∈ E there is a t ∈ V (T ) such that {u, v} ⊆ B t ,

• B i ∩ B k ⊆ B j for all {i, j, k} ⊆ V (T ) such that j lies on the path between i and k in T , and

• max i∈V (T ) |B t | = w + 1.
A tree-decomposition rooted at a node t r is nice if the following conditions are fulfilled:

• B tr = ∅,
• each node has at most two children, 

• for each leaf t ∈ V (T ), B t = ∅, • if t ∈ V (T )
i ∈ C, C i ∩ X = ∅.
The decision problem associated with HSP has been proven to be N P -complete [START_REF] Richard | Reducibility among combinatorial problems[END_REF].

Theorem 8.2.5 1-UMP is turing reducible to HSP, 1-UMP ≤ T HSP.

Proof. We give a reduction that solves 1-UMP, assuming the algorithm solving HSP to be already known. Let graph G = (V, E) a 1-monitorable and k a positive integer be an instance of 1-UMP. Create an instance (S, C, k) of HSP as follows:

S = V and the collection C = {M (e 1 ), . . . , M (e m )} such that E = {e 1 , . . . , e m }.

Nevertheless, from Theorem 8.2.5 all results and approximation algorithms that deal with HSP [SC10, AvG09, LY02] can be used to have similar results for 1-UMP. Moreover, HSP, SCP and VCP on hypergraphs are equivalent problems.

This implies that 1-UMP is a special case of all the three problems. Hence all the result for SCP [START_REF] Hochbaum | Approximation algorithms for the set covering and vertex cover problems[END_REF][START_REF] Slavík | A tight analysis of the greedy algorithm for set cover[END_REF] and VCP [START_REF] Halperin | Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs[END_REF][START_REF] Karakostas | A better approximation ratio for the vertex cover problem[END_REF] could be considered and refined for 1-UMP.

Thus, we deduce: Proof. It has been proved in [START_REF] Chlebík | Approximation hardness of dominating set problems in bounded degree graphs[END_REF] that Total Dominating Set cannot be approximated within (1-ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(n O(log log n) ).

We will define an approximation preserving reduction from Total Dominating

Set to 1-uniform Edge Monitoring. Let G = (V, E) be a graph without isolated vertex. We construct G from G by adding three vertices u, v, w which form a clique and connecting u to every vertex in V . We will prove that γ m (G , 1) = γ t (G) + 3.

Let S be a total dominating set of G and S = S ∪ {u, v, w}. Then S is a monitoring set of G . Indeed, the edges uv, uw and vw are monitored by w, v and u respectively. The edges in E are monitored by u. Let x be a vertex in V then x has a neighbor y in S. Thus, ux is monitored by y.

Now, let S be a monitoring set of G . {u, v, w} ⊆ S. Otherwise, uv, vw or uw is not monitored by S. Let S = S \ {u, v, w}. We will prove that S is a total dominating set of G. Let x be a vertex of G. The edge xu is monitored by a vertex y in S . Since {x, y, u} forms a triangle, x is adjacent to a vertex in S . Hence,

γ m (G , 1) = γ t (G) + 3.
Using the same method as in Theorem 1 of [START_REF] Klasing | Hardness results and approximation algorithms of k-tuple domination in graphs[END_REF] we obtain the desired result.

W [2]-hardness of 1-uniform edge monitoring problem

Now, we show that the problem is W [2]-hard when parameterized by the size of the solution. In order to prove that, we reduce from Red-Blue Dominating Set, which is known to be W [2]-hard [START_REF] Rodney | Fundamentals of parameterized complexity[END_REF].

Red-Blue Dominating Set

Input: A graph G = (V, E), a partition (V r , V b ) of V , and an integer k. Proof. Let G = (V, E) be a graph, let (V r , V b ) be a partition of V , and let k be an integer. We want to solve Red-Blue Dominating Set on (G, V r , V b , k). Without lost of generality, we can assume that there is no isolated vertex.

Output: A set S ⊆ V b of size at most k such that ∀v ∈ V r , S ∩ N (v) = Ø.
We 1 monitors e. The same happens if e = {v b , w 2 }. If e = {a i j , v i } then a i (j mod 3)+1 monitors e. As {a i 1 , a i 2 , a i 3 } is a triangle where all the vertices are in S , all the edges are monitored. The same happens for the triangles {a i j , b i j , c i j }, i ∈ {1, 2}, j ∈ {1, 2, 3}. Now let S be a solution of 1-uniform Edge Monitoring on (G , k + 18).

construct from (G, V r , V b , k) the graph G = (V , E ) as depicted in Figure 8.2. Formally, V = V b ∪ V e ∪ V a where V b = {v b |v ∈ V b }, V e = {v 1 |v ∈ V r } ∪ {v 2 |v ∈ V r }, V a = {a i j , b i j , c i j |i ∈ {1, 2}, j ∈ {1, 2, 3}}, and E = {{v 1 , v 2 }|v ∈ V r } ∪ {{v b , w 1 }|{v, w} ∈ E} ∪ {{v b , w 2 }|{v, w} ∈ E} ∪ {{a i j , v i }|i ∈ {1, 2}, j ∈ {1, 2, 3}} ∪ {{a i j , v b }|i ∈ {1, 2}, j ∈ {1, 2, 3}} ∪ {{a i j , a i j }|i ∈ {1, 2}, j, j ∈ {1, 2, 3}, j = j } ∪ {{a i j , b i j }, {a i j , c i j }, {b i j , c i j }|i ∈ {1, 2}, j ∈ {1, 2 
For each i ∈ {1, 2} and j ∈ {1, 2, 3}, the edges {a i j , b i j }, {a i j , c i j }, and {b i j , c i j } can be monitored only by the vertices c i j , b i j , and a i j respectively. So they need to be in S . One can check that the only edges not monitored by V a are the edges of the form {v 1 , v 2 }, and by construction of G the only vertices that can monitor them

are vertices from V b . It directly follows that S = {v ∈ V b |v b ∈ S } is a solution of Red-Blue Dominating Set on (G, V r , V b , k).

Fixed parameter algorithms for edge monitoring

In this section, we will present algorithms that solve the Edge Monitoring problem. The first one is parameterized by the treewidth of the input graph and the second one, based on the first one, uses Bidimensionality to solve Edge Monitoring parameterized by the size of the solution when the input graph is apex-minor-free.

In this version, we allow only some selected monitors to be in the solution, and we impose that each edge is monitored by at least a given number of monitors.

From Theorem 8.2.8, we directly obtain the following. . n, where tw is the treewidth of G.
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Proof. Let G = (V, E) be a triangulated graph, k be an integer, M be a subset of V , c : E → . . . k be a color function, and (T , µ) be a nice tree-decomposition of G rooted at a node t r of width tw.

For each t ∈ V (T ), we denote by V t the set of vertices of all descendents of t,

G t = G[V t ]
, and E t = E(G[B t ]). Note that this graph may be disconnected.

We use a dynamic programming approach. The table we store at a node t will contain elements of the form (X, Y, p), where X ⊆ B t is the set of chosen vertices in B t for this solution, Y ⊆ E t × N is the set of pairs (y, m) where the edge y still needs to be monitored m times in G t , and p is the number of vertices we already have chosen. We will keep such an element in the table, if there exists a solution S of our problem of size at most k such that S argument of sol in order to obtain a function sol that is self-consistent. We define the table we store at each node t ∈ V (T ) to be R

∩ B t = X, |S ∩ V t | ≤ p, S ∩ V t monitors all the edges of E(G t ) \ {y|∃m ∈ N : (y, m) ∈ Y }, and for each (y, m) ∈ Y , S ∩ V t monitors c(y) -m times the edge y. Formally, if H = (V h , E h ) is a graph, B ⊆ V h , X ⊆ B,
t = {(X, Y, p)|X ⊆ B t , Y ⊆ E(G[B t ]
) × {1, . . . , k}, sol(G t , B t , X, Y, p, M ), p ≤ k}. Note that there is a solution of our problem if and only if R tr = Ø. For convenience, if (X, Y, p) ∈ R t and (X, Y, q) ∈ R t with p < q then our algorithm will keep only (X, Y, p), as the other entry is not relevant. Let t ∈ V (T ). We can compute R t as follows:

• If t is a leaf then G t = (Ø, Ø) and R t = {(Ø, Ø, 0)}. • If t is an introduce vertex v and v ∈ M , let t be its child. Then R t = {(X ∪ {v}, {(y, m -|N (y) ∩ {v}|)|(y, m) ∈ Y } ∪ {({v, w}, m )|w ∈ B t , {v, w} ∈ E, m = max(c({v, w})-|N {v, w}∩X|, 0)}, p+1)|(X, Y, p) ∈ R t , p+1 ≤ k}∪ {(X, Y ∪ {({v, w}, m )|w ∈ B t , {v, w} ∈ E, m = max(c({v, w}) -|N {v, w} ∩ X|, 0)}, p)|(X, Y, p) ∈ R t }. • If t is an introduce vertex v and v ∈ M , let t be its child. Then R t = {(X, Y ∪ {({v, w}, m )|w ∈ B t , {v, w} ∈ E, m = max(c({v, w}) -|N {v, w} ∩ X|, 0)}, p)|(X, Y, p) ∈ R t }. • If t is a forget vertex v, let t be its child. Then R t = {(X \ {v}, Y \ {({v, w}, 0)|w ∈ B t , ({v, w}, 0) ∈ Y }, p)|(X, Y, p) ∈ R t , ∀w ∈ X, m ∈ {1, . . . , k} : ({v, w}, m) ∈ Y }. Note that if v / ∈ X then X \ {v} = X.
• If t is a join vertex, let t and t be its children. Then R • n.

t = {(X ∪ X , {(y, m)|(y, m ) ∈ Y , (y, m ) ∈ Y , m = c(y) -(c(y) -m ) -(c(y) -m ) + |N (y) ∩ (X ∩ X )|}, p + p -|X ∩ X |)|(X , Y , p ) ∈ R t , (X , Y , p ) ∈ R t , p + p -|X ∩ X | ≤ k}. Note that (c(y) -m ) (resp. (c(y) -m ))
If G is apex-minor-free, then, there exists a constant a, depending only on the • n.

Proof. Let G = (V, E) be an apex-minor-free graph and k be an integer. Assume first that tw > c(2 (k + 1) + 2). By Theorem 8.3.4, Γ (2 √ (k+1) +2) is a contraction of G. Let L = { i,j |i, j ∈ N, 1 ≤ i, j ≤ (2 (k + 1) + 2)} be the vertex , and let M be its edge set. Let (R u ) u∈L be a partition of V such that for all u ∈ L, R u is not empty, G[R u ] is connected, and such that {u 1 , u 2 } ∈ E(Γ (2 √ (k+1) +2) ) if and only if there exist v 1 ∈ R u 1 and v 2 ∈ R u 2 such that {v 1 , v 2 } ∈ E.

Consider the √ k + 1 2 squares (2i, 2j), for 1 ≤ i ≤ √ k + 1 and 1 ≤ j ≤ √ k + 1 . For simplicity we denote by Q i,j the square (2i, 2j). The selected squares are illustrated in Figure 8.3. By construction, the squares Q i,j are pairwise vertexdisjoint. For each i, j, we arbitrarily choose e i,j = {a i,j , b i,j } ∈ E such that a i,j ∈ R 2i+1,2j and b i,j ∈ R 2i,2j+1 . We denote by e i,j the representative edge of Q i,j . The edge e i,j can be monitored only by an element of R 2i,2j ∪ R 2i,2j+1 ∪ R 2i+1,2j ∪ R 2i+1,2j+1 , because the other i ,j are not connected to both 2i+1,2j and 2i,2j+1 .

Thus, there are no two distinct representative edges in G that can be monitored by the same vertex of G. This means that the solution should be of size at least k + 1, that is the number of squares we had consider. As we ask for a solution of size at most k, then we can safely answer that there is no such a solution. • n.

Edge monitoring on complete graphs

In this section, we give a complexity result related to complete graphs. If ReducMStoIS(G, c, k -1) returns True 

Conclusion

In this chapter, we proved that 1-uniform monitoring problem is NP-complete even when restricted to (P 5 , C 4 )-free 1-monitorable graphs. Moreover, we proved that 1-uniform Edge Monitoring cannot be approximated within (1 -ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(n O(log log n) ). We also proved that the 1-uniform edge monitoring problem is W [2]-hard when parameterized by the size of the solution.

Afterwards, we proved that the edge monitoring problem is W [1]-complete on com-plete graphs when the parameter is the size of the solution. Moreover, we showed that, in general graphs, we are unlikely to be able to solve our problem in FPT time when parameterized by the size of the solution. We used Bidimensionality to show that if the input graph has the topological restriction to be apex-minor-free, then our problem can be solved in time 2 O( √ k) • n. We even show that the Edge Monitoring can be solved in a similar time, i.e., in time 2

O( √ k•log(max e∈E c(e)))
• n, when the input graph is apex-minor-free.

Chapter 9

Weighted edge monitoring In the two previous chapters, we studied the problem of Edge Monitoring and we gave a particular interest to 1-uniform monitoring (1-UMP). We presented some results on specific classes of graphs related to this problem and some complexity results are also discussed.

In this chapter, we consider a weighted version of the problem, it means a weight on vertices, called weighted edge monitoring problem. We study the problem on several classes of graphs as complete graphs, block graphs, interval graphs and cographs.

Introductory results on complete graphs

In this section, we give some results related to complete graphs. To solve Weighted Edge Monitoring on interval graphs, a naive algorithm consists to iterate over the sets B i and to compute for each i the set of i-partial solutions.

Unfortunately, the algorithm is non polynomial since the set of i-partial solutions can be exponential. The key of the algorithm is as follows: instead of considering all the i-partial solutions, we consider the representants of the i-partial solutions.

Since the number of representants is polynomially bounded by |V |, the algorithm will run in polynomial time. Lemma 9.3.3 guarantees that we don't miss solutions.

Indeed, let S be an i-partial solution. If i + 1 introduces the node v, then S and S ∪ {v} are (i + 1)-partial solutions. There is nothing to verify. If i + 1 forgets the node v then S is an (i + 1)-partial solution if and only if the forgotten edges i.e.

the edges having v as extremity and the other extremity in B i+1 are monitored by S. But thanks to Lemma 9.3.3, it suffices to check that these edges are monitored by repr i (S).

We present now Algorithm 9.2. Functions w i can be seen as associative arrays with default value +∞: the instruction w i (W ) returns +∞ if the key W is not in the associative array w i .

Lemma 9.3.4 For every i ∈ [0, l], after the run of Algorithm 9.2, it holds F i = F * i and w i (S) = w * i (S) for every S ∈ F i . W ← repr i (W )

12:

F i ← F i ∪ {W } 13:
w i (W ) ← min{w i (W ), w i-1 (W )}

14:

End If

15:

End For 16:

Else If i introduces the node v 17:

For each W ∈ F i-1 do 18:

W ← repr i (W )

19:

F i ← F i ∪ {W } 20:
w i (W ) ← min{w i (W ), w i-1 (W )}

21:

W ← repr i (W ∪ {v})

22:

F i ← F i ∪ {W } 23:
w i (W ) ← min{w i (W ), w i-1 (W ) + w(v)}

24:

End For Proof. We prove by induction on i. The property is clearly verified for i = 0. Now, suppose that the property holds for i and prove it for i + 1.

F i+1 ⊆ F * i+1 and for each W ∈ F i+1 , w * i+1 (W ) ≤ w i+1 (W ): let W ∈ F i+1 . We consider two cases. Then W = repr i+1 (W ). Using the induction hypothesis, W ∈ F i and w i (W ) = w * i (W ). By definition of a (i + 1)-partial solution, all edges {u, v} where u ∈ B i are monitored by S . But, by applying Lemma 9.3.3, these edges are also monitored by W . Thus, Line 10 of the algorithm succeeds and W = repr i+1 (W ) is added to F i+1 and by Line 13 w i+1 (W ) ≤ w i (W ) = w * i (W ) = w(S ) = w * i+1 (W ). i + 1 introduces the vertex v. There are two possibilities. Lemma 9.4.6 combined with the fact that a cotree is computable in linear time [START_REF] Habib | A simple linear time algorithm for cograph recognition[END_REF] give us a linear time algorithm to compute Weighted Edge Monitoring on cographs.

Theorem 9.4.7 1-uniform Weighted Edge Monitoring can be solved in linear time on cographs.

Conclusion and summary of Part III

In this last part, we studied a recent problem, called Edge monitoring problem, in different classes of graphs. This parameter can be considered as a variant of dominating sets problem. Three variants of the problem have been studied in this part.

We provided exact values of γ m (G, 1) on three types of graphs: powers of a cycle, powers of a path and square of trees. Moreover, we proved the NP-completeness of 1-uniform monitoring problem on split graphs, comparability graphs and planar unit disc graphs. Other results are also obtained for the edge monitoring and weighted edge monitoring problems in some graph classes such as complete graphs, block graphs, interval graphs, planar graphs and cographs.

The most important results, developed in this part, are summarized in the following points.

1-Uniform Edge Monitoring

• Exact values of γ m (C m n , 1) is given in power of cycle (C m n ).

• Exact values of γ m (P m n , 1) is given in power of path (P m n ).

• A linear time algorithm to find γ m (T 2 , 1)-sets is given.

• NP-completeness on split graphs is proved.

• NP-completeness on comparability graphs is proved.

• NP-completeness on planar UDGs is proved.

• NP-completeness even when restricted to (P 5 , C 4 )-free 1-monitorable graphs is proved.

• Non approximability of the problem within (1 -ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(n O(log log n) ) is proved. • n when the input graph is apex-minor-free, in particular, when it is planar.

• Exact values of γ m (K n , k) is given.

Weighted Edge Monitoring

• The problem can be solved in polynomial time on C-bounded weighted complete graphs.

• 1-uniform weighted edge monitoring can be solved in linear time in cographs.

• The problem on C-bounded weighted interval graphs is in P. It can be solved in time O(|V | C+4 ).

• The problem can be solved in polynomial time on C-bounded weighted block graphs.

• The problem can be solved in quasi-linear time for block graphs (G = (V, E), w, c) where c is uniform.

Chapter 10

Conclusions and Perspectives

In this thesis, we discussed three graph theory problems applied to different classes of graphs. This concluding chapter summarizes the results presented in the previous The second part of this thesis was devoted to study the [i, j]-dominating sets and its variant, namely [i, j]-total dominating sets. Several variants of the dominating sets problem have been defined in the literature. Then, we first presented dominating sets problem and reviewed some of its variants. Afterwards, we focused

Chapter 2 .

 2 PreliminariesGraph: a graph G is a pair of sets (V (G), E(G)), where V (G) is the set of vertices (a.k.a. nodes) andE(G) ⊆ V (G) × V (G)is the set of edges, formed by pairs of vertices. If e is an edge that connects u and v. The vertices u and v are called the extremities of e. The cardinality of the vertex set V (G), denoted by |V (G)| = n, is called the order of G. The cardinality of the edge set E(G) = m, we called the size of G and we denoted by |E(G)|.

  and all edges of H are edges in G, i.e, V (H) ⊆ V (G) and E(H) ⊆ E(G). For any vertex subset S ⊆ V (G), the subgraph induced by S denoted by G[S] = (S, E s ) contains all the edges of E(G)

Figure 2 .

 2 Figure 2.1(d)).
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 21 Figure 2.1: Some basic simple graphs.
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 22523 Figure 2.2: Complete graphs K n for n = 1, 2, 3, 4, 5.
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 226 Figure 2.6: Example of graph power two G 2 of G.
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 2 7 represents an example of interval graph.

Figure 2 . 7 :

 27 Figure 2.7: Example of interval graph.

  (a) the bridges of Königsberg (b) Euler's graph representation

Figure 2 .

 2 Figure 2.8: Königsberg Bridge Problem.

  scheme in database systems. There exist different data file organizations used in a database environment. Using graph decomposition, the idea is to model the set of data files by graph and decompose it into specific subgraphs to give such an organization.

  H-decomposition of G aims to partitioning the edge set of G into edge disjoint copies of H. By other words, it consists of decomposing an input graph G = (V, E) into a collection of smallest subgraphs H 1 , H 2 , ..., H k , such that each edge of G belongs to exactly one subgraph H i : 1 ≤ i ≤ k. Note that decomposing the graph G means that there is no remaining edges and all the edges need to belong to one subgraph. If G has an H-decomposition, then we say that G is H-decomposable.Due to many applications in computer science, an intensive research about simple decomposition has been done on many special subgraphs. As an example of basics and well-known simple decomposition, we have star decomposition (denoted by S k -decomposition)[START_REF] Tarsi | Decomposition of complete multigraphs into stars[END_REF], path decomposition (denoted by P k -decomposition)[START_REF] Tarsi | Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs[END_REF] and cycle decomposition (denoted by C k -decomposition)[START_REF] Alspach | Decomposition into cycles i: Hamilton decompositions[END_REF]. Other decompositions are studied in the literature, for more details, refer to Section 3.3.

  Since the different applications relating to various decompositions on different graphs, this subject became an active research area. The literature on this subject has been surveyed and detailed in a lot of books and research papers such as the phd thesis of Priyadarshini[START_REF] Hm Priyadharsini | MULTIDECOMPOSITION AND MULTIFAC-TORIZATION OF MULTIGRAPHS[END_REF] which dealt with multidecomposition of multigraphs, the phd thesis of Sotteau[START_REF] Sotteau | Decompositions de graphes et hypergraphes[END_REF], the phd thesis of Gabel[START_REF] Lynn | A Survey of Graph Decompositions[END_REF], survey of Chung et al. [CG81], survey of Rodger [Rod91], survey of Lindner et al. on cycle decomposition [LR92], survey of Billington [Bil04], survey of Heinrich on path decomposition [Hei93], survey of Beineke [Bei96], survey of Bermond et al. [BS75], survey of Alspach et al. on cycle decomposition [ABS90], survey of Ushio [Ush93], survey of Chapter 3. Overview of graph decomposition

Theorem 3 . 3 . 1 Theorem 3 . 3 . 2

 331332 [START_REF] Wilson | Decomposition of a complete graph into subgraphs isomorphic to a given graph[END_REF], Wilson stated his fundamental theorem on the existence of an Hdecomposition of the complete graph K n for any fixed H as long as the number of edges of K n is divisible by the number of edges of H and n is large enough. Since then, decomposition problems became an active research area. There have been several important research papers relating to various decompositions of different graphs. Let focus on three types of subgraphs: paths, cycles and stars. For the complete graph K n , the solution of the corresponding problem for H = P k was proved by Tarsi [Tar83] Let k and n be positive integers. There exists a P k -decomposition of K n if and only if k ≤ n and n(n1) ≡ 0[2k -2]. for H = C k by Alspach et al. [AG01] and Sajna [ Šaj02] Let n and k be positive integers. K n has a C k -decomposition if and only if n is odd, 3 ≤ k ≤ n, and n(n -1) ≡ 0[2k]. and for H = S k by Tarsi [Tar79] and Yamamoto et al. [YISE + 75] Theorem 3.3.3 Let k and n be positive integers. There exists a S k -decomposition of K n if and only if 2k ≤ n and n(n1) ≡ 0[2k].
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Theorem 4 . 1 . 1 (

 411 Tarsi [Tar79] and Yamamoto et al.[YISE + 75]) A necessary and

Theorem 4 . 1 . 2 ( 3 and λ ≥ 1 .Theorem 4 . 1 . 3 (

 41231413 Bryant et al.[START_REF] Bryant | Cycle decompositions of complete multigraphs[END_REF]) Let λ, n and k be integers with n,k ≥ There exists a decomposition of λK n into cycles of k edges if and onlyif k ≤ n, λ (n -1) is even and k divides λn(n -1)/2.There exists a decomposition of λK n into cycles of k edges and a perfect matching if and only if k ≤ n, λ (n -1) is odd and k divides λn(n -1)/2 -(n/2). Alspach et al.[START_REF] Alspach | Cycle decompositions of K n and K n -I[END_REF] and Sajna[ Šaj02]) Let n and k be positive integers. K n has a C k -decomposition if and only if n is odd, 3 ≤ k ≤ n, and

Theorem 4 . 1 . 5 (

 415 Sotteau [Sot81]) For positive integers m, n, and k, the graphK m,n is C k -decomposable ifand only if m, n, and k are even, k ≥ 4, min {m, n} ≥ k/2, and mn ≡ 0[k].

4. 3

 3 Multidecomposition of λK n when n ≥ 4k or n ≥ 2k and λ even

4. 3 .

 3 Multidecomposition of λK n when n ≥ 4k or n ≥ 2k and λ even Proposition 4.3.1 Let n and k be positive integers such that n ≥ 4k and n(n -

Lemma 4 . 3 . 2

 432 Let n, k and λ > 1 be positive integers such that n ≥ 4k and λ is odd

Lemma 4 . 3 . 4

 434 Let n, k and λ > 1 be positive integers such that gcd(λ, k) = 1. For

Lemma 4 . 4 . 1

 441 Let n > 2 and λ > 1 be a positive integers. There exists a decomposition of λK n into copies of S 2 and copies of C 2 if and only if λn(n -1)/2 is even. In Lemmas 4.4.2-4.4.4, we will show the sufficient conditions of the decomposition of λK n into C k 's and S k 's when n = k + 1, n = 2k + 1 and n = 3k + 1, respectively with k ≥ 3. Lemma 4.4.2 Let n = k + 1, λ > 1 and k ≥ 3 be positive integers. There exists a decomposition of λK n into copies of S k and C k if and only if λk(k -1)/2 ≡ 0[k].

Lemma 4 . 4 . 3

 443 Let n = 2k + 1 and λ > 1 be positive integers and let k be a positive integer, k ≥ 3. There exists a decomposition of λK n into copies of S k and C k for any k.

Lemma 4 . 4 . 4

 444 Let n = 3k + 1, λ > 1 and k ≥ 3 be positive integers. There exists a decomposition of λK n into copies of S k and C k if and only if 3λk(3k -1)/2 ≡ 0[k].

Proposition 4 . 4 . 5

 445 For integers k and n and λ with λ > 1 and 2

Proof.

  For the case when n = k + 1, n = 2k + 1 and n = 3k + 1: see Lemmas 4.4.1, 4.4.2, 4.4.3 and 4.4.4, respectively. By Theorem 4.3.5, if n = αk + 1 or n = αk with α ≥ 4, then λK n is (S k , C k )decomposable.

Figure 4 . 1 ,

 41 shows how the proposition 4.4.6 is applied for a graph 3K 5 : Example 4.4.7 (S 3 , C 3 )-decomposition of a graph λK n with n = 5 and λ = 3 is as follows:

Figure 4 . 1 :

 41 Figure 4.1: Rotation construction of stars. The edges of a star are labeled by a, b and c.

  4.5 and 4.4.6 and Corollary 4.4.8: Theorem 4.4.9 Let n, k and λ > 1 be positive integers. λK n is (S k , C k )-decomposable if λn(n -1)/2 ≡ 0[k] and :

[

  [START_REF] Haynes | Fundamentals of domination in graphs[END_REF]. Formally, a dominating set for a graph G = (V, E) is a subset S of V such that every vertex of V is either in S or has a neighbor in S. A dominating set S is a minimal dominating set if no proper subset S ⊂ S is a dominating set. The domination number γ(G) of a graph G is the minimum cardinality of a dominating set of G. We call such a set a γ-set of G. Determining the minimum domination number is proved to be NP-hard[START_REF] Haynes | Fundamentals of domination in graphs[END_REF]. Therefore, some theorems about the minimal dominating sets in graphs where given by Ore[START_REF] Ore | Theory of graphs[END_REF] in 1962. The Dominating set is very important class of problem with several theoretical and practical applications. This problem has attracted many theoretical researches, therefore many results have been proposed and different variants have been identified by the graph community. Excellent surveys on graph domination are provided by Haynes and al. [HHS98, HHS97], Cockayne [Coc78] and recently by Henning [Hen09] for total domination.In practical side, the dominating sets gave a special interest in computer system field due to their importance for several applications. The structure of dominating set can be useful as overlays in computer networks. These structures are usually used for designing efficient protocols in wireless sensor and ad-hoc networks [GHJ + 08, YKR06, BDTC05, KMW04]. For example, the Dominating set are used for clustering approaches in wireless sensor networks (WSNs) for load balancing and extending the network lifetime[START_REF] Younis | Node clustering in wireless sensor networks: Recent developments and deployment challenges[END_REF]. It is used also for optimization and 5.2. Some variants of dominating sets problems 51 designing protocols in social networks and many other fields. Readers can refer to Haynes et al.'s book [HHS98] for more descriptions on some variants of domination in graphs and their applications in several areas.For all these reasons, different variants of dominating set have been identified by the graph community, such as total dominating set[START_REF] Cockayne | Total domination in graphs[END_REF], double dominating set[START_REF] Harary | Double domination in graphs[END_REF], restrained domination [DHHM00] and so on.

Figure 5 . 1 :

 51 Figure 5.1: An example of equality in domination, total domination, connected domination and perfect domination.

  The k-tuple domination number γ ×k (G) (resp. k-tuple total domination number γ ×k,t (G)) is the minimum cardinality of a k-tuple dominating set (resp. k-tuple total dominating set) of G. A dominating set of G is a 1-tuple dominating set of G. A total dominating set of G is a 1-tuple total dominating set of G. A double dominating set of G is a 2-tuple dominating set of G.5.3. [i, j]-domination sets in graphs 53

  adjacent to at least i vertices, but not more than j vertices in S. The [i, j]-total domination number in G, denoted γ t[i,j] (G), equals the minimum cardinality of a [i, j]-total dominating set in G. A [i, j]-total dominating set with cardinality γ t[i,j] (G) is called a γ t[i,j] (G)-set.It was mentioned in[START_REF] Chellali | 1, 2]-sets in graphs[END_REF] that [i, j]-dominating sets are related to different types of domination. For example,[1, 1]-dominating set represents the perfect dominating set and the [1, 1]-total dominating set represents the efficient dominating set.

5 . 4 . 5 ≤ 3 [

 5453 Petersen graphs. For many classes of graphs the exact values of γ(G) are known, e.g., γ(P n ) = γ(C n ) = n 3 . For the class of generalized Petersen graphs P (n, 2) introduced by Watkins [Wat69] it was conjectured by Behzad et al. that γ(P (n, 2)) = 3n 5 holds [BBP08]. This conjecture was later independently verified by several researchers [EJM09, FYJ09, YKX09, LZ14]. In particular, Behzad et al. (2008) and Yan et al. (2009) determined the domination number of the generalized Petersen graph P (n, k) with n = 2k + 1, the exact domination number is 3n 5 . Then, Liu et al. (2014) determined the exact domination number of P (n, k) with n = 2k and n = 2k + 2. Fu et al. (2009) proved that the domination number of P (n, k) with k = 2 is n -n 5 -n+2 5 . Domination in generalized Petersen graph 55 Others variants of dominations are studied in literature and then some of these domination numbers are also known for generalized Petersen graphs. Cao et al. computed the total domination number of P (n, 2) as γ t (P (n, 2)) = 2 n 3 [JWM09]. Zelinka studied three numerical invariants of graph domination namely the domatic number 2 [CH77b], total domatic number [CDH80] and k-ply domatic number [Zel84] with k = 2 and k = 3 in generalized Petersen graphs. He gave exact values for some specific cases [Zel02]. Fu et al. studied Roman domination in generalized Petersen graphs [XYB09]. In [B Š07], Bresar and Sumenjak studied the 2-rainbow domination number 3 , denoted by γ r2 , in generalized Petersen graph and showed that 4n γ r2 (P (n, k)) ≤ n for any P (n, k), where n and k are relatively prime numbers. Shortly after, Tong et al. investigated the problem in P (n, k) with k = 2 [TLYL09] and in the same period Xu studied the problem in P (n, k) with k = Xu09]. In [LXS13], Li et al. considered the problem of signed total domination in P (n, 2). Further results about other types of domination in this type of graphs can be found in [BF11, XK11, SLY + 14, K + 10].

Definition 3

 3 Let n, k ∈ N with k < n/2. The generalized Petersen graph P (n, k)

Figure 6 . 1 :Definition 4 A

 614 Figure 6.1: The minimum [1, 2]-domination sets of the generalized Petersen graphs P (5, 2) and P (6, 2) and the minimum [1, 2]-total dominating set for P (5, 2).

Fig. 6 .Figure 6 . 2 :

 662 Fig. 6.1 shows three disjoint blocks of P (n, 2). The second block is positive while the other two are negative. Note that blocks can overlap. If b is a block, the block to the left is denoted by b -and that to the right by b + . b - b b +

( a )Figure 6 . 3 :

 a63 Figure 6.3: f (n) is an upper bound of γ [1,2] (P (n, 2)) for all n > 12

Figure 6 . 9 :

 69 Figure 6.9: The four types of positive blocks with γ S (b) = 1.

Lemma 6 . 2 .

 62 10 If B 1 (S) = ∅ and n ≥ 6 then |S| ≥ f (n).

Chapter 6 .

 6 [1, 2]-domination in general Petersen graphs Proof. Let n be minimal such that the lemma is false. Then n ≥ 12 by Lemma 6.2.2.Let S B the set of all[1, 2]-dominating sets S of P (n, 2) not containing a block of type B and |S| < f (n). Then B 1 (S) = ∅ for all S ∈ S B by the first part of the proof. Let p be the largest number such that |B 1 (S)| ≥ p for each S ∈ S B . Then p ≥ 1. Let M p be the set of all S ∈ S B with |B 1 (S)| = p. Claim 1: P (n, 2) does not contain a block of type A for any S ∈ M p . Assume false. Let S ∈ M p and b a positive block of type A. Then the nodes v i+3 and u i+2 of b + must be dominating. Assume γ b + (S) ≥ 3. Then S = S \ {u i+2 } ∪ {u i } is also a [1, 2]-dominating set. Thus, γ b (S ) = 2. Then |B 1 (S )| = |B 1 (S)| -1 < p since γ b (S) = 1. This yields S ∈ S B and therefore B 1 (S) = ∅. Thus, γ b + (S) = 2. Let b ++ be the positive block to the right of b + . Then the nodes u i+5 and v i+6 of b ++ must be dominating. Next we remove the nodes of the blocks b and b + and connect the corresponding nodes of blocks b -and b ++ . The resulting graph is isomorphic to P(n -6, 2). Furthermore, S = S \ {v i , u i+2 , v i+3 , u i+5 } is a [1, 2]dominating set of this graph. Thus, |S | = |S| -4 ≥ f (n -6) by the choice of n. Therefore |S| ≥ f (n -6) + 4 = f (n). This implies |S| ≥ f (n).This contradiction proves claim 1 for positive blocks of type A. The same argument shows that there are no negative blocks of type A.Claim 2: P (n, 2) does not contain a block of type D for any S ∈ M p Assume false. As above we only need to consider the positive case. Let S ∈ M p and b a positive block of type D. Then nodes v i+3 and u i+2 of b + must be dominating. Assume γ b + (S) = 2. Then again the nodes u i+5 and v i+6 of block b ++ must be dominating. We distinguish two cases. If v i-2 is not a dominating node then S = S \ {v i+3 } ∪ {v i+1 } else (v i-2 is a dominating node) then we have again two subcases depending on γ b ++ (S). If γ b ++ (S) = 2 then the nodes u i+8 and v i+9 of the block to the right of b ++ must be dominating nodes. We remove the nodes of the blocks b and b + and connect the corresponding nodes of blocks b - and b ++ with S = S \ {u i-1 , u i+2 , v i+3 , v i+6 }. Similar to the proof of claim 1 this leads to a contradiction. If γ c (S) ≥ 3 then at least one of the nodes v i+5 and u i+6 is a dominating node. Then we again remove the nodes of the blocks b and b + and connect the corresponding nodes of blocks b -and b ++ with S = S \ {u i-1 , u i+2 , v i+3 , u i+5 }. Similar to the proof of claim 1 this leads to a contradiction. Hence, γ b + (S) ≥ 3. In the following we will construct a new [1, 2]-dominating set S with |B 1 (S )| < p. This is a contradiction. Case 1. v i+2 , u i+3 ∈ S. There are three subcases. If

Case 2 .Case 3 .Case 4 .

 234 Neither v i+2 nor u i+3 are in S. Since γ b + (S) ≥ 3 this implies that v i+4 is a dominating node and S = S \ {u i+2 } ∪ {u i+1 }. If v i+2 ∈ S and u i+3 ∈ S then S = S \ {u i+2 } ∪ {u i+1 }. If v i+2 ∈ S and u i+3 ∈ S we distinguish two cases: If v i+4 ∈ S then S = S \ {u i+2 } ∪ {u i+1 } else we have four subcases depending on which node dominates u i+5 :

  we remove the nodes of the blocks b and b + and connect the corresponding nodes of blocks b -and c.

Claim 3 :

 3 P (n, 2) does not contain a block of type C for any S ∈ M p This case is symmetric to the second claim.

Claim 4 :

 4 P (n, 2) does not contain a block of type B for any S ∈ M p If S contains a block of type B then by Lemma 6.2.9 there exists S ∈ S B which does not contain a block of type B. The above claims yield B 1 (S ) = ∅. This contradiction concludes the proof of the lemma.

(a) n = 5 :

 5 This case can be checked by inspection. (b) n ≡ 0[3]: If n = 3k then γ t[1,2] (P (n, 2)) = 2k and |S| < 2k. Inequality (3)

Figure 6 .

 6 Figure 6.10: Maximal components induced by P 2 and P 3 and their neighbors.

Figure 6 .

 6 Figure 6.11: Impossible partitionings.
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Figure 7 . 1 :

 71 Figure 7.1: An example to illustrate the Edge monitoring problem.

Definition 5 (Definition 6 (

 56 All the graphs we consider in this part are undirected and contain neither loops nor multiple edges.Let G = (V, E) be a graph. Let v be a vertex of G. N (v) denotes the set of vertices adjacent to v and N e (v) denotes the set of edges having v as an extremity.Let c = {0, 1, . . . , k -1} be a k-coloring of edges of G. Consider the following definitions: Monitor) A vertex v ∈ V is said to monitor (or to be a monitor of) an edge e = {u, w} iff. v is adjacent to both extremities of e ({v, u} ∈ E and {v, w} ∈ E). The set of monitors of an edge e is denoted by M (e). Monitorable edge) An edge e = {u, v} colored with color i is said to be monitorable if |M (e)| ≥ i. The coloring c is said to be monitorable if all edges of G are monitorable.

Definition 7 (Observation 7 . 2 . 1 2 . 7 . 2 . 2

 77212722 Monitoring Set) Let S ⊆ V be a subset of vertices. S is said to be a Monitoring set of G with regards to a coloring c iff. ∀e ∈ E : |M (e) ∩ S| ≥ c(e). The edge monitoring number of G, denoted by γ m (G, c) is the minimum cardinality of a monitoring set according to the coloring c. If the vertices of G are weighted by a function w : V → Q + , the weighted edge monitoring number of G, denoted by γ m (G, w, c), is equal to the minimum sum of weights of a monitoring set. Definition 8 (Uniform edge monitoring) A monitoring whose coloring uses only one color k is called k-uniform edge monitoring (k-uniform monitoring for short). The largest possible color in any monitoring is the color n -Observation Any i-uniform monitoring set is also a j-uniform monitoring set for all values j < i. Now, let formally define the different variants of the problem: Edge Monitoring Input: An edge colored graph (G = (V, E), c), an integer k ≥ 0. Question: Is there a monitoring set S of G such that |S| ≤ k? k-Uniform Edge Monitoring Input: A graph G = (V, E), a color c, ∀e ∈ E : c(e) = k, an integer t ≥ 0.

80 Chapter 7 .

 807 there are one and only one edge having the color n -2 and all the edges adjacent to this edge must have a color c < n -2 and all the edges nonadjacent having a color c < n -4. Now, we consider monitoring K n in the case color c = 1. Introduction and first results Proposition 7.3.1 Let K n and K n -I denote the complete graph with n vertices and complete graph with n vertices from which a 1-factor (a perfect matching) I has been removed, respectively. The edge monitoring number for K n and K n -I for any n ≥ 3 is 3.

Figure 7 . 2 :

 72 Figure 7.2: Edge Monitoring for K 6 -I.

Figure 7 . 3 :Proposition 7 . 4 . 1

 73741 Figure 7.3: A 1-uniform monitorable non maximal planar graph.

Figure 7 . 4 :

 74 Figure 7.4: Edge monitoring of the wheel graph. The red nodes are the monitors that must be added.

Proposition 7 . 5 . 1

 751 Let G be a 1-monitorable graph. The edge monitoring number γ m (G, 1) ≥ 3.

Figure 7 . 5 : 1 b i, 1 b i, 1 a i, 2 b i, 2 b i, 2 vFigure 7 . 6 : 1 G

 75111222761 Figure 7.5: A representation of K 4 in the grid

  ) Let S be a vertex-cover of G. Then there is a set A ⊆ A such that |V (G e i ) ∩ A | = n i for every i ∈ [1, |E|] and such that S ∪ A ∪ B is a monitoring set of G : let e i = {u, v} be an edge in G. If u ∈ S, then we choose all a i,2j for j ∈ [1, n i ] as elements of A . Otherwise (v ∈ S), we choose a i,2j+1 for j ∈ [0, n i -1]. It is easily seen that S ∪ A ∪ B is a monitoring set of G .

• 3 and e 4

 34 [START_REF] Beggas | Edge Monitoring in Graphs, submitted to Graphs and combinatorics[END_REF] and the details of each subcases are as follow: If we connect any two vertices, of distance two, having one monitor in common, denoted by v. Clearly this monitor v can monitor the new edge e (see Figure7.7(A)).• In the contrary, there is no monitor in common between the two vertices in the graph G, as shown in Figure7.7(B). Since all edges of the graph G are monitored, the edges e 1 and e 2 have one monitor (or more). Since the graph G 2 allows to connect each two vertices of distance 2, then the edges e connect each extremity of the edge e with the monitors of e 1 and e 2 , respectively. This implies that the edge e can be monitored by any monitors of edges e 1 or e 2 .Hence, γ m (G 2 , 1) ≤ γ m (G, 1). By the same way, we can easily prove that γ m (G 3 , 1) ≤ γ m (G 2 , 1) and so on. Besides, the graph G k , for k ≥ d -1 is a complete graph and for k = d -1 is a complete graph minus one factor, then γ m (G k , 1) = 3 (For more details see the proof of Proposition 7.3.1).

Figure 7 . 7 :

 77 Figure 7.7: Edge monitoring in graph power.

  (a) deg(v) = 2 or (b) |N (v) ∩ L| = deg(v) -2 or (c) ∃u ∈ L : dist(u, v) = 2 or (d) ∃u ∈ L : dist(u, v) = 3 and let v, x, y, u be the path between v and u then |N (x) ∩ L| = deg(x) -2 then v ∈ S.

Figure 7 . 8 :Figure 7 . 9 :

 7879 Figure 7.8: The four cases of Lemma 7.6.11 for which v must be monitor. A non monitor vertex is represented by white vertex. The red edges are the edges that can only be monitored by v.

2 .Figure 7 .

 27 Figure 7.10: The V \M -vertex induced subgraph from T does not contain P 3 (and can contain P 2 in some conditions). A non monitor vertex is represented by white vertex. The red edges are the edges that can only be dominated by a white vertex.

7. 6 . 1 -uniform monitoring for some graph classes 95 ( 3 )Figure 7 .

 619537 Figure 7.11: A counterexample to prove the condition (3) of Lemma 7.6.12. A non monitor vertex is represented by white vertex and monitor by black vertex. The red edges are the edges that can only be dominated by a white vertex.

Chapter 7 . 7 . 1 : 1 : 2 : 3 : 4 :

 7711234 Introduction and first resultsAlgorithm Compute the mixed {1, 2}-Independent Set in trees Input: A tree T = (V, E) rooted at r, a partition (V r , V b ) of V . Output: The mixed {1, 2}-Independent Set in T . Begin For each vertex v ∈ V in DFS order do 5:

  Return max(I(r), O(r)); 13: End

Figure 7 .Figure 7 . 14 :Figure 7 .

 77147 Figure 7.13: The different cases depending on the placement of the two monitors m 1 and m 2 in P 2m-1 .

2 O(tw 2 •

 22 approximated within (1-ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(n O(log log n) ). Afterthat, we prove that the 1-uniform edge monitoring problem is W [2]-hard when parameterized by the size of the solution. Then, we present two algorithms that solve a more general problem, namely Edge Monitoring. The first one solves the version of the problem parameterized by the treewidth in time tw is the treewidth of the input graph and c : E → N is a color function such that each edge e should be monitored c(e) times. The second one solves the version of the problem parameterized by k, the size of the solution, in time 2 O( √ k•log(max e∈E c(e)))

Figure 8 . 1 :

 81 Figure 8.1: The triangulated grid Γ 5 .

Corollary 8. 2 .6 1 -

 21 UMP ≤ T SCP and 1-UMP ≤ T VCP. Theorem 8.2.7 1-uniform Edge Monitoring cannot be approximated within (1ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(n O(log log n) ).

8. 2 .Figure 8 . 2 :, a 1 2 , and a 1 3

 28223 Figure 8.2: Edge Monitoring gadget. For readability, some edges are drawn as dotted and for some of them, only one extremity is drawn. In the figure, the vertices u b , v b , w b , d 1 , e 1 , and f 1 are connected to the three vertices a 1 1 , a 1 2 , and a 1 3 like u b and d 1 are, and the vertices u b , v b , w b , d 2 , e 2 , and f 2 are connected to the three vertices a 2 1 , a 2 2 , and a 2 3 like w b and e 2 are.

  , 3}}. We now show that solving Red-Blue Dominating Set on (G, V r , V b , k) is equivalent to solving 1-uniform Edge Monitoring on (G , k + 18). Let S be a solution of Red-Blue Dominating Set on (G, V r , V b , k). Note that the existence of S implies that each vertex of V r has at least one neighbor in V b . Let S = {v b |v ∈ S} ∪ V a . Then S is a solution of 1-uniform Edge Monitoring on (G , k + 18). Indeed, |S | ≤ k + 18 by definition of S and V a . Let e ∈ E . If e = {v 1 , v 2 } with v ∈ V r , then by definition of S, there exists t ∈ S that is neighbor of v in G, so t b monitors e in G . If e = {v b , w 1 } with v ∈ V b and w ∈ V r , then a 1

Corollary 8. 3 . 1

 31 Edge Monitoring is W [2]-hard parameterized by k. We now focus on the algorithms. First we present an FPT algorithm parameterized by the treewidth. Lemma 8.3.2 Let G = (V, E) be a graph, k be an integer, M be a subset of V , and c : E → . . . k be a coloring of edges of G. Edge Monitoring on (G, k, M, c) can be solved in time 2 O(tw 2 .log(max e∈E c(e)))

  and Y ⊆ E(H[B]) × {1, . . . , k}, we define sol(H, B, X, Y, p, M ) = true, if and only if there exists a set S ⊆ V h ∩ M of size at most p such that for each (e, m) ∈ Y , |S ∩ N (e)| = c(e) -m, and for each e ∈ E h \ {y|∃m ∈ N : (y, m) ∈ Y }, |S ∩ N (e)| = c(e), and S ∩ B = X. Note that we add M as an

  apex-graph, such that |E| ≤ a|V | [Tho01]. In particular, it implies that in the previous complexity analysis, if G is apex-minor-free, then Y is of size at most a|V | • log(max e∈E c(e)). This directly gives the following lemma. Lemma 8.3.3 Let G = (V, E) be an apex-minor-free graph, k be an integer, M be a subset of V , and c : E → {1, . . . , k} be a color function. Edge Monitoring on (G, k, M, c) can be solved in time 2 O(tw•log(max e∈E c(e)))• n.Theorem 8.3.4 ([FGT11]) There exists a constant c such that for every apexminor-free graph G and every integer k such that k ≤ tw(G) c , the triangulated grid Γ k is a contraction of G.Theorem 8.3.5 Let G = (V, E) be an apex-minor-free graph, k be an integer, c be a color function c : E → {1, . . . , k}, and M be a subset of V . Edge Monitoring on (G, k) can be solved in time 2

Figure 8 . 3 :

 83 Figure 8.3: The considered squares in Γ 4 and their diagonals.

  Now assume that tw(G) ≤ c(2 (k + 1) + 2). By Lemma 8.3.3, we know that there is an algorithm in time 2O(tw)•log(max e∈E c(e)))• n to solve the problem. In particular, this algorithm runs in time 2

Theorem 8. 4 . 1 . 1 : 1 : 2 : 3 :

 411123 Edge Monitoring is W [1]-complete on complete graphs when the parameter is the size of the solution. then Algorithm 8.1 returns True in Line 7 by induction hypothesis. Assume now that |S| = k then it is easily seen that S is an independent set of G with |S| = k. Then Algorithm 8.1 returns True in Line 12. This completes the proof. Algorithm 8Reduction of Edge Monitoring to Independent Set (Function ReducMStoIS(G, c, k)). Input: G = (V, E), c, k Let C = max{c(e) : e ∈ E} If C > k

  Let V built from V by removing the extremities of edges e with c(e) = k 10:Let E = {uv ∈ E : c(uv) = k -1 ∧ u ∈ V ∧ v ∈ V } 11:If there exists an independent set of size k in G = (V , E )
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Lemma 9. 1 . 1

 11 Let G = (V, E), w, c such that G is a complete graph, C = max{c(e) :e ∈ E} and |V | ≥ C + 2. Then, C ≤ γ m (G, c) ≤ C + 2. Moreover, every set S ⊆ V such that |S| ≥ C + 2 is a monitoring set of (G, c). Proof. Let [a u , b u ], [a v 1 , b v 1 ] and [a v 2 , b v 2 ] the intervals that represent u, v 1 and v 2 respectively in the realization of G. Since u ∈ B i and v 2 ∈ V i , b u > a v 1 and b u > a v 2 . Since v 1 ∈ N [u], we have a u < b v 1 and since v 1 < R v 2 , we have a u < b v 2 . Thus [a u , b u ] ∩ [a v 2 , b v 2 ] = ∅. Consequently, v 2 ∈ N [u]. Lemma 9.3.3 Let S ⊆ V i , W = repr i (S) and v 1 , v 2 ∈ B i such {v 1 , v 2 } is monitored by S. Then {v 1 , v 2 } is monitored by W . Proof. First, notice that every u ∈ V i that belongs to M ({v 1 , v 2 }) belongs to N [B i ]. If |S ∩N [B i ]| ≤ C +2, then W = S ∩N [B i ]and the lemma is trivially verified. Now, assume that |S ∩ N [B i ]| > C + 2 and let u ∈ (S \ W ) ∩ M ({v 1 , v 2 }). By Lemma 9.3.2, every vertex u ∈ W belongs to N [v 1 ] and N [v 2 ]. So all elements in W except at most two (v 1 and v 2 ) belong to M ({v 1 , v 2 }). Thus |M ({v 1 , v 2 }) ∩ W | ≥ C and {v 1 , v 2 } is monitored by W .

1 : 1 :

 11 Algorithm for Weighted Edge Monitoring on interval graphs Input: An interval graph G = (V, E).

2 : Begin 3 : 6 : 7 :F i ← ∅ 8 :i forgets the node v 9 :

 236789 Compute a nice path decomposition B 0 , ..., B l 4: F 0 ← {∅} 5: w 0 (∅) = 0 For each i from 1 to l do If For each W ∈ F i-1 do 10: If all edges {u, v} where u ∈ B i are monitored by W 11:

  Return min{w l (W ) : W ∈ F l } 31: End If 32: End 130 Chapter 9. Weighted edge monitoring problems

i + 1

 1 forgets the vertex v: then, W comes from some W ∈ F i such that W = repr (W ), w i+1 (W ) = w i (W ) and W is added to F i+1 by Lines 11-13. Using the induction hypothesis, W ∈ F * i and w i (W ) = w * i (W ). Let S be a i-partial solution of weight w(S) = w * i (W ) that extends W . By Line 10 of the algorithm, all edges {u, v} where u ∈ B i are monitored by W and thus by S. Consequently, S is an(i + 1)-partial solution with repr i+1 (S) = repr i+1 (W ) = W . Thus, W ∈ F * i+1 and w * i+1 (W ) ≤ w(S) = w * i (W ) = w i (W ) = w i+1 (W ). i + 1 introduces the vertex v: There are two possibilities. v / ∈ W : then W comes from some W ∈ F i such that W = repr (W ), w i+1 (W ) = w i (W )and W is added to F i+1 by Lines 18-20. By induction hypothesis, W ∈ F * i and w i (W ) = w * i (W ). Let S be a i-partial solution of weight w(S) = w * i (W ) that extends W . S is an (i + 1)-partial solution with repr i+1 (S) = repr i+1 (W ) = W . Thus W ∈ F * i+1 and w * i+1 (W ) ≤ w(S) = w * i (W ) = w i (W ) = w i+1 (W ). v ∈ W : W comes from some W ∈ F i such that W = repr (W + {v}), w i+1 (W ) = w i (W ) + w(v) and W is added to F i+1 by Lines 21-23. Let S be a i-partial solution of weight w(S) = w * i (W ) that extends W . S = S∪{v} is an (i+1)partial solution with repr i+1 (S ∪ {v}) = repr i+1 (W ∪ {v}) = W . Thus W ∈ F * i+1 and w* i+1 (W ) ≤ w(S + {v}) = w * i (W ) + w(v) = w i (W ) + w(v) = w i+1 (W ). F * i+1 ⊆ F i+1 and for each W ∈ F * i+1 , w i+1 (W ) ≤ w * i+1 (W ): let W ∈ F *i+1and S be an (i + 1)-partial solution that extends W and such that w(S ) = w * i+1 (W ). We also consider two cases: i + 1 forgets the vertex v: then S is an i-partial solution. Let W = repr i (S ).
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 52 Conclusion and summary of Part III 135 2. Edge monitoring • The problem is W [1]-complete on complete graphs when the parameter is the size of the solution. The problem is W [2]-hard when the parameter is the size of the solution. Two algorithms are presented. First one parameterized by the treewidth in time (tw 2 •log(max e∈E c(e)))• n where tw is the treewidth of the input graph. The second one parameterized by k, the size of the solution,
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 23 chapters and discusses several open questions and directions for future research to each contribution. In the first part, we presented the graph decomposition problem, detailed two types of this problem and surveyed some of its famous results. Then, our focus was on the decomposition of complete multigraph. We discussed the problem of decomposition of complete multigraph λK n into k-cycles and k-stars of size k and gave necessary and sufficient conditions for which this decomposition exists. Most cases have been treated. As future work, we plan to focus on the following issues: 1. We left some open subcases when n < 2k. The natural question is how to improve our results by using the proposed idea (or not) to prove the remaining cases ? Investigate the same decomposition problem with a generalized point of view by considering the decomposition of complete multigraph λK n into cycles of size l and stars of size k such that l ≥ 2 and k ≥ 2 are different. It would be interesting to consider the directed version of the studied decomposition as the directed stars and circuit decomposition for the complete directed graph, the complete directed multigraph and the complete directed bipartite graph.
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  vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that is, a clique which does not exist exclusively within the vertex set of a larger clique. A maximum clique of a graph G, is a clique, such that there is no clique with more vertices. The clique number of a graph G, denoted by ω(G), is the number of vertices in a maximum clique in G. Independent set: independent set (a.k.a. stable set) is a set of vertices in a graph such that no two of which are adjacent. In other words, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two.

	2.2. Some families of graphs	9

Neighborhood (vertex and edge): the (open) neighborhood of a vertex v in a graph G is the set of all vertices adjacent to v, denoted by

  Apex graph: an apex graph is a graph that becomes planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. An apex graph may have more than one apex; for example, in the minimal nonplanar graphs K 5 , every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove.

	Regular graph: regular graph is a graph that each vertex has the same number
	of neighbors. In other words, every vertex of the graph has the same degree. A
	regular graph with vertices of degree k is called a kregular graph or regular graph
	of degree k. A 0-regular graph consists of disconnected vertices, a 1-regular graph
	consists of disconnected edges, and a 2-regular graph consists of disconnected cycles
	and infinite chains. A 3-regular graph is known as a cubic graph. The complete
	graph K

The complete multipartite graph is a multipartite graph such that any two vertices that are not in the same part have an edge connecting them. We will denote a complete multipartite graph with k parts by K n 1 ,n 2 ,...,n k where k i is the number of vertices in the i th part of the graph.The bipartite graph is a multipartite graph having two parts. Figure

2.4 is an example of multipartite graph with three parts.

Figure 2.4: Example of multipartite graph.

Planar graph: planar graph is the graph that can be drawn on the plane in such a way that no edges cross each other. As an example, complete graphs are planar only for n ≤ 4. The complete bipartite graph K 3,3 is nonplanar. More generally, a graph is planar if and only if it does not have K 5 or K 3,3 as a minor 1 , as proved by Wagner

[START_REF] Wagner | Über eine eigenschaft der ebenen komplexe[END_REF] 

. n is a (n -1)-regular graph.

Petersen graph: a Petersen graph is an undirected graph having 10 vertices and 15 edges as illustrated in Figure

2

.5. It is a well known graph which is often used as an example or counterexample for graph problems. Many additional facts about the Petersen graph can be found in

[START_REF] Holton | The Petersen Graph[END_REF]

. Figure 2.5: Petersen graph. Generalized Petersen graph: Generalized Petersen graph is a family of cubic graphs introduced by Watkins [Wat69]. Generalized Petersen graph, denoted by

  Seven bridges of the city of Königsberg , the east Prussian city and now renamed Kaliningrad, relied four places as shown in Figure 2.8. The question is can all be traversed in one trip without doubling back, with the additional requirement that the trip ends in the same place it began. This problem is equivalent to asking if the multigraph with four nodes and seven edges (see Figure 2.8) has an Eulerian cycle [W + 01].

	2.4 Two favorite graph problems
	Graph modeling helps us to understand a problem because it determines a single
	formal vocabulary for different situations and allow us to find a method to solve
	the problem.	complexity there exist many good books for example, we have the two
	books by Downey and Fellows [DF12, DF13] and a more recent textbook by Cygan Graph theory was born in 1736 with the answer of Euler (1707-1783) to the
	et al. [CFK + 15]. famous problem of the bridges of Königsberg (Euler, 1736) [Eul41]. The problem
	Parameterized complexity can be seen as a refinement of classical complexity in is proposed as follows.
	which one takes into account not only the input size, but also a parameter k. As
	an example of parameters in graph theory, we have size of the solution, treewith,
	etc.	
	This parameter help us to get around the inevitable combinatorial explosion
	of classical computational complexity and separate the time complexity into two
	parts: first part that depends purely on the size of the input and represented with
	a polynomial function, and the second part which is an arbitrary function that
	depends on the parameter k. In this case, a problem is called fixed-parameter
	tractable (F P T in short) and the time complexity of the corresponding algorithm
	(fixed parameter tractable algorithm) is represented as O(p(n)f (k)) Where p(n)
	is some polynomial function of the input size n and f (k) is an arbitrary function
	in k. Hence, this means that the complexity of the problem scales polynomially
	with the size of the input data which is nice as time complexity. However, it also
	scale arbitrarily (usually exponentially) with the parameter k. This separates out
	the central hardness of the problem such that the hard part (the bad part) of the
	problem is blamed on the parameter k, while the easy part (the nice part) of the
	problem is charged to the size of the input data. Thus, the choice of the right
	parameter k is very important since the problem can be considered as hard from
	parameterized viewpoint with some parameterization, but tractable (soluble) with
	another parametrization.
	Since there exist many hard problem in literature, this approach has enormous
	practical implications for these problems. If you find a problem that's fixed param-
	eter tractable and the parameter k has small values, it can be significantly more
	efficient to use the fixed parameter tractable algorithm than to use the classical
	brute force algorithm.
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		Chapter 2. Preliminaries
	in graphs are given in Chapter 5.	Chapter 3
	A dominating set of a graph is a subset D of the vertices such that every vertex is
	either in D or adjacent to a vertex in D. Over the years different variations of graph Overview of graph
	domination were introduced e.g. total dominating sets, connected dominating sets,
	k-tuples dominating sets, etc. The first domination problems came from chess. In 1850, different chess players decomposition
	Graph decomposition is one of the most famous and known problems in graph were interested in the minimum number of queens such that every square on the
	theory. It consists to break an input graph into smaller pieces (subgraphs) by chess board either contains a queen or is attacked by a queen [HHS98]. Then, the
	satisfying some constraints. number of required queens for such problem corresponds to the dominating number.
	Since it is a very vast research area, there exist various types of decomposition Other than chess, domination in graphs has a lot of applications in several fields. Contents
	Concept of domination appears in facility location problems, where the number problems in literature. Nevertheless, there exist two major kinds of decomposi-tions of graphs, depending on the way that we want to decompose, called edge-of facilities (e.g., fire stations, hospitals, shops, guards) is fixed and one attempts Part I 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
	decompositions (a.k.a. edge-disjoint decomposition) and vertex-decompositions to minimize the distance that a person needs to travel to get to the closest facility. 3.2 Two types of decomposition . . . . . . . . . . . . . . . . . . . 28
	Domination can be also found in problems involving to find sets of representatives, 3.2.1 Simple decomposition of graphs . . . . . . . . . . . . . . . . . 28 (a.k.a. vertex-disjoint decomposition) respectively. The first kind consists to decompose the input graph into subgraphs such that in monitoring communication or electrical networks. As another application of Graph decomposition 3.2.2 Multidecomposition of graphs . . . . . . . . . . . . . . . . . . 29
	each edge belongs to one and only one subgraphs. In other words, we decompose domination we have cluster heads. In wireless sensor networks, it consists to group 3.3
	the edges of the input graph into groups and each group constitutes a subgraph. sensor nodes into clusters and electing cluster heads for all the clusters. Domination
	The second decomposition is based on vertices. It consists to decompose a graph can help us here to select appropriate cluster heads.
	into subsets of vertices such that each vertex must belong to one and only one The literature on this subject is rich and growing rapidly since we always have
	subsets. Graph decomposition is usually associated to the edge-decompositions and new variants of domination problems. In this thesis, we give a particular interest to
	in a lot of research vertex-decompositions are called colorings and not considered study two variants of domination, called [j, k]-dominating set and edge monitoring
	as decomposition. Then, in all this work, the only kind considered is the edge-problem. Our motivation about studying these two problems and more details can
	decomposition and for the sake of simplicity we call it graph decomposition. be found in Parts II and III respectively.
	Graph decomposition is motivated by a lot of applications in practice such as in
	fault tolerance [MB98] spanning structures [Fre85], load balancing [Fox88, KNS09],
	graph similarity and matching [LH01], pattern recognition techniques [FP75], big
	graphs [SXZF07], etc.	
	More details on graph decomposition, motivation and our results can be found
	in Part I of this thesis.	
	2.4.2 Domination problems	
	The study of domination problems in graph theory has a long history. Mathematical
	study of domination in graphs began around 1960. A brief history of domination
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 3 

1: Table summarized some famous graph decomposition.

Table 3 .

 3 2: Table summarized some famous graph multidecomposition.

directed graphs and hypergraphs are treated. More results on Hamiltonian decomposition can be found in [ABS90, Hil84, BFM89, HR86, BN16]. Different types of decomposition of various types of graphs has been studied by many authors. One of the most studied is tree decomposition. For some results on tree decompositions; see [DO95, Pet96, BG12, Lon89]. Other types of decompositions are studied in various types of graphs such as crown decomposition of complete multigraphs [LG10], complete bipartite decomposition of complete graph [Tve82], multistars decomposition of complete bipartite multigraph [Lin10],

  n are respectively 2 and n -1, so 2 ≤ k ≤ n -1 is necessary. Since λK n has λn(n -1)/2 edges and each subgraph in a (C k , S

k )-decomposition has k edges, k has to divide λn(n -1)/2. As an introduction result, we show in the following proposition that the necessary conditions in Lemma 4.2.1 of the (C k , S k )-decomposition of λK n are also sufficient in the special case when k = 4. Proposition 4.2.2 Let n > 4 and λ > 1 be positive integers. There exists a (C 4 , S 4 )-decomposition if and only if λn(n -1)/2 ≡ 0[4].

Proof. We distinguish two cases according to the parity of λ. Case 1. λ is odd Since λn(n -1)/2 ≡ 0[4] and λ is odd by assumption then n(n -1) ≡ 0[8]. We have two subcases: Subcase 1.a. n is even Since n(n -1) ≡ 0[8] and n is even, this implies that n ≡ 0[8]. Let n = 8α with α ≥ 1, then λK n can be decomposed into disjoint union of α copies of λK 8 and disjoint union of α(α -1)/2 copies of λK 8,8 . Every λK 8,8 can be decomposed into S 4 using Theorem 4.1.4. We now decompose each λK 8 into C 4 's and S 4 's as follows: Note that λK 8 = K 8 ∪ (λ -1)K 8 . Since Theorem 4.1.1 implies that K 8 is S 4 -decomposable and Theorem 4.1.2 guarantees that (λ-1)K 8 is C 4 -decomposable, we have λK 8 is (C 4 , S 4 )-decomposable. Thus, λK n is (C 4 , S 4 )-decomposable. Subcase 1.b. n is odd Since n is odd and n

  and λn(n -1) ≡ 0[8] by assumption.Consequently, λ ≡ 0[4] then we take incident edges of one vertex and decom-

pose them into S 4 's. The remaining graph is either λK 5 when n = 6 or λK 6 when n = 7. Both remaining graphs are C 4 -decomposable using Theorem 4.1.2.

• n = 8: Since λ is even, λK 8 can be written as the disjoint union of 2K 8 's. Now we give the (C 4 , S 4 )-decomposition of 2K 8 : each 2K 4 is decomposed into C 4 's by Theorem 4.1.2 and the 2K 4,4 is decomposed into S 4 's using Theorem 4.1.4. Since each 2K 8 is (C 4 , S 4 )-decomposable then λK 8 is also (C 4 , S 4 )decomposable. • n ≥ 9: Note that λK n = λK 4 ∪ λK n-4 ∪ λK 4,n-4 . Observe |E(λK 4 )| and |E(λK 4,n-4 )| are divisible by 4. By assumption |E(K n )| is a multiple of 4, so |E(λK n-4 )| is also a multiple of 4. We decompose λK 4 into cycles of 4 edges using Theorem 4.1.2 with λ even. λK 4,n-4 is S 4 -decomposable using Theorem 4.1.4. Since λ is even, we decompose λK n-4 into C 4 using Theorem 4.1.2. Thus, we conclude that λK n is (S 4 , C 4 )-decomposable.

  decomposition by Lemma 4.3.3. Now we decompose K n into stars of k size by Theorem 4.1.1 since n ≥ 2k. Thus λK n is (C k , S k )-decomposable.

Using Proposition 4.3.1 and Lemmas 4.3.2, 4.3.3 and 4.3.4, we obtain the following Theorem: 4.4. Multidecomposition of λK n when k is prime or divides either n -1,n or λ 39 Theorem 4.3.5 Let n, k and λ be positive integers. If λn(n -1)/2 ≡ 0[k] and

• n ≥ 4k, or

• n ≥ 2k and λ > 1 is even or gcd(λ, k) = 1,

then λK n is (C k , S k )-decomposable.

4.4 Multidecomposition of λK n when k is prime or divides either n -1,n or λ

One can easily check that λK n is (C 2 , S 2 )-decomposable if and only if n > 2, λ > 1 and λn(n -1) ≡ 0

[4]

. Thus, we admit the following lemma without proof.

  .4. Multidecomposition of λK n when k is prime or divides either n -1,n or λ 41 For n = 3k: If λ is even, we have λK n is (S k , C k )-decomposable by Lemma 4.3.3. If λ is odd and k is odd, then λK 3k = (λ-1)K 3k ∪K 3k since |E(K 3k )| and |E((λ-1)K 3k )| are multiples of k. Thus, (λ -1)K 3k is C k -decomposable by Theorem 4.1.2 and K 3k

by Theorem 4.1.2 and K 2k is S k -decomposable by Theorem 4.1.1.

4

  Figure 7.16: The minimum set of monitors on the path P4 15 . Preliminary notions . . . . . . . . . . . . . . . . . . . . . . . . 110 8.2 Complexity of 1-uniform monitoring problem . . . . . . . . 111 8.2.1 Algorithmic complexity and approximability . . . . . . . . . 111 8.2.2 W [2]-hardness of 1-uniform edge monitoring problem . . . . . 114 8.3 Fixed parameter algorithms for edge monitoring . . . . . . 116 8.4 Edge monitoring on complete graphs . . . . . . . . . . . . . 119 8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

	Chapter 8
	Parameterized algorithms and
	complexity
	Contents
	8.1

  Assume G admits a total dominating set S of size k ≥ 3. If S contains a vertex of I m then replace it by any of its neighbors in K n . The obtained set is still a total dominating set of G. Then we construct S a monitoring set of G from S as follows. For every K 2 of I , if it is adjacent to only one vertex of S then add in S another of its neighbors. This is always possible since δ(G) ≥ 2. Observe that S is a monitoring set of G such that |S | ≤ 2k. Now, assume G admits a monitoring set S of 2k vertices. Let S = S 1 ∪ S 2 such that S 1 ∩ S 2 = ∅ and S 1 ⊂ K n is the smallest set of vertices sufficient to monitor I .We prove S 1 ≤ S 2 . Suppose S 1 > S 2 . Construct S 2 by replacing every vertex of S 2 that belongs to I by one of its neighbors in K n . Observe S 2 is sufficient to monitor I . A contradiction. Thus S 1 is a total dominating set of G such that S 1 ≤ k.

	In the following, we study relationship between 1-UMP and other problems such
	as Hitting Set Problem (HSP), Set Cover Problem (SCP) and Vertex Cover Problem
	(VCP) in hypergraphs [Kar72].
	then we can build a nice tree-decomposition of G with the same width in polynomial
	time [Klo94a].
	8.2 Complexity of 1-uniform monitoring problem
	8.2.1 Algorithmic complexity and approximability

has exactly one child t , then either -B t = B t ∪ {v} for some v ∈ B t and this node is called an introduce vertex, or -B t = B t \ {v} for some v ∈ B t and this node is called a forget vertex, and • if t ∈ V (T ) has exactly two children t and t , then B t = B t = B t . This node is called a join vertex .

The sets B t are called bags. The treewidth of G, denoted by tw(G), is the smallest integer w such that there is a tree-decomposition of G of width w. When context is clear we will use the notation tw instead of tw(G). An optimal tree-decomposition is a tree-decomposition of width tw(G). Moreover, if we have a tree-decomposition, We first study 1-UMP for P 4 -free graphs, also called cographs. We recall the following theorem from Pim, et al. The Hitting Set Problem (HSP) is defined as follows: Let S be a finite set, C a collection of subsets C 1 , C 2 , . . . , C m of S and k a positive integer. The couple (S, C) has a hitting set of size at most k, iff. ∃X ⊆ S : |X| ≤ k and ∀C

  is the number of times y has been monitored in G t (resp. G t ).

For all t ∈ V (T ), if (X, Y, p) ∈ R t then X ⊆ B t and Y ⊆ E t × {1, . . . , max e∈E c(e)}.

Note that if (y, m) and (y, m ) are in Y with m < m , then we need to keep only (y, m). So we can see Y as a subset of all functions E t → {1, . . . , max e∈E c(e)}. We obtain that |Y | ≤ 2 tw 2 •log(max e∈E c(e))

. Thus,

|R t | ≤ 2 tw • 2

tw 2 •log(max e∈E c(e)) . So we can solve Edge Monitoring on (G, k) in time 2 O(tw 2 •log(max e∈E c(e)))

A graph is a minor of another if the first can be obtained from the second by contracting some edges, deleting some edges, and deleting some isolated vertices.
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List of publications arising from this thesis Proposition 7.5.8 Let K n be a complete graph with n even. K n -αI remains 1-monitorable only if α < n-2 2 .

Proof. We begin by prove that if α = n-2 2 then we have edges that don't form a triangle. Note that

Note that the degree of each vertex of K n 2 , n 2 is n 2 . When we remove n-2 2 perfect matchings from K n 2 , n 2 , we are sure that the remaining edges in K n 2 , n 2 form a perfect matching and we denote it by P M . Then, K n -( n-2

2 )I = K n 2 ∪ K n 2 ∪ P M . We prove easily that every edge e in P M don't belong to triangle because we can't have a common adjacent vertex between any two vertices in P M . Now, for any α > n-2 2 , we proceed by the same way as below for the first n-2

2 perfect matchings then we remove n-2 2 perfect matching from K n 2 , n 2 After that, for the remaining perfect matchings, we remove them from each K n 2 if n 2 is even. If n 2 is odd, we remove an additional edge for each perfect matching from the edges of P M . Using this method to remove α perfect matchings, we are sure that all remaining edges of P M doesn't belong to a triangle. Now, we prove that even if α = n-2 2 -1 or less, every edge in K n -αI belongs to triangle. In the case when α = n-2

2 -1 = n-4 2 , the two extremities of every edge is not connected to n- 4 2 vertices. Suppose that the two extremities don't have the same disconnected vertices set, then the two extremities have n -4 disconnected vertices. This implies that we are sure that, in the worst case, every two extremities of any edge in K n -( n-4

2 )I have two vertices (neighbors) in common.

7.6 1-uniform monitoring for some graph classes

Planar unit disc graphs

A graph G = (V, E) is a unit disk graph if it there exists a map f :

f is called a geometric representation of G.

Recognizing whether a graph G is an unit disk graph is NP-hard [START_REF] Breu | Unit disk graph recognition is np-hard[END_REF]. Thus, computing a geometric representation of an unit disk graph is also NP-hard. Consequently, we suppose that an unit disk graph G is given with a geometric representation f . Proof. By Theorem 7.5.7, we have γ ×2 (G) ≤ γ m (G, 1). We will prove that γ ×2 (G) ≥ γ m (G, 1). Let S be a minimum 2-tuple dominating set of G. Thanks to Lemma Since 2-tuple domination is NP-complete on split graphs [START_REF] Liao | k-tuple domination in graphs[END_REF] and by Lemma 7.6.4, we obtain the following result.

Theorem 7.6.5 1-uniform Edge Monitoring is NP-complete on split graphs.

Comparability graphs

We also prove that the problem is N P -complete on comparability graphs.

Theorem 7.6.6 1-uniform Edge Monitoring is N P -complete on comparability graphs.

Proof. We do a reduction from Total Domination on bipartite graphs which has been proved N P -complete [START_REF] Pfaff | Np-completeness of total and connected domination and irredundance for bipartite graphs[END_REF]. Let G = (V, E) be a bipartite graph.

Without loss of generality, assume that G has no isolated vertices. Let G be the graph obtained from G by adding a universal vertex u. It is clear that G is a comparability graph. We will prove that γ m (G , 1) = γ t (G) + 1. Let S be a total dominating set of G. Then, S ∪{u} is a monitoring set of G. Indeed, every edge in E is covered by u and for every edge {u, v} with v ∈ V , there is a vertex v ∈ N (v)∩S.

Thus, {u, v} is monitored by v . Now, let S be a monitoring set of G . Then, u ∈ S because u is the only vertex that monitors edges in E. S -u is a total dominating set of G. Indeed, let v be a vertex in V . {u, v} is an edge of G monitored by a vertex v ∈ S -u distinct from v. Thus, v is dominated v .

General results on graph power

Let G = (V, E) be a graph. Let d(G) be the diameter of G. Throughout this section we assume that G is connected. If G is disconnected then, γ m (G, 1) is the sum of the edge monitoring numbers of its components. We define G k as the k th power of G that has the same set of vertices as G, but in which two vertices are adjacent when their distance in G is at most k.

Since the graph G does not necessarily have the properties of a monitorable graph, we discuss the edge monitoring number of some graph power.

Theorem 7.6.7 The graph power G k of any connected graph G with at least k + 1

Proof. Since G is a connected graph, then each vertex v ∈ G has degree at least 1. Note that G has at least k + 1 vertices and no isolated vertices this implies that each vertex in G k will be connected to at least k vertices. Now, in order to prove that each edge in G k is k -1-monitorable, it suffices to prove that each edge in G k belongs to k -1 triangles. By definition of graph power G k , two vertices are adjacent when their distance in G is at most k. Let e = uv be an edge in G k . For new problem that we call Mixed {1, 2}-Independent Set in a coloring forest.

We begin by proposing a coloring scheme for the vertices of the forest. The vertices are colored as follows:

1. Red vertices V r are the set of vertices having degree equals to 3 in T .

2. Blue vertices V b are the set of vertices having degree higher than 3 in T .

The definition of the Mixed {1, 2}-Independent Set problem is based on an existing definition of the k-Independent set given by Fink et al. in [START_REF] John | On n-domination, n-dependence and forbidden subgraphs[END_REF]:

Definition 11 A subset S of V is a k-independent if the maximum degree of the subgraph induced by the vertices of S is less or equal to k -1.

In the following, the degree of a vertex is represented by the sum of weights of its incident edges. Now, let define the Mixed {1, 2}-Independent Set problem:

it is a 2-independent set such that S r is a 1-independent set.

Maximum Mixed {1, 2}-Independent Set is to find the largest mixed {1, 2}independent set for a given graph T . We first give an algorithm that finds a minimum set of monitors that satisfy conditions of Lemma 7.6.12. The proposed algorithm looks for a variant of the Maximum Mixed {1, 2}-Independent Set in a colored tree. It will be applied to each tree of the forest. In other words, the following algorithm returns for each tree of the forest a maximum mixed {1, 2}independent set S that represents vertices that are not monitors. Hence, finding S induces finding the minimum set of monitors by complementarity.

Before presenting the algorithm, let's present a well-known algorithm for the maximum independent set problem. We will show that for a tree T = (V, E), using dynamic programming, the maximum 1-independent set (a.k.a. independent set) problem can be solved in linear time:

Root the tree at an arbitrary vertex. Then, each vertex defines a subtree (the one hanging from it). Dynamic programming proceeds from smaller to larger subprob- Suppose that we know the size of the largest independent set, denoted by M IS, of all subtrees below a node v. What is the maximum independent set in the subtree hanging from v? Two cases are possible: v is in the maximum independent set or is not.

Let O(v) be the size of the maximum independent set in the subtree rooted at vertex v such that v / ∈ M IS, then the maximum independent set is the union of the maximum independent sets of the subtrees of the children of v. Let I(v) be the size of the maximum independent set in the subtree rooted at vertex v such that v ∈ M IS, then the maximum independent set consists of v added to the union of the maximum independent sets of the subtrees of the children of v such that they do not belong to the maximum independent set. It follows that the time complexity of such algorithm is linear O(|V |).

Let's define an algorithm for the mixed [1,2]-independent set based on the same idea of the above algorithm. Let T = (V, E) be a tree with V = V r ∪ V b meaning the vertices are either colored red or blue. Suppose that we know the size of the largest mixed [1,2]-independent set, denoted by M M IS, of all subtrees below a node v. We have two possible cases:

1. Let O(v) be the size of the maximum independent set in the subtree rooted at vertex v such that v / ∈ M M IS, then the maximum independent set is the union of the maximum independent sets of the subtrees of the children of v.

2. Let I(v) be the size of the maximum independent set in the subtree rooted

is its children of color blue and connected to v with an edge of weight 1. c b2 (v) is its children of color blue and connected to v with an edge of weight 2.

The algorithm is obtained as follows:

It is easy to see that this algorithm is of linear complexity O(|V |).

Using the structure of an optimum solution described by lemmas and propositions of this section as well as the previous algorithm, we present a linear-time algorithm for solving the Edge monitoring problem on square tree graphs.

Algorithm 7.2: Compute γ m (T 2 , 1)-set for a tree square T 2

Input: A tree T = (V, E).

Output: γ m (T 2 , 1)-set.

Step 1:

Compute the set of leaves L;

For each v ∈ L do color(v) = white;

∃u ∈ L : dist(u, v) = 3 and a path v, x, y, u between v and u with

End For each

Step 2:

The induced subgraph by the remaining uncolored vertices forms a forest F ;

Else color(v) = Blue;

End If

For each u in F do If there exist x and y with deg T (x) = 2 or deg T (x) > 2 and x adjacent to at least deg T (x) -2 leaves (same for y) and u, x, y, v form a path in F (Cf. Lemma 7.6.12(3)) then

Add an edge with weight 2 between the two vertices v and u in F ;

End If

End For each End For each Apply Algorithm 7.1 on each tree of the forest;

Let S(F ) be the union of the maximal mixed {1, 2}-independent set of each tree of the forest;

Chapter 7. Introduction and first results Theorem 7.6.13 There exists an algorithm which computes the minimum number of monitors for square tree in linear time.

Power of cycles

Now, before presenting some results about the edge monitoring number of the cycle power graph, we detail two lemmas that can be useful in our proofs.

Let u and v be two vertices in C n . Let d e (uv) be the distance between two vertices which is measured by the number of vertices in the shortest path connecting these two vertices in C n (not in C m n ). Let call the edge that connects u and v in C m n within distance d e (uv) = m in C n a long edge and call the portion of vertices and edges between u and v in C m n , the path P uv of e. It is clear that the long edge uv can be monitored by any vertex of the path P uv . By the following lemma, we prove that for each portion of C n having 2m -1 vertices, we need at least three monitors.

Lemma 7.6.14 Let C m n be the m th power of a cycle graph of order n. Let P 2m-1 be a sequence of 2m -1 vertices of C n . Let S be a γ m (C m n , 1)-set of C m n . We have Proof. Let P 2m-1 = uv be a sequence of 2m -1 vertices of C n . This sequence has two long edges that need to be monitored only by nodes in P 2m-1 as depicted in Figure 7.12. Consequently, we have two monitors. Let call them m 1 and m 2 from left to right. As mentioned above, these two long edges can be monitored by any vertex of their paths.

Let x = d e (m 1 m 2 ) be the distance between the two monitors in C n . Let x 1 = d e (um 1 ) be the distance between u and m 1 and x 2 = d e (m 2 v) the distance between m 2 and v. Now, let us prove that whatever the placement of the two monitors in P 2m-1 , we will need at least a third monitor in P 2m-1 . We have four cases: 7.6. 1-uniform monitoring for some graph classes 101 (1) x = 1: this implies that the two monitors are adjacent in C n then we have only one possibility as depicted in Figure 7.13(a). The red edge is an edge monitored only by a vertex in P 2m-1 . Thus we need a third monitor.

(2) x = m: the long edge, depicted in red in Figure 7.13(b), can be monitored only by a monitor in P 2m-1 .

(3) x > m: this means that we have at least the two long edges, as shown in Figure 7.13(c), are monitored only by a vertex in P 2m-1 .

(4) 1 < x < m: we have two possible configurations depending on the distances x 1 and x 2 .

• If x + x 2 ≥ m and x + x 1 ≥ m then the edge having extremities the two monitors need to be monitored by a vertex in P 2m-1 as depicted in Figure 7.13(d).

It implies that the long edge depicted in red in Figure 7.13(e) need to be monitored by a vertex in P 2m-1 (the case when

x + x 1 < m is symmetric to this case). Lemma 7.6.15 Let C m n be a power cycle graph of order n.

Proof. Let C m n be a cycle graph power m of order n. For n ≤ 2m + 1: if we prove that C m 2m+1 = K 2m+1 , this implies that for any n ≤ 2m + 1, C m n = K n . Assume, to the contrary, that C m 2m+1 = K 2m+1 . This means that there exist at least two nonadjacent vertices in C m 2m+1 . From the definition of graph power, each vertex of C m 2m+1 will be connected to all vertices having distance less or equal to m. Since we have 2m + 1 vertices, each vertex will be connected to 2m vertices (m vertices on its left and m on its right). Thus, this contradicts the supposition that C m 2m+1 = K 2m+1 . For n = 2m + 2: similarly to the previous case, we can easily prove that C m 2m+2 is a complete graph minus one factor. 

Proof. We distinguish four cases as follows: Note that the vertices v i , v j and v k form a triangle. We prove that these three vertices can monitor all the edges of C m n . We show that each vertex can monitor a set of specific edges. Consider the first monitor v i and the proof is the same for the other monitors v j and v k .

The monitor v i monitors the following edges:

1. All edges having the two extremities in the adjacent components of v i : one extremity in Comp 1 and the other one in comp 2 such that v i is not an extremity of these edges.

All edges having the both extremities in the same adjacent component Comp 1

or Comp 2 such that v i is not an extremity of these edges. Since each monitor must be adjacent to two monitors (from Observation 7.5.2), this means that the set of monitors need to form a set of triangles. Thus, the aim is to find the minimum triangles set that covers all the edges in order to have the smallest number of monitors. In this perspective, we define a method of monitors selection as follow: first, we choose randomly one vertex as monitor, this vertex can monitor exactly m -1 long edges from its right and its left(C m n is symmetric) and all edges having each extremity in distance d e = m with this monitor except edges having this monitor as extremity (see example of Figure 7.15.step 1). Then, in order to monitor the edges having the first monitor as extremity and more precisely the two long edges e 1 and e 2 incident from this monitor (see Figure 7.15.step 2), we need to choose one monitor which belongs to the path P e 1 (resp. to e 2 ). Consequently, we choose as monitor the vertex having distance m -1 from the first monitor chosen because it's the farthest vertex which can monitor the edge e 1 (the same for e 2 because of the symmetry). Since the distance between the first monitor and the second one is m -1, then the second monitor can monitor all the edges having the first monitor as end (same for the other part because of the symmetry) except the edge having two monitors as end. Consider e 3 and e 4 the edges having both ends as monitors. Then, in order to monitor these edges, we choose the farthest vertices that can monitor them. Thus, we choose the adjacent vertex to the second monitor as monitor (same for the other part) (as shown in Figure 7.15.step 3). Consequently, using this method, we are sure to have the minimum number of monitors for this part of the cycle then we just need to do the same for the rest. It means that to monitor all edges, one time we choose one vertex as monitor and after m-2 vertices, we need to choose two monitors and so on. Using Lemma 7.6.14, we deduce that this construction gives an optimal solution. 

Power of paths

The idea of proof for powers of a path is the same as the proof of powers of a cycle. Theorem 7.6.17 The path power P m n has

Proof. We distinguish three cases as follows:

In this case, we prove that three monitors are sufficient to monitor all the edges of the power of path, denoted by P m n . The idea is to find the triangle whose vertices can monitor all edges of the power of path. For example, if we choose three successive monitors from the center of the path, then each monitor monitors all edges in m -1 distance from it left and it right, except the edges having this monitor as end.

Moreover, each monitor monitors the edge connected by the two other monitors. Thus, three monitors are enough.

We can easily verify that three monitors are not enough to monitor all edges. Then, we prove that four monitors are sufficient. We divide the path into three components. The two components of extremity (right and left) contain m + 1 vertices each and the component of the middle contains the rest of vertices. We choose two adjacent monitors, from each component of extremity, in order to monitor all edges in distance m -1 from the end of the path. Since the number of vertices that has the component of the middle is at most m -2, we are sure that two two vertices of each component form a triangle with at least one vertex from the other component and all the edges are monitored. If m = 2, then it is easy to see that we need to choose all vertices as monitors except the two vertices of extremities.

If m > 2, we divide the path into three components as in Case 2. The two components of extremity contain m -1 vertices and the third component contain the rest of vertices. In order to monitor all the edges of the components of extremity, we must choose two adjacent monitors from each extremity of the middle components as shown in Figure 7.16(step 1). To monitor the edges of the middle component, we define the following method to select monitors: the idea is to find the minimum number of triangles that cover all the remaining edges to have the minimum number of monitors. We know that the largest triangle in the path power P m n is extended over a distance of m + 1. This means that the biggest distance between two monitors in the same triangle is m -2. This implies that after each m -2 vertices we must have at least one monitor. In order to have the minimum number of monitors, after each m -2 vertices, we choose one monitor and the second time two adjacent monitors and so on (See Figure 7.16) in order to constitute our triangles. It permits to have succession of triangles connected along the path (same idea as cycle power C m n for n > 3m and m > 2). Using Lemma 7.6.14, we can easily deduce that this construction gives an optimal solution. This complete the proof. We deduce an algorithm that computes γ m (G, 1) of (P 4 , C 4 )-free 1-monitorable graphs as follows:

Corollary 8.2.3 Let G be (P 4 , C 4 )-free 1-monitorable graph. There exists an algorithm that computes γ m (G, 1) in polynomial time.

Proof. Let S be the monitoring set to be computed. We begin with S = ∅. Let u be a vertex dominating all other vertices of G. Determining such vertex is easy.

Add u to S. Now, consider the graph

where the G i 's are connected components. Then for all G i 's do the following. Let v i be a dominating vertex of G i . Add v i and one of its neighbors to S.

In the following, we will prove that 1-UMP is NP-complete on (P 5 , C 4 )-free graphs.

Theorem 8.2.4 1-UMP is NP-complete even when restricted to (P 5 , C 4 )-free 1monitorable graphs.

Proof. Since it is possible to check a candidate solution of 1-UMP in polynomial time, 1-UMP belongs to NP. To prove its NP-hardness, we give a reduction from the total dominating set problem that was proven to be NP-complete in split graphs by Bartossi in 1984 [START_REF] Bertossi | Dominating sets for split and bipartite graphs[END_REF].

Let G = (K n , I m ) be a split graph where K n is a clique of n vertices and I m is an independent set of m vertices. Without loss of generality we consider only split graphs with minimum degree δ(G) ≥ 2, for otherwise G wouldn't be 1-monitorable.

We construct a graph G from the split graph G by replacing each vertex of the independent set I m with a K 2 , and call the set of obtained vertices I . G is a (P 5 , C 4 )-free 1-monitorable graph. We prove that G admits a total dominating set of size at most k iff. G admits a monitoring set of size at most 2k.

Chapter 8. Parameterized algorithms and complexity

Proof. The problem is clearly in NP. To prove that Edge Monitoring is NPhard and W [1]-hard, we exhibit an FPT-reduction from Independent Set. Let (G = (V, E), k) be an instance of Independent Set. Without loss of generality, we can assume that G is connected. Indeed, it is easily seen that Independent Set remains NP-complete under this restriction. We build an instance (G = (V, E ), c, k) of Edge Monitoring as follows: G is a complete graph and for each edge e ∈ E , we have c(e) = k -1 if e ∈ E and c(e) = 0 otherwise.

We show that (G, k) is a positive instance of Independent Set if and only if (G , c, k) is a positive instance of Edge Monitoring. First of all, notice that there is no monitoring set of size less than k. Indeed, assume, for the sake of contradiction, that there is a monitoring set S of size less than k. Since G is connected, there exists an edge e incident to a vertex in S and such that c(e) = k -1. We have M (e) ∩ S < k -1 so there is a contradiction. Now, let S ⊆ V such that |S| = k. Then, we have:

We will prove now that Edge Monitoring on complete graphs parametrized by k belongs to W [1]. To prove this, we will show that this problem can be reduced to Independent Set as described in the following algorithm. Proof. Assume, for the sake of contradiction, that there exists a set S that monitors G such that |S| < k + 2. If |S| = 1, let v be the unique element of S. Let e an edge incident to v. Then, e is not monitored by S. Otherwise, let u and v be two elements in S. Then, M ({u, v}) ∩ S = |S| -2 < k so {u, v} is not monitored by S.

Polynomial algorithms for complete and block graphs

In this section we present some results of Weighted Edge Monitoring problem on complete and block graphs.

Let recall some definitions. A block graph is a graph where each biconnected component (block) is a clique. The block-cut tree T of a connected graph G is defined as follows. The vertices of T are the blocks and the articulation points of G. There is an edge in T for each pair of a block and an articulation point that belongs to that block. The following lemma is useful to establish the connection between γ m of a graph G and γ m of its 2-connected components.

We denote γ m (G 1 , w, c|u) = min{w(S) : S is a monitoring set of (G, c) and u ∈

Proof. Let S 1 , S 1 , S 2 be optimal solutions of Weighted Edge Monitoring(G 1 , w, c), 1. Weighted Edge Monitoring can be solved in polynomial time on C-bounded weighted block graphs.

2. Weighted Edge Monitoring can be solved in quasi-linear time for block graphs

) where c is uniform.

Proof. Without loss of generality, we can assume that G is connected. We will prove the first statement. The proof of the second statement is similar. Let (G = (V, E), w, c) be a C-bounded weighted block graph. We first compute the block-cut tree T of G. This can be done in linear time [START_REF] Hopcroft | Algorithm 447: efficient algorithms for graph manipulation[END_REF]. Then, we choose a clique V 1 that corresponds to a leaf of T and u the articulation point that is neighbor of V 1 in

) can be computed in polynomial time by using Lemma 9.2.1. Proof of Lemma 9.2.1 can be easily modified to compute

) can be computed by induction.

Interval graphs

In this section we give a polynomial dynamic programming algorithm for computing Weighted Edge Monitoring on weighted interval graphs. First some definitions.

i∈V of the real line such that (i, j) ∈ E if and only if I i ∩ I j = ∅ for every distinct vertices i, j ∈ V . We say that (I i ) i∈ [1,n] is a realization of G. Without loss of generality, we can assume that there are no intervals I i and I j that have a common extremity.

Given an interval graph G = (V, E) and a realization (I i ) i∈V , we define a total

The following definition is a refinement of the nice tree decomposition introduced • every edge e ∈ E appears in a set B i ,

• the order in which vertices are introduced corresponds to < L

• the order in which vertices are forgotten corresponds to < R For i ∈ [0, l], F i is the set of vertices appearing in some set B j , j < i, but not in

Lemma 9.3.1 [FMN + 15] Let G = (V, E) be an interval graph and (I i ) i∈V be a realization of G. Then G has a nice path-decomposition that can be computed in linear time.

We denote by F * i the set of i-representants of i-partial solutions and w * i is a function w * i :

S is an i-partial solution that extends W }. Before presenting the algorithm, we introduce two lemmas. The second is the key of the algorithm. Using the induction hypothesis, W ∈ F i and w i (W ) = w * i (W ). Thus, W = repr i+1 (S ∪ {v}) = repr i+1 (W ∪ {v}) is added to F i+1 by Line 22 and by Line 23 The complexity of the algorithm can be refined in the case of unit interval graphs.

Lemma 9.3.6 Let C be a clique of an unit interval graph G = (V, E). Then

Proof. Let (I i ) i∈E be a realization of G. Since G is an unit interval graph, we have 

Cographs

The class of cographs is defined by induction.

• The graph which contains one vertex is a cograph;

• The (disjoint) union and the join of two cographs are cographs.

Lemma 9.4.1 Let G = (V, E) be the join of two graphs

Let S be a total dominating set of G 1 . Then, S monitors all edges between V 1 and V 2 .

Proof. Let {u, v} be an edge between G 1 and G 2 such that u ∈ V 1 . Then there exists a vertex u 1 ∈ S adjacent to u. Thus, {u, v} is monitored by S since {u, v, u 1 } is a triangle of G.

Lemma 9.4.2 Let G = (V, E) be the join of two graphs

Proof. Assume for the sake of contradiction that S 1 is not a total dominating set of G 1 and S 2 is not a total dominating set of G 2 . Then there exists an edge {u, v} ∈ E such that u has no neighbor in S 1 and v has no neighbor in S 2 . Thus, {u, v} is not monitored by S.

Lemma 9.4.3 Let G be the join of two graphs

Let S be a minimal monitoring set of G.

Assume, for the sake of contradiction, that |S Proof. Let v be a vertex in V . Since G has no isolated vertices, there is a vertex

Combining Lemmas 9.4.1, 9.4.2 and 9.4.4, we obtain the following lemma.

Lemma 9.4.5 Let G = (V, E) be the join of two graphs

The two statements hold.

• If S 1 = ∅ and S 2 = ∅, then S is a monitoring set of G if and only if S 1 is a total dominating set of G 1 or S 2 is a total dominating set of G 2 .

• If S 2 = ∅ (resp. S 1 = ∅), then S is a monitoring set of G if and only if G 1 (resp. G 2 ) has no isolated vertices and S 1 (resp. S 2 ) is a monitoring set of

The following lemma is a direct consequence of Lemma 9.4.3 and Lemma 9.4.5.

Lemma 9.4.6 Let G = (V, E) be a graph. If G is the (disjoint) union of two graphs

If G is the join of two graphs G 1 and G 2 .

Chapter 10. Conclusions and Perspectives on [i, j]-dominating sets and [i, j]-total dominating sets. We were particularly interested in these two variants for i = 1 and j = 2. We gave the exact value of the [1,2]-dominating number and the [1, 2]-total dominating number for generalized Petersen graphs P (n, k) when k = 2.

From these results, we can consider several directions for future work:

1. We would like to investigate whether the study of [1,2]-dominating set problem on P (n, k) for k ≥ 3.

Since γ

)) except for the case n = 5 and n ≡ 1 [6].

The natural question is for each values of n and k this equation holds.

3. If there is some integer 1

5. There exists a simple algorithm to compute the exact value of γ [1,j] (P (n, k))

and γ t[1,j] (P (n, k)) ?

The last part of this thesis was devoted to study a recent problem namely edge monitoring problem. It can be considered as variant of dominating sets problem.

This problem was originally motivated by its security application on wireless sensor networks. We presented the problem from theoretical point of view and detailed its variants. Then, some bounds on the edge monitoring number are given in general graphs. Afterwards, we first focused on 1-uniform monitoring problem by presenting some results on general graph and hardness proofs. The problem was also studied in particular classes of graphs: power of a cycle, power of a path, planar unit disc graph, split graph and comparability graph. An algorithm for finding the minimum 1-uniform edge monitoring set on the square of tree was also presented.

Then, we studied the edge monitoring problem from the perspective of parameterized complexity. We proved that the edge monitoring problem is W [2]-hard when parameterized by the size of the solution. Moreover, we presented two algorithms that solve the problem in general graphs and in the particular case of apex-minor free graphs. Finally, we gave different study results about weighted edge monitoring problem on several graph classes: complete graphs, blocks graphs, interval graphs, cographs.

Even if this part contains several results on the edge monitoring problem and its variants, a number of issues need to be further investigated. 

List of Algorithms